
A/UX Shells and Shell Programming
Release 3.0

U\llTED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manu~ or in the media on which a software product is distributed, Apple will replace
the media or manual at no charge to you provided you return the item to be replaced with proof of purchase to Apple or an
authorized Apple dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple's Media Exchange Program. While not
an upgrade or update method, this program offers additional protection for up to two years or more from the date of your
original purchase. See your authorized Apple dealer for program coverage and details. In some countries the replacement
period may be different; check with your authorized Apple dealer.

All IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILI1Y AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF
THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILI1Y, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of the possibility of
such damages.

THE WARRANTY.AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF All OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension,
or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages,
so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have
other rights which vary from state to state.

ti Apple Computer, Inc.

© 1992, Apple Computer, Inc.,© 1989, Apple Computer, Inc., and UniSoft Corporation. All rights
reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws,
this manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The
same proprietary and copyright notices must be affixed to any permitted copies as were affixed to the
original. Under the law, copying includes translating into another language or format.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, LaserWriter, and Macintosh are registered trademarks of Apple Computer, Inc.

Finder is a trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T Unix System Laboratories.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

Contents

About This Guide I xvii

Who should use this guide I xvii
What you need to know I xviii
What's covered in this guide I xviii
What's not covered in this guide I xviii
How to use this guide I xix
Conventions used in this guide I xix

Keys and key combinations I xix
Terminology I xx
The Courier font I xx
Font styles I xxi
A/UX command syntax I xxi
Manual page reference notation I xxii

For more inforruation I xxiii

1 Introducing the A/UX Shells I 1-1

What shells are I 1-3
Command interpreter and programming language I 1-3

Command interpreter I 1-4
Programming language I 1-5

When to use shells I 1-6
When not to use a shell I 1-7

How shells interpret commands I l-7
Commands recognized by the shell I 1-8
Locating commands: The search path I 1-8

The three A/UX shells I l-9
Introducing the C shell I 1-9
Introducing the Bourne shell I 1-10
Introducing the Korn shell I 1-11

2 Using the Shells Interactively I 2-1

vi Contents

The login shell I 2-3
Determining your login shell I 2-4
Changing your login shell I 2-4
Changing your working shell I 2-5

Entering commands I 2-5
Prompts I 2-6
Changing or canceling a command I 2-7
Combining commands on a line I 2-7
Invalid commands I 2-8

Shell metacharacters I 2-9
Asterisk (*) I 2-9
Question mark (?) I 2-10
Brackets ([J) I 2-11

Overriding metacharacter interpretation I 2-12
Variables I 2-14

Shell variables I 2-15
User-created variables I 2-16

Standard input, output, and error I 2-17
Input/output redirection I 2-18

Redirection operators I 2-18
Output redirection I 2-18
Input redirection I 2-19

Filters and pipes I 2-20
Shells and processes I 2-21

Parent and child processes I 2-21
Background commands I 2-22

Controlling background commands with the PIO I 2-24

What you have learned I 2-25
Where to go from here I 2-26

3 Bourne Shell Reference I 3-1

The Bourne shell prompt I 3-3
The secondary shell prompt I 3-3
Changing the prompt character I 3-3

Types of commands I 3-4
The parts of a command I 3-4
Interactive use I 3-5

Command termination character I 3-5
Impossible commands I 3-6
Background commands I 3-6

Checking command status I 3-6
Logging out I 3-7

Canceling commands I 3-7
Before you press RETURN I 3-7
While a command is running I 3-8
Canceling background commands I 3-9

Using Bourne shell metacharacters I 3-9
Specifying filenames with metacharacters I 3-l 0
Input and output redirection I 3-13
Combining commands: Pipelines I 3-14
Command grouping I 3-15
Conditional execution I 3-16
Quoting I 3-l 6

Working with more than one shell I 3-18
Changing to a new shell I 3-19
Changing your default shell I 3-19

The environment I 3-19
Listing existing values I 3-20

Assigning values to environment variables I 3-20
Removing environment variables I 3-21
Commonly used environment variables I 3-21
The environment and new shell instances I 3-23
Special environments I 3-23
The default environment on your system I 3-25

The .profile file I 3-25
A sample .profile file I 3-26

Locating commands I 3-26
Shortcuts in changing directories I 3-27
Receiving mail I 3-27
Your editing environment I 3-28

Contents vii

viii Contents

Customizing your login procedure I 3-28
Shell execution options I 3-29

Options that affect the environment I 3-29
Options for invoking new shells I 3-30

Restricted shell I 3-30
Shell layering I 3-31
Overview of shell programming I 3-31
Writing shell programs I 3-32

Executing shell scripts I 3-32
Comments I 3-34
Writing interactive shell scripts I 3-34
Canceling a shell script I 3-34
Writing efficient shell scripts I 3-35

Command evaluation I 3-35
Forcing more than one pass of evaluation I 3-37
Command execution I 3-38
Exit status: The value of the command I 3-38

Defining functions I 3-39
Positional parameters and shell variables I 3-40

Positional parameters I 3-41
Setting values in a script I 3-41
Changing parameter positions I 3-42
Number of parameters I 3-43

Shell variables I 3-43
Assigning values I 3-43
Removing shell variables I 3-44

Setting constants I 3-45
Parameter and variable substitution I 3-45
Testing assignment and setting defaults I 3-46
Parameters and variables set by the shell I 3-48

Control-flow constructs I 3-48
for loops I 3-49
case statements I 3-51
while loops I 3-53
until loops I 3-54
if then else / 3-55
exit [n] I 3-58

Input and output I 3-58
I/0 redirection I 3-58

Redirection with file descriptors I 3-58
File descriptors redirecting input I 3-60
File descriptors redirecting output I 3-60
Combining standard error and standard output I 3-60
Changing the shell's standard input and output I 3-61
Associating file descriptors with other files I 3-61

Reading input I 3-62
Taking input from scripts I 3-63
Using command substitution I 3-67
Writing to standard output I 3-68

Other features I 3-69
Arithmetic and expressions I 3-69
File status and string comparison I 3-70
The null command (:) I 3-71

Error handling I 3-71
Fault handling and interrupts I 3-72
Debugging a shell script I 3-75

Summary of Bourne shell commands I 3-76

4 Korn Shell Reference I 4-1

The Korn shell prompt I 4-3
The secondary shell prompt I 4-3
The tertiary shell prompt I 4-3
Changing the prompt character I 4-3

Types of commands I 4-4
Learning about built-in commands I 4-4

The parts of a command I 4-5
Interactive use I 4-6

Command termination character I 4-6
Impossible commands I 4-6
Background commands I 4-7

Checking command status I 4-7
Logging out I 4-8

Canceling commands I 4-8
Before you press RETURN I 4-8
While a command is running I 4-9
Canceling background commands I 4-l 0

Contents ix

x Contents

Editing and reusing commands I 4-10
The vi option I 4-11

The editor window I 4-11
Command history I 4-12
Moving the cursor on the command line I 4-13
Changing and inserting text in the command line I 4-14
Replacing text in the command line I 4-15
Deleting text from the command line I 4-15
Copying and moving text within the command line I 4-15
Specialized editing commands I 4-15
Printing and executing edited commands I 4-16

The emacs (and gmacs) options I 4-16
The emacs input edit commands I 4-17
The emacs cursor motion commands I 4-17
The emacs history commands I 4-17
The emacs text modification commands I 4-18
Other emacs line editing commands I 4-19

Using fc or r I 4-19
Editing and reexecuting previous commands I 4-20
Listing previous commands I 4-21

Using shell metacharacters I 4-22
Shortcuts in working with directories I 4-24

Specifying home directories I 4-24
Current and previous directories I 4-25
Substituting directory names I 4-25

Specifying filenames with metacharacters I 4-26
Input and output redirection I 4-28
Combining commands in Pipelines I 4-29
Connecting a command to standard input and output I 4-30
Command grouping I 4-31
Conditional execution I 4-32
Quoting I 4-32

Working with more than one shell I 4-34
Changing to a new shell I 4-34
Changing your default shell I 4-34

The environment I 4-35
Listing existing values I 4-36
Assigning values to environment variables I 4-36
Removing environment variables I 4-37
Commonly used environment variables I 4-37
The environment and new shell instances I 4-40
Special environments I 4-40
The default environment on your system I 4-42

The .profile file I 4-43
A sample .profile file I 4-43
Locating commands I 4-44

Shortcuts in changing directories I 4-44
Receiving mail I 4-45
Your editing environment I 4-45

Customizing your login procedure I 4-46
The . kshrc file / 4-46

A sample . kshrc file I 4-47
Changing history variables I 4-47

Changing the ENV filename I 4-47

Aliases for commonly used commands I 4-48
Defining an alias I 4-48
Listing and removing aliases I 4-49
Tracking with aliases I 4-50
Default aliases I 4-50

Shell execution options I 4-51
Options that affect the environment I 4-51
Options for invoking new shells I 4-52

]ob control I 4-52
Suspending a job I 4-53
Listing jobs I 4-53
Changing the status of stopped jobs I 4-54
Blocked jobs I 4-55
Canceling jobs I 4-56
Logging out with stopped jobs I 4-56

Using shell layering I 4-57

Overview of shell programming I 4-57
Writing shell programs I 4-58
Executing shell scripts I 4-58
Comments I 4-60
Writing interactive shell scripts I 4-60
Canceling a shell script I 4-60
Writing efficient shell scripts I 4-61

Command evaluation I 4-61
Forcing more than one pass of evaluation I 4-63
Command execution I 4-64
Exit status: The value of the command I 4-65

Defining functions I 4-65

Contents xi

xii Contents

Positional parameters and shell variables I 4-67
Positional parameters I 4-67

Setting values in a script I 4-68
Changing parameter positions I 4-69
Number of parameters I 4-69

Shell variables I 4-70
Assigning values I 4-70
Arrays of strings I 4-71
Assigning values and types to variables I 4-71
Assigning values on the command line I 4-76
Removing shell variables I 4-76

Setting constants I 4-76
Parameter and variable substitution I 4-77
Referencing arrays I 4-78
Testing assignment and setting defaults I 4-78
Creating substrings in substitution I 4-80
Parameters and variables set by the system I 4-80

Control-flow constructs I 4-82
for loops I 4-83
select statements I 4-84
case statements I 4-85
while loops I 4-87
until loops I 4-88
if then else / 4-89
exit / 4-92

Input and output I 4-92
I/0 redirection I 4-92

Redirection with file descriptors I 4-92
Redirecting input with file descriptors I 4-93
Redirecting output with file descriptors I 4-94
Combining standard error and standard output I 4-94
Changing the shell's standard input and output I 4-94
Associating other files with file descriptors I 4-95

Reading input I 4-96
Taking input from scripts I 4-98
Using command substitution I 4-101
Writing to the standard output I 4-102
Creating and reading a menu I 4-103

Other features I 4-105
Arithmetic evaluation I 4-105
File status and string comparison I 4-108
The null command (:) I 4-109

Error handling I 4-110
Fault handling and interrupts I 4-110
Debugging a shell script I 4-115

Summary of Korn shell commands I 4-115
Null command (:) I 4-117
Dot command (.) I 4-117
alias command I 4-117
bg command I 4-118
cd command I 4-118
continue command I 4-119
echo command I 4-119
eval command I 4-119
exec command I 4-119
exit command I 4-120
export command I 4-120
fc command I 4-120
fg command I 4-121
getopts command I 4-121
hash command I 4-121
jobs command I 4-121
kill command I 4-122
let command I 4-122
newgrp command I 4-123
print command I 4-123
pwd command I 4-123
read command I 4-124
readonly command I 4-124
return command I 4-124
set command I 4-125
shift command I 4-127
test command I 4-127
trap command I 4-128
typeset command I 4-128
ulimit command I 4-130
umask command I 4-130
unalias command I 4-130
unset command I 4-130
wait command I 4-131
whence command I 4-131

Contents xiii

5 C Shell Reference I 5-1

xiv Contents

The C shell prompt I 5-3
The secondary shell prompt I 5-3
Changing the prompt character I 5-3

Types of commands I 5-3
The parts of a command I 5-4
Interactive use I 5-5

Command termination character I 5-5
Impossible commar.ds I 5-5
Background commands I 5-6

Checking command status I 5-6
Logging out I 5-7

Canceling commands I 5-7
Before you press RETURN I 5-8
While a command is running I 5-8
Canceling background commands I 5-9

Listing and reusing commands I 5-9
Listing previous commands I 5-10
Reusing a previous command I 5-11
Changing text in the most recent command line I 5-12
Editing and reexecuting previous commands I 5-12
Reusing parts of previous command lines I 5-15
Using modifiers with your command history I 5-15
Other uses for command history I 5-17

Using shell metacharacters I 5-18
Specifying home directories I 5-19
Specifying filenames with metacharacters I 5-20
Input and output redirection I 5-22
Combining commands: Pipelines I 5-23
Command grouping I 5-24
Conditional execution I 5-25
Quoting I 5-26

Working with more than one shell I 5-27
Changing to a new shell I 5-28
Changing your default shell I 5-28

The environment I 5-28
Environment variables I 5-29

Listing existing values I 5-29
Adding environment variables and modifying values I 5-30
Removing environment variables I 5-30
Commonly used environment variables I 5-30

C shell variables I 5-32
Listing existing values I 5-32
Adding C shell variables and modifying values I 5-32
Removing C shell variables I 5-33
C shell variables I 5-33

The environment and new shell instances I 5-36
Special environments I 5-37
The default environment on your system I 5-37

The . login file I 5-38
A sample . login file I 5-38

Locating commands I 5-39
Your editing environment I 5-40

Customizing your login procedure I 5-40

The . cshrc file I 5-40
A sample . cshrc file I 5-41

Using history numbers as your prompt I 5-41
Protection against unintentional logout I 5-41

Aliases for commonly used commands I 5-42
Defining an alias I 5-42
Listing and removing aliases I 5-43
Aliases that take arguments I 5-43

Shell execution options I 5-45
Job control I 5-46

Suspending a job I 5-46
Listing jobs I 5-46
Changing the status of stopped jobs I 5-47
Blocked jobs I 5-49
Canceling jobs I 5-49
Logging out with stopped jobs I 5-49

Using shell layering I 5-50

Contents xv

xvi Contents

Overview of shell programming I 5-50
Writing shell programs I 5-51
Executing shell scripts I 5-51
Comments I 5-52
Writing interactive shell scripts I 5-53
Canceling a shell script I 5-53
Writing efficient shell scripts I 5-53

Command evaluation I 5-54
Command execution I 5-56
Exit status: The value of the command I 5-56

Arguments and shell variables I 5-57
Arguments I 5-57
Shell variables I 5-58

Assigning values I 5-58
Changing position of elements I 5-59
Removing shell variables I 5-60

Variable substitution I 5-60
Testing assignment I 5-63
Variables set by the system I 5-63

Control-flow constructs I 5-64
foreach loops I 5-64
switch statements I 5-65
while loops I 5-65
if then else I 5-66
goto I 5-67
exit / 5-67

Input and output I 5-67
Standard error and output files I 5-68
Reading input I 5-68
Taking input from scripts I 5-68
Using command substitution I 5-71
Writing to the standard output I 5-72

Other features I 5-72
Arithmetic evaluation I 5-72
Expressions I 5-73
File status I 5-7 4

Error handling I 5-75
Fault handling and interrupts I 5-76
Debugging a shell script I 5-76

Summary of C shell commands I 5-77

6 Shell Layering I 6-1

Invoking the shl program I 6-3
Creating a shell layer I 6-3
Suspending and resuming shell layers I 6-3
Learning the status of shell layers I 6-4
Deleting shell layers I 6-5
Summary of shl commands I 6-5

Appendix Additional Reading I A-1

Glossary I GL-1
Index I IN-1

Contents xvii

About This Guide

This guide presents the three UNIX® shells provided with A/UX:

• Bourne shell, the original UNIX shell

• C shell, the shell provided with the BSD version of UNIX

• Korn shell, the newest and arguably most powerful of the shells

These three shells provide access to the wide variety of powerful and flexible
software tools in A/UX. This guide shows you how to start using the shells to put some
of those tools to use in your day-to-day work. It also serves as a reference to the features
specific to each shell.

Who should use this guide

You don't have to be a programmer to use this guide; anyone who uses the UNIX
features of A/UX should find parts of this guide useful. If UNIX shells are new to you,
you can use the tutorial information to get started using them. If you have used the
shells, you can use the reference chapters to learn details about the shells, including shell
programming information.

xix

What you need to know

To use this guide effectively, you must know basic Macintosh operations. You should
also be familiar with the material presented in A!UX Essentials, especially the information
regarding CommandShell.

What's covered in this guide

This guide contains the following chapters:

• Chapter 1, "Introducing the A/UX Shells," describes the shells and why you might use
them in your day-to-day work.

• Chapter 2, "Using the Shells Interactively," uses a tutorial approach to teach basic
interactive use of the shells, providing hands-on examples of commands that you can
use in your day-to-day work.

• Chapter 3, "Bourne Shell Reference," presents the details of the Bourne shell.

• Chapter 4, "Korn Shell Reference," presents the details of the Korn shell.

• Chapter 5, "C Shell Reference," presents the details of the C shell.

• Chapter 6, "Shell Layering," describes the shl program and how to use it to run
and manage multiple concurrent processes.

• Appendix, "Additional Reading."

What's not covered in this guide

Using CommandShell, the Macintosh window-based interface to the shells, is presented
in A!UX Essentials and is therefore not covered in this guide.

The nuances of shell programming are beyond the scope of this guide. Several third­
party books cover advanced shell programming tricks.

xx About This Guide

How to use this guide

If you are not familiar with the UNIX shells, you should read Chapters 1 and 2. They will
get you started by explaining basic shell concepts and illustrating them with hands-on
examples.

If you are familiar with basic interactive use of the shells, but occasionally run into
problems making a command perform properly, you should read Chapter 2, entering the
example commands, to gain a more detailed understanding of how the shell works.

If you are familiar with one shell and intend to continue using that shell, you should
use the reference chapter for that shell as necessary. If you are familiar with one shell,
but need to learn one of the other shells, you should read the reference chapter for that
other shell.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK DOWN ARROW (-!.) OPTION SPACE BAR

COMMAND(~) ENTER RETURN TAB

CONTROL ESCAPE RIGHT ARROW (~) UPARROW(!)

DELETE LEIT ARROW (t-) SHIIT

About This Guide xxi

Sometimes you will see two or more names joined by hyphens. The hyphens
indicate that you use two or more keys together to perform a specific function. For
example,

Press COMMAND-K

means "Hold down the COMMAND key and then press the K key."

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the RETURN key. The instruction

Enter ls

means "Type ls and press the RETURN key."

Here is a list of common terms and the corresponding actions you take.

Term

Click

Drag

Choose

Select

Type

Enter

Action

Press and then immediately release the mouse button.

Position the mouse pointer, press and hold down the mouse button
while moving the mouse, and then release the mouse button.

Activate a command in a menu. To choose a command from a pull­
down menu, position the pointer on the menu title and hold down the
mouse button. While holding down the mouse button, drag down
through the menu until the command you want is highlighted. Then
release the mouse button.

Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type a series of characters without pressing the RETURN key.

Type the series of characters indicated and press the RETURN key.

The Courier font

Throughout A/UX guides, words that appear on the screen or that you must type exactly
as shown are in the Courier font.

xxii About This Guide

For example, suppose you see this instruction:

Type date on the command line and press RETURN.

The word date is in the Courier font to indicate that you must type it.

Suppose you then read this explanation:

After you press RETURN, information such as this appears on the screen:

Tues Oct 17 17:04:00 PDT 1989

In this case, courier is used to represent the text that appears on the screen.
All A/UX manual page names are also shown in the Courier font. For example,

the entry 1 s (1) indicates that 1 s is the name of a manual page in an A/UX reference
manual. See "Manual Page Reference Notation," later in this preface for more information
on the A/UX command reference manuals.

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat .filename

tells you that filename is a placeholder for the name of a file you want to display. For
example, if you wanted to display the contents of a file named Elvis, you would type
the word E 1 vis in place of .filename. In other words, you would enter

cat Elvis

New terms appear in boldface where they are defined. Boldface is also used for
steps in a series of instructions.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the
syntax for the wc command:

wc [-ll [-wl [-cl [.filename] ...

About This Guide xxiii

In this example, wc is the command, -1, -w, and -c are options andfilename
is an argument. Brackets ([]) enclose elements that are not necessary for the command
to execute. The ellipsis (...) indicates that you can specify more than one argument.
Brackets and ellipses are not to be typed. Also, note that each command element is
separated from the next element by a space.

The following table gives more information about the elements of an A/UX
command.

Element

command

option

argument

[l

Description

The command name.

A character or group of characters that modifies the command. Most
options have the form - option, where option is a letter representing an
option. Most commands have one or more options.

A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

Brackets used to enclose an optional item-that is, an item that is not
essential for execution of the command.

Ellipses are used to indicate that you can enter more than one argument.

For example, the wc command is used to count lines, words, and characters in a
file. Thus, you can enter

wc -w Priscilla

In this command line, -w is the option that instructs the command to count all of
the words in the file, and the argument Pris c i 11 a is the file to be searched.

Manual page reference notation

The A!UX Command Reference, the A!UX Programmer's Reference, the A!UX System
Administrator's Reference, the Xl 1 Command Reference for A!UX, and the Xl 1
Programmer's Reference for A!UX contain descriptions of commands, subroutines, and
other related information. Such descriptions are known as manual pages (often
shortened to man pages). Manual pages are organized within these references by section
numbers. The standard A/UX cross-reference notation is

command (section)

xxiv About This Guide

where command is the name of the command, file, or other facility; and section is the
number of the section in which the item resides.

• Items followed by section numbers (lM) and (8) are described in the AIUX System
Administrator's Reference.

• Items followed by section numbers (1) and (6) are described in the AIUX Command
Reference.

• Items followed by section numbers (2), (3), (4), and (5) are described in
the AIUX Programmer's Reference.

• Items followed by section number (lX) are described in the Xl 1 Command
Reference for A/UX.

• Items followed by section numbers (3X) and (3Xt) are described in the Xl 1
Programmer's Reference for AIUX.

For example

cat (1)

refers to the command cat, which is described in Section 1 of the AIUX Command
Reference.

You can display manual pages on the screen by using the man command. For
example, you could enter the command

man cat

to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit a manual page, press the SPACE BAR
until you see a command prompt, or type q at any time to return immediately to your
command prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to AIUX This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

About This Guide xxv

1 Introducing the A/UX Shells

What shells are I 1-3

When to use shells I l-6

How shells interpret commands I l-7

The three A/UX shells I l-9

-
Nearly everyone who uses A/UX: will need to use a shell at some time. The UNIX® shells

are known for their power and flexibility, yet it is easy to master the fundamental use of

a shell. With a basic understanding of shell concepts, you can take advantage of many

A/UX: features.

This chapter introduces you to the three A/UX: shells-the C shell, Bourne shell, and

Korn shell-and the ways you can use them to tap the power of A/UX:. The chapter

covers what the shells are, what you can do with shells, and how a shell works.

This chapter provides sample commands to illustrate the concepts it presents. Entering

the commands is not essential to understanding the concepts presented, but it will give

you hands-on experience with using a shell. If you do enter the commands, the output

of some of the commands will differ slightly on your A/UX: system.

1-2 Chapter 1 Introducing the A/UX Shells

What shells are
By allowing most basic human/ computer interactions to be expressed in mouse actions,
the Macintosh Finder has greatly simplified the use of the computer. For example, to
copy a file from a floppy disk to a hard disk, you merely drag the icon for that file from
the floppy disk window to the hard disk icon. In the Macintosh environment, the Finder
serves as a shell around the operating system: you point, click, and drag with the mouse
to tell the Finder what you want done, and the Finder works with the operating system to
ensure that the computer performs the task.

In any UNIX system, a shell also provides you with a mechanism for getting the
system to perform certain tasks for you. The UNIX shells do not provide the ease of the
Macintosh Finder, but they do allow you to perform a greater variety of functions, and
with a greater degree of flexibility. For example, with the Finder you can copy all the files
from one directory to another with a couple of mouse actions, while with a UNIX shell,
you must type in an entire command, including the exact destination pathname. On the
other hand, to copy all of the files whose names start with an uppercase P, you can issue
a single command in a UNIX shell, but with the Finder, you must inspect each file in the
directory, possibly scrolling through the directory's window, selecting each relevant file.

In A/UX, you can use both techniques: you can perform most of your day-to-day
operations with the Finder, and when you need more power or flexibility, you can use
the UNIX shells.

Command interpreter and programming language

Each A/UX shell is a program that provides two services: command interpretation and
program processing. Everyone who uses even the most basic UNIX commands uses the
command interpretation services of the shells. The program processing services are more
difficult to master, and are therefore less widely used. These services are introduced here
and are described in greater detail in later chapters.

What shells are 1-3

Command interpreter

Normally, you enter a shell command in a CommandShell window. (CommandShell itself
is not a shell: it is a program that makes it easier for you to work with the shells.) Acting
as a command interpreter, the shell processes the commands that you give it, decoding
them so the operating system can immediately perform all the functions that the
commands specify. Such use of the shell is called interactive because, in a sense, you are
carrying on a dialogue with the shell, proceeding step by step, with the shell responding
to each command before you enter another.

+ Note Using CommandShell is documented in A!UX Essentials. This book assumes
that you already know how to use CommandShell. +

A common interactive use of the shell is maneuvering through the UNIX file systems.
You might enter the following sequence of commands in a typical shell session. (The
responses from the shell are indented here to distinguish them from the commands; such
responses are not normally indented on your screen.)

pwd

/users

ls -c
howard jo_ann

cd howard
pwd

/users/howard
ls -c

tests notes samples

doris arthur

letter

The command pwd prints the name of the current directory (or working
directory), the directory that serves as the reference point for all file-related
commands-/users in this instance. The ls -c command lists the contents of the
directory. The cd command changes the current directory to /users /howard.
(Because howard is a subdirectory of /users, the current directory, the cd
command did not require the full pathname, /users /howard.)

1-4 Chapter 1 Introducing the A/UX Shells

Using the shell interactively enables you to perform a wide variety of functions, from
moving and copying files to performing complex sorts. To expand your knowledge of
interactive shell use, read Chapter 2, "Using Shells Interactively."

Progranuninglanguage

Often you need to perform repetitive tasks, such as backing up files. Such tasks can be
done interactively, but doing so is inefficient and prone to error. Imagine backing up
twenty files from a directory named

/users/marianne/current_unposted_journals

if you had to type the name of each file. The program-processing side of the shells comes
in very handy for such tasks. Each shell contains a very sophisticated programming
language with features such as flow control and conditional execution that programmers
would expect from a programming language. These features allow you to enter shell
commands into a file that can then be executed whenever it is required. Such a file is
called a shell program or shell script.

