MacApp 2.0 Object
and Method Reference

This chapter describes the object classes that existed in MacApp 1.1. If you need information on classes and methods
not described here, refer to other release notes and to the source code. -

Each object description in this chapter contains the following elements:

« whether you customize the object type, instantiate it, or call its methods
* notes about the object type

« the chain of ancestors leading to the object type

« field declarations and explanations

e descriptions of the methods for each object type

Important

Complete information about the implementation of each method Is not given In this chapter. If you
need further details abéut any method, refer to the MacApp source code.

TObject

Customize: usually

Instantiate: never

Call methods: usually

TObject is the ultimate ancestor for all objects in MacApp.

TObject is documented here primarily for background information. It is an abstract object type that exists so that
other object types can inherit characteristics from it, and thus share them.

The only TObject methods you might override are Free and Clone.
Ancestors: none

Flelds

none

MacApp 2.0 Globals 10/3/88) Page 1

Clone
FUNCTION TObject.Clone:

TOb ject:

The return value

An exact copy of the calling object

Purpose

The default version

To clone dependent objects referred to by the fields of an object as well as cloning
the object itself. An object is dependent on another object when the second object
has the only (or the only important) reference to the first object. Dependency isa
relatively vague condition; when you override this method, you need to determine
what objects are dependent on SELF.

Calls ShallowClone, and thus clones only the object itself

Override sometimes
Call Sometimes
Free

PROCEDURE TObject.Free;

Purpose

The detfault version

To free the calling object and any dependent objects referred to by its fields. An’
object is dependent on another object when the second object has the only (or the
only important) reference to the first object. Dependency is a relatively vague
condition; when you override this method, you need to determine what objects are
dependent on SELF.

Calls ShallowFree

Override Often. Your version should free any dependent objects you have added for your
customization and then call INHERITED Free so that any ancestor methods can free
other dependent objects. The chain of INHERITED calls leads to TObject Free,

, which calls TObject.ShallowFree, which frees SELF.

Call Often

ShallowClone

FUNCTION TObject.ShallowClone: TObject;

The return value

ext

Purpose
Called by

The default version

This is the lowest-level method for copying an object.
TObject.Clone
Calls HandToHand, an Inside Macintosh routine, to copy the object data

Override Never
Call Rarely ;
MacApp 2.0 Globals 10/3/88 Page 2

ShallowFree
PROCEDURE TObject.ShallowFree;

Purpose This is the lowest-level method for freeing an object.
Called by TObject.Free

The default version Frees the calling object by calling DisposHandle
Override Never

Call Rarely

MacApp 2.0 Globals 10/3/88 Page 3

TEviHandler

Customize: rarely
Instantiate: never
Call methods: sometimes

TEvtHandler is documented here primarily for background information. It is an abstract object type that exists so that
other object types can inherit characteristics from it, and thus share them.

The primary importance of TEvtHandler is that it allows the different objects that handle events to be stored in a
single list. . '

Ancestors: TObject

Flelds

fldlePriority: INTEGER; A priority value for the Doldle method of this object. If fldlePriority is not
greater than zero, the default Idle method never calls this object’s Doldle method. The
default Idle method calls the Doldle methods of any handlers with fldlePriority values
greater than zero. (The default value is 0.)

fNextHandler: TEvtHandler; The next handler in the chain of event handlers, or NIL

fIdleFreq: LONGINT; Defines the minimum number of ticks (each tick = 1/60th of a second) that must .
" elapse before this object's Doldle gets called. A value of zero means that Doldle gets
called as often as possible (assuming that the object instance is in the target chain or
cohandler chain). A value of kMaxIdleTime means the object‘s Doldle never gets
called. The default value is kMaxIdleTime

fLastIdle: LONGINT; The tick at which this object’s Doldle method was last called.

MacApp 2.0 Globals 10/3/88 Page 4

=

DoHandleEvent

FUNCTION TEvtHandler.DoHandleEvent (nextEvent: PEventRecord; VAR commandToPerform:

TCommand) : BOOLEAN;

nextEvent

commandloPerform

The return value

A pointer to the new event

A command object that will perform the action indicated by the event or
gNoChanges, if the action has already been done or the event resulted in no
command

Indicates whether or not the event has been handled

Purpose
Called by

The default version

Override

Call

To handle an alien event

TApplication.HandleAlienEvent. TApplication.HandleAlienEvent implements the
cohandler chain.

Returns FALSE

You always override this method when you create a cohandler. A cohandler is an
event handler that is not in the target chain and is not a view, window, document,
application, print handler, or command object. You create cohandlers to handle alien
events, which are generally asynchronous events like network events. Your
implementation of DoHandleEvent should return TRUE if it handles the event and,
otherwise, return FALSE.

Never

Doldle

PROCEDURE TEvtHandler.Doldle(phase: IdlePhase);

phase Whether idle is just beginning, is continuing, or is ending. The declaration of
IdlePhase is
IdlePhase = (idleBegin, idleContinue, idleEnd):;

Purpose To do idle-time tasks. This method is called for event handlers only when
fIdleFreq ticks have elapsed—but only when the handler is in the target or
cohandler chain.

Called by TApplication.Idle

The default version Does nothing

Override 'When an object requires idle-time processing.

Call Never

MacApp 2.0 Globals 10/3/88 Page §

DoKeyCommand

FUNCTION TEvtHandler.DoKeyCommand(ch: CHAR; VAR info: EventInfo): TCommand:

ch

info

The return value

A character typed at the keyboard

The event information record that contains the key event. You can modify this parameter if you
want .

A command object

Purpose
Called by

The default version

Override

Call

To handle “key commands,” which are simply events resulting from keyboard typing
TApplication.ObeyEvent

Calls DoKeyCommand for the next handler in the list of event handlers. If there is no next
handler, the default method returns gNoChanges.

Sometimes. If you override this method, generally for your descendant of TView or
TDocument, you should return a command object that can respond appropriately to the
character. (See “TCommand” in this chapter for more information.) For simple editing, this
method is implemented in the TEView unit. (See the “Using TEView” recipe in the Cookbook
chapter or the TTETypingCommand section of this chapter for more information.))

Sometimes. You call this method if you override it, by calling INHERITED DoKeyCommand.
Otherwise, you never call it.

DoMenuCommand

FUNCTION TEvtHandler.DoMenuCommand(aCmdNumber: CmdNumber): TCommand;

aCmdNumber

The return value

The command number for the menu command chosen by the user
A command object or, if there are no changes, gNoChanges

Cadlled by

The detault version

Override

Call

TApplication.MenuEvent when a menu command is chosen by the user. (A
Command-key combination is usually equivalent to a menu command.)

Calls fNextHandler. DoMenuCommand if there is a next handler. If there is no next
handler, the default returns gNoChanges and, if the code was compiled with
debugging on, prints an error message.

Often. You override this method to handle menu commands you have defined. In
general, you return a command object to carry out the action of the command; if the
command is simple and does not change the document, you can return gNoChanges.

Often. You call this method if you override it, by calling INHERITED
DoMenuCommand. Otherwise, you never call it.

MacApp 2.0 Globals

10/3/88 Page 6

/‘é&z}k\

DoMultiClick

FUNCTION TEvtHandler.DoMultiClick(lastDownPt, newDownPt: Point): BOOLEAN;

lastDownPt
newDownPt

The return value

The next-to-last point where the mouse button was pressed
The most recent point where the mouse button was pressed

TRUE if lastDownPt and newDownPt are close enough to be considered a double
click

Purpose

Called by

The default version

Override

Call

To test whether a new mouse click should be counted as an additional click in
gClickCount. It should return TRUE if newDownPt is close enough to lastDownPt
to be considered the same point.

TApplication.CountClicks

Calls fNextHandler.DoMultiClick if there is a next handler. If there is no next
handler, it tests whether the difference between the two points is less than or equal to
five pixels.

Rarely. If you want to change the standard for what is considered a new multiple
click, you can override TApplication.DoMultiClick. The default version always calls
fNextHandler.DoMultiClick unless fNextHandler is NIL, which is true only for the
application object.

Never

MacApp 2.0 Globals

10/3/88 Page 7

DoSetupMenus

PROCEDURE TEvtHandler.DoSetupMenus;

Purpose

Called by
The default version

Overr_ldo

Call

To adorn and enable (or disable) all menu commands handled by this event handler.
This method is called before menus are displayed when the menus may have changed
since the last time it was called. It is also called after every event is processed.

TApplication.SewpTheMenus and when an immediate descendant’s method calls
INHERITED DoSetupMenus

Calls DoSetupMenus for the next event handler in the list of event handlers.
(TEvtHandler is not responsible for any menu commands.)

