
TECHNOLOGY INCORPORATED

XENIXTM
SYSTEM
SOFTWARE
DEVELOPMENT

VOLUME 2

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft. The
software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

© 1982, Microsoft Corporation

© 1979, Bell Telephone Laboratories, Incorporated
Reprinted with permission.

Copyright 1979, Bell Telephone Laboratories, Incorporated

Holders of a UNIX™ so~are license are permitted to copy this
document, or any portion of it, as necessary for licensed use of the
software, provided this copyright notice and statement of
permission are included.

Catalog no. 9100
Part no. 91 FOOB

Document no. 8603b-1 00-00

CONTENTS

1. INTRODUCTION ••••.••••..•.•••.••••••••••••••••••..• 1-1

2. BASIC DEVELOPMENT TOOLS........................... 2-1
2.1 CC: The C Compiler ••..•..•...••..•.•...•••..••... 2-2

2.1.1
2.1.2
2.1.3

Invocation Switches
The Loader 2-5
Files 2-6

2-3

2.2 LINT: A C Program Checker ••.•••..•.••..•..•••.... 2-7
2.2.1 A Word About Philosophy 2-8
2.2.2 Unused Variables and Functions 2-8
2.2.3 Set/Used Information 2-9
2.2.4 Flow of Control 2-10
2.2.5 Function Values 2-10
2.2.6 Type Checking 2-11
2.2.7 Type Casts 2-12
2.2.8 Nonportable Character Use 2-13
2.2.9 Assignments of longs to ints 2-13
2.2.10 Strange Constructions 2-14
2.2.11 Ancient History 2-15
2.2.12 Pointer Alignment 2-16

·2.2.13, .. Multiple Uses and pide Effects 2-16
2.2.14 Shutting Lint Up 2-17
2.2.15 Library Declaration Files 2-18
2.2.16 Notes 2-19
2.2.17 Current Lint Options 2-20

2.3 MAKE: A Program Maintenance Program•......... 2-21
2.3.1 Description Files and Substitutions 2-25
2.3.2 Command Usage 2-27
2.3.3 Implicit Rules 2-28
2.3.4 Example 2-30
2.3.5 Suggestions and Warnings 2-31
2.3.6 Suffixes and Transformation Rules 2-33

2 . 4 AD B : Th e X EN I X De bug g e r . . . • . . • • . • . • • . . • . . • . .• 2 - 3 5
2.4.1 Invocation 2-35
2.4.2 Current Address 2-35
2.4.3 Formats 2-36
2.4.4 General Request Meanings 2-37
2.4.5 Debugging C Programs 2-37
2.4.6 Maps 2-46
2.4.7 Advanced Usage 2-48
2.4.8 Patching 2-51
2.4.9 Anomalies 2-52

2.5 AS: The XENIX Assembler•...................• 2-69
2.5.1 Usage 2-69
2.5.2 Lexical conventions 2-69
2.5.3 Segments 2-70

XENIX Software Development

2.5.4
2.5.5
2.5.6
2.5.7
2.5.9
2.5.10
2.5.11

The location counter 2-71
Statements 2-71
Expressiqns 2-73
Pseudo-op~rations 2-76
Addressing: Modes 2-84
Memory Addressing Modes 2-85
Diagnostics 2-86

3 • ENVI RONMENT. • • • • • • • • • • • • • . . • • • • • • • . • • • • • • • • . • . • • . 3-1
3.1 THE C INTERFACE TO THE XENIX SySTEM.............. 3-2

3.1.1 Basics 3-2
3.1.2 The Standard I/O Library 3-4
3.1.3 Low-Level I/O 3-9
3.1.4 Processes 3-15
3.1.5 Signals and Interrupts 3-22

3.2 THE C LIBRARy •••.••••••••••••.••••.•••••••••••• '. • 3-26
3.2.1 The Standard I/O Library 3-27
3.2.2 General Usage 3-27
3.2.3 File access 3-29
3.2.4 File Status 3-33
3.2.5 Input Function 3-35
3.2.6 Output Functions 3-39
3.2.7 String Functions 3-44
3.2.8 Character Classification 3-47
3.2.9 Character Translation 3-49
3.2.10 Space Allocation 3-50

3.3 THE XENIX ASSEMBLY LANGUAGE INTERFACE ..•.•.•.•.•. 3-55
3.3.1 Memory Format' 3-55

4.
4.1

4.2

3.3.2 Calling Sequence 3-55
3.3.3 Procedure Entry and Exit 3-56
3.3.4 Return Values 3-56
3.3.5 System calls 3-57

OTHER 'l'OOLS• : •••••..••..•••.•..••••..••••.•.
The M4
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11

Macro Processor •....••.•••.•.•••.•.•.••.•
Usage 4-2 J!

Defining Macros 4-3
Quoting 4-4
Arguments 4-6
Atithmetic Built-ins 4-7
File Manipulation 4-8
System Command 4-9
Conditionals 4-9
String Manipulation 4-10
Pr inting 4-11
Summary of Built-ins 4-12

Le x .•....••..••...••..•••...•.•.•..•..••..••... '.
4.2.1
4.2.2

Introduction 4-13
Lex Source 4-16

4-1
4-2

4-13

XENIX Software Development

4.2.3 Lex Regular Expressions 4-17
4.2.4 Lex Actions 4-21
4.2.5 Ambiguous Source Rules 4-25
4.2.6 Lex Source Definitions 4-28
4.2.7 Usage 4-29
4.2.8 Lex and Yacc 4-30
4.2.9 Examples 4-30
4.2.10 Left Context Sensitivity 4-34
4.2.11 Character Set 4-36
4.2.12 Summary of Source Format 4-37
4.2.13 Notes 4-39

4.3 YACC: Yet Another Compiler-Compiler............. 4-40
4.3.1 Basic Specifications 4-43
4.3.2 Actions 4-46
4.3.3 Lexical Analysis 4-48
4.3.4 How the Parser Works 4-50
4.3.5 Ambiguity and Conflicts 4-56
4.3.6 Precedence 4-61
4.3.7 Error Handling 4-64
4.3.8 The Yacc Environment 4-66
4.3.9 Hints for Preparing Specifications 4-67
4.3.10 Advanced Topics 4-71
4.3.11 A Simple Example 4-74
4.3.12 Yacc Input Syntax 4-77
4.3.13 An Advanced Example 4-79
4.3.14 Old Features Supported but not Encouraged 4-85

4.4 DC: An Interactive Desk Calculator.............. 4-86
4.4.1 Synopsis 4-86
4.4.2 Internal Representation of Numbers 4-88
4.4.3 The Allocator 4-89
4.4.4 Internal Arithmetic 4-90
4.4.5 Addition and Subtraction 4-91
4.4.6 Multiplication 4-91
4.4.7 Division 4-91
4.4.8 Remainder 4-92
4.4.9 Square Root 4-92
4.4.10 Exponentiation 4-92
4.4.11 Input Conversion and Base 4-93
4.4.12 Output Commands 4-93
4.4.13 Output Format and Base 4-93
4.4.14 Internal Registers 4-93
4.4.15 Stack Commands 4-94
4.4.16 Subroutine Definitions and Calls 4-94
4.4.17 Internal Registers - Programming DC 4-94
4.4.18 Push-Down Registers and Arrays 4-94
4.4.19 Miscellaneous Commands 4-95

4.5 BC: A Desk-Calculator Language 4-96
4.5.1 Simple Computations with Integers 4-97
4.5.2 Bases 4-98
4.5.3 Scaling 4-99
4.5.4 Functions 4-100

4.5.5
4.5.6
4.5.7
4.5.8
4.5.9

XENIX Software Development

Subscripted Variables 4-102
Control Statements 4-102
Some Details 4-104
Three Important Things 4-105
Notation 4-107

5. REFERENCE •••••.••••••••••••••••.••••••••••.•••.•. 5-1
5.1 Commands
5.2 System Calls
5.3 Subroutines
5.4 Special Files
5.5 File Formats

APPENDIX A: THE C REFERENCE MANUAL

CHAPTER 1

INTRODUCTION

One of the primary uses of the XENIX system is as an
environment for software development. This manual describes
the tools available in this environment and the low level
environment itself. Some knowledge of the XENIX system and
of the C programming language is presumed.

Nearly all of the XENIX system is written in the C
programming language. Therefore, C is the ideal language for
creating new XENIX applications. For more information on
programming in C, you should refer to Volume I, Programmer's
Introduction, for information on the concepts and softwar~
that underly the XENIX system, and to Kernighan and
Ritchie's book, The ~ Programming Language, for an excellent
tutorial and reference on the language itself. The C
Reference portion of this book is contained in Appendix A of
this manual.

The tools used to create executable C programs are:

cc The C compiler.

lint A C program checker.

ld The XENIX loader.

as The XENIX assembler.

Note that cc automatically invokes both the loader and the
assembler so that use of either is optional. Lint is
normally used in the early stages of program development to
check for illegal and improper usage of the C language.

In addition to the above tools, the program make is used to
automatically maintain and regenerate the software in medium
scale programming projects.

The above tools are used to create executable C programs.
These programs are created to run in the XENIX environment.
This environment is manifested in the various system calls
and libraries that are available to the programmer.

It is worth noting that not all programming projects are
best implemented in C, even if they are programs written for
XENIX. Often, simple programs can be written in the shell

1-1

XENIX Software Development

command language much more quickly than they can be in C.
For some complicated programs, lex and yacc may be just what
is required. Lex is a lexical analyzer that can be used to
accept a given input language. Yacc is a program designed
to compile grammars into a parsing program. Typically, it
is used to compile languages that are recognized by lex.
For this reason, lex and yacc are often used together,
although either can be used separately.

with the above overview of software development in mind,
this manual is organized as follows:

CHAPTER 1: INTRODUCTION

CHAPTER 2:

The chapter you are now reading contains a word
about the develpment of software on the XENIX '
system with emphasis on how the the software
tools discussed in this manual fit together.

BASIC SOFTWARE
This chapter describes each of the basic tools
that you are likely to use either directly or
indirectly, in creating C programs on the XENIX
system.

CHAPTER 3: ENVIRONMENT
This chapter discusses the standard XENIX
environment and how this environment can be
accessed either from C or from assembly language.

CHAPTER 4: OTHER TOOLS
This chapter describes tools and languages that
are useful for special purposes, but that are not
as generally useful as the software discussed in
chapter 2.

CHAPTER 5: REFERENCE
This chapter contains important information on
commands, system calls, subroutines, special
files, and file formats. This information is
indispensible to the serious programmer.

1-2

CHAPTER 2

BASIC DEVELOPMENT TOOLS

This chapter discusses five basic development tools: cc,
lint, make, adb, and as. Together, these tools make up a
solid software development package, premitting you to
create, execute, debug, and maintain software. Each of
these tools is discussed in turn in the following sections.

2-1
\
\

\

XENIX Software Development

2.1 CC: The C Compiler

Cc is the command used to invoke the XENIX C compiler.
Since the entire XENIX system is written in the C language,
cc is the fundamental XENIX program development tool. The C
language supported by the C compiler is described in
Appendix ~, The £ Reference Manual. For more information on
programming in C, see The C Language, by Kernighan and
Ritchie.

This section discusses the compiler used to create
executable files from programs written in the C language.
The emphasis here is on giving insight into ccls operation
and use. Special emphasis is given to input and output files
and and to the available compiler options. Throughout,
familiarity with compilers and with the C language is
assumed.

The fundamental function of the C compiler is to produce
executable programs by processing C source files. The word
"processing" is the key here, since the compilation
process involves several distinct phases: These phases are
described below:

Preprocessing
In this phase of compilation, your C source
program is examined for macro definitions and
include file directives. Any include files are
processed at the point of the include statement;
then occurrences of macros are expanded throughout
the text. Normally, standard include files found
in the /usr/include directory are included at the
beginning--of C programs. These standard include
files normally are named with a '.h l extension.
For example, the following statement includes the
definitions for functions in the standard I/O
library:

#include <stdio.h>

Note that the angle brackets indicate that the
file is presumed to exist in /usr/include. The
effects of preprocessing on a file can be captured
in a file by specifying the -P switch on the cc
command line. The useful for debugging, when you
suspect that an include file or macro is not
expanding as desired.

Optimization
Optimization of generated code can be specified on
the cc command line with the -0 switch. This

2-2

XENIX Software Development

option should be used to increase execution speed
or to decrease size of the executing program.
Since programs will take longer to compile with
this option, you may want to use this option only
after you have a working debugged program.

Generation of Assembly Code

Assembly

The C compiler generates assembly code that is
later assembled by the XENIX assembler, as. ec's
assembly output can be saved in a file by
specifying the -S switch when the compiler is
invoked. Assembly output is saved in a file whose
name has the '.s' extension.

To assemble the generated assembly code, cc calls
as to create a '.0' file. The '.0' file is used·in
the next step, linking and loading.

Linking and Loading
The final phase in the compilation of a C program
is linking and loading. In this phase, your newly
created '.0' file is loaded into memory along with
any needed '.0' library modules. These modules are
then linked together to create a final executable
module, whose name by default is a.out. The
program responsible for all this is -the XENIX
loader, ld. Loader options can be specified on
the cc command line. These options are discussed
later in the section on the loader.

It is important to realize that all of the above
phases can be controlled at the cc command level:
each does not have to be invoked separately. What
normally happens when you execute a cc command is
that a sequence of programs processeS the original
C source file. Each program creates a temporary
file that is used by the next program in the
sequence. The final output is the load image that
is loaded into memory when the final executable
file is run.

2.1.1 Invocation Switches

A list of switches follows:

-c Suppress the loading phase of the compilation, and
force an object file to be produced even if only
one program is compiled.

2-3

XENIX Software Development

-p Arrange for the compiler to produce code which
counts the number of times each routine is called.
Also, if loading takes place, replace the standard
startup routine by one that automatically calls
monitor(3~ at the start and arranges to write out
a mon.out file at normal termination of execution
of the object program. An execution profile can
then be generated by u~e of prof(l).

-0 Invoke an object-code optimizer.

-s Compile the named 'C programs, arid leave the
assembler-language 'output on corresponding 'files
suffixed '.s'.

-p Run only the macro" preprocessor and place the
result for each '.c' file in a corresponding '.i'
file. The resUltant file has no 'i' lines in it.

-0 output
Give the final output file the name specified by
output. If this option is used the file a.out
will be left undisturbed. - ---

-D name=def

-u name

-I dir

Define the name to the preprocessor, as if by
'idefine'. -yr-no definition is given, the name is
defined as 1.

~emove any initial definition of name.

'iinclude' files whose names ,do 'not begin with 'II
are always sought ·f~rst in the directory of the
file argument, then 'in directories named in -I
options, then'in directories on a standard list.

Other arguments are taken to 'be either loader option
arguments, or C~compatible object programs, typically
produced by an earlier ccrun, or perhaps libraries of C­
compatible routines crea.ted wi th the assembler. These
programs, 'toge,ther wi th ',the results of any compilations
spec i f ied, 'ar e loaded, (in" the order given) to produce an
executable program with the t:iame ~.out.

Note that some versions of 'the C compiler support additional
switches. These switches and their. funqtion are described in
the reference section of this manual.

2-4

XENIX Software Development

2.1.2 The Loader

As mentioned in the above sections, the XENIX loader, Id,
plays a fundamental part in the development of any C
program. For this reason it is discussed as part of CCi it
can however, be used as a stand-alone processor of object
files. Note that arguments to Id can be given on the cc
command line and are a part of the syntax of the cc command.

The available loader switches are listed below. except for
-1, they should appear before filename arguments.

-8 'Strip' the output, that is, remove the symbol
table and relocation bits to save space (but
impair the usefulness of the debugger). This
information can also be removed by strip(l).

-u Take the following argument as a symbol and enter
it as undefined in the symbol table. This is
useful for loading wholly from a library, since
initially the symbol table is empty and an
unresolved reference is needed to force the
loading of the first routine.

-Ix This option is an abbreviation for the library
name /lib/libx.a, where x is a string. If that
does not exist, Id tries /usr/lib/libx.a. A
library is searchea-when its name is encountered,
so the placement of a -1 is significant.

-x Do not preserve local (non-.globl) symbols in the
output symbol table: enter only external symbols.
This option saves some space in the output file.

-x Save local symbols except for those whose names
begin with 'L'. This option is used by cc to
discard internally generated labels while
retaining symbols local to routines.

-n Arrange that when the output file is executed, the
text portion will be read-only and shared among
all users executing the file. This involves
moving the data areas up to the first possible 4K
word boundary following the end of the text.

-i When the output file is executed, the program text
and data areas will live in separate address
spaces. The only difference between this option
and -n is that here the data starts at location o.

2-5

XENIX Software Development

-0 The name argument after -0 is used as the name of
the ld output file, instead of a.out.

For more information on the loader, see Id in the reference
section of this manual.

2.1.3 Files

The files making up the compiler, as well as those files
needed, used, or created by cc are listed below:

fi1e.c
file.o
a.out
/tmp/ctm?
/lib/cpp
/1 ib/c [01]
/lib/c2
/lib/crtO.o
/lib/mcrtO.o
/lib/libc.a
/usr/include
/bin/23fix

input file
object file
10aded output
temporaries for cc
preprocessor
compiler for cc
optional optimIzer
runtime startoff
startoff for profiling
standard library
standard directory for '#include' files
processor for large-text programs

2-6

XENIX Software Development

2.2 LINT: A C Program Checker

Lint is a program that examines C source programs, detecting
a number of bugs and obscurities. It enforces the type
rules of C more strictly than the C compilers. It may also
be used to enforce a number of portability restrictions
involved in moving programs between different machines
and/or operating systems. Another option detects a number
of wasteful, or error prone, constructions which
nevertheless are, strictly speaking, legal.

The separation of function between lint and the C compilers
has both historical and practical rationale. The compilers
turn C programs into executable files rapidly and
efficiently. This is possible in part because the compilers
do not perform sophisticated type checking, especially
between separately compiled programs. Lint takes a more
global, leisurely view of the program, looking much more
carefully at the compatibilities.

This section discusses the use of lint, gives an overview of
the implementation, and gives some hints on the writing of
machine independent C code.

Suppose there are two Cl source files, filel.c and
which are ordinarily compiled and loaded together.'
command

lint filel.c file2.c

file2.c,
Then the

produces messages describing inconsistencies and
inefficiencies in the programs. The program enforces the
typing rules of C more strictly than the C compilers (for
both historical and practical reasons) enforce them. The
command

lint -p filel.c file2.c

produces, in addition to the above messages, additional
messages that relate to the portability of the programs to
other operating systems and machines. Replacing the -p by
-h produces messages about various error-prone or wasteful
constructions that, strictly speaking, are not bugs. Saying
-hp gets the whole works.

The next several sections describe the major messages; the
discussion of lint closes with sections discussing the
implementation and giving suggestions for writing portable
C. The final section gives a summary of lint options.

2-7

XENIX Software Development

2.2.1 A Word About Philosophy

Many of the facts that lint needs may be impossible to
discover. For examp1e~hether a given function in a
program ever gets called may depend on the input data.
Deciding whether exit is ever called is equivalent to
solving the famou~'halting problem," known to be
recursively undecidable.

Thus, most of the lint algorithms are a compromise.
function is never mentioned, it can never be called.
function is mentioned, lint assumes it can be called:
is not necessarily so, but in practice it is
reasonable.

If a
If a
this

quite

Lint tries to give information with a high degree, of
relevance. Messages of the form "xxx might be a bug" are
easy to generate, but are acceptable only in proportion to
the fraction of real bugs they uncover. If this fraction of
real bugs is too small, the messages lose their credibility
and serve merely to clutter up the output, obscuring the
more important messages.

Keeping these issues in mind, we now consider in more detail
the classes of messages that lint produces.

2.2.2 Unused Variables and Functions

As sets of programs evolve and develop, previously used
variables and arguments to functions may become unused; it
is not uncommon for external variables, or even entire
functions, to become unnecessary, and yet not be removed
from the source. These "errors of commission" rarely
cause working programs to fail, but they are a source of
inefficiency, and make programs harder to understand and
change. Moreover, information about such unused variables
and functions can occasionally serve to discover bugs. Ifa
function does a necessary job, and is never called,
something is wrong!

Lint complains about variables and functions that are
defined but not otherwise mentioned. An exception is made
for variables that are declared through explicit extern
statements but are never referenced. Thus, the statement

extern float sin();

will evoke no comment if sin is never used.
with the semantics of the-C-compiler.

2-8

This agrees

XENIX Software Development

In some cases, these unused external declarations might be
of some interest: they can be discovered by adding the -x
flag to the lint invocation.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The -v option
is available to suppress the printing of complaints about
unused arguments. When -v is in effect, no messages are
produced about unused arguments except for those arguments
~~ic~ are unused and also declared as register arguments.
This can be co~sidered an active (and preventable) waste of
the register resources of the machine.

There is one case where information about unused, or
undefined, variables is more distracting than helpful. This
is when lint is applied to some, but not all, files out of a
collection--that are to be loaded together. In this case,
many of the functions and variables defined may not be used,
and, conversely, many functions and variabl~s defined
elsewhere may be used. The -u flag may be used to suppress
the spurious messages that might otherwise appear.

2.2.3 Set/Used Information

Lint attempts to detect cases where a variable is used
before it is set. This is very difficult to do well: many
algorithms take a good deal of time and space, and still
produce messages about perfectly valid programs. Lint
detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the
input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a
"use," since the actual use may occur at any later time,
in a data dependent fashion.

The restriction to the physical appearance of variables in
the file makes the algorithm very simple and quick to
implement, since the true flow of control need not be
discovered. It does mean that lint can complain about some
legal programs, but these programs would probably be
considered bad on stylistic grounds (for example, they might
contain at least two goto's). Because static and external
variables are initialized to 0, no meaningful information
can be discovered about their uses. The algorithm deals
correctly, however, with initialized automatic variables,
and variables which are used in the expression which first
sets them.

2-9

XENIX Softwar,e Development

The set/used information also permits recognition of those
local variables that are set and never used: these form a
frequent source of inefficiencies, and may also be
symptomatic of bugs.

2.2.4 Flow of Control

Lint attempts to detect unreachable portions of program
code. It will complain about unlabeled statements
immediately following goto, break, continue, or return
statements. An attempt is made to detect loops that can
never be left at the bottom, detecting .the· special cases
while(1) and fore::) as infinite loops. Lint also
compiains about loops which cannot be entered at the top:
some valid programs may have such loops, but at best they
are bad style and at worst, bugs.

Lint has an important area of blindness in the flow of
control algorithm: it has no way of detecting functions
which are called and never return. Thus, a call to exit may
cause unreachable code which lint does not detect: the most
serious effects of this are in~ determination of returned
function values, discussed in the next section.

One form of unreachable statement is not usually complained
about' by lint: a break statement that cannot be reached
causes no message. Programs generated by yacc2 and
especially lex3 may have literally hundreds of unreachable
break statements. The -0 flag in the C compiler will often
eliminate the resulting object code inefficiency. Thus,
these unreached statements are of little importance, there
is typically nothing the user can do about them, and the
resulting messages would clutter up the lint output. If
these messages are desired~ lint can be invoked with the -b
option.

2.2.5 Function Values

Sometimes functions return values which are never used:
sometimes programs incorrectly use function "values" which
have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of
both

return(expr);

and

2-10

XENIX Software Development

return ;

statements is cause for alarm; lint will give the message

function name contains returnee) and return

The most serious difficulty with this is detecting when a
function return is implied by flow of control reaching the
end of the function. This can be seen with a simple
example:

f (a) {
if (a) return (3);
F ();

Notice that, if ~ tests false, f will call ~ and then return
with no defined return value, this will trigger a complaint
from lint. If~, like exit, never returns, the message will
still-oe-produced when rn-fact nothing is wrong.

In practice, some potentially serious bugs have been
discovered by this feature. It also accounts for a
substantial fraction of the "noise" messages produced by
lint.

On a global scale, lint detects cases where a function
returns a value, but this value is sometimes, or always,
unused. When the value is always unused, it may constitute
an inefficiency in the function definition. When the value
is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious
problem.

2.2.6 Type Checking

Lint enforces the type checking rules of C more strictly
than do the compilers. The additional checking is in four
major areas:

1. Across certain
assignments

binary operators

2. At the structure selection operators

and

3. Between the definition and uses of functions

2-11

implied

XENIX Software Development

4. In the use of enumerations

There are a number of operators that have an implied
balancing between types of the operands. The assignment,
conditional (?:), and relational operators have this
property. The argument of a return statement, and
expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long,
unsigned, float, and double types may be freely intermixed.
The types of pointers must agree exactly, except that arrays
of ~'s can be intermixed with pointers to ~'s.

The type checking rules also require that, in structure
references, the left operand of the > be a pointer to
strocture, the left operand of the • be a structure, and the
right operand of these operators be a member of the
structure implied by the left operand. Simila"r checking is
done for references to unions.

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with
their declared counterparts.

with enumerations, checks are made that enumeration
variables or members are not mixed with other types, or
other enumerations, and that the only operations applied are
=, initialization, =~, 1=, and function arguments and return
values.

2.2.7 Type Casts

The type cast feature in C was introduced largely as an aid
to producing more portable programs. Consider the
assignment

p = 1 ;

where E is a character pointer. Lint quite
complains. Now, consider the assignmen-t---

p = (char *)1 ;

rightly

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong
motivation for doing this, and has clearly signaled his
intentions. It seems harsh for lint to continue to complain
about this. On the other hand, if this code is moved to

2-12

XENIX Software Development

another machine, such code should be looked at carefully.
The -c flag controls the printing of comments about casts.
When -c is in effect, casts are treated as though they were
assignments subject to complaint. Otherwise, all legal casts
are passed without comment, no matter how strange the type
mixing seems to be.

2.2.8 Nonportable Character Use

On the PDP-II, characters are signed quantities, with a
range from -128 to 127. On most of the other C
implementations, characters take on only positive values.
Thus, lint flags certain comparisons and assignments as
being illegal or .nonportable. For example, the fragment

char Ci

if{ (c = getchar(» < 0) ••••

works on the PDP-II, but will fail on machines where
characters always take on positive values. The real
solution is to declare c an integer, since getchar is
actually returning integer values. In any case, lint issues
the message:

nonportable character comparison

A similar issue arises with bitfields. When assignments of
constant values are made to bitfields, the field may be too
small to hold the value. This is especially true because on
some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a two
bit field declared of type int cannot hold the value 3, the
problem disappears if the bitfield is declared to have type
unsigned.

2.2.9 Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which
loses accuracy. This may happen in programs which have been
incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop
working because some intermediate results may be assigned to
ints, losing accuracy. Since there are a number of
legitimate reasons for assigning longs to ints, the
detection of these assignments is enabled by the -a flag.

2-13

XENIX Software Development

2.2.10 Strange Constructions

Several perfectly legal, but somewhat strange, constructions
are flagged by lint. Tqe messages hopefully encourage
better code quality, clearer style,and may even point out
bugs. The -h flag is used to enable these checks. For
example, in the statement

*p++ ;

the * does nothing. This provokes the message "null
effect" from lint. The program fragment

unsigned x ;
if(x < 0) •••

is clearly somewhat strange. The test will never succeed.
Similarly, the test

if(x > 0

is equivalent to

if(x 1= 0)

which may not be the intended action. In these cases lint
prints the message:

degenerate unsigned comparison

If one says

if(1 1= 0) .•••

lint reports "constant in conditional context", since the
comparison of 1 with 0 gives a constant result.

Another construction detected
precedence. Bugs which arise
the precedence of operators can
and formatting, making such
For example, the statements

if (x& 0 77 == 0) •••

or

x«2 + 40

by lint involves operator
from misunderstandings about
be accentuated by spacing
bugs extremely hard to find~

probably do not do what was intended. The best solution is
to parenthesize such expressions, and lint encourages this

2-14

XENIX Software Development

by an appropriate message.

Finally, when the -h flag is in force lint complains about
variables which are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal,
but is considered by many (including the author) to be bad
style, usually unnecessary, and frequently a bug.

2.2.11 Ancient History

There are several forms of older syntax that are discouraged
by lint. These fall into two classes, assignment operators
and initialization.

The older forms of assignment operators (e.g., =+, =-,
could cause ambiguous expressions, such as

a =-1

which could be taken as either

a =- 1:

or

a = -1:

The situation is especially perplexing if this kind of
ambiguity arises as the result of a macro substitution. The
newer, and preferred operators (+=, -=, etc.) have no such
ambiguities. To spur the abandonment of the older forms,
lint complains about these old fashioned operators.

A similar issue arises with initialization.
language allowed

int x 1

to initialize x to 1.
difficulties. Fo~ example

int x -1

This also caused

The older

syntactic

looks somewhat like the beginning of a function declaration:

int x y) {

and the compiler must read a fair ways past x in order to
sure what the declaration really is .• Again~ the problem is
even more perplexing when the initializer involves a macro.

2-15

XENIX Software Development

The current syntax places an equals sign between the
variable and the initializer:

int x = -1 1

This is free of any possible syntactic ambiguity.

2.2.12 Pointer Alignment

Certain pointer assignments may be reasonable on some
machines, and illegal on others, due entirely to alignment
restrictions. For example, on some machines, it is
reasonable to assign integer pointers to double pointers,
since double precision values may begin on any integer
boundary. On others, however, double precision values must
begin on even word boundaries1 thus, not all such
assignments make sense. Lint tries to detect cases where
pointers are assigned to other pointers, and such alignment .,
problems might arise. The message "possible pointer
alignment problem" results from this situation whenever
either the -p or -h flags are in effect.

2.2.13 Multiple Uses and Side Effects

In complicated expressions, the best order in which to
evaluate subexpressions may be highly machine dependent.
For example, on machines (like the PDP-II) 1n which the
stack runs backwards, function arguments will probably be
best evaluated from right-to-left: on machines with a stack
running forward, left-to~right seems most attractive.
Function calls embedded as arguments of other functions may
or may not be treated similarly to ordinary arguments.
Similar issues arise with other operators which have side
effects, such as the assignment operators and the increment
and decrement operators.

In order that the efficiency of C on a particular machine
not be unduly compromised, theC language leaves the order
of evaluation of complicated expressions up to the local
compiler, and, in fact, the various C compilers have
considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any
variable is changed by a side effect, and also used
elsewhere in the same expression, the result is explicitly
undefined.

Lint checks for the important special case where a simple
scalar variable is affected. For example, the statement

2-16

XENIX Software Development

will draw the complaint:

warning: i evaluation order undefined

2.2.14 Shutting Lint Up

There are occasions when the programmer is smarter than
lint. There may be valid reasons for "illegal" type
casts, functions with a variable number of arguments, etc.
Moreover, as specified above, the flow of control
information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable
programs. Thus, some way of communicating with lint,
typically to shut it up, is desirable. Therefore, a number
of words are recognized by lint when they were embedded in
comments. Thus, lint directives are invisible to the
compilers, and the--effect on systems with the older
preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control
information. If a particular place in the program cannot be
reached, but this is not apparent to lint, this can be
asserted at the appropriate spot in--rhe program by the
directive:

/* NOTREACHED */

Similarly, if it is desired to turn off strict type checking
for the next expression, use the directive:

/* NOSTRICT */

The situation reverts to the previous default after the next
expression. The -v flag can be turned on for one function
by the directive:

/* ARGSUSED */

Complaints about variable number of arguments in calls to a
function can be turned off by preceding the function
definition with the directive:

/* VARARGS */

In some cases, it is desirable to check the first several
arguments, and leave the later arguments unchecked. This
can be done by following the VARARGS keyword immediately
with a digit giving the number of arguments that should be

2-17

XENIX Software Development

checked. Thus:

1* VARARGS2 *1

causes the first two arguments to be checked, the others
unchecked. Finally, the directive

1* LINTLIBRARY *1

at the head of a file identifies this file as a library
declaration file, discussed in the next section.

2.2.15 Library Declaration Files

Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these
libraries. This is done by accessing library description
files whose names are constructed from the library
directives. These files all begin with the directive

1* LINTLIBRARY *1

which is followed by a series of dummy function definitions.
The critical parts of these definitions are the declaration
of the function return type, whether the dummy function
returns a value, and the number and types of arguments to
the function. The VARARGS and ARGSUSED directives can be
used to specify features of the library functions.

Lint library files are processed almost exactly like
ordinary source files. The only difference is that
functions that are defined on a library file, but are not
used on a source file, draw no complaints. Lint does not
simulate a full library search algorithm, and complains if
the source files contain a redefinition of a library routine
(this is a feature!).

By default, lint checks the programs it is given against a
standard library file, which contains descriptions of the
programs which are normally loaded when a C program is run~
When the -p flag is in effect, another file is checked
containing descriptions of the standard 1/0 library routines
which are expected to be portable across various machines.
The -n flag can be used to suppress all library checking.

2-18

XENIX Software Development

2.2.16 Notes

Lint was a difficult program to write, partially because it
rs--closely connected with matters of programming style, and
partially because users usually don't notice bugs that cause
lint to miss errors which it should have caught. (By
contrast, if lint incorrectly complains about something that
is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The
checking of structures and arrays is rather inadequate; size
incompatibilities go unchecked, and no attempt is made to
match up structure and union declarations across files.
Some stricter checking of the use of the typedef is clearly
desirable, but what checking is appropriate, and how to
carry it out, is still to be determined.

Lint shares the preprocessor with the C compiler. At some
point it may be appropriate for a special version of the
preprocessor to be constructed which checks for things such
as unused macro definitions, macro arguments which have side
effects which are not expanded at all, or are expanded more
than once, etc.

The central problem with lint is the packaging of the
information which it collec~ There are many options which
serve only to turn off, or slightly modify, certain
features. There are pressures to add even more of these
options.

In conclusion, it appears that the general notion of having
two programs is a good one. The compiler concentrates on
quickly and accurately turning the program text into bits
which can be run; lint concentrates on issues of
portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely
annoying, not fatal. The compiler can be fast since it
knows that lint will cover its flanks. Finally, the
programmer can concentrate at one stage of the programming
process solely on the algorithms, data structures, and
correctness of the program, and then later retrofit, with
the aid of lint, the desirable properties of universality
and portabilitY:--

2-19

XENIX Software Development

2.2.17 Current Lint Options

The command currently has the form

lint [-options files ••• library-descriptors •••

The options are

h Perform heuristic checks

p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable break statements.

x Report unused external declarations

a Report assignments of long to int or shorter.

c Complain about questionable casts

n No library checking is done

s Same as h (for historical reasons)

2-20

XENIX Software Development

2.3 MAKE: A Program Maintenance Program

In a programming project, it is easy to lose track of which
files need to be reprocessed or recompiled after a change is
made in some part of the source. Make provides a simple
mechanism for maintaining up-to-date versions of programs
that result from many operations on a number of files. It
is possible to tell make the sequence of commands that
create certain files, and the list of files that require
other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the
make command will create the proper files simply, correctly,
and with a minimum amount of effort.

The basic operation of make is to find the name of a needed
target in the description, ensure that all of the files, on
which it depends exist and are up to date, and then create
the target if it has not been modified since its generators
were. The description file defines the graph of
dependencies. Make does a depth-first search of this graph
to determine what work is really necessary.

Make also provides a simple macro substitution facility and
the ability to encapsulate commands in a single file for
convenient administration.

It is common practice to divide large programs into smaller,
more manageable pieces. The pieces may require quite
different treatments: some may need to be run through a
macro processor, some may need to be processed by a
sophisticated program generator (e.g., Yacc or Lex). The
outputs of these generators may then have to be compiled
with special options and with certain definitions and
declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries
under the control of special options. Related maintenance
activities involve running complicated test scripts and
installing validated modules. Unfortunately, it is very
easy for a programmer to forget which files depend on which
others, which files have been modified recently, and the
exact sequence of operations needed to make or exercise a
new version of the program. After a long editing session,
one may easily lose track of which files have been changed
and which object modules are still valid, since a change to
a declaration can obsolete a dozen other files. Forgetting
to compile a routine that has been changed or that uses
changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the
other hand, recompiling everything in sight just to be safe
is very wasteful.

2-21

XENIX Software Development

The program described in this report mechanizes many of the
activities of program development and maintenance. If the
information on inter-file dependences and command sequences
is stored in a file, the simple command

make

is frequently sufficient to update the interesting files,
regardless of the number that have been edited since the
last "make". In most cases, the description file is easy
to write and changes infrequently. It is usually easier to
type the make command than to issue even one of the needed
operations, so the typical cycle of program development
operations becomes

think - edit - make.- test

Make is most useful for medium-sized programming projects:
it does not solve the problems of maintaining multiple
source versions or of describing huge programs.

Basic Features The basic operation of make is to update a
target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the target
if it has not been modified since its dependents were. Make
does a depth-first search of the graph of dependences. The
operation of the command depends On the ability to find the
date and time that a file was last modified.

To illustrate, let us consider a simple example: A program
named ~ is made by compiling and loading three C-language
files ~.£, y.£, and ~.£ with the IS library. By convention,
the output of the C compilations is found in files named
~.2' Y·2, and ~.2. Assume that the files ~.£ and ~.£ share
some declarations in a file named defs, but that z.c does
not. That is, ~.£ and ~.£ have the line

#include "defs"

The following text
operations:

describes the relationships

prog x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o y.o defs

and

If this information were stored in a file named makefile,
the command

2-22

XENIX Software Development

make

would perform the operations needed to recreate ~ after
any changes had been made to any of the four source files
~·E' Y·E, ~·E' or defs.

Make operates using three sources of information: a user­
supplied description file (as above), file names and
"last-modified" times from the file system, and built-in
rules to bridge some of the gaps. In our example, the first
line says that ~ depends on three ".£" files. Once
these object files are current, the second line describes
how to load them to create~. The third line says that
x.o and Y.2 depend on the file defs. From the file system,
make discovers that there are three ".c" files
corresponding to the needed ".0" files, and uses built-in
information on how to generate an object from a source file
(l.~., issue a "cc -c" command).

The following long-winded description file is equivalent to
the one above, but takes no advantage of make's innate
knowledge:

prog x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o x.c defs
cc -c x.c

y.o y.c defs
cc -c y.c

z.o z.c
cc -c z.c

If none of the source or object files had changed since the
last time ~ was made, all of the files would be current,
and the command

make

would just announce this fact and stop. If, however, the
defs file had been edited, ~.E and Y.E (but not ~.E) would
be recompiled, and then ~ would be created from the new
".0" files. If only the file Y.E had changed, only it
would be recompiled, but it would still be necessary to
reload ~.

If no target name is given on the make command line, the
first target mentioned in the description is created;
otherwise the specified targets are made. The command

2-23

XENIX Software Development

make x.o

would recompile ~.£ if x.£ or defs had changed.

If the file exists after the commands are executed, its time
of last modification is used in further decisions; otherwise
the current time is used. It is often quite useful to
include rules with mnemonic names and commands that do not
actually produce a file with that name. These entries can
take advantage of make's ability to generate files and
substitute macros. Thus, an entry "save" might be
included to copy a certain set of files, or an entry
"cleanup" might be used to throwaway unneeded
intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful
for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by
command arguments or description file lines with embedded
equal signs.' A macro is invoked by preceding the name by a
dollar sign; macro names longer than one character must be
parenthesized. The name 6f the macro is either the single
character after the dollar sign or a name inside
parentheses. The following are valid macro invocations:

$ (CFLAGS)
$2
Sexy)
$Z
$(Z)

The last two invocations are identical. $$ is a dollar
sign. All of these macros are assigned values during input,
as shown below. Four special macros change values during
the execution of the command: $*, $@, $?, and $<. They will
be discussed later. The following fragment shows the use:

OBJECTS = x.o y.o z.o
LIBES = -IS
prog: $ (OBJECTS)

cc $ (OBJECTS) $(LIBES) -0 prog

The command

make

loads the three object files with the IS library. The
command

2-24

XENIX Software Development

make "LIBES= -11 -IS"

loads them with both the Lex ("-II") and the Standard
("-IS' ') libraries, since macro definitions on the command
line override definitions in the description. (It is
necessary to quote arguments with embedded blanks in XENIX
commands.)

The following sections detail the form of description files
and the command line, and discuss options and built-in rules
in more detail.

2.3.1 Description Files and Substitutions

A description file contains three types of information:
macro definitions, dependency information, and executable
commands. There is also a comment convention: all
characters after a sharp (#) are ignored, as is the sharp
itself. Blank lines and lines beginning with a sharp are
totally ignored. If a non-comment line is too long, it can
be continued using a backslash. If the last character of a
line is a backslash, the backslash, newline, and following
blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not
preceded by a colon or a tab. The name (string of letters
and digits) to the left of the equal sign (trailing blanks
and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are
stripped.) The following are valid macro definitions:

2 = xyz
abc = -11 -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro
that is never explicitly defined has the null string as
value. Macro definitions may also appear on the make
command line (see below).

Other lines give information about target files. The
general form of an entry is:

target ... : [:] [dependent
[(tab) commands] [# •••]

...] [; commands] [# •••]

Items inside brackets may be omitted. Targets and
dependents are strings of letters, digits, periods, and
slashes. (Shell metacharacters "*" and "?" are

2-25

XENIX Software Development

expanded.) A command is any string of characters not
including a sharp (except in quotes) or newline. Commands
may appear either after a semicolon on a dependency line or
on lines beginning with a tab immediately following a
dependency line.

A dependency line may have either a single or a double
colon. A target name may appear on more than one dependency
line, but all of those lines must be of the same (single or
double colon) type.

1. For the usual single-colon case, at most one of these
dependency lines may have a command sequence
associated with it. If the target is out of date with
any of the dependents on any of the lines, and a
command sequence is specified (even a null one
following a semicolon or tab), it is executed.
Otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be
associated with each dependency line. If the target
is out of date with any of the files on a particular
line, then the associated commands are executed. A
built-in rule may also be executed. This detailed
form is of particular value in updating archive-type
files.

If a target must be created, the' sequence of commands is
executed. Normally, each command line is printed and then
passed to a separate invocation of the shell after
substituting for macros. (The printing is suppressed in
silent mode or if the command line begins with an @ sign).
Make normally stops if any command signals an error by
returning a non-zero error code. (Errors are ignored if the
"~_ill flags has been specified on the make command line, if
the fake target name ".IGNORE" appears in the description
file, or if the command string in the description file
begins with a hyphen. Some XENIX commands return
meaningless status). Because each command line is passed to
a separate invocation of the shell, care must be taken with
certain commands (e.g., cd and Shell control commands) that
have meaning only within a-single Shell process; the results
are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is
set to the name of the file to be "made". $? is set to
the string of names that were found to be younger than the
target. If the command was generated by an implicit rule
(see below), $< is the name of the related file that caused
the action, and $* is the prefix shared by the current and
the dependent file names. .

2-26

XENIX Software Development

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name ".DEFAULT" are used. If there is no such name, make
prints a message and stops.

2.3.2 Command Usage

The make command takes four kinds of arguments: macro
definitions, flags, description file names, and target file
names.

make [flags] macro definitions] [targets]

The following summary of' the operation of the command
explains how these arguments are interpreted.

First, all macro definition arguments (arguments with
embedded equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files.

Next, the flag arguments 'are examined.
flags are

The permissible

-i Ignore error codes returned by invoked commands.
This mode is entered if the fake target name
".IGNORE" appears in the description file.

-s Silent mode. Do not print command lines before
executing. This mode is also entered if the fake
target name ".SILENT" appears in the description
file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an "@" sign are
printed.

-t Touch the target files (causing them to be up to
date) rather than issue the usual commands.

-q Question. The make command returns a zero or non­
zero status code depending on whether the target
file is or is not up to date.

-p Print out the complete set of macro definitions and
target descriptions

2-27

XENIX Software Development

-d Debug mode. Print out detailed information on files
and times examined.

-f Description file name. The next argument is assumed
to be the name of a description file. A file name
of "~_'I denotes the standard input. If there are
no "-f" arguments, the file named makefile or
Makefile in the current directory is read. The
contents of the description files override the
built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names
of targets to be made; they are done in left to right order.
If there are no such arguments, the first name in the
description files that does not begin with a period is
"made".

2.3.3 Implicit Rules

The make program uses a table of interesting suffixes and a
set of transformation rules to supply default dependency
information and implied commands. (The Appendix describes
these tables and means of overriding them.) The default
suffix list is:

.0 Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.1£ Yacc-Ratfor source grammar

.~ Yacc-Efl source grammar

.1 Lex source grammar

The following diagram summarizes the default transformation
paths. If there are two paths connecting a pair of
suffixes, the longer one is used: only if the intermediate
file exists or is named in the description •

• 0

.c .r .e .f .s .Y .l£ .~ .1 .d

.y .1 .Y£ .~

2-28

XENIX Software Development

If the file x.o were needed and there were an x.c in the
description or directory, it would be compiled. If there
were also an x.l, that grammar would be run through Lex
before compiling the result. However, if there were no x.c
but there were an x.l, make would discard the intermediate
C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers
used in the default, or the flag arguments with which they
are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and
LEX. The command

make CC=newcc

will cause the "newcc" command to be used instead of the
usual C compiler. The macros CFLAGS, RFLAGS, EFL~GS,
YFLAGS, and LFLAGS may be set to cause these commands to be
issued with optional flags. Thus,

make "CFLAGS=-O"

causes the optimizing C compiler to be used.

2-29

XENIX Software Development

2.3.4 Example

As an example of the use of make, we will present the
description file used to maintain the make command itself.
The code for make is spread over a number of C source files
and a Yacc grammar. The description file contains:

t Description file for the Make command

P = lpr
FILES = Makefile version.c defs main.c doname.c misc.c files.c
OBJECTS = version.o main.o ••• dosys.o gram .• o
LIBES= -IS
LINT = lint -p
CFLAGS = -0

make: $ (OBJECTS)
cc $(CFLAGS) $ (OBJECTS) $ (LIBES) -0 make
size make

$ (OBJECTS) : defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make; rm make

print: $(FILES)# print recently changed files
pr $? I $P

test:

touch print

make -dp I grep -v TIME >lzap
lust/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap ,
rm lzap 2zap

lint dosys.c doname.c files.c main.c misc.c version.c gram.c

arch:

$ (LINT) dosys.c doname.c files.c main.c misc.c version.c grc
rm gram.c

ar uv /sys/source/s2/make.a $ (FILES)

Make usually prints out each command before issuing it. The
following output results from typing the simple command

2-30

XENIX Software Development

make

in a directory containing only the source and description
file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o ••• dosys.o gram.o -IS -0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned
by name in the description file, make found them using its
suffix rules and issued the needed commands. The string of
digits results from the "size make" command; the printing
of the command line itself was suppressed by an @ sign. The
@ sign on the size command in the description file
suppressed the printing of the command, so only the sizes
are written.

The last few entries in the description file are useful
maintenance sequences. The "print" entry prints only the
files that have been changed since the last "make print"
command. A zero-length file print is maintained to keep
track of the time of the printing; the $? macro in the
command line then picks up only the names of the files
changed since print was touched. The printed output can be
sent to a different printer or to a file by changing the
definition of the P macro:

make print "P = IpI"

or

make print "P= cat >zap"

2.3.5 Suggestions and Warnings

The most common difficulties arise from make's specific
meaning of dependency. If file x.c has a "#include
"defs"" line, then the object file x~o-depends on defs; the
source file x.c does not. (If defs-is changed, ~s not
necessary to do anything to the ~e ~.£, while it is
necessary to recreate ~.~.)

2-31

XENIX Software Development

To discover what make would do, the "-n" option is very
useful. The command

make -n

orders make to print out the commands it would issue without
actually taking the time to execute them. If a change to a
file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the "-t" (touch) option
can save a lot of time: instead ~f issuing a large number of
superfluous recompilations, make updates the modification
times on the affected file. Thus, the command

make -ts

("touch silently") causes the relevant files to appear up
to date. Obvious care is necessary, since this mode 'of
operation subverts the intention of make and destroys all
memory of the previous relationships.

The debugging flag ("-d") causes make to print out a very
detailed description of what' it is doing, including the file
times. The output is verbose, and recommended only as a last
resort.

2-32

XENIX Software Development

2.3.6 Suffixes and Transformation Rules

The make program itself does
suffixes are interesting or how
suffix into a file with another
stored in an internal table
description file. If the "~_rat
not used.

not know what file name
to transform a file with one
suffix. This information is
that has the form of a
flag is used, this table is

The list of suffixes is actually the dependency list for the
name ".SUFFIXES": make looks for a file with any of the
suffixes on the list. If such a file exists, and if there
is a transformation rule for that combination, make acts as
described earlier. The transformation rule names are the
concatenation of the two suffixes. The name of the rule to
transform a ".r" file to a ".0" file is thus ".r.o".
If the rule is-present and no explicit command sequence-has
been given in the user's description files, the command
sequence for the rule ".r.o" is used. If a command is
generated by using one of these suffixing rules, the macro
$* is given the value of the stem (everything but the
suffix) of the name of the file to be made, and the macro $<
is the name of the dependent that caused the action.

The order of the suffix list is significant, since it is
scanned from left to right, and the first name that is
formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can just
add an entry for ".SUFFIXES" in his bwn description file;
the dependents will be added to the usual list. A
".SUFFIXES" line without any dependents deletes the
current list. (It is necessary to clear the current list if
the order of names is to be changed).

The following is an excerpt from the default rules file:

2-33

XENIX Software Development

• SUFFIXES : .0 • c • e • r • f • Y • yr • ye .1 • s
YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
~EX=lex
LFL~GS=
CC:;::cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o :

$(CC) $ (CFLAGS) -c $<
.e.o .r.o .f.o :

$(EC) $ (RFLAGS) $ (EFLAGS) $ (FFLAGS) -c $<
. s. 0 :

$(AS) -0 $@ $<
.y.o :

$ (YACC) $ (YFLAGS) $<
$ (CC) $ (CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

.y.c :
$ (YACC) $ (YFLAGS) $<
mv y.tab.c $@

2-34

XENIX Software Development

2.4 ADB: The XENIX Debugger

ADB is a useful debugging tool for debugging C programs. It
provides capabilities to look at "core" files resulting
from aborted programs, print output in a variety of formats,
patch files, and run programs with embedded breakpoints.
This document provides examples of the more useful features
of ADB. The reader is expected to be familiar with the
basic commands on XENIX with the C language and able to
compile simple C programs.

2.4.1 Invocation

To invoke ADB type:

adb objfile corefile

where objfile is an executable XENIX file and corefile is a
core image file. Many times this will look like:

adb a.out core

or more simply:

adb

where the defaults are a.out and core respectively. The
filename minus (-) means ignore this argument as in:

adb - core

ADB has requests for examining
The ? request examines the
request examines the corefile.
requests is:

address ? format

or

address / format

2.4.2 Current Address

locat~ons in either file.
contents of objfile, the /

The general form of these

ADB maintains a current address, called dot, similar in
function to the current pointer in the XENIX editor, ed.
When an address is entered, the current address is set to
that location, so that:

2-35

XENIX Software Development

0126?i

sets dot to octal 126 and prints the instruction at that
address. The request:

prints 10 decimal numbers starting at dot. Dot ends up
refering to the address of the last item printed. When used
with the? or / requests, the current address can be
advanced by typing newline; it can be decremented by typing ,..

Addresses are represented by expressions. Expressions are
made up from decimal, octal, and hexadecimal integers, and
symbols from the program under test. These may be combined
with the operators +, -, *, % (integer division), & (bitwise
and), I (bitwise inclusive or), # (round up to the next
multiple), and (not) • (All arithmetic within ADS is 32
bits.) When typing a symbolic address for a C program, the
user can type name or name; ADS will recognize both forms.

2.4.3 Formats

To print data, a user specifies a collection of letters and
characters that describe the format of the printout.
Formats are "remembered" in the sense that typing a request
without one will cause the new printout to appear in the
previous format. The following are the most commonly used
format letters.

b one byte in octal
c one byte as a character
0 one word in octal
d one word in decimal
f two words in floating point
i PDP 11 instruction
s a null terminated character string
a the value of dot
u one word as unsigned integer
n print a newline
r print a blank sf)ace ,..

backup dot

(Format letters are also available for "long" values, for
example, '0' for long decimal, and 'F' for double floating
point.) For other formats see the ADB manual.

2-36

XENIX Software Development

2.4.4 General Request Meanings

The general form of a request is:

address,count command modifier

which sets 'dot' to address and executes the command count
times.

The following table illustrates some general ADB command
meanings:

? Print contents from a.out file

/ Print contents from core file

= Print value of "dot"

Breakpoint control

$ Miscellaneous requests

Request separator

Escape to shell

ADB catches signals, so a user cannot use a quit signal to
exit from ADB. The request $q or $Q (or <CONTROL-~» must
be used to exit from ADB.

2.4.5 Debugging C Programs

2.4.5.1 Debugging A Core Image Consider the C program in
Figure 1. The program is used to illustrate a common error
made by C programmers. The object of the program is to
change the lower case "t" to upper case in the string
pointed to by charp and then write the character string to
the file indicated by argument 1. The bug shown is that the
character "T" is stored in the pointer charp instead of the
string pointed to by charp. Executing the program produces
a core file because of an out of bounds memory reference.

ADB is invoked by:

adb a.out core

The first debugging request:

2-37

XENIX Software Development

$c

is used to give a C backtrace through the subroutines
called. As shown in Figure 2 only one function (main) was
called and the arguments argc and argv have octal values 02
and 0177762 respectively. Both of these values look
reasonable: 02 = two arguments, 0177762 = address on stack
of parameter vector.
The next request:

$C

is used to give a C backtrace plus an interpretation of all
the local variables in each function and their values in
octal. The value of the variable cc looks incorrect since
cc was declared as a character.

The next request:

$r

prints out the registers including the program counter and
an interpretation of the instruction at that location.

The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the
a.out file is referenced by? whereas the map for core file
Is-referenced by I. Furthermore, a good rule of thumb is to
use ? for instructions and I for data when looking at
programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps.
about these maps later.

More

In our example, it is useful to see the contents of the
string pointed to by charp. This is done by:

*charp/s

which says use charp as a pointer in the core file and print
the information as a character strin~ This printout
clearly shows that the character buffer was incorrectly
overwritten and helps identify the error. Printing the
locations around charp shows that the buffer is unchanged

2-38

XENIX Software Development

but that the pointer is destroyed. Using ADB similarly, we
could print information about the arguments to a function.
The request:

main.argc/d

prints the decimal core image value of the argument argc in
the function main.
The request:

*main.argv,3/o

prints the octal
pointed to by
values are the
Therefore:

values of the three consecutive cells
argv in the function main. Note that these
addresses of the arguments to main.

0177770/5

prints the ASCII value of the first argument.
to print this value would have been

Another way

*"/s

The" means ditto which remembers the last address typed, in
this case main.ar gf : the * instructs ADB to use the address
field of the core ile as a pointer.

The request:

prints the current address (not its contents) in octal which
has been set to the address of the first argument. The
current address, dot, is used by ADB to "remember" its
current location. It allows the user to reference locations
relative to the current address, for ~xample:

2.4.5.2 Multiple Functions Consider the C program
illustrated in Figure 3. This program calls functions f,g,
and h until the stack is exhausted and a core image- is
produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core
file and core image file-respectively.

$c

2-39

for the executable
The request:

XENIX Software Development

will fill a page of backtrace references to f,g, and h.
Figure 4 shows an abbreviated list (typing DEL will
terminate the output and bring you back to ADB---request
level) •

The request:

,5$C

prints the five most recent activations.

Notice that each function (f,g,Q) has a counter of the
number of times it was called.

The request:

fcnt/d

prints the decimal value of the counter for the function f.
Similarly gcnt and hcnt could be printed. To print the
value of an automatic variable, for example the decimal
value of x in the last call of the function g, type:

h. x/d

It is currently not possible in the exported version to
print stack frames other than the most recent activation of
a function. Therefore, a user can print everything with $C
or the occurrence of a variable in the most recent call of a
function. It is possible with the $C request, however, to
print the stack frame starting at some address as address$C.

2.4.5.3 Setting Breakpoints Consider the C program i~
Figure 5. This program, which changes tabs into blanks, is
adapt~d from Software Tools by Kernighan and Plauger.

We will run this program under the control of ADB (see
Figure 6a) with:

adb a.out -

Breakpoints are set in the program as:

address:b [request]

The requests:

2-40

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

XENIX Software Development

set breakpoints at the start of these functions. C does not
generate statement labels. Therefore it is currently not
possible to plant breakpoints at locations other than
function entry points without a knowledge of the code
generated by the C compiler. The above addresses are
entered as symbol+4 so that they will appear in any C
backtrace since the first instruction of each function is a
call to the C save routine (csv). Note that some of the
functions are from the C library and that this call to csv
is PDP-ll dependent; each machine language requires its own
form of procedure initialization.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is
bypassed count-l times before causing a stop. The command
field indicates the ADB requests to be executed each time
the breakpoint is encountered. In our example no command
fields are present.

By displaying the original instructions at the function
settab we see that the breakpoint is set after the jsr to
the C save routine. We can display the instructions using
the ADB request:

settab,5?ia

This request displays five instructions starting at
with the addresses of each location displayed.
variation is:

settab,5?i

settab
Another

which displays the instructions with only the starting
address.

Notice that we accessed the addresses from the a.out file
with the ? command. In general when asking for-a-printout
of multiple items, ADB will advance the current address the
number of bytes necessary to satisfy the request; in the
above example five instructions were displayed and the
current address was advanced 18 (decimal) bytes.

2-41

XENIX Software Development

To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the
function settab, one types:

settab+4:d

To continue execution of the program from the breakpoint
type:

:c

Once the program has stopped (in this case at the breakpoint
for fopen), ADB requests can be used to display the contents
of memory. For example:

$C

to display a stack trace, or:

tabs,3/80

to print three lines of 8 locations each from the array
called tabs. By this time (at location fopen) in the C
program,-seEtab has been called and should have set a one in
every eighth location of tabs.

2.4.5.4 Advanced Breakpoint Usage We continue execution of
the program with:

:c

See Figure 6b. Getc is calied t~ree times and "the contents
of the variable c in the function main are displayed each
time. The single character on the le~hand edge is the
output from the C program. On the third occurrence of getc
the program stops. We can look at the full buffer of
characters by typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab
following the "This" word of the data.

2-42

XENIX Software Development

Several breakpoints of tabpos will occur until the program
has changed the tab into equivalent blanks. Since we feel
that tabpos is working, we can remove the breakpoint at that
location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out:running

The XENIX quit and interrupt signals act on ADB itself
rather than on the program being debugged. If such a signal
occurs then the program being debugged is stopped and
control is returned to ADB. The signal is saved by ADB and
is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt
handling routines. The signal is not passed on to the test
program if:

:c 0

is typed.

Now let us reset the breakpoint at settab and display the
instructions located there when we reach the breakpoint.
This is accomplished by:

settab+4:b settab,5?ia

It is also possible to execute the ADB requests for each
occurrence of the breakpoint but only stop after the third
occurrence by typing:

getc+4,3:b main.c?C
-

This request will print the local variable c in the function
main at each occurrence of the breakpoint. The semicolon is
used to separate multiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be
changed; executing the program under ADB does not change
dot. Therefore:

2-43

XENIX Software Development

settab+4:b .,5?ia
fopen+4:b

will print the last thing dot was set to (in the example
fopen+!) not the current location (settab+4) at which the
program is executing.

A breakpoint can be overwritten without first deleting the
old breakpoint. For example:

settab+4:b settab,5?ia; ptab/o *
could be entered after typing the above requests.

Now the display of breakpoints:

$b

shows the above request for the set tab breakpoint. When the
breakpoint at set tab is encountered the ADB requests are
executed. Note that the location at settab+4 has been
changed to plant the breakpoint; all the other locations
match their original value.

Using the functions, f,g and h shown in Figure 3, we can
follow the execution of each function by planting non­
stopping breakpoints. We call ADB with the executable
program of Figure 3 as follows:

adb ex3 -

Suppose we enter the following breakpoints:

h+4:b
g+4:b
f+4:b
: r

hcnt/d;
gcnt/d;
fcnt/d;

h.hi/;
g.gi/;
f.fi/;

h.hr/
g.gr/
f. fr/

Each request line indicates that the variables are printed
in decimal (by the specification d). Since the format is
not changed, the d can be left off all but the first
request.

The output in Figure 7 illustrates two points. First, the
ADB request~ in the breakpoint line are not examined until
the program~~~nder test is run. That means any errors in
those ADB requests is not detected until run time~ At the
location of the error ADB stops running the program~

The second point is the way ADB handles register variables.
ADB uses the symbol table to address variables. Register

2-44

XENIX Software Development

variables, like f.fr above, have pointers to uninitialized
places on the -stack. Therefore the message "symbol not
found" •

Another way of getting at the data in this example is to
print the variables used in the call as:

f+4:b
g+4:b
:c

fcnt/d;
gcnt/d;

f.a/;
g.p/;

f.b/;
g.q/;

f.fi/
g.gi/

The operator / was used instead of? to read values from
the core file. The output for each function, as shown in
Figure-?; has the same format. For the function f, for
example, it shows the name and value of the eiternal
variable fcnt. It also shows the address on the stack and
value of the variables ~,b and fie

Notice that the addresses on the stack will continue to
decrease until no address space is left for program
execution at which time (after many pages of output) the
program under test aborts. A display with names would be
produced by requests like the following:

f+4:b fcnt/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d

In this format the quoted string is printed literally and
the d produces a decimal display of the variables. The
results are shown in Figure 7.

2.4.5.5 Other Breakpoint Facilities

~ Arguments and change of standard input and output are
passed to a program as:

: r arg1 arg2 <infile >outfile

This request kills any existing program under test and
starts the a.out afresh.

$ The program being debugged can be single stepped by:

:5

If necessary, this request will start up the program
being debugged and stop after executing the first
instruction.

$ ADB allows a program to be entered at a specific
address by typing:

2-45

XENIX Software Development

address:r

$ The count field can be used to skip the first n
breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints
when continuing a program~

$ A program can be continue~ .. at an address different from
the breakpoint with:

address:c

$ The program being debugged runs as a separate process
and can be killed with:

:k

2.4.6 Maps

XENIX supports several executable file formats. These are
used to tell the loader how to load the program file. File
type 407 is the most common and is generated by a C compiler
invocation such as cc pgm.c. A 410 file is produced by a C
compiler command of the form:

cc -n pgm.c

Whereas a 411 file is produced by cc -i ·pgm.c. ADB
interprets these different file formats and provides access
to the different segments through a set of maps (see Figure
8). To print the maps type:

$m

In 407 files, both text (instructions) and data are
intermixed. This makes it impossible for ADB to
differentiate data from instructions and some of the printed
symbolic addresses look incorrect; for example, printing
data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated
from data and?* accesses the data part of the a.out file.
The?* request tells ADB to use the second part of the map

2-46

XENIX Software Development

in the a.out file. Accessing data in the core file shows
the data after it was modified by the execution of the
program. Notice also that the data segment may have grown
during program execution.

In 411 files (separated I & D space), the instructions and
data are also separated. However, in this case, since data
is mapped through a separate set of segmentation registers,
the base of the data segment is also relative to address
zero. In this case since the addresses overlap it is
necessary to use the ?* operator to access the data space of
the a.out file. In both 410 and 411 files the corresponding
core-file does not contain the program text.

Figure 9 shows the display of three maps for the same
program linked as a 407, 410, 411 respectively. The b, e,
and f fields are used by ADB to map addresses into file
addresses. The "fl" field is the length of the header 'at
the beginning of the file (020 bytes for an a.out file and
02000 bytes for a core file). The "f2"--field is the
displacement from the beginning of the file to the data.
For a 407 file with mixed text and data this is the same as
the length of the header; for 410 and 411 files this is the
length of the header plus the size of the text portion.

The "b" and "en fields are the starting and ending locations
for a segment. Given an address, A, the location in the
file (either ~.out or ~) is calculated as:

bl<A<el => file address = (A-bl)+fl
b2<A<e2 => file address = (A-b2)+f2

A user can
variables.
by ADB:

access locations by using the ADB defined
The $v request prints the variables initialized

b base address of data segment
d length of the data segment
s length of the stack
t length of the text
m execution type (407,410,4l1)

In Figure 9 those variables not present are zero. Use can
be made of these variables by expressions such as:

<b

in the address field. Similarly the value of the variable
can be changed by an assignment request such as:

2-47

XENIX Software Development

02000>b

that sets b to octal 2000. These variables are useful to
know if the file under examination is an executable or core
image file.

ADB reads the header of the core image file to find the
values for these variable~If the second file specified
does not seem to be a core file, or if it is missing then
the header of the executable file is used instead.

2.4.7 Advanced Usage

It is possible with ADB to combine formatting requests to
provide elaborate displays. Below are several examples.

2.4.7.1 Formatted dump The line:

<b,-1/404~8Cn

prints 4 octal words followed by their ASCII interpretation
from the data space of the core image file. Broken down,
the various request pieces mean:

<b The base address of the data segment.

<b,-l Print from the base address to the end of
file. A negative count is used here and
elsewhere to loop indefinitely or until
some error condition (like end of file) is
detected.

The format 404~8Cn is broken down as follows:

40 Print 4 octal locations.

4~ Backup the current address 4 locations (to
the original start of the field).

8C Print 8 consecutive characters using an
escape convention; each character in the
range 0 to 037 is printed as @ followed by
the corresponding character in the range
0140 to 0177~ An @ is printed as @@.

n Print a newline.

2-48

XENIX Software Development

The request:

<b,<dI404''8Cn

could have been used instead to allow the printing to stop
at the end of the data segment «d provides the data segment
size in bytes).

The formatting requests can be combined with ADB's ability
to read in a script to produce a core image dump script.
ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of
such a script is:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
O$s
=3n"Data Segment"
<b,-1/8ona

The request 120$w sets the
characters (normally, the
attempts to print addresses

symbol + offset

width
width

as:

of
is ,

the output to
80 characters).

120
ADB

The request 4095$5 increases the maximum permissible offset
to the nearest symbolic address from 255 (default) to 4095.
The request = can be used to print literal strings. Thus,
headings are provided in this dump program with requests of
the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The
request $v prints all non-zero ADB variables (see Figure 8).
The request O$s sets the maximum offset for symbol matches
to zero thus suppressing the printing of symbolic labels in
favor of octal values. Note that this is only done for the

2-49

XENIX Software Development

printing of the data segment. The request:

<b,-1/80na

prints a dump from the base of the data segment to the end
of file with an octal address field and eight octal numbers
per line.

Figure 11 shows the results of some formatting requests on
the C program of Figure 10.

2.4.7.2 Directory Dume As another illustration (Figure 12)
consider a set of requests to dump the contents of a
directory (which is made up of an integer inumber followed
by a 14 character name):

adb dir -
=n8t"Inum"8t"Name"
O,-l? u8t14cn

In this example, the u prints the inumber as an unsigned
decimal integer, the 8t means that ADB will space to the
next multiple of 8 on the output line, and the 14c prints
the 14 character file name.

2.4.7.3 Ilist Dume Similarly the contents of the ilist of
a file system could be dumped with the following set of
requests:

adb Idevlsrc -
02000>b
?m <b
<b,-1?"flags"8ton"links,uid,gid"8t3bn",

size"8tbrdn"addr"8t8un"times"8t2Y2na
Last two lines should be entered as one line ---- --- -- -- --- ----

In the above example, the value of the base for the map was
changed to 02000 (by saying ?m<b) since that is the start of
an ilist wi thin a file system., An artifice (brd above) was
used to print the 24 bit size field as a byte, a space, and
a decimal integer. The last access time and last modify
time are pr inted wi th the' 2Y operator. Figure 12 shows
portions of these requests as applied to a directory and
file system.

2-50

XENIX Software Development

2.4.7.4 Converting values ADB may be
values from one representation to another.

072 = odx

will print:

072 58 #3a

used to convert
For example,

which is the octal, decimal and hexadecimal representations
of 072 (octal). The format is remembered so that typing
subsequent numbers will print them in the given formats.
Character values may be converted similarly, for example:

prints

a 0141

It may also be used to evaluate expressiona but be warned
that all binary operators have the same precedence which is
lower than that for unary operators.

2.4.8 Patching

Patching files with ADB is accomplished with the write, w or
W, request (which is not like the ed editor write command).
This is often used in conjunction with the locate, 1 or L
request. In general, the request syntax forI and ware
similar as follows:

?l value

The request 1 is used to match on two bytes, L is used for
four bytes. The request w is used to write two bytes,
whereas W writes four bytes. The value field in either
locate or write requests is an expression. Therefore,
decimal and octal numbers, or character strings are
supported.

In order to modify a file, ADB must be called as:

adb -w filel file2

When called with this option, filel and file2 are created if
necessary and opened for both reading and writing.

Far example, consider the C program shown in Figure 10. We
can change the word "This" to "The " in the executable file
for this program, ex7, by using the following requests:

2-51

adb -w ex7 -
?l 'Th'
?W 'The '

XENIX Software Development

The request ?l starts at dot and stops at the first match of
"Th" having set dot to the address of the location found.
Note the use of ? to write to the a.out file. The form ?*
would have been used for a 411 file.---

More frequently the request will be typed as:

?l 'Th' J 1s

and locates the first occurrence of "Th" and print the
entire string. Execution of this ADB request will set dot
to the address of the "Th" characters.

As another example of the utility of the patching facility,
consider a C program that has an internal logic flag. The
flag could be set by the user through ADB and the program
run. For example:

adb a.out -
:s argl arg2
flag/w 1
:c

The :5 request is normally used to single step through a
process or start a process in single step mode. In this
case it starts a.out as a subprocess with arguments argl and
arg2. If there--rs a subprocess running ADB writes to it
rather than to the file so the w request causes fla<] to be
changed in the memory of the subprocess.

2.4.9 Anomalies

Below is a list of some strange things that users should be
aware of.

1. Function calls and arguments are put on the stack by
the C save routine. Putting breakpoints at the entry
point to routines means that the function appears not
to have been called via the ($c or $C command) when
the breakpoint occurs.

2. When printing addresses, ADB uses either text or data
symbols from the a.out file. This sometimes causes
unexpected symbol names to be printed with data (e.g.
savr5+022) . This does not happen if ? is used for
text (InStructions) and / for data.

2-52

XENIX Software Development

3. ADB cannot handle C register variables in the most
recently activated function.

2-53

XENIX Software Development

Filure 1: C program with· pointer bug

struct bur (
int fildes~
int nleft~
char ·nextp~
char buff[Sl2) ~
Jbb~

struct buf ·obuf~

char ·charp "this is a seOlence."~

main (argc,argv)
int argc~
char n argv;
(

char cc;

if(argc < 2) (
printfC"lnpu(file missing\n");
exit(8) ~

if«fcreat(argv[1 J.obuf» < 0) (
printfC"%s : not found\n", argv(l» ~
exit(8) ~

charp - l'~
printf("debug] %s\n",charp);

whileCcc- ·charp+ +)
putc(cc,obuf) ;

mush(obuf)~

2-54

XENIX Software Development

Figure 2: A DB output for C program of Flgure I

adb a.out core
Sc·
-mainW2.0J 7;762,
$(
-main (02.0177762)

argc: 02
argv: 0177762
cc: 02124

Sr
ps 0170010
pc 0204 -main+0152
sp 0177740
r5 0177752
r4 01
rJ 0
r2 0
rl 0
rO 0124
-main+0152: mov _obuf.(sp)
Se
savr5: 0
obuf: 0 -

_charp: 0124
errno: 0
fout: 0 -

Sm
leXl map 'ex I'
bl = 0 el =- 02360
b2 .. 0 e2 - 02360
dal~1 map 'core I'
bl = 0 el == 03500
b2 ::z 0175400 e2 == 0200000

fl - 020
f2 - 020

fI ..., 02000
f2 - 05500

*charp/s
0124: TTTLx

charp/s
_charp: T

_charp+02: lhis is a senlence.

_charp+026: Inpul tile mis'\ing
main.argc/d
0177756: 2
*main.arg .. /30
0177762: 01777700177;760177777
0177770/s
0177770: a.OUl
*mai n.argv /30
0177762: 017777001777760177777
." Is
0177770: a.OUl
.=0

0177770
.-10/d

0177756: 2
Sq

2-55

Nh@x&

XENIX Software Development

~Figure 3: Multiple function C program for stack trace Illustration

int 'fent.gent.hent;
h(x-s)
(

g(P.q)
(

f(a.b)

I

mainO
(

int hi~ register int hr:
hi - x+l;
hr-x-y+l;
hent+ + ;
hj:
f(hr .hi);

int gi: register int gr:
gi - q-p:
gr - q-p+l:
gent++ ;
W:
h(gr.giL

int fi: register int fr:
fi - a+rb;
fr - a+D:
fent+ + :
fj:
g(fr.fi):

fCl.J):

2-56

XENIX Software Development

Figure 4: ADB output for C program of Figure 3

adb
$C.

-h (o4452.04451)
-g(04453.011124)
-f(02.04451 }
-h(04450.04447)
-g<04451.0 11120)
-f(02 .0444 7}
-h (o4446.04445)
-g (0444 7 . 0 1 I 1) 4)
-f(02 .04445)
-h (04444.04443)
HIT DEL KEY
adb
.sse
-h (04452.0445)

x: 04452
y: 0445)
hi: ?

-g(04453.011124)
p: 04453
q: 01) 124
gi: 04451
gr: ?

-f<02.04451)
a: 02
b: 04451
Ii: 011124
fr: 04453

-hW4450,04447)
x: 04450
y: 04447
hi: 04451
hr: 02

-g(0445 1.01 1 120)
p: 04451
q: 011120
gi: 04447
gr: 04450

fcnt/d
rent: 1173

gcnt/d
_gent: 1173
hcnt/d
_hent: 1172
h.x/d
022004: 2346
Sq

2-57

XENIX Software Development

ficure 5: C program to decode tabs

#define MAXLINE SO
#define YES 1
#deftne NO 0
#define TABSP S

char input[] -data-~
char ibuf[S 18] ~
int tabs[MAXLINE1~

mainO
(

int col. *ptab;
char c;

ptab - tabs~
settab(ptab); rSet initial lab stops *'
col - 1;
if(fopen{jnpul.ibuf) < 0) (

}

printf(-%s : not found\n"input);
exileS) ;

while«c - getcCibuf» !- -1) {
switch(d (

case '\t': r TAB *'
while{tabpos(col) ! - YES) (•

putchar(' '); '* put BLANK *'
col+* ;

break~
case '\n':'*NEWLINE *'

putchar('\n') ;
col - 1;

default:
break;

putchar<c) ~
col+ + ;

r Tabpos return YES if col is a tab stop *'
tabpos(coJ)
int col;
(

if(col > MAXLlNE)
return(YES) ;

else
return Cta bs [colJ) ;

r Settab • Set initial tab stops *'
settab(tabp)
int *tabp;
(

int i;

for(j - 0; i< - MAXLlNE; i+ +)
(j%T ABSP) ? (tabs[iJ - NO) : (tabs(j) - YES);

2-58

XENIX Software Development

Figure 6a: ADB output for C program of Figure 5

adb a~out -
settab+4:b
(open + 4:b
getc+4:b
tabpos + 4:b
Sb
breakpoints
count bkpt
1 ·tabpos+04
1 _getc+04
1 Jopen+04
1 ·settab+ 04
settab.5 ?ia . settab: jsr
·settab + 04: tst
·settab + 06: elr
·settab+ 0 12: cmp
·settab+020: bit
·settab+022:
settab.5 ?i
-settab: jsr

tst
elr
cmp
bit

:r
a.out: running

command

r5,csv
-(sp)
0177770(rS)
SOI20,OI77770(r5)
·settab + 076

rS,csv
-(sp)
0177770(rS)
SOI20,0177770(r5)
·seltab+076

breakpoint -settab+04: tst -(sp)
settab+-':d
:c
a.out: running
breakpoint Jopen +04: mov 04 (r5 Lnulstr + 0 12
SC
Jopen (02302 ,02472)
-main (0 1.0 177770)

col:
c:
ptab:

tabs,3/80
03500:

,01
o
03500

01 0
01 0
01 0

o
o
o

2-59

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

XENIX Software Development

Figure 6b: ADB output for C program of Figure 5

:c
a.out: running
breakpoint Jetc+04: mov 04(rS>.rl
Ibuf+6/20c
_c1eanu+0202: This is a test of
:c
a.out: running
breakpoint ·tabpos+04: cmp S0120,04(rS>
tabpos+4:d
settab + 4:b settab,S ?ia
settab + 4:b settab,S?ia; 0
cetc+ 4,3:b main.c?C; 0
settab.+ 4:b settab,S?la; ptab/o; 0
Sb ~

breakpoints
count bkpt
1 ·tabpos+04
3 _getc+04
1 _fopen+04
1 ·settab+04
·settab:
·settab+ 04:
·settab+ 06:
·settab+012:
·settab+ 020:

. ·settab+022:
0177766:
0177744:
T0177744:
h0177744:
iO] 77744:
s0177744:

jsr
bpt
elr
cmp
bit

0177770
@'
T
h
i
s

2-60

command

main.c?C;O

settab,S?ia;ptab?o:O
rS,csv

0177770(rS)
S0120,O] 77770(rS)
·settab+076

XENIX Software Development

Figure 7: ADB output for C program with breakpoints
adb ex3 -
h + 4:b hcnt/d; h.hil; h.hrl
1+ 4:b gcnt/d; ,.gi/: '.Irl
f + 4:b rcnt/d: f.ft/; f.frl
:r
ex3: running
fent: 0

0177732: 214
symbol not found
r + 4:b rcnt/d: f.a/; f.b/; r.ftl
g + 4:b gcnt/d; I.P!: g.q/: ,.&11
h + 4:b hcnt/d; h.x/; h.y/: h.hil
:c
ex3: running

fent: 0
0177746; 1
0177750; 1
0177732; 214

gent: 0
0177726: 2
0177730: 3
0177712: 214

hent: 0
0177706: 2
0177710: 1
0177672: 214

rent: 1
0177666: 2
0177670: 3
0177652: 214

gent: 1
0177646; 5
0177650; 8
0177632: 214
HIT DEL
f+4:b fcnt/d; f.a!"a - lid; r.b!"b - "d: r.fi!"ft - lid
g+4:b gcnt/d: g.prp - lid: ,.q/"q - lid: , •• Ir,i - lid
h + 4:b hcnt/d; h.x!"x - "d; h.y/"h - lid: h.hirhi - "d
:r
exJ: running

fent: 0
0177746: a-I
0177750: b - 1
0177732: n - 214
gent: 0

0177726: p - 2
0177730: q-J
0177712: gi-214

hent: 0
0177706: x - 2
0177710: y - 1
0177672: hi - 214

fent: 1
0177666: a - 2
0177670: b - 3
0177652: fi - 214
HIT DEL
Sq

2-61

XENIX Software Development

Ficure 8: ADD address maps

407.files

a.out hdr text+data
I I

0 D

core hdr text+data stack
I1 I
0 D S E

410.files (shared ,ext)

a.out hdr text . data
I I I

0 T B D

core hdr data stack
..... .1 I

B D S E

4 J I.files (separated I and D space)

a.out hdr text data
I I I

0 T 0 D

core hdr data stack
I I I

0 D S E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data 0 D-B D
s length of stack S S S
t length of text 0 T T

2-62

XENIX Software Development

Figure 9: ADB output for maps

adb map407 core407
$m
text map 'map407'
~) = 0 el
b2 = 0 e2
data map 'core40T
bI = 0 el
b2 = 0175400 e2
$v

variables
d = 0300
m == 0407
s == 02400
$q

adb map410 core4IO
$m
text map 'map410'
bI = 0 el
b2 = 020000 e2
data map . 'core41 0'
bi = 020000 el
b2 = 0175400 e2
$v

variables
b 020000
d =- 0200
m = 0410
s = 02400
t = 0200
Sq

adb map411 core41 I
$m
text map 'map41l'
bi = 0 . el
b2 = 0 e2
data map 'core41I'
bI = 0 el
b2 = 0175400 e2
$v

variables
d = 0200
m = 0411
s = 02400
t = 0200
$<}

2-63

-= 0256
- 0256

== 0300
-= 0200000

fl == 020
f2 =- 020

fl 02000
f2 == 02300

= 0200 f1 = 020
- 020116 f2 = 0220

=- 020200 fl == 02000
== 0200000 f2 == 02200

== 0200
== 0116

:::10 0200
== 0200000

f1 == 020
f2 = 0220

f1 = 02000
f2 = 02200

XENIX Software Development

J'i&ure 10: Simple C proEram for Illustratini form.ttine an~ J,»atchlna

char
int­
int
long
noat
char
mainO
{

.strI [] "This is a character strin,-~
one 1~
number 456;
Inurn 1234;
fpt 1.25;
str2 [] "This is the second character string-;

one - 2;

2-64

XENIX Software Development

Figure 11: AD B output illustrating fancy formats

adb map410 core410
< b.-l/Sona
020000: 0 064124 071551 064440 020163 020141

strl+016: 061541 062564 020162 072163 064562 063556 -
number: -
number: 0710 0 02322040240 0 064124 071551 064440

str2 +06: 020163 064164 020145 062563 067543 062156 -
str2 +026: 060562 072143 071145 071440 071164 067151 -

savr5 +02: 0 0 0 0 0 0 0 0

< b.20/ 404-SCn
020000: 0 064124 071551 064440 @'@ihis i

020163 020141 064143 071141 s a char
061541 062564 020162 072163 acter st
064562 063556 0 02 ring@'@'@b@'

number: 0710 0 02322040240 H@a@'@'R@d @@ -
0 064124 071551 064440 @'@ihis i
020163 064164 020145 062563 s the se
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 lring@'@'@'
0 0 0 0 @'@'@'@'@'@'@'@'
0 0 0 0 @'@'@'@'@'@'@'@'

This i

data address not found
< b.20/ 404- 8t8cna
020000: 0
_strl + 06: 020163
_strl +016: 061541
_str! + 026: 064562

064124
020141
062564
063556

071551
064143
020162

064440
071141
072163

s a char
acter st

o 02 ring
_number:
_number: 0710 0 02322040240 HR
_fpt+02: 0 064124 071551 064440 This i
str2 + 06: 020163 064164 020145 062563 s the se
str2+016: 067543 062156 061440 060550 cond cha

=str2+026: 060562 072143 071145 071440 racters
_str2+036: 071164 067151 0147 0 ,tring
savr5 +02: 0 0 0 0
sa v r 5 + 0 1 2: 0 0 0 0
data address not found
< b.lO/2bS(2cn
020000: 0 0

strl : 0124 0150 Th -
0151 0163 is
040 0151
0163 040 s
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 te

SQ

2-65

064143 071141

o 02

061440 060550

0147 0

XENIX Software D~velopment

Figure 12: Directory and inode dumps

adb dir-
- nt"Inode"t.!Name"
0,-1 ?ut14cn

Inode
0: 652

82
5971 cap.c
5323 cap
0

adb /dev/src -
02000>b

pp

Name

?m<b
new map
bl -= 02000
b2 - 0

'/dev/src'
el
e2

Sv
variables
b .. 02000

- 0100000000 f1 -= 0
-0 n-o

< b,-l ?"flags"8ton" links,uid,gid"8t3bn"size" 8tbrdn" addr"8t8un"times" 8t2Ytna
02000: flags 073145

links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770' 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55: 15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806]0784
times1976 Aug 17 12:16:511976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21 :44

2-65

XENIX Software Development

ADB Summary

Command Summary

a. formatted printing

? format print from a.out
- -- file according to format

/ format print from core file according to format

= format print the value of dot

?w expr write expression into a.out file - --

/w expr write expression into core file

?l expr locate expression in a.out file - --
b. Breakpoint and program control

:b set breakpoint at dot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run a.out file under ADB control
:5 single-step

c. Miscellaneous printing

$b print current breakpoints
$c C stack trace
$e external variables
$f floating registers
$m print ADB segment maps
$q exit from ADB
$r general registers
$5 set offset for symbol match
$v print ADB variables
$w set output line width

d. Calling the shell

call shell to read rest of line

e. Assignment to variables

>name assign dot to variable or register name

2-66

XENIX Software Development

Format Summary

a the value of dot
b one byte in octal
c one byte as a character
d one word in decimal
f two words in floating point
i PDP 11 instruction
0 one word in octal
n print a newline
r print a blank space
s a null terminated character string
nt move to next n space tab - one word as unsigned integer u
x hexadecimal
y date ,..

backup dot
n n print string

2-67

XENIX Software Development

Expression Summary

Expression components

decimal integere.g. 256
octal integere.g. 0277
hexadecimale.g. iff
symbols e.g. flag main main.argc
variables e.g. <b
registers e.g. <pc <rO
(expression)expression grouping

a. Dyadic operators

+

*
%
&

I

add
subtract
multiply
integer division
bitwise and
bitwise or
round up to the next multiple

b. Monadic operators

not
* contents of location

integer negate

2-68

~~IX Software Development

2.5 AS: Th~ XENIX Assembler

This document describes the usage and input syntax of the
XENIX 8086 assembler as. As is an assembler that produces
an output file containing relocation information and a
complete symbol table. The output is acceptable to the
XENIX loader ld, which may be used to combine the outputs of
several assembler runs and to obtain object programs from
libraries. The output format has been designed so that if a
program contains no unresolved references to external
symbols, it is executable without further processing.

2.5.1 Usage

As is invoked as follows:

as [-1] -0 output] file

If the optional '-1' argument is given, an assembly listing
is produced which includes the source, the assembled
(binary) code, and any assembly errors.

The output of the assembler is by default placed on the file
a86.out in the current directory; The '-0' flag causes the
outp~to be placed on the named file.

2.5.2 Lexical conventions

Assembler tokens include identifiers (alternatively,
"symbols" or "names"), constants, and operators~

2.5.2.1 Identifiers An identifier consists of a sequence
of alphanumeric characters (including period ".1 'and
underscore " 'I as alphanumeric) of which the first may not
be numeric.- Only the "first eight characters are
significant. The case of alphabetics in identifiers is
significant.

2.5.2.2 Constants A hex constant consists of a sequence of
digits and the letters 'ai, 'b', 'c l , 'd l

, 'e l , and 'fl (any
of which may be capitalized),- preceeded by- the character
'I'. The letters are interpreted with the following values:

2-69

XENIX Software Development

HEX DECIMAL
A 10
B 11
C 12
D 13
E 14
F 15

An octal constant consists of a series of digits, preceded
by the tilde character "" The digits must be in the
range from Q to 2.

A decimal constant consists simply of a sequence of digits.
The magnitude of the constant should be representable in 15
bits; i.e., be less than 32,768.

2.5.2.3 Blanks Blank and tab characters may be freely
interspersed between tokens, but may not be used within
tokens (except in character constants). A blank or tab is
required to separate adjacent identifiers or constants not
otherwise separated.

2.5.2.4 Comments The character "I" introduces a comment,
which extends through the end of the line on which it
appears. Comments are ignored by the assembler.

2.5.3 Segments

Assembled code and data fall into three segments: the text
segment, the data segment, and the bss segment. The text
segment is the one in which the assembly begins, and it is
the one into which instructions are typically placed. The
XENIX system will, if desired, enforce the purity of the
text segment of programs by trapping write operations into
it. Object programs produced by the assembler must be
processed by the link-editor ld (using its '-i' flag) if the
text segment is to be write-protected. A single copy of the
text segment is shared among all processes executing such a
program.

The data segment is available for placing data or
instructions which will be modified during execution.
Anything which may go in the text segment may be put into
the data segment. In programs with write-protected,
sharable text segments, the data segment contains the
initialized but variable parts of a program. If the text
segment is not pure, the data segment begins immediately
after the text segment. If the text segment is pure, the

2-70

XENIX Software Development

data segment is in an address space of its own, starting at
location zero (O).

The bss segment may not contain any explicitly initialized
code or data. The length of the bss segment (like that of
text or data) is determined by the high-water mark of the
location counter within it. The bss segment is actually an
extension of the data segment and begins immediately after
it. At the start of execution of a program, the bss segment
is set to O. The advantage in using the bss segment for
storage that starts off empty is that the initialization
information need not be stored in the output file. See also
location counter and assignment statements below.

2.5.4 The location counter

The special symbol, " 'I, is the location counter. Its
value at any time is the offset within the appropriate
segment from the start of the statement in which it appears.
The location counter may be assigned to, with the
restriction that the current segment may not change;
furthermore, the value of "." may not decrease. If the
effect of the assignment is to increase the value of ".' "
the required number of null bytes are generated (but see
Segments above).

2.5.5 Statements

A source program is composed of a sequence of statements.
Statements are separated by new-lines. There are four kinds
of statements: null statements, expression statements,
assignment statements, and keyword statements.

The format for most 8086 assembly language source statements
is:

[<label field>]
QE-code [<operand field>] [<comment>]

Any kind of statement may be preceded by one or more labels.

2.5.5.1 Labels There are two kinds of labels: name labels
and numeric labels. A name label consists of a identifier
followed by a colon (:). The effect of a name label is to
assign the current value and type of the location counter
".1 I to the name. An error is indicated in pass 1 if the
name is already defined; an error is indicated in pass 2 if
the ".'1 value assigned changes the definition of the

2-71

XENIX Software Development

label.

A numeric label consists of a string of digits 0 to 9 and
dollar-sign ($) followed by a colon (:). Such a-label serves
to define local symbols of the form "~$", where ~ is the
digit of the label. The scope of the numeric label is the
labelled block in which it appears. As an example, the
label ~$ is defined only between the lables foobar and faa:

foobar:
9$: .byte 0

faa: .word a

As in the case of name labels, a numeric label assigns the
current value and type of "." to the symbol.

2.5.5.2 Null statements A null statement is an empty
statement (which may, however, have labels and a comment).
A null statement is ignored by the assembler. Common
examples of null statements are empty lines or lines
containing only a label.

2.5.5.3 Expression statements An expression statement
consists of an arithmetic expression not beginning with a
keyword. The assembler computes its value and places it in
the output stream, together with the appropriate relocation
bits.

2.5.5.4 Assignment statements An assignment statement
consists of an identifier, an equal sign {=}, and an
expression. The value and type of the expression are
assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1, nor is it
an error to redefine any symbol by assignment.

Any external attribute of the expression is lost across an
assignment. This means that it is not possible to declare a
global symbol by assigning to it, and that it is impossible
to define a symbol to be offset from a non-locally defined
global symbol.

As mentioned, it is permissible to assign to the location
counter "." It is required, however, that the type of
the expression assigned be of the same type as ".' " and it
is forbidden to decrease the value of " ., In practice,

2-72

XENIX Software Development

the most common assignment to "." has the form ".=.+n l
'

for some number ~: this has the effect of generating n null
bytes.

2.5.5.5 Keyword statements Keyword statements are
numerically the most common type, since most machine
instructions are of this sort. A keyword statement begins
with one of the many predefined keywords of the assembler:
the syntax of the remainder depends on the keyword. All the
keywords are listed below with the syntax they require.

2.5.6 Expressions

An expression is a sequence of symbols representing a valu~.
Its constituents are identifiers, constants, and operators.
Each expression has a type.

Arithmetic is two's complement. All operators have equal
precedence, and expressions are evaluated strictly left to
right.

2.5.6.1 EXEression oEerators The operators are:

°Eerator DescriEtion

(blank) same as +
+ Addition

Subtraction
* Multiplication
/ Division ,...

Logical OR
& Logical AND
! Log ical NOT
> Right Shift
< Left Shift

2.5.6.2 TYEes The assembler deals with expressions, each
of which may be of a different~. Most types are
attached to the keywords and are used to select the routine
which treats that keyword. The types likely to be met
explicitly are:

undefined
Upon first encounter, each
It may become undefined
undefined expression.

2-73

symbol
if it

is undefined.
is assigned an

XENIX Software Development

undefined external

absolute

text

data

bss

A symbol which is declared .globl but not defined
in the current assembly is an undefined external.
If such a symbol is declared, the link editor ld
must be used to load the assembler's output witn
another routine that defines the undefined
reference.

An absolute symbol is defined ultimately from a
constant. Its value is unaffected by any possible
future applications of the link-editor to the
output file.

The value of a text symbol is measured with
respect to the beginning of the text segment of
the program. If the assembler output 1S link­
edited, its text symbols may change in value since
the program need not be the first in the link
editor's output. Most text symbols are defined by
appearing as labels. At the start of an assembly,
the value of "." is text o.

The value of a data symbol is measured with
respect to the or1g1n of the data segment of a
program. Like text symbols, the value of a data
symbol may change during a subsequent link-editor
run since previously loaded programs may have data
segments. After the first .data statement, the
value of "." is data O.

The value of a bss symbol is measured from the
beginning of the bss segment of a program. Like
text and data symbols, the value of a bss symbol
may change during a subsequent link-editor run,
since previously loaded programs may have bss
segments. After the first .bss statement, the
value of "." is bss o.

external absolute, text, data, or bss
Symbols declared .globl but defined within an
assembly as absolute, text, data, or bss symbols
may be used exactly as if they were not declared
.globl; however, their value and type are
available to the link editor so that the program
may be loaded with others that reference these
symbols.

2-74

XENIX Software Development

other types
Each keyword known to the assembler has a type
which is us~d to select the routine which
processes the associated keyword statement. The
behavior of such symbols when not used as keywords
is the same as if they were absolute.

2.5.6.3 Type propagation in expressions When operands are
combined by expression operators, the result has a type
which depends on the types of the operands and on the
operator. The rules involved are complex to state but were
intended to be sensible and predictable. For purposes of
expression evaluation the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then: If one of the operands is
undefined, the result is undefined. If both operands are
absolute, the result is absolute. If an absolute is
combined with one of the 'other types'mentioned above, the
result has the other type. If two operands of 'other
type'· are combined, the result has the numerically larger
type. An 'other type' combined with an explicitly ~iscussed
type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or' bss-segment
relocatable, or is an undefined external, the result
has the postulated type and the other operand must be
absolute.

If the first operand is a relocatable text-, data-, or
bss-segment symbol, the second operand may be absolute
(in which case the result has the type of the first
operand): or the second operand may have the same type
as the first (in which case the result is absolute).
If the first operand is external undefined, the second
must be absolute. All other combinations are illegal.

others
It is illegal to apply these operators to any but
absolute symbols.

2-75

XENIX Software Development

2.5.7 Pseudo-operations

The keywords
influence the
metanotation

listed
later

[stuff] ...

below introduce
operations of the

statements
assembler.

that
The

means that 0 or more instances of the given stuff may
appear. Also, boldface tokens are literals, italic words
are substitutable.

2.5.7.1 .even If the location counter "." is odd, it is
advanced by one so the next statement will be assembled at a
word boundary. This is useful for forcing storage
allocation to be on a word boundary after a .byte or .ascii
directive.

2.5.7.2 .float, .double

.float 31459E4

The .float psuedo operation accepts as its operand an
optional string of tabs and spaces, then an optional sign,
then a string of digits optionally containing a decimal
point, them an optiona+ 'e' or 'E', followed by an
optionally signed integer. The string is interpreted as a
floating point number. The difference between .float and
.double is in the number of bytes for the result; .float
sets aside four bytes, while .double sets aside eight bytes.

2.5.7.3 .B .globl

.globl name , name

This statement" makes the names external. If they are
otherwise defined (by assignment or appearance a$ a label)
they act within the assembly exactly as if the .globl
statement were not given; however, the link editor ld may be
used to combine this routine with other routines that refer
to these symbols.

Conversely, if the given symbols are not defined within the
current assembly, the link editor can combine the output of
this assembly with that of others which define the symbols.
It is possible to force the assembler to make all otherwise
undefined symbols external.

2-76

XENIX Software Development

2.5.7.4 .text, .data, .bss These three pseudo-operations
cause the assembler to begin assembling into the text, data,
or bss segment respectively. Assembly starts in the text
segment. It is forbidden to assemble any code or data into
the bss segment, but symbols may be defined and ".'1 moved
about by assignment.

2.5.7.5 .comm The format of the .comm is:

.corom ARRAY

Provided the name is not defined elsewhere, this statement
is equivalen~o .globl. That is, the type of name is
"undefined external", and its size is expression. In fact
the name behaves in the current assembly just like, an
undefined external. However, the link-editor ld has been
special-cased so that all external symbols which are not
otherwise defined, and whicn have a non-zero value, are
defined to lie in the bss segment, and enough space is left
after the symbol to hold expression bytes. All symbols
which become defined in this way are located before all the
explicitly defined bss-segment locations.

2.5.7.6 .insrt The format of a .insrt is:

.insrt "filename"

where filename is any valid XENIX filename. Note that the
filename must be enclosed within double quotes.

The assembler will attempt to open this file for input. If
it succeeds, source lines will be read from it until the end
of file is reached. If as was unable to open the file, a
Cannot open insert file error message will be generated.

This statement is useful for including a standard set of
comm'ents or symbol assignments at the beg inning of a
program. It is also useful for breaking up a large source
program into easily managable pieces.

A maximum depth of 10 (ten) files may be .insrted at anyone
time.

System call names are not predefined. They may be found in
the file /usr/include/~.~.

2-77

XENIX Software Development

2.5.7.7 .ascii, .asciz The .ascii directive translates
character strings into their 7-bit ascii (represented as
8-bit bytes) equivalents for use in the source program. The
format of the .ascii directive is as follows:

.ascii /character string/

where

character string contains any character valid in a
character constant. Obviously, a <newline> must
not appear within the character string. (It can be
represented by the escape sequence \en) •

/ and / are delimiter characters, which may be any
character not appearing in character string

Several examples follow:

Hex Code Generated: Statement:
22 68 -gs-6C 6C 6F 20 74 .ascii /"hello there"/
68 65 72 65 22
77 61 72 6E 69 6E 67 20 .ascii "Warning-\007\007 \n"
2D 07 07 20 OA
61 62 63 64 65 66 67 .ascii *abcdefg*

The .asciz directive is equivalent to the .aSCll directive
with a zero (null) byte automatically inserted as the final
character of the string. Thus, when a list or text string is
to be printed, a search for the null character can terminate
the string. Null terminated strings ate used as arguments to
some XENIX system calls.

2.5.7.8 .list, .nlist These pseudo-directives control the
assembler output listing. These, in effect, temporarily
override the '-I' switch to the assembler. This is useful
when certain portions of the assembly output is not
necessarily desired on a printed listing.

.list

.nlist
turns the listing on
turns the listing off

2-78

XENIX Software Development

2.5. 7 .9 • blkb, • blkw The. bl kb and • blkw directives are
used to reserve blocks of storage: .blkb reserves bytes,
.blkw reserves words.

The format

.blkb

.blkw

is:

[expression]
[expression]

" where expression is the number of bytes or words to reserve.
If no argument is given a value of 1 is assumed. The
expression must be absolute, and defined during pass 1.

This is equivalent to the statement ".=.+expression", but
has a much more transparent meaning.

2.5.7.10 .byte, .word The .byte and .word directives are
used to reserve bytes and words and to initialize them with
certain values.

The format

.byte

.word

is:

[e xp res s ion]
[expression]

The .byte directive reserves one byte for each expression in
the operand field and initializes the value of the byte to
be the low-order byte of the corresponding expression.

For example,

.byte 0

state: • byte 0

reserves an byte, with a value
of zero.

reserves a byte with a zero
value called state.

The semantics for .word are identical, except that l6-bit
words are reserved and initialized.

2.5.7.11 .end The .end directive indicates the physical
end of the source program. The format is:

.end [expression]

where expression is an optional argument which, if present,
indicates the entry point of the program, i.e. the starting
point for execution. If the entry point of a program is not
specified during assembly, it defaults to zero.

2-79

XENIX Software Development

Every source program must be terminated with a .end
statement. Inserted files which contain a .end statement
will terminate assembly of the entire program, not just the
inserted portion.

2.5.8 Machine

The 8086 instructions treat different types of operands
uniformly. Nearly every instruction can operate on either
byte or word data. In the table that follows, with some
notable execeptions, an instruction that operates on a byte
operand will have a b suffix on the opcode.

The 8086 instruction mnemonics which follow are implemented
by the Microsoft 8086 assembler desribed in this document.
Some of the opcodes are not found in any other 8086 manuai.

For example, this document describes branch instructions not
found in any 8086 manual. The branch instructions expand
into a jump on the inverse of the condition specified,
followed by an an unconditional intra-segment jump. The
operand field format for the branch opcodes is the same as
the operand field for the jump long opcodes. The opcodes
which are implemented only in this assembler will be
annotated by an asterisk, and will be fully defined and
described in this document.

2-80

aaa
aad
aam
aas
adc
adcb
add
addb
and
andb
*beq
*bge
*bgt
*bhi
*bhis
*ble
*blo
*blos
*blt
*bne
*br
call
calli
cbw
clc
cld
eli
cmc
cmp
cmpb
cmps
cmpsb
cwd
daa
das
dec
decb
div
divb
hIt
idiv
idivb
imul
imulb
in
inc
i.ncb
int

XENIX Software Development

8086 Assembler Opcodes
Opcode Description

ascii adjust for addition
ascii adjust for division
ascii adjust for multiply
aSCll adjust for subtraction
add with carry
add with carry
add
add
logical AND
logical AND
long branch equal
long branch grt or equal
long branch grt
long branch on high
long branch high o~ same
long branch les or equal
long branch on low
long branch low or same
long branch less than
long branch not equal
long branch
intra segment call
inter segment call
convert byte to word
clear carry flag
clear direction flag
clear interrupt flag
complement carry flag
compare
compare
compare string
compare string
covert word to double word
decimal adjust for addition
decimal adjust for subtraction
decrement by one
decrement by one
divison unsigned
divison unsigned
halt
integer division
integer division
integer multiplication
integer multiplication
input byte
increment by one
increment by one
interrupt

2-81

into
inw
iret
j
ja
jae
jb
jbe
jcxz
je
jg
jge
jl
j Ie
jmp
jmpi
jna
jnae
jnb
jnbe
jne
jng
jnge
jnl
jnle
jno
jnp
jns
jnz
jo
jp
jpe
jpo
js
jz
lahf
Ids
lea
les
lock
lodb
lodw
loop
loope
loopne
loopnz
loopz
mov
movb
movs
movsb

XENIX Software Development

interrupt if overflow
input word
interrupt return
short jump
short jump if above
short jump if above or equal
short jump if below
short jump if below or equal
short jump if ex is zero
short jump on equal
short jump on greater than
short jump greater than or equal
short jump on less than
short jump on less than or equal
jump
inter segment jump
short jump not above
short jump not above or equal
short jump not below
short jump not below or equal
short jump not equal
short jump not greater
short jump not greater or equal
short jump not less
short jump not less or equal
short jump not overflow
short jump not parity
short jump not sign
short jump not zero
short jump on overflow
short jump if parity
short jump if parity even
short jump if parity odd
short jump if signed
short Jump if zero
load AH from flags
load pointer using DS
load effective address
load pointer using ES
lock bus
load str ing byte
load string word
loop short label
loop if equal
loop if not equal
loop is not zero
loop if zero
move
move byte
move string
move string byte

2-82

mul
mulb
neg
negb
nop
not
notb
or
orb
out
outw
pop
popf
push
pushf
rcl
rclb
rcr
rcrb
rep
repnz
repz
ret
reti
rol
rolb
ror
rorb
sahf
sal
salb
sar
sarb
sbb
sbbb
scab
shl
shlb
shr
shrb
stc
std
sti
stob
stow
sub
subb
test
testb
wait
xchg

XENIX Software Development

multipication unsigned
multipication unsigned
negate
negate
no op
logical NOT
logical NOT
logical OR
logical OR
output byte
output word
pop from stack
pop flag from stack
push onto stack
push flags onto stack
rotate left through carry
rotate left through carry
rotate right throuch carry
rotate right throuch carry
repeat string operation
repeat string operation not zero
repeat string operation while zero
return from procedure
return from intersegment procedure
rotate left
rotate left
rotate right
rotate right
store AH into flagsno operands
shift arithmetic left
shift arithmetic left
shift arithmetic right
shift arithmetic right
subtract with borrow
subtract with borrow
scan string
shift logical left
shift logical left
shidr logical right
shidr logical right
set carry flag
set direction flag
set interrupt enable flag
store byte string
store word string
subtraction
subtraction
test
test
wait while TEST pin
exchange

2-83

xchgb
xlat
xor
xorb

XENIX Software Development

exchange
translate
xclusive OR
xclusive OR

2.5.9 Addressing Modes

The 8086 assembler provides many different ways to access
instruction operands. Operands may be contained in
registers, within the instruction itself, in memory, or in
I/O ports. In addition, the addresses of memory and I/O
port operands can be calculated in several different ways.