A shell script can be as simple as a single command, or it can be a lengthy
combination of commands that performs calculations, text manipulation, file and terminal
input/output, and many other functions. For example, the following three-line program,
named backup, copies all the new or changed files for the day from your current
directory into a backup archive on a floppy disk.

backup -- copy new files to backup directory

cd $HOME

find . -mtime -1 -print I cpio -pdm /dev/rdsk/c8d0s0

For a look at a somewhat more sophisticated shell program, enter

more /etc/adduser

in a CommandShell window. (The more command lists a file one screenful at a time;
press the SPACE BAR to advance through the listing, or press the Q key to exit and return
to the shell prompt.) This adduser shell program facilitates adding a user account to
the system; its use is documented in A!UX Local System Administration. In the file,
you'll see many of the usual programming constructs: variable initialization and value
assignment, conditional statements (if/then/else constructs), case statements, functions,
loops, and so forth.

What shells are 1-5

In fact, many functions of A/UX are performed by shell scripts. The file named
/FILES indicates which files in the system are actually shell programs. The following
command lists the name and purpose of each A/UX shell program.

grep 'shell script' /FILES I more

(As before, press the SPACE BAR to advance through the listing, or press the Q key to exit
and return to the shell prompt.)

When to use shells
Nearly everyone who uses A/UX can benefit from an understanding of a shell.
Understanding some of the subtleties of the shells will enable you to easily perform
operations that would take a great deal of thought otherwise. You've seen above how
you can use shell commands such as cd and pwd interactively to maneuver through
the file system. Here are some other things you can do using the shells interactively:

• inspect the contents of files and directories

• abbreviate otherwise lengthy commands

• customize your working environment

• monitor the state of active processes

• run a lengthy process in the background while you continue working

• change permissions or owners of files

• perform the same command on several files at once

The programming features of shells give you even more power and flexibility. Small
shell programs are often used to do routine system administration tasks. Since shell
programs are not compiled, they are also easily modifiable and therefore good for
ongoing processes that may vary slightly over time. Because the shells can use most of
the A/UX operating system features, shell programs are also good for making prototype
routines and user interfaces. With a shell program you can

• access files in any directory for which you have permission

• perform input and output for files and devices

• use program loops to repeat actions within a script

1-6 Chapter 1 Introducing the A/UX Shells

• make decisions that affect the flow of the script

• test attributes of files (Does the file exist? Is it a directory?)

• use variables (both default shell variables and variables that you create)

• run other programs and shell scripts

• quickly and easily automate routine tasks

• quickly make prototypes for larger, more complex programs

• examine the exit status of jobs

When not to use a shell

The Finder is convenient for performing most simple file manipulations, such as moving,
copying, renaming, and deleting. It can also access files in both Macintosh file systems
and UNIX file systems. For these reasons, it is often better to use the Finder than a UNIX
shell for simple interactive file manipulation.

A shell program is not compiled, which means that other people can read a script if
they can read the file. If security is of any concern, a compiled program is better. Also,
compiled code is likely to run faster than shell programs, so shell programs are usually
not the right choice when speed is a concern.

How shells interpret commands
When you open a CommandShell window, the shell displays a prompt and waits for you
to enter a command. When you enter a command, the shell interprets that command; that
is, it breaks the command into components and determines how to handle each
component. For example, the ls -c command used above lists the files in the current
directory, displaying the results in columns on the screen. 1 s is the name of the
command; - c specifies that the filenames are to be formatted in columns. The shell
determines that ls is really the name of a compiled program in the directory /bin

and runs that program, passing it the -c option as a parameter.

How shells interpret commands 1-7

Commands recognized by the shell

The shell recognizes three types of commands:

• Built-in shell commands, such as the cd command used above. Each shell has
built-in commands, some of which are unique to that shell. Built-in commands differ
from A/UX commands in that they are executed directly within the shell; the shell
does not have to search for the program that implements the command and then wait
for that program to run. For this reason, built-in commands often run faster than other
A/UX commands.

• Names of executable compiled programs, such as applications (for example,
TextEditor) and A/UX commands (for example, ls and cat).

• Names of shell scripts. For example, if you have a shell script in a file named
shell_prog, you can enter the command shell_prog in a CommandShell
window, and the shell will attempt to execute the program. Permissions for
she l l_prog must be set so that you can execute the script. For information about
permissions, see A/UX Essentials.

Locating commands: The search path

If a command you enter in a shell is the name of a built-in shell command or the full
pathname of an executable file, the shell can immediately try to execute that command.
Otherwise, A/UX must first locate the command before it can try to execute it. The shell
finds the command by checking the search path. The search path is a list of directories
containing commands you may wish to use. A typical search path for A/UX is as follows:

/bin:/usr/bin:/usr/ucb:/mac/bin:/etc

Colons separate the directories in the list. The shell searches through the search-path
directories in the order in which they are listed and executes the first version of the
command that it finds. Given the above search path, if both the /usr /ucb directory
and the /usr /bin directory contain an executable file named grep, then the shell
will run the version of grep in /usr /bin .

To check the search path for the current shell, enter

echo $PATH

1-8 Chapter 1 Introducing the A/UX Shells

This command displays the contents of the PATH variable, which contains the
search path.

You can change the search path to include or exclude directories. For example, many
people put their own commands in the directory /usr /local /bin. They must add
/usr I local /bin to the search path so the shell can find those commands. For
information on changing a particular shell's search path, see the reference chapter for
that shell.

The three A/UX shells
There are a number of UNIX shells. Of these, the C, Bourne, and Korn shells are most
widely used; all three are available as part of the standard A/UX distribution. Each differs
slightly from the others, and each has its proponents. Which shell to use depends on
several factors, including which shell was used for existing shell programs, which shell
your coworkers are using, and so forth. The default shell in A/UX is the C shell, but the
default is easy to change. The Korn shell is used for the tutorial chapters in this book, due
to its extended set of features.

While it is convenient to use one shell, you might choose to use different shells for
different purposes. For example, you could use the C shell interactively, but program in
the Korn shell to take advantage of its more sophisticated programming features. Your
system administrator may recommend that you use one particular shell. If you don't have
an administrator, the following sections should help you decide which shell to use for
various purposes.

Introducing the C shell

The C shell is the default shell in A/UX. Developed as part of Berkeley Software
Distribution (BSD) UNIX, it's considered by its advocates to be the easiest to program,
and it also makes the most concessions to interactive use. It's called the C shell because
the syntax of its programming constructs (such as loops) resembles the syntax of the C
programming language.

The three A/UX shells 1-9

You may want to use the C shell if you spend much time using the shell interactively.
The C shell allows you to edit commands on the command line, view a list of previous
commands you have entered (a feature known as command history), and reuse
commands you have entered. Using the C shell's alias feature, you can create shorthand
command names for complicated commands. In addition, the C shell includes job
control, a feature that allows you to switch among processes and move processes to the
foreground or background.

The C shell has some disadvantages. For instance, C shell scripts execute more slowly
than Bourne and Korn shell scripts. In addition, scripts written in the C shell generally
won't work in the Bourne and Korn shells (whereas a properly written Bourne shell
script will always work in the Korn shell).

For more information on the C shell, see Chapter 5, "C Shell Reference."

Introducing the Bourne shell

The Bourne shell is the original UNIX shell. It is efficient and fast, and it provides a
variety of powerful programming constructs. It also includes more error-handling
features than the C shell does, making Bourne shell scripts easier to debug than C shell
scripts. Another advantage of Bourne shell programs is that they are compatible with the
Korn shell, so you can run them in either the Bourne shell or the Korn shell.

Most Bourne shell programs cannot run in the C shell because the Bourne shell
supports programming constructs that the C shell does not and because constructs
common to both shells use different syntax. However, if the C shell determines that a
script did not originate from the C shell, it will invoke the Bourne shell to run the script.
This feature is convenient, but it can be confusing if error conditions occur.

The Bourne shell does not have the C shell features that simplify interactive use­
features such as command-line editing, listings of previous commands, and reusing
commands.

You should use this shell if you want to write sophisticated shell scripts that run
quickly.

For more information on the Bourne shell, see Chapter 3, "Bourne Shell Reference."

1-10 Chapter 1 Introducing the A/UX Shells

Introducing the Korn shell

The Korn shell is an extension of the Bourne shell, so it is compatible in many ways. It
provides all the Bourne shell's capabilities and even greater programming efficiency. In
addition, the Korn shell includes many of the features that make the C shell easy to use:
listings of previous commands, reusing previous commands, and the alias feature. Like
the C shell, the Korn shell has a job control feature that enables you to switch among
processes and move processes to the foreground or background. The Korn shell
command-line editing capabilities are more sophisticated than those of the C shell.

You may want to use the Korn shell for its power and flexibility, especially if your site
has many existing Bourne shell scripts.

The examples in the tutorial chapters of this book are written for the Korn shell. You
can gain a basic knowledge of the Korn shell from Chapter 2. For more detailed
information, see Chapter 4, "Korn Shell Reference."

The three A/UX shells 1-11

2 Using the Shells Interactively

The login shell I 2-3

Entering commands I 2-5

Shell metacharacters I 2-9

Overriding metacharacter interpretation I 2-12

Variables I 2-14

Standard input, output, and error I 2-l 7

Filters and pipes I 2-20

Shells and processes I 2-21

What you have learned I 2-25

Where to go from here I 2-26

A basic understanding of how to use the shells interactively can greatly improve your

control over the A/UX system. With a little experience, you can use the shells

interactively to do everyday tasks more quickly and efficiently.

In this chapter you'll find many example commands that will give you hands-on

experience at creating and editing commands. Try to work through as much of the

chapter at a time as possible, trying all the examples that the text suggests that you enter.

To ensure that you are running the Korn shell, enter the command ksh just after you

log in. Also keep in mind that most of the commands used in this chapter have many

additional options not covered here. A!UX Command Reference describes all the options

of each command in detail.

2-2 Chapter 2 Using the Shells Interactively

The login shell
When you log in to an A/UX system, one of the three shells starts to run to accept
commands that you enter in a CommandShell window. This shell is called your login
shell. The login shell can be any of the three A/UX shells. The entry for your account
in the password file(; etc/passwd) specifies which of the three shells will be your
login shell.

For example, the password file might look as follows:

root:lTkIJFna9/hzk:O:O::/:/bin/ksh

daemon:*:l:l::/:

bin:*:2:2::/bin:

sys:*:3:3: :/bin:

adm:*:4:4::/usr/adm:

uucp::5:5:UUCP admin:/usr/spool/uucppublic:

lp:*:7:7:lp:/usr/spool/lp:

chelsea:QxJR/bgf4rTG:75:75:Personnel:/users/chelsea:/bin/csh

elaine:RbQxJgf4poG:75:75:Accounting:/users/elaine:/bin/sh

Guest::90:90:A/UX Guest account:/users/Guest:/bin/rsh

The login shell for an account is specified as the last field in each account record. In
the example, the account root is assigned the Korn shell, ksh; the account elaine

is assigned the Bourne shell, sh; and the account chelsea is assigned the C shell,
csh. (All three shells are located in the directory /bin.)

+ Note If you look closely at the above password file, you'll find an account assigned
the rsh shell. This is not a fourth shell, but a restricted version of the Bourne shell.
You will also notice accounts for which no shell is assigned; these accounts typically
represent programs that run without the need for a shell. •

The login shell 2-3

Determining your login shell

If you don't know which shell is your login shell, you can find out with a simple
command.

• Enter the command echo $SHELL

Be sure to type the word SHELL in uppercase. This command will cause the shell to print
the pathname of your login shell, /bin/ksh for the Korn shell, /bin/ csh for the
C shell, and /bin/ sh for the Bourne shell.

You can also determine your login shell by inspecting the password file,
/etc/passwd.

• Enterthecommand more /etc/passwd

This command shows the password file one screenful at a time. Look for the entry for
your account. (If you don't find it, look for the word More highlighted at the bottom
of the screen: this indicates that the file is too big to fit on the screen. Press the SPACE BAR
to display another screenful until you find your account entry.) The name of your login
shell is at the end of your account entry.

• Quit the more program.

If the word More is highlighted at the bottom of the screen, press the Q key to
terminate the more program.

Changing your login shell
To change your login shell, you use the ch sh command. The syntax of this command is

chsh name shell

where name is your account name and shell is the name of shell you want as your login
shell, as in ch sh j anine c sh or ch sh j anine ksh.

2-4 Chapter 2 Using the Shells Interactively

Changing your working shell

Your login shell setting specifies which shell starts up when you log in, but you can switch
shells any time in a CommandShell window by entering a command that is just the name of
the shell you wish to run: sh for the Bourne shell, c sh for the C shell, and ksh for the
Korn shell. You can also use another shell temporarily to run a shell program written for
that shell. For example, in the Korn shell you can run a C shell program cs_prog by
entering csh cs_prog. The C shell will start up, run the program, then shut itself down,
leaving you in the Korn shell. In fact, if you have a program that doesn't seem to work
properly, you might try running it with the other shells. You should note, however, that this
new working shell will be subordinate to the login shell. That is, the login shell continues to
run, and if you shut down the login shell, you may shut down the subordinate shell as well.

If you want to switch completely to another shell, you can use the exec command,
as in exec csh. This command will shut down the existing shell and cause the C shell
to run in its place. If your login shell is set properly, it is usually not necessary to switch
shells in this manner.

Entering commands
In A/UX, shell commands are typically entered in a CommandShell window.
CommandShell provides several nice features, including the ability to change fonts and
font sizes, set how many lines are saved from an editing session, and cut and paste lines.
You might consider CommandShell to be a shell for the shells-its purpose is to give you
a friendly, Macintosh-like way to use the shells. (See AIUX Essentials if you need a
review of CommandShell features.)

The shells themselves are independent of CommandShell, and they provide you with
a great degree of flexibility even in how you enter commands. This section discusses
how to issue commands to the shells, how to edit those commands, and how to use
some shell features to make it easier and more efficient to enter commands.

Entering commands 2-5

Prompts

When you open a CommandShell window, you will notice a cursor (usually a
rectangular box or an underscore character) preceded by one or more characters. Those
characters are known collectively as the primary prompt; by default it is usually a
dollar sign in the Korn shell, but it can vary. The prompt indicates that the shell is ready
to accept a command.

You can change the prompt to any string of characters. Often an administrator will
establish the prompt to be the name of your computer or your own account name.

To experiment with changing prompts, do the following:

• Enter the command PSl=" $LOGNAME "

Be sure to leave a space before the last quotation mark. If you make a mistake, just
retype the command. This command changes the primary prompt to the name of your
login account, as you can see by the new prompt.

There is also another prompt, known as the secondary prompt; by default it is a
greater-than symbol(>). The shell uses the secondary prompt to indicate that it is
waiting for completion of a command.

• Enter print "

The shell is waiting for you to tell it what to print, so it displays the secondary prompt.
Now enter the following:

• Enter $HOME"

The second quotation mark tells the shell that the command is complete. The shell prints
the name of your home directory, then displays the primary prompt, indicating that it is
ready to accept a new command.

2-6 Chapter 2 Using the Shells Interactively

Changing or canceling a command

When you are entering commands to the shell interactively, the shell will not begin
executing the command until you press RETURN. The shell processes the RETURN by
interpreting the keystrokes since the previous RETURN and executing the resulting
command line. Therefore, if you make a typing mistake, you can erase back to the
mistake and correct it before pressing RETURN. (Typically, you erase using the DELETE key.
If the DELETE key doesn't work, see your system administrator.)

You can cancel a command and start over by using the CoNTROL-C key combination.

• Type PSl="newprompt " andpressCONTROL-C.

The CoNTROL-C key combination signals the shell to ignore the characters on the current
line and to accept a new command. The shell expects a new command, but does not
return the prompt.

• Press RETURN to display the prompt.

The prompt should remain the same as it was before (your account name, if you have
entered the tutorial examples).

The Korn shell and the C shell both have sophisticated editing capabilities that you
can use to edit commands. These features are discussed in detail in the reference
chapters for those shells.

Combining commands on a line
Typically, you type a single command and press RETURN to enter (notify the shell to begin
processing) it. Everything you type before pressing RETURN is known as the command
line. You can combine two or more commands in a command line by separating each
new command from the previous one with a semicolon (;).

Entering commands 2-7

• Enter cd $HOME; pwd; ls -la

This command line consists of three commands that change the current directory to your
home directory, display the directory name, then list the contents of that directory.

You have seen these commands in Chapter 1, but there are two new options here to the
1 s command. The -1 option specifies a "long" listing, which displays extra
information about each file in the directory. The -a option specifies that all filenames
should be displayed, including filenames beginning with a dot (.), which are not
normally displayed.

In interactive use it is generally best to keep command lines short to minimize editing
and retyping. However, combining commands in this manner comes in handy for short
series of commands that you use often. You can use the alias command to combine
a series of commands under a short name.

• Enter alias homey="cd $HOME; pwd; ls -la"

This command line groups the cd and ls commands as before, but it also assigns
the name homey to the combined commands. Now to execute these three commands,
you can enter the short name homey.

• Enter cd I; pwd

This command line changes the current directory to the root directory, named I, then
verifies that the change was successful by displaying the directory name.

• Enter homey

You should see the name of your home directory followed by the long listing, just as it
was displayed before. The alias homey will last throughout your login session. You can
make aliases permanent; for more information, see the reference chapter for your shell.

Invalid commands

If you enter a command that doesn't exist or a command line that uses improper syntax,
the shell will print an error message and prompt you for another command. Often the
shell will display the syntax of the command.

2-8 Chapter 2 Using the Shells Interactively

Shell metacharacters
Some characters, known as metacharacters, have a special meaning to the shell. The
following are some shell metacharacters:

"#$/&' ()*;<>?'-\

When the shell finds a metacharacter in a command line, it performs some special
processing. For example, the shell interprets a semicolon (;) as a metacharacter that
separates two commands on the command line. Metacharacters can be used to perform
different types of functions, including

• grouping commands together

• specifying sources and destinations for data

• specifying filename templates

Perhaps the most common use of metacharacters is in specifying filename
templates that can be used to represent more than one file. The metacharacters used for
this purpose are the asterisk(*), the question mark(?), square brackets ([and]), and the
hyphen(-). These characters are often called wild.cards because they can be used to
represent other characters. Using them to match other characters is often called pattern
matching. Using these characters can be very helpful; not understanding their use can
result in invalid shell commands or unexpected (and sometimes very unfortunate)
results.

Asterisk (*)

An asterisk in the name of a file or directory can represent almost any number of
characters (or none). This metacharacter can be very useful when you want to perform
an operation on several files at a time.

• Enter ls to list the files in your current directory.

You should be familiar now with the contents of your directory.

Shell metacharaters 2-9

• Enter > file > file2 > file3 > file22 to create some new files in
your directory.

The use of the greater-than symbol(>) is explained in greater detail later; in this
command, it directs the shell to create a new file with the filename you specify.

• Enter ls file*

This version of the 1 s command uses the asterisk metacharacter to list all files whose
names start with the string file. The resulting list should include the four files you just
created.

• Enter ls f*

This command uses the asterisk metacharacter to list all files whose names start with the
letter f. The resulting list should include the four files you just created and any other
files in your directory that start with the letter f.

Question mark (?)

A question mark in the name of a file or directory can match almost any single character.

• Enter ls file?

This version of the 1 s command uses the question mark metacharacter to list all files
whose names include only the letters f i 1 e followed by one character. The resulting
list should include only file2 and file3. The filename file22 does not match
because of the extra 2. The filename f i 1 e does not match because the question mark
metacharacter requires one character to match (unlike the asterisk metacharacter).

• Enter ls fil?

This command should display only the filename file.

• Enter ls file??

This command should display only the filename f i 1e22. You can repeat the question
mark metacharacter to match any specific number of individual characters.

2-10 Chapter 2 Using the Shells Interactively

Brackets ([])

The square brackets in the name of a file or directory can match a single character in a
specified set of characters or, when used with the hyphen, in a range of characters. For
example, the set [2468] matches all even integers less than ten; the range [1-9] matches all
integers less than ten.

• Enter ls file [124 J

This command displays only the filename f i 1e2. The command does not work for
file because a character is required for a match, for file3 because 3 is not
included in the set of characters [124], nor for file22 because each bracketed
character set will match only a single character.

• Enter ls file [1-4]

This command displays the filenames file2 and file3 because the hyphen
specifies a range of characters from 1to4, inclusive.

You can repeat and combine these metacharacters to specify almost any group of
files. For example, the command 1 s z * . [o - 9 J [o - 9 J would display the names of
any files that started with z and had a suffix from . o o to . 9 9.

With these metacharacters you can issue a single command that operates on a group
of files. This use of metacharacters is especially helpful in maintaining your system and
backing up your files.

Consider-but don't enter-the following command:

rm file file?*

The rm command removes (deletes) files. You can use the rm command to
remove one file at a time, or you can use it with filename templates. This instance of the
command uses filename templates that should match only the example files created in
this section. From this command you can see that you should be especially careful when
using these metacharacters. For example, you could use the command rm * to delete
the example files, but you would also delete all the other files in your directory. To avoid
undesired results from using these filename templates, you can try them first in a
nondestructive command such as 1 s.

Shell metacharaters 2-11

• Enter ls file file?*

This 1 s command uses the same filename templates, so you can see exactly which
files match before you issue an irreversible command. If the resulting list contains only
the four files file, file2, file3, and file22, you can safely use the rm

command with these filename templates.

Overriding metacharacter interpretation
Sometimes you need to override the usual interpretation of shell metacharacters, as
when a filename actually contains a question mark or an asterisk. The shell feature called
quoting makes this possible. The shell provides three quoting mechanisms:

• The backslash character (\) overrides the interpretation of a single character that
follows it.

• Two double quotation mark characters (" ") limit interpretation of metacharacters
between them.

• Two single quotation mark characters (' ') prevent interpretation of metacharacters
between them.

The different mechanisms often can be used interchangeably, but not always; for
more detail, read the chapter for your shell.

You may have trouble using the shells if you work with filenames containing blank
spaces, because the shells use spaces to determine where parts of a command begin and
end. Therefore, the shell can misinterpret commands that include filenames with
embedded spaces. If you are using a shell and want to use a space in a filename, you
must quote the space or the entire filename.

2-12 Chapter 2 Using the Shells Interactively

• Enter cp /etc/inittab bigfile

The copy command, cp, copies the contents of one file to another file. The file whose
contents are copied is called the source file, and the file into which the contents are
copied is called the destination file. If the destination file does not exist, the shell
creates it.

• Enter head bigfile

The head command lists the beginning of a file; by default, it prints up to ten lines.
You should see the first ten lines of bigfile on your screen.

If you want the filename to be two words (big f i 1 e) instead of one, you have to
use quoting.

• Enter mv bigfile 'big file'

The move command, mv, moves the contents of one source file to one destination file.

In this command, the quoting character is the single "straight" apostrophe, not the grave
accent (') or the single "curly" apostrophe (') , and it is required both before and after
the entire filename.

• Enter head big\ file

This head command displays the same ten lines as before, but this time they are from
a different file. The shell created the new destination file (big file), and the mv

command moved the contents of bigfile to it.

Note that in this instance, the quoting character is the backslash, inclined to the left, and
it immediately precedes the space character. This type of quoting is also known as
escaping; the backslash is said to "escape the space."

• Enter ls big*

The new file, big file, appears in the list, but the original file, bigfile, does not;
unlike the cp command, the mv command deletes the source file.

Overriding metacharacter interpretation 2-13

• Enter mv "big file" big filel

The shell responds with an error message. This invalid command illustrates the problem
with unquoted spaces in filenames.

The shell does not interpret the space in big file because it is quoted. The spaces
between the other words in the command cause the shell to see the command as having
four parts:

1. the command name, mv

2. the name of the source file, big file, that contains the material to be moved

3. the name of the destination file, big, to receive the contents of big file

4. a third argument, filel, which the command doesn't expect

As mentioned above, the mv command expects one source file and one destination
file. When it encounters the third file name, it assumes that you have made a mistake and
displays an error message.

The quoting character in this instance is the double "straight" quotation mark-not the
"curly" quotation marks (" ")-and it is required both before and after the entire
filename.

• Enter rm 'big file'

Variables

The command removes the file big file, which should be the only file remaining in
your directory from the examples in this section. To be sure, you can use the ls

command to list the files and the rm command to remove any extra files.

Variables are another powerful shell feature. Variables are named storage places for
values; with them, you can make general-purpose commands that will accommodate
different circumstances.

2-14 Chapter 2 Using the Shells Interactively

There are two basic types of variables: shell variables and user-created variables.
Each of these types can be local variables, which retain their meaning only within a
limited set of circumstances, and global variables (or environment variables), which
retain their meaning across login sessions and whose values don't change unless you
explicitly change them. This section introduces variables. For a detailed explanation, see
the reference chapter for the appropriate shell.

+ Note By convention, the names of global variables are in all uppercase letters, and
the names of local variables are in all lowercase letters. +

Shell variables

The shell maintains a number of values pertaining to your login session. These values
are kept in variables known as shell variables that can be very useful in your everyday
work. One example of a shell variable is HOME, which holds the pathname of your
home directory.

• Enter print $HOME

The dollar-sign metacharacter specifies that the print command should print the
value represented by the variable instead of the name of the variable.

• Enter print HOME

Without the dollar-sign metacharacter, the print command prints the name of the
variable (HOME).

You have, in fact, already used several other shell variables:

• PSl, which contains the primary prompt

• PS2, which contains the secondary prompt

• LOGNAME, which contains your login account name

To display the value of any of these variables, simply use the print command and
the dollar-sign metacharacter, as in the command

print $LOGNAME

Variables 2-15

There are many other shell variables; some of these hold values that you might
find useful:

• PWD, which contains the name of the working directory

• OLDPWD, which contains the name of the previous working directory (if any)

• HISTFILE, which contains the name of the file used to store the history of
commands you have entered

• PATH, which contains a list of directories for the shell to search for commands

There are other shell variables; for a complete list, see the reference chapter for the
appropriate shell.

User-created variables

You can create your own variables to hold values you want to use again. Such values are
typically numbers or letters. This feature is especially useful in shell programs, but it can
also be helpful in interactive shell use.

• Enterthecommand my_prompt="Enter your name: "

This command sets the value of a variable named my _prompt to the string of
characters Enter your name:. The operation of setting a variable to a specific value
is known as variable assignment

• Enter the command print $my _prompt

This command displays the prompt on your screen by printing the value of the variable,
as indicated by the dollar-sign metacharacter.