Sometimes. You must override this method if you define any menu commands. In
general, you override this method for any object types for which you override
DoMenuCommand, and you handle the same menu commands in DoMenuCommand
and DoSetupMenus for a given object type.

‘When you override this method, you must begin your method by calling
INHERITED DoSetupMenus, so that MacApp can set up the menus first. Then, you
use the global procedures Enable and EnableCheck to enable any menu commands
that can currently be used or to disable any that cannot be used. (EnableCheck, like -
Enable, can enable or disable menu commands. EnableCheck also can add or remove
a check mark next to a menu item.) You can also adorn menus in other ways. See
the “Changing Menu Appearance and Function” recipe in the Cookbook for more
detailed information.

Sometimes. You always call this method when you override it.

|IEviHandler

PROCEDURE TEvtHandler.IEvtHandler(itsNextHandler: TEvtHandler):

itsNextHandler

The next handler in the list of event handlers, or NIL

Called by

The default version

Override
Call

TApplication.IApplication, TDocument.IDocument, TView.IView, and
TPrintHandler.IPrintHandler to initialize an event-handler object

Sets the value of fldleFreq to kMaxIdleTime, sets fLastIdle to zero, and sets
fNextHandler to itsNextHandler

Never
You call this method only if you declare immediate descendants of TEvtHandler.

MacApp 2.0 Globals

10/3/88 Page 8

Terminate
PROCEDURE TEvtHandler.Terminate;

Purpose To handle termination tasks for an event handler

The detault version Does nothing

Override Sometimes]

Call Never. The TApplication and TPrintHandler implementations of this method are
called by MacApp.

MacApp 2.0 Globals 10/3/88 Page 9

TApphccmon

Customize: always
Instantiate: never
Call methods: always

The application object controls the overall application. In other words, it implements methods that apply to the
application as a whole rather than to an individual document or window.

You always customize TApplication to implement your application.
Ancestors: TObject, TEvtHandler, TApplication
Fields

fIdleFreq: LONGINT: Defines the minimum number of ticks (each tick = 1/60th of a second) that must
elapse before this object's Doldle gets called. A value of zero means that Doldle gets
called as often as possible (assuming that the object instance is in the target chain or
cohandler chain). A value of kMaxIdleTime means the object‘s Doldle never gets
called. The default value is kMaxIdleTime

fNextHandler: TEvtHandler; The next handler in the chain of event handlers, or NIL. Inherited from
TEvtHandler.

* Note: Other fields are inherited but are never used. TApplication declares no new fields. Many global
variables are used like fields of the application object.

AboutToLoseControl
PROCEDURE TApplication.AboutToLoseControl;

Called by TApplication.HandleSystemEvent, TApplication.PostHandleEvent (when the user
clicks in a nonapplication window), and TApplication.Run (just before the end)

The default version Commits the last command and writes the contents of the Clipboard to the desk
scrap (if necessary)

Override Sometimes. You can override this method to do other tasks necessary before the
application loses control.

Call Never

MacApp 2.0 Globals 10/3/88 Page 10

ik,

AddFreeWindow

PROCEDURE TApplication.AddFreeWindow(aWindow: TWindow);

aWindow A window object

Purpose To add a window to the free window list. A free window is one that belongs to the
application instead of to a document. (An example is the palette window in
MacPaint.) o

Called by TWindow.InstallDocument

The default version Calls gFreeWindowList. AddLast(aWindow)

Override Never

Call Rarely

ClaimClipboard .

PROCEDURE TApplication.ClaimClipboard(clipView: TView);

clipView The Clipboard view created to show the Clipboard contents

Called by The application to insert the given view in the Clipboard

Override Rarely

Call You always call this method for a Cut or Copy command, unless you don’t

implement cutting and pasting in your application. '
See “The Clipboard” in the Cookbook for more information.

MacApp 2.0 Globals

10/3/88 Page 11

CloseWmgrWindow
PROCEDURE TApplication.CloseWmgrWindow(aWmgrWindow: WindowPtr);

aWmgrWindow The Window Manager pointer for a window that is being closed

Called by TApplication.DoMenuCommand (if the user choose the Close command) and
TApplication.HandleMouseDown (if the mouse press was in the close box) and
TApplication.Close (when the application is terminated).

The detault version Checks whether the window is a desk accessory window and, if it is, calls
CloseDeskAcc (an Inside Macintosh procedure) to close it. If it is not a desk
accessory window, this method checks whether there is a window object for this
window and, if there is, calls its CloseByUser method. Otherwise, it calls
HideWindow (an Inside Macintosh procedure). It signals failure with err = 0 if the
user cancels for some reason.

Override Rarely
Call Never
CommitLastCommand

PROCEDURE TApplication.CommitLastCommand;

Called by TApplication. AboutToLoseControl, TApplication.CheckDeskScrap,
TApplication.PerformCommand, TDocument.Close, TDocument.Revert, and
TDocument.Save.

The default version Commits and frees the last command (gLastCommand) and changes the text for the
Undo command to show these there is no current undoable command

Override Rarely

Cadll Never

MacApp 2.0 Globals 10/3/88 Page 12

CountClicks

FUNCTION TApplication.CountClicks(aPDownEvent: PEventRecord): INTEGER;

aPDownEvent

The return value

A pointer to the event record for a mouse-down event
The current number of multiple clicks

Called by

The default version

TApplication.HandleMouseDown

Calls gTarget. DoMultiClick to see whether the new mouse press should be
considered an additional multiclick. If so, it increments gClickCount. Otherwise, it
resets gClickCount to 1.

Override Rarely
Call Never
DeleteFreeWindow

PROCEDURE TApplication.DeleteFreeWindow(windowToDelete: TWindow);

windowToDelete

A member of the free window list

Purpose To remove a window from the free window list. A free window is one that belongs
to the application instead of to a document. (An example is the palette window in
MacPaint.)

Called by TWindow.Free and TWindow.InstallDocument

The default version Calls gFreeWindowList.Delete(windowToDelete)

Override Never

Call Rarely

MacApp 2.0 Globals

10/3/88 ' Page 13

DoCommandKey

FUNCTION TApplication.DoCommandKey(ch: CHAR; VAR info: EventInfo): TCommand; OVERRIDE;

ch The character of the key that was held down along with the Command key

info The event record

Purpose To handle events in which a key is pressed along with the Command key as a
Command-key equivalent of a menu command

Called by TApplication.HandleKeyDownEvent

The default version

Override

Call

Calls SetupTheMenus and MenuEvent unless this is a repeated command-key
combination or if gRepeatcmd is FALSE

Rarely. You can override this method to implement your own Command-key
commands or to implement key commands in your own way. Note that you need do
nothing with this method for Command-key combinations that correspond to menu
commands and are given in the resource file. MacApp does not implement auto-key
events (automatic repeating of keys held down) with Command-key combinatiens. If
you want to implement auto-key Command-key combinations, you must override
this method.

Never

MacApp 2.0 Globals

10/3/88 Page 14

DoMakeDocument

FUNCTION TApplication.DoMakeDocument (itsCmdNumber: CmdNumber): TDocument;

ItsCmdNumber

The return value

Indicates the type of document that should be created. In applications with different
document types, the command number indicates which menu command the user
picked or, if the user opened an existing document, the command numbser is the one
returned by TApplication.KindOfDocument.

A document object

Purpose

Called by
The default version

Override

Call

To create a document for the application. It is called when the user starts up the
application, opens a document with'the New or Open command, and in other cases
when the application needs to create a document.

TApplication.OpenNew, TApplication.OpenOld, and TApplication.PrintDocument
Calls ProgramBreak to halt the program. (You must override this method.)
Always. Your implementation of this method creates and initializes a document of
your application’s type. If your application has multiple document types, your
implementation of this method creates different document types depending on thie

value if itsCmdNumber. See the “Creating a Document” recipe in the Cookbook for
details on this method.

Sometimes. You may call this method to create a document, but most commonly,
this method is called by MacApp.

MacApp 2.0 Globals

10/3/88 . Page 15

DoMenuCommand
FUNCTION TApplication.DoMenuCommand(aCmdNumber: CmdNumber): TCommand; OVERRIDE;

aCmdNumber The command number of the menu command chosen by the user

The return vailue A command object that will carry out the command (and possibly undo and redo the
command) or gNoChanges

Purpose To handle menu commands that apply to the application as a whole

Called by TApplication.MenuEvent when there is a menu command and gTarget is a reference

to the application object, or by another object’s DoMenuCommand method when no
other object has handled the menu command

The detault version Handles the MacApp defined standard menu commands Quit, New, Open, Close,
Undo, Redo, ShowClipboard, About <Appname>, and the Debug menu commands

Originally declared by TEvtHandler

Override Often. You override this method to handle commands you define for your application
object. In general, TYourApplication. DoMenuCommand handles the commands that.
apply to the application as a whole. When your implementation does not handle the
command, you should end your override method by calling INHERITED
DoMenuCommand, so that the MacApp method can handle its commands.

