
1

-WARNING -

Preface

MacApp 2.0 ViewEdit User's Guide

ViewEdit
User's Guide

preliminary draft 1

This is the first alpha release of ViewEdit. It is untested and not yet beta quality. It should be
used with extreme caution: it may crash your system or even erase fIles from your hard disk.
Save your work often and don't use ViewEdit when a system crash would cause you to lose data.

Welcome to the ViewEdit User's Guide, and to the power of ViewEdit. ViewEdit is a MacApp utility program that
allows you to create view hierarchies in a what-you-see-is-what-you-get editing environment, rather than in a compiled
resource file.

ViewEdit gives you as much view-editing power as Rez but provides Commando-like dialogs for entering values into
each 'view' resource field. This relieves you of having to remember which fields and values are associated with which
'view' types.

ViewEdit also allows you to draw, resize, and move your views using the standard Macintosh interface. It even creates
and rearranges your view hierarchies as you go!

Before you read this document, you should understand these concepts:
• View hierarchies. These are introduced in the "Architecture" section of Chapter 4 of the MacApp 2.x Manual

(Interim Version).
- View classes. These are described in the MacApp® 2.0B5 Display Architecture Release Notes.
• View resources. These are explained in the "Creating View Templates" recipe in Chapter 7, "The

CookBook", in the MacApp 2.x Manual (Interim Version).

This guide is divided into two parts: a step-by-step tutorial and a command reference. ViewEdit is simple enough to use
that you may find you won't need to refer to this manual frequently. However, you should read through this manual at
least once, for there are many shortcuts and features hidden in ViewEdit, as well as a few eccentricities.

© 1988 Apple Computer August 31, 1988

2

MacApp 2.0 ViewEdil User's Guide

A first look at ViewEdit

This section shows you how to use ViewEdit to edit the view resources in the DemoDialogs sample application.
Before you begin this tutorial, you should build the DemoDialogs sample. If you are new to MacApp and the MPW
environment, Chapter 6, of the MacApp 2.x Manual (Interim Version), "How to Install and Use MacApp", will show
you how to build the sample applications. .

After building DemoDialogs, open the ViewEd it application by double-clicking on its icon.

The resource file window

The fIrst thing that you will see after starting ViewEdit is the empty "Untitled-I" window. Close this window and
choose the Open command from the File menu. Then select the DemoDialogs application from the Standard File dialog.

The window that appears is reminiscent of the resource file window in ResEdit. There is an icon for each type of
resource in DemoDialogs. The icon for 'view' resources is always in the upper-left hand comer (and if you have a color
screen, you will see it is also the only colored icon).

Here is the resource file window from DemoDialogs:

DemoDialo

~
L">-'

'ALRT' 'CODE' 'DITL' 'ICON'

'MBAR' 'MENU' 'PICT' 'SICN' 'SIZE'

[IJ 0 ~~IJ [7J [7J -"-_." LS~
~-'

'STR#' 'WIND' 'c;cn' 'errs' 'mem!'

Fig 1.1 DemoDlalogs resource file window

Because there is a view icon present, you can tell DemoDialogs already contains view resources. If no view resources
existed, you could create an initial view resource at this point by choosing the Create Resource command from the Edit
menu.

© 1988 Apple Computer August 31, 1988

(

3

MacApp 2.0 ViewEdit User's Guide

The resource type window

If you double-click on any of the resource type icons in the resource file window. you will open a window that contains
a complete list of resources of that type. Alternatively. you can select the resource type with the cursor keys and press
the Return or Enter key.

For example, double-cliCking on the 'ICON' resource icon will open this window:

'I CON's from DemoDialo

~ L:.-?).-J
10061

Fig 1.2 'ICON' resource type wIndow

ViewEdit will display the ID's of a variety of resources, but the only resources it allows you to examine and edit are
views. If you try to "open" any of these 'ICON' resources, as you might in a complete resource editor, nothing will
happen.

@1988 Apple Computer August 31, 1988

4

MacApp 2.0 ViewEdit User's Guide

On the other hand, when you open the 'view' resource type window, which looks like this:

'uiew's from DemoDialo

1002 1003 1004 1005

1006 1007 1008 1009 1010

1011 1012

Fig 1.3 'vIew' resource type window

you have the ability to open and edit each of these resources. At this point you may also want to create a new 'view'
resource, by choosing the Create Resource command from the Edit menu.

Double-clicking on any of the 'view' resource icons will result in opening a view-editing window. (Again, you
can alternatively select a 'view' resource icon with the cursor keys, and then press the Return or Enter key.)

© 1988 Apple Computer August 31, 1988

5

MacApp 2.0 ViewEdit User's Guide

The view-editing window

Simply put, the view-editing window allows you to edit your view resources. Let's look at a sample view-editing
window. Double-click on the icon representing 'view' resource ID 1008, which will open this view-editing Window:

'uiew' 10 1008 from 'OemoDialogs'

11+ Vert: 16

Horz: 80

IZI Top view in TWindow

(TWindow parameters...)

.~ -.. j

.. I.~.~ .. ~ ... 9..t~.1.9..g ... 9..~.~g.!}.~.!.~~.~.~.~ ... ~.~.~.~.~.n.g ... 1·
... j'
: l.? .. ~.~.:: :: :: ~ ... :: :: :: :: .. ! : !:

i
:
io
i
:"
i r
~ .
i

r r
r r r
i"
i .·· .. ·...,····, .. ····v····· . ..,····.·...,······", ·..,.·,· ·..",,·.· ·· .. 'W· .. • .. v .. · ... v .. · .. ·""····· . ..,.·.···""·· .. ·,,,,,,, :.

. . .

'edt l' IQL

Fig 1.4 'vIew' ID 1008 view-editing window

@1988 Apple Computer August 31, 1988

.~

6

MacApp 2.0 ViewEdit User's Guide

To refresh your memory, this view resource corresponds to the "Tabbing Test" dialog in DemoDialogs, which looks
like this:

Test

This di a1 og demonstrates tabbi ng

Itwo 1

Cluster One Cluster Two -----..,

I three 1 f_iu_e _____ ---'

Ifour ~ls_i_H ________________ ~

Rg 1.5 'Tabbing TestN dialog from DemoDlalogs

As you can see, the view-editing window closely resembles the actual dialog from the application. However there are a
few important differences.

First of all, the view-editing window has a palette attached to it. This palette consists of three tools, a vertical and
horizontal location indicator, a check box, and a button. The elements of this palette, called the control palette, are
described in the following sections.