• Enter the command read response

This read command accepts a value entered from the keyboard and assigns that value
to the variable response.

• Type your name and press RETURN.

The RETIJRN signals the read command that you have completed your response to the
prompt.

2-16 Chapter 2 Using the Shells Interactively

• Enter the command name=$response

This command assigns the value of the variable response to the variable name.

• Enterthecommand print "Hello, " $name

This print command prints Hello, followed by yourname, which was stored in
the variable name.

The following guidelines apply to defining your own variables:

• A variable name can include letters, digits, and underscores(_) but cannot start with
a digit.

• A variable name cannot include any spaces.

• meaningful variable names (for example, response) are better than short names
(for example, res).

• A variable assignment consists of a variable followed by an equal sign (=) followed
by a value.

• A variable assignment cannot contain spaces next to the equal sign.

The simple examples above give you just a hint of what you can do with variables.
As you continue to use the shell, you will find many more uses for variables.

Standard input, output, and error
Most commands either expect some input, produce some output, or both. For example,
the cat command typically expects you to enter the name of a file, and it typically
displays the contents of that file on the screen. The shell expects that input will come
from the standard input and that output will be sent to the standard output and error
messages to the standard error; these are not files or devices, but conceptual entities.

When you are using the shell interactively, the standard input is usually the keyboard,
and both standard output and standard error are usually the active CommandShell
window. What all this means to you is that you usually enter shell commands on the
keyboard and receive output and error messages in a CommandShell window.

Standard input, output, and error 2-17

Input/ output redirection

The reason for standard input, output, and error is to allow sources and destinations to
be redefined using a shell feature called input/output redirection (or I/0 redirection).
1/0 redirection simply means directing a command to receive input from someplace
other than the keyboard and to send its output and error messages someplace other than
to a CommandShell window.

Redirection operators

To redirect I/0, you use redirection operators. The three common redirection
operators and their functions are as follows:

> file

» file

< file

Redirect output (write): write data over the contents of the named
destination file

Redirect output (append): write data at the end of the named
destination file

Redirect input: read data from the named source file

Note that the named file can be a special file that represents a device.

Output redirection

If the destination file is empty or doesn't already exist, the two output redirection
operators (> and > >) cause the named file to contain only the output from the
command. If the destination file contains data, the > operator causes the output of the
command to overwrite the contents of the file, whereas the » operator causes the
output of the command to be appended to the end of the file.

You can also use the write output redirection operator (>) to create a new file by
specifying it with just a filename, as shown in the "Shell Metacharacters" section, earlier.

2-18 Chapter 2 Using the Shells Interactively

• Enterthecommand print "First line of file22" > file22

This command prints some characters, as you have seen before, but the output is
redirected to the file f i 1e2 2 instead of to your screen.

• Enterthecommand head file22

You can see that the file has been created, and that the line has been written into it.

• Enterthecommand ls $HOME » file22

This command lists the contents of your home directory, as you have seen before, but
the output is redirected to be appended to the file f i 1e2 2 instead of being displayed
on your screen.

• Enter the command head f i 1e22

You can see that the one line previously in the file has not changed and the directory
listing has been appended to it.

Input redirection

The input redirection operator causes a command to get information from a file rather
than from the keyboard.

• Enter the command read input

This command accepts a line from the keyboard and assigns the characters in that line to
the variable input. The read command is waiting to accept input, so the shell
prompt does not appear.

• Enter the line Input from the keyboard

When you press RETURN, the read command assigns the value of the line you entered
to the variable input.

Standard input, output, and error 2-19

• Enterthecommand print $input

This command verifies that the variable input now holds the line you entered.

• Enterthecommand read input < file22

This command redirects input so that the read command accepts a line from
f i 1e2 2 (instead of the keyboard) and assigns the characters in that line to the variable
input. The read command does not have to wait for its input, so the shell prompt
appears immediately.

• Enterthecommand print $input

This command verifies that the variable input now holds the line from file22.

Filters and pipes

Any command that accepts its input from standard input, writes its output to standard
output, and writes its error messages to standard error is known as a filter. Most A/UX
commands are filters.

The power and simple elegance of the filter mechanism and I/0 redirection make it
possible for A/UX to provide a feature called a pipeline or pipe. A pipe is a string of
commands in which the standard output of one command is used as the standard input
for the next command. This allows you to perform many operations on the same data
without having to store information in temporary files. The pipe is one of the most
distinctive features of the UNIX operating system. It allows for small, single-purpose
commands that can be used in many different combinations, enabling you to use a small
set of software tools to perform a wide variety of tasks.

You use the vertical bar (I) metacharacter, also known as the pipe metacharacter, to
connect commands in a pipe.

2-20 Chapter 2 Using the Shells Interactively

• Enterthecommand grep /bin/ksh /etc/passwd I wc -1

This grep command searches for the character string /bin/ksh in the password
file. It writes every such line that it finds to standard output. The pipe metacharacter
specifies that those lines are the input to the following command.

The next command is the word count command, wc. This instance of wc simply
counts the number of lines it receives from standard input and prints that number to
standard output. In this case, the standard input to wc is the output from the grep

command. Since wc is the last command in the pipe and its output is not redirected, its
standard output is the screen. Therefore, the number on your screen is the number of
lines in the password file that contain /bin/ksh. By inference, this is probably the
number of people who use the Korn shell as their login shell.

Shells and processes

The A/UX system is a multitasking system. The term multitasking implies that the
system does many tasks at once. While this is not true in the strictest sense, the system
performs in such a way as to give the impression that it is. It does so by processing all
the current tasks, one at a time, each for a very short period of time. As you can imagine,
keeping track of all the information required to do this can be a complicated job. The
system is able to manage this job by breaking large tasks down into smaller tasks known
as processes and assigning each process a number called a process ID (PID). The
system uses the PIDs to keep track of all the current processes. By using the PID, you
can also exercise some control over processes that you have started.

Parent and child processes

A process can start (or spawn) other processes. The original process is then known as
the parent process, and the subordinate processes that it starts are known as its child
processes (or its children). Each shell is a process. The shells often spawn child
processes to perform discrete tasks. The shell typically spawns a child process to run
commands other than its own built-in shell commands.

Shells and processes 2-21

• Enterthecommand print $$; ps -ef

This print command displays the PID of your shell. The first dollar sign is the
metacharacter you have seen before, which specifies that the print command should
use the value of the following variable. The second dollar sign is actually the name of a
variable that holds the PID of your shell.

The ps command displays a report about all the active processes. This report looks
like the following:

UID PID PPID C STIME TTY TIME COMMAND

michael 157 154 1 10:46:24 Cl 0:01 ksh

michael 159 157 9 10:46:32 Cl 0:00 ps -ef

The Command field in each line contains the name of the process, and the PID field
contains its PID. The PID you just printed should match the PID in the line for your shell
in the ps report. A line like this should appear in any ps report you generate.

There should also be a line in your ps report for the ps command itself. This line
will show a different PID, indicating that the ps command is being run as a separate
process. The number in the PPID column is the PID of the parent process for that
command. The PPID for the ps command is the PID of the shell, showing that the ps

command is a child process of the shell.
Typically, when a shell spawns a child process, the shell will then wait for the child

process to complete before performing any other work. This is what happens in normal
interactive use of the shell. When you enter a command, the shell spawns a child process
to run that command. The shell then waits for the child process to terminate. The shell
then determines the outcome of the child process; if an error occurred, the shell may
display an error message. If the command ran as it should have, the shell displays the
prompt for you to enter your next command.

Background commands

You can take advantage of multitasking to avoid waiting for long tasks to complete. To
do this, you can direct the shell to execute commands in the background while you
continue to work at the shell prompt (the foreground).

2-22 Chapter 2 Using the Shells Interactively

• Enter ls -R I

This command displays on your screen the names of most of the directories in the
system. The -R option specifies that the 1 s command should list all subdirectories
within a directory. The slash (;) specifies that the listing should start with the root
directory. This list should take about a minute to display.

• Enter tail qw

The tail command works much like the head command, except that it displays
the last ten lines in a file. The file qw probably doesn't exist, so you should receive an
error message. (If the command displays text, the file exists; pick another name and try
the tail command again. Then substitute the new name wherever you see qw in
these examples.)

To run a command in the background, you end the command line with an
ampersand(&) before the final RETURN.

• Enter ls -R I > qw &

This command uses output redirection to put the same list you saw on your screen
into a file.

• Enter tail qw

You should now see some text from the file. In processing the command, the shell
checked your working directory for a file named qw (or a file with your substitute
name). Because this file did not exist, the shell created it for you.

The next example slows down the background command so that you can see
it in operation.

• Enter (sleep 20; ls -R I > qw) &

The sleep command postpones the ls command for 20 seconds.

You can now use the ta i 1 command to see the 1 s command in operation.

Shells and processes 2-23

• Enter tail qw

If you are quick enough to have entered the ta i 1 command before the 20-second
sleep command completed, you may get an error message. Ignore it and go on to the
next command.

• Enter r

The r command tells the shell to repeat the last command you entered, so the shell
runs the t ai 1 command again. By now you should see ten lines from the file.

• Continue to enter r until the same ten lines repeat on your screen.

The 1 s command adds lines to the end of the file, so you see different results from
your tail commands as long as the ls command is still running. Thus you have
seen that commands (ls, in this case) can run uninterrupted in the background while
you enter other commands (tail, in this case) in the foreground.

• Enter rm qw

If you used another name above, be sure to use that name instead of qw. You may want
to use the 1 s command to verify that the rm command is successful.

Controlling background commands with the PID

The PID is your key to controlling commands, especially those running in the
background. When you enter a command to run in the background, the shell responds
with the PID for that command. After the PID is displayed, the shell returns the prompt
so you can use the terminal immediately for other work.

You can then use the PID to monitor existing background commands and terminate
them if necessary.

• Enter sleep 120 &

The shell should respond with a line like the following:

[1 J 343

The first number (1, in this case) is called the job number, and the second (343, in this
case) is the PID. Note the PID before continuing.

2-24 Chapter 2 Using the Shells Interactively

• Enter the ps command

This version of the ps command displays a shorter report like the following:

PID TTY

298 Cl

343 Cl

344 Cl

TIME COMMAND

0:02 ksh

0:00 sleep

0:01 ps

You should see a line for your s 1 eep command, and the PID at the beginning of the
line should match the one you noted.

• Enter kill followedbyaspaceandthePIDforyour sleep command.

For example, the command to terminate the s 1 eep command above is ki 11 3 4 3.

• Enter ps again.

Your sleep command is terminated, and the line for it in the ps report is gone.

What you have learned
If you have entered all of the commands in this chapter, you should now have enough
experience with the shell to significantly enhance your use of A/UX. You have learned
how to:

• maneuver through the file system with cd and pwd

• inspect the contents of files and directories with cat, more, head, tail,

and ls

• create and delete files with > and rm, respectively

• combine commands in a command line with the semicolon (;) metacharacter

• copy and move information between files with cp and mv as well as with
I/0 redirection

• specify groups of files with filename templates

• repeat commands with the r command

What you have learned 2-25

• use shell variables to find information about your login session

• create variables to store information

• create a pipe to pass the results of one command to another for further processing

• execute commands in the background with the ampersand(&) metacharacter

• execute commands in the background and cancel them with the ki 11 command

Where to go from here

Many of the commands you have used offer a variety of options. You can find further
details about built-in shell commands in this book and in the ksh(l) manual page in
A/UX Command Reference. The other commands are documented in detail in manual
pages of the same name in A!UX Command Reference (for example, the grep

command documentation is found in the grep(l) manual page).
As you become comfortable using the shell features you have learned in this chapter,

you may want further information. The reference chapter for your shell provides more
details to answer your questions and to help you improve your skills.

When you are familiar with using a shell interactively, the benefits of shell
programming will become more obvious. To learn about programming with your shell,
see the reference chapter for that shell.

Appendix A, "Additional Reading," lists some additional books about using and
programming UNIX shells.

2-26 Chapter 2 Using the Shells Interactively

3 Bourne Shell Reference

The Bourne shell prompt I 3-3

Types of commands I 3-4

The parts of a command I 3-4

Interactive use I 3-5

Using Bourne shell metacharacters I 3-9

Working with more than one shell I 3-18

The environment I 3-19

Assigning values to environment variables I 3-20

The .profile file I 3-25

Shell execution options I 3-29

Restricted shell I 3-30

Shell layering I 3-31

Overview of shell programming I 3-31

Writing shell programs I 3-32

Command evaluation I 3-35

Defining functions I 3-39

Positional parameters and shell variables I 3-40

Control-flow constructs I 3-48

•
Input and output I 3-58

Other features I 3-69

Error handling I 3-71

Summary of Bourne shell commands I 3-76

The Bourne shell is the original UNIX shell. It is faster and less complex than the C shell,

but it does not have the C shell's editing power nor its programming structures. The Korn

shell is backward-compatible with the Bourne shell; that is, Bourne shell commands and

scripts run unchanged in the Korn shell.

3-2 Chapter 3 Bourne Shell Reference

The Bourne shell prompt
The Bourne shell is a program that interprets commands and arranges for their execution.
The Bourne shell displays a character called the prompt (or primary shell prompt)
whenever it is ready to begin reading a new command from the terminal. By default, the
Bourne shell prompt character is set to the dollar sign($).

The secondary shell prompt

If you press the RETURN key when the shell expects further input, you will see the
secondary shell prompt. By default, this prompt character is set to the greater-than
sign(>). Like the primary shell prompt, this can be redefined.

The secondary prompt will appear, for example, if you enter a multiline construct
(such as a function definition) at the primary shell prompt. The secondary prompt will
appear at each line until you give the final delimiter. Whenever you have a secondary
prompt (either because you are using a multiline construct or because of an error), an
intem1,ptwill abort the process and issue a primary prompt($) for another command.
See "Canceling Commands" for information about the intem1,pt on your system.

Changing the prompt character

You may change the primary prompt character by redefining the environment variable
P s 1 to any other character or string of characters. You can change the secondary
prompt character by redefining the PS2 environment variable. See "Commonly Used
Environment Variables."

The Bourne shell prompt 3-3

Types of commands
The shell works with three types of commands:

• Built-in commands Built-in commands are written into the shell itself and are
generally used for writing shell programs. Each A/UX shell has a slightly different set
of built-in commands. The built-in Bourne shell commands are listed under
"Summary of Bourne Shell Commands."

• A!UX commands Every shell can invoke all A/UX commands (see "Command
Summary by Function" in A!UX Command Reference for a complete list of these).
A/UX commands are executable programs stored in system directories such as /bin

and /usr /bin. When you enter an A/UX command (for example, ls), the shell
searches all directories specified by your PATH variable (see "Locating Commands")
to locate the program and invoke it.

• User-defined commands You can combine built-in shell commands and A/UX com­
mands to define your own shell programs (see "Overview of Shell Programming").
Shell programs can be typed in at the shell prompt or entered in a file. A shell
program contained in a file is generally called a shell script Once a shell script is
defined, it can be used like any other command or program, with certain limitations.

You can also write your own commands in a high-level language such as C. (See
A/UX Programming Languages and Tools, Volume 1 for more information.) The name
of a user-defined command should not be the same as that of any existing shell or
A/UX command.

The parts of a command
Whenever you see a shell prompt, you can run a command by entering the command name.
Most A/UX commands have one or more flag options, which follow the command name
and modify the way the command operates. Flag options are usually a hyphen followed
by one or more characters; for example, -1 is a flag option to the 1 s command:

ls -1

In this case, the -1 is a flag option that modifies the way the 1 s command
operates, producing a long listing that contains more information than the standard 1 s

3-4 Chapter 3 Bourne Shell Reference

output. For the flag options that apply to a particular A/UX command, see the manual
page entry for that command in A/UX Command Reference. For options to the Bourne
shell built-in commands, see "Summary of Bourne Shell Commands."

Many A/UX commands also expect one or more arguments, which pass information
to the command. An argument may be any data expected by the command; for example,
a directory name may be an argument to the 1 s command:

ls /bin

The entire command specification, including any flag options and other arguments, is
called the command line. A command line is terminated by RETURN. For example, in the
command line

ls -1 /bin

1 s is the command name, -1 is a flag option (specifying a long listing), and /bin is
an argument (specifying which directory to list).

To give a command longer than one line, you must precede RETURN with a backslash
(\).This prevents the shell from interpreting RETURN as the end of a command. You can
continue this for several lines; the shell will wait for a plain RETURN (not preceded by a
backslash) to execute the multiline command.

Commands can also be combined; see "Command Grouping."

Interactive use
When you use the Bourne shell interactively, it acts as a command interpreter, processing
each command or group of commands as it is entered. This section describes how you
enter, monitor, and control commands interactively.

Command termination character

When you are entering commands to the shell interactively, the shell will not begin
executing the command until you press the RETURN key. Therefore, if you mistype
something, you can back up and correct the mistake before pressing RETURN. When the
shell recognizes the RETURN, it executes the command line; after the process is finished, a
new prompt is printed on the screen. The shell is again ready to accept commands.

Interactive use 3-5

Impossible commands

If you give an impossible command (a command that doesn't exist or a command line
that uses improper syntax), the shell prints an error message and returns the prompt for
another command.

Background commands

You can direct the shell to execute commands in the "background" while you continue to
work at the shell prompt (the "foreground"). To run background processes, end the
command line with an ampersand(&) before the final RETURN. For example,

cat smallfilel smallfile2 > bigfile & 1234

The number shown below the command line is the process ID (PID) associated with
the sample cat command as long as it is executing. After the process ID is displayed,
the shell returns the prompt so you can use the terminal immediately for other work.

+ Note To save the output from a job you are running in the background, you must
redirect it to a file or pipe it to a printer. If you do not redirect the command output, it
will appear on your screen and will not be saved. In addition, remember that the output
of a background command is not complete until the command has finished. The
presence of a prompt does not mean the output is ready for use. +

To suspend processes that require input from the keyboard, (such as an editor
or a remote login across a network), you can use shell layering. See Chapter 6,
"Shell Layering."

Checking command status

To check on the status of a background command, use

ps

This command shows the process status of all your commands; they are identified by
PID and by name. See ps(l) in A/UX Command Reference for details.

3-6 Chapter 3 Bourne Shell Reference

Logging out

The shell terminates all processes when you log out of the system (or are forced to log
out, for example, by a broken dialup connection). To make sure that a process will
continue to execute after you log out, use the nohup command (which stands for "no
hang up") as follows:

nohup command &

See nohup(l) in A/UX Command Reference for details.

Canceling commands

You can use several special control sequences when canceling commands. The A/UX
standard distribution defines these sequences as follows:

Name A!UX standard key sequence

interrupt CoNTROL-SHIFf-C

quit CONTROL-I (pipe character)

erase DELETE

kill CoNTROL-U

eof CONTROL-D

switch CONTROL-'

susp CONTROL-Z

However, you may reassign any of these sequences using the st ty command. See
st ty(l) in A!UX Command Reference for more information.

Before you press RETURN

If you type part of a command and then decide you do not want to execute it, you can
send an interrupt or kill to the system at any point in the command line.

Interactive use 3-7

While a command is running

There are several ways to stop a command that is executing. You can redefine these
using st t y unless otherwise noted.

• Send the interrupt signal. For example, the output of a command such as

cat /etc/termcap

will scroll by on your terminal. If you want to terminate the process, you can send the
interrnpt signal. Because the cat command does not take any precautions to avoid
or otherwise handle this signal, the interrnptwill (eventually) cause it to terminate.

• Use CoNIRoL-S to suspend scrolling output. The A/UX control-flow keys are CoNTROL-S
(suspend scrolling output) and CoNTROL-Q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a screenful again.
CoNTROL-S and CoNTROL-Q cannot be redefined with stty; however, you can enable
and disable control flow by entering st ty - ixon.

• Send an eof character. Many programs (including the shell) terminate when they get
an eof condition from their standard input. You could accidentally terminate the shell
(which would log you off the system) if you entered eof at a prompt or, in terminating
some other program, if you sent an eof one time too many.

• Wait for the eof condition from a file. If a command receives its standard input from
a file, then it will terminate normally when it reaches the end of that file. If you give
the command

mail ellen < note

(where note is an existing file), the mail program will terminate when it detects
the eof condition from the file.

• Send the quit signal. If you run programs that are not fully debugged, it may be
necessary to stop them abruptly. You can stop programs that hang or repeat
inappropriately by using quit. This will usually produce a message such as

Quit (Core dumped)

indicating that a file named core has been created containing information about
the status of the running program when it terminated because of the quit signal. You
can examine this file yourself or forward information to the person who maintains the
program, telling him or her where the core file is.

3-8 Chapter 3 Bourne Shell Reference

• Send a suspend signal. If you are using shell layering, you can type suspend to
stop temporarily jobs that are running on a shell layer. You can then resume the job
with a special shl command. See Chapter 6, "Shell Layering."

Canceling background commands

If you have a job running in the background and decide you do not want the command
to finish executing, use the A/UX ki 11 command.

When a job is running in the background, it ignores intemJ,pt and break signals. To
terminate a background command, use

ki 11 process-ID

The kill command takes the process ID as an argument. See kill(l) and
ps(l) in A/UX Command Reference for details.

Using Bourne shell metacharacters
Shell metacharacters are characters that petform special functions in the shell. This
section discusses how to use these metacharacters. The following are the Bourne shell
metacharacters:

& An ampersand at the end of a command line causes the shell to run the
command(s) in the background and print the process ID(s).

? A question mark used as part of a file or directory name causes the shell to match
any single character (except a leading period).

* An asterisk used as part of a file or directory name causes the shell to match zero
or more characters (except a leading period).

[J Brackets around a sequence of characters (except the period) cause the shell to
match each character one at a time.

A hyphen used within brackets to designate a range of characters (for example,
[A- z]) causes the shell to match each character in the range.

< A less-than sign following a command and preceding a filename causes the shell to
take the command's input from that file.

Using Bourne shell metacharacters 3-9

> A greater-than sign following a command and preceding a filename causes the shell
to redirect the command's standard output into the file. See "Input and Output" for
a description of how this metacharacter is used to redirect error output.

» Two greater-than signs following a command and preceding a filename cause the
shell to append the command's output to the end of an existing file.

A vertical bar (pipe) between two commands on a command line causes the shell
to redirect the output of the first command to the input of the second command.
Pipes can occur multiple times on a command line, forming a pipeline.

A semicolon between two commands on a command line causes the shell to
execute the commands sequentially in the order in which they appear.

Braces around a series of commands group the output of the commands.

Parentheses around a pipeline or sequence of pipelines cause the whole series to
be treated as a simple command (which may in turn be a component of a
pipeline), and a subshell to be spawned for the commands' execution.

\ A backslash prevents the shell from interpreting the metacharacter that follows it.

Single quotation marks around a command, a command name and argument, or
an argument prevent the shell from interpreting the enclosed metacharacters.

Double quotation marks around a command, an argument, or a command name
and argument prevent the shell from interpreting the enclosed metacharacters with
the exception of back quotes(' ')and the dollar sign($).

Back quotes around a command cause the characters in that command to be
replaced with the output from that command.

$ The dollar sign causes evaluation of the variable it precedes. $a causes evaluation
of the variable a.

Specifying filenames with metacharacters

Using the filename expansion metacharacters (also called wildcards) spares you the job
of typing long lists of filenames in commands, looking to see exactly how a filename is
spelled, or specifying several filenames that differ only slightly.

3-10 Chapter 3 Bourne Shell Reference

These metacharacters are interpreted and take effect when the shell evaluates
commands. At this point, the word incorporating the metacharacter(s) is replaced by an
alphabetic list of filenames if any are found that match the pattern given. Filename
expansion metacharacters can be used in any type of command; however, in the case of
filenames given for input and output redirection, filename expansion may cause
unexpected results if the metacharacter usage expands into more than a single filename.
To tum off the special meaning of metacharacters and use them as ordinary letters, you
must quote them. (See "Quoting.")

The following are filename expansion metacharacters in the Bourne shell:

? A question mark matches any single character in a filename. For example, if you
have files named

*

a bb CCC dddd

the command
echo ???

matches a sequence of any three characters and returns
CCC

An asterisk matches any sequence of characters, including the empty sequence, in
a filename. (It will not, however, match the leading period in such names as
. profile.) To list the sequence of files named

chap chapl chap2 chap3 chap3A chap12

you can use the notation
ls chap*

The files are listed as
chap chapl chap12 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the null sequence
composed of no characters.

Using Bourne shell metacharacters 3-11

[l Brackets enclosing a set of characters match any single character, one at a time,
from the set of enclosed characters. Thus,
ls chap. [12]

matches the filenames
chap.1 chap.2

Note that this does not match chap . 12. To match filenames chap . 1 o,
chap .11, and chap .12, use the notation chap .1 [012 J

You can also place a hyphen (-) between two characters in brackets to denote a
range. For example,
ls chap. [1-5]

is the equivalent of
ls chap. [12345]

The notation [a-z J matches any lowercase character, [A-z J matches any
uppercase character, and [a - zA- z J matches any character, regardless of case.

To match anything except a certain character or range of characters, use the
exclamation point inside the brackets. When the first character following the left
bracket ([) is an exclamation character (!), any character not enclosed in the
brackets is matched. For example,
[!bl

matches any filename composed of one letter, except a file named b.

None of these metacharacters will match the initial period at the beginning of special
files such as . profile. These must be matched explicitly. Periods that do not begin a
filename can be matched by metacharacters.

If you use these metacharacters and the shell fails to match an existing filename, it
will pass the character on as an argument to the command. For example, if you have one
file named bb, the command

echo ??

prints

bb

The command

echo ?

prints

?

3-12 Chapter 3 Bourne Shell Reference

Input and output redirection

An executing command may expect to accept input and create output, possibly including
error output (error messages). In the A/UX system, there are default locations set for
input and output:

• Standard input is taken from the terminal keyboard.

• Standard output is printed on the terminal screen.

• Standard error output is printed on the terminal screen.

You can change these defaults with the following metacharacters (also called
redirection symbols). The redirection metacharacters are a way of using file
descriptors, described in detail in "Redirection With File Descriptors."

< A less-than sign followed by a filename redirects standard input (takes command
input from a file or device other than the keyboard). For example,

mail ellen < note

uses a file named note instead of a message typed from the keyboard as the
inputto mail.

> A greater-than sign followed by a filename redirects standard output (prints
command output in a file or to a device other than the terminal screen). If a file by
that name already exists, its previous contents are overwritten; otherwise a new
file is created. For example,

sort filel > file2

uses a file for the output of the sort command. When sort completes, file2
contains the sorted contents of jilel.

See "Input and Output" for information on redirecting standard error output using
file descriptors.