Call You always call this method if you override it. Otherwise, you never call it.

DoSetupMenus
PROCEDURE TApplication.DoSetupMenus; OVERRIDE;

Purpose To set up the menu commands handled by the corresponding DoMenuCommand
method. It is called before the menus are displayed when they may have changed
since the last time DoSetupMenus was called.

The default version Sets up menu commands handled by TApplication.DoMenuCommand
Originally declared by TEvtHandler
Override Often. You must override this method if you override

TApplication.DoMenuCommand. Your override method must set up the menu
commands handled by TYourApplication. DoMenuCommand. Begin your method by
calling INHERITED DoMenuCommand so the MacApp methods can set up their
menu commands first. See the “Changing Menu Appearance and Function” recipe in
the Cookbook for more details.

Call : You always call this method if you override it. Otherwise, you never call it.

MacApp 2.0 Globals 10/3/88 Page 16

e

EachFreeWindow
PROCEDURE TApplication.EachFreeWindow (PROCEDURE DoToWindow(aWindow: TWindow)):;

DoToWindow A procedure that will be passed each free window in turn

Purpose To apply DoToWindow to all windows in the free window list. A free window is
one that belongs to the application instead of to a document. (An example is the
palette window in MacPaint.)

Called by Your code and TApplication ForAllWindowsDo

Override Never

Call You might call this method if you have free windows.

ForAliDocumentsDo

PROCEDURE TApplication.ForAllDocumentsDo(PROCEDURE DoToDoc(aDocument: TDocument)):

DoToDoc A procedure, usually local to the caller, that ForAllDocumentsDo calls repeatedly,
passing each of the documents in turm

Purpose To perform an operation on all documents of an application

The default version Automatically scans through the list of documents and calls DoToDoc once for each
document

Cadlled by TApplication. AlreadyOpen, TApplication.Close, and
TApplication.ForAllWindowsDo

Override Never

Call Sometimes

MacApp 2.0 Globals 10/3/88 Page 17

ForAllWindowsDo

PROCEDURE TApplication.ForAllWindowsDo (PROCEDURE DoToWind(aWindow: TWindow)):

DoToWind A procedure, usually local to the caller, that ForAllWindowsDo calls repeatedly,
passing each window in turn
Purpose To perform an operation on all windows of an application

The default version

Calls DoToWind once for each window of all documents of the application and for
any documentless windows

Override Never
Call Sometimes
GetDataToPaste

FUNCTION TApplication.GetDataToPaste(aDataHandle: Handle; VAR dataType: ResType):

LONGINT;

-

aDataHandle
datalype

The return value

A handle for Clipboard data
A data type that is passed back to you

If nonzero, indicates an error

Purpose To get data for pasting from the Clipboard

Called by Your methods

Override Rarely

Call You can call this method if you implement the Paste command. You allocate an
empty handle, and then pass it to this method. The dataType is not set here; it is one
of the resource types you tell MacApp you can handle when you call CanPaste (a
MacApp global routine). The data may come from data cut or copied from your
application or it may come from the desk scrap.
See the ‘“Paste” recipe in the Cookbook for more information.

MacApp 2.0 Globals 10/3/88 che 18

GetEvent

PROCEDURE TApplication.GetEvent (eventMask: INTEGER; sleep: LONGINT; cursorRgn:

RgnHandle; VAR anEvent:

EventRecord): BOOLEAN;

eveniMask

sleep

cursorkgn
ankvent

The return value

A mask indicating the kind of events wanted

The minimum number of ticks that cam elapse before returining from
WaitNextEvent.

A region, in global screen coordinates, in which the cursor will not change.
The event obtained
Indicates whether or not an event was obtained

Called by

The defauit version

TApplication PollEvent and TApplication.Update AllWindows
Calls the Inside Macintosh routine GetNextEvent or WaitNextEvent

Override Sometimes. You override this method so that you can get events from another
source. See Inside Macintosh for information on posting events.

Calil Never T

IApplication

PROCEDURE TApplication.,IApplication(itsMainFileType: OSType):;

itsMainFlleType

The unique four-letter type code for the main document files used by the application

Called by

The default version

IYourApplication
Initializes a number of global variables and otherwise initializes the application

Override Never. Instead of overriding this method, you generally write a new method with a
name of the form I'YourApplication.

Call Always. You always call this method from I'Y ourApplication.

MacApp 2.0 Globals 10/3/88 Page 19

idle

PROCEDURE TApplication.Idle(phase: IdlePhase);

phase The current part of the idle sequence: idleBegin, idleContinue, or idleEnd

Purpose This method is called when all events have been handled and there are no pending
events.

Called by TApplication.PollEvent and TApplication.GetEvent

The default version

Begins by setting up the menus, if they need to be set up, and then gives each event
handler that needs idling a chance to run its Doldle method

Override Rarely
Cail Never
InstaliCohandler .

PROCEDURE TApplication.InstallCohandler(aCohandler: TEvtHandler; addIt: BOOLEAN);

The handler you want to add to or remove from the cohandler list

aCohandler

addit Indicates whether aCohandler should be added to (TRUE) or deleted from (FALSE)
the cohandler list

Purpose To add or remove cohandlers from the cohandler list

The default version

Adds aCohandler to the cohandler list if addIt is TRUE and deletes it if addIt is
FALSE. If aCohandler is deleted from the list, it is not freed.

Override Never
Call You always call this method if you have cohandlers.
MacApp 2.0 Globals 10/3/88 . ' Page 20

.

P

KindOftDocument

FUNCTION TApplication.KindOfDocument (itsCmdNumber: CmdNumber; itsPAppFile: PAppFile):

CmdNumber;

itsCmdNumber

ItsPAppFile

The return value

Either the command number from DoMenuCommand or cFinderNew, cFinderPrint,
or cFinderOpen

A pointer to an AppFile record or NIL. If not NIL, itsPAppFileA.fileType gives the
four-character file type, which is usually all you need to decide what type of
document is needed. If NIL, this is a new document, so there is no existing
document from which to get information.

A command number to pass to DoMakeDocument

Purpose

Called by

The default version

To fix the command number whenever DoMakeDocument is called if the application
has more than one kind of document type. It is called by MacApp.

TApplication.OpenNew, TApplication.OpenOld, and TApplication.PrintDocument
Returns itsCmdNumber

Override You always override this method if your application has more than one kind of
document. When the user opens an existing document, your implementation of this
method uses itsPAppFile to determine what kind of document object should be
created. The command number you return is normally the same as the command
number for the New menu command the user would choose to create a new
document. (In applications with multiple document types, you usually have different
New menu commands for different document types.)

Call Never

LaunchClipboard

PROCEDURE TApplication.LaunchClipboard;

Called by TApplication.Run _

The default version Starts up the Clipboard by creating a view and a window for it

Override Rarely

Call Never

"~ MacApp 2.0 Globals 10/3/88 | Page 21

MainEventLoop

PROCEDURE TApplication.MainEventLoop:

Called by

The default version

Override

Call

TApplication.Run

Loops until the application begins to terminate. Events are dispatched from this
method and the Idle method is called from this method.

Rarely. You might override this method to change the progress of the event loop. If
you do, examine the implementation of TApplication.MainEventLoop in
UMacApp.TApplication.p.

Never

MakeViewForAlienClipboard
FUNCTION TApplication.MakeViewForAlienClipboard: TView;

The return value

A Clipboard view

Purpose

Called by
The default version

Override

Call

To make a view to show the public scrap when the application has just started or has
returned from a desk accessory or another application and the desk scrap contains data
from another application or from another instance of this application

TApplication.ReadFromDeskScrap
Creates a view that can show PICT or TEXT data

Usually. In your implementation, you check the desk scrap to see if it has data in
one of the forms your application can handle (presumably because the data came
originally from this application or another application that creates compatible data).
If data is there in that form, you create a view of one of your application’s types to
show the data and return that view. Otherwise, you call INHERITED
MakeViewForAlienClipboard so that that method can show the PICT or TEXT data.
See “The Clipboard” in the Cookbook for more information.

You always call this method if you override it, in which case you call it by using
INHERITED.

MacApp 2.0 Globals

10/3/88 Page 22

s

OpenNew

PROCEDURE TApplication.OpenNew(itsCmdNumber: CmdNumber) ;

ItsCmdNumber The command number that resulted in this call

Purpose To create a new document, including the views and windows for the document. It is
called whenever a new document is needed, either when the application starts up or
when the user chooses the New command.