2.5.9.1 Register Operands Instructions that specify only
register operands are generally the most compact and fastest
executing of all the instruction forms. This is because the
register 'addresses' are encoded in the instructions with
just a few bits, and because these operations are performed
entirely within the cpu. Registers may serve as source
operands, destination operands, or both.

EXAMPLES OF REGISTER ADDRESSING

sub cx,di
mv ax,/3*4
mv /3*4/,ax
mov ax,*l

2.5.9.2 Immediate Operands Immediate operands are constant
data contained in an instruction. The data may be either 8
or 16 bits in length. Immediate operands can be accessed
quickly because they are available directly from the
instruction queue; it is possible that no bus cycles will be
needed to obtain an immediate operand. An immediate operand
is always a constant value and can only be used as a source
operand.

The assembler can accept both 8 and 16 bit operands. It does
not perform any checking on the operand size, but determines
the size of the operand by the following symbols:

*expr
#expr

an 8 bit immediate
a 16 bit immediate

2-84

XENIX Software Development

EXAMPLES OF IMMEDIATE ADDRESSING

mov cx,*PAGSIZ/2
mov cx,IPAGSIZ/2
mov map,tPAGSIZ/2
mov map,*PAGSIZ/2

2.5.10 Memory Addressing Modes

When reading or writing a memory operand, a value called the
offset is required. This offset value, also called the
effective address is the operand's distance in bytes from
the beginning of the segment in which it resides.

2.5.10.1 Direct Addressin9 Direct addressing is the
simplest memory addressing mode since no registers are
involved. The effective address is taken directly from the
displacement field of the instruction. It is typically used
to access simple (scalar) variables.

EXAMPLES OF DIRECT ADDRESSING

push
mov
add

*6(bp)
cx,#256
si,*4

2.5.10.2 Register Indirect Addressing The effective
address of a memory operand may be taken from a base or
index register. One instruction can operate on many
different memory locations if the value in the base or index
register is updated appropriately. Indirect addressing is
denoted by an ampersand @ preceding the operand.

EXAMPLES OF INDIRECT ADDRESSING

popl
calli

rrO,@r15
@moncall

2.5.10.3 Based Addressing In based addressing, the
effective address is the sum of a displacement value and the
content of register bx or bp. Based addressing also provides
a straightforward way to address structures which may be
located in different places in memory. A base register can
be pointed at the base of the structure and elements of the
structure addressed by their displacements from the base.
Different copies of the same structure can be accessed by
simply changing the base register.

2-85

XENIX Software Development

EXAMPLE OF BASED ADDRESSING

mov *2 (si) ,i/lOOO

2.5.10.4 Indexed Addressing In indexed addressing, the
effective address is calculated from the sum of a
displacement plus the content of an index register. Indexed
addressing often is used to access elements in an array. The
displacement locates the beginnning of the array, and the
value of the index register selects one element. Since all
array elements are the same length, simple arithmetic on the
index register will select any element.

EXAMPLE OF INDEXED ADDRESSING

mov i_cat, (bx)

2.5.10.5 Based Indexed Addressing Based indexed addressing
generates an effective address that is the sum of a base
register, an index register, and a displacement. Based
indexed addressing is a very flexible mode because two
address components can be varied at execution time.

Based indexed addressing provides a convenient way for a
procedure to address an array allocated on a stack. Register
bp can contain the offset of a reference point on the stack,
typically the top of the stack after the procedure has saved
registers and allocated local storage. The offset of the
beginning of the array from the reference point can be
expressed by a displacement value, and an index register can
be used to access individual array elements.

EXAMPLES OF BASED INDEXED ADDRESSING

mov (bx) (dx), sym
mov *2(bx) (dx), sym
mov #2(bx) (dx) ,=sym

2.5.11 Diagnostics

When syntactic errors occur, the line number and the file in
which they occur is displayed. Errors in pass 1 cause
cancellation of pass 2.

ERROR syntax error, line xx
file: IT errors

2-86

XENIX Software Development

where xx represents the line number(s) in error, and yy
represents the total number of errors.

2-87

CHAPTER 3

ENVIRONMENT

Although the C programming language is a fine language, it
is designed to be used in a computing environment. From
within some C programs, you may want to execute other
programs, or to make calls to perform system functions.
Also, you may want to write assembly language routines that
interface to programs. Before you can perform any of these
programming tasks, you must have a knowledge of the XENIX
environment. In the case of the XENIX system, this
environment includes low level system calls, available C
libraries, and compiler calling conventions. The rest ,of
this chapter explains the various parts of the XENIX
environment.

3-1

XENIX Software Development

3.1 THE C INTERFACE TO THE XENIX SYSTEM

This section shows how to interface C programs to the XENIX
system, either directly or through the standard I/O library.
The topics discussed include:

$ Handling command arguments

$ Rudimentary I/O

$ The standard input and output

$ The standard I/O library

$ File system access

$ Low-level I/O: open, read, write, close, seek

$ Processes: exec, fork, pipes

$ Signals and interrupts

3.1.1 Basics

3.1.1.1 Program Arguments When a C program is run as a
command, the arguments on the command line are made
available to the fun?tion main as an argume~t count argc a~d
an array argv of pOlnters to character strlngs that contaln
the argument'~. By convention, argv[,Q] is the command name
itself, so argc is always greater than O.

The following program illustrates the mechanism:
echoes its arguments back tp the terminal.
essentially the echo command.)

main(argc, argv)
int argc:
char *argv[]:
{

int i:

/* echo arguments */

for (i = 1: i < argc: i++)

it simply
(This is

}
pr intf ("%s%c", argv [i] , (i<argc-l) ?

, ,

argv is a pointer to an array whose individual elements are
pointers to arrays of characters: each is terminated by \0,
so they can be treated as strings. The program starts ~y
printing argv[!] and loops until it has printed them all.

3-2

, 0) :

XENIX Software Development

The argument count and the arguments are parameters to main.
If you want to keep them around so other routines can get at
them, you must copy them to external variables.

3.1.1.2 The "Standard Input" and "Standard Output" The
simplest input mechanism is to read the "standard input,"
which is generally the user's terminal. The function
getchar returns the next input character each time it is
called. A file may be substituted for the terminal by using
the < convention: if ~ uses getchar, then the command
line:

prog <file

causes ~ to read file instead of the terminal. ~
itself need know nothing about where its input is coming
from. This is also true if the input comes from another
program via the ~ mechanism. For example

otherprog I prog

provides the standard input for ~ from the standard
output of otherprog.

Getchar returns the value EOF when it encounters the end of
file (or an error) on whatever you are reading. The value
of EOF is normally defined to be -1, but it is unwise to
take--any advantage of that knowledge. As will become clear
shortly, this value is automatically defined for you when
you compile a program, and need not be of any concern.

Similarly, putchar{E) puts the character c on the "standard
output," which is also by default the terminal. The output
can be captured on a file by using >. If ~ uses putchar,

prog >outfile

writes the standard output on outfile instead of the
terminal. Outfile is created if it doesn't exist; if it
already exists, its previous contents are overwritten.

The function printf, which formats output in various ways,
uses the same mechanism as putchar does, so calls to printf
and putchar may be intermixed in any order: the output
appears in the order of the calls.

Similarly, the function scanf provides for formatted input
conversion; it reads the standard input and breaks it up
into strings, numbers, etc., as desired. Scanf uses the
same mechanism as getchar, so· calls to them may also be

3-3

XENIX Software Development

intermixed.

Many programs read only one input and write one output; for
such programs I/O with getchar, putchar, scanf, and printf,
may be entirely adequate, and it is almost always enough to
get started. This is particularly true if the XENIX pipe
facility is used to connect the output of one program to the
input of the next. For example, the following program
strips out all ASCII control characters from its input
(except for new-line and tab).

#include <stdio.h>

maine) /* ccstrip: strip non-graphic characters */
{

}

int c;
while «c = getchar (» ! = EOF)

if « c > = I I & & c < 0177) II c -- 1\ t I I 'I c -- '\n I
putchar(c) ;

exit(O) ;

The line

#include <stdio.h>

should appear at the beginning of each source file. It
causes the C compiler to read a file (/usr/include/stdio.h)
of standard routines and symbols that includes the
definition of EOF.

If it is necessary to treat multiple files, you can use cat
to collect the files for you:

cat filel file2 ••• I ccstrip >output

and thus avoid learning how to access files from a program.
By the way, the call to exit at the end is not necessary to
make the program work properly, but it assures that any
caller of the program will see a normal termination status
(conventionally 0) from the program when it completes.
Status returns are discussed later in more detail.

3.1.2 The Standard I/O Library

The Standard I/O Library is a collection of routines
intended to provide efficient and portable I/O services for
most C programs. The standard I/O library is available on
each system that supports C, so programs that confine their
system interactions to its facilities can be transported

3-4

XENIX Software Development

from one system to another essentially without change.

In this section, we will discuss the basics of the
I/O library. The appendix contains a more
description of its capabilities.

standard
complete

3.1.2.1 File Access The programs written so far have all
read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next
step is to write a program that accesses a file that is not
already connected to the program. One simple example is wc,
which counts the lines, words and characters in a set of
files. For instance, the command

wc x.c y.c

prints the number of lines, words and characters in x.c and
y.£ and the totals.

The question is how to arrange for the named files to be
read-that is, how to connect the file system names to the
I/O statements which actually read the data.

The rules are simple. Before it can be read or written a
file has to be opened by the standard library function
fopen. fopen takes an external name (like ~.£ or y.£) , does
some housekeeping and negotiation with the operating system,
and returns an internal name which must be used in
subsequent reads or writes of the file.

This internal name is actually a pointer, called a file
pointer, to a structure which contains information about the
file, such as the location of a buffer, the current
character position in the buffer, whether the file is being
read or written, and the like. Users don't need to know the
details, because part of the standard I/O definitions
obtained by including stdio.h is a structure definition
called FILE. The only declaration needed for a file pointer
is exemplified by

FILE *fp, *fopen();

This says that fE is a pointer to a FILE, and fopen returns
a pointer to a FILE. FILE{ is a type name, like int, not a
structure tag.

The actual call to fopen in a program is

fp = fopen(name, mode);

3-5

XENIX Software Development

The first argument of fopen is the name of the file, as a
character string. The second argument is the mode, also as
a character string, which indicates how you intend to use
the file. The only allowable modes are read (~), write (~),
or append (~).

If a file that you open for writing or appending does not
exist, it is created (if possible). Opening an existing
file for writing causes the old contents to be discarded.
Trying to read a file that does not exist is an error, and
there may be other causes of error as well (like trying to
read a file when you don't have permission). If there is
any error, fopen returns the null pointer value NULL (which
is defined as zero in stdio~h).

The next thing needed is a way to read or write the file
once it is open. There are several possibilities, of which
getc and putc are the simplest. Getc returns the next
character from a file. It needs the file pointer to tell it
what file. Thus:

c = getc(fp)

places in c the next character from the file referred to by
K£: it returns EOF when it ~eaches end of file. Putc is the
inverse of getc. For example

putc(c, fp)

puts the character £ on the file fE and returns c. Getc and
putc return EOF on error.

When a program is started, three files are opened
automatically, and file pointers are provided for them.
These files are the standard input, the standard output, and
the standard error output: the corresponding file pointers
are called stdin, stdout, and stderr. Normally these are
all connected to the termin ql, but may be redirected to
files or pipes. Stdin, stdout and stderr are pre-defined in
the I/O library as the standard input, output and error
files: they may be used anywhere an object of type FILE *
can· be. They are constants, however, not variables;-so
don't try to assign to them.

With some of the preliminaries out of the way, we can now
write wc. The basic design is one that has been found
convenient for many programs: if there are command-line
arguments, they are processed in order; if there are no
arguments, the standard input is processed. This way the
program can be used stand-alone or as part of a larger
process.

3-6

XENIX Software Development

#include <stdio.h>

rna in (argc, argv)
int argc;

/* wc: count lines, words, chars */

char *argv[];
{

int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charctj
long tlinect = 0, twordct = 0, teharct = OJ

i = Ii
fp = stdin;
do {

if (arge > 1 && (fp=fopen(argv[i], nrn» == NULL) {
fpr intf (stder r, "we: can't open %s\n", argv [i]) ;

}
continue;

iinect = wordct = eharct = inword = 0;
while ((c = getc(fp» != EOF) {

}

charct++;
if (c == '\n')

linect++;
if (c == ' , II e -- '\ t' II c -­

inword = 0;
else if (inword == 0) {

inword = 1;

}
wordct++;

'\n')

printf("%7ld %7ld %7ld", linect, wordct, charct);
printf(argc> 1 ? II %s\n" : "\n", argv[i]);
fclose (fp) ;
tlinect += linect;
twordct += wordct;
tcharct += charct;

} while (++i < argc);
if (argc > 2)

ex i t (0) ;

printf("%71d %71d %71d total\n", tlinect, twordct,
tcharct) ;

The function fprintf is identical to printf, save that the
first argument is a file pointer that specifies the file to
be written.

The function felose is the inverse of fopen; it breaks the
connection between the file pointer and the external name
that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files

3-7

XENIX Software Development

that a program may have open simultaneously, it's a good
idea to free things when they are no longer needed. There
is also another reason to call fclose on an output file-it
flushes the buffer in which putc is collecting output •.
fclose(is called automatically for each open file when a
program terminates normally.)

3.1.2.2 Error Handling-Stderr and Exit Stderr is assigned
to a program in the same way that stdin and stdout are.
Output written on stderr appears on the user's terminal even
if the standard output is redirected. wc writes its
diagnostics on stderr instead of stdout so that if one of
the files can't be accessed for some reason, the message
finds its way to the user's terminal instead of disappearing
down a pipeline or into an output file.

The program actually signals errors in another way, using
the function exit to terminate program execution. The
argument of exit is available to whatever process called it,
so the success or failure of the program can be tested by
another program that uses this 9ne as a sub-process. By
convention, a return value of 0 signals that all is well;
non-zero values signal abnormal situations.

exit itself calls fclose for each open output file, to flush
out any buffered output, then calls a routine named exit.
The function exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

3.1.2.3 Miscellaneous I/O Functions The standard I/O
library provides several other I/O functions besides those
we have illustrated above.

Normally output with putc, etc., is buffered (except to
stderr); to force it out immediately, use fflush(fE).

fscanf is identical to scanf, except that its first argument
is a file pointer (as with fprintf) that specifies the file
from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and
fprintf, except that the first argument names a character
string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprintf.

fgets(buf, size, fE) copies the'next line from fE, up to and
including a new-line, into buf; at most size-l characters
are copied; it returns NULL at end of file.----fputs(buf, fE)
writes the string in buf onto file fEe

3-8

XENIX Software Development

The function ungetc(~, !E) "pushes back" the character c
onto the input stream !E; a subsequent call to getc, fscanf~
etc., will encounter c. Only one character of push-back per
file is permitted.

3.1.3 Low-Level I/O

This section describes the bottom level of I/O on the XENIX
system. The lowest level of I/O in XENIX provides no
buffering or any other services; it is in fact a direct
entry into the operating system. You are entirely on your
own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite
simple, this isn't as bad as it sounds.

3.1.3.1 File Descriptors In the XENIX operating system,
all input and output is done by reading or writing files,
because all peripheral devices, even the user's terminal,
are files' in the file system. This means that a single,
homogeneous interface handles all communication between a
program and peripheral devices.

In the most general case, before reading or writing a file,
it is necessary to inform the system of your intent to do
so, a process called "opening" the file. If you are going
to write on a file, it may also be necessary to create it.
The system checks your right to do so (Does the file exist?
Do you have permission to access it?), and if all is well,
returns a small positive integer called a filedescriptor.
Whenever I/O is to be done on the file, the file descriptor
is used instead of the name to identify the file. (This is
roughly analogous to the use of and in Fortran.) All
information about an open file is maintained by the system;
the user program refers to the file only by the file
descriptor.

File pointers are similar in spirit to file descriptors, but
file descriptors are more fundamental. A file pointer is a
pointer to a structure that contains, among other things,
the file descriptor for the file in question.

Since input and output involving the user's terminal are so
common, special arrangements exist to make this convenient.
When the command interpreter (the "shell") runs a program,
it opens three files, with file descriptors 0, 1, and 2,
called the standard input, the standard output, and the
standard error output. All of these are normally connected
to the terminal, so if a program reads file descriptor 0 and
writes file descriptors I and 2, it can do terminal I/O

3-9

XENIX Software Development

without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file
descriptors 0 and 1 from the terminal to the named files.
Similar observations hold if the input or output is
associated with a pipe. Normally file descriptor 2 remains
attached to the terminal, so error messages can go there.
In all cases, the file assignments are changed by the shell,
not by the program. The program does not need to know where
its input comes from nor where its output goes, so long as
it uses file 0 for input and 1 and 2 for output.

3.1.3.2 Read and Write All input and output is done by two
functions called read and write. For both, the first
argument is a file descriptor. The second argument is a
buffer in your program where the data is to corne from or go
to. The third argument is the number of bytes to be
transferred. The calls are

n read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes
actually transferred. On reading, the number of bytes
returned may be less than the number asked for, because
fewer than n bytes remained to be read. (When the file is a
terminal, r;ad normally reads only up to the next new-line,
which is generally less than what was requested.) A return
value of zero bytes implies end of file, and -1 indicates an
error of some sort. For writing, the returne~ value is the
number of bytes actually written; it is generally an error
if this isn't equal to the number supposed to be written.

The number of bytes to be read or written is quite
arbitrary. The two most cornmon values are 1, which means
one character at a time ("unbuffered' '), and 512, which
corresponds to a physical block size on many peripheral
devices. This latter size will be most efficient, but even
character at a time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program
to copy its input to its output. This program will copy
anything to anything, since the input and output can be
redirected to any file or device.

3-10

XENIX Software Development

#define BUFSIZE 512 /* best size for PDP-II UNIX */

main() /* copy input to output */
{

char
int

buf[BUFSIZE]:
n:

while ((n = read(O, buf, BUFSIZE)) > 0)
write(l, buf, n):

exit(O):

If the file size is not a multiple of BUFSIZE, some read
will return a smaller number of bytes to be written by
write: the next call to read after that will return zero.

It is instructive to see how read and write can be used to
construct higher level routines like getchar, putchar, etc.
For example, here is a version of getchar which does
unbuffered input.

#define CMASK 0377 /* for making char's> 0 */

Tetchar () /* unbuffered single character input */

char c;

return ((read (0, &c, 1) > 0) ? c & CMASK EOF) ;
}

c must be declared char, because read accepts a character
pointer. The character being returned must be masked with
0377 to ensure that it is positive; otherwise sign extension
may make it negative. (The constant 0377 is appropriate for
the but not necessarily for other machines.)

The second version of getchar does input in big chunks, and
hands out the characters one at a time.

3-11

XENIX Software Development

idefine CMASK 0377
idefine BUFSIZE 512

/* for making char's> 0 */

yetchar ()

static
static
static

/* buffered version */

char buf[BUFSIZE]~
char *bufp = buf;
int n = O~

if (n == 0) { /* buffer is empty */
n = read(O, buf, BUFSIZE):

}
bufp = buf~

}
return«--n >= 0) ? *bufp++ & CMASK EOF)~

3.1.3.3 Open, Creat, Close, Unlink Other than the default
standard input, output and error files, you must explicitly
open files in order to read or write them. There are two
system entry points for this, open and creat [sic].

open is rather like the fopen discussed in the previous
section, except that instead of returning a file pointer, it
returns a file descriptor, which is just an int.

int fd;

fd = open(name, rwmode) ~

As with fopen, the name argument is a character string
corresponding to the external file name. The access mode
argu~ent is different, however: rwmode is 0 for read, 1 for
write, and 2 for read and write access. open returns -1 if
any error occurs; otherwise it returns a valid file
descriptor.

It is an error to try to open a file that does not exist.
The ,entry point creat is provided to create new files , or to
re-write old ones.

fd = creat{name, pmode) ~

returns a file descriptor if it was able to create the file
called name, and -1 if not. If the file already exists,
creat will truncate it to zero length; it is not an error to
creat a file that already exists.

If the file is brand new, creat creates it with the
protectionmode specified by the pmode argument. In the
XENIX file system, there are nine bits of protection

3-12

XENIX Software Development

information associated with a file, controlling read, write
and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal
number is most convenient for specifying the permissions.
For example, 0755 specifies read, write and execute
permission for the owner, and read and execute permission
for the group and everyone else.

To illustrate, here is a simplified version of the XENIX
utility cp, a program which copies one file to another.
(The main simplification is that our version copies only one
file, and does not permit the second argument to be a
directory.)

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others */

main (argc, argv)
int argci
char *argv[];
{

int
char

/* cp: copy fl to f2 */

fl, f2, ni
buf [BUFSI ZE] i

if (argc 1= 3)
error("Usage: cp from to", NULL);

if ((fl = open(argv[l], 0)) == -1)
error("cp: can't open %S", argv[l]);

i f ((f 2 = c rea t (a r 9 v [2], PM 00 E)) = = -1)
error("cp: can't create %S", argv[2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) 1= n)

error("cp: write error", NULL);
exit(O) i

error(sl, s2) /* print error message and die */
char *s1, *s2;
{

}

printf(sl, s2);
printf("O) ;
ex i t (1) ;

As we said earlier, there is a limit (typically
the number of files which a program may
simultaneously. Accordingly, any program which
process many files must be prepared to
descriptors. The routine close breaks the

3-13

15- 25) on
have open

intends to
re-use file

connection

XENIX Software Development

between a file descriptor and an open file, and frees the
file descriptor for use with some other file. Termination
of a program via exit or return from the main program closes
all open files. ----

The function unlink(filename) removes the file filename from
the file system.

3.1.3.4 Random Access-Seek and Lseek File I/O is normally
sequential: each read or write takes place at a position in
the file right after--the previous one. When necessary,
however, a file can be read or written in any arbitrary
order. The system call lseek provides a way to move around
in a file without actually reading or writing:

lseek (fd, offset, or ig in) ;

forces the current position in the file whose descriptor is
fd to move to position offset, which is taken relative to
the location specified by origin. Subsequent reading or
writing will begin at that position. offset is a long; fd
and origin are int's. origin can be 0, 1, or 2 to specify
that offset is to be measured from the beginning, from the
current position, or from the end of the file respectively.
For example, to append to a file, seek to the end before
writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as
(long) Q.

with lseek, it is possible to treat files more or less like
large arrays, at the price of slower access. For example,
tpe following simple function ~eads any number of bytes from
any arbitrary place in a file.'

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, ni
long pos;
char *buf;
{

lseek(fd, pos, 0); /* get to pos */

}
return(read(fd, buf, n));

3-14

XENIX Software Development

Before Version 7, the basic entry point to the XENIX I/O
system was called seek. seek is identical to Iseek, except
that its offset argument is--an int rather than a long.
Accordingly, since integers have only 16 bits, the offset
specified for seek is limited to 65,535; for this reason,
origin va1ues--of 3, 4, 5 cause seek to multiply the given
offset by 512 (the number of bytes~ one physical block)
and then interpret origin as if it were 0, 1, or 2
respectively. Thus to get to an arbitrary place in a large
file requires two seeks, first one which selects the block,
then one which has origin equal to 1 and moves to the
desired byte within the block.

3.1.3.5 Error Processing The routines discussed in this
section, and in fact all the routines which are direct
entries into the system can incur errors. Usually they
indicate an error by returning a value of -1. Sometimes it
is nice to know what sort of error occurred; for this
purpose all these routines, when appropriate, leave an error
number in the external cell errno. The meanings of the
various error numbers are listed in the introduction to
Section II of the XENIX Programmer'~ Manual, so your program
can, for example, determine if an attempt to open a file
failed because it did not exist or because the user lacked
permission to read it. Perhaps more commonly, you may want
to print out the reason for failure. The routine perror
will print a message associated with the value of errno;
more generally, sys errno is an array of character strings
which can be indexed by errno and printed by your program.

3.1.4 Processes

It is often easier to use a program written by someone else
than to invent one's own. This section describes how to
execute a program from within another.

3.1.4.1 The "System" Function The easiest way to execute
a program from another is to use the standard library
routine system. system takes one argument, a command string
exactly as typed at the terminal (except for the new-line at
the end) and executes it. For instance, to time-stamp the
output of a program,

3-15

XENIX Software Development

main ()
{

system("date") ;

}
/* rest of processing */

If the command string has to be built from pieces, the in­
memory formatting capabilities of sprintf may be useful.

Remember than getc and putc normally buffer their input;
terminal I/O will not be properly synchronized unless this
buffering is defeated. For output, use fflush; for input,
see setbuf in the appendix.

3.1.4.2 Low-Level Process Creation-Execl and E~ecv If
you're not using the standard library, or if you need finer
control over what happens, you will have to construct calls
to other programs using the more 'primitive routines that the
standard library's system routine is based on.

The most basic operation is to execute another program
without returning, by using the routine execl. To print the
date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first arg~ment to execl is the filename of the command;
you have to know where it is found in the file system. The
second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom
used except as a place-holder. If the command takes
arguments, they are strung out after this; the end of the
list is marked by a NULL argument.

The execl call overlays the existing program with the new
one, runs that, then exits. There is no return to the
original program.

More realistically, a program might fall into two or
phases that communicate only through temporary files.
it is natural to make the second pass simply an execl
from th e fir st.

more
Here
call

The one exception to the rule that the original program
never gets control back occurs when there is an error, for
example if the file can't be found or is not executable. If
you don't know where date is located, say

3-16

XENIX Software Development

exec I ("/b in/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'O);

A variant of execl called execv is useful when you don't
know in advance how many arguments there are going to be.
The call is

execv{filename, argp);

where ~ is an array of pointers to the arguments; the
last pointer in the array must be NULL so execv can tell
where the list ends. As with execl, fIIename is the file in
which the program is found, and ~[Q] is the name of the
program. (This arrangement is identIcal to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal
command execution. There is no automatic search of multiple
directories-you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters
like <, >, *, ?, and [] in the argument list. If you want
these, use execl to invoke the shell sh, which then does all
the work. Construct a string commandiine that contains the
complete command as it would have been typed at the
terminal, then say

execl{"/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its
argument -c says to treat the next argument as-a whole
command line, so it does just what you want. The only
problem is in constructing the right information in
commandline.

3.1.4.3 Control of Processes-Fork and wait So far what
we've talked about isn't really all that useful by itself.
Now we will show how to regain control after running a
program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one
requires that it first be split into two copies; one of
these can be overlaid, while the other waits for the new,
overlaying program to finish. The splitting is done by a
routine called fork:

proc_id = fork();

splits the program into two copies, both of which continue
to run. The only difference between the two is the value of
proc id, the "process ide I I In one of these processes (the

3-17

XENIX Software Development

"child"), proc id is zero. In the other (the "parent"),
proc id is non-zero; it is the process number of the child.
Thus the basic way to call, and return from, another program
is

if (fork() == 0)
execl("/bin/sh", "sh", "-c", cmd, NULL); /* in child ~

And in fact, except for handling errors, this is sufficient.
The fork makes two copies of the program. In the child, the
value returned by fork is zero, so it calls execl which does
the command and then dies. In the parent, fork returns
non-zero so it skips the execl. (If there is any error,
fork returns -!).
More often, the parent wants to wait for the child to
terminate before continuing itself. This can be done with
the function wait:

int status;

if (fo r k () = = 0)
execl (•••);

wait(&status) ;

This still doesn't handle any abnormal conditions, such as a
failure of the execl or fork, or the possibility that there
might be more than one child running simultaneously. (The
wait returns the process id of the terminated child, if you
want to check it against the value returned by fork.)
Finally, this fragment doesn't deal with any funny behavior
on the part of the child (which is reported in status).
Still, these three lines are the heart of the standard
library's system routine, which we'll show in a moment.

The status returned by wait encodes in its low-order eight
bits the system's idea of the child's termination status; it
is a for normal termination and non-zero to indicate various
kinds of problems. The next higher eight bits are taken
from, the argument of the call to exit which caused a normal
termination of the child process. It is good coding
practice for all programs to return meaningful status.

When a program is called by the shell, the three file
descriptors 0, 1, and 2 are set up pointing at the right
files, and all other possible file descriptors are available
for use. When this program calls another one, correct
etiquette suggests making sure the same conditions hold.
Neither fork nor the exec calls affects open files in any
way. If the parent is buffering output that must corne out
before output from the child, the parent must flush its

3-18

XENIX Software Development

buffers before the execl. Conversely, if a caller buffers
an input stream, the called program will lose any
information that has been read by the caller.

3.1.4.4 Pipes A ~ is
between two cooperating
the pipe, while the other
buffering the data and
Most pipes are created by

Is I pr

an I/O channel intended for use
processes: one process writes into
reads. The system looks after
synchronizing the two processes.

the shell, as in

which connects the standard output of Is to the standard
input of~. Sometimes, however, it is-most convenient for
a process to set up its own plumbing; in this section, we
will illustrate how the pipe connection is established and
used.

The system call ~ creates a pipe. Since a pipe is used
for both reading and writing, two file descriptors are
returned; the actual usage is like this:

int fd[2];

stat = pipe(fd) ;
if (stat == -I)

/* there was an error ••• */

fd is an array of two file descriptors, where fd[Q] is the
read side of the pipe and fd[l] is for writing. These may
be used in read, write and cIOse calls just like any other
file descriptors.

If a process reads a pipe which is empty, it will wait until
data arrives; if a process writes into a pipe which is too
full, it will wait until the pipe empties somewhat. If the
write side of the pipe is closed, a subsequent read will
encounter end of file.

To illustrate the use of pipes in a realistic setting, let
us write a function called popen(cmd, mode), which creates a
process cmd (just as system does), and returns a file
descriptor that will either read or write that process,
according to mode. That is, the call

fout = popen("pr", WRITE};

creates a process that executes the EI command; subsequent
write calls using the file descriptor fout will send their
data to that process through the pipe.

3-19

XENIX Software Development

popen first creates the the pipe with a ~ syst~m call; it
then forks to create two copies of itself. The child
decides whether it is supposed to read or write, closes the
other side of the pipe, then calls the shell (via execl) to
run the desired process. The parent likewise closes the end
of the pipe it does not use. These closes are necessary to
make end-of-file tests work properly. For example, if a
child that intends to read fails to close the write end of
the pipe, it will never see the end of the pipe file, just
because there is one writer potentially active.

tinclude <stdio.h>

tdefine READ 0
tdefine WRITE 1
tdefine tst(a, b) I (mode -- READ? (b) (a»
static int popen_pid;

popen(cmd, mode)
char *cmd;
int mode;
{

}

int p[2];

if (pipe(p) < 0)
return(NULL) ;

i f (pop e n pi d = for k (» = = 0) {
close(tst(p[WRITE], p[READ]»;
close(tst(O,l»;

}

dup(tst(p[READ], p[WRITE]»;
close(tst(p[READ], p[WRITE]»;
execl("/bin/sh", "sh", "-c", cmd, 0);
_exit(l); /* disaster has occurred

if (popen pid == -1)
return (NULL) ;

close(tst(p[READ], p[WRITE]»;
return(tst(p[WRITE], p[READ]»;

The sequence of closes in
Suppose that the task is to
read data from the parent.
write side of the pipe,
lines

the child is a bit tricky.
create a child process that will
Then the first close closes the
leaving the read side open. The

close(tst{O, 1»;
dup(tst(p[READ], p[WRITE]»;

are the conventional way to associate
with the standard input of the child.

3-20

the pipe descriptor
The close closes file

if we ge

XENIX Software Development

descriptor 0, that is, the standard input. dup is a system
call that returns a duplicate of an already open file
descriptor. File descriptors are assigned in increasing
order and the first available one is returned, so the effect
of the dup is to copy the file descriptor for the pipe (read
side) to file descriptor O~ thus the read side of the pipe
becomes the standard input. (Yes, this is a bit tricky, but
it's a standard idiom.) Finally, the old read side of the
pipe is closed.

A similar sequence of operations takes place when the child
process is supposed to write from the parent instead of
reading. You may find it a useful exercise to step through
that case.

The job is not quite done, for we still need a function
pclose to close the pipe created by popen. The main reason
for using a separate function rather than close is that it
is desirable to wait for the termination of the child
process. First, the return value from pclose indicates
whether the process succeeded. Equally important when a
process creates several children is that only a bounded
number of unwaited-for children can exist, even if some of
them have terminated~ performing the wait lays the child to
rest. Thus: ----

#include <signal.h>

pclose (fd)
in t fd:

/* close pipe fd */

{

}

register r, (*hstat) (), (*ist.at) (), (*qstat) ();
int status;
extern int popen_pid;

close(fd) :
istat = signal(SIGINT, SIG IGN) ~
qstat = signal(SIGQUIT, SIG IGN);
hstat = signal(SIGHUP, SIG IGN);
while «r = wait(&status))-!= popen_pid && r 1= -1);
if (r == -1)

status = -1;
signal(SIGINT, istat):
signal(SIGQUIT, qstat);
signal(SIGHUP, hstat) ~
return(status) ;

The calls to signal make sure that no interrupts, etc.,
interfere with the waiting process; this is the topic of the
next section.

3-21

XENIX Software Development

The routine as written has the limitation that only one pipe
may be open at once, because of the single shared variable
popen pid; it really should be an array indexed by file
descriptor. A popen function, with slightly different
arguments and return value is available as part of the
standard I/O library discussed below. As currently written,
it shares the same limitation.

3.1.5 Signals and Interrupts

This section is concerned with how to deal gracefully with
signals from the outside world (like interrupts), and with
program faults. Since there's nothing very useful that can
be done from within C about program faults, which arise
mainly from illegal memory references or from execution of
peculiar instructions, we'll discuss only the outside-world
signals: interrupt, which is sent when the character . is
typed; quit, generated by the character; bangup, caused by
hanging up the phone; and terminate, generated by the kill
command. When one of these events occurs, the signal is
sent to all processes which were started from the
corresponding terminal; unless other arrangements have been
made, the signal terminates the process. In the quit case,
a core image file is written for debugging purposes.

The routine which alters the default action is called
signal. It has two arguments: the first specifies the
signal, and the second specifies how to treat it. The first
argument is just a number code, but the second is the
address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it
be given the default action. The include file signal.g
gives names for the various arguments, and should always pe
included when signals are used. Thus

iinclude <signal.h>

signal(SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

restores the default action of process termination. In all
cases, signal returns the p~evious value of the signal. The
second argument to signal may instead be the name of a
function (which has to be declared explicitly if the
compiler hasn't seen it alr~ady). In this case, the named
routine will be called when the signal occurs. Most
commonly this facility is used to allow the program to clean

XENIX Software Development

up unfinished business before terminating, for example to
delete a temporary file:

#include <signal.h>

rna in ()
{

}

onintr()
{

}

int onintr () ;

if (signal(SIGINT, SIG IGN) 1= SIG IGN)
signal(SIGINT,-onintr) ;

/* Process •.• */

ex it (0) ;

unlink (tempfile) ;
ex i t (1) ;

Why the test and the double call to signal? Recall that
signals like interrupt are sent to all processes started
from a particular terminal. Accordingl~when a program is
to be run non-interactively (started by &), the shell turns
off interrupts for it so it won't be stopped by interrupts
intended for foreground processes. If this program began by
announcing that all interrupts were to be sent to the onintr
routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt
handling, and to continue to ignore interrupts if they are
already being ignored. The code as written depends on the
fact that si~nal returns the previous state of a particular
signal. If slgnals were already being ignored, the process
should continue to ignore them; otherwise, they should be
caught.

A more sophisticated program may wish to intercept an
interrupt and interpret it as a request to stop what it is
doing and return to its own command-processing loop. Think
of a text editor: interrupting a long printout should not
cause it to terminate and lose the work already done. The
outline of the code for this case is probably best written
like this:

3-23

XENIX Software Development

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

rna in ()
{

int (*istat) (), onintr();

istat = signal(SIGINT, SIG IGN); /* save original sta1
setjmp(sjbuf); /* save current stack position */
if (istat 1= SIG IGN)

signal (SIGINT, onintr);

}
/* main processing loop */

onintr()
{

printf("OnterruptO);

}
longjmp(sjbuf); /* return to saved state */

The include file setjmp.h declares the type jmp buf an
object in which the state can be saved. sjbuf is such an
object; it is an array of some sort. The setjmp routine
then saves the state of things. When an interrupt occurs, a
call is forced to the onintr routine, which can print a
message, set flags, or whatever~ longjmp takes as argument
an object stored into by setjme, and restores control to the
location after the call to set]mp, so control (and the stack
level) will pop back to the place in the main routine where
the signal is set up and the main loop entered. Notice, by
the way, that the signal gets set again after an interrupt
occurs. This is necessary; most signals are automatically
reset to their default action when they occur.

Some programs that want to detect signals simply can't be
stopped at an arbitrary point, for example in the middle of
updating a linked list. If the ~outine called on occurrence
of a signal sets a flag and th~n returns instead of calling
exit or longjmp, execution will continue at the exact point
~was interrupted. The interrupt flag can then be tested
later.

There.is one difficulty associated with this approach.
Suppose the program is reading the terminal when the
interrupt is sent. The specified routine is duly called; it
sets its flag and returns. If it were really true, as we
said above, that "~xecution resumes at the exact point it
was interrupted," the program would continue reading the
terminal until the user typed another line. This behavior

3-24

XENIX Software Development

might well be confusing, since the user might not know that
the program is reading; he presumably would prefer to have
the signal take effect instantly. The method chosen to
resolve this difficulty is to terminate the terminal read
when execution resumes after the signal, returning an error
code which indicates what happened.

Thus programs which catch and resume execution after signals
should be prepared for "errors" which are caused by
interrupted system calls. (The ones to watch out for are
reads from a terminal, wait, and pause.) A program whose
onintr program just sets intflag, resets the interrupt
signal, and returns, should usually include code like the
following when it reads the standard input:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-of-file */

A final subtlety to keep in mind becomes important
signal-catching is combined with execution of
programs. Suppose a program catches interrupts, and
includes a method (like "1" in the editor) whereby
programs can be executed. Then the code should
something like this:

if (fork() == 0)
execl(

signal(SIGINT,
wait(&status) ;
signal(SIGINT,

) ;
SIG IGN); /* ignore interrupts */
/*-until the child is done */

onintr); /* restore interrupts */

when
other
also

other
look

Why is this? Again, it's not obvious but not really
difficult. Suppose the program you call catches its own
interrupts. If you interrupt the subprogram, it will get
the signal and return to its main loop, and probably read
your terminal. But the calling program will also pop out of
its wait for the subprogram and read your terminal. Having
two processes reading your terminal is very unfortunate,
since the system figuratively flips a coin to decide who
should get each line of input. A simple way out is to have
the parent program ignore interrupts until the child is
done. This reasoning is reflected in the standard I/O
library function system:

3-25

XENIX Software Development

#include <signal.h>

system(s)
char *s:
{

/* run command string s */

int status, pid, w:
register int (*istat) (), (*qstat) () :

if «pid = fork (» == 0) {
execl("/bin/sh", "shU, "-c",

}
_exit(127);

istat = signal(SIGINT, SIG IGN):
qstat = signal(SIGQUIT, SIG IGN) :

s, 0):

while «w = wait(&status» T= pid && w != -1)

}

. ,
if (w == -1)

status = -1:
signal(SIGINT, istat),
signal(SIGQUIT, qstat):
return(status) :

As an aside on declarations, the function signal obviously
has a rather strange second argument. It is in fact a
pointer to a function delivering an integer, and this is
also the type of the signal routine itself. The two values
SIG IGN and SIG DFL have the right type, but are chosen so
they coincide with no possible actual functions. For the
enthusiast, here is how they are defined for the PDP-II: the
definitions should be sufficiently ugly and nonportable to
encourage use of the include file.

#define SIG DFL (int (*)(»O
#define SIG-IGN (int (*) ()) 1

3.2 THE C LIBRARY

A knowledge of the C library is invaluable to the C
programmer, since it defines a common set of macros, types,
and functions that can be used in almost any programming
project. The most imporant functions and macros are
declared in the standard I/O library, discussed below.

3-26

XENIX Software Development

3.2.1 The Standard I/O Library

The standard I/O library was designed with the following
goals in mind.

1. It must be as efficient as possible, both in time and
in space, so that there will be no hesitation in using
it no matter how critical the application.

2 • It must be simple to use, and also free of
numbers and mysterious calls whose use
understandability and portability of many
using older packages.

the magic
mars the

programs

3. The interface provided should be applicable on all
machines, whether or not the programs which implement
it are directly portable to other systems, or to
machines other than the PDP-II running a version of
XENIX .

3.2.2 General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines
are in the normal C library, so no special library argument
is needed for loading. All names 1n the include file
intended only for internal use begin with an underscore to
reduce the possibility of conflict with other names created
by the user. The names intended to be visible outside the
package are:

stdin

stdout

stderr

EOF

NULL

FILE

The name of the standard input file

The name of the standard output file

The name of the standard error file

is actually -1, and is the value returned by the
read routines on end-of-file or error.

is a notation for the null pointer, returned by
pointer-valued functions to indicate an error

expands to struct iob and is a useful shorthand
when declaring pointers to streams.

3-27

XENIX Software DeveloPrnept

BUFSIZ is a number (viz. 512) of the size suitable for an
I/O buffer supplied by the~ user. See setbuf,
below.

Getc,getchar,putc, putchar,feof,ferror, and fileno are
defined as macros. Their actions are described below; they
are mentioned here to point out that it is not possible to
redeclare them and that they are not actually functions.
Thus, for example, they may not have breakpoints set on
them.

The routines in this package offer the convenience of
automatic buffer allocation and output flushing where
appropriate. The names stdin, stdout, and stderr are in
effect constants and may not be assigned to. Stdio.h
contains the definitions of NULL, EOF, FILE, and

BUFSIZ. The standard input file (stdin), standard output
file (stdout), and standard error file (stderr) are also
defined here. These definitions are incorporated into a
program with the following statement:

iinclude <stdio.h>

The file ctype.h provides the macro definitions for the
character classifications that are now possible. Any
program using those facilities must contain the line:

#include <ctype.h>

The functions that handle signals need to include the signal
definitions. This can be done with the line:

#include <signal.h>

Some function names have changed in order to follow the
established convention. To insure that the uniqueness of
function names is preserved even if truncation occurs on
some systems, those functions dealing with entire strings
are named str ••• ; those functions that consider only the
first n characters of a string are named strn ••••

3-28

XENIX Software Development

Listed below are some common C library functions that you
should study, most of these belong to the standard I/O
library- although other libraries are represented here as
well.

3.2.3 File access

fclose

fdopen

Example:

#include <stdio.h>
int fclose(stream)
FILE *streami

Fclose closes a file that was opened by fopen,
frees any buffers after emptying them, and
returns zero on success, non-zero on error. Exit
calls fclose for all open files as part of its
processing.

iinclude <stdio.h>
FILE *fdopen (fildes, type)
int fildes;
char *typei

Fdopen is used strictly on XENIX systems and
therefore is not a portable function. Its value
is in providing a bridge between the low-level
input-output (I/O) facilities of XENIX and the
standard I/O functions. Fdopen associates a"
stream with a valid file descriptor obtained from
a XENIX system call (e.g., open). Type is the
same mode (r, w, a, r+, w+, a+) that
was used in the original creation of a file
identified by fildes. Fdopen returns a pointer
to the associated stream, or NULL if
unsuccessful.

in t fd i
char *name = "myfile";
FILE *strmi

fd = open(name,O) i

if((strm = fdopen(fd, "r")) == NULL)
fprintf(stderr,"Error on %dO,fd) i

3-29

fileno

fopen

XENIX Software Development

'include <stdio.h>
int fileno (stream)
FILE *stream:

Implemented as a macro on XENIX, (and contained
in the file stdio.h) , fileno returns an integer
file descriptor associated with a valid stream.
Any existing non-XENIX implementations may have
different meanings for the integer which is
returned. Fileno is used by many other standard
functions in the C library.

'include <stdio.h>
FILE *fopen (filename, type)
char *filename, *type:

Fopen opens a file named filename
pointer to a structure (hereafter

stream), containing the data
handle a stream of data. Type
following character strings:

r used to open for reading.

and returns a
referred to as
necessary to
is one of the

w used to open for writing, which
truncates an existing file to zero
length or cr~ates a new file.

a used to append, that is, open for
writing at the end of a file, or create
a new file.

r+ update reading, which means open for
reading and allow writing, positions
the file pointer at the beginning of
the file.

w+ update writing, which means open for
writing and allow reading, truncates an
existing file to zero length or creates
a new file.

a+ ~pdate appending, which means open for
writing, positions to the end of the
file, and allows for subsequent reads
and writes~ If the file does not
exist, it will be created.

For the update options, fseek or rewind can be
used to trigger the change from reading to
wr i ting, or vice versa. (Reaching EOF on input
will also permit writing without further
formality.) Fopen returns a NULL pointer if
filename cannot be opened. The update

3-30

Example:

freopen

Example:

fseek

XENIX Software Development

functions are particularly applicable to stream
I/O and allow for the possibility of creating
temporary files for both reading and writing.

FILE *fp;
char *file;

if((fp = fopen(file,"r"» == NULL)
fprintf(stderr, "Cannot open %sO,file);

#include <stdio.h>
FILE *freopen (newfile, type, stream)
char *newfile, *type;
FILE *stream;

Freopen accepts a pointer, stream, to a
previously opened file; the old file is closed,
and then the new file is opened. The principal
motivation for freopen is the desire to attach
the names stdin, stdout, and stderr to specified
files. On a successful freopen, the stream
pointer is returned; otherwise NULL is
returned, indicating that, while the file closing
took place, the reopening failed. Freopen is of
limited portability; it can not be implemented in
all environments.

char *newfile;
FILE *nfile;

if((nfile = freopen(newfile,"r",stdout» == NULL)
fprintf(stderr,"Cannot reopen %sO,newfile);

#include <stdio.h>
int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

Fseek positions a stream to a location offset
distance from the beginning, current position or
end of a file, depending on the values 0, 1, 2
respectively for ptrname. On XENIX the offset
unit is bytes; other implementations are not
necessarily the same. The return values are 0 on

3-31

Example:

pclose

popen

Example:

XJ:;NJ;X Software Development

success and EOF on failure. Both buffered and
unbuffered files may make use of fseek.

To position to the end of a file:

FILE *stream:

fseek(stream,OL,2) :

#include <stdio.h>
int pclose (stream)
FILE *stream:

Pclose closes a stream opened by popen. 'It
returns the exit status of the command that was
issued as the first argument of its corresponding
popen, or -1 if the stream was not opened by
popen. The function name pclose means an
entirely different thing in the 05/370
environment.

#include <stdio.h>
FILE *popen (command, type)
char *command, *type:

Popen is used to create a pipe between the
calling process and a command to be executed.
The first argument ·is a shell command line: ~
is the I/O mode for the pipe, and may be either

r for reading or w for writing. The function
returns a stream pointer to be used for I/O on
the standard input or output of the' command. ,A

NULL pointer is returned if an error occurs.

FILE *pstrm:

if ((pstrm=popen ("tr mVP MVP", "w")) == NULL)
fprintf(std~rr,"popen errorO)~

fprintf(pstrm,"amessage via the pipe ••• O):
if(pclose(pstrm) == -1)

I fprintf(stderr,"Pclose errorO):

results in:

a Message Via the PiPe

3-32

rewind

setbuf

Example:

XENIX Software Development

iinclude <stdio.h>
int rewind(stream)
FILE *stream;

Rewind sets the position of the next operation at
the beginning of the file associated with
stream, retaining the current mode of the file.

It is the equivalent of fseek (stream,OL,Q);.

iinclude <stdio.h>
setbuf (stream, buf)
FILE *stream;
char *buf;

This function allows the user to choose his own
buffer for I/O or to choose to have no buffering
at all. Use it after opening and before reading
or writing. The function is often used to
eliminate the single character writes to a file
that result from the execution of ~utc to
standard output that is not redirecte. The
choice to buffer I/O brings with it the
responsibility for flushing any data that may
remain in a last, partially-filled buffer.
Fflush or fclose perform this task. The constant

BUFSIZ in stdio.h tells how big the character
array buf is. It is well-chosen for the
machine on which UNIX is running. When buf is
set to NULL, the I/O is completely unbuffered.

setbuf (stdout, malloc(BUFSIZ»;

3.2.4 File Status

clearerr

feof

#include <stdio.h>
clearerr(stream)
FILE *stream;

Clearerr is used to reset the error condition on
stream. The need for clearerr arises on XENIX

implementations where the error indicator is not
reset after a query.

#include <stdio.h>
int feof (stream)

3-33

Example:

ferror

Example:

ftell

XENIX Software Development

FILE *stream;

Feof, which is implemented as a macro on UNIX,
returns non-zero if an input operation on
stream has reached end of file; otherwise a

zero is returned. Feof should be used in
conjunction with any I7a--¥unction whose return
value is not a clear iridicator of an end-of-file
condition. Such functions are fread and getw.

int *x;
FILE *stream;

do
*x++ = getw(stream) ;

while(!feof(stream» :

#include <stdio.h>
int ferror (stream)
FILE *stream;

Ferror tests for an indication of error on
stream. It returns a non-zero value (true)

when an error is found, and a zero otherwise.
Calls to ferror do not clear the error condition,
hence the clearerr function is needed for that
purpose. The user should be aware that, after an
error, further use of the file may cause strange
results. On XENIX ferror is implemented as a
macro.

FILE *stream;
int *x;

while(!ferror(stream»
putw(*x++,stream) ;

#include <stdio.h>
long ftell (stream)
FILE *stream;

Ftell is used to determine the current offset
relative to the beginning of the file associated
with stream. It returns the current value of
the offset; in XENIX it returns the offset value

3-34

XENIX Software Development

in bytes. On error, a value of -1 is returned.
This function is useful in obtaining an offset
for subsequent fseek calls.

3.2.5 Input Function

fgetc

fgets

Example:

#include <stdio.h>
int fgetc (stream)
FILE *streamj

This is the function version of the macro getc
and acts identically to getc. Because fgetc is a
function and not a macro,it can be used in
debugging to set breakpoints on fgetc and when
the side effects of macro processing of the
argument is a problem. Furthermore, it can be
passed as an argument.

#include <stdio.h>
char *fgets (s,n,stream)
char *Sj
int nj
FILE *streamj

Fgets reads from stream into the area pointed
to by seither n-l characters or an entire
string including its new-line terminator,
whichever comes first. A final null character is
affixed to the data read. It returns the pointer

s on success, and NULL on end-of-file or
error. Fgets differs from the function gets in
that it can read from other than stdin, and that
it appends the new-line at the end of input when
the size of the string is longer than or equal to
n. More importantly, it provides control over

the size of the string to be read that is not
available with gets.

char msg [MAX] ;
FILE *myfile;

while(fgets(msg,MAX,myfile) 1= NULL)
pr intf ("%sO ,msg) ;

3-35

fread

Example:

fscanf

Example:

XENIX Software Development

tinclude <stdio.h>
int fread«char *)ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

This function reads from stream the next
nitems whose size is the same as the size of

the item pointed to by ptr , into a sufficiently
large area starting at ptr. It returns the
number of i terns read.· In XENIX, fread makes use
of the function getc. It is often used in
combination with feof and ferror to obtain a
clear indication of the file status.

FILE *pstm;
char mesg[IOO];

while(fread«char *)mesg,sizeof(*mesg) ,l,pstm) -­
printf("%sO,mesg) ;

iinclude <stdio.h>
int fscanf (stream, format[, argptr] •••)
char *format;
FILE *stream;

Fscanf accepts input from the file associated
with stream, and deposits it into the storage
area pointed to by the respective argument
pointers according to the specified formats.
Format specifica~ions are those that appear in
Attachment D. Fscanf differs from scanf in that
it can read from other than stdin. The function
returns the number of successfully handled input
arguments, or EOF on end-of-input.

FILE *file;
long pay;
char name[15);
char pan[7];

fscanf(file,"%6s%14s%ldO,pan,name,&pay) ;
if(pay<50000)

printf("$%ld raise for %s.O,pay/IO,name);

If the input data is:

3-39

~

getc

getchar

gets

Example:

XENIX Software Development

020202MaryJones 15000

the resulting output is:

$1500 raise for MaryJones.

#include <stdio~h>
int getc (stream)
FILE *stream;

Getc returns the next character from the named
stream. It is implemented as a macro to avoid

the overhead of a function call. On error or
end-of-file it returns an EOF. Fgetc should be
used when it is necessary to avoid the side
effects of argument processing by the macro getc.

#include <stdio.h>
int getchar()

This is identical to getc (stdin).

#include <stdio.h>
char *gets(s)
char *s;

Gets reads a string of characters up to a new­
line from stdin and places them in the area
pointed to by s. The new-line character which
ended the string is replaced by the null
character. The return values are s on success,

NULL on error or end-of-file. The simple
example below presumes the size of the string
read into msg will not exceed SIZE in length.
If used in conjunction with strlen, a dangerous
overflow can be detected, though not prevented.

char msg[SIZE]i
char *s;

s = msg;
while (gets (s) ! = NULL)

pr intf ("%sO, s) i

3-37

getw

Example:

scanf

Example:

sscanf

XENIX Software Development

'include <stdio.h>
int getw (stream)
FILE *stream~

Getw reads the next word from the file associated
with stream. On success it returns the word;
on error or end of file, it returns EOF.
However, because EOF could be a valid word,
this function is best used with feof and ferror.

FILE *stream~
int *x;

do
*x++ = getw(stream) ;

while (!feof(stream»;

iinclude <stdio.h>
int scanf (format[, argptr] .••)
char *format;

Scanf reads input from stdin, delivers the input
according to the spe~ified formats, and deposits
the input in the storage area pointed to by the
respective argument pointers. The correct format
specifications can be found in Attachment D. For
input from other streams than stdin use fscanf;
for input from a character array use sscanf. The
return values are the number of successfully
handled input arguments, or EOF on end-of­
input.

long numbe r ;

scanf("%ld",&number) ;
(printf(number%2?"%ld is odd":"%ld is even",number]

iinclude <stdio.h>
sscanf (s , format [, pointer] ..•)
char *s;
char *format;

Sscanf accepts input from a character string s,
delivers the input according to the specified
formats, and deposits it into the storage area

3-38

Example:

ungetc

Example:

XENIX Software Development

pointed to by the respective argument pointers.
Format specifications appear in Attachment D.
This function returns the number of successfully
handled input arguments.

char datestr[] = {"THU MAR 29 11:04:40 EST 1979"};
char month[4];
char year[S];

sscanf(datestr,"%*3s%3s%*2s%*8s%*3s%4s",month,year) ~
printf("%s, %sO,month,year);

The result is:

MAR, 1979

#inc1ude <stdio.h>
int ungetc (c, stream)
int c~
FILE *stream;

Ungetc puts the character c back on the file
associated ~ith stream. One character (but
never EOF) is assured of being put back. If
successful, the function returns c, otherwise

EOF .

whi1e(isspace (c = getc(stdin») . ,
ungetc(c, stdin) ;

This code puts the first character that is not
white space back onto the standard input stream.

3.2.6 Output Functions

fflush
iinclude <stdio.h>
int fflush (stream)
FILE *stream~

Fflush takes action to guarantee that any data
contained in file buffers and not yet written out
will be written. It is used by fclose to flush a
stream. No action is taken on files not open for

3-39

fprintf

Example:

fputc

Example:

XENIX Software D~v~lopment

writing. The return values are zero for success,
EOF on error.

'include <stdio.h>
int fprintf (stream, format[, arg l ...)
FILE *stream;
char *format;

Fprintf provides formatted output to a named
stream. The function printf may be used if the
destination is stdout. Specifications for
formats are available in Attachment C. On error,
fprintf returns non-zero, otherwise zero. In
later releases of the C library, fprintf will
return the number of characters transmitted, or· a
negative value on error.

int *filename;
int c;

if (c==EOF)
fprintf(stderr,"EOF on %sO,filename);

'include <stdio.h>
int fputc (c,stream)
int Ci
FILE *stream;

Fputc performs the same task as putc; that is, it
writes the character c to the file associated
with stream, but is implemented as' a function
rather than a macro. It is preferred to putc
when the side effects of macro processing of
arguments are a problem. On success, it returns
the character written; on failure it returns

EOF .

FILE *in, *out;
int c:

while «c = fgetc(in» != EOF)
fputc(c,out) ;

3-40

fputs

fwrite

Example:

printf

Example:

XENIX Software Development

#include <stdio.h>
int fputs(s,stream)
char *s;
FILE *stream;

Fputs copies a string to the output file
associated with stream. It uses the function
putc to do this. It is different from puts in
two ways: it allows any output stream to be
specified, and it does not affix a new-line to
the output. For an example, see puts.

#include <stdio.h>
int fwrite ((char *)ptr, sizeof (*ptr) ,nitems,stream)
FILE *stream;

Beginning at ptr , this function writes up to
nitems of data of the type pointed to by ptr

into output stLeam. It returns the number of
items actually written. Like fread this function
should be used in conjunction with ferror to
detect the error condition.

char mesg[] ={"My message to write outO};
FILE *pstrm;

if(fwrite(mesg, (sizeof(*mesg)-l) ,l,pstrm) != l}
fprintf(stderr,"Output errorO};

#include <stdio.h>
int printf(format[, arg] ...)
char *format;

Printf provides formatted output on stdout. The
many format specifications are available in
Attachment c. Fprintf and sprintf are related
functions that write output onto other than the
standard output device. In case of error,
implementations are not consistent in their
output. On error, printf returns non-zero,
otherwise zero. In later releases of the C
library, printf returns the number of characters
transmitted, or a negative value on error.

3-41

putc

Example:

putchar

Example:

puts

XENIX Software Development

int num = 10;
char msg[] = {"ten"};
printf("%d - %0 - %sO, num, num, msg);

results in the line:

10 - 12 - ten;

tinclude <stdio.h>
int putc (c,stream)
int c;
FILE *stream;

Putc writes the character c to the file
associated with stream. On success, it returns
the character written; on error it returns EOF.
Because it is implemented as a macro, side
effects may result from argument processing. In
such cases, the equivalent function fputc should
be used.

tdef ine PROMPT ()

tinclude <stdio.h>
int putchar (c)
int c;

Putchar is defined as
r~turns the character

EOF on error.

char *cp;
char x[SIZE];

pu tc (, 7' ,s td err) /* BEL */

putc (£, stdout). It
written on success, or

for (cp=x;cp«x+SIZE) ;cp++)
putchar(*cp) ;

iinclude <stdio.h>
int puts(s)
char *s;

The function copies the string pointed to by s
without its terminating null character to stdout.

3-42

Example:

putw

Example:

sprintf

XENIX Software Development

A new-line character is appended. XENIX uses the
macro putchar (which calls putc).

puts("I will append a new-line"):
fputs(" some more data ", stdout):
puts("and now a new-line"):

The resulting output is:

I will append a new-line
some more data and now a new-line

#include <stdio.h>
int putw(w,stream)
FILE *stream;
int w;

Putw appends word w to the output stream. As
with getw, the proper way to check for an error
or end-of-file is to use the feof and ferror
functions.

int info;

while(!feof(stream»
putw(info,stream) ;

tinclude <stdio.h>
int sprintf(s, format, [, arg] ...)
char *s;
char *format:

Sprintf allows for formatted output to be placed
in a character array pointed to by s. Sprintf
adds a null at the end of the formatted output.
See Attachment C for the specification of
formats. It is the user's responsibility to
provide an array of sufficient length. Other
related functions printf and fprintf handle
similar kinds of formatted output. Sprintf can
be used to build formatted arrays in memory, to
be changed dynamically before output, or to be
used to call other routines. The comparable
input function is sscanf. On error, sprintf
returns non-zero, otherwise zero. In later

3-43

Example:

XENIX Software Development

releases of the C library, sprintf returns the
number of characters transmitted, or a negative
value on error.

char cmd[lOO]:
char *doc = "/usr/src/cmd/cp.c"
int width = 50;
int length = 60:

sprintf(cmd,"pr -wid -lid %sO,width,length,doc);
system(cmd) :

The above code executes the E£ command to print
the source of the £E command.

3.2.7 String Functions

strcat

Example:

strcmp

Example:

char *strcat(dst,src)
char *dst, *src:

Strcat appends characters in the string pointed
to by src to the end of the string pointed to
by dst, and places a null character after the
last character copied. It returns a pointer to
dst. To concatenate strings up to a maximum

number of characters, use strncat.

char *myfile;
char dir[L cuserid+S] = "/usr/":

myfile = (strcat(dir,cuserid(O»);

The result is the concatenation of the l6~in name
onto the end of the string dir.

char *strcmp(sl,s2)
char *sl, *s2;

Strcmp compares the characters in the string 51
and 52. It returns an integer value, greater
than, equal to, or less than zero, depending on
whether 51 is lexicographically greater than,
equal to, or less than s2 •

3-44

strcpy

Example:

strlen

Example:

strncat

Example:

XENIX Software Development

#define EQ (x,y) !strcmp(x,y)

char *strcpy(dst, src)
char *dst, *src;

Strcpy copies the characters (including the null
terminator) from the string pointed to by src
into the string pointed to by dst. A pointer
to dst is returned.

char dst[] = "UPPER CASE";
char src[] = "this is lower case":

printf("%sO,strcpy(dst,src+8») i

results in:

lower case

int strlen(s)
char *s:

Strlen counts the number of characters starting
at the character pointed to by s up to, but not
including, the first null character. It returns
the integer count.

char nextitem[SIZE]i
char series[MAX]:

if(strlen(series» strcat(series,",") i
strcat(series,nextitem) :

char *strncat(dst, src, n)
char *dst, *src:
int ni

Strncat appends a maximum of n characters of
the string pointed to by src and then a null
character to the string pointed to by dst. It
returns a pointer to dst.

3-45

strncmp

Example:

strncpy

Example:

XENIX Software Development

char dst[] = "coverft~
char src[] = "letter"~

printf("%sO,strncat(dst,src,3))~

The output is:

coverlet

int strncmp(sl,s2,n)
char *sl, *s2;
int n;

Strncmp compares two str ings for at most 'n
characters and returns an integer greater than,
equal to, or less than zero as sl is
lexicographically greater than, equal to or less
than s2 •

char filename [] = "/dev/ttyx";

if(strncmp (fi1ename+5, "tty",3) -- 0)
printf("successO) ;

char *strncpy(dst,src,n)
char *dst, *src;
int n~

Strncpy copies n characters of the string
pointed to by src into the str ing 'pointed to by
dst. Null padding or truncation of src

occurs as necessary. A pointer to dst is
returned.

char buf [MAX];
char date [29] = {"Fri Jun 29 09:35:44 EDT 1979"};
char *day = buf;

strncpy(day,date,3) ;

After executing this code, day
string Fri.

3-46

points to the

XENIX Software Development

3.2.8 Character Classification

isalnum

isalpha

isascii

iscntrl

isdigit

tinclude <ctype.h>
int isalnum(c)
int Ci

This macro determines whether or not the
character c is an alphanumeric character [A­
Za-zO-9]). It returns zero for false and non­
zero for true.

#include <ctype.h>
int isalpha(c)
int c;

This macro determines whether or not the
character c is an alphabetic character [A­
Za-z]). It returns zero for false and non-zero
for true.

#include <ctype.h>
int isascii(c)
int C;

This macro determines whether or not the integer
value supplied is an ASCII character; that is, a
character whose octal value ranges from 000 to
177. It returns zero for false and non-zero for
true.

#include <ctype.h>
int iscntrl(c
int C;

This macro determines whether or not the
character c when mapped to ASCII is a control
character (that is, octal 177 or 000-037). It
returns zero for false and non-zero for true.

#include <ctype.h>
int isdigit(c)
int c;

This macro determines whether or not the
character c is a digit. It returns zero for
false and non-zero for true. (that is, is an

3-47

islower

isprint

ispunct

isspace

isupper

XENIX Software Development

ASCII code between octal 041 and 176 inclusive).

tinclude <ctype.h>
int islower(c)
int Ci

This macro determines whether or
character c is a lower-case letter.
zero for false and non-zero for true.

iinclude <ctype.h>
int isprint(c)
int Ci

not the
It returns

This macro determines whether or not the
character c is a printable character. (This
includes spaces.) It returns zero for false and
non-zero for true.

iinclude <ctype.h>
int ispunct(c)
int Ci

This macro determines whether or not the
character c is a punctuation character (neither
a control character nor an alphanumeric). It
returns zero for false and non-zero for true.

iinclude <ctype.h>
int isspace(c)
int Ci

This macro determines whether or not the
character c is a form of white space (that is,
a blank, horizontal or vertical tab, carriage
return, form-feed or new-line). It returns zero
for false and non-zero for true.

iinclude <ctype.h>
int isupper(c)
int Ci

This macro determines whether or not the
character c is an upper-case letter. It
returns zero for false and non-zero for true.

3-48

XENIX Software Development

3.2.9 Character Translation

toascii

Example:

tolower

Example:

toupper

Example:

#include <ctype.h>
int toascii (c)
int c;

The macro toascii usually does nothing: its
purpose is to map the input character into its
ASCII equivalent.

FILE *oddstrm;

if(!isdigit (toascii(getw(oddstrm»»
fprintf(stderr,"bad dataO);

#include <ctype.h>
int tolower (c)
int c;

If the argument c passed to the function
tolower is an upper-case letter, the lower-case
representation of c is returned, otherwise c
is returned unchanged. For a faster routine, use
tolower, which is implemented as a macro;

however, the argument must already be an upper-
case letter. ----

if(tolower(getchar(» 1= 'y')
exit(O) ;

iinclude <ctype.h>
int toupper (c)
int c;

If the argument c passed to the function
toupper is a lower-case letter, the upper-case
representation of c is returned, otherwise c
is returned unchanged. For a faster routine, use
toupper, however, the argument must already be a

lower-case letter.

3-49

XENIX Software Development

if (toupper (getchar (» ! = 'Y')
exit(O);

3.2.10 Space Allocation

calloc

Example:

free

malloc

Ex~rnple:

char *calloc(n, size)
unsigned n, size:

Calloc allocates enough storage for an array of
n items aligned for any use, ~ach of size

bytes. The space is initialized to zero. Calloc
returns a pointer to the beginning of the
allocated space, or a NULL pointer on failure.

char *t;
int n:
unsigned size:

if(t=calloc«unsigned)n, size) == NULL)
fprintf(stderr,"Out of space.O);

free{ptr)
char *ptr:

Free is used in conjunction with
allocating functions malloc, calloc,
Ptr is a pointer supplied by one

routines. The effect is to free
previously allocated.

char *malloc(size)
unsigned size:

the space
or realloc.

of these
the space

Malloc allocates size bytes of storage
beginning on a word boundary. It returns a
pointer to the beginning of the allocated space,
or a NULL pointer on failure to acquire space.
For space initialized to zero, see calloc.

3-50

realloc

XENIX.Software Development

int n;
char *t;
unsigned size;

if(t=malloc«unsigned)n) -- NULL)
fprintf(stderr,"Out of space.D);

char *realloc (ptr, size)
char *ptr;
unsigned size;

Given ptr which was supplied by a call to
malloc or calloc, and a new byte size, size·,
realloc returns a pointer to the block of space
of size bytes. This function is useful to do
storage compacting along with malloc and free.

3-51

XENIX Software Development

The following pages contain the contents of the three most
important include files: ctype.h, stdio.h, and si9nal.~.
These files are well worth some study, just to see how these
all these definitions help to create a powerful interface to
the internals of the XENIX system.

3.2.10.1

tdefine
#define
'define
'define
#define
#define
#define

extern

#define
#define
#define
#define
#define
#define
tdefine
#define
tdefine
tdefine
#define
#define
#define

ctype.h

U 01
L 02

-N 04 - S 010 - P 020
-C 040
-B 0100

char _ctype_[]i

isalpha(c) « ctype +1) [c]&(ul L»
isupper (c) ((-ctype-+l) [c) & u"> -
islower(c) «-ctype-+l) [c]&-L)
isdigit(c) «-ctype-+l) [c]&-N)
isspace(c) «=ctype=+l) [c]&(_SI_B»
ispunct (c) « ctype +1) [c] & P)
isalnum(c) «-ctype-+l) [c]&(UI LI N»
isprint(c) «=ctype=+l) [c]&(=P =U =LI_NI_B»
iscntrl (c) « ctype +1) [c] & C)
isascii (c) «unsigned) (c) <=(177)
toupper(c) «c)-'a'+'A')

-tolower(c) «c)-'A'+'a')
toascii (c) «c) &0177)

3-52

XENIX Software Development

3.2.10.2 signa1.h

idefine

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
idefine
idefine
idefine
#define
#define

int
#define
#define

NSIG

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM

16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(*signal ()) () ;

/* hangup */
/* interrupt */
/* quit */
/* illegal instruction (not reset when caugh
/* trace trap (not reset when caught) */
/* lOT instruction */
/* EMT instruction */
/* floating point exception */
/* kill (cannot be caught or ignored) */
/* bus error */
/* segmentation violation */
/* bad argument to system call */
/* write on a pipe with no one to read it */
/* alarm clock */
/* software termination signal from kill */

SIG DFL (int (*)())O
SIG-lGN (in t (*) ()) 1

3-53

XENIX Software Development

3.2.10.3 stdio.h

idefine
idefine
i ifndef FILE
extern struct

char
int
char
char
char

} iob[NFILE];
i endif-

idefine
idefine
idefine
#define
idefine
#define
#define
idefine

idefine
idefine
#define

idefine
#define
idefine

BUFSI Z
NFILE

iobuf {
'* ptr;
cnt;

'*_base;
flag;

=fi1e;

I o READ
IOWRT - IONBF - IOMYBUF - IOEOF - IOERR - IOSTRG - IORW

NULL
FILE
EOF

L ctermid
L-cuserid
L_tmpnam

idefine stdin
idefine stdout
#define stderr
idefine getc(p)
idefine getchar()
idefine putc(x,p)

f1sbuf ((unsigned) (x) ,p))
- idefine putchar(x)

· idefine feof(p)
idefine ferror(p)
#define fileno(p)

FILE *fopen() :
FILE *freopen():
FILE *fdopen();
long fte11();
char *fgets();

3-54

512
20

01
02
04

010
020
040

0100
0200

o
struct
(-1)

9
9

19

iobuf

(& iob[O])
(&-iob[l])
(&-iob[2])
(-= (p)-> cnt>=O?
getc(stdIn)
(~-(p)->_cnt>=O?

putc (x, stdout)
«(p)-> f1ag& IOEOF) 1=0)
«(p)->-f1ag&-IOERR) 1=0)
p->_fiI'e -

XENIX Software Development

3.3 THE XENIX ASSEMBLY LANGUAGE INTERFACE

The XENIX system is designed so that there should be little
need to program in assembly language. Occasionally, however,
the need does arise, and you may need to know the
conventions for storing words in memory, for accessing
parameters on the stack in a way compatible with the C
runtime environment. Remember, however, that programming in
assembly language is highly machine dependent, and that you
sacrifice portability whenever you forsake C for whatever
low-level advantages you might gain.

3.3.1 Memory Format

with the 8086, words are stored as followed:

<addr+l>
<addr+O>

<high order byte>
<low order byte>

The words of a long are stored 'backwards' to this
convention, the high order word comes first in memory:

<addr+3>
<addr+2>
<addr+l>
<addr+O>

<high order byte of low order word>
<low order byte of low order word>
<high order byte of high order word>
<low order byte of high order word>

The floating point format is currently Microsoft format, but
will definitely change to an IEEE compatible format in the
future.

Pascal 32-bit integers are stored as follows:

<addr+3> <high order byte of low order word>
<addr+2> <low order byte of low order word>
<addr+l> <high order byte of high order word>
<addr+O> <low order byte of high order word>

3.3.2 Calling Sequence

Arguments are pushed last first, and are in fact evaluated
in that order. In C, the order of evaluation of arguments
is undefined, Arguments are pushed by value, in a choice of
4 sizes: chars, ints, and unsigned ints are pushed in one
l6-bit word. Longs are pushed as two l6-bit words, low order
word first so the order in memory is preserved. Floats and
doubles as four l6-bit words, again order preserving. Note
that chars and floats are extended to the size of int or
double respectively. Structures, which are allocated rounded

3-55

XEN1X Software Development

up to the next even byte size, are pushed so that their
memory order is preserved. This means that the last word is
pushed first.

3.3.3 Procedure Entry and Exit

Th bp, sp, si, and di registers must be restored upon
procedure exit if they have been modified. The following
sequence does this, and is what the compiler uses:

entry:

return:

push
mov
push
push

<body>

jrnp

bp
sp,bp
di
si

cret cret cleans up,
including any modifications
that may have been made to sp.
Ax, bx, cx, and dx
are preserved, as
well as segment registers.
Flags are not preserved.
Cret does a ret instruction,
so there is no need
for the user to do it.

Note that with this mechanism, the first argument (the last
pushed) will be at 4(bp), with subsequent words at 6(bp),
8(bp) and so forth. Where the various arguments are is
based on the size of arguments pushed.

We recommend that this sequence always be used, even if the
registers S1 and D1 will not be modified. Use of this
sequence allows backtracing by ADB in the case of a program
crash.

3.3.4 Return Values

lnt and char return values are left in the ax register.
Long return values are left in ax-dx, high order in dx.
(Note that this corresponds to what the cwl instruction
does, so it should be easy to remember.) Structures are
returned by having ax point to a static area of memory,
which contains the return value; floats are returned the

3-5'6

XENIX Software Development

same way.

3.3.5 System calls

In order to issue system calls, it is necessary for the user
to use the library functions discussed in chapter 3.
Assembly language programmers need to make a proper c­
compatible call to these routines, as shown above.

3-57

CHAPTER 4

OTHER TOOLS

This chapter discusses other tools and languages available
to the software developer. These tools and languages can be
used to complement the basic tools of chapter 4 or they can
in some instances be substituted for them.

The tools described here include a macro processor called
m4, a lexical analyzer named lex, and a compiler of
compilers named YACC. Lex and YACC have been used to create
a number of compilers;-and m4 has been field tested as the
front end to a variety of processors.

The languages discussed in this chapter are the calculating
languages dc and bc. These languages can be used to perform
reasonably--complex mathematical operations with a high
degree of precision. These languages are similar to the
languages understood by hand-held calculators.

4-1

XENIX Software Development

4.1 The M4 Macro Processor

A macro processor is a useful way to enhance a programming
language, to make it more palatable or more readable, or to
tailor it to a particular application. The 'define
statement in C and the analogous define in Ratfor are
examples of the basic facility provided by any macro
processor replacement of text by other text.

M4 is a suitable front end for Ratfor and C, and has also
been used successfully with Copol. Besides the
straightforward replacement of' one string of text by
another, it provides macros with arguments, conditional
macro expansion, arithmetic, file manipulation, and some
specialized string processing functions.

The basic operation of M4 is to copy its input to its
output. As the input is read, however, each alphanumeric
"token' , (that is, str ing of let ters and dig its) is
checked. If it is the name of a macro, then the name of the
macro is replaced by its defining text, and the resulting
string is pushed back onto the input to be rescanned.
Macros may be called with arguments, in which case the
arguments are collected and substituted into the right
places in the defining text before it is rescanned.

M4 provides a collection of about twenty built-in macros
which perform various useful operations; in addition, the
user can define new macros. Built-ins and user-defined
macros work exactly the same way, except that some of the
built-in macros have side effects on the state of the
process.

4.1.1 Usage

To invoke M4, type:

m4 [files]

Each argument file is processed in order. If there are no
arguments, or if an argument is '_I, the standard input is
read at that point. The processed text is written on the
standard output, which may be captured for subsequent
processing with

m4 [files] >outputfile

4-2

XENIX Software Development

4.1.2 Defining Macros

The primary built-in function of M4 is define, which is used
to define new macros. The input

define(name, stuff}

causes the string name to be defined as stuff. All
subsequent occurrences of name will be replaced by stuff.
Name must be alphanumeric and must begin with a letter (the
underscore counts as a letter). stuff is any text that
contains balanced parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100, and uses this "symbolic constant" in
a later If statement.

The left parenthesis must immediately follow the word
define, to signal that define has arguments. If a macro or
built-in name is not followed immediately by '(', it is
assumed to have no arguments. This is the situation for N
above; it is actually a macro with no arguments, and thus
when it is used there need be no (•••) following it.

You should also notice that a macro name is only recognized
as such if it appears surrounded by non-alphanumerics. For
example, in

define (N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined
macro ~, even though it contains a lot of N's.

Things may be defined in terms of other things. For
example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way,
is M defined as N or as 100? In M4, the latter is true

4-3

XEN:r;~ Software Development

~ is 100, so even if ! subsequently changes, ~ does not.

This behavior arises because M4 expands macro names into
their defining text as soon as it possibly can. Here, that
means that when the string N is seen as the arguments of
define are being collected, it is immediately replaced by
100: it's just as if you had said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out
of it. The first, which is specific to this situation, is
to interchange the order of the definitions:

define (M, N)
define(N, 100)

..

Now M is defined to be the string N, so when you ask for M
later, you'll always get the value of N at that time
(because the M will be replaced by !! which will be replaced
by 100).

4.1.3 Quoting

The more general solution is to delay the expansion of the
arguments of define by quoting them. Any text surrounded by
the single quotes < and ' is not expanded immediately, but
has the quotes stripped off. If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is
being collected, but they have served their purpose, and M
is defined as the string N, not 100. The general rule is
that'M4 always strips -off one level of single quot~s
whenever it evaluates something. This is true even outside
of macros. If you want the word define to appear in the
output, you have to quote it in the input, as in

'define' = 1:

As another instance of the same thing, which is a bit more
surprising, consider redefining N:

4-4

XENIX Software Development

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second definition is
evaluated as soon as it's seen; that is, it is replaced by
100, so it's as if you had written

define(lOO, 200)

This statement is ignored by M4, since you can only define
things that look like names, but it obviously doesn't have
the effect you wanted. To really redefine N, you must delay
the evaluation by quoting: -

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first argument of a
macro.

If ' and ' are not convenient for some reason, the quote
characters can be changed with the built-in changequote.
For example:

changequote([,])

makes the new quote characters the left and right brackets.
You can restore the original characters with just

changequote

There are two additional built-ins related to define.
undefine removes the definition of some macro or built-in:

undefine('N')

removes the definition of N. Built-ins can be removed with
undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if
currently defined. For instance, pretend that
word xenix or unix is defined according to a
implementation of a program. To perform
according to which system you have you might say:

4-5

a macro is
either the
particular
operations

XENIX Software Development

ifdef('xenix', 'define(system,l) ,)
ifdef('unix', 'define(system,2) ,)

Don't forget the quotes in the above example.

Ifdef actually permits three arguments: if the name is
undefined, the value of ifdef is then the third argument, as
in

ifdef('xenix', on XENIX, not on XENIX)

4.1.4 Arguments

So far we have discussed the simplest form of macro
processing replacing one string by another (fixed)
string. User-defined macros may also have arguments, so
different invocations can have different results. Within
the replacement text for a macro (the second argument of its
define) any occurrence of $n will be replaced by the nth
argument when the macro is actuilly used. Thus, the ma~ro
bump, defined as

define (bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

x = x + 1

A macro can have as many arguments as you want, but only the
first nine are accessible, through $1 to $9. (The macro
name itself is $0, although that is less commonly used.)
Arguments that -are not ~upplied are replaced by null
strings, so we can define a macro cat which simply
concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat (x, y, z)

is equivalent to

xyz

$! through $2 are null, since no corresponding arguments

4-6

XENIX Software Development

were provided.

Leading unquoted blanks, tabs, or newlines that occur during
argument collection are discarded. All other white space is
retained. Thus:

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are
counted properly, so a comma "protected" by parentheses
does not terminate an argument. That is, in

define (a, (b, c))

there are only two arguments; the second is literally (b,e).
And of course a bare comma or parenthesis can be inserted-by
quoting it.

4.1.5 Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on
integers (only). The simplest is incr, which increments its
numeric argument by 1. Thus, ~ handle the common
programming situation where you want a variable to be
defined as "one more than N", write

define (N, 100)
define (Nl, 'incr (N) ,)

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in
called eval, which is capable of arbitrary arithmetic on

es the operators (in decreasing order of
precedence)

unary + and -

** or '" (exponentia tion)
* / % (modulus)
+
-- != < <= > >=

(not)
& or && (log ical and)
I or II (logical or)

Parentheses may be used to group operations where needed.
All the operands of an expression given to eval must
ultimately be numeric. The numeric value of a true relation

4-7

XENIX Softwa~~ Development

(like 1>0) is 1, and false is O. The precision in eval is
implementation dependent.

As a simple example, suppose we want M to be 2**N+1. Then

define(N, 3)
define(M, 'eva1(2**N+1)')

As a matter of principle, it is advisable to quote the
defining text for a macro unless it is very simple indeed
(say just a number); it usually gives the result you want,
and is a good habit to get into.

4.1.6 File Manipulation

You can include a new file in the input at any time by the
built-in function include:

include(filename)

inserts the contents of filename in place of the include
command. The contents of the file is often a set of
definitions. The value of include (that is, its replacement
text) is the contents of the file; this can be captured in
definitions, etc.

It is a fatal error if the file named in include cannot be
accessed. To get some control over this situation, the
alternate form sinc1ude can be used; sinclude ("silent
include") says nothing and continues if it can't access the
file.

It is also possible to divert the output of M4 to temporary
files during processing, and output the collected material
upon command. M4 maintains nine of these diversions,
numbered 1 through 9. If you say

. divert (n)

all subsequent output is put onto the end of a temporary
file referred to as n. Diverting to this file is stopped by
another divert command; in particular, divert or divert(Q)
resumes the normal output proces~.

Diverted text is normally output all at once at the end of
processing, with the diversions output in numeric order. It
is possible, however, to bring back diversions at any time;
that is, to append them to the current diversion.

4-8

XENIX Software Deyelopment

undivert

brings back all diversions in numeric order, and undivert
with arguments brings back the selected diversions in the
order given. The act of undiverting discards the diverted
stuff, as does diverting into a diversion whose number is
not between 0 and 9 inclusive.

The value of undivert is not the
Furthermore, the diverted material is
macros.

diverted stuff.
not rescanned for

The built-in divnum returns the number of the currently
active diversion. This is zero during normal processing.

4.1.7 System Command

You can run any program in the local operating system with
the syscmd built-in. For example,

syscmd (date)

runs the date command. Normally, syscmd would be used to
create a file for a subsequent include.

To facilitate making unique file names, the built-in
maketemp is provided, with specifications identical to the
system function mktemp: a string of XXXXX in the argument is
replaced by the process id of the current process.

4.1.8 Conditionals

There is a built-in
perform arbitrary
form,

called ifelse which
conditional testing.

ifelse(a, h, c, d)

enables you to
In the simplest

compares the two strings a and b. If these are identical,
ifelse returns the string Ci otherwise it returns d. Thus,
we might define a macro called com~are which compares two
strings and returns "yes" or ' no" if they are the same
or different.

define(compare, 'ifelse($l, $2, yes, no) ')

Note the quotes, which prevent too-early evaluation of
ifelse.

4-9

XENIX Software Development

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus
provides a limited form of multi-way decision capability.
In the input

ifelse(a, b, c, d, e, f, 9)

if the string a matches the string ~,
Otherwise, if- d is the same as e,
Otherwise the result is~. If the
omitted, the result is null, so

ifelse (a, b, c)

is c if a matches £, and null otherwise.

4.1.9 String Manipulation

the
the

final

result is c.
result is f.

argument Is

The built-in len returns the length of the string that makes
up its argument. Thus

len (abcdef)

is 6, and len«~,£» is 5.

The built-in substr can be used to produce substrings of
strings. substr(s, i,~) returns the substring of s that
starts at the ith position (origin zero), and Is n
characters long. -If n is omitted, the rest of the string is
returned, so

substr('now is the time', 1)

is

ow is the time

If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in sl where the
string s2 occurs, or -1 if it doesn't occur. As with
substr, the origin for strings is o.

The built-in translit performs character transliteration.

translit(s, f, t)

modifies s by replacing any character found in f by the
corresponding character of t. That is,

4-10

XENIX Software Development

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is
shorter than f, characters which don't have an entry in t
are deleted; as-a limiting case, if t is not present at all~
characters from f are deleted from s~ So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which deletes all
characters that follow it up to and including the next
newline. It is useful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output. For example,
if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the
definition, so it is copied into the output, where it may
not be wanted. If you add dnl to each of these lines, the
newlines will disappear.

Another way to achieve this, is

divert(-l)
define{ ••.)

divert

4.1.10 Printing

The built-in errprint writes its arguments out on the
standard error filee Thus, you can say

errprint('fatal error'}

Dumpdef is a debugging aid which dumps the current
definitions of defined terms. If there are no arguments,
you get everything; otherwise you get the ones you name as
arguments. Don't forget the quotes.

4-11

XENIX Software Development

4.1.11 Summary of Built-ins

changequote(L, R)
define(name, replacement)
divert(number}
divnum
dnl
dumpdef('name', 'name', •••)
errprint(s, s, •••)
eval(numeric expression)
ifdef('name', this if true, this if false)
ifelse(a, b, c, d)
include(file)
incr (number)
index(sl, s2)
len (string)
maketemp(••• XXXXX •••)
sinclude(file)
substr(string, position, number)
syscmd(s)
trans1it(str, from, to)
undefine('name')
undivert(number,number, •••)

4-12

XENIX Software Development

4.2 Lex

Lex helps write programs whose control flow is directed by
instances of regular expressions in the input stream. It is
well suited for editor-script type transformations and for
segmenting input in preparation for a parsing routine.

Lex source is a table of regular expressions and
corresponding program fragments. The table is translated to
a program which reads an input stream, copying it to an
output stream and partitioning the input into strings which
match the given expressions. As each such string is
recognized the corresponding program fragment is executed.
The recognition of the expressions is performed by a
deterministic finite automaton generated by Lex. The
program fragments written by the user are executed in the
order in which the corresponding regular expressions occur
in the input stream.

The lexical analysis programs written with Lex accept
ambiguous specifications and choose the longest match
possible at each input point. If necessary, substantial
look%ahead is performed on the input, but the input stream
will be backed up to the end of the current partition, so
that the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language
which can be translated automatically to portable Fortran.
Lex is designed to simplify interfacing with Yacc, the XENIX
compiler-compiler.

4.2.1 Introduction

Lex is a program generator designed for lexical processing
of character input streams. It accepts a high-level,
problem oriented specification for character string
matching, and produces a program in a general purpose
language which recognizes regular expressions. The regular
expressions are specified by the user in the source
specifications given to Lex. The Lex written code
recognizes these expressions in an input stream and
partitions the input stream into strings matching the
expressions. At the bound%aries between strings program
sections provided by the user are executed. The Lex source
file associates the regular expressions and the program
fragments. As each expression appears in the input to the
program written by Lex, the corresponding fragment is
executed.

4-13

XENIX Software Development

The user supplies the additional code beyond expression
matching needed to complete his tasks, possibly including
code written by other generators. The program that
recognizes the expressions is generated in the general
purpose programming language employed for the user's program
fragments. Thus, a high level expression language is
provided to write the string expressions to be matched while
the user's freedom to write actions is unimpaired. This
avoids forcing the user who wishes to use a string
manipulation language for input analysis to write processing
programs in the same and often inappropriate string handling
language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added to
different programming languages, called "host languages."
Just as general purpose languages can produce code to run On
different computer hardware, Lex can write code in different
host languages. The host language is used for the output
code generated by Lex and also for the program fragments
added by the user. Compatible run-time libraries for the
different host languages are also provided. This makes Lex
adaptable to different environments and different users.
Each application may be directed to the combination of
hardware and host language appropriate to the task, the
user's background, and the properties of local
implementations. At present, the only supported host
language is C.

Lex turns the user's expressions and actions (called source
in this section) into the host general-purpose language; the
generated program is named yylex. The yylex program will
recognize expressions in a stream (called input here) and
perform the specified actions for each expression as it is
detected.

For a trivial example, consider a program to delete from the
input all blanks or tabs at the ends of lines.

%%
[\t]+$;

is all that is required. Tpe program contains a %%
delimiter to mark the beginning of the rules, and one rule.
This rule contains a regular expression which matches one or
more instances of the characters blank or tab (written \t
for visibility, in accordance with the C language
convention) just prior to the end of a line. The brackets
indicate the character class made of blank and tab; the +
indicates "one or more ••• ' 'i and the $ indicates "end of
line." No action is specified, so the program generated by

4-14

XENIX Software Development

Lex (yylex) will ignore these characters. Everything else
will be copied. To change any remaining string of blanks or
tabs to a single blank, add another rule:

%%
[\t]+$;
[\t]+printf(" ");

The finite automaton generated for this source will scan for
both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level analyzer
to recognize input tokens. Thus, a combination of Lex and
Yacc is often appropriate. When used as a preprocessor for
a later parser generator, Lex is used to partition the input
stream, and the parser generator assigns structure to the
resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs
written by Lex. Yacc users will realize that the name yylex
is what Yacc expects its lexical analyzer to be named, so
that the use of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the
time taken by a Lex program to recognize and partition an
input stream is proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, unless -rules which
include forward context require a significant amount of
re%scanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch. The
automaton interpreter directs the control flow. Opportunity
is provided for the user to insert either declarations or

4-15

XENIX Software Development

additional statements in the routine containing the actions,
or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted on the
basis of one character look%ahead. For example, if there
are two rules, one looking for ab and another for abcdefg,
and the input stream is abcdefh, Lex will recognize ab and
leave the input pointer just before cd. Such backup is
more costly than the processing of simpler languages.

4.2.2 Lex Source

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is
required to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions and the
right column contains actions, program fragments to be
executed when the expressions are recognized. Thus an
individual rule might appear

integerprintf("found keyword INT");

to look for the string integer in the input stream and print
the message found keyword INT" whenever it appears. In
this example the host procedural language is C and the C
library function printf is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression,
it can just be given on the right side of the line; if it is
compound, or takes more than a line, it should be enclosed
in braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to American
spelling. Lex rules such as

4-16

XENIX Software Development

colourprintf("color") ;
mechaniseprintf("mechanize") ;
petrolprintf("gas") :

would be a start. These rules are not quite enough, since
the word petroleum would become gaseum; a way of dealing
with this will be described later.

4.2.3 Lex Regular Expressions

A regular expression specifies a set of strings to be
matched. It contains text characters (that match the
corresponding characters in the strings being compared) and
operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits
are always text characters. Thus, the regular expression:

integer

matches the string integer wherever it appears and the
expression

aS7D

looks for the string a57D.

Operators. The operator characters are

"\[] ""_1.*+ () $/{ }%<>

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indicates
that whatever is contained between a pair of quotes is to be
taken as text characters. Thus

xyz"++"

matches the string ~++ when it appears. Note that a part
of a string may be quoted. It is harmless but unnecessary
to quote an ordinary text character; the expression

"xyz++"

is the same as the one above. Thus by quoting every non­
alphanumeric character being used as a text character, the
user can avoid remembering the list above of current
operator characters, and is safe should further extensions
to Lex lengthen the list.

4-17

XENIX Software Development

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\+\+

which is another, less readable, equivalent of the above
expressions. Another use of the quoting mechanism is to get
a blank into an expression~ normally, as explained above,
blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t is
tab, and \b is backspace. To enter \ itself, use \\. Since
newline is illegal in an expression, \n must be used; it is
not required to escape tab and backspace. Every character
but blank, tab, newline and the list above is always a text
character.

Character classes. Classes of characters can be specified
using the operator pair []. The construction [abc] matches
a single character, which may be a, b, or c. Within square
brackets, most operator meanings are ignored. Only three
characters are special: these are \ - and ~. The - character
indicates ranges. For example,

indicates the character class containing all the lower case
letters, the digits, the angle bratkets, and underline.
Ranges may be given in either order. Using between any
pair of characters which are not both upper case letters,
both lower case letters, or both digits is implementation
dependent and will get a warning message. (E.g., [O-z] in
ASCII is many more characters than it is in EBCDIC). If it
is desired to include the character - in a character class,
it should be first or last~ thus

[-+0-9]

matches all the digits and the two signs.

In character classes, the ~ operator must appear as the
first character after the left bracket; it indicates that
the resulting string is to be complemented with respect to
the computer character set. Thus

matches all characters except a, b, or c, including all
special or control characters; or

4-18

XENIX Software Development

is any character which is not a letter. The \ character
provides the usual escapes within character class brackets.

Arbitrary character. To match almost any character, the
operator character

is the class of all characters except newline.
into octal is possible although non-portable:

[\40-\176]

Escaping

matches all printable characters in the ASCII character set,
from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator? indicates an optional
element of an expression. Thus

ab?c

matches either ac or abc.

Repeated expressions. Repetitions of classes are indicated
by the operators * and +.

a*

is any number of consecutive a characters, including zero;
while

a+

is one or more instances of a. For example,

[a-z]+

is all strings of lower case letters. And

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping.
alternation:

The

4-19

operator indicates

XENIX Software Development

(ablcd)

matches either ab or cd. Note that parentheses are used for
grouping, although they are not necessary on the outside
level;

ablcd

would have sufficed.
complex expressions:

(ablcd+)?(ef)*

Parentheses can be used for more

matches such strings as abefef, efefef, cdef, or cddd; but
not abc, abcd, or abcdef.

Context sensitivity. Lex will recognize a small amount 'of
surrounding context. The two simplest operators for this
are ~ and $. If the first character of an expression is ~,
the expression will only be matched at the beginning of a
line (after a newline character, or at the beginning of the
input stream). This can never conflict with the other
meaning of ~, complementation of character classes, since
that only applies within the [] operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline). The
latter operator is a special case of the /' operator
character, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by start conditions as
explained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition ~,
the rule should be prefixed by

<x>

using the angle bracket operator characters. If we
considered "being at the beginning of a line" to be start
condition ONE, then the ~ operator would be equivalent to

4-20

XENIX Software Development

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators {} specify
either repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In
contrast,

a{I,S}

looks for I to 5 occurrences of a.

Finally, initial % is special, being the separator for Lex
source segments.

4.2.4 Lex Actions

When an expression written as above is matched, Lex executes
the corresponding action. This section describes some
features of Lex which aid in writing actions. Note that
there is a default action, which consists of copying the
input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb
the entire input, without producing any output, must provide
rules to match everything. When Lex is being used with
Yacc, this is the normal situation. One may consider that
actions are what is done instead of copying the input to the
output; thus, in general, a rule which merely copies can be
omitted. Also, a character combination which is omitted
from the rules and which appears as input is likely to be
printed on the output, thus calling attention to the gap in
the rules.

One of the simplest things that can be done is to ignore the
input. Specifying a C . null statement, ; as an action
causes this result. A frequent rule is

\t\n] ;

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

4-21

XENIX Software Development

Another easy way to avoid w~iting actions is the action
character I, which indicates that the action for this rule
is the action for the next rule. The previous example could
also have been written

" "I
"\t"1
"\n";

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to know
the actual text that matched some expression like [a-z]+.
Lex leaves this text in an external character array -named
yytext. Thus, to print the name found, a rule like

[a - z] +p r in t f ("% s ", yy t ext) ;

will print the string in yytext. The C function printf
accepts a format argument and data to be printed; in this
case, the format is print string" (% indicating data
conversion, and s indicating string type), and the data are
the characters in-yytext. So this just places the matched
string on the output. This action is so common that it may
be written as ECHO:

[a-z] +ECHO:

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule~ like this one, which merely specifies the default
action? Such rules are often required to avoid matching
some other rule which is not desired. For example, if there
is a rule which matches read it will normally match the
instances of read contained in-Eread or readjust; to avoid
this, a rule of the form [a-z]+ is needed. This is
explained further below. - -

Sometimes it is more convenient to know the end of what has
been found: hence Lex also provides a count yyleng of the
number of characters matched. To count both the number of
words and the number of characters in words in the input,
the user might write

[a-zA-Z]+{words++: chars += yyleng:}

which accumulates in chars the number of characters in the
words recognized. The last character in the string matched
can be accessed by

4-22

XENIX Software Development

yytext[yyleng-l]

Occasionally, a Lex action may decide that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression recognized
is to be tacked on to the end of this input. Normally, the
next input string would overwrite the current entry in
yytext. Second, yyless (~) may be called to indicate that
not all the characters matched by the currently successful
expression are wanted right now. The argument n indicates
the number of characters in yytext to be retained. Further
characters previously matched are returned to the input.
This provides the same sort of look%ahead offered by the /
operator, but in a different form.

Example: Consider a language which defines a string as a set
of characters between quotation (") marks, and provides that
to include a " in a string it must be preceded by a \. The
regular expression which matches that is somewhat confusing,
so that it might be preferable to write

\"["'"]*{
if (yytext[yyleng-l] -- '\\')

yymore() ;
else

}
••• normal user processing

which will, when faced with a string such as "abc\"def"
first match the five characters "abc\; then the call to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "normal
processing I , •

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of
distinguishing the ambiguity of "=-a". Suppose it is
desired to treat this as "=- a l

I but print a message. A
rule might be

=- [a-zA- Z] {
printf("Operator (=-) ambiguous\n");
yyless{yyleng-l) ;

1 · ·
action for =- ..•

which prints a message, returns the letter after the
operator to the input stream, and treats the operator as
"=-' I Alternatively it might be desired to treat this as

4-23

XENIX Software Development

"= -a". TO do this, just return the minus sign as well
as the letter to the input:

=-[a-zA-Z]{
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2):
j .. action for = •••

will perform the other interpretation. Note that the
expressions for the two cases might more easily be written

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"=-3' " however, makes

=_/[A \t\n]

a still better rule.

In addition to these routines, Lex also permits access to
the I/O routines it uses. They are:

1. input() which returns the next input character;

2. output(£) which writes the character c on the output:
and

3. unput(£) pushes the character £ back onto the input
stream to be read later by input().

By default these routines are provided as macro definitions,
but the user can override them and supply private versions.
These routines define the relationship between external
files and internal characters, and must all be retained or
modified consistently. They may be redefined, to cause
input or output to be transmitted to or from strange places,
including other programs or internal memory; but the
character set used must be consistent in all routines: a
value of zero returned by input must mean end of file: and
the relationship between unput and input must be retained or
the Lex look%ahead will not work. Lex does not look ahead
at all if it does not have to, but every rule ending in + *
? or $ or containing / implies look%ahead. Look%ahead is

4-24

XENIX Software Development

also necessary to match an expression that is a prefix of
another expression. See below for a discussion of the
character set used by Lex. The standard Lex library imposes
a 100 character limit on backup.

Another Lex library routine that the user will sometimes
want to redefine is Yywrap(} which is called whenever Lex
reaches an end-of-file. If yywrap returns a 1, Lex
continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input and
returns O. This instructs Lex to continue processing. The
default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end­
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input(} is
supplied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

4.2.5 Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one
expression can match the current input, Lex chooses as
follows:

$ The longest match is preferred.

~ Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integerkeyword action ••• ;
[a-z]+identifier action •.• ;

to be given in that order. If the input is integers, it is
taken as an identifier, because [a-zJ+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int)
will not match the expression integer and so the identifier
interpretation is used.

The principle of preferring the longest match makes rules
containing expressions like * dangerous. For example,

4-25

XENIX Software Development

, . * ,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of
the form

, [A '\n]* ,

which) on the above inpl:lt, will stop after 'first'. The
consequences of errors like this are mitigated by the fact
that the operator will not match newline. Thus
expressions like.* stop on the current line. Don't try to
defeat this with expressions like [.\n]+ or equivalents; the
Lex generated program will try to read the entire input
file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not
searching for all possible matches of each expression. This
means that each character is accounted for once and only
once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some Lex
rules to do this mig~be

shes++;
heh++;
\nl . . ,

where the last two rules ignore everything besides he and
she. Remember that. does not include newline. Since she
includes he, Lex will normally not recognize the instances
of he included in she, since once it has passed a she those
characters are gone-.--

Sometimes the user would like to override this choice. The
action REJECT means "go do the next alternative." It
causes whatever rule was second choice after the current
rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to
count the included instances of he:

4!""'.26

XENIX Software Development

she{s++; REJECT{}
he {h++; REJECT; 1
\nl . . ,

these rules are one way of changing the previous example to
do just that. After counting each expression, it is
rejected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user could
note that she includes he but not vice versa, and omit the
REJECT action on he; in other cases, however, it would not
be possible a priorr-to tell which input characters were in
both classes.

Consider the two rules

a[bc]+{
a[cd]+{

; REJECT;}
; REJECT;}

If the input is ab, only the first rule matches, and on
only the second matches. The input string accb matches
first rule for four characters and then the second rule
three characters. In contrast, the input accd agrees
the second rule for four characters and then the first
for three.

ad
the
for

with
rule

In general, REJECT is useful whenever the purpose of Lex is
not to partition the input stream but to detect all examples
of some items in the input, and the instances of these items
may overlap or include each other. Suppose a digram table
of the input is desired; normally the dig rams overlap, that
is the word the is considered to contain both th and he.
Assuming a two-dimensional array named digram-- to ~e
incremented, the appropriate source is

%%
[a-z] [a-z] {digram[yytext[O]] [yytext[l]]++; REJECT;} . . ,
\n;

where the REJECT is necessary to
beginning at every character,
character.

4-27

pick up a letter pair
rather than at every other

XENIX Software Development

4.2.6 Lex Source Definitions

Remember the format of the Lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The user needs
additional options, though, to define variables for use in
his program and for use by Lex. These can go either in the
definitions section or in the rules section.

Remember that Lex is turning the rules into a program. Any
source not intercepted by Lex is copied into the generated
program. There are three classes of such things.

1. Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior to the
first %% delimiter will be external to any function in
the code; if it appears immediately after the first
%%, it appears in an appropriate place for
declarations in the function written by Lex which
contains the actions. This material must look like
program fragments, and should precede the first Lex
rule.

As a side effect of the above, lines which begin with
a blank or tab, and which contain a comment, are
passed through to the generated program. This can be
used to include comments in either the Lex source or
the generated code. The comments should follow the
host language convention.

2. Anything included between lines containing only %{ and
%} is copied out as above. The delimiters are
discarded. This format p~rmits entering text like
preprocessor statements that must begin in column 1i
or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of
formats, etc., is copied out after the Lex output.

Definitions intended for Lex are given before the
first %% delimiter •. An¥ line in this section not
contained between %{ and %J, and begining in column 1,
is assumed to define Lex substitution strings. The
format of such linea is

4-28

XENIX Software Oevelopment

name translation

and it causes the string given as a translation to be
associated with the name. The name and translation
must be separated by at least one blank or tab, and
the name must begin with a letter. The translation
can then be called out by the {namel syntax in a rule.
Using {O} for the digits and {E} for an exponent
field, for example, might abbreviate rules to
recognize numbers:

o [0-9]
E [0 Ed e] [-+] ? {O } +
%%

I ~!:r.~ !7~fl '; 11' ~}~~el r") ; o *"."{O}+(E})?
o +{E}printf("real");

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at least one
digit before the decimal point and the second requires
at least one digit after the decimal point. To
correctly handle the problem posed by a Fortran
expression such as 35.EQ.I, which does not contain a
real number, a context-sensitive rule such as

[0 - 9] + / n • II EQp r in t f (" in t eg ern) ;

could be used in addition to the normal rule for
integers.

The definitions section may also contain other
commands, including the selection of a host language,
a character set table, a list of start conditions, or
adjustments to the default size of arrays within Lex
itself for larger source programs. These
possibilities are discussed below under "Summary of
Source Format."