» Two greater-than signs followed by a filename append the output of a command
to a file. If no file by that name exists, one is created. For example,

who >> log

appends the output of the who command to the end of the existing file log.

Using Bourne shell metacharacters 3-13

Combining commands: Pipelines

You can send the output of one command as input to another command by using the
vertical bar (I), also known as the pipe character. When two or more commands are
joined by a vertical bar, the command line is called a pipeline.

For example, to see which files in a directory contain the sequence old in their
names, you can use a pipeline as follows:

ls I grep old

The pipe character (I) tells the shell that output from the first command (the list of
files produced by the 1 s command) should be used as input to the grep command.
The output of the pipeline (filenames in the current directory containing the string old)

prints on standard output (unless you redirect it to a file).
Pipelines may consist of more than two commands; for example,

ls I grep old I wc -1

prints the number of files in the current directory whose names contain the string old.

Pipelines may be executed in the background. For example, to avoid the time­
consuming process of waiting for a very large file to be sorted and printed, you could
give the following pipeline:

sort mail.list I lp &

This pipeline would sort the contents of a file named ma i 1 . 1 is t and send the sorted
information to the lp program to be placed on the printer queue. The shell would
respond with the process ID of the last command in the pipeline.

The tee command is a "pipe fitting"; it can be put anywhere in a pipeline to copy
the information passing through the pipeline to a file. See tee(l) in A/UX Command
Reference for more information.

A filter is a program or a pipeline that transforms its input in some way, writing the
result to the standard output. For example, the grep command finds those lines that
contain some specified string and prints them as output.

grep 'correction' draftl

prints only the lines in draft 1 that contain the string correction.

3-14 Chapter 3 Bourne Shell Reference

Filters are often used in pipelines to transform the output of some other command.
For example,

who I grep jon

prints

jon ttyp8 Jul 21 12:25

if a user whose login name is j on is currently logged in to the system on t tyO 1.

Command grouping

You can use the following metacharacters to group commands together:

Group several commands on one command line by separating one command from
another with a semicolon(;). The commands will be executed sequentially in the
order in which they appear. For example, the command line

cd test; ls

changes to the test directory and then lists its contents.

& Group background commands on a single line by separating them with
ampersands(&) and then ending the line with another ampersand. The
background commands will exit independently while the shell continues to accept
new commands in the foreground.

{ } Use braces to group commands for functions and control-flow constructs (see
"Defining Functions" and "Control-Flow Constructs"). You can also use braces to
group the output from several sequential commands; the output is then used as
the input to a following command in a pipeline. Braces used in the latter way are
recognized only when they are the first word of a command or are preceded by a
semicolon or newline, and when the first brace is followed by a space. For
example, to put the date and the list of users into one file (log), you could give
the command

{ date; who;} >log

Note the space following the first brace and the semicolon following the last
command in the braces; these are required. If you type a newline before closing
with another brace, you will see the secondary prompt until you give the closing
brace. Note that commands enclosed in braces are executed by the current shell
(that is, a new instance of the shell is not invoked to execute them).

Using Bourne shell metacharacters 3-15

() Enclose a group of commands in parentheses to execute them as a separate
process in a subshell (a new instance of the shell). For example,

(cd test; rm junk)

first invokes a new instance of the shell. This shell changes the directory to test
and then removes the file junk. After this, control is returned to the parent shell,
where the current directory is not changed. Thus, when execution of the
commands is over, you are still in your original directory.

The commands

cd test; rm junk

(without the parentheses) are executed in the current shell and have the same
effect but leave you in the directory test.

Conditional execution

You can use the following symbols to indicate that your command should be executed
only if some condition is met:

&& The command form

command1&&command2

means "If commandl executes successfully (returns a zero exit status), then
execute command2."

I I The command form

commandl I I command2

does the reverse. This form means "If commandl does not execute successfully
(returns a nonzero exit status), then execute command2."

For information on exit status, see "Exit Status: The Value of the Command."
Conditional execution is also available in pipelines. For other ways of obtaining
conditional execution, see "Control-Flow Constructs."

Quoting

If you need to use the literal meaning of one of the shell metacharacters or control the
type of substitution allowed in a command, use one of the following quoting mechanisms:

3-16 Chapter 3 Bourne Shell Reference

\ A backslash preceding a metacharacter prevents the shell from interpreting the
metacharacter. For example, to use the A/UX echo command to display a ques­
tion mark, you must precede the question mark with a single backslash(\). Thus,
echo \?

prints
?

Without the backslash, the echo command would generate a list of all single­
character filenames in the current directory. If there are none, the command returns
?

' s' Single quotation marks prevent the shell from interpreting any metacharacters in
the enclosed string s. The command
echo '*test'

prints
*test

while the command
echo *test

attempts to list all the files in your current directory ending with the characters
test. If there are none, the command returns
*test

Within double quotation marks, variable substitution and command substitution
occur, but filename expansion and the interpretation of blanks do not. For
example,ifthevariable messagel hasthevalue this is a test, the
command
echo "$messagel"

prints
this is a test

Double quotation marks can also be used to give a multiword argument to
commands; for example,
echo "type a character"

For more information on variable substitution, see "Positional Parameters and Shell
Variables." You can also suppress filename expansion universally by invoking the
shell with the - f option; see "Shell Execution Options."

Using Bourne shell metacharacters 3-17

A command name enclosed in back quotes is replaced by the output from that
command. This is called command substitution. For example, if the current
directory is /usr /marilyn/bin, the command
i='pwd'

is equivalent to
i=/usr/marilyn/bin

If a back quote occurs within the command to be executed, you must escape
it with a backslash (\ '); otherwise the usual quoting conventions apply within
the command.

Command substitution takes place before the filenames are expanded. If the
output of substituted command is likely to be more than one word, the command
must be enclosed in double quotation marks as well as back quotes; for example,
a= 11 'head -1' 11

Double quotation marks are necessary because the command head -1 (read
the first line of input) might yield more than one word.

Working with more than one shell
When you wish to use another A/UX shell, you can use one of the following commands:

sh This spawns another instance of the Bourne shell.

ksh This spawns an instance of the Korn shell.

c sh This spawns an instance of the C shell.

You can type these at your shell prompt; for example,

csh

In this case, your new shell will run as a subshell or "child" of your current one. You can
use the exit command or the eof sequence to return to your login shell whenever you
wish. The login shell is the shell that is automatically invoked when you log in. (If you
accidentally give the exit command or the eof sequence in your login shell, you will
be logged out of the system altogether.)

3-18 Chapter 3 Bourne Shell Reference

Changing to a new shell

You can also obtain a new shell using the exec command; for example,

exec csh

If you use the exec command, the C shell program c sh replaces your current
shell. You cannot return to your original shell; it has disappeared.

Generating new instances of a shell affects the environment settings for each shell.
See "The Environment and New Shell Instances" for more information.

Changing your default shell

To change your default shell from the Bourne shell to the Korn or C shell, use the chsh

command. For example,

chsh login.name /bin/ksh

(where login.name is your login name on this system) changes your default login shell to
the Korn shell. See chsh(l) in A!UX Command Reference for more information.

The environment
The environment is a list of variables and other data that is available to all programs
(including subshells) invoked from the shell. A shell inherits the environment that was
active when it started and passes that environment (including any modifications) to all
programs it invokes.

If you assign values to variables using the set command or the assignment
operator (=)at the shell prompt (or within a shell script), these remain local to the shell in
which you assigned them. If you use the export command (or set the -a shell
option; see "Shell Execution Options"), these changes will be passed on to any subshells
you invoke and to executing commands.

The environment 3-19

+ Note Modifying the environment in a subshell (for example, in a shell script) never
changes the parent shells or their environments. Because these changes are made to a
copy of the parent shell's environment, the parent shell's environment is never affected
by changes in a subshell, even if you use the export command. When a subshell
terminates, its environment no longer exists. +

In general, the most essential variables are assigned default values during login or by
the shell every time you invoke it. Convenient but inessential variables are simply left
unassigned. Thus a default environment is created for you.

Listing existing values

The env command and the printenv command both list the values of all variables
in the current environment.

The export command without an argument lists all explicitly exported variables in
the environment. Variables with default values assigned by the shell, variables not
exported in the current shell, and variables local to the current shell are not listed.

The set command without arguments lists the values of all variables in the current
shell, including default values, values in the environment, local shell variables, and the
text of all functions defined.

Assigning values to environment variables
Setting up your own customized environment is not necessary, but it can make your
work easier and more efficient. To customize your working environment, you may
change the default values assigned to some of the environment variables and add others
that have not been included in the default environment.

Unless you have set the -a shell execution option (which tells the shell to export all
variables automatically; see "Shell Execution Options"), the process of assigning a value
to an environment variable requires two commands. The command syntax

name= value

3-20 Chapter 3 Bourne Shell Reference

sets a variable name to value. Note that there are no spaces around the equal sign. By
convention, environment variables have uppercase characters in their names.

After you have assigned a value, the command

export name

includes the variable name and the value you assigned to it in the environment for this
shell. If you don't export the variable, the shell will not be able to pass it to your
commands or programs.

Thus, the complete process of assigning a value to the variable USER would be

USER=daphne

export USER

Removing environment variables

The command

unset name

removes the specified variable. The PATH, PSl, PS2, MAILCHECK, and IFS

variables cannot be removed.

Commonly used environment variables

The following variables are typically inserted into the environment. By convention,
environment variable names are uppercase. Some of these variables are assigned default
values at login or when the shell is invoked. All of them can be reset by the user.

HOME

CD PATH

EXINIT

This variable specifies your home directory. The login procedure sets
the value of this variable to the pathname of your login directory.

The value of this variable should be a list of absolute pathnames of
directories (separated by colons) that you use frequently. The shell uses
this variable when you give an argument to the cd command that is
not a relative or absolute pathname. This variable is usually set in the
. prof i 1 e file; otherwise its default value is the current directory.

This variable indicates various options for your editing environment
when you are using the ex or vi text editing program (see "Using
ex" and "Using vi" in A!UX Text-Editing Tools).

Assigning values to environment variables 3-21

PATH The value of this variable is a series of pathnames separated by colons
(:).The shell uses the value of PATH executable programs whenever
you give a command. If the directory containing the command is not
specified, the shell displays an error message. For example, if you
enter the command foo, the shell prints

MAIL

MAILCHECK

PSl

PS2

IFS

SHELL

TZ

TERM

foo: not found

PATH is usually set in the .profile file. For efficiency, the list of
directories in the PATH variable should be in order from the directories
containing commands most often used to those least often used. The
default value for PATH is the current directory, (.) /bin, and
/usr/bin.

The shell uses this variable as the pathname of the file where your mail
is delivered. This variable is typically set in the file . profile in the
user's login directory.

This variable specifies how often (in seconds) the shell will check for
the arrival of mail in the file specified in MAIL. The default value is
600 seconds (10 minutes). If set to 0, the shell will check before each
prompt.

This variable specifies the primary prompt string (the prompt you see
when the shell is waiting for you to give a command). The default
setting is the dollar sign ($).

This variable specifies the secondary prompt string (the prompt you
see when the shell is waiting for more information for a command you
have already started). The default setting is the greater-than sign(>).

The shell uses this variable to interpret command strings. IFS stands
for "Input Field Separator,'' meaning the characters used to separate
the parts of commands. The default values of this variable are space,
tab, and newline. You can reset this to include any data delimiters.

This variable specifies your preferred login shell. It is set at login to the
value found in the /etc/passwd file. The default shell is the C
shell.

This variable indicates your time zone. It is set at login.

This variable specifies the type of terminal you are using. The default
value is mac 2 . You can find out what your current terminal type is
with the command

echo $TERM

3-22 Chapter 3 Bourne Shell Reference

The environment and new shell instances

When you invoke a new instance of the shell (using the sh command for the Bourne
shell), the values you have exported to the environment (using the export command)
are copied to the environment of the new shell. If you have assigned values to variables
without exporting them to the environment, these values remain local to the parent shell.
You may reset the value of any exported variable within the subshell. Because these
changes are made to a copy of the parent shell's environment, the parent shell's
environment is never affected by changes in a subshell, even if you use the export

command. Note, however, that these changes will be passed on to new instances
invoked from the subshell. When a subshell terminates, its environment no longer exists.

In the Bourne shell the . prof i 1 e file is read only once, at login. Thus, if you
change the value of an environment variable in a shell, the subshell inherits the new
value, not the value set routinely in . profile. You can force a new instance of the
shell to read . prof i 1 e by using the "dot" command (.); see "Executing Shell Scripts."

In general, running one shell as the child of another (for example, running the C shell
under the Bourne shell) does not cause any problems. The only exception may be if you
have assigned values to environment variables that are significant to the other shell. See
Chapters 4 and 5, "Korn Shell Reference" and "C Shell Reference."

Special environments

Normally, the environment for a command is the complete environment of the shell
where the command was given. You can change the environment used by a command in
three ways:

• Augment the environment by inserting additional variables and new values into the
environment. This is done by preceding the command with one or more assignments
to variables on the command line. For example,

a=b command

Note that because variable substitution occurs before the environment is changed,
you cannot assign environment variables whose values are then immediately
referenced on the command line. For example, the sequence of commands

Assigning values to environment variables 3-23

X=5

x=3 echo $x

prints

5

not

3

because the value of x is inserted into the command line before the environment is
changed.

• Set the - k shell option using the command

set -k

When set, this shell option inserts variables and values given on the command line
into the environment for a particular command. For example, if the - k option is not
set, the command

echo a=b c

prints

a=b c

After - k has been set, a=b is interpreted as a variable assignment instead of an
argument, and the same command prints

c

Note that because values are substituted for variables before the environment is
changed, this is subject to the same limitation described above.

• Use the A/UX command

env [- J [name= value ...] [command] [atgsJ

to set the environment for the command. With this command, you can not only add
things to the environment inherited by a command, but also exclude the current
environment. To add variables and their values to the current environment, give the
variables and values before the command name. For example, to run a subshell with
a changed PATH environment variable, you could give the command

env PATH=directory-list sh

where directory-list is one or more directory pathnames separated by colons. For the
duration of the new shell (and its subshells), the PATH variable would be set to the
directories in the list.

3-24 Chapter 3 Bourne Shell Reference

To set up a completely new environment, first give the option -, which excludes the
current environment, and then assign the variables and values you want. These (and
only these) will be available in the environment for the new command.

The default environment on your system

When you log in, the following procedures occur:

• The login program assigns the default value to PATH and sets values for the
variables HOME, LOGNAME, and SHELL from the information in the system file
/etc/passwd.

• The login shell then checks the file /etc/profile to find out the default
environment to set up for all users. This file may contain settings for PATH, TZ, and
TERM.

• The login shell assigns default values to PSl (the primary prompt), PS2 (the
secondary prompt), MAILCHECK, and IFS (Input Field Separator).

When you invoke new instances of the shell (for example, using the sh command),
the new shell checks the environment for any new values of these variables you may
have placed there. If it doesn't find any values in the environment, it assigns the default
values.

Then the new shell reads your . profile file. If you have assigned new values
there, it uses your values instead of the defaults.

The .profile file
The .profile file is simply a text file. It contains a series of commands typed exactly
as you would type them at the shell prompt. Every time you log in, the shell looks in your
home directory for a file named . prof i 1 e and executes all the commands found there
before issuing the shell prompt and taking commands. If no .profile file exists, your
environment will simply be the default environment created by the shell at login.

The .profile file 3-25

A sample .profile file
The following is a sample .profile file:

PATH=:/bin:/usr/bin:/users/elaine/bin:$HOME

export PATH

CDPATH=:/users/group.project/elaine/revisions

export CDPATH

MAILCHECK=O

export MAILCHECK

EXINIT='set wm=10'

export EXINIT

date

ls

The variables and commands in this file are discussed in the sections that follow.

Locating commands

The PATH environment variable lists the directories (separated by colons) where the
shell will look for the executable files that are A/UX (or user-defined) commands. Each
time you give a command, the shell searches the directories listed in the order specified.
Most A/UX commands are located in the /bin, /usr /bin, or /usr /ucb directory.
When you assign a value to PATH, be sure to include these directories.

If the shell cannot find the file in one of the directories specified, the command
cannot be executed and A/UX displays the message

command-name: not found

The directories listed in the PATH variable are specified by their absolute
pathnames, separated by colons. If the list of directories begins with a colon, the path
search begins in the current directory. At login, the PATH variable is set as follows:

PATH=:/bin:/usr/bin:/usr/ucb

This assignment sets the PA TH variable to the current directory and the system
directories /bin and /usr /bin.

To reset the PATH variable in . profile, insertthe lines

PATH=:/bin:/usr/bin:/usr/ucb:/users/name/bin:$HOME

export PATH

3-26 Chapter 3 Bourne Shell Reference

See "Assigning Values to Environment Variables" for a discussion of the export

command.
If you include the pathnames of personal directories that contain shell programs you

have written, these will be accessible to the shell no matter what your current directory is.
You can execute a command or shell program that is not in one of the directories in your
PATH variable by using the absolute pathname of the command or shell program.

For information on referencing variables using the $ syntax (as in $HOME earlier),
see "Parameter and Variable Substitution."

Shortcuts in changing directories

If CDPATH is set, you can use the cd command with a simple directory name that is
neither an absolute nor a relative pathname. The shell then searches for that directory in
all the directories listed in CD PATH. The directories are searched in the order specified.
If CDPATH is not set, only the current directory is searched.

If the directory you specify, for example tmp, is not found in any of the directories
given in CDPATH, you will see the message

tmp: bad directory

After CDPATH is set, you can still, of course, give the relative or absolute pathname
of any directory you wish. When you give an absolute or relative pathname in the cd

command, CDPATH is not used.

Receiving mail

The MAILCHECK environment variable specifies how often (in seconds) the shell
should check for new mail. When you log in, the shell sets MAILCHECK to 600 seconds
(10 minutes). You can change this to whatever you wish using the commands

MAILCHECK=Seconds

export MAILCHECK

where seconds equals the number of seconds the shell is to wait each time it checks for
new mail. These commands assign and export the value of the MAILCHECK as 0. When
MAILCHECK is 0, the shell checks for new mail before each prompt.

The .profile file 3-27

Your editing environment

The EXINIT environment variable tells the shell how to initialize the vi or ex

editing program. This variable is set to a series of editor commands that should be run
every time the editor is called and before any commands are read from the terminal. In
the sample . prof i 1 e above, for example, the commands

EXINIT='set wm=10'

export EXINIT

assign and export the value of EXINIT as the command

set wm=lO

which sets the word-wrap margin so that the editor will automatically break lines ten
spaces before the right margin. The command is enclosed in single quotation marks
because the entire string must be treated as one word and not divided.

For details on EXINIT, see A!UX Text-Editing Tools. For the use of double quotation
marks, see "Quoting."

Customizing your login procedure

You can also use your . prof i 1 e file to customize your login procedure. In the
sample . profile above, the commands

date

ls

direct the shell to display the date and time and then list all the files in the current
directory before displaying the shell prompt. These will be executed at login.

You can include any commands you wish in . prof i 1 e, including your own
functions and shell scripts.

3-28 Chapter 3 Bourne Shell Reference

Shell execution options

The shell is a program like other A/UX commands, and it too has a variety of options
used to control how it executes. You can specify all shell execution options using the
set command as follows:

set -opt[opt ...]

or you can specify them on the command line when you invoke a new shell or run a
shell script with the sh command:

sh -opt[opt ...] script_name

Use the set command to set new options in your current shell. Use the sh

command to invoke a subshell with the options specified or to run a script with options.
To turn options off, precede the option with a plus (+)instead of a minus (-).
The variable $ - contains a list of all the options set. For example, if you have the a

and x shell execution options set, the command

echo $-

returns

ax

Options that affect the environment

-a When the -a shell option is set, all variable assignments result in that variable
and its value being inserted into the environment.

You do not need to use the export command to insert new values.

- k The shell execution option - k can be used to insert variables and values into the
environment for a particular command; see "Special Environments."

Shell execution options 3-29

Options for invoking new shells

In addition to the options available with the set command, there are four options that
can be used only when a new shell is invoked with the sh command. These are

- c string If the - c flag is present, string is executed. After execution, control is
returned to the parent shell. This command is often used to execute shell
scripts; see "Executing Shell Scripts."

- s If the - s flag is present or if no arguments remain, commands are read from
the standard input.

- i If the - i flag is present, the shell is interactive. The terminate signal is
ignored (so that ki 11 o does not kill an interactive shell), and the
interrupt signal is caught and ignored (so that wait is interruptible). In all
cases, the quit signal is ignored by the shell.

- r If the - r flag is present, the shell invokes a restricted shell. Restricted shells
cannot change directories, alter the value of the PATH environment
variable, redirect output, or specify path or command names containing the
symbol I. See "Restricted Shell."

During shell invocation, if the first character of the first argument is a - , commands
arereadfromthe .profile file.

Restricted shell

The Bourne shell supports a limited version called the restricted shell, or rsh (note
that in A/UX, the BSD rsh remote shell network program has been renamed remsh

to prevent conflict with this program).
This version of the shell is used to set up accounts for users who have restricted

access to the file system (they cannot execute the cd command or redirect output) and
a limited menu of commands (they cannot specify absolute pathnames or change the
value of their PATH variable).

This is useful if you want to allow several users to log in to your machine but want to
restrict them to a single directory or to a limited subset of commands. In that case, you
may want to set up a special directory of commands (for example, /usr I rbin) that
can be safely invoked by all users, and include only that directory in the value of the
PATH variable. Because rsh is invoked after . profile is read, you can set up

3-30 Chapter 3 Bourne Shell Reference

such an environment by writing special . prof i 1 e files for such users. See sh(l) in
A/UX Command Reference for more information.

Shell layering
The shl program allows you to create up to seven labeled subshells called shell
layers within your login shell. These layers can then be referred to by name (or
number), suspended and resumed, deleted, and so on. Each of these layers appears like
your login shell, but can be used to run a process while you switch to another layer. This
provides a management scheme for multiple concurrent processes. See Chapter 6, "Shell
Layering,'' for more information.

Overview of shell programming
A shell program is simply a list of commands that are entered at the prompt or inserted in
a file. They may contain

• variables and assignments

• control-flowstatements(forexample, if, for, case,or while)

• built-in shell commands

• any A/UX command

• user-created commands

Input for the shell program can be read from the keyboard (this is the default standard
input), taken from files, or embedded in the program itself (using here documents, see
"Taking Input From Scripts.").

Shell programs can write output to the terminal screen (the default standard output),
to files (including device special files), or to other processes (via pipes).

When the shell program executes, each command is executed until the shell
encounters either an eof character or a command delimiter that directs it to stop. During
execution, you can trap errors and take appropriate action.

Shell program variables are strings. Arithmetic is not provided, but is available
indirectly through the expr command.

Overview of shell programming 3-31

Writing shell programs
You can enter a shell program at the prompt. When you use a built-in shell command
that expects a delimiter (such as done) or a certain type of input, the secondary shell
prompt appears after you press RETURN. This prompt (> by default) appears at each line
until you give the expected delimiter; for example,

$ for i in *
> do

> cat $i

> done

$

Note that you can send an interrupt to cancel the script and return to the primary
prompt.

You can also write a shell program in a text file (using a text editor) and then execute
it (see "Executing Shell Scripts"). These program files are often called shell scripts. Note
that all shell programs may be entered at the shell prompt or inserted in a file. This does
not affect their actions. Hereafter "shell scripts" will be used to refer to shell programs
that reside in a file.

Executing shell scripts

There are several ways to execute a shell script; these differ mostly in terms of which
instance of the shell is used for the execution.

• You can use the sh command to read and execute commands contained in a file.
The script will be run in a subshell, which means that it will have access only to the
values set in the environment and will be unable to alter the parent shell. The
command

sh filename args ...

causes the shell to run the script contained in filename, taking the args (arguments)
given as positional parameters. Shell scripts run with the sh command can be
invoked with all the options possible for the set command.

3-32 Chapter 3 Bourne Shell Reference

• You can change the mode of the shell script file to make it executable. For example,

chmod + x filename

makes filename executable. Note that you may want to modify your. PATH variable
to include a personal directory containing your shell scripts. When you have done
this, you can use your script names as ordinary commands, regardless of your current
location in the file system. Then the command

filename args ...

has the same effect as using the sh command to run the script. The arguments
become the positional parameters (see "Positional Parameters"); the script is run in a
subshell, which means that it will have access only to the values set in the
environment and will be unable to alter the parent shell.

• You can run a shell script inside the current shell by using the "dot" command (.).
The dot command tells the current shell to run the script; no subshell is invoked. This
should be used if you wish to use local shell variables or functions, or modify the
current shell:

. filename args ...

Note that there must be a space between the dot and the filename. Because the
commands are executed in the current shell, this is the way to run a script that is to
change values in the shell. The arguments become positional parameters. Otherwise
the positional parameters are unchanged.

• You can run an executable shell script with the exec command (the file containing
the shell script must have execute permission). This should be used when the shell
script program is an application designed to execute in place of the shell and replace
interaction with it:

exec filename args ...

In this case, the shell script replaces the current shell. This means that when the script
is over, control will not return to the shell. If you were in a login shell, you will be
logged out.

Writing shell programs 3-33

Comments

A word beginning with a number sign (#) causes that word and all the following
characters up to a newline to be ignored.

Writing interactive shell scripts

A shell script can invoke an interactive program such as the vi editor. If standard input
is attached to the terminal, vi will read commands from the terminal and execute them
just as if they had been invoked from an interactive shell. After the session with vi is
finished, control will pass to the next line in the script. In a similar manner, a script can
invoke another copy of a shell (using sh, csh, or ksh), which will interpret
commands from the terminal until you send an eof Control will be returned to the script.
You can use this to create a special environment for certain tasks by setting environment
variables in a shell script and then invoking a new subshell.

You can also write interactive shell scripts by using the read and eval

commands and prompting users to enter commands:

read command

eval $command

The first line will read the user's command line into the variable command. The
eval command will then cause the command to execute.

Canceling a shell script

You can cancel a shell script just like an ordinary A/UX command. If the script is running
in the background, use the A/UX ki 11 command. See "Canceling Commands" for
details on ki 11 and various types of interrupts that can stop a command.

3-34 Chapter 3 Bourne Shell Reference

+ Note Interrupts can be trapped and handled within the script using the trap

command. See "Summary of Bourne Shell Commands." •

Writing efficient shell scripts

In general, built-in commands execute more efficiently than A/UX commands. See
"Summary of Bourne Shell Commands" at the end of this chapter for a complete list of
these commands. The following built-in commands are useful in constructing efficient
shell scripts:

hash This causes the shell to remember the search path of the command named.

ul imi t This can be used to set a limit on files written by processes.

times This prints the accumulated user and system times used by the current shell.