Under the control palette is the actual representation of the view resource. Each view in the view resource hierarchy is
represented here. Each visible view is surrounded by a dotted line, and certain view types have other visual clues. For
example, the static and editable text views in this view-editing window are filled with their initial text. Similarly. the
cluster views each are drawn with their label and border. This allows the view-editing window to duplicate the actual
dialog as closely as possible. However some views, like dialog views, have no visual representation in the final
application. Views of this sort are labeled by their type name in their upper left hand comer. In the current
view-editing window, you can see the label "TDialogView" (which is partially hidden) in the upper left hand comer of
the entire view-editing window. As you see more and different types of views, you'll see exactly how much of a visual
clue is associated with each type. You might be surprised how faith fill some of these visual cues are.

© 1988 Apple Computer August 31, 1988

(

7

MacApp 2.0 ViewEdit User's Guide

You might be wondering why the "TDialog View" label is partially hidden. This is due to the implementation of the
view hierarchy. In the view-editing window, superviews are placed under their subviews. In this example. the
TDialogView view is the superview of the static text view that contains the text "This dialog demonstrates tabbing."
Therefore. everything associated with the TDialogView view (of which the ''TDialogView''label is the most
conspicuous part) is drawn below the uneditable text view. The same holds true for the fIrst two editable text views and
the two clusters. Each cluster is the superview of two more editable text views; so once again. the subviews are drawn
on top of their superview. .

Another aspect of the view-editing window you might notice is that it is covered with dots. These dots represent the
current grid of the window. This grid. like the grid in MacDmw, constrains the drawing and moving of views.

As you move the pointer around the view-editing window, several items are updated. In the bottom-left-hand corner a
message box which displays the identifier of the view the pointer is currently over. In Figure 1.4, the identifier is
'edtI'. Also as you move the pointer around, you will see its current coordinates appear in the Vert and Horz fields in
the control palette. The coordinate values displayed in these fields are always relative to the local coordinate system of
whichever view the pointer is currently over. For example, in Figure 1.4, the pointer is positioned over the editable
text view containing the text "one." The vertical and horizontal coordinates shown are 16 and 80. Since the local
coordinate system of this text box starts at (0, 0) in its upper left hand corner, this means that the pointer is currently
16 pixels down and 80 pixels over from the upper left hand corner of this box.

-NOTE- Actually, the coordinates shown are "snapped" to the current grid. In other words, they are rounded to
the nearest value allowed by the current grid resolution.

Another important point to note is that the grid is relative to the origin of every view. If some subview is not currently
aligned to it'> superview's grid, then its grid will be slightly shifted from its superview's grid. This is the case with
every subview in Figure 1.4.

The selecting tool

The fIrst of the three tools in the control palette is the selecting tool, which is the standard "pointer" cursor. It is the
default tool when you open a view-editing window. You can choose this tool either by clicking on its icon in the
control palette or by choosing the Select Views command in the Mode menu. With this tool you can select, resize, and
open a view.

Selecting a view. as you might imagine, requires a single click anywhere in that particular view. Of course, if the view
is covered by other views, you will have to find some uncovered piece to be able to select it-otherwise you'd have no
place to click.

You can execute editing commands on the selected view, including Cut. Copy, and Clear from the Edit menu. You can
also Delete by pressing the Delete key.

© 1988 Apple Computer August 31, 1988

MacApp 2.0 ViewEdit User's Guide

A selected view looks like this:

'uiew' 10 1008 from 'OemoDialo s·
Vert: 16

Horz: 80

181 Top view in TWindow

(TWindow parameters...) +

_ ... "
·ltwo !.
l : : : : : : : :1

'edt l'

Fig 1.6 A selected editable text view

8 @1988 Apple Computer August 31, 1988

(

9

MacApp 2.0 ViewEdit User's Guide

Notice that four handles have appeared-one in each comer of the view. These handles allow you to resize the view,
by clicking and dragging. For example. if you drag the lower-right handle to the right, you can resize the
view accordingly:

'uiew' 10 1008 from 'DemoDialo
Vert: 16

Horz: 208

181 Top vie'YI in TWindo'YI

(TWindo'YI parameters ...

: W_oQe_. _______________ ' {
·rt·;·~·· .. ···1·
t : : : .. II ... : : : : : : •• i

'edt l'

Fig 1.7 Resizing a view

If you're performing each step of this tutorial in ViewEdit, you probably noticed the effect of the grid. Although the
editable text view was originally not aligned with its superview's grid, once you grabbed that handle and started to move
it, it immediately snapped to the nearest grid point (in the superview's grid). Unless you recalibrate or tum off the grid,
that comer will stay aligned to grid points for each subsequent move or resizing.

@1988 Apple Computer August 31, 1988

10

MacApp 2.0 ViewEdit User's Guide

Notice only that corner handle is now completely aligned to the superview's grid. To align the others, you need to
select and move them. For example, you can now align the upper right handle by grabbing and dragging it:

'uiew' 10 1008 from 'DemoDialo s'

Vert: 0 ~ Top view in TWindow

Horz: 208 (TWindow parameters ...) +

·rt';·~·····"····""···"·······"···········"""""""""·l·

t : •...••. : : : : : : : :.i ~ . .. "

: ...)
i three i
~ : : : : ,: : :' : :.}
.. ,
:)

ifour 1
l : : : : : : : u: : .. ~

T· · .. ffu·s'te·r··Tw·o .. · .. ··· .. · .. · · · .. ········· .. ····"1

.1 : : : : : : : : : ... ,. l

... ~ :. . i fi II e j' ! :~.: • t : •••••••• : .••••• : •••••••• : : ••••••• : : : ••••••• : •• i ..

.................................. Q e"." "c .. e ,

": ·~SiH !,,»
~ ~ : : •••..••. : : e: ... o e ,: " ... 0 ; i
1. .. J

'edt l'

Rg 1.8 More view resizing

Of course, if you only wish to align a view to its superview, you don't have to move each handle. You can simply
choose the Snap to Grid command in the Arrange menu.

,

At this point, you may not like the new position of the editable text view. You can always revert to the last saved
version of the entire file (which would be acceptable, since this is the only change so far), or you can resize the view
back to its original size. To do this, you need to manipulate the grid.

There are a number of ways that you can manipulate the grid. You can make the grid invisible by selecting the Show
Grid command in the Arrange menu (which is a toggle command) but this won't turn the grid off. To do that, you
must choose the Grid Values command from the Arrange menu, unhighlight the Use Horizontal Grid and the Use

@1988 Apple Computer August 31, 1988

(

1 1

MacApp 2.0 ViewEdit User's Guide

Vertical Grid check boxes in the Grid Values dialog box. Notice you can also change the grid resolution in this dialog
box. (This simultaneously changes the grid in every view of the view editing window.)

When a view is selected, you can automatically resize it to align to the current grid of its superview by choosing the
Snap to Grid command in the Arrange menu. You can also rearrange the order of subviews in a superview. (Remember
that the order of subviews affects how they appear on the screen. A subview "in front" of another subview will cover
the other subview if their boundary rectangles intersect) The Selid Back and Bring Forward commands in the Arrange
menu allow you to reposition the selected view.