Called by TApplication.DoMenuCommand and TApplication.HandleFinderRequest

The default version

Override

Call

Calls DoMakeDocument, DolnitialState, DoMakeViews, DoMakeWindows, and
ShowWindows

Rarely. You may override this method if you don’t want a new document to be
automatically created when the application starts without the user opening an
existing document. To do that, you can test the value of itsCmdNumber. If
itsCmdNumber = cFinderNew, you should not create the new document. See the
UMacApp source text for other details of the implementation to be certain you do

everything necessary. .
Never

OpenOid

PROCEDURE TApplication.OpenOld(itsOpenCmd: CmdNumber; anAppFile: AppFile);

itsOpenCmd The command number that resulted in this call
anAppfFile An AppFile record
Purpose This method is called whenever an existing document is opened, either when the

The default version

application starts up or after the user chooses the Open command.

Calls DoMakeDocument, DoReadFromFile, DoMake Views, DoMakeWindows, and
ShowWindows

Called by TApplication.DoMenuCommand and TApplication. HandleFinderRequest

Override Rarely

Call Never

MacApp 2.0 Globals 10/3/88 Page 23

PerformCommand

PROCEDURE TApplication.PerformCommand(command: TCommand):

command A command object to carry out the most recent command
Purpose To carry out a command that is not gNoChanges
Called by TApplication.HandleEvent

The default version

If either the fCanUndo or the fChangesDocument flag is TRUE,
TApplication.CommitLastCommand sets gl.astCommand to the new command, sets
the command’s fTarget field to gTarget, sets the command’s f{CmdDone field to
TRUE, and calls command.Dolt. If the command is undoable, the default version
puts the command’s name in the Undo command. If fChangedDocument <> NIL and
fChangesDocument = TRUE, the default version increments the document’s change
count.

Override Rarely
Call Never .
PrintDocument

FUNCTION TApplication.PrintDocument (anAppFile: AppFile): BOOLEAN:

anAppfFile

The return value

An AppFile record
Whether or not the document was printed

Called by

The default version

TApplication.HandleFinderRequest to handle a Print command from the Finder

Calls DoMakeDocument, ReadFromFile, and DoMake Views, telling each that this
is being done just for printing, and then calls document Print for the new document

Override Rarely
Call Never
MacApp 2.0 Globals 10/3/88 Page 24

Run
PROCEDURE TApplication.Run;

Called by Your main program after you create and initialize your application object

The default version Does some initialization, calls TApplication. HandleFinderRequest, and then calls
MainEventLoop. When MainEventLoop returns, Run calls AboutToLoseControl
and CleanUpMacApp. ‘

Override Rarely. If you want to do something different before calling MainEventLoop,

examine the implementation of that method in the UMacApp source to see the
details of its implementation. In general, though, it is better to create a different
method, and call that before calling Run.

Call Always

SetUndoText
PROCEDURE TApplication.SetUndoText (cmdDone: BOOLEAN; aCmdNumber: CmdNumber):;

~

cmdDone Indicates whether this command is in do or redo phase (TRUE) or in undo phase
) (FALSE)

aCmdNumber The command number for the Undo menu command

Purpose To set the text for the Undo menu command

Called by TApplication.SetupTheMenus

The default version Changes the text to Redo if cmdDone = FALSE and back to Undo if cndDone =
TRUE

Override Rarely

Call Never

MacApp 2.0 Globals 10/3/88 : Page 25

ShowError
PROCEDURE TApplication.ShowError(error: OSErr; message: LONGINT):

error An error number

message A failure message. See the “Failure Handling™ recipe in the Cookbook for more
information.

Purpose To display an error message

Called by Failure handlers

The default version Calls the global procedure ErrorAlert

Override Sometimes. You override this method if you want a different error message to be
displayed.

Cadll Sometimes

MacApp 2.0 Globals 10/3/88 Page 26

SFGetParms

PROCEDURE TApplication.SFGetParms(itsCmdNumber: CmdNumber; VAR dlgID: INTEGER; VAR
where: Point;
VAR fileFilter, dlgHook, filterProc: ProcPtr; typelist:

Sy

HTypelist):;

ltsCmdNumber The command number that resulted in this method call

digiD The resource ID for the dialog box that should be displayed

where The position of the upper left comer of the dialog box in global coordinates

fileFilter A pointer to a filter function that determines which files appear in the dialog box, or
NIL. If NIL, no filter function is executed.

digHook A pointer to a function that handles dialog items, or NIL. If NIL, no function is
executed.

filterProc A pointer to a function that filters events, or NIL. If NIL, no standard filtering is
done. ’

typelist A valid handle to a zero-length block

Purpose . get parameters that should be passed to SFGetFile, which is an Inside Macintosh
procedure that displays a dialog box listing files that can be opened by the
application

Called by TApplication.CanOpenDocument and TApplication.ChooseDocument

The default version Returns these values:
digID = getDIgID
where = (100, 100)
fileFilter = NIL
digHook = NIL
filterProc = NIL
The typeList parameter returns the main file type supported by the application.

Override Sometimes. You can override this method to return different parameter values. If the
application supports all file types, you should make typeList empty. See Inside
Macintosh for more information on the parameters of this method.

Call Rarely. If you do call this method, you must set typeList to a valid handle and free

the handle afterwards.

MacApp 2.0 Globals 10/3/88 Page 27

SFPutParms

PROCEDURE TApplication.SFPutParms(itsCmdNumber: CmdNumber; VAR dlgID: INTEGER; VAR
where: Point;

VAR prompt, defaultName: Str255; VAR dlgHook, filterProc:
ProcPtr):;

itsCmdNumber The command number that resulted in this method call
digiD The dialog box that should be displayed
where The position of the upper left corner of the dialog box
prompt The prompt string that should be added to the dialog box
defaultName The default name used in the dialog; it must be initialized to a valid string when this
method is called.
digHook A pointer to a function that handles dialog items, or NIL. If NIL, no function is
executed.
filterProc A pointer to a function that filters events, or NIL. If NIL, no standard filtering is
done. .
Purpose To return all the parameters that should be passed to SFPutFile
The default version Returns these values:
digiD = putDIgID
where = (100, 100)
prompt = prompt from resource file
digHook = NIL
filterProc = NIL
The defaultName parameter is left alone.
Override Sometimes. You can override this method to change the default values.
Call Rarely '

MacApp 2.0 Globals 10/3/88 Page 28

TrackCursor

FUNCTION TApplication.TrackCursor: BOOLEAN;

The return value

Whether a view set the cursor shape.

Purpose
Called by

The defauitl version

Override

Cadll

To track the mouse pointer while the mouse button is up
TApplication.Idle

Checks the location of the mouse and calls HandleCursor for the window in which
the mouse is located

Sometimes. You can override this method to do something else while the mouse
button is up. If you do that, you generally call INHERITED TrackCursor.

Never (except by calling INHERITED TrackCursor when you override it)

MacApp 2.0 Globals

10/3/88 Page 29

/]

TDocument

Customize: always
Instantiate: never
Call methods: rarely

The document object controls the data of the document.

Almost every application must define at least one descendant of TDocument for its own document type. The only
exception is for “documentless” applications, in which the application icon is always opened.

You generally add fields to your document type to store the views of the document.

If your application has more than one kind of document, you usually create more than one descendant of TDocument,
one for each kind of document. For example, an integrated application might have a TTextDocument, a
TSpreadSheetDocument, and a TGraphicsDocument type.

Most MacApp applications can have several document objects at a time, which may all be of a single type or may
be of different types. The document objects are stored in a TList object stored in gDocList.

Each document object can have one document file. You can use the data and resource forks of the file or use either
fork alone. Normally, the entire contents of the file is read into memory when the file is opened, but support is
provided for disk-based documents. If the resource fork is used, the document’s resource file is on top of the resource
file list when DoRead and DoWrite are called. Otherwise, you need to call UseResFile to make sure that the right
resource file is on top.

‘When a document is saved, MacApp normally saves the altered version of the document to a new file and then, when -

the save operation has been successfully completed, renames the new version of the file, erasing the old version.

A number of the fields of TDocument determine whether the data and resource forks of the file are both opened and
how the file is treated when it is saved:

« fDataOpen and fRsrcOpen determine whether or not the data and resource forks of the file
should be kept open at all times. Most applications set both to FALSE. An application can
have either or both TRUE if the application uses disk-based documents.

Note: Keeping resource files open at all times is usually a bad idea because of the space
required for multiple resource maps and the slow searching of multiple files (especially
with the 64K ROM). We recommend that keepsRsrcOpen always be FALSE.