4.2.7 Usage

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a library
of Lex subroutines. The generated program is on a file
named lex.¥¥.~. The I/O library is defined in terms of the
c standard llbrary.

4-29

XENIX Software Development

The library is accessed by the loader flag -lIn. So an
appropriate set of commands is

lex source cc lex.yy.c -lIn
The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.- Although
the default Lex I/O routines use the C standard library, the
Lex automata themselves do not do so. If private versions
of input, output and unput are given, the library can be
avoided.

4.2.8 Lex and Yacc

If you want to use Lex with Yacc, note that what Lex writes
is a program named yylex(), the name required by Yacc for
its analyzer. Normally, the default main program on the Lex
library calls. this routine, but if Yacc is loaded, and its
main program is used, Yacc will call yylex(). In this case,
each Lex rule should end with

return(token) ;

where the appropriate token value is returned. An easy way
to get access to Yacc's names for tokens is to compile the
Lex output file as part of the Yacc output file by placing
the line

i include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar to
be named "good" and the lexical rules to be named
"better" the XENIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -lIn

The Yacc library (-ly) should be loaded before the Lex
library, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

4.2.9 Examples

As a trivial problem, consider copying an input
adding 3 to every positive number divisible by 7.
suitable Lex source program

4-30

file while
Here is a

XENIX Software Development

%%
int k;

[0-9]+{
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

}
printf("%d",k) :

to do just that. The rule [0-9]+ recognizes strings of
digits; atoi converts the digits to binary and stores the
result in~ The operator % (remainder) is used to check
whether k-is divisible by 7; if it is, it is incremented by
3 as it is written out. It may be objected that this
program will alter such input items as 49.63 or X7.
Furthermore, it increments the absolute value of . all
negative numbers divisible by 7. To avoid this, just add a
few more rules after the active one, as hete:

%%
int k:

-?[O-9]+{
k = atoi(yytext);
rrintf("%d", k%7 == 0 ? k+3

-? [0-9.] +ECHO;
[A- Za-z] [A- Za-zO- 9] +ECHO:

k) ;

Numerical strings containing a"." or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space: the form ~?~:£ means "if a then b
else cit.

For an example of statistics gathering, here
which histograms the lengths of words,
defined as a string of letters.

4-31

is a program
where a word is

XENIX Software Oevelopment

int lengs [100] ;
%%
[a-z]+lengs[yyleng]++;
• I
\n;
%%
fywrap ()

int i;
printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (Ie ng s [i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return(l);
}

This program accumulates the histogram, while producing no
output. At the end of the input it prints the table. The
final statement return(l); indicates that Lex is to perform
wrapup. If yywrap returns zero (false) it implies that
further input is available and the program is to continue
reading and processing. To provide a yywrap that never
returns true causes an infinite loop.

As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision Fortran
to single precision Fortran. Because Fortran does not
distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a faA]
b [bB]
c fcC]

z [zZ]

An additional class recognizes white space:

w [\t]*

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

{d}{o}{u}{b}{l}{e}{w}{p}{r}{e}{c}{i}{s}{i}{o}{n} {
1rintf(yYtext[0]=='d'? "real" : "REAL");

Care is taken throughout this program to preserve the case
(upper or lower) of the original program. The conditional
operator is used to select the proper form of the keyword.

4-32

XENIX Software Development

The next rule copies continuation card indications to avoid
confusing them with constants!

"n n[" O]ECHO:

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of" There follow some rules to change double
precision constants to ordinary floating constants.

[0-9]+{W}{d}jWl[+-]?{W}[0-9]+ I
[0-9]+{W}".n W {dj{Wj[+-]?{Wj[0-9]+
"."{W}[0-9]+ W {d {W [+-]?{W [0-9]+

/* convert constants */
for {p=yytext; *p 1= 0; p++)

{ .

if (*p == 'd' II *p -- '0')
*p=+ 'e'- 'd';

ECHO:
}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or o. The
program than adds 'e'-'d', which converts it to the next
letter of the alphabet~ The modified constant, now single­
precision, is written out again. There follow a series of
names which must be respelled to remove their initial d. By
using the array yytext the same action suffices for all the
names (only a sample of a rather long list is given here).

!~ !~!!i!!~!I~!1
{d}{f}{l}{o}{a}{t}printf{"%s",yytext+l) :

Another list of names must have initial d changed to initial
a:

I~! ~!I!!I!!!t
yytext[O] =+ 'a' - 'd':
ECHO:
}

And one routine must have initial d changed to initial r:

4-33

XENIX Software Development

{d}l{m}{a}{c}{h}{yytext[O] =+ 'r' - 'd';
ECHO· } ,

To avoid such names as dsinx being detected as instances of
dsin, some final rules pick up longer words as identifiers
and copy some surviving characters:

[A-Za-z] [A-Za-zO-9] * I
[0-9]+1
\nl
• ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

4.2.10 Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish
preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior
context, and there are several ways of handling such
problems. The ~ operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a
facility similar to that for adjacent right context, but it
is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with different
environments: a simple use of flags, when only' a few rules
change from one environment to another, the use of start
conditions on rules, and the possibility of making multiple
lexical analyzers all run together. In each case, there are
rules which recognize the need to change the environment in
which the following input text is analyzed, and set some
parameter to reflect the change. This may bea flag
explicitly tested by the user's action code; such a flag is
the simplest way of dealing with the problem, since Lex is
not involved at all. It may be more convenient, however, to
have Lex remember the flags as initial conditions on the
rules. Any rule may be associated with a start condition.
It will only be recognized when Lex is in that start
condition. The current start condition may be changed at
any time. Finally, if the sets of rules for the different

4-34

XENIX Software Development

environments are very dissimilar, clarity may be best
achieved by writing several distinct lexical analyzers, and
switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line which
began with the letter ~, changing magic to second on every
line which began with the letter £, and changing magic to
third on every line which began with the letter c. All
other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
Aalflag = 'a'; ECHoe, Ab flag = fbi; ECHO;
AC flag = 'c'; ECHO:
\n flag = 0; ECHO;
magic{

switch (flag)
{
case 'a': printf("first"): break:
case 'b': printf(flsecond tt

): break:
case 'c': printf("third"); break;
default: ECHO; break;

l
should be adequate.

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions
section with a line reading

%Startnamel name2 •••

where the conditions may be named in any order. The word
Start may be abbreviated to s or S. The conditions may be
referenced at the head of a rule with the <> brackets:

<namel>expression

is a rule which is only recognized when Lex is in the start
condition namele To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume the

4-35

XENIX Software Development

normal state,

BEGIN 0;

resets the
interpreter.
conditions:

initial condition
A rule may be

<namel,name2,name3>

of the
active in

Lex automaton
several start

is a legal prefix. Any rule not beginning with the <>
prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
~aIECHO; BEGIN AA;l
:b ECHO; BEG. IN BB;

c ECHO; BEGIN CC·
\n ECHO; BEGIN oil
<AA>magicprintf("first") ;
<BB>magicprintf("second") ;
<CC>magicprintf("third") ;

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work rather
than the user's code.

4.2.11 Character Set

The programs generated by Lex handle character I/O only
through the routines input, output, and unput. Thus the
character representation provided in these routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small
integer which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. Normally, the letter a
is represented as the same form as the character constant
'a'. If this interpretation is changed, by providing I/O
routines which translate the characters, Lex must be told
about it, by giving a translation table. This table must be
in the definitions section, and must be bracketed by lines
containing only "%T". The table contains lines of the
form

{integer} {character string}

which indicate the value associated with each character.

4-36

XENIX Software Development

Thus the next example

%T
lAa
2Bb

26Zz
27\n
28+
29-
300
311

399
%T

Sample character table.
maps the lower and upper case letters together into the
integers 1 through 26, newline into 27, + and - into 28 and
29, and the digits into 30 through 39. Note the escape for
newline. If a table is supplied, every character that is to
appear either in the rules or in any valid input must be
included in the table. No character may be assigned the
number 0, and no character may be assigned a bigger number
than the size of the hardware character set.

4.2.12 Summary of Source Format

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1. Definitions, in the form "name space translation' '.

2. Included code, in the form "space code".

3. Included code, in the form

%{
code
%}

4-37

XENIX Software Development

4. Start conditions, given in the form

%S namel name2 •••

5. Character set tables, in the form

%T
number space character-string

%T

6. Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an array
size and x selects the parameter as follows:

LetterParameter
p positions
n states
e tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form "expression
action" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x The character "x"

x

\x

[xy]

[x-z]

[AX]

AX

<y>x

An

An

The

The

Any

Any

An

An

"x", even if x is an operator.

"x", even if x is an operator.

character x or y.

characters x, y or z.

character but x.

character but newline.

x at the beginning of a line.

x when Lex is in start condition

4-38

y.

XENIX Software Development

x$ An x at the end of a line.

x? An optional x.

x* 0,1,2, instances of x.

x+ 1,2,3, instances of x.

xlY An x or a y.

(x) An x.

x/y An x but only if followed by y.

{xx} The translation of xx from
section.

x{m,n} m through n occurrences of x

4.2.13 Notes

the definitions

There are pathological expressions which produce exponential
growth of the tables when converted to deterministic
machines; fortunately, they are rare.

REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with
trailing context is found, and REJECT executed, the user
must not have used unput to change the characters
forthcoming from the input stream. This is the only
restriction on the user's ability to manipulate the not~
yet-processed input.

4-39

XENIX Software Development

4.3 YACC: Yet Another Compiler-Compiler

Computer program input generally has some structure; every
computer program that does input can be thought of as
defining an "input language" which it accepts. An input
language may be as complex as a programming language, or as
simple as a sequence of numbers. Unfortunately, usual input
facilities are limited, difficult to use, and often lax
about checking their inputs for validity.

Yacc provides a general tool for describing the input to a
computer program. The Yacc user specifies the structures of
his input, together with code to be invoked as each such
structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process;
frequently, it is convenient and appropriate to have most of
the flow of control in the user's application handled by.
this subroutine. .

The input subroutine produced by Yacc calls a user-supplied
routine to return the next basic input item. Thus, the user
can specify his input in terms of individual input
characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also
handle idiomatic features such as comment and continuation
conventions, which typically defy easy grammatical
specification.

Yacc is written in portable C.
accepted is a very general
disambiguating rules.

The class of
one: LALR (1)

specifications
grammars with

In addition to compilers for C, APL, Pascal, RATFOR, etc.,
Yacc has also been used for less conventional languages,
including a phototypesetter language, several desk
calculator languages, a document retrieval system, and a
Fortran debugging system.

Yacc provides a general tool for imposing structure on the
input to a computer program. The Yacc user prepares a
specification of the input process; this includes rules
describing the input structure, code to be invoked when
these rules are recognized, and a low-level routine to do
the basic input. Yacc then generates a function to control
the input process. This function, called a parser, calls
the user-supplied low-level input routine (the lexical
analyzer) to pick up the basic items (called tokens) from
the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of
these rules has been recognized, then user code supplied for
this rule, an action, is invoked; actions have the ability

4-40

XENIX Software Development

to return values and make use of the values of other
actions.

Yacc is written in a portable dialect of C and the actions,
and output subroutine, are in C as well. Moreover, many of
the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of
grammar rules. Each rule describes an allowable structure
and gives it a name. For example, one grammar rule might
be:

date month name day',' year

Here, date, month name, day, and year represent structures
of interest in the input process; presumably, month name,
day, and year are defined elsewhere. The comma "," is
enclosed in single quotes; this implies that the comma is'to
appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule, and have no
significance in controlling the input. Thus, with proper
definitions, the input:

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the
lexical analyzer. This user routine reads the input stream,
recognizing the lower level structures, and communicates
these tokens to the parser. A structure recognized by the
lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is called a nonterminal
symbol. To avoid confusion, terminal symbols will usually
be referred to as tokens.

There is considerable leeway in deciding whether to
recognize structures using the lexical analyzer or grammar
rules. For example, the rules

month name
rronth -name

month name

'J' 'a' 'n'
'F' 'e' 'b'

'D' Ie' 'c'

might be used in the above example. The lexical analyzer
would only need to recognize individual letters, and
month name would be a nonterminal symbol. Such low-level
rules tend to waste time and ,space, and may complicate the

4-41

XENIX Software Development

specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month
names, and return an indication that a month name was seen;
in this case, month name would be a token.

Literal characters such as ",II must also be passed through
the lexical analyzer, and are also considered tokens.

Specification files are very flexible. It is realively easy
to add to the above example the rule

date month 'Ii day 'Ii year

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

. ,

In most cases, this new rule could be "slipped in" to a
working system with minimal effort, and little danger of
disrupting existing input.

The input being read may not conform to the specifications.
These input errors are detected as early as is theoretically
possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be
quickly found. Error handling, provided as part of the
input specifications, permits the reentry of bad data, or
the continuation of the input process after skipping over
the bad data.

In some cases, Yacc fails to produce a parser when given a
set of specifications. For example, the specifications may
be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The
former cases represent design errors; the latter cases can
often be corrected by making the lexical analyzer more
powerful, or by rewriting some of the grammar rules. While
Yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the
constructions which are difficult for Yacc to handle are
also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid
Yacc specifications for their input revealed errors of
conception or design early in the program development.

4-42

XENIX Software Development

The next several sections describe:

~ The preparation of grammar rules

~ The preparation of the user supplied actions associated
with the grammar rules

~ The preparation of lexical analyzers

$ The operation of the parser

~ Various reasons why Yacc may be unable to produce a
parser from a specification, and what to do about it.

$ A simple mechanism for handling operator precedences in
arithmetic expressions.

~ Error detection and recovery.

$ The operating environment and special features of the
parsers Yacc produces.

$ gives some suggestions which should improve the style
and efficiency of the specifications.

4.3.1 Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc
requires token names to be declared as such. In addition,
for reasons discussed later, it is often desirable to
include the lexical analyzer as part of the specification
file. It may be useful to include other programs as well.
Thus, every specification file consists of three sections:
the declarations, (grammar) rules, and programs. The
sections are separated by double percent "%%" marks. (The
percent '%' is generally used in Yacc specifications as an
escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the
programs section is omitted, the second %% mark may be
omitted also; thus, the smallest legal Yacc specification is

4-43

%%
rules

XENIX Software Development

Blanks, tabs, and newlines are ignored except that they may
not appear in names or multi-character reserved symbols.
Comments may appear wherever a name is legal; they are
enclosed in /* ••• */, as in C and PL/I.

The rules section is made up of one or more grammar rules.
A grammar rule has the form:

A BODY;

A represents a nonterminal name, and BODY
sequence of zero or more names and literals.
the semicolon are Yacc punctuation.

represents a
The colon and

Names may be of arbitrary length, and may be made up of
letters, dot ".' " underscore "" and non-initial
digits. Upper and lower case letters- are distinct. The
names used in the body of a grammar rule may represent
tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes
"'" As in C, the backslash "\" is an escape character
within literals, and all the C escapes are recognized. Thus

'\n'newline
'\r'return
'\"single quote "~"~I
'\\'backslash "\"
'\t'tab
'\b'backspace
'\f'form feed
'\xxx"'xxx" in octal

For a number of technical reasons, the NUL character ('\0'
or 0) should never be used in grammar rules.

If there are several grammar rules with the same left hand
side, the vertical bar "I" can be used to avoid rewriting
the left hand side. In addition, the semicolon at the end
of a rule can be dropped before a vertical bar. Thus the
grammar rules

A:B C D
A:E F
A :G

can be given to Yacc as

4-44

A :B

I~
C
F

XENIX Software Development

D

It is not necessary that all grammar rules with the same
left side appear together in the grammar rules section,
although it makes the input much more readable, and easier
to change.

If a nonterminal symbol matches the empty string, this can
be indicated in the obvious way:

empty :

Names representing tokens must be declared; this is most
simply done by writing

%token namel name2.

in the declarations section. (See Sections 3 , 5, and 6 for
much more discussion). Every name not defined in the
declarations section is assumed to represent a nonterminal
symbol. Every nonterminal symbol must appear on the left
side of at least one rule.

Of all the nonterminal symbols, one, called the start
symbol, has particular importance. The parser is designed
to recognize the start symbol; thus, this symbol represents
the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left
hand side of the first grammar rule in the rules section.
It is possible, and in fact desirable, to declare the start
symbol explicitly in the declarations section using the
%start keyword:

%start symbol

The end of the input to the parser is signaled by a special
token, called the endmarker. If the tokens up to, but not
including, the endmarker form a structure which matches the
start symbol, the parser function returns to its caller
after the endmarker is seen; it accepts the input. If the
endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to
return the endmarker when appropriate; see section 3, below.
Usually the endmarker represents some reasonably obvious I/O
status, such as "end-of-file" or "end-of-record".

4-45

XENIX Software Development

4.3.2 Actions

with each grammar rule, the user may associate actions to be
performed each time· the rule is recognized in the input
process. These actions may return values, and may obtain
the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do
input and output, call subprograms, and alter external
vectors and variables. An action is specified by one or
more statements, enclosed in curly braces "{II and "}II.
For example .

and

A :'(' B ')'
{hello (1, "abc"); }

xxx:yyy zzz
{printf("a mes}sage\n") ;
flag = 25;

are grammar rules with actions.

To facilitate easy communication between the actions and the
parser, the action statements are altered slightly. The
symbol "dollar sign" "$" is used as a signal to Yacc in
this cont~xt.

To return a value, the action normally sets the pseudo­
variable "$$" to some value. For example, an action that
does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the
lexical analyzer, the action may use the pseudo-variables
$1, $2, .•• , which refer to the values returned by the
~omponents of the right side of a rule, reading from left to
right. Thus, if the rule is

A:B CD;

for example, then $2 has the value returned by C, and $3 the
value returned by D.

As a more concrete example, conaider the rule

expr: ' (, expr ') , ;

4-46

XENIX Software Development

The value returned by this rule is usually the value of the
expr in parentheses. This can be indicated by

expr: ' (, expr ')' { $$ = $2 }

By default, the value of a rule is the value of the first
element in it ($1). Thus; grammar rules of the form

A :B

frequently need not have an explicit action.

In the examples above, all the actions carne at the end of
their rules. Sometimes, it is desirable to get control
before a rule is fully parsed. Yacc permits an action to be
written in the middle of a rule as well as at the end. This
rule is assumed to return a value, accessible through the
usual mechanism by the actions to the right of it. In turn,
it may access the values returned by th~ symbols to its
left. Thus, in the rule

A :B
{ $$ = 1; }
C
{ x = $2; Y = $3; }

the effect is to set ~ to 1, and ~ to the value returned by
C.

Actions that do not terminate a rule are actually handled by
Yacc by manufacturing a new nonterminal symbol name, and a
new rule matching this name to the empty string. The
interior action is the action triggered off by recognizing
this added rule. Yacc actually treats the above example as
if it had been written:

$ACT:/* empty */
{ $$ = 1; }

A :B
{

$ACT C
x = $2; y= $3; }

In many applications, output is not done directly by the
actions; rather, a data structure, such as a parse tree, is
constructed in memory, and transformations are applied to it
before output is generated. Parse trees are particularly
easy to construct, given routines to build and maintain the
tree structure desired. For example, suppose there is a C

4-47

XENIX Software Development

function node, written so that the call

node (L, nl, n2)

creates a node with label L, and descendants nl and n2, and
returns the index of the newly created node. Then parse
tree can be built by supplying actions such as:

ex~r:expr '+' expr
t $$ = node('+', $1, $3);

\
in the specification.

}

The user may define other variables to be used b~ the
actions. Declarations and definitions can appear 1n the
declarations section, enclosed in the marks "%{'I and
"~ill'. These declarations and definitions have global
scope, so they are known to the action statements and the
lexical analyzer. For example,

int variable = 0;

could be placed in the declarations section, making variable
accessible to all of the actions. The Yacc parser uses only
names beginning in "YY"; the user should avoid such names.

In these examples, all the valu~s are integers: a discussion
of values of other types will be found in Section 10.

4.3.3 Lexical Analysis

The user must supply a lexical analyzer to read the input
stream and communicate tokens (with values, if desired) to
the parser. The lexical analyzer is an integer-valued
function called yylex. The function returns an integer, the
token number, representing the kind of token read. If there
is a value associated with that token, it should be assigned
to the external variable yylval.

The parser and the lexical analyzer must agree on these
token numbers in order for communication between them to
take pla~e. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the "~I define" mechanism of C
is used to allow the lexical' analyzer to return these
numbers symbolically. For example, suppose that the token
name DIGIT has been defined in the declarations section of
the Yacc specification file. The relevant portion of the
lexical ,analyzer might look like:

4-48

XENIX Software Development

yylex(){
extern int yylval:
int c:

c = getchar():

switch(c) {

case '0':
case 'I':

case '9':
yylval = c-'O':
return(DIGIT): .
}

The intent is to return a token number of DIGIT, and a value
equal to the numerical value of the digit. Provided that
the lexical analyzer code is placed in the programs section
of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical
analyzers; the only pitfall is the need to avoid using any
token names in the grammar that are reserved or significant
in C or the parser: for example, the use of token names if
or while will almost certainly cause severe difficulties
when the lexical analyzer is compiled •. The token name errqr
is reserved for error, handling, and should not be used
naively.

As mentioned above, the token numbers may be chosen by Yacc
or by the user. In the default situation, the numbers are
chosen by Yacc. The default token number for a literal
character is the numerical value of the character in the
local character set. Other names are assigned token numbers
starting at 257.

To assign a token number to a token (including literals),
the first appearance of the token name or literal in the
declarations section can be immediately followed bya
nonnegative integer. This integer is taken to be the token
number of the name or literal. Names and literals not
defined by this mechanism retain their default definition.
It is important that all ,token numbers be distinct.

For historical reasons, the endmarker must have token number
o or negative. This token number cannot be redefined by the
user; thus, all lexical analyzers should be prepared to

4-49

XENIX Software Development

return 0 or negative as a token number upon reaching the end
of their input.

A very useful tool for constructing lexical analyzers is the
Lex program developed by Mike Lesk8 These lexical analyzers
are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily
used to produce quite complicated lexical analyzers, but
there remain some languages (such as FORTRAN) which do not
fit any theoretical framework, and whose lexical analyzers
must be crafted by hand.

4.3.4 How the Parser Works

Yacc turns the specification file into a C program, which
parses the input according to the specification given. The
algorithm used to go from the specification to the parser is
complex, and will not be discussed here (see the references
for more information). The parser itself, however, is
relatively simple, and understanding how it works, while not
strictly necessary, will nevertheless make treatment of
error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state
machine with a stack. The parser is also capable of reading
and remembering the next input token (called the lookahead
taken) • The current state is always the one on the top of
the stack. The states of the finite state machine are given
small integer labels; initially, the machine is in state 0,
the stack contains only state 0, and no lookahead token has
been read.

The machi~e has only four actions~vailable to it, called
shift, reduce, accept, and error. A move of the parser is
done as follows:

1. Based on its cQrrent state, the parser decides whether
it needs a lookahead token to decide what action
should be done; if it needs one, and does not have
one, it calls yylex ~,~btain the next token.

2. Using the current state, and the lookahead token if
needed, the parser decides on its next action, and
carries it out. This may result in states being
pushed onto the stack, or popped off of the stack, and
in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a

4-50

XENIX Software Development

lookahead token. For example, in state 56 there may be an
action:

IFshift 34

which says, in state 56, if the lookahead token is IF, the
current state (56) is pushed down on the stack, and state 34
becomes the current state (on the top of the stack). The
look ahead token is cleared.

The reduce action keeps the stack from growing without
bounds. Reduce actions are appropriate when the parser has
seen the right hand side of a grammar rule, and is prepared
to announce that it has seen an instance of the rule,
replacing the right hand side by the left hand side. It may
be necessary to consult the lookahead token to decide
whether to reduce, but usually it is not; in fact, the
default action (represented by a".' ') is often a reduce
action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, leading
to some confusion. The action

refers to grammar rule 18, while the action

IFshift 34

refers to state 34.

Suppose the rule being reduced is

A:x y z

The reduce action depends on the left hand symbol (A in this
case), and the number of symbols on the right hand side
(three in this case). To reduce, first pop off the top
three states from the stack (In general, the number of
states popped equals the number of symbols on the right side
of the rule). In effect, these states were the ones put on
the stack while recognizing x, y, and z, and no longer serve
any useful purpose. After ~opping th~se states, a state is
uncovered which was the state the parser was in before
beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform what is
in effect a shift of A. A new state is obtained, pushed
onto the stack, and parsing continues. There are
significant differences between the processing of the left
hand symbol and an ordinary shift of a token, however, so
this action is called a goto action. In particular, the
lookahead token is cleared by a shift, and is not affected

4-51

XENIX Software Development

by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the
current state.

In effect, the reduce action "turns back the clock" in the
parse, popping the states off the stack to go back to the
state where the right hand side of the rule was first seen.
The parser then behaves as if it had seen the left side at
that time. If the right hand side of the rule is empty, no
states are popped off of the stack: the uncovered state is
in fact the current state.

The reduce action is also important in the treatment of
user-supplied actions and values. When a rule is reduced,
the code supplied with the rule is executed before the stack
is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values
returned from the lexical analyzer and the actions. When a
shift takes place, the external variable yylval is copied
onto the value stack. After the return from the user code,
the reduction is carried out. When the goto action is done,
the external variable ~ is copied onto the value stack.
The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler.
The accept action indicates that the entire input has been
seen and that it matches the specification. This action
appears only when the look ahead token is the endmarker, and
indicates that the parser has successfully done its job.
The error action, on the other hand, represents a place
where the parser can no longer continue parsing according to
the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything
that would result in a legal input. The parser reports an
error, and attempts to recover the situation and resume
parsing: the error recovery (as opposed to the detection of
error) will be in a later section.

It is time for an example! Consider the specification

4-52

XENIX Software Development

%token DING DONG DELL
%%
rhyme:sound place

sound:DING DONG

place:DELL

When Yacc is invoked with the -v option, a file called
y.output is produced, with a human-readable description of
the parser. The y.output file corresponding to the above
grammar (with some statistics stripped off the end) is:

4-53

XENIX Software Development

state 0
$accept _rhyme $end

DING shift 3
error

rhyme
sound

goto 1
goto 2

state 1
$accept rhyme_$end

$end accept
error

state 2
rhyme sound_place

DELL shift 5
error

place

state 3

goto 4

sound DING DONG

DONG shift 6
error

state 4
rhyme sound place_

reduce 1

state 5
place . DELL (3) .

reduce 3

state 6
sound DING DONG

reduce 2

(1)

(2)

Notice that, in addition to the actions for each state,
there is a description of the parsing rules being processed
in each state. The character is used to indicate what has
been seen, and what is yet to corne, in each rule. Suppose
the input is

4-54

XENIX Software Development

DING DONG DELL

It is instructive to follow the steps of the parser while
processing this input.

Initially, the current state is state O. The parser needs
to refer to the input in order to decide between the actions
available in state 0, so the first token, DING, is read,
becoming the lookahead token. The action in state 0 on DING
is is "shift 3' " so state 3 is pushed onto the stack, and
the lookahead token is cleared. State 3 becomes the current
state. The next token, DONG, is read, becoming the
look ahead token. The action-rn-state 3 on the token DONG is
"shift 6' " so state 6 is pushed onto the stack, ana--the
lookahead is cleared. The stack now contains 0, 3, and 6.
In state 6, without even consulting the lookahead, the
parser reduces by rule 2.

sound DING DONG

This rule has two symbols on the right hand side, so two
states, 6 and 3, are popped off of the stack, uncovering
state O. Consulting the description of state 0, looking for
a goto on sound,

soundgoto 2

is obtained; thus state 2 is pushed onto the stack, becoming
the current state.

In state 2, the next token, DELL, must be read. The action
is "shift 5", so state 5-rs-pushed onto the stack, which
now has 0, 2, and 5 on it, and the look ahead token is
cleared. In state 5, the only action is to reduce by rule
3. This has one symbol on the right· hand side, so one
state, 5, is popped off, and state 2 is uncovered. The goto
in state 2 on place, the left side of rule 3, is state 4.
Now, the stack contains 0, 2, and 4. In state 4, the only
action is to reduce by rule 1. There are two symbols on the
right, so the top two states are popped off, uncovering
state 0 again. In state 0, there is a goto on rhyme causing
the parser to enter state 1. In state 1, the input is read;
the endmarker is obtained, indicated by "$end" in the
y.output file. The action in state 1 when the endmarker is
seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as DING DONG DONG,
DING DONG, DING DONG DELL DELL, etc. A few minutes spend
with this and other simple examples will probably be repaid
when problems arise in more complicated contexts.

4-55

XENIX Software Development

4.3.5 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input
string that can be structured in two or more different ways.
For example, the grammar rule

expr:expr '- , expr

is a natural way of expressing the fact that one way of
forming an arithmetic expression is to put two other
expressions together with a minus sign between them.
Unfortunately, this grammar rule does not completely specify
the way that all complex inputs should be structured. For
example, if the input is

expr expr expr

the rule allows this input to be structured as either

expr expr expr

or as

expr expr expr

(The first is called left association, the second right
association) •

Yacc detects such ambiguities when it is attempting to build
the parser. It is instructive to consider the problem that
confronts the parser when it is given an input such as

expr expr expr

When the parser has read the second expr, the input that it
has seen:

expr expr

matches the right side of the grammar rule above. The
parser could reduce the input by applying this rule; after
applying the rule; the input is reduced to expr(the left
side of the rule). The parser would then read the final
part of the input:

expr

and again reduce. The effect of this is to take the left
associative interpretation.

4-56

XENIX Software Development

Alternatively, when the parser has seen

expr expr

it could defer the immediate application of the rule, and
continue reading the input until it had seen

expr expr expr

It could then apply the rule to the rightmost three symbols,
reducing them to expr and leaving

expr expr

Now the rule can be reduced once more; the effect is to take
the right associative interpretation. Thus, having read

expr expr

the parser can do two legal things, a shift or a reduction,
and has no way of deciding between them. This is called a
shift / reduce conflict. It may also happen that the parser
has a choice of two legal reductions; this is called a
reduce / reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc
still produces a parser. It does this by selecting one of
the valid steps wherever it has a choice. A rule describing
which choice to make in a given situation is called a
disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the
shift.

2. In a reduce/reduce conflict, the default is to reduce
by the earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there
is a choice, in favor of shifts. Rule 2 gives the user
rather crude control over the behavior of the parser in this
situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic,
or because the grammar rules, while consistent, require a
more complex parser than Yacc can construct. The use of
actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is

4-57

XENIX Software Development

being recognized. In these cases, the application of
disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, Yacc always reports the
number of shift/reduce and reduce/reduce conflicts resolved
by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating
rules to produce a correct parser, it is also possible to
rewrite the grammar rules so that the same inputs are read
but there are no conflicts. For this reason, most previous
parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is
somewhat unnatural, and produces slower parsers: thus, Yacc
will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider
a fragment from a programming language involving an "if-'
then-else" construction:

stat:IF
IIF

, (, cond •). s ta t
• (' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a
nonterminal symbol describing conditional----(logical)
expressions, and stat is a nonterminal symbol describing
statements. The~rst rule will be called the simple-if
rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input
of the form

IF C1 IF C2 Sl ELSE S2

can be structured according to these rules in two ways:

IF Cl) {
IF
}

(C2) Sl

ELSE S2

or

IF C1) {
IF (C2) Sl
ELSE S2
}

The second interpretation is the one given in most
programming languages having this construct. Each ELSE is
associated with the last preceding "un-ELSE'd" IF. In

4-58

XENIX Software Development

this example, consider the situation where the parser has
seen

IF Cl IF C2 Sl

and is looking at the ELSE. It can immediately reduce by
the simple-if rule to get

IF Cl stat

and then read the remaining input,

ELSE S2

and reduce

IF Cl stat ELSE S2

by the if-else rule. This leads to the fir~t of the above
groupings of the input.

On the other hand, the ELSE may be shifted, 82 read, and
then the right hand portion of

IF Cl IF C2 81 ELSE S2

can be reduced by the if-else rule to get

IF Cl stat

which can be reduced by the simple-if rule. This leads to
the second of the above groupings of the input, which is
usually desired.

Once again the parser can do two valid things - there is a
shift/reduce conflict. The application of disambiguating
rule 1 tells the parser to shift in this case, which leads
to the desired grouping.

This shift/reduce conflict arises only when there is a
particular current input symbol, ELSE, and particular inputs
already seen, such as

IF Cl IF C2 Sl

In general, there may be many conflicts, and each one will
be associated with an input symbol and a set of previously
read inputs. The previously read inputs are characterized
by the state of the parser.

4-59

XENIX Software Development

The conflict messages of Yacc are best understood by
examining the verbose (-v) option output file. For example,
the output corresponding to the above conflict state might
be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

ELSE

IF
IF

cond
cond

shift 45
reduce 18

stat (18)
stat ELSE stat

The first line describes the conflict, giving the state and'
the input symbol. The ordinary state description follows,
giving the grammar rules active in the state, and the parser
actions. Recall that the underline marks the portion of the
grammar rules which has been seen. Thus in the example, in
state 23 the parser has seen input corresponding to

IF cond stat

and the two grammar rules shown are active at this time.
The parser can do two possible things. If the input symbol
is ELSE, it is possible to shift into state 45. State 45
will have, as part of its description, the line

stat IF cond stat ELSE stat

since the ELSE will have been shifted in this state. Back
in state ~the alternative action, described by".' " is
to be done if the input symbol is not mentioned explicitly
in the above actions; thus, in this case, if the input
symbol is not ELSE, the parser reduces by grammar rule 18:

stat IF '(I cond ')' stat

Once again, notice that the numbers following "shift"
commands refer to other states, while the numbers following
"reduce" commands refer to grammar rule numbers. In the
y.output file, the rule numbers are printed after those
rules which can be reduced. In most one states, there, will
be at most reduce action possible in the state, and this
will be the default command. The user who encounters
unexpected shift/reduce conflicts will probably want to look
at the verbose output to decide whether the default actions
are appropriate. In really tough cases, the user might need
to know more about the behavior and construction of the

4-60

XENIX Software Development

parser than can be covered here. In this case, one of the
theoretical references might be consulted; the services of a
local guru might also be appropriate.

4.3.6 Precedence

There is one common situation where the rules given above
for resolving conflicts are not sufficient; this is in the
parsing of arithmetic expressions. Most of the commonly
used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for
operators, together with information about left or right
associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create
parsers that are faster and easier to write than parsers
constructed from unambiguous grammars. The basic notion is
to write grammar rules of the form

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators desired. This creates a
very ambiguous grammar, with many parsing conflicts. As
disambiguating rules, the user specifies the precedence, or
binding strength, of all the operators, and the
associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in
accordance with these rules, and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens
in the declarations section. This is done by a series of
lines beginning with a Yacc keyword: %left, %right, or
%nonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of
increasing precedence or binding strength. Thus,

%left '+' '-'
%left '*' 'I'

describes the precedence and associativity of the four
arithmetic operators. Plus and minus are left associative,
and have lower precedence than star and slash, which are
also left associative. The keyword %right is used to
describe right associative operators, and the keyword
%nonassoc is used to describe operators, like the operator

4-61

XENIX Software Development

.LT. in Fortran, that may not associate with themselves:
thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be
described with the keyword %nonassoc in Yacc. As an example
of the behavior of these declarations, the description

%right '='
%left '+' I_I
%left '*' II'

%%

expr:expr '= ' expr
expr '+ ' expr
expr '- , expr
expr ' * , expr
expr '/ ' expr
NAME

might be used to structure the input

a = b = c*d e f*g

as follows:

a = (b = («c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in
general, be given a precedence. Sometimes a unary operator
and a binary operator have the same symbolic representation,
but different precedences. An example is unary and binary
'-'i unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a
lower strength than multiplication. The keyword, %prec,
changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of
the grammar rule, before the action or closing semicolon,
and is followed by a token name or literal. It causes the
precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary
minus have the same precedence as multiplication the rules
might resemble:

4-62

XENIX Software Development

%left '+' . - ,
%left ' * • , /'

%%

expr:expr • +' expr
expr '- , expr
expr ' * • expr
expr . / . expr
'- , expr %prec • *'
NAME

A token declared by %left, %right, and %nonassoc need not
be, but may be, declared by %token as well.

The precedences and associativities are used by Yacc to
resolve parsing conflicts; they give rise to disambiguating
rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for
those tokens and literals that have them.

2. A precedence and associativity is associated with each
grammar rule; it is the precedence and associativity
of the last token or literal in the body of the rule.
If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence
and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a
shift/reduce conflict and either the input symbol or
the grammar rule has no precedence and associativity,
then the two disambiguating rules given at the
beginning~of the section are used, and the conflicts
are reported.

4. If there is a shift/reduce conflict, and both the
grammar rule and the input character have precedence
and associativity associated with them, then the
conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is
used; left associative implies reduce, right
associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the
number of shift/reduce and reduce/reduce conflicts reported
by Yacc. This means that mistakes in the specification of
precedences may disguise errors in the input grammar; it is

4-63

XENIX Software Development

a good idea to be sparing with precedences, and use them in
an essentially "cookbook" fashion, until some experience
has been gained. The y.output file is very useful in
deciding whether the parser is actually doing what was
intended.

4.3.7 Error Handling

Error handling is an extremely difficult area, and many of
the problems are semantic ones. When an error is found, for
example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and, typically, set
switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error
is found. It is more useful to continue scanning the input
to find further syntax errors. This leads to the problem of
getting the parser "restarted" after an error. A general
class of algorithms to perform this involves discarding a
number of tokens from the input string, and attempting to
adjust the parser so that input can continue.

To allow the user some control over this process, Yacc
provides a simple, but reasonably general feature. The
token name "error" is reserved for error handling. This
name can be used in grammar rules; in effect, it suggests
places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state
where the token "error" is legal. It then behaves as if
the token "error" were the current lookahead token, and
performs the action encountered. The lookahead token is
then reset to the token that caused the error. If no
special error rules have been specified, the processing
halts when an error is detected. '

In order to prevent a cascade of error messages, the parser,
after detecting an error, remains in error state until three
tokens have been successfully read and shifted. If an error
is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat:error

would, in effect, mean that on a syntax error the parser
would attempt to skip over the statement in which the error
was seen. More precisely, the parser will scan ahead,
looking for three tokens that might legally follow a
statement, and start processing at the first of these; if

4-64

XENIX Software Development

the beginnings of statements are not sufficiently
distinctive, it may make a false start in the middle of a
statement, and end up reporting a second error where there
is in fact no error.

Actions may be used with these special error rules. These
actions might attempt to reinitialize tables, reclaim symbol
table space, etc.

Error rules such as
difficult to control.

stat:error , . , ,

the above are very general,
Somewhat easier are rules such as

but

Here, when there is an error, the parser attempts to skip
over the statement, but will do so by skipping to the next
I:'. All tokens after the error and before the next ':'
cannot be shifted, and are discarded. When the ':' is seen,
this rule wiil be reduced, !hd any "cleanup" action
associated with it performed.

Another form of error rule arises in interactive
applications, where it may be desirable to permit a line to
be reentered after an error. A possible error rule might be

in~ut:error '\n'
t$$ = $4: }

{ printf("Reenter last line: "); } input

There is one potential difficulty with this approach: the
parser must correctly process three input tokens before it
admits that it has correctly resynchronized after the error.
If the reentered line contains an error in the first two
tokens, the parser deletes the offending tokens, and gives
no message; this is clearly unacceptable. For this reason,
there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The
statement

yyerrok :

in an action resets the parser to its normal mode. The last
example is better written

in~ut:error '\n'
tyyerrok:
printf("Reenter last line: "); }
input
{$$ = $4; }

4-65

XENIX Software Development

As mentioned above, the token seen immediately after the
"error" symbol is the input token at which the error was
discovered. Sometimes, this is inappropriate; for example,
an error recovery action might take upon itself the job of
finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose
the action after error were to call some sophisticated
resynchronization routine, supplied by the user, that
attempted to advance the input to the beginning of the next
valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token
in a legal statement; the old, illegal token must be
discarded, and the error state reset. This could be done by .
a rule like

stat:error
{ resynch () ;
yyerrok ;
yyclear in; }

These mechanisms are admittedly crude, but do allow for a
simple, fairly effective recovery of the parser from many
errors. Moreover, the user can get control to deal with the
error actions required by other portions of the program.

4.3.8 The Yacc Environment

When the user inputs a specification to Yacc, the output is
a file of C programs, called y.tab.£ on most systems (due to
local file system conventions, the names may differ from
installation to installation). The function produced by
Yacc is called yyparse; it is an integer valued function.
When it is called, it in turn repeatedly calls yylex, the
lexical analyzer supplied by the user (see Section 3) to
obtain input tokens. Eventually, either an error is
detected, in which case (if no error recovery is possible)
yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case,
yyparse returns the value O.

The user must provide a certain amount of environment for
this parser in order to obtain a working program. For
example, as with every C program, a program called main must
be defined, that eventually calls yyparse. In addition, a
routine called yyerror prints a message when a syntax error

4-66

XENIX Software Development

is detected.

These two routines must be supplied in one form or another
by the user. To ease the initial effort of using Yacc, a
library has been provided with default versions of main and
yyerror. The name of this library is system dependent; on
many systems the library is accessed by a -ly argument to
the loader. To show the triviality of these default
programs, the source is given below:

and

main() {
retu rn (yypar se ());
}

include <stdio.h>

yyerror(s) char *s; {
fpr intf (stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error
message, usually the string "syntax error". The average
application will want to do better than this. Ordinarily,
the program should keep track of the input line number, and
print it along with the message when a syntax error is
detected. The external integer variable yychar contains the
lookahead token number at the time the error was detected;
this may be of some interest in giving better diagnostics.
Since the main program is probably supplied by the user (to
read arguments, etc.) the Yacc library is useful only in
small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O.
If it is set to a nonzero value, the parser will output a
verbose description of its actions, including a discussion
of which input symbols have been read, and what the parser
actions are. Depending on the operating environment, it may
be possible to set this variable by using a debugging
system.

4.3.9 Hints for Preparing Specifications

This section contains miscellaneous hints on preparing
efficient, easy to change, and clear specifications. The
individual subsections are more or less independent.

4-67

XENIX Software Development

Input Style
substantial
file. The
Kernighan.

It is difficult to provide rules with
actions and still have a readable specification
following style hints owe much to Brian

a. Use all capital letters for token names, all lower
case letters for nonterminal names. This rule comes
under the heading of "knowing who to blame when
things go wrong."

b. Put grammar rules and actions on separate lines. This
allows either to be changed without an automatic need
to change the other.

c. Put all rules with the same left hand side together.
Put the left hand side in only once, and let all
following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given
left hand side, and put the semicolon on a separate
line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies
by three tab stops.

The examples in the text of this section follow this style
(where space permits). The user must make up his own mind
about these stylistic questions: the central problem,
however, is to make the rules visible through the morass of
action code.

Left Recursion The algorithm used by the Yacc parser
encourages so called "left recursive" grammar rules: rules
of the form

name:name rest of rule

These rules frequently arise when writing specifications of
sequences and lists:

and

list:item
Ilist

, , ,

seq:item
Iseq item

item

4-68

XENIX Software Development

In each of these cases, the first rule will be reduced for
the first item only, and the second rule will be reduced for
the second and all succeeding items.

With right recursive rules, such as

the

seq:item
litem seq

parser would be
seen, and reduced,
internal stack in
overflowing if a
user should use left

a bit bigger, and the items would
from right to left. More seriously,
the parser would be in danger

very long sequence were read. Thus,
recursion wherever reasonable.

be
an
of

the

It is worth considering whether a sequence with zero
elements has any meaning, and if so, consider writing the
sequence specification with an empty rule:

sec;I:/* empty */
Iseq item

Once again, the first rule would always be reduced exactly
once, before the first item was read, and then the second
rule would be reduced once for each item read. Permitting
empty sequences often leads to increased generality.
However, conflicts might arise if Yacc is asked to decide
which empty sequence it has seen, when it hasn't seen enough
to know!

Lexical Tie-ins Some lexical decisions depend on context.
For example, the lexical analyzer might want to delete
blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but
not in expressions.

One way of handling this situation is to create a global
flag that is examined by the lexical analyzer, and set by
actions. For example, suppose a program consists of 0 or
more declarations, followed by 0 or more statements.
Consider:

4-69

XENIX Software Development

%{
int dflag;

%}
other declarations •••

%%

prog:decls stats

decls:/* empty */
{dflag = 1; }
Idecls declaration

stats:/* empty */
{dflag = 0; }
fstats statement

other rules •••

The flag dflag is now 0 when reading statements, and 1 when
reading declarations, exceptforthefirsttokenin This token
must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun.
In many cases, this single token exception does not affect
the lexical scan.

This kind of "backdoor" approach can be elaborated to a
noxious degree. Nevertheless, it represents a way of doing
some things that are difficult, if not impossible, to do
otherwise.

Reserved Words Some programming languages permit the user
to use words like "if", which are normally reserved, as
label or variable names, provided that such use does not
conflict with the legal use of these names in the
programming language. This is extremely hard to do in the
framework of Yacc; it is difficult to pass information to
the lexical analyzer telling it ~'this instance of 'if' is a
keyword, and that instance is a variable". The user can
make a stab at it, using the mechanism described in the last
subsection, but it is difficult.

A number of ways of making this easier are under advisement.
Until then, it is better that the keywords be reserved; that
is, be forbidden for use as variable names. There are
powerful stylistic reasons for preferring this, anyway.

4-70

XENIX Software Development

4.3.10 Advanced Topics

This section discusses a number of advanced features of
Yacc.

Simulating Error and Accept in Actions The parsing actions
of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to
return the value 0; YYERROR causes the parser to behave as
if the current input symbol had been a syntax error; yyerror
is called, and error recovery takes place. These mechanisms
can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

Accessing Values in Enclosing Rules. An action may refer to
values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a
dollar sign followed by a digit, but in this case the digit
may be 0 or negative. Consider

sent:adj noun verb adj
{ look at the sentence
;

adj:THE{$$ = THE; }
IYOUNG{$$ = YOUNG; }

noun:DOG
{$$ = DOG; }
JCRONE
{if($0 == YOUNG) {
yrintf("what?\n");

}$ = CRONE;

noun
}

In the action following the word CRONE, a check is made that
the preceding token shifted was not YOUNG. Obviously, this
is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at
times this mechanism will save a great deal of trouble,
especially when a few combinations are to be excluded from
an otherwise regular structure.

4-71

XENIX Software Development

Support for Arbitrary Value Types By default, the values
returned by actions and the lexical analyzer are integers.
Yacc can also support values of other types, including
structures. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting
parser will be strictly type checked. The Yacc value stack
(see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and
associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through
a $$ or $n construction, Yacc will automatically insert the
appropriate union name, so that no unwanted conversions will
take place. In addition, type checking commands such as
LintS will be far more silent.

There are three mechanisms used to provide for this typing.
First, there is a way of defining the union; this must be
done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second,
there is a way of associating a union member name with
tokens and nonterminals. Finally, there is a mechanism for
describing the type of those few values where Yacc can not
easily determine the type.

To declare the union, the user includes in the declaration
section:

%union {
body of union
}

This declares the Yacc value stack, and the external
variables yylval and yyval, to have type equal to this
union. If Yacc was invoked with the -d option, the union
declaration is copied onto the y.tab.Q file. Alternatively,
the union may be declared in a neaaer file, and a typedef
used to define the variable YYSTYPE to represent this union.
Thus, the header file might also have said:

typedef union {
body of union
} YYSTYPEj

The header file must be included in the declarations
section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names.
The construction

4-72

XENIX Software Development

< name >

is used to indicate a union member name. If this follows
one of the keywords %token, %left, %right, and %nonassoc,
the union member name is associated with the tokens listed.
Thus, saying

%left <optype> '+' I_I

will cause any reference to values returned by these two
tokens to be tagged with the union member name optyee.
Another keyword, %type, is used similarly to associate unlon
member names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the
value returned by this action has no ~ priori type.
Similarly, reference to left context values (such as $0 -
see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on
the reference by inserting a union member name, between <
and >, immediately after the first $. An example of this
usage is

rule:aaa { $<intval>$ = 3; } bbb
{fun($<intval>2, $<other>O); }

This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in a later section. The
facilities in this subsection are not triggered until they
are used: in particular, the use of %type will turn on these
mechanisms. When they are used, there is a fairly strict
level of checking. For example, use of $n or $$ to refer to
something with no defined type is diagnosed. If these
facilities are not triggered, the Yacc value stack is used
to hold intis, as was true historically.

4-73

XENIX Software Development

4.3.11 A Simple Example

This example gives the complete Yacc specification for a
small desk calculator: the desk calculator has 26 registers,
labeled "a" through "~zit, and accepts arithmetic
expressions made up of the operators +, -, *, I, % (mod
operator), & (bitwise and), I (bitwise or), and assignment.
If an expression at the top level is an assignment, the
value is not printed: otherwise it is. As in C, an integer
that begins with a (zero) is assumed to be octal: otherwise,
it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator
does a reasonable job of showing how precedences and
ambiguities are used, and demonstrating simple error
recovery. The major oversimplifications are that th~
lexical analysis phase is much simpler than for most
applications, and the output is produced immediately, line
by line. Note the way that decimal and octal integers are
read in by the grammar rules: This job is probably better
done by the lexical analyzer.

%{
t include
i include

<stdio.h>
<ctype. h>

int regs r26] :
int base;

%start list

%token DIGIT LETTER

%left
%left
%left
%left
%left

, I '
• & '

'+' '-'
'*' 'I'
UMINUS

, % '

1* precedence for unary minus

%% 1* beginning of rules section *1

list

;

stat

1* empty *1
list stat '\n'
list error '\n'

{ yyerrok;}

expr

4-74

*1

expr

number

. ,

XENIX Software Development

{ printf("%d\n", $1); }
LETTER I = I expr

{ regs [$1] = $3; }

I (I expr I) I

{ $$ = $2; }
expr • + I expr

{ $$ = $1 + $3; }
expr • - I expr

{ $$ = $1 $3; }
expr · *. expr

{ $$ = $1 * $3; }
expr • II expr

{ $$ = $1 I $3; }
expr • % I expr

{ $$ = $1 % $3; }
expr • & • expr

{ $$ = $1 & $3; }
expr I I • expr

} { $$ = $1 I $3; . - , expr %prec UMlNUS
{ $$ = $2; }

LETTER
{ $$ = regs[$1]; }

number

DIGIT
{ $$ = $1; base = ($1==0) ? 8

number DIGIT
{$$ = base * $1 + $2; }

%% 1* start of programs *1

yy1ex () { 1* lexical analysis routine *1
1* returns LETTER for a lower

1*

1*

1*

int c;

yylval = 0 through 25 *1
1* return DIGIT for a dig it,
yylval = 0 through 9 *1

1* all other characters *1
are returned immediately *1

10; }

case letter,

*1

while((c=getchar ()) • • {/* skip blanks *1

1* c is now nonblank *1

if (islower (c {

4-75

*1

}

XENIX Software Development

yylval = c 'a'1
return LETTER) 1
}

if(isdigit(c {
yylval = c '0'1
return(DIGIT)1
}

return(c)1
}

4-76

XENIX Software Development

4.3.12 Yacc Input Syntax

This section has a description of the Yacc input syntax, as
a Yacc specification. Context dependencies, etc., are not
considered. Ironically, the Yacc input specification
language is most naturally specified as an LR(2) grammar;
the sticky part comes when an identifier is seen in a rule,
immediately following an action. If this identifier is
followed by a colon, it is the start of the next rule;
otherwise it is a continuation of the current rule, which
just happens to have an action embedded in it. As
implemented, the lexical analyzer looks ahead after seeing
an identifier, and decide whether the next token (skipping
blanks, newlines, comments, etc.) is a colon. If so, it
returns the token C IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS, but never as part of C IDENTIFIERs.

/* grammar for the input to Yacc */

/ /
%token
%token
%token

basic entities
IDENTIFIER /*
C IDENTIFIER
NUMBER

includes identifiers and literals */

%token

%token
%token
%token

%start

%%

spec

tail

defs

/* identifier followed by colon
/* [0-9]+ */

/* reserved words: %type => TYPE, %left => LEFT, etc.

/*

LEFT RIGHT NONASSOC TOKEN PREC TYPE START

MARK /* the %% mark */
LCURL /* the :1 mark */
RCURL /* the mark */

ascii character literals stand for themselves

spec

defs MARK rules tail

MARK { Eat ~ the
/* empty: ~e second

/* empty */
defs def

4-77

rest
MARK

of
is

the file
optional */

UNION

*/

}

*

def

rword

tag

nlist

nmno

.
I

XENIX Software Development

START
UNION
LCURL
ndefs

IDENTIFIER
{ ~ union definition to output }
{ ~ £. code to output file } RCURL
rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
'<I IDENTIFIER '>'

nmno
nlist
nlist

nmno , , , nmno

IDENTIFIER /* Literal illegal with %type */
IDENTIFIER NUMBER /* Illegal with %type */

/* rules section */

rules :
I

rule . .
I

rbody

act

prec

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec

'T' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

' { , { ~ action, translate

/* empty */
PREC IDENTIFIER
PREe IDENTIFIER act
prec ' . ,

I

4-78

$$, etc. } , } ,

XENIX Software Development

4.3.13 An Advanced Example

This section gives an example of a grammar using some of the
advanced features discussed in earlier sections. The desk
calculator example is modified to provide a desk calculator
that does floating point interval arithmetic. The
calculator understands floating point constants, the
arithmetic operations +, ,*, /, unary , and =
(assignment), and has 26 floating point variables, "a"
through "z". Moreover, it also understands intervals,
written

(x , y)

where x is less than or equal to~. There are 26 interval
valued variables "A" through "z" that may also be used.
Assignments return no value, and print nothing, while
expressions print the (floating or interval) value.

This example explores ~ number of interesting features of
Yacc and C. Intervals are represented by a structure,
consisting of the left and right endpoint values, stored as
double's. This structure is given a type name, INTERVAL, by
using typedef. The Yacc value stack can also contain
floating point scalars, and integers (used to index into the
arrays holding the variable values). Notice that this
entire strategy depends strongly on being able to assign
structures and unions in C. In fact, many of the actions
call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions: division by an interval containing 0, and an
interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throwaway the rest of
the offending line.

In addition to the mixing of types on the value stack, this
grammar also demonstrates an interesting use of syntax to
keep track of the type (e.g. scalar or interval) of
intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands
an interval value. This causes a large number of conflicts
when the grammar is run through Yacc: 18 Shift/Reduce and 26
Reduce/Reduce. The problem can be seen by looking at the
two input lines:

2.5 + (3.5 - 4.)

and

4-79

XENIX Software Development

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be; used in an interval valued
expression in the second exa~ple, but this fact is not known
until the ",I I is read~ by this time, 2.5 is finished, and
the parser cannot go back and change its mind. More
generally, it might be necesSary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an
interval. This problem is evaded by having two rules for
each binary interval valued operator: one when the left
operand is a scalar, and one when the left operand is an
interval. In the second case, the right operand must be an
interval, so the conversion will be applied automatically.
Despite this evasion, there are still many cases where the
conversion may be applied or not, leading to the above
conflicts. They are resolved by listing the rules that
yield scalars first in the specification file~ in this way,'
the conflicts will be resolved in the direction of keeping
scalar valued expressions scalar valued until they are
forced to become intervals.

This way of handling multiple types is very instructive, but
not very general. If there were many kinds of expression
types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more
dramatically. Thus, while this example is instructive, it
is better practice in a more normal programming language
environment to keep the type information as part of the
value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only
unusual feature is the treatment of floating point
constants. The C library routine atof is used to do the
actual conversion from a character string to a double
precision value. If the lexical analyzer detects an error,
it responds by returning a token that is illegal in the
grammar, provoking a syntax error in the parser, and thence
error recovery.

4-80

XENIX Software Development

include
include

<stdio.h>
<ctype.h>

typedef struct interval {
double 10, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%start lines

%union {
int ivaI;
double dval;
INTERVAL vval;
}

%token <ivaI> DREG VREG/* indices into dreg, vreg arrays */

%token <dval> CONST/* floating point constant */

%type <dval> dexp/* expression */

%type <vval> vexp/* interval expression */

/* precedence information about the operators */

%left'+' '- ,
%left'*' , /'
%leftUMlNUS /* precedence for unary minus */

%%

lines:/* empty */
Ilines line

line:dexp '\n'
(prlntf("%15.8f\n", $1) ; }
vexp '\n'

} printf("(%15.8f , %15.8f)\n", $1.10, $l.hi) ;

4-81

XENIX Software Development

I
DREG 1=' dexp
dreg [$1] = $ 3 ;
VREG 1=' vexp
vreg[$l] = $3;

lerror I\nl
{yyerrok; } . ,

dexp:CONST

JDREG
$$ = dreg[$l];

I + I dexp

I\nl
}

I\nl
}

}
ldexp

$$ = $1 + $3; }
\dexp '- , dexp

$$ = $1 $3; }
dexp , *' dexp
$$ = $1 * $3; }
dexp 'I' dexp

} $$ = $1 I $3;
'- , dexp%prec UMlNUS

= - $2; } $$ r (' dexp , ~ I
$$ = $2:

vexp:dexp
{$$.hi = $$.10 = $1; } I' (' dexp I, , dexp ') I

$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi){
printf("interval out of
YYERRORi

I
JVREG
{ $ $ = v r eg [$1] ;
lvexp 1+' vexp
{$$.hi = $l.hi
$$.10 = $1.10
ldexp 1+' vexp
{$$.hi = $1 +
$$.10 = $1 +
lvexp '_I vexp
{$$.hi = $l.hi
$$.10 = $1.10

+
+

}

$3.hi;
$3.10:

$3.hi;
$3.10;

$3.10;
$3.hi;

}

\
dexp '-' vexp
$$.hi = $1 $3.10;

$$.10 = $1 $3.hi;-}
Ivexp '*' vexp

order\n"

}

}

4-82

) ;

%%

XENIX Software Development

{$$ = vmul($1.10, $l.hi, $3); }
ldexp '*' vexp
{$$ = vmul($1, $1, $3); }
lvexp 'I' vexp
fife dcheck($3)) YYERROR:
$$ = vdiv($1.10, $1.hi, $3): }
ldexp 'I' vexp
fife dcheck($3) } YYERROR·
$$ = vdiv($1, $1, $3 }; 1
l'-' vexp%prec UMlNUS
{$$.hi = -$2.10; $$.10 = -$2.hi;
l ' (' vexp , l '
{$$ = $2; }

}

t define BSZ 50 1* buffer size for fp numbers *1

1* lexical analysis *1

yylex(){
register c:

while((c=getchar ()) , ,){ 1* skip over blanks *1 }

if(isupper(c) {
yylval.ival = c 'A' :
return(VREG } :
}
if(islower(c) {
yylval.ival = c , a ' ;
return(DREG) :
}

if(isdigit(c " c--, ,) { -- .
1* gobble up digits, points, exponents *1

char buf[BSZ+l] , *cp = buf;
int dot = 0, exp = 0:

for ((cp-buf) <BSZ : ++cp,c=getchar()) {

*cp = C;
if(isdigit (c) continue;
if(c -- , ,) { .
if(dot++ II exp return(, ,) ; 1* will cause syntax
continue;
}

if(c -- 'e ') {

4-83

XENIX Software Development

if(exp++
continue;

return(Ie'); /* will cause syntax error */

}

/* end of number
break;
}

*/

*cp = '\0';
if((cp-buf)
else ungetc(
yylval.dval =
return(CONST
}
return(c);
}

>= BSZ printf(
c, stdin) i /*
atof (buf) i
) i

"constant too long:
push back last char

INTERVAL hila (a, b, c, d double a, b, c, di {

truncated\n"
read */

/* returns the smallest interval containing a, b, c, and d */
/* used by
INTERVAL Vi

if(a>b) {
else { v.hi

if(c>d {
if(c>v.hi)

if(d<v.lo)
}

{ else
if(d>v.hi
if(c<v.lo
}
return(v) i
}

INTERVAL
return(
}

vmul(
hilo (

* , / routines */

v.hi =
= bi

v.hi =
v.lo =

v.hi =
v.lo =

a, b, v
a*v.hi,

ai v.lo = bi }
v.lo = a; }

Ci
di

d;
Ci

double a, bi INTERVAL
a * v • la, b * v • hi , b * v • lo) i

dcheck(v INTERVAL Vi {
if(v.hi >= o. && v.lo <= O.){
printf("divisor interval contains O.\n"
return(I) i
}
return(
}

INTERVAL
return(
}

o) i

vdiv(
hilo (

a, b, v
a/v. hi,

) i

double a, bi INTERVAL
a/v.lo, b/v.hi, b/v.lo);

4-84

Vi {

Vi {

XENIX Software Development

4.3.14 Old Features Supported but not Encouraged

This section mentions synonyms and features which are
supported for historical continuity, but, for various ~
reasons, are not encouraged.

1. Literals may also be delimited by double quotes "~nil.

2. Literals may be more than one character long. If all
the characters are alphabetic, numeric, or , the type
number of the literal is defined, just as if the
literal did not have the quotes around it. Otherwise,
it is difficult to find the value for such literals.
The use of multi-character literals is likely to
mislead those unfamiliar with Yacc, since it suggests
that Yacc is doing a job that must be actually done by
the lexical analyzer.

3. Most places where % is legal, backslash "\" may be
used. In particular, \\ is the same as %%, \left the
same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

= { .}

and the curly braces can be dropped if the action is a
single C statement.

6. C code between %{ and %} used to be permitted at the
head of the rules section, as well as in the
declaration section.

3-85

XENIX Software Development

4.4 DC: An Interactive Desk Calculator

DC is an interactive desk calculator program designed to
perform arbitrary-precision integer arithmetic. It has
provision for manipulating scaled fixed-point numbers and
for input and output in bases other than decimal. The size
of numbers that can be manipulated is limited only by
available core storage. On typical implementations of
XENIX, the size of numbers that can be handled varies from
several hundred digits on the smallest systems to several
thousand on the largest.

DC works like a stacking calculator using reverse Polish
notation. Ordinarily DC operates on decimal integers, but
one may specify an input base, output base, and a number of
fractional digits to be maintained.

A language called BC has been developed which accepts
programs written in the familiar style of higher-level
programming languages and compiles output which is
interpreted by DC. Some of the commands described below
were designed for the compiler interface and are not easy
for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack.
DC commands work by taking the top number or two off the
stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is
taken from that file until its end, then from the standard
input.

4.4.1 Synopsis

Here we describe the more commonly used DC commands. The
additional commands that are intended to be invoked by
compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and
new-line characters are ignored except within numbers and in
places where a register name is expected.

The following constructions are recognized:

number The value of the number is pushed onto the main
stack. A number is an unbroken string of the
digits 0-9 and the capital letters A-F which are
treated as digits with values 10-15 respectively.
The number may be preceded by an underscore to
input a negative number. Numbers may contain
decimal points.

4-86

XENIX Software Development

+ * % "

sx

Ix

d

p

f

x

[...]

q

The top two values on the stack are added (+),
subtracted (-), multiplied (*), divided (I),
remaindered (%), or exponentiated (A). The two
entries are popped off the stack; the result is
pushed on the stack in their place. The result of
a division is an integer truncated toward zero.
See the detailed description below for the
treatment of numbers with decimal points. An
exponent must not have any digits after the
decimal point.

The top of the main stack is popped and stored
into a register named !.' where x may be any -character. If the s is capitalized, x is treated
as a stack and the value is pushed onto it. Any
character, even blank or new-line, is a valid
register name.

The ~alue in registei x is pushed onto the stack.
The register x is not altered. If the I is
capitalized, register x is treated as a stack and
its top value is popped onto the main stack.

All registers start with empty value which is
treated as a zero by the command 1 and is treated
as an error by the command L.

The top value on the stack is duplicated.

The top value on the stack is printed.
value remains unchanged.

The top

All values on the stack and in registers are
printed.

treats the top element of the stack as a character
string, removes it from the stack, and executes it
as a string of De commands.

puts the bracketed character string onto the top
of the stack.

exits the program. If executing a string, the
recursion level is popped by two. If q is
capitalized, the top value on the stack is popped
and the string execution level is popped by that
value.

B<x >x =x l<x !>x !=x
The top two elements of the stack are popped and

4-87

v

c

i

o

k

z

?

XENIX Software Development

compared. Register x is executed if they obey the
stated relation. Exclamation point is negation.

replaces the top element on the stack by its
square root. The square root of an integer is
truncated to an integer. For the treatment of
numbers with decimal points, see the detailed
description below.

interprets the rest of the
command. Control returns to
command terminates.

line as a XENIX
DC when the XENIX

All values on the stack are popped; the stack
becomes empty.

The top value on the stack is popped and used as.
the number radix for further input. If i is
capitalized, the value of the input base is pushed
onto the stack. No mechanism has been provided
for the input of arbitrary numbers in bases less
than 1 or greater than 16.

The top value on the stack is popped and
the number radix for further output.
capitalized, the value of the output
pushed onto the stack.

used as
If 0 is

base is

The top of the stack is popped, and that value is
used as a scale factor that influences the number
of decimal places that are maintained during
multiplication, division, and exponentiation. The
scale factor must be greater than or equal to zero
and less than 100. If k is capitalized, the value
of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the
stack.

A line of input is taken from the input source
(usually the console) and executed.

4.4.2 Internal Representation of Numbers

Numbers are stored internally using a dynamic storage
allocator. Numbers are kept in the form of a string of
digits to the base 100 stored one digit per byte (centennial
digits) . The string is stored with the low-order digit at
the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic

4-88

XENIX Software Development

operation on a number, care is taken that all digits are in
the range 0-99 and that the number has no leading zeros.
The number zero is represented by the empty string.

Negative numbers are represented in· the lOOts complement
notation, which is analogous to two's complement notation
for binary numbers. The high order digit of a negative
number is always -1 and all other digits are in the range
0-99. The digit preceding the high order -1 digit is never
a 99. The representation of -157 is 43,98,-1. We shall
call this the canonical form of a number. The advantage of
this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the
result is formally correct. The result need only be
modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold
numbers twice that large, addition can be carried out and
the handling of carries done later when that is convenient,
as it sometimes is.

An additional byte is stored with each number beyond the
high order digit to indicate the number of assumed decimal
digits after the decimal point. The representation of .001
is 1,3 where the scale has been italicized to emphasize the
fact that it is not the high order digit. The value of this
extra byte is called the scale factor of the number.

4.4.3 The Allocator

DC uses a dynamic string storage allocator for all of its
internal storage. All reading and writing of numbers
internally is done through the allocator. Associated with
each string in the allocator is a four-word header
containing pointers to the beginning of the string, the end
of the string, the next place to write, and the next place
to read. Communication between the allocator and DC is done
via pointers to these headers.

The allocator initially has one large string on a list of
free strings. All headers except the one pointing to this
string are on a list of free headers. Requests for strings
are made by size. The size of the string actually supplied
is the next higher power of 2. When a request for a string
is made, the allocator first checks the free list to see if
there is a string of the desired size. If none is found,
the allocator finds the next larger free string and splits
it repeatedly until it has a string of the right size.
Left-over strings are put on the free list. If there are no
larger strings, the allocator tries to coalesce smaller free

4-89

XENIX Software Development

strings into larger ones. Since all, strings are the result
of splitting large strings, each string has a neighbor that
is next to it in core and, if free, can be combined with it
to make a string twice as long.

Failing to find a string of the proper length after
coalescing, the allocator asks the system for more space.
The amount of space on the system is the only limitation on
the size and number of strings in DC. If at any time in the
process of trying to allocate a string, the allocator runs
out of headers, it also asks the system for more space.

There are routines in the allocator for
copying, rewinding, forward-spacing,
strings. All string manipulation is
routines.

reading, writing,
and backspacing

done using these

The reading and writing routines increment the read pointer
or write pointer so that the characters of a string are read
or written in succession by a series of read or write calls.
The write pointer is interpreted as the end of the
information-containing portion of a string and a call to
read beyond that point returns an end-of-string indication.
An attempt to write beyond the end of a string causes the
allocator to allocate a larger space and then copy the old
string into the larger block.

4.4.4 Internal Arithmetic

All arithmetic operations are done on integers. The
operands (or operand) needed for the operation are popped
from the main stack and their scale factors stripped off.
Zeros are added or digits removed as necessary to get a
properly scaled result from the internal arithmetic routine.
For example, if the scale of the operands is different and
decimal alignment is required, as it is for addition, zeros
are appended to the operand with the smaller scale. After
performing the required arithmetic operation, the proper
scale factor is appended to the end of the number before it
is pushed on the stack.

A register called scale plays a part in the results of most
arithmetic operations. scale is the bound on the number of
decimal places retained in arithmetic computations. scale
may be set to the number on the top of the stack truncated
to an integer with the k command. K may be used to push the
value of scale on the stack. scale must be greater than or
equal to 0 and less than 100. The descriptions of the
individual arithmetic operations will include the exact
effect of scale on the computations.

4-90

XENIX Software Development

4.4.5 Addition and Subtraction

The scales of the two numbers are compared and trailing
zeros are supplied to the number with the lower scale to
give both numbers the same scale. The number with the
smaller scale is multiplied by 10 if the difference of the
scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be
subtracted and proceeding as in addition.

Finally, the addition is performed digit by digit from the
low order end of the number. The carries are propagated in
the usual way. The resulting number is brought into
canonical form, which may require stripping of leading
zeros, or for negative numbers replacing the high-order
configuration 99,-1 by the digit -1. In any case, diqits
which are not in the range 0-99 must be brought into that
range, propagating any carries or borrows that result.

4.4.6 Multiplication

The scales are removed from the two operands and saved. The
operands are both made positive. Then multiplication is
performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied
by each digit of the second number, beginning with its low
order digit. The intermediate products are accumulated into
a partial sum which becomes the final product. The product
is put into the canonical form and its sign is computed from
the signs of the original operands.

The scale of the result is set equal to the sum of the
scales of the two operands. If that scale is larger than
the internal register scale and also larger than both of the
scales of the two operands, then the" scale of the result is
set equal to the largest of these three last quantities.

4.4.7 Division

The scales are removed from the two operands. Zeros are
appended or digits removed from the dividend to make the
scale of the result of the integer division equal to the
internal quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The
difference of the lengths of the two numbers is computed.
If the divisor is longer than the dividend, zero is

4-91

XENIX Software Development

returned. Otherwise the top digit of the divisor is divided
into the top two digits of the dividend. The result is used
as the first (high-order) digit of the quotient. It may
turn out be one unit too low, but if it is, the next trial
quotient will be larger than 99 and this will be adjusted at
the end of the process. The trial digit is multiplied by
the divisor and the result subtracted from the dividend and
the process is repeated to get additional quotient digits
until the remaining dividend is smaller than the divisor.
At the end, the digits of the quotient are put into the
canonical form, with propagation of carry as needed. The
sign is set from the sign of the operands.

4.4.8 Remainder

The division routine is called and division is performed
exactly as described. The quantity returned is the remains
of the dividend at the end of the divide process. Since
division truncates toward zero, remainders have the same
sign as the dividend. The scale of the remainder is set to
the maximum of the scale of the dividend and the scale of
the quotient plus the scale of the divisor.

4.4.9 Square Root

The scale is stripped from the operand. Zeros are added if
necessary to make the integer result have a scale that is
the larger of the internal quantity scale and the scale of
the operand.

The method used to compute sqrt(y) is Newton's method with
The initial guess is found by taking the integer square root
of the top two digits.

4.4.10 Exponentiation

Only exponents with zero scale factor are handled. If the
exponent is zero, then the result is 1. If the exponent is
negative, then it is made positive and the base is divided
into one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base
is repeatedly squared and the result is obtained as a
product of those powers of the base that correspond to the
positions of the one-bits in the binary representation of
the exponent. Enough digits of the result are removed to
make the scale of the result the same as if the indicated
multiplication had been performed.

4-92

XENIX Software Development

4.4.11 Input Conversion and Base

Numbers are converted to the internal representation as they
are read in. The scale stored with a number is simply the
number of fractional digits input. Negative numbers are
indicated by preceding the number with a The hexadecimal
digits A-F correspond to the numbers 10~15 regardless of
input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates
the resulting number to an integer, and uses it as the input
base for all further input. The input base is initialized
to 10 but may, for example be changed to 8 or 16 to do octal
or hexadecimal to decimal conversions. The command I will
push the value of the input base on the stack.

4.4.12 Output Commands

The command p causes the top of the stack to be printed. It
does not remove the top of the stack. All of the stack and
internal registers can be output by typing the command f.
The 0 command can be used to change the output base. This
command uses the top of the stack, truncated to an integer
as the base for all further output. The output base in
initialized to 10. It will work correctly for any base.
The command 0 pushes the value of the output base on the
stack.

4.4.13 Output Format and Base

The input and output bases only affect the interpretation of
numbers on input and output; they have no effect on
arithmetic computations. Large numbers are output with 70
characters per line; a \ indicates a continued line. All
choices of input and output bases work correctly, although
not all are useful. A particularly useful output base is
100000, which has the effect of grouping digits in fives.
Bases of 8 and 16 can be used for decimal-octal or decimal­
hexadecimal conversions.

4.4.14 Internal Registers

Numbers or strings may be stored in internal registers or
loaded on the stack from registers with the commands sand
1. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the
contents of register x on the top of the stack~ The 1
command has no effect on the contents of register x. The s
command, however, is destructive.

4-93

XENIX Software Development

4.4.15 Stack Commands

The command c clears the stack. The command
duplicate of the number on the top of the
stack. The command z pushes the stack size on
The command X replaces the number on the top
with its scale factor. The command Z replaces
the stack with its length.

4.4.16 Subroutine Definitions and Calls

d pushes a
stack on the

the stack.
of the stack
the top of

Enclosing a string in [] pushes the ascii string on the
stack. The q command quits or in executing a string, pops
the recursion levels by two.

4.4.17 Internal Registers - Programming DC

The load and store commands together with [] to store
strings, x to execute and the testing commands '<I, '>',
'=', '!<', 'I>', '!=' can be used to program DC. The x
command assumes the top of the stack is an string of DC
commands and executes it. The testing commands compare the
top two elements on the stack and if the relation holds,
execute the register that follows the relation. For
example, to print the numbers 0-9~

[lip1+ si 1i10>a]sa
Osi lax

4.4.18 Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by
people. They involve push-down registers and ariays. In
addition to the stack that commands· work on, DC can be
thought of as having individual stacks for each register.
These registers are operated on by the commands Sand L. Sx
pushes the top value of the main stack onto the stack for
the register x. Lx pops the stack for register x and puts
the result on the main stack. The commands sand 1 also
work on registers but not as push-down stacks. 1 doesn't
effect the top of the register stack, and s destroys what
was there before.

The commands to work on arrays are: and:. :x pops the
stack and uses this value as an index into the array x. The
next element on the stack is stored at this index in x. An
index must be greater than or equal to 0 and less than 2048.
:~ is the command to load the main stack from the array x.

4-94

XENIX Software Development

The value on the top of the stack is the index into the
array ~ of the value to be loaded.

4.4.19 Miscellaneous Commands

The command 1 interprets the rest of the line as
command and passes it to XENIX to execute.
compiler command is O. This command uses the top
stack as the number of levels of recursion to skip.

4-95

a XENIX
One other

of the

XENIX Software Development

4.5 BC: A Desk-Calculator Language

BC is a language and a compiler for doing arbitrary
precision arithmetic. The output of the compiler is
interpreted and executed by a collection of routines which
can input, output, and do arithmetic on indefinitely large
integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage
allocator. Overflow does not occur until all available core
storage is exhausted.

The language has a complete control structure as well as
immediate-mode operation. Functions can be defined and saved
for later execution.

Two SO~-digit numbers can be multiplied to give a lOOO-digit
result in about ten seconds.

A small collection of library functions is also available,
including sin, cos, arctan, log, exponential, and Bessel
functions of integer order.

Some of the uses of this compiler are

~ To perform computation with large integers,

& To perform computations accurate to many
places,

decimal

$ To convert numbers from one base to another base.

The compiler was written to make conveniently available a
collection of routines (called DC [5]) which are capable of
doing arithmetic on integers of arbitrary size. The
compiler is by no means intended to provide a complete
programming language. It is a minimal language facility.

There is a scaling provision that permits the use of decimal
point notation. Provision is made for input and output in
bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal
8.

The actual limit on the number of digits that can be handled
depends on the amount of storage available on the machine.
Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of XENIX .

The syntax of BC has been
substantially with the

deliberately selected to agree
C language [2]. Those who are

4-96

XENIX Software Development

familiar with C will find few surprises in this language.

4.5.1 Simple Computations with Integers

The simplest kind of statement is an arithmetic expression
on a line by itself. For instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators - *, I, %, and can also be
indicate subtraction, multiplication,
remaindering, and exponentiation, respectively.
integers produces an integer result truncated
Division by zero produces an error comment.

used; they
division,

Division of
toward zero.

Any term in an expression may be prefixed by a minus sign to
indicate that it is to be negated (the 'unary' minus sign).
The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with
parentheses are interpreted just as in Fortran, with A

having the greatest binding power, then * and % and I, and
finally + and Contents of parentheses are evaluated
before material outside the parentheses. Exponentiations
are performed from right to left and the other operators
from left to right. The two expressions

are equivalent, as are the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single
lower-case letter names. The value of an expression can be
assigned to a register in the usual way. The statement

4-97

XENIX Software Development

x = x + 3

has the effect of increasing by three the value of the
contents of the register named x. When, as in this case,
the outermost operator is an =, the assignment is performed
but the result is not printed. Only 26 of these named
storage registers are available.

There is a built-in square root function whose
truncated to an integer (but see scaling below).

result is
The lines

x = sqrt{19l)
x

produce the printed result

13

4.5.2 Bases

There are special internal quantities, called 'ibase' and
'obase'. The contents of 'ibase', initially set to 10,
determines the base used for interpreting numbers read in.
For example, the lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions.
Beware, however of trying to change the input base back to
decimal by typing

ibase = 10

Because the number
statement will have
hexadecimal notation,
numbers (no matter
interpreted as digits
statement

ibase = A

10 is interpreted
no effect. For

the characters A-F
what base is in

having values 10-15

as octal, this
those who deal in
are permitted in
effect) and are

respectively. The

will change you back to decimal input base no matter what
the current input base is. Negative and large positive
input bases are permitted but useless. No mechanism has

4-98

XENIX Software Development

been provided for the input of arbitrary numbers in bases
less than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as
the base for output numbers. The lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number.
Very large output bases are permitted, and they are
sometimes useful. For example, large numbers can be output
in groups of five digits by setting 'obase' to 100000.
Strange (i.e. 1, 0, or negative) output bases are handled
appropriately.

Very large numbers are split across lines with 70 characters
per line. Lines which are continued end with \. Decimal
output conversion is practically instantaneous, but output
of very large numbers (i.e., more than 100 digits) with
other bases is rather slow. Non-decimal output conversion
of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no
effect whatever on the course of internal computation or on
the evaluation of expressions, but only affect input and
output conversion, respectively.

4.5.3 Scaling

A third special internal quantity called 'scale' is used to
determine the scale of calculated quantities. Numbers may
have up to 99 decimal digits after the decimal point. This
fractional part is retained in further computations. We
refer to the number of digits after the decimal point of a
number as its scale.

When two scaled numbers are combined by means of one of the
arithmetic operations, the result has a scale determined by
the following rules. For addition and subtraction, the
scale of the result is the larger of the scales of the two
operands. In this case, there is never any truncation of
the result. For multiplications, the scale of the result is
never less than the maximum of the two scales of the
operands, never more than the sum of the scales of the
operands and, subject to those two restrictions, the scale

4-99

XENIX Software Development

of the result is set equal to the contents of the internal
quantity 'scale'. The scale of a quotient is the contents
of the internal quantity 'scale'. The scale of a remainder
is the sum of the scales of the quotient and the divisor.
The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an
integer. The scale of a square root is set to the maximum
of the scale of the argument and the contents of 'scale'.

All of the internal operations are actually carried out in
terms of integers, with digits being discarded when
necessary. In every case where digits are discarded,
truncation and not rounding is performed.

The contents of 'scale' must be no greater than 99 and no
less than O. It is initially set to O. In case you need
more than 99 fraction digits, you may arrange your own
scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be
used in expressions just like other variables. The line

scale = scale + I

increases the value of 'scale' by one, and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of
decimal digits to be retained in internal computation even
when 'ibase' or 'obase' are not equal to 10. The internal
computations (which are still conducted in decimal,
regardless of the bases) are performed to the specified
number of decimal digits, never hexadecimal or octa1 or any
other kind of digits.

4.5.4 Functions

The name of a function is a single lower-case letter.
Function names are permitted to collide with simple variable
names. Twenty-six different defined functions are permitted
in addition to the twenty-six variable names. The line

define a(x){

begins the definition of a function with one argument. This
line must be followed by one or more statements, which make
up the body of the function, ending with a right brace }.

4-100

XENIX Software Development

Return of control from a function occurs when a return
statement is executed or when the end of the function is
reached. The return statement can take either of the two
forms

return
return(x)

In the first case, the value of the function is 0, and in
the second, the value of the expression in parentheses.

Variables used in the function can be declared as automatic
by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it
must be the first statement in the definition. These
automatic variables are allocated space and initialized to
zero on entry to the function and thrown away on return.
The values of any variables with the same names outside the
function are not disturbed. Functions may be called
recursively and the automatic variables at each level of
call are protected. The parameters named in a function
definition are treated in the same way as the automatic
variables of that function with the single exception that
they are given a value on entry to the function. An example
of a function definition is

define a (x,y) {
auto z
z = x*y
return(z)
}

The value of this function, when called, will be the product
of its two arguments.

A function is called by the appearance of its name followed
by a string of arguments enclosed in parentheses and
separated by commas. The result is unpredictable if the
wrong number of arguments is used ..

Functions with no arguments are defined and called using
parentheses with nothing between them: b().

If the function a above has been defined, then the line

a{7,3.14)

would cause the result 21.98 to be printed and the line

4-101

XENIX Software D~velopment

x = a(a(3,4) ,5)

would cause the value of x to become 60.

4.5.5 Subscripted Variables

A single lower-case letter variable name followed by an
expression in brackets is called a subscripted variable (an
array element). The variable name is called the array name
and the expression in brackets is c~lled the subscript.
Only one-dimensional arrays are permitted. The names of
arrays are permitted to collide with the names of simple
variables and function names. Any fractional part of a
subscript is discarded before use. Subscripts must be
greater than or equal to zero and less than or equal to
2047.

Subscripted variables may be freely used in expressions, in
function calls, and in return statements.

An array name may be used as an argument to a function, or
may be declared as automatic in a function definition by the
use of empty brackets:

f(a[])
define f(a[])
auto a []

When an array name is so used, the whole contents of the
array are copied for the use of the function, and thrown
away on exit from the function. Array names which refer to
whole arrays cannot be used in any other contexts.

4.5.6 Control Statements

The 'if', the 'while', and the 'for' statements may be used
to alter the flow within programs or to cause iteration.
The range of each of them is a statement or a compound
statement consisting of a collection of statements enclosed
in braces. They are written in the following way

or

if(relation) statement
while(relation) statement
for (expressionl; relation; expression2) statement

4-102

XENIX Software Development

if(relation) {statements}
while(relation) {statements}
for (expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression
of the form

x>y

where two expressions are related by one of the six
relational operators <, >, <=, >=, ==, or !=. The relation
== stands for 'equal to' and != stands for 'not equal to'.
The meaning of the remaining relational operators is clear.

BEWARE of using = instead of -- in a relational.
Unfortunately, both of them are legal, so you will not get a
diagnostic message, but = really will not do a comparison.

The 'if' statement causes execution of its range if and only
if the relation is true. Then control passes to the next
statement in sequence.

The 'while' statement causes execution of its range
repeatedly as long as the relation is true. The relation is
tested before each execution of its range and if the
relation is false, control passes to the next statement
beyond the range of the while.

The 'for' statement begins by executing 'expressionl'. Then
the relation is tested and, if true, the statements in the
range of the 'for' are executed. Then 'expression2' is
executed. The relation is tested, and so on. The typical
use of the 'for' statement is for a controlled iteration, as
in the statement

for (i=l; i<=lO; i=i+l) i

which will print the integers from 1 to 10. Here are some
examples of the use of the control statements.

define f(n){
auto i, x
x=l
for (i=l; i<=n; i=i+l) x=x*i
return(x)
}

The line

f(a)

4-103

XENIX Software Development

will print a factorial if ~ is a positive integer. Here is
the definition of a function which will compute values of
the binomial coefficient (m and n are assumed to be positive
integers) .

define b(n,m){
auto x, j
x=l
for(j=l; j<=m; j=j+l) x=x*(n-j+l)/j
return(x)
}

The following function computes values of the exponential
function by summing the appropriate series without regard
for possible truncation errors:

scale = 20
define e(x){

auto a, b, c, d, n
a = 1
b = 1
c = 1
d = 0
n = 1
while(l==l){
a = a*x
b = b*n
c = c + alb
n = n + 1
if(c==d) return(c)
d = c

} }

4.5.7 Some Details

There are some language features that every user should know
about even if he will not use them.

Normally statements are typed one to a line. It is also
permissible to type several statements on a line separated
by semicolons.

If an assignment statement is parenthesized, it then has a
value and it can be used anywhere that an expression can.
For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the

4-104

XENIX Software Development

resulting value.

Here is an example of a use of the value of an assignment
statement even when it is not parenthesized.

x = a[i=i+l]

causes a value to be assigned to x and also increments i
before it is used as a subscript.

The following constructs work in Be in exactly the same
manner as they do in the C language.

x=y=z is the same asx=(y=z)
x =+ y x = x+y
x =- y x = x-y
x =* y x = x*y
x =/ y x = x/y
x =% y x = x%y

~ ~ x = y x = x y
x++ (x=x+l)-l
x-- (x=x-l)+l
++x x = x+l
--x x = x-I

Even if you don't intend to use the constructs, if you type
one inadvertently, something correct but unexpected may
happen.

WARNING! In some of these constructions, spaces are
sigpificant. There is a real difference between x=-y and x=
-y. The first replaces x by x-y and the second by -y.

4.5.8 Three Important Things

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C.
Comments begin with '/*' and end with '*/'.

3. There is a library of math functions which may be
obtained by typing at command level

bc -1

This command will load a set of library functions
which, at the time of writing, consists of sine (named
'Sf), cosine ('c'), arctangent ('a'), natural
logarithm ('1'), exponential ('e') and Bessel
functions of integer order ('j(n,x) I). Doubtless more

4-105

XENIX Software Development

functions will be added in time. The library sets the
scale to 20. You can reset it to something else if
you like. The design of these mathematical library
routines is discussed elsewhere.

If you type

bc file

Be will read and execute the named file or files before
accepting commands from the keyboard. In this way, you may
load your favorite programs and function definitions.

4-106

XENIX Software Development

4.5.9 Notation

In the following pages syntactic categories are in italics;
literals are in bold; items in brac.kets [] is optional.

4.5.9.1 Tokens Tokens consist of keywords, identifiers,
constants, operators, and separators. Token separators may
be blanks, tabs or comments. Newline characters or
semicolons separate statements.

Comments Comments are introduced by the characters /* and
terminated by */.

Identifiers There are three kinds of identifiers - ordinary
identifiers, array identifiers and function identifiers.
All three types consist of single lower-case letters. Array
identifiers are followed by square brackets, possibly
enclosing an expression describing a subscript. Arrays are
singly dimensioned and may contain up to 2048 elements.
Indexing begins at zero so an array may be indexed from 0 to
2047. Subscripts are truncated to integers. Function
identifiers are followed by parentheses, possibly enclosing
arguments. The three types of identifiers do not conflict;
a program can have a variable named x, an array named x and
a function named x, all of which are separate and distinct.

Keywords The following are reserved keywords:
ibaseif
obasebreak
scaledefine
sqrt auto
lengthreturn
whilequit
for

Constants Constants consist of arbitrarily long numbers
with an optional decimal point. The hexadecimal digits A-F
are also recognized as digits with values 10-15,
respectively.

4-107

XENIX Software Development

4.5.9.2 Expressions The value of an expression is printed
unless the main operator is an assignment. Precedence is
the same as the order of presentation here, with highest
appearing first. Left or right associativity, where
applicable, is discussed with eacq operator.

4-108

XENIX Software Development

Primitive expressions

Named expressions Named expressions are places where values
are stored. Simply stated, named expressions are legal on
the left side of an assignment. The value of a named
expression is the value ~tored in the place named.

4.5.9.3 identifiers Simple identifiers are named
expressions. They have an initial value of zero.

4.5.9.4 array-name [expression] Array elements are named
expressions. They have an initial value of zero.

4.5.9.5 scale, ibase .and obase The internal registers
scale, ibase and obase a~e all named expressions. scale is
the number of digits after the decimal point to be retained
in arithmetic operations. scale has an initial value of
zero. ibase and obase are the input and output number radix
respectively. Both ibase and obase have initial values of
10.

Function calls

4.5.9.6 function-name([expression[,expression ...]]) A
function call consists of a function name followed by
parentheses containing a comma-separated list of
expressions, which are the function arguments. A whole
array passed as an argument is specified by the array name
followed by empty square brackets. All function arguments
are passed by value. As a result, changes made to the
formal parameters have no effect on the actual arguments.
If the function terminates by executing a return statement,
the value of the function is the value of the expression in
the parentheses of the return statement or is zero if no
expression is provided.ot .if there is no return statement.

4.5.9.7 sqrt(expression) The result is the square root of
the expression. The resblt is truncated in the least
significant decimal place. The scale of the result is the
scale of the expression or the value of scale whichever is
larger.

4-109

XENIX Software Development

4.5.9.8 length (expression) The result is the total number
of significant decimal digits in the expression. The scale
of the result is zero.

4.5.9.9 scale (expression) The result is the scale of the
expression. The scale of the result is zero.

Constants Constants are primitive expressions.

Parentheses An expression surrounded by parentheses is a
primitive expression. The parentheses are used to alter the
normal precedence.

Unary operators The unary operators bind right to left.

-expression The result is the negative of the expression.

++named-expression The named expression is incremented by
one. The result is the value of the named expression after
incrementing.

--named-expression· The named expression is decremented by
one. The result is the value of the named expression after
decrementing.

named-expression++ The named expression is incremented by
one. The result is the value of the named expression before
incrementing.

named-expression-- The named expression is decremented by
one. The result is the value of the named expression before
decrementing.

Exponentiation operator The exponentiation operator binds
right to left.

4-110

XENIX Softwa~e Q~v~lopment

expression '" expression . The re.sult is the first expression
raised to the power of the second expression. The second
expression must be an integer. If a is the scale of the
left expression and £ is the absolute value of the right
expression, then the scale of the result is:

min(~x~,max(scale,~»

Multiplicative operators The operatrirs *, I, % bind left to
r igh t.

expression * expression The result is the product of the
two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

expression / expression
two expressions. The
scale.

The result is the quotient of the
scale of the result is the value of

expression % expression The %
remainder of the- division of
precisely, ~%~ is ~-~/~.*!?.

operator produces the
the two. e~pres~ions. More

The scale of the result is the sum of the scale of the
divisor and the value of scale.

Additive operators The additive operators bind left to
r igh t.

expression + expression The result is the sum of the two
expressions. The scale of the result is the maximum of the
scales of the expressions.

expression - expression The result is the difference of the
two expressions. The scale of the result is the maximum of
the scales of the expressions.

4-111

XENIX Software Development

assignment operators The assignment operators bind right to
left.

named-expression = expression This expression results in
assigning the value of the expression on the right to the
named expression on the left.

named-expression =+ expression

named-expression =- expression

named-expression =* expression

named-expression =/ expression

named-exEression =% eXEression

named-expression =~ expression The result of the above
expressions is equivalent to "named expression = named
expression OP expression", where OP is the operator after
the = sign.

4.5.9.10 Relations Unlike all other operators, the
relational operatrirs are only valid as the object of an if,
while, or inside a for statement.

eXEression < eXEression

expression > eXEression

expression <= eXEression

expression >= expression

4-112

XENIX Softwar-e l?<evelopment , .. ;;..

expression -- expression

expression 1= expres$ion

4.5.9.11 Storage classes There are only two storage
classes in BC, global and automatic (local). Only
identifiers that are to be local to a function need be
declared with the auto command. The arguments to~ function
are local to' the function,."',, All othe,r identitters are
assumed to be global and available t,o' all functions. All
identifiers, global arid locai, have ini~iai v~lues;6f zero.
Identifiers declared as auto are allocated on enlry to the
function and released on returning from the function. They
therefore do not retain values between function calls. auto
arrays are specified by th~ a:tl:'C!iY :,nafi\~, followed by empty
square brackets.

Automatic variables in BC do not work in ~xactl~ the sa~e:
way as in either C or PL/I. On entry to a function, 'the old
values of the names that appear as parameters and' a$
automatic variables are pushed onto a stack. Until return is
made from the function, reference to these names refers only
to the new values.

4.5.9.12 Statements Statements must
semicolon or newline. Except where
statements, execution is sequential.

,-

be separated by
altered by contro'I',

Expression statements When a statement is an expression,
unless the main operator is an assignment, the value of the
expression is printed, followed by a ne~line character.

Compound statements ,State.ments may be grouped together and
used when one statement is expected by':surrounding them with'
{ }.

" . '

\ "

Quoted string statements' "anystr'ing":
This statement prints the string inside the quotes.

4-113

XENIX Softwate Development

If statements
if(relation) statement

The substatement is executed if the relation is true.

While statements
while(relation) statement

The statement is executed while the relation is true. The
test occurs before each execution of the statement.

For statements

for(expression1 relation~ expression)statement

The for statement is the
first-expression
while(relation) {

statement

}
last-expression

same as

All three expressions must be present.

Break statements

break

.break causes termination of a for or while statement.

Auto statements
auto identifier[,identifier]

The auto statement causes the values of the identifiers to
be pushed down. The identifiers can be ordinary identifiers
or array identifiexs. Array identifiers are specified by
following the ·array name by empty square brackets. The auto
statement must be the first statement in a function

'·defini tion.

4-114

XENIX Software Development

Define statements

define([arameter[,parameter .••]]){
statements

The define statement defines a function.
be ordinary identifiers or array names.
followed by empty square brackets.

Return statements

return

return(expression)

The parameters may
Array names must be

The return statement causes termination of a function,
popping of its auto variables, and specifies the result of
the function. The first form is equivalent to return(D).
The result of the function is the result of the expression
in parentheses.

Quit The quit statement stops execution of a Be program and
returns control to XENIX when it is first encountered.
Because it is not treated as an executable statement, it
cannot be used in a function definition or in an if, for, or
while statement.

4-115

INTRO(l) INTRO(l)

N~E

intro - introduction to commands

DESCRIPTION
This section describes publicly accessible commands in
alphabetic order. Certain distinctions of purpose are made
in the headings:

(I) Commands of general utility.

(lC) Commands for communication with other systems.

(lG) Commands used primarily for graphics and computer-aided
design.

(1M) Commands used primarily for system maintenance.

The word 'local' at the foot of a page means that the com­
mand is not intended for general distribution.

SEE ALSO
DIAGNOSTICS

Section (6) for computer games.

How to ~ started, in the Introduction.

DIAGNOSTICS
Upon termination each command returns two bytes of status,
one supplied by the system giving the cause for termination,
and (in the case of 'normal' termination) one supplied by
the program, see wait and exit(2). The former byte is 0 for"
normal terminatio~he latter is customarily 0 for success­
ful execution, nonzero to indicate troubles such as errone­
ous parameters, bad or inaccessible data, or other inability
to cope with the task at hand. It is called variously 'exit
code', 'exit status' or 'return code', and is described only
where special conventions ~re involved.

XENIX System 1 XENIX System

ADB (l) ADS (1)

NA1J1E
adb debugger

SYNTAX
adb [-~1] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging programo It may be used
to examine files and to provide a controlled environment for
the execution of XENIX programs.

Objfil is normally an executable program file, preferably
containing a symbol table: if not then the symbolic features
of adb cannot be used although the file can still be exam­
ine~ The default for objfil is a.out. Corfil is assumed to
be a core image file produced after executing objfil: the
default for corfil is core. ---

Requests to adb are read from the standard input and
responses are to the standard outputo If the -~ flag is
present then both objfil and corfil are created if necessary
and opened for reading and writing so that files can be
modified using adbo Adb ignores QUIT; INTERRUPT causes
return to the next adb commando

In general requests to adb are of the form

[address] [, count] [command] [i]

If address is present then dot is set to addresso Initially
dot is set to O. For most commands count specifies how many
times the command will be executed. The default coun~ is 10
Address and count are expressions.

The interpretation of an address depends on the context it
is used in. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping see ADDRESSES~

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current incre-
mento

The value of dot decremented by the current incre-
ment ..

" The last address typed ..

integer

XENIX System I XENIX System

ADB(I) ADB (I)

An octal number if integer begins with a 0; a hexade­
cimal number if preceded by I; otherwise a decimal
number.

integer.fraction
A 32 bit floating point number.

'cccc' The ASCII value of up to 4 characters. \ may be used
to escape a '.

< name The value of name, which is either a variable name or
a register name. Adb maintains a number of variables
(see VARIABLES) named by single letters or digits.
If name is a register name then the value of the
register is obtained from the system header in cor­
file

symbol A symbol is a sequence of upper or lower case
letters, underscores or digits, not starting with a
digit. The value of the sYmbol is taken from the
symbol table in objfil. An lnltial or - will be
prepended to symbol if needed.

symbol
In C, the 'true name' of an external symbol begins
with . It may be necessary to utter this name to
disinguish it from internal or hidden variables of a
program.

routine. name
The address of the variable name in the specified C
routine. Both routine and name are symbols. If name
is omitted the value is the address of the most
recently activated C stack frame corresponding to
routine.

(exp) The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by ~ in cor­
file

The contents of the location addressed by exp in
objfil.

Integer negation.

Bitwise complement.

Dyadic operators are left associative and are less binding
than monadic operators.

XENIX System 2 XENIX System

ADB(l) ADS (1)

el+e2 Integer addition.

Integer subtractiono

e1*e2 Integer multiplicatione

e1%e2 Integer division.

el&e2 Bitwise conjunction.

e11e2 Bitwise disjunction.

e1#e2 El rounded up to the next multiple of e2.

COrJLMANDS
Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. (The
commands "'?' and 'I' may be follO\;led by '* 0; see ADDRESSES
for further details.)

?f Locations starting at address in objfil are printed
according to the format f.

If Locations starting at address in corfil are printed
according to the format f.

=f The value of addres@ itself is printed in the styles
indicated by the format f. (For i format '?' is
printed for the parts of-the instruction that reference
subsequent words.) I

A format consists of one or more characters that specify a
style of printing. Each format character may be preceded by
a decimal integer that is a repeat count for the format
character. While stepping through a format dot is incre­
mented temporarily by the amount given for each format
letter. If no format is given then the last format is used.
The format letters available are as follows.

0 2 Print 2 bytes in octal. All octal numbers output
by adb are preceded by D.

0 4 Pri~4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in dec imal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal ..
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal ..
f 4 Print the 32 bit value as a floating point number ..
F 8 Pr int double floating point.

XENIX System 3 XENIX System

ADB(l)

b 1
c 1
C 1

s n

S n

y 4
i n

a 0

/
?
=

P 2

t 0

r 0
n 0

Print the addressed byte in octal.
Print the addressed character.

ADB (1)

Print the addressed character using the following
escape convention. Character values 000 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The charac­
ter @ is printed as @@.
Print the addressed characters until a zero char­
acter is reached.
Print a string using the @ escape convention. n
is the length of the string including its zero -
terminator.
Print 4 bytes in date format (see ctime(3)).
Print as PDPll instructions. n is the number of
bytes occupied by the instructIon. This style of
printing causes variables land 2 to be set to the
offset parts of the source and destination'respec­
tively.
Print the value of dot in symbolic form. Symbols
are checked to ensure-that they have an appropri­
ate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

Print the addressed value in symbolic form using
the same rules for symbol lookup as a.
When preceded by an integer tabs to the next
appropriate tab stop. For example, at moves to
the next a-space tab stop.
Print a space.
Print a newline.

n ••• n 0
Print the enclosed string. ,..
Dot is decremented by the current increment.
Nothing is printed.

+ Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

newline
If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous com­
mand with a count of 1.

[?/]1 value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If~s used then
the match is for 4 bytes at a time instead of 2. If no
match is found then dot is unchanged; otherwise dot is
set to the matched location. If mask is omitted~en
-1 is used.

XENIX System 4 XENIX System

ADB (1) ADB (1)

[1/]\.'I value 0 ••

Write the 2-byte value into the addressed locatiofio If
the command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address spaceo

[111m bl el g[?/l

>name

New values for (bl, el o £1) are recordede If less than
three expressionS-are-given then the remaining map
parameters are left unchanged. If the ~?' or 'Iv is
followed by ~*I then the second segment (b2 g e2 g f2) of
the mapping is changed" If the list is terminated by
'1' or ~/' then the file (objfil or corfil respec­
tively) is used for subsequent requestso (So that u for
example" '1m?' will cause '1° to refer to objfil.)

----Dot is assigned to the variable or register named.

A shell is called to read the rest of the line follow­
i ng '!'.

$modifier
Miscellaneous commands. The available modifiers are~

<f
>f

r

f

b

c

e

w

s

o
d
q
v

XENIX System

Read commands from the ~ile f and returno
Send output to the file K, which is created if it
does not exist.
Print the general registers and the instruction
addressed by pc. Dot is set to pCa
Print the floating-r€gisters in single or double
length. If the floating point status of ps is set
to double (0200 bit) then double length is used
anyway.
Print all breakpoints and their associated counts
and commands.
C stack backtrace. If address is given then it is
taken as the address of the current frame (instead
of (5) 0 If C is used then the names and (16 bit)
values of all automatic and static variables are
printed for~ each active functiono If count is
given then only the first count frames are
printed.
The names and values of external variables are
printed.
Set the page width for output to address (default
80) .
Set the limit for symbol matches to address
(default 255).
All integers input are regarded as octalo
Reset integer input as described in EXPRESSIONS.
Exit from adb.
Print all non zero variables in octale

5 XENIX System

ADB(l) ADB(l)

m Print the address map.

:modifier

VARIABLES

Manage a subprocess. Available modifiers are:

bc Set breakpoint at address. The breakpoint is exe­
cuted count-l times before causing a stop. Each
time .the breakpoint is encountered the command c
is executed. If this.command sets dot to zero
then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given
explicitly then the program is entered at this
point: otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the
same line as the command. An argument starting
with < or > causes the standard input or output to
be established for the command. All signals are
turned on on entry to the subprocess.

cs The subprocess is continued with signal scs, see
signal(2). If address is given then the-subpro­
cess is continued at this address. If no signal
is specified then the signal that caused the sub­
process to stop is sent. Breakpoint skipping is
the same as for r.

ss As for c except that the subprocess is single
stepped count times. If there is no current sub­
process then objfil is run as a subprocess as for
r. In this case no signal can be sent; the
remainder of the line is treated as arguments to
the subprocess.

k The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variables are set
initially by adb but are not used subsequently. Numbered
variables are-reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the
corfil. If corfil does not appear to be a core file then
these values are set from objfil.

XENIX System 6 XENIX System

ADB (1) ADB (1)

b The base address of the data segmento
d The data segment size.
e The entry point.
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is
determined by a mapping associated with that fileo Each
mapping is represented by two triples (bl, el, fl) and (b2,
e2, f2) and the file address corresponding to a-Written -­
~ddress is calculated as follows.

bl<address<el => file address=address+fl-bl, otherwise,

b2<address<e2 => file address=address+f2-b2,

otherwise, the requested address is not legalo In some
cases (e.go for programs with separated I and D space) the
two segments for a file may overlap. If a ? or / is fol­
lowed by an 0 then only the second triple is used.

