TECHNOLOGY INCORPORATED

XENIX
SYSTEM

SOFTWARE
DEVELOPMENT

VOLUME 2

information in this document is subject to change without notice and
does not represent acommitment on the part of Microsoft. The
software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

© 1982, Microsoft Corporation

© 1979, Bell Telephone Laboratories, Incorporated
Reprinted with permission.

Copyright 1979, Bell Telephone Laboratories, Incorporated

Holders of a UNIX™ software license are permitted to copy this
document, or any portion of it, as necessary for licensed use of the
software, provided this copyright notice and statement of
permission are included.

Catalogno. 9100
Part no. 91F00B

Document no. 8603b-100-00

CONTENTS

lo INTRODUCTION'..‘.Q....I"...l..l.........."...'.. l—l

2, BASIC DEVELOPMENT TOOLS ..t cecteeccccsacooccsasnnsses 2-1
2.1 CC: The C COMPiler.c.csceseessccecscsssecsancsococcce 2=2
.1 Invocation Switches 2-3
The Loader 2-5
Files 2-6
ogram Checker.....eeeeeeececsnssccnee 2=7
A Word About Philosophy 2-8
Unused Variables and Functions 2-8
Set/Used Information 2-9
Flow of Control 2-10
Function Values 2-10
Type Checking 2-11
Type Casts 2-12
Nonportable Character Use 2-13
Assignments of longs to ints 2-13
Strange Constructions 2-14
Ancient History 2-15
Pointer Alignment 2-16
~-Multiple Uses and Side Effects 2-16
Shutting Lint Up 2-17
Library Declaration Files 2-18
Notes 2-19
Current Lint Options 2-20
am Maintenance Program...cecesecsses 2-21
Description Files and Substitutions 2-25
Command Usage 2-27
Implicit Rules 2-28
Example 2-30
Suggestions and Warnings 2-31
Suffixes and Transformation Rules 2-33
IX Debugger...ceeeeecececceeennacacaas 2-35
Invocation 2-35
Current Address 2-35
Formats 2-36
General Request Meanings 2-37
Debugging C Programs 2-37
Maps 2-46
Advanced Usage 2-48
Patching 2-51
Anomalies 2-52
Assembler...ieceeeieecticeencrncsess 2-69
Usage 2-69
Lexical conventions 2-69
Segments 2-70

NN

1
1
1

2.2 LINT: A

. o o Je o

HHEMFHEFERRRFEFEEOOIOAMB WNHER WN

e o o o e o (Y o o

WH DN NDNDNDNODNDNDNDNDDNDNDN

PR RN R RN NN RN RN R NN

H OB WN HO

2.3 MAKE: A o)

. o Hj e o e o o o
=

VT DD DD DD B X WWwwww

e o
* o . .

.
.

2.4 ADB: Th

e ¢ ¢ ¢ ¢ ¢ 2 o o

WNHZOONdAOAUIDWNHZANUDS WN

=3
o
NRONONNNODNONONNODODNDNO DD NDNDN

—
>

2.5 AS:

4'
4.1

XENIX Software Development

2.5.4 The location counter 2-71
2.5.5 Statements 2-71

2.5.6 Expressions 2-73

2.5.7 Pseudo-operations 2-76

2.5.9 Addressing Modes 2-84

2.5.10 Memory Addressing Modes 2-85
2.5.11 Diagnostics 2-86

ENVIRONMENT . ¢t ceeecocosossccocassscscscscsscsncsncseses
THE C INTERFACE TO THE XENIX SYSTEM.:cccceecococcee
3.1.1 Basics 3-2
The Standard I/O Library 3-4
Low-Level I/0 3-9
Processes 3-15
Signals and Interrupts 3-22
LIBRARY . evevesosoosvscoccccosscecnscsosssssosssnsce
The Standard I/0 Library 3-27
General Usage 3-27
File access 3-29
File Status 3-33
Input Function 3-35
Output Functions 3-39
String Functions 3-44
Character Classification 3-47
Character Translation 3-49
0 Space Allocation 3-50
ENIX ASSEMBLY LANGUAGE INTERFACE..:.eeeoeoen.
Memory Format: 3-55
Calling Sequence 3-55
Procedure Entry and Exit 3-56
Return Values 3-56
System calls 3-57

* o e e o o & o o .

ie o o o o o o o o o le o

WWWWWHWWWWwWwwwwww Hwwww
N WX WOOSNOAMDWNDHOQU S WN

OTHER 'I‘OOLSooooo'-o:.oc.;ooo.on.-a..'Qo;ooncoooooo-

The M4 Macro Processor..........................

4.1.1 Usage 4-2 v
4.1.2 Defining Macros 4-3

4.1.3 Quoting 4-4

4.1.4 Arguments 4-6

4.1.5 Arithmetic Built-ins 4-7
4.1.6 File Manipulation 4-8

4.1.7 System Command 4-9

4.1.8 Conditionals 4-9

4.1.9 String Manipulation 4-10
4.1.10 Printing 4-11

4.1.11 Summary of Built-ins 4-12

L X e oo eseooososaosssosscascosnssescscscscsascascsacnsssecs
4.2.1 Introduction 4-13

4.2.2 Lex Source 4-16

3-26

3-55

4-13

XENIX Software Development

>

3 Lex Regular Expressions 4-17
4 Lex Actions 4-21
5 Ambiguous Source Rules 4-25
6 Lex Source Definitions 4-28
7 Usage 4-29

Lex and Yacc 4-30

Examples 4-30
0 Left Context Sensitivity 4-34
1 Character Set 4-36
2
3

e o o o o
o e o o .

1 Summary of Source Format 4-37
1 Notes 4-39

: Yet Another Compiler-Compileér....cccceeeee 4-40
1 Basic Specifications 4-43

2 Actions 4-46

3 Lexical Analysis 4-48

4 How the Parser Works 4-50

5 Ambiguity and Conflicts 4-56
6 Precedence 4-61
7
8
9
1
1
1

e e

B B BB B e WWWWWWWWWWWWWWAONNDNMDNDNNDMDDNDNDN

Error Handling 4-64

The Yacc Environment 4-66

Hints for Preparing Specifications 4~-67
0 Advanced Topics 4-71
1l A Simple Example 4-74
2 Yacc Input Syntax 4-77
3
4

* o o o & o o e o s o o (e o

An Advanced Example 4-79

014 Features Supported but not Encouraged 4-85
n Interactive Desk CalculatOr..eeeecesecsces 4-86

Synopsis 4-86

Internal Representation of Numbers 4-88

The Allocator 4-89

Internal Arithmetic 4-90

Addition and Subtraction 4-91

Multiplication 4-91

Division 4-91

Remainder 4-92

Square Root 4-92

Exponentiation 4-92

Input Conversion and Base 4-93

Output Commands 4-93

Output Format and Base 4-93

Internal Registers 4-93

Stack Commands 4-94

Subroutine Definitions and Calls 4-94

Internal Registers - Programming DC 4-94

Push-Down Registers and Arrays 4-94

Miscellaneous Commands 4-95
Desk-Calculator Languag€..sceeececocescses 4-96

Simple Computations with Integers 4-97

Bases 4-98

Scaling 4-99

Functions 4-100

Lo I e A L I g S N A N L T N N Y X Y-S

T N N e)

WROJdAULTEWNHO

e o 2 0 * o

AU I e 0 00 <D OY U1 W N

o (Yo ¢ e ¢ o o o o o o

Ll e e B A A N N Y
[SANC U, BNG, IR o L I -J - G ~GN N '

[S
(] L] e e]
(S IS, NV, N6, |
* o
OWooJdov WU

XENIX Software Development

Subscripted Variables 4-102
Control Statements 4-102
Some Details 4-104

Three Important Things 4-105
Notation 4-107

5. R F RENCE.oo.'..o.oooooo.f.o-..o-o..oo.oooootooco

EFE
5.1
5.2
5.3
5.4
5.5

APPENDIX A:

Commands
System Calls
Subroutines
Special Files
File Formats

THE C REFERENCE MANUAL

5-1

CHAPTER 1

INTRODUCTION

One of the primary uses of the XENIX system is as an
environment for software development. This manual describes
the tools available in this environment and the 1low 1level
environment itself. Some knowledge of the XENIX system and
of the C programming language is presumed.

Nearly all of the XENIX system is written in the C
programming language. Therefore, C is the ideal language for
creating new XENIX applications. For more information on
programming in C, you should refer to Volume I, Programmer's
Introduction, for information on the concepts and software
that underly the XENIX system, and to Kernighan and
Ritchie's book, The C Programming Language, for an excellent
tutorial and reference on the 1language itself. The C
Reference portion of this book is contained in Appendix A of
this manual.

The tools used to create executable C programs are:

cc The C compiler.

lint A C program checker.
14 The XENIX loader.

as The XENIX assembler.

Note that cc automatically invokes both the loader and the
assembler so that use of either 1is optional. Lint is
normally used in the early stages of program development to
check for illegal and improper usage of the C language.

In addition to the above tools, the program make is used to
automatically maintain and regenerate the software in medium
scale programming projects.

The above tools are used to create executable C programs.
These programs are created to run in the XENIX environment.
This environment is manifested in the wvarious system calls
and libraries that are available to the programmer.

It is worth noting that not all programming projects are
best implemented in C, even if they are programs written for
XENIX. Often, simple programs can be written in the shell

XENIX Software Development

command language much more quickly than they can be in C.
For some complicated programs, lex and yacc may be just what
is required. Lex is a lexical analyzer that can be used to
accept a given input language. Yacc is a program designed
to compile grammars into a parsing program. Typically, it
is used to compile languages that are recognized by 1lex.
For this reason, 1lex and yacc are often used together,
although either can be used separately.

With the above overview of software development in mind,
this manual is organized as follows:

CHAPTER 1l: INTRODUCTION
The chapter you are now reading contains a word
about the develpment of software on the XENIX .
system with emphasis on how the the software
tools discussed in this manual fit together.

CHAPTER 2: BASIC SOFTWARE
This chapter describes each of the basic tools
that you are 1likely to use either directly or
indirectly, in creating C programs on the XENIX
system.

CHAPTER 3: ENVIRONMENT
This chapter discusses the standard XENIX
environment and how this environment can be
accessed either from C or from assembly language.

CHAPTER 4: OTHER TOOLS
This chapter describes tools and 1languages that
are useful for special purposes, but that are not
as generally useful as the software discussed in

chapter 2.

CHAPTER 5: REFERENCE ,
This chapter contains important information on
commands, system calls, subroutines, special
files, and file formats. This information is
indispensible to the serious programmer.

CHAPTER 2

BASIC DEVELOPMENT TOOLS

This chapter discusses five

lint, make, adb, and as. Together, these tools make
solid software development package,
create, execute, debug,

basic development tools: cc,

up a
premitting you to

and maintain software. Each of
these tools is discussed in turn in the following sections.

C2-1

XENIX Software Development

2,1 CC: The C Compiler

Cc is the command used to invoke the XENIX C compiler.
Since the entire XENIX system is written in the C language,
cc is the fundamental XENIX program development tool. The C
language supported by the C compiler is described in
Appendix A, The C Reference Manual. For more information on
programming - in C, see The C Language, by Kernighan and
Ritchie. - ‘

This section discusses the compiler used to create
executable files from programs written in the C language.
The emphasis here is on giving insight into c¢c's operation
and use. Special emphasis is given to input and output files
and and to the available compiler options. Throughout,
familiarity with compilers and with the C language is
assumed. :

The fundamental function of the C compiler is to produce
executable programs by processing C source files. The word
““processing'' 1is the key here, since the compilation
process 1involves several distinct phases: These phases are
described below: ; :

Preprocessing

In this phase of compilation, your C source
program is examined for macro definitions and
include file directives. Any include files are
processed at the point of the include statement;
then occurrences of macros are expanded throughout
the text. Normally, standard include files found
in the /usr/include directory are included at the
beginning of C programs. These standard include
files normally are named with a “.h' extension.
For example, the following statement includes the
definitions for functions in the standard 1I/0
library:

#include <stdio.h>

Note that the angle brackets indicate that the
file 1is ©presumed to exist in /usr/include. The
effects of preprocessing on a file can be captured
in a file by specifying the -P switch on the cc
command line. The useful for debugging, when you
suspect that an include file or macro is not
expanding as desired. :

Optimization
Optimization of generated code can be specified on
the c¢cc command 1line with the =0 switch. This

XENIX Software Development

option should be used to increase execution speed
or to decrease size of the executing program.
Since programs will take longer to compile with
this option, you may want to use this option only
after you have a working debugged program.

Generation of Assembly Code

Assembly

The C compiler generates assembly code that is
later assembled by the XENIX assembler, as. Cc's
assembly output can be saved in a file by
specifying the -S switch when the compiler is
invoked. Assembly output is saved in a file whose
name has the “.s' extension.

To assemble the generated assembly code, cc calls
as to create a “.o0' file. The “.o' file is used in
the next step, linking and loading.

Linking and Loading

The final phase in the compilation of a C program
is 1linking and loading. In this phase, your newly
created “.o' file is loaded into memory along with
any needed “.o' library modules. These modules are
then linked together to create a final executable
module, whose name by default is a.out. The
program responsible for all this is the XENIX
loader, 1d. Loader options can be specified on
the cc command line. These options are discussed
later in the section on the loader.

It is important to realize that all of the above
phases can be controlled at the cc command level:
each does not have to be invoked separately. What
normally happens when you execute a cc command is
that a sequence of programs processes$s the original
C source file. Each program creates a temporary
file that is used by the next program in the
sequence. The final output is the load image that
is loaded into memory when the final executable
file is run.

2.1.1 Invocation Switches

A list of switches follows:

-C

Suppress the loading phase of the compilation, and
force an object file to be produced even if only
one program is compiled.

XENIX Software DéVelopment

-p Arrange for the compiler to produce code which
counts the number of times each routine is called.
Also, if loading takes place, replace the standard
startup routine by one that automatically calls
monitor (3) at the start and arranges to write out
a mon.out file at normal termination of execution
of the object program. An execution profile can
then be generated by use of prof(l).

-0 Invoke an object-code optimizer.

-S ~ Compile the named C programs, and leave the
assembler-language -output on corresponding files
suffixed “.s'. -

-P Run only the macro. preprocessor and place the
result for each “.c' file in a corresponding “.i'
file. The resultant file has no “#' lines in it.

-0 output
Give the final output file the name specified by

output. If this option is used the file a.out
will be left undisturbed.

-D name=def
Define the name to the preprocessor, as if by
“#define'. If no definition is given, the name is
defined as 1.

=U name

Remove any initial definition of name.

-I dir o , :
T “#include' files whose names do not begin with “/'
are always sought first in the directory of the
file argument, then'in directories named in -I
options, then in directories on a standard list.

- Other arguments are taken to 'be either 1loader option
arguments, or C-compatible - object programs, typically
produced by an earlier cc .run, or perhaps libraries of C-
compatible routines created with the assembler. These
programs, together with -the results of any compilations
specified, ‘are loaded (in . the order given) to produce an
executable program with the name a.out.

Note that some versions of the C compiler support additional
switches. These switches and their function are described in
the reference section of this manual.

XENIX Software Development

2.1.2 The Loader

As mentioned in the above sections, the XENIX loader, 14,
plays a fundamental part in the development of any C
program. For this reason it is discussed as part of cc; it
can however, be wused as a stand-alone processor of object
files. Note that arguments to 14 can be given on the cc
command line and are a part of the syntax of the cc command.

The available loader switches are listed below. except for
-1, they should appear before filename arguments.

-s “Strip' the output, that 1is, remove the symbol
table and relocation bits to save space (but
impair the usefulness of the debugger). This
information can also be removed by strip(l).

-u Take the following argument as a symbol and enter
it as undefined in the symbol table. This is
useful for loading wholly from a library, since
initially the symbol table 1is empty and an
unresolved reference is needed to force the
loading of the first routine.

-1x This option is an abbreviation for the 1library
name /lib/libx.a, where x is a string. If that
does not exist, 1d tries /usr/lib/libx.a. A

library is searched when its name is encountered,
so the placement of a -1 is significant.

-x Do not preserve local (non-.globl) symbols in the
output symbol table: enter only external symbols.
This option saves some space in the output file.

-X Save local symbols except for those whose names
begin with °“L"'. This option is used by cc to
discard internally generated labels while

retaining symbols local to routines.

-n Arrange that when the output file is executed, the
text portion will " be read-only and shared among
all wusers executing the file. This involves
moving the data areas up to the first possible 4K
word boundary following the end of the text.

-i When the output file is executed, the program text
and data areas will ‘live in separate address
spaces. The only difference between this option
and -n is that here the data starts at location 0.

XENIX Software Development

-0 The name argument after -o is used as the name of
the 1d output file, instead of a.out.

For more information on the loader, see 1ld in the reference
section of this manual.
2.1.3 Files

The files making up the compiler, as well as those files
needed, used, or created by cc are listed below:

file.c input file

file.o object file

a.out loaded output

/tmp/ctm? temporaries for cc

/lib/cpp preprocessor

/1lib/c[01] compiler for cc

/lib/c2 optional optimizer

/lib/crt0.0o runtime startoff

/lib/mcrt0.o startoff for profiling
/1lib/libc.a standard library

/usr/include standard directory for “#include' files
/bin/23fix processor for large-text programs

XENIX Software Development

2.2 LINT: A C Program Checker

Lint is a program that examines C source programs, detecting
a number of bugs and obscurities. It enforces the type
rules of C more strictly than the C compilers. It may also
be wused to enforce a number of portability restrictions
involved in moving programs between different machines
and/or operating systems. Another option detects a number
of wasteful, or error prone, constructions which
nevertheless are, strictly speaking, legal.

The separation of function between lint and the C compilers
has both historical and practical rationale. The compilers
turn C programs into executable files rapidly and
efficiently. This is possible in part because the compilers
do not perform sophisticated type checking, especially
between separately compiled programs. Lint takes a more
global, leisurely view of the program, looking much more
carefully at the compatibilities.

This section discusses the use of lint, gives an overview of
the implementation, and gives some hints on the writing of
machine independent C code.

Suppose there are two Cl source files, filel.c and file2.c,
which are ordinarily compiled and loaded together. Then the

command
lint filel.c file2.c

produces messages describing inconsistencies and
inefficiencies in the programs. The program enforces the
typing rules of C more strictly than the C compilers (for
both historical and practical reasons) enforce them. The

command
lint -p filel.c file2.c

produces, in addition to the above messages, additional
messages that relate to the portability of the programs to
other operating systems and machines. Replacing the -p by
-h produces messages about various error-prone or wasteful
constructions that, strictly speaking, are not bugs. Saying
-hp gets the whole works. ‘ ’

The next several sections describe the major messages; the
discussion of 1lint <closes with sections discussing the
implementation and giving suggestions for writing portable
C. The final section gives a summary of lint options.

XENIX Software Development

2.2.1 A Word About Philosophy

Many of the facts that 1lint needs may be impossible to
discover. For example, whether a given function 1in a
program ever gets called may depend on the input data.
Deciding whether exit is ever <called is equivalent to
solving the famous "halting problem,'' known to be
recursively undecidable. ' :

Thus, most of the lint algorithms are a compromise. If a
function 1is never mentioned, it can never be called. If a
function is mentioned, lint assumes it can be called: this
is not necessarily so, but in practice it is quite
reasonable.

Lint tries to give information with a high degree of
relevance. Messages of the form "“xxx might be a bug'' are
easy to generate, but are acceptable only in proportion to
the fraction of real bugs they uncover. If this fraction of
real bugs is too small, the messages lose their credibility
and serve merely to clutter up the output, obscuring the
more important messages. '

Keeping these issues in mind, we now consider in more detail
the classes of messages that lint produces.

2.2.2 Unused Variables and Functions

As sets of programs evolve and develop, previously used
variables and arguments to functions may become unused; it
is not uncommon for external variables, or even entire
functions, to become unnecessary, and yet not be removed
from the source. These ““errors of commission'' rarely
cause working programs to fail, but they are a source of
inefficiency, and make programs harder to understand and
change. Moreover, information about such unused variables
and functions can occasionally serve to discover bugs. If .a
function does a necessary job, and is never called,

something is wrong!

Lint complains about variables and functions that are
defined but not otherwise mentioned. An exception is made
for variables that are declared through explicit extern
statements but are never referenced. Thus, the statement

extern float sin{();

will evoke no comment if sin is never used. This agrees
with the semantics of the C compiler.

2-8

XENIX Software Development

In some cases, these unused external declarations might be
of some interest: they can be discovered by adding the -x
flag to the lint invocation.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The -v option
is available to suppress the printing of complaints about
unused arguments. When -v is in effect, no messages are
produced about unused arguments except for those arguments
wrhich are unused and also declared as register arguments.
This can be considered an active (and preventable) waste of
the register rescurces of the machine.

There is one case where information about unused, or
undefined, variables is more distracting than helpful. This
is when lint is applied to some, but not all, files out of a
collection that are to be loaded together. 1In this case,
many of the functions and variables defined may not be used,
and, conversely, many functions and variables defined
elsewhere may be used. The -u flag may be used to suppress
the spurious messages that might otherwise appear.

2.2.3 Set/Used Information

Lint attempts to detect cases where a variable is used
before it 1is set. This is very difficult to do well: many
algorithms take a good deal of time and space, and still
produce messages about perfectly valid programs. Lint
detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the
input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a
““use,'' since the actual use may occur at any later time,

in a data dependent fashion.

The restriction to the physical appearance of variables in
the file makes the algorithm very simple and quick to
implement, since the true flow of control need not be
discovered. It does mean that lint can complain about some
legal programs, but these programs would probably be
considered bad on stylistic grounds (for example, they might
contain at least two goto's). Because static and external
variables are initialized to 0, no meaningful information
can be discovered about their uses. The algorithm deals
correctly, however, with initialized automatic variables,
and variables which are used in the expression which first

sets them.

XENIX Software Development

The set/used information also permits recognition of those
local variables that are set and never used: these form a
frequent source of inefficiencies, and may also be
symptomatic of bugs.

2.2.4 Flow of Control

Lint attempts to detect unreachable portions of program
code. It will complain about unlabeled statements
immediately following goto, break, continue, or return
statements. An attempt is made to detect loops that can
never be left at the bottom, detecting .the special cases
while(1) and for(;;) as infinite loops. Lint also
complains about loops which cannot be entered at the top:
some valid programs may have such loops, but at best they
are bad style and at worst, bugs.

Lint has an important area of blindness in the flow of
control algorithm: it has no way of detecting functions
which are called and never return. Thus, a call to exit may
cause unreachable code which lint does not detect; the most
serious effects of this are in the determination of returned
function values, discussed in the next section.

One form of unreachable statement is not usually complained
about by 1lint: a break statement that cannot be reached
causes no message. Programs ' generated by yacc2 and
especially 1lex3 may have literally hundreds of unreachable
break statements. The -0 flag in the C compiler will often
eliminate the resulting object code inefficiency. Thus,
these unreached statements are of little importance, there
is typically nothing the user can do about them, and the
resulting messages would clutter up the 1lint output. If
these messages are desired, lint can be invoked with the -b
option. : :

2.2.5 Function Values

Sometimes functions return wvalues which are never used;
sometimes programs incorrectly use function "“values'' which
have never been returned. Lint addresses this problem in a
number of ways. -

Locally, within a function definition, the appearance of
both

return(expr);

and

2-10

XENIX Software Development

return ;
statements is cause for alarm; lint will give the message
function name contains return{e) and return

The most serious difficulty with this is detecting when a
function return 1is implied by flow of control reaching the
end of the function. This can be seen with a simple
example: '

£ (a) {
if (a) return (3);

? 0

Notice that, if a tests false, f will call g and then return
with no defined return value; this will trigger a complaint
from lint. If g, like exit, never returns, the message will
still be produced when In fact nothing is wrong.

In practice, some potentially serious bugs have been
discovered by this feature. It also accounts for a

substantial fraction of the ““noise'' messages produced by
lint.

On a global scale, 1lint detects cases where a function
returns a value, but this value is sometimes, or always,
unused. When the value is always unused, it may constitute
an inefficiency in the function definition. When the value
is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious

problem.

2.2.6 Type Checking

Lint enforces the type checking rules of C more strictly
than do the compilers. The additional checking is in four
major areas:

1. Across certain binary operators and implied
‘ assignments

2. At the structure selection operators

3. Between the definition and uses of functions

2-11

XENIX Software Development

4. 1In the use of enumerations

There are a number of operators that have an implied
balancing between types of the operands. The assignment,
conditional (?:), and relational operators have this
property. The argument of a return statement, and
expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long,
unsigned, float, and double types may be freely intermixed.
The types of pointers must agree exactly, except that arrays
of x's can be intermixed with pointers to x's.

The type checking rules also require that, in structure
references, the 1left operand of the > be a pointer to
structure, the left operand of the . be a structure, and the
right operand of these operators be a member of the
structure implied by the left operand. Similar checking is
done for references to unions. ' '

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, 1int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with
their declared counterparts.

With enumerations, checks are made that enumeration
variables or members are not mixed with other types, or
other enumerations, and that the only operations applied are
=, initialization, ==, !=, and function arguments and return

values.

2.2.7 Type Casts

The type cast feature in C was introduced largely as an aid
to producing more portable programs. Consider the
assignment

p=1;

where p is a character pointer. Lint quite rightly
complains. Now, consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong
motivation for doing this, and has clearly signaled his
intentions. It seems harsh for lint to continue to complain
about this. On the other hand, if this code is moved to

XENIX Software Development

another machine, such code should be looked at carefully.
The -c flag controls the printing of comments about casts.
When -c is in effect, casts are treated as though they were
assignments subject to complaint. Otherwise, all legal casts
are passed without comment, no matter how strange the type
mixing seems to be.

2.2.8 Nonportable Character Use

On the PDP-11, characters are signed quantities, with a
range from -128 to 127. On most of the other C
implementations, characters take on only positive values.
Thus, lint flags certain comparisons and assignments as
being illegal or nonportable. For example, the fragment

char c;

if((¢ = getchar()) <0)

works on the PDP-11, but will fail on machines where
characters always take on positive values. The real
solution is to declare ¢ an integer, since getchar is
actually returning integer values. 1In any case, lint issues

the message:
nonportable character comparison

A similar issue arises with bitfields. When assignments of
constant values are made to bitfields, the field may be too
small to hold the value. This is especially true because on
some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a two
bit field declared of type int cannot hold the value 3, the
problem disappears if the bitfield is declared to have type
unsigned.

2.2.9 Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which
loses accuracy. This may happen in programs which have been
incompletely converted to use typedefs. When a typedef
variable 1is changed from int to long, the program can stop
working because some intermediate results may be assigned to
ints, losing accuracy. Since there are a number of
legitimate reasons for assigning 1longs to ints, the
detection of these assignments is enabled by the -a flag.

XENIX Software Development

2.2.10 Strange Constructions

Several perfectly legal, but somewhat strange, constructions
are flagged by 1lint. The messages hopefully encourage
better code quality, clearer style, and may even point out
bugs. The -h flag 1is used to enable these checks. For

example, in the statement
*p++ ;

the * does nothing. This provokes the message "“null
effect'' from lint. The program fragment

unsigned x ;
if(x <0) oo

is clearly somewhat strange. The test will never succeed.
Similarly, the test

if(x>0) ...
is equivalent to
if(x = 0)

which may not be the intended action. 1In these <cases 1lint
prints the message:

degenerate unsigned comparison

If one says
if(11=0)

lint reports "~“constant in conditional context'', since the
comparison of 1 with 0 gives a constant result.

Another construction detected by 1lint involves operator
precedence. Bugs which arise from misunderstandings about
the precedence of operators can be accentuated by spacing
and formatting, making such bugs extremely hard to find.

For example, the statements
if(x&077 == 0) ...
or
x<<2 + 40

probably do not do what was intended. The best solution is
to parenthesize such expressions, and lint encourages this

2-14

XENIX Software Development

by an appropriate message.

Finally, when the -h flag is in force lint complains about
variables which are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This 1is legal,
but 1is considered by many (including the author) to be bad
style, usually unnecessary, and frequently a bug.

2.2.11 Ancient History

There are several forms of older syntax that are discouraged
by 1lint. These fall into two classes, assignment operators
and initialization.

The older forms of assignment operators (e.g., =+, ==, . ., .
) could cause ambiguous expressions, such as

a =-1;

which could be taken as either
or

The situation is especially perplexing if this kind of
ambiguity arises as the result of a macro substitution. The
newer, and preferred operators (+=, -=, etc.) have no such
ambiguities. To spur the abandonment of the older forms,
lint complains about these old fashioned operators.

A similar issue arises with initialization. The older
language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic
difficulties. For example

int x (-1) ;

looks somewhat like the beginning of a function declaration:
int x (y){ ...

and the compiler must read a fair ways past x in order to

sure what the declaration really is.. Again, the problem is
even more perplexing when the initializer involves a macro.

2-15

XENIX Software Development

The current syntax places an equals sign between the
variable and the initializer:

int x = <=1 ;

This is free of any possible syntactic ambiguity.

2.2.12 Pointer Alignment

Certain pointer assignments may be reasonable on some
machines, and 1illegal on others, due entirely to alignment
restrictions. For example, on some machines, it is
reasonable to assign integer pointers to double pointers,
since double precision values may begin on any integer
boundary. On others, however, double precision values must
begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where
pointers are assigned to other pointers, and such alignment
problems might arise. The message ~“possible pointer
alignment problem'' results from this situation whenever
either the -p or -h flags are in effect.

2.2.13 Multiple Uses and Side Effects

In complicated expressions, the best order in which to
evaluate subexpressions may be highly machine dependent.
For example, on machines (like the PDP-11) in which the
stack runs backwards, function arguments will probably be
best evaluated from right-to-left; on machines with a stack
running forward, left-to-right seems most attractive.
Function calls embedded as arguments of other functions may
or may not be treated similarly to ordinary arguments.
Similar issues arise with other operators which have side
effects, such as the assignment operators and the increment
and decrement operators. ' ‘

In order that the efficiency of C on a particular machine
not be unduly compromised, the C language leaves the order
of evaluation of complicated expressions up to the local
compiler, and, in fact, the various C compilers have
considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any
variable 1is changed by a side effect, and also used
elsewhere in the same expression, the result is explicitly
undefined. v

Lint checks for the important special case where a simple
scalar variable is affected. For example, the statement

2-16

XENIX Software Development

alil = bli++] ;
will draw the complaint:

warning: i evaluation order undefined

2.2.14 Shutting Lint Up

There are occasions when the programmer is smarter than

lint. There may be valid reasons for ““illegal'' type
casts, functions with a variable number of arguments, etc.
Moreover, as specified above, the flow of control

information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable
programs. Thus, some way of communicating with 1lint,
typically to shut it up, is desirable. Therefore, a number
of words are recognized by lint when they were embedded in
comments. Thus, lint directives are 1invisible to the
compilers, and the effect on systems with the older
preprocessors is merely that the lint directives don't work.

The first directive 1is concerned with flow of control
information. If a particular place in the program cannot be
reached, but this is not apparent to 1lint, this <can be
asserted at the appropriate spot in the program by the
directive:

/* NOTREACHED */

Similarly, if it is desired to turn off strict type checking
for the next expression, use the directive:

- /* NOSTRICT */

The situation reverts to the previous default after the next
expression. The -v flag can be turned on for one function
by the directive: '

/* ARGSUSED */

Complaints about variable number of arguments in calls to a
function can be turned off by preceding the function
definition with the directive:

/* VARARGS */

In some cases, it is desirable to check the first several
arguments, and leave the later arguments unchecked. This
can be done by following the VARARGS keyword immediately
with a digit giving the number of arguments that should be

2-17

XENIX Software Development

checked. Thus:
/* VARARGS2 */

causes the first two arguments to be checked, the others
unchecked. Finally, the directive

/* LINTLIBRARY */
at the head of a file identifies this file as a library

declaration file, discussed in the next section.

2.2.15 Library Declaration Files

Lint accepts certain library directives, such as

_ly

and tests the source files for compatibility with these
libraries. This is done by accessing library description
files whose names are constructed from the library
directives., These files all begin with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions.
The «critical parts of these definitions are the declaration
of the function return type, whether the dummy function
returns a value, and the number and types of arguments to
the function. The VARARGS and ARGSUSED directives can be
used to specify features of the library functions.

Lint 1library files are processed almost exactly like
ordinary source files. The only difference is that
functions that are defined on a library file, but are not
used on a source file, draw no complaints. Lint does not
simulate a full library search algorithm, and complains if
the source files contain a redefinition of a library routine
(this is a featurel). : '

By default, lint checks the programs it is given against a
standard 1library file, which contains descriptions of the
programs which are normally loaded when a C program is run.
When the -p flag is in effect, another file is checked
containing descriptions of the standard I/0 library routines
which are expected to be portable across various machines.
The -n flag can be used to suppress all library checking.

2-18

XENIX Software Development

2.2.16 Notes

Lint was a difficult program to write, partially because it
is «closely connected with matters of programming style, and
partially because users usually don't notice bugs that cause
lint to miss errors which it should have caught. (By
contrast, if lint incorrectly complains about something that
is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The
checking of structures and arrays is rather inadequate; size
incompatibilities go unchecked, and no attempt 1is made to
match up structure and union declarations across files.
Some stricter checking of the use of the typedef is clearly
desirable, but what <checking 1is appropriate, and how to
carry it out, is still to be determined.

Lint shares the preprocessor with the C compiler. At some
point it may be appropriate for a special version of the
preprocessor to be constructed which checks for things such
as unused macro definitions, macro arguments which have side
effects which are not expanded at all, or are expanded more
than once, etc.

The central problem with 1lint is the packaging of the
information which it collects. There are many options which
serve only to turn off, or slightly modify, certain
features. There are pressures to add even more of these
options.

In conclusion, it appears that the general notion of having
two programs is a good one. The compiler concentrates on
quickly and accurately turning the program text into bits
which can be run; lint concentrates on issues of
portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely
annoying, not fatal. The compiler can be fast since it
knows that 1lint will cover its flanks. Finally, the
programmer can concentrate at one stage of the programming
process solely on the algorithms, data structures, and
correctness of the program, and then 1later retrofit, with
the aid of 1lint, the desirable properties of universality
and portability. ‘

2-19

2.2.

The

The

XENIX Software Development

17 Current Lint Options

command currently has the form

lint [-options] files... library-descriptors...
options are

Perform heuristic checks

Perform portability checks

Don't report unused arguments

Don't report unused or undefined externals
Report unreachable break statements.

Report unused external declarations

Report assignments of long to int or shorter.
Complain about questionéble casts

No library checking is done

Same as h (for historical reasons)

2-20

—

XENIX Software Development

2.3 MAKE: A Program Maintenance Program

In a programming project, it is easy to lose track of which
files need to be reprocessed or recompiled after a change is
made in some part of the source. Make provides a simple
mechanism for maintaining up-to-date versions of programs
that result from many operations on a number of files. It
is possible to tell make the sequence of commands that
create certain files, and the list of files that require
other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the
make command will create the proper files simply, correctly,
and with a minimum amount of effort.

The basic operation of make is to find the name of a needed
target in the description, ensure that all of the files on
which it depends exist and are up to date, and then create
the target if it has not been modified since its generators
were. The description file defines the graph of
dependencies. Make does a depth-first search of this graph
to determine what work is really necessary.

Make also provides a simple macro substitution facility and
the ability to encapsulate commands in a single file for
convenient administration.

It is common practice to divide large programs into smaller,
more manageable pieces. The pieces may require quite
different treatments: some may need to be run through a
macro processor, some may need to be processed by a
sophisticated program generator (e.g., Yacc or Lex). The
outputs of these generators may then have to be compiled
with special options and with certain definitions and
declarations. The code resulting from these transformations
may then need to be loaded together with certain 1libraries
under the control of special options. Related maintenance
activities involve running complicated test scripts and
installing wvalidated modules. Unfortunately, it is very
easy for a programmer to forget which files depend on which
others, which files have:' been modified recently, and the
exact sequence of operations needed to make or exercise a
new version of the program. After a long editing session,
one may easily lose track of which files have been changed
and which object modules are still valid, since a change to
a declaration can obsolete a dozen other files. Forgetting
to compile a routine that has been changed or that uses
changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the
other hand, recompiling everything in sight just to be safe
is very wasteful.