The sketching tool

The sketching tool (a crosshair pointer) allows you to create new objects by sketching-clicking and dragging to
define the boundary rectangle of the new view, much as you would draw a rectangle in MacPaint The view that is
created is added to the view hierarchy as a subview of whichever view the initial click occurred in. The type of view that
is created is whichever view type is currently selected in the Views menu.

For example, if you select the TPopup view type from the Views menu and sketch the following rectangle:

~ luiewl ID 1008 from IDemoDi81ogsi

II Vert: 16 [8J Top vie'W' in TWindo'W'

Horz: 176 (TWindo'W' parameters ...) +
.~ ... _._ _ _ ... _m_ _ i
....................................... _ 1.b.l.~ ... dj.§.1.Q.o ... d.~.!T.!.Q.D..~.!.r.:§!.~~ ... t§.b..b.i.O'Qi.

.............................. _ .. ,
'Ione !.
l : : : : : : : : : .. f ,
·Itwo ! ..
l : _ .. : : : : : : : : .. ! . l·=·-c"fu·s·t"e·r=··o·rl"e .. ···1 .r;=··-c"fu·s·t"er=·"Tw·o· .. ·· .. ·······································1

r·······_····· .. ···· .. ········· .. ·· .. · .. ·· .. ··· .. ····· ····· '>

! tflre.e.l , -.. .
. rf·i·v·~·:·······:···-·:···-:· .. ····~······: .. ·····:····"J .
. , .. _ : .

r·················· .. ·············· .. ···················
IfQur 1 , ...)

.. ,
·1 SiN ! .
t · : : : : ...•... :•.. : : : •. !

!
I-
I
r
I·

i
i'
i
j'
!
i'
i !,
i r
f·
i r r
:
I'
i
!.
i

••••••••••••••••••••••••••• .., ••••••••••••• .., •••••• .., •••••• "" • ••• v •••••• v •••••• .., •••••• ~ ••••••••••••• .., v, v •••• - ... : ..

Fig 1.9 Sketching a TPopup view

@1988 Apple Computer August 31, 1988

Br

12

MacApp 2.0 ViewEdit User's Guide

A '!Popup view is created as a subview of the TDialogView view. Notice that this sketching. as you might expect, is
constrained to the current grid.

There are three ways to select the sketching tool. Like the selecting tool. you can select the crosshair icon from the
control palette or you can choose the Draw Views command from the Mode menu. As a third alternative you can hold'
down the command key. This will change the selecting tool intO the sketching tool for as long as you hold the
command key down. (If you release the command key while actually doing a sketch, the sketching tool will remain
until you release the mouse.)

-WARNING- A final important fact about sketching a new view: the new view is not automatically selected.
In other words, if the editable text view containing "one" was selected before you sketched the
TPopup view, that text view will remain selected even after you've created the new view. This
means that if you press the delete key immediately after sketching a new view, thinking that you
will delete it, you may actually delete an entirely different view-the last one selected.
Fortunately, the Undo command will bring back the lost view.

The moving tool

The moving tool (represented by the "grabbing hand" icon) allows you to grab a view and move it to another location,
as well as to another place in the view hierarchy.

As with the sketching tool there are three ways to select the moving tool: selecting the grabbing hand icon from the. 7'

control palette, choosing the Drag Views command from the Mode menu, and holding down the Option key. This 1&. ,,'
choice is a shortcut which temporarily changes the selecting tool into the moving tool.

Moving a view has interesting repercussions on your view hierarchy. If you move a view out of the boundaries of its
superview, the following dialog box appears:

Mouing this uiew here can cause
the uiew hierarchy to change. Is
this what you really want to do?

Yes, change " Leaue in same
hierarchy superUiew ••.

Fig 1.10 Change of hierarchy dialog box

This dialog box is straightforward: you can have the view remain a subview of the same superview as before. despite

@1988 Apple Computer August 31, 1988

(

13

MacApp 2.0 ViewEdit User's Guide

the fact that you've moved it, or you can have the view become a subview of whichever view its new location implies.

When you move a view, it is the position of its upper-left comer that decides which view is the "proper" superview. In
other words, if the upper-left comer of the view moves out of the boundary rectangle of its superview, and into another,
then the dialog box in Figure 1.10 appears, and if you specify that you did intend to change superviews, then it is the
location of this upper-left comer that decides which is the new superview.

To avoid this dialog box altogether, you can hold down the Control key (on keyboards that have a Control key) while
you are moving the view. This forces the view to change its place in the hierarchy.

As with the sketching tool, the moving tool does not select the item that is being moved-you must select with the
selecting tool only. Be careful not to assume that the moved view is now selected and try to delete it by pressing the
Delete key!

@1988 Apple Computer August 31, 1988

14

MacApp 2.0 ViewEdit User's Guide

The view description dialog

You've seen how to select a view by clicking on it with the selecting tool. If you double-click on a view, the view
"opens" into a view description dialog. (Alternatively, you can press return or enter while the view is
highlighted.) .

A view description dialog, like a Commando dialog, contains fields, pop-up menus, and help information to allow you
to control every aspect of the different view types. For example, if you double-click on the selected TDialogView. like
this:

:0 'uiew' ID 1008 from 'DemoDialogs' ~

g+ Vert: 64 f8I Top view in TWindow

Horz: 240 (TWindow parameters...)

.. "" •• _ ... u ... ,

·itmo !.
tu :.o • u .. : ...•.•• :.,. .•••.• · ••...•. : : : •••...•. :.!

.~ I

Fig 1.11 Opening the TDlalogVlew view

you will open the following view description dialog:

© 1988 Apple Computer August 31, 1988

15

MacApp 2.0 ViewEdit User's Guide

~ ~ Edit uiew parameters ... ~

(cancel) ~ OK ~ r TDialogView
_ ~f:zq!fl"lwt7:1_1 L~~"~m:1 I IQ
- TView [Lo.auo.

I

~Size ~ Shown ~ Enabled

"':Ej :::8 II: 430 .c:IDLOG I Sc.rpN·I'·~ II'·:

Horz. Determiner: I sizeUariable t Ch:1'Y n.N1'11i' ••

I TDia logView I
Uert. Determiner: I sizeUariable t Q

~

Fig 1.12 A TDlalogView view description dialog

This view description dialog consists of two parts, or view description boxes. The upper view description box
allows you to enter values associated with the fields of a TDialogView. The lower view description box allows you to
enter inherited fields-in this case, those belonging to the TView class.

Each view description dialog follows this pattem-each has a number of view description boxes. The uppermost box
represents the specific class of the view that was opened. Each successive box represents the ancestor class of the
previous box, until the class TView is reached.

@1988 Apple Computer August 31, 1988

MacApp 2.0 ViewEdit User's Guide

Let's take another example. If you double-click on the static text box,like this:

'view' 10 1008 from 'OemoDialo s'

+ Vert: 32 1:8:1 Top view in TWindow

Horz: 240 (TWindow parameters ...