+ fDataPerm and fRsrcPerm determine what permission is used to open each fork of the file.
Each of those can have the values

« fsRdPerm, for read-only permission

* fsWrPerm, for write-only permission

* fsRAWrPerm, for read and write permission
¢ fsRAWrShPerm, for shared permission

« fSavelnPlace determines what happens when there isn’t enough disk space to save a copy of
the file instead of writing over the original. Its values can be

* sipNever, to indicate that the original file should never be overwritten

» sipAlways, to indicate that the original file should always be overwritten when there is
not enough space for a copy

» sipAskUser, to indicate that the user should be asked whether or not the original file
should be overwritten when there is not enough space for a copy

See the description of IDocument for information on how these fields are initialized.

MacApp 2.0 Globals 10/3/88 Page 30

Programmers who want to implement work files such as MacWrite uses should open them in
TYourDocument.IYourDocument and close them in TYourDocument.Free. TYourDocument.FreeData should reset
the work file to the same state set by I'YourDocument. TYourDocument. DolnitialState should set up the work file
for an empty document (if necessary) and TYourDocument. DoRead should set up the work file for an existing
document (if necessary). fSaveExists is a reliable indicator of whether a main document file exists or not (and, if
fDataOpen or fRsrcOpen is TRUE, whether the corresponding refNum is valid).

Ancestors: TObject, TEvtHandler

Fields

fChangeCount: LONGINT; The number of changes since the last time the document was saved

fCommitOnSave: BOOLEAN; Whether to commit the last command when saving this document, if ti:at
command affects the document. The default is TRUE.
fCreator: OSType; A four-character code giving the document’s creator.

fDataCpen: BOOLEAN; ‘Whether or not the data fork of the document file should be kept open at all times.
This is FALSE except for disk-based documents

fDataPerm: INTEGER; The permission used to open the data fork of the file: fsSRdPerm, fsWrPerm,
fsRAWrPerm, or fsSRAWrShPerm

fDataRefNum: INTEGER; The reference number for the data fork of the document file, if that fork is open’

fDocPrintHandler: , The object that enables and executes the Print, Print One, and Page Setup commands
TPrintHandler;

fFileType: OSType; A four-character code giving the type of the document file

fModDate: LONGINT; File modification date representing when the file was last read or saved.

fPrintInfo: Handle; Either NIL or a handle to a 120-byte print information record

fReopenAlert: BOOLEAN; Whether to give an alert if the user attempts to reopen a document. The default is
TRUE.

fRsrcOpen: BOOLEAN; Whether or not the resource fork of the document file should be kept open at all
times

fRsrcPerm: INTEGER; The permission used to open the resource fork of the file: fsRdPerm, fsWrPerm,

‘ fsRAWrPerm, or fSRAWrShPerm

fRsrcRefNum: INTEGER; The reference number of document file's resource fork, if it is open.

fsaveExists: BOOLEAN; Whether or not a disk file representing this document exists; in other words, whether
or not this document has ever been saved

fsaveInPlace: SIPChoice; The value that determines what happens when there isn’t room on the disk to
save the document in a new file, rather than writing over the old versionof the
document (when the old version is overwritten, the file is “saved inplace™): sipNever,
sipAlways, or sipAskUser

fsavePrintInfo: BOOLEAN; When this is set to TRUE and the document is saved, TDocument. DoWrite
writes the print information record of the fDocPrintHandler to the data fork of the
document file. If this is TRUE, when the document is read, the print information
record is read by TDocument.DoRead.

fSharePrintInfo: BOOLEAN; When this is set to TRUE, all print handlers associated with views belonging to
this document will share the same print information record. (This value determines
whether or not they will share that record.)

MacApp 2.0 Globals 10/3/88 Page 31

fTitle: STRING([63]; The name of the document file

fUsesRsrcFork: BOOLEAN; Whether or not the document uses the resource fork of the file
fUsesDataFork: BOOLEAN; Whether or not the document uses the data fork of the file
fviewList: TList; The list of views that render this document’s data

fVolRefNum: INTEGER; The volume reference number of the document file

fWindowList: TList; The list of windows belonging to this document

Close
PROCEDURE TDocument.Close;

Purpose To close and free a document. This method must never be called for a document
related to a view in the Clipboard.

Called by TApplication.Close and TWindow.CloseByUser

The default version If the document’s data has changed, a dialog is posed asking the user to save changes.

If the user cancels nothing further happens. If the user chooses yes the document’s
Save method is called and, if necessary, the last command is committed, all of the
document’s windows are closed, and the document is freed.

Override Sometimes
Call Sometimes
DolnitiaiState

PROCEDURE TDocument.DoInitialState;

Called by MacApp methods when the user chooses the New command, when the user chooses
the Revert command and there is no saved file, and when the user opens the
application icon. It does any additional initialization of the document that is not done
when an existing document is opened.

The default version Does nothing

Override Often. You should override this method when new documents need initialization not
done when existing documents are opened.

Call Never

MacApp 2.0 Globals 10/3/88 Page 32

TR,

DoMakeWindows

PROCEDURE TDocument,DoMakeWindows;

Purpose

Called by

The detault version

Primarily, to maintain compatibility with MacApp 1.x by providing the ability to
create window objects for a document. This method is called after a document is
opened, initialized, and has its views created. This method should create the windows
and frames to show the views. ‘

TApplication.OpenNew and TApplication.OpenOld

Does nothing.

Override Sometimes. In your implementation, you may wish to distinguish between views
that represent windows and views that represent data.

Call Never

DoMakeViews

PROCEDURE TDocument.DoMakeViews (forPrinting: BOOLEAN);

forPrinting

Tells you whether or not MacApp called this in response to the user requesting
printing of a document from the Finder. If your application creates views that are not
printed (such as palette views), you do not need to create them when forPrinting is
TRUE.

Purpose

Called by
The default version

Override

Call

To create the windows and views for a document, both the views that interpret the
document’s data and those, like palettes, that are independent of the data. It is called
after a document is created and initialized and before the windows are created.

TApplication.OpenNew, TApplication.OpenQld, and TApplication.PrintDocument
Calls ProgramBreak to halt the program

Always. Your implementation creates all views for the document and stores the
views in a field of the document object. See the “Creating a View” recipe in the
Cookbook for details on how to implement this method.

Never

MacApp 2.0 Globals

10/3/88 Page 33

DoMenuCommand
FUNCTION TDocument .DoMenuCommand(aCmdNumber: CmdNumber): TCommand; OVERRIDE;

aCmdNumber The command number of the menu command chosen by the user
The return value A command object that will carry out the command (and possibly undo and redo the
command) or gNoChanges
Purpose To handle menu commands defined for this particular object type
Originally declared by TEvtHandler
The default version Handles the Mac App-defined standard menu commands Save As, Save a Copy In,

Save, and Revert

Override Often. You override this method when your application has its own menu commands
that apply to the document as a whole. In that case, you end your method by calling
INHERITED DoMenuCommand so that the MacApp method can handle its
commands.

Call You call this method when you override it. Otherwise, you never call it. -

MacApp 2.0 Globals 10/3/88 Page 34

DoNeedDiskSpace
PROCEDURE TDocument.DoNeedDiskSpace (VAR dataForkBytes, rsrcForkBytes: LONGINT);

dataForkBytes Indicates the amount of disk space the document needs to save itself. This is set by
this method.

rsrcForkBytes Indicates the amount of disk space the document needs to save itself. This is set by
this method.

Purpose To return the amount of disk space needed to save the document

The default version Returns O for dataForkBytes unless fSavePrintInfo is TRUE, in which case it returns

the size of the print information record, and sets rsrcForkBytes to O unless
fUsesRsrcFork is TRUE, in which case it sets it to the standard fixed overhead value
for the resource file. (See the Resource Manager chapter of Inside Macintosh for
more information.)

Override Almost always. Documents that do not override DoNeedDiskSpace generally cannot
save any data except the print information record.

Your override method should accurately predict how much disk space will be needed -
to store the data and resources for the documents. (Most documents have no
resources, so the resource fork value is usually 0.) When you calculate your values,
you do not have to calculate how many blocks are actually needed, just the number
of bytes since MacApp automatically accounts for an integral number of blocks.
Also, you should add your needs to the initial values of these variables, as MacApp
may have already set them to some value before calling this method. If you use the
resource fork, you can use the constants kRsrcTypeOverhead and kRsrcOverhead to
account for the resource file overhead for each resource type and individual resource,
respectively.

If there isn’t enough space in the target volume, MacApp tests whether deleting the
old file would make enough room. If it would, what happens next depends on the
value of fSaveInPlace. See the notes at the beginning of “TDocument” in this
chapter for more information. If deleting the file would not make enough space (or
is precluded by the value of fSaveInPlace or the user’s actions), MacApp issues a
disk full error and the user is shown an alert to that effect.