You can also set the - h shell execution option using

set -h

This will locate and remember functions as they are defined, instead of when they are
invoked, which is normal.

Careful setting (or resetting inside a shell script) of the PATH and CDPATH

environment variables ensures that the most frequently used directories are listed first.
This also improves efficiency.

Command evaluation
When you give a command, the shell evaluates the command in one pass and then
executes it. To force more than one pass of evaluation, use the eval command (see
"Forcing More Than One Pass of Evaluation").

Command evaluation 3-35

While evaluating the command, the shell performs the following substitutions on
variables:

• Variable substitution This replaces variables preceded with $ (for example,
$user) with their values. Only one pass of evaluation is made. For example, if the
value of the variable user is daphne, then the command

echo $user

prints

daphne

However, if the value of the variable user is $name, then the command

echo $user

prints

$name

The second variable is never evaluated, and the value is not substituted. See
"Parameter and Variable Substitution" for more information.

• Command substitution The shell replaces a command enclosed in back quotes with
the command's output. For example, if the current directory is
/users/doc/virginia, then the command

echo 'pwd'

prints

/users/doc/virginia

• Blank interpretation The shell breaks the characters of the command line into words
separated by delimiters (called "blanks"). The delimiters that are interpreted as blanks
are set by the shell variable IFS; by default, they are spaces, tabs, and newlines. The
null string is not regarded as a word unless it is quoted; for example,

echo ''

passes the null string as the first argument to echo, whereas the commands

echo

and

echo $null

(where the variable null is not set or is set to the null string) pass no arguments to
the echo command.

3-36 Chapter 3 Bourne Shell Reference

• Filename expansion The shell scans each word for filename expansion
metacharacters (see "Using Bourne Shell Metacharacters") and creates an alphabetical
list of filenames that are matched by the pattem(s). Each filename in the list is a
separate argument. Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated with a for loop.

Forcing more than one pass of evaluation

Sometimes more than one pass of evaluation is necessary for a command to be
interpreted correctly. For example, suppose that the following two lines occur near the
beginning of a shell script:

name=elaine

err_33='echo $name: user not found'

If you give the command

$err_33

you get

$name: user not found

(which is not quite what you want). In cases like this, you can use the built-in command
eval. The syntax of the eval command is as follows:

eval arg

where arg can be a variable or a command. For example, the command

eval $err_33

forces two evaluations of the value of the variable err_3 3. Thus it prints

elaine: user not found

In general, the eval command evaluates its arguments (as do all commands) and
treats the result as input to the shell. The input is read and the resulting command(s)
executed.

Command evaluation 3-37

Command execution

After all substitution has been carried out, commands are executed as follows:

• Built-in commands, functions, and shell scripts run with the dot command (.) are
executed in the current shell. The command has available all current shell execution
options, the values of variables and environment variables, and functions defined in
the current shell.

• A/UX commands, programs, executable shell scripts, shell scripts run with the sh

command, and series of commands enclosed in parentheses are executed in a
subshell. The current shell invokes a child shell that executes the commands and then
returns control to the parent shell. Only the values in your environment are available
to these processes.

• Commands and executable scripts run with the exec command execute in place of
the current shell.

If an A/UX command or program name does not specify a pathname, the environ­
ment variable PATH is used to determine what directories should be searched for the
command. The only exception to this is built-in commands.

For more information about the execution of shell scripts, see "Executing Shell Scripts."

Exit status: The value of the command

If a command executes successfully, its exit value is usually zero (0). If it terminates
abnormally, its exit value is often nonzero. The shell saves the exit value of a command.
These are used primarily in shell scripts.

To check the exit status of a command, use the command

exit $?

See "Parameters and Variables Set by the Shell" for more information. See the manual
entry for the command in question in A!UX Command Reference or A/UX System
Administrator's Reference for exit status values.

3-38 Chapter 3 Bourne Shell Reference

Defining functions
You can use a function definition to assign a name to a command or list of commands.
After you have defined a function, typing the function name (and any required
arguments) causes the commands in command-list to be executed by the current shell.

The form of a function definition can be

name () { command-list; }

or

name () {
command-list

The first brace ({) must be followed by a space or newline; the second must be
preceded by a semicolon or newline. There cannot be a semicolon between the
parentheses and the first brace.

For example, a function maintaining a daily log of users could be written as follows:

users() { date>>log; who>>log;}

or

users () {

date>>log;who>>log

The function would first append the date and then the listing provided by the who

command to the file named log.

Functions are commonly defined in the . prof i 1 e file, although they can also be
defined at the terminal or in a shell script.

Functions execute in the current shell, not in a subshell. During execution, any
arguments become the positional parameters. After execution, they are reset to their
former values, if any. This means that if a function is defined and used inside a shell
script, the parameters of functions will not conflict with the parameters of the script.

Because they are executed in the current shell, functions share their variables with
this shell and can create, alter, and assign shell and environment variables. Functions
themselves, however, cannot be exported. This means that they are available only in the

Defining functions 3-39

shell where they were defined (for example, the login shell if they are defined in the
. prof i 1 e file) and that a function defined in a particular shell will be available only to
shell scripts run with the dot command (.) in that shell.

In a function definition, the return command,

return n

causes a function to terminate with the exit status specified by the integer n. For
example,

users () {

date>>log;who>>log

return 1

causes the function to terminate normally with a return value of 1. If the n is omitted from
the return command, the exit status is that of the last command executed.

To list the text of the defined functions, use the set command without arguments.
(This will list the values of all variables currently set in the shell, including functions.) To
remove a function, use the unset command followed by the name of the function.

Positional parameters and shell variables

A shell script may use two types of variables:

• Positional parameters These are string variables referred to by the numbers
[0 through 9l. These numbers refer to the position of the parameter on the command
line. Positional parameters are set on the command line and contain the arguments to
the script. If more than ten positional parameters are required, the shift

command can be used to discard old values.

• Shell variables These are string variables referred to by name. They may be assigned
on the command line or inside the script itself.

The relationship between variables inside a shell script and existing shell variables
depends on how the script is run. See "Executing Shell Scripts." In all cases, shell scripts
have access to the variables and values in the environment.

3-40 Chapter 3 Bourne Shell Reference

Positional parameters

Positional parameters may be referred to by the numbers [0 through 9] and set as
arguments on a command line. When you enter a command at the prompt, the shell
stores the elements of the command line in parameters: the command name is stored in
parameter 0, the first argument is stored in parameter 1, the second argument in
parameter 2, and so forth. Thus, for the command

diff letterl letter2

parameter 0 is dif f, parameter 1 is let terl, and parameter 2 is letter2. For the
command

echo "not a directory"

parameter 0 is echo and parameter 1 is not a directory.

A shell script may refer to parameters by number; for example,

echo $1

echo $2

These will be substituted by the arguments given in that position on the command line;
for example, for the command

myscript argl arg2

parameter 0 is myscript, parameter 1 is argl, and parameter 2 is arg2. The echo

command above prints

argl

arg2

Setting values in a script

The set command creates a new sequence of positional parameters and assigns them
values. After execution, all the old parameters are lost. For example, the command

set *
creates a sequence of positional parameters set to the names of the files in the current
directory (parameter 1 is the first filename, parameter 2 is the next filename, and so on).

Positional parameters and shell variables 3-41

A subsequent command,

set hi there

creates new positional parameters, discarding the old values. This time there will be only
two values set; the other positional parameters will have no values. A subsequent
command,

echo $2 $1

displays

there hi

The command

echo $3

would have no effect, because there is no longer a third parameter.
To set a positional parameter to a string of words separated by blanks, you must

enclose the entire string in quotation marks. For example,

set "this is one positional parameter"

sets this entire string to the first positional parameter. Without the quotes, the phrase
would be set, one word at a time, to the first five positional parameters.

Because the set command creates a new series of parameters, it is impossible to
set only one parameter in a series. If only one parameter is set, it will be the first, and the
remaining parameters will be lost.

The set command can also be used within a script to create positional parameters
if none are given on the command line. Such parameters can then be used as a one­
dimensional array.

After the set command is used to reset positional parameters, the internal shell
variable #, which contains the number of positional parameters, is reset to reflect the
new number of parameters. For details on the internal shell variables, see "Parameters
and Variables Set by the Shell."

Changing parameter positions

The shift command shifts positional parameters one or more positions to the left,
discarding the value in the first position(s). The syntax is

shift [nJ

3-42 Chapter 3 Bourne Shell Reference

If n is omitted, it defaults to 1. If n is specified, the shift takes place at the position
n+ 1. For example,

shift 6

moves parameter 7 into position 1, parameter 8 into position 2, and so on, discarding the
values that were stored in positions 1 through 6.

This can be useful, for example, when you are working through a list of files. After
each file is processed, a shift can be performed, to let the next filename become
parameter 1.

Number of parameters

The current number of positional parameters is stored in the system-maintained variable #.

See "Parameter and Variable Substitution" and "Parameters and Variables Set by the Shell."

Shell variables

Shell variables are named string variables. These variables can be assigned values
anywhere in the script or on the command line. Variable names begin with a letter and
consist of letters, digits, and underscores. Environment variables, which we have already
encountered, are simply special kinds of shell variables (namely, shell variables that are
available to all subshells).

Assigning values

Shell variables are assigned values with the syntax

name= value [name= valueJ ...

Note that there cannot be spaces surrounding the equal sign.
All values are stored as strings. Pattern-matching is performed. To set a variable to a

string of words separated by blanks, you must quote the entire string; for example,

longvar="this is a long variable"

Positional parameters and shell variables 3-43

After the variable assignments

user="fred stone" box='???' acct=18999

the following values are assigned:

user = fred stone

box = ???

acct = 18999

Because the Bourne shell supports only string variables, all of these values (including
18999) will be strings of characters. Note that the question mark metacharacters must be
quoted with single quotation marks to prevent pattern matching.

A variable may be set to the null string with the syntax

variable=

Shell variables may be set at the shell prompt to provide abbreviations for frequently
used strings; for example,

b=/usr/fred/bin

mv file $b

moves file fromthecurrentdirectorytothedirectory /usr/fred/bin.

An argument to a shell program of the form name=value that precedes the command
name causes value to be assigned to name before execution begins. The value of name
in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred.

After variable assignments, any additional arguments are assigned to the positional
parameters.

The - k flag causes arguments of the form name=value to be interpreted in this way
anywhere in the argument list. See "Special Environments."

Removing shell variables

You can remove shell variables by using the unset command followed by the name of
the variable:

unset name

The variable and its value will be removed.

3-44 Chapter 3 Bourne Shell Reference

Setting constants

Names whose values are intended to remain constant may be declared read-only. The
form of this command is

readonly name ...

Subsequent attempts to assign values to read-only variables are illegal.

Parameter and variable substitution

Positional parameters and shell variables are referenced and their values are substituted
when the identifier (the variable name or positional parameter number) is preceded by a
dollar sign($):

$ identifier

For example,

$jl $1 $8 $version

For variables, identifier can be any valid name; for positional parameters, identifier
must be a digit between 0 and 9. Additional positional parameters must be moved into
this range with the shift command described earlier, referenced with the $ *
notation described next, or accessed through the for construct.

Another notation for substitution uses braces to enclose identifier:

echo $ {identifier}

This is equivalent to $identifier. Braces are generally used when you may want to
append a letter or digit to identifier. For example,

tmp=/tmp/ps ps a >${tmp}a

substitutes the value of the variable tmp and directs the output of ps to the file
/tmp/psa, whereas

ps a >$tmpa

causes the value of the variable tmpa to be substituted.

Positional parameters and shell variables 3-45

A special shell parameter, *, can be used to substitute for all positional parameters
(except 0, which is reserved for the name of the file being executed). The notation @ is
the same as * except when it is quoted. Thus,

echo "$*"

prints all values of all the positional parameters, and

echo "$@"

passes the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ...

Testing assignment and setting defaults

If a parameter or variable is not set, then the null string is substituted for it. For example,
if the variable a is not set,

echo $d

or

echo ${d}

prints a blank line.
The following structures allow you to test whether variables or parameters are set and

not null, and to provide default values or messages. In these structures, string is
evaluated only if it is to be substituted (command substitution, another variable, and so
forth). If the colon is omitted, the shell checks only that the variable has been set; no
action is taken if the variable or parameter is currently null.

$ {identifier: -string}
If the parameter or variable whose name is represented by identifier is set and is non­
null, substitute its value; otherwise substitute string. The value of the variable or
parameter is not changed. For example, if the variable test is null or unset, then

${test:-unset}

returns the string unset; otherwise the value of test is returned.

3-46 Chapter 3 Bourne Shell Reference

$ {identifier: +string}
If identifier is set and is non-null, substitute string; otherwise substitute nothing. The
value of the variable or parameter is not changed. For example, if the variable test

was null or unset, then

${test:+unset}

returns nothing.

$ {variable: =String}
If variable is not set or is null, set it to string; then substitute the new value. Positional
parameters may not be assigned in this way. For example,

${HOME:=/user/doc}

tests the environment variable HOME to see if it had a non-null value. If it did not, it
would be assigned the value /user I doc and this value would be substituted.
Otherwise the original value of HOME would be removed.

$ { identifier: ? string}
If identifier is set and is non-null, substitute its value; otherwise print string and exit from
the shell. If string is omitted, the message

filename: identifier: parameter nul 1 or not set

prints. For example, a shell script named distribute that requires the parameter
directory to be set might start as follows:

echo ${directory:?"distribution directory not set"}

If directory was not set, the script would immediately exit with the message

distribute:directory:distribution directory not set

Positional parameters and shell variables 3-47

Parameters and variables set by the shell

Except for the exclamation point (!),the following parameters are initially defined by the
shell; the ! is defined only after a background task is executed. These parameters can
be referenced anywhere identifier or variable appears in the standard forms described in
the previous section; for example echo $?.

? The exit status of the last command as a decimal string. Most commands
return a zero exit status if they complete successfully; otherwise a nonzero

*

exit status is returned. This is used in the if and whi 1 e constructs for control
of execution.

The number of positional parameters in decimal. For example, this notation is
used in a script to refer to the number of arguments. An example of this use
appears in the case section.

All the positional parameters (arguments) of a shell script. For example,

for i in $*
do

echo $i
done

The above shell subroutine prints all the positional parameters.

$ The process ID of this shell in decimal. Because process IDs are unique
among all existing processes, this string is frequently used to generate
unique temporary filenames. For example,

ps a > /tmp/ps$$
command-list
rm /tmp/ps$$

The process ID of the last process run in the background.

The current shell flags, such as -x and -v.

Control-flow constructs

The shell has a variety of ways of controlling the flow of execution. In the Bourne shell,
you can use for loops, case statements, while loops, until loops, select

statements, and if statements to control a program's flow. The actions of the for

3-48 Chapter 3 Bourne Shell Reference

loop and the case branch are determined by data available to the shell. The actions of
the while or until loop and if then else branch are determined by the exit
status returned by commands or tests. Control-flow constructs can be used together, and
loops can be nested.

In the following constructs, reserved words like do and done are recognized only
following a newline or semicolon. The designation command-list represents a sequence
of one or more simple commands separated or terminated by a newline or a semicolon.

for loops

To repeat the same set of commands for several files or arguments, use the for loop:

for name in word1 word2
do

command-list
done

+ Note The words for, do, and done must follow a newline or semicolon. •

An example of such a procedure is t e 1, which searches a file of telephone
numbers, /usr /lib/telnos, forthe various names given as arguments to the
command and passed as positional parameters. The text of tel is

for i

do

grep $i /usr/lib/telnos

done

Note that the for i notation is shorthand for for i in $ *.
The command

tel fred

sets i to the name fred and prints those lines in the file /usr /lib/telnos that
contain the string fred. It is equivalent to

Control-flow constructs 3-49

for i in f red

do

grep $i /usr/lib/telnos

done

The command

tel f red bert

prints those lines containing fred followed by those containing bert.

To terminate a loop before the condition fails (or is met), or to continue a loop and
cause it to reiterate before the end of command-list is reached, use the loop-control
commands:

break [nJ

continue [n]

These commands can appear only between the loop delimiters do and done. The
break command terminates execution of the current loop; execution resumes after the
nearest done. The continue command causes execution to resume at the beginning
of the current loop.

For both break and continue, the optional n indicates the number oflevels of
enclosing loops at which execution should resume or continue. For example, the
break 2 command in

for i in 0 1

do

for j in 0 1

do

done

done

for k in 0 1 2 3

do

done

echo ij$k

break 2

causes execution to resume two levels above the current loop.

3-50 Chapter 3 Bourne Shell Reference

case statements

The form of the case statement is

case word in

pattern) command-list; ;

pattern) command-list; ;
esac

Each command-list except the last must end with ; ; . (The semicolons after the last
command-list are optional.) After execution of command-list, the case statement is
complete, and control passes to the command following esac.

Patterns may include filename expansion metacharacters. However, the initial dot,
slashes, and a dot following a slash do not have to be matched explicitly, as they do in
filenames. Different patterns to be associated with the same command-list are separated
by the OR operator, the vertical bar (I). To be used literally, pattern-matching
metacharacters must be quoted. Because an asterisk (*) matches any sequence of
characters, it can be used to set up a default case. However, be careful in setting up the
default; there is no check to ensure that only one pattern matches the case argument. The
first match found defines the set of commands to be executed. In the next example, the
commands following the first asterisk will never be executed because the first asterisk
matches everything it receives.

case$# in *) exit;;

0) echo "no arguments given"

exit ; ;

esac

The following is an example of a case statement within a script named append

which appends files:

case $# in

1) cat >>$1 ;;

2) cat $1>>$2 ;;

*) echo 'usage: append [from] to' ,,

esac

Control-flow constructs 3-51

When it is called with one argument, as in

append file

the system-set variable # is assigned the value 1 (the number of parameters in the call);
and the cat command appends the standard input to file.

When append is called with two arguments, as in

append filel file2

the value of # is 2 and the command appends the contents of filel onto file2. If
the number of arguments supplied to append (that is, the value of $#)is greater than
2 or is 0, then the shell prints an error message indicating proper usage.

The following example illustrates the use of alternative patterns separated by a
vertical bar (I):

case $i in

-x I -y) command;;
esac

You can achieve the same effect using the bracket metacharacters ([and J), as in

case $i in
- [xyJ) command;;

esac

When using metacharacters, the usual quoting conventions apply so that

case $i in
\?) echo "input is ? " ; ;

esac

matches the character ? for the first pattern.
A common use of the case construct is to distinguish between different forms of an

argument. The following example is a fragment of a script that uses a case statement
inside a for loop:

3-52 Chapter 3 Bourne Shell Reference

for i

do

done

case $i in

esac

- [ocs])

-*) echo "unknown flag $i" / /

*.c) /lib/cO $i ... 11

*) echo "unexpected argument $i" 11

while loops

The whi 1 e and un ti 1 commands cause the program to loop depending on
whether or not a certain condition is met.

A while loop has the form

while command-listl
do

command-list2
done

+ Note The words while, do, and done must follow a newline or semicolon. +

The while command tests the exit status of the last simple command in
command-listl. Each time round the loop, command-listl is executed. if the last
command executes successfully (a zero [true) exit status is returned), then command-list2
is executed; otherwise the loop terminates. If the last command executes successfully but
returns a nonzero exit status, the while loop will think it is false and terminate. For
example, the script

Control-flow constructs 3-53

while test $1

do

done

command-list
shift

loops through all the positional parameters. For each iteration of the loop, the test

command is used to determine if the parameter exists. If it does, then test returns a
zero (true) exit status and the following commands execute.

The shift command is used to rename the positional parameters $2, $3, ... as
$1, $ 2, ... , and remove the first one, $1. This entire loop is equivalent to

for i

do

command-list
done

To create an endless nonconditional while loop, use the A/UX true command,
which always returns a zero exit status.

until loops

The un ti 1 loop has the form

until command-listl
do

command-list2

done

+ Note The words until, do, and done must follow a newline or semicolon. +

It works the same way as a while loop, except that the termination condition is
reversed. Each time round the loop, command-listl executes; if the last command does
not execute successfully (returns a nonzero [false] exit status), then command-list2 is
executed.

3-54 Chapter 3 Bourne Shell Reference

A common use for an un ti 1 loop is to wait until some external event occurs and
then run some commands. For example,

until test -f file
do

sleep 300

done

commands

will loop until.file exists. Each time round the loop, it waits for 5 minutes (300 seconds)
before trying again. (Presumably, another process will eventually create the file.)

To terminate a loop before the condition fails (or is met), or to continue a loop and
cause it to reiterate before the end of the command list is reached, use the loop-control
commands:

break [nJ

continue [nJ

These commands can appear only between the loop delimiters do and done, as in
the for loop. See "for Loops" for more information on using the break and
continue commands.

For both while and until loops, the exit status of the loop is that of the last
command executed in command-list2. If no commands in command-list2 are executed,
then a zero exit status is returned.

To create an endless nonconditional until loop, use the A/UX false

command. See true(l) in A/UX Command Reference for details.

if then else

The form of the if then else conditional branch is

if command-list I
then

command-list2
[else

command-list3J
fi

Control-flow constructs 3-55

In this structure, e 1 s e and command-list3 are optional. The if command tests
the exit status of the last simple command in command-listl. If the last command
executes successfully (a zero [true] exit status is returned), then command-list2 is
executed; otherwise command-list3, if present, is executed. For example, the if

command can be used with the test command to test for the existence of a file, as
below:

if test -f file
then

command-listl
else

command-list2
fi

See "Summary of Bourne Shell Commands" for details about the test command.
Avoid naming test files test; the name makes it awkward (and dangerous) to use

the test command as well. A harmless alternative is the [J construct:

if [-f fileJ
then

command-listl
else

command-list2
fi

Multiple conditions can be tested with a nested if command:

if conditionl
then

else

fi

command-listl

if condition2
then

else

fi

command-list2

i f condition3
command-list3

fi

3-56 Chapter 3 Bourne Shell Reference

Note that each of the nested if commands requires its own f i. You can also use a
single if construct to achieve this effect:

if conditionl
then

command-list 1
el if condition2
then

command-list2
el if condition3

command-list3
fi

Note that this is a single if construct with only one terminating f i.

An example of the if statement can be found in the following script, which
updates the last modified time for a list of files.

flag=

for i

do

done

case $i in

-c) flag=N , ,

*) if test -f $i

then

touch $i

elif test $flag

then

>$i

else

echo "file $i does not exist"

fi

esac

Control-flow constructs 3-57

The -c flag in this command forces subsequent files to be created if they do not
already exist. Without the - c flag, an error message prints if the file does not exist. The
shell variable f 1 ag is set to some non-null string if the -c argument is encountered.

The exit status of the if command is the exit status of the last command following
a then or else. If no such commands are executed, then the exit status is zero.

Conditional execution of commands can also be achieved with the symbols && and
I I . See "Conditional Execution" for details.

exit [n]

A shell script terminates when it reaches eof The exit status of the script is that of the last
command executed. The built-in exit command can cause the script to terminate with
exit status set to n. If n is omitted, exit status is that of the last command executed before
exit was encountered.

Input and output

The treatment of input and output in NUX allows for much flexibility. This section
describes in detail how to perform some of the more common I/0 operations.

I/ 0 redirection

All forms of I/0 redirection are allowed in shell scripts. If I/0 redirection (using <, >, or
> >) is done in any of the control-flow commands, the entire command is executed in a
subshell. This means that any values assigned during execution of the command will not
be available after the command is over, and control returns to the parent shell. If
necessary, you can change the shell's standard input and output. See "Changing the
Shell's Standard Input and Output."

Redirection with file descriptors

The NUX system considers standard input, standard output, and standard error output to
be files and associates a file descriptor with each of them.

3-58 Chapter 3 Bourne Shell Reference

File descriptors are numbers used to identify files. File descriptors run from 0 to
(OPEN_MAX-1) (see intro(2) in A/UX Programmer's Reference). By default, the file
descriptors 0, 1, and 2 have the following associations:

• 0 is associated with standard input.

• 1 is associated with standard output.

• 2 is associated with standard error output.

Thus, standard input can be referenced via file descriptor 0, standard output can be
referenced via file descriptor 1, and standard error can be referenced via file descriptor 2.

Input and output redirection uses the syntax

[x J < filename

and

[x J > filename

where x is an optional file descriptor number indicating a file; > and < are
redirection operators; and filename is a file containing input, or to which output will be
directed. The simple forms omit the file descriptor x and use the defaults listed earlier.
If no descriptor appears, it is assumed to be 0 for input redirection and 1 for output
redirection.

Standard error output must be redirected explicitly using a numeric file descriptor as
documented below. The » form may be used to append output to an existing file
rather than overwrite the file's contents.

All file descriptors can be used with redirection characters in a command line. The file
descriptor immediately precedes the redirection symbol. For example,

cc x.c 2>&1 I more

redirects standard error on top of standard output and pipes the result to more. Note
that there must be no spaces between the characters in 2>&1.

In all forms, specifications are evaluated by the shell from left to right as they appear
in the command. Filenames are subject to variable and command substitution only. No
filename expansion or blank interpretation takes place; for example, the command

cat testfile > *.c

simply writes t es tf i 1 e into a file named * . c.

Input and output 3-59

File descriptors redirecting input

The default file descriptor for redirecting standard input is 0. This may be specified as

cat o <filename

Because this is the default file descriptor, it may be omitted, as follows:

cat >filename

File descriptors redirecting output

The default file descriptor for redirecting output is 1. This may be specified as

cat 1 >.filename

Because this is the default file descriptor, it may be omitted, as follows:

cat >filename

Combining standard error and standard output

The default file descriptor for redirecting standard error output is 2. If you want to direct
the error output of a command to a file (to save the error messages), use the syntax

ls filename 2>errors

This saves error output (for example, filename not found) in a file named
errors. If you want to save the command output and error output in separate files, use
the syntax

ls filename >output 2>errors

To print the output and the error output in the same file, use the syntax

ls filename >output 2>&1

This writes both standard output and error output in the file output. Note that 2>&1

references the output file because you have already redirected standard output (file
descriptor 1) to this file.

For example, to save the output and the error output of the make command in a file
named make. log, use the command

make > make.log 2>&1

3-60 Chapter 3 Bourne Shell Reference

Changing the shell's standard input and output

To associate standard input or standard output with a file, use the exec command:

exec >filename

for standard output and

exec <filename

for standard input.

Output will be written to, or input taken from, the file specified until further
redirection is done with the exec command. This can be useful if all output is to be
taken from a file or written to a file. This construct is unlike normal shell redirection with
> and < in that the redirection remains in effect until you log out or explicitly reset the
standard I/0 files.