XENIX Software Development

The program described in this report mechanizes many of the
activities of program development and maintenance. If the
information on inter-file dependences and command sequences
is stored in a file, the simple command

make

is frequently sufficient to update the interesting files,
regardless of the number that have been edited since the
last ““make''. In most cases, the description file is easy
to write and changes infrequently. It is usually easier to
type the make command than to issue even one of the needed
operations, so the typical c¢ycle of program development
operations becomes

think - edit - make -~ test . . .

Make is most useful for medium-sized programming projects;
it does not solve the problems of maintaining multiple
source versions or of describing huge programs.

Basic Features The basic operation of make is to update a
target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the target
if it has not been modified since its dependents were. Make
does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the
date and time that a file was last modified.

To illustrate, let us consider a simple example: A program
named prog is made by compiling and loading three C-language
files x.c, y.c, and z.c with the 1S library. By convention,
the output of the C compilations is found in files named
X.0, y.o0, and z.o. Assume that the files x.c and y.c share
some declarations in a file named defs, but that z.c does
not. That is, x.c and y.c have the line

#include "defs"

The following text describes the relationships and
operations:

prog : X.0 Y.O0 Z.0
cc X.0 Y.0 zZ.0 -1 -o prog

X.0 Y.O0 : defs

If this information were stored in a file named makefile,
the command

XENIX Software Development

make

would perform the operations needed to recreate prog after
any changes had been made to any of the four source files
X.C, y.-¢, z.c, or defs.

Make operates using three sources of information: a user-
supplied description file (as above), file names and
““last-modified'' times from the file system, and built-in
rules to bridge some of the gaps. In our example, the first
line says that prog depends on three ““.o0'' files. Once
these object files are current, the second line describes
how to load them to create prog. The third line says that
X.0 and y.o depend on the file defs. From the file system,
make discovers that there are three et files
corresponding to the needed ““.o'' files, and uses built-in
information on how to generate an object from a source file
(i.e., issue a ““cc -c'' command).

The following long-winded description file is equivalent to
the one above, but takes no advantage of make's innate
knowledge:

prog : X.0 Y.O0 Z.0
cc .0 y.o 2.0 =-1S -0 prog

X.0 : X.c defs
cCc -C X.cC
y.0 : y.c defs
cc -c y.cC
z.0 : 2Z.C
cc =-c z.cC

If none of the source or object files had changed since the
last time prog was made, all of the files would be current,
and the command

make

would just announce this fact and stop. If, however, the
defs file had been edited, x.c and y.c (but not z.c) would
be recompiled, and then prog would be created from the new
“t.o'' files. If only the file y.c had changed, only it
would be recompiled, but it would still be necessary to

reload prog.

If no target name is given on the make command 1line, the
first target mentioned in the description 1is created;
otherwise the specified targets are made. The command

XENIX Software Development

make X.o0
would recompile x.o0 if x.c or defs had changed.

If the file exists after the commands are executed, its time
of last modification is used in further decisions; otherwise
the current time is used. It is often quite useful to
include rules with mnemonic names and commands that do not
actually produce a file with that name. These entries can
take advantage of make's ability to generate files and

substitute macros. Thus, an entry ““save'' might be
included to copy a certain set of files, or an entry
“*cleanup'' might be used to throw away unneeded
intermediate files. In other cases one may maintain a

zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful
for maintaining remote archives and listings. '

Make has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by
command arguments or description file 1lines with embedded
equal signs. A macro is invoked by preceding the name by a
dollar sign; macro names longer than one character must be
parenthesized. The name of the macro is either the single
character after the dollar sign or a name inside
parentheses. The following are valid macro invocations:

$ (CFLAGS)

$2

$ (xy)

$2

$(2)
The last two invocations are identical. $$ 1is a dollar
sign. All of these macros are assigned values during input,
as shown below. Four special macros change values during

the execution of the command: $*, $@, $?, and $<. They will
be discussed later. The following fragment shows the use:

OBJECTS = X.0 y.0 Z.0
LIBES = =18
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -0 prog

The command

make

loads the three object files with the 1S 1library. The
command

2-24

XENIX Software Development

make "LIBES= -11 -18"

loads them with both the Lex (*"-11'') and the Standard
(*°-18'') libraries, since macro definitions on the command
line override definitions in the description. (It is
necessary to quote arguments with embedded blanks in XENIX
commands.)

The following sections detail the form of description files
and the command line, and discuss options and built-in rules
in more detail.

2.3.1 Description Files and Substitutions

A description file contains three types of information:
macro definitions, dependency information, and executable
commands. There 1is also a comment convention: all
characters after a sharp (#) are ignored, as is the sharp
itself. Blank lines and lines beginning with 'a sharp are
totally ignored. If a non-comment line is too long, it can
be continued using a backslash. If the last character of a
line 1is a backslash, the backslash, newline, and following
blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not
preceded by a colon or a tab. The name (string of letters
and digits) to the left of the equal sign (trailing blanks
and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are
stripped.) The following are valid macro definitions:

2 = xyz
abec = -11 -1y -18
LIBES =

The last definition assigns LIBES the null string. A macro
that 1is never explicitly defined has the null string as
value. Macro definitions may also appear on the make
command line (see below).

Other 1lines give information about target files. The
general form of an entry is:

target ... :[:] [dependent ...] [; commands] [# ...]
[(tab) commands] [# ...]

e o o

Items inside brackets may be omitted. Targets and
dependents are strings of letters, digits, periods, and
slashes. (Shell metacharacters " *'! and DA are

XENIX Software Development

expanded.) A command is any string of characters not
including a sharp (except in quotes) or newline. Commands
may appear either after a semicolon on a dependency line or
on lines beginning with a tab immediately following a
dependency line.

A dependency line may have either a single or a double
colon. A target name may appear on more than one dependency
line, but all of those lines must be of the same (single or
double colon) type.

1. For the usual single-colon case, at most one of these
dependency lines may have a command sequence
associated with it. If the target is out of date with
any of the dependents on any of the lines, and a
command sequence is specified (even a null one
following a semicolon or tab), it is executed.
Otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be
associated with each dependency line. If the target
is out of date with any of the files on a particular
line, then the associated commands are executed. A
built-in rule may also be executed. This detailed
form 1is of particular value in updating archive-type
files. .

If a target must be created, the sequence of commands is
executed. Normally, each command line is printed and then
passed to a separate invocation of the shell after
substituting for macros. (The printing is suppressed in
silent mode or if the command line begins with an @ sign).
Make normally stops if any command signals an error by
returning a non-zero error code. (Errors are ignored if the
**-i'' flags has been specified on the make command line, if
the fake target name ~".IGNORE'' appears in the description
file, or if the command string in the description file
begins with a hyphen. Some XENIX commands - return
meaningless status). Because each command line is passed to
a separate invocation of the shell, care must be taken with
certain commands (e.g., cd and Shell control commands) that
have meaning only within a single Shell process; the results
are forgotten before the next line is executed. ‘

Before issuing any command, certain macros are set. $@ is
set to the name of the file to be "“made''. §$? is set to
the string of names that were found to be younger than the
target. If the command was generated by an implicit rule
(see below), S$< is the name of the related file that caused
the action, and $* is the prefix shared by the current and
the dependent file names.

XENIX Software Development

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name ~ " .DEFAULT'' are used. If there is no such name, make
prints a message and stops.

2.3.2 Command Usage

The make command takes four kinds of arguments: macro
definitions, flags, description file names, and target file
names.

make [flags] [macro definitions] [targets]

The following summary of the operation of the command
explains how these arguments are interpreted.

First, all macro definition arguments (arguments with
embedded equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files.

Next, the flag arguments "are examined. The permissible
flags are

-i Ignore error codes returned by invoked commands.
This mode 1is entered if the fake target name
““.IGNORE'' appears in the description file.

-s Silent mode. Do not print command 1lines before
executing. This mode is also entered if the fake
target name ~".SILENT'' appears in the description
file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute
them. Even 1lines beginning with an ““@'' sign are
printed.

-t Touch the target files (causing them to be up to

date) rather than issue the usual commands.

-q Question. The make command returns a zero or non-
zero status code depending on whether the target
file is or is not up to date.

-p Print out the complete set of macro definitions and
' target descriptions

XENIX Software Development

-4d Debug mode. Print out detailed information on files
and times examined.

-f Description file name. The next argument is assumed
to be the name of a description file. A file name
of “"-'' denotes the standard input. If there are
no "~“-f'' arguments, the file named makefile or
Makefile in the current directory is Tead. The
contents of the description files override the
built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names
of targets to be made; they are done in left to right order.
If there are no such arguments, the first name in the
description files that does not begin with a period is
““made'’'.

2.3.3 Implicit Rules

The make program uses a table of interesting suffixes and a
set of transformation rules to supply default dependency
information and implied commands. (The Appendix describes
these tables and means of overriding them.) The default

suffix list is:

Object file

C source file

Efl source file

Ratfor source file

Fortran source file
Assembler source file
Yacc-C source dgrammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

wmmk%hﬁ@k@

The following diagram summarizes the default transformation
paths. If there are two paths connecting a pair of
suffixes, the longer one is used only 1if the intermediate
file exists or is named in the description. ‘

2-28

XENIX Software Development

If the file x.0 were needed and there were an x.c in the
description or directory, it would be compiled. If there
were also an x.l, that grammar would be run through Lex
before compiling the result. However, if there were no x.c
but there were an x.l, make would discard the intermediate
C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers
used in the default, or the flag arguments with which they
are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and
LEX. The command

make CC=newcc
will cause the ““newcc'' command to be used instead of the
usual C compiler. The macros CFLAGS, RFLAGS, EFLAGS,

YFLAGS, and LFLAGS may be set to cause these commands to be
issued with optional flags. Thus,

make "CFLAGS=-0"

causes the optimizing C compiler to be used.

2-29

XENIX Software Development

2.3.4 Example

As an example of the wuse of make, we will present the
description file wused to maintain the make command itself.
The code for make is spread over a number of C source files
and a Yacc grammar. The description file contains:

Description file for the Make command

P = lpr
FILES = Makefile version.c defs main.c doname.c misc.c files.c

OBJECTS = version.o main.o ... dosys.o gram.o
LIBES= -1S :
LINT = lint -p

CFLAGS = -0

make: $(OBJECTS)
cc S$(CFLAGS) S$(OBJECTS) S(LIBES) -o make

size make

$ (OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c

-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: S$(FILES)# print recently changed files

pr $? | $P
touch print

test:
make -dp | grep -v TIME >lzap
/usr/bin/make -dp | grep -v TIME >2zap
diff lzap 2zap '
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$ (LINT) dosys.c doname.c files.c main.c misc.c version.c gr:
rm gram.c : »

arch:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The
following output results from typing the simple command

2-30

XENIX Software Development

make

in a directory containing only the source and description
file:

cc =-c version.c

cc =-c main.c

cc -c doname.c

cc =-c misc.c

cc =-c files.c

cc =-c dosys.cC

yacc gram.y

mv y.tab.c gram.c

cc ~C gram.c

cc version.o main.o ... dosys.o gram.o -1S -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned
by name in the description file, make found them using its
suffix rules and issued the needed commands. The string of
digits results from the "“size make'' command; the printing
of the command line itself was suppressed by an @ sign. The
@ sign on the size command in the description file
suppressed the printing of the command, so only the sizes
are written.

The last few entries in the description file are wuseful
maintenance sequences. The ““print'' entry prints only the
files that have been changed since the last ~“make print''
command. A zero-length file print is maintained to keep
track of the time of the printing; the $? macro in the
command 1line then picks wup only the names of the files
changed since print was touched. The printed output can be
sent to a different printer or to a file by changing the
definition of the P macro:

make print "P = lpr"
or

make print "P= cat >zap"

2.3.5 Suggestions and Warnings

The most common difficulties arise from make's specific
meaning of dependency. If file x.c has a "“#include
"defs"'' line, then the object file x.o depends on defs; the
source file x.c does not. (If defs is changed, 1t is not
necessary to do anything to the file x.c, while it is
necessary to recreate x.0.)

2-31

XENIX Software Development

To discover what make would do, the ““-n'' option is very
useful. The command

make ~n

orders make to print out the commands it would issue without
actually taking the time to execute them. If a change to a
file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the "“-t'' (touch) option
can save a lot of time: instead of issuing a large number of
superfluous recompilations, make updates the modification
times on the affected file. Thus, the command

make -ts

(*“touch silently'') causes the relevant files to appear up
to date. Obvious care 1is necessary, since this mode of
operation subverts the intention of make and destroys all
memory of the previous relationships.

The debugging flag (**-d4'') ¢auses make to print out a very
detailed description of what it is doing, including the file
times. The output is verbose, and recommended only as a last

resort.

2-32

XENIX Software Development

2.3.6 Suffixes and Transformation Rules

The make program itself does not know what file name
suffixes are interesting or how to transform a file with one
suffix into a file with another suffix. This information is
stored in an internal table that has the form of a
description file. If the ““-r'' flag is used, this table is
not used.

The list of suffixes is actually the dependency list for the
name " .SUFFIXES''; make 1looks for a file with any of the
suffixes on the list. If such a file exists, and if there
is a transformation rule for that combination, make acts as
described earlier. The transformation rule names are the
concatenation of the two suffixes. The name of the rule to
transform a “".r'' file to a ““.o'' file is thus ““.r.o''.
If the rule is present and no explicit command sequence has
been given in the wuser's description files, the command
sequence for the rule ““.r.o'' is used. If a command is
generated by using one of these suffixing rules, the macro
$* 1is given the wvalue of the stem (everything but the
suffix) of the name of the file to be made, and the macro $<
is the name of the dependent that caused the action.

The order of the suffix list is significant, since it is
scanned from left to right, and the first name that is
formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can just
add an entry for ““.SUFFIXES'' in his own description file;
the dependents will be added to the usual 1list. A
““.SUFFIXES'' 1line without any dependents deletes the
current list. (It is necessary to clear the current list if
the order of names is to be changed).

The following is an excerpt from the default rules file:

2-33

XENIX Software Development

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s

YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.C.O :
$(CC) $(CFLAGS) -c $<
.e.0 .r.o .f.o : ‘

~ $(EC) S$(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<
+S.0 :

$(AS) -o $@ $<

.Y.0
$ (YACC) $ (YFLAGS) S$<
$(CC) S (CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@
sY.C :
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

2-34

XENIX Software Development

2.4 ADB: The XENIX Debugger

ADB is a useful debugging tool for debugging C programs. It
provides capabilities to 1look at ““core'' files resulting
from aborted programs, print output in a variety of formats,
patch files, and run programs with embedded breakpoints.
This document provides examples of the more useful features
of ADB. The reader 1is expected to be familiar with the
basic commands on XENIX with the C 1language and able to
compile simple C programs.

2.4.1 1Invocation

To invoke ADB type:
adb objfile corefile

where objfile is an executable XENIX file and corefile is a
core image file. Many times this will look like: ,

adb a.out core
or more simply:
adb

where the defaults are a.out and core respectively. The
filename minus (-) means ignore this argument as in:

adb - core
ADB has requests for examining locations in either file.
The ? request examines the contents of objfile, the /
request examines the corefile. The general form of these
requests is: :

address ? format
or

address / format

2.4.2 Current Address

ADB maintains a current address, called dot, similar 1in
function to the current pointer in the XENIX editor, ed.
When an address is entered, the current address 1is set to
that location, so that:

2-35

XENIX Software DeVelopment

0126721

sets dot to octal 126 and prints the instruction at that
address. The request:

prints 10 decimal numbers starting at dot. Dot ends up
refering to the address of the last item printed. When used
with the ? or / requests, the current address can be
fdvanced by typing newline; it can be decremented by typing

Addresses are represented by expressions. Expressions are
made up from decimal, octal, and hexadecimal integers, and
symbols from the program under test. These may be combined
with the operators +, -, *, % (integer division), & (bitwise
and), | (bitwise inclusive or), # (round up to the next
multiple), and (not). (All arithmetic within ADB is 32
bits.) When typing a symbolic address for a C program, the
user can type name or name; ADB will recognize both forms.

2.4.3 Formats

To print data, a user specifies a collection of letters and
characters that describe the format of the printout.
Formats are "remembered" in the sense that typing a request
without one will cause the new printout to appear in the
previous format. The following are the most commonly used
format letters.

one byte in octal

one byte as a character

one word in octal

one word in decimal

two words in floating point
PDP 11 instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a newline

print a blank space

backup dot o

Mo CcoQ MO0 O0D

(Format letters are also available for "long" values, for
example, “D' for long decimal, and “F' for double floating
point.) For other formats see the ADB manual.

2-36

XENIX Software Development

2.4.4 General Request Meanings

The general form of a request is:
address,count command modifier

which sets “dot' to address and executes the command count
times.

The following table illustrates some general ADB command
meanings:

? Print contents from a.out file
/ Print contents from core file

= Print value of "dot"

: Breakpoint control

S Miscellaneous requests
; Request separator

! Escape to shell

ADB catches signals, so a user cannot use a quit signal to
exit from ADB. The request $q or $Q (or <CONTROL-D>) must
be used to exit from ADB.

2.4.5 Debugging C Programs

2.4.5.1 Debugging A Core Image Consider the C program in
Figure 1. The program is used to illustrate a common error
made by C programmers. The object of the program is to
change the lower case "t" to upper case in the string
pointed to by charp and then write the character string to
the file indicated by argument 1. The bug shown is that the
character "T" is stored in the pointer charp instead of the
string pointed to by charp. Executing the program produces
a core file because of an out of bounds memory reference.

ADB is invoked by:
adb a.out core

The first debugging request:

XENIX Software Development

Sc

is used to give a C backtrace through the subroutines
called. As shown in Figure 2 only one function (main) was
called and the arguments argc and argv have octal values 02
and 0177762 respectively. Both of these values 1look
reasonable; 02 = two arguments, 0177762 = address on stack
of parameter vector.

The next request:

$C

is used to give a C backtrace plus an interpretation of all
the 1local variables in each function and their values in
octal. The value of the variable cc looks incorrect since
cc was declared as a character.

The next request:
Sr

prints out the registers including the program counter and
an interpretation of the instruction at that location.

The request:

Se
prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the
a.out file is referenced by ? whereas the map for core file
1s referenced by /. Furthermore, a good rule of thumb is to
use ? for instructions and / for data when looking at
programs. To print out information about the maps type:

Sm

This produces a report of the contents of the maps. More
about ‘these maps later.

In our example, it is useful to see the contents of the
string pointed to by charp. This is done by:

*charp/s

which says use charp as a pointer in the core file and print
the information as a character string. This printout
clearly shows that the character buffer was incorrectly
overwritten and helps identify the error. Printing the
locations around charp shows that the buffer is unchanged

2-38

XENIX Software Development

but that the pointer is destroyed. Using ADB similarly, we
could print information about the arguments to a function.
The request:

main.argc/d
prints the decimal core image value of the argument argc in

the function main.
The request:

*main.argv,3/o

prints the octal wvalues of the three consecutive cells
pointed to by argv in the function main. Note that these
values are the addresses of the arguments to main.

Therefore:

0177770/s

prints the ASCII value of the first argument. Another way
to print this value would have been

*" /S

The " means ditto which remembers the last address typed, in
this case main.argc ; the * instructs ADB to use the address
field of the core file as a pointer.

The request:

prints the current address (not its contents) in octal which
has been set to the address of the first argument. The
current address, dot, is wused by ADB to "remember" its
current location. It allows the user to reference locations
relative to the current address, for example:

2.4.5.2 Multiple Functions Consider the C program
illustrated 1in Figure 3. This program calls functions f,q,
and h until the stack is exhausted and a core image is
produced.

Again you can enter the debugger via:
adb

which assumes the names a.out and core for the executable
file and core image file respectively. The request:

$c

XENIX Software Development

will fill a page of backtrace references to f,g, and h.
Figure 4 shows an abbreviated 1list (typing DEL will

terminate the output and bring you back to ADB request
level).

The request:
,58C
prints the five most recent activations.

Notice that each function (f,9,h) has a counter of the
number of times it was called.

The request:

fcnt/d
prints the decimal value of the counter for the function f.
Similarly gcnt and hent could be printed. To print the

value of an automatic ~variable, for example the decimal
value of x in the last call of the function h, type:

h.x/d

It is currently not possible in the exported version to
print stack frames other than the most recent activation of
a function. Therefore, a user can print everything with $C
or the occurrence of a variable in the most recent call of a
function. It is possible with the $C request, however, to
print the stack frame starting at some address as address$C.

2.4.5.3 Setting Breakpoints Consider the C program 1in
Figure 5. This program, which changes tabs into blanks, is
adapted from Software Tools by Kernighan and Plauger.

We will run this program under the control of ADB (see
Figure 6a) with: ’

adb a.out -
Breakpoints are set in the program as:
address:b [request]

The requests:

2-40

XENIX Software Development

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not
generate statement labels. Therefore it is currently not
possible to plant breakpoints at locations other than
function entry points without a knowledge of the code
generated by the C compiler. The above addresses are
entered as symbol+4 so that they will appear in any C
backtrace since the first instruction of each function is a
call to the C save routine (csv). Note that some of the
functions are from the C library and that this call to csv
is PDP-11 dependent; each machine language requires its own
form of procedure initialization.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is
bypassed count-1 times before causing a stop. The command
field indicates the ADB requests to be executed each time
the breakpoint 1is encountered. 1In our example no command
fields are present.

By displaying the original instructions at the function
settab we see that the breakpoint is set after the jsr to
the C save routine. We can display the instructions using

the ADB request:
settab,5?ia

This request displays five instructions starting at settab
with the addresses of each location displayed. Another

variation is:
settab, 5?1

which displays the instructions with only the starting
address.

Notice that we accessed the addresses from the a.out file
with the ? command. In general when asking for a printout
of multiple items, ADB will advance the current address the
number of bytes necessary to satisfy the request; in the
above example five instructions were displayed and the
current address was advanced 18 (decimal) bytes.

2-41

XENIX Software Development

To run the program one simply types:
4

To delete a breakpoint, for instance the entry to the
function settab, one types:

settab+4:d

To continue execution of the program from the breakpoint
type:

:C

Once the program has stopped (in this case at the breakpoint
for fopen), ADB requests can be used to display the contents
of memory. For example:

$C
to display a stack trace, or:
tabs,3/80

to print three lines of 8 1locations each from the array
called tabs. By this time (at location fopen) in the C
program, settab has been called and should have set a one in

every eighth location of tabs. S .

2.4.5.4 Advanced Breakpoint Usage We continue execution of
the program with: -

:C

See Figure 6b. Getc is called three times and the contents
of the wvariable ¢ in the function main are displayed each
time. The single character on the left hand edge 1is the
output from the C program. On the third occurrence of getc
the program stops. We can look at the full buffer of

characters by typing:

ibuf+6/20c
When we continue the program with:
:C '

we hit our first breakpoint at tabpos since there is a tab
following the "This" word of the data.

2-42

XENIX Software Development

Several breakpoints of tabpos will occur until the program
has changed the tab into equivalent blanks. Since we feel
that tabpos is working, we can remove the breakpoint at that
location by:

tabpos+4:4d

If the program is continued with:
:C

it resumes normal execution after ADB prints the message
a.out:running

The XENIX quit and interrupt signals act on ADB itself
rather than on the program being debugged. TIf such a signal
occurs then the program being debugged 1is stopped and
control is returned to ADB. The signal is saved by ADB and
is passed on to the test program if:

:C

is typed. This can be useful when testing interrupt
handling routines. The signal is not passed on to the test
program if:

tzc O
is typed.

Now let us reset the breakpoint at settab and display the
instructions 1located there when we reach the breakpoint.

This is accomplished by:
settab+4:b settab,5?ia

It is also possible to execute the ADB requests for each
occurrence of the breakpoint but only stop after the third

occurrence by typing:
getc+4,3:b main.c?C

This request will print the local variable c in the function
main at each occurrence of the breakpoint. The semicolon is
used to separate multiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be
changed; executing the program under ADB does not change

dot. Therefore:

XENIX Software Development

settab+4:b .,5%ia
fopen+4:b

will print the last thing dot was set to (in the example
fopen+4) not the current location (settab+4) at which the
program is executing.

A breakpoint can be overwritten without first deleting the
o0ld breakpoint. For example:

settab+4:b settab,5?ia; ptab/o *
could be entered after typing the above requests.
Now the display of breakpoints:

$b
shows the above request for the settab breakpoint. When the
breakpoint at settab 1is encountered the ADB requests are
executed. Note that the location at settab+4 has been
changed to plant the breakpoint; all the other locations
match their original value.
Using the functions, f,9 and h shown in Figure 3, we can
follow the execution of each function by planting non-
stopping breakpoints. We call ADB with the executable
program of Figure 3 as follows:.

adb ex3 -

Suppose we enter the following breakpoints:

" h+4:b hent/d; h.hi/; h.hr/
- g+4:b gent/d; g9.9i/; g.9r/

f+4:b fent/d; f£.f£fi/; f£.fr/
s r : .

Each request line indicates that the variables are printed
in decimal (by the specification d). Since the format is
not changed, the @& can be left off all but the first
request.

The output in Figure 7 illustrates two points. First, the
ADB requestgs in the breakpoint line are not examined until
the program-under test is run. That means any errors in
those ADB requests is not detected until run time. At the
location of the error ADB stops running the program.

The second point is the way ADB handles register variables.
ADB uses the symbol table to address variables. Register

2-44

XENIX Software Development

bove, have pointers to uninitialized

variables, like f. a
ck. Therefore the message "symbol not

places on the s
found".

fr
ta

Another way of getting at the data in this example 1is to
print the variables used in the call as:

f£+4:b fcnty/d; f.a/; £.b/; f£.fi/
g+4:b gent/d; g.p/; 9.49/; 9g.9i/
:C

The operator / was used instead of ? to read values from
the core file. The output for each function, as shown in
Figure 7, has the same format. For the function £, for
example, it shows the name and value of the external
variable fcnt. It also shows the address on the stack and
value of the variables a,b and fi.

Notice that the addresses on the stack will continue to
decrease until no address space 1is left for program
execution at which time (after many pages of output) the
program under test aborts. A display with names would be

produced by requests like the following:
f+4:b fcnt/d; f£.a/"a="d; f.b/"b="d; £f.fi/"fi="d
In this format the quoted string is printed 1literally and

the d produces a decimal display of the variables. The
results are shown in Figure 7.

2.4.5.5 Other Breakpoint Facilities

® Arguments and change of standard input and output are
passed to a program as:

:r argl arg2 ... <infile >outfile

This request kills any existing program under test and
starts the a.out afresh.

¢ The program being debugged can be single stepped by:
:s

If necessary, this request will start wup the program
being debugged and stop after executing the first
instruction. :

& ADB allows a program to be entered at a specific
address by typing: o

2-45

XENIX Software Development

address:r

® The count field can be wused to skip the first n
breakpoints as:

yn2r
The request:
yn:c

may also be used for skipping the first n breakpoints
when continuing a program.

¢ A program can be continued at an address different from
the breakpoint with:

address:c

® The program being debugged runs as a separate process
and can be killed with:

<k

2.4.6 Maps

XENIX supports several executable file formats. These are
used to tell the loader how to load the program file. File
type 407 is the most common and is generated by a C compiler
invocation such as cc pgm.c. A 410 file is produced by a C
compiler command of the form:

cc -n pgm.c

Whereas a 411 file 1is produced by c¢c =i ‘pgm.c. ADB
interprets these different file formats and provides access
to the different segments through a set of maps (see Figure
8). To print the maps type:

Sm
In 407 files, both text (instructions) and data are
intermixed. This makes it impossible for ADB to

differentiate data from instructions and some of the printed
symbolic addresses 1look incorrect; for example, printing
data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated

from data and ?* accesses the data part of the a.out file.
The ?* request tells ADB to use the second part of the map

2-46

g

XENIX Software Development

in the a.out file. Accessing data in the core file shows
the data after it was modified by the execution of the
program. Notice also that the data segment may have grown
during program execution.

In 411 files (separated I & D space), the 1instructions and
data are also separated. However, in this case, since data
is mapped through a separate set of segmentation registers,
the base of the data segment is also relative to address
zero. In this <case since the addresses overlap it is
necessary to use the ?* operator to access the data space of
the a.out file. 1In both 410 and 411 files the corresponding
core file does not contain the program text. -

Figure 9 shows the display of three maps for the same
program linked as a 407, 410, 411 respectively. The b, e,
and £ fields are used by ADB to map addresses into file
addresses. The "fl" field is the length of the header at
the beginning of the file (020 bytes for an a.out file and
02000 bytes for a core file). The "f2" field is the
displacement from the beginning of the file to the data.
For a 407 file with mixed text and data this is the same as
the length of the header; for 410 and 411 files this is the
length of the header plus the size of the text portion.

The "b" and "e" fields are the starting and ending locations
for a segment. Given an address, A, the location in the
file (either a.out or core) is calculated as:

bl<A<el => file address = (A-bl)+fl
b2<A<e2 => file address = (A-b2)+f2

A user can access locations by using the ADB defined

variables. The $v request prints the variables initialized
by ADB: :

b base address of data segment

d length of the data segment

s length of the stack

t length of the text

m execution type (407,410,411)

In Figure 9 those variables not present are zero. Use can
be made of these variables by expressions such as:

<b

in the address field. Similarly the value of the variable
can be changed by an assignment request such as:

XENIX Software Development

02000>b

that sets b to octal 2000. These variables are useful to
know 1if the file under examination is an executable or core
image file. ~

ADB reads the header of the core image file to find the
values for these variables. If the second file specified
does not seem to be a core file, or if it is missing then
the header of the executable file is used instead.

2.4.7 Advanced Usage

It is possible with ADB to combine formatting requests to
provide elaborate displays. Below are several examples.

2.4.7.1 Formatted dump The line:

<b,~-1/404"8Cn

prints 4 octal words followed by their ASCII interpretation
from the data space of the core image file. Broken down,
the various request pieces mean:

<b The base address of the data segment.

<b,-1 Print from the base address to the end of
file. A negative count is used here and
elsewhere to 1loop indefinitely or until
some error condition (like end of file) is
detected. '

The format 40478Cn is broken down as follows:
40 Print 4 octal locations.

4" Backup the current address 4 locations (to
the original start of the field).

8C Print 8 consecutive characters using an
escape convention; each character in the
range 0 to 037 is printed as @ followed by
the corresponding character in the range
0140 to 0177. An @ is printed as @@.

n Print a newline.

2-48

XENIX Software Development

The request:
<b,<d/404"8Cn

could have been used instead to allow the printing to stop
at the end of the data segment (<d provides the data segment
size in bytes). '

The formatting requests can be combined with ADB's ability
to read in a script to produce a core image dump script.
ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of
such a script is:

1208w

4095Ss

Sv

=3n

Sm

=3n"C Stack Backtrace"
$C

=3n"C External Variables"
Se

=3n"Registers"

Sr

0Ss

=3n"Data Segment"
<b,-1/8ona

The request 1208w sets the width of the output to 120
characters (normally, the width 1is, 80 characters). ADB
attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset
to the nearest symbolic address from 255 (default) to 4095.
The request = can be used to print literal strings. Thus,
headings are provided in this dump program with requests of
the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The
request Sv prints all non-zero ADB variables (see Figure 8).
The request 0$s sets the maximum offset for symbol matches
to zero thus suppressing the printing of symbolic labels in
favor of octal values. Note that this is only done for the

2-49

XENIX Software Development

printing of the data segment. The request:
<b,-1/8ona

prints a dump from the base of the data segment to the end
of file with an octal address field and eight octal numbers
per line.

Figure 11 shows the results of some formatting requests on
the C program of Figure 10.

2.4.7.2 Directory Dump As another illustration (Figure 12)
consider a set of requests to dump the contents of a
directory (which is made up of an integer inumber followed
by a 14 character name):

adb dir -
=n8t"Inum"8t"Name”
0,-1? u8tldcn

In this example, the u prints the inumber as an unsigned
decimal integer, the B8t means that ADB will space to the
next multiple of 8 on the output line, and the 1l4c prints
the 14 character file name.

2.4;7f3 Ilist Dump Similarly the contents of the ilist of
a file system could be dumped with the following set of
requests:

adb /dev/src -

02000>b

?m <b

<b,~-1?"flags"8ton"links,uid,gid"8t3bn",
size"8tbrdn"addr"8t8un"times"8t2¥2na

Last two lines should be entered as one line

In the above example, the value of the base for the map was
changed to 02000 (by saying ?m<b) since that is the start of
an ilist within a file system. An artifice (brd above) was
used to print the 24 bit size field as a byte, a space, and
a decimal integer. The last access time and last modify
time are printed with the 2Y operator. Figure 12 shows
portions of these requests as applied to a directory and
file system.

<

XENIX Software Development

2.4.7.4 Converting values ADB may be wused to convert
values from one representation to another. For example,

072 = odx
will print:
072 58 #3a

which is the octal, decimal and hexadecimal representations
of 072 (octal). The format is remembered so that typing
subsequent numbers will print them in the given formats.
Character values may be converted similarly, for example:

prints
a 0141

It may also be used to evaluate expression8 but be warned
that all binary operators have the same precedence which is
lower than that for unary operators.

2.4.8 Patching

Patching files with ADB is accomplished with the write, w or
W, request (which is not like the ed editor write command).
This is often used in conjunction with the locate, 1 or L
request. In general, the request syntax for 1 and w are
similar as follows:

?1 value

The request 1 is used to match on two bytes, L is wused for
four bytes. The request w 1is used to write two bytes,
whereas W writes four bytes. The wvalue field 1in either
locate or write requests 1is an expression. Therefore,
decimal and octal numbers, or character strings are
suppor ted.

In order to modify a file, ADB must be called as:
adb -w filel file?2

When called with this option, filel and file2 are created if
necessary and opened for both reading and writing.

For example, consider the C program shown in Figure 10. We
can change the word "This" to "The " in the executable file
for this program, ex7, by using the following requests:

2-51

XENIX Software Development

adb -w ex7 -
?1 'Th'
?W 'The '

The request ?1 starts at dot and stops at the first match of
"Th" having set dot to the address of the location found.
Note the use of ? to write to the a.out file. The form 2%
would have been used for a 411 file.

More frequently the request will be typed as:
?1 'Th'; ?s

and locates the first occurrence of "Th" and print the
entire string. Execution of this ADB request will set dot
to the address of the "Th" characters.

As another example of the utility of the patching facility,
consider a C program that has an internal logic flag. The
flag could be set by the user through ADB and the program
run. For example:

adb a.out -
:s argl arg2
flag/w 1

:C

The :s request is normally used to single step through a
process or start a process in single step mode. 1In this
case it starts a.out as a subprocess with arguments argl and
arg2. If there 1is a subprocess running ADB writes to it
rather than to the file so the w request causes flag to be
changed in the memory of the subprocess.

2.4.9 Anomalies

Below is a list of some strange things that users should be
aware of.

1. PFunction calls and arguments are put on the stack by
the C save routine. Putting breakpoints at the entry
point to routines means that the function appears not
to have been called via the ($c or $C command) when
the breakpoint occurs.

2. WwWhen printing addresses, ADB uses either text or data
symbols from the a.out file. This sometimes causes
unexpected symbol names to be printed with data (e.g.
savr5+022). This does not happen if ? is used for
text (Iﬁgtructions) and / for data.

2-52

XENIX Software Development

3. ADB cannot handle C register variables in the most
recently activated function.

XENIX Software Development

Figure 1: C program with pointer bug

struct buf {
- int fildes;
int nleft;
char *nextp;
char buff[512];
Jbb;
struct buf *obuf;

char *charp "this is a sentence.”;

main(argc,argv)
int argc.

char **argv;

{

char cc.

if(arge < 2) |
printf ("Input file missing\n");
exit(8).

}

if ((fereat(argv(l]).obuf)) < 0){
printf(*%s : not found\n®, argv[1]);
exit(8);
}
charp = T": .
printf("debug 1 %s\n",charp):
while(cc= *charp+ +)
putc(cc,obuf);
fllush(obuf).