The initial setting of both mappings is suitable for normal
aoout and core files. If either file is not of the kind
expected then, for that file, bl is set to 0, el is set to
the maximum file size and fl is-set to 0: in this way the
vlhole file can be examinedwith no address translatione

So that adb may be used on large files all appropriate
values are kept as signed 32 bit integers.

FILES
/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(S), core(S)

DIAGNOSTICS

NOTES

~Adbo when there is no current command or format. Comments
about inaccessible files, syntax errors, abnormal termina­
tion of commands, etc. Exit status is 0, unless last com­
mand failed or returned nonzero statuso

A breakpoint set at the entry point is not effective on ini­
tial entry to the program.
When single stepping, system calls do not count as an exe­
cuted instruction.
Local v~riables whose names are the same as an external

XENIX System 7 XENIX System

ADB(l) ADS (1)

variable may foul up the accessing of the external.

XENIX System 8 XENIX System

AS(l) AS(l)

NAME
as - assembler

SYNOPSIS
as [-1] [-0 objfile] file

DESCRIPTION

FILES

As assembles the named fileo If the optional first argument
=1 is used, an assembly listing is produced and written to
fileoL o This includes the source, the assembled (binary)
code,-and any assembly errors.

The output of the assembly is left on the file objfilei if
that is omitted, file 9 0 is usedo It is executable if no
errors occurred during-the assembly.

/tmp/AS* temporary
aoout Qbject

SEE ALSO
Id (1), nm (1), adb (1), a 0 ou t (5)
8086 Assembler Manual Martin Katz

XENIX System 1 XENIX System

AT(l) AT{l)

NAME
at - execute commands at a later time

SYNTAX
at time [day [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input
aefault) to be used as input to sh{l) at a specified later
time. A cd{l) command to the current directory is inserted
at the begInning, followed by assignments to all environment
variables. When the script is run, it uses the user and
group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following 'A',
'P',~ or 'M' for AM, PM, noon or midnight. One ·and two
digit numbers are taken to be hours, three and four ·digits
to be hours and minutes. If no letters follow the digits, a
24 hour clock time is understood.

The optional day is either (1) a month name followed by a
day number, or (2) a day of the week; if the word 'week'
follows invocation is moved seven days further off. Names
of months and days may be recognizably truncated. Examples
of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the com­
mand /usr/lib/atrun from cron(8). The granularity of at
dependS-Upon how often atrun-is executed.

Standard output or error output is lost unless redirected.

FILES
/usr/spool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of year day ddd of
year yy. uu is a unique number.
/usr/spool/at/lasttimedone contains hhhh for last hour of
activity. .----
/usr/spool/at/past directory of activities now in progress
/usr/lib/atrun program that executes activities that are due
pWd(l)

SEE ALSO
calendar(l) , cron(8)

DIAGNOSTICS
Complains about various syntax errors and times out of
range.

XENIX System 1 XENIX System

AT(l)

NOTES

AT(l)

Due to the granularity of the execution of /usr/lib/atrun q

there may be bugs in scheduling things almos~xactly 2~
hours into the futureo

XENIX System 2 XENIX System

AWK(l} AWK(I}

NAME
awk - pattern scanning and processing language

SYNTAX
awk [-F£ [prog [file] •••

DESCRIPTION
Awk scans each input file for lines that match any of a set
or-patterns specified-rn-~. With each pattern in ~
there can be an associated action that will be performed
when a line of a file matches the pattern. The set of pat­
terns may appear literally as ~, or in a file specified
as -f file.

Files are read in order; if there are no files, the standard
input is read. Th~ file name '_I means the standard input.
Each line is matched against the pattern portion of every
pattern-action statement; the associated action is performed
for each matched pattern.

An input line is made up of fields separated by white space.
(This default can be changed by using FS, vide infra.) The
fields are denoted $1, $2, ; $0 refers~the entire
line.

A pattern-action statement has the form

pattern { action }

A missing { action} means print the line; a missing pattern
always matches.

An action is a sequence of statements. A statement can be
one of the following:

if (conditional) statement [else statement
while (conditional) statement
for (expression conditional; expression) statement
break
continue
{ [statement] ••. }
variable = expression
print [expression-list] >expression]
printf format [, expression-list] [>expression
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right
braces. An empty expression-list stands for the whole line.
Expressions take on string or numeric values as appropriate,
and are built using the operators +, -, *, I, %, and con­
catenation (indicated by a blank). The C operators ++,

XENIX System 1 XENIX System

AWK(l) A~JK (1)

+~, -~, *=, /=, and %= are also available in expressionso
Variables may be scalars, array elements (denoted x[i]) or
fieldso Variables are initialized to the null stringo
Array subscripts may be any string g not necessarily numericJ
this alLows for a form of associative memoryo String con­
stants are quoted n oe .".

The print statement prints its arguments on the standard
output (or on a file if >file is present), separated by the
current output field separator, and terminated by the output
record separator. The printf statement formats its expres­
sion list according to the format (see printf(3)).

The built-in function length returns the length of its argu­
ment taken as a string, or of the whole line if no argument.
There are also built-in functions ~2~v log, ~, and into
The last truncates its argument to an integer.
substr(s, m, n) returns the n-character substring of ~ that
begins at posItion m. The function
sprintf(fmt, efipr, eXPi' ...) formats the expressions
accordlng to t e prlnt (3) format given by fmt and returns
the resulting string.

Patterns are arbitrary Boolean combinations (!, I I, &&, and
parentheses) of regular expressions and relational expres­
sions. Regular expressions must be surrounded by slashes
and are as in ~~. Isolated regular expressions in a pat­
tern apply to the entire line. Regular expressions may also
occur in rel~tional expressions.

A pattern may consist of two patterns separated by a comma;
in this case, the action is performed for all lines between
an occurrence of the first pattern and the next occurrence
of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relap expression

where a relop is any of the six relational operators in C,
and a matchop is either ~ (for contains) or !~ (for does not
contain). A conditional is an arithmetic expression, a
relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture
control before the first input line is read and after the
last. BEGIN must be the first pattern v END the last.

A single character c may be used to separate the fields by
starting the program with

XENIX System 2 XENIX System

AWK(l) AWK(l)

BEGIN { FS = "c" }

or by using the -F£ option.

Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal
number of the current record; FILENAME, the name of the
current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default newline);
and OFMT, the output format for numbers (default "%.6g").

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

print $2, $1 }

Add up first column, print sum and average:

END ! s += $1 }
print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous
one:

$1 1= prev { print; prev = $1 }

SEE ALSO

NOTES

lex (1), sed (1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk - a pat­
tern scanning and processing language

There are no explicit conversions between numbers and
strings. To force an expression to be treated as a number
add 0 to it; to force it to be treated as a string concaten­
ate If" to it.

XENIX System 3 XENIX System

BASENAME (l)

NAME
basename ~ strip filename affixes

SYNTAX
basename string [suffix]

DESCRIPTION
Basename deletes any prefix ending in '/0 and the suffix, if
present in string, from strin~, and prints the result on the
standard output. It is normally used inside substitution
marks ' , in shell procedures.

This shell procedure invoked with the argument
/usr/src/cmd/cat.c compiles the named file and moves the
outpu~o cat-rn the current directory:

SEE ALSO
sh(l)

XENIX System

cc $1
mv a.out 'basename $1

1

,
.c

XENIX System

BC(l) BC(l)

NAME
bc - arbitrary-precision arithmetic language

SYNTAX
bc [-c [-1] [file •••]

DESCRIPTION
Bc is an interactive processor for a language which resem­
DIes C but provides unlimited precision arithmetic. It
takes input from any files given, then reads the standard
input. The -1 argument stands for the name of an arbitrary
precision math library. The syntax for bc programs is as
follows; L means letter a-z, E means expression, S means
statement.

Comments

Names

are enclosed in /* and */.

simple variables: L
array elements: L [E]
The words 'ibase', 'obase', and 'scale'

Other operands
arbitrarily long numbers with optional sign and
decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E, ••• ,E)

Operators
+ * / %

,..
(% is remainder;

,..

++ (prefix
-- <=
= =+

Statements
E

>= 1=
=- =*

{ S ; S }
if (E) S
while (E) S

<
=/

for (E ; E ; E) S
null statement.
break
quit

Function definitions

>
=% =

def ine L (L , ••• , L) {
auto L, ••• , L
S; ••• S

XENIX System 1

and postfix;
is power)
apply to names)

XENIX System

Be{l)

}
return (E)

Functions in -1 math library
s (x) sine
c(x) cosine
e(x) exponential
lex) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

Be (1)

The value of a statement that i$ an expression is printed
unless the main operator is an assignment. Either semi­
colons or newlines may separate statements. Assignment to
scale influences the number of digits to be retained on
arithmetic operations in the manner of dc(l) 0 Assignments
to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function q and a
simple variable simultaneously. All variables are global to
the program. 'Auto' variables are pushed down during func-
tion calls. When using arrays as function arguments or
defining them as automatic variables empty square brackets
must follow the array name.

For example

scale = 20
define e(x) {

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=l; 1==1; i++){

}

a = a*x
b = b*i
c = alb
if(c =::t: 0) return(s)
s = s+c

defines a function to compute an approximate value of the
exponential function and

for(i=li i<=lO; i++} e(i)

prints approximate values of the exponential function of the
first ten integers.

XENIX System 2 XENIX System

BC(l)

FILES

BC (1)

Bc is actually a preprocessor for dc(l), which it invokes
automatically, unless the -e (compile only) option is
present. In this case the de input is sent to the standard
output instead. --

/usr/lib/lib.b mathematical library
dc(l) desk calculator proper

SEE ALSO
dc(l)

NOTES

L. L. Cherry and R. Morris, Be - An arbitrary precision
desk-calculator language

No &&, II, or ! operators.
For statement must have all three E's ..
Quit is interpreted when read, not when executed.

XENIX System 3 XENIX System

CAT (1) CAT (1)

NAME
cat - catenate and print

SYNTAX
cat [-u] file •••

DESCRIPTION
Cat reads each file in sequence and writes it on the stan­
card output. Tnus-

cat file

prints the file and

cat filel file2 >file3

concatenates the first two files and places the result,on
the th ird.

If no file is given, or if the argument '_I is encountered,
cat reads from the standard input. Output is buffered in
512-byte blocks unless the -u option is present.

SEE ALSO

NOTES

P r (l), cp (1)

Beware of 'cat a b >a l and 'cat a b >b~, which destroy input
files before reading them.

XENIX System I XENIX System

CB(l)

NAME
cb - C program beautifier

SYNTAX
cb

DESCRIPTION

CB(l)

Cb places a copy of the C program from the standard input on
the standard output with spacing and indentation that
displays the structure of the program.

NOTES
Output is not always as one would desire.

XENIX System 1 XENIX System

CC (1) CC(l)

cc - C compiler

SYNOPSIS
cc [opt ion] •• 0 file 0 0 0

DESCRIPTION
Cc is the XENIX C compiler. It accepts ~everal types of
arguments:

Arguments whose names eno with '.c' are taken to be C source
programs: they are compiled, and each object program is left
on the file whose name is that of the source with '.0' sub­
stituted for '.c'. The '.0' file is normally deleted, how­
ever, if a single C program is compiled and loaded all at
one go.

In the same way, arguments whose names end with 'oso are
taken to be assembly source programs and are assembled, pro­
ducing a '.0 9 file.

The following options are interpreted by cc. See ld(l) for
load-time optionso

-c Suppress the loading phase of the compilation, and
force an object file to be produced even if only one
program is compiled.

-p Arrange for the compiler to produce code which
counts the number of times each routine is called;
also, if loading takes place, replace the standard
startup routine by one which automatically calls
monitor (3) at the start and arranges to write out a
mon.out file at normal termination of execution of
the object program. An execution profile can then
be generated by use of prof(l).

-0 Invoke an object-code optimizero

-5 Compile the named C programs, and leave the
assembler-language output on corresponding files
suffixed '.5'.

-p Run only the macro preprocessor and place the result
for each '.c' file in a corresponding 'oi o file.
The resultant file has no 'I' lines in it.

-0 output
Name the final output file outpute If this option
is used the file 'a.out' will be left undisturbed.

-Dname=def
........-- --

XENIX System 1 XENIX System

CC(I) CC(I)

FILES

-Dname Define the name to the preprocessor, as if by
'#define'. -rr-no definition is given, the name is
defined as 1.

-Uname Remove any initial definition of name.

-Idir '#include' files ,whose names do not begin with 'I'
are always sought first in the directory of the file
argument, then in directories named in -I option~
then in directories on a standard list.

Other arguments are taken to be either loader option argu­
ments, or C-compatible object programs, typically produced
by an earlier cc run, or perhaps libraries of C-compatible
routines. These programs, together with the results of any
compilations specified, are loaded (in the order given) to
produce an executable program with name a.out. '

file.c
file.o
a.out
/tmp/t[123]*
/lib/cpp
/lib/cO
/lib/cl
/lib/c2
/lib/crtO.o
/lib/mcrtO.o
/lib/libc.a
/usr/include

input file
object file
loaded output
temproraries
preprocessor
compiler for cc pass I
compiler for cc pass 2
optional optimIzer
runtime startoff
runtime startoff with monitoring
standard library, see intro(3)
standard directory for '#include' files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, 1978
D. M. Ritchie, C Reference Manual
adb (1), ld (1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be
self-explanatory. Occasional messages may be produced by
the assembler or the loader.

XENIX System 2 XENIX System

CD(l) CD (1)

N~.ME
cd - change working directory

SYNTAX
cd directory

DESCRIPTION
Directory becomes the new working directoryo The process
must have execute (search) permission in directoryo

Because a new process is created to execute each command, cd
would be ineffective if it were written as a normal comman~
It is therefore recognized and executed by the Shello

SEE ALSO
shell, pwd(l), chdir(2)

XENIX System 1 XENIX System

CHMOD(l) CHMOD(l)

NAME
chmod - change mode

SYNTAX
chmod mode file .••

DESCRIPTION
The mode of each named file is changed according to mode,
which may be absolute or symbolic. An absolute mode-rs-an
octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] ~ permission [2£ permission]

The who part is a combination of the letters u (for user's
permissions), 9 (group) and 0 (other). The letter a stands
for ugo. If who is omitted, the default is, a but the setting
of the file creation mask (see umask(2)) is-taken into
account.

2E can be + to add permission to the file's mode, - to take
away permission and = to assign permission absolutely (all
other bltS wlll be reset).

Permission is any combination of the letters r (read), w
(write), x (execute), s (set owner or group id) and t (save
text - sticky). Letters u, 9 or 0 indicate that permission
is to be taken from the current mode. Omitting permission
is only useful with = to take away all permissions.

The first example denies write permission to others, the
second makes a file executable:

chmod o-w file
chmod +x file

Multiple symbolic modes separated by commas may be given.
Operations are performed in the order specified. The letter
s is only useful with u or g.

Only the owner of a file (or the super-user) may change its
mode.

XENIX System I XENIX System

CHMOD (1) CHMOD(l)

SEE ALSO
Is{l), chmod(2), chown (1), stat(2), umask(2)

XENIX System 2 XENIX System

CHOWN(l) CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNTAX
chown owner file

chgrp group file

DESCRIPTION
Chown changes the ow·nerof the files -to Qwner. The owner
may be either a decimal UID or ~ lqgin .n~me found in the
password file.

Chgrp changes the group-ID of the files to group. The group
may be either a decimal GID or a group name fo~nd in the
group-ID file.

Only the super-user can change owner or group, in order to
simplify as yet unimple~ented accounting procedures.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown(2) , passwd(S) , group(S)

XENIX System I XENIX System

eMP(l) CMP(l)

NAME
crop -' compare two files .~

SYNTAX
crop [-1] [-s] filel file2

DESCRIPTION
The two tiles are compared 0 (If filel is· '- a, the standard
input is used.) Under default optlons, erne makes no comment
if the files are the same; if they differ, it announces the
byte and line number at which the difference occurred. If
one file is an initial subsequence of the other, that fact
is notedo

Options:

-1 Print the byte number (decimal) and the differing
bytes (octal) for each difference. .

-s Print nothing for diffeting files; return codes onlyo

SEE ALSO
d iff (1), camm (1)

DIAGNOSTICS
Exit code 0 is returned for identlcal files, 1 for different
files, and 2 for an inaccessible or missing argument.

XENIX System 1 XENIX System

COL (1) COL (1)

N~E

col - filter reverse line feeds

SYNTAX
col [-bfx]

DESCRIPTION
Col reads the standard .input and writes the standard output.
It performs the line overlays implied by' reverse line feeds
(ESC-7 in ASCII) and by forward and reverse half line feeds
(ESC-9 and ESC-8). Col is particularly useful for filtering
multicolumn output made with the '.rt' command of nroff and
output resulting from use of the'tbl(l) preprocessor.

Although col accepts half line"motions in its input, it nor­
mally does not emit them:on output. Instead, text that
would appear between lines is moved to the next lower full
line boundary. This treatment can be suppressed by the -f
(fine) option; in this case the output from col may contain
forward half line feeds (ESC-9), but will still never con­
tain either kind of reverse line motion.

If the -b option is given, col assumes that the output dev­
ice in use is not capable of backspacing. In this case, if
several characters are to appear in the same place, only the
last one read will be taken.

The control characters SO (ASCII code 017), and SI (016) are
assumed to start and end text in an alternate character set.
The character set (primary or alternate) associated with
each printing character read is remembered; on output, SO
and SI characters are generated where necessary to maintain
the correct treatment of each character.

Col normally converts white space to tabs to shorten print­
lng time. If the -x option is given, this conversion is
suppressed.

All control characters are removed from the input except
space, backspace, tab, return, newline, ESC (033) followed
by one of 789, SI, SO, and VT (013). This last character is
an alternate form of full reverse line feed, for compatibil­
ity with some other hardware conventions. All other non­
printing characters are ignored.

SEE ALSO

NOTES

troff(l), tbl(l), greek(l)

Can't back up more than 128 lines.
No more than 800 characters, including backspaces, on a
line.

XENIX System 1 XENIX System

COMM(I) COMM(l)

NAME
camm - select or reject lines common to two sorted files

SYNTAX
corom [- [123]] filel file2

DESCRIPTION
Comm reads fil~l and file2, which should be ordered in ASCII
collating sequence, and produces a three column output:
lines only in filel~ lines only in file2: and lines in both
files. The filename '-' means the standard input.

Flags 1, 2, or 3 suppress printing of the cor~esponding
column. Thus carom -12 prints only the lines common to the
two files; comm -23 prints only lines in the first file but
not in the second; carom -123 is a no-op.

SEE ALSO
cmp(l), diff(l), uniq(l)

XENIX System I XENIX System

COPY(l) COPY(l)

NAME
copy - copy groups of files

SYNTAX
copy [opt ion] ••. sou rce .•• des t

DESCRIPTION
The ~ command copies the contents of directories to
anotner-directory. It is possible to copy whole file sys­
tems since directories are made when needed.

If files, directories, or special files do not exist at the
destination, then they are created with the same modes and
flags of the source. In addition, the super-user may set
the user and group ids. The owner and mode will not be
changed if the destination file exists. Note that there may
be more than one source directory. If so, then the effect
is the same as if the £2El command had been issued, each
with only one source.

All of the options must be given as separate arguments and
they may appear in any order even after the other arguments.
The arguments are:

-a Asks the user before attempting a copy. If the
response does not begin with a 'y', then a copy will
not be done. This option also sets the '-ad' flag.

-1 Uses links instead whenever they can be used. Oth­
erwise a copy is done. Note that links are never
done for special files or directories.

-n Requires the destination file to be new. If not,
then the copy command will not change the destina­
tion file. Of course the '-n' flag is meaningless
for directories. For special files a '-n' flag is
assumed (i.e., the destination of a special file
must not exist).

-0 Only the super user may set this option. If set
then every file copied will have its owner and group
set to those of the source. If not set, then the
owner will be that of the user who invoked the pro­
gram.

-m If set then every file copied will have its modifi­
cation time and access time set to that of the
source. If not set, then the modification time will
be set to the time of the copy.

-r If set, then every directory is recursively examined
as it is encountered. If not set then any

XENIX System 1 XENIX System

COPY(I) COPY(I)

directories that are found will be ignored.

-ad Asks the user whether a ~-rg flag applies when a
directory is discovered. If the answer does not
begin with a 'yl, then the directory will be
ignored.

-v If the verbose option is set, then all kinds of mes­
sages will be printed that reveal what the program
is doing.

source This may be a file, directory or special file. It
must exist. If it is not a directory, then the
results of the command will be the same as for the
cp command.

dest The destination must be either a file or directory
different from the source.

If the source and destination are anything but directories,
then copy will act just like a cp commando If both are
directories, then copy will copy each file into the destina­
tion directory according to the flags that have been seto

DIAGNOSTICS
Should be self-explanatory

XENIX System 2 XENIX System

CP (1) CP (1)

NAME
cp - copy

SYNTAX
cp filel file2

cp file .•• directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are
preserved if it already existed; the mode of the source file
is used otherwise.

In the second form, one or more files are copied into the
directory with their original file-names.

~ refuses to copy a file onto itself.

SEE ALSO
cat (1), pr (1), mv (1), copy (1)

XENIX System 1 XENIX System

CRYPT(l) CRYPT(l)

NAAE
crypt - encode/decode

SYNTAX
crypt password

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the stan­
dard outpute The password is a key that selects a particu­
lar transformation. If no password is given, crypt demands
a key from the terminal and turns off printing while the key
is being typed in. Crypt encrypts and decrypts with the
same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated
by the editor ~ in encryption mode.

The security of encrypted files depends on three factors:
the fundamental method must be hard to solve; direct search
of the key space must be infeasible1 'sneak paths' by which
keys or clear text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not
widely; moreover the amount of work required is likely to be
large.

The transformation of a key into the internal settings of
the machine is deliberately designed to be expensive, i.e.
to take a substantial fraction of a second to computeo How-
ever, if keys are restricted to (say) three lower-case
letters, then encrypted files can be read by expending only
a substantial fraction of five minutes of machine timeo

Since the key is an argument to the cr~ command, it is
potentially visible to users executing ~(l) or a deriva­
tive. To minimize this possibility, crypt takes care to
destroy any record of the key immediately upon entry. No
doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO
ed(l), makekey(8)

XENIX System 1 XENIX System

CRYPT(l) CRYPT(l)

NOTES
There is no warranty of merchantability nor any warranty of
fitness for a particular purpose nor any other warranty,
either express or implied, as to the accuracy of the
enclosed materials or as to their suitability for any par­
ticular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient.
Further, Bell Laboratories assumes no obligation to furnish
any assistance of any kind whatsoever, or to furnish any
additional information or documentation.

XENIX System 2 XENIX System

CSH(I) CSH(l)

NAAE
csh - a shell (command interpreter) with C-like syntax

SYNTAX
esh [-cefinstvVxX] [arg •••

DESCRIPTION
Csh is a command language interpreter. It begins by execut­
ing commands from the file '.cshrc' in the home directory of
the invoker. If this is a login shell then~also executes
commands from the file '.login' there. In the normal case,
the shell will then begin reading commands from the termi­
nal, prompting with '% ,: Processing of arguments and the
use of the shell to process files containing command scripts
will be described later.

The shell then repeatedly performs the following actions: a
line of command input is read and broken into words. This
sequence of words is placed on the command history list and
then parsed. Finally each command in the current line is
executed.

When a login shell terminates it executes commands from the
file '.logout' in the users home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs
with the following exceptions. The characters '&v 'I I ';'

'<v '>' '(' ')' form separate words. If doubled in '&&',
'I I', '«' or '»' these pqirs form single words. These
parser metacharacters may be made part of other words, or
prevented their special meaning, by preceding them with '\r.
A newline preceded by a '\' is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations,
'I " "lor '"I, form parts of a word~ metacharacters in
these strings, including blanks and tabs, do not form
separate words. These quotations have semantics to be
described subsequently. within pairs of '. or '"a charac­
ters a newline preceded by a '\' gives a true newline char­
acter.

When the shell's input is not a terminal, the character '#'
introduces a comment which continues to the end of the input
line. It is prevented this special meaning when preceded by
'\' and in quotations using "I, 'I I, and '"'

Commands

A simple command is a sequence of words, the first of which
specifies the command to be executed. A simple command or a

XENIX System 1 XENIX System

CSH(l) CSH(l)

sequence of simple commands separated by ~I' characters
forms a pipeline. The output of each command in a pipeline
is connected to the input of the next. Sequences of pipe­
lines may be separated bY';', and are then executed sequen­
tially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with an '&'.
Such a sequence is automatically prevented from being ter­
minated by a hangup signal; the nohup command need not be
used.

Any of the above may be placed in '(I ')' to form' a simple
command (which may bea compon~nt of a pipeline, etc.) It is
also possible 'to separate pipelines with 'II' or '&&' indi­
cating, as in theC language, that the second is to be exe­
cuted only if the first fails or succeeds respectively. (See
Expressions.)

Substitutions
-

We now describe the yarious transformations the shell per-
forms on the iriput iri the, order in which they occur.

History substitutions

History substitutions can be used to reintroduce sequences
of words from previous commands, ,possibly performing modifi­
cations on these words. Thus history substitutions provide
a generalization of a redo function.

History substitutions begin with the character '!' and may
begin anywhere in the input stream if a history substitution
is not already in progress. Thi~ 'j~ may be preceded by an
'\' to prevent its spec~al meaning; a'!' is passed
unchanged when it is followed by a blank, tab, newline, '='
or '(I. History substitutions also occur when an input line
begins with 'tl. This special abbreviation will be
described later.

Any input line which contains history substitution is echoed
on the terminal before it is executed as it could have been
typed without history substitution.

Commands input from the terminal which consist of one or
more words are saved on the history list, the size of which
is controlled by the history variable. The previous command
is always retained. Commands are numbered sequentially from
1.

For definiteness, consider the following output from the
history command:

XF,NTX Svstem 2 XENIX System

CSH (1) CSH (I)

9 wr ite michael
10 ex write.c
11 cat oldwrite~c
12 diff *write.c

The commands are shown with their event numbers. It is not
usually necessary to use event numbers, but the current
event number can be made part of the prompt by placing an
~! 9 in the prompt string.

with the current event 13 we can refer to previous events by
event number ~! 11', relatively as in ~! -2' (refer ring to the
same event), by a prefix of a command word as in ~!d' for
event 12 or ~!w' for event 9, or by a string contained in a
word in the command as in ~!?mic?V also referring to event
9. These forms, without further modification, simply rein­
troduce the words of the specifi~d events, each separated by
a single blank. As a special case '!!' refers to the previ­
ous command; thus '!1' alone is essentially a redo. The form
~!*e references the current command (the one being typed
in). It allows a word to be selected from further left in
the line, to avoid retyping a long name, as in '1#:1 1

0

To select words from an event we can follow the event
specification by a ~: I and a designator for the desired
words. The words of a input line are numbered from 0, the
first (usu~lly command) w,ord being 0, the second word (first
argument) being 1, etc. The basic word designators are:

o first (command) word
n n'th argument
f first argument, i.e~ '1'
$ last argument
% word matched by (immediately preceding) ?s? search
,~-y range of words
-y abbreviates ~O-y' ,
* abbreviates ~t-$', or nothing if only I word in event
x* abbreviates ~x-$'
x- like ~~*' b~t-omitting word '$'

The ~:' separating the event specification from the word
designator can be omitted if the argument selector begins
with a 't', '$', '*' '-' or'%'. After the optional word
designator can be placed a sequence of modifiers, each pre­
ceded by a ':'. The following modifiers are defined:

h
r
s/l/r/
t - -

&
g

XENIX System

Remove a trailing pathname component, leaving the 11

Remove a trailing '.xxx' component, leaving the roo
Substitute 1 for r

Remove all leading patKname components, leaving t
Repeat the previous substitution.
Apply the change globally, prefixing the above, eog

3 XENIX System

CSH(l)

p
q
x

CSH(l)

Print the new command but do not execute it.
Quote the substituted words, preventing further sub~
Like q, but break into words at blanks, tabs and ne\

Unless preceded by a 'g' the modification is applied only to
the first modifiable word. In any case it is an error for
no word to be applicable.

The left hand side of substitutions are not regular expres­
sions in the sense of the "editors, but rather strings. Any
character may be used as the delimiter in place of '/1; a
'\' quotes the delimiter into the I and r strings. The
character '&' in the right hand si~e is ieplaced by the text
from the left. A '\' quotes '&' also. A null 1 uses the
previous string either from a I or from a conteituai scan
string s in '!?5?'. The trailIng delimiter in the substitu­
tion may be omitted if a newline follows immediately as may
the trailing '?' in a contextual scan.

A history reference may be 9iven without an event specifica­
tion, e.g. 'IS'. In this case the reference is to the pre­
vious command unless a previous history reference occurred
on the same line in which case this form repeats the previ­
ous reference. Thus '!?foo?t !$' gives the first and last
arguments from the command matching '?foo?l.

A special abbreviation of a history reference occurs when
the first non-blank character of an input line is a'tl.
This is equivalent to '!:sj' providing a convenient short­
hand for substitutions on the text of the previous line.
Thus 'jlbjlib l fixes the spelling of 'lib' in the previous
command. Finally, a history substitution may be surrounded
with '{I and '}I if necessary to insulate it from the char­
acters which follow. Thus, after 'Is -ld -paul' we might do
'lilla' to do 'Is -ld -paula', while '!la l would look for a
command starting 'la i •

Quotations with I and H

The quotation of strings by'" and 'H' can be used to
prevent all or some of the remaining substitutions. Strings
enclosed in '" are prevented any further interpretation.
Strings enclosed in 'HI are yet variable and command
expanded as described below.

In both cases the resulting text becomes (all or part of) a
single word; only in one special case (see Command Substiti­
tion below) does a 'H, quoted string yield parts of more
than one word; 'I quoted strings never do.

Alias substitution

XENIX System 4 XENIX System

CSH (1) CSH{l)

The shell maintains a list of aliases which can be esta­
blished, displayed and modified by the alias and unalias
commands. After a command line is scanned, it is parsed
into distinct commands and the first word of each command q

left-to-right, is checked to see if it has an alias. If it
does, then the text which is the alias for that command is
reread with the history mechanism available as though that
command were the previous input line. The resulting words
replace the command and argument list. If no reference is
made to the history list, then the argument list is left
unchanged.

Thus if the alias for 'Is' is 'Is -1' the command 'Is jusr'
would map to 'Is -1 jusr', the argument list here being
undisturbed. Similarly if the alias for 'lookup' was 'grep
!t /etc/passwd' then 'lookup billD would map to 'grep bill
/etc/passwd'.

If an alias is found, the word transformation of the input
text is performed and the aliasing process begins again on
the reformed input line~ Looping is prevented if the first
word of the new text is the same as the old by flagging it
to prevent further aliasing. Other loops are detected and
cause an error.

Note that the mechanism allows aliases to introduce parser
metasyntax. Thus we can 'alias print 'pr \!* I lpr" to
make a command which E!.'~ its arguments to the line printer.

Variable sUQstitution

The shell maintains a set of variables, each of which has as
v~lue a list of zero or more words. Some of these variables
are set by the shell or referred to by it. For instance,
the argv variable is an image of the shell's argument list,
and words of this variable's value are referred to in spe­
cial ways.

The values of variables may be displayed and changed by
using the set and unset commands. Of the variables referred
to by the shell a number are toggles; the shell does not
care what their value is, only whether they are set or not.
For instance, the verbose variable is a toggle which causes
command input to be echoed. The! setting of this variable
resylts from the -v command line option.

Other operations treat variables numerically. The '@' com­
mand permits numeric calculations to be performed and the
result assigned to a variableo Variable values are u how­
ever, always represented as (zero or more) strings. For the
purposes of numeric operations, the null string is con­
sidered to be zero, and the second and subsequent words of

XENIX System 5 XENIX System

CSH(l) CSH(l)

multiword values are ignored.

After the input line is aliased and parsed, and before each
command is executed, variable substitution is performed
keyed by '$' characters. This expansion can be prevented by
preceding the '$' with a '\' except within '"IS where it
always occurs, and within 'IS where it never occurs.
Strings quoted by'" are interpreted later (see Command
substitution below) so '$' substitution does not occur there
until later, if at all. A'S' is passed unchanged if fol­
lowed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable
expansion, and are variable expanded separately. Otherwise,
the command name and entire argument list are expanded
together. It is thus possible for the first (command) word
to this point to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in '"I or given the ':q' modifier the
results of variable substitution may eventually be command
and filename substituted. Within '"I a variable whose value
consists of multiple words expands to a (portion of) a sin­
gle word, with the words of the variables value separated by
blanks. When the ':q' modifier is applied to a substitution
the variable will expand to multiple words with each word
separated by a blank and quoted to prevent later command or
filename substitution.

The following metasequences are provided for introd~cing

variable values into the shell input. Except as noted, it
is an error to reference a variable which is not set.

$name
${name}

Are replaced by the words of the value of variable
name, each separated by a blank. Braces insulate name
from following characters which would otherwise be part
of it. Shell variables have names cons~sting of up to
20 letters, digits, and underscores.

If name is not a shell variable, but is set in the environ­
men~hen that value is returned (but : modifiers and the
other forms given below are not available in this case).

Sname[selector]
S{name[selector] }

May be used to select only some of. the" words from the
value of name. The selector is subjected to'S' substi­
tution ana-may consist of a single number or two
numbers separated by a '_I The first word of a

XENIX System 6 XENIX System

CSH(l) CSH(l)

variables value is numbered '1 9
0 If the first number

of a range is omitted it defaults to 'I'. If the last
member of a range is omitted it defaults to '$#nameUo
The selector '*' selects all wordso It is not an error
for a range to be empty if the second argument is omit­
ted or in range.

$#name
${#name}

$0

Gives the n~mber of words in the variable. This is
useful for later use in a '[selector] '.

Substitutes the name of the file from which command
input is being read. An error occurs if the name is
not known.

$number
${number}

Equivalent to '$argv[number] '.

$*
Equivalent to '$argv[*] '.

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied
to the substitutions above as may ':gh', ':gt' and ':gr'.
If braces 'I' ,}, appear in the command form then the modif­
iers must appear within the braces. The current implementa­
tion allows only one ':' modifier on each '$9 expansiono

The following substitutions may not be modified with ':'
modifiers.

$?name
${?name}

$?O

$$

Substitutes the string '1' if name is set, '0' if it is
not.

Substitutes '1' if the current input filename is know,
'0' if it is not.

Substitute the (decimal) process number of the (parent)
shell.

Command and filename substitution

The remaining substitutions, command and filename substitu­
tion, are applied selectively to the arguments of builtin
commands. This means that portions of expressions which are
not evaluated are not subjected to these expansions. For

XENIX System 7 XENIX System

CSH(I) CSH(I)

commands which are not internal to the shell, the command
name is substituted separately from the argument list. This
occurs very late, after input-output redirection is per­
formed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in
"~I The output from such a command is normally broken into
separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original
string. within '''IS, only newlines force new words; blanks
and tabs are preserved.

In any case, the single final newline does not force a new
word. Note that it is thus possible for a command substitu­
tion to yield only part of a word, even if the command out­
puts a complete line.

Filename substitution

If a word contains any of the characters '*', '?', '[I or
'I' or begins with the character '-I, then that word is a
candidate for filename substitution, also known as 'glob­
bing'. This word is then regarded as a pattern, and
replaced with an alphabetically sorted list of file names
which match the pattern. In a list of words specifying
filename substitution it is an error for no pattern to match
an existing file name, but it is not required for each pat­
tern to match. Only the metacharacters '*', '?' and '[I
imply pattern matching, the characters '-I and '{I being
more akin to abbreviations.

In matching filenames, the character '.' at the beginning of
a filename or immediately following a 'I', as well as the
character 'I' must be matched explicitly. The character '*'
matches any string of characters, including the null string.
The character '?' matches any single character. The
sequence '[•.•]' matches anyone of the characters enclosed.
within 'f ...] " ~ p~ir of characters separated by '-'
matches any character lexically between the two.

The character '-I at the beginning of a filename is used to
refer to home directories. Standing alone, i.e. ,-, it
expands to the invokers home directory as reflected in the
value of the variable home. When followed by a name consist­
ing of letters, digits and '-' characters the shell searches
for a user with that name and substitutes their home direc­
tory: thus '-ken' might expand to '/usr/ken' and
'-ken/chmach' to'/usr/ken/chmach'. If the character ,-, is
followed by a character other than a letter or 'I' or
appears not at the beginning of a word, it is left

XENIX Svstem 8 XENIX SY3tem

CSH(l) CSH(l)

undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand for 'abe ace
adel. Left to right order is preserved, with results of
matches being sorted separately at a low level to preserve
this order. This con$truct may be nested. Thus
'-source/sl/{oldls,ls}.c' expands to '/usr/source/sl/oldls.c
/usr/source/sl/ls.c' whether or not these files exist
without any chance of error if the home directory for
'source' is '/usr/source'. Similarly '0 o/{memo,*box} , might
expand to 'oo/memo .. /box .. /mbox'. (Note that 'memo' was
not sorted with the results of matching '*box'.) As a spe­
cial case '{I, ,}, and '{}I are passed undisturbed.

Input/output

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Open file name (which is first variable, command and
filename expanded) as the standard input.

« word
Read the shell input up to a line which is identical to
word. Word is not subjected to variable, filename or
command substitution, and each input line is compared
to word before any substitutions are done on this input
line:--Unless a quoting '\~ , 'II', 'I lor "I appears in
word variable and command substitution is performed on
the intervening lines, allowing '\! to quote '$', '\'
and "'0 Commands which are substituted have all
blanks, tabs, and newlines preserved, except for the
final newline which is dropped. The resultant text is
placed in an anonymous temporary file which is given to
the command as standard input.

> name
>1 name
>& name
>&1 name

The file name is used as standard output. If the file
does not exist then it is created; if the file exists g

its is truncated, its previous contents being losto

If the variable noclobber is set, then the file must
not exist or be a character special file (e.g. a termi­
nal or '/dev/null') or an error results. This helps
prevent accidental destruction of files. In this case
the '1' forms can be used and suppress this check.

The forms involving '&' route the diagnostic output

XENIX System 9 XENIX System

CSH (1) CSH (1)

into the specified file as well as the standard output.
Name is expanded in the same way as '<I input filenames
are.

» name
»& name
»! name
»&1 name

Uses file name as standard output like '>1 but places
output at the end of the file. If the variable
noclobber is set, then it is an error for the file not
to exist unless one of the '1' forms is given. Other­
wise similar to '>'.

If a command is run detached (followed by '&') then the
default standard input for the command is the empty file
'/dev/null'. Otherwise the command receives the environment
in which the shell was invoked as modified by the input­
output parameters and the presence of the command in a pipe­
line. Thus, unlike some previous shells, commands run from
a file of shell commands have no access to the text of the
commands by default; rather they receive the original stan­
dard input of the shell. The '«~I mechanism should be used
to present inline data. This permits shell command scripts
to function as components of pipelines and allows the shell
to block read its input.

Diagnostic output may be directed through a pipe with the
standard output. Simply use the form '1&' rather than just
, I' ·
Expressions

A number of the builtin commands (to be described subse­
quently) take expressions, in which the operators are simi­
lar to those of C, with the same precedence. These expres­
sions appear in the @, exit,if, and while commands. The
following operators are available:

II && I t & -- 1= <= >= < > «» + *
I % ()

Here the precedence increases to the right, '==' and '!=',
'<=' '>=' '<I and '>', '«I and '»', '+' and '_I, '*' 'I'
and '%' being, in groups, at the same level. The '==' and
'!=' operators compare their arguments as strings, all oth­
ers operate on numbers. Strings which begin with '0' are
considered octal numbers. Null or missing arguments are
considered '0'. The result of all expressions are strings,
which represent decimal numbers. It is important to note
that no two components of an expression can appear in the
same word; except when adjacent to components of expressions

XENIX System 10 XENIX System

CSH(I) CSH(l)

which are syntactically significant to the parser ('&' 'I'
~<' ~>o '(I ') ') they should be surrounded by spaceso

Also available in expressions as primitive operands are com­
mand executions enclosed in ,{v and ,}, and file enquiries
of the form '-1 name' where 1 is one of:

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then
tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible
then all enquiries return false, i.eo '0'0 Command execu­
tions succeed, returning true, ioeo '1', if the command
exits with status 0, otherwise they fail, returning false,
i.e. '0'. If more detailed status information is required
then the command should be executed outside of an expression
and the variable status examined.

Control flow

The shell contains a number of commands which can be used to
regulate the flow of control in command files (shell
scripts) and (in limited but useful ways) from terminal
input. These commands all operate by forcing the shell to
reread or skip in its input and, due to the implementation,
restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the
if-then-else form of the if statement require that the major
keywords appear in a single simple command on an input line
as shown below.

If the shell's input is not seekable, the shell buffers up
input whenever a loop is being read and performs seeks in
this internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto's
will succeed on non-seekable inputs.)

Builtin commands

Builtin commands are executed within the shelle If a buil­
tin command occurs as any component of a pipeline except the
last then it is executed in a subshell.

XENIX System 11 XENIX System

CSH (1) CSH(l)

alias
alias name
alias name wordlist

The first form prints all aliases. The second form
prints the alias for name. The final form assigns the
specified wordlist as the alias of name: wordlist is
command and filename substituted. Name is not allowed
to be alias or unalias

alloc
Shows the amount of dynamic core in use, broken down
into used and free core, and address of the last loca­
tion in the heap. with an argument shows each used and
free block on the internal dynamic memory chain indi­
cating its address, size, and whether it is used or
free. This is a debugging command and may not·work in
production versions of the shell; it requires a modi­
fied version of the system memory allocator.

break
Causes execution to resume after the end -of the nearest
enclosing forall or while. The remaining commands on
the current line are executed. Multi-level breaks are
thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to directory name.
If no argument is given then change to the home direc­
tory of the user.

If name is not found as a subdirectory of the current direc­
tory-{and does not begin with 'I', '.1', or ' •. 1'), then
each component of the variable cdpath is checked to see if
it has a subdirectory name~ Finally, if all else fails but
name is a shell variable whose value begins with 'I', then
this is tried to see if it is a directory.

continue
continue execution of the nearest enclosing while or
foreach. The rest of the commands on the current line
are executed.

XENIX System 12 XENIX System

CSH{l) CSH{I)

default:
Labels the default case in a switch statemento The
default should come after all case labelso

echo word list
The specified words are written to the shells standard
output. A '\c' causes the echo to complete without
printing a newline, akin to the '\c' in nroff(l). A
~\n' in wordlist causes a newline to be printed. Oth­
erwise the words are echoed, separated by spaces.

else
end
endif
endsw

See the description of the foreach, if, switch, and
while statements below.

exec command

exit

The specified command is executed in place of the
current shell.

exit (expr)
The shell exits either with the value of the status
variable (first form) or with the value of the speci­
fied eXEr (second form).

for each name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this com­
mand and the matching end are executedo (Both for each
and end must appear alone on separate lineso)

The builtin command continue may be used to continue
the loop prematurely and the builtin command break to
terminate it prematurely. When this command is read
from the terminal, the loop is read up once prompting
with '?' before any statements in the loop are exe­
cuted. If you make a mistake typing in a loop at the
terminal you can rub it out.

glob wordlist
Like echo but no '\' escapes are recognized and words
are delimited by null characters in the outpute Useful
for programs which wish to use the shell to filename
expand a list of words.

goto word
The specified word is filename and command expanded to

XENIX System 13 XENIX System

CSH(l) CSH{l)

yield a string of the form 'label'. The shell rewinds
its input as much as possible and searches for a line
of the form 'label:' possibly preceded by blanks or
tabs. Execution continues after the specified line.

history
Displays the history event list.

if (expr) command
If the specified expression evaluates true, then the
single command with arguments is executed. variable
substitution on command happens early, at the same time
it does for the rest of the if command. Command must
be a simple command, not a plpeline, a command list, or
a parenthesized command list. Input/output redirection
occurs even if expr is false, when command is not exe­
cuted (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true then the commands to the
first else are executed; else if expr2 is true then the
commands to the second else are executed, etc. Any
number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The
words else and endlf must appear at the beginning of
input lines; the:rr-must appear alone on its input line
or after an else.-)-

login
Terminate a login shell, replacing it with an instance
of /bin/login. This is one way to log off, included for
compatibility with /bin/sh.

logout

nice

Terminate a login shell. Especially useful if
ignoreeof is set.

nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The
second form sets the nice to the given number. The
final two forms run command at priority 4 and number
respectively. The super-user may specify negative
niceness by using 'nice ~number .•. '. Command is

XENIX System 14 XENIX System

CSH(I) CSH(l)

always executed in a sub-shell, and the restrictions
place on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause
hangups to be ignored for the remainder of the script.
The second form causes the specified command to be run
with hangups ignored. On the Computer Center systems
at UC Berkeley, this also submits the processo Unless
the shell is running detached, nohuE has no effecto
All processes detached with ~'&' 0 are automatically
nohup'ed. (Thus, nohup is not really needed.)

onintr
onintr
onintr label

Control the action of the shell on interrupts. The
first form restores the default action of the shell on
interrupts which is to terminate shell scripts or to
return to the terminal command input level. The second
form 'onintr -' causes all interrupts to be ignored.
The final form causes the shell to execute a 'goto
label' when an interrupt is received or a child process
terminates because it was interrupted.

In any case, if the shell is running detached and
interrupts are being ignored, all forms of onintr have
no meaning and interrupts continue to be ignored by the
shell and all invoked commands.

rehash
Causes the internal hash table of the contents of the
directories in the path variable to be recomputedo
This is needed if new commands are added to directories
in the path while you are logged in. This should only
be necessary if you add commands to one of your own
directories, or if a systems programmer changes the
contents of one of the system directories.

repeat count command
The specified command which is subject to the same res­
trictions as the command in the one line if statement
above, is executed count times. I/O redirections
occurs exactly once, even if count is 00

set
set name
set name=word
set name[index]=word
set name={wordlist}

The first form of the command shows the value of all

XENIX System 15 XENIX System

CSH(I) CSH{l)

shell variables. Variables which have other than a
single word as value print as a parenthesized word
list. The second form sets name to the null string.
The third form sets name to the single word. The fourth
form sets the index'th component of name to word; this
component must already exist. The final form sets name
to the list of words in wordlist. In all cases the
value is command and filename expanded.

These arguments may b~ repeated to set multiple values
in a single set command. Note however, that variable
expansion happens for all arguments before any setting
occurs.

setenv name value

shift

(Version 7 systems only.) Sets the value of environment
variable name to be value, a single string. Useful
environment variables are 'TERM' the type of your ter­
minal and 'SHELL' the shell you are using.

shift variable
The members of argv are shifted to the left, discarding
argv[l). It is an error for argv not to be set or to
have leSs than one word as value. The second form per­
forms the same function on the specified variable.

source name
The shell reads commands from name. Source commands may
be nested; if they are nested too deeply the shell may
run out of file descriptots. An error in a source at
any level terminates all nested sour

list.

switch (string)
case strl:

breaksw

default:

breaksw
endsw

during source

Each case label is successively matched, against the
specified string which is first command and filename
expanded. The file metacharacters '*', '?' and '[...] I

may be used in the case labels, which are variable
expanded. If none of the labels match before a
'default' label is found, then the execution begins
after the default label. Each case label and the
default label must appear nline.

XENIX System 16 XENIX System

CSH(l)

time

CSH(I)

The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case
labels and default labels as in c. If no label matches
and there is no default, execution continues after the
endsw.

time command
with no argument, a summary of time used by this shell
and its children is printed. If arguments are given
the specified simple command is timed and a time sum­
mary as described under the time variable is printed.
If necessary, an extra shell-rs-created to print the
time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set
to the specified value (second form). The mask is
given in octal. Common values for the mask are 002
giving all access to the group and read and execute
access to others or 022 giving all access except no
write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are
discarded. Thus all aliases are removed by ~unalias
*' It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of
executed programs is disabled.

unset pattern

wait

All variables whose names match the specified pattern
are removed. Thus all variables are removed by 'unset
*'; this has noticeably distasteful side-effects. It
is not an error for nothing to be unset.

All child processes are waited for. It the shell is
interactive, then an interrupt can disrupt the wait, at
which time the shell prints names and process numbers
of all children known to be outstanding.

while (expr)

end
While the specified expression evaluates non-zero, the
commands between the while and the matching end are
evaluated. Break and continue may be used to terminate
or continue the loop prematurely. (The while and end

XENIX System 17 XENIX System

CSH (1)

@

CSH(l)

must appear alone on their input lines.) Prompting
occurs here the first time through the loop as for the
foreach statement if the input is a terminal.

@ name = expr
@ name[index] = expr

The first form prints the values of all the shell vari­
ables. The second form sets the specified name to the
value of expr. If the expression contains '~'>', '&'
or 'I' then at least this part of the expression must
be placed within '(I ') '. The third form assigns the
value of expr to the index'th argument of name. Both
name and its index'th component must already exist.

The operators '*=', '+=', etc are available as in C.
The space separating the name from the assignment
operator is optional. Spaces are, however, mandatory
in separating components of expr which would otherwise
be single words.

Special postfix '++' and ' __ I operators increment and
decrement name respectively, i.e. '@ i++'.

Pre-defined variables

The following variables have special meaning to the shell.
Of these, argv, child, home, path, prompt, shell and status
are always set by the shell. Except for child and status
this setting occurs only at initialization; these variables
will not then be modified unless this is done explicitly by
the user.

The shell copies the environment variable PATH into the
variable path, and copies the value back into the environ­
ment whenever path is set. Thus is is not necessary to
worry about its setting other than in the file .cshrc as
inferior csh processes will import the definition of pat~
from the environment. (It could be set once in the .logln
except that commands through net(l) would not see the defin-
ition.) ---

argv

cdpath

child

XENIX System

Set to the arguments to the shell, it is from
this variable that positional parameters are
substituted, i.e. '$1' is replaced by
'$argv[l] " etc.

Gives a list of alternate directories
searched to find subdirectories in chdir com­
mands.

The process number printed when the last

18 XENIX System

CSH(l)

echo

histchars

history

home

ignoreeof

mail

XENIX System

CSH(l)

command was forked with '&'. This variable
is unset when this process terminates.

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For non­
builtin commands all expansions occur before
echoing. Builtin commands are echoed before
command and filename substitution, since
these substitutions are then done selec­
tively.

Can be assigned a two character string. The
first character is used as a history charac­
ter in place of "~I ", the second character
is used in place of the "~, I substitution
mechanism. For example, "set .
histchars=",~"" will cause the history char­
acters to be comma and semicolon.

Can be given a numeric value to control the
size of the history list. Any command which
has been referenced in this many events will
not be discarded. Too large values of his­
tory may run the shell out of memory. The
last executed command is always saved on the
history lipt.

The home directory of the invoker, initial­
ized from the environment. The filename
expansion of ,-, refers to this variable.

If set the shell ignores end-of-file from
input devices which are terminals. This
prevents shells from accidentally being
killed by control-D's.

The files where the shell checks for mail.
This is done after each command completion
which will result in a prompt, if a specified
interval has elapsed. The shell says 'You
have new mail.' if the file exists with an
access time not greater than its modify time.

If the first word of the value of mail is
numeric it specifies a different mail check­
ing interval, in seconds, than the default,
which is 10 minutes.

If multiple mail files are specified, then
the shell says 'New mail in name' when there
is mail in the file name.

19 XENIX System

CSH (I)

noclobber

noglob

nonomatch

path

prompt

shell

XENIX System

CSH (I)

As described in the section on Input/output,
restrictions are placed on output redirection
to insure that files are not accidentally
destroyed, and that '»' redirections refer
to existing files.

If set, filename expansion is inhibited.
This is most useful in shell scripts which
are not dealing with filenames, or after a
list of filenames has been obtained and
further expansions are not desirable.

If set, it is not an error for a filename
expansion to not match any existing files;
rather the primitive pattern is returned. It
is still an error for the primitive pattern
to be malformed, i. e. 'echo [' still gives
an error.

Each word of the path variable specifies a
directory in which commands are to be sought
for execution. A null word specifies the
current directory. If there is no path vari­
able then only full path names will execute.
The usual search path is '.1, '/bin' and
'/usr/bin', but this may vary from system to
system. For the super-user the default
search path is '/etc', '/bin' and '/usr/bin'.
A shell which is given neither the -c nor the
-t option will normally hash the contents of
the directories in the path variable after
reading .cshrc, and each time the path vari­
able is reset. If new commands are added to
these directories while the shell is active,
it may be necessary to give the rehash or the
commands may not be found.

The string which is printed before each com­
mand is read from an interactive terminal
input. If a '1 I appears in the string it
will be replaced by the current event number
unless a preceding '\' is given. Default is
'% I, or '# ' for the super-user.

The file in which the shell resides. This is
used in forking shells to interpret files
which have execute bits set, but which are
not execu table by the sys tern. (See the
description of Non-builtin Command Execution
below.) Initialized to the (system-dependent)
home of the shell.

20 XENIX System

CSH (I)

status

time

verbose

CSB(l)

The status returned by the last commando If
it terminated abnormally, then 0200 is added
to the status. Builtin commands which fail
return exit status '1', all other builtin
commands set status '0'.

Controls automatic timing of commands. If
set, then any command which takes more than
this many cpu seconds will cause a line giv­
ing user, system, and real times and a utili­
zation percentage which is the ratio of user
plus system times to real time to be printed
when it terminates.

Set by the -v command line option, causes the
words of each command to be printed after
history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin
command the shell attempts to execute the command via
exec(2). Each word in the variable path names a directory
from which the shell will attempt to execute the command.
If it is given neither a -c nor a -t option, the shell will
hash the names in these directories into an internal table
so that it will only try an exec in a directory if there is
a possibility that the command resides there" This greatly
speeds command location when a large number of directories
are present in the search path. If this mechanism has been
turned off (via unhash), or if the shell was given a -c or
-~ argument, and in any case for each directory component of
path which does not begin with a "/11', the shell concat.en­
ates with the given command name to form a path name of a
file which it then attempts to executec

Parenthesized commands are always executed in a subshell.
Thus' (cd; pwd) ; pwd' prints the horne directory; leaving
you where you were (printing this after the home directory),
while 'cd; pwd' leaves you in the horne directoryo
Parenthesized commands are most often used to prevent chdir
from affecting the current shell.

If the file has execute permissions but is not an executable
binary to the system, then it is assumed to be a file con­
taining shell commands an a new shell is spawned to read it.

If there is an alias for shell then the words of the alias
will be prepended to the argument list to form the shell
command. The first word of the alias should be the full
path name of the shell (e.g. '$sheil') 0 Note that this is a
special, late occurring, case of alias substitution r and

XENIX System 21 XENIX System

CSH (I)

only allows words to be prepended to the argument list
without modification.

Argument list processing

If argument 0 to the shell is '_I then this is a login
shell. The flag arguments are interpreted as follows:

CSH{l}

-c Commands are read from the (single) following argument
which must be present. Any remaining arguments are
placed in argv.

-e The shell exits if any invoked command terminates
abnormally or yields a non-zero exit status.

-f The shell will start faster, because it will neither
search for nor execute commands from the file '.cshrc'
in the invokers home directory.

-i The shell is interactive and prompts for its top-level
input, even if it appears to not be a terminal. Shells
are interactive without this option if their inputs and
outputs are terminals.

-n Commands are parsed, but not executed. This may aid in
syntactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A '\' may
be used to escape the newline at the end of this line
and continue onto another line.

-v Causes the verbose variable to be set, with the effect
that command input is echoed after history substitu­
tion.

-x Causes the echo variable to be set, so that commands
are echoed immediately before execution.

-v Causes the verhose variable to be set even before
'. cshrc' is executed.

-x Is to -x as -V is to -v.

After processing of flag arguments if arguments remain but
none of the -c, -i, -s, or -t options was given the first
argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for
possible resubstitution by '$0'. Since many systems use
either the standard version 6 or version 7 shells whose
shell scripts are not compatible with this shell, the shell

XENIX Svstem 22 XENIX System

CSH (I) CSH(l)

will execute such a ~standardg shell if the first character
of a script is not a ~*9Q i~eo if the script does not start
with a comment. Remaining arguments initialize the variable
argvo

Signal handling

The shell normally ignores quit signals. The interrupt and
quit signals are ignored for an invoked command if the com­
mand is followed by ~&v; otherwise the signals have the
values which the shell inherited from its parento The
shells handling of interrupts can be controlled by onintro
Login shells catch the terminate signal; otherwise this sig­
nal is passed on to children from the state in the shellgs
parento In no case are interrupts allowed when a login
shell is reading the file '.logout'.

AUTHOR
William Joy

FILES
.... /.cshrc
-/ologin
-/.logout
/bin/sh
/tmp/sh*
/dev/null
/etc/passwd

Read at beginning of execution by each shell.
Read by login shell, after '.cshrc' at login.
Read by login shell, at logouto
Shell for scripts not starting with a '#'0
Temporary file for ~«'.
Source of empty file.
Source of home directories for ' name'.

LIMITATIONS
Words can be no longer than 512 characters. The number of
characters in an argument varies from system to system.
Early version 6 systems typically have 512 character limits
while later version 6 and version 7 systems have 5120 char­
acter limits. The number of arguments to a command which
involves filename expansion is limited to 1/6'th the number
of characters allowed in an argument list. Also command
substitutions may substitute no more characters than are
allowed in an argument list.

To detect looping, the shell restricts the number of alias
substititutions on a single line to 200

SEE ALSO

NOTES

access(2), exec(2), fork(2), pipe(2), signal(2)" umask(2),
wait(2), a.out(5), environ(5), 'An introduction to the C
shell'

Control structure should be parsed rather than being recog­
nized as built-in commands. This would allow control com­
mands to be placed anywhere, to be combined with 'I v, and to

XENIX System 23 XENIX System

CSH (1)

be used with '&' and '; I metasyntax.

Commands within loops, prompted for by
in the history list.

'? , . ,

CSH(l)

are not placed

It should be possible to use the ':' modifiers on the output
of command substitutions. All and more than one ':' modif­
ier should be allowed on '$' substitutions.

Some commands should not touch status or it may be so tran­
sient as to be almost useless. Oring in 0200 to status on
abnormal termination is a kludge.

In order to be able to recover from failing exec commands on
version 6 systems, the new command inherits several.open
files other than the normal standard input and output and
diagnostic output. If the input and output are redirected
and the new command does not close these files, some files
may be held open unnecessarily.

There are a number of bugs associated with the
importing/exporting of the PATH. For example, directories
in the path using the - syntax are not expanded in the PATH.
Unusual paths, such as (), can cause csh to core dump.

This version of csh does not support or use the process con­
trol features of the 4th Berkeley Distribution. It contains
a number of known bugs which have been fixed in the process
control version. This version is not supported.

XENIX System 24 XENIX System

DC(l) DeCl),

NAME
de - desk calculator

SYNTAX
de [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily
It operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits
to be maintained. The overall structure of de is a stacking
(reverse Polish) calculator. If an argumentls given!, input
is taken from that file until its end, then from the stan­
dard input. The following constructions are recognized:

+ - I * % '"
The top two values on the stack are added (+), sub­
tracted (-), multiplied (*), divided (I), remaindered
(%), or exponentiated ("')0 The two entries are popped
off the stack; the result is pushed on the stack in
their place. Any fraction~l part of an exponent is
ignored.

sx The top of the stack is popped and stored into a
register named x, where x may be any character. If
the s is capitalized, x Is treated as a stack and the
value is pushed on it.~

Ix The value in register x is pushed on the stacko The
register x is not alteredo All registers start with
zero value. If the 1 is capitalized, register x is
treated as a stack and its top value is popped onto
the main stack ..

d The top value on the stack is duplicatedo

p The top value on the stack is printed. The top value
remains unchanged. P interprets the top of the stack
as an ascii string, removes it, and prints it.

f All values on the stack and in registers are printedo

q exits the program. If executing a string, the recur­
sion level is popped by tWOe If q is capitalized, the
top value on the stack is popped and the string execu~
tion level is popped by that value.

XEN IX Sys tern 1 XENIX System

DC(I)

x

x

D:::'(l)

treats the top element of the stack as a character
string and executes it as a string of dc commands.

replaces the number on the top of the stack with its
scale factor.

[...]
puts the bracketed ascii string onto the top of the
stack.

<x >x =x
-The-top two elements of the stack are popped and com­

pared. Register x is executed if they obey the stated
relation.

v replaces the top element on the stack by its square
root. Any existing fractional part of the argument is
taken into account, but otherwise the scale factor is
ignored.

c

i

a

o

k

z

z

?

. . , .

interprets the rest of the line as a UNIX command.

All values on the stack are popped.

The top value on the stack is popped and used as the
number radix for further input. I pushes the input
base on the top of the stack.

The top value on the stack is popped and used as the
number radix for further output.

pushes the output base on the top of the stack.

the top of the stack is pepped, and that value is used
as a non-negative scale factor: the appropriate number
of places are printed on output, and maintained during
multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output
base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its
length.

A line of input is taken from the input source (usu­
ally the terminal) and executed.

are used by bc for array operations.

An example which prints the first ten values of n! is

XENIX System 2 XENIX System

DC(l)

[lal+dsa*plalO>y]sy
Osal
lyx

DC (1)

SEE ALSO
bc(l), which is a preprocessor for dc providing infix nota­
tion and a C-like syntax which implements functions and rea­
sonable control structures for programs.

DIAGNOSTICS
'x is unimplemented' where x is an octal number.
'stack empty' for not enough elements on the stack to do
what was asked.
~Out of space' when the free list is exhausted (too many
digits) .
'Out of headers' for too many numbers being kept aroundo
'Out of pushdown' for too many items on the stack.
'Nesting Depth' for too many levels of nested execution.

XENIX System 3 XENIX System

DD(l) JD(l)

N~E

dd - convert and copy a file

SYNTAX
dd [option=value] . . .

DESCRIPTION
Dd copies the specified input file to the specified output
with possible conversions. The standard input and output
are used by default. The input and output block size may be
specified to take advantage of raw physical I/O.

option
if=
of=
ibs=n
obs=n
bs=n-

cbs=n
skip~n
files~n
seek=n

count=n
conv=ascii

ebcdic
ibm
lcase
ucase
swab
noerror
sync . .. , ...

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size-(default 512)
set both input and output block size,
superseding ibs and obs; also, if no conver­
sion is specified, ir-I~ particularly effi­
cient since no copy need be done
conversion buffer size
skip n input records before starting copy
copy n files from (tape) input
seek n records from beginning of output file
before copying
copy only ~ input records
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII to EBCDIC
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error
pad every input record to ibs
several comma-s~parated conversions

Where sizes are specified, a number of bytes is expected. A
number may end with k, b or w to specify multiplication by
1024, 512, or 2 respectively; a pair of numbers may be
separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified.
In the former case cbs characters are placed into the
conversion buffer, converted to ASCII, and trailing blanks
trimmed and new-line added before sending the line to the
output. In the latter case ASCII characters are read into
the conversion buffer, converted to EBCDIC, and blanks added
to make up an output record of size cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

XENIX System 1 XENIX System

DD(l)

For example, to read an EBCDIC tape blocked ten aO-byte
EBCDIC card images per record into the ASCII file ~~

DD(l)

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=asciiglcase

Note the use of raw magtape. Dd is especially suited to I/O
on the raw physical devices because it allows reading and
writing in arbitrary record sizes.

To skip over a file before copying from magnetic tape do

(dd of=/dev/null; dd of=x) </dev/rmtO

SEE ALSO
cp(l), tr{l)

DIAGNOSTICS

NOTES

f+p records in{out): numbers of full and partial records
read(written)

The ASCII/EBCDIC conversion tables are taken from the 256
character standard in the CACM Nov, 1968. The 'ibm' conver­
sion, while less blessed as a standard, corresponds better
to certain IBM print train conventions. There is no univer­
sal solution.

New1ines are inserted only on conversion to ASCII; padding
is done only on conversion to EBCDIC. These should be
separate options.

XENIX System 2 XENIX System

DF (1M) DF C:.M)

NAME
df - disk free

SYNOPSIS
df [filesystem] ...

DESCRIPTION
Df prints out the number of free blocks available on the
!Tlesystems. If no file system is specified, the free space
on all of the normally mounted file systems is printed.

FILES
Default file systems vary with installation.

SEE ALSO
icheck(l)

XENIX System 1 XENIX System

DIFF(l) DIFF(l)

NAME
diff - differential file comparator

SYNTAX
diff -efbh] filel file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring
them into agreement. If filel (file2) is '-', the standard
input is used. If filel (file2) is a directory, then a file
in that directory whose file-name is the same as the file­
name of file2 (filel) is used. The normal output contains
lines of these forms:

nl a n3,n4
nl,n2d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into
file2. The numbers after the letters pertain to file2e In
fact, by exchanging 'at for 'd' and reading backward one may
ascertain equally how to convert file2 into filel. As in
ed, identical pairs where nl = n2 or n3 = n4 are abbreviated
as a single number.

Following each of these lines come all the lines that are
affected in the first file flagged by '<I, then all the
lines that are affected in the second file flagged by'>'.

The -b option causes trailing blanks (spaces and tabs) to be
ignored and other strings of blanks to compare equal.

The -e option produces a script of a, c and d commands for
the editor ed, which will recreate file2 from filel. The-f
option produces a similar script, not useful with ed, in the
opposite order. In connection with -e, the followIng shell
program may help maintain multiple versions of a file. Only
an ancestral file ($1) and a chain of version-to-version ed
scripts ($2,$3, ...) made by diff need be on hand. A 'latest
version' appears on the standard output.

(shift; cat $*; echo 'l,$p') I ed - $1

Except in rare circumstances, diff finds a smallest suffi­
cient set of file differences.----

Option -h does a fast, half-hearted jobo It works only when
changed stretches are short and well separated, but does
work on files of unlimited length. Options -e and -f are
unavailable with -h.

XENIX System 1 XENIX System

DIFF(l) DIFF(l)

FILES
/tmp/d?????
/usr/lib/diffh for -h

SEE ALSO
cmp (I), comm (I), ed (I)

DIAGNOSTICS

NOTES

Exit status is 0 for no differences, I for some, 2 for trou­
ble.

Editing scripts produced under the -e or -f option are naive
about creating lines consisting of a single ' ,

XENIX System 2 XENIX System

DIFF3(1) DIFF3(1)

NAME
diff3 3-way differential file comparison

SYNTAX
diff3 =ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes
disagreeing ranges of text flagged with these codes:

====1

====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a
given file to some other is indicated in one of these ways:

f nl a

f nl , n2 c

Text is to be appended after line number nl
in file i, where f = 1, 2, or 3.

Text is to be changed in the range line nl
to line n2. If nl = n2, the range may be­
abbreviated to n~

The original contents of the range follows immediately after
a c indication. When the contents of two files are identi­
cal, the contents of the lower-numbered file is suppressedo

Under the -e option, diff3 publishes a script for the editor
ed that will incorporate into filel all changes between
ITle2 and file3, i.e. the changes that normally would be
flagged ==== and ~=~=3. Option -x (-3) produces a script to
incorporate only changes flagged ==== (====3) 0 The follow­
ing command will apply the resulting script to 'filel'.

(cat script; echo' l,$p') I ed - filel

/tmp/d3?????
/usr/lib/diff3

SEE ALSO

NOTES

diff(l)

Text lines that consist of a single '.' will defeat -eo
Files longer than 64K bytes won't work.

XENIX System 1 XENIX System

DU(l) DU(l)

NAME
du summarize disk usage

SYNTAX
du [-s [-a] [name •••]

DESCRIPTION

NOTES

Du gives the number of blocks contained in all files and
(recursively) directories within each specified directory or
file name. If name is missing, '.' is used.

The optional argument -s causes only the grand total to be
given. The optional argument -a causes an entry to be gen­
erated for each file. Absence of either causes an entry to
be generated for each directory only.

A file which has two links to it is only counted once.

Non-directories given as arguments (not Uhder -a option) are
not listed.
If there are too many distinct linked files, du counts the
excess files multiply.

XENIX System 1 XENIX System

DUHP (1M) \0

NAME
dump - incremental file system dump

SYNOPSIS
dump key [argument .•.] filesystem

DESCRIPTION
Du~p copies to magnetic tape all files changed after a cer­
taln date in the filesystem. The ~ specifies the date and
other options about the dump. The ~ consists of charac­
ters from the set 0123456789fusd.

f Place the dump on the next argument file instead of the
tape"

u If the dump completes successfully, write the date of
the beginning of the dump on file '/etc/ddate' .. This
file records a separate date for each filesystem and
each dump level.

0-9 This number is the 'dump level'. All files modified
since the last date stored in the file '/etc/ddate g for
the same filesystem at lesser levels will be dumped.
If no date is determined by the level, the beginning of
time is assumed; thus the option 0 causes the entire
filesystem to be dumped.

s The size of the dump tape is specified in feet. The
number of> feet is taken from the next argument 0 When
the specified size is reached, the dump will wait for
reels to be changed. The default size is 2300 feet.

d The density of the tape, expressed in BPI, is taken
from the next argument. This is used in calculating the
amount of tape used per write. The default is 1600.

If no arguments are given, the ~ is assumed to be 9u and
the program attempts to dump the default filesystem to the
default tape.

Now a short suggestion on how perform dumpse Start with a
full level 0 dump

dump Ou

Next, periodic level 9 dumps should be made on an exponen­
tial progression of tapes. (Sometimes called Tower of Hanoi
- 1 2 I 3 1 2 1 4 ... tape 1 used every other time q tape 2
used every fourth, tape 3 used every eighth, etco)

dump 9u

XENIX System I XENIX System

DUMP(lM) DUMP (1M)

When the level 9 incremental approaches a full tape (about
78000 blocks at 1600 BPI blocked 20), a level 1 dump should
be made.

dump lu

After this, the exponential series should progress as unin­
terrupted. These level 9 dumps are based on the level 1
dump which is based on the level 0 full dump. This progres-
sion of levels of dump can be carried as far as desired.

FILES
Default filesystem and tape vary with installation. For
safety, however, we recommend that default disk filesystems
not be used, as common operator errors can destroy that
default disk.
/etc/ddate: record dump dates of filesystem/level.

SEE ALSO
restor(l), dump(5), dumpdir(l) , sddate (1M)

DIAGNOSTICS

BUGS

If the dump requires more than one tape, it will ask you to
change tapes. Reply with a new-line when this has been
done.

Sizes are based on 1600 BPI blocked tape. The raw magtape
device has to be used to approach these densities. Read
errors on the filesystem ~re ignored. Write errors on the
magtape are usually fatal.\

XENIX System 2 XENIX System

DUMPDIR (1M) DUMPDIR (1M)

NAME
dumpdir - print the names of files on a dump tape

SYNOPSIS
dumpdir [f filename]

DESCRIPTION

FILES

Dumpdir is used to read magtapes dumped with the dMmp com­
mano-and list the names and inode numbers of all t e files
and directories on the tapee

The f option causes filename as the name of the tape instead
of the default.

default tape unit varies with installation
rst*

SEE ALSO
dump(l), restor(l)

DIAGNOSTICS

BUGS

If the dump extends over more than one tape, it may ask you
to change tapes. Reply with a new-line when the next tape
has been mounted.

There is redundant information on the tape that could be
used in case of tape reading problems. Unfortunately, dump­
dir doesn't use it.

XENIX System 1 XENIX System

ECHO(l) ECHO (l)

Nk'1E
echo - echo arguments

SYNTAX
echo -n] [arg] ..•

DESCRIPTION
Echo writes its arguments separated by blanks and terminated
oy-a newline on the standard output. If the flag -n is
used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs
and for writing constant data on pipes. To send diagnostics
to the standard error file, do 'echo ..• 1>&2'.

XENIX System 1 XENIX System

ED (l) ED (1)

NAME
ed - text editor

SYNTAX
ed [- [-x] [name]

DESCRIPTION
Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see
belowr-on the named file; tha~is to say, the-file is read
into edvs buffer so that it can be edited. If -x is
present,-an x command is simulated first to handle an
encrypted file. The optional - suppresses the printing of
character counts by ~, £, and ~ commands.

Ed operates on a copy of any file it is editing; changes
made in the copy have no effect on the file until a w
(write) command is given. The copy of the text bein~ edited
resides in a temporary file called the buffer.

Commands to ed have a simple and regular structure: zero or
more addresses followed by a single character command, pos­
sibly followed by parameters to the command. These
addresses specify one or more lines in the buffer. Missing
addresses are supplied by default.

In general, only one command may appear on a line. Certain
commands allow the addition of text to the buffer. While ed
is accepting text, it is said to be in input mode. In this--
mode, no commands are recognized; all input is merely col­
lected. Input mode is left by typing a period '0' alone at
the beginning of a line.

Ed supports a limited form of regular expression notation.
A regular expression specifies a set of strings of charac­
ters. A member of this set of strings is said to be matched
by the regular expression. In the following specification
for regular expressions the word 'character' means any char-
acter but newline. .

1. Any character except a special character matches
itself. Special characters are the regular expression
delimiter plus \[. and sometimes "'*$.

2. A 0 matches any character.

3. A \ followed by any character except a digit or ()
matches that character.

4. A nonempty string s bracketed [§.] (or ["'s]) matches any
character in (or not in) s. In ~, \ has no special

XENIX System 1 XENIX System

ED (1) ED (1)

meaning, and] may only appear as the first letter. A
substring a-b, with a and b in ascending ASCII order,
stands for-tne inclusive range of ASCII characters.

5. A regular expression of form 1-4 followed by * matches
a sequence of 0 or more matches of the regular expres­
sion.

6. A regular expression, ~, of form 1-8, bracketed \(~\)
matches what x matches.

7. A \ followed by a digit ~ matches a copy of the string
that the bracketed regular expression beginning with
the ~th \(matched.

8. A regular expression of form 1-8, x, followed by a reg­
ular expression of form 1-7, y matches a match for x
followed by a match for y, with the ~ match being as
long as possible while still permitting a y match.

9. A regular expression of form 1-8 preceded by A (or fol­
lowed by $), is constrained to matches that begin at
the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest
among the leftmost matches in a line.

11. An empty regular expression stands for a copy of the
last regular expression encountered.

Regular expressions are used in addresses to specify lines
and in one command (see s below) to specify a portion of a
line which is to be replaced. If it is desired to use one
of the regular expression metacharacters as an ordinary
character, that character may be preceded by '\'. This also
applies to the character bounding the regular expression
(often 'I') and to '\' itself.

To understand addressing in ed it is necessary to know that
at any time there is a current line. Generally speaking, the
current line is the last line affected by a command; how­
ever, the exact effect on the current line is discussed
under the description of the command. Addresses are con­
structed as follows.

1. The character ' , addresses the current line.

2. The character '$' addresses the last line of the
buffer.

3. A decimal number n addresses the n-th line of the
buffer.

XENIX System 2 XENIX System

ED(I) ED(l)

4. "x' addresses the line marked with the name Xv which
must be a lower-case lettero Lines are marked with the
k command described below.

5. A regular expression enclosed in slashes '/' addresses
the line found by searching forward from the current
line and stopping at the first line containing a string
that matches the regular expression. If necessary the
search wraps around to the beginning of the buffero

60 A regular expression enclosed in queries '?' addresses
the line found by searching backward from the current
line and stopping at the first line containing a string
that matches the regular expression. If necessary the
search wraps around to the end of the buffer.

70 An address followed by a plus sign '+' or a minus sign
'_I followed by a decimal number specifies that address
plus (resp. minus) the indicated number of lines. The
plus sign may be omitted.

8. If an address begins with '+u or '_0 the addition or
subtraction is taken with respect to the current line;
e.g. '-5' is understood to mean '.-5'. '

9. If an address ends with '+' or '-', then 1 is added
(resp. subtracted). As a consequence of this rule and
rule 8, the address '-' refers to the line before the
current line. Moreover, trailin~ '+' and '_I charac­
ters have cumulative effect, so __ I refers to the
current line less 2.

10. To maintain compatibility with earlier versions of the
editor, the character 'AI in addresses is equivalent to
'_I

Commands may require zero, one, or two addresses~ Commands
which require no addresses regard the presence of an address
as an error. Commands which accept one or two addresses
assume default addresses when insufficient are giveno If
more addresses are given than such a command requires, the
last one or two (depending on what is accepted) are usedo

Addresses are separated from each other typically by a comma
','0 They may also be separated by a semicolon ':'0 In
this case the current line '.' is set to the previous
address before the next address is interpreted. This
feature can be used to determine the starting line for for­
ward and backward searches ('/', '?')o The second address
of any two-address sequence must correspond to a line fol­
lowing the line corresponding to the first address.

XENIX System 3 XENIX System

ED (1) ED (1)

In the following list of ed commands, the default addresses
are shown in parentheses.-The parentheses are not part of
the address, but are used to show that the given addresses
are the default.

As mentioned, it is generally illegal for more than one com­
mand to appear on a line. However, most commands may be
suffixed by 'p' or by '1', in which case the current line is
either printed or listed respectively in the way discussed
below.

(•) a
<text>

The append command reads the given text and appends it
after the addressed line. '.' is left on the last line
input, if there were any, otherwise at the addressed
line. Address '0' is legal for this command; text is
placed at the beginning of the buffer.

(., .)c
<text>

The change command deletes the addressed lines, then
accepts input text which replaces these lines. "is
left at the last line input; if there were none, it is
left at the line preceding the deleted lines.

(., .)d
The delete command deletes the addressed lines from the
buffer. The line originally after the last line
deleted becomes the current line; if the lines deleted
were originally at the end, the new last line becomes
the current line.

e filename
The edit command causes the entire contents of the
buffer to be deleted, and then the named file to be
read in. '.' is set to the last line of the buffer.
The number of characters read is typed. 'filename' is
remembered for possible use as a default file name in a
subsequent £ or ~ command. If 'filename' is missing,
the remembered name is used.

E filename
This command is the same as e, except that no diagnos­
tic results when no w has been given since the last
buffer alteration.

f filename
The filename command prints the currently remembered
file name. If 'filename' is given, the currently

XENIX System 4 XENIX System

ED(l) ED (1)

remembered file name is changed to 'filename'.

(l,$)g/regular expression/command list

(.) i

In the global command, the first step is to mark every
line which matches the given regular expression. Then
for every such line, the given command list is executed
with '.8 initially set to that line. A single command
or the first of multiple commands appears on the same
line with the global command. All lines of a multi­
line list except the last line must be ended with '\g.
A, i, and c commands and associated input are permit­
ted: the ,~, terminating input mode may be omitted if
it would be on the last line of the command list. The
commands ~ and ~ are not permitted in the command list.

<text>

This command inserts the given text before the
addressed line. '.' is left at the last. line input,
or, if there were none, at the line before the
addressed line. This command differs from the a com­
mand only in the placement of the text.

(., .+l)j
This command joins the addressed lines into a single
line; intermediate newlines simply disappear. "is
left at the resulting line.

(•) kx
The mark command marks the addressed line with name x,
which must be a lower-case letter. The address form-
'ex' then addresses this line.

(., .)1
The list command prints the addressed lines in an unam­
biguous way: non-graphic characters are printed in
two-digit octal, and long lines are folded. The 1 com­
mand may be placed on the same line after any non~i/o
command.

(0, ..) rna
The move command repositions the addressed lines after
the line addressed by~. The last of the moved lines
becomes the current line.

(., .)p
The print command prints the addressed lines. '.' is
left at the last line printed. The E command may be
placed on the same line after any non-i/o command.

XENIX System 5 XENIX System

ED(l) ED(l)

(., .)P
This command is a synonym for £.

q The quit command causes ed to exit. No automatic write
of a file is done.

Q This command is the same as S, except that no diagnos­
tic results when no w has been given since the last
buffer alteration.

($)r filename
The read command reads in the given file after the
addressed line. If no file name is given, the remem­
bered file name, if any, is used (see e and f com­
mands). The file name is remembered iT there was no
remembered file name already. Address '0' is legal for
r and causes the file to be read at the beginning of
the buffer. If the read is successful, the number of
characters read is typed. '.1 is left at the last line
read in from the file •

• , .)s/regular expression/replacement/ or,
., .)s/regular expression/replacement/g

The substitute command searches each addressed line for
an occurrence of the specified regular expression. On
each line in which a match is found, all matched
strings are replaced by the replacement specified, if
the global replacement indicator 'g' appears after the
command. If the global indicator does not appear, only
the first occurrence of the matched string is replaced.
It is an error for the substitution to fail on all
addressed lines. Any character other than space or
new-line may be used instead of 'I' to delimit the reg­
ular expression and the replacement. '.' is left at
the last line substituted.

An ampersand '&' appearing in the replacement is
replaced by the string matching the regular expression.
The special meaning of '&' in this context may be
suppressed by preceding it by '\'. The characters '\n'
wheren is a digit, are replaced by the text matchedby
the n~th regular sUbexpression enclosed between '\('
and '\) I. When nested, parenthesized subexpressions
are present, n is determined by counting occurrences of
'\{' starting-from the left.

Lines may be split by substituting new-line characters
into them. The new-line in the replacement string must
be escaped by preceding it by '\'.

(., .) ta
This command acts just like the ~ command, except that

XENIX System 6 XENIX System

ED(I) ED (1)

a copy of the addressed lines is placed after address a
(which may be 0). '.' is left on the last line of the­
copy ..

(., o)u
The undo command restores the preceding contents of the
current line, which must be the last line in which a
substitution was made.

(1, $)v/regular expression/command list
This command is the same as the global command ~ except
that the command list is executed ~ with '0' inItially
set to every line except those matching the regular
expression.

(1, $)w filename
The write command writes the addressed lines onto the
given file. If the file does not exist, it is created
mode 666 (readable and writable by everyone). The file
name is remembered if there was no remembered file name
already. If no file name is given, the remembered file
name, if any, is used (see e and f commands) .. '.' is
unchanged. If the command Is suc~essful, the number of
characters written is printed.

(l,$)W filename
This command is the same as w, except that the
addressed lines are appended-to the file.

x A key string is demanded from the standard input.
Later r, e and w commands will encrypt and decrypt the
text wIth-this key by the algorithm of crypt(l) .. An
explicitly empty key turns off encryption.

($)= The line number of the addressed line is typed. "is
unchanged by this commando

!<shell command>
The remainder of the line after the '!' is sent to
shell to be interpreted as a command.. "is
unchanged.

(.+l)<newline>
An address alone on a line causes the addressed line to
be printed. A blank line alone is equivalent to
'.+lp'; it is useful for stepping through texto

If an interrupt signal (ASCII DEL) is sent, ed prints a'?'
and returns to its command level.

Some size limitations: 512 characters per line, 256 charac­
ters per global command list, 64 characters per file name,

XENIX System 7 XENIX System

ED(I) ED(I)

and 128K characters in the temporary file. The limitO on the
number of lines depends on the amount of core: each line
takes I word.

When reading a file, ed discards ASCII NUL characters and
all characters after the last newline. It refuses to read
files containing non-ASCII characters.

FILES
/tmp/e*
ed.hup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, A Tutorial Introduction to the ED Text Edi­
tor
~W. Kernighan, Advanced editing ~ UNIX
sed (I) , crypt(l)

DIAGNOSTICS

NOTES

'?name' for inaccessible file; '?' for errors in commands;
'?TMP' for temporary file overflow.

To protect against throwing away valuable work, a g or ~
command is considered to be in error, unless a w has
occurred since the last buffer change. A second g or ~ will
be obeyed regardless.

The I command mishandles DEL.
A ! command cannot be subject to a ~ command.
Because 0 is an illegal address for a w command, it is not
possible to create an empty file with ed.

XENIX System 8 XENIX System

EDIT(UCB) EDIT(UCB)

NAME
edit - text editor (variant of the ex editor for new or
casual users)

SYNTAX
edit -r] name .. 0 •

DESCRIPTION
Edit is a variant of the text editor ex recommended for new
or casual users who wish to use a command oriented editor.
The following brief introduction should help you get started
with edit. A more complete basic introduction is provided by
Edit: ~ tutorial. A Ex/edit command summary (version ~oQ)
is also very useful. See ex(UCB) for other useful docu­
ments; in particular' g' if you are using a CRT terminal you
will want to learn about the display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with the
command "edit name" to the shell. Edit makes a copy of
the file which you can then edit, and~ls you how many
lines and characters are in the file. To create a new file,
just make up a name for the file and try to run edit on it;
you will cause an error diagnostic, but don't worry.

Edit prompts for commands with the character ':', which you
should see after starting the editor. If you are editing an
existing file, then you will have some lines in edit',s
buffer (its name for the copy of the file you are editing).
Most commands to edit use its "current line" if you don't
tell them which line to use. Thus if you say print (which
can be abbreviated p) and hit carriage return (as you should
after all edit commands) this current line will be printed.
If you delete (d) the current line, edit will print the new
current line. When you start editin~dit makes the last
line of the file the current line. If you delete this last
line, then the new last line becomes the current one. In
general, after a delete, the next line in the file becomes
the current line. (Deleting the last line is a special
case.)

If you start with an empty file, or wish to add some new
lines, then the append (a) command can be used. After you
give this command (typing a carriage return after the word
append) edit will read lines from your terminal until you
give a line consisting of just a".", placing these lines
after the current line. The last line you type then becomes
the current line. The command insert (i) is like append but
places the lines you give before, rather than after, the
current line.

XENIX System 1 XENIX System

EDIT(UCB) EDIT (UCB)

Edit numbers the lines in the buffer, with the first line
having number 1. If you give the command "1" then edit
will type this first line. If you then give the command
delete edit will delete the first line, and line 2 will
become line 1, and edit will print the current line (the new
line 1) so you can see where you are. In general, the
current line will always be the last line affected by a com­
mand.

You can make a change to some text within the current line
by using the substitute (5) command. You say "s/old/new/"
where old is replaced by the old characters you wanr-to get
rid of-and new is the new characters you want to replace it
with. --

The command file (f) will tell you how many lines there are
in the buffer you are editing and will say" [Modified] 'I if
you have changed it. After modifying a file you can put the
buffer text back to replace the file by giving a write (w)
command. You can then leave ,the editor by issuing a quit
(q) command. If you run edit on a file, but don't change
it, it is not necessary (but does no harm) to write the file
back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there
has been "No write since last change' I and edit will await
another command. If you wish not to write the buffer out
then you can issue another quit command. The buffer is then
irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line
numbers to see lines in the file you can make any changes
you desire. You should learn at least a few more things,
however, if you are to use edit more than a few times.

The change (c) command will change the current line to a
sequence of lines you supply (as in append you give lines up
to a line consisting of only a".' I). You can tell change
to change more than one line by giving the line numbers of
the lines you want to change, i.e. "3,5change". You can
print lines this way too. Thus "l,23p" prints the first
23 lines of the file.

The undo (u) command will reverse the effect of the last
command you gave which changed the buffer. Thus if give a
substitute command which doesn't do what you want, you can
say undo and the old coritents of the line will be restored.
You can also undo an undo command so that you can continue
to change your mind. Edit will give you a warning message
when commands you do affect more than one line of the
buffer. If the amount of change seems unreasonable, you
should consider doing an undo and looking to see what hap­
pened. If you decide that the change is ok, then you can

XENIX System 2 XENIX System

EDIT(UCB) EDIT(UCB)

undo again to get it back. Note that commands such as write
and quit cannot be undone.

To look at the next line in the buffer you can just hit car­
riage return. To look at a number of lines hit AD (control
key and, while it is held down D key, then let up both)
rather than carriage return .. This will show you a half
screen of lines on a CRT or 12 lines on a hardcopy terminal.
You can look at the text around where you are by giving the
command "z.' '. The current line will then be the last line
printed; you can get back to the line where you were before
the "Z.I' command by saying "" 'I. The z command can also
be given other following characters "z_o I prints a screen
of text (or 24 lines) ending where you are: "z+" prints
the next screenful. If you want less than a screenful of
lines do, e.g., "z.l2" to get 12 lines total. This method
of giving counts works in general; thus you can delete 5
lines starting with the current line with the command'
, 'dele te 5' I •

To find things in the file you can u~e line numbers if you
happen to know them; since the line numbers change when you
insert and delete lines this is somewhat unreliable. You
can search backwards and forwards in the file ~or strings by
giving commands of the form /text/ to search forward for
text or ?text? to search backward for text. If a search
reaches the end of the file without finding the text it
wraps, end around, and continues to search back to the line
where you are. A useful feature here is a search of the
form /A text/ which searches for text at the beginning of a
line. Similarly /text$/ searches for text at the end of a
line. You can leave off the trailing / or ? in these com­
mands.

The current line has a symbolic name "~eo ': this is most
useful in a range of lines as in "e,$print" which prints
the rest of the lines in the filee To get to the last line
in the file you can refer to it by its symbolic name "$' '.
Thus the command "$ delete" or "$d' e deletes the last
line in the file, no matter which line was the current line
before. Arithmetic with line references is also possible.
Thus the line "$-5" is the fifth before the last, and
"".+20"-is 20 lines after the present.

You can find out which line you are at by doing ".=' '.
This is useful if you wish to move or copy a section of text
within a file or between files. Find out the first and last
line numbers you wish to copy or move (say 10 to 20). For a
move you can then say "10,20move "al e which deletes these
lines from the file and places them in a buffer named a.
Edit has 26 such buffers named a through z. You can later
get these lines back by doing "Ita move 0" to put the

XENIX System 3 XENIX System

EDIT(UCB) EDIT(UCB)

contents of buffer a after the current line. If you want to
move or copy these lines between files you can give an edit
(e) command after copying the lines, following it with the
name of the other file you wish to edit, i.e. "edit
chapter2 1

I. By changing move to ££EY above you can get a
pattern for copying lines. If the text you wish to move or
copy is all within one file then you can just say
"IO,20move $1 I for example. It is not necessary to use
named buffers in this case (but you can if you wish).

SEE ALSO
ex (UCB), vi (UCB), 'Edit: A tutorial', by Ricki Blau and
James Joyce

AUTHOR
William Joy

NOTES
See ex (UCB) .

XENIX System 4 XENIX System

EX(UCB) EX (UCB)

NAME
ex - text editor

SYNTAX
ex [-] -v -t tag] [-r] [+lineno] . name •.•

DESCRIPTION
Ex is the root of a family of editors: edit, ex and vi. Ex
IS a superset of ed, with the most notaore-extension-oeing a
display editing facility. Display based editing is the
focus of vi.

If you have not used ed, or are a casual user, you will find
that the editor edit is convenient for you. It avoids some
of the complexitleSof e1{ used mostly by systems programmers
and persons very familiar with ed.

If you have a CRT terminal, you may wish to use a display
based editor; in this case see vi (UCB) , which is a command
vlhich focuses on the display editing portion of ex.

DOCUMENTATION
For edit and ex see the Ex/edit command summary - Version
2~0.~ document Edit: ~tUtOrial provides a comprehenslve
Introduction to edit assuming no previous knowledge of com­
puters or the UNIX system.

The Ex Reference Manual - Version 2.0 is a comprehensive and
complete manual for the command mode-features of ex, but you
cannot learn to use the editor by reading it. For-an intro­
duction to more advanced forms of editing using the command
mode of ex see the editing documents written by Brian Ker­
nighan for the editor ed; the material in the introductory
and advanced documents-Works also with ex.

An Introduction to Display Editing with Vi ·introduces the
display editor vi and provides reference material on vi. The
Vi Quick Reference card summarizes the commands of vi-rn a
useful, functional way, and is useful with the IntrOduction.

FOR ED USERS
If you have used ed you will find that ex has a number of
new features useful on CRT terminals. Intelligent terminals
and high speed terminals are very pleasant to use with vi.
Generally, the editor uses far more of the capabilities of
terminals than ed does, and uses the terminal capability
data base termcap(UCB) and the type of the terminal you are
using from the variable TERM in the environment to determine
how to drive your terminal efficiently. The editor makes
use of features such as insert and delete character and line
in its visual command (which can be abbreviated vi) and
which is the central mode of editing when using vi(UCB)e

XENIX System 1 XENIX System

EX(UCB) EX(U~B)

There is also an interline editing open (0) command which
works on all terminals.

Ex contains a number of new features for easily viewing the
text of the file. The z command gives easy access to win­
dows of text. Hitting ~D causes the editor to scroll a
half-window of text and is more useful for quickly stepping
through a file than just· hitting return~ Of course, the
screen oriented visual mode gives constant access to editing
context.

Ex gives you more help when you make mistakes. The undo (u)
command allows you to reverse any single change which goes
astray. Ex gives you a lot of feedback, normally printing
changed lInes, and indicates when more than a few lines are
affected by a command so that it is easy to detect when a
command has affected more lines than it should have ..

The editor also normally prevents overwriting existing files
unless you edited them so that you don't accidentally
clobber with a write a file other than the one you are edit-
ing. If the system (or editor) crashes, or you accidentally
hang up the phone, you can use the editor recover command to
retrieve your work. This will get you back to within a few
lines of where you left off.

Ex has several features for dealing with more than one file
at a time. You can give it a list of files on the command
line and use the next (n) command to deal with each in turn.
The next command can also be given a list of file names, or
a pattern as used by the shell to specify a new set of files
to be dealt with. In general, filenames in the editor may
be formed with full shell metasyntax. The metacharacter '%'
is also available in forming filenames and is replaced by
the name of the current file. For editing large groups of
related files you can use ex's tag command to quickly locate
functions and other important-points in any of the files.
This is useful when working on a large program when you want
to quickly find the definition of a particular function.
The command ctags(UCB) builds a tags file or a group of C
programs.

For moving text between files and within a file the editor
has a group of buffers, named a through z. You can place
text in these named buffers ana carry it-over when you edit
another file.

There is a command & in ex which repeats the last substitute
command. In addition there is a confirmed substitute com­
mand. You give a range of substitutions .to be done and the
editor interactively asks whether each substitution is
desired.

XENIX System 2 XENIX System

EX (UCB) EX (UCB)

You can use the substitute command in ex to systematically
convert the case of letters between upper and lower caseo
It is possible to ignore case of letters in searches and
substitutions. Ex also allows regular expressions which
match words to be-constructed. This is convenient, for
example, in searching for the word "edit" if your document
also contains the word "editor."

Ex has a set of options which you can set to tailor it to
your liking. One option which is very useful is the autoin­
dent option which allows the editor to automatically supply
leading white space to align text. You can then use the AD
key as a backtab and space and tab forward to align new code
easily.

Miscellaneous new useful features include an intelligent
join (j) command which supplies white space between joined
lines automatically, commands < and > which shift groups of
lines, and the ability to filter portions of the buffer
through commands such as sort.

error messages
recover command
preserve command

describes capabilities of terminals
editor startup file
editor temporary
named buffer temporary
preservation directory

SEE ALSO
aVJk(l), ed(l), grep(l), sed(l), edit(UCB), grep(UCB),
termcap{UCB), vi (UCB)

AUTHOR

NOTES

William Joy

The undo command causes all marks to be lost on lines
changeo-and then restored if the marked lines were changed.

Undo never clears the buffer modified condition&

The z command prints a number of logical rather than physi­
cal lines. More than a screen full of output may result if
long lines are present.

File input/output errors don't print a name if the command
line '_I option is used.

XENIX System 3 XENIX System

EX (UCB) EX~UCB)

There is no easy way to do a single scan ignoring case.

Because of the implementation of the arguments to next, only
512 bytes of argument list are allowed there.

The format of /etc/termcap and the large number of capabili­
ties of terminals used by the editor cause terminal type
setup to be rather slow.

The editor does not warn if text is placed in named buffers
and not used before exiting the editor.

Null characters are discarded in input files, and cannot
appear in resultant files.

XENIX System 4 XENIX System

EXPR(l) EXPR (1)

NAME
expr - evaluate arguments as an expression

SYNTAX
expr arg 0.0

DESCRIPTION
The arguments are taken as an expression. After evaluation,
the result is written on the standard output. Each token of
the expression is a separate argument.

The operators and keywords are listed below. The list is in
order of increasing precedence, with equal precedence opera­
tors grouped.

expr I expr
yields the first expr if it is neither null nor '0',
otherwise yields the second expre

expr & e~pr
yields the first ~xer if neither expr is null or '0',
otherwise yields 0'.

~ relop expr
where relop is one of < <= = 1= >= >, yields '11 if the
indicated comparison-is true, '0' if false. The com­
parison is numeric if both expr are integers, otherwise
lexicographic.

expr + expr
expr - expr
addition or subtraction of the arguments.

expr * expr
exer / expr
expr % expr
multiplication, division, or remainder of the argu­
ments.

: expr
The matching operator compares the string first argu­
ment with the regular expression second argument; regu-
lar expression syntax is the same as that of ed(l).
The \(••• \) pattern symbols can be used to select a
portion of the first argument. Otherwise, the matching
operator yields the number of characters matched ('0 0

on failure) ..

expr)
parentheses for grouping.

XENIX System 1 XENIX System

EXPR(l) EXPR (l)

Examples:

To add 1 to the Shell variable a:

a='expr $a + l'

To find the filename part (least significant part) of the
~athname stored in variable ~, which mayor may not contain
/' :

expr $a : '.*/\(.*\)' 'I' $a

Note the quoted Shell metacharacters.

SEE ALSO
ed(l), sh{l), test(l)

DIAGNOSTICS
Expr returns the following exit codes:

o if the expression is neither null nor '0',
1 if the expression is null or ~O',
2 for invalid expressions.