To return output and input to the terminal, use the commands

exec > I dev It ty (for output)
exec < I dev It ty (for input)

Reassignment can be used to avoid the problems involved in redirecting output or
input in a control-flow structure.

Associating file descriptors with other files

The exec command can also be used to associate file descriptors with specific files.
This can be an advantage in shell scripts that need to read or write a file line by line (see
also "Reading Input"), because writing output to a file descriptor cannot overwrite a file's
contents. The command syntax

exec x<filename

where xis a number [3 to (oPEN_MAX-1)], associatesfilenamewith x(see intro(2) in
A!UX Programmer's Reference for a definition of OPEN_MAx). For example, the
commands

exec 4<f ilel

exec 5<file2

associate file descriptor 4 with f ilel and file descriptor 5 with f ile2. After these
commands, the syntax

Input and output 3-61

command <&4

takes input from f i 1e1 and

command >&5

writes output to file2. Using the ampersand(&) prevents the shell from creating or
looking for a file named 4 or 5 in these examples.

The following example shows how the >&n file descriptor syntax may be used:

$ exec 4>f ile2
$ echo hello >&4
$cat f ile2
hello
$echo bye >&4
$ cat f ile2
hello
bye

Note that this file descriptor syntax can be repeated in a loop without the contents of
file2 being overwritten.

Reading input

The built-in read command reads a line of input from the terminal or a file and assigns
it to the variables specified. The form of the read command is

read [name ...]

One line is read from the standard input and the first word is assigned to the first
name, the second word to the second name, and so on, with leftover words assigned to
the last name. If only one name is specified, the entire line read will be assigned to that
name. The exit status is zero while there is data to be read. If an eof or an intetntpt is
encountered, the exit status is nonzero.

For example, you could use the read command to take input from the terminal as
follows:

$ read first middle last abbreviations
Alyssa Elizabeth Lynch Dr. Ph.D.

3-62 Chapter 3 Bourne Shell Reference

This would result in the following variable assignments:

first=Alyssa

middle=Elizabeth

last=Lynch

abbreviations=Dr. Ph.D.

The read command can also take input from a file, but it always reads the first line.
If you wish to move sequentially through a file, reading it line by line, you must first use
the exec command to make the file standard input as follows:

exec <name.list

while read first middle last abbreviations

do

command-list
done

exec < /dev/tty

In the above example, the exec command is used to reassign standard input to the
file name. list. The while loop uses the read command to read each line of the
file into the variables first, middle, last, and abbreviations, and then it
executes command-list.

When read reaches the end of the file, it will return a nonzero exit status, and the
while loop will terminate. The final exec command then assigns standard input
back to the terminal. For information about reassignment with the exec command, see
the preceding section.

The A/UX 1 ine command functions exactly like the read command, except that
a whole line is read into a single variable. The line will be terminated with a newline.

Taking input from scripts

Input to a shell script can be embedded inside the script itself. This is called a here
document. The information in a here document is enclosed as follows:

«[-J word
information
word

Input and output 3-63

The first word may appear anywhere on a line; the second must appear alone on a line, that
is, it cannot be indented. The words must be identical and should not be anything that will
appear in infonnation. The second word is the end-of-file for the here document. Variable
and command substitution will occur on infonnation. Normal quoting conventions apply,
so $ can be escaped with \. To prevent all substitution, quote any character of the first
instance of word. (If substitution is not required, this is more efficient.)

To strip leading tabs from word and information, precede the first instance of word
with the optional hyphen (-), as follows:

<<-word

+ Note If you intend to indent your code, you must use the hyphen preceding word
unless the commands you use can tolerate leading tabs. +

For example, a shell procedure could contain the lines

for i

do

grep $i /usr/lib/telnos

done

Here the grep command looks for the pattern specified by $ i in the file
/usr /lib/telnos. This file could contain the lines

fred mh0123

bert mh0789

An alternative to using an external file would be to include this data within the shell
procedure itself as a here document:

for i

do

done

grep $i <<!

fred mh0123

bert mh0789

3-64 Chapter 3 Bourne Shell Reference

In this example, the shell takes the lines between < < ! and ! as the standard input
for grep. The second ! represents the eof The choice of ! is arbitrary. Any string
can be used to open and close a here document, provided that the string is quoted if
white space is present and the string does not appear in the text of the here document.

Here documents are often used to provide the text for commands to be given for
interactive processes, such as an editor, called in the middle of a script. For example,
suppose you have a script named change that changes a product name in every file in

a directory to a new name:

for i in *
do

echo $i

ed $i <<!

g/oldproduct/s//newproduct/g

w

done

(Note that ed commands will not tolerate leading tab characters and there is no
hyphen preceding the first word; therefore the code is not indented.) The metacharacter
* is expanded to match all filenames in the current directory, so the for loop
executes once for each file. For each file, the ed editor is invoked. The editor
commands are given in the here document between < < ! and ! . They direct the editor
to search globally for the string oldproduct and, each time it is found, substitute the
string newproduct. After the substitution is made, the editor saves the new copy of the
file with the w command.

You could make the change script more general by using parameter substitution,
as follows:

for i in *
do

echo $i

ed $i <<!

g/$1/s//$2/g

w

done

Input and output 3-65

Now the old and new product names (or any other strings) can be given as positional
parameters on the command line:

change string1 string2

You can prevent substitution of individual characters by using a backslash (\) to
quote the special character $, as in

for i in *

do

echo $i

ed $i <<!

1, \$s/$1/$2/g
w

done

This version of the script is equivalent to the first, except that the substitution is
directed to take place on the first to the last lines of the file (1, $)instead of "globally"
(g) as in the first example. This way of giving the command has the advantage that the
editor will print a question mark (?) if there are no occurrences of the string $1.

Substitution can be prevented entirely by quoting the first instance of the terminating
string; for example,

ed $i <<\ !

Note that backslash, single quotation marks, and double quotation marks all have the
same effect in this context: they turn off variable expansion and filename expansion.

To prevent leading tabs from becoming part of the here document, precede the first
word with a hyphen, as follows:

for i in *

do

done

echo $i

ed $i <<-!

l,\$s/$1/$2/g

w

3-66 Chapter 3 Bourne Shell Reference

Using command substitution

Command substitution can occur in all contexts where variable substitution occurs. You
can use command substitution in a shell script to avoid typing long lists of filenames. For
example,

ex 'grep -1 TRACE *.c'

runs the ex editor, supplying as arguments those files whose names end in . c and
that contain the string TRACE. Another example,

for i in 'ls -t'

do

command-list $ i

done

sets the variable i to each consecutive filename in the current directory, with the most
recent filename first.

Command substitution is also used to generate strings. For example,

set 'date'; echo $6 $2 $3, $4

first sets the positional parameters to the output of the date command and then prints;
for example,

1986 Nov 1, 23:59:59

Another common example of command substitution uses the basename

command. This command removes the suffix from a string, so

basename main.c .c

prints the string main. The following fragment illustrates its application in a command
substitution:

case $A in ... *.c) B='basename $A .c' ... esac

Here B is set to the part of $A with the suffix . c stripped off.

Input and output 3-67

Writing to standard output

The echo command is used to write to standard output (by default, the terminal). The
form of the echo command is

echo arguments escapes

The arguments are what is written. They are evaluated like the arguments of any other
command with variable and command substitution, filename expansion, and blank
interpretation. Normal quoting conventions apply. Strings containing blanks must be
enclosed in double quotation marks. The arguments will be written sequentially,
separated by blanks, and by default they will be terminated with a newline. If there are
no arguments or the arguments are unset or null variables, a blank line will be returned.

The escapes indicate how the arguments should be printed. The possible escapes are

\ b backspace

\ c print line without newline

\f form feed

\n newline

\ r carriage return

\t tab

\ v vertical tab

\ \ backslash

\ n the 8-bit character whose ASCII code is the 1-, 2-, or 3-digit octal number n, which
must start with a zero

The backslash in each escape must be quoted; that is, it must appear twice or be
enclosed in quotation marks. Escapes can occur anywhere in the arguments. For
example, to produce two lines of output with a single echo command, you could give
the command

echo "line one"\\n"line two"

To print the value of a variable and keep the cursor in the same line, you could give
the command

echo $jj\\c

See echo(l) in A/UX Command Reference for more information.

3-68 Chapter 3 Bourne Shell Reference

Other features

Arithmetic and expressions

The Bourne shell has no built-in arithmetic. The A/UX expr command can be used for
integer arithmetic, logical operations, comparison, and some pattern matching and
creation of substrings.

Integers and operands are passed to the expr command as separate arguments,
which means that they must be separated by spaces as follows:

expr 1 + 1

Shell metacharacters such as the asterisk (*) must be quoted with the backslash (\).
For instance, to have the shell compute the value of 5 factorial (in symbols: 50, you could
enter

expr 5 * 4 * 3 * 2

The following are some of the operators allowed in expr expressions, in increasing
precedence:

1. = \ > \ >= \ < \ < = ! = These symbols return the result of an integer comparison if
both arguments are integers; otherwise they return the result of a lexical comparison.

2. + - These symbols return the result of addition or subtraction of integer-valued
arguments.

3. \ * / % These symbols return the result of multiplication or division, or the
remainder of the integer-value arguments.

For a complete list, see expr(l) in A/UX Command Reference.
The primary use of expr is in command substitution to set variables. For example,

to count the iterations of a loop, you could increment the variable a as follows:

a='expr $a + 1 '

The expr command can also be used to pick apart strings and do pattern
matching. To perform floating-point calculation, use awk or be. See A/UX
Programming Languages and Tools, Volume 2, for details.

Other f ea tu res 3-69

File status and string comparison

The built-in test command evaluates an expression and returns a zero (true) exit
status if the expression is true, and a nonzero (false) exit status if the expression is false
or there is no argument. It is often used in the shell control-flow constructs.

For example,

test -f file

returns zero exit status if file exists and nonzero exit status otherwise. Some of the more
frequently used test arguments are given below. See "Summary of Bourne Shell
Commands" at the end of this chapter for a complete list.

+ Note Because people often name test programs test, you may obtain
unpredictable results using the test command as well. A harmless alternative
is the [J construct, such as

if [-f file J

then

command-list
fi

Be sure to surround each bracket with spaces, or they will not be recognized as a
command.

tests

test sl = s2

test sl ! = s2

test -f file

test -r file

test -wfile

test -a file

test nl -eq n2

3-70 Chapter 3 Bourne Shell Reference

True ifs is not the null string.

True if sl and s2 are identical.

True if sl and s2are not identical.

True if file exists.

True if file exists and is readable.

True if file exists and is writable.

True if file exists and is a directory.

True if the integers nl and n2 are algebraically equal. Any of
the comparisons -ne, -gt, -ge, -lt, and -le may be
used in place of -eq.

In addition, there are the following operators:

the unary negation operator

- a binary AND operator

-o binary OR operator

The -a operator has higher precedence than -o.

All the operators and flags are separate arguments to test. Parentheses can be used
for grouping, but must be escaped with the backslash.

The following is a typical use of the test command in a shell script:

if test -d foo

then

echo "foo is a directory"

fi

This prints the message foo is a directory if foo is found to be a directory
when the test command is run.

The null command (:)

The null command (:) does nothing and returns a zero exit status. The form of the
command is

args

This command can also be used wherever true can be used; for example,

while : args

Error handling
The treatment of errors detected by the shell depends on the type of error and on
whether the shell is being used interactively.

Error handling 3-71

Execution of a command may fail for any of the following reasons:

• I/0 redirection may fail if a file does not exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus error or memory
fault signal.

• The command terminates normally but returns a nonzero exit status.

In most cases, the shell will print an error message and go on to execute the next
command. An interactive shell will return to read another command from the terminal. If
the command is a shell script, nonzero exit status or abnormal termination of a command
may allow the script to continue on to execute the next command.

Other types of errors, such as failed I/0 redirection, invalid command, syntax errors
such as if then done, an interrupt signal that was not trapped, or failure of any of
the built-in commands usually cause a script to terminate.

The shell flag - e causes the shell to terminate if an error is detected.

Fault handling and interrupts

The A/UX system uses signals to communicate between processes. Most signals indicate
an interrupt, termination, error condition, or other break in processing. See signal(3)

in A!UX Programmer's Reference for more information.

The signals that are likely to be of interest in fault handling are

• 1,hangup

• 2, interrupt

• 3, quit

• 14, alarm clock

• 15, software termination (kill)

3-72 Chapter 3 Bourne Shell Reference

When a process receives a signal, it can handle it in one of three ways:

• Signals can be ignored. Some signals will cause a core dump if they are not caught.

• Signals can be caught, in which case the process must decide what action to take
when the signal is received.

• Signals can be left to cause termination of the process without further action.

+ Note The built-in trap command is suitable only for simple signal handling (for
example, catching an interrupt from the keyboard in order to terminate the script).
Functions requiring complex signal handling should be implemented as a C program. See
A!UX Programming Languages and Tools, Volume 1, for more information about the C
programming language and associated library routines. +

The built-in trap command allows you to detect error signals and indicate what
action should be taken. The command has the form

trap [command] [number] ...

command is a command string that is read and executed when the shell receives
signals whose numbers are given in number. command is scanned once when the trap is
set and once when the trap is executed. trap commands are executed in order of signal
number. Any attempt to set a trap on a signal that was ignored on entry to the current shell
is ineffective. An attempt to trap on signal 11 (memory fault) produces an error.

The trap command with numbers but without any arguments resets the
corresponding signals to their original values. If command is the null string, the signal
whose number is given is ignored by the shell and by the commands it invokes. If
number is 0, commands are executed on normal termination from the shell script. The
trap command with no arguments prints a list of commands associated with each
signal number.

For example,

trap 'rm -f /tmp/junk; exit' 0 1 2 3 15

sets a trap for the specified signals, and if any one of these signals is received, the shell
will execute the following commands:

Error handling 3-73

flag=

trap 'rm -f junk$$; exit' 1 2 3 15

for i

do

done

case $i in

-c) flag=N ,,

*) if test -f $i

then

esac

ln $i junk$$; rm junk$$

elif test $flag

then

echo "file '$i' does not exist"

else

>$i

fi ; ;

The cleanup action is to remove the file junk$$. (This file is named after the
process ID of the script, which is kept in the system-maintained variable $; see
"Parameters and Variables Set by the Shell.") The trap command appears before the
creation of the temporary file; otherwise it would be possible for the process to die
without removing the file.

You can cause a procedure to ignore signals by specifying the null string as the
argument to trap. The fragment

trap ' ' 1 2 3 15

causes the system hangup, interrupt, quit, and software termination signals to be ignored
both by the procedure and by invoked commands. These settings could be listed with
the trap command without arguments, and reset by entering

trap 1 2 3 15

which reset the traps for the corresponding signals to their default values.
The following scan procedure is an example of using trap when there is no exit in

the trap command:

3-74 Chapter 3 Bourne Shell Reference

d='pwd'

for i in *
do

if test -d $d/$i

then

cd $d/$i

while echo "$i:" && trap exit 2 && read x

do

fi

done

done

trap : 2

eval $x

This procedure steps through each directory in the current directory, prompts with its
name, and then executes commands entered at the terminal until an eof or an interrupt is
received. Interrupts are ignored while executing the requested commands but cause
termination when scan is waiting for input.

Debugging a shell script

Several shell options can be set that will help with debugging shell scripts. These are

- e Causes the shell to exit immediately if any command exits with a nonzero exit
status. (This can be dangerous in scripts involving un ti 1 loops and other
constructs where nonzero exit status is desired.)

-n Prevents execution of subsequent commands. Commands will be evaluated but
not executed. This is usually combined with the -v option when used for
debugging. (Note that typing set -n at a terminal will render the terminal
useless until an eof is entered.)

-u Causes the shell to treat unset variables as an error condition.

-v Causes lines of the procedure to be printed as read. Use this to help isolate syntax
errors.

-x Provides an execution trace. After parameter substitution, each command is
printed as it is executed.

Error handling 3-75

These execution options can be turned on with the set command:

set -option

You can turn on options either inside the script or before its execution (except -n,

which freezes the terminal until you send an eofJ. Options can be turned off by typing

set +option

Alternatively, they can be turned on with the sh command if the script is executed
this way. The current setting of the shell flags is available as $-.

Summary of Bourne shell commands

1/0 redirection is permitted for these commands. File descriptor 1 is the default output
location.

No effect; the command does nothing. A zero exit code is returned. See "The Null
Command(:)."

.file
Read and execute commands from.file and return. The search path specified by PATH

is used to find the directory containing.file. Note that the dot command does not spawn a
subshell. See "Executing Shell Scripts."

break [n]

Exit from the enclosing for or while loop, if any. If n is specified, break n levels.
See "Control-Flow Constructs."

cd [atg l
Change the current directory to atg. The environment variable HOME is the default atg.

The environment variable CDPATH defines the search path for the directory containing
atg. If atg begins with I, the search path is not used. Otherwise each directory in the
path is searched for atg. See "The Environment."

3-76 Chapter 3 Bourne Shell Reference

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is specified,
resume at the nth enclosing loop. See "Control-Flow Constructs."

eval [arg ...]
Read arguments as input to the shell and execute the resulting commands. See "Forcing
More Than One Pass of Evaluation."

exec [arg ...)
Execute the command specified by the arguments in place of this shell without creating a
new process. I/0 arguments may appear and, if no other arguments are given, cause the
shell I/0 to be modified. See "Command Execution."

exit [n]

Cause the shell to exit with the exit status specified by n. If n is omitted, the exit status is
that of the last command executed. (An eo/will also cause the shell to exit.) See "Working
With More Than One Shell."

export [name ...)
Mark names for automatic export to the environment of subsequently executed
commands. If no arguments are given, a list is printed of all names exported in the
current shell. Function names may not be exported. See "The Environment."

hash [-r] [name ...)
For each name, the location in the search path of the command specified by name is
determined and remembered by the shell. The - r option causes the shell to forget all
locations. If no arguments are given, hits and cost about remembered commands are
presented. hits is the number of times a command has been invoked by the shell process.
cost is a measure of the work required to locate a command in the search path. There are
certain situations that require that the stored location of a command be recalculated.
Commands for which this will be done are indicated by an asterisk (*) adjacent to the
hits information. cost will be incremented when the recalculation is done. See "Writing
Efficient Shell Scripts."

Summary of Bourne shell commands 3-77

newgrp [arg ...]
Equivalent to exec newgrp arg ... , this built-in version executes faster than the A/UX
command but is otherwise identical. See newgrp(l) in A/UX Command Reference for
usage and description.

pwd

Print the current working directory. This built-in version executes faster than the A/UX
command but is otherwise identical. See pwd(l) in A/UX Command Reference for usage
and description.

read [name ...]
Read one line from the standard input and assign the first word to the first name, the
second word to the second name, and so on, with leftover words assigned to the last
name. The exit status is 0 unless an eof is encountered. See "Writing Interactive Shell
Scripts."

readonly [name ...
Mark names read-only. The values of these names cannot be changed by subsequent
assignment. If no arguments are given, a list of all read-only names is printed. See
"Setting Constants."

return [n]

Cause a function to exit with the return value specified by n. If n is omitted, the exit
status is that of the last command executed. See "Defining Functions."

set [[-][-aefhkntuvx][arg ...]]

- a Mark variables that are modified or created for export.

- e Exit immediately if a command terminates with a nonzero exit status.

- f Disable filename expansion.

- h Locate and remember function commands as functions that are defined (function
commands are normally located when the function is executed).

- k Place all keyword arguments in the environment for a command, not just those
that precede the command name.

3-78 Chapter 3 Bourne Shell Reference

-n Read commands but do not execute them.

- t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to - .

Using + rather than - causes these flags to be turned off. These flags can also be
used upon invocation of the shell. The current setting of flags may be found in $-. The
remaining arguments are positional parameters and are assigned, in order, to $1, $2,

and so on. If no arguments are given, the values of all names are printed. See "The
Environment" and "Shell Execution Options."

shift [n]
Change the names of the positional parameters $ n + 1 ... to $1 ... If n is not given, it is
assumed to be 1. See "Changing Parameter Positions."

test [expr]
Evaluate conditional expressions. test evaluates the expression exprand, if its value
is true, returns a zero (true) exit status; otherwise, a nonzero (false) exit status is returned.
test also returns a nonzero exit status if there are no arguments.

The following primitives are used to construct expr.

- r file True if file exists and is readable.

-wfile

-x file

-f file

-a file

-cfile

-bfile

-p file

-u file

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True if file exists and is a named pipe (FIFO).

True if file exists and its set user ID bit is set.

Summary of Bourne shell commands 3-79

-g file

-kfile

-sfile

-t fjildes]

-z sl

-n sl

sl= s2

sl != s2

sl

nl -eq n2

True if file exists and its set group ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

True if the length of string sl is zero.

True if the length of the string sl is nonzero.

True if strings sl and s2are identical.

True if strings sl and s2 are not identical.

True if sl is not the null string.

True if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -lt,and -le maybeusedinplace
of -eq.

These primaries may be combined with the following operators:

unary negation operator

-a binary AND operator

-o binary OR operator (-a has higher precedence than -o)

(expr) parentheses for grouping

Notice that all the operators and flags are separate arguments to test. Notice also
that parentheses are meaningful to the shell and, therefore, must be escaped.

test is typically used in shell scripts, as in the following example, which prints the
message foo is a directory if foo is found to be one when test is run:

if test -d foo
then

echo "foo is a dir"
fi

times
Print the accumulated user and system times for processes run from the shell. See
"Writing Efficient Shell Scripts."

3-80 Chapter 3 Bourne Shell Reference

trap [arg] [n) ...
Read the command arg and execute when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) trap commands
are executed in order of signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. An attempt to trap on signal 11
(memory fault) produces an error. If arg is absent, all trap(s) n are reset to their original
values. If arg is the null string, this signal is ignored by the shell and by the commands it
invokes. If n is 0, the command arg is executed on exit from the script. See "Fault
Handling and Interrupts."

umask nnn
Set the file-creation mask to nnn. The three octal digits refer to read/write/execute
permissions for owner, group, and others respectively (see chmod(2) and umask(2)).

The value of each specified digit is subtracted from the corresponding "digit" specified by
the system for the creation of a file (see creat(2)). For example, umask 022

removes group and others write permission (files normally created with mode 777
become mode 755; files created with mode 666 become mode 644). If the argument nnn
is omitted, the current value of the mask is printed.

Summary of Bourne shell commands 3-81

4 Korn Shell Reference

The Korn shell prompt I 4-3

Types of commands I 4-4

The parts of a command I 4-5

Interactive use I 4-6

Editing and reusing commands I 4-10

Using shell metacharacters I 4-22

Working with more than one shell I 4-34

The environment I 4-35

The .profile file I 4-43

The . kshrc file I 4-46

Aliases for commonly used commands I 4-48

Shell execution options I 4-51

Job control I 4-52

Using shell layering I 4-57

Overview of shell programming I 4-57

Command evaluation I 4-61

Defining functions I 4-65

Positional parameters and shell variables I 4-67

-
Control-flow constructs I 4-82

Input and output I 4-92

Other features I 4-105

Error handling I 4-110

Summary of Korn shell commands I 4-115

The Korn shell (ksh) is the newest of the three A/UX shells. As such, it includes most of

the best features of both the C and Bourne shells. This chapter presents a detailed

description of the Korn shell, including information about programming with ksh.

4-2 Chapter 4 Korn Shell Reference

The Korn shell prompt

The Korn shell is a program that interprets commands and arranges for their execution.
The Korn shell displays a character called the prompt (or primary shell prompt)
whenever it is ready to begin reading a new command from the terminal. By default, the
Korn shell prompt character is set to the dollar sign($).

The secondary shell prompt

If you press the RETURN key when the shell expects further input, you will see the
secondary shell prompt. By default, this prompt character is set to the greater-than
sign(>). Like the primary shell prompt, this can be redefined.

The secondary prompt will appear, for example, if you enter a multiline construct
(such as a function definition) at the primary shell prompt. The secondary prompt will
appear at each line until you give the final delimiter. Whenever you have a secondary
prompt (either because you are using a multiline construct or because of an error), an
intenuptwill stop the process and issue a primary prompt($) for another command. See
"Canceling Commands" for information about the intenupt on your system.

The tertiary shell prompt

If you use the select command to set up a menu, the tertiary shell prompt
displays on lines that prompt for a user selection. By default, the tertiary shell prompt is
setto #?.

Changing the prompt character

You can change the primary prompt character by redefining the environment variable
PSl to any other character or string of characters. Similarly, you can redefine the
secondary shell prompt by changing the environment variable P s 2 , and the tertiary
prompt, by changing the setting of PS3. See "Commonly Used Environment Variables."

The Korn shell prompt 4-3

Types of commands
The shell works with three types of commands:

• Built-in shell commands Built-in commands are written into the shell itself and are
generally used for writing shell programs. Each A/UX shell has a slightly different set
of built-in commands. The built-in Korn shell commands are listed under "Summary
of Korn Shell Commands."

• A/UX commands Every shell can invoke all A/UX commands (see "Command
Summary by Function" in A/UX Reference Summary and Index for a complete list of
these). A/UX commands are executable programs stored in system directories such as
/bin and /usr /bin. When you enter an A/UX command (for example, ls), the
shell searches all directories specified by your PATH variable (see "Locating
Commands") to locate the program and invoke it.

• User-defined commands You can combine built-in shell commands and A/UX
commands to define your own shell programs (see "Overview of Shell
Programming"). Shell programs can be typed in at the shell prompt or entered in a
file. A shell program contained in a file is generally called a shell script Once a shell
script is defined, it can be used like any other command or program, with certain
limitations.

You can also write your own commands in a high-level language such as C (see A/UX
Programming Languages and Tools, Volume 1 for more information.) The names of
user-defined commands should not be the same as any existing shell or A/UX command.

Leaming about built-in commands

To learn about any Korn shell built-in command, use the whence command:

whence [-v] built-in

For example,

whence r

tells you about the Korn shell r command. It prints

fc -e -

4-4 Chapter 4 Korn Shell Reference

Use the -v option for a more verbose report. For example,

whence -v r

prints

r is an exported alias for fc -e -

In addition, the full pathnames of commands are given. For example,

whence more

prints

/bin/more

The parts of a command
Whenever you see a shell prompt, you can run a command by entering the command
name. Most NUX commands have one or more flag options, which follow the
command name to modify the way the command operates. These are usually composed
of a hyphen followed by one or more characters; for example, -1 modifies the 1 s

command:

ls -1

In this case, the -1 changes the way the 1 s command operates, producing a "long"
listing that contains more information than the standard 1 s output. For the options that
apply to a particular NUX command, see the manual page entry for that command in
A!UX Command Reference. For options to the Korn shell built-in commands, see
"Summary of Korn Shell Commands."