...
·ltwo !.
t : : : : " : :" o : .. !

.. r········c"fu·sle·r··yw·o .. ········· ·······························1

.l : : : : : : : : : ... ,. l

.. l ::. '1 fi u e !' i : t ••••••• : ••••••• : ••••••• : : ••••••• : •••••• : •••••••• : ••••••• : ••• " •• : •. i ..
.. II

i ... , i
'! .! SiH j. f
... i : : :' _ : : ... II •• : o ... i ~

: " e "

! i
.. , ... u"n

'edt l'

Fig 1.13 Opening a TStaticTextview

16 © 1988 Apple Computer August 31, 1988

(

17

MacApp 2.0 ViewEdit User's Guide

Then you will open the following view description dialog:

Edit uiew parameters ...

(cancel) K OK »
TSteticText--~

Justificat;on ---------------------------,

o Foree left o Left justified @ Center justified

TControl--~
Adornment flags Control inset ~ Sizeable D Hilited

Drop D !~,·:~t· Tt.1p • '0 DDimmed D Dismisses
DLeft DOval Lt't"f. '0

D Bottom D RRect &tfvm. '0 [Po. siz.o
D Ri9ht D Shadow Rf¢t. '0 n:O 1,,:0
Textstyle---------------------------------~

[System font-default size) [Application font-default size) (Applieati~n font-9 point]

Font style --------------------,

@ Plain D 1/.1!1i:

o 80ld 0 Underlined

Fonts I Geneua

location ---, Size -----,

Fig 1.14 A TStatlcText view description dialog

D Cadehsed

o Extended

As before, you can see a number of view description boxes-one for each class in the view class hierarchy between
TStaticText and TView.

@1988 Apple Computer August 31, 1988

MacApp 2.0 ViewEdit User's Guide

As a final example. open the view description dialog for a view of the 1EditText class:

'lliew' 10 1008 from 'DemoDialo

+ ~ Top view in TWindow

(TWindow parameters ...)

Vert: 16

Horz: 96

... ,
·!tWO !.
l :" · : : : : : : : .. i

It co .. r·········cfli·s"fe·r:··O·n·e······ .. · .. · .. · .. · .. · .. ·· .. · .. · .. ··· .. · 1 .r · ffli'S't'e·r: .. Tw·o·· .. ··· .. ······ .. ·-.· · ··· .. ··· .. ··· .. 1
: ... '>

! three i
t : ...•... : : : ...•... : .•..... : : : : •. ?

... .0 .. 0 '

'1 fille i'
.. t : : : .•..•. : : : : : .. ! ..

i· .. •···•··••···· .. ···· .. ·•· .. ······· .. · .. ···• .. · .. · .. · .. ··•• .. •··••·· .. · .. ·1
! four I
l : : : q : •• " : e ••••••• : ••••••• : :00;

'OLOG'

Fig 1.15 Opening a TEdltTextvlew

18 @1988 Apple Computer August 31, 1988

19

MacApp 2.0 ViewEdit User's Guide

This view description dialog should look like this:

Edit uiew parameters aaa

(cancel) K OK 3
TEditText ----------------a------.,t'i,

Accepted control characters

o nul O"D IZI BS O"L O"P O"T O"X IZI Left arrow

O"A O"E o Tab o Ret O"Q D"u D"y 18I RigM arrow

O"B O"F O"J O"N O"R O"V O"Z 18I Up arrow

OEnt O"G O"K 0"0 O"S O"W o Esc 18I Down arrow

TStaticText--__
Justification -------------------------....,

o Force left 0 Right justified @ Left justified o Center justified

St.1t!V h>xt:l,-o_n_e _________________________J

TControl-------------------------------.,
Adornment flags --..,

~ Top 0 :~,·:~t·

Fig 1.16 A TStatlc Text view description dialog

l8I Sizeable 0 Hilited

o Dimmed 0 Dismisses

Here you can see an interesting change-the scroll bar actually becomes necessary for a dialog!

The different view description boxes allow you to input all of the information that a view resource file does. For further
description of the different fields and what they mean, see the "Creating View Templates" recipe in Chapter 7, ''The
CookBook", in the MacApp 2.x Manual (Inter.im Version), and the MacApp Release Notes. For an example of each
type of view description box, see the "View Description Boxes" section at the end of this guide.

@1988 Apple Computer August 31, 1988

20

MacApp 2.0 ViewEdit User's Guide

The window description dialog

So far, you 've seen a way to create and edit every type of view object except windows. Window view objects are a
special case because they must always be at the top of the view instance hierarchy.

If you want the views displayed in your view-editing window to be subviews of an actual window object, then click on
the Top View in TWindow checkbox in the control palette. This tells ViewEdit that the view hierarchy you have
created is to be made a subview of a TWindow view object The topmost views in the view-editing window will be
placed in the TWindow view in the same position that they are currently placed in the view-editing window.

To edit the fields of other view objects, you double-click in their boundary rectangle to open their view description
dialog. Similarly, to edit the fields of window view objects, you click on the TWindow parameters button in the
control palette. This opens the view description dialog for the window superview. For the 'view' ID 1008 from
previous examples. this dialog looks like this:

Edit lJiew parameters ...

(cancel) OK

TWlndow--~
'Window type ------------------, 181 Go away box

181 Resizab le­

D Modal @ doeumentProe

o dBoxProc

o plainDBox

o noGrowDocProc

o a ltDBoxProc

181 Zoom

o rDocProc

r .. · .. d>oD.'>r·<>¢ diatnH~~~r's :

! 0 0 ~
1 o~:~: 0 ~~ ~~ 1
: :
1 0 >:< >:. 0 .t.::: .t.:': i
i i
! 0 ~ .:. 1 (: 0 ';:'0 . .t..o 1
: !
: :
: u •• u .. :

o Handl. first click

[81 Free on closing

[81 Dispose on free

[81 Closes document

[81 Open with document

[81 Adapt to screen

181 Stagger windows

181 Force on screen

[81 Center horizontally

o Center vertica 11y

TView--~ r location

_:'::B
Size -----,

I":~
II.·~

@1988 Apple Computer

o Shown [81 Enabled

August 31, 1988

21

MacApp 2.0 ViewEdit User's Guide

In all other ways, this view description dialog is the same as other view description dialogs.

-WARNING- Currently, changes made in view description dialogs are not undoable. While the view
description dialog is open, the Undo command in the Edit menu will not work-don't try it.
When you close the view description dialog, the Undo command does not undo changes made in
the dialog, and may be dangerous. Don't use it until you've done some new undoable action!

A few more view examples

So far, you've really only seen a few of the many different types of views. You should probably use ViewEdit to
experiment with some of the other views in DemoDialogs and other sample applications. Be sure to make a copy of
any important file that you open with ViewEdit!