Call Never

MacApp 2.0 Globals 1‘0/3/88 Page 35

DoRead

PROCEDURE TDocument .DoRead(aRefNum: INTEGER; rsrcExists, forPrinting: BOOLEAN);

aRefNum

rsrcExists

forPrinting

A file-system reference number for the document file. It is obtained from the
Operating System by MacApp. If the document doesn’t use the data fork (that is, it
uses only the file’s resource fork), aRefNum is 0.

Indicates whether or not the resource fork of the file exists. If it is FALSE, and the
document uses the resource fork, it means that the resource fork could not be opened
(presumably because it does not yet exist).

TRUE if the document is being opened just to print it (for printing from the Finder)

Purpose

The default version

Override

Call

To read an existing document file so its data can be used in the document object

Reads the print information record if fSavePrintInfo is TRUE for this document
object. Otherwise, it does nothing.

Almost always. Documents that do not override this method cannot save or restore
anything except their print information record.

~

If your document uses the resource fork and the resource fork exists, then MacApp
will ensure that the topmost resource file is that of the document when this method
is called. You may want to get the reference number of the resource file at the start
of this method if you think that some other method might change the top resource
file.

Your implementation generally begins with a call to INHERITED DoRead so that
the print information record is read, if necessary. It then reads the data of the
document and stores it in fields or objects available to the document object. You
should check the rsrcExists parameter before trying to read the resource fork. (It is
possible that the user opened a document with no resource fork. MacApp does not
consider this an error.)

See the “Saving and Restoring Data” recipe in the Cookbook for details about
implementing this method. '

You call this method if you override it. When you override this method, you usually
call it (by calling INHERITED DoRead). Otherwise, you never call it.

MacApp 2.0 Globals

10/3/88 Page 36

DoSetupMenus

PROCEDURE TDocument.DoSetupMenus; OVERRIDE;

Purpose

Originally declared by

The default version

Override

Call

To set up menu commands handled by TDocument.DoMenuCommand. This method
is called before any menu is displayed when the menus may have changed since the
last time it was called or from the idle loop, again when the menus may have
changed since the last time this was called. It is responsible for adorning and
enabling or disabling all menu commands handled by the document.

TEvtHandler

Begins by calling INHERITED DoSetupMenus. It then sets up the menu commands
handled by TDocument.DoMenuCommand: Save As, Save a Copy In, Save, and
Revert.

Often. You override this method if you define any menu commands that apply to
your document. In general, you override this method whenever you override
TDocument.DoMenuCommand. Your implementation must begin by calling
INHERITED DoSetupMenus so that MacApp can set up the menus first. Then, you
use the global procedures Enable and EnableCheck to enable any menu commands
that can currently be used. (EnableCheck, like Enable, can enable or disable menu
commands. EnableCheck also can add or remove a check mark next to a menu item.)
You can also adorn menus in other ways. See the “Changing Menu Appearance and
Function” recipe in the Cookbook for more detailed information.

You usually call this method when you override it. Otherwise, you never call it.

MacApp 2.0 Globals

10/3/88 Page 37

DoWrite

PROCEDURE TDocument.DoWrite(aRefNum: INTEGER; makingCopvy: BOOLEAN);

aRefNum A file-system reference number for the document file. It is obtained from the
Operating System by MacApp.

makingCopy Indicates whether DoWrite is being called to save a copy of the document. (Generally
used only for disk-based documents.).

Purpose To save a document’s data to a disk file

The defaulit version

Override

Call

Saves the print information record to the disk file if fSavePrintInfo is TRUE.
Otherwise, it does nothing.

Almost always. Documents that do not override this method cannot save or restore
anything except their print information record.

Your implementation generally begins with a call to INHERITED DoWrite so that
the print information record is saved, if necessary. It then saves the document’s data.

If your document uses the resource fork and the resource fork exists, then MacApp
will ensure that the topmost resource file is that of the document when this method °
is called. You may want to get the reference number of the resource file at the start
of this method if you think that some other method might change the top resource
file.

See the “Saving and Restoring Data” recipe in the Cookbook for details of this
method.

You call this method when you override it (by calling INHERITED DoWrite).
Otherwise, you never call it. ‘

ForAllViewsDo

PROCEDURE TDocument .ForAllViewsDo (PROCEDURE DoToView(aView: TView)):;

DoToView A procedure, usually local to the caller, that is called repeatedly by ForAllViewsDo
and passed each of the views in turn
Purpose To perform an operation on all views of a document

The default version

Calls DoToView once for each view in the document’s view list

Override Never
Call . Sometimes
MacApp 2.0 Globals 10/3/88 Page 38

ForAllWindowsDo

PROCEDURE TDocument.ForAllWindowsDo (PROCEDURE DoToWind(aWindow: TWindow));

DoToWind A procedure, usually local to the caller, that is called repeatedly by
ForAllWindowsDo and passed each window of this document in turn
Purpose To perform an operation on all windows of a document

The default version

Automatically scans through the document’s list of windows and calls DoToWind
once for each window :

Override Never
Call Sometimes
FreeData

PROCEDURE TDocument.FreeData;

Purpose
Called by

The default version

To free the document’s data objects during a revert operation
TDocument Revert
Does nothing

Override Always. You override this method to free data objects that should be freed when the
user chooses the Revert command.

Call Sometimes. You may want to call this method from your implementation of
TDocument.Free, if convenient.

FreeFile

PROCEDURE TDocument.FreeFile;

Purpose

Called by

The default version

To free resources associated with the conneétion between a TDocument object and a
disk file
TDocument.Free, TDocument.Save ViaTemp, and TDocument.SavelnPlace

Closes the appropriate forks of the file if fDataOpen or fRsrcOpen and fSaveExists
are TRUE

Override Sometimes
Cadll Rarely
MacApp 2.0 Globals 10/3/88 Page 39

FreeFromClipboard
PROCEDURE TDocument.FreeFromClipboard;

Purpose To free a Clipboard docﬁment

Called by TView . FreeFromClipboard

The default version Removes gClipWindow from fWindowList and calls Free

Override Sometimes. You can override this method to do something other than Free.
Call Never

GeiTempName

PROCEDURE TDocument.GetTempName (VAR fileName: Str255);

floName A name for a temporary document file

Purpose _ To generate a random temporary filename ’

The default version Appends a mutated form of the time of day to the name of the document or, if the
document is untitled, to the name of the application

Override " Rarely

Call Sometimes

MacApp 2.0 Globals 10/3/88 Page 40

IDocument

PROCEDURE TDocument.IDocument (itsFileType, itsCreator: OSType;

usesDataFork, usesRsrcFork, keepsDataOpen, keepsRsrcOpen: BOOLEAN);

itsFileType The file type for the document file

itsCreator The signature of the application that created the document file

usesDataFork Indicates whether (kUsesDataFork) or not (INOT kUsesDataFork) the document uses
the data fork of the file)

usesRsrcFork Indicates whether (kUsesRsrcFork) or not (NOT kUsesRsrcFork) the document uses
the resource fork of the file

keepsDataOpen Indicates whether (kDataOpen) or not (NOT kDataOpen) the data fork of the file
should be kept open at all times

keepsRsrcOpen Indicates whether (kRsrcOpen) or not NOT kRsrcOpen) the resource fork of the file
should be kept open at all times

Purpose

The default version

To initialize a TDocument object. It is usually called from the initialization method
of customizations of TDocument. ;

Gives these values to the fields of TDocument:

fWindowList := NewList;
fViewList := NewList;
fDocPrintHandler := NIL;
fChangeCount := 0;
fSavePrintInfo := FALSE;
fsharePrintInfo := TRUE;
fPrintInfo := NIL;
fTitle := '*;
fFileType := itsFileType:
fVolRefNum := O0;
fReopenAlert := TRUE;
fSaveExists := FALSE;
fCommitOnSave := TRUE;
fCreator := itsCreator:;
fDataPerm := fsRdPerm;
fRsrcPerm := fsRdPerm; {Has no meaning with 64K ROM}
fDataOpen := keepsDataOpen;
fRsrcOpen := keepsRsrcOpen;
IF keepsDataOpen OR keepsRsrcOpen THEN

fSavelnPlace := sipNever
ELSE

fSavelInPlace := sipAskUser;

Override Never

Cadll You call this method at the beginning of the IYourDocument method that you write
for your document type to change any values you need to change 'and do any
additional initialization you require.