XENIX System 2 XENIX System

FACTOR (I) FACTOR(l)

NAAE
factor, primes - factor a number, generate large primes

SYNTAX
factor [number

primes

DESCRIPTION
When factor is invoked without an argument, it waits for a

~~~~e~h~~ ~56t1~~~U~n7.2!i6rOttt~1~li~a~t~~S~~!V~u~~:~e~nd 
print it~ prime factors; each one is printed the proper 
number of times. Then it waits for another number. It 
exits if it encounters a zero or any non-numeric character. 

If factor is invoked with an argument, it factors the' number 
as above and then exits. 

Maximum time to factor is proportional to sqrt(n) and occurs 
when n is prime or the square of a prime. It takes 1 minute 
to factor a prime near IOl4 on a PDPll. 

When primes is invoked, it waits for a number to be typed 
in. If you type in a positive number less than 2 56 it will 
print all primes greater than or equal to this number. 

DIAGNOSTICS 
'Ouch.' for input out of range or for garbage input. 

XENIX System 1 XENIX System 



FILE(l} FILE(l) 

NAME 
file - determine file type 

SYNTAX 
file filename .•• 

file -f fileofnames 

DESCRIPTION 

NOTES 

File performs a series of tests on each argument in an 
attempt to classify it. If an argument appears to be ascii, 
file examines the first 512 bytes and tries to guess its 
language. 

If the first argument is a -f flag, file will take the list 
of filenames from the file. - ----

For a.out files, the relationship between flags to cc and 
the file classification is: 

cc flag 
i 
n 
s 
Z 

classification 
separate 
pure 
not "not stripped" 
23fixed 

It often makes mistakes. In particular it often suggests 
that command files are C programs. Also, programs that 
begin with comments are described as English text. 

XENIX System 1 XENIX System 



FINO(I) FINO(l) 

NAME 
find - find files 

SYNTAX 
find pathname-list expression 

DESCRIPTION 
Find recursively descends the directory hierarchy for each 
pathname in the pathname-list (i.e., one or more pathnames) 
seeking files that match a boolean expression written in the 
primaries given below. In the descriptions, the argument n 
is used as a decimal integer where +n means more than ~, -n 
means less than n and ~ means exactly ~. 

-name filename 
True if the filename argument matches the current 
file name. Normal Shell argument syntax may be 
used if escaped (watch out for '[', '?' and '*V). 

-perm onum 
True if the file permission flags exactly match 
the octal number anum (see chmod(l»). If onum is 
prefixed by a minus sign, more flag bits (017777, 
see stat(2» become significant and the flags are 
compared: (flags&~)==~~ 

-type c True if the type of the file is c, where c is b, 
c, d or f for block special file~ character spe­
cial file, directory or plain file~ 

-links n True if the file has n links. 

-user uname 
True if the file belongs to the user uname (login 
name or numeric user ID) ~ 

-group gname 

-size n 

-inurn n 

-atime n 

-mtime n 

True if the file belongs to group gname (group 
name or numeric group 10) 0 

True if the file is n blocks long ( 512 bytes per -block) . 

True if the file has inode number n. 

True if the file has been accessed in n days. 

True if the file has been modified in n days .. -
-exec command 

XENIX System 

True if the executed command returns a zero value 
as exit status. The end of the command must be 

1 XENIX System 



FIND(l) FIND(l) 

punctuated by an escaped semicolon. A command 
argument ,{}, is replaced by the current pathname. 

-ok command 

-print 

Like -exec except that the generated command is 
written on the standard output, then the standard 
input is read and the command executed only upon 
response y. 

Always true; causes the current pathname to be 
printed. 

-newer file 
True if the current file has been modified more 
recently than the argument file. 

The primaries may be combined using the following operators 
(in order of decreasing precedence): 

1) A parenthesized group of primaries and operators 
(parentheses are special to the Shell and must be 
escaped) . 

2) The negation of a primary ('!' is the unary not opera­
tor) . 

3) Concatenation of primaries (the and operation is implied 
by the juxtaposition of two primaries) . 

4) Alternation of primaries ('-0' is the or operator). 

EXAMPLE 
To remove all files named 'a.out'or '*.0' that have not 
been accessed for a week: 

find / \( -name a.out -0 -name '*.0' \) -atime +7 -exec rm 
{} \; 

FILES 
/etc/passwd 
/etc/group 

SEE ALSO 
sh(l), test(l), filsys(5) 

NOTES 
The syntax is painful. 

XENIX System 2 XENIX System 



FINGER(l) FINGER(l) 

NAME 
finger - user information lookup program 

SYNTAX 
finger [ options ] name 

DESCRIPTION 

FILES 

By default finger lists the login name, full name, terminal 
name and write status (as a '*' before the terminal name if 
WI." i te permiss ion is denied), . idle time, log in time, and 
office location and phone number (if they are known) for 
each current UNIX user. (Idle time is minutes if it is a 
single integer, hours and minutes if a ':' is present, or 
days and hours if a 'd' is present.) . 

A longer format also exists and is used by finger whenever a 
list of peoples names is given. (Account names as well as 
first and last names of users are accepted.) This format is 
multi-line, and includes all the information described above 
as well as the user's horne directory and login shell, any 
plan which the person has placed in the file .plan in their 
home directory, and the project on which they are working 
from the file .project also in the home directory. 

Finger options include: 

-f Suppress the printing of the header line (short for­
ma t) • 

-1 Force long output format. 

-p Suppress printing of the .plan files 

-8 Force short output format. 

/etc/utmp 
/etc/passwd 
tories and shells 
/usr/adm/lastlog 
~/.plan 

~/.project 

who file 
for users names, offices, phones, direc-

last login times 
plans 
projects 

SEE ALSO 
w(l), who(l) 

AUTHOR 
Earl T. Cohen 

NOTES 
Only the first line of the .project file is printedo 

XENIX System XENIX System 



FINGER(I) FINGER (1) 

The encoding of the gecos field is UCB dependent - it knows 
that an office '197MC' is '197M Cory Hall', and tht '529BE' 
is '529B Evans Hall'. 

XENIX System 2 XENIX System 



GREP(l) GREP(l) 

NAME 
grep, egrep, fgrep - search a file for a pattern 

SYNTAX 
grep [ option ] .... " expression [ file ] .•• 

egrep option expression ] file 

fgrep option strings] [ file 

DESCRIPTION 
Commands of the ~ family search the input files (standard 
input default) for lines matching a pattern. Normally, each 
line found is copied to the standard output; unless the -h 
flag is used, the file name is shown if there is more than 
one input file. 

Grep patterns are limited regular expressions in the style 
of ed(l) i ~t uses a Qompact nondeterministic algorithm. 
Egrep patterns are full regular expressions; it uses a fast 
deterministic algorithm that sometimes needs exponential 
space. Fsrep patterns are fixed strings; it is fast and 
compact. 

The following options are recognized. 

-v All lines but those matching are printed. 

-c Only a count of matching lines is printed. 

-1 The names of files with matching lines are listed 
(once) sepprated by newlines. 

-n Each line is preceded by its line number in the file. 

-b Each line is preceded by the block number on which it 
was found. This is sometimes useful in locating disk 
block numbers by context. 

-5 No output is produced, only status. 

-h Do not print filename headers with output lineso 

-y Alphabetic letters in the pattern will match letters of 
either case in the input (~and fgrep only). 

-e ~res5ion 
Same as a simple eXEression argument, but useful when 
the expression begins with a 

-f file 
The regul~r expression (egree) or string list (fgreE) 

XENIX System 1 XENIX System 



GREP (1) GREP(l) 

is taken from the file. 

-x (Exact) only lines matched in their entirety are 
printed (fgrep only) • 

Care should be taken when using the characters $ * [ A I ? ' 
" ( ) and \ in the expression as they are also meaningful to 
the Shell. It is safest to enclose the entire expression 
argument in single quotes ' '. 

Fgrep searches for lines that contain one of the (newline­
separated) strings. 

Egrep accepts extended regular expressions. In the follow­
ing description 'character' excludes newline: 

A \ followed by a single character matches that charac­
ter. 

The character A ($) matches the beginning (end) of a 
line. 

A • matches any character. 

A single character not otherwise endowed with special 
meaning matches that character. 

A string enclosed in brackets [] matches any single 
character from the string. Ranges of ASCII character 
codes may be abbreviated as in 'a-zO-9'. A] may occur 
only as the first character of the string. A literal -
must be placed where it can't be mistaken as a range 
indicator. 

A regular expression followed by * (+, ?) matches a 
sequence of 0 or more (lor more, 0 or 1) matches of 
the regular expression. 

Two regular expressions concatenated match a match of 
the first followed by a match of the second. 

Two regular expressions separated by I or newline match 
either a match for the first or a match for the second. 

A regular expression enclosed in parentheses matches a 
match for the regular expression. 

The order of precedence of operators at the same parenthesis 
level is [] then *+? then concatenation then I and newline. 

SEE ALSO 
ed(l), sed(l), sh(l) 

XENIX System 2 XENIX System 



GREP(l) GREP(l) 

DIAGNOSTICS 

NOTES 

Exit status is a.if any matches are found, 1 if none v 2 for 
syntax errors or inaccessible files. 

Ideally there should be only one ~, but we don't know a 
single algorithm that spans a wide enough range of space­
time tradeoffs .. 

Lines are limited to 256 characters; longer lines are trun­
cated. 

XENrx System 3 XENIX System 



HEAD (UCB) HEAD (UCB) 

NAME 
head - give first few lines of a stream 

SYNTAX 
head [ -count] [ file ••. 

DESCRIPTION 
This filter gives the first count lines of each of the 
specified files, or of the standard input. If count is 
omitted it defaults to 10. 

SEE ALSO 
tail(l) 

AUTHOR 
Bill Joy 

XENIX System 1 XENIX System 



JOIN(l) JOIN (1) 

NAME 
join - relational database operator 

SYNTAX 
join [ options ],fi1e1 fi1e2 

DESCRIPTION 
Join forms, on the standard Qutput, a join of the two rela­
tions specified by the lines of filel and file2. If file1 
is '_I, the standard input is used. 

Filel and file2 must be sorted in increasing ASCII collating 
sequence on the fields on which they are to be joined, nor­
mally the first in each line. 

There is one line in the output for each pair of lines in 
filel and file2 that have identical join fields. The output 
line normally consists of the common field, then the rest of 
the line from filel, then the rest of the line from file20 

Fields are normally separated by blank, tab or newline. In 
this case, multiple separators count as one, and leading 
separators are discarded. 

These options are recognized: 

-an In addition to the normal output, produce a line for 
each unpairable line in file g, where n is 1 or 2. 

-e s Replace empty output fields by string s. 

-j!! m - field file is missing, Join on the mth of n. If n use 
the mth field in each file. 

-

-0 list 
~ch outpuc line comprises the fields specifed in list, 

each element of which has the form nom, where n is-a­
file number and m is a field number~ -

-tc Use character c as a separator (tab character). Every 
appearance of c in a line is significant. 

SEE ALSO 

NOTES 

sort(l), comm(l), awk(l) 

with default field separation, the collating sequence is 
that of sort -£; with -t, the sequence is that of a plain 
sort. 

XENIX System 1 XENIX System 



JOIN (l) JOIN(l) 

The conventions of join, sort, ~, uniq, look and awk(l) 
are wildly incongruous. 

XENIX System 2 XENIX System 



KILL(l) KILL(l) 

NAME 
kill - terminate a process with extreme prejudice 

SYNTAX 
kill -signo ] processid 

DESCRIPTION 
Kill sends signal 15 (terminate) to the specified processes. 
If a signal number preceded by '_I is given as first argu-
ment, that signal is sent instead of terminate (see sig­
nal(2». This will kill processes that do not catch the 
SIgnal; in particular 'kill -9 •••• is a sure kill. 

By conv~ntion, if process number 0 is specified, all members 
in the process group (i.eo processes resulting from the 
current login) are signaled. 

The killed processes must belong to the current user ~nless 
he is the super-user. To shut the system down and bring it 
up single user the super-user may use 'kill -1 I'; see 
init(8) . 

The process number of an asynchronous process started with 
'&' is reported by the shell. Process numbers can also be 
found by using ~(l). 

SEE ALSO 
ps(l), kill(2), signal(2) 

XENIX System 1 XENIX System 



LD (1) LD(l) 

NAME 
Id - loader 

SYNTAX 
Id [ option] file ..• 

DESCRIPTION 
Ld combines several object programs into one, resolves 
external references, and searches libraries. In the sim-
plest case several object files are given, and Id combines 
them, producing an object module which can be either exe­
cuted or become the input for a further Id run. (In the 
latter case, the -r option must be given to preserve the 
relocation bits.) The output of Id is left on a.out. This 
file is made executable only if no errors occurred during 
the load. 

The argument routines are concatenated in the order speci­
fied. The entry point of the output is the beginning of the 
first routine. 

If any argument is a library, it is searched exactly once at 
the point it is encountered in the argument list. Only 
those routines defining an unresolved external reference are 
loaded. If a routine from a library references another rou­
tine in the library, and the library has not been processed 
by ranlib(l), the referenced routine must appear after the 
referencing routine in the library. Thus the order of pro­
grams within libraries may be important. If the first 
member of a library is named'· .SYMDEF', then it is under­
stood to be a dictionary for the library such as produced by 
ranlib: the dictionary is searched iteratively to satisfy as 
many references as possible. 

The symbols' etext', ' edata' and' end' ('etext', 'edata' 
and 'end' in C) are reserved, and if-referred to, are set to 
the first location above the program, the first location 
above initialized data, and the first location above all 
data respectively. It is erroneous to define these symbols. 

Ld understands several options. Except for -1, they should 
appear before the file names. 

-s 'Strip' the output, that is, remove the symbol table 
and relocation bits to save space (but impair the use­
fulness of the debugger). This information can also be 
removed by strip(l). 

-u Take the following argument as a symbol and enter it as 
undefined in the symbol table. T~is is useful for 
loading ,wholly from a library, since initially the sym­
bol table is empty and an unresolved reference is 

XENIX System I XENIX System 



LD(l) LD(l) 

needed to force the loading of the first routinee 

-Ix This option is an abbreviation for the library name 
'/lib/libx.a', where x is a string. If that does not 
exist, Id-tries '/usr71ib/libx.a l

• A library is 
searchea-when its name is encountered, so the placement 
of a -lis significant. 

-x Do not preserve local (non~.globl) symbols in the out­
put symbol table; only enter external symbols. This 
option saves some space in the output file. 

-x Save local symbols except for those whose names begin 
with'LI. This option is used by cc(l) to discard 
internally generated labels while retaining symbols 
local to routines. 

-r Generate relocation bits in the output file so that it 
can be the subject of another Id run. This flag also 
prevents final definitions from-being given to common 
symbols, and suppresses the 'undefined symbol 8 diagnos-
ticso 

-d Force definition of common storage even if the -r flag 
is present. 

-n Arrange that when the output file is executed, the text 
portion will be read~only and shared among all users 
executing the file. This involves moving the data 
areas up to the first possible 4K word boundary follow­
ing the end of the text. 

-i When the output file is executed, the program text and 
data areas will live in separate address spaces. The 
only difference between this option and -n is that here 
the data starts at location o. 

-0 The name argument after -0 is used as the name of the 
Id output file, instead of a.outo 

-e The following argument is taken to be the name of the 
entry point of the loaded program; location 0 is the 
default. 

-0 This is an overlay file, only the text segment will be 
replaced byexec(2). Shared data must have the same 
layout as in the program overlaid. 

-D The next argument is a decimal number that sets the 
size of the data segment. 

XENIX System 2 XENIX System 



LD (1) 

FILES 
/lib/lib*.a 
/usr/lib/lib*.a 
a.out 

SEE ALSO 

libraries 
more libraries 
output file 

as(l), ar(l), cc(l), ranlib(l) 

NOTES 

XENIX System 3 

LD (1) 

XENIX System 



LEX (1) LEX (1) 

NAME 
lex - generator of lexical analysis programs 

SYNTAX 
lex [ -tvfn [ file ] 

DESCRIPTION 
Lex generates programs to be used in simple lexical analyis 
of text. The input files (standard input default) c,Ontain 
regular expressions to be searched for, and actions written 
in C to be executed when expressions are found. 

A C source program, 'lex.yy.c' is generated, to be compiled 
thus: 

cc lex.yy.c -lIn 

This program, when run, copies unrecognized portions of the 
input to the output, and executes the associated C action 
for each regular expression that is recognizedo 

The following lex program converts upper case to lower, 
removes blanks-at the end of lines, and replaces multiple 
blanks by single blanks. 

%% 
[A-Z] putchar(yytext[O]+'a'-'A') ; 
[ ]+$ 
[ ]+ putchar(' ')i 

The options have the following meanings. 

-t Place the result on the standard output instead of in 
file'lex.yy.c'. 

-v Print a one-line summary of statistics of the generated 
analyzer. 

-nOpposite of -Vi -n is default. 

-f 'Faster' compilation: don't bother to pack the result-
ing tablesi limited to small programs. 

SEE ALSO 
yacc(l) 
M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator 

XENIX System I XENIX System 



LIN~(l) LINT(l) 

N~E 
lint - a C program verifier 

SYNTAX 
lint -abchnpuvx] file .•• 

DESCRIPTION 
Lint attempts to detect features of the C program files 
which are likely to be bugs, or non-portable, or wasteful. 
It also checks the type usage of the program more strictly 
than the compilers. Among the things which are currently 
found are unreachable statements, loops not entered at the 
top, automatic variables declared and not used, and logical 
expressions whose value is constant. Moreover, the usage of 
functions is checked to find functions which return values 
in some places and not in others, functions called with 
varying numbers of arguments, and functions whose values are 
not used. 

By default, it is assumed that all the files are to be 
loaded together; they are checked for mutual compatibility. 
Function definitions for certain libraries are available to 
lint; these libraries are referred to by a conventional 
name, such as '-1m', in the style of ld(l). 

Any number of the options in the following list may be used. 
The -0, -U, and -I options of cc(l) are also recognized as 
separate arguments. --

p Attempt to check portability to the IBM and GCOS 
dialects of C. 

h Apply a number of heuristic tests to attempt to intuit 
bugs, improve style, and reduce waste. 

b Report break statements that cannot be reached. . (This 
is not the default because, unfortunately, most lex and 
many yacc outputs produce dozens of such comments:) 

v Suppress complaints about unused arguments in func­
tions. 

x Report variables referred to by extern declarations, 
but never used. 

a Report assignments of long values to int variables. 

c Complain about casts which have questionable portabil­
ity. 

u Do not complain about functions and variables used and 
not defined, or defined and not used (this is suitable 

XEN1X System I XENIX System 



LINT(l) LINT (1) 

FILES 

for running lint on a subset of files out of a larger 
program) • 

n Do not check compatibility against the standard 
library. 

Exit(2) and other functions which do not return are not 
understood; this causes various lies. 

Certain conventional comments in the C source will change 
the behavior of lint: 

/*NOTREACHED*/ 
at appropriate points stops comments about unreachable 
code. 

/*VARARGS!}.*/ 
suppresses the usual checking for variable numbers of 
arguments in the following function declarationQ The 
data types of the first n arguments are checked; a 
missing !l is taken to be-O. 

/*NOSTRICT*/ 
shuts off strict type checking in the next expression. 

/*ARGSUSED*/ 
turns on the -v option for the next function. 

/*LINTLIBRARY*/ 
at the beginning of a file shuts off complaints about 
unused functions in this fileo 

/usr/lib/lint[12] programs 
/usr/lib/llib-lc declarations for standard functions 
/usr/lib/llib-port declarations for portable functions 

SEE ALSO 
cc (1) 
So C. Johnson, Lint, a C Program Checker 

XENIX System 2 XENIX System 



LN(l) LN(l) 

NAME 
In make a link 

SYNTAX 
In namel [ name2 ] 

DESCRIPTION 
A link is a directory entry referring to a file; the same 
file (together with its size, all its protection informa­
tion, etc.) may have several links to it. There is no way 
to distinguish a link to a file from its original directory 
entry; any changes in the file are effective independently 
of the name by which the file is known. 

Ln creates a link to an existing file namel. If name2 is 
given, the link has that name; otherwise it is placed in the 
current directory and its name is the last component of 
namel. 

It is forbidden to link to a directory or to link across 
file systems. 

SEE ALSO 
rm(l) 

XENIX System 1 XENIX System 



LOOK(l) 

NAME 
look - find lines in a sorted list 

SYNTAX 
look 

DESCRIPTION 

-d£ ] string [ file ] 

LOOK (1) 

Look consults a sorted file and prints all lines that begin 
with string. It uses bInary search. 

The options d and f affect comparisons as in sort(l): 

d 'Dictionary' order: only letters, digits, tabs and 
blanks participate in comparisons. 

f Fold. Upper case letters compare equal to lower case. 

If no file is specified, /usr/dict/words is assumed with 
collating sequence -df. 

FILES 
/usr/dict/words 

SEE ALSO 
so r t ( 1), g rep ( 1 ) 

XENIX System 1 XENIX System 



LOOKALL{l) LOOKA~~ (l) 

NAME 
lookall - look through all text files on UNIX 

SYNTAX 
lookall -Cn 

DESCRIPTION 
Lookall accepts keywords from the standard input, performs a 
search similar to that of refer{l), and writes the result on 
the standard output. Lookall consults, however, an index to 
all the text files on the system rather than just bibliogra­
phies. Only the first 50 words of each file (roughly) were 
used to make the indexes. Blank lines are taken as delim­
iters between queries. 

The -Cn option specifies a coordination level search: up to 
n keywords may be missing from the answers, and the answers 
are listed with those containing the most keywords first. 

The command sequence in /usr/dict/lookall/makindex regen­
erates the index. 

FILES 
The directory /usr/dict/lookall contains the index files. 

DIAGNOSTICS 

NOTES 

'Warning: index precedes file ... ' means that a file has 
been changed since the index was made and it maybe 
retrieved (or not retrieved) erroneously. 

Coordination level searching doesn't work as described: only 
those acceptable items with the smallest number of missing 
keywords are retreived. 

XENIX System 1 XENIX System 



LaRDER (l) LaRDER (1) 

NAME 
lorder - find ordering relation for an object library 

SYNTAX 
lorder file •.. 

DESCRIPTION 

FILES 

The input is one or more object or library archive (see 
ar{l)) files. The standard output is a list of pairs of 
object file names, meaning that the first file of the pair 
refers to external identifiers defined in the second. The 
output may be processed by tsort(l) to find an ordering of a 
library suitable for one-pass access by ld(l). 

This brash one-liner intends to build a new library from 
existing '.0' files. 

ar cr library 'lorder *.0 I tsort' 

*symref, *symdef 
nm(l), sed(l), sort(l), join(l) 

SEE ALSO 

NOTES 

tsort(l), Id(l), ar(l) 

The names of object files, in and out of libraries, must end 
with '.0'; nonsense results otherwise. 

XENIX System 1 XENIX System 



LPR(l) LPR(l) 

NAME 
lpr, vpr - line printer spooler 

SYNTAX 
lpr [ option] .•• [ file] 
vpr [ -b banner] [ file] 

DESCRIPTION 

FILES 

~ causes the files to be queued for printing on a line 
printer. If no files are named, the standard input is read. 
The following options are available: 

-r Remove the file when it has been queued. 

-c Copy the file to insulate against changes that may hap­
pen before printing. 

-m Report by mail(l) when printing is complete. 

-n Do not report by mail. This is the default option. 

Vpr is the program used by !E£ when the online printer is a 
Versatec machine to insert an identification banner before 
the output, strip overstrikes, and, where possible, remove 
blank lines to make 66-line pages fit on 64 lines. If the 
file /usr/adm/v~acct is writable, ~ places accounting 
information on It. 

/usr/spool/lpd/lock 
/usr/spool/lpd/cf* data file 
/usr/spool/lpd/df* daemon control file 
/usr/spool/lpd/tf* temporary version of control file 
/usr/bin/vpr for Versatec printer 
/usr/adm/vpacct 

SEE ALSO 
lpd(8) 

XENIX System 1 XENIX System 



LS(I) LS(I) 

NAME 
Is list contents of directory 

SYNTAX 
Is [ -1tasdrucifg ] name .•• 

DESCRIPTION 
For each directory argument, Is lists the contents of the 
directory: for each file argument, Is repeats its name and 
any other information requested. The output is sorted 
alphabetically by default. When no argument is given, the 
current directory is listed. When several arguments are 
given, the arguments are first sorted appropriately, but 
file arguments appear before directories and their contents. 
There are several options: 

-1 List in long format, giving mode, number of links, 
owner, size in bytes, and time of last modificat'ion for 
each file. (See below.) If the file is a special file 
the size field will instead contain the major and minor 
device numbers. 

-t Sort by time modified (latest first) instead of by 
name, as is normal. 

-a List all entries; usually '.1 and ' •• 1 are suppressed. 

-5 Give size in blocks, including indirect blocks, for 
each entry. 

-d If argument is a directory, list only its name, not its 
contents (mostly used with -1 to get status on direc­
tory) . 

-r Reverse the order of sort to get reverse alphabetic or 
oldest first as appropriate. 

-u Use time of last access instead of last modification 
for sorting (-t) or printing (-1). 

-c Use time of last modification to inode (mode, etc.) 
instead of last modification to file for sorting (-t) 
or pr inting (-1). 

-i Print i-number in first column of the report for each 
file listed. 

-f Force each argument to be interpreted as a directory 
and list the name found in each slot. This option 
turns off -1, -t, -s, and -r, and turns on -a: the 
order is the order in which entries appear in the 
directory. 

X EN IX Sys tern 1 XENIX System 



LS(l) LStl) 

FILES 

-g Give group TO instead of owner TO in long listing. 

The mode printed under the -1 option contains 11 characters 
which are interpreted as follows: the first character is 

d if the entry is a directory; 
b if the entry is a block-type special file; 
c if the entry is a character-type special file; 

if the entry is a plain file. 

The next 9 characters are interpreted as three sets of three 
bits each. The first set refers to owner permissions; the 
next to permissions to others in the same user-group; and 
the last to all others. within each set the three charac­
ters indicate permission respectively to read, to write, or 
to execute the file as a program. For a directory, 'exe­
cute' permission is interpreted to mean permission to search 
the directory for a specified file. The permissions are 
indicated as follows: 

r if the file is readable; 
w if the file is writable; 
x if the file is executable; 

if the indicated permission is not granted. 

The group-execute permission character is given as 5 if the 
file has set-group-IO mode; likewise the user-execute per­
mission character is given as s if the file has set-user-IO 
mode. 

The last character of the mode (normally 'x' or '_I) is t if 
the 1000 bit of the mode is on. See chmod(l) for the mean­
ing of this mode. 

When the sizes of the files in a directory are listed, a 
total count of blocks, including indirect blocks is printed. 

/etc/passwd to get user ID's for 'Is -1'. 
/etc/group to get group IO's for 'Is -g'. 

XENIX System 2 XENIX System 



M4(1) M4(1) 

N~E 

m4 - macro processor 

SYNTAX 
m4 [ files 

DESCRIPTION 
M4 is a macro processor intended as a front end for Ratfor, 
~ and other languages. Each of the argument files is pro­
cessed in order; if there are no arguments, or if an argu­
ment is '_I, the standard input is read. The processed text 
is written on the standard output. 

Macro calls have the form 

name(argl,arg2, . , argn) 

The '(I must immediately follow the name of the macro. If a 
defined macro name is not followed by a '(', it is deemed to 
have no arguments. Leading unquoted blanks, tabs, and new­
lines are ignored while collecting arguments. Potential 
macro names consist of alphabetic letters, digits, and 
underscore' I, where the first character is not a digit. 

Left and right single quotes ('I) are used to quote strings. 
The value of a quoted string is the string stripped of the 
quotes. 

When a macro name is recognized, its arguments are collected 
by searching for a matching right parenthesis. Macro 
evaluation proceeds normally during the collection of the 
arguments, and any commas or right parentheses which happen 
to turn up within the value of a nested call are as effec-
tive as those in the original input text. After argument 
collection, the value of the macro is pushed back onto the 
input stream and rescanned. 

M4 makes available the following built-in macros. They may 
be redefined, but once this is done the original meaning is 
lost. Their values are null unless otherwise stated. 

define The second argument is installed as the value of 
the macro whose name is the first argument. Each 
occurrence of $n in the replacement text, where n 
is a digit, is replaced by the g-th argument. -
Argument 0 is the name of the macro; missing argu­
ments are replaced by the null string. 

undefine removes the definition of the macro named in its 
argument. 

ifdef If the first argument is defined, the value is the 

XENIX System 1 XENIX System 



M4(1) M4(1) 

second argument, otherwise the third. If there is 
no third argument, the value is null. The word 
unix is predefined on UNIX versions of m4. 

changequote 
Change quote characters to the first and second 
arguments. Changequote without arguments restores 
the original values (i. e., .... '). 

divert M4 maintains 10 output streams, numbered 0-9. The 
final output is the concatenation of the streams 
in numerical order; initially stream 0 is the 
current stream. The divert macro changes the 
current output stream to its (digit-string) argu­
ment. Output diverted to a stream other than 0 
through 9 is discarded. 

undivert causes immediate output of text from diveisions 
named as arguments, or all diversions if no argu­
ment. Text may be undiverted into another diver­
sion. Undiverting discards the diverted text. 

divnum returns the value of the current output stream. 

dnl reads and discards characters up to and including 
the next newline. 

ifelse has three or more arguments. If the first argu­
ment is the same string as the second, then the 
value is the third argument. If not, and if there 
are more than four arguments, the process is 
repeated with arguments 4, 5, 6 and 7. Otherwise, 
the value is either the fourth string, or, if it 
is not present, null. 

incr returns the value of its argument incremented by 
1. The value of the argument is calculated by 
interpreting an initial digit-string as a decimal 
number. 

eval evaluaces lLS argument as an arithmetic expres­
sion, using 32-bit arithmetic. Operators include 
+, -, *, /, %, A ( e x po n en t i a t ion); reI a t ion a 1 s i 
parentheses. 

len returns the number of characters in its argument. 

index returns the position in its first argument where 
the second argument begins (zero origin), or -1 if 
the second argument does not occur. 

substr returns a substring of its first argument. The 

XENIX System 2 XENIX System 



M4(1) M4(1) 

second argument is a zero orlgln number selecting 
the first character; the third argument indicates 
the length of the substring. A missing third 
argument is taken to be large enough to extend to 
the end of the first string. 

translit transliterates the characters in its first argu­
ment from the set given by the second argument to 
the set given by the third. No abbreviations are 

include 

permitted. 

returns the contents of the file named in the 
argument. 

sinclude is identical to include, except that it says noth­
ing if the file is inaccessible. 

syscmd executes the UNIX command given in the first argu­
ment. No value is returned. 

maketemp fills in a string of XXXXX in its argument with 
the current process ide 

errprint prints its argument on the diagnostic output file. 

dumpdef prints current names and definitions, for the 
named items, or for all if no arguments are given. 

SEE ALSO 
B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor 

XENIX System 3 XENIX System 



MAIL (I) MAl L (I) 

NAME 
mail send or receive mail among users 

SYNTAX 
mail person 
mail [ -r ] [-q [ -p] [-f· file ] 

DESCRIPTION 
Mail with no argument prints a user's mail, message-by­
message, in last-in, first-out order; the optional argument 
-r causes first-in, first-out order. If the -p flag is 
given, the mail is printed with no questions asked; other­
wise, for each message, mail reads a line from the standard 
input to direct disposition of the message. 

newline 
Go on to next message. 

d Delete message and go on to the next. 

p Print message again. 

Go back to previous message. 

s [ file ] 
Save the message in the named files ('mbox' default). 

w [ file ] 
Save the message, without a header, in the named files 
('mbox' default). 

m [ person ] 
Mail the message to the named persons (yourself is 
default) • 

EOT (control-D) 
Put unexamined mail back in the mailbox and stop. 

q Same as EOT. 

x Exit, without changing the mailbox file. 

!command 
Escape to the Shell to do command. 

? Print a command summary. 

An interrupt stops the printing of the current letter. The 
optional argument -q causes mail to exit after interrupts 
without changing the mailbox-.---

XENIX System 1 XENlX System 



MAIL(l) MAIL(l) 

When persons are named, mail takes the standard input up to 
an end-of-file (or a line with just '.') and adds it to each 
person'~ 'mail' file. The message is preceded by the 
sender's name and a postmark. Lines that look like post­
marks are prepended with '>'. A person is usually a user 
name recognized by login(l). To denote a recipient on a 
remote system, prefix person by the system name and excla~a­
tion mark (see uucp(l». 

The -f option causes the named file, e.g. 'mbox', to be 
printed as if it were the mail file. 

Each user owns his own mailbox, which is by default gen­
erally readable but not writable. The command does not 
delete an empty mailbox nor change its mode, so a user may 
make it unreadable if desired. 

When a user logs in he is informed of the presence of ,mail. 

FILES 
/usr/spool/mail/* mailboxes 
/etc/passwd to identify sender and locate persons 
mbox saved mail 
/tmp/ma* temp file 
dead. letter unmailable text 
u ux (l) 

SEE ALSO 

NOTES 

xsend(l), write(l), uucp(l) 

There is a locking mechanism intended to prevent two senders 
from accessing the same mailbox, but it is not perfect and 
races are possible. 

XENIX System 2 XENIX System 



MAKE(l) MAKE(l) 

N~E 

make - maintain program groups 

SYNTAX 
make -f makefile ] option] ••• file ••• 

DESCRIPTION 
Make executes commands in makefile to update one or more 
target names. Name is typically a program. If no -f option 
is present, 'makefile' and 'Makefile' are tried in order. 
If makefile is '_I, the standard input is taken. More than 
one -£ option may appear 

Make updates a target if it depends on prerequisite files 
that have been modified since the target was last modified, 
or if the target does not exist. 

Makefile contains a sequence of entries that specify'depen­
dencies. The first line of an entry is a blank-separated 
list of targets, then a colon, then a list of prerequisite 
files. Text following a semicolon, and all following lines 
that begin with a tab, are shell commands ,to be executed to 
update the target. 

Sharp and newline surround comments. 

The following makefile says that 'pgm' depends on two files 
'a.o' and 'b.o', and that they in turn depend on '.c' files 
and a cornman file 'incl'. 

pgm: a.o b.o 
cc a.o b.o -1m -0 pgm 

a.o: incl a.c 
cc -c a.c 

b.o: incl b.c 
cc -c b.c 

Makefile entries of the form 

stringl = string2 

are macro definitions. Subsequent appearances of $(stringl) 
are replaced by string2. If stringl is a single character, 
the parentheses are optional. 

Make infers prerequisites for files for which makefile gives 
no construction commands. For example, a '.c' file may be 
inferred as prerequisite for a '.0' file and be compiled to 
produce the '.0' file. Thus the preceding example can be 
done more briefly: 

XENIX System I XENIX System 



MAKE (l) 

pgm: a.o b.o 
cc a.o b.o -1m -0 pgm 

a.o b.o: incl 

MAKE(l) 

Prerequisites are inferred according to selected suffixes 
listed as the 'prerequisites' for the special name '.SUF­
FIXES'; multiple lists accumulate; an empty list clears what 
came before. Order is significant; the first possible name 
for which both a file and a rule as described in the next 
paragraph exist is inferred. The default list is 

. SUFFIXES: 'IOU t .0 • c • e • r • f • y . 1 . s 

The rule to create q file with suffix s2 that depends on a 
similarly named file with suffix sl is-Specified as an entry 
for the 'target' sls2. In such an-entry, the special macro 
$* stands for the target name with suffix deleted, $@ for 
the full target name, $< for the complete list of prere­
quisites, and $? for the list of prerequisites that are out 
of date. For example, a rule for making optimized '.0' 
files from '.c' files is 

"c" 0: ; cc -c -0 -0 $@ $ * • c 

Certain macros are used by the default inference rules to 
communicate optional arguments to any resulting compila­
tions. In particular, 'CFLAGS' is used for cc and f77(1) 
options, 'LFLAGS' and 'YFLAGS' for lex and yacc(l) options. 

Command lines are executed one at a time, each by its own 
shell. A line is printed when it is executed unless the 
special target '.SILENT' is in makefile, or the first char­
acter of the command is '@'. 

Commands returning nonzero status (see intro(l» cause make 
to terminate unless the special target <.IGNORE' is in 
makefile or the command begins with <tab><hyphen>. 

Interrupt and quit cause the target to be deleted unless the 
target depends on the special name '.PRECIOUS'. 

Other options: 

-i Equivalent to the special entry '.IGNORE:'. 

-k When a command returns nonzero status, abandon work on 
the current entry, but continue on branches that do not 
depend on the current entry. 

-n Trace and print, but do not execute the commands needed 
to update the targets. 

XENIX System 2 XENIX System 



MAKE (1) MAKE (1) 

FILES 

-t 

-r 

-s 

Touch, i.e. update the modified date of targets, 
without executing any commands. 

Equivalent to an initial special entry '.SUFFIXES:' 
wi th no list. 

Equivalent to the special entry '.SILENT:'. 

makefile, Makefile 

SEE ALSO 

NOTES 

sh(l), touch(l) 
S. I. Feldman Make - A Program for Maintaining Computer Pro~ 
grams 

Some commands return nonzero status inappropriately; Use-i 
to overcome the difficulty. 
Commands that are directly executed by the shell, notably 
cd(l), are ineffectual across newlines in make. 

XEN IX Sys tern 3 XENIX System 



MAN (1) MAN (1) 

NAME 
man - print sections of this manual 

SYNTAX 
man [ option ••• ] [ chapter ] ti tIe ••• 

DESCRIPTION 
Man locates and prints the section of this manual named 
tITle in the specified chapter. (In this context, the word 
'page' is often used as a synonym for 'section'.) The title 
is entered in lower case. The chapter number does not need 
a letter suffix. If no chapter is specified, the whole 
manual is searched for title and all occurrences of it are 
printed. 

Options and their meanings are: 

-t Phototypeset the section using troff(l). 

-n Print the section on the standard output using 
nroff(l) . 

-k Display the output on a Tektronix 4014 terminal using 
troff(l) and tc(l). 

-e Appended or prefixed to any of the above causes the 
manual section to be preprocessed by neqn or eqn(l); -e 
alone means -tee 

-w Print the path names of the manual sections, but do not 
print the sections themselves. 

(default) 
Copy an already formatted manual section to the termi­
nal, or, if none is available, act as -n. It may be 
necessary to use a filter to adapt the output to the 
particular terminal's characteristics. 

Further options, e.g. to specify the kind of terminal you 
have, are passed on to troff(l) or nroff. Options and 
chapter may be changed ~efore each title. 

For example: 

man man 

would reproduce';:~"'this section, as well as any other sections 
named man that may exist in other chapters of the manual, 
e • g. man ( 7) . 

FILES 
/usr/man/man?/* 

XENIX System 1 XENIX System 



MAN (1) MAN (1) 

/usr/man/cat?/* 

SEE ALSO 
nroff(l), eqn(l), tc(l), man(7) 

NOTES 
The manual is supposed to be reproducible either on a photo­
typesetter or on a terminal. However, on a terminal some 
information is necessarily lost. 

XENIX System 2 XENIX System 



MESG (1) 

NAME 
mesg 

SYNTAX 
mesg 

DESCRIPTION 

MESG (1) 

permit or deny messages 

n] [y] 

~esg with argument n forbids messages via write{l) by revok­
lng non-user write permission on the user's terminal. Mesg 
with argument y reinstates permission. All by itself, mesg 
reports the current state without changing it. 

FILES 
/dev/tty* 
/dev 

SEE ALSO 
write{l) 

DIAGNOSTICS 
Exit status is 0 if messages are receivable, 1 if not, 2 on 
error. 

XENIX System 1 XENIX System 



MKCONF (1M) MKCONF (1M) 

NAME 
mkconf - generate configuration tables 

SYNOPSIS 
/sys/conf/mkconf 

DESCRIPTION 
Mkconf examines a machine configuration table on its stan­
dard input. Its output is three files; l.s, c.c and mchO.s. 
L.s is an assembler program that represents the-interrupt -
vectors located in low memory addresses 'and the device 
register addresses. C.c contains initialized block and 
character device switch-tables, a switch table for line pro­
tocols and declarations of various configuration dependent 
and parameterized variables. MchO.s contains conditional 
assembly switches which define the tape ,controller to be 
used for system crash dumps. 

Input to mkconf is a sequence of lines. The following 
describe devices on the machine: 

Ip (LPll) 
rf (RSll) 
tc (TU 56) 
r k ( RK 0 3 /RK 0 5 ) 
tm (TUIO/TEIO) 
rp (RP03) 
hp (RP04/5/6/RM02/3) 
ht (TUI6/TEI6) 
ts (TSll) 
rx (RXO 1/2) 
hk (RKO 6/7) 
rl (RL01/2) 
dc* (DCll) 
kl* (KLll/DLll-ABC) 
dl* (DLII-E) 
dn* (DNIl) 
dh* (DHII) 
dhdm* (DMII-BB) 
du* (DUll) 
dz* (DZIl) 

The devices marked with * may be preceded by a number tel­
ling how many are to be included. The console typewriter is 
automatically included; don't count it as part of the KL or 
DL specification. Count DN's in units of 4 (1 system unit). 

The following,lines are also accepted. 

root dev minor 
The specified block device (e.g. hp) is used for the 
root. minor is a decimal number giving the minor 

XENIX System I XENIX System 



MKDIR(l) MKDIR(l) 

NAME 
mkdir make a directory 

SYNTAX 
mkdir dirname ... 

DESCRIPTION 
Mkdir creates specified directories in mode 777. Standard 
entries, '.', for the directory itself, and' 'for its 
parent, are made automatically. 

Mkdir requires write permission in the parent directory. 

SEE ALSO 
rm (1) 

DIAGNOSTICS 
Mkdir returns exit code 0 if all directories were success­
fully made. Otherwise it prints a diagnostic and returns 
nonzero. 

XENIX System 1 XENIX System 



MKFS (1M) 

NAME 
mkfs - construct a file system 

SYNOPSIS 
/etc/mkfs special proto [ m n ] 

DESCRIPTION 
Mkfs constructs a file system by writing on the special file 
special according to the directions found in the prototype 
file proto. The prototype file contains tokens separated by 
spaces or new lines. The first token is the name of a file 
to be copied onto block zero as the bootstrap program, see 
bproc(8). The second token is a number specifying the size 
of the created file system. Typically it will be the number 
of blocks on the device, perhaps diminished by space for 
swapping. The next token is the number of i-nodes in the 
i-list. The next set of tokens comprise the specification 
for the root file. File specifications consist of tokens 
giving the mode, the user-id, the group id, and the initial 
contents of the file. The syntax of the contents field 
depends on the mode. 

The mode token for a file is a 6 character string. The 
first character specifies the type of the file. (The char­
acters -bcd specify regular, block special, character spe­
cial and directory files respectively.) The second character 
of the type is either u or - to specify set-user-id mode or 
not. The third is g or - for the set-group-id mode. The 
rest of the mode is a three digit octal number giving the 
owner, group, and other read, write, execute permissions, 
see chmod(l). 

Two decimal number tokens come after the mode; they specify 
the user and group ID's of the owner of the file. 

If the file is a regular file, the next token is a pathname 
whence the contents and size are copied. 

If the file is a block or character special file, two 
decimal number tokens follow which give the major and minor 
device numbers. 

If the file is a directory, mkfs makes the entries. and •. 
and then reads a list of names and (recursively) file 
specifications for the entries in the directory. The scan 
is terminated with the token $. 

If the prototype file cannot be opened and its name consists 
of a string of digits, mkfs builds a file system with a sin­
gle empty directory on ~ The size of the file system is 
the value of proto interpreted as a decimal number. The 
number of i-nodes is calculated as a function of the 

XENIX System 1 XENIX System 



MKFS(lM} MKFS(lM} 

filsystem size. The boot program is left uninitialized. 

A sample prototype specification follows: 

/usr/mdec/uboot 
4872 55 
d--777 3 1 
usr d--777 3 1 

sh ---755 3 1 /bin/sh 
ken d--755 6 1 

$ 
bO b--644 3 1 0 0 
cO c--644 3 1 0 0 
$ 

$ 

SEE ALSO 
filsys (5), dir (5), bproc (8) 

BUGS 
There should be some way to specify links. 

XENIX System 2 XENIX System 



MKSTR(UCB) MKSTR(UCB) 

NAME 
mkstr - create an error message file by massaging C source 

SYNTAX 
mkstr - ] messagefile prefix file •.. 

DESCRIPTION 
Mkstr is used to create files of error messages. Its use 
can make programs with large numbers of error diagnostics 
much smaller, and reduce system overhead in running the pro­
gram as the error messages do not have to be constantly 
swapped in and out. 

Mkstr will process each of the specified files, placing a 
massaged version of the input file in a file whose name con­
sists of the specified prefix and the original name. A typ­
ical usage of mkstr would be 

mkstr pistrings xx *.c 

This command would cause all the error messages from the C 
source files in the current directory to be placed in the 
file pistrings and processed copies of the source for these 
files to be placed in files whose names are prefixed with 
xx. 

To process the error messages in the source to the message 
file mkstr keys on the string 'errore"' in the input stream. 
Each time it occurs, the C string starting at the 'n, is 
placed in the message file followed by a null character and 
a new-line character; the null character terminates the mes­
sage so it can be easily used when retrieved, the new-line 
character makes it possible to sensibly cat the error mes­
sage file to see its contents. The massaged copy of the 
input file then contains a lseek pointer into the file which 
can be used to retrieve the message, i.e.: 

char efilname[] = "/usr/lib/pi_strings"; 
int efil = -1; 

error(al, a2, a3, a4) 
{ 

oops: 

XENIX System 

char buf[256]; 

if (efil < 0) { 
efil = open(efilnarne, 0); 
if (efil < 0) { 

} 

perror(efilnarne) ; 
exit(l} ; 

1 XEN IX.8ys tern 



MKSTR (UCB) MKSTR(UCB) 

} 

} 
if (lseek (efil, (long) aI, 0) II read (efil, buf, 256) <= 

goto oops; 
pr in tf (buf, a2, a3, a4); 

The optional - causes the errOr messages to be placed at the 
end of the specified message file for recompiling part of a 
large mkstred program. 

SEE ALSO 
Iseek(2), xstr(UCB) 

AUTHORS 
Bill Joy and Charles Haley 

NOTES 
All the arguments except the name of the file to be pr~­
cessed are unnecessary. 

XENIX System 2 XENIX System 



MOUNT (1M) MOUNT(lM) 

NAME 
mount, umount - mount and dismount file system 

SYNOPSIS 
jete/mount [ special name [ -r ] ] 

/ete/umount special 

DESCRIPTION 
Mount announces to the system that a removable file system 
is present on the device special. The file name must exist 
already; it must be a directory (unless the root of the 
mounted file system is not a directory). .It become~ the 
name of the newly mounted root. The optional last argument 
indicates that the file system is to be mounted read-only. 

Umount announces to the system that the removable file sys­
tem previously mounted on device special is to be removed. 
First, any pending I/O for the file syst~m is completed, and 
the file system is flagged clean. Mount will refuse to 
mount a file system which is not flagged clean; this can 
happen if a system crash prevented the use of umou~t or 
haltsys(8). In such a case, use fsck(lM) to clean the file 
system, then try mount again. 

These commands maintain a table of mounted devices. If 
invoked without an argument, mount prints the table. 

Physically write-protected and magnetic tape file systems 
must be mounted read-only or errors will occur when access 
times are updated, whether or not any explicit write is 
attempted. 

FILES 
/etc/mtab: mount table 

SEE ALSO 
mount(2), mtab(5) 

DIAGNOSTICS 

BUGS 

Exit code 0 is returned for a successful mount, 1 for a 
failure, 2 for attempting to mount an unclean structure. 

Mounting'file systems full of garbage will crash the system. 
Mounting a root directory on a non-directory makes some 
apparently good pathnames invalid. 

XENIX System 1 XENIX System 



MV(I) MV(I) 

NAME 
mv move or rename files and directories 

SYNTAX 
mv filel file2 

mv file ••• directory 

DESCRIPTION 
Mv moves (changes the name of) filel to file2. 

If file2 already exists, it is removed before filel is 
moved. If file2 has a mode which forbids writing, mv prints 
the mode (see chmod(2)) and reads the standard inputto 
obtain a line; if the line begins with y, the move takes 
place; if not, ~ exits. 

In the second form, one or more files are moved to the 
directory with their original file-names. 

Mv refuses to move a file onto itself. 

SEE ALSO 

NOTES 

cp(l), chmod(2}, copy(l) 

If filel and file2 lie on different file systems, mv must 
copy the file and delete the original. In this case the 
owner name becomes that of the copying process and any link­
ing relationship with other files is lost. 

Mv should take -f flag, like rm, to suppress the question if 
the target exists and is not writable. 

XENIX System I XENIX System 



NEWGRP (1) NEWGRP (1) 

NAME 
newgrp - log in to a new group 

SYNTAX 
newgrp group 

DESCRIPTION 

FILES 

Newgrp changes the group identification of its caller, 
analogously to login(l). The same person remains logged in, 
and the current directory is unchanged, but calculations of 
access permissions to files are performed with respect to 
the new group 10. 

A password is demanded if the group has a password and the 
user himself does not. 

When most users log in, they are members of the group named 
'other.' Newgrp is known to the shell, which executes it 
directly without a fork. 

/etc/group, /etc/passwd 

SEE ALSO 
login(l), group(5) 

XENIX System 1 XENIX System 



NICE(l) NICE(l) 

N~E 

nice, nohup - run a command at low priority 

SYNTAX 
nice [ -number ] command [ arguments 

nohup command [ arguments ] 

DESCRIPTION 

FILES 

Nice executes command with low scheduling priority. If the 
number argument is present, the priority is incremented 
(higher numbers mean lower priorities) by that amount up to 
a limit of 20. The default number is 10. 

The super-user may run commands with priority higher than 
normal by using a negative priority, e.g. '--10'. 

Nohup executes command immune to hangup and terminate '~ig­
nals from the controlling terminal. The priority is incre­
mented by 5. Nohup should be invoked from the shell with 
'&' in order to prevent it from responding to interrupts by 
or stealing the input from the next person who logs in on 
the same terminal. 

nohup.out standard output and standard error file under 
nohup 

SEE ALSO 
nice(2) 

DIAGNOSTICS 
Nice returns the exit status of the subject command. 

XENIX System 1 XENIX System 



NM (l) -V\ ) NM(l) 

NAME 
nm print name list 

SYNTAX 
nm [ -gnoprucx [ file ••• ] 

DESCRIPTION 

FILES 

Nm prints the name list (symbol table) of each object file 
in the ~rgument list. If an argument is an archive, a list­
ing for each object file in the archive will be produced. 
If no file is given, the symbols in 'a.out', are listed. 

Each symbol name is preceded by its value (blanks if unde­
fined) and one of the letters U (undefined), A (absolute), T 
(text segment symbol), D (data segment symbol), B (bss seg-
ment symbol), or C (common symbol). If the symbol is local 
(non-external) the type letter is in lower case. The output 
is sorted alphabetically. 

Options are: 

-g Print only global (external) symbols. 

-n Sort numerically rather thari ~lphabeti~ally. 

-0 Prepend file or archive element name to each output 
line rather than only once. 

-p Don't sort; print in symbol-table order. 

-r Sort in reverse order. 

-u Print only undefined symbols. 

-c Print only C program symbols (symbols which begin with 
, ') as they appeared in the C program. 

-x Symbol values are printed in hexadecimal rather than 
octal. 

a.out Default input file. 

SEE ALSO 
are!), areS), a.out(S) 

XENIX System 

I 
I 

,1 XENIX System 



NROFF(l) NROFF(l) 

NAME 
nroff, troff - text formatting and typesetting 

SYNTAX 
nroff option file 

troff option file 

DESCRIPTION 
Troff formats text in the named files for printing on a 
Graphic Systems C/A/T phototypesetter; nroff for 
typewriter-like devices. Their capabilities are described 
in the Nroff/Troff user'§. manual. 

If no file argument is present, the standard input is read. 
An argument consisting of a single minus (-) is taken to be 
a file name correspond~ng to the standard input. The. 
options, which may appear in any order so long as they 
appear before the files, are: 

-olist Print only pages whose page numbers appear in the 
comma-separated list of numbers and ranges. A range 
N-M means pages N through Mi an initial -N means from 
the beginning to-page Ni and a final N- means from N 
to the end. -

-nN Number first generated page ~. 

-sN Stop every ~ pages. Nroff will halt prior to every ~ 
pages (default N=l) to allow paper loading or chang­
ing, and will resume upon receipt of a newline. 
Troff will stop the phototypesetter every N pages, 
produce a trailer to allow changing cassettes, and 
resume when the typesetter's start button is pressed. 

-mname Prepend the macro file /usr/lib/tmac/tmac.name to the 
input files. ----

-raN 

-i 

-q 

Set register ~ (one-character) to~. 

Read standard input after the input files are 
exhausted. 

Invoke the simultaneous input-output mode of the rd 
request. 

Nroff only 

-Tname Prepare output for specified terminal. Known names 
are 37 for the (default) Teletype Corporation Model 
37 terminal, tn300 for the GE TermiNet 300 (or any 
terminal without half-line capability), 300S for the 

XENIX System 1 XENIX System 



NROFF(l) NROFF(l) 

FILES 

DASI-300S, 300 for the DASI-300, and 450 for the 
DASI-450 (Diablo Hyterm). 

-e Produce equally-spaced words in adjusted lines, using 
full terminal resolution. 

-h Use output tabs during horizontal spacing to speed 
output and reduce output character count. Tab set­
tings are assumed to be every 8 nominal character 
widths. 

Troff only 

-t Direct output to the standard output instead of the 
phototypesetter. 

-f Refrain from feeding out paper and stopping photo­
typesetter at the end of the run. 

-w wait until phototypesetter is available, if currently 
busy. 

-b Report whether the phototypesetter is busy or avail­
able. No text processing is done. 

-a Send a printable ASCII approximation of the results 
to the standard output. 

-pN Print all characters in point size N while retaining 
all prescribed spacings and motions, to reduce photo­
typesetter elasped time. 

-9 Prepare output for a GCOS phototypesetter and direct 
it to the standard output (see gcat(l». 

If the file /usr/adrn/tracct is writable, troff keeps photo­
typesetter accounting records there. The integrity of that 
file may be secured by making troff a 'set user-id' program. 

/usr/lib/suftab 
/tmp/ta* 
/usr/lib/tmac/tmac.* 
/usr/lib/term/* 
/usr/lib/font/* 
/dev/cat 
/usr/adm/tracct 

suffix hyphenation tables 
temporary file 
standard macro files 
terminal driving tables for nroff 
font width tables for troff 
phototypesetter 
accounting statistics for /dev/cat 

SEE ALSO 
J. F. Ossanna, Nroff/Troff user's manual 
B. W. Kernighan, A TROFF Tutorial 
eqn(l), tbl(l) 

XENIX System 2 XENIX System 



NROFF(l) 

col(l), tk(l) (nroff only) 
tc(l), gcat(l) (troff only) 

XENrX System 

NROFF(l) 

3 XENIX System 



OD(l) OD(l) 

NAME 
od octal dump 

SYNTAX 
od [ -bcdox [ file] [ [ + ]offset[ • ] [ b ] ] 

DESCRIPTION 
Od dumps file in one or more formats as selected by the 
first argument. If the first argument is missing, -0 is 
default. The meanings of the format argument characters 
are: 

b Interpret bytes in octal. 

c Interpret bytes in ASCII. Certain non-graphic characters 
appear as C escapes: null=\O, backspace=\b, formfeed=\f, 
newline=\n, return=\r, tab=\t; others appear as 3-digit 
octal numbers. 

d Interpret words in decimal. 

o Interpret words in octal. 

x Interpret words in hex. 

The file argument specifies which file is to be dumped. If 
no file argument is specified, the standard input is used. 

The offset argument specifies the offset in the file where 
dumping is to commence. This argument is normally inter­
preted as octal bytes. If '.' is appended, the offset is 
interpreted in decimal. If 'b' is appended, the offset is 
interpreted in blocks of 512 bytes. If the file argument is 
omitted, the offset argument must be preceded '+'. 

Dumping continues until end-of-file. 

SEE ALSO 
adb(l) 

XENIX System 1 XENIX System 



PR (1) PR(.l) 

NAME 
pr print file 

SYNTAX 
pr [ option ] ••• [ file ] ••• 

DESCRIPTION 

FILES 

Pr produces a printed listing of one or more files. The out­
put is separated into pages headed by a date, the name of 
the file or a specified header, and the page number. If 
there are no file arguments, ~ prints its standard input. 

Options apply to all following files but may be reset 
between files: 

-n Produce ~-column output. 

+n Begin printing with page n. 

-h Take the next argument as a page header. 

-wn For purposes of multi-column output, take the width of 
the page to be ~ characters instead of the default 72. 

-In Take the length of the page to be n lines instead of 
the default 66. 

-t Do not print the 5-line header or the 5-line trailer 
normally supplied for each page. 

-sc Separate columns by the single character c instead of 
by the appropriate amount of white space. A missing c 
is taken to be a tab. 

-m Print all files simultaneously, each in one column, 

-b A form feed character is used to separate pages, nor­
mally pages are separated by a number of newline char­
acters. 

Inter-terminal messages via write(l) are forbidden during a 
E.£. 

/dev/tty* to suspend messages. 

SEE ALSO 
cat(l) 

DIAGNOSTICS 
There are no diagnostics when ~ is printing on a terminal. 

XENIX System 1 XENIX System 



PREP(l) PREP(l) 

NME 
prep - prepare text for statistical processing 

SYNTAX 
prep -dio] file .•• 

DESCRIPTION 
xrea reads each file in sequence and writes it on the stan-

ar output, one~rd' to a line. A word is a string of 
alphabetic characters and imbedded apostrophes, delimited by 
space or punctuation. Hyphented words are broken apart; 
hyphens at the end of lines are removed and the hyphenated 
parts are joined. Strings of digits are discarded. 

The following option letters may appear in any order: 

-d Print the word number (in the input stream) with each 
word. 

-i Take the next file as an 'ignore' file. These words 
will not appear in the output. (They will be counted, 
for purposes of the -d count.) 

-0 Take the next file as an 'only' file. Only these words 
will appear in the output. (All other words will also 
be counted for the -d count.) 

-p Include punctuation marks (single nonalphanumeric char­
acters) as separate output lines. The punctuation 
marks are not counted for the -d count. 

Ignore and only files contain words, one per line. 

SEE ALSO 
deroff(l) 

XENIX System I XENIX System 



PRINT(UCB) PRINT (UCB) 

NAME 
print - pr to the line printer 

SYNTAX 
print file 

DESCRIPTION 
Print E£'s a copy of each named file on the line printer. 
It is a one line shell script: 

pr $* I lpr 

SEE ALSO 
Ipr(UCB), pr(l) 

NOTES 

XEN IX Sys tern 1 XENIX System 



PRINTENV (UCB) PRINTENV(UCB) 

NAME 
printenv - print out the environment 

SYNTAX 
printenv [ name 

DESCRIPTION 
Printenv prints out the values of the variables in the 
environment. If a name is specified, only its value is 
printed. 

If a name is specified and it is not defined in the environ­
ment, printenv returns exit status 1, else it returns status 
o • 

SEE ALSO 
sh (1), environ (5), csh (UeB) 

NOTES 

XENIX System 1 XENIX System 



PROF(l) PROF (1) 

NAME 
prof - display profile data 

SYNTAX 
prof -v ] [-a ] [-1 ] -low [ -high ] ] [ file ] 

DESCRIPTION 

FILES 

Prof interprets the file mon.out produced by the monitor 
subroutine. Under defaul~odes, the symbol table 1n the 
named object file (a.out default) is read and correlated 
with the mon.out profile file. For each external symbol, 
the percentage of time spent executing between that symbol 
and the next is printed (in decreasing order), together with 
the number of times that routine was called and the number 
of milliseconds per call. 

If the -a option is used, all symbols are reported rather 
than just external symbols. If the -1 option is used,' the 
output is listed by symbol value rather than decreasing per­
centage. 

If the -v option is used, all printing is suppressed and a 
graphic version of the profile is produced on the standard 
output for display by the plot(l) filters. The numbers low 
and high, by default a and 100, cause a selected percentage 
of the profile to be plotted with accordingly higher resolu­
tion. 

In order for the number of calls to a routine to be tallied, 
the -p option of cc must have been given when the file con­
taining the routine was compiled. This option also arranges 
for the ~.out file to be produced automatically. 

mon.out for profile 
a.out for namelist 

SEE ALSO 

NOTES 

monitor (3), profil(2), cc(l), plot(l) 

Beware of quantization errors. 

If you use an explicit call to monitor (3) you will need to 
make sure the buffer size is equal to or smaller than the 
program size. 

XENIX System 1 XENIX System 



PS(I) 

NAME 
ps - process status 

SYNTAX 
ps [ aklx [ name list ] 

DESCRIPTION 
Ps prints certain indicia about active processes. The a 
option asks for information about all processes with termi­
nals (ordinarily only one's own processes are displayed) i x 
asks even about processes with no terminal; 1 asks for a 
long listing. The short listing contains the process ID, 
tty letter; the cumulative execution time of the process and 
an approximation to the command line. 

The long listing is columnar and contains 

F Flags associated with the process. 01: in core; 02: 
system process; 04: locked in core (e.g. for physical 
I/O); 10: being swapped; 20: being traced by another 
process. 

S The state of the process. 
W: waiting; R: running; I: 

0: nonexistent; S: sleeping; 
intermediate; z: terminated; 

T: stopped. 

UID The user 10 of the process owner. 

PID The process ID of the process t as in certain cults 
is possible to kill a process if you know its true 
name. 

PPID The process ID of t.he parer:t process. 

CPU Processor utilization for scheduling. 

PRI The priority of the process; high numbers mean low 
priority. 

NICE Used in priority computation. 

it 

ADDR The core address of the process if resid2nt, otherw~se 
the disk address. 

SZ The size in blocks of the core image of the process. 

WCHAN 
The event for which the process is waiting or sleeping; 
if blank, the process is running. 

TTY The controlling tty for the process. 

XENIX System 1 XENIX System 



PS(l) 

FILES 

PS(l) 

TIME The cumulative execution time for the process. 

The command and its arguments. 

A process that has exited and has a parent, but has not yet 
been waited for by the parent is marked <defunct>. Ps makes 
an educated guess as to the file name and arguments given 
when the process was created by examining core memory or the 
swap area. The method is inherently somewhat unreliable and 
in any event a process is entitled to destroy this informa­
tion, so the names cannot be counted on too much. 

If the k option is specified, the file /usr/~/core is used 
in place of /dev/mem. This is used for postmortem system 
debugging. Ir-a second argument is given, it is taken to be 
the file containing the system's namelist. 

/xenix system namelist 
/dev/mem core memory 
/usr/sys/core alternate core file 
/dev searched to find swap device and tty names 

SEE ALSO 
kill(l) 

NOTES 
Things can change while ~ is running; the picture it gives 
is only a close approximation to reality. 
Some data printed for defunct processes is irrelevant 

XENIX System 2 XENIX System 



PTX(l) PTX\..L) 

NAME 
ptx - permuted index 

SYNTAX 
ptx [ option [ input [ output ]] 

DESCRIPTION 
Ptx generates a permuted index to file input on file output 
(standard input and output default). It has three phases: 
the first does the permutation, generating one line for each 
keyword in an input line. The keyword is rotated to the 
front. The permuted file is then sorted. Finally, the 
sorted lines are rotated so the keyword comes at the middle 
of the page. Ptx produces output in the form: 

.xx "tail" "before keyword" "keyword and after" "head" 

where .xx may be an nroff or troff(l) macro for user-defined 
formatting. The before keyword and keyword and after fields 
incorporate as much of the line as will fit around the key­
word when it is printed at the middle of the page. Tail and 
head, at least one of which is an empty string "", are 
wrapped-around pieces small enough to fit in the unused 
space at the opposite end of the line. When original text 
must be discarded, 'II marks the spot. 

The following options can be applied: 

-f Fold upper and lower case letters for sorting. 

-t Prepare the output for the phototypesetter; the default 
line length is 100 characters. 

-w n Use the next argument, n, as the width of the output 
line. The default line-length is 72 characters. 

-g n Use the next argument, ~, as the number of characters 
to allow for each gap among the four parts of the line 
as finally printed. The default gap is 3 characters. 

-0 only 
Use as keywords only the words given in the only file. 

-i ignore 
Do not use as keywords any words given in the ignore 
file. If the -i and -0 options are missing, use 
lusr/lib/eign as the ignore file. 

-b break 
Use the dharacters in the break file to separate words. 
In any case, tab, newline, and space characters are 
always used as break characters. 

XENIX System 1 XENIX System 



PTX(l) PTX (1) 

FILES 

NOTES 

-r Take any leading nonblank characters of each input line 
to be a reference identifier (as to a page or chapter) 
separate from the text of the line. Attach that iden­
tifier as a 5th field on each output line. 

The index for this manual was generated using ~. 

/bin/sort 
/usr/lib/eign 

Line length counts do not account for overstriking or pro­
portional spacing. 

XENIX System 2 XENIX System 



PWD(l) PWD (.l) 

NAME 
pwd - working directory name 

SYNTAX 
pwd 

DESCRIPTION 
Pwd prints the pathname of the working (current) directory. 

SEE ALSO 
cd(l) 

XENIX System 1 XENIX System 



QUaT (1M) QUaT (lM) 

NAME 
quot - summarize file system ownership 

SYNOPSIS 
quot [ opt ion ] filesystem ] 

DESCRIPTION 

FILES 

Quot prints the number of blocks in the named filesystem 
currently owned by each user. If no filesystem is named, a 
default name is assumed. The following options are avail­
able: 

-n Cause the pipeline ncheck filesystem I sort +On I quot 
-n filesystem to produce a list of all files and their 
owners. 

-c Print three columns giving file size in blocks, number 
of files of that size, and cumulative total of b~ocks 
in that size or smaller file. 

-f Print count of number of files as well as space owned 
by each user. 

Default file system varies with system. 
/etc/passwd to get user names 

SEE ALSO 

BUGS 

Is (1), du (1) 

Holes in files are counted as if they actually occupied 
space. 

XENIX System I XENIX System 



RANLIB(l) RANLIB(l) 

NAME 
ranlib - convert archives to random libraries 

SYNTAX 
ranlib archive ..• 

DESCRIPTION 
Ranlib converts each archive to a form which can be loaded 
more rapidly by the loader, by adding a table of contents 
named .SYMDEF to the beginning of the archive. It uses 
ar(l) to reconstruct the archive, so that sufficient tem­
porary file space must be available in the file system con­
taining the current directory. 

SEE ALSO 

NOTES 

1 d ( 1), a r (1) , copy ( 1), set tim e( 1 ) 

Because generation of a library by ar and randomization by 
ranlib are separate, phase errors are possible. The loader 
ld warns when the modification date of a library is more 
recent than the creation of its dictionary; but this means 
you get the warning even if you only copy the library. 

XENIX System 1 XENIX System 



RESTOR (1M) RESTOR (1M) 

NAME 
restor - incremental file system restore 

SYNOPSIS 
restor key [ argument ••• 

DESCRIPTION 
Restor is used to read magtapes dumped with the du~p com­
mand. The ~ specifies what is to be done. Key 1S one of 
the characters rRxt optio~ally combined with f. 

f Use the first argument as the name of the tape instead 
of the default. 

r or R 
The tape is read and loaded into the file system speci­
fied in argument. This should not be done lightly (see 
below). If the key is R restor asks which tape of a 
multi volume set to start on. This allows restor to be 
interrupted and then restarted (an icheck -s must be 
done before restart). 

x Each file on the tape named by an argument is 
extracted. The file name has all 'mount' prefixes 
removed; for example, /usr/bin/lpr is named /bin/lpr on 
the tape. The file extracted is placed in a file with 
a numeric name supplied by restor (actually the inode 
number). In order to keep the amount of tape read to a 
minimum, the following procedure is recommended: 

Mount volume I of the set of dump tapes. 

Type the restor command. 

Restor will announce whether or not it found the files, 
give the number it will name the file, and rewind the 
tape. 

It then asks you to 'mount the desired tape volume'. 
Type the number of the volume you choose. On a multi 
volume dump the recommended procedure is to mount the 
last through the first volume in that order. Restor 
checks to see if any of the files requested are on the 
mounted tape (or a later tape, thus the reverse order) 
and doesn't read through the tape if no files are. If 
you are working with a single volume dump or the number 
of files being restored is large, respond to the query 
with '1' and restor will read the tapes in sequential 
order. 

If you have a hierarchy to restore you can use dump­
dir{l) to produce the list of names and a shell script 

XENIX System 1 XENIX System 



RESTOR (1M) RESTOR (1M) 

FILES 

to move the resulting files to their homes. 

t Print the date the tape was written and the date the 
filesystem was dumped from. 

The r option should only be used to restore a complete dump 
tape onto a clear file system or to restore an incremental 
dump tape onto this. Thus 

/etc/mkfs /dev/rpO 40600 
restor r /dev/rpO 

is a typical sequence to restore a complete dump. Another 
restor can be done to get an incremental dump in on top of 
this. 

A dump followed by a mkfs and a restor is used to change the 
size of a file system. 

default tape unit varies with installation 
rst* 

SEE ALSO 
dump(l), mkfs(l), dumpdir(l) 

DIAGNOSTICS 

BUGS 

There are various diagnostics involved with reading the tape 
and writing the disk. There are also diagnostics if the i­
list or the free list of the file system is not large enough 
to hold the dump. 

If the dump extends over more than one tape, it may ask you 
to change tapes. Reply with a new-line when the next tape 
has been mounted. 

There is redundant information on the tape that could be 
used in case of tape reading problems. Unfortunately, res-
tor doesn't use it. 

XENIX System 2 XENIX System 



REV(l) REV(l) 

NAME 
rev - reverse lines of a file 

SYNTAX 
rev [ file ] ••• 

DESCRIPTION 
Rev copies the named files to the standard output, reversing 
the order of characters in every line. If no file is speci­
fied, the standard input is copied •. 

XENIX System 1 XENIX System 



RM(l) 

N~E 

rm, rmdir - remove (unlink) files 

SYNTAX 
rm [ -fri ] file 

rmdir dir 

DESCRIPTION 
Rm removes the entries for one or more files from a direc­
tory. If an entry was the last link to the file, the file 
is destroyed. Removal of a file requires write permission 
in its directory, but neither read nor write permission on 
the file itself. 

If a file has no write permission and the standard input is 
a terminal, its permissions are printed and a line is read 
from the standard input. If that line begins with 'y' the 
file is deleted, otherwise the file remains. No questions 
are asked when the -f (force) option is given. 

If a designated file is a directory, an error comment is 
printed unless the optional argument -r has been used. In 
that case, rm recursively deletes the entire contents of the 
specified directory, and the directory itself. 

If the -i (interactive) option is in effect, rm asks whether 
to delete each file, and, under -r, whether to-examine each 
directory. 

Rmdir removes entries for the named directories, which must 
be empty. 

SEE ALSO 
unlink(2) 

DIAGNOSTICS 
Generally self-explanatory. It is forbidden to remove the 
file ' •. , merely to avoid the antisocial consequences of 
inadvertently doing something like 'rm -r .*'. 

XENIX System I XENIX System 



SA(lM) SA{lM) 

N~E 

sa, accton - system accounting 

SYNOPSIS 
sa [ -abcijlnrstuv [ file 1 

/etc/accton [ file 

DESCRIPTION 
with an argument naming an existing file, accton causes sys­
tem accounting information for every process executed to be 
placed at the end of the file. If no argument is given, 
accounting is turned off. 

Sa reports on, cleans up, and generally maintains accounting 
files. 

Sa is able to condense the information in /usr/adm/acct into 
a-summary file /usr/adm/savacct which contains a count of 
the number of times each command was called and the time 
resources consumed. This condensation is desirable because 
on a large system acct can grow by 100 blocks per day. The 
summary file is read before the accounting file, so the 
reports include all available information. 

If a file name is given as the last argument, that file will 
be treated as the accounting file; /usr/adm/acct is the 
default. There are zillions of options:--- ----

a Place all command names containing unprintable charac­
ters and those used only once under the name 
'***other. ' 

b Sort output by sum of user and system time divided by 
number of calls. Default sort is by sum of user and 
system times. 

c Besides total user, system, and real time for each com­
mand print percentage of total time over all commands. 

i Ignore the summary files /usr/adm/savacct and 
/usr/adm/usracct; do not include their contents in this 
report. 

j Instead of total minutes time for each category, give 
seconds per call. 

I Separate system and user time; normally they are com­
bined. 

m Print number of processes and number of CPU minutes for 
each user. 

XENIX System I XENIX System 



SA(lM) SA(IM) 

FILES 

n 

r 

s 

t 

u 

v 

Sort by number of calls. 

Reverse order of sort. 

Merge accounting file into summary file 
/usr/adm/savacct when done. 

For each command report ratio of real time to the sum 
of user and system times. 

Superseding all other flags, print for each command in 
the accounting file the user ID and command name. 

If the next character is a digit n, then type the name 
of each command used n times or fewer. Await a reply 
from the typewriter~ If it begins with 'y', add the 
command to the category '**junk**.' This is used 'to 
strip out garbage. 

(default) 
A table of 4 columns is printed: the number of calls, 
the total real time, the total combined system and user 
time, and the name of the command. The first line in 
the table contains the sum of each column. 

/usr/adm/acct raw accounting 
/usr/adm/savacct summary 
/usr/adm/usracct per-user summary 

SEE ALSO 
ac(l), acct(2) 

XENIX System 2 XENIX System 



SDDATE(lM) SDDATE(lM) 

N~E 

sddate - print and set dump dates 

SYNOPSIS 
sddate [ name lev date ] 

DESCRIPTION 
If no argument is given, the contents of the dump date file 
'/etc/ddate ' are printed. The dump date file is maintained 
by dump(lM) and contains the date of the most recent dump 
for each dump level for each filesystem. 

If arguments are given, an entry is replaced or made in 
'/etc/ddate'. name is the last component of the device 
pathname. lev ~he dump level number (from 0 to 9), and 
date is a time in the form taken by date(l). 

Some sites may wish to backup filesystems by coping them 
verbatim to dismountable packs. Sdd~t! could be used to 
make a 'level 0' entry in '/etc/ddate', which would then 
allow incremental mag tape dumps. 

For example: 

sddate rrp3 5 10081520 

makes an '/etc/ddate' entry showing a level 5 dump of 
'/dev/rrp3' on October 8, at 3:20 PM. 

FILES 
/etc/ddate 

SEE ALSO 
dump(lM), date(l) 

DIAGNOSTICS 
'bad conversion' if the date set is syntactically incorrect. 

XENIX System 1 XENIX System 



SED (1) SED (1) 

NAME 
sed - stream editor 

SYNTAX 
sed [ -n [ -e script] [-f sfile ] [ file] •.• 

DESCRIPTION 
Sed copies the named files (standard input default) to the 
standard output, edited according to a script of commands. 
The -f option causes the script to be taken from file sfile; 
these options accumulate. If there is just one -e option -
and no -frs, the flag -e may be omitted. The -n option 
suppresses the default output. 

A script consists of editing commands, one per line, of the 
following form: 

[address [, address] ] function [arguments] 

In normal operation sed cyclically copies a line of input 
into a pattern spaceCunless there is sl)/nething left after a 
'D' command), applies in sequence all commands whose 
addresses select that pattern space, and at the end of the 
script copies the pattern space to the standard output 
(except under -n) and deletes the pattern space. 

An address is either a decimal number that counts input 
lines cumulatively across files, a '$'that addresses the 
last line of input, or a context address, '/regular expres­
sion/', in the style of ed(l} modified thus: 

The escape sequence '\n' matches a newline embedded in 
the pattern space. 

A command line with no addresses selects every pattern 
space. 

A command line with one address selects each pattern space 
that matches the address. 

A command line with two addresses selects the inclusive 
range from the first pattern space that matches the first 
address through the next pattern space that matches the 
second. (If the second address is a number less than or 
equal to the line number first selected, only one line is 
selected.) Thereafter the process is repeated, looking again 
for the first address. 

Editing commands can be applied only to non-selected pattern 
spaces by use of the negation function '!' (below). 

XENIX System 1 XENIX System 



SED (1) SED (1) 

In the following list of functions the maximum number of 
permissible addresses for each function is indicated in 
parentheses. 

An argument denoted text consists of one or more lines, all 
but the last of which end with '\' to'hide the newline. 
Backslashes in text are treated like backslashes in the 
replacement string of an's' command, and may be used to 
protect initial blanks and tabs against the stripping that 
is done on every script line. 

An argument denoted rfile or wfile must terminate the com­
mand line and must be preceded by exactly one blank. Each 
wfile is created before processing begins. There can be at 
most 10 distinct wfile arguments. 

(l)a\ 
text 

Append. Place text on the output before reading the 
next input line-.---

(2) b label 

(2)c\ 
text 

Branch to the ':' command bearing the label. If label 
is empty, branch to the end of the scrlpt. 

Change. Delete the pattern space. With 0 or 1 address 
or at the end of a 2-address range, place text on the 
output. Start the next cycle. 

(2)d Delete the pattern space. Start the next cycle. 

(2)D Delete the initial segment of the pattern space through 
the first newline. Start the next cycle. 

(2)g Replace the contents of the pattern space by the con­
tents of the hold space. 

(2)G Append the contents of the hold space to the pattern 
space. 

(2)h Replace the contents of the hold space by the contents 
of the pattern space. 

(2)H Append the contents of the pattern space to the hold 
space. 

(1) i \ 
text Insert. Place text on the standard output. 

(2)1 List the pattern space on the standard output in an 

XENIX System 2 XENIX System 



SED (I) SED (I) 

unambiguous form. Non-printing characters are spelled 
in two digit ascii, and long lines are folded. 

(2}n Copy the pattern space to the standard output. Replace 
th~ pattern space with the next line of input. 

(2)N Append the next line of input to the pattern space with 
an embedded newline. (The current line number 
changes.) 

(2}p Print. Copy the pattern space to the standard output. 

(2)P Copy the initial segment of the pattern space through 
the first newline to the standard output. 

(l)q Quit. Branch to the end of the script. Do not start a 
new cycle. 

(2)r rfile 
Read the contents of rfile. Place them on the output 
before reading the next 1nput line. 

(2}s/regular expression/replacement/flags 
Substitute the replacement string for instances of the 
regular expression in the pattern space. Any character 
may be used instead of '/'. For a fuller description 
see ed(l). Flags is zero or more of 

g Global. Substitute for all nonoverlapping 
instances of the regular expression rather than 
just the first one. 

p Print the pattern space if a replacement was made. 

w wfile 
Write. Append the pattern space to wfile if a 
replacement was made. 

(2)t label 
Test. Branch to the ':' command bearing the label if 
any substitutions have been made since the most recent 
reading of an input line or execution of a 't'. If 
label is empty, branch to the end of the script. 

(2)w wfile 
Write. Append the pattern space to wfile. 

(2)x Exchange the contents of the pattern and hold spaces. 

(2)y/stringl/string2/ 
Transform. Replace all occurrences of characters in 
stringl ~ith the corresponding character in string2. 

XENIX System 3 XENIX System 



SED (l) 

The lengths of stringl and string2 must be equal. 

(2)! function 

SED (l) 

Don't. Apply the function (or group, if function is 
'{e) only to lines not selected by the address(es). 

(0): label 
This command does nothing: it bears a label for 'be and 
't' commands to branch to. 

(l)= Place the current line number on the standard output as 
a line. 

(2) { Execute the following commands through a matching ,}, 
only when the pattern space is selected. 

(0) An empty command is ignored. 

SEE ALSO 
ed (l), gr ep (l), awk (1) 

XENIX System 4 XENIX System 



SETTIME(l) SETTIME(l) 

NAAE 
settime - change the access and modification dates of files 

SYNTAX 
settime [ yymmddhhmm [ .ss ] ] [ -f fname ] name ... 

DESCRIPTION 
Set the access and modification dates for one or more files. 
The dates are set to the specified date, or to the access 
and modification dates of the file specified via -f. 
Exactly one of these methods must be used to specify the new 
date(s). yy is the last two digits of the year; the first 
mm is the month number; dd is the day number in the month; 
hh is the hour number (2~hour system); the second mm is the 
mInute number; .ss is optional and is the seconds. -Par 
example: --

settime 10080045 ralph pete 

sets the access and modification dates of files ralph and 
pete to Oct 8, 12:45 AM. The year, month and day may be 
omitted, the current values being the current date. 

settime -f ralph john 

sets the access and modification dates of the file john to 
those of the file ralph. 

XENIX System 1 XENIX System 



SH (1) 

NAME 

SH (1) 

sh, for, case, if, while, :, ., break, continue, cd, eval, 
exec, exit, export, login, newgrp, read, readonly, set, 
shift, times, trap, umask, wait - command language 

SYNTAX 
sh [ -ceiknrstuvx [ arg ] ••• 

DESCRIPTION 
Sh is a command programming language that executes commands 
read from a terminal or a file. See invocation for the 
meaning of arguments to the shell. 

Commands. 
A simple-command is a sequence of non blank words separated 
by blanks (a blank is a tab or a space). The first word 
specifies the name of the command to be executed. Except as 
specified below the remaining words are passed as arguments 
to the invoked command. The command name is passed as argu­
ment 0 (see exec(2». The value of a simple-command is its 
exit status ~t terminates normally or 200+status if it 
terminates abnormally (see signal(2) for a list of status 
values) . 

A pipeline is a sequence of one or more commands separated 
by I. The standard output of each command but the last is 
connected by a ~(2) to the standard input of the next 
command. Each command is run as a separate process; the 
shell waits for the last command to terminate. 

A list is a sequence of one or more pipelines separated by 
;, &, && or I I and optionally terminated by ; or &. ; and & 
have equal precedence which is lower than that of && and I I, 
&& and I I also have equal precedence. A semicolon causes 
sequential execution: an ampersand causes the preceding 
pipeline to be executed without waiting for it to finish. 
The symbol && (I I) causes the list following to be executed 
only if the preceding pieeline returns a zero (non zero) 
value. Newlines may appear in a list, instead of semi­
colons, to delimit commands. 

A command is either a simple-command or one of the follow­
ing. The value returned by a command is that of the last 
simple-command executed in the command. 

for name [in word ••. ] do list done 
Each time-a-for command is executed name is set to the 
next word in the for word list If in word .•• is omit­
ted then in "$@" is assumed. Execution ends when there 
are no more words in the list. 

case word in [pattern [ I pattern ] .•• ) list i;] ••• esac 

XENIX System 1 XENIX System 



SH(I) SH (1) 

A case command executes the list associated with the 
first pattern that matches word. The form of the pat­
terns is the same as that usea-for file name genera-
tion. 

if list then list [elif list then list] [else list] fi 
The list following if is executed and if it returns 
zero the list following then is executed. Otherwise, 
the list following elif is executed and if its value is 
zero the list following then is executed. Failing that 
the else list is executed. 

while list [do list] done 
A while command repeatedly executes the while list and 
if its value is zero executes the do list; otherwIse 
the loop terminates. The value returned by a while 
command is that of the last executed command in the do 
list. until may be used in place of while to negate the 
loop termination test. 

list ) 
Execute list in a subshell. 

{ list } 
list is simply executed. 

The following words are only recognized as the first word of 
a command and when not quoted. 

if then else elif fi case in esac for while until do 
done { } 

Command substitution. 
The standard output from a command enclosed in a pair of 
grave accents (") may be used as part or all of a word; 
trailing newlines are removed. 

Parameter substitution. 
The character $ is used to introduce substitutable parame­
ters. positional parameters may be assigned values by set. 
Variables may be set by writing 

name=value name=value 1 ... 

${parameter} 
A parameter is a sequence of letters, digits or under­
scores (a name), a digit, or any of the characters * @ 
i ? - $ !.~e value, if any, of the parameter is sub­
stituted. The braces are required only when parameter 
is followed by a letter, digit, or underscore that is 
not to be interpreted as part of its name. If parame­
ter is a digit then it is a positional parameter. If 

XENrx System 2 XENIX System 



SH(l) SH(l) 

parameter is * or @ then all the positional parameters, 
starting with $1, are substituted separated by spaces. 
$0 is set from argument zero when the shell is invoked. 

${parameter-word} 
If parameter is set then substitute its value; other­
wise substitute word. 

${parameter=word} 
If parameter is not set then set it to word; the value 
of the parameter is then substituted. Positional 
parameters may not be assigned to in this way. 

${parameter?word} 
If parameter is set then substitute its value: other­
wise, print word and exit from the shell. If word is 
omitted then-a-5tandard message is printed. 

${parameter+word} 
If parameter is set then substitute word: otherwise 
substltute nothing. 

In the above word is not evaluated unless it is to be used 
as the substituted string. (So that, for example, echo 
${d-'pwd'} will only execute pwd if ~ is unset.) 

The following parameters are automatically set by the shell. 

i The number of positional parameters in decimal. 
Options supplied to the shell on invocation or by 
set. 

? The value returned by the last executed command in 
decimal. 

$ The process number of this shell. 
The process number of the last background command 
invoked. 

The following parameters are used but not set by the shell. 

HOME 

PATH 
MAIL 

PSl 
PS2 
IFS 

The default argument (home directory) for the cd 
command. 
The search path for commands (see execution). 
If this variable is set to the name of a mail file 
then the shell informs the user of the arrival of 
mail in the specified file. 
Primary prompt string, by default '$ '. 
Secondary prompt string, by default '> '. 
Internal field separators, normally space, tab, 
and newline. 

Blank interpretation. 
After parameter and command substitution, any results of 

XENIX System 3 XENIX System 



SH(I) SH (I) 

substitution are scanned for internal field separator char­
acters (those found in $IFS) and split into distinct argu­
ments where such characters are found. Explicit null argu­
ments (It It or ") are retained. Implicit null arguments 
(those resulting from parameters that have no values) are 
removed. 

File name generation. 
Following substitution, each command word is scanned for the 
characters *, ? and [. If one of these characters appears 
then the word is regarded as a pattern. The word is 
replaced with alphabetically sorted file names that match 
the pattern. If no file name is found that matches the pat­
tern then the word is left unchanged. The character • at 
the start of a file name or immediately following a I, and 
the character I, must be matched explicitly. 

* Matches any string, including the null string. 
? Matches any single character. 
[ ... ] 

Matches anyone of the characters enclosed. A pair of 
characters separated by - matches any character lexi­
cally between the pair. 

Quoting. 
The following characters have a special meaning to the shell 
and cause termination of a word unless quoted. 

; & < > newline space tab 

A character may be quoted by preceding it with a \. \new­
line is ignored. All characters enclosed between a pair of 
quote marks (I'), except a single quote, are quoted. Inside 
double quotes (n") parameter and command substitution occurs 
and \ quotes the characters \ ' " and $. 

"$*" is equivalent to "$1 $2 ••• " whereas 
"$@" is equivalent to "$1" "$2" •••• 

Prompting. 
When used interactively, the shell prompts with the value of 
PSI before reading a command. If at any time a newline is 
typed and further input is needed to complete a command then 
the secondary prompt ($PS2) is issued. 

Input output. 
Before a command is executed its input and output may be 
redirected using a special notation interpreted by the 
shell. The following may appear anywhere in a simple­
command or may precede or follow a command and are not 
passed on to the invoked command. Substitution occurs 
before word or digit is used. 

XENIX System 4 XENIX System 



SH(l) SH (1) 

<word 
Use file word as standard input (file descriptor 0). 

>word 
----Use file word as standard output (file descriptor 1). 

If the file does not exist then it is created; other­
wise it is truncated to zero length. 

»word 
----Use file word as standard output. If the file exists 

then output is appended (by seeking to the end); other­
wise the file is created. 

«word 
----The shell input is read up to a line the same as word, 

or end of file. The resulting document becomes t~ 
standard input. If any character of word is quoted 
then no interpretation is placed upon the charact'ers of 
the document; otherwise, parameter and command substi­
tution occurs, \newline is ignored, and \ is used to 
quote the characters \ $ , and the first character of 
word. 

<&digit 
The standard input is duplicated from file descriptor 
di~it; see dup(2). Similarly for the standard output 
uSlng >. 

<&- The standard input is closed. Similarly for the stan­
dard output using >. 

If one of the above is preceded by a digit then the file 
descriptor created is that specified by the digit (instead 
of the default 0 or 1). For example, 

. .• 2> &1 

creates file descriptor 2 to be a duplicate of file descrip­
tor 1. 

If a command is followed by & then the default standard 
input for the command is the empty file (/dev/null). Other­
wise, the environment for the execution of a command con­
tains the file descriptors of the invoking shell as modified 
by input output specifications. 

Environment. 
The environment is a list of name-value pairs that is passed 
to an executed program in the same way as a normal argument 
list; see exec(2) and environ(5). The shell interacts with 
the environment in several ways. On invocation, the shell 
scans the environment and creates a parameter for each name 

XENIX System 5 XENIX System 



SH(l) SH (1) 

found, giving it the corresponding value. Executed commands 
inherit the same environment. If the user modifies the 
values of these parameters or creates new ones, none of 
these affects the environment unless the export command is 
used to bind the shell's parameter to the environment. The 
environment seen by any executed command is thus composed of 
any unmodified name-value pairs originally inherited by the 
shell, plus any modifications or additions, all of which 
must be noted in export commands. 

The environment for any simple-command may be augmented by 
prefixing it with one or more assignments to parameters. 
Thus these two lines are equivalent 

TERM=450 cmd args 
(export TERM; TERM=4S0; cmd args) 

If the -k flag is set, all keyword arguments are placed in 
the environment, even i~he occur after the command name. 
The following prints 'a=b c' and 'c': 
echo a=b c 
set -k 
echo a=b c 

Signals. 
The INTERRUPT and QUIT signals for an invoked command are 
ignored if the command is followed by &; otherwise signals 
have the values inherited by the shell from its parent. 
(But see also trap.) 

Execution. 
Each time a command is executed the above substitutions are 
carried out. Except for the 'special commands' listed below 
a new process is created and an attempt is made to execute 
the command via an exec(2). 

The shell parameter $PATH defines the search path for the 
directory containing the command. Each alternative direc­
tory name is separated by a colon (:). The default path is 
:/bin:/usr/bin. If the command name contains a / then the 
search path is not used. Otherwise, each directory in the 
path is searched for an executable file. If the file has 
execute permission but is not an a.out file, it is assumed 
to be a file containing shell commands. A subshell (i.e., a 
separate process) is spawned to read it. A parenthesized 
command is also executed in a subshell. 

Special commands. 
The following commands are executed in the shell process and 
except where specified no input output redirection is per­
mitted for such commands. 

XENIX System 6 XENIX System 



SH (1) SH (1) 

No effect; the command does nothing • 
• file 

----Read and execute commands from file and return. The 
search path $PATH is used to find the directory con­
taining file. 

break [n] --
ExIt from the enclosing for or while loop, if any. If 
n is specified then break n levels. 

continue [n] -
Resume the next iteration of the enclosing for or while 
loop. If n is specified then resume at the n-th 
enclosing roop. 

cd [~] 
Change the current directory to ~. The shell parame­
ter $HOME is the default ~. 

eval [~ .•. ] 
The arguments are read as input to the shell and the 
resulting command(s} executed. 

exec [~ ... ] 
The command specified by the arguments is executed in 
place of this shell without creating a new process. 
Input output arguments may appear and if no other argu­
ments are given cause the shell input output to be 
modified. 

exit [~) 
Causes a non interactive shell to exit with the exit 
status specified by n. If n is omitted then the exit 
status is that of the last-command executed. (An end 
of file will also exit from the shell.) 

export [name .•• ] 
The given names are marked for automatic export to the 
environment of subsequently-executed commands. If no 
arguments are given then a list of exportable names is 
printed. 

login [~ .•• ] 
Equivalent to 'exec login arg ••. '. 

newgrp [~ .•. ] 
Equivalent to 'exec newgrp arg ••• '. 

read name •.. 
One line is read from the standard input; successive 
words of the input are assigned to the variables name 
in order, with leftover words to the last variabl~ 
The return code is 0 unless the end-of-file is encoun­
tered. 

readonly [name ... ] 
The given names are marked readonly and the values of 
the these names may not be changed by subsequent 
assignment. If no arguments are given then a list of 
all readonly names is printed. 

set [-eknptuvx[~ .•. ]] 
-e If non interactive then exit immediately if a com­

mand fails. 

XENIX System 7 XENIX System 



SH(l) SH(I) 

-k All keyword arguments are placed in the environment 
for a command, not just those that precede the com­
mand name. 

-n Read commands but do not execute them. 
-t Exit after reading and executing one command. 
-u Treat unset variables as an error when substituting. 
-v Print shell input lines as they are read. 
-x Print commands and their arguments as they are exe-

cuted. 
Turn off the -x and -v options. 

These flags can also be used upon invocation of the 
shell. The current set of flags may be found in $-. 

Remaining arguments are positional parameters and are 
assigned, in order, to $1, $2, etc. If no arguments 
are given then the values of all names are printed. 

shift 

times 

The positional parameters from $2 .•. are renamed $1 ... 

Print the accumulated user and system times for 
processes run from the shell. 

trap [~J [~.J 
Arg is a command to be read and executed when the shell 
receives signal(s) .!!. (Note that ~ is scanned once 
when the trap is set and once when the trap is taken.) 
Trap commands are executed in order of signal number. 
If ~ is absent then all trap(s) .!! are reset to their 
original values. If ~ is the null string then this 
signal is ignored by the shell and by invoked commands. 
If ~ is 0 then the command ~ is executed on exit from 
the shell, otherwise upon receipt of signal n as num­
bered in signal(2). Tr~ with no arguments prints a 
list of commands associated with each signal number. 

umask [ nnn ] 
The user file creation mask is set to the octal value 
nnn (see umask(2)). If nnn is omitted, the current 
value of the mask is printed. 

wait [n] 
wiit for the specified process and report its termina­
tion status. If n is not given then all currently 
active child processes are waited for. The return code 
from this command is that of the process waited for. 

Invocation. 
If the first character of argument zero is -, commands are 
read from $HOME/.profile, if such a file exists. Commands 

XENIX System 8 XENIX System 



SH(I) SH (1) 

are then read as described below. The following flags are 
interpreted by the shell when it is invoked. 
-c string If the -c flag is present then commands are read 

from string. 
-s If the -s flag is present or if no arguments 

remain then commands are read from the standard 
input. Shell output is written to file descrip­
tor 2. 

-i If the -i flag is present or if the shell input 
and output are attached to a terminal (as told by 
~) then this shell is interactive. In this 
case the terminate signal SIGTERM (see signal(2» 
is ignored (so that 'kill 0' does not kill an 
interactive shell) and the interrupt signal SIG­
INT is caught and ignored (so that wait is inter­
ruptable). In all cases SIGQUIT is ignored by 
the shell. 

The remaining flags and arguments are described under the 
set command. 

FILES 
$HOME/.profile 
/tmp/sh* 
/dev/null 

SEE ALSO 
test(l), exec(2), 

DIAGNOSTICS 

NOTES 

Errors detected by the shell, such as syntax errors cause 
the shell to return a non zero exit status. If the shell is 
being used non interactively then execution of the shell 
file is abandoned. Otherwise, the shell returns the exit 
status of the last command executed (see also exit). 

If « is used to provide standard input to an asynchronous 
process invoked by &, the shell gets mixed up about naming 
the input document. A garbage file /tmp/sh* is created, and 
the shell complains about not being able to find the file by 
another name. 

XENIX System 9 XENIX System 



81 ZE (1) 81 ZE (1) 

NAME 
size - size of an object file 

SYNTAX 
size [ object ... ] 

DESCRIPTION 
Size prints the (decimal) number of bytes required by the 
text, data, and bss portions, and their sum in octal and 
decimal, of each object-file argument. If no file is speci­
fied, a.out is used. 

SEE ALSO 
a.out(S) 

XEN1X System 1 XEN1X System 



SLEEP(l) SLEEP(l) 

NAME 
sleep - suspend execution for an interval 

SYNTAX 
sleep time 

DESCRIPTION 
Sleep suspends execution for time seconds. It is used to 
execute a command after a certain amount of time as in: 

(sleep 105; command)& 

or to execute a command every so often, as in: 

SEE ALSO 

while true 
do 

done 

command 
sleep 37 

alarm(2), sleep(3) 

NOTES 
Time must be less than 65536 seconds. 

XENIX System 1 XENIX System 



SPLIT(l) SPLIT(l) 

NAME 
split split a file into pieces 

SYNTAX 
split [ -!l] [ file [ name] ] 

DESCRIPTION 
Split reads file and writes it in n-line pieces (default 
1000), as many as necessary, onto a set of output files. 
The name of the first output file is name with aa appended, 
and so on lexicographically~ If no output name is given, x 
is default. 

If no input file is given, or if - is given in its stead, 
then the standard input file is used. 

WARNING 
1000 lines is usually less than 19 pages. 
Lpr does not guarantee that it prints the files in the order 
given. 

SEE ALSO 
lpr (1), wc (1) 

XENIX System 1 XENIX System 



STRINGS (UCB) STRINGS (UCB) 

NAME 
strings - find the printable strings in a object, or other 
binary, file 

SYNTAX 
strings [ - ] [-0 [ -number] file ••• 

DESCRIPTION 
Strings looks for ascii strings in a binary file. A string 
is any sequence of 4 or more printing characters ending with 
a newline or a nUll. Unless the - flag is given, strings 
only looks in the initialized data space of object files. 
If the -0 flag is given, then each string is preceded by its 
offset in the file (in octal). If the -number flag is given 
then number is used as the minimum string length rather than 
4 . 

Strings is useful for identifying random object files arid 
many other things. 

SEE ALSO 
od(l) 

AUTHOR 
Bill Joy 

NOTES 
The algorithm for identifiing strings is extremely primitive 

XENIX System 1 XENIX System 



SORT (1) SORT (1) 

NAME 
sort - sort or merge files 

SYNTAX 
so r t [ -m u bd fin r t x ] [+po s 1 [-po s 2 ] ] ••• 
-T directory ] [ name ] 

DESCRIPTION 

[ -0 name ] 

Sort sorts lines of all the named files together and writes 
the result on the standard output. The name '-' means the 
standard input. If no input files are named, the standard 
input is sorted. 

The default sort key is an entire line. Default ordering is 
lexicographic by bytes in machine collating sequence. The 
ordering is affected globally by the following options, one 
or more of which may appear. 

b Ignore leading blanks (spaces and tabs) in field com­
parisons. 

d 'Dictionary' order: only letters, digits and blanks are 
significant in comparisons. 

f Fold upper case letters onto lower case. 

i Ignore characters outside the ASCII range 040-0176 in 
nonnumeric comparisons. 

n An initial numeric string, consisting of optional 
blanks, optional minus sign, and zero or more digits 
with optional decimal point, is sorted by arithmetic 
value. Option n implies option b. 

r Reverse the sense of comparisons. 

tx 'Tab character' separating fields is x. 

The notation +posl -pos2 restricts a sort key to a field 
beginning at posl and ending just before pos2. Posl and 
pos2 each have the form m.n, optionally followed by one or 
more of the flags bdfinr; ~here ~ tells a number of fields 
to skip from the beginning of the line and n tells a number 
of characters: to skip further. If any flags are present 
they override all the global ordering options for this key. 
If the b option is in effect n is counted from the first 
nonblank in the field; b is attached independently to pos2. 
A missing .~ means .0; a missing -pos2 means the end of the 
line. Under the -tx option, fields are strings separated by 
x; otherwise fields-are nonempty nonblank strings separated 
by blanks. 

XENIX System 1 XENIX System 



SORT(l) SORT (1) 

FILES 

When there are multiple sort keys, later keys are compared 
only after all earlier keys compare equal. Lines that oth­
erwise compare equal are ordered with all bytes significant. 

These option arguments are also understood: 

c Check that the input file is sorted according to the 
ordering rules; give no output unless the file is out 
of sort. 

m Merge only, the input files are already sorted. 

o The next argument is the name of an output file to use 
instead of the standard output. This file may be the 
same as one of the inputs. 

T The next argument is the name of a directory in which 
temporary files should be made. 

u Suppress all but one in each set of equal lines. 
Ignored bytes and bytes outside keys do not participate 
in this comparison. 

Examples. Print in alphabetical order all the unique spel­
lings in a list of words. Capitalized words differ from 
uncapitalized. 

sort -u +Of +0 list 

Print the password file (passwd(5» sorted by user id number 
(the 3rd colon-separated field). 

sort -t: +2n /etc/passwd 

Print the first instance of each month in an already sorted 
file of (month day) entries. The options -urn with just one 
input file make the choice of a unique representative from a 
set of equal lines predictable. 

sort -urn +0 -1 dates 

/usr/tmp/stm*, /tmp/*: first and second tries for temporary 
files 

SEE ALSO 
un i q ( 1), comm ( l), rev ( l), j 0 in ( 1 ) 

DIAGNOSTICS 
Comments and exits with nonzero status for various trouble 
conditions and for disorder discovered under option -c. 

XENIX System 2 XENIX System 

( 
'\ 



SORT(l) S01{T(l) 

NOTES 
Very long lines are silently truncated. 

XENIX System 3 XENIX System 



SP(l) 

NAME 

SP(l) 

~ - convert long and narrow standard input to a wider for­
mat standard output. 

SYNTAX 
~ [ width 

DESCRIPTION 
~ Prints input in 8 character-wide columns onto the stan­
dard output. The optional argument, if numeric, specifies 
the width of the output. 

~ does not shorten long lines, it merely concatenates and 
spaces short ones. 

EXAMPLE 
ls I sp 

SEE ALSO 
prep (1), col (1) 

XENIX System 1 XENIX System 



SPELL(I) SPELL(I) 

NAME 
spell, spellin, spellout - find spelling errors 

SYNTAX 
spell [ opt ion ] ••• [ file ] ..• 

/usr/src/crnd/spell/spellin [ list ] 

/usr/src/cmd/spell/spellout [ -d ] list 

DESCRIPTION 
Spell collects words from the named documents, and looks 