In your experimenting, you may run across a few issues that haven't been mentioned yet. For example, if a view in a
view-editing window is any of the resource-driven views (pop-ups, icons, patterns, pictures), and a resource of the
appropriate type and number exists in the resource file, ViewEdit will put a "working" version of that view in the
view-editing window. If a corresponding resource does not exist, View Edit puts its own version of that type of view in
the view-editing window. This feature allows your view-editing window to be faithful to the actual view in your
application.

Another hint is to remember that ViewEd it displays what is in actual 'view' resources-sometimes these may look
different than actual views you see in an application. For example, certain views are missing, or incorrectly sized. This
discrepancy occurs when an application modifies its view resources before displaying them.

@1988 Apple Computer August 31, 1988

22

MacApp 2.0 ViewEdit User's Guide

A good example of this is TSScrollbars. Remember that TScroller views programmatically create their corresponding~/
TSScrollbar so you won't see TSScrollbar views in view-editing windows. You will, however, see a space for the
TSScrollbar view, as in the case of 'view' resource ID 900 from DemoDialogs:

=0 'lJiew' 10 900 from 'DemoDialogs' 0-a + 0 Ver't: 48 C8J Top view in TWindow

Horz: 128 (TWindow parameters...)

Fig 1 .18 TScroller views

@1988 Apple Computer August 31. 1988

(

23

MacApp 2. a ViewEdit User's Guide

This view-editing window represents the views in an Inspector window, which looks like this:

Fig 1.19 An Inspector window

As you can see, space has been left for the TSScrollbar objects, but they are not themselves represented in the
view-editing window.

-NOTE- Since TScrollers will create up to two TSScrollbar objects for you, the TSScrollbar class is not
represented in the Views menu. This means you cannot create TSScrollbar views from within
ViewEdit. Use DeRez and Rez to add extra TSScrollbar views to your view hierarchy.

The file commands

When you have finished editing with a view-editing window, you can close that window. If you have made any
changes, the 'view' icon for that window will have its identifier highlighted. This is a marker to help you remember
which resources have been edited. Of course, none of your changes are saved until you choose the Save command from

@1988 Apple Computer August 31, 1988

24

MacApp 2.0 ViewEdit User's Guide

the File menu.

You can also mark items for deletion by selecting them, and then choosing the Delete Resource command from the Edit
menu. Again. the resource is not actually deleted until you save the file.

Remember that ViewEdit saves its view hierarchies as resources in a resource file. You can access these through DeRez
and Rez. but it should be possible for you to only use ViewEdit, given that you have the patience to use it carefully
through this early release.

Good luck and happy view editing!

View Description Boxes
This section contains an example of each of the different types of view description boxes, in the order that they appear
in the Views menu. Refer to the "Creating View Templates" recipe in Chapter 7, "The CookBook", in the MacApp 2.x
Manual (Interim Version), and the MacApp 2.0 Display Architecture Release Notes for a description of the different
fields and possible values.

TView--_
,Location

I :::~
Horz. Determiner: I sizeUariable

Uert. Determiner: I sizeUariable

[TDlalogVlew
~f:;Ult ,'1M, :

© 1988 Apple Computer

cg] Shown o Enabled

D:lvW03 ~·I··~II'·: DLOG

ITView

August 31, 1988

(-

-

25

MacApp 2.0 ViewEdit User's Guide

TS cro 11 er
- Horizontal scrollbar r-- Vertical scroll bar

D Include scrollbar D Include scrollbar

hun:. n",.,.Ii>,..1I: I~I
fhro?', mrw1'Jlf'l1l: 16

r·Iv.,.. n"~'Ii>""',: B
r·w-I. /hl,"IWI'1IN1I: 16

D Constrain to increment D Constrain to increment
llf'f7.,·hi;l11 lJf1S~6-: Tllp blJllw17 lJ f1S~fs":

10 I 10 I 10 I 10 I

TG 'dV' rt leW
r-- Rows - Columns

flu". q'-"'''''''r XI Atm. qr,.tmn.-:§ Sele#:fNm .-

~II" hlf'1i;I11: 20 /"1Jhml1 It·1ifH1: 20 @ Sin9le

~ It,' 1i1:.~/: 4 /.,i;hml11i1:.~/: 4 o Multiple

D Adorn rows o Adorn columns

TTextGridView ----------------------.
Texfstyle ---------------------------,

(System font-default size) [Application font-default size) [Application font-9 point)

I~I
Font style -------------------,

@ Plain D 11-i!Ji;

o Bold· 0 Underlined

Fonts I Chicago

@1988 Apple Computer

o Cculet IS1ed

D Exhnded

August 31, 1988

26

MacApp 2.0 ViewEdit User's Guide

TTextListView -------------------------_
(A TT~;'('1t. 6-tf,~ II"M;:'- /II) .Nd;tliJn.Jl ti??hS-l) ,'W·.1 TT~:,d6rJiif'~ II", /tfJr,n.lI!rl, VlJU '~' 1,'J(1t ~ :il!t
HIt' f1(J'f1'11;~r l)t'~l)br1l7;:'- tv f, ..md HIt' /wrirwlt.ll Si~fw"f11R?w-1v ;:,-~/Sqpw,(,~ II" (~'t'~~))

TControl---~
Adornment flags --..,

\81 Top D :~~,:~t,
\81 Left D Oval

t8l Bottom D RRect

181 Right D Shadow

- C t l' t on ro lnse -

TlJ{J: 0

L~f'f: 0

Svttvm: 0

R,;;tIt: 0

t8l Sizeable D Hmted

D Dimmed D Dismisses

[pen size

1··:1 .. 1

Textstyle---~

[System font-default size) [Application font-default size) (Application font-9 point)

Font style ----------------------,

@ Plain D It.llli:

D 901d D Underlined

Fonts I Chicago'

D cadelised

D Extended

TStatlcText ---------------------_
,",ustification ------------------------------------.,

o Force left 0 Right justified @ Left justified o Center justified

©1988 Apple Computer August 31, 1988

MacApp 2.0 ViewEdit User's Guide

(

~TEditText--~

r- Accepted conirol characters

o nul O"D f8I BS O"L O"P O"T O"X f8I Left arrow

O"A O"E Drab o Ret O"Q O"U O"Y f8I Right arrow

O"B O"F O"J O"N O"R O"V O"Z f8I Up arrow

DEnt 0"0 O"K 0"0 O"S O"W o Esc t8l Down arrow

[
TNumberText
A1;f~': ====== /'fR7R7~77 :1~0 _____ ..J "~,~.R7'Wf'" :,-11_0_0 ____ -I

[
TICOn

_ ~::;W/ll:1i'- c: f8I Prefer color if available

(

27 © 1988 Apple Computer August 31, 1988

MacApp 2.0 ViewEdit User!s Guide

r .. _T_P_i_ct_u_r_e ________________________ .-.II'I~~ .. L ~>VIA"Vl:' 10: •

TPopup--~
foEM.II~~~"Vl:' D.I~I l.l:'t'lI},.I$"l:'f:~15_0 __ __' I.lN7'W'1f i(W17 :1~1 ___ ...I

fot:1,'c'inr..f71 :1~1_00 ___ __,

[TButton
Gt.ttron ~,:

28 @1988 Apple Computer August 31, 1988

(

MacApp 2.0 Memory Management

Any of the following situations can cause an application to stop with a System Error alert, without any chance for
that application to gain control:

• Not enough memory to load a code segment.
• Not enough memory to load a PACK resource.
• Not enough memory to save the bits under a menu which is pulled down.
• Not enough memory to load a defproc (WDEF, MDEF, CDEF, LDEF).
• Not enough memory for Standard File to create its me list.
• Add your personal favorite here.