2-54

XENIX Software Development

Figure 2: ADB output for C program of Figure |

adb a.ou
Sc:

t core

"main(02.0177762!

sC

"main{02.0177762)

Sr
ps
pc
sp
()

arge:
argv:
cc

0170010
0204

0177740
0177752

4 0!
r3 0

r2 0

rl 0

r0 0124
"main+01352:
Se

SAvry: 0

_obuf: 0

_charp: 0124

_errno: 0
_fout: 0
Sm

lext map ‘exl}’

bl =0
b2 =0

data map ‘corel’

bl =0

b2 = 0175400
*charp/s
0124:

charp/s
_charp:

_charp+02:

_charp+026:
main.arge/d
0177756:
*main.argv/30
0177762:
0177770/s
0177770:
*main.argv/30
0177762:
*"/s
0177770:

.=0

~10/d
01777536:
Sq

02
0177762
02124
“main+0152
mov _obuf.(sp)
el = 02360 f1 = 020
e2 = 02360 f2 = 020
el = 03500 f1 = 02000
e2 = 0200000 2 = 05500
IlIIHllllllll?lTlflll[lIfillll)lll]lllllle
T

this is a sentence.

Input file missing

2

01777700177776 0177777
a.oul

01777700177776 0177777
a.out

0177770

9

2-55

Nh@x & _

XENIX SoftwarekDevelopment

‘Figure 3: Multiple function C program for stack trace illustration

int
hx.y)
{

glp.q)

f(a.b)

main()

fent.gent, hent;

int hi; register int hr;
hi = x+1:

hr = x—y+1.
hent+ +

hj:

f(hr.hi);

int gi: register int gr:
gi = g-p:

gr = q—p+1:
gent+ +

g

h(gr.gi).

int fi. register int fr.
fi = a+2°b;

fr = a+b:

fent++ ¢

fy:

glfr.fi):

f(1.1).

2-56

e

XENIX Software Development

Figure 4: ADB output for C program of Figure 3

adb

.
“h(04452.04451)
“g(04453.011124)
“f(02,04451)
“h{04450.04447)
“g(04451.011120)
“f(02.04447)
“h(04446.04445)
"g(04447.011114)
“f(02.04445)
“h(04434.04443)

HIT DEL KEY
adh
58C
“h(04452.04451)
X: 04452
y: 04451
hi: ?
"g(04453.011124)
P 04453
q: 011124
gi: 04451
gr: ?
“f(02.04451) -
a: 02
b: 04451
fi: 011124
fr: 04453
“h(04450,04447)
X: 04450
v: 04447
hi: 04451
, hr; 02
"g(04451.011120)
p: 04451
q: 011120
gi: 04447
gr: 04450
fent/d
_fent: 1173
gent/d
_gent: 1173
hent/d
_hent: 1172
h.x/d
022004: 2346
$Sq

2-57

XENIX Software Development

Figure 5: C program to decode tabs

#define MAXLINE 8
#define YES 1
#define NO 0
#define TABSP 8

char input[) "data™;
char ibuf[518];
int tabs[MAXLINE];

0

main()
{
int col, *ptab;
char c;
ptab = tabs;
settab(ptab); /*Set initial tab stops */
col = 1;

if (fopen(input,ibuf) < 0) {
printf("%s : not found\n",input);
exit(8); ‘
}
while((c = getc(ibuf)) = ~1) {
switch(c) |
case ‘\t: /* TAB */
while (tabpos(col) {= YES) | .
putchar(’ ') /* put BLANK */
’ col++ ;
break;
case \n":/*NEWLINE */
putchar('\n’);
col =1,
break;
default:
putchar(c);
col+ +

)

/* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;

{
if(col > MAXLINE)

return(YES):
else
return(tabs{col]);

!

/* Setiab - Set initial tab stops */
settab(tabp)
int *tabp;
{
int i;
for(i = 0; i<= MAXLINE; i+ +)
(i%TABSP) ? (tabs[i] = NO) : (tabs[i] = YES):

2-58

XENIX Software Development

Figure 6a: ADB output for C program of Figure 5

adb a.out —
settab+4:b
fopen+4:b
getc+4:b
tabpos +4:b
$h
breakpoints
count bkpt
1 “tabpos+04
1 _getc+04
1 _fopen+04
1 “settab+04
settab,5%ia
“settab: jsr
“settab+04: tst
“settab+06: clr
“settab+012: cmp
“settab+020: bit
“settab+022:
settab,5?i
“settab: jsr
1st
clr
cmp
bt
H 4
a.out: running
breakpoint “settab+
settab+d:d
¢
a.out: running
breakpoint _fopen+
$C
_fopen(02302,02472)
“main(01.0177770)
col: 0l
c: 0
ptab: 03500
tabs,3/80
03500: 01
01
0l

command

rS.csv

—(sp)

0177770(r3)

$0120.0177770(rS)

“setiab+076

r5.csv

~(sp)

0177770(r3)

$0120,0177770(rS)

“settab+076

04: tst —(sp)

04: mov 04(r3).nulstr+012
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

o

OO o

XENIX Software Development

Figure 6b: ADB output for C program of Figure §

HJ
a.out: running

breakpoint _getc+04: mov 04(rS),r1
fbuf +6/20c
__cleanu+0202: This is atest of

i
a.out: running

breakpoint “tabpos+04: cmp $0120,04(r5)
tabpos +4:d :

settab+4:b settab,5%a

settab+4:b settab,5%a; 0

getc+4,3:b main.c?C; 0

settabﬁ+4:b settab,5%a; ptab/o; 0

$b

breakpoints

count bkpt " command

1 “tabpos + 04

3 _getc+04 main.c?C:0

1 _fopen+04

1 “settab+04 settab,5%ia;ptab?0:0
“settab: jsr rS.csv

“settab+04: bpt

“settab+06: clr 0177770(sS)
“settab-+012: cmp $0120.0177770(r5)

“settab+020: bit “settab+076
© “settab+022: '

0177766: 0177770

0177744 @’

TO0177744: T

h0177744: h

i0177744: i

s0177744: s

2-60

XENIX Software Development

Figure 7: ADB output for C program with breakpoints

adb ex3 —

h+4:b hent/d; h.hi/; hohe/
g+4:b gent/d; g.gi/; g.gv/
f+4:b fent/d; £.0/; f.0r/

T

ex3. running

_fent: 0

0177732: 214

symbol not found

f+4:b fent/d; f.2/; £.b/; C.R/
g+4:b gent/d; g.p/: g.q/; g8/
h+4:b hent/d; h.x/; h.y/; h.hi/
:c

ex3: running
_fent:
0177746;
0177750:
0177732:
_gent:
0177726:
0177730:
0177712:
_hent
0177706:
0177710:
0177672:
_fent:
0177666:
0177670:
0177652:
_gent:
0177646:
0177650:
0177632:
HIT DEL
f+4:b fent/d; f.a/"a = “d; £.b/'d = "d; {.fi/'fi = "d
g+4:b gent/d: g.p/"p = "d: g.q/"q = "d; g.gi/'gi = "d
h+4:b hent/d; h.x/"x = "d; h.y/"h = “d: h.hi/"hi = “d
N

ex3: running
_fent:
0177746:
0177750
0177732:
_gent:
0177726:
0177730:
017771 2.
_hent:
0177706: X = 2
0177710 y =1
0177672 hi = 214
_fent: 1
0177666: a= 2
0177670: b=13
0177652: fi = 214
HIT DEL

Sq

— — —
» > »

NN~ NN LW~ N~ NNDONWNON——=O
—
F -

F

1t
N ——
—
&

p 1 1
R
=
»

coCmov Omo® O

XENIX Software Development

Figure 8: ADB address maps

407 files
a.out - hdr text+data
I | J
0 D
core | hdr | text+data stack
- ="
410 files (shared text)
a.out | hdr text - data
| |
0 T B
core hdr data stack
| | I
B D
411 files (separated I and D space)
a.out . hdr) text data
I J |
0 TO
core hdr data stack
| . |
0 D
The following adb variables are set.
407 410 411
b base of data 0 B 0
d length of data D D-B D
s length of stack S S S
t length of text 0 T T

2-62

XENIX Software Development

Figure 9: ADB output for maps

adb mapd407 cored407

Sm

text map 'map407°

bl =0 el = 0256 fl = 020
b2 =0 e2 = (256 f2 = 020
data map ‘cored407’

bl =0 el = 0300 f1 = 02000
b2 = 0175400 e2 = (0200000 f2 = 02300
Sv

variables

d = 0300

m = 0407

s = 02400

$q

adb map410 core410

$m

text map “map4l10’ '
bl =0 el = 0200 fl = 020
b2 = 020000 e2 = 020116 f2 = 0220
data map - ‘cored410’

bl = 020000 el = (020200 f1 = 02000
b2 = 0175400 e = (200000 f2 = 02200
Sv

variables

b = 020000

d = 0200

m = 0410

s = 02400

t = 0200

$q

adb mapd411 cored11l

$m

text map ‘'map4ll’

bl = 0 el = 0200 fl = 020
b2 =0 e2 = 0116 f2 = 0220
data map ‘coredll’

bl =0 el = 0200 f1 = 02000
b2 = 0175400 e2 = (200000 f2 = 02200
Sv

variables

d = 0200

m = 0411

s = 02400

t = 0200

$q

XENIX Software Development

Figure 10: Simple C program for illustrating formatting and patching

char str1[}] “This is a character string";

int. one | ‘

int number 456;

fong Inum 1234;

float fpt 1.25;

char str2[] “This is the second character string"™;
main()

{
}

one = 2,

2-64

XENIX Software Development

Figure 11: ADB output illustrating fancy formats
adb mapd10 core410

<b,~1/80na :
020000: - 0 064124 071551 064440 020163 020141 064143 071141
_strl +016: 061541 062564 020162 072163 064562 063556 0 02
_number:
_number: 0710 0 02322040240 0 064124 071551 - 064440
_str2+06: 020163 064164 020145 062563 067543 062156 061440 060550
_str2+026: 060562 072143 071145 071440 071164 067151 0147 0
savrS+02: 0 0 0 0 0 0 0 0
<b,20/404°8Cn
020000: 0 064124 071551 064440 @'@This i
020163 020141 064143 071141 s a char
061541 062564 020162 072163 acter st
064562 063556 0 02 ring@'@'@b@°
_number: 0710 0 02322040240 H@2@'@R@d @@
0 064124 071551 064440 @'@This i
020163 064164 020145 062563 s the se
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 ring@'@'@’
0 0 0 0 eeeeeeeree
0 0 0 0 eeeeeeee
data address not found
<b,20/404" 8t8cna
020000: 0 064124 071551 064440 This i
_str1 +06: 020163 020141 064143 071141 s a char
_str]1+016: 061541 062564 020162 072163 acter st
_strl +026: 064562 063556 0 02 ring
_number:
_number: 0710 0 02322040240 HR
_fpt+02: 0 064124 071551 064440 This i
_str2+06: 020163 064164 020145 062563 s the se
_str2+016: 067543 062156 061440 060550 cond cha
_str2+026: 060562 072143 071145 071440 racter s
_str2+036: 071164 067151 0147 0 tring '

savrS+02: 0 0 0 0
savrS+012:0 0 0 0
data address not found
<b,10/2b8t" 2cn

020000: 0 0

_strl: 0124 0150 Th
0151 0163 is
040 0151 i
0163 040 s
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 te

$Q

XENIX Software Development

Figure 12: Directory and inode dumps
adb dir -

=nt"Inode"t“Name"

0,~1?utl4cn

Inode Name
0: 652

82 ..

5971 cap.c

5323 cap

0 pp

adb /dev/src —

02000>b

'm<b

new map ‘/dev/src’

bl = 02000 el = (0100000000 f1 =20

b2 =0 e2 =0 f2=20

Sv :

variables

b = 02000
<b,—1?"flags"8ton"links,uid,gid"8t3bn"size"8tbrdn"addr"8t8un"times"8t2Y Zna
02000: flags 073145

links,uid,gid 0163 0164 0141

size 0162 10356

addr 28770 - ~ 8236 25956 27766 25455 8236 25956 25206
times1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times1976 Aug 17 12:16:511976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid = 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

2-65

XENIX Software Development

ADB Summary
Command Summary

a. formatted printing

? format print from a.out file according to format
/ format print from core file according to format
= format print the value of dot

?w expr write expression into a.out file

/w expr write expression into core file

?1 expr locate expression in a.out file

b. Breakpoint and program control

:b set breakpoint at dot

:Cc continue running program

:d delete breakpoint

:k kill the program being debugged
ir run a.out file under ADB control
:s single step

c. Miscellaneous printing

$b print current breakpoints
Sc C stack trace

Se external variables

St floating registers

Sm print ADB segment maps

$q exit from ADB

Sr general registers

$s set offset for symbol match
Sv print ADB variables

Sw set output line width

d. Calling the shell

! call shell to read rest of line

e. Assignment to variables

>name assign dot to variable or register name

XENIX Software Development

Format Summary

the
one
one
one
two
PDP
one

o

one

(X SIS IO R MQAQ T

value of dot

byte in octal

byte as a character
word in decimal

words in floating point
11 instruction

word in octal

print a newline

print a blank space

a null terminated character string
move to next n space tab

word as unsigned integer

hexadecimal
date
backup dot

coe print string

2-67

XENIX Software Development

Expression Summary
Expression components

decimal integere.g. 256

octal integere.g. 0277

hexadecimale.g. #ff

symbols e.g. flag _main main.argc
variables e.g. <b

registers e.g. <pc <r0

(expression) expression grouping

a. Dyadic operators

add

subtract

multiply

integer division

bitwise and

bitwise or

round up to the next multiple

2 P ¥ | +

b. Monadic operators
not

* contents of location
- integer negate

2-68

XENIX Software Development

2.5 AS: The XENIX Assembler

This document describes the usage and input syntax of the
XENIX 8086 assembler as. As is an assembler that produces
an output file containing relocation information and a
complete symbol table. The output is acceptable to the
XENIX loader 1d, which may be used to combine the outputs of
several assembler runs and to obtain object programs from
libraries. The output format has been designed so that if a
program contains no unresolved references to external
symbols, it is executable without further processing.

2.5.1 Usage

As is invoked as follows:

as [-1] [-o output] file

If the optional “-1' argument is given, an assembly 1listing
is produced which includes the source, the assembled
(binary) code, and any assembly errors.

The output of the assembler is by default placed on the file

a86.out in the current directory; The “-o' flag causes the
output to be placed on the named file.

2.5.2 Lexical conventions

Assembler tokens include identifiers (alternatively,
““symbols'' or ““names''), constants, and operators.

2.5.2.1 1Identifiers An identifier consists of a sequence

of alphanumeric characters (including period “"“.''and
underscore ~°_'' as alphanumeric) of which the first may not
be numeric. Only the. "“first eight characters are

significant. The case of alphabetics in identifiers is
significant. : S ' '

2.5.2.2 Constants A hex constant consists of a sequence of
digits and the letters “a', “b', “¢', "d', “e', and “f' (any
of which may be capitalized), preceeded by the character
“/'. The letters are interpreted with the following values:

2-69

XENIX Software Development

EX DECIMAL
10
11
12
13
14
15

MEHOOW D m

An octal constant consists of a series of digits, preceded
by the tilde character =~ '! The digits must be in the
range from 0 to 7.

A decimal constant consists simply of a sequence of digits.
The magnitude of the constant should be representable in 15
bits; i.e., be less than 32,768.

2.5.2.3 Blanks Blank and tab characters may be freely
interspersed between tokens, but may not be used within
tokens (except in character constants). A blank or tab is
required to separate adjacent identifiers or constants not
otherwise separated.

2.5.2.4 Comments The character ““|'' introduces a comment,
which extends through the end of the 1line on which it
appears. Comments are ignored by the assembler. o

2.5.3 Segments

Assembled code and data fall into three segments: the text
segment, the data segment, and the bss segment. The text
segment is the one in which the assembly begins, and it |is
the one into which instructions are typically placed. The
XENIX system will, if desired, enforce the purity of the
text segment of programs by trapping write operations into
it. Object programs produced by the assembler must be
processed by the link-editor:1d (using its “-i' flag) if the
text segment is to be write-protected. A single copy of the
text segment is shared among all processes executing such a

program.

The data segment 1is available for placing data or
instructions which will be modified during execution.
Anything which may go in the text segment may be put into
the data segment. In programs with write-protected,
sharable text segments, the data segment contains the
initialized but wvariable parts of a program. If the text
segment is not pure, the data segment begins immediately
after the text segment. If the text segment is pure, the

XENIX Software Development

data segment is in an address space of its own, starting at
location zero (0).

The bss segment may not contain any explicitly initialized
code or data. The length of the bss segment (like that of
text or data) is determined by the high-water mark of the
location counter within it. The bss segment is actually an
extension of the data segment and begins immediately after
it. At the start of execution of a program, the bss segment
is set to 0. The advantage in using the bss segment for
storage that starts off empty is that the initialization
information need not be stored in the output file. See also
location counter and assignment statements below.

2.5.4 The location counter

The special symbol, “*.'', is the 1location counter. Its
value at any time is the offset within the appropriate
segment from the start of the statement in which it appears.
The location counter may be assigned to, with the
restriction that the current segment may not change;
furthermore, the value of “".'' may not decrease. If the
effect of the assignment is to increase the value of “.'?',
the required number of null bytes are generated (but see

Segments above).

2.5.5 Statements

A source program is composed of a sequence of statements.
Statements are separated by new-lines. There are four kinds
of statements: null statements, expression statements,
assignment statements, and keyword statements.

The format for most 8086 assembly language source statements
is:

[<label field>]
op-code [<operand field>] [<comment>]

Any kind of statement may be preceded by one or more labels.

2.5.5.1 Labels There are two kinds of labels: name 1labels
and numeric labels. A name label consists of a identifier
followed by a colon (:). The effect of a name label is to
assign the current value and type of the location counter
*%.'' to the name. An error is indicated in pass 1 if the
name is already defined; an error is indicated in pass 2 if
the “*.'' value assigned changes the definition of the

2-71

XENIX Software Development

label.

A numeric label consists of a string of digits 0 to 9 and
dollar-sign ($) followed by a colon (:). Such a label serves
to define local symbols of the form ““n$'', where n 1is the
digit of the label. The scope of the numeric label is the
labelled block in which it appears. As an example, the
label 9% is defined only between the lables foobar and foo:

foobar:
9S: .byte 0
foo: .word a

As in the case of name labels, a numeric label assigns the
current value and type of “".'' to the symbol.

2.5.5.2 Null statements A null statement is an empty
statement (which may, however, have labels and a comment).
A null statement is ignored by ' the assembler. Common
examples of null statements are empty 1lines or lines
containing only a label.

2.5.5.3 Expression statements An expression statement
consists of an arithmetic expression not beginning with a
keyword. The assembler computes its value and places it in
the output stream, together with the appropriate relocation
bits. :

2.5.5.4 Assignment statements An assignment statement
consists of an identifier, an equal sign (=), and an
expression. The value and type of the expression are
assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1, nor is it
an error to redefine any symbol by assignment.

Any external attribute of the expression is lost across an
assignment. This means that it is not possible to declare a
global symbol by assigning to it, and that it is impossible
to define a symbol to be offset from a non-locally defined
global symbol.

As mentioned, it is permissible to assign to the 1location

counter ~T.''. It 1is required, however, that the type of
the expression assigned be of the same type as ~~.'', and it
is forbidden to decrease the value of ““.''. 1In practice,

XENIX Software Development

LN (]

the most common assignment to ““.'' has the form ““.=.+4n
for some number n; this has the effect of generating n null
bytes.

2.5.5.5 Keyword statements Keyword statements are

numerically the most common type, since most machine
instructions are of this sort. A keyword statement begins
with one of the many predefined keywords of the assembler;
the syntax of the remainder depends on the keyword. All the
keywords are listed below with the syntax they require.

2.5.6 Expressions

An expression is a sequence of symbols representing a value.
Its constituents are identifiers, constants, and operators.
Each expression has a type.

Arithmetic is two's complement. All operators have equal
precedence, and expressions are evaluated strictly left to
right.

2.5.6.1 Expression operators The operators are:

Operator Description
(blank) same as +
+ Addition
- Subtraction
* Multiplication
/ Division
- Logical OR
& Logical AND
! Logical NOT
> Right Shift
<

Left Shift

2.5.6.2 Types The assembler deals with expressions, each
of which may be of a different type. Most types are
attached to the keywords and are used to select the routine
which treats that keyword. The types likely to be met
explicitly are: '

undefined
Upon first encounter, each symbol 1is undefined.
It may become undefined if it is assigned an
undefined expression. :

2-73

XENIX Software Development

undefined external

absolute

text

data

bss

external

A symbol which is declared .globl but not defined
in the current assembly is an undefined external.
If such a symbol is declared, the link editor 14
must be used to load the assembler's output with
another routine that defines the undefined
reference.

An absolute symbol is defined wultimately from a
constant. 1Its value is unaffected by any possible
future applications of the 1link-editor to the
output file.

The value of a text .symbol is measured with
respect to the beginning of the text segment of
the program. If the assembler output is 1link-
edited, its text symbols may change in value since
the program need not be the first in the 1link
editor's output. Most text symbols are defined by
appearing as labels. At the start of an assembly,
the value of “*.,'' is text 0.

The value of a data symbol 1is measured with
respect to the origin of the data segment of a
program. Like text symbols, the value of a data
symbol may change during a subsequent link-editor
run since previously loaded programs may have data
segments. After the first .data statement, the
value of “",'' is data 0.

The value of a bss symbol is measured from the
beginning of the bss segment of a program. Like
text and data symbols, the value of a bss symbol
may change during a subsequent link-editor run,
since previously loaded programs may have bss
segments. After the first .bss statement, the
value of “°.,'' is bss 0.

absolute, text, data, or bss

Symbols declared .globl but defined within an
assembly as absolute, text, data, or bss symbols
may be used exactly as if they were not declared
.globl; however, their value and type are
available to the 1link editor so that the program
may be loaded with others that reference these
symbols.

2-74

XENIX Software Development

other types
Each keyword known to the assembler has a type
which is used to select the routine which
processes the associated keyword statement. The
behavior of such symbols when not used as keywords
is the same as if they were absolute.

2.5.6.3 Type propagation in expressions When operands are
combined by expression operators, the result has a type
which depends on the types of the operands and on the
operator. The rules involved are complex to state but were
intended to be sensible and predictable. For purposes of
expression evaluation the important types are

undefined

absolute

text

data

bss

undefined external.
other

The combination rules are then: If one of the operands is
undefined, the result is undefined. 1If both operands are
absolute, the result 1is absolute. If an absolute is
combined with one of the “other types'mentioned above, the
result has the other type. If two operands of ‘“other
type' are combined, the result has the numerically larger
type. An “other type' combined with an explicitly discussed
type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment
relocatable, or 1is an undefined external, the result
has the postulated type and the other operand must be
absolute. '

- If the first operand is a relocatable text-, data-, or
bss-segment symbol, the second operand may be absolute
(in which case the result has the type of the first
operand); or the second operand may have the same type
as the first (in which case the result is absolute).
If the first operand is external undefined, the second

. must be absolute. All other combinations are illegal.

others :
It is illegal to apply these operators to any but

absolute symbols.

2-75

XENIX Software Development

2.5.7 Pseudo-operations

The keywords 1listed below introduce statements that
influence the later operations of the assembler. The
metanotation

[stuff] ...

means that 0 or more instances of the given stuff may
appear. Also, boldface tokens are literals, italic words
are substitutable.

2.5.7.1 .even If the location counter ““.'' is odd, it is
advanced by one so the next statement will be assembled at a

word boundary. This is wuseful for forcing storage
allocation to be on a word boundary after a .byte or .ascii

directive.

2.5.7.2 .float, .double

.float 31459E4

The .float psuedo operation accepts as 1its operand an
optional string of tabs and spaces, then an optional sign,
then a string of digits optionally containing a decimal
point, them an optional “e' or "E', followed by an
optionally signed integer. The string is interpreted as a
floating point number. The difference between .float and
.double is in the number of bytes for the result; .float
sets aside four bytes, while .double sets aside eight bytes.

2.5.7.3 .B .globl

.globl name [, name] ...

This statement makes the names external. If they are
otherwise defined (by assignment or appearance as a label)
they act within the assembly exactly as 1if the .globl
statement were not given; however, the link editor 1d may be
used to combine this routine with other routines that refer
to these symbols.

Conversely, if the given symbols are not defined within the
current assembly, the link editor can combine the output of
this assembly with that of others which define the symbols.
It 1is possible to force the assembler to make all otherwise
undefined symbols external.

XENIX Software Development

2.5.7.4 .text, .data, .bss These three pseudo-operations
cause the assembler to begin assembling into the text, data,
or bss segment respectively. Assembly starts in the text
segment. It is forbidden to assemble any code or data into
the bss segment, but symbols may be defined and ““.'' moved
about by assignment.

2.5.7.5 .comm The format of the .comm is:

. comm ARRAY

Provided the name is not defined elsewhere, this statement
is equivalent to .globl. That 1is, the type of name is

“undefined external'', and its size is expression. In fact
the name behaves in the current assembly Just like an
undefined external. However, the link-editor 1d has been
special-cased so that all external symbols which are not
otherwise defined, and which have a non-zero value, are
defined to lie in the bss segment, and enough space is left
after the symbol to hold expression bytes. All symbols
which become defined in this way are located before all the
explicitly defined bss-segment locations.

2.5.7.6 .insrt The format of a .insrt is:

.insrt "filename"

where filename is any valid XENIX filename. Note that the
filename must be enclosed within double quotes.

The assembler will attempt to open this file for input. If
it succeeds, source lines will be read from it until the end
of file is reached. 1If as was unable to open the file, a
Cannot open insert file error message will be generated.

This statement is useful for including a standard set of
comments or symbol assignments at the beginning of a
program. It is also useful for breaking up a large source
program into easily managable pieces.

A maximum depth of 10 (ten) files may be .insrted at any one
tlme. , :

System call names are not predefined. They may be found in
the file /usr/include/sys.s. .

2=-177

TN

XENIX Software Development

2.5.7.7 .ascii, .asciz The .ascii directive translates
character strings into their 7-bit ascii (represented as
8-bit bytes) equivalents for use in the source program. The
format of the .ascii directive is as follows:

.ascii /character string/

where

character string contains any character valid in a
character constant. Obviously, a <newline> must
not appear within the character string. (It can be
represented by the escape sequence \en).

/ and / are delimiter characters, which may be any
character not appearing in character string

Several examples follow:

Hex Code Generated: Statement:
22 68 65 6C 6C 6F 20 74 .ascii /"hello there"/
68 65 72 65 22

77 61 72 6E 69 6E 67 20 .ascii "Warning-\007\007 \n"
2D 07 07 20 0A
61 62 63 64 65 66 67 .ascii *abcdefg*

The .asciz directive is equivalent to the .ascii directive
with a zero (null) byte automatically inserted as the final
character of the string. Thus, when a list or text string is
to be printed, a search for the null character can terminate
the string. Null terminated strings are used as arguments to
some XENIX system calls.

2.5.7.8 .list, .nlist These pseudo-directives control the
assembler output listing. These, in effect, temporarily
override the “-1' switch to the assembler. This is useful
when certain portions of the assembly output 1is not
necessarily desired on a printed listing.

.list turns the listing on
.nlist turns the listing off

XENIX Software Development

2.5.7.9 .blkb, .blkw The .blkb and .blkw directives are
used to reserve blocks of storage: .blkb reserves bytes,
.blkw reserves words.

The format is:

.blkb [expression]
.blkw [expression]

where expression is the number of bytes or words to reserve.
If no argument is given a value of 1 is assumed. The
expression must be absolute, and defined during pass 1.

[NEN

This is equivalent to the statement .=.+expression'', but

has a much more transparent meaning.

2.5.7.10 .byte, .word The .byte and .word directives are
used to reserve bytes and words and to initialize them with
certain values. :

The format is:

.byte [expression]
.word [expression]

The .byte directive reserves one byte for each expression in
the operand field and initializes the value of the byte to
be the low-order byte of the corresponding expression.

For example,

.byte 0
reserves an byte, with a value
of zero.
‘state: .byte 0 ,
: reserves a byte with a zero
value called state.

The semantics for .word are identical, except that 16-bit

words are reserved and initialized.

2.5.7.11 .end The .end directive indicates the physical
end of the source program. The format is:

.end [expression]

where expression is an optional argument which, if present,
indicates the entry point of the program, i.e. the starting
point for execution. If the entry point of a program is not
specified during assembly, it defaults to zero.

2-79

XENIX Software Development

Every source program must be terminated with a .end
statement. Inserted files which contain a .end statement
will terminate assembly of the entire program, not just the
inserted portion.

2.5.8 Machine

The 8086 instructions treat different types of operands
uniformly. Nearly every instruction can operate on either
byte or word data. In the table that follows, with some
notable execeptions, an instruction that operates on a byte
operand will have a b suffix on the opcode.

The 8086 instruction mnemonics which follow are implemented
by the Microsoft 8086 assembler desribed in this document.
Some of the opcodes are not found in any other 8086 manual.

For example, this document describes branch instructions not
found in any 8086 manual. The branch instructions expand
into a jump on the inverse of the condition specified,
followed by an an unconditional intra-segment jump. The
operand field format for the branch opcodes is the same as
the operand field for the jump long opcodes. The opcodes
which are implemented only in this assembler will be
annotated by an asterisk, and will be fully defined and
described in this document.

2-80

XENIX Software Development

8086 Assembler Opcodes

Opcode Description
aaa - ascii adjust for addition
aad ascii adjust for division
aam ascii adjust for multiply
aas ascii adjust for subtraction
adc add with carry
adcb add with carry
add add
addb add
and logical AND
andb logical AND
*beq long branch equal
*bge long branch grt or equal
*bgt long branch grt
*bhi long branch on high
*bhis long branch high or same
*ble long branch les or equal
*blo long branch on low
*blos long branch low or same
*blt long branch less than
*bne long branch not equal
*br long branch
call intra segment call
calli inter segment call
cbw convert byte to word
clc clear carry flag
cld clear direction flag
cli clear interrupt flag
cme complement carry flag
cmp compare :
cmpb compare
cmps compare string
cmpsb compare string
cwd covert word to double word
daa decimal adjust for addition
das decimal adjust for subtraction
dec decrement by one -
decb decrement by one
div divison unsigned
divb divison unsigned
hlt halt
idiv integer division
idivb integer division
imul integer multiplication
imulb integer multiplication
in input byte
inc increment by one
incb increment by one
int interrupt

2-81

into
inw
iret

ja
jae

jbe
jcxz
je

jg
ige
jle
jm.
jmpi
jna
jnae
jnb
jnbe
jne
ing
jnge
jnl
jnle
jno
jnp
jns
jnz
jo

jp
ipe
ipo
is

jz
lahf
lds
lea
les
lock
lodb
lodw
loop
loope
loopne
loopnz
loopz
mov
movb
movs
movsb

XENIX Software Development

interrupt if overflow

input word

interrupt return

short jump

short jump if above

short jump if above or equal
short jump if below

short jump if below or equal
short jump if CX is zero
short jump on equal

short jump on greater than
short jump greater than or equal
short jump on less than
short jump on less than or equal
jump

inter segment jump

short jump not above

short jump not above or equal
short jump not below

short jump not below or equal
short jump not equal

short jump not greater

short jump not greater or equal
short jump not less

short jump not less or equal
short jump not overflow
short jump not parity

short jump not sign

short jump not zero

short jump on overflow

short jump if parity

short jump if parity even
short jump if parity odd
short jump if signed

short jump if zero

load AH from flags

load pointer using DS

load effective address

load pointer using ES

lock bus

load string byte

load string word

loop short label

loop if equal

loop if not equal

loop is not zero

loop if zero

move

move byte

move string

move string byte

N
|

82

mul
mulb
neg
negb
nop
not
notb
or
orb
out
outw
pop
popf
push
pushf
rcl
rclb
rcr
rcrb
rep
repnz
repz
ret
reti
rol
rolb
ror
rorb
sahf
sal
salb
sar
sarb
sbb
sbbb
scab
shl
shlb
shr
shrb
stc
std
sti
stob
stow
sub
subb
test
testb
wait
xchg

XENIX Software Development

multipication unsigned
multipication unsigned
negate

negate

no op

logical NOT

logical NOT

logical OR

logical OR

output byte

output word

pop from stack

por flag from stack

push onto stack

push flags onto stack
rotate left through carry
rotate left through carry
rotate right throuch carry
rotate right throuch carry
repeat string operation

repeat string operation not zero
repeat string operation while zero

return from procedure

return from intersegment procedure

rotate left
rotate left
rotate right
rotate right

store AH into flagsno operands

shift arithmetic left
shift arithmetic left
shift arithmetic right
shift arithmetic right
subtract with borrow
subtract with borrow
scan string :
shift logical left
shift logical left
shidr logical right
shidr logical right
set carry flag

set direction flag

set interrupt enable flag
store byte string.
store word string
subtraction :
subtraction

test

test

wait while TEST pin
exchange

2-83

XENIX Software Development

xchgb exchange
xlat translate
Xor xclusive OR
xorb xXclusive OR

2.5.9 Addressing Modes

The 8086 assembler provides many different ways to access
instruction operands. Operands may be contained in
registers, within the instruction itself, in memory, or in
I/0 ports. In addition, the addresses of memory and 1/0
port operands can be calculated in several different ways.

2.5.9.1 Register Operands Instructions that specify only
register operands are generally the most compact and fastest
executing of all the instruction forms. This 1is because the
register “addresses' are encoded in the instructions with
just a few bits, and because these operations are performed
entirely within the CPU. Registers may serve as source
operands, destination operands, or both.

EXAMPLES OF REGISTER ADDRESSING

sub cx,di

mv ax,/3*4
mv /3*4/,ax
mov ax,*1

2.5.9.2 1Immediate Operands Immediate operands are constant
data contained 1in an instruction. The data may be either 8
or 16 bits in length. Immediate operands can be accessed
quickly because they are available directly from the
instruction queue; it is possible that no bus cycles will be
needed to obtain an immediate operand. An immediate operand
is always a constant value and can only be used as a source

operand.

The assembler can accept both 8 and 16 bit operands. It does
not perform any checking on the operand size, but determines
the size of the operand by the following symbols:

*expr an 8 bit immediate
#expr a 16 bit immediate

2-84

XENIX Software Development

EXAMPLES OF IMMEDIATE ADDRESSING

mov cx,*PAGSIZ/2
mov cx,#PAGSIZ/2
mov map, #PAGSIZ/2
mov map, *PAGSIZ/2

2.5.10 Memory Addressing Modes

When reading or writing a memory operand, a value called the
offset 1is required. This offset value, also called the
effective address is the operand's distance in bytes from
the beginning of the segment in which it resides.

2.5.10.1 Direct Addressing Direct addressing is the
simplest memory addressing mode since no registers are
involved. The effective address is taken directly from the
displacement field of the instruction. It is typically used
to access simple (scalar) variables.

EXAMPLES OF DIRECT ADDRESSING

push *6 (bp)
mov cx,#256
add si,*4
2.5.10.2 Register Indirect Addressing The effective

address of a memory operand may be taken from a base or
index register. One instruction can operate on many
different memory locations if the value in the base or index
register is updated appropriately. Indirect addressing is
denoted by an ampersand @ preceding the operand.

EXAMPLES OF INDIRECT ADDRESSING

poprl rr0,@rl5
‘calli @moncall
2.5.10.3 Based Addressing In based addressing, the

effective address is the sum of a displacement value and the
content of register bx or bp. Based addressing also provides
a straightforward way to address structures which may be
located in different places in memory. A base register can
be pointed at the base of the structure and elements of the
structure addressed by their displacements from the base.
Different copies of the same structure can be accessed by

simply changing the base register.

2-85

XENIX Software Development

EXAMPLE OF BASED ADDRESSING

mov *2(si) ,#/1000

2.5.10.4 Indexed Addressing In indexed addressing, the
effective address is calculated from the sum of a
displacement plus the content of an index register. Indexed
addressing often is used to access elements in an array. The
displacement locates the beginnning of the array, and the
value of the index register selects one element. Since all
array elements are the same length, simple arithmetic on the
index register will select any element.

EXAMPLE OF INDEXED ADDRESSING

mov # cat, (bx)

2.5.10.5 Based Indexed Addressing Based indexed addressing
generates an effective address that is the sum of a base
register, an index register, and a displacement. Based
indexed addressing 1is a very flexible mode because two

address components can be varied at execution time.

Based indexed addressing provides a convenient way for a
procedure to address an array allocated on a stack. Register
bp can contain the offset of a reference point on the stack,
typically the top of the stack after the procedure has saved
registers and allocated local storage. The offset of the
beginning of the array from the reference point can be
expressed by a displacement value, and an index register can
be used to access individual array elements.