them up in a spelling list. Words that neither occur among 
nor are derivable (by applying certain inflections, prefixos 
or suffixes) from words in the spelling list are printed on 
the standard output. If no files are named, words are col­
lected from the standard input. 

Spell ignores most troff, tbl and egn(l) constructions. 

Under the -v option, all words not literally in the spelling 
list are printed, and plausible derivations from spelling 
list words are indicated. 

Under the -b option, British spelling is checked. Besides 
preferring centre, colour, speciality, travelled, etc., this 
option insists upon -ise in words like standardise, Fowler 
and the OED to the contrary notwithstanding. 

Under the -x option, every plausible stem is printed with 
'=' for each word. 

The spelling list is based on many sources, and while more 
haphazard than an ordinary dictionary, is also more effec­
tive in respect to proper names and popular technical words. 
Coverage of the specialized vocabularies of biology, medi­
cine and chemistry is light. 

Pertinent auxiliary files may be specified by name argu­
ments, indicated below with their default settings. Copies 
of all output are accumulated in the history file. The stop 
list filters out misspellings (e.g. thier=thy-y+ier) that 
would otherwise pass. 

Two routines help maintain the hash lists used by spell. 
Both expect a list of words, one per line, from the standard 
input. Spellin adds the words on the standard input to the 
preexisting list and places a new list on the standard out­
put. If no list is specified, the new list is created from 
scratch. speIlout looks up each word in the standard input 
and prints on the standard output those that are missing 
from (or present on, with option -d) the hash list. 

XENIX System I XENIX System 



SPELL(l) SPELL(l) 

FILES 

NOTES 

D=/usr/dict/hlist[ab]: hashed spelling lists, American & 
British 
S=/usr/dict/hstop: hashed stop list 
H=/usr/dict/spellhist: history file 
/usr/lib/spell 
deroff(l), sort(l), tee(l), sed(l) 

The spelling list's coverage is uneven; new installations 
will probably wish to monitor the output for several months 
to gather local additions. 
British spelling was done by an American. 

XENIX System 2 XENIX System 



STRIP(l) STRIP(l) 

NAME 
strip remove symbols and relocation bits 

SYNTAX 
strip name 

DESCRIPTION 

FILES 

Strip removes the symbol table and relocation bits ordi­
narily attached to the output of the assembler and loader. 
Strip works directly upon the named file(s); nothing is 
written to the standard output. This is useful to save 
space after a program has been debugged. 

The effect of strip is the same as use of the -s option of 
ld. 

/tmp/stm? temporary file 

SEE ALSO 
ld(l) 

XENIX System 1 XENIX System 



STTY (1) STTY (1) 

NAME 
stty - set terminal options 

SYNTAX 
stty option .•• 

DESCRIPTION 
StiY sets certain I/O options on the current output termi­
na. With no argument, it reports the current settings of 
the options. The option strings are selected from the fol­
lowing set: 

even 
-even 
odd 
-odd 
raw 

-raw 
cooked 
cbreak 

-ebreak 

-nl 

nl 
eeho 
-echo 
lease' 
-lease 
-tabs 
tabs 
ek 

erase c 

kill c 
crO crt 

nlO nIl 

allow even parity 
disallow even parity 
allow odd parity 
disallow odd parity 
raw mode input (no erase, kill, interrupt, quit, 
EOT; parity bit passed back) 
negate raw mode 
same as '-raw' 
make each character available to read(2) as 
received; no erase and kill 
make characters available to read only when newline 
is received ----
allow carriage return for new-line, and output CR-LF 
for carriage return or new-line 
accept only new-line to end lines 
echo back every character typed 
do not echo characters 
map upper case to lower case 
do not map case 
replace tabs by spaces when printing 
preserve tabs 
reset erase and kill characters back to normal # and 
@ 
set erase character to e. C can be of the form '~X' 
which is interpreted as-a 'control X'. 
set kill character to c. '~X' works here also. 
cr2 cr3 
select style of delay for carriage return (see 
ioctl(2» 
n12 n13 
select style of delay for linefeed 

tabO tabl tab2 tab3 
select style of delay for tab 

ffO ffl select style of delay for form feed 
bsO bsl select style of delay for backspace 
tty33 set all modes suitable for the Teletype Corporation 

Model 33 terminal. 
tty3? set all modes suitable for the Teletype Corporation 

Model 37 terminal. 
vt05 set all modes suitable for Digital Equipment Corp. 

XENIX System 1 XENIX System 



SU (1) SU (1) 

NAME 
su substitute user id temporarily 

SYNTAX 
su [ userid ] 

DESCRIPTION 
Su demands the password of the specified userid, and if it 
15 given, changes to tha;t userid' and invokes the Shell sh(l) 
without changing the current directory or 'the user environ­
ment (see environ(S». The new user 10 stays in force until 
the Shell exits. 

If no userid is specified, 'root' is assumed. To remind :the 
super-user of his responsibilities, the Shell substitutes 
'#' for its usual prompt. 

SEE ALSO 
sh(l) 

XENIX System 1 XENIX System 



STTY(l) 

PRINT(UCB) 

VT05 terminal 

STTY(l) 
PRINT (UCB) 

NAME tn300 set all modes suitable for a General Electric Ter-

pri~r700pr ~~~~§ri~~2ae~r~Urf~ble for Texas Instruments 700 
S NTAX series terminal 

y rit,*ekfile ~~~ all modes suitable for Tektronix 4014 terminal 
p nup nang up dataphone on last close. 

DESCRIPTii~ do not hang up 9ata?hone.on last close. 
p . ,qa~~ ~O@h~~ehlh%roe~~1eae%1~he line printer. 
I~l. ~~~~l\~t ~~~l!O~c~q~t~OO 1200 1800 2400 4800 9600 exta extb 

Set terminal baud rate to the number given, if pos-
pr $* 1i~~~. (These are the speeds supported by the DH-ll 

interface) . 

SEEgMSQT Sfi 

~J.prtg~~i (2 p; (tJbs (1) 

NOTES 

XENIX System 

XENIX System 

1 

2 

XENIX System 

XENIX System 



SUM (1) SUM(l) 

NAME 
sum - sum and count blocks in a file 

SYNTAX 
sum file 

DESCRIPTION 
Sum calculates and prints a l6-bit checksum for the named 
rITe, and also prints the number of blocks in the file. It 
is typically used to look for bad spots, or to validate a 
file communicated over some transmission line. 

SEE ALSO 
wc(l) 

DIAGNOSTICS 
'Read er ror' is indis tinuishable from end of file on ,most 
devices; check the block count. 

XENIX System 1 XENIX System 



TABS (1) 

NAME 
tabs - set terminal tabs 

SYNTAX 
tabs 

DESCRIPTION 

-n] [ terminal ] 

TABS (1) 

Tabs sets the tabs on a variety of terminals. Various of 
~terminal names given in term(7) are recognized; the 
default is, however, suitable for most 300 baud terminals. 
If the -n flag is present then the left margin is not 
indented as is normal. 

SEE ALSO 
stty(l), term(7} 

XENIX System 1 XENIX System 



TAIL(l) TAIL(l) 

NAME 
tail - deliver the last part of a file 

SYNTAX 
tail ±number [lbc] [ file] 

DESCRIPTION 
Tail copies the named file to the standard output beginning 
at a designated place. If no file is named, the standard 
input is used. 

Copying begins at distance +number from the beginning, or 
-number from the end of the input. Number is counted in 
units of lines, blocks or characters, according to the 
appended option 1, b or c. When no units are specified, 
counting is by lines. 

SEE ALSO 
dd (1) 

NOTES 
Tails relative to the end of the file are treasured up in a 
buffer, and thus are limited in length. Various kinds of 
anomalous behavior may happen with character special files. 

XENIX System 1 XENIX System 



TAR (I) TAR (I) 

NAME 
tar tape archiver 

SYNTAX 
tar [ key name ••• 

DESCRIPTION 
Tar saves and restores files on magtape. Its actions are 
controlled by the ~ argument. The key is a string of 
characters containing at most one function letter and possi­
bly one or more function modifiers. Other arguments to the 
command are file or directory names specifying which files 
are to be dumped or restored. In all cases, appearance of a 
directory name refers to the files and (recursively) sub­
directories of that directory. 

The function portion of the key is specified by one of the 
following letters: 

r The named files are written on the end of the tape. 
The c function implies this. 

x The named files are extracted from the tape. If the 
named file matches a directory whose contents had 
been written onto the tape, this directory is 
(recursively) extracted. The owner, modification 
time, and mode are restored (if possible). If no 
file argument is given, the entire content of the 
tape is extracted. Note that if multiple entries 
specifying the same file are on the tape, the last 
one overwr i tes all ear lier. . 

t The names of the specified files are listed each 
time they occur on the tape. If no file argument is 
given, all of the names on the tape are listed. 

u The named files are added to the tape if either they 
are not already there or have been modified since 
last put on the tape. 

c Create a new tape; writing begins on the beginning 
of the tape instead of after the last file. This 
command implies r. 

The following characters may be used in addition to the 
letter which selects the function desired. 

0, ••• ,7 

v 

XENIX System 

This modifier selects the drive on which the tape 
is mounted. The default is 1. 

Normally tar does its work silently. The v (ver­
bose) option causes it to type the name of each 

1 XENIX System 



TAR(l) TAR(l) 

FILES 

w 

f 

b 

1 

m 

s 

/dev/mt? 
/tmp/tar* 

file it treats preceded by the function letter. 
With the t function, v gives more information 
about the tape entries than just the name. 

causes tar to print the action to be taken fol­
lowed by-¥ile name, then wait for user confirma­
tion. If a word beginning with 'y' is given, the 
action is performed. Any other input means don't 
do it. 

causes tar to use the next argument as the name of 
the archive instead of /dev/mt? If the name of 
the file is '-', tar writes to standard output or 
reads from standard input, whichever is appropri­
ate. Thus, tar can be used as the head or tail of 
a filter chain Tar can also be used to move 
hierarchies wit~he command 

cd fromdir; tar cf - . I (cd todir; tar xf -) 

causes tar to ue~ the next argument as the block­
ing factor for tape records. The default is 1, the 
maximum is 20. This option should only be used 
with raw magnetic tape archives (See f above). 
The block size is determined automatically when 
reading tapes (key letters 'Xl and 't l ). 

tells tar to complain if it cannot resolve all of 
the links to the files dumped. If this is not 
specified, no error messages are printed. 

tells tar to not restore the modification times. 
The moa-time will be the time of extraction. 

causes tar to use the next argument as the size of 
a tape volume. The minimum value allowed is 500. 
This option is useful when the archive is not 
intended for a magnetic tape device, but for some 
fixed size device, such as floppy disk (See f 
above) . 

DIAGNOSTICS 
Complaints about bad key characters and tape read/write 
errors. 
Complaints if enough memory is not available to hold the 
link tables. 

XENIX System 2 XENIX System 



TAR (1) TAR (1) 

EXAMPLES 
To backup a disk directory tree to tape using raw I/O and a 
blocking factor of 20: 

tar cfb /dev/rmtl 20 directory name 
To restore the above files from tape to diik: 

tar xf /dev/rmtl directory_name 

SEE ALSO 
tp(l), dump(l), restor(l), copy(l), dd(l) 

NOTES 
There is no way to ask for the n-th occurrence of a file. 
Tape errors are handled ungracefully. 
The u option can be slow. 
The b option should not be used with archives that are going 
to be updated. The current magtape driver cannot backspace 
raw magtape. If the archive is on a disk file the b option 
should not be used at all, as updating an archive stored in 
this manner can destroy it. 
The current limit on file name length is 100 characters. 

XENIX System 3 XENIX System 



TBL(l) TbLtl) 

NAME 
tbl - format tables for nroff or troff 

SYNTAX 
tbl [ file s ] •.• 

DESCRIPTION 
Tbl is a preprocessor for formatting tables for nroff or 
trOff(l). The input files are copied to the standard out­
put, except for lines between .TS and .TE command lines, 
which are assumed to describe tables and reformatted. 
Details are given in the reference manual. 

As an example, letting \t represent a tab (which should be 
typed as a genuine tab) the input 

.TS 
c s s 
c c s 
c c c 
1 n n. 
Household Population 
Town\tHouseholds 
\tNumber\tSize 
Bedminster\t789\t3.26 
Bernards Twp.\t3087\t3.74 
Bernardsville\t20l8\t3.30 
Bound Brook\t3425\t3.04 
Branchburg\t1644\t3.49 
Bridgewater\t7897\t3.8l 
Far Hills\t240\t3.l9 
.TE 

yields 

Household 
Town 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook 
Branchburg 
Bridgewater 
Far Hills 

Population 
Households 

Number Size 
789 3.26 

3087 3.74 
2018 3.30 
3425 3.04 
1644 3.49 
7897 3.81 

240 3.19 

If no arguments are given, tbl reads the standard input, so 
it may be used as a filter. When it is used with eqn or 
neqn the tbl command should be first, to minimize the volume 
of data passed through pipes. 

XENIX System 1 XENIX System 



TBL(l) 

SEE ALSO 
troff(l), eqn(l) 
M. E. Lesk, TBL. 

XENIX System 

TBL (1) 

2 XENIX System 



TC(l) TC t 1) 

NAME 
tc - photypesetter simulator 

SYNTAX 
tc [ -t [ -sN] [-pL [ file ] 

DESCRIPTION 
Tc interprets its input (standard input default) as device 
codes for a Graphic Systems phototypesetter (cat). The 
standard output of t-c is in tended for a Tek tronix 4015 (a 
4014 teminal with ASCII and APL character sets). The six­
teen typesetter sizes are mapped into the 4014's four sizes; 
the entire TROFF character set is drawn using the 4014's 
character generator, using overstruck combinations where 
necessary. Typical usage: 

troff -t file I tc 

At the end of each page tc waits for a newline (empty line) 
from the keyboard before-Continuing on to the next page. In 
this wait state, the command e will suppress the screen 
erase before the next page; sN will cause the next N pages 
to be skipped; and !line will send line to the shell. 

The command line options are: 

-t Don't wait between pages; for directing output into a 
file. 

-sN Skip the first N pages. 

-pL Set page length to L. L may include the scale factors 
p (points), i (inches), c (centimeters), and P (picas); 
default is picas. 

'-1 w' 
-Multiply the default aspect ratio, 1.5, of a displayed 

page by .!./~. 

SEE ALSO 
troff(l), plot(l) 

NOTES 
Font distinctions are lost. 
The aspect ratio option is unbelievable. 

XENIX System 1 XENIX System 



TEE (1) TEE (1) 

NAME 
tee - pipe fitting 

SYNTAX 
tee [ - i ] [-a ] [ file ] ••• 

DESCRIPTION 
Tee transcribes the standard input to the standard output 
and makes copies in the files. Option -i ignores interrupts; 
option -a causes the output to be appended to the files 
rather than overwriting them. 

XENIX System 1 XENIX System 



TEST(l) TEST(l) 

NAME 
test - condition command 

SYNTAX 
test expr 

DESCRIPTION 
test evaluates the expression expr, and if its value is true 
then returns zero exit status; otherwise, a non zero exit 
status is returned. test returns a non zero exit if there 
are no arguments. 

The following primitives are used to construct expr. 

-r file true if the file exists and is readable. 

-w file true if the file exists and is writable. 

-f file true if the file exists and is not a directory. 

-d file true if the tile exists and is a directory. 

-s file true if the file exists and has a size greater than 
zero. 

-t [ fildes ] 
true if the open file whose file descriptor number 
is fildes (1 by default) is associated with a ter­
minal device. 

-z sl true if the length of string sl is zero. 

-n sl true if the length of the string sl is nonzero. 

sl = s2 true if the strings sl and s2 are equal. 

sl 1= s2 true if the strings sl and s2 are not equal. 

sl 

nl -eq n2 

true if sl is not the null string. 

true if the integers nl and n2 are algebraically 
equal. Any of the comparisons -ne, -gt, -ge, -It, 
or -Ie may be used in place of -eq. 

These primaries may be combined with the following opera­
tors: 

unary negation operator 

-a binary and operator 

XENIX System 1 XENIX System 



TEST(I) TEST(I) 

-0 binary or operator 

expr ) 
parentheses for grouping. 

-a has higher precedence than -0. Notice that all the opera­
tors and flags are separate arguments to test. Notice also 
that parentheses are meaningful to the Shell and must be 
escaped. 

SEE ALSO 
sh(l), find(l) 

XENrx System 2 XENrx System 



TIME(l) TIME(l) 

N~E 

time - time a command 

SYNTAX 
time command 

DESCRIPTION 

NOTES 

The given command is executed; after it is complete, time 
prints the elapsed time during the command, the time spent 
in the system, and the time spent in execution of the com­
mand. Times are reported in seconds. 

The execution time can depend on what kind of memory the 
program happens to land in; the user time in MOS is often 
half what it is in core. 

The times are printed on the diagnostic output stream. 

Elapsed time is accurate to the second, while the CPU times 
are measured to the 60th second. Thus the sum of the CPU 
times can be up to a second larger than the elapsed time. 

XENIX System 1 XENIX System 



TK(l) TK (1) 

NAME 
tk - paginator for the Tektronix 4014 

SYNTAX 
tk [ -t -N -p!!] [ file ] 

DESCRIPTION 
The output of tk is intended for a Tektronix 4014 terminal. 
Tk arranges for-66 lines to fit on the screen, divides the 
screen into N columns, and contributes an eight space page 
offset in the (default) single-column case. Tabs, spaces, 
and backspaces are collected and plotted when necessary. 
Teletype Model 37 half- and reverse-line sequences are 
interpreted and plotted. At the end of each page tk waits 
for a newline (empty line) from the keyboard before-continu-
ing on to the next page. In this wait state, the command 
!command will send the command to the shell. 

The command line options are: 

-t Don't wait between pages; for directing output into a 
file. 

-N Divide the screen into N columns and wait after the 
last column. 

-p~ Set page length to L lines. 

SEE ALSO 
pr(l) 

XENIX System 1 XENIX System 



TOUCH(I) 

NAME 
touch - update date last modified of a file 

SYNTAX 
touch 

DESCRIPTION 

-c ] file ... 

TOUCH (I) 

Touch attempts to set the modified date of each file. This 
is done by reading a character from the file and writing it 
back. 

If a file does not exist, an attempt will be made to create 
it unless the -c option is specified. 

XENIX System 1 XENIX System 



TP(l) TP(l) 

N~E 
tp - manipulate tape archive 

SYNTAX 
tp [ key name ••• 

DESCRIPTION 
!E saves and restores files on DECtape or magtape. Its 
actions are controlled by the ~ argument. The key is a 
string of characters containing at most one function letter 
and possibly one or more function modifiers. Other argu­
ments to the command are file or directory names specifying 
which files are to be dumped, restored, or listed. In all 
cases, appearance of a directory name refers to the files 
and (recursively) subdirectories of that directory. 

The function portion of the key is specified by one of the 
following letters: 

r The named files are written on the tape. If files 
with the same names already exist, they are 
replaced. 'Same' is determined by string com­
parison, so './abc' can never be the same as 
'/usr/drnr/abc' even if '/usr/dmr' is the current 
directory. If no file argument is given, '.' is the 
default. 

u updates the tape. u is like r, but a file is 
replaced only if its modification date is later than 
the date stored on the tape; that is to say, if it 
has changed since it was dumped. u is the default 
command if none is given. 

d deletes the named files from the tape. At least one 
name argument must be given. This function is not 
permitted on magtapes. 

x extracts the named files from the tape to the file 
system. The owner and mode are restored. If no 
file argument is given, the entire contents of the 
tape are extracted. 

t lists the names of the specified files. If no file 
argument is given, the entire contents of the tape 
is listed. 

The following characters may be used in addition to the 
letter which selects the function desired. 

m Specifies magtape as opposed to DECtape. 

o , • . . , 7 This modifier selects the drive on which the tape 

XENIX System 1 XENIX System 



TP(l) T?(l) 

v 

c 

i 

f 

w 

is mounted. For DECtape, x is default; for 
magtape '0' is the default. 

Normally !E does its work silently. The v (ver­
bose) option causes it to type the name of each 
file it treats preceded by the function letter. 
With the t function, v gives more information 
about the tape entries than just the name. 

means a fresh dump is being created; the tape 
directory is cleared before beginning. Usable 
only with rand u. This option is assumed with 
magtape since it is impossible to selectively 
overwrite magtape. 

Errors reading and writing the tape are noted, but 
no action is taken. Normally, errors cause a 
return to the command level. 

Use the first named file, rather than a tape, as 
the archive. This option is known to work only 
with x. 

causes !E to pause before treating each file, type 
the indicative letter and the file name (as with 
v) and await the user's response. Response y 
means 'yes', so the file is treated. Null 
response means 'no', and the file does not take 
~art in whatever is being done. Response x means 
exit'; the !E command terminates immediately. In 

the x function, files previously asked about have 
been extracted already. With r, u, and d no 
change has been made to the tape. 

FILES 
/dev/tap? 
/dev/mt? 

SEE ALSO 
ar(l}, tar (1) 

DIAGNOSTICS 

NOTES 

Several; the non-obvious one is 'Phase error', which means 
the file changed after it was selected for dumping but 
before it was dumped. 

A single file with several links to it is treated like 
several files. 

Binary-coded control information makes magnetic tapes writ­
ten by ~ difficult to carry to other machines; tar(l) 

XENIX System 2 XENIX System 



TP(l) TP(l) 

avoids the problem. 

XENIX System 3 XENIX System 



TR (1) TR(l) 

NAME 
tr - translate characters 

SYNTAX 
tr [ -cds stringl [ string2 ] ] 

DESCRIPTION 
Tr copies the standard input to the standard output with 
substitution or deletion of selected characters. Input 
characters found in stringl are mapped into the correspond­
ing characters of st~ing2. When string2 is short it is pad­
ded to the length or strlngl by dupllcating its last charac­
ter. Any combination of the options -cds may be used: -c 
complements the set of characters in stringl with respect to 
the universe of characters whose ASCII codes are 01 through 
0377 octal; -d deletes all input characters in stringl; -s 
squeezes all strings of repeated output characters that are 
in string2 to single characters. 

In either string the notation a-b means a range of charac­
ters from a to b in increasing-ASCII order. The character 
'\' followed by-I, 2 or 3 octal digits stands for the char­
acter whose ASCII code is given by those digits. A '\t f61-
lowed by any other character stands for that character. 

The following example creates a list of all the words in 
'filel' one per line in 'file2', where a word is taken to be 
a maximal string of alphabetics. The second string is 
quoted to protect '\' from the Shell. 012 is the ASCII code 
for newline. 

tr -cs A-Za-z '\012' <filel >file2 

SEE ALSO 

NOTES 

ed(l), ascii(7) 

Won't handle ASCII NUL in stringl or string2; always deletes 
NUL from input. 

XENIX System 1 XENIX System 



TRUE (1) 

NAME 
true, false - provide truth values 

SYNTAX 
true 

false 

DESCRIPTION 

TRUE (1) 

True does nothing, successfully. False does nothing, unsuc­
cessfully. They are typically used in input to sh(l) such 
as: 

SEE ALSO 
sh (1) 

while true 
do 

command 
done 

DIAGNOSTICS 
True has exit status zero, false nonzero. 

XENIX System 1 XENIX System 



TSET(I) T~J.-Jr(l) 

NAME 
tset - set terminal modes 

SYNTAX 
tset [ - ] [-hrsuIQS ] [ -e [c] ] 
[ -m [ident] [test baudrate] : type 

DESCRIPTION 

[-E[c] ] 
[ type ] 

-k r.~] 

Tset causes terminal dependent processing such as setting 
erase and kill characters, setting or resetting delays, and 
the like. It is driven by the /etc/ttytype and /etc/termcap 
files. 

The type of terminal is specified by the ~ argument. The 
type may be any type given in /etc/termcap. If ~ is not 
specified, the terminal type is read from /etc/htmp (the 
home directory and terminal type database), or the environ­
ment TERM, unless the -h flag is set or any -m argument was 
given. In this case the type is read from /etc/ttytype (the 
port name to terminal type database). The port name is 
determined by a ttyname(3) calIon the diagnostic output. 
~f the port is not found in /etc/ttytYEe the terminal type 
1S set to unknown. 

Ports for which the terminal type is indeterminate are iden­
tified in /etc/tt*type as dialup, plugboard, etc. The user 
can specify-OOw t ese identiflers should map to an actual 
terminal type. The mapping flag, -m, is followed by the 
appropriate identifier (a 4 character or longer substring is 
adequate), an optional test for baud rate, and the terminal 
type to be used if the mapping conditions are satisfied. If 
more than one mapping is specified, the first correct map­
ping prevails. A missing identifier matches all identif-
iers. Baud rates are specified as with stty(l}, and are 
compared with the speed of the diagnostic output. The test 
may be any combination of: >, =, <, @, and I. (Note: @ is a 
synonym for = and ! inverts the sense of the test. Remember 
to escape characters meaningful to the shell.) 

If the ~ as determined above begins with a question mark, 
the user is asked if s/he really wants that type. A null 
response means to use that type; otherwise, another type can 
be entered which will be used instead. (The question mark 
must be escaped to prevent filename expansion by the shell.) 

On terminals that can backspace but not overstrike (such as 
a CRT), and when the erase character is the default erase 
character ('#t on standard systems), the erase character is 
changed to a Control-H (backspace). The -e flag sets the 
erase character to be the named character c on all termi­
nals, so to override this option one can say -e#. The 
default for £ is the backspace character on the terminal, 

XENIX System I XENIX System 



TSET(I) TSET(l) 

usually Control-H. The -E flag is identical to -e except 
that it only operates on terminals that can backspace; it 
might be used if you had the misfortune to be stuck with an 
ASR33. The -k option works similarly, with c defaulting to 
Control-X. No kill processing is done if -k-is not speci­
fied. In all of these flags, ,'AX" where X is any charac-
ter is equivalent to control-X. 

On version 6 systems, the terminal type specified in htmp is 
updated unless -u is specified. 

The - option prints the terminal type on the standard out­
put; this can be used to get the terminal type by saying: 

set termtype = 'tset -' 
If no other options are given, tset operates in "fast 
mode" and only outputs the terminal type, bypassing all 
other processing. The -s option outputs "setenv" commands 
(if your default shell is csh) or "export" and assignment 
commands (if your default shell is the Bourne shell); the -8 
option only outputs the strings to be placed in the environ­
ment variables. The -s option can be used as: 

'tse t -s ..• ' 
Actually, this is not possible because of a problem in the 
shell. Instead, if you are using the Bourne shell, use: 

tset -s ... > /tmp/tset$$ 
/tmp/tset$$ 
rm /tmp/tset$$ 

If you are using csh, use: 
set noglob 
set term=('tset -8 •••• ') 
setenv TERM $term[l] 
setenv TERMCAP n$term[2]n 
unset term 
unset noglob 

The -r option prints the terminal type on the diagnostic 
output. The -Q option supresses printing the "Erase set 
to" and "Kill set to" messages. The -I option supresses 
outputing the terminal initialization strings. 

Tset is most useful when included in the .login (for csh(l» 
or-:profile (for sh(l» file executed automatically at 
login, with -m mapping used to specify the terminal type you 
most frequently dial in on. 

EXAMPLES 
tset gt42 
tset -mdialup\>300:adm3a -mdialup:dw2 -Qr -e# 
tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -kAU 

FILES 
/etc/htmp Terminal type database (version 6 only) 

XENIX System 2 XENIX System 



TSET(I) TSET(l) 

/etc/ttytype 
/etc/termcap 

Port name to terminal type map database 
Terminal capability database 

SEE ALSO 
setenv(l) , ttytype(5) , termcap(5) , stty(l) 

AUTHOR 
Eric P. Allman 

NOTES 
For compatibility with earlier versions of tset, the follow­
ing flags are accepted and mapped internally as shown: 

-d type -> -m dialup:type 
-p type -> -m plugboard:type 
-a type -> -m arpanet:type 

These flags will disappear eventually. 

XENIX System 3 XENIX System 



TSORT(l) TSORT (1) 

NAME 
tsort - topological sort 

SYNTAX 
tsort file ] 

DESCRIPTION 
Tsort produces on the standard output a totally ordered list 
of items consistent with a partial ordering of items men­
tioned in the input file. If no file is specified, the 
standard input is understood. ----

The input consists of pairs of items (nonempty strings) 
separated by blanks. Pairs of different items indicate ord­
ering. Pairs of identical items indicate presence, but not 
ordering. 

SEE ALSO 
lorder(l) 

DIAGNOSTICS 

NOTES 

Odd data: there is an odd number of fields in the input 
file. 

Uses a quadratic algorithm; not worth fixing for the typical 
use of ordering a library archive file. 

XENIX System 1 XENIX System 



TTY (1) TTY (1) 

NAME 
tty - get terminal name 

SYNTAX 
tty 

DESCRIPTION 
Tty prints the pathname of the user's terminal. 

DIAGNOSTICS 
'not a tty' if the standard input file is not a terminal. 

XENIX System 1 XENIX System 



UNIQ(l) UNIQ(l) 

NAl'v1E 
uniq - report repeated lines in a fil~ 

SYNTAX 
uniq [ -udc [ vn ] =n ] input [ au t.put ] }1 

DESCRIPTION 
Unig reads the input file comparing adjacent lineso In the 
normal caseD the second and succeeding copies of repeated 
lines are removed; the remainder is written on the output 
fileo Note that repeated lines must be adjacent in order to 
be found; see sort(l)o If the =U flag is used D just the 
lines that are not repeated in the original file are outputo 
The ~d option specifies that one copy of just the repeated 
lines is to be writteno The normal mode output is the union 
of the -u and -d mode outputs. 

The -c option supersedes -u and -d and generates an output 
report in default style but with each line preceded by a 
count of the number of times it occur redo 

The n arguments specify skipping an initial portion of each 
line in the comparison: 

=0 The first n fields together with any blanks before 
each are ignored. A field is defined as a string of 
non-space, non-tab characters separated by tabs and 
spaces from its neighborse 

+n The first n characters are ignoredo Fields are 
skipped before characterso 

SEE ALSO 
sort(l) g comm(l) 

XENIX System 1 XENIX System 



UNITS{l) UNITS(l) 

NAME 
units - conversion program 

SYNTAX 
units 

DESCRIPTION 
units converts quantities expressed in various standard 
scales to their equivalents in other scales. It works 
interactively in this fashion: 

You have: inch 
You want: cm 

~.54000e+OO 
/ ~.93701e-Ol 

A quantity is specified as a multiplicative combination of 
units optionally preceded by a numeric multiplier. Powers 
are indicated by suffixed positive integers, division by the 
usual sign: 

You have: 15 pounds force/in2 
You want: atm 

--r-r.0206ge+OO 
/ ~.79730e-Ol 

units only does multiplicative scale changes. Thus it can 
convert Kelvin to Rankine, but not Centigrade to Fahrenheit. 
Most familiar units, abbreviations, and metric prefixes are 
recognized, together with a generous leavening of exotica 
and a few constants of nature including: 

pi ratio of circumference to diameter 
c speed of light 
e charge on an electron 
g acceleration of gravity 
force same as g 
mole Avogadro's number 
water pressure head per unit height of water 
au astronomical unit 

'Pound' is a unit of mass. Compound names are run together, 
e.g. 'light year'. British units that differ from their us 
counterparts are prefixed thus: 'brgallon'. Currency is 
denoted 'belgiumfranc', 'britainpound', ... 

For a complete list of units, 'cat /usr/lib/units'. 

FILES 
/usr/lib/units 

XENIX System 1 XENIX System 



UNITS(l) UNITS(l) 

NOTES 
Don't base your financial plans on the currency conversions. 

XENIX System 2 XENIX System 



UUCP(lC) UUCP (IC) 

NAME 
uucp, uulog - unix to unix copy 

SYNOPSIS 
uucp [ option ] source-file ••. destination-file 

uulog [ option ] 

DESCRIPTION 
Uucp copies files named by the source-file arguments to the 
destination-file argument. A file name may be a path name 
on your machine, or may have the form 

system-name!pathname 

where 'system-name' is taken from a list of system names 
which uucp knows about. Shell metacharacters ?*[] appearing 
in the pathname part will be expanded on the appropriate 
system. 

Pathnames may be one of 

(1) a full pathname; 

(2) a pathname preceded by -user; where user is a userid on 
the specified system and-rs-replaced~that user's 
login directory; 

(3) anything else is prefixed by the current directory. 

If the result is an erroneous pathname for the remote system 
the copy will fail. If the destination-file is a directory, 
the last part of the source-file name is used. 

Uucp preserves execute permissions across the transmission 
and gives 0666 read and write permissions (see chmod(2)). 

The following options are interpreted by uucp. 

-d Make all necessary directories for the file copy. 

-c Use the source file when copying out rather than copy-
ing the file to the spool directory. 

-rn Send mail to the requester when the copy is complete. 

Uulog maintains a summary log of uucp and uux(l) transac­
tions in the file '/usr/spool/uucp/LOGFILE' by gathering 
information from partial log files named 
'/usr/spool/uucp/LOG.*.?'. It removes the partial log 
files. 

XENIX System I XENIX System 



UUCP (IC) UUCP(lC) 

The options cause uulog to print logging information: 

-s~ 

Print information about work involving system ~. 

-uuser 
Print information about work done for the specified 
user. 

FILES 
/usr/spool/uucp - spool directory 
/usr/lib/uucp/* - other data and program files 

SEE ALSO 
u ux ( I), rna i I ( I) 
D. A. Nowitz, Uucp Implementation Description 

WARNING 

BUGS 

The domain of remotely accessible files can (and for obvious 
security reasons, usually should) be severely restricted. 
You will very likely not be able to fetch files by pathnamei 
ask a responsible person on the remote system to send them 
to you. For the same reasons you will probably not be able 
to send files to arbitrary pathnames. 

All files received by uucE will be owned by uucp. 
The -m option will only work sending files or receiving a 
single file. (Receiving multiple files specified by special 
shell characters ?*[] will not activate the -m option.) 

XENIX System 2 XENIX System 



UUX(IC) UUX(IC) 

NAME 
uux - unix to unix command execution 

SYNOPSIS 
uux [ - ] command-string 

DESCRIPTION 

FILES 

Uux will gather 0 or more files from various systems, exe­
cute a command on a specified system and send standard out-
put to a file on a specified system. 

The command-string is made up of one or more arguments that 
look like a shell command line, except that the command and 
file names may be prefixed by system-name!. A null system­
name is interpreted as the local system. 

File names may be one of 

(1) a full pathnamei 

(2) a pathname preceded by -~: where xxx is a userid 
on the specified system and is replaced by that user's 
login directorYi 

(3) anything else is prefixed by the current directory. 

The '_I option will cause the standard input to the uux com­
mand to be the standard input to the command-string. 

For example, the command 

uux n!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.diff" 

will get the fl files from the usg and pwba machines, exe­
cute a diff command and put the results in fl.cliff in the 
local dTreCtory. 

Any special shell characters such as <>: I should be quoted 
either by quoting the entire command-string, or quoting the 
special characters as individual arguments. 

/usr/uucp/spool - spool directory 
/usr/uucp/* - other data and programs 

SEE ALSO 
uucp(l) 
D. A. Nowitz, Uucp implementation description 

WARNING 
An installation may, and for security reasons generally 
will, limit the list of commands executable on behalf of an 

XENIX System 1 XENIX System 



UUX(lC) UUX(lC) 

BUGS 

incoming request from uux. Typically, a restricted site will 
permit little other than the receipt of mail via uux. 

Only the first command of a shell pipeline may have a 
system-name!. All other commands are executed on the system 
of the first command. 
The use of the shell metacharacter * will probably not do 
what you want it to do. 
The shell tokens « and » are not implemented. 
There is no notification of denial of execution on the 
remote machine. 

XENIX System 2 XENIX System 



VI {UCB} VI (UCB) 

NAME 
vi - screen oriented (visual) display editor based on ex 

SYNTAX 
vi [ -t tag] [-r ] [ +lineno ] name ..• 

DESCRIPTION 
Vi (visual) is a display oriented text editor based on 
ex(UCB). Ex and vi run the same code; it is possible to get 
to the command mode of ex from within vi and vice-versa. -- --
The Vi Quick Reference card and the Introduction to Display 
Editing with Vi provide full details on 'Using vi. 

FILES 
See ex (UCB) • 

SEE ALSO 

NOTES 

ex (UCB), vi (UCB), "Vi Quick Reference" card, "An Intro­
duction to Display Editing with vi' '. 

Scans with / and? begin on the next line, skipping the 
remainder of the current line. 

Software tabs using AT work only immediately after the 
autoindent. 

Left and right shifts on intelligent terminals don't make 
use of insert and delete character operations in the termi­
nal. 

The wrapmargin option can be fooled since it lOOks at output 
columns when blanks are typed. If a long word passes 
through the margin and onto the next line without a break, 
then the line won't be broken. 

Insert/delete within a line can be slow if tabs are present 
on intelligent terminals, since the terminals need help in 
doing this correctly. 

Occasionally inverse video scrolls up into the file from a 
diagnostic on the last line. 

Saving text on deletes in the named buffers is somewhat 
inefficient. 

The source command does not work when executed as :source; 
there is no way to use the :append, :change, and :insert 
commands, since it is not possible to give more than one 
line of input to a escape. To use these on a :global you 
must Q to ex command mode, execute them, and then reenter 

XENIX System 1 XENIX System 



VI (UCB) VI (UCB) 

the screen editor with vi or 0Een~ 

XENIX System 2 XENIX System 



WAIT(l) WAIT(l) 

NAME 
wait - await completion of process 

SYNTAX 
wait 

DESCRIPTION 
wait until all processes started with & have completed, and 
report on abnormal terminations. 

Because the wait(2) system call must be executed in the 
parent proce~the Shell itself executes wait, without 
creating a new process. 

SEE ALSO 
sh (I) 

NOTES 
Not all the processes of a 3- or more-stage pipeline are 
children of the Shell, and thus can't be waited for; 

XENIX System 1 XENIX System 



WALL (1M) 

NAME 
wall 

SYNOPSIS 
jete/wall 

DESCRIPTION 

WALL (1M) 

write to all users 

Wall reads its standard input until an end-of-file. It then 
sends this message, preceded by 'Broadcast Message ..• ', to 
all logged in users. 

The sender should be super-user to override any protections 
the users may have invoked. 

FILES 
/dev/tty? 
/etc/utmp 

SEE ALSO 
mesg (1), wr i te (l) 

DIAGNOSTICS 
'Cannot send to •.• ' when the open on a user's tty file 
fails. 

XENIX System 1 XENIX System 



WC(l) WC(l) 

NAME 
wc - word count 

SYNTAX 
wc [ -lwc [ name ... ] 

DESCRIPTION 
Wc counts lines, words and characters in the named files, or 
in the standard input if no name appears. A word is a maxi­
mal string of characters delimited by spaces, tabs or new­
lines. 

If the optional argument is present, just the specified 
counts (lines, words or character·s) are selected by the 
letters 1, w, or c. 

XENIX System 1 XENIX System 



WHO (1) WHO(l) 

NAME 
who who is on the system 

SYNTAX 
who [ who-file [ am I ] 

DESCRIPTION 
Who, without an argument, lists the login name, terminal 
name, and login time for each current UNIX user. 

Without an argument, who examines the /etc/utmp file to 
obtain its information:- If a file is given, that file is 
examined. Typically the given file will be /usr/adm/wtmp, 
which contains a ~ecord of all the log ins since it was 
created. Then who lists 10gins, logouts, and crashes since 
the creation of"thewtmp file. Each login is listed with 
user name, terminal name (with '/dev/' suppressed), and date 
and time. When an argument is given, logouts produce a 
simil~r line without a user name. Reboots produce a line 
with 'x' in the place of the device name, and a fossil time 
indicative of when the system went down~ 

With two arguments, as in 'who am I' (and also 'who are 
you'), who tells who you are logged in as. 

FILES 
/etc/utmp 

SEE ALSO 
getuid(2), utmp(5) 

XENIX System 1 XENIX System 



WRITE(I) WRITE(l) 

NAME 
wri te write to another user 

SYNTAX 
write user [ ttyname ] 

DESCRIPTION 

FILES 

write copies lines from your terminal to that of another 
user. When first called, it sends the message 

Message from yourname yourttyname~ .. 

The recipient of the message should write back at this 
point. Communication continues until an end of file is read 
from the terminal or an interrupt is sent. At that point 
write writes 'EOT' on the other terminal and exits. 

If you want to write to a u~er who is logged in more 'than 
once, the ttyname argument may be used to indicate the 
appropriate terminal name. 

Permission to write may be denied or granted by use of the 
mesg command. At the outset writing is allowed. certain 
commands, in particular nroff and ££(1) . disallow messages in 
order to prevent messy output. 

If the character '1' is found at the beginning of a line, 
write calls the shell to execute the rest of the line as a 
command. 

The following protocol is suggested for using write: when 
you first write to another user, wait for him to write back 
before starting to send. Each party should end each message 
with a distinctive signal-(o) for 'over' is conventional­
that the other may reply. (co) for 'over and out' is sug­
gested when conv~rsation is about to be ~erminated. 

/etc/utmp to find user 
/bin/sh to execute '!' 

SEE ALSO 
me sg ( I), who (I), rna i 1 ( 1) 

XENIX System I XENIX System 



XSEND, XGET, ENROLL (1) XSEND, XGET, ENROLL(l) 

NAME 
xsend, xget, enroll - secret mail 

SYNTAX 
xsend person 
xget 
enroll 

DESCRIPTION 

FILES 

These commands implement a secure communication channel; it 
is like mail(l), but no one can read the messages except the 
intended recipient. The method embodies a public-key cryp­
tosystem using knapsacks. 

To receive messages, use enroll; it asks you for a password 
that you must subsequently quote in order to receive secret 
mail. 

To receive secret mail, use xget. It asks for, your pass­
word, then gives you the messages. 

To send secret mail, use xsend in the same manner as the 
ordinary mail command. (However, it will accept only one 
target). A message announcing the receipt of secret mail is 
also sent by ordinary mail. 

/usr/spool/secretmail/*.key: keys 
/usr/spool/secretmail/*. [0-9]: messages 

SEE ALSO 

NOTES 

rna i 1 (I) 

It should be integrated with ordinary mail. The announce­
ment of secret mail makes traffic analysis possible. 

XENIX System I XENIX System 



XSTR(UCB) XSTR(UCB) 

NAME 
xstr - extract strings fro~ C programs to implement shared 
strings 

SYNTAX 
xstr -c ] [- ] [ file ] 

DESCRIPTION 
Xstr maintains a file strings into which strings in com­
ponent parts of a large program are hashed. These strings 
are replaced with references 'to this common area. This 
serves to implement shared constant strings, most useful if 
they are also read-only. . 

The command 

xstr -c name 

will extract the strings from the C source in name, replac­
ing string references by expressions of the form 
(&xstr[number]) for some number. An approporiate declara-
tion of xstr is prepended to the file. The resulting C text 
is plac~d in the file x.c, to then be c6~piled. The strings 
from this file are pla~ea in the strings data base if they 
are not there already. Repeated strings an~ strings which 
are suffices of existing strings do not cause changes to the 
data base. 

After all components of a large program have been compiled a 
file xs.c declaring the common xstr space can be created by 
a command of the form 

xstr 

This xs.c file should then be compiled and loaded with the 
rest of the program. If possible, the array can be made 
read-only (shared) saving s~d~e and swap overhead. 

Xstr can also be used on a single file. A command 

xstr name 

creates files x.c and xs.c as before, without using or 
affecting any strings file in the same directory. 

It may be useful to run xstr after the C preprocessor if any 
macro definitions yield strings or if there is conditional 
code which contains strings which may not, in fact, be 
needed. Xstr reads from its standard input when the argu­
ment '_I is given. An appropriate command sequence for run­
ning xstr after the C preprocessor is: 

XENIX System I XENIX System 



XSTR(UCB) XSTR(UCB) 

FILES 

cc -E name.c I xstr -c -
cc -c x.c 
mv x.o name.o 

Xstr does not touch the file strings unless new items are 
added, thus make can avoid remaking xS.2 unless truly neces­
sary. 

strings 
x.c 
xs.c 
/tmp/xs* 

Data base of strings 
Massaged C source 
C source for definition of array 'xstr' 
Temp file when 'xstr name' doesn't touch strings 

SEE ALSO 
mkstr(UCB) 

AUTHOR 

NOTES 

Bill Joy 

If a string is a suffix of another string in the data base, 
but the shorter string is seen first by xstr both strings 
will be placed in the d~ta base, when just placing the 
longer one there will do. 

XENIX System 2 XENIX System 



YACC(I) YACC(I) 

N~E 

yacc - yet another compiler-compiler 

SYNTAX 
yacc -vd ] grammar 

DESCRIPTION 
Yacc converts a context-free grammar into a set of tables 
for a simple automaton which executes an LR(I) parsing algo­
rithm. The grammar may be ambiguous; specified precedence 
rules are used to break ambiguities. 

The output file, y.tab.~, must be compiled by the C compiler 
to produce a program yyparse. This program must be loaded 
with the lexical analyzer program, yylex, as well as main 
and yyerror, an error handling routine. These routines must 
be supplied by the user; Lex(l) is useful for creating lexi­
cal analyzers usable by yacc. 

If the -v flag is given, the file y.output is prepared, 
which contains a description of the parsing tables and a 
report on conflicts generated by ambiguities in the grammar. 

If the -d flag is used, the file y.tab.~ is generated with 
the define statements that associate the yacc-assigned 
'token codes' with the user-declared 'token names'. This 
allows source files other than y.tab.£ to access the token 
codes. 

FILES 
y.output 
y.tab.c 
y.tab.h defines for token names 
yacc.tmp, yacc.acts temporary files 
/usr/lib/yaccpar parser prototype for C programs 
/lib/liby.a library with default 'main' and 'yyer-
ror' 

SEE ALSO 
lex(l) 
LR Parsing by A. V. Aha and S. C. Johnson, Computing Sur­
veys, June, 1974. 
YACC - Yet Another Compiler Compiler by S. C. Johnson. 

DIAGNOSTICS 

NOTES 

The number of reduce-reduce and shift-reduce conflicts is 
reported on the standard output; a more detailed report is 
found in the y.output file. Similarly, if some rules are 
not reachable from the start symbol, this is also reported. 

Because file names are fixed, at most one yacc process can 

XENIX System 1 XENIX System 



YACC (1) YACC (1) 

be active in a given directory at a time. 

XENIX System 2 XENIX System 



INTRO(2) INTRO(2) 

NAME 
intro, errno, - introduction to system calls and error 
numbers 

SYNOPSIS 
#include <errno.h> 

DESCRIPTION 
Section 2 of this manual lists all the entries into the sys­
tem. Most of these calls have an error return. An error 
condition is indicated by an otherwise impossible returned 
value. Almost always this is -1; the individual sections 
specify the details. An error number is also made available 
in the external variable errno. Errno is set on erroneous 
calls; its value is undefined on successful calls. 

There is a table of messages associated with each error, and 
a routine for printing the message; See perror(3). The pos­
sible error numbers are not recited with each writeup in 
section 2, since many errors are possible for most of the 
calls. Here is a list of the error numbers, their names as 
defined in <errno.h>, and the messages available using per­
ror. 

o Error 0 
Unused. 

1 EPERM Not owner 
Typically this error indicates an attempt to modify a 
file in some way forbidden except to its owner or 
super-user. It is also returned for attempts by ordi­
nary users to do things allowed only to the super-user. 

2 ENOENT No such file or directory 
This error occurs when a file name is specified and the 
file should exist but doesn't, or when one of the 
directories in a path name does not exist. 

3 ESRCH No such process 
The process whose number was given to signal and ptrace 
does not exist, or is already dead. 

4 EINTR Interrupted system call 
An asynchronous signal (such as interrupt or quit), 
which the user has elected to catch, occurred during a 
system call. If execution is resumed after processing 
the signal, it will appear as if the interrupted system 
call returned this error ~ondition. 

5 EIO I/O error 
Some physical I/O error occurred during a read or 
write. This error may in some cases occur on a call 

XENIX System 1 XENIX System 



INTRO(2) INTRO(2) 

following the one to which it actually applies. 

6 ENXIO No such device or address 
I/O on a special file refers to a subdevice that does 
not exist, or beyond the limits of the device. It may 
also occur when, for example, a tape drive is not 
dialled in or no disk pack is loaded on a drive. 

7 E2BIG Arg list too long 
An argument list longer than 5120 bytes is presented to 
exec. 

8 ENOEXEC Exec format error 
A request is made to execute a file which, although it 
has the appropriate permissions, does not start with a 
valid magic number, see ~.out(5). 

9 EBADF Bad file number 
Either a file descriptor refers to no open file, or a 
read (resp. write) request is made to a file that is 
open only for writing (resp. reading). 

10 ECHILD No children 
wait and the process has no living or unwaited-for 
children. 

11 EAGAIN No more processes 
In a fork, the system's process table is full or the 
user is not allowed to create any more processes. 

12 ENOMEM Not enough core 
During an exec or break, a program asks for more core 
than the system is able to supply. This is not a tem­
porary condition; the maximum core size is a system 
parameter. The error may also occur if the arrangement 
of text, data, and stack segments requires too many 
segmentation registers. 

13 EACCES Permission denied 
An attempt was made to access a file in a way forbidden 
by the protection system. 

14 EFAULT Bad address 
The system encountered a hardware fault in attempting 
to access the arguments of a system call. 

15 ENOTBLK Block device required 
A plain file was menticned where a block device was 
required, e.g. in mount. 

16 EBUSY Mount device busy 
An attempt to mount a device that was already mounted 

XENIX System 2 XENIX System 



INTRO(2) INTRO(2) 

1 

or an attempt was made to dismount a device on which 
there is an active file (open file, current directory, 
mounted-on file, active text segment). 

17 EEXIST File exists 
An existing file was mentioned in an inappropriate con­
text, e.g. link. 

18 EXDEV Cross-device link 
A link to a file on another device was attempted. 

19 ENODEV No such device 
An attempt was made to apply an inappropriate system 
call to a device; e.g. read a write-only device. 

20 ENOTDIR Not a directory 
A non-directory was specified where a directorY'is 
required, for example in a path name or as an argument 
to chdir. 

21 EISDIR Is a directory 
An attempt to write on a directory. 

22 EINVAL Invalid argument 
Some invalid argument: dismounting anon-mounted dev­
ice, mentioning an unknown signal in signal, reading or 
writing a file for which seek has generated a negative 
pointer. Also set by math functions, see intro(3). 

23 ENFILE File table overflow 
The system's table of open files is full, and tem­
porarily no more opens can be accepted. 

24 EMFILE Too many open files 
Customary configuration limit is 20 per process. 

25 ENOTTY Not a typewriter 
The file mentioned in stty or ~ is not a terminal or 
one of the other devices to wh1ch these calls apply. 

26 ETXTBSY Text file busy 
An attempt to execute a pure-procedure program that is 
currently open fo~ writing (or reading!). Also an 
attempt to open for writing a pure-procedure program 
that is being executed. 

27 EFBIG File too large 
The size of a file exceeded the maximum (about I.QE9 
bytes) . 

28 ENOSPC No space left on device 
During a write to an ordinary file, there is no free 

XENIX System 3 XENIX System 



INTRO(2) INTRO(2) 

space left on the device. 

29 ESPIPE Illegal seek 
An lseek was issued to a pipe. This error should also 
be issued for other non-seekable devices. 

30 EROFS Read-only file system 
An attempt to modify a file or directory was made on a 
device mounted read-only. 

31 EMLINK Too many links 
An attempt to make more than 32767 links to a file. 

32 EPIPE Broken pipe 
A write on a pipe for which there is no process to read 
the data. This condition normally generates a signal; 
the error is returned if the signal is ignored. 

33 EDaM Math argument 
The argument of a function in the math package (3M) is 
out .of the domain of the function. 

34 ERANGE Result too large 
The value of a function in the math package (3M) is 
unrepresentable within machine precision. 

35 EUCLEAN File structure not clean 
An attempt was made to mount(2) a file system whose 
superblock is not flagged <'clean' '. 

SEE ALSO 
intro(3) 

ASSEMBLER 
as /usr/include/sys.s file ••• 

The PDPll assembly language interface is given for each sys­
tem call. The assembler symbols are defined in 
'/usr/include/sys.s'. 

Ret~rn values appear in registers rO and rl; it is unwise to 
count on these registers being preserved when no value is 
expected. An erroneous call is always indicated by turning 
on the c-bit of the condition codes. The error number is 
returned in rD. The presence of an error is most easily 
tested by the instructions bes and bec ('branch on error set 
(or clear) I). These are synonyms for-the bcs and bcc 
instructions. --- ---

XENIX System 4 XENIX System 



ACCESS(2) ACCESS(2) 

NAME 
access - determine accessibility of file 

SYNOPSIS 
access (name, mode) 
char *name; 

DESCRIPTION 
Access checks the given file name for accessibility accord­
ing to mode, which is 4 (read), 2 (write) or 1 (execute) or 
a combination thereof. Specifying mode 0 tests whether the 
directories leading to the file can be searched and the file 
exists. 

An appropriate error indication is returned if name cannot 
be found or if any of the desired access modes would not be 
granted. On disallowed accesses -1 is returned and,the 
error code is in errno. 0 is returned from successful 
tests. 

The user and group IDs with respect to which permission is 
checked are the real UID and GID of the process, so this 
call is useful to set-UID programs. 

Notice that it is only access bits that are checked. A 
directory may be announced as writable by access, but an 
attempt to open it for writing will fail (although files may 
be created there); a file may look executable, but exec will 
fail unless it is in proper format. 

SEE ALSO 
stat(2) 

ASSEMBLER 
(access = 33.) 
sys access; name; mode 

XENIX System 1 XENIX System 



ACCT (2) ACCT (2) 

NAME 
acct - turn accounting on or off 

SYNOPSIS 
acct(file) 
char *file: 

DESCRIPTION 
The system is prepared to write a record in an accounting 
file for each process as it terminates. This call, with a 
null-terminated string naming an existing file as argument, 
turns on accounting: records for each terminating process 
are appended to file. An argument of 0 causes accounting to 
be turned off. ----

The accounting file format is given in acct(5). 

SEE ALSO 
acct(5), sa(l) 

DIAGNOSTICS 

BUGS 

On error -1 is returned. The file must exist and the call 
may be exercised only by the super-user. It is erroneous to 
try to turn on accounting when it is already on. 

No accounting is produced for programs running when a crash 
occurs. In particular nonterminating programs are never 
accounted for. 

ASSEMBLER 
(acct = 51.) 
sys acct: file 

XENIX System 1 XENIX System 



ALARM (2) ALARM (2) 

NAME 
alarm - schedule signal after spec~fied time 

SYNOPSIS 
alarm(seconds) 
unsigned seconds; 

DESCRIPTION 
Alarm causes signal SIGALRM, see signal(2), to be sent to 
the invoking process in a number of seconds given by the 
argument. Unless caught or ignored, the signal terminates 
the process. 

Alarm requests are not stacked; successive calls reset the 
alarm clock. If the argument is 0, any alarm request is 
cancelled. Because the clock has a I-second resolution, the 
signal may occur up to one second early; because of $chedul­
ing delays, resumption of execution of when the signal is 
caught may be delayed an arbitrary amount •. The longest 
specifiable delay time is 65535 seconds. 

The return value is the amount of time previously remaining 
in the alarm clock. 

SEE ALSO 
pause(2), signal(2), sleep(3) 

ASSEMBLER 
(alarm = 27.) 
(seconds in rO) 
sys alarm 
(previous amount in rO) 

XENIX System I XENIX System 



BRR (2) BRK(2) 

NAME 
brk, sbrk, break - change core allocation 

SYNOPSIS 
char *brk(addr) 

char *sbrk(incr) 

DESCRIPTION 
Brk sets the system's idea of the lowest location not used 
by the program (called the break) to addr (rounded up to the 
next multiple of 64 bytes on the PDPl~56 bytes on the 
Interdata 8/32, 512 bytes on the VAX-ll/780). Locations not 
less than addr and below the stack pointer are not in the 
address space and will thus cause a memory violation if 
accessed. 

In the alternate function sbrk, incr more bytes are added to 
the program's data space and a pointer to the start of the 
new area is returned. 

When a program begins execution via exec the break is set at 
the highest location defined by the program and data storage 
areas. Ordinarily, therefore, only programs with growing 
data areas need to use break. 

SEE ALSO 
exec(2), malloc(3) , end(3) 

DIAGNOSTICS 

BUGS 

Zero is returned if the break could be set; -1 if the pro­
gram requests more memory than the system limit or if too 
many segmentation registers would be required to implement 
the break. 

Setting the break in the range 0177701 to 0177777 (on the 
PDPll) is the same as setting it to zero. 

ASSEMBLER 
(break = 17.) 
sys break; addr 

Break performs the function of brk. The name of the routine 
differs from that in C for historical reasons. 

XENIX System 1 XENIX System 



CHDIR(2) CHDIR(2) 

NAME 
chdir, chroot - change default directory 

SYNOPSIS 
chdir(dirname) 
char *dirname: 

chroot(dirname) 
char *dirname: 

DESCRIPTION 
Dirname is the address of the pathname of a directory, ter­
minated by a null byte. Chdir causes this directory to 
become the current working directory, the starting point for 
path names not beginning with 'I'. 

Chroot sets the root directory, the starting point for path 
names beginning with 'I'. The call is restricted to the 
super-user. 

SEE ALSO 
cd(l) 

DIAGNOSTICS 
Zero is returned if the directory is changed; -1 is returned 
if the given name is not that of a directory or is not 
searchable. 

ASSEMBLER 
(chdir = 12.) 
sys chdir; dirname 

(chroot = 61.) 
sys chroot; dirname 

XENIX System 1 XENIX System 



CHMOD(2) CHMOD(2) 

NAAE 
chmod - change mode of file 

SYNOPSIS 
chmod(name, mode) 
char *name; 

DESCRIPTION 
The file whose name is given as the null-terminated string 
pointed to by name has its mode changed to mode. Modes are 
constructed by ORing together some combination of the fol­
lowing: 

04000 set user ID on execution 
02000 set group ID on execution 
01000 save text image after execution 
00400 read by owner 
00200 write by owner 
00100 execute (search on directory) by owner 
00070 read, write, execute (search) by group 
00007 read, write, execute (search) by others 

If an executable file is set up for sharing (-n or -i option 
of Id(l)) then mode 1000 prevents the system from abandoning 
the-Swap-space image of the program-text portion of the file 
when its last user terminates. Thus when the next user of 
the file executes it, the text need not be read from the 
file system but can simply be swapped in, saving time. 
Ability to set this bit is restricted to the super-user 
since swap space is consumed by the images; it is only worth 
while for heavily used commands. 

Only the owner of a file (or the super-user) may change the 
mode. Only the super-user can set the 1000 mode. 

SEE ALSO 
chmod(l) 

DIAGNOSTIC 
Zero is returned if the mode is changed; -1 is returned if 
name cannot be found or if current user is neither the owner 
of the file nor the super-user. 

ASSEMBLER 
(chmod = 15.) 
sys chmod; name; mode 

XENIX System 1 XENIX System 



CHOWN (2) 

NAME 
chown - change owner and group of a file 

SYNOPSIS 
chown(name, owner, group) 
char *name: 

DESCRIPTION 

CHOWN(2) 

The file whose name is given by the null-terminated string 
pointed to by name has its owner and group changed as speci­
fied. Only the super-user may execute this call, because if 
users were able to give files away, they could defeat the 
(nonexistent) file-space accounting procedures. 

SEE ALSO 
chown(l), passwd(5) 

DIAGNOSTICS 
Zero is returned if the owner is changed; -1 is returned on 
illegal owner changes. 

ASSEMBLER 
(chown = 16.) 
sys chown; name; owner; group 

XENIX System 1 XENIX System 



CLOSE (2) CLOSE (2) 

NAME 
close close a file 

SYNOPSIS 
close(fildes) 

DESCRIPTION 
Given a file descriptor such as returned from an oeen, 
creat, dup or ~(2) call, close closes the assoc1ated 
file. A close of all files is automatic on exit, but since 
there is a limit on the number of open files per process, 
close is necessary for programs which deal with many files. 

Files are closed upon termination of a process, and certain 
file descriptors may be closed by exec (2) (see ioctl (2)) . 

SEE ALSO 
creat(2), open(2), pipe(2), exec(2), ioctl(2) 

DIAGNOSTICS 
Zero is returned if a file is closed; -1 is returned for an 
unknown file descriptor. 

ASSEMBLER 
(close = 6.) 
(file descriptor in rO) 
sys close 

XENIX System 1 XENIX System 



CREAT(2) CREAT(2) 

NAAE 
creat create a new file 

SYNOPSIS 
creat(name, mode) 
char *namei 

DESCRIPTION 
Creat creates a new file or prepares to rewrite an existing 
file called name, given as the address of a null-terminated 
string. If the file did not exist, it is given mode mode, 
as modified by the process's mode mask (see umask(2))~lso 
see chmod(2) for the construction of the mode argument. 

If the file did exist, its mode and owner remain unchanged 
but it is truncated to 0 length. 

The file is also opened for writing, and its file descriptor 
is returned. 

The mode given is arbitrary; it need not allow writing. 
This feature is used by programs which deal with temporary 
files of fixed names. The creation is done with a mode that 
forbids writing. Then if a second instance of the program 
attempts a creat, -an error is returned and the program knows 
that the name is unusable for the moment. 

SEE ALSO 
write(2), close(2), chmod(2), umask (2) 

DIAGNOSTICS 
The value -1 is returned if: a needed directory is not 
searchable; the file does not exist and the directory in 
which it is to be created is not writable; the file does 
exist and is unwritable; the file is a directory; there are 
already too many files open. 

ASSEMBLER 
(creat = 8.) 
sys creat; name; mode 
(file descriptor in rO) 

XENIX System 1 XENIX System 



EXEC(2) EXEC(2) 

FILES 

the file to be executed and a vector of strings containing 
the arguments. The last argument string must be followed by 
a 0 pointer. 

When a C program is executed, it is called as follows: 

main(argc, argv, envp) 
int argc: 
char **argv, **envp: 

where argc is the argument count and argv is an array of 
character pointers to the arguments themselves. As indi­
cated, argc is conventionally at least one and the first 
member of the array points to a string containing the name 
of the file. 

Argv is directly usable in another execv because argv[argc] 
is o. 

Envp is a pointer to an array of strings that constitute the 
environment of the process. Each string consists of a name, 
an "=1 I, and a null-terminated value. The array of 
pointers is terminated by a null pointer. The shell sh(l) 
passes an environment entry for each global shell varIable 
defined when the program is called. See environ(5) for some 
conventionally used names. The C run-time start-off routine 
places a copy of envp in t~e global cell environ, which is 
used by execv and execl to pass the environment to any sub­
programs executed by the current program. The exec routines 
use lower-level routines as follows to pass an environment 
explicitly: 

execle(file, argO, argl, ..• , argn, 0, environ): 
execve(file, argv, environ); 

Execlp and execvp are called with the same arguments as 
execl and execv, but duplicate the shell's actions in 
searching for an executable file in a list of directories. 
The directory list is obtained from the environment. 

/bin/sh shell, invoked if command file found by execlp or 
execvp 

SEE ALSO 
fork(2), environ(5) 

DIAGNOSTICS 
If the file cannot be found, if it is not executable, if it 
does not start with a valid magic number (see a.out(5)}, if 
maximum memory is exceeded, or if the arguments require too 
much space, a return constitutes the diagnostic; the return 
value is -1. Even for the super-user, at least one of the 

XENIX System 2 XENIX System 



EXEC(2) EXEC(2) 

NAAE 
execl, execv, execle, execve, execlp, execvp, exec, exece, 
environ - execute a file 

SYNOPSIS 
exec I (name, argO, argl, ••• , argn, 0) 
char *name, *argO, *argl, ••• , *argn: 

execv(name, argv) 
char *name, *argv[ ]; 

exec Ie (name, argO, argl, ••• , argn, 0, envp) 
char *name, *argO, *argl, ••• , *argn, *envp[ ]: 

execve(name, argv, envp): 
char *name, *argv[ ], *envp[ ]: 

extern char **environ; 

DESCRIPTION 
Exec in all its forms overlays the calling process with the 
named file, then transfers to the entry point of the core 
image of the file. There can be no return from a successful 
exec; the calling core image is lost. 

Files remain open across exec unless explicit arrangement 
has been made; see ioctl(~ Ignored signals remain ignored 
across these calls, but signals that are caught (see sig­
nal(2)) are reset to their default values. 

Each user has a real user ID and group ID and an effective 
user ID and group ID. The real ID identifies the person 
using the system; the effective ID determines his access 
privileges. Exec changes the effective user and group ID to 
the owner of the executed file if the file has the 'set­
user-ID' or 'set-group-ID' modes. The real user ID is not 
affected. 

The name argument is a pointer to the name of the file to be 
executed. The pointers ~£~[Q], ~[l] address null­
terminated strings. Conventionally ~[Q] is the name of 
the file. 

From C, two interfaces are available. Execl is useful when 
a known file with known arguments is being called; the argu­
ments to execl are the character strings constituting the 
file and the arguments; the first argument is conventionally 
the same as the file name (or its last component). A 0 
argument must end the argument list. 

The execv version is useful when the number of arguments is 
unknown in advance: the arguments to execv are the name of 

XENIX System 1 XENIX System 



DUP (2) DUP (2) 

NAME 
dup, dup2 - duplicate an open file descriptor 

SYNOPSIS 
dup(fildes) 
int fildes; 

dup2(fildes, fildes2) 
int fildes, fildes2; 

DESCRIPTION 
Given a file descriptor returned from an open, ~, or 
creat call, d~E allocates another file descriptor synonymous 
with the origInal. The new file descriptor is returned. 

In the second form of the call, fildes is a file descriptor 
referring to an open file, and fildes2 is a non-negative 
integer less than the maximum value allowed for file 
descriptors (approximately 19). Dup2 causes fildes2 to 
refer to the same file as fildes. If fildes2 already 
referred to an open file, it is closed first. 

SEE ALSO 
creat(2), open(2), close(2), pipe(2) 

DIAGNOSTICS 
The value -1 is returned if: the given file descriptor is 
invalid; there are already too many open files. 

ASSEMBLER 
(dup = 41.) 
(file descriptor in rO) 
(new file descriptor in rl) 
sys dup 
(file descriptor in rO) 

The dup2 entry is implemented by adding 0100 to fildes. 

XENIX System 1 XENIX System 



EXEC(2) EXEC (2) 

BUGS 

execute-permission bits must be set for a file to be exe­
cuted. 

If execvp is called to execute a file that turns out to be a 
shell command file, and if it is impossible to execute the 
shell, the values of argv[Ql and argv[-!] will be modified 
before return. 

ASSEMBLER 
(exec = 11.) 
sys exec; name; argv 

(exece = 59.) 
sys exece; name; argv; envp 

Plain exec is obsoleted by exece, but remains for historical 
reasons. 

When the called file starts execution on the PDPll, the 
stack pointer points to a word containing the number of 
arguments. Just above this number is a list of pointers to 
the argument strings, followed by a null pointer, followed 
by the pointers to the environment strings and then another 
null pointer. The strings themselves follow; a 0 word is 
left at the very top of memory. 

sp-> nargs 
argO 

argn 
0 
envO 

envrn 
0 

argO: <argO\O> 

envO: <envO\O> 
0 

On the Interdata 8/32, the stack begins at a conventional 
place (currently OxDOOOO) and grows upwards. After exec, 
the layout of data on the stack is as follows. 

int 
argO: 

argpO: 

o 
byte 

in t argO 

int 0 

XENIX System 3 XENIX System 



EXEC (2) EXEC (2) 

envpO: int envO 

int 0 
%2-> space 40 

int nargs 
int argpO 
int envpO 

%3-> 

This arrangement happens to conform well to C calling con­
ventions. 

XENIX System 4 XENIX System 



EXIT(2) 

NAME 
exit - terminate process 

SYNOPSIS 
exit(status) 
int status; 

exit(status) 
Tnt status; 

DESCRIPTION 

EXIT (2) 

Exit is the normal means of terminating a process. Exit 
closes all the process's files and notifies the parent pro­
cess if it is executing a wait. The low-order 8 bits of 
status are available to the parent process. 

This call can never return. 

The C function exit may cause cleanup actions before the 
final 'sys exit-'-.--The function exit circumvents all 
cleanup. 

SEE ALSO 
wait(2} 

ASSEMBLER 
(ex it = 1.) 
(status in rO) 
sys exit 

XENIX System I XENIX System 



FORK (2) FORK(2) 

NAME 
fork spawn new process 

SYNOPSIS 
fork ( ) 

DESCRIPTION 
Fork is the only way new processes are created. The new 
process's core image is a copy of that of the caller of 
fork. The only distinction is the fact that the value 
returned in the old (parent) process contains the process ID 
of the new (child) process, while the value returned in the 
child is o. Process ID's range from 1 to 30,000. This pro­
cess ID is used by wait(2). 

Files open before the fork are shared, and have a common 
read-write pointer. In particular, this is the way that 
standard input and output files are passed and also how, 
pipes are set up. 

SEE ALSO 
wait(2), exec(2) 

DIAGNOSTICS 
Returns -1 and fails to create a process if: there is inade­
quate swap space, the user is not super-user and has too 
many processes, or the system's process table is full. Only 
the super-user can take the last process-table slot. 

ASSEMBLER 
(fork = 2.) 
sys fork 
(new process return) 
(old process return, new process ID in rO) 

The return locations in the old and new process differ by 
one word. The C-bit is set in the old process if a new pro­
cess could not be created. 

XENIX System 1 XENIX System 



GETPIO(2) 

NAME 
getpid 

SYNOPSIS 
getpid ( ) 

DESCRIPTION 

GETPID(2) 

get process identification 

Getpid returns the process 10 of the current process. Most 
often it is used to generate uniquely-named temporary files. 

SEE ALSO 
mktemp(3) 

ASSEMBLER 
(getpid = 20.) 
sys getpid 
(pid in rO) 

XENIX System 1 XENIX System 



GETUID(2) GETUID(2) 

NAME 
getuid, getgid, geteuid, getegid - get user and group iden­
tity 

SYNOPSIS 
getuid( ) 

geteuid ( ) 

getgid ( ) 

getegid( 

DESCRIPTION 
Getuid returns the real user ID of the current process, 
geteuid the effective user ID. The real user ID identifies 
the person who is logged in, in contradistinction to the 
effective user ID, which determines his access permission at 
the moment. It is thus useful to programs which operate 
using the 'set user ID' mode, to find out who invoked them. 

Getgid returns the real group ID, getegid the effective 
group ID. 

SEE ALSO 
setuid(2) 

ASSEMBLER 
(getuid = 24.) 
sys getuid 
(real user ID in rO, effective user ID in rl) 

(getgid = 47.) 
sys getgid 
(real group ID in rO, effective group ID in rl) 

XENIX System 1 XENIX System 



INDIR(2) INDIR (2) 

NAME 
indir - indirect system call 

ASSEMBLER 
(indir = 0.) 
sys indir: call 

The system call at the location call is executed. Execution 
resumes after the indir call. 

The main purpose of indir is to allow a program to store 
arguments in system calls and execute them out of line in 
the data segment. This preserves the purity of the text 
segment. 

If indir is executed indirectly, it is a no-oPe If the 
instruction at the indirect location is not a system call, 
indir returns error code EINVAL; see intro(2). 

XENIX System I XENIX System 



IOCTL(2) IOCTL (2) 

NAME 
ioctl, stty, gtty - control device 

SYNOPSIS 
tinclude <sgtty.h> 

ioctl(fildes, request, argp) 
struct sgttyb *argpi 

stty(fildes, argp) 
struct sgttyb *argp; 

gtty(fildes, argp) 
struct sgttyb *argp: 

DESCRIPTION 
Ioctlperforms a variety of functions on character special 
files (devices). The writeups of various devices in section 
4 discuss how ioctl applies to them. 

For certain status setting and status inqulrles about termi­
nal devices, the functions stty and ~ are equivalent to 

ioctl(fildes, TIOCSETP, argp) 
ioctl(fildes, TIOCGETP, argp) 

respectively; see ~(4) . 

The following two calls, however, apply to any open file: 

ioctl(fildes, FIOCLEX, NULL): 
ioctl(fildes, FIONCLEX, NULL); 

The first causes the file to be closed automatically during 
a successful exec operation; the second reverses the effect 
of the first.----

SEE ALSO 
stty(l), tty(4), exec(2) 

DIAGNOSTICS 

BUGS 

Zero is returned if the call was successful; -1 if the file 
descriptor does not refer to the kind of file for which it 
was intended. 

Strictly speaking, since ioctl may be extended in different 
ways to devices with different properties, ~ should have 
an open-ended declaration like 

union { struct sgttyb ••. ; ... } *argp; 

XENIX System 1 XENIX System 



IOCTL(2) IOCTL(2) 

The important thing is that the size is fixed by struct 
sgttyb ' . 

ASSEMBLER 
(ioctl = 54.) 
sys ioctl; fildes; request; argp 

(stty = 31.) 
(file descriptor in rO) 
stty; argp 

(gtty = 32.) 
(file descriptor in rO) 
sys gttYi argp 

XENIX System 2 XENIX System 



KILL(2) KILL(2) 

NAME 
kill send signal to a process 

SYNOPSIS 
kill(pid, sig); 

DESCRIPTION 
Kill sends the signal ~ to the process specified by the 
process number in rOe See signal(2) for a list of signals. 

The sending and receiving processes must have the same 
effective user ID, otherwise this call is restricted to the 
super-user. 

If the process number is 0, the signal is sent to all other 
processes in the sender's process group; see !!y(4). 

If the process number is -L, and the user is the super-user, 
the signal is broadcast universally except to processes 0 
and 1, the scheduler and initialization processes, see 
init(8). 

Processes may send signals to themselves. 

SEE ALSO 
signal(2), kill(l) 

DIAGNOSTICS 
Zero is returned if the process is killed; -1 is returned if 
the process does not have the same effective user ID and the 
user is not super-user, or if the process does not exist. 

ASSEMBLER 
(kill = 37_) 
(process number in rO) 
sys kill; sig 

XEN IX Sys tern 1 XENIX System 



LINK(2) LINK(2) 

NAME 
link - link to a file 

SYNOPSIS 
link (namel, name2} 
char *namel, *name2; 

DESCRIPTION 
A link to namel is created; the link has the name name2. 
Either name may be an arbitrary path name. 

SEE ALSO 
In(l), unlink(2) 

DIAGNOSTICS 
Zero is returned when a link is made; -1 is returned when 
namel cannot be found; when name2 already exists; when the 
directory of name2 cannot be written; when an attempt is 
made to link to a directory by a user other than the super~ 
user; when an attempt is made to link to a file on another 
file system; when a file has too many links. 

ASSEMBLER 
(link = 9.) 
sys link; namel; name2 

XENIX System 1 XENIX System 



LOCK(2) LOCK (2) 

NAME 
lock - lock a process in primary memory 

SYNOPSIS 
lock (flag) 

DESCRIPTION 

BUGS 

If the flag argument is non~zero, the process executing this 
call will not be swapped except if it is required to grow. 
If the argument is zero, the process is unlocked. This call 
may only be executed by the super-user. 

Locked processes interfere with the compaction of primary 
memory and can cause deadlock. This system call is not con­
sidered a permanent part of the system. 

ASSEMBLER 
(lock = 53.) 
sys lock; flag 

XENIX System I XENIX System 



LSEEK(?) LSEEK(L) 

NAME 
lseek, tell - move read/write pointer 

SYNOPSIS 
long Iseek(fildes, offset, whence} 
long offset: 

long tell(fildes) 

DESCRIPTION 
The file descriptor refers to a file open for reading or 
writing. The read (resp. write) pointer for the file is set 
as follows: 

If whence is 0, the pointer is set to offset bytes. 

If whence is 1, the pointer is set to its current loca­
tion plus offset. 

If whence is 2, the pointer is set to the size of the 
file plus offset. 

The returned value is the resulting pointer location. 

The obsolete function tell(fildes) is identical to 
lseek(fildes, OL, 1). 
Seeking far beyond the end of a file, then writing, creates 
a gap or 'hole', which occupies no physical space and reads 
as zeros. 

SEE ALSO 
open(2), creat(2), fseek (3) 

DIAGNOSTICS 

BUGS 

-1 is returned for an undefined file descriptor, seek on a 
pipe, or seek to a position before the beginning of file. 

Lseek is a no-op on character special files. 

ASSEMBLER 
(lseek = 19.) 
(file d~scriptor in rO) 
sys Iseek: offsetl: offset2: whence 

Offsetl and offset2 are the high and low words of offset; rO 
and rl contain the pointer upon return. 

XENIX System 1 XENIX System 



MKNOD(2) MKNOD (2) 

NAME 
mknod - make a directory or a special file 

SYNOPSIS 
mknod(name, mode, addr) 
char *name; 

DESCRIPTION 
Mknod creates a new file whose name is the null-terminated 
string pointed to by name. The mode of the new file 
(including directory ana-special file bits) is initialized 
from mode. (The protection part of the mode is modified by 
the process's mode mask: see umask(2)). The first block 
pointer of the i-node is initialized from addr. For ordi­
nary files and directories addr is normally zero. In the 
case of a special file, addr specifies which special file. 

Mknod may be invoked only by the super-user. 

SEE ALSO 
m k d i r ( 1), m k nod ( 1), f i 1 s y s ( 5 ) 

DIAGNOSTICS 
Zero is returned if the file has been made; -1 if the file 
already exists or if the user is not the super-user. 

ASSEMBLER 
(mknod = 14.) 
sys mknod; name; mode: addr 

XENIX System 1 XENIX System 



MOUNT (2) MOUNT(2) 

NAME 
mount, umount - mount or remove file system 

SYNOPSIS 
mount(special, name, rwflag) 
char *special, *name; 

umount(special) 
char *special; 

DESCRIPTION 
Mount announces to the system that a removable file system 
has been mounted on the block-structured special file spe­
cial; from now on, references to file name will refer to the 
root file on the newly mounted file system. §Eecial and 
name are pointers to null-terminated strings containing the 
appropriate path names. 

Name must exist already. Name must be a directory (unless 
the root of the mounted file system is not a directory). 
Its old contents are inaccessible while the file system is 
mounted. 

The rwflag argument determines whether the file system can 
be written on; if it is 0 writing is allowed, if non-zero no 
writing is done. Physically write-protected and magnetic 
tape file systems must be mounted read-only or errors will 
occur when access times are updated, whether or not any 
explicit write is attempted. 

Umount announces to the system that the special file is no 
longer to contain a removable file system. The associated 
file reverts to its ordinary interpretation. Any pending 
I/O for the file system is completed, and the file system is 
marked clean. 

SEE ALSO 
mount (1), in tro (2), mknod (lI~), fsck (1M) 

DIAGNOSTICS 
Mount returns 0 if the action occurred; -1 if special is 
inaccessible or not an appropriate file; if name does not 
exist; if special is already mounted; if name is in use; or 
if there are already too many file systems mounted. If the 
file system was unclean, 'errno' == EUCLEAN. Use fsck(lm) 
to clean the file system. 

Umount returns 0 if the action occurred; -1 if the special 
file is inaccessible or does not have a mounted file system, 
or if there are active files in the mounted file system. 

XENIX System 1 XENIX System 



MOUNT(2) MOUNT(2) 

ASSEMBLER 
(mount = 21.) 
sys mount; special; name; rwflag 

(umount = 22.) 
sys umount; special 

XENIX System 2 XENIX System 



MPX (2) MPX(2) 

NAME 
mpx - create and manipulate multiplexed files 

SYNOPSIS 
rnpx(narne, access) char *name; 

join(fd, xd) 

chan(xd) 

extract(i, xd) 

attach(i, xd) 

detach(i, xd) 

connect(fd, cd, end) 

npgrp(i, xd, pgrp) 

ckill(i, xd, signal) 

tinclude <sys/mx.h> 
mpxcall(cmd, vee) 
int *vec; 

DESCRIPTION 
mpxcall(cmd, vec) is the system call shared by the library 
routines described below. Cmd selects a command using 
values defined in <~/mx.Q~ Vec is the address of a 
structure containing the arguments for the command. 

mpx(name, access) 

Mpx creates and opens the file name with access permission 
access (see creat(2) and returns a file descriptor avail­
able-for reading-and writing. A -1 is returned if the file 
cannot be created, if name already exists, or if the file 
table or other operating system data structures are full. 
The file descriptor is required for use with other routines. 

If name designates a null string, a file descriptor is 
returned as described but no entry is created in the file 
system. 

Once created an mpx file may be opened (see open(2» by any 
process. This provides a form of interprocess communication 
whereby a process Bean "'call' process A by opening an mpx 
file created by A. To B, the file is ordinary with one 
exception: the connect primitive could be applied to it. 
Otherwise the functions described below are used only in 
process A and descendants that inherit the open mpx file. 

XENIX System 1 XENIX System 



MPX(2) MPX(2) 

When a process opens an mpx file, the owner of the file 
receives a control message when the file is next read. The 
method for 'answering' this kind of call involves using 
attach and detach as described in more detail below. 

Once B has opened A's mpx file it is said to have a channel 
to A. A channel is a pair of data streams: in this case, 
one from B to A and the other from A to B. Several 
processes may open the same mpx file yielding multiple chan­
nels within the one mpx file. By accessing the appropriate 
channel, A can communicate with B and any others. When A 
reads (see read(2» from the mpx file data written to A by 
the other processes appears in A's buffer using a record 
format described in mpxio(5). When A writes (see write(2» 
on its mpx file the data must be formatted in a similar way. 

The following commands are used to manipulate mpx files and 
channels. 

join- adds a new channel on an mpx file to an open file 
F. I/O on the new channel is I/O on F. 
chan- creates a new channel. 
extract- file descriptor maintenance. 
connect- similar to join except that the open file F is 
connected to an existing channel. 
attach and detach- used with call protocol. 
npgrp- manipulates process group numbers so that a 
channel can act as a control terminal (see !!y(4). 
ckill- send signal (see signal(2» to process group 
through channel. 

A maximum of 15 channels may be connected to an mpx file. 
They are numbered 0 through 14. Join may be used to make 
one mpx file appear as a channel on another mpx file. A 
hierarchy or tree of mpx files may be set up in this way. 
In this case one of the mpx files must be the root of a tree 
where the other mpx files are interior nodes. The maximum 
depth of such a tree is 4. 

An index is a 16-bit value that denotes a location in an mpx 
tree other than the root: the path through mpx 'nodes' from 
the root to the location is expressed as a sequence of 4-bit 
nibbles. The branch taken at the root is represented by the 
low-order 4-bits of an index. Each succeeding branch is 
specified by the next higher-order nibble. If the length of 
a path to be expressed is less than 4, then the illegal 
channel number, 15, must be used to terminate the sequence. 
This is not strictly necessary for the simple case of a tree 
consisting of only a root node: its channels can be 
expressed by the numbers 0 through 14. An index i and file 
descriptor xd for the root of an mpx tree are required as 
arguments to-most of the commands described below. Indices 

XENIX System 2 XENIX System 



MPX (2) MPX (2) 

also serve as channel identifiers in the record formats 
given in mpxio(5). Since -1 is not a valid index, it can be 
returned as a error indication by subroutines that normally 
return indices. 

The operating system informs the process managing an mpx 
file of changes in the status of channels attached to the 
file by generating messages that are read along with data 
from the channels. The form and content of these messages 
is described in mpxio(5) • 

join(fd, xd) establishes a connection (channel) between an 
mpx file and another object. Fd is an open file descriptor 
for a character device or an mpx file and xd is the file 
descriptor of an mpx file. Join returns toe index for the 
new channel if the operation succeeds and -1 if it does not. 

Following join, fd may still be used in any system call 
that would have been meaningful before the join operation. 
Thus a process can read and write dir~ctly to fd as well as 
access it via xd. If the number of channels required for a 
tree of mpx files exceeds the number of open files permitted 
a process by the operating system, some of the file descrip­
tors can be released using the standard close(2) call. Fol­
lowing a close on an active file descriptor for a channel or 
internal mpx node, that object may still be accessed through 
the root of the tree. 

chan(xd) allocates a channel and connects one end of it to 
the mpx file represented by file descriptor xd. Chan returns 
the index of the new channel or a -1 indicating failure. 
The extract primitive can be used to get a non-multiplexed 
file descriptor for the free end of a channel created by 
chan. 

Both chan and join operate on the mpx file specified by xd. 
File descriptors for i~terior nodes of an mpx tree must be 
preserved or reconstructed with extract for use with join or 
chan. For the remaining commands described here, xd denotes 
the file descriptor for the root of an mpx tree. -

Extract(i, xd) returns a file descriptor for the object with 
index i on the mpx tree with root file descriptor xd. A -1 
is returned by extract if a file descriptor is not-available 
or if the arguments do not refer to an existing channel and 
mpx file. 

attach(i, xd) 
detach(i, xd). If a process A has created an mpx file 
represented by file descriptor xd, then a process B can open 
(see open(2» the mpx file. The-purpose is to establish a 
channel between A and B through the mpx file. Attach and 

XENIX System 3 XENIX System 



MPX (2) MPX(2) 

Detach are used by A to respond to such opens. 

An open request by B fails immediately if a new channel can­
not be allocated on the mpx file, if the mpx file does not 
exist, or if it does exist but there is no process (A) with 
a multiplexed file descriptor for the mpx file (i.e. xd as 
returned by mpx(2)). Otherwise a channel with index number 
i is allocated. The next time A reads on file descriptor 
xd, the WATCH control message (see mpxio(S)) will be 
delivered on channel i. A responds to this message with 
attach or detach. The-former causes the open to complete and 
return a file descriptor to B. The latter deallocates chan­
nel i and causes the open to fail. 

One mpx file may be placed in 'listener' mode. This is done 
by writing ioctl(xd, MXLSTN, 0) where xd is an mpx file 
descriptor ,and MXL~TN is defined in /usr/include/sgtty.~. 
The semantICS of Ilstener mode are that all file names 
discovered by open(2) to have the syntax system!pathname 
(see tuCP(l» are treated as opens on the mpx file. The 
opera lng system sends the listener process an OPEN message 
(see mpxio(S») which includes the file name being opened. 
Attach and detach then apply as described above. 

Detach has two other uses: it closes and releases the 
resources of any active channel it is applied to, and should 
be used to respond to a CLOSE message (see mpxio(S)) on a 
channel so the channel may be reused. 

connect(fd, cd, end). Fd is a character file descriptor and 
cd is a file descriptor~or a channel, such as might be 
obtained via extract( 7han(xd), xd) or by open(2) followed 
by attach. Connect spllces the two streams together. If end 
is negative, only the output of fd is spliced to the inpu-t-­
of cd. If end is positive, the output of cd is spliced to 
the~nput or-fd. If end is zero, then boto-splices are made. 

npgrp(i, xd, pgrp). If xd is negative npgrp applies to the 
process executing it, otherwise i and xd are interpreted as 
a channel index and mpx file descriptor-and npgrp is applied 
to the process on the non-multiplexed end of the channel. 
If ~ is zero, the process group number of the indicated 
process is set to the process number of that process, other­
wise the value of ~ is used as the process group number. 

Npgrp normally returns the new process group number. If i 
and xd specify a nonexistant channel, npgrp returns -1. 

ckill(i, xd, signal) sends the specified signal (see si9-
nal(2)) through the channel specified by i and xd. If the 
channel is connected to anything other than a process, ckill 
is a null operation. If there is a process at the other end 

XENIX System 4 XENIX System 



MPX (2) MPX(2) 

of the channel, the process group will be interrupted (see 
signal(2), kill(2}}. Ckill normally returns signal. If ch 
and xd specify a nonexistent channel, ckill returns -1. --

FILES 
/usr/include/sys/mx.h 
/usr/include/sgtty.h 

SEE ALSO 
mpxio (5,) 

BUGS 
Mpx files are an experimental part of the operating system 
more subject to change and prone to bugs than other parts. 
Maintenance programs, e.g. icheck(l), diagnose mpx files as 
an illegal mode. Channels may only be connected to objects 
in the operating system that are accessible through the line 
discipline mechanism. Higher performace line disciplines 
are needed. The maximum tree depth restriction is not 
really checked. A non-destructive disconnect primitive 
(inverse of connect) is not provided. A non-blocking flow 
control strategy based on messages defined in mpxio(5) 
should not be attempted by novices; the enabling ioctl com­
mand should be protected. The join operation could be sub­
sumed by connect. A mechanism is needed for moving a channel 
from one location in an mpx tree to another. 

XENIX System 5 XENIX System 



MPXCALL (2) MPXCALL(2) 

NAME 
mpxcall - multiplexor and channel interface 

SYNOPSIS 
mpxcall(argl, arg2, arg3, cmd) 

DESCRIPTION 
Mpxcall supplies a primitive interface to the kernel used by 
the routines listed below. Each routine that uses mpxcall 
passes an integer cmd as the fourth argument. These are 
defined in /usr/inCIUde/mx.Q. Mpxcall always returns an 
integer which is to be interpreted in accordance with the 
definition of cmd. 

SEE ALSO 
group(2), join(2), extract(2), connect(2), chan(2), 
attach(2), detach(2) 

DIAGNOSTICS 
The value -1 is returned on error. 

XENIX System 1 XENIX System 



NICE(2) NICE(2) 

NAME 
nice - set program priority 

SYNOPSIS 
nice(incr) 

DESCRIPTION 
The scheduling priority of the process is augmented by incr. 
positive priorities get less service than normal. Priority 
10 is recommended to users who wish to execute long-running 
programs without flak from the administration. 

Negative increments are ignored except on behalf of the 
super-user. The priority is limited to the range -20 (most 
urgent) to 20 (least). ' 

The priority of a process is passed to a child process by 
fork(2). For a privileged process to return to normal 
priority from an unknown state, nice should be called suc­
cessively with arguments -40 (goes to priority -20 because 
of truncation), 20 (to get to 0), then a (to maintain compa­
tibility with previous versions of this call). 

SEE ALSO 
nice(l) 

ASSEMBLER 
(nice = 34.) 
(priority in rO) 
sys nice 

XENIX System 1 XENIX System 



OPEN (2) OPEN(2) 

NAME 
open - open for reading or writing 

SYNOPSIS 
open (name, mode) 
char *name~ 

DESCRIPTION 
Open opens the file ~ for reading (if mode is 0), writing 
(if mode is 1) or for both reading and writing (if mode is 
2). Name is the address of a string of ASCII characters 
representing a path name, terminated by a null character. 

The file is positioned at the beginning (byte 0). The 
returned file descriptor must be used for subsequent calls 
for other input-output functions on the file. 

SEE ALSO 
creat(2), read(2), write(2), dup(2), close(2) 

DIAGNOSTICS 
The value -1 is returned if the file does not exist, if one 
of the necessary directories does not exist or is unread­
able, if the file is not readable {resp. writable), or if 
too many files are open. 

ASSEMBLER 
(open = 5.) 
sys open; name: mode 
(file descriptor in rO) 

XENIX System 1 XENIX System 



PAUSE(2) 

NAME 
pause - stop until signal 

SYNOPSIS 
pause ( ) 

DESCRIPTION 

PAUSE(2) 

Pause never returns normally. It is used to give up control 
while waiting for a signal from kill(2) or alarm(2). 

SEE ALSO 
kill(l), kill(2), alarm(2), signal(2), "setjmp(3) 

ASSEMBLER 
(pause = 29.) 
sys pause 

XENIX System 1 XENIX System 



PHYS(2) PHYS(2) 

NAME 
phys - allow a process to access physical addresses 

SYNOPSIS 
phys(segreg, size, physadr) 

DESCRIPTION 
The argument se1reg specifies a process virtual (data-space) 
address range 0 8K bytes starting at virtual address 
seareg x8K bytes. This address range is mapped into physical 
ad ress physadrx64 bytes. Only the first sizex64 bytes of 
this mapping is addressable. If size is zero, any previous 
mapping of this virtual address range is nullified. For 
example, the call 

phys (6, 1, 0177775); 

will map virtual addresses 0160000-0160077 into physical 
addresses 017777500-017777577. In particular, virtual 
address 0160060 is the PDP-I! console located at physical 
address 017777560. 

This call may only be executed by the super-user. 

SEE ALSO 
PDP-II segmentation hardware 

DIAGNOSTICS 

BUGS 

The function value zero is returned if the physical mapping 
is in effect. The value -1 is returned if not super-user, 
if segreg is not in the range 0-7, if size is not in the 
range 0-127, or if the specified segreg is already used for 
other than a previous call to ~. 

This system call is obviously very machine dependent and 
very dangerous. This system call is not considered a per­
manent part of the system. 

ASSEMBLER 
(phys = 52.) 
sys phys; segreg; size; physadr 

XENIX System 1 XENIX System 



PIPE(2) PIPE(2) 

NAME 
pipe - create an interprocess channel 

SYNOPSIS 
pipe(fildes) 
int fildes[2]~ 

DESCRIPTION 
The ~ system call creates an I/O mechanism called a pipe. 
The file descriptors returned can be used in .read -and write 
operations. When the pipe is written using the descriptor 
fildes[l] up to 4096 bytes of data are buffered before the 
writing process is suspended. A read using the descriptor 
fildes[O] will pick up the data. Writes with a count of 
4096 bytes or less are atomic~ no other process can inter­
sperse data. 

It is assumed that after the pipe has been set up,' two (or 
more) cooperating processes (created by subsequent fork 
calls) will pass data through the pipe with read ana-write 
calls. ----

The Shell has a syntax to set up a linear array of processes 
connected by pipes. 

Read calls on an empty pipe (no buffered data) with only one 
end (all write file descriptors closed) returns an end-of­
file. 

SEE ALSO 
sh(l}, read(2}, write(2}, fork(2) 

DIAGNOSTICS 

BUGS 

The function value zero is returned if the pipe was created; 
-1 if too many files are already open. A signal is gen­
erated if a write on a pipe with only one end is attempted. 

Should more than 4096 bytes be necessary in any pipe among a 
loop of processes, deadlock will occur. 

ASSEMBLER 
(pipe = 42.) 
sys pipe 
(read file descriptor in rO) 
(write file descriptor in rl) 

XENIX System 1 XENIX System 



PKON (2) PKON(2) 

NAME 
pkon, pkoff - establish packet protocol 

SYNOPSIS 
pkon (fd, size) 

pkoff(fd) 

DESCRIPTION 
Pkon establishes packet protocol (see ~(4» on the open 
character special file whose file descriptor is fd. Size is 
a desired packet size, a power of 2 in the range--
32<size<4096. The size is negotiated with a remote packet 
driver, and a possibly smailer actual packet size is 
returned. 

An asynchronous line used for packet communication should be 
in raw mode; see ~(4) • 

Pkoff turns off the packet driver on the channel whose file 
descriptor is fd. 

SEE ALSO 
pk(4), pkopen(3), tty(4), signal(2) 

DIAGNOSTICS 
Pkon returns -1 if fd does not describe an open file, or if 
packet communication-cannot be established. 

Pkoff returns -1 for an unknown file descriptor. 

Writing on a packet driver link that has been shut down by 
close or pkoff at the other end raises signal SIGPIPE in the 
writing process. 

XENIX System 1 XENIX System 



PR()FIL(2) 

NAME 
profil - execution time profile 

SYNOPSIS 
profil(buff, bufsiz, offset, scale) 
char *buff; 
int bufsiz, offset, scale; 

DESCRIPTION 
Buff points to an area of core whose length (in bytes) is 
given by bufsiz. After this call, the user's program 
counter (pc) is examined each clock tick (60th second); 
offset is subtracted from it, and the result multiplied by 
scale. If the resulting number corresponds to a word inside 
buff, that word is incremented. 

The scale is interpreted as an unsigned, fixed-point frac­
tion with binary point at the left: 0177777(8) gives' a 1-1 
mapping of pc's to words in buff: 077777(8) maps each pair 
of instruction words togethe~02(8) maps all instructions 
onto the beginning of buff (producing a non-interrupting 
core clock). ' 

Profiling is turned off by giving a scale of 0 or 1. It is 
rendered ineffective by giving a bufsiz of o. Profiling is 
turned off when an exec is executed, but remains on in child 
and parent both after a fork. Profiling may be turned off 
if an update in buff would cause a memory fault. 

SEE ALSO 
monitor(3), prof(l) 

ASSE:"1BLER 

NOTES 

(profil = 44.) 
sys profil; buff; bufsiz; offset; scale 

You should use the monitor(3) call. The prof(l) program may 
require the buffer size to be equal to or smaller than the 
program size. 

XENIX System 1 XENIX System 



PTRACE (2) PTRACE (2) 

NAME 
ptrace 

SYNOPSIS 

process trace 

#include <signal.h> 

ptrace(request, pid, addr, data) 
iot *addr; 

DESCRIPTION 
Ptrace provides a means by which a parent process may con­
trol the execution of a child process, and examine and 
change its core image. Its primary use is for the implemen­
tation of breakpoint debugging. There are four arguments 
whose interpretation depends on a request argument. Gen­
erally, pid is the process ID of the traced process, which 
must be a child (no more distant descendant) of the tracing 
process. A process being traced behaves normally until it 
encounters some signal whether internally gener~ted like 
'illegal instruction' or externally generated like 'inter­
rupt.' See signal(2) for the list. Then the traced process 
enters a stopped state and its parent is notified via 
wait(2). When the child is in the stopped state, its core 
Image can be examined and modified using ptrace. If 
desired, another ptrace request can then cause the child 
either to terminate or to continue, possibly ignoring the 
signal. 

The value of the request argument determines the precise 
action of the call: 

o This request is the only one used by the child process; 
it declares that the process is to be traced by its 
parent. All the other arguments are ignored. Peculiar 
results will ensue if the parent does not expect to 
trace the child. 

1,2 The word in the child process's address space at addr is 
returned. If I and D space are separated, reques~ 
indicates I space, 2 D space. Addr must be even. The 
child must be stopped. The input data is ignored. 

3 The word of the system's per-process data area 
corresponding to Addr is returned. Addr must be even 
and less than 5l2~his space contarns-the registers 
and other information about the process; its layout 
corresponds to the user structure in the system. 

4,5 The given data is written at the word in the process's 
address space-corresponding to addr, which must be even. 
No useful value is returned. Ir-r-and D space are 
separated, request 4 indicates I space, 5 D space. 

XENIX System 1 XENIX System 



PTRACE (2) 

Attempts to write in. pure procedur~ fail if another pro­
cess is executing the same file. 

6 The process's system data is written, as it is read with 
request 3. Only a few locations can be written in this 
way: the general registers, the floating point status 
and registers, and certain bits of the processor status 
word. 

7 The data argument is taken as a signal number and the 
chil~execution continues at location addr as if it 
had incurred that signal.' Normally the SIgnal number 
will be either 0 to indicate that the signal that caused 
the stop should be ignored, or that value fetched out of 
the process's image indicating which signal caused the 
stop. If addr is (int *)1 then execution continues from 
where it stopped. 

8 The traced process terminates. 

9 Execution continues as in request 7; however, as soon as 
possible after execution of at least one instruction, 
execution stops again. The signal number from the stop 
is SIGTRAP. On the PDP-II the T-bit is used and just 
one instruction is executed. This is part of the 
mechanism for implementing breakpoints. On other pro­
cessors, appropriate machine-dependent strategies are 
used. 

As indicated, these calls (except for request 0) can be used 
only when the subject process has stopped. The wait call is 
used to determine when a process stops; in such a case the 
'termination' status returned by wait has the value 0177 to 
indicate stoppage rather than genuine termination. 

To forestall possible fraud, ptrace inhibits the set-user-id 
facility on subsequent exec(2} calls. If a traced process 
calls exec, it will stup-Eefore executing the first instruc­
tion or-tne new image showing signal SIGTRAP. 

SEE ALSO 
wait(2), signal(2), adb(l) 

DIAGNOSTICS 

BUGS 

The value -1 is returned if request is invalid, £lQ is not a 
traceable process, addr is out of bounds, or data specifies 
an illegal signal number. 

The request 0 call should be able to specify signals which 
are to be treated normally and not cause a stop. In this 
way, for example, programs with simulated floating point 

XENIX System 2 XENIX System 



PTRACE (2) PTRACE(2) 

(which use 'illegal instruction' signals at a very high 
rate) could be efficiently debugged. 
The error indication, -1, is a legitimate function value; 
errno, see intro(2), can be used to disambiguate. 

It should be possible to stop a process on occurrence of a 
system call; in this way a completely controlled environment 
could be provided. 

Differing processors and configurations will necessarily 
create some differences in functionality. 

PDP-II ASSEMBLER 
(ptrace = 26.) 
(data in rO) 
sys ptracej pid: addr: request 
(value in rO) 

XENIX System 3 XENIX System 



READ(2) READ (L) 

NAME 
read - read from file 

SYNOPSIS 
read(fildes, buffer, nbytes) 
char *buffer; 

DESCRIPTION 
A file descriptor is a word returned from a successful open, 
creat, dup, or ~ call. Buffer is the location of nbytes 
contiguous bytes into which the input will be placed. It is 
not guaranteed that all nbytes bytes will be read; for exam­
ple if the file refers to a typew,riter at most one line will 
be returned. In any event the number of characters read is 
returned. 

If the returned value is 0, then end-of-file has been 
reached. 

SEE ALSO 
open(2), creat(2), dup(2), pipe(2) 

DIAGNOSTICS 
As mentioned, 0 is returned when the end of the file has 
been reached. If the read was otherwise unsuccessful the 
return value is -1. Many conditions can generate an error: 
physical I/O errors, bad buffer address, preposterous 
nbytes, file descriptor not that of an input file. 

ASSEMBLER 
(read = 3.) 
(file descriptor in rO) 
sys read; buffer; nbytes 
(byte count in rO) 

XENIX System 1 XENIX System 



SETUIO(2) 

NAME 
setuid, setgid - set user and group 10 

SYNOPSIS 
setuid(uid) 

setgid(gid) 

DESCRIPTION 

SETUIO(2) 

The user 10 (group 10) of the current process is set to the 
argument. Both the effective and the real 10 are set. 
These calls are only permitted to the super-user or if the 
argument is the real 10. 

SEE ALSO 
getuid(2) 

DIAGNOSTICS 
Zero is returned if the user (group) 10 is set; -1 is 
returned otherwise. 

ASSEMBLER 
(setuid = 23.) 
(user 10 in rO) 
sys setuid 

(setgid = 46.) 
(group 10 in rO) 
sys setgid 

XENIX System 1 XENIX System 



SHUTDN(2) SHUTDN(2) 

N~E 

shutdn - flush block I/O and halt CPU 

SYNOPSIS 
tinclude <sys/filsys.h> 

shutdn (sblk, -sblk) 
struct filsys *sblk; 

DESCRIPTION 
Shutdn causes all information in core memory that should be 
on disk to be written out. This includes modified super 
blocks, modified i-nodes, and delayed block I/O. The super­
blocks of all writable file systems are flagged 'clean', so 
that they can be remounted without cleaning when XENIX is 
rebooted. Shutdn then prints "Normal System Shutdown" on 
the console and halts the cpu. 

If sblk is non-zero, it specifies the address of a super 
block which will be written to the root device as the last 
I/O before the halt. This facility is provided to allow 
file system repair programs to supercede the system's copy 
of the root super block with one of their own. The address 
of the new super block is boolean inverted to form the 
second argument. This is an attempt to reduce the liklihood 
of a program accidentally invoking shutdn and destroying the 
root file system. 

Shutdn locks out all other processes while it is doing it's 
work. However, it is recommended that user processes be 
killed off (see kill(l» before calling shutdn as some types 
of disk activity could cause file systems to not be flagged 
'clean'. 

The caller must be the super-user. 

SEE ALSO 
fsck(lm), haltsys(8), shutdown(8) , mount(2) 

ASSEMBLER 
(cxenix = 63.) 
(shutdn = 0.) 
('shutdn' in rO) 
(sblk in rl) 
sys cxenix; -sblk; 

XENIX System 

. . . , 

I XENIX System 



SIGNAL(2) SIGNAL(2) 

NAME 
signal - catch or ignore signals 

SYNOPSIS 
iinclude <signal.h> 

(*signal (sig, func» () 
(*func) () ; 

DESCRIPTION 
A signal is generated by some abnormal event, initiated 
either by user at a typewriter (quit, interrupt), by a pro­
gram error (bus error, etc.), or by request of another pro­
gram (kill). Normally all signals cause termination of the 
receiving process, but a signal call allows them either to 
be ignored or to cause an interrupt to a specified location. 
Here is the list of signals with names as in the include 
file. 

SIGHUP 1 
SIGINT 2 
SIGQUIT 3* 
SIGILL 4* 
SIGTRAP 5* 
SIGIOT 6* 
SIGEMT 7* 
SIGFPE 8* 
SIGKILL 9 
SIGBUS 10* 
SIGSEGV 11* 
SIGPIPE 13 
SIGALRM 14 
SIG'rERM 15 

hangup 
interrupt 
quit 
illegal instruction (not reset when caught) 
trace trap (not reset when caught) 
lOT instruction 
EMT instruction 
floating point exception 
kill (cannot be caught or ignored) 
bus error 
segmentation violation 
write on a pipe or link with no one to read it 
alarm clock 
software termination signal 

16 unassigned 

The starred signals in the list above cause a core image if 
not caught or ignored. 

If func is SIG_DFL, the default action for signal ~ is 
reinstated: this default is termination, sometimes with a 
core image. If func is SIG IGN the signal is ignored. Oth­
erwise when the SIgnal occurs func will be called with the 
signal number as argument. A return from the function will 
continue the process at the point it was interrupted. 
Except as indicated, a signal is reset to SIG DFL after 
being caught. Thus if it is desired to catch-every such 
signal, the catching routine must issue another signal call. 

When a caught signal occurs during certain system calls, the 
call terminates prematurely. In particular this can occur 
during a read or write(2) on a slow device (like a type­
writer; but not a file); and during pause or wait(2). When 

XENIX System 1 XENIX System 



SIGNAL(2) 

such a signal occurs, the saved user status is arranged in 