Not all commercial Macintosh applications deal correctly with these issues, in large part because doing so involves
some rather complicated code. MacApp contains a memory management mechanism which is designed to help
keep a MacApp application from getting into these critical memory situations. It does require some work on your
part, but makes it much, much easier to produce a robust application than if you did your own memory
management from scratch.

MacApp's scheme works by dividing available heap space into permanent memory and temporary memory (also
known as code reserve). Permanent memory is the space occupied by data which your application allocates:
objects and any subsidiary data structures you may create. Temporary memory is reserved for your code segments
plus any resources and/or memory needed by the Macintosh Toolbox for a short period of time.

MacApp makes sure that your application can't crash for one of the above reasons by always reserving enough
space for temporary memory requests to be satisfied. You tell MacApp how much memory needs to be reserved.
and it does the rest. It only needs to know whether a given memory request is permanent or temporary. Objects
created via New (as well as TObjeclShallowClone and all other MacApp methods which allocate memory) are
automatically taken from permanent memory. You can ask for a new handle from permanent memory by calling
NewPermHandle instead of NewHandle; for other kinds of requests you set the "permanent" flag by calling
PermAIlocation(TRUE), make the request, the~ set the flag back (permAllocation returns the previous value of the
flag as its result). Any other requests (such as those made by the ROM) default to temporary memory.

Note that it is dangerous to have the permanent flag TRUE for any length of time, as any toolbox call which
allocates memory or any procedure call which could load a segment will then operate just as it would with no
memory management mechanism. For example, calling a procedure in another segment which isn't loaded when
the flag is TRUE and there is no permanent memory available will cause a segment loader bomb, even if plenty of
temporary memory is available. When debugging is on, MacApp checks for the flag being TRUE in the main
event loop or when a segment is loaded and drops into the debugger if it is.

If you need to call a routine which allocates both permanent and temporary memory (such as TextEdit, which
allocates permanent data structures and which also loads temporary resources such as fonts), you can do so with
the permanent flag set FALSE, and then call CheckReserve afterwards. CheckReserve is a BOOLEAN function
which returns TRUE if there is still enough temporary memory. If CheckReserve returns FALSE, you should undo
the memory allocation. For convenience, there is also a procedure named FailNoReserve, which calls
Failure(memFullErr, 0) if CheckReserve returns FALSE.

Figuring out how much temporary memory to reserve takes some thought You could specify the sum of the sizes
of all your code segrpents and all the other kinds of memory the Toolbox uses, but that would be wasteful because
not all of these items are in memory at the same time. In general, you need to know the sum of the sizes of these
items at the point in your application where the largest number of them are in use simultaneously. Some of the
Toolbox items mentioned above usually need not be considered in this calculation. For example, the saved bits
underneath a menu are only allocated when MacApp calls MenuSelect, which is only done in the main event loop,
at which time all the non-resident code segments are unloaded. This is also the case for MDEFs. These will
seldom be larger than the code segments which you can load.

MacApp 2.0 Memory Management September 21,1988 Pagel

There are some situations you do have to watch out for. For example, putting up a standard Open or Save dialog
can use up quite a bit of memory: PACK 3 (Standard File), PACK 2 (Disk Initialization), plus the list of fIles in
the current folder which Standard File creates. Also, although the Font Manager will not fail if there is insufficient
memory to load a desired font, it will substitute a less suitable font, and your program's screen appearance will
degrade. Thus, you should include enough memory to load the largest font you will use in your temporary
memory figure. Remember, it will only be used when your Draw method is called. or when you perform text
measuremenL

Printing is another situation where you can run low on memory. Strictly speaking. it's OK to run out of memory
while printing: an alert will come up saying the document could not be printed because there was not enough
memory. However, users can find it frustrating if they create a document which is too large to prinL If you want
to make sure that any document a user can create can be printed, you should factor in the memory taken up by the
Print Manager while printing - along with any of your code segments which may be present - when calculating
the amount of memory to reserve for temporary allocations.

It is usually easier to split your temporary memory size up into several pieces which you calculate independently.
For your code, you may want to use the MacApp 'seg!' resources, which let you list the code segments you want
considered (see below). That way, you can just determine which segments are loaded at the time of maximum
temporary memory use, and let MacApp figure out their size at execution time. For Toolbox use, you can use
some fixed constants. For variable resources like fonts, you can actually alter the temporary reserve size while
your application is running.

Depending on how careful you want to be about your application's memory use, you can just pick a comfortably
large number (which wastes memory), or you can watch your program in action using the MacApp debugger and
MacsBug and figure out the smallest safe number (which is a fair amount of work but gives the best use of
available memory).

High Water Mark

The MacApp debugger helps you figure out which set of resources takes the most room by keeping a high water
marie for loaded resources. Under the heap & stack command (H), the I subcommand now gives the maximum
amount of memory used by loaded code segments, PACKs, defprocs, and so forth, and the R subcommand resets
this number to zero. Under the toggle flags command 00, the R flag reports whenever a new high water mark is
reached, and if the B (memory management break:) flag is set, MacApp will enter the debugger. In calculating this
number, MacApp only considers resources on its resource lists (see below).

Note that this won't take into account memory allocated by, say, Standard File or the Print Manager. You should
always check the amount of memory used in these situations and any other situation where the Toolbox can
allocate large amounts of memory. The best way to do that is to break: before and during such a situation, and use
the M subcommand of the H command to see how much permanent memory is available (the number labelled
"(permanent) FreeMem"). The difference (call it "extraj will be the sum of the sizes of objects you've allocated
and those that the toolbox has allocated but which MacApp doesn't track specifically (see "MacApp Resource
Lists," below). Also note the set of segments loaded. The sum of "extra" and the "locked resources" number
displayed in the debugger, minus any permanent memory you allOCated, is the actual amount of temporary memory
in use. You can use "extra" to reserve more temporary memory with a mem! resource (see below).