EXAMPLES OF BASED INDEXED ADDRESSING

mov (bx) (dx) ,_sym
mov *2 (bx) (dx),_sym
mov #2 (bx) (dx),_sym

2.5.11 Diagnostics

When syntactic errors occur, the line number and the file in
which they occur 1is displayed. Errors in pass 1 cause
cancellation of pass 2.

ERROR syntax error, line xx
file: yy errors v

XENIX Software Development

where xx represents the line number(s) in error, and yy
represents the total number of errors.

CHAPTER 3

ENVIRONMENT

Although the C programming language is a fine 1language, it
is designed to be wused in a computing environment. From
within some C programs, you may want to execute other
programs, or to make <calls to perform system functions.
Also, you may want to write assembly language routines that
interface to programs. Before you can perform any of these
programming tasks, you must have a knowledge of the XENIX
environment. In the case of the XENIX system, this
environment includes low level system calls, available C
libraries, and compiler <calling conventions. The rest of
this chapter explains the wvarious parts of the XENIX
environment.

3-1

XENIX Software Development

3.1 THE C INTERFACE TO THE XENIX SYSTEM
This section shows how to interface C programs to the XENIX
system, either directly or through the standard I/0 library.
The topics discussed include:

¢ Handling command arguments

® Rudimentary I/O

¢ The standard input and outéut

& The standard I/0 library

¢ File system access

¢ Low-level I/0: open, read, write, close, seek

@ Processes: exec, fork, pipes

® Signals and interrupts

3.1.1 Basics

3.1.1.1 Program Arguments When a C program 1is run as a

command, the arguments on the command 1line are made
available to the function main as an argument count argc and

an array argv of pointers to character strings that contain
the arguments. By convention, argv([0] is the command name
itself, so argc is always greater than 0.

The following program 111ustrates the mechanism: it simply
echoes its arguments back to the terminal. (This is
essentially the echo command.)

main(argc, argv) /* ‘echo arguments */
int argc; :
char *argvl[];

int 1i;

for (i = 1; i < argc; i++)
printf("%$s%c", argv[i], (i<argc-1) 2 ' ' : '0);

}

argv is a pointer to an array whose individual elements are
pointers to arrays of characters; each is terminated by \O,
so they can be treated as strings. The program starts by
printing argv[l] and loops until it has printed them all.

XENIX Software Development

The argument count and the arguments are parameters to main.
If you want to keep them around so other routines can get at
them, you must copy them to external variables.

3.1.1.2 The "“"Standard Input'' and ““Standard Output'' The
simplest input mechanism is to read the "~ “standard input,''
which is generally the wuser's terminal. The function

getchar returns the next input character each time it is
called. A file may be substituted for the terminal by using
the < convention: 1if prog uses getchar, then the command
line:

prog <file

causes prog to read file 1instead of the terminal. prog
itself need know nothing about where its input is coming
from. This is also true if the input comes from another
program via the pipe mechanism: For example

otherprog | prog

provides the standard input for prog from the standard
output of otherprog.

Getchar returns the value EOF when it encounters the end of
file (or an error) on whatever you are reading. The value

of EOF is normally defined to be -1, but it 1is unwise to
take any advantage of that knowledge. As will become clear
shortly, this value is automatically defined for you when
you compile a program, and need not be of any concern.

Similarly, Eutchar(c) puts the character c on the "“standard
output,'' which is also by default the terminal. The output
can be captured on a file by using >. If prog uses putchar,

prog >outfile

writes the standard output on outfile instead of the
terminal. Outfile 1is created if it doesn't exist; if it
already exists, its previous contents are overwritten.

The function printf, which formats output in various ways,
uses the same mechanism as Eutchar does, so calls to printf
and putchar may be intermixed in any order: the output
appears in the order of the calls.

Similarly, the function scanf provides for formatted input
conversion; it reads the standard input and breaks it up
into strings, numbers, etc., as desired. Scanf uses the
same mechanism as dgetchar, so calls to them may also be

XENIX Software Development

intermixed.

Many programs read only one input and write one output; for

such programs 1I/0 with getchar, putchar, scanf, and printf.

may be entirely adequate, and it is almost always enough to
get started. This is particularly true if the XENIX pipe
facility is used to connect the output of one program to the
input of the next. For example, the following program
strips out all ASCII control characters from 1its input
(except for new-line and tab).

#include <stdio.h>

main() /* ccstrip: strip non-graphic characters */

int c;
while ((c = getchar()) != EOF) o
: if ((c >= ' ' && ¢ < 0177) || c == "\t' || ¢
putchar (c) ;
exit(0);
}
The line

#include <stdio.h>

should appear at the beginning - of each source file. It
causes the C compiler to read a file (/usr/include/stdio.h)
of standard routines and symbols that includes the
definition of EOF. : :

If it is necessary to treat multiple files, you can use cat
to collect the files for you:

cat filel file2 ... | ccstrip >output

and thus avoid learning how to access files from a program.
By the way, the call to exit at the end is not necessary to
make the program work properly, but it assures that any
caller of the program will see a normal termination status
(conventionally 0) - from the program when it completes.
Status returns are discussed later in more detail. :

3.1.2 The Standard I/0 Library

The Standard I/0 Library is a collection of routines
intended to provide efficient and portable I/O services for
most C programs. The standard I/0 library is available on
each system that supports C, so programs that confine their
system interactions to its facilities can be transported

3-4

l\n'

XENIX Software Development

from one system to another essentially without change.

In this section, we will discuss the basics of the standard
I1/0 library. The appendix contains a more complete
description of its capabilities.

3.1.2.1 File Access The programs written so far have all
read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next
step 1is to write a program that accesses a file that is not
already connected to the program. One simple example is wc,
which counts the 1lines, words and characters in a set of
files. For instance, the command

WC X.C Y.C

prints the number of lines, words and characters in x.c and
y.c and the totals.

The question is how to arrange for the named files to be
read-that 1is, how to connect the file system names to the
I/0 statements which actually read the data.

The rules are simple. Before it can be read or written a
file has to be opened by the standard library function
fopen. fopen takes an external name (like x.c or y.c), does
some housekeeping and negotiation with the operating system,
and returns an internal name which must be used in
subsequent reads or writes of the file.

This internal name is actually a pointer, called a file
pointer, to a structure which contains information about the
file, such as the 1location of a buffer, the current
character ©position in the buffer, whether the file is being
read or written, and the like. Users don't need to know the
details, because part of the standard I/0 definitions
obtained by including stdio.h is a structure definition
called FILE. The only declaration needed for a file pointer
is exemplified by

FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen returns
a pointer to a FILE. FILE(is a type name, like int, not a

structure tag.

The actual call to fopen in a program is

fp = fopen(name, mode) ;

XENIX Software Development

The first argument of fopen is the name of the file, as a
character string. The second argument is the mode, also as
a character string, which indicates how you intend to use
the file. The only allowable modes are read (r), write (W), .
or append (a).

If a file that you open for writing or appending does not
exist, it 1is created (if possible). Opening an existing
file for writing causes the old contents to be discarded.
Trying to read a file that does not exist is an error, and
there may be other causes of error as well (like trying to
read a file when you don't have permission). If there is
any error, fopen returns the null p01nter value NULL (which
is defined as zero in stdio,h).

The next thing needed is a way to read or write the file
once it is open. There are several possibilities, of which
getc and putc are the simplest. Getc returns the next
character from a file. It needs the file pointer to tell it
what file. Thus:

c = getc(£fp)

places in ¢ the next character from the file referred to by
_B, it returns EOF when it reaches end of file. Putc is the
inverse of getc. For example

putc(c, f£fp)

puts the character ¢ on the file fp and returns c. Getc and
putc return EOF on error.

When a program is started, three files are opened
automatically, and file pointers are provided for them.
These files are the standard input, the standard output, and
the standard error output; the corresponding file pointers
are called stdin, stdout, and stderr. Normally these are
all connected to the terminal, but may be redirected to
files or pipes. Stdin, stdout and stderr are pre-defined in
the 1I/0 1library as the standard input, output and error
files; they may be used anywhere an object of type FILE *
can - be. They are constants, however, not variables, so
don't try to assign to them. . ’

With some of the preliminaries out of the way, we can now
write wc. The basic design is one that has been found
convenient for many programs: if there are command-line
arguments, they are processed in order; if there are no
arguments, the standard input is processed. This way the
program can be used stand-alone or as part of a larger
process. ‘

XENIX Software Development

#include <stdio.h>

main(argc, argv) /* wc: count lines, words, chars */
int argc;
char *argv(];

int ¢, i, inword;

FILE *fp, *fopen();

long linect, wordct, charct;

long tlinect = 0, twordct = 0, tcharct = 0;

i=1;
fp = stdin;
do

if (argc > 1 && (fp=fopen(argv[i], "r")) == NULL) {
fprintf(stderr, "wc: can't open %s\n", argv[il]);
continue;

}

linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF) {

charct++;
if (¢ == "\n")
linect++;
if (c == """ || ¢ == "\t" || ¢ == "\n")
inword = 0;
else if (inword == 0) {
inword = 1;
wordct++;

}
}
printf("%$71d %714 %71d4d", linect, wordct, charct);
printf(argc > 1 2 " %s\n" : "\n", argvl[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (++1 < argc);
if (argc > 2)
printf("%$71d %714 %71d total\n", tlinect, twordct,
tcharct) ;
exit (0);

}

The function fprintf is identical to printf, save that the
first argument is a file pointer that specifies the file to

be written.

The function fclose is the inverse of fopen; it breaks the
connection between the file pointer and the external name
that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files

XENIX Software Development

that a program may have open simultaneously, it's a good
idea to free things when they are no longer needed. There
is also another reason to call fclose on an output file-it
flushes the buffer in which putc 1is collecting output..
fclose(is called automatically for each open file when a

program terminates normally.)

3.1.2.2 Error Handling-Stderr and Exit Stderr is assigned
to a program in the same way that stdin and stdout are.
Output written on stderr appears on the user's terminal even
if the standard output is redirected. wWC writes its
diagnostics on stderr instead of stdout so that if one of
the files can't be accessed for some reason, the message
finds its way to the user's terminal instead of disappearing

down a pipeline or into an output file.

The program actually signals errors in another way, using
the function exit to terminate program execution. The
argument of exit is available to whatever process called it,
so the success or failure of the program can be tested by
another program that uses this one as a sub-process. By
convention, a return value of 0 signals that all is well;
non-zero values signal abnormal situations.

exit itself calls fclose for each open output file, to flush
out any buffered output, then calls a routine named exit.
The function _exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

3.1.2.3 Miscellaneous I/0 Functions The standard 1/0
library provides several other I/0 functions besides those
we have illustrated above. :

Normally output with putc, etc., 1is buffered (except to
stderr); to force it out immediately, use fflush(fp).

fscanf is identical to scanf, except that its first argument
is & file pointer (as with fprintf) that specifies the file
from which the input comes; 1t returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and
fprintf, except that the first argument names a character
string instead of a file pointer. The conversion 1is done
from the string for sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and
including a new-line, into buf; at most size-1 characters
are copied; it returns NULL at end of file. fputs (buf, fp)
writes the string in buf onto file fp.

XENIX Software Development

The function ungetc(c, fp) "~“pushes back'' the character «c
onto the input stream fp; a subsequent call to getc, fscanf,
etc., will encounter c. Only one character of push-back per
file is permitted.

3.1.3 Low-Level I/0

This section describes the bottom level of I/0 on the XENIX
system. The 1lowest 1level of 1I/0 in XENIX provides no
buffering or any other services; it is in fact a direct
entry into the operating system. You are entirely on your
own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite
simple, this isn't as bad as it sounds.

3.1.3.1 File Descriptors 1In the XENIX operating systenm,
all input and output is done by reading or writing files,
because all peripheral devices, even the user's terminal,
are files in the file system. This means that a single,
homogeneous interface handles all communication between a
program and peripheral devices.

In the most general case, before reading or writing a file,
it 1is necessary to inform the system of your intent to do
so, a process called "“opening'' the file. If you are going
to write on a file, it may also be necessary to create it.
The system checks your right to do so (Does the file exist?
Do you have permission to access it?), and if all is well,
returns a small positive integer called a filedescriptor.
Whenever I/0 is to be done on the file, the file descriptor
is used instead of the name to identify the file. (This 1is
roughly analogous to the 'use of and in Fortran.) All
information about an open file is maintained by the system;
the user program refers to the file only by the file
descriptor.

File pointers are similar in spirit to file descriptors, but
file descriptors are more fundamental. A file pointer is a
pointer to a structure that contains, among other things,
the file descriptor for the file in question.

Since input and output involving :the user's terminal are so
common, special arrangements exist to make this convenient.
When the command interpreter (the ““shell'') runs a program,
it opens three files, with file descriptors 0, 1, and 2,
called the standard input, the standard output, and the
standard error output. All of these are normally connected

to the terminal, so if a program reads file descriptor 0 and
writes file descriptors 1 and 2, it can do terminal I/0

XENIX Software Development

without worrying about opening the files.
If I/0 is redirected to and from files with < and >, as in
prog <infile >outfile

the shell <changes the default assignments for file
descriptors 0 and 1 from the terminal to the named files.
Similar observations hold if the input or output is
associated with a pipe. Normally file descriptor 2 remains
attached to the terminal, so error messages can go there.
In all cases, the file assignments are changed by the shell,
not by the program. The program does not need to know where
its input comes from nor where its output goes, so long as
it uses file 0 for input and 1 and 2 for output.

3.1.3.2 Read and Write All input and output is done by two
functions called read and write. For both, the first
argument is a file descriptor. The second argument is a
buffer in your program where the data is to come from or go
to. The third argument is the number of bytes to be
transferred. The calls are

n_read = read(fd, buf, n);
n written = write(£fd, buf, n);

Each call returns a byte count which is the number of bytes
actually transferred. On reading, the number of bytes
returned may be less than the number asked for, because
fewer than n bytes remained to be read. (When the file is a
terminal, read normally reads only up to the next new-line,
which is generally less than what was requested.) A return
value of zero bytes implies end of file, and -1 indicates an
error of some sort. For writing, the returned value is the
number of bytes actually written; it is generally an error
if this isn't equal to the number supposed to be written.

The number of bytes to be read or written 1is quite
arbitrary. - The two most common values are 1, which means
one character at a time (" “unbuffered''), and 512, which
corresponds to a physical block size on many peripheral
devices. This latter size will be most efficient, but even
character at a time I/0O is not inordinately expensive.

Putting these facts together, we can write a simple program
to copy its input to its output. This program will copy
anything to anything, since the input and output can be
redirected to any file or device. '

3-10

XENIX Software Development

#define BUFSIZE 512 /* best size for PDP-11 UNIX */
main() /* copy input to output */

char buf [BUFSIZE];
int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(l, buf, n):
exit (0);

}

If the file size is not a multiple of BUFSIZE, some read
will return a smaller number of bytes to be written by
write; the next call to read after that will return zero.

It is instructive to see how read and write can be wused to
construct higher level routines like getchar, putchar, etc.
For example, here 1is a version of getchar which does
unbuffered input.

#define CMASK 0377 /* for making char's > 0 */

?etchar() /* unbuffered single character input */

char c;

return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF):

}

¢ must be declared char, because read accepts a character
pointer. The character being returned must be masked with
0377 to ensure that it is positive; otherwise sign extension
may make it negative. (The constant 0377 is appropriate for
the but not necessarily for other machines.)

The second version of getchar does input in big chunks, and
hands out the characters one at a time.

3-11

XENIX Software Development

#define CMASK 0377 /* for making char's > 0 */
$define BUFSIZE 512

?etchar() /* buffered version */
static char buf [BUFSIZE];
static char *bufp = buf;
static int n = 0;

if (n == 0) { /* buffer is empty */
n = read(0, buf, BUFSIZE);:
bufp = buf;

}

return((~--n >= 0) ? *bufp++ & CMASK : EOF);

3.1.3.3 Open, Creat, Close, Unlink Other than the default
standard input, output and error files, you must explicitly
open files in order to read or write them. There are two
system entry points for this, open and creat [sic].

open is rather like the fopen discussed in the previous
section, except that instead of returning a file pointer, it
returns a file descriptor, which is just an int.

int fd;
fd = open(name, rwmode) ;

As with fopen, the name argument is a character string
corresponding to the external file name. The access mode
argument is different, however: rwmode is 0 for read, 1 for
write, and 2 for read and write access. open returns -1 if
any error occurs; otherwise it returns a valid f11e

descriptor.

It is an error to try to open a file that does not exist.
The entry point creat is prov1ded to create new files, or to
re—wrlte old ones.

fd = creat(name, pmode) ;

returns a file descriptor if it was able to create the file
called name, and -1 if not. If the file already exists,
creat will truncate it to zero length; it is not an error to
creat a file that already exists. :

If the file is brand new, creat creates it with the
protectionmode specified by the pmode argument. In the
XENIX file system, there are nine bits of protection

3-12

XENIX Software Development

information associated with a file, controlling read, write
and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal
number is most convenient for specifying the permissions.
For example, 0755 specifies read, write and execute
permission for the owner, and read and execute permission
for the group and everyone else.

To illustrate, here is a simplified version of the XENIX
utility c¢p, a program which copies one file to another.
(The main simplification is that our version copies only one
file, and does not permit the second argument to be a

directory.)

#define NULL O
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others */

main(argc, argv) /* cp: copy fl to f2 */
int argc;
char *argvl(];

int f1, £2, n;
char buf [BUFSIZE];

if (argc != 3)
error ("Usage: cp from to", NULL);
if ((f1 = open(argvi{l], 0)) == -1)
error("cp: can't open %s", argv([l]);
if ((f2 = creat(argv[2], PMODE)) == -1)
error("cp: can't create %s", argv([2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write({f2, buf, n) != n)
error("cp: write error", NULL);
exit(0);

}

error (sl, s2) /* print error message and die */
char *sl, *s2;
printf(sl, s2);
printf ("0);
exit(l):;

J

As we said earlier, there is a limit (typically 15-25) on
the number of files which a program may have open
simultaneously. Accordingly, any program which intends to
process many files must be prepared to re-use file
descriptors. The routine close breaks the connection

XENIX Software Development

between a file descriptor and an open file, and frees the
file descriptor for use with some other file. Termination
of a program via exit or return from the main program closes
all open files.

The function unlink(filename) removes the file filename from
the file system.

3.1.3.4 Random Access-Seek and Lseek File I/O is normally
sequential: each read or write takes place at a position in
the file right after the previous one. When necessary,
however, a file can be read or written in any arbitrary
order. The system call lseek provides a way to move around
in a file without actually reading or writing:

lseek (fd, offset, origin);

forces the current position in the file whose descriptor is
fd to move to position offset, which is taken relative to
the location specified by origin. Subsequent reading or
writing will begin at that position. offset is a long; fd
and origin are int's. origin can be 0, I, or 2 to specify
that offset 1is to be measured from the beginning, from the
current position, or from the end of the file respectively.
For example, to append to a file, seek to the end before

writing:
lseek(fd, 0L, 2);
To get back to the beginning (" “rewind''),
lseek(fd, 0L, 0);
Notice the OL argument; it could also be written as
(long) O. '

With 1lseek, it is possible to treat files more or less 1like
large arrays, at the price of slower access. For example,
the following simple function reads any number of bytes from
any arbitrary place in a file.’

get (fd, pos, buf, n) /* read n bytes from position pos */
int £4, n; : .

long pos;

char *buf;

l1seek (£d, pos, 0); /* get to pos */
return(read(fd, buf, n));

3-14

XENIX Software Development

Before Version 7, the basic entry point to the XENIX 1I/0
system was called seek. seek is identical to lseek, except
that its offset argument is an int rather than a long.
Accordingly, since integers have only 16 bits, the offset
specified for seek is limited to 65,535; for this reason,
origin wvalues of 3, 4, 5 cause seek to multiply the given
offset by 512 (the number of bytes in one physical block)
and then interpret origin as if it were 0, 1, or 2
respectively. Thus to get to an arbitrary place in a large
file requires two seeks, first one which selects the block,
then one which has origin equal to 1 and moves to the
desired byte within the block.

3.1.3.5 Error Processing The routines discussed 1in this
section, and in fact all the routines which are direct
entries into the system can incur errors. Usually they
indicate an error by returning a value of -1. Sometimes it
is nice to know what sort of error occurred; for this
purpose all these routines, when appropriate, leave an error
number in the external cell errno. The meanings of the
various error numbers are listed in the introduction to
Section II of the XENIX Programmer's Manual, so your program
can, for example, determine 1if an attempt to open a file
failed because it did not exist or because the user lacked
permission to read it. Perhaps more commonly, you may want
to print out the reason for failure. The routine perror
will print a message associated with the value of errno;

more generally, sys errno is an array of character strings
which can be indexed by errno and printed by your program.

3.1.4 Processes

It is often easier to use a program written by someone else
than to invent one's own. This section describes how to

execute a program from within another.

3.1.4.1 The "“System'' Function The easiest way to execute
a program from another 1is to use the standard library
routine system. system takes one argument, a command string
exactly as typed at the terminal (except for the new-line at
the end) and executes it. For instance, to time-stamp the
output of a program,

3-15

XENIX Software Development

main()

system("date") ;
/* rest of processing */

J

If the command string has to be built from pieces, the in-
memory formatting capabilities of sprintf may be useful.

Remember than getc and putc normally buffer their input;
terminal I/O will not be properly synchronized unless this
buffering is defeated. For output, use fflush; for input,
see setbuf in the appendix.

3.1.4.2 Low-Level Process Creation-Execl and Execv If
you're not using the standard library, or if you need finer
control over what happens, you will have to construct calls
to other programs using the more primitive routines that the
standard library's system routine is based on.

The most basic operation 1is to execute another program
without returning, by using the routine execl. To print the
date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the filename of the command;
you have to know where it is found in the file system. The
second argument is conventionally the program name (that is,
the 1last component of the file name), but this is seldom
used except as a place-holder. If the command takes
arguments, they are strung out after this; the end of the
list is marked by a NULL argument.

The execl call overlays the existing program with the new
one, runs that, then exits. = There 1is no return to the
original program. v

More realistically, a program might fall into two or more
phases that communicate only through temporary files. Here
it is natural to make the second pass simply an execl call

from the first.

The one exception to the rule that the original program
never gets control back occurs when there is an error, for
example if the file can't be found or is not executable. If
you don't know where date is located, say

3-16

XENIX Software Development

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'0);

A variant of execl called execv is useful when you don't
know in advance how many arguments there are going to be.
The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the
last pointer in the array must be NULL so execv can tell
where the list ends. As with execl, filename is the file in
which the program is found, and argp[0] is the name of the
program. (This arrangement is identical to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal
command execution. There is no automatic search of multiple
directories-you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters
like <, >, *, ?, and [] in the argument list. If you want
these, use execl to invoke the shell sh, which then does all
the work. Construct a string commandline that contains the
complete command as it would have been typed at the
terminal, then say

execl("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its
argument -c says to treat the next argument as a whole
command line, so it does just what you want. The only
problem is in constructing the right information in

commandline.

3.1.4.3 Control of Processes-Fork and Wait So far what
we've talked about isn't really all that useful by itself.
Now we will show how to regain control after running a
program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one
requires that it first be split into two copies; one of
these can be overlaid, while the other waits for the new,
overlaying program to finish. The splitting is done by a
routine called fork:

proc_id = fork();

splits the program into two copies, both of which continue
to run. The only difference between the two is the wvalue of
proc id, the ““process id.'' In one of these processes (the

3-17

XENIX Software Development

““child''), proc id is zero. 1In the other (the ““parent''),
proc id is non-zero; it is the process number of the child.
Thus the basic way to call, and return from, another program
is '

if (fork() == 0)
execl("/bin/sh", "sh", "-c", cmd, NULL); /* in child -

And in fact, except for handling errors, this is sufficient.
The fork makes two copies of the program. 1In the child, the
value returned by fork is zero, so it calls execl which does
the command and then dies. In the parent, fork returns
non-zero so it skips the execl. (If there is any error,
fork returns -1l).

More often, the parent wants to wait for the <child to
terminate before continuing itself. This can be done with
the function wait:

int status;

if (fork() == 0)
execl(..)3
wait(&status);

This still doesn't handle any abnormal conditions, such as a
failure of the execl or fork, or the possibility that there
might be more than one child running simultaneously. (The
wait returns the process id of the terminated child, if you
want to check it against the wvalue returned by fork.)
Finally, this fragment doesn't deal with any funny behavior
on the part of the child (which is reported in status).
Still, these three 1lines are the heart of the standard
library's system routine, which we'll show in a moment.

The status returned by wait encodes in its low-order eight
bits the system's idea of the child's termination status; it
is 0 for normal termination and non-zero to indicate various
kinds of problems. The next higher eight bits are taken
from the argument of the call to exit which caused a normal
termination of the child process. It 1is good coding
practice for all programs to return meaningful status.

When a program is called by the shell, the three file
descriptors 0, 1, and 2 are set up pointing at the right
files, and all other possible file descriptors are available
for use. When this program 'calls another one, correct
etiquette suggests making sure the same conditions hold.
Neither fork nor the exec calls affects open files in any
way. If the parent is buffering output that must come out
before output from the child, the parent must flush its

3-18

XENIX Software Development

buffers before the execl. Conversely, if a caller buffers

an input stream, the called program will 1lose any
information that has been read by the caller.

3.1.4.4 Pipes A pipe is an I/O channel intended for use
between two cooperating processes: one process writes into
the pipe, while the other reads. The system looks after
buffering the data and synchronizing the two processes.
Most pipes are created by the shell, as in

1ls | pr

which connects the standard output of 1s to the standard
input of pr. Sometimes, however, it is most convenient for
a process to set up its own plumbing; in this section, we
will illustrate how the pipe connection is established and
used.

The system call pipe creates a pipe. Since a pipe is wused
for both reading and writing, two file descriptors are

returned; the actual usage is like this:
int fd[2];

stat = pipe(fd);
if (stat == -1)
/* there was an error ... */

fd is an array of two file descriptors, where £d[0] is the
read side of the pipe and fd[l] is for writing. These may
be used in read, write and close calls just like any other
file descriptors.

If a process reads a pipe which is empty, it will wait until
data arrives; if a process writes into a pipe which is too
full, it will wait until the pipe empties somewhat. If the
write side of the pipe is closed, a subsequent read will
encounter end of file. ’

To illustrate the use of pipes in a realistic setting, let
us write a function called popen(cmd, mode), which creates a
process cmd (just as system does), and returns a file
descriptor that will either read or write that process,
according to mode. That is, . the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent
write calls using the file descriptor fout will send their
data to that process through the pipe.

3-19

XENIX Software Development

popen first creates the the pipe with a pipe system call; it
then forks to «create two copies of itself. The child
decides whether it is supposed to read or write, closes the
other side of the pipe, then calls the shell (via execl) to
run the desired process. The parent likewise closes the end
of the pipe it does not use. These closes are necessary to
make end-of-file tests work properly. For example, 1if a
child that intends to read fails to close the write end of
the pipe, it will never see the end of the pipe file, just
because there is one writer potentially active.

$include <stdio.h>

#define READ 0

#define WRITE 1

#define tst(a, b) . (mode == READ ? (b) : (a))
static int popen_pid;

popen(cmd, mode)
char *cmd ;
}nt mode;

int pl2];

if (pipe(p) < 0)
return(NULL) ;
if ((popen_pid = fork()) == 0) {
‘ close(tst(p[WRITE], p[READ]));
close(tst(0, 1));
dup(tst(p[READ], p[WRITE])):;
close(tst(p[READ], p[WRITE]));
execl("/bin/sh", "sh", "-c", cmd, 0);
| _exit(1l); /* disaster has occurred if we ge
if (popen_pid == =-1)
return(NULL) ;
close(tst(p[READ], p[WRITE]));
return(tst(p[WRITE], p[READ]));

}

The sequence of <closes in the. child is a bit tricky.
Suppose that the task is to create a child process that will
read data from the parent. Then. the first close closes the
write side of the pipe, leaving the read side open. The
lines :

close(tst(0, 1));
dup(tst (p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor
with the standard input of the child. The close closes file

3-20

P

XENIX Software Development

descriptor 0, that is, the standard input. dup is a system
call that returns a duplicate of an already open file
descriptor. File descriptors are assigned in increasing
order and the first available one is returned, so the effect
of the dup is to copy the file descriptor for the pipe (read
side) to file descriptor 0; thus the read side of the pipe
becomes the standard input. (Yes, this is a bit tricky, but
it's a standard idiom.) Finally, the o0ld read side of the
pipe is closed.

A similar sequence of operations takes place when the child
process is supposed to write from the parent instead of
reading. You may find it a useful exercise to step through
that case.

The job is not quite done, for we still need a function
pclose to close the pipe created by popen. The main reason
for using a separate function rather than close is that it
is desirable to wait for the termination of the child
process. First, the return value from close indicates
whether the process succeeded. Equally important when a
process creates several children 1is that only a bounded
number of unwaited-for children can exist, even if some of
them have terminated; performing the wait lays the child to
rest. Thus:

#include <signal.h>

pclose (£4) /* close pipe fd */
int f£4;

register r, (*hstat) (), (*istat) (), (*gstat) ();
int status;
extern int popen pid;

close (f4d) ;

istat = signal(SIGINT, SIG_IGN);

gstat = signal(SIGQUIT, SIG_IGN);

hstat = signal (SIGHUP, SIG_IGN);

while ((r = wait(&status)) != popen pid && r != -1);
if (r == =1)

status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, gstat);
signal (SIGHUP, hstat);
return(status) ;

}

The calls to signal make sure that no interrupts, etc.,
interfere with the waiting process; this is the topic of the
next section.

3-21

XENIX Software Development

The routine as written has the limitation that only one pipe
may be open at once, because of the single shared variable
popen pid; it really should be an array indexed by file
descriptor. A popen function, with slightly different
arguments and return value is available as part of the
standard I/0 library discussed below. As currently written,
it shares the same limitation. ‘

3.1.5 Signals and Interrupts

This section is concerned with how to deal gracefully with
signals from the outside world (like interrupts), and with
program faults. Since there's nothing very useful that can
be done from within C about program faults, which arise
mainly from illegal memory references or from execution of
peculiar instructions, we'll discuss only the outside-world
signals: interrupt, which is sent when the character is
typed; quit, generated by the character; hangup, caused by
hanging up the phone; and terminate, generated by the kill
command. When one of these events occurs, the signal is
sent to all processes which were started from the
corresponding terminal; unless other arrangements have been
made, the signal terminates the process. 1In the quit case,
a core image file is written for debugging purposes.

The routine which alters ' the default action is called
signal. It has two arguments: the first specifies the
signal, and the second specifies how to treat it. The first
argument is Jjust a number code, but the second is the
address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it
be given the default action. The include file signal.h
gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);
causes interrupts to be ignored, while
signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all
cases, signal returns the previous value of the signal. The
second argument to signal may instead be the name of a
function (which has to be declared explicitly if the
compiler hasn't seen it already). In this case, the named
routine will be called when the signal occurs. Most
commonly this facility is used to allow the program to clean

3-22

XENIX Software Development

up unfinished business before terminating, for example to
delete a temporary file:

#include <signal.h>

main ()
int onintr();
if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);
/* Process ... */
exit(0);
}
onintr ()

'unlink(tempfile);
exit(l);

}

Why the test and the double call to signal? Recall that
signals 1like interrupt are sent to all processes started
from a particular terminal. Accordingly, when a program is
to be run non-interactively (started by &), the shell turns
off interrupts for it so it won't be stopped by interrupts
intended for foreground processes. If this program began by
announcing that all interrupts were to be sent to the onintr
routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt
handling, and to continue to ignore interrupts if they are
already being ignored. The code as written depends on the
fact that signal returns the previous state of a particular
signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be

caught.

A more sophisticated program may wish to intercept an
interrupt and interpret it as a request to stop what it is
doing and return to its own command-processing loop. Think
of a text editor: interrupting a long printout should not
cause it to terminate and lose the work already done. The
outline of the code for this case is probably best written

like this:

XENIX Software Development

#include <signal.h>
#include <setijmp.h>
jmp_buf sjbuf;
main ()

int (*istat) (), onintr();

istat = signal(SIGINT, SIG_IGN); /* save original statf
setjmp(sjbuf); /* save current stack position */
if (istat != SIG IGN)

signal (SIGINT, onintr);

/* main processing loop */

onintr ()

printf("Onterrupt0);
longjmp (sjbuf); /* return to saved state */

}

The include file setjmp.h declares the type Jjmp buf an
object 1in which the state can be saved. sjbuf is such an
object; it is an array of some sort. The setjmp routine
then saves the state of things. When an interrupt occurs, a
call is forced to the onintr routine, which can print a
message, set flags, or whatever. longjmp takes as argument
an object stored into by setjmp, and restores control to the
location after the call to setjmp, so control (and the stack
level) will pop back to the place in the main routine where
the signal is set up and the main loop entered. Notice, by
the way, that the signal gets set again after an interrupt
occurs. This is necessary; most signals are automatically
reset to their default action when they occur. ’

Some programs that want to detect signals simply can't be
stopped at an arbitrary point, for example in the middle of
updating a linked list. If the routine called on occurrence
of a signal sets a flag and then returns instead of calling
exit or longjmp, execution will continue at the exact point
it was interrupted. The interrupt flag can then be tested
later.

There is one difficulty associated with this approach.
Suppose the program is reading the terminal when the
interrupt is sent. The specified routine is duly called; it
sets its flag and returns. If it were really true, as we
said above, that ~“execution resumes at the exact point it
was interrupted,'' the program would continue reading the
terminal until the user typed another line. This behavior

3-24

XENIX Software Development

might well be confusing, since the user might not know that
the program is reading; he presumably would prefer to have
the signal take effect instantly. The method chosen to
resolve this difficulty is to terminate the terminal read
when execution resumes after the signal, returning an error
code which indicates what happened.

Thus programs which catch and resume execution after signals
should be prepared for ““errors'' which are caused by
interrupted system calls. (The ones to watch out for are
reads from a terminal, wait, and pause.) A program whose
onintr program Jjust sets intflag, resets the interrupt
signal, and returns, should usually include code like the
following when it reads the standard input:

if (getchar () == EOF)
if (intflag)
/* EOF caused by interrupt */
else
/* true end-of-file */

A final subtlety to keep in mind becomes important when
signal-catching is combined with execution of other
programs. Suppose a program catches interrupts, and also
includes a method (like ““!'' in the editor) whereby other
programs can be executed. Then the code should 1look
something like this:

if (fork() == 0)
execl(+..)
signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait (&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, 1it's not obvious but not really
difficult. Suppose the program you call catches its own
interrupts. If you interrupt the subprogram, it will get
the signal and return to its main loop, and probably read
your terminal. But the calling program will also pop out of
its wait for the subprogram and read your terminal. Having
two processes reading your terminal is very unfortunate,
since the system figuratively flips a coin to decide who
should get each line of input. A simple way out is to have
the parent program ignore interrupts until the child is
done. This reasoning 1is reflected in the standard 1I/0

library function system:

XENIX Software Development

#include <signal.h>

system(s) /* run command string s */
char *sg;

int status, pid, w;
register int (*istat) (), (*gstat) ():;

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c", s, 0);
| _exit(127);
istat = signal(SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG IGN);
while ((w = wait(&status)) 1= pid && w != -1)
if (w == -1)
status = -1;
signal (SIGINT, istat):
signal (SIGQUIT, gstat);
return(status) ;

}

As an aside on declarations, the function signal obviously
has a rather strange second argument. It is in fact a
pointer to a function delivering an integer, and this is
also the type of the signal routine itself. The two values
SIG IGN and SIG DFL have the right type, but are chosen so
they coincide with no possible actual functions. For the
enthusiast, here is how they are defined for the PDP-11l; the
definitions should be sufficiently ugly and nonportable to
encourage use of the include file.

#define SIG_DFL (int (*)())0
#define SIG_IGN (int (*)())1

3.2 THE C LIBRARY

A knowledge of the C 1library 1is invaluable to the C
programmer, since it defines a common set of macros, types,
and functions that can be used in almost any programming
project. The most imporant functions and macros are
declared in the standard I/0 library, discussed below.