MacApp 2.0 Globals 10/3/88 Page 41

SavedOn

PROCEDURE TDocument.SavedOn(fileName: Str255; volRefNum: INTEGER);

fleName The name of the document file

volRefNum The volume reference number for the file

Purpose To allow the programmer to clean up any data structures or work files to note that a
clean save has been made '

Called by TDocument.Save when a new copy of the file is being made (the normal situation)

The default version

Resets fChangeCount to 0, sets fSaveExists to TRUE, replaces fTitle and
fVoIRefNum with the values passed in, and if fDataOpen or fRsrcOpen is TRUE,
opens the appropriate fork

Override Sometimes
Call Never
SavelnPlace

PROCEDURE TDocument.SaveInPlace(itsCmdNumber: CmdNumber; makingCopy: BOOLEAN; VAR

fileName: Str255;

volRefNum: INTEGER):;

itsCmdNumber The command number for this save operation

makingCopy Whether or not a copy of the original file is being saved

fileName The name of the document file

volRefNum The volume reference number for the file

Purpose To save the document, replacing the old version on disk

Called by TDocument.Save when makingCopy is FALSE and askForFileName is FALSE, and

The default version

the document cannot or should not be saved via a temporary file

If fDataOpen and fRsrcOpen are both FALSE, deletes the target file, calls
SELF FreeFile, calls SELF.MakeNewCopy, and then calls SELF.SavedOn. If either
fDataOpen or fRsrcOpen is TRUE, the default version does nothing.

Override Sometime. You can override this method to save a disk-based document in place by
modifying the file. If you do, you must set the file’s access permission to a
modifiable mode before doing so.

Call Never

MacApp 2.0 Globals 10/3/88 Page 42

s,

SaveViaTemp

PROCEDURE TDocument,SaveViaTemp(itsCmdNumber: CmdNumber; makingCopy: BOOLEAN; VAR

fileName: :
Str255; volRefNum: INTEGER);
itsCmdNumber The command number for this save operation
makingCopy Whether or not a copy of the original file is being saved
fleName The name of the document file
volRefNum The volume reference number for the file
Purpose To save the document into a new, temporary file
Called by TDocument.Save when a new copy of the file is being made (the normal situation)

The default version

Calls SELF.MakeNewCopy and then calls SELF .FreeFile if makingCopy is
FALSE. It then deletes the target (if it exists), renames the file, and calls
TDocument.SavedOn if makingCopy is FALSE. '

Override Rarely
Call Never
SetTitle

PROCEDURE TDocument.SetTitle(aTitle: Str255);

alitle

The new title for the window

The default version

Sets SELF.fTitle to aTitle and calls SetTitleForDoc for each window of the
document

Override Sometimes
Call Sometimes
MacApp 2.0 Globals 10/3/88 Page 43

ShowReverted
PROCEDURE TDocument.ShowReverted;

Called by TDocumentDoMenuCommand when the user chooses the Revert command and
clicks the OK button in the dialog box that is displayed

The default version Calls ShowReverted for each view of the document

Override Rarely

Call Rarely

ShowWindows
PROCEDURE TDocument.ShowWindows;

Purpose To display a document’s windows on the screen. It is called when the document is
initially opened .

Called by . TApplication.OpenNew and TApplication.OpenOld

The detault version Calls OpenWindow for all windows for which fOpenlInitially = TRUE

Override Sometimes. You can override this method to determine in some other way what

windows are initially shown.
Cadll Never

MacApp 2.0 Globals 10/3/88 Page 44

TCommand

Customize: usually
Instantiate: never
Call methods: rarely

TCommand objects fall into two general categories: command objects and mouse trackers. The Cookbook includes a
number of recipes dealing with different types of command objects and mouse trackers. In general, you override Dolt,
Undolt, Redolt, and possibly Commit for command objects and trackers that change the document, while you
override TrackConstrain, TrackFeedback, and TrackMouse only for mouse trackers.

Command objects and mouse trackers that do not change the document do not need Undolt, Redolt, or Commit. In
fact, you may never create a command object for many commands that do not change the document; in those cases,
you can carry out the action of the command from DoMenuCommand, DoMouseCommand, DoKeyCommand,
DoCommandKey, or another method that retums a command object. (In that case, return gNoChanges.)

Ancestors: TObject

Fields

fCanUndo: BOOLEAN; Whether or not this command can be undone. The default is TRUE.

~

fCausesChange: BOOLEAN; Whether or not this command changes the document referred to by the
command’s fChangedDocument field. This defaults to TRUE. When this is TRUE,
the document is automatically marked as changed when this command is done. (If the
command is undone, the document’s change count is automatically decremented, and
if the command is redone, the change count is incremented again.)

fChangedDocument : The document that may be changed by the command. This defaults to gDocument
TDocument;
fChangesClipboard: BOOLEAN; Whether or not this command changes the Clipboard. This defaults to
FALSE and should be set to TRUE for cut or copy commands that change the
Clipboard.

fCmdNumber: CmdNumber; Thecommand number associated with the command

fConstrainsMouse: BOOLEAN; When this is set to TRUE, this command’s TrackConstrain method is called as
the mouse moves. This defaults to FALSE.

fScroller: TScroller; Either a handle to the scroller used for auto-scrolling or Nil.

fTarget: TEvtHandler; The target to set before calling Undolt or Redolt. In other words, the value of
gTarget when this command was initially given.

fTrackNonMovement: BOOLEAN; Whether to call TrackMouse even if the mouse hasn‘t moved since the
last call to TrackMouse. The default is FALSE.
fView: TView; The view in which mouse tracking takes place or Nil to track in screen coordinates.

fViewConstrain: BOOLEAN; Whether the mouse is constrained to the view. The default is TRUE.

MacApp 2.0 Globals 10/3/88 Page 45

Commit

PROCEDURE TCommand.Commit;

Purpose
Called by

The default version

Override

Call

To do anything necessary to make the effects of a command permanent

TApplication.CommitLastCommand, which is called when the command can no
longer be undone or redone (usually when a new undoable command is chosen, when
the document is closed, or when the apphcauon is terminated). It is not called if the
command was left undone.

Does nothing

Often. This method is most commonly used to implement filtered commands or
with commands that delete items from the document’s data set, in which the deleted
items are not freed until the command can no longer be undone.

Rarely

Dolt, Redolt, Undolt

PROCEDURE TCommand.DoIt;
PROCEDURE TCommand.Redolt;
PROCEDURE TCommand.Undolt;

Purpose

Called by

The defauilt version

Override

Call

To do, undo, and redo a command. Dolt is called when the command is initially
done; Undolt is called when the user picks the Undo command an odd number of
times; Redolt is called when the user picks the Undo command an even number of
times. Dolt and Redolt carry out the action of the command (generally, they both
call the same methods to do the command, although Redolt may have to change the
selection or otherwise act to restore the state of the document at the time the
command was originally done). Undolt reverses the action of the command.

TApplication PerformCommand (Dolt) and TApplication.DoMenuCommand (Undolt
and Redolt)

Does nothing

Usually. These are the methods that generally carry out (and undo) the action of the
command. The only command objects that may not override these methods are

mouse trackers and commands that do not change the document or those that cannot
be undone.

Almost never. The only likely exception is that your Redolt method might call
Dolt.

MacApp 2.0 Globals

10/3/88 Page 46

ICommand

PROCEDURE TCommand.ICommand(itsCmdNumber: CmdNumber, itsDocument: TDocument; itsView:

TView;
itsScroller: TScroller);
itsCmdNumber The command number associated with this command
ltsDocument The document affected by this command
itsView The view in which mouse tracking takes place or Nil to track in screen coordinates.
itsScroller Either a handle to the scroller used for auto-scrolling or Nil.
Purpose To initialize fields of TCommand
Called Usually from the initialization methods for the immediate descendants of TCommand
The detault version Makes these assignments: .
fCmdNumber := itsCmdNumber;

Override
Call

fCanUndo := TRUE;
fCausesChange := TRUE;
fChangedDocument := gDocument;
fConstrainsMouse := FALSE;
fviewConstrain := TRUE;
fChangesClipboard := FALSE;
fTrackNonMovement := FALSE;
fView := itsView;

fScroller := itsScroller;
fTarget := NIL;

Never. You usually supplement its action with an I'YourCommand method.
Always. You call this method as part of command initialization.

e

MacApp 2.0 Globals

10/3/88 Page 47

TrackConstrain

PROCEDURE TCommand.TrackConstrain(anchorPoint, previousPoint: VPoint; VAR nextPoint:

VPoint);

anchorPoint

previousPoint

The position of the mouse pointer, in view coordinates, when the mouse button
went down

The position of the mouse pointer the last time this method was called, in view
coordinates .

nextPoint The current position of the mouse pointer, in view coordinates

Purpose To constrain the mouse movement in any way your application requires. It is used
only in mouse trackers.