Remember. though, that you are only observing the memory in use at one point in time; memory usage can be
greater for a brief period of time, and you won't necessarily catch it in the debugger. Sometimes a trial and error
approach is necessary to determine the exact amount of memory being used.

Currently, the most space intensive print driver is the LaserWriter driver. For version 3.1 of the LaserWriter
driver, we have empirically determined that "extra" is about40K. In release 4.0 of the LaserWriter driver, this
amount varies, and can be as high as 56K. Moreover, this may well increase in future releases. Fortunately, recent
releases of the LaserWriter driver recover gracefully from out of memory conditions, giving the appropriate error
message. If you do not need to insure that it is always possible to print, you can eliminate this from your
permanent memory reserve.

MacApp 2.0 Memory Management September 21.1988 Page 2

There is a sporadic bug in LaserWriter driver 3.1 which can cause heap space to be permanently IOSL This only
occurs when a biunap font is downloaded to the LaserWriter. Biunap fonts are only downloaded when font
substitution is off in Page Setup (font substitution is always off if you set FractEnable to TRUE or tum off the
driver's line layout algorithm) and the user selects Geneva, New York, or Monaco, or if the user selects any other
font which is not available in PostScript form (such as Athens or Mobile). The driver fmds the largest available
size of that font, makes it unpurgeable, then downloads iL Occasionally the driver will not make the font
purgeable again, and it remains in memory until the application quits. Since the font is the largest size the driver
could fmd, it takes a significant amount of space (8K for Geneva 24). This bug was fIXed in release 3.3 of the
LaserWriter driver.

The Low Space Resene

MacApp keeps a special handle around which it will dispose of in order to satisfy a permanent memory requesL
This handle is called the low space reserve (it's also sometimes called the permanent memory reserve). You can
test if your application is running low on memory by calling the BOOLEAN function MemSpacelsLow. MacApp
makes this test periodically and will call the method TApplication.SpacelsLow, which you can override to take any
action you wanL The default version will periodically put up an alert advising the user that memory is low.

Another important issue which the reserve handle helps with is making sure that users don't lose data. Because of
the way the Macintosh Memory Manager operates, it makes no guarantee that a particular set of objects which was
once allocated in a heap of a given size can again be allocated in a heap of the same size (although it will come.
pretty close). As a result, you should not allow user documents to grow until they fill the entire heap, since it is
possible that you would not be able to read them back in again. Also, if space becomes so scarce that there is no
room to create a new command object, users won't be able to decrease their document size, even with a command
likeOear.

You can use the low space reserve to handle these problems. If MemSpacelsLow returns TRUE, don't enable any
commands that increase document size, such as Paste, drawing, typing, etc. Always enable commands which
allow the user to decrease document size (such as Clear, backspace, etc.). The DrawShapes sample program illus­
trates this technique. Commands such as Cut and Copy require more thought. On the one hand, they can increase.
memory use, getting you into the situation where command objects can't be created. On the other hand, if a user
wants to decrease a document's size, having Cut and Copy available prevents having to simply throw data away.
What you do here depends on your application. For example, UTEView allows Cut when space is low, but not
Copy.

If you have a command which allocates additional memory, you should check for space being low at the end of
your Dolt method. since otherwise it's possible for the reserve to be in place at the start of the command and
completely gone by the end. You should treat running out of low space reserve the same as running out of
memory. You can call FailSpacelsLow. which calls Failure with an error of memFullErr if MemSpaceIsLow
returns TRUE. Your command's failure handler should back out any changes it made. Only commands which
decrease or don't change memory use should be allowed to eat into the low space reserve.

MacApp itself calls FailSpacelsLow in several places, including the end of T Application.OpenNew and
TApplication.OpenOld to make sure that a new document doesn't decrease available free space too much. For
TApplication.OpenOld, however, MacApp temporarily halves the low space reserve so that existing documents
have a little ''breathing room" to deal with the nondeterministic behavior of the Memory Manager . . .
The seg! and mem! Resource Types

MacApp initially sets the size of the temporary memory reserve by looking at all resources of type seg! and type
mem!. The sizes of all code segments whose names are listed in any seg! resource are added up as part of the
temporary memory reserve. Note that the segment names are the those generated after segment mapping. Each
mem! resowce has three long integer quantities: an amount to add to the temporary memory (code) reserve. an
amount to add to the low space reserve, and an amount to add to the size of the stack. MacApp calculates the size

MacApp 2.0 Memory Management September 21. 1988 Page 3

of the temporary memory reserve by adding up the sizes of all segments in all seg! resources and the flI'St nUlAber
from all mem! resources. It calculates the low space reserve by adding up the second number from all meml
resources, and it calculates the size of the stack by adding up the third number from all mem! resources.

This approach allows a great deal of fleXibility. For example. the Debug.r me adds the debugging segments to the
list of segments, so that if debugging is turned on there will be room to load them. MacApp defmes an initial set of
segments, reserves 8K of stack space, reserves 4K of low space reserve, and reserves 4K exira of temporary
memory. You can easily add to (or even subtract from, except for the stack) MacApp's values by supplying your
own mem! and seg! resources. Remember, however, that these resources only govern the initial value of these
numbers. If you wish to change any of them while your program is running (except the stack size, which can't be
changed), you will have to call the routine SetMemReserve (see the MacApp source code for details).

Remember to factor in temporary memory taken up by things other than resources (such as the memory taken by
the Print Manager while printing). For example, the MacApp debugger may tell you that the largest set of
resources loaded at one time occurs when opening a document and totals, say, 130K. When printing. your
resources may only total 1 10K. However. the LaserWriter driver uses another 40K of temporary memory, so your
maximum temporary memory use is lSOK. while printing. In that case you would list the segments you use during
printing in your seg! resource. and use a memt resource to reserve an additional40K for the Print Manager.

Commit Methods Must Not Fail

Note that if your command object overrides Commit. it is vital that it not cause a Failure. MacApp must call the
Commit method of the most recent command (if it has not been undone) in order to save the document or quit the
application; if Commit fails. your user will be really stuck. unable even to exit the application. The MacApp
command architecture assumes that by the time Commit is called, the command was successful There are three
ways of dealing with this problem.

The flI'St and best way is to set up your data structures in such a way that your Commit method doesn't need to
allocate any memory (or increase net memory use). Of course,this isn't always possible. The second way is to
preallocate the memory which your command needs to Commit in your Dolt method. Then, when Commit is
called, free this memory and proceed. The third way is to allocate the memory you need to Commit from the
temporary memory pool instead of the permanent memory pool. You should only do this if your Commit
method's memory use has an upper bound. and if the memory will be disposed of by the end of the Commit
method. If you do this, you must mate sure that your temporary memory reserve is big enough to accommodate
this memory use (you can use a mem! resource to do this).