XENIX Software Development

3.2.1 The Standard 1/0 Library

The standard I/0 library was designed with the following
goals in mind.

1. It must be as efficient as possible, both in time and
in space, so that there will be no hesitation in using
it no matter how critical the application.

2. It must be simple to use, and also free of the magic
numbers and mysterious «calls whose use mars the
understandability and portability of many programs
using older packages.

3. The interface provided should be applicable on all
machines, whether or not the programs which implement
it are directly portable to other systems, or to
machines other than the PDP-11l running a version of

XENIX .

3.2.2 General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines
are in the normal C library, so no special library argument
is needed for 1loading. All names in the include file

intended only for internal use begin with an underscore _ to
reduce the possibility of conflict with other names created
by the user. The names intended to be visible outside the

package are:

stdin The name of the standard input file
stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually -1, and is the value returned by the
read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by
pointer-valued functions to indicate an error

FILE expands to struct iob and is a wuseful shorthand
when declaring pointers to streams.

3-27

XENIX Software Development

BUFSIZ is a number (viz. 512) of the size suitable for an
I/0 buffer supplied by the user. See setbuf,
below.

Getc,getchar,putc, putchar,feof,ferror, and fileno are
defined ‘as macros. Their actions are described below; they
are mentioned here to point out that it is not possible to
redeclare- them and that they are not actually functions.
Thus, for example, they may not have breakpoints set on
them. :

The routines in this package offer the convenience of
automatic buffer allocation and output flushing where
appropriate. The names stdin, stdout, and stderr are in
effect constants and may not be assigned to. Stdio.h
contains the definitions of NULL , EOF , FILE , and
BUFSIZ . The standard input file (stdin), standard output
file (stdout), and standard error file (stderr) are also
defined here. These definitions are incorporated into a
program with the following statement:

#include <stdio.h>

The file ctype.h provides the macro definitions for the
character classifications that are now possible. Any
program using those facilities must contain the line:

#include <ctype.h>

The functions that handle signals need to include the signal
definitions. This can be done with the line:

#include <signal.h>

Some function names have changed in order to follow the
established convention. To insure that the uniqueness of
function names is preserved even if truncation occurs on
some systems, those functions dealing with entire strings
are named str...; those functions that consider only the
first n characters of a string are named strn....

3-28

XENIX Software Development

Listed below are some common C library functions that vyou

should

study, most of these belong to the standard I1I/0

library- although other libraries are represented here as

well.

3.2.3 File access

fclose

fdopen

Example:

#include <stdio.h>
int fclose(stream)
FILE *stream;

Fclose closes a file that was opened by fopen,
frees any buffers after emptying them, and
returns zero on success, non-zero on error. Exit
calls fclose for all open files as part of its
processing.

#include <stdio.h>

FILE *fdopen (fildes, type)
int fildes;

char *type;

Fdopen is used strictly on XENIX systems and
therefore 1is not a portable function. 1Its value
is in providing a bridge between the low-level
input-output (I/0) facilities of XENIX and the
standard I/0 functions. Fdopen associates a-
stream with a valid file descriptor obtained from
a XENIX system call (e.g., open). Type 1is the
same mode (r , w, a, r+ , wt+ , a+) that
was used in the original creation of a file
identified by fildes . Fdopen returns a pointer
to the associated stream, or NULL if
unsuccessful.

int £d4;
char *name = "myfile";
FILE *strm;

fd = open(name,0);

3

if((strm = fdopen(£fd,"r")) == NULL)
fprintf(stderr,"Error on %40, £fd);

3-29

fileno

fopen

XENIX Software Development

#$include <stdio.h>
int fileno (stream)
FILE *stream;

Implemented as a macro on XENIX, (and contained
in the file stdio.h), fileno returns an integer
file descriptor associated with a valid stream .
Any existing non-XENIX implementations may have
different meanings for the integer which is
returned. Fileno is used by many other standard
functions in the C library.

#include <stdio.h>
FILE *fopen (filename, type)
char *filename, *type;

Fopen opens a file named filename and returns a
pointer to a structure (hereafter referred to as

stream), containing the data necessary to
handle a stream of data. Type 1is one of the
following character strings:

r used to open for reading.

w used to open for writing, which
truncates an existing file to zero
length or creates a new file.

a used to append, that is, open for
writing at the end of a file, or create
a new file.

r+ update reading, which means open for
reading and allow writing, positions
the file pointer at the beginning of
the file.

w+ update writing, which means open for
writing and allow reading, truncates an
existing file to zero length or creates
a new file.

a+ update appending, which means open for
writing, positions to the end of the
file, and allows for subsequent reads
and writes. If the file does not
exist, it will be created.

For the update options, fseek or rewind can be
used to trigger the change from reading to
writing, or vice versa. (Reaching EOF on input
will also permit writing without further
formality.) Fopen returns a NULL pointer if

filename cannot be opened. The update

XENIX Software Development

functions are particularly applicable to stream
I/0 and allow for the possibility of creating
temporary files for both reading and writing.

Example:

FILE *fp;
char *file;

if((fp = fopen(file,"r")) == NULL)
fprintf(stderr, "Cannot open %$s0,file);

freopen
#include <stdio.h>
FILE *freopen (newfile, type, stream)
char *newfile, *type;
FILE *stream;

Freopen accepts a pointer, stream , to a
previously opened file; the old file is closed,
and then the new file is opened. The principal
motivation for freopen is the desire to attach
the names stdin, stdout, and stderr to specified
files. On a successful freopen, the stream
pointer is returned; otherwise NULL is
returned, indicating that, while the file closing
took place, the reopening failed. Freopen is of
limited portability; it can not be implemented in
all environments.

Examgle:

char *newfile;
FILE *nfile;

if((nfile = freopen(newfile,"r",stdout)) == NULL)
fprintf(stderr,"Cannot reopen %s0,newfile) ;

fseek
#include <stdio.h>
int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

Fseek positions a stream to a location offset
distance from the beginning, current position or
end of a file, depending on the values 0, 1, 2
respectively for ptrname . On XENIX the offset
unit is bytes; other implementations are not
necessarily the same. The return values are 0 on

Example:

pclose

popen

Example:

XENIX Software Development

success and EOF on failure. Both buffered and
unbuffered files may make use of fseek.

To position to the end of a file:
FILE *stream;

fseek (stream,0L,2);

$include <stdio.h>
int pclose (stream)
FILE *stream;

Pclose closes a stream opened by popen. It
returns the exit status of the command that was
issued as the first argument of its corresponding
popen, or -1 if the stream was not opened by
popen. The function name pclose means an
entirely different thing in the 0s/370
environment. :

#include <stdio.h>
FILE *popen (command, type)
char *command, *type;

Popen is used to create a pipe between the
calling process and a command to be executed.
The first argqument is a shell command line; type
is the 1I/0 mode for the pipe, and may be either

r for reading or w for writing. The function
returns a stream pointer to be used for I/O on
the standard input or output of the command. A
NULL pointer is returned if an error occurs.

FILE *pstrm;

if ((pstrm=popen("tr mvp MVP","w"))== NULL)
fprlntf(stderr,"popen error0);

fprintf(pstrm,"a message via the pipe...0);

1f(pclose(pstrm) == ~]1)
fprintf(stderr,"Pclose error0);

results in:

a Message Via the PiPe

3-32

rewind

setbuf

Example:

XENIX Software Development

#include <stdio.h>
int rewind(stream)
FILE *stream;

Rewind sets the position of the next operation at

the beginning of the file associated with

stream , retaining the current mode of the file.
It is the equivalent of fseek (stream,0L,0);.

$include <stdio.h>
setbuf (stream, buf)
FILE *stream;

char *buf;

This function allows the user to choose his own
buffer for I/0 or to choose to have no buffering
at all. Use it after opening and before reading
or writing. The function is often used to
eliminate the single character writes to a file
that result from the execution of utc to
standard output that 1is not redirected. The
choice to buffer I/0 brings with it the
responsibility for flushing any data that may
remain in a last, partially-filled buffer.
Fflush or fclose perform this task. The constant
BUFSIZ in stdio.h tells how big the character
array buf is. It is well-chosen for the
machine on which UNIX is running. When buf is
set to NULL , the I/O is completely unbuffered.

setbuf (stdout, malloc(BUFSIZ));

3.2.4 File Status

clearerr

feof

#include <stdio.h>
clearerr (stream)
FILE *stream;

Clearerr is used to reset the error condition on
stream . The need for clearerr arises on XENIX
implementations where the error indicator is not
reset after a query.

#include <stdio.h>
int feof (stream)

Example:

ferror

Example:

ftell

XENIX Software Development

FILE *stream;

Feof, which is implemented as a macro on UNIX,
returns non-zero if an input operation on
stream has reached end of file; otherwise a
zero is returned. Feof should be used in
conjunction with any I/0° function whose return
value 1is not a clear indicator of an end-of-file
condition. Such functions are fread and getw.

int *x;
FILE *stream;

do
*x++ = getw(stream);
while(!feof(stream)) :

#include <stdio.h>
int ferror (stream)
FILE *stream;

Ferror tests for an indication of error on
stream . It returns a non-zero value (true)
when an error is found, and a zero otherwise.
Calls to ferror do not clear the error condition,
hence the clearerr function is needed for that
purpose. The user should be aware that, after an
error, further use of the file may cause strange
results. On XENIX ferror 1is implemented as a
macro. '

FILE *stream;
int *x;

while(!ferror(stream))
: putw (*x++,stream) ;

#include <stdio.h>
long ftell (stream)
FILE *stream;

Ftell is used to determine the current offset
relative to the beginning of the file associated
with stream . It returns the current value of
the offset; in XENIX it returns the offset wvalue

3-34

XENIX Software Development

in bytes. On error, a value of -1 1is returned.
This function 1is useful in obtaining an offset
for subsequent fseek calls.

3.2.5 Input Function

fgetc

fgets

Example:

$include <stdio.h>
int fgetc (stream)
FILE *stream;

This is the function version of the macro getc
and acts identically to getc. Because fgetc is a
function and not a macro,it can be used in
debugging to set breakpoints on fgetc and when
the side effects of macro processing of the
argument 1s a problem. Furthermore, it can be
passed as an argument.

$include <stdio.h>

char *fgets (s,n,stream)
char *s;

int n;

FILE *stream;

Fgets reads from stream into the area pointed
to by s either n-1 characters or an entire
string including its new-line terminator,
whichever comes first. A final null character is
affixed to the data read. It returns the pointer
s on success, and NULL on end-of-file or
error. Fgets differs from the function gets in
that it can read from other than stdin, and that
it appends the new-line at the end of input when
the size of the string is longer than or equal to
n . More importantly, it provides control over
the size of the string to be read that is not
available with gets.

char msg[MAX];
FILE *myfile;

while(fgets(msg,MAX,myfile) != NULL)
printf("%s0,msqg) ;

3-35

XENIX Software Development

fread
#include <stdio.h>
int fread((char *)ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

This function reads from stream the next
nitems whose size 1is the same as the size of
the item pointed to by ptr , into a sufficiently
large area starting at ptr . It returns the
number of items read. In XENIX, fread makes use
of the function getc. It 1is often used in
combination with feof and ferror to obtain a
clear indication of the file status.

Example:

FILE *pstm;
char mesg[100];

while(fread((char *)mesg,sizeof(*mesg),l,pstm) =
printf("%$s0,mesg) ;

fscanf
#include <stdio.h>
int fscanf (stream, format[, argptr]...)
char *format;
FILE *stream;

Fscanf accepts input from the file associated
with stream , and deposits it into the storage
area pointed to by the respective argument
pointers according to the specified formats.
Format specifications are those that appear in
Attachment D. Fscanf differs from scanf in that
it can read from other than stdin. The function
returns the number of successfully handled input
arguments, or EOF on end-of-input.

Example:

FILE *file;
long pay;

char name[l5];
char pan[7];

fscanf(file,"%6s%14s%1d0,pan, name, &pay) ;
if (pay<50000)
printf("$%1d raise for %s.O,pay/lO,name);/
1
If the input data is:

© 3-36

getc

getchar

gets

Example:

XENIX Software Development

020202MaryJones 15000
the resulting output is:

$1500 raise for MaryJones.

$include <stdio.h>
int getc (stream)
FILE *stream;

Getc returns the next character from the named

stream . It is implemented as a macro to avoid
the overhead of a function call. On error or
end-of-file it returns an EOF . Fgetc should be
used when it 1is necessary to avoid the side
effects of argument processing by the macro getc.

#include <stdio.h>
int getchar ()

This is identical to getc (stdin).

#include <stdio.h>
char *gets(s)
char *s; -

Gets reads a string of characters up to a new-
line from stdin and places them in the area
pointed to b S . The new-line character which
ended the string is replaced by the null
character. The return values are s On success,
NULL on error or end-of-file. The simple
example below presumes the size of the string
read into msg will not exceed SIZE 1in length.
If used in conjunction with strlen, a dangerous
overflow can be detected, though not prevented.

char msg[SIZE];
char *g;
S = msg;
while (gets(s) != NULL)
printf("%s0,s);

3-37

XENIX Software Development

getw
#include <stdio.h>
int getw (stream)
FILE *stream;

Getw reads the next word from the file associated
with stream . On success it returns the word;
on error or end of file, it returns EOF .
However, because EOF could be a valid word,
this function is best used with feof and ferror.

Example:

FILE *stream;
int *x;
do
*x++ = getw(stream);
while (!feof(stream));

scanf
#include <stdio.h>
int scanf (format[, argptr]...)
char *format;

Scanf reads input from stdin, delivers the input
according to the specified formats, and deposits
the input in the storage area pointed to by the
respective argument pointers. The correct format
specifications can be found in Attachment D. For
input from other streams than stdin use fscanf;
for input from a character array use sscanf. The
return values are the number of successfully
handled input arguments, or EOF on: end-of-
input. »
Example:

long number;

scanf ("%14", &number) ;
(printf (number%2?"%1d is odd":"%1ld is even",number)

sscanf
#$include <stdio.h>
sscanf (s, format [, pointer]...)
char *s; :
char *format;

Sscanf accepts input from a character string s , @

delivers the input according to the specified
formats, and deposits it into the storage area

3-38

XENIX Software Development

- pointed to by the respective argument pointers.
Format specifications appear in Attachment D.
This function returns the number of successfully
handled input arguments.

Example:
char datestr([] = {"THU MAR 29 11:04:40 EST 1979"};
char month[4];
char year([5];
sscanf(datestr,"%*35%35%*25%*8s%*35%4s",month,year);
printf("%s, %s0,month,year);
The result is:
MAR, 1979
ungetc
#include <stdio.h>
int ungetc (c, stream)
int c;
FILE *stream;
Ungetc puts the character ¢ back on the file
associated with stream . One character (but
never EOF) 1is assured of being put back. If
successful, the function returns ¢ , otherwise
EOF .
Example:

while(isspace (c = getc(stdin)))

ungetc(c,stdin) ;

This code puts the first character that 1is not
white space back onto the standard input stream.

3.2.6 Output Functions

fflush
#include <stdio.h>
int fflush (stream)
FILE *stream;

Fflush takes action to guarantee that any data
contained in file buffers and not yet written out
will be written. It is used by fclose to flush a
stream. No action is taken on files not open for

3-39

XENIX Software Development

writing. The return values are zero for success,
EOF on error.

fprintf
#include <stdio.h>
int fprintf (stream, format[, arg J]...)
FILE *stream;
char *format;
Fprintf provides formatted output to a named
stream. The function printf may be used if the
destination is stdout. Specifications for
formats are available in Attachment C. On error,
fprintf returns non-zero, otherwise zero. In
later releases of the C library, fprintf will
return the number of characters transmitted, or - a
negative value on error.
Example: :
int *filename;
int c;
if (c==EOF)
fprintf(stderr,"EOF on %$s0,filename) ;
fputc
$include <stdio.h>
int fputc (c¢,stream)
int c;
FILE *stream;
Fputc performs the same task as putc; that is, it
writes the character c¢ to the file associated
with stream , but is implemented as a function
rather than a macro. It is preferred to putc
when the side effects of macro processing of
arguments are a problem. On success, it returns
the character written; on failure it returns
EOF . '
Example:

FILE *in, *out;
int c;

while ((c = fgetc(in)) != EOF)
fputc(c,out) ;

3-40

fputs

fwrite

Example:

printf

Example:

XENIX Software Development

#include <stdio.h>
int fputs(s,stream)
char *s;

FILE *stream;

Fputs copies a string to the output file
associated with stream . It uses the function
putc to do this. It is different from puts in
two ways: it allows any output stream to be
specified, and it does not affix a new-line to
the output. For an example, see puts.

#include <stdio.h>

int fwrite ((char *)ptr, sizeof (*ptr),nitems,stream)

FILE *stream;

Beginning at ptr , this function writes up to
nitems of data of the type pointed to by ptr
into output stream . It returns the number of
items actually written. Like fread this function
should be used in conjunction with ferror to

detect the error condition.

char mesg[] ={"My message to write out0};
FILE *pstrm;

if(fwrite(mesg, (sizeof(*mesg)-1),1,pstrm)
fprintf(stderr,"Output error0);

$include <stdio.h>
int printf(format{, argl...)
char *format;:

Printf provides formatted output on stdout. The
many format specifications are available in
Attachment C. Fprintf and sprintf are related
functions that write output onto other than the
standard output device. In case of error,
implementations are not consistent in their
output. On error, printf returns non-zero,
otherwise zero. In later releases of the C
library, printf returns the number of characters
transmitted, or a negative value on error.

3-41

XENIX Software Development

int num = 10;
char msg[] = {"ten"};
printf("%$d - %o - %s0, num, num, msg);
results in the line:

10 - 12 - ten;

putc
#include <stdio.h>
int putc (c,stream)
int c;
FILE *stream;
Putc writes the character ¢ to the file
associated with stream. On success, it returns
the character written; on error it returns EOF .
Because it is implemented as a macro, side
effects may result from argument processing. In
such cases, the equivalent function fputc should
be used.
Example:
$define PROMPT () putc('7',stderr) ‘/* BEL */
putchar
$include <stdio.h>
int putchar (c)
int c;
Putchar 1is defined as putc (c, stdout). It
returns the character written on success, or
, EOF on error. : ’ ’
Example:
char *cp;
char x[SIZE];
for (cp=x;cp<(xX+SIZE) ;cp++)
putchar (*cp) ;
puts

#include <stdio.h>
int puts{(s)
char *s;

The function copies the string pointed to by s
without its terminating null character to stdout.

Example:

putw

Example:

sprintf

XENIX Software Development

A new-line character is appended. XENIX uses the
macro putchar (which calls putc).

puts("I will append a new-line");
fputs(" some more data ", stdout);
puts("and now a new-line");

The resulting output is:

I will append a new-line
some more data and now a new-line

#include <stdio.h>
int putw(w,stream)
FILE *stream;

int w;

Putw appends word w to the output stream . As
with getw, the proper way to check for an error
or end-of-file is to use the feof and ferror
functions.

int info;

while(!feof(stream))
putw(info,stream) ;

$include <stdio.h>

int sprintf(s, format, [, argl...)
char *s;

char *format;

Sprintf allows for formatted output to be placed
in a character array pointed to by s . Sprintf
adds a null at the end of the formatted output.
See Attachment C for the specification of
formats. It 1is the wuser's responsibility to
provide an array of sufficient length. Other
related functions printf and fprintf handle
similar kinds of formatted output. Sprintf can
be used to build formatted arrays in memory, to
be changed dynamically before output, or to be
used to call other routines. The comparable
input function 1is sscanf. On error, sprintf
returns non-zero, otherwise zero. In later

XENIX Software Development

releases of the C library, sprintf returns the
number of characters transmitted, or a negative
value on error. ;

Example:

char cmd[100];

char *doc = "/usr/src/cmd/cp.c"
int width = 50;

int length = 60;

sprintf(cmd, "pr -w%d -1%d %s0,width,length,doc);
system(cmd) ;

The above code executes the pr command to print
the source of the cp command. '

3.2.7 String Functions

strcat
char *strcat(dst,src)
char *dst, *src;
Strcat appends characters in the string pointed
to by src to the end of the string pointed to
by dst , and places a null character after the
last character copied. It returns a pointer to
dst . To concatenate strings up to a maximum
number of characters, use strncat.

Example:
char *myfile;
char dir[L cuserid+5] = "/usr/";

myfile = (strcat(dir,cuserid(0)));

The result is the concatenation of the login name
onto the end of the string dir .

strcmp _
char *strcmp(sl,s2)
char *sl, *s2;
Strcmp compares the characters in the string sl
and s2 . It returns an integer value, greater
than, equal to, or less than zero, depending on
whether sl is lexicographically greater than,
equal to, or less than s2 .

Example:

3-44 |

strcpy

Example:

strlen

Example:

strncat

Example:

XENIX Software Development

$define EQ(x,y) Istrcemp(x,Y)

char *strcpy(dst, src)
char *dst, *src;

Strcpy copies the characters (including the null
terminator) from the string pointed to by src

into the string pointed to by dst . A pointer
to dst is returned.

"UPPER CASE";
"this is lower case";

char dstl]]
char src/|]

printf("%s0,strcpy(dst,src+8));
results in:

lower case

int strlen(s)
char *s;

Strlen counts the number of characters starting
at the character pointed to by s up to, but not
including, the first null character. It returns
the integer count.

char nextitem[SIZE];
char series[MAX];

if(strlen(series)) strcat(series,",");
strcat(series,nextitem) ;

char *strncat(dst, src, n)
char *dst, *src;
int n;

Strncat appends a maximum of n characters of
the string pointed to by src and then a null
character to the string pointed to by dst . It
returns a pointer to dst .

3-45

strncmp

Example:

strncpy

Example:

XENIX Software Development

char dstl]
char srcl]

"cover";
"letter";

printf("%$s0,strncat(dst,src,3));
The output is:

coverlet

int strncmp(sl,s2,n)
char *sl, *s2;
int n;

Strncmp compares two strings for at most n
characters and returns an integer greater than,
equal to, or 1less than zero as sl is
lexicographically greater than, equal to or less
than s2 .

char filename [] = "/dev/ttyx";

if(strncmp (filename+5, "tty",3) == 0)
printf("success0);

char *strncpy(dst,src,n)
char *dst, *src;
int n;

Strncpy copies n characters of the string
pointed to by src into the string pointed to by
dst . Null padding or truncation of src
occurs as necessary. A pointer to dst is

returned. ‘

char buf [MAX];
char date [29] = {"Fri Jun 29 09:35:44 EDT 1979"};
char *day = buf;

strncpy(day,date,3);

After executing this code, day points to the
string Fri .

3-46

XENIX Software Development

3.2.8 Character Classification

isalnum
#include <ctype.h>
int isalnum(c)
int c;
This macro determines whether or the
character ¢ 1is an alphanumeric character ([A-
Za-z0-9]). It returns zero for false non-
zero for true.
isalpha
#include <ctype.h>
int isalpha(c)
int c;
This macro determines whether or the
character c is an alphabetic character ([A-
Za-z)). It returns zero for false and non-zero
for true.
isascii
#include <ctype.h>
int isascii(c)
int c;
This macro determines whether or not the integer
value supplied is an ASCII character; that is, a
character whose octal value ranges from 000 to
177. It returns zero for false and non~zero for
true.
iscntrl
#include <ctype.h>
int iscntrl(c
int c;
This macro determines whether or the
character c when mapped to ASCII is a control
character (that is, octal 177 or 000-037). It
returns zero for false and non-zero for true.
isdigit
#include <ctype.h>
int isdigit(c)
int c;
This macro determines whether or the

character c is a digit. It returns zero for

false and non-zero for true. (that 1is,

is an

islower

isprint

ispunct

isspace

isupper

XENIX Software Development

ASCII code between octal 041 and 176 inclusive).

#include <ctype.h>
int islower (c)
int c;

This macro determines whether or not the
character ¢ 1is a lower-case letter. It returns
zero for false and non-zero for true.

#include <ctype.h>
int isprint(c)
int c;

This macro determines whether or not the
character c is 'a printable character. (This
includes spaces.) It returns zero for false and
non-zero for true. ;

#include <ctype.h>
int ispunct(c)
int c;

This macro determines whether or not the
character ¢ 1is a punctuation character (neither
a control character nor an alphanumeric). It
returns zero for false and non-zero for true.

#include <ctype.h>
int isspace(c)
int c;

This macro determines whether or not the
character c 1is a form of white space (that is,
a blank, horizontal or vertical tab, carriage
return, form-feed or new-line). It returns zero
for false and non-zero for true.

#include <ctype.h>
int isupper(c)
int c;

This macro determines whether or not the
character c is an upper-case letter. It
returns zero for false and non-zero for true.

3-48

XENIX Software Development

3.2.9 Character Translation

toascii

Example:

tolower

Example:

toupper

Example:

#include <ctype.h>
int toascii (c¢)
int c;

The macro toascii usually does nothing: its
purpose is to map the input character into its
ASCII equivalent.

FILE *oddstrm:

if(!isdigit (toascii(getw(oddstrm))))
fprintf(stderr,"bad datal); '

#include <ctype.h>
int tolower (c)
int c;

If the argument c passed to the function
tolower is an upper-case letter, the lower-case
representation of ¢ is returned, otherwise c
is returned unchanged. For a faster routine, use
tolower, which 1is implemented as a macro;
however, the argument must already be an upper-
case letter. ’

if(tolower (getchar()) != 'y")
exit(0);

#include <ctype.h>
int toupper (c)
int c;

If the argument c passed to the function
toupper 1is a lower-case letter, the upper-case
representation of ¢ 1is returned, otherwise o
is returned unchanged. For a faster routine, use
toupper, however, the argument must already be a
lower-case letter.

3-49

3.2.10

calloc

Example:

free

malloc

Example:

XENIX Software Development

if (toupper (getchar()) != 'Y"')
exit(0);

Space Allocation

char *calloc(n, size)
unsigned n, size;

Calloc allocates enough storage for an array of
—— . 3

n items aligned for any use, each of size
bytes. The space is initialized to zero. Calloc
returns a pointer to the beginning of the
allocated space, or a NULL pointer on failure.

char *t;
int n;
unsigned size;

if (t=calloc((unsigned)n, size) == NULL)
fprintf(stderr, "Out of space.0);

free(ptr)
char *ptr;

Free 1is used in conjunction with the space
allocating functions malloc, calloc, or realloc.
Ptr is a pointer supplied by one of these
routines. The effect 1is to free the space
previously allocated.

char *malloc(size)
unsigned size;

Malloc allocates size bytes of storage
beginning on a word boundary. It returns a

pointer to the beginning of the allocated space,
or a NULL pointer on failure to acquire space.
For space initialized to zero, see calloc.

3-50

realloc

XENIX Software Development

int n;
char *t;
unsigned size;

if(t=malloc((unsigned)n) == NULL)
fprintf(stderr,"Out of space.0);

char *realloc (ptr, size)
char *ptr;
unsigned size;

Given ptr which was supplied by a call to
malloc or calloc, and a new byte size, size ,
realloc returns a pointer to the block of space
of size bytes. This function is useful to do
storage compacting along with malloc and free.

3-51

XENIX Software Development

The following pages contain the contents of the three most
important include files: ctype.h, stdio.h, and signal.s.
These files are well worth some study, just to see how these
all these definitions help to create a powerful interface to
the internals of the XENIX system.

3.2.10.1 ctype.h

#define U 01
#define L 02
#define N 04
#define S 010
#define P 020
$define C 040
$§define _B 0100
extern char _ctype_[];

#define isalpha(c) ((_ctype_+1) [cl&(_U]|_L))
#define isupper(c) ((_ctype_+1) [cl&_U)
#define islower(c) ((ctype “+1) [c] & L)
#define isdigit(c) ((Cctype _+1) [c]l& N)
#define isspace(c) ((_ctype_+1)[cl&(_S|_B))
~#define ispunct(c) ((_ctype +1)[c]& P)
#define isalnum(c) ((Cctype_+1) [cl&(Ul L’ N))
(

#define isprint(c) (_ctype_+1) [cl&(_P _L| _NJ|_B))
#define iscntrl(c) ((Tctype +1) [cl& C)

#define isascii(c) ((un51gned)(c)<~Ul77)

#define _toupper (c) ((c)='a'+'A")

#define _tolower (c) ((c)=-'A'+'a')

$define toascii(c) ((c)&0177)

3-52

3.2.10.2

#define

#define
#define
#define
#define
#define
$define
#define
$define
#define
#define
#define
$define
#define
$#define
#define

int
$define
#define

XENIX Software Development

signal.h

NSIG

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM

(*signal()) ();
(int
(int

SIG_DFL
SIG_IGN

16

WoodoU & WwWwN -

e el el
N WO HO

— o~
* %

Nt Nt

hangup */

interrupt */

quit */

illegal instruction (not reset when caugh
trace trap (not reset when caught) */

IOT instruction */

EMT instruction */

floating point exception */

kill (cannot be caught or ignored) */

bus error */

segmentation violation */

bad argument to system call */

write on a pipe with no one to read it */
alarm clock */

software termination signal from kill */

T~
e S’
N
O

3-53

XENIX Software Development

3.2.10.3 stdio.h

#define BUFSIZ 512
#define NFILE 20
ifndef FILE
extern struct _iobuf {

char * _ptr;

int _cnt;

char * base;

char _flag;

char _file;
} _iob[NFILE];
endif
#define _IOREAD 01
#define IOWRT 02
#define _IONBF 04
#define _IOMYBUF 010
#define IOEOF 020
#define _IOERR 040
#define _IOSTRG 0100
#define _IORW 0200
#define NULL 0
#define FILE struct _iobuf
#define EOF (-1)
#define L _ctermid 9
#define L_cuserid 9
#define L_tmpnam 19
#define stdin (& _iob[0])
#define stdout (&_iob[1])
#define stderr (&_iob[2])
#define getc(p) (--(p)->_cnt>=0?
#define getchar () getc(stdin)
#define putc (x,p) (--(p)->_cnt>=0?

_flsbuf((unsigned) (x),p))

#define putchar (x) putc (x,stdout)

#define feof (p) (((p)->_flag& IOEOF)!=0)
#define ferror(p) (((p)->_flag& IOERR) !=0)
#define fileno(p) p->_file

FILE *fopen() ;

FILE *freopen();

FILE *fdopen();

long ftell();

char *fgets ()

3-54

XENIX Software Development

3.3 THE XENIX ASSEMBLY LANGUAGE INTERFACE

The XENIX system is designed so that there should be 1little
need to program in assembly language. Occasionally, however,
the need does arise, and you may need to know the
conventions for storing words in memory, for accessing
parameters on the stack in a way compatible with the C
runtime environment. Remember, however, that programming in
assembly language is highly machine dependent, and that you
sacrifice portability whenever you forsake C for whatever
low-level advantages you might gain.

3.3.1 Memory Format

With the 8086, words are stored as followed:

<addr+1> <high order byte>
<addr+0> <low order byte>

The words of a 1long are stored ‘'backwards' to this
convention, the high order word comes first in memory:

<addr+3> <high order byte of low order word>
<addr+2> <low order byte of low order word>
<addr+1> <high order byte of high order word>
<addr+0> <low order byte of high order word>

The floating point format is currently Microsoft format, but
will definitely change to an IEEE compatible format in the

future.

Pascal 32-bit integers are stored as follows:

<addr+3> <high order byte of low order word>
<addr+2> <low order byte of low order word>
<addr+1> <high order byte of high order word>
<addr+0> <low order byte of high order word>

3.3.2 Calling Sequence

Arguments are pushed last first, and are in fact evaluated
in that order. 1In C, the order of evaluation of arguments
is undefined, Arguments are pushed by value, in a choice of
4 sizes: chars, ints, and unsigned ints are pushed in one
l6-bit word. Longs are pushed as two 16-bit words, low order
word first so the order in memory is preserved. Floats and
doubles as four 16-bit words, again order preserving. Note
that chars and floats are extended to the size of int or
double respectively. Structures, which are allocated rounded

XENIX Software Development

up to the next even byte size, are pushed so that their
memory order is preserved. This means that the last word is
pushed first.

3.3.3 Procedure Entry and Exit

Th bp, sp, si, and di registers must be restored upon
procedure exit if they have been modified. The following
sequence does this, and is what the compiler uses:

entry:
push bp
mov sp, bp
push di
push si
<body>
return:
jmp cret cret cleans up,

including any modifications
that may have been made to sp.
Ax, bx, cx, and dx

are preserved, as

well as segment registers.
Flags are not preserved.

Cret does a ret instruction,
so there is no need

for the user to do it.

Note that with this mechanism, the first argument (the 1last
pushed) will be at 4(bp), with subsequent words at 6 (bp),
8 (bp) and so forth. Where the various arguments are is
based on the size of arguments pushed.

We recommend that this sequence always be used, even if the
registers SI and DI will not be modified. Use of this
sequence allows backtracing by ADB in the case of a program
crash. X ’ '

3.3.4 Return Values

Int and char return values are left 1in the ax register.
Long return values are left in ax-dx, high order in dx.
(Note that this corresponds to what the c¢wl instruction
does, so it should be easy to remember.) Structures are
returned by having ax point to a static area of memory,
which contains the return value; floats are returned the

3-56

XENIX Software Development

same way.

3.3.5 System calls

In order to issue system calls, it is necessary for the user
to wuse the 1library functions discussed in chapter 3.
Assembly language programmers need to make a proper C-
compatible call to these routines, as shown above.

3-57

CHAPTER 4

OTHER TOOLS

This chapter discusses other tools and languages available
to the software developer. These tools and languages can be
used to complement the basic tools of chapter 4 or they can
in some instances be substituted for them.

The tools described here include a macro processor called
m4, a lexical analyzer named lex, and a compiler of
compilers named YACC. Lex and YACC have been used to create
a number of compilers, and m4 has been field tested as the
front end to a variety of processors. .

The languages discussed in this chapter are the calculating
languages dc and bc. These languages can be used to perform
reasonably complex mathematical operations with a high
degree of precision. These languages are similar to the
languages understood by hand-held calculators.

XENIX Software Development

4.1 The M4 Macro Processor

A macro processor is a useful way to enhance a programming
language, to make it more palatable or more readable, or to
tailor it to a particular application. The #define
statement in C and the analogous define in Ratfor are
examples of the basic facility provided by any macro
processor -- replacement of text by other text.

M4 is a suitable front end for Ratfor and C, and has also
been used successfully with Cobol. Besides the
straightforward replacement of one string of text by
another, it provides macros with arguments, conditional
macro expansion, arithmetic, file manipulation, and some
specialized string processing functions.

The basic operation of M4 is to copy its input to its
output. As the input is read, however, each alphanumeric
““token'' (that is, string of letters and digits) is
checked. 1If it is the name of a macro, then the name of the
macro is replaced by its defining text, and the resulting
string 1is pushed back onto the input to be rescanned.
Macros may be called with arguments, in which case the
arguments are collected and substituted into the right
places in the defining text before it is rescanned. :

M4 provides a collection of about twenty built-in macros
which perform various useful operations; in addition, the
user can define new macros. Built-ins and user-defined
macros work exactly the same way, except that some of the
built-in macros have side effects on the state of the
process.

4.1.1 Usage
To invoke M4, type:

m4 [files]
Each argument file is processed in order. If there are no
arguments, or if an argument is “*~', the standard input is
read at that point. The processed text is written on the

standard output, which may be captured for subsequent
processing with

m4 [files] >outputfile

4-2

XENIX Software Development

4.1.2 Defining Macros

The primary built-in function of M4 is define, which is used
to define new macros. The input

define(name, stuff)

causes the string name to be defined as stuff. All
subsequent occurrences of name will be replaced by stuff.
Name must be alphanumeric and must begin with a letter (the
underscore _ counts as a letter). stuff is any text that
contains balanced parentheses; it may stretch over multiple

lines.

Thus, as a typical example,

define (N, 100)

if (i > N)

-~

defines N to be 100, and uses this "~ “symbolic constant'' in

a later if statement.

The 1left parenthesis must immediately follow the word
define, to signal that define has arguments. If a macro or
built-in name is not followed immediately by (', it is
assumed to have no arguments. This is the situation for N
above; it is actually a macro with no arguments, and thus
when it is used there need be no (...) following it.

You should also notice that a macro name is only recognized
as such if it appears surrounded by non-alphanumerics. For
example, in

define (N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined
macro N, even though it contains a lot of N's.