Many NUX commands also expect one or more arguments, which pass information
to the command. An argument may be any data expected by the command; for example,
a directory name may follow the 1 s command:

ls /bin

In this case, the directory name /bin specifies which directory the ls command
should list.

The parts of a command 4-5

The entire command name, including any options and arguments, is called the
command line. A command line is terminated by RETURN. For example, in the command
line

ls -1 /bin

1 s is the command name, -1 is a flag option (specifying a "long" listing), and /bin

is an argument (specifying which directory to list).
To give a command longer than one line, you must precede RETURN with a backslash

(\).This prevents the shell from interpreting RETURN as the end of a command. You can
continue this for several lines; the shell will wait for a plain RETURN (not preceded by a
backslash) to execute the multiline command.

Commands can also be combined; see "Command Grouping."

Interactive use
When you use the Korn shell interactively, it acts as a command interpreter, processing
each command or group of commands as it is entered. This section describes how you
enter, monitor, and control commands interactively.

Command termination character

When you are entering commands interactively, the shell will not begin executing a
command until you press the RETURN key. Therefore, if you mistype something, you can
back up and correct the mistake before pressing RETURN. When the shell recognizes the
RETURN, it executes the command line; when the process completes, a new prompt will
be printed on the screen. The shell is now ready to accept further commands.

Impossible commands

If you give an impossible command (a command or command line that doesn't exist or
uses improper syntax), the shell will print an error message and return the prompt for
another command.

4-6 Chapter 4 Korn Shell Reference

Background commands
You can direct the shell to execute commands in the "background" while you continue to
work at the shell prompt (the "foreground"). To run background processes, end the
command line with an ampersand(&) before the final RETURN. For example,

cat smallfilel smallf ile2 > bigfile &

[1) 1234

The number in [J is the job number (for job control). The other number is the
process ID (PID) associated with the sample cat command as long as it is executing.
After the PID is displayed, the shell returns the prompt so you can use the terminal
immediately for other work.

+ Note To save the output from the job you are running in the background, you must
redirect it into a file or pipe it to a printer. If you do not redirect the output, any output
produced by the command will appear on your screen and will not be saved. •

To suspend processes that require input from the keyboard (such as an editor or a
remote login across a network), use shell layering (see "Using Shell Layering") or job
control (see "Job Control").

Checking command status

To check on the status of a background command, use

ps

This command shows the process status of all your commands; they are identified by
process number and by name. See ps(l) in A!UX Command Reference for details.

You can use the built-in command jobs to get the status of your current jobs.

Interactive use 4-7

Logging out

The shell terminates all processes when you log out of the system. To make sure that a
process will continue to execute after you log out, use the nohup command (which
stands for "no hang up") as follows:

nohup command &

See nohup(l) in A/UX Command Reference for details.
nohup is on by default for background processes on the Macintosh II; other

machines should use the command form above.

Canceling commands

A number of special control sequences come into play when you cancel commands. The
A/UX standard distribution defines these sequences as follows:

Name A/UX standard key sequence

interrupt CoNTROL-C

quit CONTROL-I

erase DELETE

kill CONTROL-U

eof CONTROL-D

swtch CONTROL- '

susp CONTROL-Z

You may reassign any of these sequences, however, using the st ty command. See
st ty(l) in A/UX Command Reference for more information.

Before you press RETuRN

If you type part of a command and then decide you do not want to execute it, you can
send an interrupt or kill to the system at any point in the command line.

4-8 Chapter 4 Korn Shell Reference

While a command is running

There are several ways to stop a command that is executing:

• Send the interrupt signal. For example, the output of a command such as

cat /etc/termcap

will scroll by on your terminal. If you want to terminate the process, you can send the
interrupt signal. Because the cat command does not take any precautions to avoid
or otherwise handle this signal, the interrupt will (eventually) cause it to terminate.

• Use CoNTRoL-S to suspend scrolling output. The NUX control-flow keys are CoNTROL-S
(suspend scrolling output and CoNTROL-Q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a screenful again.
CoNTROL-S and CoNTROL-Q cannot be redefined with st ty; however, st ty can
enable and disable control-flow.

• Send an eof character. Many programs (including the shell) terminate when they
get an eof character from their standard input. You could accidentally terminate the
shell (which would log you off the system) if you entered eof at a prompt or, in
terminating some other program, if you sent an eof one time too many.

• Wait for the eof condition from a file. If a command has its standard input redirected
from a file, then it will terminate normally when it reaches the end of that file. If you
give the command
mail ellen < note

(where note is an existing file), the mail program will terminate when it detects
the eof condition from the file.

• Send the quit signal. If you run programs that are not fully debugged, it may be neces­
sary to stop them abruptly. You can stop programs that hang or repeat inappropriately
using the quit control sequence. This will usually produce a message such as

Quit (Core dumped)

indicating that a file named core has been created containing information about
the state of the running program when it terminated because of the quit signal. You
can examine this file yourself or forward information to the person who maintains the
program telling him or her where the core file is.

• Send a suspend signal. You can suspend a program's execution temporarily by using
the suspcontrol sequence. You can use the fg built-in command to continue
execution of a program that you have suspended in this manner.

Interactive use 4-9

Canceling background commands

If you have a job running in the background and decide you do not want the command
to finish executing, use the kill command.

When a job is running in the background, it ignores intenupt and break signals. To
terminate a background command, use

kill process-ID

The kill command takes the process ID as an argument. See kill(l) and ps(l) in
A!UX Command Reference for details.

You can also kill by job number, as in the C shell. For example,

kill %1

kills your first job.

Editing and reusing commands
The Korn shell provides access to an inline editor to edit your current command line or to
edit past commands for reexecution. The inline editor option may be set at the shell
prompt using the command

set -o option-name

where option-name may be

vi

emacs or grnacs

This option provides a window for the current command line
and editing syntax similar to vi.

Either of these options provides a window for the current
command line and editing syntax similar to the emacs
editor. The only difference between the emacs and
grnacs inline editors is the way they handle CoNTRoL-T.

If you set the value of the EDITOR environment variable to vi, emacs, or

gmac s, the name of the inline editor will be taken from the environment automatically.
See "The Environment" for more information.

4-10 Chapter4 Korn Shell Reference

Once you have supplied one of the above option names, you can invoke the inline
editor on your current command line by pressing ESCAPE. The vi and emacs inline
editors each have their own way of accessing your previous commands from a file
named $HOME/.sh_history.

The Korn shell automatically saves the text of your past commands in the
$HOME/. sh_history file, which is not an ordinary text file but a special data file that
can be read very quickly by the shell. Its contents are not lost when you log out. You can
specify a special name for the history file with the environment variable HISTFILE, and
the number of past commands you wish to access in the history file with the environment
variable HISTSIZE. See "Commonly Used Environment Variables."

Alternatively, you can use the f c command to access past commands and perform
substitutions on them:

fc -e -

or

r

The f c command with the - e flag is aliased to r . You can use this command to
perform substitutions on previous commands.

The vi option

Invoke the vi inline editor by pressing ESCAPE. If you have already started to enter a
command when you press ESCAPE, the command will be displayed and the cursor will be
on the last character you entered.

To exit the inline command editor and return to the shell prompt, press CoNTROL-D.
This will cancel the current command (the command in the editor window).

The editor window

While you are using the vi inline editor, your command line becomes a one-line
editing screen. All of the vi commands listed below are available to you for editing
commands, searching your command history, moving the cursor, and so on. There are
several additional commands (not available in the full-screen vi editor) that perform
filename generation, append arguments to previous commands, and so on.

Editing and reusing commands 4-11

The width of the screen will be 80 characters unless you have set the COLS

environment variable to some other width (see "Commonly Used Environment Variables").

Command-line editing can be illustrated as follows:

1. Type

cat defs chap.1 I troff -Tpsc -mm> L.2

2. Now you realize that you typed the wrong filename; it should be chap. 2.

3. Press ESCAPE; then, using normal editing commands, move the cursor to the 1. (The
quickest way to do this is by typing f 1.) Now change the 1 to a 2. (The quickest way
to do this is by typing r2 .)

4. Now press RETURN. The command will execute as desired.

If the command is too long to fit in the window, the window will scroll with the
cursor so that you can reach either end of the command. You will see a greater-than
sign (>) on the right end of the command and a less-than sign (<) on the left end of
the command. If both ends of the command are out of the window, you will see an
asterisk (*).

Command history

The following commands give you access to your command history from command-line
editing mode. Most take place as soon as they are typed; the search commands terminate
with RETURN.

Note that the following commands may be preceded by a number to indicate how
many times the command should execute (that is, if preceded by a number n, the
command will execute the nth previous command, and so on).

k Recall and print the most recent command. Each time k is entered, an earlier
command is recalled. If preceded by a number n, the nth previous command
is printed.

Equivalent to k.

j Recall and print the next command in your history. Each time j is entered, a
later command is recalled. If preceded by a number n, the nth next command
is printed.

+ Equivalent to j .

4-12 Chapter 4 Korn Shell Reference

[n]G Recall command number n. If you don't supply the G command with a
command number n, it defaults to a command number of one (1).

(Underscore) Append the last argument of the most recent command to the
current command and enter insert mode.

I string Search backward in the history file for a previous command containing string
and, if found, print it. string is terminated by RETURN. If string is null, the
preceding string will be used.

I A string Same as I string, but a match is found only if string is at the beginning of a line.

? string Search forward in the history file for the next command containing string and,
if found, print it. The string is terminated by RETURN. If string is null, the
preceding string will be used.

? A string Same as ? string, but a match is found only if string is at the beginning of a line.

n Search for the next occurrence of the last string searched for with I or ? .

N Search for the most recent occurrence of the last string searched for with I
or ?.

Moving the cursor on the comm.and line

These commands move the cursor around the current command line (the command line
in the editor window). They take effect as soon as you enter them.

Note that the arrow keys cannot be used to move the cursor during inline editing.
The following commands may be preceded by a number to indicate how many times

the command should execute (that is, if preceded by a number n, the command will
move n spaces, n words, n lines, and so on, in that direction).

h Move the cursor backward (left) one character.

1 Move the cursor forward (right) one character.

nl

w

w

e

E

Move the cursor to the nth character in the current line. The default for n is 1. If n
is greater than the number of characters in the line, move to the end of the line.

Move the cursor forward one alphanumeric word.

Move the cursor to the beginning of the next word that follows a blank.

Move the cursor to the end of the current word.

Move the cursor to the end of the word (ignoring quotation marks and other
punctuating characters).

Editing and reusing commands 4-13

b Move the cursor backward one word.

B Move the cursor to the preceding word (ignoring quotes and other punctuating
characters).

o Move the cursor to the start of the line. (This cannot be preceded by n.)

Move the cursor to the first nonblank character in the line. (This cannot be
preceded by n.)

$ Move the cursor to end of the line. (This cannot be preceded by n.)

f c Search to the right for the next character c in the current line.

Fe Search to the left for the next character c in the current line.

Repeat the last single character find (f or F) command.

Reverse the last single character find (f or F) command.

Changing and inserting text in the command line

These commands are used to replace characters in the current line and to add characters.
Once the command is given, you can simply start typing the text you want. End the text
you type with ESCAPE.

a Append text after the cursor.

A Append text after the end of the line.

i Insert text before the cursor.

I Insert text before the beginning of the line.

c motion Change text. This command deletes from the current character through the
character specified by the motion command (see the preceding section) and
inserts the new characters typed. If n is included (preceding the c command
or the motion command), the deletion covers the number of motions indicated.

cc Change the entire line. If n follows this command, then n lines are discarded.

c Delete from the cursor to the end of the line and replace with the characters typed.

re Replace the current character with c.

Re Replace characters until the ESCAPE or RETURN key is pressed.

4-14 Chapter 4 Korn Shell Reference

Replacing text in the command line

nrc Replace n characters (default is 1) with c.

Deleting text from the command line

These commands are used to delete characters in the current command line. These
commands take place as soon as they are typed.

D Delete from the cursor through the end of the line.

dmotion Delete the current character through the character indicated by motion. If n is
included (preceding the d command or the motion command), the deletion
covers the number of motions indicated.

dd Delete the entire line. If n follows this command, then the deletion should
cover the number of lines indicated.

x Delete the current character. If preceded by n, n characters are deleted.

Copying and moving text within the command line

P Place the last text modified before the cursor.

p Place the last text modified after the cursor.

Specialized editing commands

These commands take place as soon as they are entered.

Repeat the most recent text modification command. If preceded by n, repeat the
nth previous command that modified text.

Invert the case of the current character and advance the cursor.

u Undo the last text-modifying command.

u Undo all the text-modifying commands performed on the line.

* Append an * to the current word and attempt filename generation. If no match is
found, the bell rings. Otherwise the word is replaced by the matching pattern and
insert mode is entered.

\ Append characters to the current word and attempt filename generation as long as
the new string matches a unique filename. If no match is found, the bell rings.
Otherwise the word is replaced by the matching pattern and insert mode is entered.

Editing and reusing commands 4-15

Printing and executing edited commands

These commands take place as soon as you enter them. After they execute, you are
returned to the Korn shell prompt.

CoNTROL-L (form feed) Line feed and print the current line. This takes effect only
when you are not entering text.

RETURN Execute the current command line.

CONTROL-] (line feed) Execute the current command line.

CoNTROL-M (RETURN) Execute the current command line.

Insert the character # as the first character in the command line. The #

is the comment character, and everything after it will be ignored. This is
useful for inserting the current line in history without being executed
(although you will have to delete the initial # to reuse the command).
This takes effect only when you are not entering text (that is, after you
have pressed ESCAPE}

The emacs (and gmacs) options

The only difference between the emacs and the gmacs modes is the way they
handle CONTROL-T. After you have enabled emacs mode (using set -o emacs or
setting the value of the EDITOR variable), you can enter the emacs inline editor by
pressing ESCAPE. You can then move the cursor to the point needing correction in your
current command line and insert or delete characters or words as needed. All the editing
commands are control characters or escape sequences.

The notation for escape sequences is M- followed by a character. For example, you
enter M-f (pronounced "Meta f") by pressing ESCAPE (ASCII 033) and then pressing "f'. (M­

F would be the notation for ESCAPE followed by SttrFT-F
All edit commands operate from any place on the line (not just at the beginning). You

do not press RETURN after editing commands except where noted.

4-16 Chapter4 Korn Shell Reference

The emacs input edit commands

By default, the emacs editor is in input mode.

erase The erase character (see st ty(l)). Delete previous character.

eof The eof character (see stty(l)). Terminate the shell if the current line
is null.

\ Escape next character. Editing characters and the erase, kill, and
interrupt characters may be entered in command line or in a search
string if preceded by a \. The \ removes the next character's editing
features (if any).

CoNTROL-v Display version of the shell.

The emacs cursor motion commands

The following commands move the cursor:

CoNTROL-f Move the cursor forward (right) one character.

M-f

CONTROL-b

M-b

CONTROL-a

CONTROL-e

CONTROL-] char

CONTROL-X

Move the cursor forward one word. (A word is a string of
characters consisting of only letters, digits, and underscores.)

Move the cursor backward (left) one character.

Move the cursor backward one word.

Move the cursor to the start of the line.

Move the cursor to the end of the line.

Move the cursor to character charon the current line.

Interchange the cursor and mark.

The emacs historycommands

These commands access your command history:

CONTROL-p

M-<

M->

Fetch the previous command. Each time CoNTROL-p is entered, the
previous command is accessed.

Fetch the least recent (oldest) history line.

Fetch the most recent (youngest) history line.

Editing and reusing commands 4-17

CONTROL-n

CONTROL-[string

CONTROL-0

M-letter

M-.

M-_

M-*

M-ESCAPE

M-=

Fetch the next command. Each time CONTROL-n is entered, the next
command forward in time is accessed.

Search backward in the history file for a previous command line
containing string. If a parameter of zero is given, the search is
forward. The string is terminated by a RETURN or newline character.
If string is omitted, then the next command line containing the most
recent string is accessed. In this case, a parameter of zero reverses
the direction of the search.

Execute the current line and fetch the next line relative to the
current line from the history file.

Search the alias list for an alias by the name _letter, and if an alias of
this name is defined, insert its value on the input queue. The letter
may not be one of the above metafunctions.

Insert the last word of the previous command on the line. If
preceded by a numeric parameter, the value of this parameter
determines which word to insert rather than the last word.

Same as "M-."

Attempt filename generation on the current word. All files matching
the character pattern are expanded.

Attempt filename generation on the current word. Filename
expansion occurs as long as the string generated matches a
unique filename.

List files matching current word pattern if an asterisk
was appended.

The emacs text modification commands

These commands modify the line:

(ONTROL-d

M-d

M-CONTROL-h

M-h

CONTROL-t

Delete the current character.

Delete the current word.

(Meta-backspace) Delete the previous word.

Delete the previous word.

In emacs mode, transpose the current character with the next
character. In gmac s mode, transpose two previous characters.

4-18 Chapter 4 Korn Shell Reference

CONTROL-C

M-c

M-1

CONTROL-k

CONTROL-W

kill

CONTROL-y

Capitalize the current character.

Capitalize the current word.

(ell, not one) Change the current word to lowercase.

Delete from the cursor to the end of the line. If given a parameter of
zero, delete from the start of line to the cursor.

Delete from the cursor to the mark.

The kill character (CONTROL-u in the A/UX standard distribution).
Delete the entire current line. If two kill characters are entered in
succession, all kill characters from then on cause a line feed (useful
when using paper terminals).

Restore last item removed from line. (Yank item back to the line.)

Other ernac s line editing commands

These miscellaneous commands are also available:

CONTROL-1

CONTROL-@

M-space

CONTROL-j

CONTROL-m

M-p
M-digits

CoNTROL-u

(ell, not one) Line feed and print the current line.

(null character) Set mark.

(meta-space) Set mark.

(newline) Execute the current line.

(return) Execute the current line.

Push the region from the cursor to the mark on the stack.

(escape) Define numeric parameter; the digits are taken as a parameter
to the next command. The commands that accept a parameter are . ,
CONTROL-f, CONTROL-b, erase, CONTROL-d, CONTROL-k, CONTROL-r,
CONTROL-p, CONTROL-fl, M-., M-_, M-b, M-c, M-d, M-f, M-h, and M­
CONTROL-h.

Multiply parameter of next command by 4.

Using fc or r

Another way to access and edit the commands listed in your . sh_hi story file is to
use the f c command. The f c command uses the value of the FCEDIT

environment variable as its editor; this is set to /bin/ ed by default. See "Commonly
Used Environment Variables" for more information.

Editing and reusing commands 4-19

Editing and reexecuting previous commands

In the command

f c - e - string= new-string

the option " - e - " means that you wish to execute a command indicated either by string
or by its number. If it is indicated by string, the most recent command with those
characters will be selected. If string=new-string is included, new-string replaces string
before execution. If the command is specified by number and it does not include string,
the shell displays the message

bad substitution

and the fc command fails. For example, the command

fc -e - vi

reexecutes your most recent vi command. If you want to substitute another filename
to your most recent vi command, you can use a command such as

fc -e - chapl=chap2 vi

An abbreviated form of

fc -e - ...

is the command

r old= new command

This command works exactly like the f c command and is provided simply because
it is easier to type. For example, to edit and reexecute the vi command discussed
above, you type

r chapl=chap2 vi

The command

r command >file

reexecutes command with the output directed into file.
To edit command(s) with fc, use the form

f c first last
fc string

where first is the number of the first command in a range, last is the number of the last
command in that range, and string is the first characters in a command name. The
specified command(s) are copied into a temporary file, and the editor named by the
FCEDIT variable is invoked.

4-20 Chapter 4 Korn Shell Reference

Once you are in the editor, you can use any of its commands. When you exit, your
edited command or commands are read by the Korn shell and executed. AB each
command is executed, it is printed at the terminal.

For example, to edit and reexecute the list of commands

15 cp chapl chapl.bck

16 lp chapl

17 mv chapl /printed

you give the command

fc 15 17

After this command, you see these commands displayed and can edit them as you desire
with any editor command (for example, replacing the 1 in chapl with the number 2).

When you exit the editor, the new commands are executed and entered in the history file.
Likewise, to edit and reexecute the last di ff command you gave, you can use the

command

fc diff

Finally, you can also use the f c command without using an editor. This can be
useful when you want to reexecute a command without changing it, or when you wish to
make a simple change and do not want to spend the time necessary to use an editor.

Listing previous commands

With the -1 option, f c accepts command numbers or strings as arguments. With
command numbers

f c -1 first last

f c prints a list of commands, where first is the history number of the oldest command
you wish to review and last is the number of the most recent. For example,

fc -1 10 12

first and last may also be negative numbers:

fc -1 -10

A negative number is interpreted as the nth previous command. If first is given but not
last, then commands from first through the current command are listed. If no numbers
are specified, the 16 most recent commands are listed.

Editing and reusing commands 4-21

If you ask for commands that are not available, either because the command is too
old (remember that only the number of commands specified in HISTSIZE are saved)
or because you have not given that many commands, the shell will display the message

Bad number

The command f c -1 can be combined with two other options:

- r List specified commands from most recent to oldest.

-n List specified commands without command numbers.

For example, the command

fc -lr 10 12

prints command numbers 10, 11, and 12 from your history file in reverse order. The
output might look like this:

12 vi chap2.ksh

11 ls chap*

10 rm chap2.bck

With string as an argument to f c - 1 :

fc -1 string

you can search for and print a list of commands beginning with a command containing
string. For example, to obtain a list from your most recent rm command to your current
command, you could type

fc -1 rm

Using shell metacharacters
Shell metacharacters are characters that perform special functions in the shell. This
section discusses how to use these metacharacters. The following are the Korn shell
metacharacters:

4-22 Chapter 4 Korn Shell Reference

A tilde is used as the first part of a directory name. It is replaced with either your
home directory (if it is used alone or followed by a pathname below your home
directory such as -/project/phasel) or the home directory of another user
(if it is followed by the login name of that user, such as -lori). See "Specifying
Home Directories" for details.

& An ampersand at the end of a command line causes the shell to run the
command(s) in the background and print the process ID(s).

? A question mark used as part of a file or directory name causes the shell to match
any single character (except a leading period). Followed by a pattern list enclosed
in parentheses, the question mark causes the shell to match zero or one
occurrence of any pattern in the list.

* An asterisk used as part of a file or directory name causes the shell to match zero
or more characters (except a leading period). Followed by a pattern list enclosed
in parentheses, the asterisk causes the shell to match zero or more occurrences of
any pattern in the list.

@ An at-sign, when followed by a pattern list enclosed in parentheses, causes the
shell to match zero or one occurrence of any pattern in the list.

An exclamation mark, when followed by a pattern list enclosed in parentheses,
causes the shell to match all but occurrences of any pattern in the list.

Brackets around a sequence of characters (except the period) cause the shell to
match each character one at a time.

A hyphen used within brackets to designate a range of characters (for example,
[A-z]) causes the shell to match each character in the range.

< A less-than sign following a command and preceding a filename causes the shell to
take the command's input from that file.

> A greater-than sign following a command and preceding a filename causes the shell
to redirect the command's standard output into the file. See "Input and Output" for
a description of how this metacharacter is used to redirect error output.

» Two greater-than signs following a command and preceding a filename cause the
shell to append the command's output to the end of an existing file.

<> A less-than sign combined with a greater-than sign preceding a filename causes the
shell to open that file for input and output. When this construct is used with a com­
mand, it also causes the shell to redirect the command's standard input to that file.

A vertical bar between two commands on a command line causes the shell to
redirect the output of the first command to the input of the second command. This
can occur multiple times on a command line, forming a pipeline.

Using shell metacharacters 4-23

I & A vertical bar and ampersand at the end of a command cause the shell to connect
this background command to the parent shell (and the terminal, if this shell's
output and input are connected to the terminal). Output and input can be read and
written to the background process. See "Connecting a Command to Standard Input
and Output."

A semicolon between two commands on a command line causes the shell to
execute the commands sequentially in the order in which they appear.

Parentheses around a pipeline or sequence of pipelines cause the whole series to
be treated as a simple command (which may in turn be a component of a
pipeline), and a subshell to be spawned for the commands' execution. Normally,
built-in commands, functions, and compound commands used as the last element
in a pipeline are not processed by a subshell; parentheses around these elements
can force the spawning of a subshell.

Braces around a series of commands group the output of the commands.

\ A backslash prevents the shell from interpreting the metacharacter that follows it.

Single quotation marks around a command, a command name and argument, or
an argument prevent the shell from interpreting the enclosed metacharacters.

Double quotation marks around a command, a command name and argument, or
an argument prevent the shell from interpreting the enclosed metacharacters, but
only as follows: file, wildcard, and command substitution will take place, but
filename expansion and interpretation of blanks will not.

Back quotes around a command cause the characters in that command to be
replaced with the output from that command.

Shortcuts in working with directories

Full pathnames in a hierarchical file system can rapidly become lengthy and unwieldy.
This section describes some features that aid you in working with directory pathnames.

Specifying home directories

You can use the tilde (~) as the initial character in a filename or pathname to avoid
typing the absolute or relative pathnames of home (login) directories. An initial tilde in a
pathname, for example,

~/chapter2

4-24 Chapter 4 Korn Shell Reference

indicates a file below your own home directory. When the command is executed, the
tilde is replaced by the value of your environment variable HOME. A tilde followed by
the login name of another user, for example,

-virginia

indicates the login directory of that user and will be replaced by the absolute pathname
of that user's home directory.

You can use this notation when giving a pathname as an argument to any command;
for example,

cp -virginia/memol -/memos/virginia.memo

Current and previous directories

The tilde can also be used to represent your current and previous working directories. A
tilde followed by a plus sign (+) represents the current working directory (the value of
the variable PWD); tilde followed by a minus sign(-) is replaced by the most recent
working directory (the value of the variable OLDPWD).

For example, use the cd command to return to your most recent working directory
with the command

cd --

You can toggle between two directories by repeating this command several times.

Substituting directory names

The Korn shell also allows substitution on directory names as arguments to the cd

command

cd old new

where the directory name new replaces old in the full pathname of the current
working directory (the variable PWD). For example, suppose you had the directories

/users/doc/anne/manuals/drafts

/users/doc/anne/manuals/reviewl

/users/doc/steve/manuals/reviewl

Using shell metacharacters 4-25

After the command

cd /users/doc/anne/manuals/drafts

you could go to /users/doc/anne/manuals/reviewl with the command

cd drafts reviewl

From there, you could then go on to

/users/doc/steve/manuals/reviewl

with the command

cd anne steve

Each time you change to a directory using "cd substitution," the full pathname of the
new directory is displayed.