such a way that when return from the signal-catching takes 
place, it will appear that the system call returned an error 
status. The user's program may then, if it wishes, re­
execute the call. 

The value of signal is the previous (or initial) value of 
func for the particular signal. 

After a fork(2) the child inherits all signals. Exec(2) 
resets all caught signals to default action. 

SEE ALSO 
kill(l), kill(2), ptrace(2) , setjmp(3) 

DIAGNOSTICS 

BUGS 

The value (int)-l is returned if the given signal is out of 
range. 

If a repeated signal arrives before the last one can be 
reset, there is no chance to catch it. 

The type specification of the routine and its func argument 
are problematical. 

ASSEMBLER 
(signal = 48.) 
sys signal: sig: label 
(old label in rO) 

If label is 0, default action is reinstated. If label is 
odd, the signal is ignored. Any other even label specifies 
an address in the process where an interrupt is simulated. 
An RTI or RTT instruction will return from the interrupt. 

XENIX System 2 XENIX System 



STAT(2) STAT (2) 

NAME 
stat, fstat - get file status 

SYNOPSIS 
'include <sys/types.h> 
'include <sys/stat.h> 

stat(name, buf) 
char *name~ 
struct stat *buf~ 

fstat(fildes, buf) 
struct stat *buf; 

DESCRIPTION 
Stat obtains detailed information about a named file. Fstat 
obtains the same information about an open file known by the 
file descriptor from a successful open, creat, dup or 
~(2) call. 

Name points to a null-terminated string naming a file~ buf 
is the address of a buffer into which information is placed 
concerning the file. It is unnecessary to have any permis­
sions at all with respect to the file, but all directories 
leading to the file must be searchable. The layout of the 
structure pointed to by buf as defined in <stat.h> is given 
below. St mode is encoded according to the~eIine' state­
ments. 

struct stat 
{ 

} ; 

dev t 
ino-t 
unsIgned 
short 
short 
short 
dev t 
off-t 
time t 
time t 
time-t 

st dev~ 
st-ino; 

short st mode; 
st nlinki 
st=uidi 
st gidi 
st-rdevi 
st=size; 
st atime; 
st-mtime; 
st=ctime; 

#define S IFMT 0170000 
#define S IFDIR 0040000 
#define S IFCHR 0020000 
#define S-IFBLK 0060000 
#define S IFREG 0100000 
#define S-IFMPC 0030000 
#define S IFMPB 0070000 
#define S ISUID 0004000 

XENIX System 1 

/* type of file */ 
/* directory */ 
/* character special */ 
/* block special */ 
/* regular */ 
/* multiplexed char special */ 
/* multiplexed block special */ 
/* set user id on execution */ 

XENIX System 



STAT(2) STAT(2) 

#define S ISGID 0002000 /* set group id on execution */ --
#define S ISVTX 0001000 /* save swapped text even after -#define S I READ 0000400 /* read permission, owner */ -
#define S IWRITE 0000200 /* write permission, owner */ 
#define S-IEXEC 0000100 /* execute/search permission, 

The mode bits 0000070 and 0000007 encode group and others 
permissions (see chmod(2)). The defined types, ino t, 
off t, time t, name various width integer values; dev t 
encodes major and minor device numbers; their exact defini­
tions are in the include file <sys/types.h> (see types(5). 

When fildes is associated with a pipe, fstat reports an 
ordinary file with restricted permissions. The size is the 
number of bytes queued in the pipe. 

st atime is the file was last read. For reasons of effi­
ciency, it is not set when a directory is searched, although 
this would be more logical. st mtime is the time the file 
was last written or created. It is not set by changes of 
owner, group, link count, or mode. st ctime is set both 
both by writing and changing the i-node. 

SEE ALSO 
Is (1), filsys (5) 

DIAGNOSTICS 
Zero is returned if a status is available; -1 if the file 
cannot be found. 

ASSEMBLER 
(stat = 18.) 
sys stat; name; buf 

(fstat = 28.) 
(file descriptor in rO) 
sys fstat; buf 

XENIX System 2 XENIX System 

ow 



STIME(2) 

NAME 
stime - set time 

SYNOPSIS 
stime(tp) 
long *tPi 

DESCRIPTION 

STIME(2) 

Stime sets the system's idea of the time and date. Time, 
pointed to bY!E, is measured in seconds from 0000 GMT Jan 
1, 1970. Only the super-user may use this call. 

SEE ALSO 
date(l), time(2), ctime(3) 

DIAGNOSTICS 
Zero is returned if the time was set: -1 if user is not the 
super-user. 

ASSEMBLER 
(stime = 25.) 
(time in rO-rl) 
sys stime 

XENIX System 1 XENIX System 



SYNC (2) 

NAME 
sync - update super-block 

SYNOPSIS 
sync ( ) 

DESCRIPTION 

SY NC l L.) 

~~nk causes all information in core memory that should be on 
IS to be written out. This includes modified super 

blocks, modified i-nodes, and delayed block I/O. 

It should be used by programs which examine a file system, 
for example icheck, df, etc. It is mandatory before a boot. 

SEE ALSO 
sync(l), update(8) 

BUGS 
The writing, although scheduled, is not necessarily complete 
upon return from sync. 

ASSEMBLER 
(sync = 36.) 
sys sync 

XENIX System 1 XENIX System 



TIME (2) TIME (2) 

NAME 
time, ftime - get date and time 

SYNOPSIS 
long time (0) 

long time (tloc) 
long *tloc: 

'include <sys/types.h> 
'include <sys/timeb.h> 
ftime(tp) 
struct timeb *tp: 

DESCRIPTION 
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, 
measured in seconds. 

If tloc is nonnull, the return value is also stored in the 
place to which tloc points. 

The ftime entry fills in a structure pointed to by its argu­
ment, as defined by <~/timeb.~>: 

/* 
* Structure 
*/ 

struct timeb 
time t 
unsigned 
short 
short 

} ; 

returned by ftime system call 

{ 
time; 
short millitm; 
timezone; 
dstflag; 

The structure contains the time since the epoch in seconds, 
up to 1000 milliseconds of more-precise interval, the local 
timezone (measured in minutes of time westward from 
Greenwich), and a flag that, if nonzero, indicates that Day­
light Saving time applies locally during the appropriate 
part of the year. 

SEE ALSO 
date(l), stime(2), ctime(3) 

ASSEMBLER 
(ftime = 35.) 
sys ftime; bufptr 

(time = 13.; obsolete call) 
sys time 
(time since 1970 in rO-rl) 

XENIX System 1 XENIX System 



TIMES(2) TIMES (2) 

NAME 
times - get process times 

SYNOPSIS 
times(buffer) 
struct tbuffer *buffer; 

DESCRIPTION 
Times ~eturns time-accounting information for the current 
process and for the terminated child processes of the 
current process. All times are in 11HZ seconds, where HZ=60 
in North America. 

After the call, the buffer will appear as follows: 

struct tbuffer { 

} ; 

long proc user time; 
long proc-system time; 
long child user time; 
long child=system_time; 

The children times are the sum of the children's prqces~ 
times and their children's times. 

SEE ALSO 
time ( 1), time ( 2 ) 

ASSEMBLER 
(times = 43.) 
sys times; buffer 

XENIX System 1 XENIX System 



UMASK(2) UMASK(2) 

NAME 
umask - set file creation mode mask 

SYNOPSIS 
umask(complmode) 

DESCRIPTION 
Umask sets a mask used whenever a file is created by 
creat(2) or mknod(2): the actual mode (see chmod(2» of the 
newly-created file is the logical and of the given mode and 
the complement of the argument. Only the low-order 9 bits 
of the mask (the protection bits) participate. In other 
words, the mask shows the bits to be turned off when files 
are created. 

The previous value of the mask is returned by the call. The 
value is initially 0 (no restrictions). The mask is inher­
ited by child processes. 

SEE ALSO 
creat(2), rnknod(2), chrnod(2) 

ASSEMBLER 
(urnask = 60.) 
sys umask: complmode 

XENIX System 1 XENIX System 



UNLINK(2) 

NAME 
unlink - remove directory entry 

SYNOPSIS 
unlink (nilme) 
char *name; 

DESCRIPTION 
Name points to a null-terminated string. Unlink removes the 
entry for the file pointed to by name from its directory. 
If this entry was the last link to the file, the contents of 
the file are freed and the file is destroyed. If, however, 
the file was open in any process, the actual destruction is 
delayed until it is closed, even though the directory entry 
has disappeared. 

SEE ALSO 
rm(l), link (2) 

DIAGNOSTICS 
Zero is normally returned; -1 indicates that the file does 
not exist, that its directory cannot be written, or that the 
file contains pure procedure text that is currently in use~ 
Write permission is not required on the file itself. It is 
also illegal to unlink a directory (except for the super­
user) • 

ASSEMBLER 
(unlink = 10.) 
sys unlink; name 

XENIX System 1 XENIX System 



UTIME (2) 

NAME 
utime - set file times 

SYNOPSIS 
tinclude <sys/typ~s.h> 
utime(file, timep) 
char *file; 
time_t timep[2]; 

DESCRIPTION 

UTIME (2) 

The utime call uses the 'accessed' and 'updated' times in 
that order from the timep vector to set the corresponding 
recorded times for file. 

The caller must be the owner of the file or the super-user. 
The 'inode-changed' time of the file is set to the current 
time. 

SEE ALSO 
s ta t (2) 

ASSEMBLER 
( u time = 30.) 
sys utime; file; timep 

XENIX System 1 XENIX System 



WAIT(2) WAIT (2) 

NAME 
wait - wait for process to terminate 

SYNOPSIS 
wait(status) 
int *status; 

waiteD) 

DESCRIPTION 
Wait causes its caller to delay until a signal is received 
or-one of its child processes terminates. If any child has 
died since the last wait, return is immediate; if there are 
no children, return ~mmediate with the error bit set 
(resp. with a value of -1 returned). The normal return 
yields the process ID of the terminated child. In the case 
of several children several wait calls are needed to learn 
of all the deaths. 

If (int)status is nonzero, the high byte of the word pointed 
to receives the low byte of the argument of exit when the 
child terminated. The low byte receives the termination 
status of the process. See signal(2) for a list of termina­
tion statuses (signals); 0 status indicates normal termina­
tion. A special status (0177) is returned for a stopped 
process which has not terminated and can be restarted. See 
ptrace(2). If the 0200 bit of the termination status is 
set, a core image of the process was produced by the system. 

If the parent process terminates without waiting on its 
children, the initialization process (process ID = 1) inher­
its the children. 

SEE ALSO 
exit(2), fork(2), signal(2) 

DIAGNOSTICS 
Returns -1 if there are no children not previously w~ited 
for. 

ASSEMBLER 
(wait = 7.) 
sys wait 
(process ID in rO) 
(status in rl) 

The high byte of the status is the low byte of rO in the 
child at termination. 

XENIX System 1 XENIX System 



WRITE(2) WRITE (2) 

NAME 
write - write on a file 

SYNOPSIS 
write(fildes, buffer, nbytes) 
char *buffer; 

DESCRIPTION 
A file descriptor is a word returned from a successful open, 
creat, dup, or ~(2) call. 

Buffer is the address of nbxtes contiguous bytes which are 
written on the output file. The number of characters actu­
ally written is returned. It should be regarqed as an error 
if this is not the same as requested. 

Writes which are multiples of 512 characters long and begin 
on a 5l2-byte boundary in the file are more efficient than 
any others. 

SEE ALSO 
creat{2), open(2), pipe(2) 

DIAGNOSTICS 
Returns -Ion error: bad descriptor, buffer address, or 
count; physical I/O errors. 

ASSEMBLER 
(write:;:: 4.) 
(file descriptor in rO) 
sys write; buffer: nbytes 
(byte count in rO) 

XENIX System 1 XENIX System 



INTRO(3) IN1'RO (3) 

NAME 
intro - introduction to library functions 

SYNOPSIS 
iinclude <stdio.h> 

iinclude <math.h> 

DESCRIPTION 
This section describes functions that may be found in vari­
ous libraries, other than those functions that directly 
invoke UNIX system primitives, which are described in sec­
tion 2. Functions are divided into various libraries dis-, 
tinguished by the section number at the top of the page: 

(3) These functions, together with those of section 2 and 
those marked (38), constitute library libc, which is 
automatically loaded by the C compilerCC1l) and the 
Fortran compiler f77(l). The link editor ld(l) 
searches this library under the '-lc' option. 
Declarations for some of these functions may be 
obtained from include files indicated on the appropri­
a te pages. 

(3M) These functions constitute the math library, libm. 
They are automatically loaded as needed by the Fortran 
compiler f77(1). The link editor searches this 
library under the '-1m' option. Declarations for 
these functions may be obtained from the include file 
<math.h>. 

(38) These functions constitute the 'standard I/O package', 
see stdio(3). These functions are in the library libc 
already mentioned. Declarations for these functions-­
may be obtained from the include file <stdio.h>. 

(3X) Various specialized libraries have not been given dis­
tinctive captions. The files in which these libraries 
are found are named on the appropriate pages. 

FILES 
/lib/libc.a 
/lib/libm.a, /usr/lib/libm.a (one or the other) 

SEE ALSO 
stdio(3), nm(l), ld(l), cc(l), f77(1), intro(2) 

DIAGNOSTICS 
Functions in the math library (3M) may return conventional 
values when the function is undefined for the given argu­
ments or when the value is not representable. In these 
cases the external variable errno (see intro(2)) is set to 

XENIX System 1 XENIX System 



INTRO(3) INTRO(3) 

the value EDOM or ERANGE. The values of EDOM and ERANGE are 
defined in the include file <math.h>. 

ASSEMBLER 
In assembly language these functions may be accessed by 
simulating the C calling sequence. For example, ecvt(3) 
might be called this way: 

setd 
mov 
mov 
mov 
movf 
jsr 
add 

XENIX System 

$sign,-(sp) 
$decpt,-(sp) 
ndigit,-(sp) 
value,-(sp) 
pc,_ecvt 
$14.,sp 

2 XENIX System 



ABORT(3) 

NAME 
abort - generate rOT fault 

SYNOPSIS 
abort () 

DESCRIPTION 

ABORT (3) 

Abort executes the PDPlI lOT instruction. This causes a 
signal that normally terminates the process with a core 
dump, which may be used for debugging. 

SEE ALSO 
adb(l), signal(2), exit(2) 

DIAGNOSTICS 
Usually 'rOT trap - core dumped' from the shell. 

XENrx System I XENIX System 



ABS(3) 

NAME 
abs - integer absolute value 

SYNOPSIS 
abs (i) 

DESCRIPTION 

ABS(3) 

Abs returns the absolute value of its integer operand. 

SEE ALSO 
floor(3) for fabs 

BUGS 
You get what the hardware gives on the largest negative 
integer. 

XENIX System 1 XENIX System 



ATOP(3) ATOF(3) 

NAME 
atof, atoi, atol - convert ASCII to numbers 

SYNOPSIS 
double atof(nptr) 
char *nptr: 

atoi(nptr) 
char *nptr: 

long atol(nptr) 
char *nptr: 

DESCRIPTION 
These functions convert a string pointed to by nptr to 
floating, integer, and long integer representation respec­
tively. The first unrecognized character ends the string. 

Atof recognizes an optional string of tabs and spaces, then 
an optional sign, then a string of digits optionally con­
taining a decimal point, then an optional 'e' or 'E' fol-
lowed by an optionally signed integer. 

Atoi and atol recognize an optional string of tabs and 
spaces, then an optional sign, then a string of digits. 

SEE ALSO 
scanf(3) 

BUGS 
There are no provisions for overflow. 

XENIX System 1 XENIX System 



CRYPT(3) CRYPT(3) 

N~E 

crypt, setkey, encrypt - DES encryption 

SYNOPSIS 
char *crypt(key, salt) 
char *key, *salt: 

setkey(key) 
char *key: 

encrypt(block, edflag) 
char *block: 

DESCRIPTION 
Crypt is the password encryption routine. It is based on 
the NBS Data Encryption Standard, with variations intended 
(among other things) to frustrate use of hardware implemen­
tations of the DES for key search. 

The first argument to crypt is a user's typed password. The 
second is a 2-character string chosen from the set [a-zA­
ZO-9./]. The salt string is used to perturb the DES algo­
rithm in one of 4096 different ways, after which the pass­
word is used as the key to encrypt repeatedly a constant 
string. The returned value points to the encrypted pass­
word, in the same alphabet as the salt. The first two char­
acters are the salt itself. 

The other entries provide (rather primitive) access to the 
actual DES algorithm. The argument of setkey is a character 
array of length 64 containing only the characters with 
numerical value 0 and 1. If this string is divided into 
groups of 8, the low-order bit in each group is ignored, 
leading to a 56-bit key which is set into the machine. 

The argument to the encrypt entry is likewise a character 
array of length 64 containing D's and l's. The argument 
array is modified in place to a similar array representing 
the bits of the argument after having been subjected to the 
DES algorithm using the key set by setkey. If edflag is 0, 
the argument is encrypted: if non-zero, it is decrypted. 

SEE ALSO 

BUGS 

passwd(l), passwd{5), login(l), getpass(3) 

The return value points to static data whose content is 
overwritten by each call. 

XENIX System 1 XENIX System 



CTIME (3) CTIME (3) 

NAME 
ctime, localtime, gmtime, asctime, timezone - convert date 
and time to ASCII 

SYNOPSIS 
char *ctime(clock) 
long *clock: 

tinclude <time.h> 

struct tm *localtime(clock) 
long *clock: 

struct tm *gmtime(clock) 
long *clock; 

char *asctime(tm) 
struct tm *tm; 

char *timezone(zone, dst) 

DESCRIPTION 
Ctime converts a time pointed to by clock such as returned 
by tIme(2) into ASCII and returns a pOInter to a 26-
character string in the following form. All the fields have 
constant width. 

Sun Sep 16 01:03:52 1973\n\0 

Localtime and gmtime return pointers to structures contain­
ing the broken-down time. Localtime corrects for the time 
zone and possible daylight savings time; gmtime converts 
directly to GMT, which is the time UNIX uses. Asctime con­
verts a broken-down time to ASCII and returns a pointer to a 
26-character string. 

The structure declaration from the include file is: 

struct tm { /* see ctime(3) */ 
int tm_sec; 
int tm min; 
int tm=houri 
int tm mday; 
int tm-mon; 
int tm=yeari 
int tm wdaYi 

} i 

int tm-ydaYi 
int tm=isdsti 

These quantities give the time on a 24-hour clock, day of 
month (1-31), month of year (0-11), day of week (Sunday = 

XENIX System 1 XENIX System 



CTIME(3) CTIME(3) 

0), year - 1900, day of year (0-365), and a flag that is 
nonzero if daylight saving time is in effect. 

When local time is called for, the program consults the sys­
tem to determine the time zone and whether the standard 
U.S.A. daylight saving time adjustment is appropriate. The 
program knows about the peculiarities of this conversion in 
1974 and 1975; if necessary, a table for these years can be 
extended. 

Timezone returns the name of the time zone associated with 
its first argument, which is measured in minutes westward 
from Greenwich. If the second argument is 0, the standard 
name is used, otherwise the Daylight Saving version. If the 
required name does not appear in a table built into the rou­
tine, the difference from GMT is produced; e.g. in Afghan­
istan timezone(-(60*4+30), 0) is appropriate because it is 
4:30 ahead of GMT-and the string GMT+4:30 is produced. 

SEE ALSO 
time(2) 

BUGS 
The return values point to static data whose content is 
overwritten by each call. 

XENIX System 2 XENIX System 



CTYPE (3) CTYPE (3) 

NAME 
isalpha, isupper, islower, isdigit, isxdigit, isalnum, 
isspace, ispunct, isprint, iscntrl, i~ascii - character 
classification 
toupper, tolower, toascii - character transformation 

SYNOPSIS 
iinclude <ctype.h> 

isalpha(c) 

DESCRIPTION 
These macros classify ASCII-coded integer values by table 
lookup. Each is a predicate returning nonzero for true, 
zero for false. Isascii is defined on all integer values; 
the rest are defined only where isascii is true and on the 
single non-ASCII value EOF (see stdio(3)). 

isalpha 

isupper 

islower 

isdigit 

isxdigit 

isalnum 

isspace 

ispunct 

isprint 

iscntrl 

isascii 

c is a Ie tter 

c is an upper case letter 

c is a lower case Ie tter 

c is a digit 

c is a hexadecimal digit 

c is an alphanumeric character 

c is a space, tab, carriage return, newline, 
or formfeed 

c is a punctuation character (neither control 
nor alphanumeric) 

c is a printing character, code 040(8) 
(space) through 0176 (tilde) 

c is a delete character (0177) or ordinary 
control character (less than 040). 

c is an ASCII character, code less than 0200 

These macros transform ASCII-coded integer values and non­
ascii characters in a repeatable way. 

toupper 
c transforms lower case letters to upper case, but is 
undefined for other values. 

XENIX System 1 XENIX System 



CTYPE (3) CTYPE(3) 

tolower 
ctransforms upper case letters to lower case, but is' 
undefined for other values. 

toascii 

SEE ALSO 

c transforms a non-ascii character to the corresponding 
ascii character, without disturbing ascii characters. 
Since EOF is not a character, mapping to ascii has 
undesirable properties. 

ascii(7), stdio(3), getc(3), putc(3) 

XENIX System 2 XENIX System 



CURSES(3) CURSES(3) 

NAME 
curses - screen functions with ...... optimal" cursor motion 

SYNOPSIS ' ' 
~ cc [ flags 1 files -lcurses -ltermlib [ libraries 

DESCRIPTION' 
These routines give the user a method of updating screens 
with reasonable optimization. They keep an image of the 
current screen, and the user sets up an image of a new one. 
Then the refresh() tells the routines to make the current 
screen look like the new one. In order to initialize the 
routines, the routine initscr() must be called before any of 
the other routines that deal with windows and screens are 
used. 

SEE ALSO 
Screen Updating and Cursor Movement Optimizat'ion: A Library 
Package, Ken Arnold, 
termcap (5), stty (2), setenv (3), setenv (3), 

AUTHOR 
Ken Arnold 

FUNCTIONS 
addch(ch) add a character to stdscr 
addstr(str) add a string to stdscr 
box(win,vert,hor) draw a box around a window 
crmode() set cbreak mode 
clear() clear stdscr 
clearok(scr,boolf) set clear flag for scr 
clrtobot() clear to bottom on Stdscr 
clrtoeol() clear to end of line on stdscr 
delwin(win) delete win 
echo() set echo mode 
erase() erase stdscr 
getch() get a char through stdscr 
getstr(str) get a string through stdscr 
gettmode() get tty modes 
getyx(win,y,x) get (y,x) co-ordinates 
inch() get char at current (y,x) co-ordinatE 
initscr() initialize screens 
leaveok(win,boolf) set leave flag for win 
longname(termbuf,name) get long name from termbuf 
move(y,x) move to (y,x) on stdscr 
mvcur(lasty,lastx,newy,newx) actually move cursor 
newwin(lines,cols,begin y,begin x) create a new window 
nl() - set newline mapping 
nocrmode() unset cbreak mode 
noecho() unset echo mode 
nonl() unset newline mapping 
noraw() unset raw mode 

XENIX System 1 XENIX System 



CURSES (3) CURSES (3) 

overlay(winl,win2) overlay winl on win2 
overwrite(winl,win2) overwrite winl on top of win2 
printw(fmt,argl,arg2, ••• ) printf on stdscr 
raw ( ) set raw mod e 
refresh() make current screen look like stdscr 
restty() reset tty flags to stored value 
savetty() stored current tty flags 
scanw(fmt,argl,arg2, ••• ) scanf through stdscr 
scroll(win) scroll win one line 
scrollok(win,boolf) set scroll flag 
setterm(name) set term variables for name 
unctrl(ch) printable version of ch 
waddch(win,ch) add char to win 
waddstr(win,str) add string to-Win 
wclear(win) clear win ---
wclrtobot(win) clear ~bottom of win 
wclrtoeol(win) clear to end of line on win 
werase(win) erase win 
wgetch(win) get a char through win 
wgetstr(win,str) get a string through win 
winch(win) get char at current (y,x) in win 
wmove(win,y,x) set current (y,x) co-ordinates on win 
wprintw(win,fmt,argl,arg2, ••. ) printf on win 
wrefresh(win) make screen look like win 
wscanw(win,fmt,argl,arg2, ••• ) scanf through win 

XENIX System 2 XF.NTX ~v~tpm 



ECVT (3) ECVT (3) 

NAME 
ecvt, fcvt, gcvt - output conversion 

SYNOPSIS 
char *ecvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *fcvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *gcvt(value, ndigit, buf) 
double value; 
char *buf; 

DESCRIPTION 
Ecvt converts the value to a null-terminated string of ndi­
git ASCII digits and returns a point.er thereto. The posi":­
tion of the decimal point relative to 'the beginning of the 
string is stored indirectly through decpt (negative means to 
the left of the returned digits). If the sign of the resuJt 
is negative, the word pointed to by sign is non-zero, other­
wise it is zero. The low-order digit is rounded. 

Fcvt is identical to ecvt, except that the correct digit has 
been rounded for Fortran F-format output of the number of 
digits specified by ndigits. 

Gcvt converts the value to a null-terminated ASCII string in 
buf and returns a pointer to buf. It attempts to produce 
ndlgit significant digits in Fortran F format if possible, 
otherwise E format, ready for printing. Trailing zeros may 
be suppressed. 

SEE ALSO 
printf(3) 

BUGS 
The return values point to static data whose content is 
overwritten by each call. 

XENIX System 1 XENIX System J 



END(3) END(3) 

NAME 
end, etext, edata - last locations in program 

SYNOPSIS 
extern end1 
extern etext1 
extern edata1 

DESCRIPTION 
These names refer neither to routines nor to locations with 
interesting contents. The address of etext is the first 
address above the program text, edata above the initialized 
data region, and end above the uninitialized data region. 

When execution begins, the program break coincides with end, 
but many functions reset the program break, among them the 
routines of brk(2), malloc(3) , standard input/output . 
(stdio(3), the proflle (-p) option of cc(l), etc. The 
current value of the program break is reliably returned by 
... s b r k( 0) I , see b r k ( 2) • 

SEE ALSO 
brk(2), malloc(3) 

XENIX System 1 XENIX System 



FREXP (3) FREXP (3) 

NAME 
frexp, ldexp, modf - split into mantissa and exponent 

SYNOPSIS 
double frexp(value, eptr) 
double value; 
int *eptr; 

double ldexp(value, exp) 
double value; 

double modf(value, iptr) 
double value, *iptri 

DESCRIPTION 
Frexp returns the mantissa of a double value as a double 
quantity, x, of magnitude less than 1 and stores an integer 
n such that value = x*2**n indirectly through eptr. 

Ldexp returns the quantity value*2**exp. 

Modf returns the positive fractional part of value and 
stores the integer part indirectly through iptr. 

XENIX System 1 XENIX System j 



GETENV(3) 

NAME 
getenv - value for environment name 

SYNOPSIS 
char *getenv(name) 
char *name; 

DESCRIPTION 

GETENV(3) 

Getenv searches the environment list (see environ(S» for a 
string of the form name=value and returns value if such a 
string is present, otherwise 0 (NOLL). 

SEE ALSO 
env iron (5), exec (2) 

XENIX System 1 XENIX System 



GETGRENT (3) GETGRENT (3) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group 
file entry 

SYNOPSIS 
'include <grp.h> 

struct group *getgren~()~ 

struct group *getgrgid(gid) int gid~ 

struct group *getgrnam(name) char *name: 

int setgrent(): 

int endgrent () ~ 

DESCRIPTION 
Getgrent, getgrgid and getgrnam each return pointers to an 
object with the following structure containing the broken­
out fields of a line in the group file. 

struct group { /* see 
char *gr name; 
char *gr_passwd; 
int gr gid; 
char **gr_mem; 

} ; 

The members of this structure 

gr name 
- The name of the group. 

gr_passwd 

ge tg r en t (3 ) 

are: 

The encrypted password of the group. 
gr gid 

- The numerical group-IDe 
gr mem 

*/ 

- Null-terminated vector of pointers to the individual 
member names. 

Getgrent simply reads the next line while getgrgid and get­
grnam search until a matching g~d or,name is found (or until 
EOF is encountered). Each routlne plcks up where the others 
leave off so successive calls may be used to search the 
entire file. 

A call to setgrent has the effect of rewinding the group 
file to allow repeated searches. Endgrent may be called to 
close the group file when processing is complete. 

XENIX System 1 XENIX System I 



GETGRENT (3) 

FILES 
/etc/group 

SEE ALSO 
getlogin(3) , getpwent(3) , group(5) 

DIAGNOSTICS 
A null pointer (0) is returned on EOF or error. 

BUGS 

GETGRENT (3) 

All information is contained in a static area so it must be 
copied if it is to be saved. 

XENIX System 2 XENIX System 



GETLOGIN(3) GETLOGIN(3) 

NAME 
getlogin - get login name 

SYNOPSIS 
char *getlogin(); 

DESCRIPTION 
Getlogin returns a pointer to the login name as found in 
/etc/utmp. It may be used in conjunction with getpwnam to 
locate the correct password file entry when the same userid 
is shared by several login names. 

If getlogin is called within a process that is not attached 
to a typewriter, it returns NULL. The correct procedure for 
determining the login name is to first call getlogin and if 
it fails, to call getpwuid. 

FILES 
/etc/utmp 

SEE ALSO 
getpwent(3), getgrent(3), utmp(5) 

DIAGNOSTICS 
Returns NULL (0) if name not found. 

BUGS 
The return values point to static data whose content is 
overwritten by each call. 

XENIX System I XENIX System 



GETPASS(3) 

NAME 
getpass - read a password 

SYNOPSIS 
char *getpass(prompt) 
char *prompt; 

DESCRIPTION 

GETPASS(3) 

Getpass reads a password from the file /dev/~, or if that 
cannot be opened, from the standard input, after prompting 
with the null-terminated string prompt and disabling echo­
ing. A pointer is returned to a null-terminated string of 
at most 8 characters. 

FILES 
/dev/tty 

SEE ALSO 
crypt(3) 

BUGS 
The return value points to static data whose content is 
overwritten by each call. 

XENIX System 1 XENIX System 



GETPW (3) 

NAME 
getpw - get name from UID 

SYNOPSIS 
getpw(uid, buf) 
char *buf; 

DESCRIPTION 

GETPW(3) 

Getpw searches the password file for the (numerical) uid, 
and fills in buf with the corresponding line; it returns 
non-zero if uid could not be found. The line is null­
terminated. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3}, passwd(5} 

DIAGNOSTICS 
Non-zero return on error. 

XENIX System I XENIX System 



GETPWENT (3) GETPWENT ( 3 ) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent - get pass­
word file entry 

SYNOPSIS 
iinclude <pwd.h> 

struct passwd *getpwent(); 

struct passwd *getpwuid(uid) int uid; 

struct passwd *getpwnam(name) char *name; 

int setpwent() i 

int endpwent () i 

DESCRIPTION 
Getpwent, getpwuid and getpwnam each return a pointer to an 
object with the following structure containing the broken­
out fields of a line in the password file. 

struct 
char 
char 
int 
int 

} ; 

int 
char 
char 
char 
char 

passwd { /* see getpwent(3) */ 
*pw_name; 
*pw passwdi 
pw Liid; 
pw=gid; 
pw quota; 
*pw comment; 
*pw-gecos; 
*pw-dir; 
*pw=shelli 

The fields pw guota and pw comment are unused; the others 
have meanings described in passwd(5). 

Getpwent reads the next line (opening the file if neces­
sary); setpwent rewinds the file; endpwent closes it. 

Getpwuid and getpwnam search from the beginning until a 
matching uid or name is found (or until EOF is encountered). 

FILES 
/etc/passwd 

SEE ALSO 
getlogin(3), getgrent(3) , passwd(5) 

DIAGNOSTICS 
Null po i n t e [ ( 0 ) ret u r ned on EO For err 0 r . 

XENIX Sys tern 1 XENIX System 



GETPWENT (3) GETPWENT ( 3 ) 

BUGS 
All information is contained in a static area so it must be 
copied if it is to be saved. 

XENIX System 2 XENIX System 



L3TOL(3) L3TOL(3) 

NAME 
l3tol, lto13 - convert between 3-byte integers and long 
integers 

SYNOPSIS 
13tol (lp, cp, n) 
long *lPi 
char *CPi 

Ito13 (cp, Ip, n) 
char *CPi 
long *lPi 

DESCRIPTION 
L3tol converts a list of n three-byte integers packed into a 
character string pointed to by EE into a list of long 
integers pointed to by lEe 

Lto13 performs the reverse conversion from long integers 
(lE.) to three-byte integers {£E.}. 

These functions are useful for file-system maintenance; disk 
addresses are three bytes long. 

SEE ALSO 
filsys(5) 

. XENIX System 1 XENIX System 



MALLOC(3) MALLOC(3) 

NAAE 
malloc, free, realloc, calloc - main memory allocator 

SYNOPSIS 
char *malloc(size) 
unsigned size; 

free(ptr) 
char *ptr; 

char *realloc(ptr, size) 
char *ptr; 
unsigned size; 

char *calloc(nelem, elsize) 
unsigned nelem, elsize; 

DESCRIPTION 
Malloc and free provide a simple general-purpose memory 
allocation package. Mailoc returns a pointer to a block of 
at least size bytes beginning on a word boundary. 

The argument to free is a pointer to a block previously 
allocated by malIOC; this space is made available for 
further allocation, but its contents are left undisturbed. 

Needless to say, grave disorder will result if the space 
assigned by malloc is overrun or if some random number is 
handed to free. 

Malloc allocates the first big enough contiguous reach of 
free space found in a circular search from the last block 
allocated or freed, coalescing adjacent free blocks as it 
searches. It calls sbrk (see break(2)} to get more memory 
from the system when there is no suitable space already 
free. 

Realloc changes the size of the block pointed to by E!£ to 
size bytes and returns a pointer to the (possibly moved) 
block. The contents will be unchanged up to the lesser of 
the new and old sizes. 

Realloc also works if E!£ points to a block freed since the 
last call of malloc, realloc or calloc; thus sequences of 
free, malloc and realloc can exploit the search strategy of 
rnarroc to do storage compaction. 

Calloc allocates space for an array of nelem elements of 
size elsize. The space is initialized to zeros. 

Each of the allocation routines returns a pointer to space 
suitably aligned (after possible pointer coercion) for 

XENIX System I XENIX System 



MALLOC(3) MALLOC(3) 

storage of any type of object. 

DIAGNOSTICS 

BUGS 

Malloc, realloc and calloc return a null pointer (0) if 
there is no available memory or if the arena has been 
detectably corrupted by storing outside the bounds of a 
block. Malloc may be recompiled to check the arena very 
stringently on every transaction; see the source code. 

When realloc returns 0, the block pointed to by E!£ may be 
destroyed. 

XENIX System 2 XENIX System 



MKTEMP(3) 

NAME 
mktemp - make a unique file name 

SYNOPSIS 
char *mktemp(template) 
char *template; 

DESCRIPTION 

MKTEMP (3) 

Mktemp replaces template by a unique file name, and returns 
the address of the template. The template should look like 
a file name with six tra{ling XiS, which will be replaced 
with the current process id and a unique letter. 

SEE ALSO 
getpid(2) 

XENIX System 1 XENIX System 



MONITOR(3) MONITOR(3) 

NAME 
monitor - prepare execution profile 

SYNOPSIS 
monitor(lowpc, highpc, buffer, bufsize, nfunc) 
int (*lowpc) ( ), (*highpc) ( ); 
short .buffer[ 1: 

DESCRIPTION 

FILES 

An executable program created by 'cc -p' automatically 
includes calls for monitor with default parameters; monitor 
needn't be called explicitly except to gain fine control 
over profiling. 

Monitor is an interface to profil(2). Lowpc and highpc are 
the addresses of two functions; buffer is the address of a 
(user supplied) array of bufsize short integers. Monitor 
arranges to record a histogram of periodically sampled 
values of the program counter, and of counts of calls of 
certain functions, in the buffer. The lowest address sam­
pled is that of lowpc and the highest is just below highpc. 
At most nfunc call counts can be kept; only calls of func­
tions compiled with the profiling option -p of cc(l) are 
recorded. For the results to be significant, especially 
where there are small, heavily used routines, it is sug­
gested that the buffer be no more than a few times smaller 
than the range of locations sampled. 

To profile the entire program, it is sufficient to use 

extern etext(); 

monitor«int)2, etext, buf, bufsize, nfunc); 

Etext lies just above all the program text, see end(3). 

To stop execution monitoring and write the results on the 
file mon.out, use 

monitor(O); 

then prof(l) can be used to examine the results. 

mon.out 

SEE ALSO 

NOTES 

prof(l), profil(2), cc(l) 

The prof(l} program may require the buffer size to be equal 
to or smaller than the program size. If you did not use the 

XENIX System 1 XENIX System 



MONITOR(3) MONITORl3) 

profiling option -p of cc(l} you will want to use 0 for the 
nfunc argument. 

XENIX System 2 XENIX System 



NLIST(3) NLIST(3) 

NAME 
nlist - get entries from name list 

SYNOPSIS 
tinclude <a.out.h> 
nlist{filenarne, nl) 
char *filenarne; 
struct nlist nll ]; 

DESCRIPTION 
Nlist examines the name list in the given executable output 
file and selectively extracts a list of values. The name 
list consists of an array of structures containing names, 
types and values. The list is terminated with a null name. 
Each name is looked up in the name list of the file. If the 
name is found, the type and value of the name are inserted 
in the next two fields. If the name is not found, both 
entries are set to O. See ~.out(5) for the structure 
declaration. 

This subroutine is useful for examining the system name list 
kept in the file /unix. In this way programs can obtain 
system addresses that are up to date. 

SEE ALSO 
a.out(5) 

DIAGNOSTICS 
All type entries are set to 0 if the file cannot be found or 
if it is not a valid namelist. 

XENIX System 1 XENIX System 



PERROR(3) PERROR(3) 

NAME 
perror, sys_errlist, sys_nerr - system error messages 

SYNOPSIS 
perror(s) 
char *s; 

int sys nerri 
char *sys_errlist[]; 

DESCRIPTION 
Perror produces a short error message on the standard error 
file describing the last error encountered during a call to 
the system from a C program. First the argument string s is 
printed, then a colon, then the message and a new-line. -
Most usefully, the argument string is the name of the pro­
gram which incurred the error. The error number is -taken 
from the external variable errno (see intro(2)), which is 
set when errors occur but not cleared when non-erroneou~ 
calls are made. 

To simplify variant formatting of messages, the vector of 
message strings sys errlist is provided; errpo can be used 
as an index in this table to get the message string without 
the newline. Sys nerr is the number of messages provided 
for in the table; it should be checked because new error 
codes may be added to the system before they are added to 
the table. 

SEE ALSO 
intro(2) 

XENIX System I XENIX System 



PKOPEN (3) PKOPEN (3) 

NAME 
pkopen, pkclose, pkread, pkwrite, pkfail - packet driver 
simulator 

SYNOPSIS 
char *pkopen(fd) 

pkclose(ptr) 
char *ptr; 

pkread(ptr, buffer, count) 
char *ptr, *buffer; 

pkwrite(ptr, buffer, count) 
char *ptr, *buffer; 

pkfail () 

DESCRIPTION 
These routines are a user-level implementation of the full­
duplex end-to-end communication protocol described in ~(4) . 
If fd is a file descriptor open for reading and writing, 
pkopen carries out the initial synchronization and returns 
an identifying pointer. The pointer is used as the first 
parameter to pkread, pkwrite, and pkclose. 

Pkread, pkwrite and pkclose behave analogously to read, 
write and close(2). However, a write of zero bytes is mean­
ingful and will produce a corresponding read of zero bytes. 

SEE ALSO 
pk (4), pkon (2) 

DIAGNOSTICS 

BUGS 

Pkfail is called upon persistent breakdown of communication. 
Pkfail must be supplied by the user. 

Pkopen returns a null (0) pointer if packet protocol can not 
be established. 

Pkread returns -Ion end of file, 0 in correspondence with a 
O-length write. 

This simulation of ~(4) leaves something to be desired in 
needing special read and write routines, and in not being 
inheritable across calls of ~(2). Its prime use is on 
systems that lack ~. 
These functions use alarm(2); simultaneous use of alarm for 
other puposes may cause trouble. 

XENIX System I XENIX System 



QSORT(3) QSOk1' (3) 

NAME 
qsort - quicker sort 

SYNOPSIS 
qsort(base, nel, width, compar) 
char *base: 
int (*compar) ( ): 

DESCRIPTION 
Qsort is an implementation of the quicker-sort algorithm. 
The first argument is a pointer to the base of the data; the 
second is the number of elements: the third is the width of 
an element in bytes; the last is the name of the comparison 
routine to be called with two arguments which are pointers 
to the elements being compared. The routine must return an 
integer less than, equal tO I or greater than 0 according as 
the first argument is to be considered less than, equal to, 
or greater than the second. 

SEE ALSO 
sort(l) 

XENIX System 1 XENIX System 



RAND (3) 

NAME 
rand, srand - random number generator 

SYNOPSIS 
srand(seed) 
int seed; 

rand ( ) 

DESCRIPTION 

RAND(3) 

Rand uses a multipli1~tive congruential random number gen­
erator with period 2 to return successive pseudo-random 
numbers in the range from 0 to 215_1. 

The generator is reinitialized by calling srand with 1 as 
argument. It can be set to a random starting point by cal­
ling srand with whatever you like as argument. 

XENIX System 1 XENIX System 



SETJMP(3) SETJMP(3) 

NAME 
setjmp, longjmp - non-local goto 

SYNOPSIS 
'include <setjrnp.h> 

setjrnp(env) 
jmp_buf envi 

longjmp(env, val) 
jmp_buf env: 

DESCRIPTION 
These routines are useful for dealing witl:! ~error,s and inter­
rupts encountered in a low-level subroutine of a program. 

Setjmp saves its stack environm~nt in env for later use by 
longjmp. It returns value O. 

Longjmp restores the environment saved by the .last call of 
setjmp. It then returns in such a way that execution con­
tinues as if the call of setjmp had just returned the value 
val to the function that invoked setjmp, which must not 
itself have returned in the interim. All accessible data 
have values as of the time longjmp was called except for 
register variables whose values are undefined. 

SEE ALSO 
signal(2) 

XENIX System I XENIX System 



SLEEP(3) SLEEP(3) 

NAME 
sleep - suspend execution for interval 

SYNOPSIS 
sleep (seconds) 
unsigned seconds: 

DESCRIPTION 
The current process is suspended from execution for the 
number of seconds specified by the argument. The actual 
suspension time may be up to 1 second less than that 
requested, because scheduled wakeups occur at fixed I-second 
intervals, and an arbitrary amount longer because of other 
activity in the system. 

The routine is implemented by setting an alarm clock signal 
and pausing until it occurs. The previous state of this 
signal is saved and restored. If the sleep time exceeds the 
time to the alarm signal, the process sleeps only until the 
signal would have occurred, and the signal is sent 1 second 
later. 

SEE ALSO 
alarm(2), pause(2) 

XENIX System I XENIX System 



STRING(3) STRING(3) 

NAME 
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, 
index, rindex - string operations 

SYNOPSIS 
char *5trcat(s1, 52) 
char *51, *52; 

char *5trncat(51, 52, n) 
char *51, *52; 

5trcmp(sl, 52) 
char *51, *52; 

strncmp(s1, s2, n) 
char *51, *52; 

char *strcpy(s1, 52) 
char *51, *52; 

char *strncpy(s1, 52, n) 
char *51, *52; 

strlen(s) 
char *5; 

char *index(s, c) 
char *5, c; 

char *rindex(s, c) 
char *5; 

DESCRIPTION 
These functions operate on null-terminated strings. They do 
not check for overflow of any receiving string. 

Strcat appends a copy of string s2 to the end of string sl. 
Strncat copies at most n characters. Both return a pointer 
to the null-terminated result. 

Strcmp compares its arguments and returns an integer greater 
than, equal to, or less than 0, according as sl is lexico­
graphically greater than, equal to, or less than s2. 
Strncmp makes the same comparison but looks at at-most n 
characters. 

Strcpy copies string s2 to sl, stopping after the null char­
acter has been moved. Strncpy copies exactly n characters, 
truncating or null-padding s2; the target may not be null­
terminated if the length of-S2 is n or more. Both return 
51. --

XENIX System 1 XENIX System 



STRING(3) STRING(3) 

BUGS 

Strlen returns the number of non-null characters in s. 

Index (rindex) returns a pointer to the first (last) 
occurrence of character c in string ~, or zero if c does not 
occur in the string. 

Strcm~ uses native character comparison, which is signed on 
PDP!1 s, unsigned on other machines. 

XENIX System 2 XENIX System 



SWAB(3) 

NAME 
swab - swap bytes 

SYNOPSIS 
swab (from, to, nbytes) 
char *from, *to: 

DESCRIPTION 

SWAB (3) 

Swab copies nbytes bytes pointed to by from to the position 
pointed to by to, exchanging adjacent even and odd bytes. 
It is useful for carrying binary data between PDPll's and 
other machines. Nbytes should be even. 

XENIX System 1 XENIX System 



SYSTEM(3) 

NAME 
system - issue a shell command 

SYNOPSIS 
systern(string) 
char *string; 

DESCRIPTION 

SYSTEM(3) 

System causes the string to be given to sh(l) as input as if 
the string had been typed as a command at a terminal. The 
current process waits until the shell has completed, then 
returns the exit status of the shell. 

SEE ALSO 
popen (3), exec (2), wa it (2) 

DIAGNOSTICS 
Exit status 127 indicates the shell couldn't be executed. 

XENIX System 1 XENIX System 



TERMCAP(3) TERMCAP(3) 

NAME 
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal 
indepe~dent operation routines 

SYNOPSIS 
char PC: 
char *BC: 
char *UP: 
short ospeed: 

tgetent(bp, name) 
char *bp, *name: 

tgetnum (id) 
char *id: 

tgetflag(id) 
char *id: 

char * 
tgetstr(id, area) 
char *id, **area; 

char * 
tgoto(cm, destcol, destline) 
char *cmi 

tputs(cp, affcnt, outc) 
register char *CPi 
int affcnt: 
int (*outc) () ; 

DESCRIPTION 
These functions extract and use capabilities from the termi­
nal capability data base termca~(5)_ These are low level 
routines; see curses(3) for a hIgher level package_ . 

Tgetent extracts the entry for terminal name into the buffer 
at EE- ~ should be a character buffer of size 1024 and must 
be retained through all subsequent calls to tgetnum, tget­
flag, and tgetstr. Tgetent returns -1 if it cannot open the 
termcap file, 0 if the terminal name given does not have an 
entry, and 1 if all goes well. It will look in the environ­
ment for a TERMCAP variable. If found, and the value does 
not begin with a slash, and the terminal type name is the 
same as the environment string TERM, the TERMCAP string is 
used instead of reading the termcap file. If it does begin 
with a slash, the string is used as a path name rather than 
/etc/termcap. This can speed up entry into programs that 
call tgetent, as well as to help debug new terminal descrip­
tions or to make one for your terminal if you can't write 
the file /etc/termcap. 

XEN IX Sys tern 1 XENIX System 



TERMCAP(3) TERMCAP(3) 

FILES 

Tgetnum gets the numeric value of capability id, returning 
-1 if is not given for the terminal. Tgetflag returns 1 if 
the specified capability is present in the terminal's entry, 
o if it is not. Tgetstr gets the string value of capability 
id, placing it in the buffer at area, advancing the area 
pointer. It decodes the" abbreviations for this fielU---
described in termcap(5) , except for cursor addressing and 
padding information. 

Tgoto returns a cursor addressing string decoded from cm to 
go to column destcol in line destline. It uses the external 
variables UP (from the up capability) and Be (if bc is given 
rather than bs) if necessary to avoid placing \n, An or A@ 
in the returned str ing. (Programs which call tgoto should 
be sure to turn off the XTABS bit(s), since tgoto may now 
output a tab. Note that programs using termcap should in 
general turn off XTABS anyway since some terminals use con­
trol I for other functions, such as nondestructive space.) 
If a % sequence is given which is not understood, then tgoto 
returns oops. 

Tputs decodes the leading padding information of the string 
~; affcnt gives the number of lines affected by the opera­
tlon, or I if this is not applicable, outc is a routine 
which is called with each character in turn. The external 
variable ospeed should contain the output speed of the ter­
minal as encoded by stty (~). The external variable PC 
should contain a pad character to be used (from the pc capa­
bility) if a null (A@) is inappropriate. 

/usr/lib/libtermcap.a -ltermcap library 
/~tc/termcap data base 

SEE ALSO 
ex(l), curses(3), termcap(5) 

AUTHOR 
William Joy 

BUGS 

XENIX System 2 XENIX System 



TTYNAME(3) TTYNAME(3) 

NAME 
ttyname, isatty, ttyslot - find name of a terminal 

SYNOPSIS 
char *ttyname(fildes) 

isatty(fildes) 

ttyslot () 

DESCRIPTION 
Ttyname returns a pointer to the null-terminated path name 
of the terminal device associated with file descriptor 
fildes. 

Isatty returns I if fildes is associated with a terminal 
device, 0 otherwise. 

Ttyslot returns the number of the entry in the ttys(5) file 
for the control terminal of the current process. 

FILES 
/dev/* 
/etc/ttys 

SEE ALSO 
ioctl (2), ttys (5) 

DIAGNOSTICS 

BUGS 

Ttyname returns a null pointer (0) if fildes does not 
describe a terminal device in directory '/dev'. 

Ttyslot returns 0 if '/etc/ttys' is inaccessible or if it 
cannot determine the control terminal. 

The return value points to static data whose content is 
overwritten by each call. 

XENIX System I XENIX System 



MEM(4) MEM(4) 

N~E 

mem, kmem cpre memory 

DESCRIPTION 

FILES 

BUGS 

Mem is a special file that is an image of the core memory of 
the computer. It may be used, for example, to examine, and 
even to patch the system. Kmem is the same as mem except 
that kernel virtual memory rather than physical memory is 
accessed. 

Byte addresses are interpreted as memory addresses. Refer­
ences to non-existent locations return errors. 

On the Z8000, the per-process data for the current process 
begins at OxF800. 

Inout and inoutb may be used to access the I/O space on the 
Z8000. Reads from these devices return values read from the 
device register addressed. Writes to these devices send 
data to the device register addressed. The file offset is 
not updated for these devices, so subsequent reads or writes 
refer to the same device register. 

/dev/mem, /dev/kmem, /dev/inout, /dev/inoutb 

XENIX System 1 XENIX System 



NULL(4) 

NAME 
null - data sink 

DESCRIPTION 
Data written on a null special file is discarded. 

Reads from a null special file always return 0 bytes. 

FILES 
/dev/null 

NULL (4) 

XENIX System 1 XENIX System 



PK(4) PK(4) 

NAME 
pk - packet driver 

DESCRIPTION 
The packet driver implements a full-duplex end-to-end flow 
control strategy for machine-to-machine communication. 
Packet driver protocol is established by calling ekon(2) 
with a character device file descriptor and a deslred packet 
size in bytes. The packet size must be a power of 2, 
32<size<4096. The file descriptor must represent an a-bit 
data path. This is normally obtained by setting the device 
in raw mode (see ioctl(2». 

The actual packet size, which may be smaller than the 
desired packet size, is arrived at by negotiation with the 
packet driver at the remote end of the data link. 

The packet driver maintains two data areas for incoming and 
outgoing packets. The output area is needed to implement 
retransmission on errors, and arriving packets are queued in 
the input area. Data arriving for a file not open for read-
ing is discarded. Initially the size of both areas is set 
to two packets. 

It is not necessary that reads and writes be multiples of 
the packet size although there is less system overhead if 
they are. Read operations return the maximum amount of data 
available from the input area up to the number of bytes 
specified in the system call. The buffer sizes in write 
operations are not normally transmitted across the link. 
However, writes of zero length are treated specially and are 
reflected at the remote end as a zero-length read. This 
facilitates marking the serial byte stream, usually for del­
imiting files. 

When one side of a packet driver link is shut down by 
close(2)or pkoff (see pkon(2», read(2) on the other side 
will return 0, and write on the other side will raise a SIG­
PIPE signal. 

SEE ALSO 
pkon(2), pkopen(3) 

XENIX System 1 XENIX System 



TTY(4) TTY(4) 

NAME 
tty - general terminal interface 

DESCRIPTION 
This section describes both a particular special file, and 
the general nature of the terminal interface. 

The file /dev/!!y is, in each process, a synonym for the 
control terminal associated with that process. It is useful 
for programs that wish to be sure of writing messages on the 
terminal no matter how output has been redirected. It can 
also be used for programs that demand a file name for out­
put, when typed output is desired and it is tiresome to find 
out which terminal is currently in use. 

As for terminals in general: all of the low-speed asynchro­
nous communications ports use the same general interface, no 
matter what hardware is involved. The remainder of this 
section discusses the common features of the interface. 

When a terminal file is opened, it causes the process to 
wait until a connection is established. In practice user's 
programs seldom open these files; they are opened by init 
and become a user's input and output file. The very first 
terminal file open in a process becomes the control terminal 
for that process. The control terminal plays a special role 
in handling quit or interrupt signals, as discussed below. 
The control terminal is inherited by a child process during 
a fork, even if the control terminal is closed. The set of 
processes that thus share a control terminal is called a 
process group; all members of a process group receive cer­
tain signals together, see DEL below and kill(2). 

A terminal associated with one of these files ordinarily 
operates in full-duplex mode. Characters may be typed at 
any time, even while output is occurring, and are only lost 
when the system's character input buffers become completely 
choked, which is rare, or when the user has accumulated the 
maximum allowed number of input characters that have not yet 
been read by some program. Currently this limit is 256 
characters. When the input limit is reached all the saved 
characters are thrown away without notice. 

Normally, terminal input is processed in units of lines. 
This means that a program attempting to read will be 
suspended until an entire line has been typed. Also, no 
matter how many characters are requested in the read call, 
at most one line will be returned. It is not however neces­
sary to read a whole line at once; any number of characters 
may be requested in a read, even one,without losing infor­
mation. There are special modes, discussed below, that per­
mit the program to read each character as typed without 

1 XENIX SYstem 



TTY (4) TTY(4) 

waiting for a full line. 

During input, erase and kill processing is normally done. 
By default, the character '#1 erases the last character 
typed, except that it will not erase beyond the beginning of 
a line or an EOT. By default, the character '@I kills the 
entire line up to the point where it was typed, but not 
beyond an EOT. Both these characters operate on a keystroke 
basis independently of any backspacing or tabbing that may 
have been done. Either '@I or '#1 may be entered literally 
by preceding it by '\1; the erase or kill character remains, 
but the '\1 disappears. These two characters may be changed 
to others. 

When desired, all upper-case letters are mapped into the 
corresponding lower-case letter. The upper-case letter may 
be generated by preceding it by '\1. In addition, the fol­
lowing escape sequences can be generated on output and 
accepted on input: 

for 

I 

! 

use 
\1 
\1 
\A 
\ ( 
\) 

Certain ASCII control characters have special meaning. 
These characters are not passed to a reading program except 
in raw mode where they lose their special character. Also, 
it is possible to change these characters from the default; 
see below. 

EOT (Control-D) may be used to generate an end of file from 
a terminal. When an EOT is received, all the charac­
ters waiting to be read are immediately passed to the 
program, without waiting for a new-line, and the EOT is 
discarded. Thus if there are no characters waiting, 
which is to say the EOT occurred at the beginning of a 
line, zero characters will be passed back, and this is 
the standard end-of-file indication. 

DEL (Rubout) is not passed to a program but generates an 
interrupt signal which is sent to all processes with 
the associated control terminal. Normally each such 
process is forced to terminate, but arrangements may be 
made either to ignore the signal or to receive a trap 
to an agreed-upon location. See signal(2). 

FS (Control-\ or control-shift-L) generates the quit sig­
nal. Its treatment is identical to the interrupt sig­
nal except that unless a receiving process has made 

XENIX System 2 XENIX System 



TTY(4) TTY(4) 

other arrangements it will not only be terminated but a 
core image file will be generated. 

DC3 (Control-S) delays all printing on the terminal until 
something is typed in. 

DCl (Control-Q) restarts printing after DC3 without gen­
erating any input to a program. 

When the carrier signal from the dataset drops (usually 
because the user has hung up his terminal) a hangup signal 
is sent to all processes with the terminal as control termi­
nal. Unless other arrangements have been made, this signal 
causes the processes to terminate. If the hangup signal is 
ignored, any read returns with an end-of-file indication. 
Thus programs that read' a terminal and test for end-of-f ile 
on their input can terminate appropriately when hung 'up on. 

When one or more characters are written, they are actually 
transmitted to the terminal as soon as previously-written 
characters have finished typing. Input characters are 
echoed by putting them in the output queue as they arrive. 
When a process produces characters more rapidly than they 
can be typed r it will be suspended when its output queue 
exceeds some limit. When the queue has drained down to some 
threshold the program is resumed. Even parity is always 
generated on output. The EOT character is not transmitted 
(except in raw mode) to prevent terminals that respond to it 
from hanging up. 

Several ioctl(2) calls apply to ter.minals. Most of them use 
the following structure, defined in <sgtty.~>: 

struct sgttyb { 

} ; 

char s9 ispeed; 
char sg-ospeed; 
char s9-erase; 
char sg-kill; 
int s9=flags; 

The sg ispeed and sgospeed fields describe the input and 
output speeds of the device according to the following 
table, which corresponds to the1DEC DH-ll interface. If 
other hardware is used, impossible speed changes are 
ignored. Symbolic values in the table are as defined in 
<sgtty.~>. 

BO 
B50 
B75 
BIIO 

XENIX System 

o 
1 
2 
3 

(hang up dataphone), 
50 baud 
75 baud 
110 baud 

3 XENIX System 



TTY(4) TTY(4) 

B134 4 134.5 baud 
B150 5 150 baud 
B200 6 200 baud 
B300 7 300 baud 
B600 8 600 baud 
B1200 9 1200 baud 
B1800 10 1800 baud 
B2400 11 2400 baud 
B4800 12 4800 baud 
B9600 13 9600 baud 
EXTA 14 External A 
EXTB 15 External B 

In the current configuration, only 110, 150, 300 and 1200 
baud are really supported on dial-up lines. Code conversion 
and line control required for IBM 2741's (134.5 baud) must 
be implemented by the user's program. The half-duplex line 
discipline required for the 202 dataset (1200 baud) is not 
supplied; full-duplex 212 datasets work fine. 

The sg erase and sg kill fields of the argument structure 
specify the erase and kill characters respectively. 
(Defaults are # and @.) 

The sg flags field of the argument structure contains 
several bits that determine the system's treatment of the 
terminal: 

ALLDELAY 
BSDELAY 
BSO 
BSI 
VTDELAY 
FFO 
FFI 
CRDELAY 
CRO 
CRI 
CR2 
CR3 
TBDELAY 
TABO 
TABI 
TAB2 
XTABS 
NLDELAY 
NLO 
NLl 
NL2 
NL3 
EVENP 
ODDP 

XENIX System 

0177400 Delay algorithm selection 
0100000 Select backspace delays (not implemented): 
a 
0100000 
0040000 Select form-feed and vertical-tab delays: 
o 
0100000 
0030000 Select carriage-return delays: 
o 
0010000 
0020000 
0030000 
0006000 Select tab delays: 
o 
0001000 
0004000 
0006000 
0001400 Select new-line delays: 
o 
0000400 
0001000 
0001400 
0000200 Even parity allowed on input (most terminals) 
0000100 Odd parity allowed on input 

4 XENIX System 



TTY(4} TTY(4} 

RAW 0000040 Raw mode: wake up on all characters, 8-bit 
CRMOD 0000020 Map CR into LFi echo LF or CR as CR-LF 
ECHO 0000010 Echo (full duplex) 
LCASE 0000004 Map upper case to lower on input 
CBREAK 0000002 Return each character as soon as typed 
TANDEM 0000001 Automatic flow control 

The delay bits specify how long transmission stops to allow 
for mechanical or other movement when certain characters are 
sent to the terminal. In all cases a value of 0 indicates 
no delay. 

Backspace delays are currently ignored but might be used for 
Terminet 300's. 

If a form-feed/vertical tab delay is specified, it lasts for 
about 2 seconds. 

Carriage-return delay type 1 lasts about .08 seconds and is 
suitable for the Terminet 300. Delay type 2 lasts about .16 
seconds and is suitable for the VT05 and the TI 700. Delay 
type 3 is unimplemented and is o. 
New-line delay type 1 is dependent on the current column and 
is tuned for Teletype model 37's. Type 2 is useful for the 
VT05 and is about .10 seconds. Type 3 is unimplemented and 
is o. 
Tab delay type 1 is dependent on the amount of movement and 
is tuned to the Teletype model 37. Type 3, called XTABS, is 
not a delay at all but causes tabs to be replaced by the 
appropriate number of spaces on output. 

Characters with the wrong parity, as determined by bits 200 
and 100, are ignored. 

In raw mode, every character is passed immediately to the 
program without waitjng until a full line has been typed. 
No erase or kill processing is done; the end-of-file indica­
tor (EDT), the interrupt ch~racter (DEL) and the quit char­
acter (FS) are not treated specially. There are no delays 
and no echoing, and no replacement of one character for 
another; characters are a full 8 bits for both input and 
output (parity is up to the program). 

Mode 020 causes input carriage returns to be turned into 
new-lines; input of either CR or LF causes LF-CR both to be 
echoed (for terminals with a new-line function). 

CBREAK is a sort of half-cooked (rare?) mode. Programs can 
read each character as soon as typed, instead of waiting for 
a full line, but quit and interrupt work, and output delays, 

XENIX System 5 XENIX System 

interfa 



215/218/220(4) 215/218/220(4) 

NAME 
iSBC 215/218/220 Driver 

DESCRIPTION 
The iSBC 215/218/220 driyer controls various mixes of win­
chester and floppy disk drives. The iSBC 218 is supported 
only when used as a multi-module on the iSBC 215 controller. 
The driver can alternatively be used for iSBC 220 (SMD) dev­
ices. The driver supports various features: 

(1) Handles multiple iSBC 215/218 and iSBC 220 boards. 

(2) Handles 5.25" or 8" floppies on a 2l5~ single- or 
double-sided. 

(3) Has configurable device-characteristics. 

(4) Has configurable partition tables. 

(5) Handles non-BSIZE sector sizes. 

(6) Handles format of 215/218/220 (no automatic 
alternate-tracking) . 

Media change is handled as follows: A unit becomes "ready" 
on its first successful open. A media-change (units 4-7) 
resets the ready status. The driver insists on "ready" 
status for I/O requests to be valid. When closed, the open 
and ready status is reset. Thus, if a media change occurs, 
the unit must be completely closed before it may be used 
again. This is to insure cached data for one volume is not 
written to another volume. This is primarily intended for 
us~ with floppy disk. 

On an error condition, the driver returns either the soft­
status or high-byte of the hard-status, whichever has the 
most information. 

Partitions are configured on a sector basis, but must 
reflect whole tracks. A set of partitions for winchester 
disk are given below (in 1024-byte sectors): 

Priam 3450 Partitions 
disk start length tracks 
w?tO 0 12 0 
w?a 12 6000 1-500 
w?b 6012 1188 501-599 
w?c 7200 23400 600-2549 

Pertec D8020 Partitions 
disk start length tracks 
pw?tO 0 12 0 

XENIX System 1 XENIX System 



TTY (4) TTY(4) 

The following codes affect characters that are special to 
the terminal interface. The third argument is a pointer to 
the following structure, defined in <sgtty.~>: 

struct tchars { 

} ; 

char 
char 
char 
char 
char 
char 

t intrc; 
t=quitc; 
t_startc; 
t_stopc; 
t eofc; 
t=brkc; 

/* interrupt */ 
/* quit */ 
/* start output */ 
/* stop output */ 
/* end-of-file */ 
/* input delimiter (like nl) */ 

The default values for these characters are DEL, FS, DCl, 
DC3, EOT, and -1. A character value of -1 eliminates the 
effect of that character. The t brkc character, by default 
-1, acts like a new-line in that it terminates a 'line,' is 
echoed, and is passed to the program. The 'stop' and 
'start' characters may be the same; to produce a toggle 
effect. It is probably counterproductive to make other spe­
cial characters (especially erase and kill) identical. 

The calling codes for the tchars structure are: 

TIOCSETC 
Copy the pointed to tchars structure into the systems 
working copy, so that the values in the structure take 
effect, replacing (and destroying) the previous values. 

TIOCGETC 
Get the special character structure and store it in the 
pointed to tchars structure. 

FILES 
/dev/tty 
/dev/tty* 
/dev/console 

SEE ALSO 

BUGS 

getty(8}, stty (1), signal(2), ioctl(2) 

Half-duplex terminals are not supported. 

The terminal handler has clearly entered the race for ever­
greater complexity and generality. It's still not complex 
and general enough for TENEX fans. 

XENIX System 7 XENIX System 



215/218/220(4) 215/218/220(4) 

NAME 
iSBC 215/218/220 Driver 

DESCRIPTION 
The iSBC 215/218/220 driyer controls various mixes of win­
chester and floppy disk drives. The iSBC 218 is supported 
only when used as a multi-module on the iSBC 215 controller. 
The driver can alternatively be used for iSBC 220 (SMD) dev­
ices. The driver supports various features: 

(1) Handles multiple iSBC 215/218 and iSBC 220 boards. 

(2) Handles 5.25" or 8" floppies on a 215; sing1e- or 
double-sided. 

(3) Has configurable device-characteristics. 

(4) Has configurable partition tables. 

(5) Handles non-BSIZE sector sizes. 

(6) Handles format of 215/218/220 (no automatic 
alternate-tracking) . 

Media change is handled as follows: A unit becomes "ready" 
on its first successful open. A media-change (units 4-7) 
resets the ready status. The driver insists on "ready" 
status for I/O requests to be valid. When closed, the open 
and ready status is reset. Thus, if a media change occurs, 
the unit must be completely closed before it may be used 
again. This is to insure cached data for one volume is not 
written to another volume. This is primarily intended for 
us~ with floppy disk. 

On an error condition, the driver returns either the soft­
status or high-byte of the hard-status, whichever has the 
most information. 

Partitions are configured on a sector basis, but must 
reflect whole tracks. A set of partitions for winchester 
disk are given below (in 1024~byte sectors): 

Priam 3450 Partitions 
disk start length tracks 
w?tO 0 12 0 
w?a 12 6000 1-500 
w?b 6012 1188 501-599 
w?c 7200 23400 600-2549 

Pertec D8020 Partitions 
disk start length tracks 
pw?tO 0 12 0 

XENIX System 1 XENIX System 



215/218/220(4) 

pw?a 
pw?b 
pw?c 

12 
6012 
7200 

6000 
1188 
9360 

215/218/220(4) 

1-500 
501-599 
600-1379 

Floppy disks are, by convention, formatted with a single­
density 128-byte sectored track O. This device is /dev/sftO 
and /dev/rsftO. Partitions for floppies sectored with vari­
ous sizes are given below (note that partitions are given in 
sectors) : 

1024-byte Single-Sided Floppy 
disk start length tracks 
fO 26 608 76 

1024-byte Double-Sided Floppy 
disk start length tracks 
dfO 26 1224 153 

256-byte Single-Sided Floppy 
disk start length tracks 
xfO 26 1976 76 

256-byte Double-Sided Floppy 
disk start length tracks 
dxfO 26 3978 153 

Note that the above partitions do not include the alternate 
tracks on the winchesters. The driver does not yet support 
alternate-track formatting. 

Raw interfaces exist for all of the above; their names are 
the same with a prefixed r. The raw interfaces include an 
ioctl that will format a track. This is invoked with the 
function code r215 roc FMT and a structure of the form given 
below. For more details on track formatting, consult the 
iSBC 215 manual. 

struct 
int 
int 
int 
char 
char 

} ; 

i215ftk 
f track; 
f-intl; 
f-skew; 
f-type; 
f=pat[4] ; 

The driver is configured into c.c in bdevsw, cdevsw, din­
itsw, vecintsw, using the entry points i2150pen, i215close, 
i215strat, i215intr, i215ioctl, i215read, i215write, and 
i215probe. Device-characteristics and partitions are con­
figured via several tables in a file such as c215.c. A dif­
ferent file is necessary to avoid clashes on some symbols 
with other devices being configured. The configuration 

XENrx System 2 XENrx System 



215/218/220(4) 215/218/220(4) 

consists of filling out the following structures (one 
i2l5cfg structure per iSBC 215/218 or 220 controller): 

struct i2l5cfg { 
unsigned c wua; 
char c-devcod; 
char c=level; 
struct i2l5cdrt *c_drtab[8]; 

} i2l5cfg [N2l5] ; 

struct i2l5cdrt { 
unsigned cdr ncyl; 
char cdr-nfhead; 
char cdr-nrhead; 
char cdr-nsec; 
unsigned cdr-secsiz; 
char cdr-nalt; 

} i 

struct i2l5part 

struct i215part { 
daddr t p fsec; 

} ; 
daddr-t p=nsec; 

Where: 

c wua 
gives the physical wake-up address of the con­
troller. 

c devcod 
is DEV8FLPY for an iSBC 215 with 8" floppies on a 
218, DEV5FLPY for an iSBC 215 with 5.25" floppies 
on a 218, DEV220 for an iSBC 220 controller. 

c level 
is the interrupt level the controller is config­
ured to interrupt at. 

c drtab 
points at the device-characteristics table for 
each of the 8 possible units connected to the 
215/218/220. See the 215 manual for details. 

i2l5cdrt 
gives the device-characteristics for a unit. This 
is a vector, that allows different device­
characteristics to be selected dynamically. 

cdr part 
- points at the partition-table for each device-

XENIX System 3 XENIX System 



215/218/220(4) 215/218/220(4) 

FILES 

description. There may be up to 4 partitions per 
unit. 

p_fsec 
gives the first sector number of a partition. 

p_nsec 
gives the number of sectors in the partition. 

The i2l5probe procedure is called very early in the initial­
ization of Xenix. It checks the configuration tables and 
decides which configured boards do actually exist in the 
hardware configuration. For each board listed in the confi­
guration, an indication of whether or not it exists is 
printed on the console. This message looks like: 

iSBC 215 @ WUA xxxx level y found. 
or, 

iSBC 215 @ WUA xxxx level y NOT found. 

Where xxxx is the wakeup-address (hex) and y is the inter­
rupt level. If i2l5probe decides a board doesn't exist, no 
I/O will be allowed to the units it defines. In paticular, 
open will fail and return ENXIO. 

The minor number is divided into several fields: 

Bits 
0-2 
3-5 
6-7 

Meaning 
unit Number 
Drtab Number 
Partition Number 

Thus, the minor number = 64 * partition + 8 * drtab + unit. 
In the above, drtab means the device-characteristics table 
and/or index. 

i2l5.h 
/dev/w* 
/dev/rw* 
/dev/pw* 
/dev/rpw* 
/dev/*f* 
c2l5.c 

Defines structures 
Block Priam Partitions 
Raw Priam Partitions 
Block Pertec Partitions 
Raw Pertec Partitions 
Miscellaneous Floppy Devices 
iSBC 215/218/220 Specific Configuration 

SEE ALSO 
format(8) 

iSBC 2l5(Reg.) Winchester Disk Controller Hardware Reference 
Manual, Intel Corporaton, Order Number 121593-002, Rev A. 

XENIX System 4 XENIX System 



215/218/220(4) 215/218/220(4) 

BUGS 

iSBX 218(Reg.) Flexible Disk Controller Hardware Reference 
Manual, Intel Corporaton, Order Number 121583-001. 

iSBC 220(Reg.) SMD Disk Controller Hardware Reference 
Manual, Intel Corporaton, Order Number 121597-001, Rev A. 

iSBC 220 support not tested. 

14" Winchester disk support not tested. 

8" Winchester tested only on Priam 3450 and Pertec 08020. 

5.25" Winchester and Floppy not tested. 

The error information returned can't properly be fit into 
one byte. 

Concurrent seek is not supported. 

Alternate-track formatting is supported, just not tested. 

Not tested with multiple winchester drives or multiple 
floppy drives. 

XENIX System 5 XENIX System 



iSBC 534(4) iSBC 534(4) 

N~E 

iSBC 534 Driver 

DESCRIPTION 
The iSBC 534 driver controls one or more iSBC 534 four­
channel communication expansion boards, and the iSBC 86/xx 
On-Board USART. Each iSBC 534 has four USARTs. Supported 
baud rates are 50, 75, 110, 150, 200, 300, 600, 1200, 2400, 
4800, and 9600. 

The driver is configured into c.c in cdevsw, dinitsw, 
vecintsw, using the entry points i5340pen, i534close, 
i534read, i534write, i534ioctl, i534init, i534intr, 
i534ciintr, i534cointr. The 534 and On-Board USART share 
all procedures except the interrupt handlers; i534ciintr and 
i534cointr are the interrupt handlers for the On-Board 
USART. The On-Board USART requires no specific configura­
tion, since its addresses are defined by the iSBC 86/xx 
boards. The iSBC 534 boards are configured via filling out 
a structure of the form: 

struct 
int 
int 

} ; 

i534cfg 
c level; 
c=base; 

{ 

Where: 

c level 
is the interrupt level the controller is config­
ured to interrupt at. 

c base 
specifies the base address of the I/O ports on the 
board. See the iSBC 534 manual for further 
details. 

The i534init procedure is called very early in the initiali­
zation of Xenix. It checks the configuration tables and 
decides which configured boards do actually exist in the 
hardware configuration. For each board listed in the confi­
guration, an indication of whether or not it exists is 
printed on the console. This message looks like: 

iSBC 534 Based xxxx level y found. 
or, 

iSBC 534 Based xxxx level y NOT found. 

Where xxxx is the base-address of the board (hex), and y is 
the interrupt level. If i534init decides a board doesn't 
exist, no I/O will be allowed to the units it defines. In 

XENIX System 1 XENIX System 



iSBC 534(4) iSBC 534 (4) 

FILES 

paticular, open will fail and return ENXIO. 

The minor number is interpreted as: 

Minor 
0-3 
4-7 

Ox80 

i534.h 
/dev/tty?[0-3] 
/dev/console 

_ Meaning 
1st 534 Board 
2nd 534 Board 

On-Board USART 

Defines Structures 
iSBC 534 USARTS 
On-Board USART 

SEE ALSO 

BUGS 

iSBC 534(Reg.) Four Channel Communications Expansion Board 
Hardware Reference Manual, Intel Corporaton, Order Number 
9800450-02. 

Modem answering/calling is not supported. 

Baud rates 50, 75, 150, 200, and 600 are not tested. 

XENIX System 2 XENIX System 



A. OUT (5) A.OUT(5) 

NAME 
a.out - assembler and link editor output 

SYNOPSIS 
'include <a.out.h> 

DESCRIPTION 
A.out is the output file of the assembler as(l) and the link 
editor ld(l). Both programs make ~.out executable if there 
were no errors and no unresolved external references. Lay­
out information as given in the include file for the PDPll 
is: 

struct 

} ; 

#define 
#define 
#define 
#define 

struct 

} ; 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

exec { 
int 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

A MAGICl 
A-MAGIC2 
A-MAGIC 3 
A-MAGIC4 

nlist { 
char 
int 
unsigned 

N UNDF 
N-ABS 
N-TEXT 
N DATA 
N-BSS 
N-TYPE 
N REG 
N-FN 
N-EXT 
FORMAT 
FWIDTH 

/* a.out 
a_magic; 

header */ 

a text; 
a-data; 
a=bss; 
a syms; 
a-entry; 
a-unused; 
a:=flag; 

0407 
0410 
0411 
0405 

/* symbol 
n_name[8]; 
n type; 
n=value; 

/* values 
0 
01 
02 
03 
04 
037 
024 
037 
040 
"%060" 
6 

/* magic number */ 
/* size of text segment */ 
/* size of initialized data */ 
/* size of unitialized data */ 
/* size of symbol table */ 
/* entry point */ 
/* not used */ 
/* relocation info stripped */ 

/* normal */ 
/* read-only text */ 
/* separated I&D */ 
/* overlay */ 

table entry */ 
/* symbol name */ 
/* type flag */ 
/* value */ 

for type flag */ 
/* undefined */ 
/* absolute */ 
/* text symbol */ 
/* data symbol */ 
/* bss symbol */ 

1* register name */ 
/* file name symbol */ 
/* external bit, or 'ed in */ 
/* to print a value */ 
/* width of FORMAT */ 

The file has four sections: a header, the program and data 
text, relocation information, and a symbol table (in that 
order). The last two may be empty if the program was loaded 
with the '-s' option of ld or if the symbols and relocation 

XENIX System 1 XENIX System 



A.OOT(5) A.OOT(5) 

have been removed by strip(l). 

In the header the sizes of each section are given in bytes, 
but are even. The size of the header is not included in any 
of the other sizes. 

When an a.out file is loaded into core for execution, three 
logical segments are set up: the text segment, the data seg­
ment (with uninitialized data, which starts off as all 0, 
following initialized), and a stack. The text segment 
begins at 0 in the core image; the header is not loaded. If 
the magic number in the header is 0407(8), it indicates that 
the text segment is not to be write-protected and shared, so 
the data segment is immediately contiguous with the text 
segment. If the magic number is 0410, the data segment 
begins at the first 0 mod 8K byte boundary following the 
text segment, and the text segment is not writable by. the 
program; if other processes are executing the same file, 
they will share the text segment. If the magic number is 
411, the text segment is normally pure, write-protected, and 
shared, and moreover instruction and data space are 
separated; the text and data segment both begin at location 
O. However, if the entry point value is 1, the file is a 
23fixed program. If the magic number is 0405, the text seg­
ment is overlaid on an existing (0411 or 0405) text segment 
and the existing data segment is preserved. 

The stack will occupy the highest possible locations in the 
core image: from 0177776(8) and growing downwards. The 
stack is automatically extended as required. The data seg­
ment is only extended as requested by brk(2). 

The start of the text segment in the file is 020(8); the 
start of the data segment is 020+S t (the size of the text) 
the start of the relocation information is 020+S t +Sd ; the 
start of the symbol table is 020+2(St+Sd) if the relocation 
information is present, 020+S t +Sd if not. 

The layout of a symbol table entry and the principal flag 
values that distinguish symbol types are given in the 
include file. Other flag values may occur if an assembly 
language program defines machine instructions. 

If a symbol's type is undefined external, and the value 
field is non-zero, the symbol is interpreted by the loader 
ld as the name of a common region whose size is indicated by 
the value of the symbol. 

The value of a word in the text or data portions which is 
not a reference to an undefined external symbol is exactly 
that value which will appear in core when the file is exe­
cuted. If a word in the text or data portion involves a 

XENIX System 2 XENIX System 



A.OUT(5) A. OUT (5) 

reference to an undefined external symbol, as indicated by 
the relocation information for that word, then the value of 
the word as stored in the file is an offset from the associ-
ated external symbol. When the file is processed by the 
link editor and the external symbol becomes defined, the 
value of the symbol will be added into the word in the file. 

If relocation information is present, it amounts to one word 
per word of program text or initialized data. There is no 
relocation information if the 'relocation info stripped' 
flag in the header is on. 

Bits 3-1 of a relocation word indicate the segment referred 
to by the text or data word associated with the relocation 
word: 

000 absolute number 
002 reference to text segment 
004 reference to initialized data 
006 reference to uninitialized data (bss) 
010 reference to undefined external symbol 

Bit 0 of the relocation word indicates, if 1, that the 
reference is relative to the pc (e.g. 'clr x') ~ if 0, that 
the reference is to the actual symbol (e.g., 'clr *$x'). 

The remainder of the relocation word (bits 15-4) contains a 
symbol number in the case of external references, and is 
unused otherwise. The first symbol is numbered 0, the 
second 1, etc. 

SEE ALSO 
as(l), ld(l), nm(l), 23fix(8), file(l), ce(l), adb(l) 

XENIX System 3 XENIX System 



ACCT (5) ACCT (5) 

NAME 
acct - execution accounting file 

SYNOPSIS 
tinclude <sys/acct.h> 

DESCRIPTION 
Acct(2) causes entries to be made into an accounting file 
for each process that terminates. The accounting file is a 
sequence of entries whose layout, as defined by the include 
file is: 

/* 
* Accounting structures 
*/ 

typedef unsigned short comp_ti/* "floating pt": 3 bits base 8 exp, 
struct acct 
{ 

char 
comp_t 
comp_t 
comp t 
time-t 
short 
short 
short 
comp t 
dev t 
char 

#ifdef MSLOCAL 
char 
comp_t 
comp_t 

ac comm [ 10] i 
ac-utime; 
ac-stime; 
ac-etime; 
ac=btime; 
ac uid; 
ac:=gid; 
ac_mem; 
ac io; 
ac tty; 
ac=flag; 

ac nice; 
ac=fpsimi 
ac_sysci 

extern struct acct 
extern struct inode 

#define AFORK 
#define ASU 

01 
02 

/* Accounting command name */ 
/* Accounting user time */ 
/* Accounting system time */ 
/* Accounting elapsed time */ 
/* Beginning time */ 
/* Accounting user 10 */ 
/* Accounting group 10 */ 
/* average memory usage */ 
/* number of disk 10 blocks */ 
/* control typewriter */ 
/* Accounting flag */ 

acctbuf; 

/* nice value from proc tab 
/* floating point simulatio 
/* system calls */ 

*acctpi/* inode of accounting file */ 

/* has executed fork, but no exec */ 
/* used super-user privileges */ 

If the process does an exec(2), the first 10 characters of 
the filename appear in ac comm. The accounting flag contains 
bits indicating whether exec(2} was ever accomplished, and 
whether the process ever had super-user privileges. 

SEE ALSO 
acct(2), sa(l) 

XENIX System 1 XENIX System 



AR(5) AR(5) 

NAME 
ar - archive (library) file format 

SYNOPSIS 
linclude <ar.h> 

DESCRIPTION 
The archive command ar is used to combine several files into 
one. Archives are used mainly as libraries to be searched 
by the link-editor Id. 

A file produced by ar has a magic number at the start, fol­
lowed by the constituent files, each preceded by a file 
header. The magic number and header layout as described in 
the include file are: 

#define 
struct 

} ; 

ARMAG0177545 
ar hdr { 
char ar name[14]; 
long ar-date; 
char ar-uid; 
char ar-gid; 
int ar-mode; 
long ar=size; 

The name is a null-terminated string; the date is in the 
form of time(2); the user ID and group ID are numbers; the 
mode is a bit pattern per chmod(2); the size is counted in 
bytes. 

Each file begins on a word boundary; a null byte is inserted 
between files if necessary. Nevertheless the size given 
reflects the actual size of the file exclusive of padding. 

Notice there is no provision for empty areas in an archive 
file. 

SEE ALSO 
a r ( 1), Id (1), nm ( 1) 

BUGS 
Coding user and group IDs as characters is a botch. 

XENIX System 1 XENIX System 



CORE(5) CORE(5) 

NAAE 
core - format of core image file 

DESCRIPTION 
UNIX writes out a core image of a terminated process when 
any of various errors occur. See signal(2) for the list of 
reasons; the most common are memory violations, illegal 
instructions, bus errors, and user-generated quit signals. 
The core image is called 'core' and is written in the 
process's working directory (provided it can be; normal 
access controls apply). 

The first 1024 bytes of the core image are a copy of the 
system's per-user data for the process, including the regis­
ters as they were at the time of the fault; see the system 
listings for the format of this area. The remainder 
represents the actual contents of the user's core area when 
the core image was written. If the text segment is write­
protected and shared, it is not dumped; otherwise the entire 
address space is dumped. 

In general the debugger adb(l) is sufficient to deal with 
core images. 

SEE ALSO 
adb(l), signal(2) 

XENIX System 1 XENIX System 



DIR(5) DIR(5) 

NAME 
dir - format of directories 

SYNOPSIS 
tinclude <sys/dir.h> 

DESCRIPTION 
A directory behaves exactly like an ordinary file, save that 
no user may write into a directory. The fact that a file is 
a directory is indicated by a bit in the flag word of its 
i-node entry see, fils~s(5). The structure of a directory 
entry as given in the Include file is: 

#ifndef 
#define 
#endif 
struct 
{ 

} ; 

DIRSIZ 
DIRSIZl4 

direct 

ino t d ino; 
char d=name[DIRSIZ]; 

By convention, the first two entries in each directory are 
for '.' and ' •• '. The first is an eritry for the directory 
itself. The second is for the parent directory. The mean­
ing of ' •• ' is modified for the root directory of the master 
file system and for the root directories of removable file 
systems. In the first case, there is no parent, and in the 
second, the system does not permit off-device references. 
Therefore in both cases' 'has the same meaning as ' , 

SEE ALSO 
filsys(5) 

XENIX System 1 XENIX System 



DUMP(5) 

NAME 
dump, ddate - incremental dump format 

SYNOPSIS 
iinclude <sys/types.h> 
iinclude <sys/ino.h> 
t include <dumprestor.h> 

DESCRIPTION 
Tapes used by dump and restor(l) contain: 

a header record 
two groups of bit map records 
a group of records describing directories 
a group of records desGribing files 

DUMP(5) 

The format of the header record and of the first record of 
each description as given in the include file <dumprestor.g> 
is: 

#define NTREC 
#define MLEN 
#ifdef 
#define 
#else 
#define MSIZ 
#endif 

#define TS TAPE 
#define TS-INODE 
#define TS BITS 
#define TS ADDR 
#define TS-END 
#define TS CLRI 
#define MAGIC 
#define CHECKSUM 
struct 
{ 

int 
time t 
time-t 
int 
daddr t 
ino t 
int-
int 
struct 
ini: 
char 

} spcl; 

struct 

XENIX System 

20 
16 
SMALL 
MSIZ3072 

4096 

1 
2 
3 
4 
5 
6 
(int)60011 
(int)84446 
spcl 

c_type; 
c date; 
c-ddate; 
c=volume; 
c tapea; 
c-inumber; 
c-magic; 
c-checksum; 
dTnodec dinode; 
c_count; 
c_addr[BSIZE); 

idates 

1 XENIX System 



DUMP (5) 

{ 

} ; 

char 
char 
time t 

id npme[16] i 
id=incnoi 
id_ddate; 

DUMP(S) 

NTREC is the number of 512 byte records in a physical tape 
block. MLEN is the number of bits in a bit map word. MSIZ 
is the number of bit map words. 

The TS entries are used in the c type field to indicate 
what sort of header this is. The types and their meanings 
are as follows: 

TS_TAPE Tape volume label 
TS INODE 

A file or directory follows. The c dinode field is 
a copy of the disk inode and contains bits telling 
what sort of file this is. 

TS BITS A bit map follows. This bit map has a one bit for 
each inode that was dumped. 

TS ADDR A subrecord of a file description. See c addr 
below. . 

TS END End of tape record. 
TS CLRI A bit map follows. This bit map contains a zero bit 

for all inodes that were empty on the file system 
when dumped. 

MAGIC All header records have this number in c magic. 
CHECKSUM 

Header records checksum to this value. 

The fields of the header structure are as follows: 

c_type The type of the header. 
c date The date the dump was taken. 
c-ddate The date the file system was dumped from. 
c volume The current volume number of the dump. 
c tapea The current number of this (512-byte) record. 
c-inumber 

The number of the inode being dumped if this is of 
type TS INODE. 

c_magic This contains the value MAGIC above, truncated as 
needed. 

c checksum 
This contains whatever value is needed to make the 
record sum to CHECKSUM. 

c dinode This is a copy of the inode as it appears on the 
file system; see filsys(5). 

c count The count of characters in c addr. 
c-addr An array of characters describing the blocks of the 

dumped file. A character is zero if the block 
associated with that char?cter was not present on 

XENIX System 2 XENIX System 



DUMP(S) DUMP(5) 

the file system, otherwise the character is non­
zero. If the block was not present on the file 
system, no block was dumped; the block will be 
restored as a hole in the file. If there is not 
sufficient space in this record to describe all of 
the blocks in ~ file, TS ADDR records will be scat­
tered through the file, each one picking up where 
the last left off. 

Each volume except the last ends with a tapemark (read as an 
end of file). The last volume ends with a TS END record and 
then the tapernark. 

The structure idates describes an entry of the file 
/etc/ddate where dump history is kept. The fields of the 
structure are: 

id name The dumped filesystem is '/dev/id nam'. 
id-incno The level number of the dump tape; see dump(l). 
id-ddate The date of the incremental dump in system format 

see types(5). 

FILES 
/etc/ddate 

SEE ALSO 
dump(l), dumpdir(l), restor(l), filsys(5), types(5) 

XENIX System 3 XENIX System 



ENVIRON (5) ENVIRON (5) 

NAME 
environ - user environment 

SYNOPSIS 
extern char **environ; 

DESCRIPTION 
An array of strings called the 'environment' is made avail~ 
able by exec(2} when a process begins. By convention these 
strings have the form 'name=value'. The following names are 
used by various commands: 

PATH The sequence of directory prefixes that sh, time, 
nice(l}, etc., apply in searching for a file, known by 
an-Tncomplete path name. The prefixes are separated by 
': '. Login(l) sets PATH=:/bin:/usr/bin. 

HOME A user's login directory, set by login(l) from the 
password file passwd(5}. 

TERM The kind of terminal for which output is to be 
prepared. This information is used by commands, such 
as nroff or plot(l), which may exploit special terminal 
capabilities. See term(7) for a list of terminal 
types. ----

Further names may be placed in the environment by the export 
command and 'name=value'arguments in sh{l), or by exec(2). 
It is unwise to conflict with certain Shell variables that 
are frequently exported by '.profile' files: MAIL, PSI, PS2, 
IFS. 

SEE ALSO 
exec ( 2), sh (I), te rm (7), log in (1) 

XENIX System 1 XENIX System 



FILSYS(S) FILSYS(S) 

NAME 
filsys, fblk, ina - format of file system volume 

SYNOPSIS 
tinclude <sys/param.h> 
'include <sys/fblk.h> 
tinclude <sys/filsys.h> 
'include <sys/ino.h> 

DESCRIPTION 
Every file system storage volume (e.g. RF disk, RK disk, RP 
disk, DECtape reel) has a common format for certain vital 
information. Every such volume is divided into a certain 
number of S12-byte blocks. Block 0 is unused and is avail­
able to contain a bootstrap program, pack label, or other 
information. 

Block 1 is the super blocko The layout of the super block as 
defined by the include file <~/filsL~o~> is: 

/* 
* Structure of the super-block 
*/ 

struct filsys { 
unsigned short s isize; /* size in blocks of i-list */ 
daddr t s_fsize; /* size in blocks of entire volum 
short- s nfree; /* number of addresses in s free 
daddr t s-free[NICFREE];/* free block list */ 
short- s-ninodej /* number of i-nodes in s inode * 
ina t s-inode(NICINOD];/* free i-node list */ -
char s-flock; /* lock during free list manipula 
char s-ilock; /* lock during i-list manipulatio 
char s-fmod; /* super block modified flag */ 
char s-ron1y; /* mounted read-only flag */ 
time t s-time; /* last super block update */ 
/* remainder not maintained by this version of the system */ 
daddr t s tfree; /* total free blocks*/ 
ina t s-tinodei /* total free inodes */ 
short s=rn; /* interleave factor */ 
s h 0 r t s n; / * il ~I * / 
char s=fname[6]; /* file system name */ 
char s fpack[6]; /* file system pack name */ 
/* remaind~r is maintained for xenix */ 

} ; 
char s_clean; /* S CLEAN if structure is proper 

#define S CLEAN 0106 /* arbitrary magic va 

S isize is the address of the first block after the i-list, 
tVhich starts just af':er the super-block, in block 2. Thus 
the i-I is t is s is _~~~.- 2 blocks long.. ~.f~ i ze is the address 
of the first block not potenti~lly ~vailable for allocation 

XENIX System 1 XENIX System 



FILSYS(5) FILSYS(5) 

to a file. These numbers are used by the system to check 
for bad block addresses; if an 'impossible' block address is 
allocated from the free list or is freed, a diagnostic is 
written on the on-line console. Moreover, the free array is 
cleared, so as to prevent further allocation from a presum­
ably corrupted free list. 

The free list for each volume is maintained as follows. The 
s free array contains, in s free[l], ••• , 
s free[s nfree-l], up to NICFREE free block numbers. NIC­
FREE is a configuration constant. S free[O] is the block 
address of the head of a chain of blocks constituting the 
free list. The layout of each block of the free chain as 
defined in the include file <~/fblk.Q> is: 

struct fblk 
{ 

} ; 

int 
daddr t 

df nfree; 
df=free[NICFREE]; 

The fields df nfree and df free in a free block are used 
exactly like s nfree and s free in the super block. To 
allocate a block: decrement s nfree, and the new block 
number is s free[s nfreel. If the new block address is 0, 
there are no blocks left, so give an error. If s nfree 
became 0, read the new block into s nfree and s free. To 
free a block, check if s nfree is NICFREE; if so, copy 
s nfree and the s free array into it, write it out, and set 
s nfree to O. In any event set 5 free[s nfree] to the freed 
block's address and increment s nfree. 

S ninode is the number of free i-numbers in the s inode 
array. To allocate an i-node: if s ninode is greater than 
0, decrement it and return s inode[s ninode]. If it was 0, 
read the i-list and place toe-numbers of all free inodes (up 
to NICINOD) into the s inode array, then try again. To free 
an i-node, provided s ninode is less than NICINODE, place 
its number into s inode[s ninode] and increment s ninode. If 
s ninode is already NICINODE, don't bother to enter the 
freed i-node into any table. This list of i-nodes is only 
to speed up the allocation process; the information as to 
whether the inode is really free or not is maintained in the 
inode itself. 

S flock and s ilock are flags maintained in the core copy of 
the file system while it is mounted and their values on disk 
are immaterial. The value of s fmod on disk is likewise 
immaterial; it is used as a flag to indicate that the 
super-block has changed and should be copied to the disk 
during the next periodic update of file system information. 
S ronly is a write-protection indicator; its disk value is 

XENIX System 2 XENIX System 



FILSYS(5) FILSYS(5) 

also immaterial. 

S time is the last time the supttem 
was changed. During a reboot, s time of the super-block for 
the root file system is used to set the system's idea of the 
time. 

The fields s tfree, s tinode, s fname and s fpack are not 
currently maintained. 

I-numbers begin at 1, and the storage for i-nodes begins in 
block 2. I-nodes are 64 bytes long, so 8 of them fit into a 
block. I-node 2 is reserved for the root directory of the 
file system, but no other i-number has a built-in meaning. 
Each i-node represents one file. The format of an i-node as 
given in the include file <~/ino.~> is: 

/* 
* Inode structure as it appears on 
* a disk block. 
*/ 

struct dinode 
{ 

} ; 

unsigned short 
short 
short 
short 
off t 
char 
time t 
time t 
time t 

di nlink; 
di-uid; 
di-gid; 
di-size; 
di-addr[40); 
di-atime; 
di-mtime; 
di:=ctime; 

#define INOPB 
/* 

8 

* the 40 address bytes: 

* 
* 
*/ 

39 used; 13 addresses 
of 3 bytes each. 

di mode; /* mode and type of fiJ 
/*-number of links to file */ 
/* owner's user id */ 
/* owner's group id */ 
/* number of bytes in file */ 
/* disk block addresses */ 
/* time last accessed */ 
/* time last modified */ 
/* time created */ 

/* 8 inodes per block */ 

Di mode tells the kind of file; it is encoded identically to 
the st mode field of stat(2). Di nlink is the number of 
directory entries (links) that refer to this i-node. Di uid 
and di gid are the owner's user and group IDs. Size is the 
number of bytes in the file. Di atime and di mtrme-are the 
times of last access and modification of the file contents 
(read, write or create) (see times(2)); Di ctime records the 
time of last modification to ~Tnode or to the file, and 
is used to determine whether it should be dumped. 

Special files are recognized by their modes and not by i­
number. A block-type special file is one which can 

XENIX System 3 XENIX System 



FILSYS(S} FILSYS(S) 

potentially be mounted as a file system; a character-type 
special file cannot, though it is not necessarily 
character-oriented. For special files, the di addr field is 
occupied by the device code (see types{S)). The device 
codes of block and character special files overlap. 

Disk addresses of plain files and directories are kept in 
the array di addr packed into 3 bytes each. The first 10 
addresses specify device blocks directly. The last 3 
addresingly, doubly, and triply indirect and point 
to blocks of 128 block pointers. Pointers in indirect 
blocks have the type daddr t (see types(5)}. 

For block a file to exist, it is not necessary that all 
blocks less than b exist. A zero block number either in the 
address words of the i-node or in an indirect block indi­
cates that the corresponding block has never been allocated. 
Such a missing block reads as if it contained all zero 
words. 

SEE ALSO 
icheck{l), dcheck(l) , shutdn(2), dir(S), mount{l) , stat(2), 
types(5}, fsck(IM), 

XENIX System 4 XENIX System 



GROUP{S) GROUP{S) 

NAME 
group - group file 

DESCRIPTION 
Group contains for each group the following information: 

group name 
encrypted password 
numerical group ID 
a comma separated list of all users allowed in the group 

This is an ASCII file. The fields are separated by colons; 
Each group is separated from the next by a new-line. If the 
password field is null, no password is demanded. 

This file resides in directory /etc. Because of the 
encrypted passwords, it can and does have general read per­
mission and can be used, for example, to map numerical'group 
ID's to names. 

FILES 
/etc/group 

SEE ALSO 
newgrp(l), crypt(3), passwd(l), passwd(5) 

XENIX System 1 XENIX System 



MPXIO(5) MPXIO(5) 

NAME 
mpxio - multiplexed i/o 

SYNOPSIS 
linclude <sys/rnx.h> 

#include <sgtty.h> 

DESCRIPTION 
Data transfers on mpx files (see mpx(2)) are multiplexed by 
imposing a record structure on the io stream. Each record 
represents data from/to a particular channel or a control 
or status message associated with a particular channel. 

The prototypical data record read from an mpx file is as 
follows 

struct input_record { 
short index; 
short count; 
short ccount; 

} ; 
char data[]; 

where index identifies the channel, and count specifies the 
number of characters in data. If count is zero, ccount gives 
the size of data, and the record is a control or status 
message. Although count or ccount might be odd, the operat­
ing system aligns records on short (i.e. l6-bit) boundaries 
by skipping bytes when necessary. 

Data written to an mpx file must be formatted as an array of 
record structures defined as follows 

struct output record { 
short - index; 
short count; 
short ccount; 

} ; 
char *data; 

where the data portion of the record is referred to 
indirectly and the other cells have the same interpretation 
as in input record. 

The control messages listed below may be read from a multi­
plexed file descriptor. They are presented as two 16-bit 
integers: the first number is the message code (defined in 
<~/mx.g», the second is an optional parameter meaningful 
only with M WATCH and M BLK. 

XENIX System I XENIX System 



MPXIO(5) MPXIO(5) 

M_WATCH - a process 'wants to attach' on this channel. 
The second parameter is the l6-bit user-id of the 
process that executed the open. 

M_CLOSE - the channel is closed. This message is gen­
erated when the last file descriptor referencing a 
channel is closed. The detach command (see mpx(2) 
should be used in response to this message. 

M EOT - indicates logical end of file on a channel. If 
- the channel is joined to a typewriter, EOT 

(control-d) will cause the M EOT message under the 
conditions specified in !!y(4) for end of file. 
If the channel is attached to a process, M EOT 
will be generated whenever the process writes zero 
bytes on the channel. 

M_BLK - if non-blocking mode has been enabled on an mpx 
file descriptor xd by executing ioctl(xd, MXNBLK, 
0), write operatIOns on the file are truncated in 
fhe kernel when internal queues become full.' This 
is done on a per-channel basis: the parameter is a 
count of the number of characters not transferred 
to the channel on which M BLK is received. 

M UBLK - is generated for a channel after M BLK when 
- the internal queues have drained below-a thres­

hold. 

Two other messages may be generated by the kernel. As with 
other messages, the first l6-bit quantity is the message 
code. 

M OPEN - is generated in conjunction with 'listener' 
mode (see mpx(2)). The uid of the calling process 
follows the message code as with M WATCH. This is 
followed by a null-terminated string which is the 
name of the file being opened. 

M IOCTL - is generated for a channel connected to a 
- process when that process executes the ioctl(fd, 

cmd, &vec) calIon the channel file descripto~ 
The M IOCTL code is followed by the cmd argument 
given-to ioctl followed by the contents of the 
structure vec. It is assumed, not needing a better 
compromise-at this time, that the length of vec is 
determined by sizeof (struct sgttyb) as declared 
in <sgtty.g>. 

Two control messages are understood by the operating system. 
M EOT may be sent through an mpx file to a channel. It is 
equivalent to propagating a zero-length record through the 
channel; i.e. the channel is allowed to drain and the pro­
cess or device at the other end receives a zero-length 
transfer before data starts flowing through the channel 
again. M IOCTL can also be sent through a channel. The 
format is-identical to that described above. 

XENIX System 2 XENIX System 



MTAB(5) MTAB(5) 

N~E 

mtab - mounted file system table 

DESCRIPTION 
Mtab resides in directory letc and contains a table of dev­
ices mounted by the mount command~ Umount removes entries. 

Each entry is 64 bytes long: the first 32 are the null­
padded name of the place where the special file is mounted; 
the second 32 are the null-padded name of the special file. 
The special file has all its directories stripped away; that 
is, everything through the last 'I' is thrown away. 

This table is present only so people can look at it. It 
does not matter to mount if there are duplicated entries nor 
to umount if a name cannot be found. 

FILES 
letclmtab 

SEE ALSO 
mount(l} 

XENIX System 1 XENIX System 



PASSWD(5) PASSWD (5) 

NAME 
passwd - password file 

DESCRIPTION 
Passwd contains for each user the following information: 

name (login name, contains no upper case) 
encrypted password 
numerical user ID 
numerical group ID 
GCOS job number, box number, optional GCOS user-id 
initial working directory 
program to use as Shell 

This is an ASCII file. Each field within each user's entry 
is separated from the next by a colon. The GeOS field is 
used only when communicating with that system, and in other 
installations can contain any desired information. Each 
user is separated from the next by a new-line. If the pass­
word field is null, no password is demanded; if the Shell 
field is null, the Shell itself is used. 

This file resides in directory /etc. Because of the 
encrypted passwords, it can and does have general read per-
mission and can be used, for example, to map numerical user 
10' s to names. 

Some programs depend on certain entries (such as "daemon" 
and "root"); these should not be removed. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3), login{l), crypt(3) , passwd(l), group(5), 
cron(8) 

XENIX System 1 XENIX System 



PLOT(5) PLOT (5) 

NAME 
plot - graphics interface 

DESCRIPTION 
Files of this format are produced by routines described in 
plot(3), and are interpreted for various devices by commands 
described in plot(l). A graphics file is a stream of plot­
ting instructions. Each instruction consists of an ASCII 
letter usually followed by bytes of binary information. The 
instructions are executed in order. A point is designated 
by four bytes representing the x and y,valuesj each value is 
a signed integer. The last designated point in an 1, m, n, 
or p instruction becomes the 'current point' for the next 
instruction. 

Each of the following descriptions begins with the name of 
the corresponding routine in plot(3). 

rn move: The next four bytes give a new current point. 

n cant: Draw a line from the current point to the point 
given by the next four bytes. See plot(l). 

p point: Plot the point given by the next four bytes. 

I line: Draw a line from the point given by the next four 
bytes to the point given by the fol]owi~g four bytes. 

t label: Place the following ASCII string so that its first 
character falls on the current point. The string is ter­
minated by a newline~ 

a arc: The first four bytes giv~ the center, the next four 
give the starting point, and the last four give the end 
point of a circular arc. The least significant coordi­
nate of the end point is used only to determine the qua­
drant. The arc is drawn counter-clockwise. 

c circle: The first four bytes give the center of the cir­
cle, the next two the radius. 

e erase: Start anolher frame of output. 

f linemod: 'Take the following string, up to a newline, as 
the style for drawing further lines. The styles are 
'dot ted,' 'sol id,' 'longaashed,' 'shor tdashed,' and 'dot­
dashed.' Effective only in plot 4014 and plot ver. 

s space: The next four bytes give the lower left corner of 
the plotting areaj the following four give the upper 
right corner. The plot will be magnified or reduced to 
fit the device as closely as possible. 

XENIX System 1 XENIX System 



PLOT (5) 

SEE ALSO 

PLOT (5) 

Space settings that exactly fill the plotting area with 
unity scaling appear below for devices supported by the 
filters of plot(l). The upper limit is just outside the 
plotting area. In every case the plotting area is taken 
to be square; points outside may be displayable on dev­
ices whose face isn't" square. 

4014 space(O, 0, 3120, 3120) ; 
ver space(O, 0, 2048, 2048) ; 
300, 300s space(O, 0, 4096, 4096) ; 
450 space(O, 0, 4096, 4096) ; 

plot(l) , pIa t (3) , graph(l) 

XENIX System 2 XENIX System 



TERMCAP(5) TERMCAP(5) 

NAME 
termcap - terminal capability data base 

SYNOPSIS 
/etc/termcap 

DESCRIPTION 
Termcap is a data base describing terminals, used, ~.~., by 
vi{l) and curses(3). Terminals are described in termcap by 
giving a set of capabilities which they have, and by 
describing how operations are performed. Padding require­
ments and initialization sequences are included in termcap. 

Entries in termcap consist of a number of ':' separated 
fields. The first entry for each terminal gives the names 
which are known for the terminal, separated by 'I' charac­
ters. The first name is always 2 characters long and 'is 
used by older version 6 systems which store the terminal 
type in a 16 bit word in a systemwide data base. The second 
name given is the most common abbreviation for the terminal, 
and the last name given should be a long name fully identi­
fying the terminal. The second name should contain no 
blanks: the last name may well contain blanks for readabil-
ity. ' 

CAPABILITIES 
(P) indicates padding may be specified 
(P*) indicates that padding may be based on no. lines affected 

Name 
ae 
al 
am 
as 
bc 
bs 
bt 
bw 
CC 
cd 
ce 
ch 
cl 
cm 
co 
cr 
cs 
cv 
da 
dB 
db 
dC 

XENIX System 

Type 
str 
str 
bool 
str 
str 
bool 
str 
bool 
str 
str 
str 
str 
str 
str 
nurn 
str 
str 
str 
bool 
num 
bool 
num 

Pad? 
(P) 
(p* ) 

(P) 

(P) 

(P*) 
(P) 
(P) 
(P*) 
(P) 

(p* ) 
(P) 
(P) 

Description 
End alternate character set 
Add new blank line 
Terminal has automatic margins 
Start alternate character set 
Backspace if not AH 
Terminal can backspace with AH 
Back tab 
Backspace wraps from column 0 to last column 
Command character in prototype if terminal setta 
Clear to end of display 
Clear to end of line 
Like cm but horizontal motion only, line st~ys s 
Clear screen 
Cursor motion 
Number of columns in a line 
Carriage return, (default AM) 
Change scrolling region (vt100), like cm 
Like ch but vertical only. 
Display may be retained above 
Number of millisec of bs delay needed 
Display may be retained below 
Number of millisec of cr delay needed 

1 XENIX System 



TERMCAP(5} 

dc str 
dF num 
dl str 
dm str 
dN num 
do str 
dT num 
ed str 
ei str 
eo str 
ff str 
hc bool 
hd str 
ho str 
hu str 
hz str 
ic str 
if str 
im bool 
in bool 
ip str 
is str 
kO-k9 str 
kb str 
kd str 
ke str 
kh str 
kl str 
kn num 
ko str 
kr str 
ks str 
ku str 
10-19 str 
Ii num 
11 str 
rna str 
mi bool 
ml str 
mu str 
nc bool 
nd str 
nl str 
ns bool 
as bool 
pc str 
pt bool 
se str 
sf str 
sg num 
so str 
sr str 

XENIX System 

TERMCAP (5) 

(P*) Delete character 
Number of millisec of ff delay needed 

(P*) Delete line 
Delete mode (enter) 
Number of millisec of nl delay needed 
Down'one line 
Number of millisec of tab delay needed 
End delete mode 
End insert mode; give :ei=: if ie 
Can erase overstrikes with a blank 

(P*) Hardcopy terminal page eject (default A L ) 
Hardcopy terminal 
Half-line down (forward 1/2 linefeed) 
Home cursor (if no em) 
Half-line up (reverse 1/2 linefeed) 
Hazeltine; can't print -'s 

(P) Insert character 
Name of file containing is 
Insert mode (enter) i give :im=: if ic 
Insert mode distinguishes nulls on display 

(P*) Insert pad after character inserted 
Terminal initialization string 
Sent by other function keys 0-9 
Sent by backspace key 
Sent by terminal down arrow key 
Out of keypad transmit mode 
Sent by home key 
Sent by terminal left arrow key 
Number of other keys 
Termcap entries for other non-function keys 
Sent by terminal right arrow key 
Put terminal in keypad transmit mode 
Sent by terminal up arrow key 
Labels on other function keys 
Number of lines on screen or page 
Last line, first column (if no em) 
Arrow key map, used by vi version 2 only 
Safe to move while in insert mode 
Memory lock on above cursor. 
Memory unlock (turn off memory lock). 
No correctly working carriage return (DM250 
Non-destructive space (cursor right) 

{P*} Newline character (default \n) 
Terminal is a CRT but doesn't scroll. 
Terminal overstrikes 
Pad character (rather than null) 
Has hardware tabs {may need to be set with 
End stand out mode 

(P) Scroll forwards 