Things may be defined in terms of other things. For
example,

define (N, 100)
define (M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way,
is M defined as N or as 100? 1In M4, the latter is true --

XENIX Software Development

M is 100, so even if N subsequently changes, M does not.

This behavior arises because M4 expands macro names into
their defining text as soon as it possibly can. Here, that
means that when the string N is seen as the arguments of
define are being collected, it is immediately replaced by

100; it's just as if you had said
define(M, 100)
in the first place.

If this isn't what you really want, there are two ways out
of it. The first, which is specific to this situation, is
to interchange the order of the :definitions:

define (M, N)
define (N, 100)

Now M is defined to be the String N, so when you ask for M
later, you'll always get the wvalue of N at that time
(because the M will be replaced by N which will be replaced
by 100).

4.1.3 Quoting

The more general solution is to delay the expansion of the
arguments of define by quoting them. Any text surrounded by
the single quotes = and ' 1s not expanded immediately, but
has the quotes stripped off. 1If you say -

define (N, 100)
define(M, °“N')

the quotes around the N are stripped off as the argument is
being collected, but they have served their purpose, and M
is defined as the string N, not 100. The general rule |is
that M4 always strips off one 1level of single quotes
whenever it evaluates something. This is true even outside
of macros. If you want the word define to appear in the
output, you have to quote it in the input, as in

“define' = 1;

As another instance of the same thing, which is a bit more
surprising, consider redefining N:

XENIX Software Development

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second definition is
evaluated as soon as it's seen; that is, it is replaced by
100, so it's as if you had written

define (100, 200)

This statement is ignored by M4, since you can only define
things that 1look like names, but it obviously doesn't have
the effect you wanted. To really redefine N, you must delay
the evaluation by quoting:

define (N, 100)

define("N', 200)

In M4, it is often wise to quote the first argument of a
macro.

If * and ' are not convenient for some reason, the quote
characters can be changed with the built-in changequote.

For example:

changequote ([,])

makes the new quote characters the left and right brackets.
You can restore the original characters with just

changequote

There are two additional built-ins related to define.
undefine removes the definition of some macro or built-in:

undefine("N')

removes the definition of N. Built-ins can be removed with
undefine, as in

undefine(define')
but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is

currently defined. For instance, pretend that either the
word xenix or unix is defined according to a particular
implementation of a program. To perform operations

according to which system you have you might say:

XENIX Software Development

ifdef (“xenix', “define(system,l)"')
ifdef(“unix', “define(system,2)"')

Don't forget the quotes in the above example.

Ifdef actually permits three arguments: if the name is
gndefined, the value of ifdef is then the third argument, as
in '

ifdef(“xenix', on XENIX, not on XENIX)

4.1.4 Arguments

So far we have discussed the simplest form of macro
processing - replacing one string by another (fixed)
string. User-defined macros may also have arguments, so
different invocations can have different results. Within
the replacement text for a macro (the second argument of its
define) any occurrence of $n will be replaced by the nth
argument when the macro is actually used. Thus, the macro
bump, defined as

$1 + 1)

define (bump, $1
generates code to increment its argument by 1:
bump (x)

is

A macro can have as many arguments as you want, but only the
first nine are accessible, through $1 to $9. (The macro
name itself is $0, although that is 1less commonly used.)
Arguments that are not supplied are replaced by null
strings, so we can define a macro cat which simply
concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)
Thus v
cat(x, vy, 2z)
is equivalent to
Xy2z

$4 through $9 are null, since no corresponding arguments

XENIX Software Development

were provided.

Leading ungquoted blanks, tabs, or newlines that occur during
argument collection are discarded. All other white space is
retained. Thus:

define(a, b ¢
defines a to be b c.
Arguments are separated by commas, but parentheses are
counted properly, 'so a comma = protected'' by parentheses
does not terminate an argqument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally (b,c).
And of course a bare comma or parenthesis can be inserted by
quoting it.

4.1.5 Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on
integers (only). The simplest is incr, which increments its
numeric argument by 1. Thus, to handle the common
programming situation where you want a variable to be
defined as ““one more than N'', write

define (N, 100)
define (N1, “incr(N)')

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in
called eval, which 1is capable of arbitrary arithmetic on
es the operators (in decreasing order of

precedence)

unary + and -
** or © (exponentiation)
* / % (modulus)

+ -

== 1= < <= > >=

! (not)

& or && (logical and)

| or |] (logical or)

Parentheses may be used to group operations where needed.
All the operands of an expression given to eval must
ultimately be numeric. The numeric value of a true relation

XENIX Software Development

(like 1>0) 1is 1, and false is 0. The precision in eval is
implementation dependent.

As a simple example, suppose we want M to be 2**N+l. Then

define(N, 3)
define(M, “eval(2**N+1)')

As a matter of principle, it 1is advisable to quote the
defining text for a macro unless it is very simple indeed
(say just a number); it usually gives the result you want,
and is a good habit to get into.

4.1.6 File Manipulation

You can include a new file in the input at any time by the
built-in function include:

include(filename)

inserts the contents of filename in place of the include
command. The contents of the file 1is often a set of
definitions. The value of include (that is, its replacement
text) is the contents of the file; this can be captured in
definitions, etc.

It is a fatal error if the file named in include cannot be
accessed. To get some control over this situation, the
alternate form sinclude can be used; sinclude ("“silent
include'') says nothing and continues if it can't access the
file. '

It is also possible to divert the output of M4 to temporary
files during processing, and output the collected material
upon command. M4 maintains nine of these diversions,
numbered 1 through 9. If you say

-divert(n)

all subsequent output is put onto the end of a temporary
file referred to as n. Diverting to this file is stopped by
another divert command; in particular, divert or divert(0)
resumes the normal output process. '

Diverted text is normally output all at once at the end of
processing, with the diversions output in numeric order. It
is possible, however, to bring back diversions at any time,
that is, to append them to the current diversion.

XENIX Software Development

~undivert

brings back all diversions in numeric order, and undivert
with arguments brings back the selected diversions in the
order given. The act of undiverting discards the diverted
stuff, as does diverting into a diversion whose number is

not between 0 and 9 inclusive.

The value of wundivert |is not the diverted stuff.
Furthermore, the diverted material is not rescanned for
macros.

The built-in divnum returns the number of the currently
active diversion. This is zero during normal processing.

4.1.7 System Command

You can run any program in the local operating system with
the syscmd built-in. For example,

syscmd (date)

runs the date command. Normally, syscmd would be used to
create a file for a subsequent include.

To facilitate making unique file names, the built-in
maketemp is provided, with specifications identical to the
system function mktemp: a string of XXXXX in the argument is
replaced by the process id of the current process.

4.1.8 Conditionals

There is a built-in called ifelse which enables you to
perform arbitrary conditional testing. In the simplest
form,

ifelse(ap b' c, 4d)

compares the two strings a and b. If these are identical,
ifelse returns the string c; otherwise it returns 4. Thus,

we might define a macro called compare which compares two
strings and returns "“yes'' or no'' if they are the same

or different.
define(compare, “ifelse($l, $2, yes, no)')

Note the gquotes, which prevent too-early evaluation of
ifelse.

4-9

XENIX Software Development

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus
provides a 1limited form of multi-way decision capability.
In the input :

ifelse(a, b, ¢, 4, e, £, 9g)
if the string a matches the string b, the result 1is c.
Otherwise, if 4 1is the same as e, the result is f.
Otherwise the result 1is g. If the final argument 1is
omitted, the result is null, so

ifelse(a, b, c)

is ¢ if a matches b, and null otherwise.

4,1.9 String Manipulatidn

The built-in len returns the length of the string that makes
up its argument. Thus ‘

len(abcdef)
is 6, and len((a,b)) is 5.

The built-in substr can be used to produce substrings of
strings. substr(s, i, n) returns the substring of s that
starts at the ith position (origin =zero), and is n
characters long. If n is omitted, the rest of the string is

returned, so
‘substr(‘now is the time', 1)
is
ow is the time
If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in sl where the

string s2 occurs, or -1 if it doesn't occur. As with

substr, the origin for strings is 0.

The built-in translit performs character transliteration.
translit(s, £, t)

modifies s by replacing any character found in £ by the
corresponding character of t. That is,

4-10

XENIX Software Development

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is
shorter than £, characters which don't have an entry in t
are deleted; as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which deletes all
characters that follow it up to and including the next
newline. It is useful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output. For example,

if you say

define (N, 100)
define (M, 200)
define(L, 300)

the newline at the end of each 1line 1is not part of the
definition, so it 1is copied into the output, where it may
not be wanted. If you add dnl to each of these 1lines, the

newlines will disappear.

Another way to achieve this, is

divert(-1)
define(...)

divert

4.1.10 Printing
The built-in errprint writes its arguments out on the
standard error file. Thus, you can say

errprint(fatal error')

Dumpdef 1is a debugging aid which dumps the current
definitions of defined terms. If there are no arguments,
you get everything; otherwise you get the ones you name as
arguments. Don't forget the quotes.

4-11

XENIX Software Development

4.1.11 Summary of Built-ins

changequote(L, R)
define(name, replacement)
divert (number)

divnum

dnl ,
dumpdef(“name', “name', ...)
errprint(s, s, ...)

eval (numeric expression)
ifdef(“name', this if true, this if false)
ifelse(a, b, ¢, 4)
include(file)

incr (number)

index (sl, s2)

len(string)
maketemp (.. .XXXXX...)
sinclude(file)
substr(string, position, numbet)
syscmd (s)

translit(str, from, to)
undefine(“name')

undivert (number,number,...)

XENIX Software Development

4.2 Lex

Lex helps write programs whose control flow is directed by
instances of regular expressions in the input stream. It is
well suited for editor-script type transformations and for
segmenting input in preparation for a parsing routine.

Lex source 1is a table of regular expressions and
corresponding program fragments. The table is translated to
a program which reads an input stream, copying it to an
output stream and partitioning the input into strings which
match the given expressions. As each such string Iis
recognized the corresponding program fragment is executed.
The recognition of the expressions is performed by a
deterministic finite automaton generated by Lex. The
program fragments written by the user are executed in the
order in which the corresponding regular expressions occur
in the input stream.

The 1lexical analysis programs written with Lex accept
ambiguous specifications and choose the 1longest match
possible at each input point. If necessary, substantial
look%ahead 1is performed on the input, but the input stream
will be backed up to the end of the current partition, so
that the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language
which can be translated automatically to portable Fortran.
Lex is designed to simplify interfacing with Yacc, the XENIX
compiler-compiler.

4.2.1 Introduction

Lex is a program generator designed for lexical processing
of <character input streams. It accepts a high-level,
problem oriented specification for character string
matching, and produces a program in a dgeneral purpose
language which recognizes regular expressions. The regular
expressions are specified by the wuser in the source
specifications given to Lex. The Lex written code
recognizes these expressions in an input stream and
partitions the input stream into strings matching the
expressions. At the boundtaries between strings program
sections provided by the user are executed. The Lex source
file associates the regular expressions and the program
fragments. As each expression appears in the input to the
program written by Lex, the corresponding fragment is
executed.

XENIX Software Development

The user supplies the additional code beyond expression
matching needed to complete his tasks, possibly including
code written by other generators. The program that
recognizes the expressions is generated in the general
purpose programming language employed for the user's program
fragments. Thus, a high 1level expression language is
provided to write the string expressions to be matched while
the wuser's freedom to write actions is unimpaired. This
avoids forcing the user who wishes to use a string
manipulation language for input analysis to write processing
programs in the same and often inappropriate string handling
language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added to
different programming languages, called "“host languages.''
Just as general purpose languages can produce code to run on
different computer hardware, Lex can write code in different
host 1languages. The host language is used for the output
code generated by Lex and also for the program fragments
added by the user. Compatible run-time libraries for the
different host languages are also provided. This makes Lex
adaptable to different environments and different users.
Each application may be directed to the combination of
hardware and host language appropriate to the task, the
user's background, and the properties of local
implementations. At present, the only supported host
language is C.

Lex turns the user's expressions and actions (called source
in this section) into the host general-purpose language; the
generated program is named yylex. The yylex program will
recognize expressions in a stream (called input here) and
perform the specified actions for each expression as it is
detected. :

For a trivial example, consider a program to delete from the
input all blanks or tabs at the ends of lines.

%3 ‘
[\t]1+$;

is all that is required. The program contains a %%
delimiter to mark the beginning of the rules, and one rule:.
This rule contains a regular expression which matches one or
more ‘instances of the characters blank or tab (written \t
for wvisibility, in accordance with the C language
convention) Jjust prior to the end of a line. The brackets
indicate the character class made of blank and tab; the +
indicates “~“one or more ...''; and the $ indicates "““end of
line.'' No action is specified, so the program generated by

4-14

XENIX Software Development

Lex (yylex) will ignore these characters. Everything else
will be copied. To change any remaining string of blanks or
tabs to a single blank, add another rule:

%3
[\t]+$;
[\tl+printf(" ");

The finite automaton generated for this source will scan for
both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level analyzer
to recognize input tokens. Thus, a combination of Lex and
Yacc is often appropriate. When used as a preprocessor for
a later parser generator, Lex is used to partition the input
stream, and the parser generator assigns structure to the
resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs
written by Lex. Yacc users will realize that the name yylex
is what Yacc expects its lexical analyzer to be named, so
that the use of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source. The automaton is
interpreted, rather than compiled, in order to save space.
The result 1is still a fast analyzer. 1In particular, the
time taken by a Lex program to recognize and partition an
input stream 1is ©proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, unless -rules which
include forward context require a significant amount of
re$scanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch. The
automaton interpreter directs the control flow. Opportunity
is provided for the user to insert either declarations or

XENIX Software Deveiéﬁment

additional statements in the routine containing the actions,
or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted on the
basis of one character look%$ahead. For example, if there
are two rules, one looklng for ab and another for abcdefg,
and the input stream is abcdefh, Lex will recognize ab and
leave the input pointer just before cd. . Such backup is
more costly than the processing of simpler languages.

4.2.2 Lex Source
The general format of Lex source is:

[definitions}

{user subroutines]

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is
required to mark the beginning of the rules. The absolute
minimum Lex program is thus

%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions and the
right column contains actions,' program fragments to be
executed when the expressions are recognized. Thus an
individual rule might appear

integerprintf ("found keyword INT");

to look for the string integer in the input stream and print
the message " “found keyword INT'' whenever it appears. 1In
this example the host procedural language is C and the C
library function printf is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression,
it can just be given on the right side of the line; if it is
compound, or takes more than a line, it should be enclosed
in braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to Amerlcan
spelling. Lex rules such as

4-16

XENIX Software Development

colourprintf("color");
mechaniseprintf ("mechanize") ;
petrolprintf("gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseum; a way of dealing
with this will be described later.

4.2.3 Lex Regular Expressions

A regular expression specifies a set of strings to be
matched. It contains text characters (that match the
corresponding characters in the strings being compared) and
operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits
are always text characters. Thus, the regular expression:

integer

matches the string integer wherever it appears and the
expression

a57D

looks for the string a57D.

Operators. The operator characters are
"NIlc-2.%x+] ()s/{}s<>

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indicates
that whatever is contained between a pair of guotes is to be
taken as text characters. Thus

xyz"++"

matches the string xyz++ when it appears. Note that a part
of a string may be quoted. It is harmless but unnecessary
to guote an ordinary text character; the expression

"Xyz++"

is the same as the one above. Thus by quoting every non-
alphanumeric character being used as a text character, the
user can avoid remembering the 1list above of current
operator characters, and is safe should further extensions

to Lex lengthen the list.

XENIX Software Development

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\+\+

which is another, less readable, equivalent of the above
expressions. Another use of the quoting mechanism is to get
a blank into an expression; normally, as explained above,
blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t is
tab, and \b is backspace. To enter \ itself, use \\. Since
newline 1is illegal in an expression, \n must be used; it is
not required to escape tab and backspace. Every character
but blank, tab, newline and the list above is always a text
character.

Character classes. Classes of characters can be specified
using the operator pair []. The construction [abc] matches
a single character, which may be a, b, or ¢c. Within square
brackets, most operator meanings are igﬁbred. Only three

characters are special: these are \ - and . The -~ character
indicates ranges. For example,

[a-20-9<>]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between any
pair of characters which are not both upper case letters,
both lower case letters, or both digits is implementation
dependent and will get a warning message. (E.g., [0-z] in
ASCII is many more characters than it is in EBCDIC). If it
is desired to include the character - in a character class,
it should be first or last; thus

[-+0-9]
matches all the digits and the two signs.

In character classes, the = operator must appear as the
first character after the left bracket; it indicates that
the resulting string is to be complemented with respect to
the computer character set. Thus ' ’

[~ abc]

matches all characters except a, b, or ¢, including all
special or control characters; or

4-18

XENIX Software Development

[“a-zA-2Z]

is any character which is not a 1letter. The \ character
provides the usual escapes within character class brackets.

Arbitrary character. To match almost any character, the
operator character

.

is the class of all characters except newline. Escaping
into octal is possible although non-portable:

[\40-\176]

matches all printable characters in the ASCII character set,
from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an optional
element of an expression. Thus

ab?c
matches either ac or abc.

Repeated expressions. Repetitions of classes are indicated
by the operators * and +.

a*

is any number of consecutive a characters, including =zero;
while

a+
is one or more instances of a. For example,
[a-z]+
is all strings of lower case letters. And
{A-Za-z] [A-Za-20-9]*
indicates all alphanumeric strings with a leading alphabetic
character. This 1is a typical expression for recognizing

identifiers in computer languages.

Alternation and Grouping. The operator | indicates
alternation:

4-19

XENIX Software Development

(ab|cd)

matches either ab or cd. Note that parentheses are used for
grouping, although they are not necessary on the outside
level;

ablcd

would have sufficed. Parentheses can be used for more
complex expressions:

(ablcd+)? (ef) *

matches such strings as abefef, efefef, cdef, or cddd; but
not abc, abcd, or abcdef.

Context sensitivity. Lex will recognize a small amount 'of
surrounding context. The two simplest operators for this
are ~ and $. If the first character of an expression is ~,
the expression will only be matched at the beginning of a
line (after a newline character, or at the beginning of the
input stream). This can never conflict with the other
meaning of ©, complementation of character classes, since
that only applies within the [] operators. If the very last
character is §, the expression will only be matched at the
end of a line (when immediately followed by newline). The
latter operator 1is a special case of the / operator

character, which indicates trailing context. The expression

“ab/cd |

matches the string ab, but onlybif followed by cd. Thus
ab$

is the same as

ab/\n

Left context is handled in Lex by start conditions as
explained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition X,

the rule should be prefixed by

<x>
using the angle bracket operator characters. If we

considered "~“being at the beginning of a line'' to be start
condition ONE, then the "~ operator would be equivalent to

4-20

XENIX Software Development

<ONE>
Start conditions are explained more fully later.
Repetitions and Definitions. The operators {1 specify

either repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{diqgit}

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In
contrast,

a{1,s}
looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for Lex
source segments.

4,2.4 Lex Actions

When an expression written as above is matched, Lex executes
the corresponding action. This section describes some
features of Lex which aid in writing actions. Note that
there 1is a default action, which consists of copying the
input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb
the entire input, without producing any output, must provide
rules to match everything. When Lex is being used with
Yacc, this is the normal situation. One may consider that
actions are what is done instead of copying the input to the
output; thus, in general, a rule which merely copies can be
omitted. Also, a character combination which is omitted
from the rules and which appears as input is 1likely to be
printed on the output, thus calling attention to the gap in
the rules.

One of the simplest things that can be done is to ignore the

input. Specifying a C null statement, ; as an action
causes this result. A frequent rule is
[\t\n];

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

XENIX Software Development

Another easy way to avoid writing actions 1is the action
character |, which indicates that the action for this rule
is the action for the next rule. The previous example could
also have been written

" n'

"\t"'

"\n";

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to know
the actual text that matched some expression like [a-z]+.
Lex leaves this text in an external character array named
yytext. Thus, to print the name found, a rule like

[a=z]+printf("%s", yytext):;

will print the string in yytext. The C function printf
accepts a format argument and data to be printed; in this
case, the format is ““print string'' (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it may
be written as ECHO:

[a=-2z]+ECHO;

is the same as the above. Since the default action is Jjust
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default
action? Such rules are often required to avoid matching
some other rule which is not desired. For example, if there
is a rule which matches read it will normally match the
instances of read contained in bread or readjust; to avoid

this, a rul of the form [a-z]+ 1is needed. This is
explained further below. P

Sometimes it is more convenient to know the end of what has
been found; hence Lex also provides a count yyleng of the
number of characters matched. To count both the number of

words and the number of characters in words in the input,
the user might write ‘

[a-zA-Z]+{words++; chars += yyleng;}

which accumulates in chars the number of characters in the
words recognized. The last character in the string matched
can be accessed by

4-22

XENIX Software Development

yytext{yyleng-1]

Occasionally, a Lex action may decide that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression recognized
is to be tacked on to the end of this input. Normally, the
next input string would overwrite the <current entry in
yytext. Second, yyless (n) may be called to indicate that
not all the characters matched by the currently successful
expression are wanted right now. The argument n indicates
the number of characters in yytext to be retained. Further
characters previously matched are returned to the input.
This provides the same sort of look%ahead offered by the /
operator, but in a different form.

Example: Consider a language which defines a string as a set
of characters between quotation (") marks, and provides that
to include a " in a string it must be preceded by a \. The
regular expression which matches that is somewhat confusing,
so that it might be preferable to write

\"[A"]*{
if (yytext[yyleng-1] == '\\')
yymore() ;
else

J

which will, when faced with a string such as "abc\"def"
first match the five characters "abc\; then the call to
yymore () will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "“normal
processing''.

... normal user processing

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of
distinguishing the ambiguity of ““=-a''. Suppose it is
desired to treat this as ““=- a'' but print a message. A
rule might be

=-[a-zA-2]{
printf("Operator (=-) ambiguous\n") ;
yyless(yyleng-1);
... action for =- ...

which prints a message, returns the 1letter after the
operator to the input stream, and treats the operator as
St=a Alternatively it might be desired to treat this as

XENIX Software Development

N

= -a''. To do this, just return the minus sign as well
as the letter to the input:

=-[a-zA-2] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2);
.+« action for = ...

will perform the other interpretation. Note that the
expressions for the two cases might more easily be written

=-/[A-2a-2]
in the first case and
=/-[A-2a-2]

in the second; no backup would be required in the rule

action. It 1is not necessary to recognize the whole

identifier to observe the ambiguity. The possibility of
*=-3'', however, makes

==/[" \t\n]
a still better rule.

In addition to these routines, Lex also permits access to
the I/0 routines it uses. They are: :

1. input() which returns the next input character;

2. output(c) which writes the character ¢ on the output;
and

3. unput(c) pushes the character c back onto the input
stream to be read later by input().

By default these routines are provided as macro definitions,
but the user can override them and supply private versions.
These routines define the relationship between external
files and internal characters, and must all be retained or
modified consistently. They may be redefined, to cause
input or output to be transmitted to or from strange places,
including other programs or internal memory; but the
character set wused must be consistent in all routines; a
value of zero returned by input must mean end of file; and
the relationship between unput and input must be retained or
the Lex look%ahead will not work. Lex does not 1look ahead
at all if it does not have to, but every rule ending in + *
? or $ or containing / implies look%ahead. lookg%ahead is

4-24

XENIX Software Development

also necessary to match an expression that is a prefix of
another expression. See below for a discussion of the
character set used by Lex. The standard Lex library imposes
a 100 character limit on backup.

Another Lex library routine that the user will sometimes
want to redefine is yywrap() which is called whenever Lex
reaches an end-of-file. If yywrap returns a 1, Lex
continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new inpﬂt and
returns 0. This instructs Lex to continue processing. The
default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end-
of-file; the only access to this condition is through
rap. In fact, unless a private version of input() Iis
supplied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

4,2.5 Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one
expression can match the current input, Lex chooses as
follows:

® The longest match is preferred.

¢® Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integerkeyword action ...;
[a-z)+identifier action ...;

to be given in that order. If the input is integers, it is
taken as an identifier, because [a-z]+ matches 8 characters

while integer matches only 7. 1If the input is integer, both
rules match 7 characters, and the keyword rule is selected

because it was given first. Anything shorter (e.g. int)
will not match the expression integer and so the identifier
interpretation is used.

The principle of preferring the longest match makes rules
containing expressions like .* dangerous. For example,

XENIX Software Development

|.*'
might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, ‘'second' here
the above expression will match
'first' quoted string here, 'second’

which is probably not what was wanted. A better rule is of
the form ‘

v ["u\n],*v

which; on the above input, will stop after ‘'first'. The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus
expressions 1like .* stop on the current line. Don't try to
defeat this with expressions like [.\n]+ or equivalents; the
Lex generated program will try to read the entire input
file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not
searching for all possible matches of each expression. This
means that each character is accounted for once and only
once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some Lex
rules to do this might be :

shes++;
heh++;
\n|

.
. ’

where the last two rules ignore everything besides he and
she. Remember that . does not include newline. Since she
includes he, Lex will normally not recognize the instances
of he included in she, since once it has passed a she those
characters are gone.

Sometimes the user would like to override this choice. The
action REJECT means ~~go do the next alternative.'' It
causes whatever rule was second choice after the current
rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to
count the included instances of he:

4-26

XENIX Software Development

she{s++; REJECT;
he{h++; REJECT;}
\n|

.
hd ’

these rules are one way of changing the previous example to
do just that. After counting each expression, it is
rejected; whenever appropriate, the other expression will
then be counted. 1In this example, of course, the user could
note that she includes he but not vice versa, and omit the
REJECT action on he; in other cases, however, it would not
be possible a priori to tell which input characters were in
both classes.

Consider the two rules

a[bc]+f ... 3 REJECT;
alcdl+] ... ; REJECT;

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches the
first rule for four characters and then the second rule for
three characters. In contrast, the input accd agrees with
the second rule for four characters and then the first rule
for three.

In general, REJECT is useful whenever the purpose of Lex 1is
not to partition the input stream but to detect all examples
of some items in the input, and the instances of these items
may overlap or include each other. Suppose a digram table
of the input is desired; normally the digrams overlap, that
is the word the 1is considered to contain both th and he.
Assuming a two-dimensional array named digram to be
incremented, the appropriate source is

%% v
[a-z][a—z]{digram[yytext[O]][yytext[l]]++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other

character.

-e wo

XENIX Software Development

4.2.6 Lex Source Definitions

Remember the format of the Lex source:

{definitions}

{user routines}

So far only the rules have been described. The user needs
additional options, though, to define variables for use in
his program and for use by Lex. These can go either in the
definitions section or in the rules section.

Remember that Lex is turning the rules into a program. Any
source not intercepted by Lex is copied into the generated
program. There are three classes of such things.

l. Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior to the
first %% delimiter will be external to any function in
the code; if it appears immediately after the first
%%, it appears in an appropriate place for
declarations in the function written by Lex which
contains the actions. This material must look like
program fragments, and should precede the first Lex

rule.

As a side effect of the above, lines which begin with
a blank or tab, and which contain a comment, are
passed through to the generated program. This can be
used to include comments in either the Lex source or
the generated code. The comments should follow the
host language convention.

2. Anything included between lines containing only ${ and
$} is copied out as above. The delimiters are
discarded. This format permits entering text 1like
preprocessor statements that must begin in column 1,
or copying lines that do not look like programs. :

3. Anything after the third %% delimiter, regardless of
formats, etc., is copied out after the Lex output. '

Definitions intended for Lex are given before the
first %% delimiter. line 1in this section not
contained between %{ and %¥, and begining in column 1,
is assumed to define Lex substitution strings. The
format of such lines is “

4-28

XENIX Software Development

name translation

and it causes the string given as a translation to be
associated with the name. The name and translation
must be separated by at least one blank or tab, and
the name must begin with a letter. The translation
can then be called out by the {name syntax in a rule.
Using {D} for the digits and {E} for an exponent
field, for example, might abbreviate rules to
recognize numbers:

D [0-9]

E [DEde] [-+]1?{D}+

$3
Di+printf("integer");
D +"."ID]*({E])?
Di*"."{D +(E)?
Di+{Elprintf("real”);

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at least one
digit before the decimal point and the second requires
at least one digit after the decimal point. To
correctly handle the problem posed by a Fortran
expression such as 35.EQ.I, which does not contain a
real number, a context-sensitive rule such as

[0-9]+/"."EQprintf("integer");

could be used in addition to the normal rule for
integers.

The definitions section may also contain other
commands, including the selection of a host language,
a character set table, a list of start conditions, or
adjustments to the default size of arrays within Lex
itself for larger source programs. These
possibilities are discussed below under "“Summary of
Source Format.''

4.2.7 Usage

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a library
of Lex subroutines. The generated program is on a file
named lex.yy.c. The I/0 library is defined in terms of the
C standard library.

XENIX Software Development

The library is accessed by the loader flag -lln. So an
appropriate set of commands is .

lex source cc lex.yy.c =-lln
The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below. Although
the default Lex I/O routines use the C standard library, the
Lex automata themselves do not do so. If private versions
of input, output and unput are given, the library can be
avoided.

4.2.8 Lex and Yacc

If you want to use Lex with Yacc, note that what Lex writes
is a program named yylex(), the name required by Yacc for
its analyzer. Normally, the default main program on the Lex
11brary calls' this routine, ‘but if Yacc is loaded, and its
main program is used, Yacc will call yylex(). In this case,
each Lex rule should end with

return(token) ;

where the appropriate token value is returned. An easy way
to get access to Yacc's names for tokens is to compile the
Lex output file as part of the Yacc output file by placing
the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar to
be named ““good'' and the lexical rules to be named
““better'' the XENIX command sequence can just be:

yacc good
lex better
cc y.tab.c -1y -1lln

The Yacc library (-ly) should be loaded before the Lex
library, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

4.2.9 Examples

As a trivial problem, consider copying an input file while
adding 3 to every positive number divisible by 7. Here is a
suitable Lex source program

XENIX Software Development

%%
int k:
[0-9]+{
k = atoi(yytext);
if (k%7 == 0)
printf("%d", k+3);
else

}

to do just that. The rule [0-9]+ recognizes strings of
digits; atoi converts the digits to binary and stores the
result in k. The operator % (remainder) is wused to check
whether k is divisible by 7; if it is, it is incremented by
3 as it is written out. It may be objected that this
program will alter such input items as 49.63 or X7.
Furthermore, it increments the absolute value of all
negative numbers divisible by 7. To avoid this, just add a
few more rules after the active one, as here:

printf£("%4d",k);

2%
int k;
-2[0-9]1+{
k = atoi(yytext);
rintf("%d", k%7 == 0 2?2 k+3 : k)

-?2[0-9.]+4+ECHO;
[A-Za-2z] [A-Za-2z0-9] +ECHO;

Numerical strings containing a ~".'' or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a?b:c means “"if a then b
else c''.

For an example of statistics gathering, here is a program
which histograms the 1lengths of words, where a word is
defined as a string of letters.

4-31

XENIX Software Development

int lengs([100];
%%
[a-z]+lengs[yyleng]++;

\n;
%%
fywrap()

int i;
printf("Length No. words\n");
for(i=0; i<100; i++)
if (lengs[i] > 0)
printf£("%$5d4%104d\n",i,lengs[i]);
return(l);

This program accumulates the histogram, while producing no
output. At the end of the input it prints the table. The
final statement return(l); indicates that Lex is to perform
wrapup. If yywrap returns =zero (false) it implies that
further input is available and the program is to continue
reading and processing. To provide a yywrap that never
returns true causes an infinite loop.

As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision Fortran
to single precision Fortran. Because Fortran does not
distinguish upper and lower <case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
c [cC]

z [2Z]
An additibnal class recognizes white space:

W [\t]*

The first rule changes "“double precision'' to ““real'', or
““DOUBLE PRECISION'' to ““REAL''.

{a}{o}H{u}{b} {1 H{e}{w}{p}{r}{e}{c}{i}{s}{i}{o}{n} {

?rintf(yytext[0]==‘d'? "real" : "REAL");

Care is taken throughout this program to preserve the case
(upper or lower) of the original program. The conditional
operator is used to select the proper form of the keyword.

4-32

XENIX Software Development

The next rule copies continuation card indications to avoid
confusing them with constants:

o "[® O]ECHO;

In the regular expression, the quotes surround the blanks.
It 1is interpreted as ““beginning of line, then five blanks,
then anything but blank or zero.'' Note the two different
meanings of . There follow some rules to change double
precision constants to ordinary floating constants.

[0—9]+{Wl{d}‘w

(+-12{w}[0-9]+
[0-971+{w}"."{w

I
1dl{w][+-]?fwl[o—9]+ }
nov{w}ro-91+{wtial{w}+-12{w}[0-9]+
/* convert constants */
for(pTyytext; *p 1= 0; p++)

if (*p == 'a' || *p == 'D")
*P=+ o' ldl;
ECHO;

After the floating point constant is recognized, it |is
scanned by the for 1loop to find the letter d or D. The
program than adds 'e'-'d', which converts it to the next
letter of the alphabet. The modified constant, now single-
precision, is written out again. There follow a series of
names which must be respelled to remove their initial d. By
using the array yytext the same action suffices for all the
names (only a sample of a rather long list is given here).

B
{

al{£}{1}{o} {a} {t}printf("es", yytext+l);
Another list of names must have initial 4 changed to initial
a:

d
d
d
d

v nOn
w R ng

t.Q O M

o

QO Qs
33 -+

o}{g}|
ojigrl
irinjl
arix;l
yytext[0] =+ 'a' - 'd’';
ECHO;

And one routine must have initial d changed to initial r:

XENIX Software Development

{a}1{m}{a}{c}H n}H{yytext[0] =+ 'r* - 'a';
ECHO;

To avoid such names as dsinx being detected as instances of
dsin, some final rules pick up longer words as identifiers
and copy some surviving characters:

[A-Za-z] [A-Za-20-9] *|
[0-9]+]|

\n|

. ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

4.2.10 Left Context Sensitivity

Sometimes it is desirable to have several sets of 1lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish
preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior
context, and there are several ways of handling such
problems. The ~ operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent 1left context could be extended, to produce a
facility similar to that for adjacent right context, but it
is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning
of a line. ‘

This section describes three means of dealing with different
environments: ‘a simple use of flags, when only a few rules
change from one environment to another, the use of start
conditions on rules, and the possibility of making multiple
lexical analyzers all run together. 1In each case, there are
rules which recognize the need to change the environment in
which the following input text is analyzed, and set some
parameter to reflect the change. This may be 'a flag
explicitly tested by the user's action code; such a flag is
the simplest way of dealing with the problem, since Lex is
not involved at all. It may be more convenient, however, to
have Lex remember the flags as initial conditions on the
rules. ' Any rule may be associated with a start condition.
It will only be recognized when Lex 1is in that start
condition. The current start condition may be changed at
any time. Finally, if the sets of rules for the different

4-34

XENIX Software Development

environments are very dissimilar, «clarity may be best
achieved by writing several distinct lexical analyzers, and
switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line which
began with the letter a, changing magic to second on every
line which began with the letter b, and changing magic to
third on every line which began with the letter c. All
other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
$%
“a{flag = 'a'; ECHO;
“b{flag = 'b'; ECHO;
“c{flag = 'c'; ECHO;
\niflag = 0 ; ECHO;
magic

?witch (flag)
case 'a': printf("first"); break;
case 'b': printf("second"); break;

case 'c': printf("third"); break;
default: ECHO; break;

should be adequate.

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions
section with a line reading

$Startnamel name2 ...

where the conditions may be named in any order. The word
Start may be abbreviated to s or S. The conditions may be
referenced at the head of a rule with the <> brackets:

<namel>expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the

action statement

BEGIN namel;

which changes the start condition to namel. To resume the

XENIX Software Development

normal state,
BEGIN 0;

resets the initial condition of the Lex automaton
interpreter. A rule may be active in several start
conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <>
prefix operator is always active.

The same example as before can be written:

$START AA BB CC

%%

“aiECHO; BEGIN AA;
“b{ECHO; BEGIN BB;
“c{ECHO; BEGIN CC:
\n{ECHO; BEGIN,O;}
<AA>magicprintf("first");
<BB>magicprintf ("second");
<CC>magicprintf("third");

where the logic is exactly the same as in the previous

method of handling the problem, but Lex does the work rather
than the user's code.