Called by TApplication.TrackMouse (a method you never deal with directly) when

The default version

command.fConstrainsMouse is TRUE
Does nothing

Override Sometimes override this method to change the value of nextPoint. See “Handling
Mouse Events” in the Cookbook for further discussion of mouse trackers.

Call Rarely

TrackFeedback

PROCEDURE TCommand.TrackFeedback (anchorPoint, nextPoint: VPoint; turnItOn,

mouseDidMove: BOOLEAN);

anchorPoint

nextPoint
turnitOn

mouseDidMove

The position, in view coordinates, of the mouse pointer when the mouse button
went down

The current position, in view coordinates, of the mouse pointer
Indicates whether the feedback is to be turned on (TRUE) or turned off (FALSE)
TRUE if the mouse moved since the last time TrackFeedback was called

Purpose

Called by
The default version

Override

Call

To provide on-screen feedback for the user while the mouse is being tracked (that is,
while the mouse button is down and a mouse tracker object exists)

TApplication. TrackMouse
Provides “rubberband” feedback: a shadowy box between anchorPoint and nextPoint

Often. You override this method to provide more appropriate feedback while the
mouse is tracked. See “Handling Mouse Events” in the Cookbook for further
discussion of mouse trackers.

Rarely

MacApp 2.0 Globals

10/3/88 Page 48

TrackMouse

FUNCTION TCommand.TrackMouse(aTrackPhase: TrackPhase; VAR anchorPoint, previousPoint,

nextPoint: VPoint; mouseDidMove: BOOLEAN): TCommand;

aTrackPhase
anchorpPolint

previousPoint
nextPoint
mouseDidMove

The retfurn value

The current phase of the mouse-tracking process: trackPress when the mouse button
first goes down, trackMove while the mouse moves, and trackRelease when the
mouse button comes up

The position of the mouse pointer, in view coordinates, when the mouse button
went down. If you change this value, the new value is passed to you the next time
this method is called.

The position of the mouse pointer the last time this method was called, in view
coordinates

The current position of the mouse pointer, in view coordinates. Although you can
change this value, it is better to use TrackConstrain to control mouse movement.

TRUE if the mouse moved since the last time TrackFeedback was called. (See “Track
Feedback,” below.)

The mouse tracker that will be used in succeeding calls. You generally return SELF,
although applications may sometimes return a different mouse tracker object.

Purpose

Called by

The default version

Override

Cadll

-

To allow you to carry out any actions (other than feedback or mouse constraint) that
depend on the movement of the mouse or on the track phase

TApplication. TrackMouse when the mouse button first goes down, as the mouse
moves, and when the mouse button comes up

Returns SELF, in effect doing nothing

Often. You override this method to take application-specific action. You should not
assume that the mouse should be considered to have moved the first time this is
called with an aTrackPhase of trackMove. The track phase is set to trackMove when
the mouse moves more than the hysteresis value. SELF.TrackConstrain may set the
mouse position back so that no movement should be considered to have occurred.
The value of mouseDidMove should be tested to determine whether the mouse
should be considered to have moved. See “Handling Mouse Events” in the Cookbook
for further discussion of mouse trackers.

Never

MacApp 2.0 Globals

10/3/88 Page 49

e ——

TList

Customize: rarely
Instantiate: often
Call methods: often

TList is defined in UList.

This object type is used in MacApp to store objects and is otherwise provided for your convenience. You do not have

to use TList objects.

In general, you store objects of

asingle type in a TList object, and when you retrieve an object, you coerce the result

into a variable of the type you need.

Ancestor: TObject
Fields

fDeletions: INTEGER;

fEachLevel: INTEGER;
fFirstOffset: LONGINT;

fsize: INTEGER;

The number of deleted elements in the list. These have the value kDeletedElement.
The fSize field always reflects the number of real elements (that is, without counting
these deleted elements). Other objects must not write directly to this field. (You can
read its value, though.)

The number of Each calls in progress. Other objects must not write directly to this
field.

Contains the number of bytes of named fields before the first element. Equal to
Sizeof (SELF). Other objects should neither read nor write to this field.

Holds the number of elements in the list

At
FUNCTION TList.At (index:

INTEGER) : TObject;

Index The index number of the element you want to retrieve (counting from one)

Purpose To return a specific element from a list

The default version Returns the requested element. Range checking is done only when the compile flag
qRangeCheck is TRUE.

Override Rarely

Call Often

MacApp 2.0 Globails 10/3/88 Page S0

Delete

PROCEDURE TList.Delete(item: TObject):

item

A reference to an object

Purpose

The default version

To delete a specific element from the list

Searches the list for the first reference to the object referred to by item and deletes it.
The item is not freed. If there are additional references to the same item in the list,
they are not deleted. If the item is found, this method reduces fSize by one.

Override Rarely. You might override this method to delete all references to the object referred
to by item or to free the deleted object.

Call Often

DeleteAll

PROCEDURE TList.DeleteAll;

Purpose

The default version

To delete all elements in a list
Sets fSize to 0. This deletes all elements from the list but does not free the objects.

Override Rarely
Call Often
Each

PROCEDURE TList.Each(PROCEDURE DoToItem(item: TObject)):

DoToltem

A procedure (usually local) that is passed each element of the list in turn

Purpose
The default version

To apply the procedure DoToltem to every element in a list

Calls the procedure DoToltem repeatedly, passing each element of the list to that
procedure in turn. The actual parameter is typically a procedure whose argument is a
descendant of TObject. If DoToltem calls InsertLast, the newly added element will
not be passed to DoToltem. If DoToltem calls InsertFirst or DeleteAll, the result is
unpredictable.

Override Rarely
Call Often ;
MacApp 2.0 Globals 10/3/88 Page 51

First
FUNCTION TList.First: TObject:;

The return value The first element in the list

Purpose To return the first element in a list

The default version Returns the first element in the list, or‘NIL if there is no first element
Override Rarely

Call . Often

FirstThat

FUNCTION TList.FirstThat (FUNCTION TestItem(item: TObject): BOOLEAN): TObject;

Testitem A function, usually local to the caller, which returns TRUE when some condition is
met N

Purpose To return the first element that fulfills some condition as determined by the function
Testltem

The default version Calls TestItem once for each element of the list, in order, until TestItem returns

TRUE. It then completes and returns the element that satisfied the test. If none
satisfied the test, the method returns NIL. The actual parameter is typically a
function whose argument is a descendant of TObject. If Testltem calls InsertLast, the
newly added element will not be enumerated. If TestItem calls InsertFirst, Delete, or
DeleteAll, the results are unpredictable.

Override Rarely
Call Often
IList

PROCEDURE TList.IList;

Purpose To initialize a new list

The default version Initializes the list, setting fSize to 0

Override Never. If you customize TList, you might supplement its action with an IYourLjst
: method.

Call Usually. Sometimes, though, you call the global procedure NewList (documented

with this object type, not in Chapter 9), which calls this method: for you. You
should never call this method twice for the same list.

MacApp 2.0 Globais 10/3/88 Page 52

PO S

InsertFirst
PROCEDURE TList.InsertFirst(item: TObject);

ltem An object reference
Purpose To insert a new element as the first in a list
The default version Inserts a reference to the item as the new first element of the list. The index of the

new item is 1. All other elements are moved over one. (The old first element is not
deleted; it is now the second element.) The value of fSize is increased by one. If the
compile flag gDebug is TRUE and SetEltType was called, the item’s type is checked
to make sure it is of the list’s defined element type. (That is only possible if the
application and MacApp were compiled with debugging on. See Chapter 11 for
more information.)

Override Rarely
Call Often
InsertLast

PROCEDURE TList.Insertlast(item: TObject):;

item An object reference
Purpose To insert a new element as the last element in a list
The default version Inserts a reference to the item as the new last element of the list. The index of the

new item is fSize. (The old last element is not deleted; it is now the next-to-last
element.) The value of fSize is increased by one. If the compile flag gDebug is
TRUE and SetEltType was called, the item’s type is checked to make sure it is of
the list’s defined element type. (That is only possible if the application and MacApp
were compiled with debugging on. See Chapter 11 for more information.)

Override Rarely
Call Often
Newlist

FUNCTION NewList: TList;

Purpose . To create a linked list

The default version Creates an object of type TList, calls IList to initialize it, and returns the object

* Note: This is a global procedure. It is documented here because it is important only for '
TList objects.

MacApp 2.0 Globals 10/3/88 Page 53

RemoveDeletions
PROCEDURE TList.RemoveDeletions;

Purpose To remove deleted items from a list. Items deleted by Delete while an Each operation is in
progress are replaced by the value kDeletedElement. They cannot be accessed and are not
counted in the value of fSize. This method actually removes those elements.

Override Never

Call Rarely

MacApp 2.0 Globals 10/3/88 Page 54