Number of blank chars left by so or se 
Begin stand out mode 

{P} Scroll reverse (backwards) 

2 XENIX System 



TERMCAP(5) 

ta str (P) 
tc str 
te str 
ti str 
uc str 
ue str 
ug num 
ul bool 
up str 
us str 
vb str 
ve str 
vs str 
xb bool 
xn bool 
xr bool 
xs bool 
xt bool 

A Sample Entry 

TERMCAP(5) 

Tab (n ~I or with padding) 
Entry of similar terminal - must be last 
String to end programs that use em 
String to begin programs that use em 
Underscore one char and move past it 
End underscore mode 
Number of blank chars left by us or ue 
Terminal underlines even though it doesn't overs 
Upline (cursor up) 
Start underscore mode 
Visible bell (may not move cursor) 
Sequence to. end open/visual mode 
Sequence to start open/visual mode 
Beehive (fl=escape, f2=ctrl C) 
A newline is ignored after a wrap (Concept) 
Return acts like ce \r \n (Delta Data) 
Standout not erased by writing over it (HP 264?) 
Tabs are destructive, magic so char (Teleray 106 

The following entry, which describes the Concept-IOO, is 
among the more complex entries in the tetmcap file as of 
this writing. (This particular concept entry is outdated, 
and is used as an example only.) 

cllclOOlconceptI00:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\ 
:al=3*\EAR:am:bs:cd=16*\EAC:ce=16\EAS:cl=2*AL:cm=\Ea%+ %+ : 
:dc=16\E AA:dl=3*\E AB:ei=\E\200:eo:im=\E A P:in:ip=16*:li#24:m 
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E; :vb=\Ek\EK:xn: 

Entries may continue onto multiple lines by giving a \ as 
the last character of a line, and that empty fields may be 
included for readability (here between the last field on a 
line and the first field on the next). Capabilities in 
termcap are of three types: Boolean capabilities which indi-
cate that the terminal has some ,particular feature, numeric 
capabilities giving the size of the terminal or the size of 
particular delays, and string capabilities, which give a 
sequence which can be used to perform particular terminal 
operations. 

Types of Capabilities 

All capabilities have two letter codes. For instance, the 
fact that the Concept has automatic margins (i.e. an 
automatic return and linefeed when the end of a line is 
reached) is indicated by the capability am. Hence the 
description of the Concept includes am. Numeric capabili­
ties are followed by the character 'i' and then the value. 
Thus co which indicates the number of columns the terminal 
has gives the value '80' for the Concept. 

XENIX System 3 XENIX System 



TERMCAP(5) TERMCAP(5) 

Finally, string valued capabilities, such as ce (clear to 
end of line sequence) are given by the two character code, 
an '=', and then a string ending at the next following ':'. 
A delay in milliseconds may appear after the '=' in such a 
capability, and padding characters are supplied by the edi­
tor after the remainder ~f the string is sent to provide 
this delay. The delay can be either a integer, e.g. '20', 
or an integer followed by an '*', i.e. '3*'. A '*' indi­
cates that the padding required is proportional to the 
number of lines affected by the operation, and the amount 
given is the per-affected-unit padding required. When a '*' 
is specified, it is sometimes useful to give a delay of the 
form '3.5' specify a delay per unit to tenths of mil­
liseconds. 

A number of escape sequences are provided in the string 
valued capabilities for easy encoding of characters there. 
A \E maps to an ESCAPE character, AX maps to a control-x for 
any appropriate x, and the sequences \n \r \t \b \f give a 
newline, return, tab, backspace and formfeed. Finally, 
characters may be given as three octal digits after a \, and 
the characters A and \ may be given as \A and \\. If it is 
necessary to place a : in a capability it must be escaped in 
octal as \072. If it is necessary to place a null character 
in a string capability it must be encoded as \200. The rou­
tines which deal with termcap use C strings, and strip the 
high bits of the output v~ry late so that a \200 comes out 
as a \000 would. 

Preparing Descriptions 

We now outline how to prepare descriptions of terminals. 
The most effective way to prepare a terminal description is 
by imitating the description of a similar terminal in 
termcap and to build up a description gradually, using par­
tial descriptions with ex to check that they are correct. 
Be aware that a very unusual terminal may expose deficien­
cies in the ability of the termcap file to describe it or 
bugs in ex. To easily test a new terminal description you 
can set the environment variable TERMCAP to a pathname of a 
file containing the description you are working on and the 
editor will look there rather than in /etc/termcap. TERMCAP 
can also be set to the termcap entry itself to avoid reading 
the file when starting up the editor. (This only works on 
version 7 systems.) 

Basic capabilities 

The number of columns on each line for the terminal is given 
by the co numeric capability. If the terminal is a CRT, 
then the number of lines on the screen is given by the Ii 
capability. If the terminal wraps around to the beginning 

XENIX System 4 XENIX System 



TERMCAP(5) TERMCAP(5) 

of the next line when it reaches the right margin, then it 
should have the am. capability. If the terminal can clear 
its screen, then this is given by the cl string capability. 
If the terminal can backspace, then it should have the bs 
capability, unless a backspace is accomplished by a charac­
ter other than AH (ugh) in which case you should give this 
character as the be string capability. If it overstrikes 
(rather than clearing a position when a character is struck 
over) then it should have the os capability. 

A very important point here is that the local cursor motions 
encoded in termcap are undefined at the left and top edges 
of a CRT terminal. The editor will never attempt to back­
space around the left edge, nor will it attempt to go up 
locally off the top. The editor assumes that feeding off 
the bottom of the screen will cause the screen to scroll up, 
and the am capability tells whether the cursor sticks at the 
right edge of the screen. If the terminal has switch 
selectable automatic margins, the termcap file usually 
assumes that this is on, i.e. am. 

These capabilities suffice to describe hardcopy and glass­
tty terminals. Thus the model 33 teletype is described as 

t3133Itty33:co#72:os 

while the Lear Siegler ADM-3 is described as 

clladm3131lsi adm3:am:qs:cl=A Z:li#24:co#80 

Cursor addressing 

Cursor addressing in the terminal is described by a em 
string capability, with p0_ntf (3s) like escapes %x in it. 
These substitute to encodings of the current line or column 
position, while other characters are passed through 
unchanged. If the em string is thought of as being a func­
tion, then its arguments ore the line and then the column to 
which motion is desired, and the % encodings have the fol­
lowing meanings: 

%d as in E~intf, 0 origin 
%2 like %2d 
%3 like %3d 
%. like %c 
%+x 
%>xy 
%r 
%i 
%% 
%n 
%B 

XENIX System 

adds x to value, then %. 
if value> x adds y, no output. 
reverses order of line and column, no output 
increments line/column (for 1 origin) 
gives a single % 
exclusive or row and column with 0140 (DM2500) 
BCD (l6*(X/IO») + (x%IO), no output. 

5 XENIX System 



TERMCAP(5) TERMCAP(5) 

%D Reverse coding (x-2*(x%l6», no output. (Delta Data). 

Consider the HP2645, which, to get to row 3 and column 12, 
needs to be sent \E&al2c03Y padded for 6 milliseconds. Note 
that the order of the rows and columns is inverted here, and 
that the row and column are printed as two digits. Thus its 
cm capability is cm=6\E&%r%2c%2Y. The Microterm ACT-IV 
needs the current row and column sent preceded by a ~T, with 
the row and column simply encoded in binary, em=AT%.% .. 
Terminals which use %. need to be able to backspace the cur­
sor (bs or be), and to move the cursor up one line on the 
screen (up introduced below). This is necessary because it 
is not always safe to transmit \t, \n ~D and \r, as the sys­
tem may change or discard them. 

A final example is the LSI ADM-3a, which uses row and column 
offset by a blank character, thus cm=\E=%+ %+ • 

Cursor motions 

If the terminal can move the cursor one position to the 
right, leaving the character at the current position 
unchanged, then this sequence should be given as nd (non­
destructive space). If it can move the cursor up a line on 
the screen in the same column, this should be given as up. 
If the terminal has no cursor addressing capability, but can 
horne the cursor (to very upper left corner of screen) then 
this can be given as hOi similarly a fast way of getting to 
the lower left hand corner can be given as 11; this may 
involve going up with up from the home position, but the 
editor will never do this itself (unless 11 does) because it 
makes no assumption about the effect of moving up from the 
home position. 

Area clears 

If the terminal can clear from the current position to the 
end of the line, leaving the cursor where it is, this should 
be given as ce. If the terminal can clear from the current 
position to the end of the display, then this should be 
given as ed. The editor only uses cd from the first column 
of a line. 

Insert/delete line 

If the terminal can open a new blank line before the line 
where the cursor is, this should be given as ali this is 
done only from the first position of a line. The cursor 
must then appear on the newly blank line. If the terminal 
can delete the line which the cursor is on, then this should 
be given as dli this is done only from the first position on 
the line to be deleted. If the terminal can scroll the 

XENIX System 6 XENIX System 



TERMCAP(5) TERMCAP(5) 

screen backwards, then this can be given as sb, but just al 
suffices. If the terminal can retain display memory above 
then the da capability should be given; if display memory 
can be retained below then db should be given. These let 
the editor understand that deleting a line on the screen may 
bring non-blank lines up from below or that scrolling back 
with sb may bring down non-blank lines. 

Insert/delete character 

There are two basic kinds of intelligent terminals with 
respect to insert/delete character which can be described 
using terrncap. The most common insert/delete character 
operations affect only the characters on the current line 
and shift characters off the end of the line rigidly. Other 
terminals, such as the Concept 100 and 'the Perkin 'Elmer Owl, 
make a distinction between typed and untyped blanks, on the 
screen, shifting upon an insert or delete only to an untyped 
blank on the screen which is ,either eliminated, or expanded 
to two untyped blan~s. You can firtd out which kind of ter­
minal you have by tlearing the ~creen and then typing text 
separated by cursor motions. Type abc def using local 
cursor motions (not spaces) between ~he~ab6 and the def. 
Then position the cursor before the abc and put the terminal 
in insert mode. If typing characters causes the rest of the 
line to shift rigidly and characters to fall off the end, 
then your terminal does not distinguish between blanks and 
untyped positions. If the abc shifts over to the def which 
then move together around the end of the current line and 
onto the next as you insert, you have the second type of 
terminal, and should give the ca~ability in, which stands 
for insert nUll. If tour termin~l does something different 
and unusual then you may have to modify the editor to get it 
to use the insert mode your terminal defines. We have seen 
no terminals which have an insert mode not not falling into 
one of these two classes. 

The editor can handle both terminals which have an insert 
mode, and terminals which send a simple sequence to open a 
blank position on the current line. Give as im the sequence 
to get into insert node, or give it an empty value if your 
terminal uses a sequence to insert a blank position. Give 
as ei the sequence to leave insert mode (give this, with an 
empty value also if you gave im so). Now give as ie any 
sequence needed to be sent just before sending the character 
to be inserted. Most terminals with a true insert mode will 
not give ie, terminals which s~nd a sequence to open a 
screen position should give it here. (Insert mode is 
preferable to the sequence to open a position on the screen 
if your terminal has both.) If post insert padding is 
needed, give this as a number of milliseconds in ip (a 
string option). Any other sequence which may need to be 

XENIX System 7 XENIX System 



TERMCAP(5) TERMCAP(5) 

sent after an insert of a single character may also be given 
in ip. 

It is occasionally necessary to move around while in insert 
mode to delete characters on the same line (e.g. if there is 
a tab after the insertion position). If your terminal 
allows motion while in insert mode you can give the capabil­
ity mi to speed up inserting in this case. Omitting mi will 
affect only speed. Some terminals (notably Datamedia's) 
must not have mi because of the way their insert mode works. 

Finally, you can specify delete mode by giving dm and ed to 
enter and exit delete mode, and dc to delete a single char­
acter while in delete mode. 

Highlighting, underlining, and visible bells 

If your terminal has sequences to enter and exit standout 
mode these can be given as so and se respectively. If there 
are several flavors of standout mode (such as inverse video, 
blinking, or underlining - half bright is not usually an 
acceptable standout mode unless the terminal is in inverse 
video mode constantly) the preferred mode is inverse video 
by itself. If the code to change into or out of standout 
mode leaves one or even two blank spaces on the screen, as 
the TVI 912 and Teleray 1061 do, this is acceptable, and 
although it may confuse some programs slightly, it can't be 
helped. 

Codes to begin underlining and end underlining can be given 
as us and ue respectively. If the terminal has a code to 
underline the current character and move the cursor one 
space to the right, such as the Microterm Mime, this can be 
given as uc. (If the underline code does not move the cur­
sor to the right, give the code followed by a nondestructive 
space. ) 

If the terminal has a way of flashing the screen to indicate 
an error quietly (a bell replacement) then this can be given 
as vb; it must not move the cursor. I f the terminal should 
be placed in a different mode during open and visual modes 
of ex, this can be given as vs and ve, sent at the start and 
end-of these modes respectively. These can be used to 
change, e.g., from a underline to a block cursor and back. 

If the terminal needs to be in a special mode when running a 
program that addresses the cursor, the codes to enter and 
exit this mode can be given as ti and tee This arises, for 
example, from terminals like the Concept with more than one 
page of memory. If the terminal has only memory relative 
cursor addressing and not screen relative cursor addressing, 
a one screen-sized window must be fixed into the terminal 

XENIX System 8 XENIX System 



TERMCAP(5) TERMCAP(5) 

for cursor addressing to work properly. 

If your terminal correctly generates underlined characters 
(with no special codes needed) even though it does not over­
strike, then you should give the capability ul. If over­
strikes are erasable with a blank, then this should be indi­
cated by giving eo. 

Keypad 

If the terminal has a keypad that transmits codes when the 
keys are pressed, this information can be given. Note that 
it is not possible to handle terminals where the keypad only 
works in local (this applies, for example, to the unshifted 
HP 2621 keys). If the keypad can be set to transmit or not 
transmit, give these codes as ks and ke. Otherwise the 
keypad is assumed to always transmit. The codes sent by the 
left arrow, right arrow, up arrow, down arrow, and home keys 
can be given as kl, kr, ku, kd, and kh respectively. If 
there are function keys such as fO~ fl, •.. , f9, the codes 
they send can be given as kO, kl, ••• , k9. If these keys 
have labels other than the defaultfO through f9, the labels 
can be given as 10, 11, ••• , 19. If there are other keys 
that transmit the same code as the terminal expects for the 
corresponding function, such as clear screen, the termcap 2 
letter codes can be given in the ko capability, for example, 
:ko=cl,ll,sf,£b:, which says that the terminal has clear, 
home down, scroll down, and scroll up keys that transmit the 
same thing as the cl, II, sf, and sb entries. 

The rna entry is also used to indicate arrow keys on termi­
nals which have single character arrow keys. It is obsolete 
but still in use in version 2 of vi, which must be run on 
some minicomputers due to memory limitations. This field is 
redundant with kl, kr, ku, kd, and kh. It consists of 
groups of two characters. In each group, the first charac­
ter is what an arrow key sends, the second character is the 
corresponding vi command. These commands are h for kl, j 
for kd, k for ku, 1 for kr, and H for kh. For example, the 
mime would be :ma=AKj~ZkAXl: indicating arrow keys left 
(,"H), down (""K), up- C"'Z), and right ("X) • (There is no home 
key on the mime.) 

Miscellaneous 

If the terminal requires other than a null (zero) character 
as a pad, then this can be given as pc. 

If tabs on the terminal require padding, or if the terminal 
uses a character other than AI to tab, then this can be 
given as ta. 

XENIX System 9 XENIX System 



TERMCAP(5) TERMCAP(5) 

Hazeltine terminals, which don't allow '-I characters to be 
printed should indicate hz. Datamedia terminals, which echo 
carriage-return linefeed for carriage return and then ignore 
a following linefeed should indicate nc. Early Concept ter­
minals, which ignore a linefeed immediately after an am 
wrap, should indicate xn. If an erase-eol is required to 
get rid of standout (instead of merely writing on top of 
it), xs should be given. Teleray terminals, where tabs turn 
all characters moved over to blanks, should indicate xt. 
Other specific terminal problems may be corrected by adding 
more capabilities of the form x~. 

Other capabilities include is, an initialization string for 
the terminal, and if, the name of a file containing long 
initialization strings. These strings are expected to prop-
erly clear and then set the tabs on the terminal, if the 
terminal has settable tabs. If both are given, is will be 
printed before if. This is useful where if is 
/usr/lib/tabset/std but is clears the tabs first. 

Similar Terminals 

If there are two very similar terminals, one can be defined 
as being just like the other with certain exceptions. The 
string capability tc can be given with the name of the simi­
lar terminal. This capability must be last and the combined 
length of the two entries must not exceea-I024. Since term­
lib routines search the entry from left to right, and since 
the tc capability is replaced by the corresponding entry, 
the capabilities given at the left override the ones in the 
similar terminal. A capability can be cancelled with xx@ 
where xx is the capability. For example, the entry 

hnI262lnl:ks@:ke@:tc=262l: 

defines a 2621nl that does not have the ks or ke capabili­
ties, and hence does not turn on the function key labels 
when in visual mode. This is useful for different modes for 
a terminal, or for different user preferences. 

FILES 
/etc/termcap file containing: terminal descriptions 

SEE ALSO 
ex ( 1), cur s e s ( 3), t e r mc a p ( 3), t set ( l), vi (1), u 1 ( 1), mo r e ( 1 ) 

AUTHOR 
William Joy 
Mark Horton added underlining and keypad support 

BUGS 
Ex allows only 256 characters for string capabilities, and 

XENIX System 10 XENIX System 



TERMCAP(5) TERMCAP(5) 

the routines in termcap(l) do not check for overflow of this 
buffer. The total length of a single entry (excluding only 
escaped newlines) may not exceed 1024. 

The rna, vs, and ve entries are specific to the vi program. 

Not all programs support all entries. There are entries 
that are not supported by any program. 

XENIX System 11 XENIX System 



TP(5) TP(5) 

NAME 
tp - DEC/mag tape formats 

DESCRIPTION 
The command !.E. dumps files to and extracts files from DEC­
tape and magtape. The formats of these tapes are the same 
except that magtapes have larger directories. 

Block zero contains a copy of a stand-alone bootstrap pro­
gram. See bproc(8). 

Blocks 1 through 24 for DECtape (1 through 62 for magtape) 
contain a directory of the tape. There are 192 (resp. 496) 
entries in the directory; 8 entries per block; 64 bytes per 
entry. Each entry has the following format: 

struct { 
char 
int 
char 
char 
char 
char 
long 
int 
char 
int 

} ; 

pathname[32] ; 
mode; 
uidi 
gid; 
unusedl; 
size[3]; 
modtimei 
tapeaddr; 
unused2 [16] i 
checksum; 

The path name entry is the path name of the file when put on 
the tape. If the pathname starts with a zero word, the 
entry is empty. It is at most 32 bytes long and ends in a 
null byte. Mode, uid, gid, size and time modified are the 
same as described under i-nodes (see file system filsys(5». 
The tape address is the tape block number of the start of 
the contents of the file. Every file starts on a block 
boundary. The file occupies (size+511)/512 blocks of con­
tinuous tape. The checksum entry has a value such that the 
sum of the 32 words of the directory entry is zero. 

Blocks ahove 25 (resp. 63) are available for file storage. 

A fake entry has a size of zero. 

SEE ALSO 
filsys(S), tp(l) 

BUGS 
The pathname, uid, gid, and size fields are too small. 

XENIX System 1 XENIX System 



TTYS(5) TTYS(5) 

NAAE 
ttys - terminal initialization data 

DESCRIPTION 
The ~tyS file is read by the init program and specifies 
whic terminal special files are to have a process created 
for them which will allow people to log in. It contains one 
line per special file. 

The first character of a line is either '0' or 'I'; the 
former causes the line to be ignored, the latter causes it 
to be effective. The second character is used as an argu­
ment to getty(8), which performs such tasks as baud-rate 
recognition, reading the login name, and calling login. For 
normal lines, the character is '0'; other characters can be 
used, for example, with hard-wired terminals wher~ speed 
recognition is unnecessary or which have special charac­
teristics. (Getty will have to be fixed in such cases.) The 
remainder of the line is the terminal's entry in the device 
directory, /dev. 

FILES 
/etc/ttys 

SEE ALSO 
init(8), getty(8), login(l) 

XENIX System 1 XENIX System 



TYPES (5) TYPES (5) 

NAME 
types - primitive system data types 

SYNOPSIS 
iinclude <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in UNIX 
system code; some data of these types are accessible to user 
code: 

typedef long 
typedef char * 
typedef unsigned int 
typedef long 
/* HeR Jan 81 -- add 2 
typedef int 
typedef int 
typedef long 

/* selectors and 
#define major(x} 
#define minor(x) 
#define makedev(x,y) 

daddr_ti /* disk address */ 
caddr ti /* core address */ 
ino t: /* i-node number */ 
time ti /* a time */ 

words to label t */ 
label t[6+2]; /* program status */ 
dev t; /* device code' */ 
off=ti /* offset in file */ 

constructor for device code */ 
(int) « (unsigned) x»8}) 
(int) (x&0377) 
(dev __ t) «x) «81 (y» 

The form daddr t is used for disk addresses except in an i­
node on disk, see filsys(5). Times are encoded in seconds 
since 00:00:00 GMT, January 1, 1970. The major and minor 
parts of a device code specify kind and unit number of a 
device and are installation-dependent. Offsets are measured 
in bytes from the beginning of a file. The label t vari­
ables are used to save the processor state while another 
process is running. 

SEE ALSO 
filsys(5), time(2), Iseek(2), adb(l) 

XENIX System I XENIX System 



UTMP (5) UThP (5) 

NAME 
utmp, wtmp - login records 

SYNOPSIS 
tinclude <utrnp.h> 

DESCRIPTION 

FILES 

The utmp file allows one to discover information about who 
is currently using UNIX. The file is a sequence of entries 
with the following structure declared in the include file: 

struct utmp { 

} ; 

char ut line[8]; 
char ut-name[8]; 
long ut=time; 

/* tty name */ 
/* user id */ 

/* time on */ 

This structure gives the name of the special file associated 
with the user's terminal, the user's login name, and the 
time of the login in the form of time(2). 

The wtmp file records all log ins and logouts. Its format is 
exactly like utmp except that a null user name indicates a 
logout on the associated terminal. Furthermore, the termi­
nal name '-I indicates that the system was rebooted at the 
indicated time; the adjacent pair of entries with terminal 
names 'I' and ,}, indicate the system-maintained time just 
before and just after a date command has changed the 
system's idea of the time:--

wtmp is maintained by login{l) and init(8). Neither of 
these programs creates the file, so if it is removed 
record-keeping is turned off. It is summarized by ac(l). 

/etc/utmp 
/usr/adm/wtmp 

SEE ALSO 
log in ( 1), in i t ( 8), who ( 1), a c ( 1 ) 

XENIX System 1 XENIX System 



APPENDIX A: C Reference Manual 

What follows is the C Reference Manual from Kernighan and 
Ritchie's The ~ Programming Language. It is provided here 
for reference and is not intended to teach C programming. 



The C Programn1ing Language - Reference Manual 

Dennis M. Ritchie 

Bell Laboratories, Murray Hill. New Jersey 

This manual is reprinted, with minor changes, from The C Programming Language, by Bricln W. Ker­
nighan and Dennis \If. Ritchie, Prentice-Hall. Inc .. 1978. 

1. Introduction 
This manual describes the C language on the DEC PDP-I]. the DEC \' AX-]], the Honeywell 60()O. 

the IBM System/370. and the Interdata 8/32. Where differences exist. it concentrates on the PDP-I]. but 
tries to point out implementation-dependent details. With few exceptions, these dependencies folio .... 
directly from the underlying properties of the hardware: the various compilers are generally quite compa­
tible. 

2. Lexical conventions 
There are six classes of tokens: identifiers. keywords, constants, strings, operators, and other separa­

tors. Blanks. tabs. newlines. and comments (collectively, "white space") as described below are 'ignored 
except as they serve to separate tokens. Some white space is required to separate otherwise adjacent 
identifiers. ke~·words. and constants. 

If the input stre<lm has been parsed into tokens up 10 a given character, the next lOken, is taken to 
include the longest string of characters which could possibly constitute a token. 

2.1 Comments 
The characters / * introduce a comment. which terminates with the characters * /. Comments do not 

nest 

2.2 Identifiers (Names) 
An identifier is a sequence of letters and digits: the first character must be a letter. The underscore 

counts as a letter. Upper and lower case letters are different. f\;o more than the first eight characters are 
significant. although more may be used External identifiers, which are used by various assemblers and 
loaders. are more restricted: 

DEC PDP-) ] 
DEC \'AX-] ) 

Honeywell 6000 
18\.1 360/370 
I nterdata 8132 

2.3 Keywords 

7 characters, 2 cases 
8 characters. 2 cases 
6 characters. ) case 
7 characters, I case 
8 characters. 2 cases 

The following identifiers are reserved for us~ as keywords .• md may not be used otherwise: 

int extern else 
char register for 
float typedef do 
double static while 
struct goto switch 
union return case 
long sizeof default 
short break entry 
unsigned continue 
auto if 

The entry keyword IS not currentl~ imrlcmented b~ any comriler but is reserved for future use. Some 

t l.'II,;IX IS a Trademark of Bell LahoralOrle\ 



- 2 -

implementations also reserve the words fortran and asrn. 

2.4 Constants 
There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are 

summarized in §2.6. 

2.4.1 I~teger constants 
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit 

zero). decimal otherwise. The digits 8 and 9 have octal value 10 and II respectively. A sequence of 
digits preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits 
include a or A through f or F with values 10 through IS. A decimal constant whose value exceeds the 
largest signed machine integer is taken to be long: an octal or hex constant which exceeds the largest 
unsigned machine integer is likewise taken to be long. 

2.4.2 Explicit long constants 
A decimal, octal. or hexadecimal integer constant immediately followed by 1 (letter ell) or L is d long 

constant. As discussed below, on some machines integer and long values mJY be considered identic.lI. 

2.4.3 Character constants 
A character constant is a character enclosed in single quotes. as in I x I. The value of a character 

constant is the numerical value of the character in the machine's character set. 
Certain non-graphic characters, the single quote ' and the backslash \, may be represented according 

to the following table of escape sequences: 

newline ~L (LF) \n 

horizontal tab HT \t 

backspace BS \b 

carriage return CR \r 
form feed FF \f 
backslash \ \\ 

single quote \ ' 
bit pattern ddd \ddd 

The escape \ddd consists of the backslash followed by 1. 2. or J octal digits which are taken to specify the 
value of the desired character. A special case of this construction is \0 (not followed by a digit). which 
indicates the character '1Ul. If the character following a backslash is not one of those specified. the 
backslash is ignored. 

2.4.4 Floating constants 
A floating constant consists of an integer part, a decimal point. J fr;lction part. an e or E. and an 

optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits 
Either the integer part or the fraction part (not both) may be missing: ~ither the decimal point or the e 
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision. 

2.5 Strings 
:\ string is a sequence of characters surrounded by double quotes. as in " r\ ')tring has type 

"array of characters" and storage class static (see ~4 below) and is initlJlized with the gi\cn characters. 
All strings. even when written identically. are distinct. The compiler places a null byte \ a at the end of 
each string ')0 that programs which scan the string can find its end. In ~I ')tring. the doubk quote charac­
ter " must be preceded by a \: in additIon, the 'lame escapes as described for character constants may be 
used. Finally. a \ and :.10 immediately following newline are ignored. 

2.6 Hardware characteristics 
\ 

The following table summarizes certain hardware properties which vary from machine to machine. 
Alth;:)ugh these affect program portability, in practice they are IeS'i of a rrobkm than might be thought (J 

priOri. 



- 3 -

i Df-.C PDP-II Honeywell 6000 IB\1 370 Interdata 8/32 
I 
I 

I char 
ASCII ASCII f:BCDIC ASCII 

8 bits 9 bits 8 bits 8 bits 
i int 16 36 32 32 
i short 16 36 16 16 
i 
: long 32 36 32 32 
I float 32 36 32 32 
I double 64 72 64 64 

range ± 1O:!:3il ± IO:t38 ± IO:!:76 ± IO:t 7b 

The \:\\-11 is identical to the PDP-II except that integers hClve 32 bits. 

3. Syntax notation 
In the syntax notation used in this manual. syntactic categories are indicated by IIa"c type. and literal 

words and characters in bold type Alternative categories are listed on separate lines. An optional ter­
minal or non-terminal symbol is indicated by the subscript "opt." so that 

( expresslOnOf'1 ) 

Indicates an optional expression enclosed in braces. The s~'ntax is summarized In ~ 18. 

4. What's in a name? 
C bases the interpretatinn of an identifier upon two attrihutes of the identifier its slOrage 'class and its 

f).'pe The storage cla~s determines the location and lifetime of the storage associated with an identifJer~ 

the type determines the meaning of the values found in the identifier's storage. 
There are four declarable storage classes: automatic. static. external. and register. AutomJtic v,m­

abIes are local to each invocation of a block (~9,2). and are discarded upon exit from the block~ static 
\ariables are Incal to a bl(lc~. but retain their values upon reentry tn a bioc" even after control has left 
the block~ external \'ariahlc:s exist and retain their \i:dues thrcJughout the execution of the entire program. 
and may be used for communication between functions. e\en separately compiled functions. Register 
\'ariables are (if possible) stored in the fast register.;; of the machine~ like automatic variables they are 
local to each block and disaprear on exit from the block. 

C supports several fundamental types of objects: 
Objects declared as characters (char) are large enough to store any member of the implementation's 

character set. and if a genuine character from thdi character set is "t()red in a chardcter \ariable. its value 
is equivalent to the integer code for that character. Other qU:fntitie<, may be stored intn character Vari­
ables. but the implementation IS machine-derendent. 

Up to three sizes of integer. declared short int. into and long into are availahle, Longer 
integers prOvide no less storage than shorter ones. but the implementation may mdke either short 
integers. or long integers. or both. equi\'alent to rlain integers. "Plain" integers have the natural size 
suggested by the host machine architecture~ the other sizc~ are pro\'ided to meet srecial needs. 

UnSigned integers. declared unsigned} obey the laws of arithmetic modulo 2n where n is the 
number of bits in the rerresentation. (On the PDP-II. unsigned long quantities are not supported) 

Single-precision floating roint (float) Jnd double-precision floating point (double) may be 
synonymous in some implementations. 

Because objects of the foregoing tyres can usefull~ he interpreted JS numhers. they will be referred 
to as anfhme/lc types. Types char and int of all sizes will c(J/lectivel~ be called 1171£'Rral types, float 
and double will collectively be called ffoollnK types. 

Besides the fundamental arithmetic tYre~ there is a conceptually Infinite class of derived tyres con-
structed from the fundamental types in the following ways: 

arrays of objects of most lypes~ 
.runc/lons which ret urn obje.cts of a given type: 
pomlers to objects of a given type: 
s/ru(/ures containing a sequence of objects of various types: 
ul1lons carable of containing an~ one of several objects of various t~'pes. 

J n general these methods of constructing objects can be applied recursively 



- .. -

5. Objects and Ivalues 
·\n objecl is a manipulatable region of ')tOL.1~<'!. M. !value ;s an expression referring to an object. An 

obvious example of an Ivalue expression is an identifier There are operators which yield Ivalues: for 
example. if S is an expression of pointer type. then *E is dn Ivalue expression referring to the object to 
which E points. The name "lvalue" comes from the assignment expression E1 ... E2 in which the left 
operand E1 must be an Ivalue expression. The discussion of each operator below indicates whether it 
expe(t~ Ivalue operands and whether it yields an Ivalue. 

6. Conversions 
.-\ number of operators may, depending on their operands. cause conversion of the value of an 

operand from one type to another. This section explains the result to be expected from such conver­
sions. ~6.6 summarizes the conversions demanded by most ordinary operators: it will be supplemented as 
required by the discussion of each operator. 

6.1 Characters and in tegers 
A character or a short integer may be used wherever an integer may be used. In all cases the value 

is converted to an integer. Conversion of a shorter integer to a longer always involves sign extension: 
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent. 
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated 
by this manual. only the PDP-II sign-ext~nds. On the PDP-II, character variables range in value from 
-128 to 127: the characters of the .·\SCII alphabet are all positive. A character constant specifled with an 
octal escape suffers sign extension and may appear negative: for example. '\377' has the value. -1. 

When a longer integer is converted to a shorter or to a char, it is truncated on the left: excess bits 
are simply discarded. 

6.2 Float and double 
All noating arithmetic in C is carried out in double-precision: whenever a float appears in dn 

expression it is lengthened to double by zero-padding its fraction. When a double must be converted 
to float. for example by an assignment. the double is rounded before truncation to float length. 

6.3 Floating and integral 
Conversions of noating values to integral type tend to be rather machine-dependent: in particular the 

direction of truncation of negative numbers varies from machine to machine. The result is undeflned if 
the value will not fit in the space provided. 

Conversions of integral values to floating type are well behaved. Some loss of precision occurs if the 
destination lacks suffiCient bits. 

6.4 Pointers and integers 
~n integer ()r long integer may be ;Idded to or subtracted from a pointer: in such a case the first is 

converted as specined in the discussion of the addition operator. 
Two pointers to objects of the same typ~ may be subtracted: in this case the result is converted to an 

integer as ::;pecifieci in the discussion of the subtraction operator. 

6.5 Unsigned 
Whenever an unsigned integer anu J plain integer are combined. the plain integer is converted to 

unsigned dnd the result is un<;losn(;d. The value is the least unsigned integer congruent to the signed 
integer (modulo 2""Jrd~'le). In a 2\ comriem~nt representation. this conversion is conceptual and there is 
no actudl \ . .r;;lngc :n the bit paltCi·n. 

When an unsigned integer is converted to long. the value of the result is the same numerically as 
that of the un<;lgnc!u tnlt.:ger. Thus the conver,;ion Jrl10unts to padding with zeros on the left. 

tl.o Aritrmetic conv?f c.i 0 ns 
,.:\ great many n(1er;\t f1 rs caU'ie conversl()ns Jnd yield result types in J similar way. This pattern will 

be called the "usual clrithmetic conversions." 

Fir'll. any operands of type char or short are converted to int, and any of type float are con­
.. ertcd to double. 



- 5 -

Then, if either operand is double) the other is converted t() doutle and that is the type of the 
result. 
Otherwise, if either operdnd is long) the other is converted to long and that is the type of the 
result. 
Otherwise, if either operand is uns igned) the other is converted to unsigned and that is the type 
of the result. 
Otherwise, both operands must be int, and that is the type of the result. 

7. Expressions 
The precedence of expression operators is the same as the order of the major subsections of this sec­

tion, highest precedence fIrst. Thus, for example. the expressions referred to as the operands of + (~74) 
are those expressions defined in §§7.1-7.3. Within each subsection. the operators have the same pre­
cedence. Left- or right-associativity is specif1ed in each s~bsection for thi"; operators discussed therein. 
The precedence and associativity of all the expression operators is summarized in the grammar of ~ 18. 

Otherwise the order of e\'aluation of expressions is undefined In particular the compiler considers 
itself free to compute subexpressions in the order it believes most efficient, even if the subexpressions 
Jnvolve side effects. The order in which side effects take place is unspecified. Expressions involving. a 
commutative and associative operator (*, +. &, I. ,..) may be rearranged arbitrarily, even in the presence 
of parentheses~ to force a parllcular order of evaluation an explicit temporary must be used. 

The handling of overnow and divide cht:ck in expression evaluation is machine-dependent. All exist­
ing implementations of C ignore integer O\ernows: treatment of division by 0, and all noating-point 
exceptions. varies between n:achines. and is usually adjustable by a library function. 

7.1 Primary expressions 
Primary expressions involving •. ->. subscriptmg. and function calls group left to right. 

primary-expreSSIOn: 
Identifier 
constant 
STrtnR 
( expressIOn ) 
prtmar.~ -e.xpre.sSlOn [ expressIOn) 
prtmar:\ -expres.w)f] ( expression-lislopr ) 
prtmar.\-Ivalue . Ident(/ier 
prrmar:v-expresslOn -> IdenTifier 

expressiOn-liST: 
expression 
expression-lisT) expreSSIOn 

An identifier is a primary expression. prOVided it has been suitably declJred as discussed below. Its type 
is specified by its declaration. If the type of the identifier is "array of .. , ". however. then the value of 
the identifier-expression is a pointer to the first ohjeu in the array, and the type of the expression is 
"pointer to ... ". ~oreover, an array identifler is not em Ivalue expression Likewise, an identifier which 
is declared "function returning .. ", when used except in the function-name position of a call. is con­
verted to "pointer to function returning ... ". 

A constant is a primary expression. Its type mClY be into long. or double depending on its form. 
Character constants have type int: noating constants are double. 

A string is a primary expression. Its t:.pe is originally "array of char": but following. the same rule 
given above for identifiers. this is modified to "pointer to char" and the result is a pointer to the first 
character in the strmg (There is an exception in certain initializers: see §8.6.) 

A parenthesized expression is a primary expression whose type and value are identical to those of the 
unadorned expression. The presence of parentheses dr)es not affect whether the expression is an Ivalue .. 

A primary expression followed by an expression in square brackets is a primary expression The 
intuitive meaning is that of a subscript. UsuallY, the primary expression has type "pointer to ... ". the 
subscript expression is into and the type of the result is " ... ". The expression El [E2] is identical (by 
definition> to * ( (E1 ) + (E2) ). All the clues needed to understand this notation are contained in this sec­
tion together with the discussions in §~ 7.1,7.2. and 7.4 on identifiers. *, and + respectively; §14.J below 
summarizes the implications. 



- 6 -

A function call is a primary expression followed by parentheses containing a possibly empty. 
comma-separated list of expressions whil'h (Or;)tIL..:te ih(; J·..:t'J<Ji argumt!r.ts to the function. The primary 
expression must be of type "function returning ... ". and the result of the function call is of type" ... ". 
As indicated below. a hitherto unseen identifier followed immediately by a left parenthesis is contextually 
declared to represent a function returning an integer: thus in the most common case. integer-valued 
functions need not be declared. 

Any actual arguments of type float are converted to double before the call: any of type char or 
short are converted to int: and as usual. array names are converted to pointers. No other conversions 
are performed automatically: in particular. tlTe compiler does not compare the types of actual arguments 
with those of formal arguments. If conversion is needed. use a cast: see ~7.2. 8,7. 

In preparing for the call to a function. a copy is made of each actual parameter: thus. all argument­
passing in C is strictly by value. A function may change the values of its formal parameters. but these 
changes cannot affect the values of the actual parameters. On the other hand. it is possible to pass a 
pointer on the understanding that the function may change the value of the object to which the pointer 
points. An array name is a pointer expression. The order of evaluation of arguments is undefined by lhe 
language: take note that the various compilers differ. 

Recursive calls to any function are permitted. 
A primary expression followed by a dot followed by an identifier is an (!xpression. The first expres­

sion must be an Ivalue naming a structure or a union. and the identifier must name ;,i member of the 
structure or union. The result is an Ivalue referring to the named member of the structure or union. 

A primary expression followed by an arrow (built from a - and a » followed by an identifier is an 
expression. The first expression must be a pointer to a structure or a union and the identifier must name 
a member of that structure or union. The result is an Ivalue referring to the named member of the struc­
ture or union to which the pointer expression points. 

Thus the expression E1 ->MOS is the same as (*E1). MOS. Structures and unions are discussed in 
~8.5. The rules given here for the use of structures and unions are not enforced strictly. in order to allow 
an escape from t he typing mechanism. See & 14.1. 

7.2 Unary operators 
Expressions with una~y operators group right-to-left. 

unary-expreSSIOn: 
* expression 
& Ivalue 
- expression 
! expreSSIOn 
- expression 
++ Ivalue 
-- Ivalue 
Ivalue ++ 
/value --
( type-name) expreSSlnf! 
sizeof expressIOn 
sizeof (rype-nun/I:! j 

The unary * 0perator means Ind,reC!lO": tbl~ \:!xpresslon must be a pointer. and the result is ;,in 1\\.Ilue 
referrtng to the object to which the expr"!~')i()n points. If the type of the expression is "pointer to " .", 
the type ()f Ihe result is" ... ". 

The resuit oj' the unary & 1"Jpt.;rale·r j') J puinter te) ihe oojeLt ref(!rreJ to by the Ivalue. If the type of 

Ihe Ivalue i') " ... ". the type ()f the result is "pointer II') ...... 
The result ()f the unary - operator is the negative 01' its operand. The usual arithmeti( conversions 

Me rerformed. The negative of an IJnsignt:J quantity is computed by subtracting its v,due from 2 n. 

,."h:: re n ;':. thf;! n'.lrnt)l!!" 'if hit e; if') an ir.~ Th'~r~ is no IJnary + 0pentnr. 
The result of the logical negation operator ! is I if the value of its operand is n. 0 if the value of its 

operand is non-zero. The type of the result is into It is applicable to any arilhmetic type or to pointers. 
The - operator yields the one'') complement of its uperand. The usual arithmetic conversions a:-e 

perfl')rmed. The type of the operand must be integral. 
The 0bject referred to by tr:~ Iv:due ()perand of prefix ++ is incremented. The value is the new value 

of the operand. but is not an Ivalue The cx.pr(~ssion ++x is equivalent to x+=1. See the discussions of 
,.1(1dition (InA) ;jnd assignmefll ')f)C:-:ltnr') (&7.14> for infnrmation on conversions. 



I n~.: l\d!Ul.' {)p::r.md (If rrdl\ -- I .... dnTt:nh.:nICcl i.Jn,JI('~IJLJ .... I:\ 10 Ihe rrdp. ~~ nreralor 

\\ h~n ['VI'!!'I\ -- h (jrr!lt.:d 10 :11: I"dul' Ih(: rt:\~ .. "1 II., !r:L' \',due ()f the (lh,CLI rderrcd \(1 t·)\ the I\idut.: 

·\tlcr the rL"u!: I' n(ilcd. tht: ()h'Cll I.., IT1trt.:m;::nl(;d III Ihl' \amc: manner .1\ f(lr Ihe.: rrt.:flx ++ Orcrill(Jr 

Th~ 1\ :,(. (d !hL' :-t,t..:lt I'> thc '>,Im;; it .... Ihl.' t\l1(: (If thc h.due c\rr-.=..,..,jc.n 

\'her; r(I';ifi\ -- I~ <lrrllt:d t(I an 1\ <llu(; Iht: rcc.,ult I.., th<.: \.alue or Ihe uhlCCI referred ((I b~ Ihe I\dlut: 

.\ ftc' the rt.::-,ul: I., n(dcJ. thc (lh,ect iii dc(remented in the: milnncr a .... fm the rrefix -- OrcralOr The t\ rc 

()f th~ result 1\ the: "'ilrne d .... the tyre (If tht: Ivalue exrre~":.I(ln. 

\n -:\prC",>I(ln rrccedcJ h~ the rarenthesl/t:d name of (J dala t\'re cau<.;es wn\er..,i(Jrl of the \aluc ()f 
the C'\rr~;;c.,I(ln HI thL' n<lme.:d t~re. Th! .... lomtrUL'li{)n I .... cidled a ca.\1. T:.pe name .... are described In ~k7. 

rhc si. z'20f orerJt()r YI::ld" Ihe ..,i/c. in h\ te ...... ()f i:;; op(;r.md. (A byte is undefined b~ the !,ln~udge 

·.=\(-:rt In term .... of thc \,due of sizeof H(lwc\er. in all cxililing imriemcntalior1'- a h~·tc IS the "'race 

r'::~l..ilr-.:J 10 h(dJ d cr,ar) When arrlied II! an Mra:.. fhe rl'sul! is thc 1(J11i1 number of b\ Ie.., in Ihc <lrra~. 

The .... IIC is (kttrmlntd from Ihe declaralions of Ihe ohjcqs in Ihe expre,><;iol1. This exrrc .... .,ion i.., ~emilnli­

\.d!I\ Jll Inle~er con:-,tanl and may be u<;(;d an.\·whcre iI constanl i~ required II~ major u~e is in communi­

\..tllnn \\Ith r(Iuline<; like <;I()rdgc all()calor<; ilnd 1/0 Sy slcm~. 

The siZ'20f nrcrdl11r md~ dl..,() be dpplled 1(1 a pllrcnlhc<;izcd I~rl: n,lml: In thaI Ci":.C It .\icld~ Ihe 

... :/':. In tn I..:: ..... \II an (lb'~l\ (d the i;)di,:alcd Iyp:.: 

"The C(lr,<;lrUCllon sizeoflTlrW; I~ IJKen [(l ht: a unit. ~() the expre<; .... ion sizeof(r.'[lel-2 I" Iht: 

.... dm(: J.... (s i zeof (ZI'{Je ) ) -2 

7.3 M u Itiplicati ve operators 
The muillpiic,ltl\ C op-;.:rdt{Jrc., *. /. and "" ~r(IUp kll-11J-rl!-!ht The usual arilhmelll' con\ ~r~l(}m arc 

perri lr:llcd 

mil if:(1 !Il aI/ r('- I'X{,r(,,\,\/(J n: 

( xpre.\ ,/UII * ('."'pfes \/011 

C"x{'re.\.\!I1/1 ;' C.xpfn.)/()/1 

('),prC,S',/(!1I r,.. eX{Jfn',i()1I 

The blndr~ * nrCfJI(,r Indl(."lte~ muiliplil.·~j(i{)n The * (,[,erator i<; <tS<.;()~idlive and e\pre.,,,i()n~ \\ ilh 

,>i,:\crdl mUI!ll'iICill(lnc., J! the c.,ilmc Ic\c! may he r(:~lrrang·,:;J h:, Ihc ulmr!lcr. 

T~~ hlr.,.;:, / (,perdlr1f ir.(li:..i.Jte .... di, I\!(,n \\'h~r. prl'>ltl\ (; int:::gers ,Ir\.: dl\'idcd IrunCdIJCln 1<; tov"mj n. 
hUI th..: form ()f lrL.i:l,:i1!I(IT'i I'> mdl·hlrlc-J~·:·'.:nd·':llt If eilher (Ircr~tnd I" nC!!~111\e (}n <III mdl·hiner., co\~rl'd 

n\ Ihl'> rn,!nudl. lh~ r.::m,lInd·..:, hd<'" the .... drll:.: <"'I~n i.ll, Ihl' dl\lu'..:nd /1/<.., a;\\dYr., true Ihal !a/b)*b + a%t 
h C Lj u:tI t (J a t if b IS n (): ()) 

Th(' hlndr\ "" (Jp:::r,ll(lr ~ Iclo;., Ihl.' rt:m~lIndcr from Ih:.: dJ\ l .... i(In ()f Ih-2 flrl.,l cxprc<..,r.,ion h:, the sc-:ond 

Th.:: u"udl ,Irltnmt:tk l()n\Cf,>jnnl.. ~1r~ rc:rlclrnJ('d ThL' Cipt.:filnJ" mu .... t not he floa~ 

7.4 Additive operators 
The ~1ddltl\C I!pC~i!tnrs ~ and - gr1lup kf'I-IIJ-nght The Ll'>U.tI <Hilhl1l(:lll l'()n\crSlon ... arL' rcrfnrmcd 

1 h('fC ilf.: c.,(lnk ~lddjtJ(Inl1l t\ r-: r' 1,-"ih!llilL" I, ir c:I\.·h flperilt(Ir 

add:! n t'.'-nprc.\.)/()f1: 

(,X!,fC.\.\J()1l -t- e.X{Jfl'.'I)J()f/ 

e.\prCSS/flll - ('X{,f(·\.\JOf1 

The fc<;ull (If !hc of (IrCfiJt()r IS the: ">um rd the ,;pl'f.ll1ch '. p!IJnIL'r 10 ;In (Jhl(TI in .In ilrril\ ;lnd d \;tlue of 

,111~ intL.'p,t1 t.'pc m,j\ he 'ludt.:d. The !;tltl'r I.., III .tli ~·d""::': ... L(ln\t.:rtcd 10 an addres.., o/T""CI h~, multiplYing il 

h\ the Icn~lh III' th\..' ()hieL'1 III \~hi,-'h th~' P:;::I:l'f P"I1i1'> The rt: .... ull i" <t p(l/nler of' Ihe.:: \:Ime I\PC .I, the 

(Iri~i;):t1 r(JinlL'r. dr':d v.hi~·h r'(llnl'> III (lr:r'lh:r onlt.:ll In Ihl' \<lm:.: ;Irril~. ilpprc1rrJ(lleh ()tl'>l't IroTll the ()rJ~i .. 

nod ohl:::ct. Thu .... If P 1<.., it ruinter III ;lfI (It"IICll III itn <lrr<l~. the cxprc,>slon P+! IS il poinler tIl Ihl' 11:::\1 

(In;cct in the Mfd\ 

","" further I~p:: lilmhindtlllll\ Me illl(Iv.~·d fl)f PlllfltL'f" 

The + orcr.tl(Ir I .... iJ<",,,>o~IJ11\C dnu '::".pr::"';<';IOIl" \~Ilh .... C'\crill ilddlli(Ifl'> ilt the ">ilnlL' k\cl mit~ hL'rC':tr­

r,!nged h:- the l()mrll::r 

'1 h(: fe.,u!! rd Ih·~· - (If'Udt()r h th~ dllkrcn ... :L' (It Ih~' Orl...'ritnc.h The u ... u,d drllhmCIIL' l'()n\l·r<.,lon" ML' 

f'.::r/I):-I1Ic:d ·\dditi(Jnall:.. ,: \dlu..: of ,Ir.~ IntL'l;~id t~ Pl' m<l:, he suhtrdl'kJ from i.I p(J/nler. ilrlJ then Ihe 

\.1I11C :.J'n\cr"lon .... (1 .... for adJltl(Jn <lprl~ 

If' t\~() pninlcrr., to Ohlt:C!<; r,f Ih~ samc I\P;..' <1ft.' suhlra~·te(l. tht rc .... ull i<.; \.·o!1\L'rted Ih.\ di\i'>lon h.' the 

len~th Ilf Iht: nhlect} to an lnt rc!~r~.:'>L'nllrl!:! the nU:llhcr (d Oh'l'l'[1., ,>epiHilllng IhL' pCllnted-l(l ohie\.·ts 

Thl'" crln\ cr">I(ln v, ill In gencfdl !!I\~ urh:Xpe,.'I~J rc\Ulh un!::.." Ihcp()inlcr ... roinl 10 ohlL'clr., In the <';drllC 



JrrJy. since pointers. ~\~n to objects of th~ -;amc type. do not necessarily ditfer by a multiple of the 
object-kngth. 

7.5 Shift op~rators 

The shift operator') « and » group left-to-right. Bo~h perform the usual arithmetic conversions on 

their operands. each of which must be integral. Then the right operand i~ converted to int: the type of 

the result is that of the left operand. The result is undefined if the right operand is negative. or greater 
than or equal to the length of the obje<.:t in bits. 

shlf(-expre.mon: 
expreSSlO1l « expressIOn 
expressIOn » expressIOn 

The value of E1 «E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits: vacated bits are O-tilled. 

The value of E1 »E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical 10-
hll) if E1 is unsigned: otherwise it may he (and is. on the PDP-II) arithmetic (nil by a copy of the "iign 
bit). 

7.6 Relational operators 
The relational operators group left-to-right. but this fact is not very useful: a<b<c does not mean 

what it "ieems to. 

rela (lonQ I-expreSSIOn: 
expression < expression 
expressIOn> expression 
expreSSIOn <= expresslOlI 
expressIOn >::;: expresSIOn 

The operators < fless than). > (greater than). <= (less than or equal to) and >= (greater than or equal to) 

all yield 0 if the specitled relJtion is false and 1 if it is true. The type of the result is into The usual 
arithmetic conversions Jre performed. Two pointers may be compared: t~t:! result depends on the relative 

1'1CJtions in the address space of the pointed-to objects. Pointer comparison 15 portable only when the 
pointers point to 0bjccts in the 'lame Mray. 

7.7 Equality operators 

equa Iiry-expresslOn: 
expressIOn == expresSIOn 
expressIOn ! = e;·.:preSSlOn 

The == (equal to) and the ! = (not equal to) operators i.lrc t:x;!clly anal()~ous to the relational OperJlOrS 

cx...:cpt [C)r their I()\\tr precedc:n~e. (Thus a<b == c<d I:) I whenc\er a<b and c<d have the SJ.m~ 

truth-value) . 
. \ pointer may be compc.H'..!u to an integer. ~ul th,,: rt: .... ull is machine depenuent unless the integer is 

'f-"., '.:on')t~tnt 0 .\ pointer to which n has been :.l~C;.I\?ned i~ sUilranteed not to point to Jny object. and will 
dPpear to be (!quJl Ie) (): i:" converti0nlll usage. ')uch d pointer is considered to be null. 

7 8 Bitwise AND operator 

a nd-e xpresslOn: 
expressIOn & expre·).'ilfJt1 

Th·:; r. (Jpt..:rdtor i"i LI:-i"locialive and ~xprI.:!SSI()ns involving & may he reJrrJnged. The usual arithmetic 
'~:-,n'.cr'.;:()n<; ..Ire :)crj'nrm;:;d: ~I-"..! ,.<:<;,;It i'-; the hitwi<.;L' ".!) runl·tiC'ln of the operand.;; The operator applies 

()n\v to int~gral o[)eranth 

7.') 3ilwlse eXc!USIVI;; ()R uperator 

excluslve-or-expreSSiOn: 
expressIOn A expreS'iIf)f1 

The ~ operator i'i dsc..;{)ciJti\'~ :tnd expression') involving A may he rearranged. The usual arithmetic 

(1)[1'vcrSI()n'> ..He rerf()rm~d: the n;\' .. !i i:'; the bilwi')e exclusive OR function of the operands. The operator 

.J1~rli--.:s (>1111' to integral ()pcrands. 



- 9 -

7.10 Bitwise inclusive OR operator 

InclUSIve-Dr-expreSSIOn: 
expressIOn I expressIOn 

The 1 operator is associative and expressions involving I may be rearranged. The usual arithmetic 
converSions are performed: the result is the bitwise inclusive OR function of its operands. The operator 
applies only to integral operands. 

7.11 Logical AND operator 

loglcal-and-expression: 
expressIOn && expresSIOn 

The && operator groups left-to-right. It returns I if both its operands are n')n-zero, 0 otherwise. Unlike 
&. && guarantees left-to-right evaluation: moreover the second operand is not evaluated if the first 
operand is O. 

The operands need not ha\e the same type. but each must have one of the fundamental types or be 
a pointer. The result is always int. 

7.12 Logical OR operator 

IOKlca I-or-expresslo n: 
exprcsslOn I I expressIOn 

The 1 1 operator groups left-to-right. It returns) if either of its operands is non-zero, and 0 otherwise 
Lnlike I. 1 1 guaruntees Jeft-t(l-right evaluation: moreover. the second operand is not evaluated if the 
value of the first operand is non-zero. . 

The operands need not have the same type, but each must have one of the fundamental types or be 
a pointer. The result is always into 

7.13 Conditional operator 

cond,flonal-expreSSlOn: 
expressIOn ? expressIOn : expression 

Conditional expressions group right-to-left. The first expression is evaluated and if it is non-zero. the 
result is the \ alue of the ~econd expression, otherwise that of third expression. If possible, the usual 
arithmetic conversions are performed to bring the second and third expressions to a common type: other­
wise, if both are pointers ,of the same type. the result has the common type: otherwise. one must be a 
pointer and the other the constant Q, and the result has the type of the pointer. Only one of the second 
and third expressions is evaluated 

7.14 Assignment operators 
There are a number of assignment operators. all of which group right-to-Ieft. All require an Ivalue as 

their left operand, and the t~·;pe of an as~ignment expression is that of its lefl operand. The value is the 
value stored in the left operand after the assignment has taken place. The two parts of a compound 
assignment operator are separate tokens. 

ass/~ nmcnt-cxprcss10 r.: 
Ivalue = eXpreS!:llOn 
Ivalue += expresstrlfl 
Ivalue -= expressIon 
Ivalue *= exprcsSlOn 
Iva lue / = expressIOn 
lralue %= expressIOn 
Ivallle »= expression 
Ivalue «= expressIOn 
Iva lup & = expression 
Ivalue ": expressIOn 
Ivalue I = expressIOn 

In the simple assignment with =. the value of the expression replaces that of the object referred to by 
the Ivalue. If bOTh operands have arithmetic type. the ri~ht operand is converted (0 the type of the left 



- 10 -

preparatory to the assignment. 
The behavior of an expression of the form E1 op = E2 rr.JY be inferred by taking it J"l equivalent to 

E1 = E1 op (E2): however. E1 is evaluated only once. In += and -=. the left operand may be a 
pointer. in which case the (integra\) right operand is converted as explained in §7A: all right operands 
and all non-pointer left operands must have arithmetic type. 

The compilers currently allow a pointer to be assigned to an integer. an integer to a pointer. and a 
pointer to a pointer of another type. The assignment is a pure copy operation. with no conversion. This 
usage is nonportable. and may produce pointers which cause addressing exceptions when used. However. 
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable 
from a pointer to any objeCt. 

7.15 Comma operator 

comma-expressIOn: 
expression ) expression 

A pair of expressions separated by 3. comma is evaluated left-to-right and the value of the left expression 
i') discarded. The type and value of the result are the type LInd value of the right operand. This operatnr 
groups left-to-right. In contexts where comma is given a special meaning. for example in a list of actual 
arguments to functions (&7.1) and lists of initializers (&8.6). the comma fJperator as Jesuibed in this sec­
tion can only appear in parentheses: for example. 

f (a, (t=3) t+2), c) 

has three arguments. the second of which has the value 5. 

8. Declarations 
Declarations are used to specify the interpretation which C gives to each identiher: they do not 

necessarily reserve storage associated with the identiher. Declarations have the form 

declarallon: 
dec/-speCifiers declararor-/ts(op, ; 

The declarators in the declarator-list contain the identifiers being declared, The ded-specifiers (on)ist of a 
'iequence of type and storage class specihers. 

dec/-specifiers: 
rype-speC/./ler dec/-speCljierso", 

sC-5pecijler dec/-specIfiers"", 

The list must be self-consistent in a way described helf)w. 

8.1 Storage class specifiers 
The sC-lipeciherc; Jre: 

5C- ')peCljier: 

a'..lto 
static 
extern 
regist~r 

typedef 

The typec:ef ·.,peciher does not reserve storage and IS (ailed a "storage class )pecitler" nnly for syntactic 
c()n .... enlent.;e~ it h di";L'ussed in ~8,;), fhe mt:.lning'-: I.t ::, . .;: \,Hil)uS ~torJge (lasses were di..;cusscd in ~4. 

The auto. sta tic :lnd register 'i;.;!:!Jratior<.; also serve as ddinitions in that they cause an 
".n,rrnpriat~ :lm0'lnt f)f '~tnr:\\!.e tn he re<;'.:-r-.ed. In the extern case there must be an external detlnition 
(~I/)) for the given Identifiers ')onlt;!where out~l<.k the function in which they MC lkc\arcu. 

A reg~ster decl:.HJlion is best thought of as i..ln auto declaration. together with J hint to the com· 
pikr that the variables dc.:larcd will be heavily used. Only the first few such declarations arc dTc(tivc. 
"1('lreover. only variable'i nf certain t'ipes w'ill be stored In registers: on the PDp· I I , they are into char. 
()f f)f)inter. One other restrictinn :tprlies to register variables: the address-of operator & cannot be applied 
to them. Smaller. faster programo;, ,_'in he I.!xpl.!cted if register declarations Jre used approrriately. but 
future impr()Vements in code ~t!neratil)n m.IY render them unnl,:cessary. 



- 1 1 -

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara­
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic. 

8.2 Type specifiers 
The type-specifiers are 

type-specifier: 
char 
short 
int 
long 
unsigned 
float 
double 
struct-or-unlon-specifler 
typedef-name 

The words long. short, and unsigned may be thought of as adjectives; the following combinations are 
acceptable. 

short int 
long int 
unsigned int 
long float 

The meaning of the last is the same as doubl e. Otherwise, at most one type-specifier may be given in a 
declaration. If the type-specifier is missing from a declaration, it is taken to be into 

Specifiers for structures and unions are discussed in §8.5; declarations with typedef names are dis­
cussed in §8.8. 

8.3 Declarators 
The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of 

which may have an initializer. 

declarator-list: 
tnlt-declarator 
tnll-declarator } declarator-list 

Inlt-declara tor: 
declarator tnlTlallzer 

Opl 

Initializers are discussed in §86. The specifiers in the declaration indicate the type and storage class of 
the objects to which the declarators refer. Declarators have the syntax: 

declarator: 
Identifler 
( declarator) 
* declarator 
declarator () 
declarator [ constant-expresslOno", ) 

The grouping is the same as in expressions. 

8.4 Meaning of declarators 
Each declarator is taken to be an assertion that when a construction of the same form as the declara­

tor appears m an expreS~lOn, it Yields an object of the indicated type and storage class. Each declarator 
contams exactly one IdentifIer; it is this identifier that is declared. 

If an unadorned identifler appears as a declarator, then it has the type indicated by the specifier head­
ing the declaration. 

A declarator in parenthe'ies is identical to the unadorned declarator, but the binding of complex 
declarators may be altered by parentheses See the examples below. 

Now im2]me a declaration 



- 12 -

T 01 

where T is J type-speedier (like int, etc.) J:;d :Jl is a tkdJr.-:iIOr. Suppoo)c this decbration makes the 
Identltler have type". . T," where the" ... " is empty if 01 is juSt a plain identifier (so that the type of 
x in ., int x" is Just ind. Then if 01 has the form 

the type of the contained identifier is ..... pointer to T." 

If 01 has the form 

o () 

then the contained identifier has the type " ... function returning T." 
If 01 has the form 

o (constant-expressIOn] 

or 

o () 

then the ~ontained identifier has type" ... array of T." In the first case the constant expression is an 
expression whose value is determinable at compile time. and whose type is into (Constant expressions 
are defined precisely in §lSJ When several "array of' specifications are adjacent, 3 multi-dimensional 
,ural' IS ..:re3ted~ the constant expressions which specify the bounds of the arrays may be missing only for 
the nrst member of the sequence. This elision is useful when the array is external and the actual 
definition, which allocates storage,' is given elsewhere. The first constant-expression may also be omitted 
when the declarator is followed by initialization. In this case the size is calculated from the number of 
initial elements supplied. 

An array may be constructed from one of the basic types, from a poin ter. from a structure or union, 
or from another array (to generate a multi-dimensional array). 

~ot all the possibilities allowed by the syntax above are actually permitted. The restrictions are as 
follows: functions may not return arrays, structures, unions or functions, although they may return 
pointers to such things: there are no arrays of functions, although there may be arrays of pointers to 
functions. Likewise a structure or union may not contain a function, but it may contain a pointer to a 
function. 

As an example, the declaration 

int i, *ip, f(), *fip(), (*pfi)(); 

declares an integer i, a pointer ip to an integer. a function f ro::turning an integer, a function fip 
::;:urr:;:ig a pointer to an integer, and a poin~~;, pfi to a func.:t:on ',lIhich returns an integer. It is espe­
~:ally useful to compar<! the last two. The binding of .. f ip () is * (f j.p ( ) ), so that the declaration sug­
gests, and the same construction in an expression requires. the calling of a function fip. and then using 
indlr~ction through the (pointer) result to yield an integer. In the declarator (*pfi) (), the extra 
p:.uen theses are necC:.')")ary, as they are also in an expre')~;un, to Indicate that indirectIOn through a pointer 
:G a fur.cticm /e!c~') a fur.ction, which is th.:.n '.::!!Ied; i~ rC'IHns an in!.eger. 

r\ ') anot her example, 

float fa (17), *afp (17); 

(je('hr~'S In arrfl.V of f10at number') and an array of pointers to float numbers, Finally, 

static int x3d(3] (5) (7]; 

declares a static three-dimensional array of integers, with rank 3 x 5 x 7. I n complete detail. x3d is an 
array of three items~ each item is an array of five arrays~ each of the latter arrays is an array of seven 
;:-;,cgtrs. Any ()f tr.~ ''':'A~rc.s5ions xJd, x3J[.:;.1. x3d(i] [jJ. x3d[i] [j] [k.) may reasonably appear in 
ar.expression. The first three have type "array," the last has type into 

8.5 Structure and union declarations 
A structure is an object consisting of a sequence of named members. Each member may have any 

type. A union i.:; an object which rr:;\y. at a given time, contain anyone of several members. Structure 
;md unIon speedier'> have the same form 



- 13 -

srrUCl-or-unlOn-speeljier: 

srruCf-or-UtlJ()tl I 5Irucl-decl-11Sf } 

srrUCf-or-UtllOtl Idenflfier I Slrucr-decl-llsr 

srnlCl-or-Uf1Ion Identifier 

srrUC1-or-unton: 

struct 
union 

The struct-decl-list is a sequence of declarations for the members of the structure or union: 

srrucl-decl-Itsr: 

slrucl-declaraflon 

SlrllCf-declarallOn SlruCf-decl-llsl 

slrucl-declara flon: 

type-speedier slrucl-declarator-/ISI i 

srruCf-decla ra IOr-IIsr: 

srruCf-declarator 

slrucr-declarator J 5IruC!-declaralor-lisf 

In the usual case. a struct-declarator is just a declarator for a member of a structure or union. A struc­
ture member may also consist of a specified number of bits. Such a member is also called a' .neld: its 
length is set off from the field name by a colon. 

strucr-dec!ara lOr: 

ckciararor 

dec/orator: conslanl-eXpresslOn 

: eonslOnl-expres5lOn 

\\'ilhin a structure. the ob.icct~ declared have addresses which increase as their declarations are read left­
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type: 
therefore. there ma: be unnamed holes in a structure. Field members are packed into machine integers: 
they do not straddle ~ords. A field which does not fit into the space remaining in a word is put into the 
next word. :--;0 field may be wider than a word. Fields are assigned right-to-Ieft on the PDP-II. left-to­
right on other machines 

A struct-declarator with no declarator. only a colon and a width, Indicates an unnamed fleld useful 
for padding to conform to extern(!ll: -imposed layouts. As a special case. an unnamed field with a width 
of 0 specifies alignment of the next field at a word boundary The "next field" presumably is a field. not 
an ordinary structure member. becau~e in the laller case the alignment would have been automatic. 

The language does not restrict the types of things that are declared as fields, but implementatiom are 
not required to support an~ but inreger fields. Moreover. even int fields may be considered to bc 
unsigned. On the PDP-l I. fields arc not signed and have only integer values. In all implementations. 
there are no arrays of fields. and the addres':i-of operator & may not be applied to them. so that there are 
no pointers to fields. 

A union may be thought of ar; a structure all of whose members begin at offset 0 and whose size is 
sufficient to contain any of its members. At most one of the members can be stored in a union at any 
time. 

A structure or union specifier of the second form. that is, one of 

struct Idenllfter I SlrUCI-decl-/ISl ) 

uni on Identifier I slrucl-decl-Its( } 

declare':i the identifier tn be the STructure taR (or union tag) of the structure specified by the list. A subse­
quent declaration may then use the-third form of specifier, one of 

struct Idenlifter 

union Idenllfier 

Structure tags allow definition of self-referential structures: they also permit the long part of the declara­
tion to be given once and used several limes. It is illegal to declare a structure or union which contains 
an instance of itself. but a structure or union may contain a pointer to an instance of itself. 



- l4 -

The names of members and tags may he >h~ '~:ime :~s nrdinary variables However. names of tags 
and members must be mutually distinct. 

Two structures may share a common initial sequence of members: that is. the same member may 
appear in two different structures if it has the same type in both and if all previous members are the same 
in both. (Actually. the compiler checks only that a name in two dilferen t structures has the same type 
and offset in-noth. but if preceding members differ the construction is nonportable.) 

A simple example of a structure declaration is 

struct tnode { 

l; 

char tword [20] ; 
int count; 
struct tnode *lefti 
struct tnode wright; 

which contains an array of 20 characters. an integer, and two pointers to similar structures. Once thi" 
declaration has been given. the declaration 

struct tnode s, *SPi 

declares s to be a structure of the given sort and sp to be a pointer to :.l structure of the given sort. With 
these declarations. the expression 

sp->count 

refers to the count field of the structure to which sp points: 

s.left 

refers to the left subtree pointer of the structure s: and 

s.right->tword(O] 

refers to the first character of the tword member of the right subtree of s. 

8.6 Initialization 
A declarator may specify an initial value for the identifier being dt;;c!arcd. The initializcr is preceded 

by =. and consists of an expression or a list of values nested in braces. 

inllializer: 

= expression 

{ inltiali::er-lisf } 

( iflltia Ii:er-li.)t , 

inltla Ii::er-list: 

expressIOn 

tniliak:er-lisr , iniflOli::er-list 

( itlltiali::er-Itst l 

All the expressions in an initialiltr 'for a static or (:xternal \ariablc must b\! constant ~xprcssion'i. 
which are described in ~15. or t;xprcssions which reduce to the address (Jr' iI previously d~clMed variable. 
pO'3'3ibly offset by a constant expressIOn. Automatic or rt.:gister vari<.tbk.., rndY be initi~tlilt.~d by arbitr:lfY 
expressions invu;vlng COr1:)ldnb. ~nu pr:,;·.iuusly Licclar~d variables Jnd functions. 

'>lallc and external variables which Me not initialized lIrc guaranteed to start otf as 0·. automatic and 
register variable,) which are not lrtltialiLed are guarantt.!ed to start off as garbdgc. 

When an initializer ilpp!ics to a s((J/ar (a pointer or ,In {)hi~ct ()f arithmetic tyrel. it consists of J sin­
g!.; (,!xpr·:;ssion. nerhaps in bracc" The initial v;Jlue of the object is taken from the expression: the same 
conversions as for as')il?nment are pertormed. 

When the declared variable is an axxreKate (a structure or array) then the initialilcr consists of a 
brace-enclosed, comma-separated list of initializers for the members of the ag.gregate. written in increas­
ing subscript or member order. If the aggrcg:He contains 5ubag.gregates. this rule ~Irrlies recursively to 
the members ur the aggregatc. If thcre are fewer initialilers in the list than there are members of the 
aggregate. then the aggregate is pitdded with 0'\;. It is not permitted to initialize union') or automatic 
aggregates. 



- 1 5 -

Brace~ m(j~ be elided as follows. If the initializer begins with a left brace, then the succeeding 
comma-separated list of initializers initializes the members of the aggregate~ it is erroneous for there to 

+>e more initializers than members. Ir. however, the initializer does not begin with a left brace, then only 
enough elements from the list are taken to account for the members of the aggregate~ any remaining 
members are left to initialize the next member of the aggregate of which the current aggregate is a par! 

A final abbreviation allows a char array to be initialized by a string. In this case successive charac­
ters of the string initialize the members of the array. 

For example. 

int x [] = I 1, 3, 5 J; 

declares and initializes x as a I-dimensional array which has three members, since no size was specified 
and there are three initializers. 

float y[4] [3] = { 
( 1, 3, 5 ), 
{ 2, 4, 6 }, 
( 3, 5, 7 l) 

) ; 

is a completely-bracketed initialization: I. 3, and 5 initialize the first row of the array yeo]. namely 
yeo] [0], yeo] [1]. and yeo] [2]. Likewise the next two lines initialize y[1) and y[2J. The initial­
izer ends early and therefore y [3] is initialized with O. Precisely the same effect could have been 
achieved by 

f loa t y [4] [3] = ( 
1, 3, 5, 2, 4, 6, 3, 5, 7 

) ; 

The initializer for y begins with a left brace. but that for y [0] does not. therefore 3 elements from the 
list are used. Likewise the next three are taken successively for y [1 ] and y [2]. Also, 

float y[4] [3] {. 
( 1 )) I 2 ) I I 3 ), ( 4 I 

) ; 

initializes the first column of y (regarded as a two-dimenSional array) and leaves the rest O. 
Finally. 

char msg[] = "Syntax error on line %s\n"; 

shows a character array whose members are initialized with a string. 

8.7 Type names 
In two contexts (to specify type conversions explicitly by means of a cast. and as an argument of 

sizeof) it is desired to supply the name of a data type. This is accomplished using a "type name, 
which in essence i~ a declaration for an obJect of that type which omits the name of the object. 

type-name: 
'Ype-5peClf!er abstrau-declarator 

abSTraCT-dec/ora tor: 
empty 
( abstract-dec/arator ) 
* abstraCT-declarator 
abstract-declarator () 
ahSlraCT-dec/aralOr [ trnmanr-C'xpresslOnOI'I ] 

To avoid ambig.uity, in the construction 

( abstracl-declaraTor ) 

the abstract-declarator is required to be non-empty. Under this restrictIOn, II IS possible to identify 
uniquely the location in the abstract-declarator where .the identifier would appear if the construction were 
a declarator in a declaration. The named type is then the same as the Iype of the hypothetical identifier. 
For example. 



int 
int * 
int *[3] 
int (*) [3] 

int * () 
int (*) () 

- 16 -

name respectively the types "integer," "pointer to integer." "array of 3 pointers to integers." "pointer 
to an array of 3 integers," "function returniRg pointer to integer." and "pointer to function returning an 
integer. 

8.8 Typedef 
Declarations whose "storage class" is typedef do not define storage. but instead define identifiers 

which can be used later as if they were type keywords naming fundamental or derived types. 

'Ypedej:name: 

Identifier 

\Vithin the ')cope of a declaration involving typedef. each identifier appearing as part of any declarator 
therein become 5yntactically equivalent to the type keyword naming the type associated with the identifier 
in t he way described in §8.4. For example. after 

typedef int MILES, *KLICKSPi 
typedef struct ( double re, im; I complex; 

the constructions 

MILES distance;. 
extern KLICKSP metricp; 
complex z, *ZPi 

are all legal declarations: the type of distance is into that of metricp is "pointer to int." and that of 
Z is the specified structure. zp is a pointer to such a structure. 

typedef does not introduce brand new types. only synonyms for types which could be specified in 
another way. Thus in the example above distance is considered to have exactly the same type as any 
other int object. 

9. Statements 
Except as indicated. statements dre executed in sequence. 

9.1 Expression statement 
\I1ost statements ;.ire expression statements. which have the form 

expressIOn; 

:>iu:,.llly expressinn statements are Jssignments or fUf'Clion calls. 

9.2 Compound statement, or block 
So that Sc\ eral statements (an b(; ' ... h(:J ,',h..::re one is expected. the compound statement blsQ, and 

(:ljulvalently. C~i~;'..:J "block") is provided: 

"()mpound-sra rement: 

(declaratiOn-lIst 'iwtemenr-Ilst 
"PI "P' 

declararlon-Itst: 

aec/arallon 

'ita tement-Ilst: 

o.;tatement 

'itatement 'ltafement-Ilst 

If any ()i' the identifiers in the dC;":iLltion-list \~'ere previously declared. the outer declaration is pushed 
down fr)r the duratinn flf the hl()(k. Ji'ter which it resumes its force. 



- 17 -

An~' mitlallzations of auto or register variables are rerformed each time the hlock 1<., entered at 
the lOp It IS currently rnsslhlc (hut a had rracticeJ to transfer into a block~ in that case the mitializdtions 
Jre not performed InitiallzJtions of static variables are rerformtd only once when the program begins 
execution. Inside a block. ext-ern declaratIons do not reserve storage so initialization is not permitted. 

9.3 Conditional statement 
The two forms of the conditional statement are 

if (expressloll) SlGtemenl 
if (expression) stalemenl else sraremenl 

In both cases the exrression is evaluated and if it is non-zero, the first substatement is executed. In the 
second case the second substatement is executed if the expression is O. As usual the "else" ambiguity is 
resolved h~ connecting an else with the last encountered else-less if. 

9.4 While statement 
The while statement has the form 

whi le (expressIOn) sralemenf 

The substatemenl is executed rereatedly so long as the value of the expression remains non-zero. The 
test takes place before each executIon of the statement. 

9.5 Do statement 
The do statement has the form 

de slOtemenT while (expressIOn) ; 

The substatement is executed rereatedly until the value of the expression becomes zero. The test takes 
place after each eX:::CUllOn of the statement. 

9.6 For statement 
The for statement haS the form 

for (exprt55Ion-J(,p, i e:(press10 n-2
oP1 

ThIS statement is equIvalent to 

expresslon- J ; 
while (expresslOn-2) 

statement 
expresslOn-3 ; 

expresslon-30pt ) statement 

Thus the first expreSSlnn specifies initializdticn for the loop. the se,cond specifies a test, made before each 
iteration. such that the loop is exited when the expression becomes 0: the third expression often specific~ 
an incrementation whIch IS rerformed after each iteration. 

An) or all ()f the expressions may be dropped. A missing expression-2 makes the implied while 
clause equivalent to whi le (1 ), other missing exrressions are simply dropped from the expansion above. 

9.7 Switch statement 
The swi tch statement causes control to be transferred to one of several statements derending on 

the Value of an expressi(ln It has the form 

swi tch (expressIOn) starement 

The usual arithmetic coO\ersion is performed on the expression, but the result must be int The state­
ment is typicall.\ comp()und Any statement v.ithin the statement may be IClheled with one or more case 
prefixes as follows 

cas e constant-expressIOn 

where the constant expres"lon must be into f\;o two of the case constants in the same switch m(j~ h,jvL' 
the SClme value. C()nstant exprcl)')ioos are precisely defined in ~15. 

There ma~ alv) be al m()s! one ~ldlemenl prefix of the form 



- 18 -

default : 

When the switch statement is executed, its exrressi0n is ~valuated and ;:omrared ',I,ith each case con­
stant. If one of the case constants is equal to the value of the expression. control is rassed to the state­
ment following the matched case prefix. If no case constant matches the exrression. and if there is a 
defaul t prefix, control passes to the prefixed statement. If no case matches and if there is no defaul t 
then none of the statements in the switch is executed. 

ca~ and default prefixes in themselves do not alter the flow of control. which continues unim­
peded across such prefixes. To exit from a switch, see break, &9.8. 

Usually the statement that is the subject of a switch is compound. Declarations may appear at the 
head of this statement, but initializations of automatic or register variables are ineffective. 

9.8 Break statement 
The statement 

break 

causes termination of the smallest enclosing while. do. for. or swi tch 5tatement: control passes to the 
statement following the terminated statement. 

9.9 Continue statement 
The statement 

continue 

causes control to pass to the loop-continuation portion of the smallest enclosing while. do. or for ')tate­
ment: that is to the end of the loop. ~ore precisely. in each of the statements 

while ( ... ) do ( for ( ... ) 

contin: cantin: contin: ; 
} while ( ... ); 

a continue is equivalent to goto contino (Following the contin: is a null ')tatement. ~9 13.) 

9.10 Return statement 
A function returns to its caller by means of the return statement. v, h ich has one of the forms 

return ; 
return expression; 

In the first case the returned value is undefined. In the o;;ccnnd case. :he \Jlue of the expreSSIon is 
returned to the caller of the function. If required. the expression is converted. as if by assignment. to the 
type of the function in which it appears. Flowing off the end of a function is equi\J.lent to J return v,lth 
no returned value. 

9.11 Goto statement 
Control may be transferred unconditionally by means of the <;tatement 

goto identifier; 

The identifier must be a label (~9.12) located In th'~ current function. 

9.12 Labeled statement 
Any statement may be preceded by label prehxes ()! the form 

Identifier: 

whIch ')erve to declare the idcntiher dS a label. The only use or LI IJbt!1 is ciS J target or d goto The 
scope of J. label is the current function. excluding any sub-blocks in which the slime iden!ltier has been 
redeclared. See & I I. 



- ] 9 -

9.13 Null statement 
The null statement ha~ the form 

A null st<Jtement is useful tc, carry a lahc:l just before the) of a compound statement or to suppl~1 a null 
body to a looping statement such as while. 

] O. External definitions 
A C program consists of a sequence of external definitions. An external definition declares an 

identifier to have storage class extern (by default) or rerhaps static, and a specified type. The type­
specifier (§8.2) may also be empty. in which case the type is taken to be into The scope of external 
definitions persists to the end of the file in which they are declared just as the effect of declarations per­
sists to the end of a block. The syntax of external definitions is the same as that of all declarations. 
except that only at this level may the code for functions be given, 

] 0.1 External function definitions 
Function definitions have the form 

/unellon-defi nl/lon: 

deei-spec!fier::'Of'1 functlOn-declaramr /unerion-body 

The only sc-specifiers allowed among the decl-specifiers are extern or static: see ~11.2 for the distinc­
tion between them, A function declarator is similar to a declarator for a "function returning ... " except 
that it lists the formal parameters of the function being defined, 

juncrlon-declaralOr: 

dec lararor ( parameler-/tsr
oPI 

) 

paramerer-lisr: 

Idenllfier 

IdenT!fier , paramerer-/isf 

The functio!'- bndy has the form 

/unCllOn-b(J(iy: 

dcr:larallOn-/isr eompound-sraremenr 

The Identifiers in the parameter list. and only those idenlifiers, may be declared in the declaration list. 
Any identifiers whose type IS not given are taken to be int The only storage class which may be 
spccifi:::d is regist:.er. if it is specified the corresponding actual parameter will be copied, if possible. 
intc) a regisl::,r at the {)U~S(:I of the function 

,A, slmplt t');;~mpk of a comDlete funrt inn defInition i~ 

in t :7.C::: Y. ( a) t,) c: 

ir.t IT,; 

rr = (a > bl ? a : b; 

ret~rn((~ > c) ? ~ : cl; 

Here ir-lt l~ thCI)P(.-:)I)'_citler. Ti,ax (f':;, b, c) i~ the function-declarator: int a, b, Ci is the 
declaration-I!'! for the forma! parameters: { ... I IS the block giving the code for the statement. 

C con\ ert~ aii f 1 oa t ill'! Udl par ameterS to doubl e. ~() formal parameters declared f loa t have their 
d:::::'-;JfJ:lon arliU'·~~d tn r:.::;\; doutle :\::'(i. ~,jrIC( a reference to an array in any context (in particular as 
;.,~ ,<'loll n:·:-;'''T'',:,I,:r) !l I;l~""'n ',; ~::'n :1 ~,,~I('r In In( nrs! element of the array. declarations of formal 
parameters declCifed "H:r,!\ of ., ,. are adlu<;ted to read "pointer to ... ", Finally. because structures. 
unIOns and functIOns cannot be passed to a function. it is useless to declare a formal parameter to be a 
stru;;lure. uninn or funo)(!r, (poinlcr'> t() such objects are of course permitted). 



- 20 -

10.2 External data definitions 
An external data definition has the faim 

data-deJinillon: 
declaration 

The stor~e class of such data may be extern (which is the default) or static, but not auto or 
register. 

11. Scope rules 
A C program need not all be compiled at the same time: the source text of the program may be kept 

in several files, and precompiled routines may be loaded from libraries. Communication among the func­
tions of a program may be carried out both through explicit calls and through manipulation of external 
data. 

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an 
identifier, which is essentially the region of a program during which i.t may be used without drawing 
"undefined identifier" diagnostics: and second, the scope associated with external identifiers, which is 
characterized by the rule that references to the same external identifier are references to the same object. 

11.1 Lexical scope 
The lexical scope of identifiers declared in external definitions persists from the definition through 

the end of the source file in which they appear. The lexical scope of identifiers which are formal parame­
ters persists through the function with which they are associated. The lexical scope of identifiers declared 
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the 
function in which t hey appear. 

Because all references to the same external identifier refer to the same object (see ~11.2) the com­
piler checks all declarations of the same external identifier for compatibility: in effect their scope is 
increased to the whole file in which they appear. 

I n all cases, however. if an identifier is explicitly declared at the head of a block. including the block 
constituting a function. any declaration of that identifier outside the block is suspended until the end of 
the block. 

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand and those 
associated with structure and union members and tags on the other form two disjoint classes which do 
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in 
the same class as ordinary identifiers. They may be redeclared in inner blocks. but an explicit type must 
be given in the inner declaration: 

typedef float distance; 

auto int distance; 

The int must be present in the second declaration. or it would be taken to be a declaration with no 
declarators and type distancet. 

11.2 Scope of externals 
If a function refers to an identifier declared to be extern. then somewhere among the flies or 

libraries constituting the complete program there must be an external definition for the identifier. All 
functions in d given progrJm which refer to the same external identifier refer to the same object. so care 
must be taken that the type and size specified in the definition are compatible with those specified by each 
function which references the data. 

The appearance of the extern keyword in :In external definition indicates that storage for the 
identifiers r,eing declared will be allocated in another file. Thus in a multi-file program. an external data 
detinition without the extern speciner must appear in exactly one of the files. Any other files which 
wish to give an external definition for the identifier must include lheextern in the definition. The 
identifier can be initializec.: only in the declaration where storage is allocated. 

Identifiers declared static at the top level in external definitions are not visible in other files. 
Functions may be declared st:.a t- ie. 

+!t .; dgreed IhJt Ihe I\.:! is thin here. 



• 2'1 -

12. Compiler control lines 
The C compiler contaln5 d rrcpr()(::<;~rH C;lP,lbil.. IJf macr(J substitution, conditional compilation, and 

inclusion of named nles Line~ beginn:n~ with ~ communicate with this preprocessor. Th~se lines have 
syntax Independent (Jf the rest of the lon~uage: they may appear anywhere and have effect which lasts 
(independent of scope) until the end of the source program file. 

12.1 Token replacement 
A compiler-control line of the form 

#define Idenl(fler token-string 

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with 
the given string of tokens. A line of the form 

#def ine Identdier ( Identifier J ••• J idenl{!ier ) IOken-st"ng 

where there is no sPace between the first identiner and the (, is a macro definition with arguments. Sub­
sequent instance~ of the first Identifier followed by a (, a sequence of tokens delimited by commas, and a 
) are replaced by t he token string. in the definition. Each occurrence of an identifier mentioned in the 
formal param~ter lis! of the deflnIlion i~ repiaced by the.: corresponding token string from the call. The 
actual arguments in the Call are token strings separated by commas: however commas in quoted strings or 
protected by parentheses do not separate arguments. The number of formal and actual parameters must 
be the same. Text inside a string or a character constant is not subject to replacement. . 

In both forms the replacement string is rescanned for more defined identifiers. In both forms a lohg 
definition ri1a~ be continued un another line by writing \ at the end of the line to be continued. 

This facilit~ is most \'ctluable for definition of "manifest constants," as in 

#define TABSIZE 100 

int table[TABSIZE]; 

:\ CO!ltfCJ! line of the form 

#undef Idenflfier 

causes the identifIer's, prepr(Jcessor definition to be forgotten, 

12.2 File inclusion 
A compiief control line of the form 

; inc 1 ude ",filename" 

C3U C,':'1 the r~r·ldcement of thal linc b:, th~ entire content(. of the fik .filename The named file i~ sCdrchcd 
for first in thc dl~CCi(Jn (If the CJrig.indl v>urce hie, and then in a sequence of standard places. Alterna­
tively. a contrr)l line (}f the form 

tinclude <fiknamc> 

-;eCi;ch~~ only the standard place~ anc! f1(,t the qirectnry of the source file, 
#include's m(j" be: nested 

I 2.3 Conditional compilation 
A compiler contrCiI line of the form 

# if ('onstant-expressION 

checks whethu the constant expreS')I(>n t sec ~ 15) e\;aiuatcs to non-zero. A control line of the form 

#: :'de: Idpntl/ier 

checkc: whethc~ the Ide!'1~ificr IS currentI'. defined In the preprocessor: that is, whether it has been the 
subject of a #def ine ~:()ntrol line, "A control line of the form 

checks whether :h-: Id~ntJfici 1<; CUi''::;-:!:'' ur.ckflnccI In the preprocessor 
All three tfJrms :ire foilov.c:J b:. <I:' drhitrdf) number of lines, possibly containing a control line 



#else 

and then by a control line 

#endif 

- 22 -

If the checked condition is true then any lines between #else and #endif arc ignored. If the checked 
condition isJalse then any lines between the test and an #else or, lacking an ttelse. the #endif. are 
ignored. 

These constructions may be nested. 

12.4 Line control 
For the benefit of other preprocessors which generate C programs, a line of the form 

# 1 ine constant Identifier 

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next 'iOUle 

line is given by the constant and the current input fil::! is named by the identifier. If the identifier is 
absent the remembered file name does not change. 

13. Implicit declarations 
It is not always necessary to specify both the storage class and the type of identifiers in a declar:llion. 

The storage class is supplied by the context in external definitions and in declarations of formal parame­
ters and structure members. In a declaration inside a function, if a stoLlge class but no type is given. the 
identifier is assumed to be int: if a type but no storage class is indicated, the idcntificr is assumed to be 
auto. An exception to the latter rule is made for functions, since auto functions are meaningless (C 
being incapable of compiling code into the stack): if the type of an identifier is "function returning ... ", it 
is implicitly declared to be extern. 

In an expression, an identifier followed by ( and not already declared is contextually declared to be 
"function returning int". 

14. Types revisited 
This section summarizes the operations which can be performed on objects of certain types. 

14.1 Structures and unions 
There are only two things that can be done with a structure or union: name one or its members (by 

means of the. operator): or take its address (by unary &L Other operations, such as assigning from or 
to it or passing it as a parameter, draw an error message. In the future. it is expected that these opera­
tions. but not necessarily others, will be allowed. 

§7.1 says that in a direct or indirect structure reference (with • or -» the name on the right must 
be a member of the structure named or pointed to by the expression on the left. To allow an escape 
from the typing rules, this restriction is not lirmly enforced by the compiler. I n fact, any Ivalue is Jllowed 
before ., and that Ivalue is then assumed to have the form of the structure nf which the name nn the 
right is a member Also, the expression before J -> \S iequired only to be a pointer or an integer. If a 
pointer. it is assumed to point to a structure of which the name on the right is a member. If an integer. 
it is taken to be the abSOlute address, in machine storage units, of the appropriatc structure. 

Such constructions are non-portablc. 

14.2 Functions 
There ,He ';nl; tW0 thing~ th:ll c\r ~e done 'Nith J function: call it. or uke its address. If the name 

of d function dPpears in an expression :lnt in the function-nul1lc position or a call. J pointer to the func­
tion is gcneratt.::d. Thus, to paSS one function to anolh...:r. Iinc might say 

int f () ; 

g (f) ; 

Then the definition of g might read 



- 23 -

g(funcp) 
in t ( * fun c p) () ; 

\otice that f must be declared explicitly in the calling routine since its appearance In g (f) was not fol­
lowed by (. 

14.3 Arrays, pointers, and subscripting 
Every time an identifier of array type appears in an expression. it is converted into a pointer to the 

first member of the array. Because of this conversion. arrays are not Ivalues. By definition. the subscript 
operator [J is interpreted in such a way that E1 [E2) is identical to * ( (E1 ) -+- (E2) ). Because of the 
conversion rules which apply to -+-. if E1 is an array and E2 an integer. then E1 (E2) refers to the E2-th 
member of E1. Therefore. despite its asymmetric appearance. subscripting is a commutative operation. 

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array 
of rank lXJX'" xk. then E appearing in an expression is converted to a pointer to an (n-l)­
dimensional array with rank jX ... xk. If the * operator. either explicitly or implicitly as a result of 
subscripting. is applied to this pOinter. the result is the pointed-to (n-l )-dimensional array. which itself 
is immediately converted into a pointer. 

For example. consider 

int x[3) [5); 

Here x is a 3)( 5 array of integers. When x appears in an expression. it is converted to a pointer to (the 
first of three) 5-membered arrays of integers. In the expression x[i). which is equivalent to * (x+i). x 

IS first con\ erted to a pointer as described~ then i is converted to the type of x. which involve~ multiply­
ing i by' the length the object to which the pointer points. namely 5 integer objects. The results are 
added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to 
the nrst of the integ.ers. If there is another subscript the same arg.ument applies again: this time the 
result IS an integer. 

It follows from all this that arrays in C are stored ro\V-wise (last subscript varies fastest) and that the 
first subscript in the dec.;aration helps determine the amount of storage consumed by an array but plays 
no other part in subscript cal~ulations. 

14.4 Explicit pointer conversions 
Certain conversions invol\ing pointers are permitted but have implementation-dependent aspects. 

The:, .. He all s~,ecifled by mean<; of dn explicit type-cor.\ier~ion (}perator. 9~7.2 and 8.7. 
A pointer mdY be converted to any (If the integral types large enough to hold it. Whether an int or 

long is required is machine dependent. The mapping function is also machine dependent. but is 
intended to be unsurprising to those who know the addressing structure of the machine. Details for 
some particular machines are given below. 

An object of ir.te;ral type may be explicitly converted to a pointer. The mapping always carries an 
integer comerted from a pointer back to the same pointer. but is otherwise machine dependent. 

A pointer to one type may be converted to a pointer to another ty!pe. The resulting pointer ma~ 
cause addressing. exceptions upon use if the subject pointer does not refer to an object suitably aligned in 
stora~e. It is guaranteed that a pOinter to an object of a given size may be converted to a pointer 1(1 an 
object of a smaller size and back again without change. 

For example. a storage-allocation routine might accert a siz.e (in bytes) of an object to allocate. and 
return a char pointeL it might be used in this way. 

extern c~ar *alloc(); 
double *dpi 

dp = (double *) alloc(sizeof(double)); 
*dp = 22.0 / 7.0; 

alloc must ensure lin a machir.c-dC:flcndent way) that its return value i~ suitable for conversion to a 
pointer to dO'.lble: then the usc of the function is portable. 



- 2-l -

The pointer representatir)n on th\.! PDP-11 c()rrest'()f1ds In :1 16-bit integer and is measured in bytes. 
chars have no alignment requirements: everything. e!':it: must have an I:!ven address. 

On the Honeywell 6000. a pointer corresponds to a J6-bit integer: the word part is in the left 18 bits. 
and the t",,·o bits that select the character in a word just to their right. Thus char pointers are measured 
in units of 2lb bytes: everything else is measured in units of 218 machine words. double quantities and 
aggregates containing them must lie on an even word address (Q mod 219

). 

The 18\1 370 and the Interdata 8/32 are similar. On both, addresses are measured in bytes: elemen­
tary objects must be aligned on a boundary e,qual to their length. so pointers to short must be 0 mod 2. 
to int and f loa t 0 mod 4. and to double 0 mod 8. Aggregates are aligned on the strictest boundary 
required by any of their constituents. 

15. Constant expressions 
In several places C requires expressions which evaluate to a constant: after case. as array bounds. 

Jnd in initializers. In the first two cases. the expression can involve only integer constants. character con­
stants. and s i zeof expressions, possibly connected by the binary operators 

+ * / % & « » != < > <= >= 

or by the unary operators 

nr by the ternary operator 

? : 

Parentheses can be used for grouping. but not for function calls. 
\1ore latitude is permitted forinitializers: besides constant expressions as discussed abov'~. one can 

ellso elpply the unary & operator to external or static objects. and to external or static arrays subscripted 
with a constant expression. The unary & can also be applied implicitly by appearance of unsubscripted 
arrays and functions. The basic rule is that initializers must evaluate either to a constant or to the 
address of a previously declared external or static object plus or minus a constant. 

16. Portability considerations 
Certain parts of C are inherently machine dependent. The following list of potential trouble spots is 

not meant to be all-inclusive. but to point out the main ones. 
Purely hardware issues like word size and the properties of Ooating point arithmetic and integer divi­

sion have pr()ven in practice to be not much of a problem. Other facets of the hardware are reOected in 
differing implementations. Some of these. particularly sign extension (converting a negative character 
into a negative integer) Jnd the order in which bytes are placed in a word. are a nuisance that must be 
carefully v.atched. \1ost of the others are oniy minor problems. 

The number of register variables that can actually be placed in registers varies from machine to 
machine. as does the set of valid types. Nonetheless. the compilers all do things properly for their own 
:nJchine: excess ()r invalid register declarations Jre ignored. 

Some difficulties Jrise only when dubious coding practices are used. It is exceedingly unwise to write 
rrograms that depend on any of these properties. 

The order of evaluation of function arguments is not specified by the language. It is right to kft on 
the PDP-II. and VAX-II. left to right on the others. The order in which side effects take place is also 
Ij nspecified. 

<)incr: chJrJcter conSL.lnts are really nhjects of type into multi-character character conSlJnts m~ly be 
rermitted. The ')pecihc implementation is very machine dependent, however. because the order in which 
chJracters arc assigned to J word varies from one machine to another. 

Field~ Jre assigned tn words :Ind ch:.Hacters to integers right-to-Ieft on the PDP-II and V.-\X-II and 
Icft-to-ri~ht on ()ther machines. These differences are invisible to isolated programs which do not indulge 
In type punning (for example. by converting an int pointer to a char pointer and inspecting the 
pOinted-to ')torage), but must be accounted for when conforming to externally-imposed storage layouts. 

The language accepted by the vari()us compilers differs in minor details. \1ost notably. the current 
PDP-II compiler will not initialize structures containing bit-fields, and does not accept a few assignment 
I)f)crat()rs in certain contexts where the value of the assignment is used. 



• 25 • 

17. Anachronisms 
SInce C IS an evohing lanfuage. certain obsolete constructions may be found in older programs 

Although most ver~ions of the comriler supror! such anachronisms, ultimately they will disappear, leav­
ing only a portability problem behind. 

Earlier versions of C used the form =op instead of op= for assignment operator~. This leads to 
ambiguities. tyrifled by 

x=-1 

which actually decrements x since the = and the - are adjacent. but which might easily be intended to 
assign -1 to x. 

The syntax of initializers has changed: rreviously, the equals sign that introduces an initializer was 
not rresent. so instead of 

int x = 1; 

one used 

int x 1 . , 

The change was made because the Initialization 

int f (1 +2) 

resembles a function declaration closely enough to confuse the compilers. 



- 26 -

18. Syntax Summary 
This summary of C syntax is intended more for aiding comprehension than as an exact statement of 

the language. 

18.1 Expressions 
Th~ basic expressions are: 

expression: 

primary 

* expression 
& expression 

- expression 
! expression 

- expression 

++ Ivalue 

-- Ivalue 
Ivalue ++ 
Ivalue --
sizeof expression 
( type-name) expressIOn 

expression binop expression 
expreSSIOn ? expression : expression 

Ivalue asgnop expression 

expression ) expression 

primary: 

identifier 
constant 
stflng 

( expression ) 

pnmary ( expression-listl)PI ) 
pnmary ( expression) 

Ivalue . identifier 

Ivalue: 

primary -> identifier 

identifier 
primary ( expression) 

Ivalue . identifier 

primary -> identifier 

* expressIOn 
( Ivalue ) 

The primary-expression operators 

( ) [ ) -> 

ha ve highest priority and group left-to-right. The unary operators 

* & ++ sizeof (type-name) 

have priority below the primary operators but higher than any binary operator, and group right-to-Ieft. 
Binary operators group left-to-right: they have priority decreasing as indicated below. The conditional 
()perator groups right to left. 



- 27 -

bmop: 

* / % 

+ 

» « 
< > <= >= 

!= 

& 

&& 
1 1 

? : 

Assignment operators all have the same priority, and all group right-to-Ieft. 

asgnnp: 
+= *= 1= %= »= «= &= ~- 1= 

The comma operator has the lowe<;t priorit)', and groups left-to-right. 

18.2 Declarations 

declaraTion: 
decl-specifiers iniT-declaraTor-flsT

oP' 
; 

decl-specifiers: 
rype-speqfier decl-spec(fiersofl, 
sc-speCifier decl-spec!fief5oP' 

sc-speCifier: 
auto 
static 
extern 
register 
typedef 

Type-speqfier: 
char 
short 
int 
long 
unsigned 
float 
double 
sTrucl-or-unlon-specl/ier 
ryppdef-name 

'niT-declarator-list: 
ifIll-declarator 
tnil-dec/araTOr J tnil-declaraTor-flst 

JnIf-declaraTOr: 
declo raror tnlTla Ilzer 

declarator· 
Idpntlfier 
( declarator) 

* dec/arawr 
de cia ra lor () 

{If'1 

declara{or [ co nSTant-expresslOnOf'1 ] 



- 28 -

struct-or-union-specifier: 
struet (srruct-dtcl-Iist I 
struet identifier ( struct-decl-Iist I 
s true t identifier 
union ( struct-decl-list I 
union identifier ( struct-decl-Iist I 
union identifier 

struct-decl-list: 
struct-declaration 
strucr-declaration struct-decl-list 

struct-declara tion: 
type-specifier struct-declarator-list ; 

struct-dec lara tor-list: 
struct-declarator 
struct-declarator I struct-declarator-list 

struct-declara tor: 
declarator 
declarator : constant-expression 
: constant-expression 

initializer: 
= expression 

( Iniria lizer-list I 
= ( initializer-list I 

inifia fizer-list: 
expression 
initializer-list I inttializer-list 
( initializer-Iist I 

type-name: 
type- speCl.fier a bstract-declara tor 

a bstrac t-dec lara tor: 
empty 
( abstract-declarator) 
* abstract-declarator 
abstract-declarator () 
abstract-declarator [ constant-expressionQ", ] 

typedeJ-na me: 
identtjier 

18.3 Statements 

compound-statement: 
( declaratlOn-list

oP1 
'Statement-listo", 

declaratIOn-list: 
declaration 
declaration declaratIOn-list 



staTemenT-list: 

statement 

statement staTement-list 

staTement: 

compound-statement 

expressIOn i 

if (expressIOn) statement 

- 29 -

if (expressIOn) statement else sralement 

whi Ie (expression) sraTement 

do statement whi le (expressIOn) ; 

for (expressIOn-lop,; expresslOn-2op, expression-3op,) statement 
swi tch (expressIOn) statement 

case constant-expressIOn 

defaul t : Sfa/emenf 

break ; 
continue ; 
returr. ; 
return expressIOn 

goto Ident{lier ; 

Ident(fier : statement 

statement 

] 8.4 External definitions 

prOf;ram: 

ex!ernal-de.lintlion 

external-de.finttlon program 

externa I-definiTion: 

function-definition 

data-definttlOn 

fu ncr lon-deli ntlion: 
type-specif!erop, juncllO n-declara tor Junc/ion-body 

ju nc t fO n-dec la ra tor: 

declarator ( parameter-list
oP' 

parameTer-list: 

fdentlfier 

Idenlifier ) parameter-1m 

function-body: 

Type-decl-Ifst funcTIOn-statement 

functlOn-sta lemenl: 

( dec/(JraTlolI-IIST
op

: s!(JTement-II5t 

da lO-defintllon: 

18.5 Preprocessor 

exterr' opt f'v'fh-Spccf(icrop, Inll-declararor-Ilslop, ; 

s ~a tic ,;, f\'{J('- ~!')('cd;er:,p: I ntl-dr;c!arator-hstop, ; 



- 30 -

#define Identifier token-strin~ 
#define Identifier( Identifier, ... I Identifier) token-srr:ng 
#unde f identifier 
#; inc 1 ude "filename" 
Ifinclude <filename> 
If i f consta nt-expression 
#ifdef identifier 
#ifndef identifier 
#else 
#endif 
#line constant identifier 

/' 



L.;.-' rr-'" , 



Recent Changes to C 

November 15, 1978 

A few extensions have been made to the C language beyond what is described in the reference docu­
ment ("The C Programming Language," Kernighan and Ritchie, Prentice-HaiL 1978). 

1. Structure assignment 

Structures may be assigned, passed as arguments to functions, and returned by functions. The types 
of operands taking part must be the same. Other plausible operators, such as equality comparison, have 
not been implemented. 

There is a subtle defect in the PDP-II implementation of functions that return structures: if an inter­
rupt occurs during the return sequence, and the same function is called reentrantly during the interrupt, 
the value returned from the first call may be corrupted. The problem can occur only in the presence of 
true interrupts, as in an operating system or a user program that makes significant use of signals: ordinary 
recursive calls are quite safe. 

2. Enumeration type 

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax 
on p. 193 of the C book 3dd 

with syntax 

enum-spec'(!ier 

enum-speci/ter: 

enUITt { enum-Iist I 
enurn Ident!!ier { enum-Ilst 
enurn Idenllf/er 

enum-llst: 

enumerator 

enum-llst, enumerator 

enumerator: 

Ident(f1er 
Ident(f/er = constant-expressIOn 

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a 
struct-specifier: it names a particular enumeration. For example, 

enurn color { chartreuse, burgundy, claret, winedark I; 

enurn color *cp, coli 

r11akes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer 
to an object of that type, and col as an object of that type. 

The identifiers in the enum-list are declared as constants, and may appear wherever constants are 
required. If no enumerators with = appear. then the values of the constants begin at 0 and increase by I 
as the declaration is read from left to right. An enumerator with :Ie gives the associated identifIer the 
value indicated: subsequent identifiers contInue the progression from the assigned value. 

Enumeration tags and constants must all be distinct. and. unlike structure tags and members. are 
drawn from the same set as ordinary identifiers 

Objects of a given enumeration type are regarded as having a type distinct from objects of all other 
types. and lint flags type mismatches. In the PDP-II implementation all enumeration variables are treated 
as if they were into 