For an example of how subtle these considerations can be,look at the Paste command in the DrawShapes sample
application, whose Commit method can actually fail under certain circumstances. The Commit method moves the
shapes which have been pasted from the list of "virtual" shapes associated with the command onto the actual list of
shapes for the document . It does this by repeatedly deleting a shape from the virtual list, then inserting it into the
actual list. Although this seems safe because it does not cause net memory usage to increase, it can still fail,
because it may not be possible to grow the actual list's handle by four bytes even though another handle has just
shnmk by four bytes and the heap may be completely unfragmented. This is just a consequence of the way the
Macintosh memory manager worts.

Two possible solutions to this problem: grow the actual list in the Dolt method so that the memory is already
allocated, or perform the ttansfer of shapes with. the permanent allocation flag off (currently this is not possible
without overriding T:List). Note that this lauer option is safe because net memory utilization is not increasing; by
allowing the Commit method to briefly eat into temporary space, we are just giving the memory manager a little
more "breathing room" in which to reammge the heap.

Although your user won't get stuck if your Undolt or Redolt method fails, he or she will probably get upseL The
feeling of safety and confidence which users get from having undo available will vanish the first time they try to
use it and it fails. The message they get is "Undo doesn't wort." Be nice to your users, and mate sure that your
UndoIt and RedoIt methods can't fail either. A less desirable alternative is to detect in your IMyCommand or Dolt
method that Undo won't work: and put up an alert that the command will not be undoable. Do this before your

MacApp 2.0 Memory Management September 21. 1988 Page 4

(

command makes any changes, and give the user a chance to cancel the command. If the user says OK. remember
to set fCanUndo to FALSE in your command so Undo will be disabled. If the user says Cancel, you can cause
your command to fail without putting up an error message by calling Failure(O, 0). MacApp uses this technique
itself to handle Cancel choices in dialogs.

One more hint for commands: try not to allocate any memory in your IY ourCommand method. There is nothing
actually wrong with this, but since the previous command has not yet been committed and freed, and the Undo
Oipboard might still be around, it's more likely to fail. If you allocate your memory in your Dolt method, more
space will be available.

MacApp Resource Lists

MacApp keeps a list (actually several) of the resources which it considers "temporary:" that is, they are considered
as not taking up permanent memory. It constructs this list at application startup time, and uses it whenever it
calculates how much temporary memory is in use and how much more to reserve. These resources are the ones
that the MacApp debugger describes in the H command MacApp will also purge these resources when trying to
satisfy a temporary memory request unless they are locked

By default, this list contains all resources of type CODE, PACK, LDEF, CDEF, WDEF, and MDEF (except those
which come from ROM, or reside in the System heap). Normally, you don't need to worry about this list at all.
It's OK for temporary resources to not be on the list, although they will be purged frequently when space is low,
and they won't be figured into the resource statistics in the debugger. If you have such resources (fonts, for
example), and if you want to reserve some memory for them, you may want to consider adding them to the list.
Look at the UMemory unit to see how the lists are managed.

If you do put fonts on the list, you should move them high (with MoveHHi) and lock them when you do so to
prevent MacApp from purging them; the font manager expects that fonts marked nonpurgeable won't be purged.

Segmenting Your Application

In order for the memory management mechanism to work properly, your application must be segmented properly.
The more code which is unnecessarily dragged into memory, the larger your temporary memory reserve must be,
and the less space is available for your user's data in any given memory configuration. MacApp defines the
following code segments for your application:

ARes

ADebug
AFields
AInit
ATerminate
ASelCommand

ADoCommand

AClipboard

AOpen

AClose
AReadFile
AWriteFile
AFile
ANonRes

Resident application code. Anything that gets called frequently in the main event loop
(such as your DoSetupMenus methods), drawing, or typing.
Your debugging code, i.e. any procedures or methods only present when debugging is on.
All of your Fields methods should go here.
Code which you only use at application start-up time (IYourApplication).
Code which you only use at application shut-down time.
Code used to select the next command (DoMenuCommand, DoMouseCommand.
DoKeyCommand, and IYowCommand methods).
Code used for executing commands (all other TY ourCommand methods except
IYourCommand).
Clipboard code that is not part of a command (Make ViewForAlienClipboard.
GivePasteData, WriteToDeskScrap, but NOT TY ourPasteCommand).
Code used when opening (DoMakeViews, DoMakeWindows, IDocument,
DoMakeDocument, IDocument, IView).
Code used when closing (TY ourDocument.Free, FreeData).
Code used when reading or reverting (DoRead. ShowReverted, DoInitialState).
Code used when writing (DoWrite, DoNeedDiskSpace, SavedOn).
Code used when reading or writing (typically you won't have anything in this segment).
Catch-all non-resident segment, for infrequently used methods (e.g. ResizeWindow).

MacApp 2.0 Memory Management September 21, 1988 PageS

The default segment mapping established by MacApp combines these segments (except for ARes) with the -
correspondjng ones for MacApp. You can ovelTide some of MacApp's mappings by specifying your own
mappings in your make file, and you can ovelTide MacApp's mappings entirely by placing a defmition for the
Make variable SegmentMappings in your make file (Make will issue a warning. but your defmition will override
MacApp·s). Look at MacApp.makel for guidance.

Even using the suggested segment mappings, you may overflow the 32K. bytes limit on the size of a segment. You
can override MacApp's segment mappings in your application's .make file by providing your own -sn mappings;
the Linker gives your segment mappings priority over the ones MacApp specifies.

You may want to make some application code segments resident (Le. never unloaded). This is the case with ARes,
for example. To do this you can use the 'res!' resource (see below) or call SetResidentSegment (generally after
calling InitTooibox, InitPrinting, etc. but before doing New(gYourApplication» in order to make ARes resident.
Many of the sample programs, including DrawShapes and DemoTcxt, use the 'res!' technique.

Generally, there is a trade-off involved in segmentation. A few large segments make your program run faster, but
increase its memory requirements. More, smaller segments decrease memory requirements (and are a necessity to
run in a small Switcher partition), but make your program slower to start up. This latter problem can be alleviated
by using the JumpS tart utility included in the Macintosh Development Utilities product, available from APDA.

If you're really desperate to decrease segment sizes, you can change MacApp's segmentation by editing the source
code and increasing the number of segments. This is not recommended. Be extremely careful about which
segments are resident if you do this.

The res! Resource Type

The 'res!' resource type is used to identify code segments thai are to be made resident (Le. never unloaded). It's
format is similar to the 'seg!' resources in that each 'res!' resource consists of a list of segment names. When
MacApp initializes the application it makes resident any segment listed in any 'res!' resource found. 'res!' re­
sources are already included for MacApp's resident segments. You can add a 'res!' resource to·your application's
. resource file to list resident segments you've defined. Note that as with 'seg!' resources the segment names in the
'resl' resources are the names after segment mapping.

MacApp 2.0 Memory Management September 21, 1988 Page 6