4.2.11 Character Set

The programs generated by Lex handle character 1I/0 only
through the routines input, output, and unput. Thus the
character representation provided in these routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small
integer which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. Normally, the letter a
is represented as the same form as the character constant
'a'. If this interpretation is changed, by providing I/0
routines which translate the characters, Lex must be told
about it, by giving a translation table. This table must be
in the definitions section, and must be bracketed by 1lines
containing only ““sT''. The table contains lines of the
form

{integer} {character string}

which indicate the value associated with each character.

XENIX Software Development

Thus the next example

3T
laa
2Bb
26Zz
27\n
28+
29-
300
311
399
T

Sample character table.

maps the lower and upper case letters together into the
integers 1 through 26, newline into 27, + and - into 28 and
29, and the digits into 30 through 39. Note the escape for
newline. If a table is supplied, every character that is to
appear either in the rules or in any valid input must be
included in the table. No character may be assigned the
number 0, and no character may be assigned a bigger number
than the size of the hardware character set.

4.2.12 Summary of Source Format

The general form of a Lex source file is:

{definitions}

$%

{rules}

$£%

{user subroutines}

The definitions section contains a combination of

1. Definitions, in the form " “name space translation''.

-

2. Included code, in the form ~“space code''.

3. Included code, in the form

% {

code
%}

4-37

XENIX Software Development

4. Start conditions, given in the form
%S namel name2 ...
5. Character set tables, in the form

T
number space character-string

T
6. Changes to internal array sizes, in the form

$£X nnn

where nnn is a decimal integer representing an array
size and x selects the parameter as follows: '

LetterParameter

positions

states

tree nodes

transitions

packed character classes
output array size

Oxwood3o

Lines in the rules section have the form "“expression
action'' where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X The character "x"

X An "x", even if x is an operator.

\x An "x", even if x is an operator.

[xy] The character x or y.

[x-2] The characters x, y or z.

[Tx] Any character but x.

. Any character but newline.

“x An x at the beginning of a line.

<y>X An x when Lex is in start condition vy.

XENIX Software Development

x$ An x at the end of a line.

x? An optional x.

x* 0,1,2, ... instances of x.

X+ 1,2,3, ... instances of x.

x|y An x or a y.

(x) An Xx.

x/y An x but only if followed by vy.

{xx} The translation of xx from the definitions
section.

x{m,n} m through n occurrences of x

4.2.13 Notes

There are pathological expressions which produce exponential
growth of the tables when converted ¢to deterministic

machines; fortunately, they are rare.

REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with
trailing context is found, and REJECT executed, the user
must not have used unput to change the characters
forthcoming from the input stream. This is the only
restriction on the user's ability to manipulate the not-
yet-processed input.

4-39

XENIX Software Development

4.3 YACC: Yet Another Compiler-Compiler

Computer program input generally has some structure; every
computer program that does input can be thought of as
defining an "“input language'' which it accepts. An input
language may be as complex as a programming language, or as
simple as a sequence of numbers. Unfortunately, usual input
facilities are 1limited, difficult to use, and often lax
about checking their inputs for validity.

Yacc provides a general tool for describing the input to a
computer program. The Yacc user specifies the structures of
his input, together with code to be invoked as each such
structure 1is recognized. Yacc turns such a specification
into a subroutine that handles the input process;
frequently, it is convenient and appropriate to have most of
the flow of control in the user's application handled by.
this subroutine.

The input subroutine produced by Yacc calls a user-supplied
routine to return the next basic input item. Thus, the user
can specify his input in terms of individual = input
characters, or in terms of higher level constructs such as
names and numbers. The wuser-supplied routine may also
handle idiomatic features such as comment and continuation
conventions, which typically defy easy grammatical
specification.

Yacc is written in portable C. The class of specifications
accepted 1is a very general one: LALR(l) grammars with
disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc.,
Yacc has also been used for less conventional languages,
including a phototypesetter language, several desk
calculator languages, a document retrieval system, and a
Fortran debugging system.

Yacc provides a general tool for imposing structure on the
input to a computer program. The Yacc user prepares a
specification of the input process; this includes rules
describing the input structure, code to be invoked when
these rules are recognized, and a low-level routine to do
the basic input. Yacc then generates a function to control
the input process. This function, called a parser, calls
the user-supplied low-level input routine (the lexical
analyzer) to pick up the basic items (called tokens) from
the 1input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of
these rules has been recognized, then user code supplied for
this rule, an action, is invoked; actions have the ability

4-40

XENIX Software Development

to return wvalues and make use of the values of other
actions.

Yacc is written in a portable dialect of C and the actions,
and output subroutine, are in C as well. Moreover, many of
the syntactic conventions of Yacc follow C.

The heart of the input specification 1is a collection of
grammar rules. Each rule describes an allowable structure
and gives it a name. For example, one grammar rule might
be:

date : month name day °',' year ;

Here, date, month name, day, and year represent structures
of interest in the input process; presumably, month name,

day, and year are defined elsewhere. The comma 'Y is
enclosed in single quotes; this implies that the comma is to
appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule, and have no
significance in controlling the input. Thus, with proper

definitions, the input:
July 4, 1776
might be matched by the above rule.

An important part of the input process is carried out by the
lexical analyzer. This user routine reads the input stream,
recognizing the lower 1level structures, and communicates
these tokens to the parser. A structure recognized by the
lexical analyzer is called a terminal symbol, while the
structure recognized by the parser :is called a nonterminal
symbol. To avoid confusion, terminal symbols will usually
be referred to as tokens.

There is considerable 1leeway in deciding whether to
recognize structures using the lexical analyzer or grammar
rules. For example, the rules

month_name :
month name : 'F' 'e' 'b’

o
o)
3
. we

month name : ‘D' te!' ¢! :

might be used in the above example. The 1lexical analyzer
would only need to recognize individual letters, and
month name would be a nonterminal symbol. Such 1low-level
rules tend to waste time and space, and may complicate the

XENIX Software Development

specification beyond Yacc's ability to deal with it.
Usually, the 1lexical analyzer would recognize the month
names, and return an indication that a month name was seen;
in this case, month name would be a token.

LN

Literal characters such as ,'' must also be passed through
the lexical analyzer, and are also considered tokens.

Specification files are very flexible. It is realively easy
to add to the above example the rule

date : month '/' day '/' vear :
allowing

7/ 4/ 1776
as a synonym for

July 4, 1776

In most cases, this new rule could be ““slipped in'' to a
working system with minimal effort, and little danger of
disrupting existing input.

The input being read may not conform to the specifications.
These input errors are detected as early as is theoretically
possible with a left-to-right scan; thus, not only 1is the
chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be
quickly found. Error handling, provided as part of the
input specifications, permits the reentry of bad data, or
the continuation of the input process after skipping over
the bad data. :

In some cases, Yacc fails to produce a parser when given a
set of specifications. For example, the specifications may
be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The
former cases represent design errors; the latter cases can
often be corrected by making the 1lexical analyzer more
powerful, or by rewriting some of the grammar rules. While
Yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the
constructions which are difficult for Yacc to handle are
also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid
Yacc specifications for their input revealed errors of
conception or design early in the program development.

XENIX Software Development

The next several sections describe:
¢ The preparation of grammar rules

® The preparation of the user supplied actions associated
with the grammar rules

& The preparation of lexical analyzers
@ The operation of the parser

® Various reasons why Yacc may be unable to produce a
parser from a specification, and what to do about it.

& A simple mechanism for handling operator precedences in
arithmetic expressions.

® Error detection and recovery.

® The operating environment and special features of the
parsers Yacc produces.

® gives some suggestions which should improve the style
and efficiency of the specifications.

4.3.1 Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc
requires token names to be declared as such. 1In addition,
for reasons discussed 1later, it 1is often desirable to
include the 1lexical analyzer as part of the specification
file. It may be useful to include other programs as well.
Thus, every specification file consists of three sections:
the declarations, (grammar) rules, and programs. The
sections are separated by double percent ““%%'' marks. (The
percent “%' is generally used in Yacc specifications as an
escape character.) ‘ ‘

In other words, a full specification file looks like

declarations
2%

rules

%%

programs

The declaration section may be empty. Moreover, if the
programs section is omitted, the second %% mark may be
omitted also; thus, the smallest legal Yacc specification is

4-43

XENIX Software Development

$%
rules

Blanks, tabs, and newlines are ignored except that they may
not appear in names or multi-character reserved symbols.
Comments may appear wherever a name is legal; they are
enclosed in /* . . . */, as in C and PL/I.

The rules section is made up of one or more grammar rules.
A grammar rule has the form:

A ¢ BODY ;

A represents a nonterminal name, and BODY represents a
sequence of zero or more names and literals. The colon and
the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of
letters, dot *“.'', underscore ~°_'', and non-initial
digits. Upper and lower case letters are distinct. The
names used in the body of a grammar rule may represent

tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes
LI NI As in C, the backslash ““\'' is an escape character
within literals, and all the C escapes are recognized. Thus

'\n'newline

'\r'return

'"\''single quote ~“''!
'\\'backslash ““\''
*\t'tab

'\b'backspace

'\f'form feed
"\xxx'""xxx'"' in octal

For a number of technical reasons, the NUL character ('\0O'
or 0) should never be used in grammar rules.

If there are several grammar rules with the same 1left hand
side, the vertical bar “*|'' can be used to avoid rewriting
the left hand side. In addition, the semicolon at the end
of a rule can be dropped before a vertical bar. Thus the
grammar rules

A :B C D :
A :E F :
A :G H

can be given to Yacc as

4-44

XENIX Software Development

A :B C D
E F
G

-e

It is not necessary that all grammar rules with the same
left side appear together in the grammar rules section,
although it makes the input much more readable, and easier
to change.

If a nonterminal symbol matches the empty string, this can
be indicated in the obvious way:

empty : ;

Names representing tokens must be declared; this 1is most
simply done by writing

g$token namel name2 . . .

in the declarations section. (See Sections 3 , 5, and 6 for
much more discussion). Every name not defined in the
declarations section is assumed to represent a nonterminal
symbol. Every nonterminal symbol must appear on the left
side of at least one rule.

Of all the nonterminal symbols, one, called the start
symbol, has particular importance. The parser is designed
to recognize the start symbol; thus, this symbol represents
the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left
hand side of the first grammar rule in the rules section.
It is possible, and in fact desirable, to declare the start
symbol explicitly in the declarations section using the

gstart keyword:
gstart symbol

The end of the input to the parser is signaled by a special
token, called the endmarker. If the tokens up to, but not
including, the endmarker form a structure which matches the
start symbol, the parser function returns to its caller
after the endmarker is seen; it accepts the input. If the
endmarker is seen in any other context, it is an error.

It is the job of the wuser-supplied 1lexical analyzer to
return the endmarker when appropriate; see section 3, below.
Usually the endmarker represents some reasonably obvious I/0
status, such as "““end-of-file'' or "“end-of-record''.

4-45

XENIX Software Development

4.3.2 Actions

With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input
process. These actions may return values, and may obtain
the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do
input and output, call subprograms, and alter external
vectors and variables. An action is specified by one_ or
more statements, enclosed in curly braces ““{'' and ““}''.
For example ' '

A:I(l B l)l
{hello(1, "abc"); }
and

XXX:YYY 222
{printf("a message\n");
flag = 25;

are grammar rules with actions.

To facilitate easy communication between the actions and the
parser, the action statements are altered slightly. The
symbol ““dollar sign'' *"$'' is used as a signal to Yacc in
this context.

To return a value, the action normally sets the pseudo-
variable "%$$'' to some value. For example, an action that
does nothing but return the value 1 is

{ s$=1; }
To obtain the values returned by previous actions and the
lexical analyzer, the action may use the pseudo-variables
$1, $2, . . ., which refer to the values returned by the

components of the right side of a rule, reading from left to
right. Thus, if the rule is

A :B C D H

for example, then $2 has the value returned by C, and $3 the
value returned by D.

As a more concrete example, consider the rule

expr:'(' expr ')' ;

4-46

XENIX Software Development

The value returned by this rule is usually the value of the
expr in parentheses. This can be indicated by

expr:'(' expr ')'{ $$ =%2; |

By default, the value of a rule is the value of the first
element in it ($1). Thus, grammar rules of the form

A :B H
frequently need not have an explicit action.

In the examples above, all the actions came at the end of
their rules. Sometimes, it 1is desirable to get control
before a rule is fully parsed. Yacc permits an action to be
written in the middle of a rule as well as at the end. This
rule is assumed to return a value, accessible through the
usual mechanism by the actions to the right of it. 1In turn,
it may access the values returned by the& symbols to its
left. Thus, in the rule

A :B
$$ =1; |}

$2; y = $3; |}

X

~o o () —

the effect is to set x to 1, and y to the value returned by
C'

Actions that do not terminate a rule are actually handled by
Yacc by manufacturing a new nonterminal symbol name, and a
new rule matching this name to the empty string. The
interior action 1is the action triggered off by recognizing
this added rule. Yacc actually treats the above example as
if it had been written: ‘

SACT:/* empty */
$$ = 1;

°
’

A :B SACT C
x = $2; y=$3; |}

. iy

In many applications, output is not done directly by the
actions; rather, a data structure, such as a parse tree, is
constructed in memory, and transformations are applied to it
before output is generated. Parse trees are particularly
easy to construct, given routines to build and maintain the
tree structure desired. For example, suppose there is a C

XENIX Software Development

function node, written so that the call
node(L, nl, n2)

creates a node with label L, and descendants nl and n2, and
returns the index of the newly created node. Then parse
tree can be built by supplying actions such as:

expr:expr '+' expr
$$ = node('+', $1, $3); }

in the specification.

The user may define other variables to be used by the
actions. Declarations and definitions can appear in the
declarations section, enclosed in the marks ““&{'' and
“*%}''. These declarations and definitions have global .
scope, so they are known to the action statements and the
lexical analyzer. For example,

% { int variable = 0; %}

could be placed in the declarations section, making variable
accessible to all of the actions. The Yacc parser uses only
names beginning in ““yy''; the user should avoid such names.

In these examples, all the values are integers: a discussion
of values of other types will be found in Section 10.

4.3.3 Lexical Analysis

The user must supply a lexical analyzer to read the input
stream and communicate tokens (with values, if desired) to
the parser. The 1lexical analyzer 1is an integer-valued
function called yylex. The function returns an integer, the
token number, representing the kind of token read. If there
is a value associated with that token, it should be assigned
to the external variable yylval.

The parser and the lexical analyzer must agree on :these
token numbers 1in order for communication between them to
take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the ““# define'' mechanism of C
is used to allow the 1lexical analyzer to return these
numbers symbolically. For example, suppose that the token
name DIGIT has been defined in the declarations section of
the Yacc specification file. The relevant portion of the
lexical analyzer might look like:

XENIX Software Development

yylex () {
extern int yylval;
int c;
¢ = getchar();

switch(c) |

case '0':
case 'l':
case '9':

yylval = c-'0';
return(DIGIT); .

j

The intent is to return a token number of DIGIT, and a value
equal to the numerical value of the digit. Provided that
the lexical analyzer code is placed in the programs section
of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism leads to <clear, easily modified 1lexical
analyzers; the only pitfall is the need to avoid using any
token names in the grammar that are reserved or significant
in C or the parser; for example, the use of token names if
or while will almost certainly cause severe difficulties
when the lexical analyzer is compiled.. The token name error
is reserved for error handling, and should not be used
naively. : :

As mentioned above, the token numbers may be chosen by Yacc
or by the user. 1In the default situation, the numbers are
chosen by Yacc. The default token number for a 1literal
character 1is the numerical value of the character in the
local character set. Other names are assigned token numbers

starting at 257.

To assign a token number to a token (including literals),
the first appearance of the token name or literal in the
declarations section can be immediately followed by a
nonnegative integer. This integer is taken to be the token
number of the name or 1literal. Names and 1literals not
defined by this mechanism retain their default definition.
It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number
0 or negative. This token number cannot be redefined by the
user; thus, all lexical analyzers should be prepared to

4-49

XENIX Software Development

return 0 or negative as a token number upon reaching the end
of their input.

A very useful tool for constructing lexical analyzers is the
Lex program developed by Mike Lesk8 These lexical analyzers
are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily
used to produce quite complicated lexical analyzers, but
there remain some languages (such as FORTRAN) which do not
fit any theoretical framework, and whose lexical analyzers
must be crafted by hand. ' .

4.3.4 How the Parser Works

Yacc turns the specification file into a C program, which
parses the input according to the specification given. The
algorithm used to go from the specification to the parser is
complex, and will not be discussed here (see the references
for more information). The parser itself, however, is
relatively simple, and understanding how it works, while not
strictly necessary, will nevertheless make treatment of
error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state
machine with a stack. The parser is also capable of reading
and remembering the next input token (called the lookahead
token) . The current state is always the one on the top of
the stack. The states of the finite state machine are given
small integer labels; initially, the machine is in state 0,
the stack contains only state 0, and no lookahead token has
been read.

The machine has only four actions\available to it, called
shift, reduce, accept, and error. A move of the parser is
done as follows: '

1. Based on its current state, the parser decides whether
it needs a lookahead token to decide what action
should be done; if it needs one, and does not have
one, it calls yylex gg‘¢btain the next token.

‘2. Using the current state, and the 1lookahead token 1if
needed, the parser decides on its next action, and
carries it out. This may result in states being
pushed onto the stack, or popped off of the stack, and
in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action 1is taken, there 1is always a

XENIX Software Development

lookahead token. For example, in state 56 there may be an
action:

IFshift 34

which says, in state 56, if the lookahead token is IF, the
current state (56) is pushed down on the stack, and state 34
becomes the current state (on the top of the stack). The
lookahead token is cleared.

The reduce action keeps the stack from growing without
bounds. Reduce actions are appropriate when the parser has
seen the right hand side of a grammar rule, and is prepared
to announce that it has seen an instance of the rule,
replacing the right hand side by the left hand side. It may
be necessary to consult the lookahead token to decide
whether to reduce, but usually it 1is not; in fact, the
default action (represented by a ““.'') is often a reduce

action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, leading
to some confusion. The action

refers to grammar rule 18, while the action

IFshift 34

refers to state 34.

Suppose the rule being reduced is
A :x y 2z ;

The reduce action depends on the left hand symbol (A in this
case), and the number of symbols on the right hand side
(three in this case). To reduce, first pop off the top
three states from the stack (In general, the number of
states popped equals the number of symbols on the right side
of the rule). 1In effect, these states were the ones put on
the stack while recognizing x, y, and 2z, and no longer serve
any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before
beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform what is
in effect a shift of A. A new state is obtained, pushed
onto the stack, and parsing - continues. There are
significant differences between the processing of the left
hand symbol and an ordinary shift of a token, however, so
this action 1is called a goto action. 1In particular, the
lookahead token is cleared by a shift, and is not affected

4-51

XENIX Software Development

by a goto. In any case, the uncovered state contains an
entry such as: '

A goto 20

causing state 20 to be pushed onto the stack, and become the
current state.

In effect, the reduce action ““turns back the clock'' in the
parse, popping the states off the stack to go back to the
state where the right hand side of the rule was first seen.
The parser then behaves as if it had seen the left side at
that time. If the right hand side of the rule is empty, no
states are popped off of the stack: the uncovered state is
in fact the current state.

The reduce action is also ‘important in the treatment of
user-supplied actions and values. When a rule is reduced,
the code supplied with the rule is executed before the stack
is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values
returned from the lexical analyzer and the actions. When a
shift takes place, the external variable yylval 1is copied
onto the value stack. After the return from the user code,
the reduction is carried out. When the goto action is done,
the external variable yyval is copied onto the value stack.
The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler.
The accept action indicates that the entire input has been
seen and that it matches the specification. This action
appears only when the lookahead token is the endmarker, and
indicates that the parser has successfully done 1its job.
The error action, on the other hand, represents a place
where the parser can no longer continue parsing according to
the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything
that would result in a legal input. The parser reports an
error, and attempts to recover the situation and resume
parsing: the error recovery (as opposed to the detection of
error) will be in a later section.

It is time for an example! Consider the specification

XENIX Software Development

$token DING DONG DELL

3
rhyme:sound place

sound:DING DONG

I’
place:DELL

’

When Yacc is invoked with the -v option, a file called
y.output is produced, with a human-readable description of
the parser. The y.output file corresponding to the above
grammar (with some statistics stripped off the end) is:

4-53

XENIX Software Development

state 0
$accept : _rhyme S$end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
§accept rhyme_$end

Send accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6

. error
state 4
rhyme : sound place_ (1)
. reduce 1
state 5
place : DELL_ (3)
. reduce 3
state 6
sound : DING DONG_ (2)
. reduce 2

Notice that, in addition to the actions for each state,
there 1is a description of the parsing rules being processed
in each state. The character is used to indicate what has

been seen, and what is yet to come, in each rule. Suppose
the input is

XENIX Software Development

DING DONG DELL

It is instructive to follow the steps of the parser while
processing this input.

Initially, the current state is state 0. The parser needs
to refer to the input in order to decide between the actions
available in state 0, so the first token, DING, is read,
becoming the lookahead token. The action in state 0 on DING
is is ““shift 3'', so state 3 is pushed onto the stack, and
the lookahead token is cleared. State 3 becomes the current
state. The next token, DONG, 1is read, becoming the
lookahead token. The action in state 3 on the token DONG is
““shift 6'', so state 6 is pushed onto the stack, and the
lookahead 1is cleared. The stack now contains 0, 3, and 6.
In state 6, without even consulting the 1lookahead, the
parser reduces by rule 2. :

sound DING DONG

This rule has two symbols on the right hand side, so two
states, 6 and 3, are popped off of the stack, uncovering
state 0. Consulting the description of state 0, looking for
a goto on sound,

soundgoto 2

is obtained; thus state 2 is pushed onto the stack, becoming
the current state.

In state 2, the next token, DELL, must be read. The action

is ““shift 5'', so state 5 is pushed onto the stack, which
now has 0, 2, and 5 on 1it, and the lookahead token is
cleared. In state 5, the only action is to reduce by rule

3. This has one symbol on the right hand side, so one
state, 5, is popped off, and state 2 is uncovered. The goto
in state 2 on place, the left side of rule 3, 1is state 4.
Now, the stack contains 0, 2, and 4. 1In state 4, the only
action is to reduce by rule 1. There are two symbols on the
right, so the top two states are popped off, uncovering
state 0 again. 1In state 0, there is a goto on rhyme causing
the parser to enter state 1. 1In state 1, the input is read;
the endmarker is obtained, indicated by *“$end'' in the
y.output file. The action in state 1 when the endmarker is
seen 1is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as DING DONG DONG,
DING DONG, DING DONG DELL DELL, etc. A few minutes spend
with this and other simple examples will probably be repaid
when problems arise in more complicated contexts.

XENIX Software Development

4.3.5 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input
string that can be structured in two or more different ways.
For example, the grammar rule

expr:expr '-' expr
is a natural way of expressing the fact that one way of
forming an arithmetic expression 1is to put two other
expressions together with a minus sign between them.
Unfortunately, this grammar rule does not completely specify
the way that all complex inputs should be structured. For
example, if the input is

exXpr - expr - expr
the rule allows this input to be structured as either

(expr - expr) -~ expr
or as

expr - (expr - expr)

(The first is called left association, the second right
association) .

Yacc detects such ambiguities when it is attempting to build
the parser. It is instructive to consider the problem that
confronts the parser when it is given an input such as

expr - exXpr - expr

When the parser has read the second expr, the input that it
has seen:

expr - expr

matches the right side of the grammar rule above. The
parser could reduce the input by applying this rule; after
applying the rule; the input is reduced to expr(the Ileft
side of the rule). The parser would then read the final
part of the input:

- expr

and again reduce. The effect of this is to take the left
associative interpretation.

XENIX Software Development

Alternatively, when the parser has seen
exXpr - expr

it could defer the immediate application of the rule, and
continue reading the input until it had seen

exXpr - exXpr - expr

It could then apply the rule to the rightmost three symbols,
reducing them to expr and leaving

exXpr - expr

Now the rule can be reduced once more; the effect is to take
the right associative interpretation. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction,
and has no way of deciding between them. This is called a
shift / reduce conflict. It may also happen that the parser
has a choice of two 1legal reductions; this is called a
reduce / reduce conflict. Note that there are never any
“*Shift/shift'' conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc
still produces a parser. It does this by selecting one of
the valid steps wherever it has a choice. A rule describing
which <choice to make in a given situation is called a
disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the
shift.

2. In a reduce/reduce conflict, the default is to reduce
by the earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there
is a choice, in favor of shifts. Rule 2 gives the user
rather crude control over the behavior of the parser in this
situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic,
or because the grammar rules, while consistent, require a
more complex parser than Yacc can construct. The wuse of
actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is

XENIX Software Development

being recognized. In these cases, the application of
disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, Yacc always reports the
number of shift/reduce and reduce/reduce conflicts resolved
by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating
rules to produce a correct parser, it is also possible to
rewrite the grammar rules so that the same inputs are read
but there are no conflicts. For this reason, most previous
parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is
somewhat unnatural, and produces slower parsers; thus, Yacc
will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider
a fragment from a programming language involving an ““if--
then-else'' construction:

stat:IF '(' cond ')' stat
[IF '(' cond ')' stat ELSE stat

!

In these rules, IF and ELSE are tokens, cond is a
nonterminal symbol describing conditional (logical)
expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if
rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input
of the form

IF (C1) IF (C2) §S81 ELSE 82
can be structured according to these rules in two ways:

IF (c1) |
IF (c2) sl

J

ELSE S2

or

IF (c1) |
IF (c2) sl
ELSE S2

The second interpretation 1is the one given in most
programming languages having this construct. Each ELSE is
associated with the last preceding ~“un-ELSE'd'' IF. In

XENIX Software Development

this example, consider the situation where the parser has
seen

IF (C1) IF (C2) s1

and is looking at the ELSE. It can immediately reduce by
the simple-if rule to get

IF (Cl1) stat

and then read the remaining input,
ELSE S2

and reduce
IF (Cl) stat ELSE 82

by the if-else rule. This leads to the first of the above
groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and
then the right hand portion of

IF (€1) IF (C2) 81 ELSE 82
can be reduced by the if-else rule to get
IF (Cl) stat

which can be reduced by the simple~if rule. This 1leads to
the second of the above groupings of the input, which is
usually desired.

Once again the parser can do two valid things - there is a
shift/reduce conflict. The application of disambiguating
rule 1 tells the parser to shift in this case, which 1leads
to the desired grouping.

This shift/reduce conflict arises only when there 1is a
particular current input symbol, ELSE, and particular inputs
already seen, such as

IF (C1) IF (Cc2) sl

In general, there may be many conflicts, and each one will
be associated with an input symbol and a set of previously
read inputs. The previously read inputs are characterized
by the state of the parser.

XENIX Software Development

The conflict messages of Yacc are best understood by
examining the verbose (-v) option output file. For example,
the output corresponding to the above conflict state might
be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23
stat : IF (cond) stat_ (18)
stat : IF (cond) stat ELSE stat
ELSE shift 45
. reduce 18

The first line describes the conflict, giving the state and:
the input symbol. The ordinary state description follows,
giving the grammar rules active in the state, and the parser
actions. Recall that the underline marks the portion of the
grammar rules which has been seen. Thus in the example, in
state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time.
The parser can do two possible things. If the input symbol
is ELSE, it is possible to shift into state 45. State 45
will have, as part of its description, the 1line

stat : IF (cond) stat ELSE stat

since the ELSE will have been shifted in this state. Back
in state 23, the alternative action, described by “*.'', is
to be done if the input symbol is not mentioned explicitly
in the above actions; thus, in this case, if the input

symbol is not ELSE, the parser reduces by grammar rule 18:
stat : IF '(' cond ')' stat

Once again, notice that the numbers following ““shift''
commands refer to other states, while the numbers following
““reduce'' commands refer to grammar rule numbers. In the
y.output file, the rule numbers are printed after those
rules which can be reduced. In most one states, there will
be at most reduce action possible in the state, and this
will be the default command. The user who encounters
unexpected shift/reduce conflicts will probably want to look
at the verbose output to decide whether the default actions
are appropriate. In really tough cases, the user might need
to know more about the behavior and construction of the

Y 4—60

XENIX Software Development

parser than can be covered here. 1In this case, one of the
theoretical references might be consulted; the services of a
local guru might also be appropriate.

4.3.6 Precedence

There is one common situation where the rules given above
for resolving conflicts are not sufficient; this is in the
parsing of arithmetic expressions. Most of the commonly
used constructions for arithmetic expressions can be
naturally described by the notion of precedence 1levels for
operators, together with information about left or right
associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create
parsers that are faster and easier to write than parsers
constructed from unambiguous grammars. The basic notion is
to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a
very ambiguous grammar, with many parsing conflicts. As
disambiguating rules, the user specifies the precedence, or
binding strength, of all the operators, and the
associativity of the binary operators. This information Iis
sufficient to allow Yacc to resolve the parsing conflicts in
accordance with these rules, and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens
in the declarations section. This is done by a series of
lines beginning with a Yacc keyword: %left, s$right, or
g$nonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of
increasing precedence or binding strength. Thus,

sleft ‘'+' -
tleft '*' '/

describes the precedence and associativity of the four
arithmetic operators. Plus and minus are left associative,
and have lower precedence than star and slash, which are
also 1left associative. The keyword $%right is used to
describe right associative operators, and the keyword
gnonassoc 1is used to describe operators, like the operator

XENIX Software Development

.LT. in Fortran, that may not associate with themselves;
thus,

A .LT. B .LT. C
is illegal in Fortran, and such an operator would be

described with the keyword %nonassoc in Yacc. As an example
of the behavior of these declarations, the description

$right '='

$left '4+' '

gleft '*' /0

L33

expr:expr '=' expr
expr '+' expr
expr '-' expr
expr '*' expr
expr ‘'/' expr
NAME

might be used to structure the input
a = b = ¢*xd - e - f*g

as follows:
a= (b= (((c*¥d)-e) - (f*g)))

When this mechanism is wused, unary operators must, in
general, be given a precedence. Sometimes a unary operator
and a binary operator have the same symbolic representation,
but different precedences. An example is unary and binary
'-'; unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a
lower strength than multiplication. The keyword, S$prec,
changes the precedence level associated with a particular
grammar rule. $%prec appears immediately after the body of
the grammar rule, before the action or closing semicolon,
and is followed by a token name or literal. It causes the
precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary
minus have the same precedence as multiplication the rules
might resemble: '

4-62

XENIX Software Development

$left '+' -t
gleft '*' /0

%

expr:expr '+' expr
expr '-' expr
expr '*' expr
expr '/' expr
'-' expr fprec '*!
NAME

.
4

A token declared by %left, %right, and $nonassoc need not
be, but may be, declared by %token as well.

The precedences and associativities are used by Yacc to
resolve parsing conflicts; they give rise to disambiguating
rules. Formally, the rules work as follows:

l. The precedences and associativities are recorded for
those tokens and literals that have them.

2. A precedence and associativity is associated with each
grammar rule; it is the precedence and associativity
of the last token or literal in the body of the rule.
If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence
and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a
shift/reduce conflict and either the input symbol or
the grammar rule has no precedence and associativity,
then the two disambiguating rules given at the
beginning of the section are used, and the conflicts
are reported. ' :

4, If there is a shift/reduce conflict, and both the
grammar rule and the input character have precedence
and associativity associated with them, then the
conflict 1is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is

used; left associative implies reduce, right
associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the
number of shift/reduce and reduce/reduce conflicts reported
by Yacc. This means that mistakes in the specification of
precedences may disguise errors in the input grammar; it is

4-63

XENIX Software Development

a good idea to be sparing with precedences, and use them in
an essentially "“cookbook'' fashion, until some experience
has been gained. The y.output file is very wuseful in
deciding whether the parser 1is actually doing what was
intended.

4.3.7 Error Handling

Error handling is an extremely difficult area, and many of
the problems are semantic ones. When an error is found, for
example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and, typically, set
switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error
is found. It is more useful to continue scanning the input
to find further syntax errors. This leads to the problem of
getting the parser ““restarted'' after an error. A general
class of algorithms to perform this = involves discarding a
number of tokens from the input string, and attempting to
adjust the parser so that input can continue.

To allow the user some control over this process, Yacc
provides a simple, but reasonably general feature. The
token name "“error'' is reserved for error handling. This
name can be wused in grammar rules; in effect, it suggests
places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state
where the token ““error'' is legal. It then behaves as if
the token ““error'' were the current lookahead token, and
performs the action encountered. The lookahead token is
then reset to the token that caused the error. If no
special error rules have been specified, the processing
halts when an error is detected.

In order to prevent a cascade of error messages, the parser,
after detecting an error, remains in error state until three
tokens have been successfully read and shifted. 1If an error
is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat:error
would, in effect, mean that on a syntax error the parser
would attempt to skip over the statement in which the error
was seen. More ©precisely, the parser will scan ahead,

looking for three tokens that might 1legally follow a
statement, and start processing at the first of these; if

4-64

XENIX Software Development

the beginnings of statements are not sufficiently
distinctive, it may make a false start in the middle of a
statement, and end up reporting a second error where there
is in fact no error.

Actions may be used with these special error rules. These
actions might attempt to reinitialize tables, reclaim symbol
table space, etc.

Error rules such as the above are very general, but
difficult to control. Somewhat easier are rules such as

stat:error H
Here, when there is an error, the parser attempts to skip
over the statement, but will do so by skipping to the next
'»', All tokens after the error and before the next ';'
cannot be shifted, and are discarded. When the ';' is seen,
this rule will be reduced, and any ““cleanup'' action
associated with it performed.

Another form of error rule arises in interactive
applications, where it may be desirable to permit a line to
be reentered after an error. A possible error rule might be

input:error '\n' { printf("Reenter last line: ");

$$ = $4;

There is one potential difficulty with this approach; the
parser must correctly process three input tokens before it
admits that it has correctly resynchronized after the error.
If the reentered 1line contains an error in the first two
tokens, the parser deletes the offending tokens, and gives
no message; this is clearly unacceptable. For this reason,
there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The

statement
yyerrok ;

in an action resets the parser to its normal mode. The last
example is better written

input:error ‘'\n'
yyerrok;
printf("Reenter last line: "); }
input

{ss = s4; }

’

4-65

}

input

XENIX Software Development

As mentioned above, the token seen immediately after the
““error'' symbol is the input token at which the error was
discovered. Sometimes, this is inappropriate; for example,
an error recovery action might take upon itself the job of
finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose
the action after error were to call some sophisticated
resynchronization routine, supplied by the user, that
attempted to advance the input to the beginning of the next
valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token
in a legal statement; the o0ld, illegal token must be
discarded, and the error state reset. This could be done by
a rule 1like

stat:error
{resynch();
yyerrok ;
yyclearin ; }

.
!

These mechanisms are admittedly crude, but do allow for a
simple, fairly effective recovery of the parser from many
errors. Moreover, the user can get control to deal with the
error actions required by other portions of the program.

4.3.8 The Yacc Environment

When the user inputs a specification to Yacc, the output is
a file of C programs, called y.tab.c on most systems (due to
local file system conventions, the names may differ from
installation to installation). The function produced by
Yacc is called yyparse; it is an integer valued function.
When it is called, it in turn repeatedly calls yylex, the
lexical analyzer supplied by the user (see Section 3) to
obtain input tokens. Eventually, either an error is
detected, in which case (if no error recovery 1is possible)

arse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this -case,
yyparse returns the value 0.

The user must provide a certain amount of environment for
this parser in order to obtain a working program. For
example, as with every C program, a program called main must
be defined, that eventually calls yyparse. In addition, a
routine called yyerror prints a message when a syntax error

4-66

XENIX Software Development

is detected.

These two routines must be supplied in one form or another
by the |user. To ease the initial effort of using Yacc, a
library has been provided with default versions of main and
yyerror. The name of this library is system dependent; on
many systems the library is accessed by a -ly argument to
the loader. To show the triviality of these default
programs, the source is given below:

main() {
return(yyparse());

and
include <stdio.h>

yyerror (s) char *s; {
fprintf(stderr, "%s\n", s);

The argument to yyerror is a string containing an error
message, usually the string "““syntax error''. The average
application will want to do better than this. Ordinarily,
the program should keep track of the input line number, and
print it along with the message when a syntax error is
detected. The external integer variable yychar contains the
lookahead token number at the time the error was detected;
this may be of some interest in giving better diagnostics.
Since the main program is probably supplied by the user (to
read arguments, etc.) the Yacc library is useful only in
small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O.
If it 1is set to a nonzero value, the parser will output a

verbose description of its actions, including a discussion
of which input symbols have been read, and what the parser
actions are. Depending on the operating environment, it may
be possible to set this wvariable by wusing a debugging
system.

4.3.9 Hints for Preparing Specifications

This section contains miscellaneous hints on preparing
efficient, easy to change, and clear specifications. The
individual subsections are more or less independent.

4-67

XENIX Software Development

Input Style It is difficult to provide rules with
substantial actions and still have a readable specification
file. The following style hints owe much to Brian

Kernighan.

a. Use all capital letters for token names, all lower
case letters for nonterminal names. This rule comes
under the heading of ““knowing who to blame when
things go wrong.'!'

b. Put grammar rules and actions on separate lines. This
allows either to be changed without an automatic need
to change the other. ‘

c. Put all rules with the same left hand side together.
Put the 1left hand side 1in only once, and let all
following rules begin with a vertical bar. ’

d. Put a semicolon only after the last rule with a given
left hand side, and put the semicolon on a separate
line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies
by three tab stops.

The examples in the text of this section follow this style
(where space permits). The user must make up his own mind
about these stylistic questions; the central problem,
however, 1is to make the rules visible through the morass of
action code.

Left Recursion The algorithm used by the Yacc parser
encourages so called "“left recursive'' grammar rules: rules
of the form

name:name rest of rule ;

These rules frequently arise when writing specifications of
sequences and lists:

list:item
[list ',' item

I

and

seg:item
|seq item

’

4-68

XENIX Software Development

In each of these cases, the first rule will be reduced for
the first item only, and the second rule will be reduced for
the second and all succeeding items.

With right recursive rules, such as

seg:item
|item seq

14

the parser would be a bit bigger, and the items would be
seen, and reduced, from right to left. More seriously, an
internal stack in the parser would be in danger of
overflowing if a very long sequence were read. Thus, the
user should use left recursion wherever reasonable.

It 1is worth considering whether a sequence with =zero
elements has any meaning, and if so, consider writing the
sequence specification with an empty rule:

seq:/* empty */
seq item

.
14

Once again, the first rule would always be reduced exactly
once, before the first item was read, and then the second
rule would be reduced once for each item read. Permitting
empty sequences often 1leads to increased generality.
However, conflicts might arise if Yacc is asked to decide
which empty sequence it has seen, when it hasn't seen enough
to know! ‘

Lexical Tie-ins Some lexical decisions depend on context.
For example, the 1lexical analyzer might want to delete
blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but

not in expressions.

One way of handling this situation is to create a global
flag that is examined by the lexical analyzer, and set by
actions. For example, suppose a program consists of 0 or
more declarations, followed by’ 0 or more statements.

Consider:

4-69

XENIX Software Development

%{
int dflag;
%}
... oOther declarations ...

L3

prog:decls stats

’

decls:/* empty */
{aflag = 1;
|decls declaration

’

stats:/* empty */
dflag = 0;
stats statement

.
’

... other rules ...

The flag dflag is now 0 when reading statements, and 1 when
reading declarations, exceptforthefirsttokenin This token
must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun.
In many cases, this single token exception does not affect

the lexical scan.

This kind of ““backdoor'' approach can be elaborated to a
noxious degree. Nevertheless, it represents a way of doing
some things that are difficult, if not impossible, to do
otherwise.

Reserved Words Some programming languages permit the user:
to use words 1like ““if'', which are normally reserved, as
label or variable names, provided that such use does not
conflict with the 1legal wuse of these names in the
programming language. This is extremely hard to do in the
framework of Yacc; it is difficult to pass information to
the lexical analyzer telling it ““this instance of “if' is a
keyword, and that instance is a variable''. The user can
make a stab at it, using the mechanism described in the last
subsection, but it is difficult.

A number of ways of making this easier are under advisement.
Until then, it is better that the keywords be reserved; that
is, be forbidden for wuse as variable names. There are
powerful stylistic reasons for preferring this, anyway.

4-70

XENIX Software Development

4.3.10 Advanced Topics

This section discusses a number of advanced features of
Yacc.

Simulating Error and Accept in Actions The parsing actions
of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to
return the value 0; YYERROR causes the parser to behave as
if the current input symbol had been a syntax error; yyerror
is called, and error recovery takes place. These mechanisms
can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

Accessing Values in Enclosing Rules. An action may refer to
values returned by actions to the left of the current rule.
The mechanism is simply the same as with otdinary actions, a
dollar sign followed by a digit, but in this case the digit
may be 0 or negative. Consider

sent:adj noun verb adj noun
look at the sentence . . .

’

adj:THE{S
YOUNG{$$

$ = THE; }
$$ = YOUNG; |}

.
3
’

noun DOG
= DOG; |}
ICRONE
if($0 == YOUNG) {

rintf("what?2\n");

;$ CRONE;

° 3

In the action following the word CRONE, a check is made that
the preceding token shifted was not YOUNG. Obviously, this
is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at
times this mechanism will save a great deal of trouble,
especially when a few combinations are to be excluded from
an otherwise regular structure.

XENIX Software Development

Support for Arbitrary Value Types By default, the values
returned by actions and the lexical analyzer are integers.
Yacc can also support values of other types, including
structures. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting
parser will be strictly type checked. The Yacc value stack
(see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and
associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through
a $$ or $n construction, Yacc will automatically insert the
appropriate union name, so that no unwanted conversions will
take place. 1In addition, type checking commands such as
Lint5 will be far more silent.

There are three mechanisms used to provide for this typing.
First, there 1is a way of defining the union; this must be -
done by the user since other programs, notably the 1lexical
analyzer, must know about the union member names. Second,
there is a way of associating a wunion member name with
tokens and nonterminals. Finally, there is a mechanism for
describing the type of those few values where Yacc can not
easily determine the type.

To declare the union, the user includes in the declaration
section:

sunion {
body of union ...

This declares the Yacc value stack, and the external
variables yylval and yyval, to have type equal to this
union. If Yacc was invoked with the -d option, the union
declaration is copied onto the E.tab.g file. Alternatively,
the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union.
Thus, the header file might also have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included 1in the declarations
section, by use of %{ and %}.

Once YYSTYPE is defined, the wunion member names must be
associated with the various terminal and nonterminal names.
The construction

4-72

XENIX Software Development

< name >

is used to indicate a union member name. If this follows
one of the keywords %token, %left, sright, and $nonassoc,
the union member name is associated with the tokens listed.
Thus, saying

tleft <optype> '+' '-!

will cause any reference to values returned by these two
tokens to be tagged with the union member name optype.
Another keyword, $type, is used similarly to associate union
member names with nonterminals. Thus, one might say

ttype <nodetype> expr stat

There remain a couple of cases where these mechanisms are
insufficient. If there 1is an action within a rule, the
value returned by this action has no a priori type.
Similarly, reference to 1left context values (such as $0 -
see the previous subsection) leaves Yacc with no easy way
of knowing the type. 1In this case, a type can be imposed on
the reference by inserting a union member name, between <
and >, immediately after the first $. An example of this
usage is

rulezaaa { S$<intval>$ = 3; |} bbb
{fun($<intval>2, $<other>0); }

.
’

This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in a later section. The
facilities in this subsection are not triggered until they
are used: in particular, the use of $type will turn on these
mechanisms. When they are used, there is a fairly strict
level of checking. For example, use of $n or $$ to refer to
something with no defined type 1is diagnosed. If these
facilities are not triggered, the Yacc value stack is used
to hold int's, as was true historically.

XENIX Software Development

4.3.11 A Simple Example

This example gives the complete Yacc specification for a
small desk calculator: the desk calculator has 26 registers,
labeled ““a'' through ““z'!', and accepts arithmetic
expressions made up of the operators +, -, *, /, % (mod
operator), & (bitwise and), l (bitwise or), and assignment.
If an expression at the top level is an assignment, the
value is not printed; otherwise it is. As in C, an integer
that begins with 0 (zero) is assumed to be octal; otherwise,
it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator
does a reasonable job of showing how precedences and
ambiguities are used, and demonstrating simple error
recovery. The major oversimplifications are that the
lexical analysis phase is much simpler than for most
applications, and the output is produced immediately, line
by line. Note the way that decimal and octal integers are
read in by the grammar rules; This job is probably better
done by the lexical analyzer. '

% {
¢ include <stdio.h>
include <ctype.h>

int regs([26];
int Dbase;

%}
gstart list

$token DIGIT LETTER

gleft '|°
gleft ‘&'
$left '4+' '
g$left Tt l/l 1!
$left UMINUS /* precedence for unary minus */
2% /* beginning of rules section */
list /* empty */

list stat '\n'

list error '\n'

yyerrok;

stat : expr

XENIX Software Development

{ printf("sd\n", $1); }
| LETTER '=' expr

regs[$l] = $3; }
expr : ‘(' expr ")°'
{ ss = s2; }
| expr '+' expr
{ $$ = $1 + $3; |}
| expr '-' expr
{ $$ = $1 - $3; |}
| expr '*' expr
{ $$ = $1 * §3; |}
| expr '/' expr
{ s = s1 / s3; }
| expr '$' expr
{ $$ = $1 % $3; |}
| expr '&' expr
{ $$ = $1 & $3; |}
| expr '|' expr
{ $$ = S1 | $3; |}
| '-' expr $prec UMINUS
{ $$ = - s$2; }
| LETTER
$$ = regs[sl]; |}
I number
number : DIGIT
[$$ = $1; base = ($1==0) ? 8 : 10; }
| number DIGIT
$$ = base * $1 + $2; }
3 /* start of programs */
yylex() { /* lexical analysis routine */
/* returns LETTER for a lower case letter, */
/* yylval = 0 through 25 */
/* return DIGIT for a digit, */
/* yylval = 0 through 9 */
/* all other characters */
/* are returned immediately */
int ¢;
while((c=getchar()) == ' ') {/* skip blanks */ }

/* ¢ 1is now nonblank */

if(islower(c)) |

4-175

XENIX Software Development

yylval = ¢ - ‘a’';
return (LETTER);

if(isdigit(<)) {
yylval = ¢ - '0'
return(DIGIT);

return(¢);

4-76

XENIX Software Development

4.3.12 Yacc Input Syntax

This section has a description of the Yacc input syntax, as
a Yacc specification. Context dependencies, etc., are not
considered. Ironically, the Yacc input specification
language 1is most naturally specified as an LR(2) grammar;
the sticky part comes when an identifier is seen in a rule,
immediately following an action. If this identifier is
followed by a colon, it is the start of the next rule;
otherwise it 1is a continuation of the current rule, which
just happens to have an action embedded in it. As
implemented, the lexical analyzer looks ahead after seeing
an identifier, and decide whether the next token (skipping
blanks, newlines, comments, etc.) 1is a colon. 1If so, it
returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS, but never as part of C_IDENTIFIERs.

/* grammar for the input to Yacc */

/* basic entities */

$token IDENTIFIER /* includes identifiers and literals */
$token C_IDENTIFIER /* identifier followed by colon
$token NUMBER /* [0-9]+ */

/* reserved words: $type => TYPE, %left => LEFT, etc.
gtoken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
$token MARK /* the %% mark */
$token LCURL /* the %I mark */
$token RCURL /* the % mark */

/* ascii character literals stand for themselves */

gstart spec

%%

spec : defs MARK rules tail

tail MARK { Eat up the rest of the file 1
| /* empty: the second MARK is optional */

defs /* empty */

defs def

~e —— o4

4-77

def

rword

tag

nlist

nmno

rules

rule

rbody

act

prec

-e

-

/*

~s — oo

~e

€ —————— g

~e o0

NG e ——— g o

XENIX Software Development

START IDENTIFIER

UNION Copy union definition to output }
LCURL Copy C code to output file } RCURL

ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag 1is optional */
'<' IDENTIFIER '>!

nmno
nlist nmno
nlist ',' nmno

IDENTIFIER /* Literal 1illegal with g%type */
IDENTIFIER NUMBER /* 1Illegal with S%type */

rules section */

C_IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
'T* rbody prec

/* empty */
rbody IDENTIFIER
rbody act

'{ { copy action, translate $$, etc. } o}

/* empty */

PREC IDENTIFIER

PREC IDENTIFIER act
prec ';'

XENIX Software Development

4.3.13 An Advanced Example

This section gives an example of a grammar using some of the
advanced features discussed in earlier sections. The desk
calculator example is modified to provide a desk calculator
that does floating point interval arithmetic. The
calculator understands floating point constants, the
arithmetic operations +, -, *, /, unary -, and =
(assignment) , and has 26 floating point variables, ““a''
through “~%z'', Moreover, it also understands intervals,

written

(x ., v)

where x is less than or equal to y. There are 26 interval
valued variables ““A'' through ““2'' that may also be used.
Assignments return no value, and print nothing, while
expressions print the (floating or interval) value.

This example explores ‘a number of interesting features of
Yacc and C. Intervals are represented by a structure,
consisting of the left and right endpoint values, stored as
double's. This structure is given a type name, INTERVAL, by
using typedef. The Yacc value stack can also contain
floating point scalars, and integers (used to index into the
arrays holding the variable values). Notice that this
entire strategy depends strongly on being able to assign
structures and unions in C. 1In fact, many of the actions
call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions: division by an interval containing 0, and an
interval presented in the wrong order. 1In effect, the error
recovery mechanism of Yacc is used to throw away the rest of
the offending 1line.

In addition to the mixing of types on the value stack, this
grammar also demonstrates an interesting use of syntax to
keep track of the type (e.g. scalar or interval) of
intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands
an interval value. This causes a large number of conflicts
when the grammar is run through Yacc: 18 Shift/Reduce and 26
Reduce/Reduce. The problem .can be seen by looking at the
two input lines: '

2.5 + (3.5 - 4.)

and

XENIX Software Development

2.5 + (3.5, 4.)

Notice that the 2.5 is to be, used in an interval valued
expression in the second example, but this fact is not known
until the *%,'' is read; by this time, 2.5 is finished, and
the parser cannot go back and change its mind. More
generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an
interval. This problem is evaded by having two rules for
each binary interval valued operator: one when the left
operand is a scalar, and one when the 1left operand is an
interval. In the second case, the right operand must be an
interval, so the conversion will be applied automatically.
Despite this evasion, there are still many cases where the
conversion may be applied or not, 1leading to the above
conflicts. They are resolved by 1listing the rules that
yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping
scalar valued expressions scalar valued until they are
forced to become intervals.

This way of handling multiple types is very instructive, but

not very general. If there were many kinds of expression
types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more

dramatically. Thus, while this example is instructive, it
is better practice in a more normal programming language
environment to keep the type information as part of the
value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only
unusual feature is the treatment of floating point
constants. The C library routine atof is used to do the
actual conversion from a character string to a double
precision value. If the lexical analyzer detects an error,
it responds by returning a token that is illegal in the
grammar, provoking a syntax error in the parser, and thence
error recovery.

XENIX Software Development

%{

1include <stdio.h>
1include <ctype.h>

typedef struct interval {
double 1lo, hi;
} INTERVAL;
INTERVAL vmul(), vdiv();
double atof():;

double dreg[26];
INTERVAL vreg[26];

%}
gstart lines
funion |

int ival;
double dval;
INTERVAL vwvval;

$token <ival> DREG VREG/* indices into dreg, vreg arrays
$token <dval> CONST/* floating point constant */
ttype <dval> dexp/* expression */
ttype <vval> vexp/* interval expression */
/* precedence information about the operators */

gleft'+' 1
gleft'*' '/°
$leftUMINUS /* precedence for unary minus */

L]

lines:/* empty */
|lines line

’

line:dexp '\n'
printf("%15.8f\n", $1); }
vexp '\n’
printf("(%15.8f , %15.8f)\n", $l.lo, $1.hi); }

*/

XENIX Software Development

DREG '=' dexp '\n'
dreg[$1l] = §3;

VREG '=' vexp '\n’
vreg[$l] = $3;
error '\n’

yyerrok;

MO g eyt e A

dexp:CONST
!DREG
$$ = dreg[$l); |}

dexp '+' dexp

$$ = $1 + $3; |}
dexp '-' dexp

$$ = s$1 - $3; |

dexp '*' dexp :

s = $1 * $3; }
dexp '/' dexp

[ss = $1 / $3; }

'-' dexpt%prec_ UMINUS
$$§ = - $2;

l(! dexp iﬁl

$$ = $2;

vexp:dexp

[$$.hi = S.1lo = $1; }
(] (| dexp v’v dexp l)l
$$.1lo = $2; \
$$.hi = $4;

if($$.1o > $$.hi)
printf("interval out of order\n");
YYERROR;

JVREG
$$ = vregl[$1l); }
vexp '+' vexp
&$$.hi = S81.hi + $3.hi;
$$.1o0 = S$l.lo + §3.lo;
{dexp '+' vexp

$$.hi = $1 + S$3.hi;
$$.lo = S$1 + $3.lo;
&vexp '-' vexp

$$.hi = $l.hi =~ $3.lo;
$$.1o0 = $l.lo - $3.hi;
&dexp '-' vexp

$$.hi = 81 - $3.1lo;
$s.lo = $1 - §3.hi;

|vexp '*' vexp

XENIX Software Development

{$$ = wvmul($l.lo, $1.hi, $3); |}
ldexp '*' yexp
$$ = wvmul($1, $1, $3); |}
lvexp '/' vexp
if(dcheck($3)) YYERROR;
$$ = wvdiv($l.lo, $1l.hi, $3); }
ldexp '/' vexp
if(dcheck(S$3)) YYERROR:
$$ = vaiv($1, $1, $3); |
l'—' vexptprec UMINUS
$$.hi = =-$2.lo0; $$.1o0 = -$2.hi; }
‘l(' vexp 'il
$§$ = $2;
£3
define BSZ 50 /* buffer size for £fp numbers
/* 1lexical analysis */
yylex () {
register c;
while((c=getchar()) == ' '){ /* skip over
if(isupper(c)){
yylval.ival = ¢ - 'A';
return(VREG);
if(islower(c)){
yylval.ival = ¢ - 'a';
return(DREG);
if(isdigit(c) || e=='."){
/* gobble up digits, points, exponents */
char buf[BSZ+1l], *cp = buf;
int dot = 0, exp = 0;
for(; (cp-buf)<BSZ ; ++cp,c=getchar()){
*cp = C;
if(1isdigit(¢)) continue;
if(¢ == '.')
if(dot++ exp) return('.'); /* will

continue;

if(c == ‘e'

) {

4-83

*/

blanks

cause

*/)

syntax

XENIX Software Development

if(exp++) return('e'); /* will cause syntax error */
continue;

/* end of number */

break;

*cp = '\0';

if((cp-buf) >= BSZ) printf("constant too 1long: truncated\n"
else ungetc(¢, stdin); /* push back 1last char read */
yylval.dval = atof(buf);

return(CONST)

return{(¢):

INTERVAL hilo(a, b, ¢, d) double a, b, ¢, d; |{
/* returns the smallest interval containing a, b, ¢, and 4 */
/* used by *, / routines */
INTERVAL v;

if(a>b) { wv.hi = a; v.lo = b; }
else { v.hi = b; v.lo = a; }
if(e>da) |
if(c>v.hi) wv.hi = ¢;
if(d<v.lo) wv.lo = 4d;
else
if(dyv.hi) wv.hi = 4d;
%f(c<v.lo) wv.lo = c;
return(v);
INTERVAL vmul(a, b, v) double a, b; INTERVAL v; |

return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= 0.){
printf("divisor interval contains O0.\n");
return(1);

return{ 0);

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.1l0o));

XENIX Software Development

4.3.14 014d Features Supported but not Encouraged

This section mentions synonyms and features which are
supported for historical continuity, but, for various:
reasons, are not encouraged.

SSme
L4

1. Literals may also be delimited by double quotes

2. Literals may be more than one character long. If all

the characters are alphabetic, numeric, or _, the type
number of the literal is defined, just as if the
literal did not have the quotes around it. Otherwise,
it is difficult to find the value for such 1literals.
The use of multi-character 1literals 1is 1likely to
mislead those unfamiliar with Yacc, since it suggests
that Yacc is doing a job that must be actually done by
the lexical analyzer.

3. Most places where % is legal, backslash ““\'' may be
used. In particular, \\ is the same as %%, \left the
same as $left, etc.

4. There are a number of other synonyms:

$< is the same as $left

$> is the same as %right

$binary and %2 are the same as %nonassoc
$0 and %term are the same as %$token

$= is the same as %prec

5. Actions may also have the form

={ ...}

and the curly braces can be dropped if the action is a
single C statement.

6. C code between %{ and %} used to be permitted at the
head of the rules section, as well as 1in the
declaration section.

3-85

XENIX Software Development

4.4 DC: An Interactive Desk Calculator

DC is an interactive desk calculator program designed to
perform arbitrary-precision integer arithmetic. It has
provision for manipulating scaled fixed-point numbers and
for input and output in bases other than decimal. The size
of numbers that can be manipulated is 1limited only by
available core storage. On typical implementations. of
XENIX, the size of numbers that can be handled varies from
several hundred digits on the smallest systems to several
thousand on the largest.

DC works like a stacking calculator using reverse Polish
notation. Ordinarily DC operates on decimal integers, but
one may specify an input base, output base, and a number of
fractional digits to be maintained.

A language called BC has been developed which accepts
programs written in the familiar style of higher-level
programming languages and compiles output which is
interpreted by DC. Some of the commands described below
were designed for the compiler interface and are not easy
for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack.
DC commands work by taking the top number or two off the
stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is
taken from that file until its end, then from the standard
input.

4.4.1 Synopsis

Here we describe the more commonly used DC commands. The
additional commands that are intended to be invoked by
compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and
new-line characters are ignored except within numbers and in
places where a register name is expected.

The following constructions are recognized:

number The value of the number is pushed onto the main
stack. A number is an unbroken string of the
digits 0-9 and the capital letters A-F which are
treated as digits with values 10-15 respectively.
The number may be preceded by an underscore to
input a negative number. Numbers may contain
decimal points.

B<x

XENIX Software Development

A~

The top two values on the stack are added (+),
subtracted (=), multiplied (*), divided (/),
remaindered (%), or exponentiated (7). The two
entries are popped off the stack; the result is
pushed on the stack in their place. The result of
a division 1is an integer truncated toward zero.
See the detailed description below for the
treatment of numbers with decimal points. An
exponent must not have any digits after the
decimal point.

The top of the main stack is popped and stored
into a register named x, where x may be any
character. 1If the s is capitalized, x is treated
as a stack and the value is pushed onto it. Any
character, even blank or new-line, is a wvalid
register name.

The value in register x is pushed onto the stack.
The register x 1is not altered. If the 1 is
capitalized, register x is treated as a stack and
its top value is popped onto the main stack.

All registers start with empty value which is
treated as a zero by the command 1 and is treated
as an error by the command L.

The top value on the stack is duplicated.

The top value on the stack is printed. The top
value remains unchanged. :

All values on the stack and in registers are
printed.

treats the top element of the stack as a character
string, removes it from the stack, and executes it
as a string of DC commands.

puts the bracketed character string onto the top
of the stack. \

exits the program, If executing a string, the
recursion level is popped by two. If q 1is
capitalized, the top value on the stack is popped
and the string execution level is popped by that
value.

=x I<x I1>x I=x

The top two elements of the stack are popped and

4-87

XENIX Software Development

compared. Register X is executed if they obey the
stated relation. Exclamation point is negation.

v replaces the top element on the stack by its
square root. The square root of an integer is
truncated to an integer. For the treatment of
numbers with decimal points, see the detailed
description below.

e

interprets the rest of the 1line as a XENIX

command. Control returns to DC when the XENIX
command terminates.

c All values on the stack are popped; the stack
becomes empty.

i The top value on the stack is popped and used as .
the number radix for further input. If i is

capitalized, the value of the input base is pushed
onto the stack. No mechanism has been provided
for the input of arbitrary numbers in bases less
than 1 or greater than 16.

o The top value on the stack is popped and used as
the number radix for further output. 1If o is
capitalized, the value of the output base is
pushed onto the stack.

k The top of the stack is popped, and that value is
used as a scale factor that influences the number

of decimal places that are maintained during
multiplication, division, and exponentiation. The
scale factor must be greater than or equal to zero
and less than 100. If k is capitalized, the value
of the scale factor is pushed onto the stack.

z The value of the stack level is pushed onto the
stack.

)

A line of input is taken from the input source
(usually the console) and executed.

4.4.2 1Internal Representation of Numbers

Numbers are stored internally using a dynamic storage
allocator. Numbers are kept 1in the form of a string of
digits to the base 100 stored one digit per byte (centennial
digits). The string is stored with the low-order digit at
the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic

4-88

XENIX Software Development

operation on a number, care is taken that all digits are in
the range 0-99 and that the number has no leading zeros.
The number zero is represented by the empty string.

Negative numbers are represented in the 100's complement
notation, which is analogous to two's complement notation
for binary numbers. The high order digit of a negative
number is always -1 and all other digits are in the range
0-99. The digit preceding the high order -1 digit is never
a 99. The representation of -157 is 43,98,-1. We shall
call this the canonical form of a number. The advantage of
this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the
result is formally correct. The result need only be
modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold
numbers twice that large, addition can be carried out and
the handling of carries done later when that is convenient,
as it sometimes is.

An additional byte is stored with each number beyond the
high order digit to indicate the number of assumed decimal
digits after the decimal point. The representation of .00l
is 1,3 where the scale has been italicized to emphasize the
fact that it is not the high order digit. The value of this
extra byte is called the scale factor of the number.

4.4.3 The Allocator

DC uses a dynamic string storage allocator for all of its

internal storage. All reading and writing of numbers
internally is done through the allocator. Associated with
each string in the allocator is a four-word header

containing pointers to the beginning of the string, the end
of the string, the next place to write, and the next place
to read. Communication between the allocator and DC is done
via pointers to these headers.

The allocator initially has one large string on a 1list of
free strings. All headers except the one pointing to this
string are on a list of free headers. Requests for strings
are made by size. The size of the string actually supplied
is the next higher power of 2. When a request for a string
is made, the allocator first checks the free list to see if
there is a string of the desired size. If none 1is found,
the allocator finds the next larger free string and splits
it repeatedly until it has a string of the right size.
Left-over strings are put on the free list. If there are no
larger strings, the allocator tries to coalesce smaller free

4-89

XENIX Software Development

strings into larger ones. Since all strings are the result
of splitting large strings, each string has a neighbor that
is next to it in core and, if free, can be combined with it
to make a string twice as long.

Failing to find a string of the proper 1length after
coalescing, the allocator asks the system for more space.
The amount of space on the system is the only limitation on
the size and number of strings in DC. If at any time in the
process of trying to allocate a string, the allocator runs
out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing,
copying, rewinding, forward-spacing, and backspacing
strings. All string manipulation 1is done using these
routines. ‘

The reading and writing routines increment the read pointer
or write pointer so that the characters of a string are read
or written in succession by a series of read or write calls.
The write pointer 1is interpreted as the end of the
information-containing portion of a string and a call to
read beyond that point returns an end-of-string indication.
An attempt to write beyond the end of a string causes the
allocator to allocate a larger space and then copy the old
string into the larger block.

4.4.4 Internal Arithmetic

All arithmetic operations are done on integers. The
operands (or operand) needed for the operation are popped
from the main stack and their scale factors stripped off.
Zeros are added or digits removed as necessary to get a
properly scaled result from the internal arithmetic routine.
For example, 1if the scale of the operands is different and
decimal alignment is required, as it is for addition, zeros
are appended to the operand with the smaller scale. After
performing the required arithmetic operation, the proper
scale factor is appended to the end of the number before it
is pushed on the stack.

A register called scale plays a part in the results of most
arithmetic operations. scale is the bound on the number of
decimal places retained in arithmetic computations. scale
may be set to the number on the top of the stack truncated
to an integer with the k command. K may be used to push the
value of scale on the stack. scale must be greater than or
equal to 0 and less than 100. The descriptions of the
individual arithmetic operations will include the exact
effect of scale on the computations.

XENIX Software Development

4.4.5 Addition and Subtraction

The scales of the two numbers are compared and trailing
zeros are supplied to the number with the lower scale to
give both numbers the same scale. The number with the
smaller scale 1is multiplied by 10 if the difference of the
scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be
subtracted and proceeding as in addition.

Finally, the addition is performed digit by digit from the
low order end of the number. The carries are propagated in
the usual way. The resulting number is brought into
canonical form, which may require stripping of leading
zeros, or for negative numbers replacing the high-order
configuration 99,-1 by the digit -1. 1In any case, digits
which are not in the range 0-99 must be brought into that
range, propagating any carries or borrows that result.

4.4.6 Multiplication

The scales are removed from the two operands and saved. The
operands are both made positive. Then multiplication is
performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied
by each digit of the second number, beginning with its 1low
order digit. The intermediate products are accumulated into
a partial sum which becomes the final product. The product
is put into the canonical form and its sign is computed from
the signs of the original operands.

The scale of the result is set equal to the sum of the
scales of the two operands. If that scale is larger than
the internal register scale and also larger than both of the
scales of the two operands, then the scale of the result is
set equal to the largest of these three last quantities.

4.4,7 Division

The scales are removed from the two operands. Zeros are
appended or digits removed from the dividend to make the
scale of the result of the integer division equal to the
internal quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The
difference of the 1lengths of the two numbers is computed.
If the divisor 1is longer than the dividend, =zero is

XENIX Software Development

returned. Otherwise the top digit of the divisor is divided
into the top two digits of the dividend. The result is used
as the first (high-order) digit of the quotient. It may
turn out be one unit too low, but if it is, the next trial
quotient will be larger than 99 and this will be adjusted at
the end of the process. The trial digit is multiplied by
the divisor and the result subtracted from the dividend and
the process is repeated to get additional quotient digits
until the remaining dividend is smaller than the divisor.
At the end, the digits of the quotient are put into the
canonical form, with propagation of carry as needed. The
sign is set from the sign of the operands.

4.4.8 Remainder

The division routine is called and division 1is performed
exactly as described. The quantity returned is the remains
of the dividend at the end of the divide process. Since
division truncates toward zero, remainders have the same
sign as the dividend. The scale of the remainder is set to
the maximum of the scale of the dividend and the scale of
the quotient plus the scale of the divisor.

4.4.9 Square Root

The scale is stripped from the operand. Zeros are added if
necessary to make the integer result have a scale that is
the larger of the internal quantity scale and the scale of
the operand. ’

Thé method used to compute sqrt(y) is Newton's method with
The initial guess is found by taking the integer square root
of the top two digits.

4.4.10 Exponentiation

Only exponents with zero scale factor are handled. If the
exponent is zero, then the result is 1. If the exponent is
negative, then it is made positive and the base is divided
into one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base
is repeatedly squared and the result is obtained as a
product of those powers of the base that correspond to the
positions of the one-bits in the binary representation of
the exponent. Enough digits of the result are removed to
make the scale of the result the same as if the indicated
multiplication had been performed. ‘

4-92

XENIX Software Development

4.4.11 Input Conversion and Base

Numbers are converted to the internal representation as they
are read in. The scale stored with a number is simply the
number of fractional digits input. Negative numbers are
indicated by preceding the number with a . The hexadecimal
digits A-F correspond to the numbers 10-15 regardless of
input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates
the resulting number to an integer, and uses it as the input
base for all further input. The input base 1is initialized
to 10 but may, for example be changed to 8 or 16 to do octal
or hexadecimal to decimal conversions. The command I will
push the value of the input base on the stack.

4.4.12 Output Commands

The command p causes the top of the stack to be printed. It
does not remove the top of the stack. All of the stack and
internal registers can be output by typing the command f.
The o command can be used to change the output base. This
command uses the top of the stack, truncated to an integer
as the base for all further output. The output base in
initialized to 10. It will work correctly for any base.
The command O pushes the value of the output base on the
stack.

4.4.13 Output Format and Base

The input and output bases only affect the interpretation of
numbers on input and output; they have no effect on
arithmetic computations. Large numbers are output with 70
characters per 1line; a \ indicates a continued line. All
choices of input and output bases work correctly, although
not all are wuseful. A particularly useful output base is
100000, which has the effect of grouping digits in fives.
Bases of 8 and 16 can be used for dec1ma1 octal or decimal-
hexadecimal conversions.

4.4.14 Internal Registers

Numbers or strings may be stored in internal registers or
loaded on the stack from registers with the commands s and
1. The command sx pops the top of the stack and stores the
result in register x. X can be any character. 1x puts the
contents of register x on the top of the stack. The 1
command has no effect on the contents of reglster X. The s
command, however, is destructive.

4-93

XENIX Software Development

4.4.15 Stack Commands

The command ¢ clears the stack. The command d pushes a
duplicate of the number on the top of the stack on the
stack. The command z pushes the stack size on the stack.
The command X replaces the number on the top of the stack
with its scale factor. The command Z replaces the top of
the stack with its length.

4.4.16 Subroutine Definitions and Calls
Enclosing a string in [] pushes the ascii string on the

stack. The g command quits or in executing a string, pops
the recursion levels by two. ‘

4.4.17 1Internal Registers - Programming DC

The load and store commands together with [] to store
strings, x to execute and the testing commands “<', *>',
*=', Y1<', “1>', “1=' can be used to program DC. The x
command assumes the top of the stack is an string of DC
commands and executes it. The testing commands compare the
top two elements on the stack and if the relation holds,
execute the register that follows the relation. For
example, to print the numbers 0-9,

[lipl+ si 1il0>alsa
0si lax

4.4.18 Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by
people. They involve push-down registers and arrays. In
addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register.
These registers are operated on by the commands S and L. Sx
pushes the top value of the main stack onto the stack for
the register x. Lx pops the stack for register x and puts
the result on the main stack. The commands s and 1 also
work on registers but not as push-down stacks. 1 doesn't
effect the top of the register stack, and s destroys what
was there before. -

The commands to work on arrays are : and ;. tx pops the
stack and uses this value as an index into the array x. The
next element on the stack is stored at this index in x. An
index must be greater than or equal to 0 and less than 2048.
;X is the command to load the main stack from the array x.

4-94

XENIX Software Development

The value on the top of the stack is the index into the
array x of the value to be loaded.

4.4.19 Miscellaneous Commands

The command ! interprets the rest of the 1line as a XENIX
command and passes it to XENIX to execute. One other
compiler command is Q. This command uses the top of the
stack as the number of levels of recursion to skip.

4-95

XENIX Software Development

4.5 BC: A Desk-Calculator Language

BC 1is a language and a compiler for doing arbitrary
precision arithmetic. The output of the compiler is
interpreted and executed by a collection of routines which
can input, output, and do arithmetic on indefinitely large
integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage
allocator. Overflow does not occur until all available core
storage is exhausted.

The language has a complete control structure as well as
immediate-mode operation. Functions can be defined and saved
for later execution.

Two 500-digit numbers can be multiplied to give a 1000-digit
result in about ten seconds.

A small collection of library functions is also available,
including sin, cos, arctan, 1log, exponential, and Bessel

functions of integer order.

Some of the uses of this compiler are
® To perform computation with large integers,

@ To perform computations accurate to many decimal
places,

& To convert numbers from one base to another base.

The compiler was written to make conveniently available a
collection of routines (called DC [5]) which are capable of
doing arithmetic on integers of arbitrary size. The
compiler is by no means intended to provide a complete
programming language. It is a minimal language facility.

There is a scaling provision that permits the use of decimal
point notation. Provision is made for input and output in
bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal

8.

The actual limit on the number of digits that can be handled
depends on the amount of storage available on the machine.
Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of XENIX .

The syntax of BC has been deliberately selected to agree
substantially with the C 1language [2]. Those who are

XENIX Software Development

familiar with C will find few surprises in this language.

4.5.1 Simple Computations with Integers

The simplest kind of statement is an arithmetic expression
on a line by itself. For instance, if you type in the line:

142857 + 285714
the program responds immediately with the line
428571

The operators -, *, /, %, and ~ <can also be used; they
indicate subtraction, multiplication, division,
remaindering, and exponentiation, respectively. Division of
integers produces an integer result truncated toward zero.
Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to
indicate that it is to be negated (the “unary' minus sign).
The expression

7+-3
is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with
parent