Specifying filenames with metacharacters

Using the filename expansion metacharacters (also called "wildcards") spares you the job
of typing long lists of filenames in commands, looking to see exactly how a filename is
spelled, or specifying several filenames that differ only slightly.

These metacharacters are interpreted and take effect when the shell evaluates
commands. At this point, the word incorporating the metacharacter(s) is replaced by an
alphabetic list of filenames, if any are found that match the pattern given. Filename
expansion metacharacters can be used in any type of command; however, in the case of
filenames given for input and output redirection, filename expansion may cause
unexpected results if the metacharacter usage expands into more than a single filename.
To tum off the special meaning of metacharacters and use them as ordinary letters, you
must quote the characters. See "Quoting."

The following are filename expansion metacharacters in the Korn shell:

? A question mark matches any single character in a filename. For example, if you
have files named
a bb CCC dddd

the command
print ???

matches a sequence of any three characters and returns
CCC

4-26 Chapter 4 Korn Shell Reference

* An asterisk matches any sequence of characters, including the empty sequence,
in a filename. (It will not, however, match the leading period in such files as
. profile.) To list the sequence of files named
chap chapl chap2 chap3 chap3A chap12

you can use the notation
ls chap*

The files are listed as
chap chapl chap12 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the null sequence
composed of no characters.

[l Brackets enclosing a set of characters match any single character, one at a time,
from the set of enclosed characters. Thus,
ls chap. [12]

matches the filenames
chap.1 chap.2

Note that this does not match chap .12. To match filenames chap .10,
chap .11, and chap .12, use the notation
chap.1[012]

You can also place a hyphen (-) between two characters in brackets to denote a
range. For example,
ls chap. [1-5]

is the equivalent of
chap. [12345]

A range of characters can also be indicated in brackets. The notation [a - z J
matches any lowercase character, [A- z J matches any uppercase character, and
[a - zA- z J matches any character, regardless of case.

To match anything except a certain character or range of characters, use the
exclamation point inside the brackets. When the first character following the left
bracket ([)is an exclamation character (!),any character not enclosed in the
brackets is matched. For example,
[!bl

matches any filename composed of one letter, except a file named b.

None of these metacharacters will match the initial period at the beginning of special
files such as . profile. These must be matched explicitly. Periods that do not begin a
filename can be matched by metacharacters.

Using shell metacharacters 4-27

If you use these metacharacters and the shell fails to match an existing filename, it
displays a message such as

ksh: *: not found.

Input and output redirection

An executing command may expect to accept input and create output, possibly including
error output (error messages). In the A/UX system, there are default locations set for
input and output:

• Standard input is taken from the terminal keyboard.

• Standard output is printed on the terminal screen.

• Standard error output is printed on the terminal screen.

These defaults can be changed using the following metacharacters (also called
redirection symbols). The redirection metacharacters also allow you to use file
descriptors to specify files, as described in detail in "Redirection With File Descriptors."

< A less-than sign followed by a filename "redirects standard input" (takes command
input from a file or device other than the keyboard). For example,
mail ellen < note

uses a file named note instead of a message typed from the keyboard as the
inputto mail.

> A greater-than sign followed by a filename "redirects standard output" (prints
command output in a file or to a device other than the terminal screen). If a file by
that name already exists, its previous contents are overwritten; otherwise a new
file is created. For example,
sort filel > file2

uses a file for the output of the sort command. When sort is finished, file2
contains the sorted contents of filel.

See "Input and Output" for information on redirecting standard error output using
file descriptors.

» Two greater-than signs followed by a filename append the output of a command
to a file. If no file by that name exists, one is created. For example,
who >> log

appends the output of the who command to the end of the existing file log.

4-28 Chapter 4 Korn Shell Reference

Combining commands in pipelines

You can send the output of one command as input to another command by using the
vertical bar or "pipe" (I). When two or more commands are joined by a pipe, the
command line may be considered a pipeline.

For example, to see which files in a directory contain the sequence old in their names,
you can use a pipeline as follows:

ls I grep old

The pipe character (I) tells the shell that output from the first command (the list of files
produced by the 1 s command) should be used as input to the grep command. The
output of the pipeline (filenames in the current directory containing the string o 1 d)

prints on standard output (unless you redirect it to a file).
Pipelines may consist of more than two commands; for example,

ls I grep old I wc -1

prints the number of files in the current directory whose names contain the string old.
Pipelines may also be executed in the background. For example, to avoid the time­

consuming process of waiting for a very large file to be sorted and printed, you could
give the following pipeline:

sort mail.list I lp &

This pipeline would sort the contents of a file named mail. list and send the sorted
information to the lp program to be placed on the printer queue. The shell would
respond with the process ID of the last command in the pipeline.

The tee command is a "pipe fitting"; it can be put anywhere in a pipeline to copy
the information passing through the pipeline to a file. See tee(l) in AIUX Command
Reference for more information.

A filter is a program or a pipeline that transforms its input in some way, writing the
result to the standard output. For example, the grep command finds those lines that
contain some specified string and prints them as output.

grep 'correction' draftl

prints only the lines in draftl that contain the string correction.

Filters are often used in pipelines to transform the output of some other command.
For example,

who I grep jon

Using shell metacharacters 4-29

prints

jon ttyp8 Jul 21 12:25

if a user whose login name is j on is currently logged into the system on t t yp 8.

Connecting a command to standard input and output

In the Korn shell, the input and output of a command or pipeline running in the
background can be connected to standard input and output by ending the command line
with I &. This establishes a two-way pipe with the shell.

Output created by the background process can then be read with the read -p

command as follows:

read -p variable

The input line from the pipe will be read into variable and then used as desired.
Input for the pipe can be inserted with the print -p command:

print -p argumen~

The arguments are written onto the pipe for use by the background process.
Only one background process connected to the shell with I & can be running at a

time. For example,

cat I&

[1] 6420

print -p "hello"

print -p "goodbye"

read -p var

echo $var

hello

read -p var

echo $var

goodbye

where the indented lines show output printed on the terminal.

4-30 Chapter 4 Korn Shell Reference

Command grouping
You can use the following metacharacters to group commands together:

Group several commands on one command line by separating one command from
another with a semicolon (;). The commands are executed sequentially in the
order in which they appear. For example, the command line
cd test; ls

changes to the test directory and then list its contents.

& Group background commands on a single line by separating them with
ampersands (&) and then ending the line with another ampersand. The
background commands exit independently while the shell continues to accept
new commands in the foreground.

{ } Use braces to group commands for functions and control-flow constructs (see
"Defining Functions" and "Control-Flow Constructs"). You can also use braces to
group the output from several sequential commands, which is then used as the input
to a following command in a pipeline. Braces used in the latter way are recognized
only when they are the first word of a command or are preceded by a semicolon or
newline, and when the first brace is followed by a space. For example, to put the
date and the list of users into one file (log), you can give the command
{date; who;} I cat> log

Note the space following the first brace and the semicolon following the last
command in braces; these are required. If you type a newline before closing with
another brace, you will see the secondary prompt until you give the closing brace.
Note that commands enclosed in braces are executed by the current shell (that is, a
new instance of the shell is not invoked to execute them).

() Enclose a group of commands in parentheses to execute them as a separate
process in a subshell (a new instance of the shell). For example,
(cd test; rm junk)

first invokes a new instance of the shell. This shell changes the directory to test
and then removes the file junk. After this, control is returned to the parent shell,
where the current directory is not changed. Thus, when execution of the
commands is over, you are still in your original directory.

The commands
cd test; rm junk

(without the parentheses) are executed in the current shell and have the same
effect but leave you in the directory test.

Using shell metacharacters 4-31

Conditional execution

You can use the following symbols to indicate that your command should be executed
only if some condition is met:

&& The command form
commandl&&command2

means "If commandl executes successfully (returns a zero exit status), then
execute command2."

I I The command form
commandl I I command2

does the reverse. This form means "If commandl does not execute successfully
(returns a nonzero exit status), then execute command2."

For exit status, see "Exit Status: .The Value of the Command." Conditional execution is
also available in joining pipelines. For other ways of obtaining conditional execution, see
"Control-Flow Constructs."

Quoting

If you need to use the literal meaning of one of the shell metacharacters or control the
type of substitution allowed in a command, use one of the following quoting
mechanisms:

\ A backslash preceding a metacharacter prevents the shell from interpreting the
metacharacter. For example, to use the print command to display a question
mark, you must precede the question mark with a single backslash(\). Thus,
print \?

prints
?

Without the backslash, the print command would generate a list of all one­
character filenames in the current directory. If there were none, the command
would return
?

4-32 Chapter 4 Korn Shell Reference

Single quotation marks prevent the shell from interpreting any metacharacters in
the enclosed string. The command
print '$EDITOR'

prints
$EDITOR

Within double quotation marks, parameter substitution and command substitution
occur, but filename expansion and the interpretation of blanks do not. For
example, the command
print "$EDITOR"

prints
/bin/ed

Here parameter substitution fills in the value of the environment variable
EDITOR.

Double quotation marks can also be used to give a multiword argument to
commands; for example,
print "type a character"

For more information on parameter substitution, see "Positional Parameters and
Shell Variables." You can also suppress filename expansion universally by setting
the shell option - f; see "Shell Execution Options."

A command name enclosed in back quotes is replaced by the output from that
command. This is called command substitution. For example, if the current
directory is /users /mar i lyn/bin, the command
i='pwd'

is equivalent to
i=/users/marilyn/bin

If a back quote occurs within the command to be executed, you must escape it
with a backslash (\ •); otherwise the usual quoting conventions apply within the
command.

Command substitution takes place before the filenames are expanded. If the
output of a substituted command is likely to be more than one word, the
command must be enclosed in double quotes as well as back quotes; for example,
a="'head -1 /dev/tty'"

where the command head -1 (read the first line of input) might yield more
than one word.

Using shell metacharacters 4-33

Working with more than one shell
When you wish to use another A/UX shell, you can use one of the following commands:

sh This spawns an instance of the Bourne shell.

ksh This spawns another instance of the Korn shell.

csh This spawns an instance of the C shell.

You can type these at your shell prompt; for example,

ksh

In this case, your new shell will run as a subshell or "child" of your current one. You can
use the exit command or the eof sequence to return to your original login shell
whenever you wish. (If you accidentally give the exit command or send an eof in
your login shell, you will be logged out of the system altogether.)

Changing to a new shell

You can also obtain a new shell using the exec command; for example,

exec csh

If you use the exec command, the C shell program csh replaces your current shell.
You cannot return to your original shell; it has disappeared.

Generating new instances of a shell affects the environment settings for each shell.
See "The Environment and New Shell Instances" for more information.

Changing your default shell

To change your default shell from the Korn shell to the Bourne or C shell, use the chsh

command. For example,

chsh login.name /bin/ csh

(where login. name is your login name on this system) changes your default login shell to
the C shell. See chsh(l) in AIUX Command Refererzce for more information.

4-34 Chapter 4 Korn Shell Reference

The environment
The environment is a list of variables, aliases, and functions that is available to all
programs (including subshells) invoked from the shell. A shell inherits the environment
that was active when it started, and passes that environment (including any
modifications) to all programs it invokes.

If you assign values to variables using the typeset command at the shell prompt
(or within a shell script), these remain local to the shell in which you assigned them. If
you use the typeset -x command (or set the -a shell option; see "Shell Execution
Options"), these changes will be passed on to any subshells you invoke and to executing
commands.

+ Note Modifying the environment in a subshell (for example, in a shell script) never
changes the parent shells or their environments. Because these changes are made to a
copy of the parent shell's environment, the parent shell's environment is never affected
by changes in a subshell, even if you use the export command. When a subshell
terminates, its environment no longer exists. •

In general, the most essential variables are assigned default values during login or by
the shell every time you invoke it. The Korn shell also defines a number of default aliases
(see "Aliases for Commonly Used Commands"). Convenient but inessential variables are
simply left unassigned. Thus a default environment is created for you. You can modify
the default environment by defining new environment variables and aliases.

The environment 4-35

Listing existing values

Table 4-1 shows commands you can use to list existing values in the environment.

Table 4-1 Listing functions, aliases, and variables

Command Output

set Lists everything defined

env Lists exported variables

export Lists exported and read-only variables

typeset Lists all variables

typeset option Lists variables of type option

typeset -f Listsfunctions

typeset -x Lists exported variables and functions

a 1 i as Lists aliases

a 1 i as - x Lists exported aliases

Assigning values to environment variables

Setting up your own customized environment is not necessary, but it can make your
work easier and more efficient. To customize your working environment, you may
change the default values assigned to some of your environment variables and add others
that have not been included.

Unless you have set the -a shell execution option (which tells the shell to export all
variables automatically; see "Shell Execution Options"), you assign a value to an
environment variable using the command

typeset -x name=value

This command sets the variable name to value and automatically inserts the variable
and its value in the environment. Thus, for example, to assign and export the variable
HISTFILE, you could give the command

typeset -x HISTFILE=/users/daphne/hist

4-36 Chapter 4 Korn Shell Reference

In addition to the typeset -x command, the Korn shell also recognizes the
Bourne shell syntax:

name= value
export name

This is the form that should be used in . prof i 1 e if you are ever going to log into the
Bourne shell.

Removing environment variables

The command

unset name

removes the specified variable.

Commonly used environment variables

The following variables are typically inserted into the environment. By convention,
environment variable names are uppercase. Some of these variables are assigned default
values at login or by the shell at invocation. You can reset all of them.

The variables used only by the Korn shell are as follows:

COLS

EDITOR

ENV

This variable defines the width of the edit window for the inline
editing. The default is 80 columns.

This variable and the VISUAL variable specify the editor for inline
editing of commands. The default is ed. This is the same as setting the
option -o ed with the set command.

This variable specifies the name of the Korn shell environment file. If
this variable is set to a filename and exported in the /etc/profile
system file (it is initially set to $HOME/. kshrc and exported on
A/UX systems), then all subsequent instances of the Korn shell read
the specified filename when the shell starts up. The ENV file is
typically used to set up inline command editing and command reuse,
andfor alias and function definitions.Commandand
parameter substitution are performed in referencing this variable.

The environment 4-37

FCEDIT

FPATH

HISTFILE

HISTSIZE

PS3

PS4

VISUAL

This variable specifies the editor for the command reentry with the f c
command. The default editor is ed.

This variable specifies the search path for a file of function definitions.

This variable gives the pathname of the file to be used to store
command history for command reentry. The default filename is
$HOME/. sh_history, that is, a file named sh_history in your
home directory.

This variable specifies the number of previously entered commands
that will be saved for command reentry.

This variable gives the prompt to be used by the select command
after a menu is given. The default is #?.

This variable gives the debugging prompt to be used during an
execution trace. The default is +.

This variable specifies the visual editor to be used in line-editing mode.
Initially, this variable is unset.

The variables used by all shells follow:

CD PATH

EXINIT

HOME

IFS

The value of this variable should contain a list of pathnames (separated
by colons) that you use frequently. The shell uses this variable when
you give an argument to the cd command that is not a relative or
absolute pathname. This variable is usually set in the . profile file;
otherwise its default value is the current directory.

This variable indicates various options for your editing environment
when you are using the ex or vi text editing program (see "Using
ex" and "Using vi" in A!VX Text-Editing Tools).

This variable specifies your home directory. The login procedure sets
the value of this variable to the pathname of your login directory.

The shell uses this internal field separator variable to interpret words
within a command. The default values of this variable are space, tab,
and newline, the characters used to separate the parts of commands.
You can reset this to include any data delimiters. The shell resets IFS to
the default value after reading the environment file, so exporting IFS
does not affect the operation of subsequent scripts.

4-38 Chapter 4 Korn Shell Reference

MAIL

MAILCHECK

PATH

PSl

PS2

SHELL

TERM

TZ

The shell uses this variable as the pathname of the file where your mail
is delivered. This variable is typically set in the file . prof i 1 e in the
user's login directory.

This variable specifies how often (in seconds) the shell will check for
the arrival of mail in the file specified in MAIL. The default value is
600 seconds (10 minutes). If set to 0, the shell will check before each
prompt.

The value of this variable should be a series of pathnames separated
by colons (:).The shell uses the value of PATH executable programs
whenever you give a command. If the directory containing the
command is not specified, the shell will display the message
Command not found.

PATH is usually set in the . profile file. For efficiency, the list of
directories in the PATH variable should be in order from directories
containing commands most often used to those least often used. The
default value for PATH is the current directory, /bin, and
/usr/bin.

This variable specifies the primary prompt string (the prompt you see
when the shell is waiting for you to give a command). The default
setting is the dollar sign($).

This variable specifies the secondary prompt string (the prompt you
see when the shell is waiting for more information for a command you
have already started). The default setting is the greater-than sign(>).

This variable specifies your login shell. It is set at login to the value
found in the /etc/passwd file. If no shell is specified in
/etc/passwd, the value of SHELL is /bin/ sh. For instructions
on how to change your login shell, see chsh(l) in A!UX Command
Reference.

This variable specifies the type of terminal you are using. The default
value is mac2. You can find out what your current terminal type is
with the command
print $TERM

This variable indicates your time zone. It is set at login.

The environment 4-39

The environment and new shell instances

If the ENV variable is set and exported, the Korn shell reads the contents of the file
(initially set to $HOME/. kshrc) every time it starts up. Thus, the values you have
defined there are available to every new instance of the Korn shell. Any values you have
assigned using the typeset -x command are in the environment and will be
available to new shell instances.

If you have assigned values to variables using the set command at the shell
prompt (or within a shell script), these values remain local to the shell in which you
assigned them. Because these changes are made to a copy of the parent shell's
environment, the parent shell's environment is never affected by changes in a subshell,
even if you use the typeset -x command in the subshell. Note, however, that
changes made using typeset -x in a subshell will be passed on to new instances
invoked from the subshell. When a subshell terminates, its environment no longer exists.

Note that the . prof i 1 e file is read only once, at login. Thus, if you have changed
the value of an environment variable, the subshell will inherit the new value, not the
value set routinely in . profile. You can force a new instance of the shell to read
. profile by using the "dot" command (.);see "Executing Shell Scripts."

Special environments
Normally, the environment for a command is the complete environment of the shell
where the command was given. You can change the environment used by a command in
three ways:

• Augment the environment by inserting additional variables and new values into the
environment. This is done by preceding the command with one or more assignments
to variables on the command line. For example,
a=b command

Note that because parameter substitution occurs before the environment is changed,
you cannot assign environment variables whose values are then immediately
referenced on the command line. For example, the sequence of commands

X=5

x=3 print $x

4-40 Chapter 4 Korn Shell Ref ere nee

prints

5

not
3

because the value of x is inserted into the command line before the environment
is changed.

• Set the - k shell option using the command
set -k

When set, this shell option inserts variables and values given on the command line
into the environment for a particular command. For example, if the - k option is not
set, the command

print a=b c

prints

a=b c

After - k has been set, a=b is interpreted as a variable assignment instead of an
argument, and the same command prints

c

Note that because values are substituted for variables before the environment is
changed, this is subject to the same limitation described above.

• Use the A/UX command

env [- J [name= value ... J [command] [argsJ

to set the environment for the command. With this command, you can not only add
things to the environment inherited by a command, but also exclude the current
environment. To add variables and their values to the current environment, give the
variables and values before the command name. For example, to run a subshell with
a changed PATH environment variable, you could give the command

env PATH=directory-list sh

For the duration of the new shell (and its subshells), the PATH variable would be
set to the directories in the list.

To set up a completely new environment, first give the option -, which excludes the
current environment, and then assign the variables and values you want. These (and
only these) will be available in the environment for the new command.

The environment 4-41

The default environment on your system
Whenever you log in, the following procedures occur:

• The login program sets the variables HOME and SHELL from the information
inthesystemfile /etc/passwd.

• The login programthenchecksthefile /etc/profile tofindoutthedefault
environment to set up for all users. This file may contain default settings for PATH,

TZ, and TERM.

• The login shell (the shell that is automatically invoked when you log in) assigns
default values to PSl (the primary prompt), PS2 (the secondary prompt), PS3

(the prompt for the select command), MAILCHECK, and IFS (Input Field
Separator, which can be blank characters or tabs).

When you invoke new instances of the shell (for example, using the ksh

command), the new shell checks the environment for any new values you may have
placed there for these variables. If it doesn't find any values in the environment, it assigns
the default values.

Then the new shell reads your . prof i 1 e file. If you have assigned new values
there, it uses your values instead of the defaults.

If the ENV variable is assigned a filename and exported, whether in the
/etc/profile system file or in the .profile file in your home directory, the new
shell reads the contents of that file and sets the values you have assigned there.

• The Korn shell reads the . prof i 1 e file when you log in; if appropriate, it shares
the variable assignments with the Bourne shell.

• If the ENV variable is assigned a filename and exported, whether in the
/etc/profile system file or in the .profile file in your home directory, the
Korn shell reads the contents of that file every time it starts up. This is initially set to
$HOME/. kshrc on most systems; in this case, use the . kshrc file in your home
directory to set the environment variables unique to the Korn shell and to define
aliases you wish to be available across invocations of the shell.

4-42 Chapter 4 Korn Shell Reference

The .profile file
The . profile file is simply a text file (created with a text editor). It contains a series
of commands typed exactly as you would type them at the shell prompt. Every time you
log in, the shell looks in your home directory for a file named . prof i 1 e and executes
all the commands found there before issuing the shell prompt and taking commands. If
no . profile file exists, your environment will simply be the default environment
created by the shell at login.

A sample .profile file

The following is a sample .profile file:

typeset -x PATH=:/bin:/usr/bin:$HOME

typeset -x CDPATH=:/users/elaine/revisions

typeset -x MAILCHECK=O

typeset -x EXINIT="set wm=10"

date

ls

+ Note You may also use the Bourne shell style .profile using the set and
export commands. See "A Sample .profile File" in Chapter 3, "Bourne Shell
Reference." •

The variables and commands in this file are discussed in the sections that follow. In
theory, anyA/UX command or shell script may be invoked in the .profile; typically,
however, you should include commands that customize your login shell or perform login
initialization routines (such as listing the contents of the current directory, or reading your
mail). Commands you want to affect all subshells of the login shell should be put into the
file assigned to the ENV variable (usually the . kshrc file). See "The . kshrc File."

The .profile file 4-43

Locating commands
The PATH environment variable lists the directories (separated by colons) where the
shell will look for the executable files that are A/UX (or user-defined) commands. Each
time you give a command, the shell searches the directories listed in the order specified.
Most A/UX commands are located in the /bin or /usr /bin directory. When you
assign a value to PATH, be sure to include these directories.

If the shell cannot find the file in one of the directories specified, the command
cannot be executed and you will see the message

Cormnand not found.

The directories listed in the PATH variable are specified by their absolute path­
names, separated by colons. If the list of directories begins with a colon, the path search
begins in the current directory. At login, the PATH variable might be set as follows:

PATH=:/bin:/usr/bin:/usr/ucb

This assignment sets the PATH variable to the current directory and the system
directories /bin, /usr /bin, and /usr /ucb.

To reset the PATH variable in . profile, insert lines such as

typeset -x PATH=:/bin:/usr/bin:/usr/ucb:$HOME

The typeset -x command is discussed in "Assigning Values to Environmental
Variables."

If you include the pathnames of personal directories that contain shell programs you
have written, these will be accessible to the shell no matter what your current directory is.
If you wish to execute a command or shell program that is not in one of the directories in
your PATH variable, simply give the absolute pathname of the directory where the
command or shell program is to be found.

For information on referencing variables using the $ syntax (as in $HOME above),
see "Parameter and Variable Substitution." For more information about pathnames, see
A!UX Essentials.

Shortcuts in changing directories

If CDPATH is set, you can use the cd command with a simple directory name that is
neither an absolute nor a relative pathname. The shell then searches for that directory in
all the directories listed in CDPATH. The directories are searched in the order specified.
If CDPATH is not set, only the current directory is searched.

4-44 Chapter 4 Korn Shell Reference

If the directory you specify is not found in any of the directories given in CDPATH,

you will see a message to the effect that the directory could not be found.
After CDPATH is set, you can still, of course, give the relative or absolute pathname

of any directory you wish. When you give an absolute or relative pathname in the ca
command, CDPATH is not used.

Receiving mail

The MAILCHECK environment variable specifies how often (in seconds) the shell
should check for new mail. When you log in, the shell sets MAILCHECK to 600 seconds
(10 minutes). You can change this to whatever period you wish using the command

typeset -x MAILCHECK=O

This command assigns and exports the value of the MAILCHECK as 0. When
MAILCHECK is 0, the shell checks for new mail before each prompt.

Your editing environment

The EXINIT environment variable tells the shell how to initialize the vi or ex

editing program. This variable is set to a series of editor commands that should be run
every time the editor is called before any commands are read from the terminal. In the
sample .profile above, for example, the command

typeset -x EXINIT="set wm=10"

assigns and exports the value of EXINIT as the command

set wm=lO

which sets the word-wrap margin so that the editor will automatically break lines ten
spaces before the right margin. The command is enclosed in double quotation marks
because the entire string must be treated as one "word" and not divided.

For details on EXINIT, see A!UX Text-Editing Tools. For the use of double quotation
marks, see "Quoting."

The .profile file 4-45

Customizing your login procedure

You can also use your . prof i 1 e file to customize your login procedure. In the
sample . pro fi 1 e above, the commands

date

ls

direct the shell to display the date and time and then list all the files in the current
directory before displaying the shell prompt. These will be executed at login.

You can include any commands you wish in . prof i 1 e, including your own
functions and shell scripts.

The . kshrc file
A/UX systems use the /etc/profile system file to set the ENV variable to a filename
and export this variable. On A/UX systems this is initially set to $HOME/. kshrc, but
this may be changed to another filename by modifying the value of the ENV variable.
See "Changing the ENV Filename."

If this variable is set to any filename and exported, that file will be read whenever the
Korn shell starts up. Thus, any definitions you include in the file named as the ENV file
(initially $HOME/. kshrc) will be available to every instance of the Korn shell. You can
create a . kshrc file in your home directory and use it to define variables, aliases, and
functions that are applicable only to the Korn shell.

+ Note If the ENV variable is not defined as $HOME/. kshrc and exported, the
Korn shell will not read your . kshrc file. +

For information on aliases, see "Aliases for Commonly Used Commands." For
functions, see "Defining Functions."

4-46 Chapter 4 Korn Shell Reference

A sample . kshrc file

The following is a sample . kshrc file:

typeset -x HISTFILE=/users/neal/my.history

typeset -x HISTSIZE=l5

These commands are described below.

Changing history variables

The sample . kshrc file resets the following variables:

HISTFILE This variable specifies where the text of past commands should be
stored. The default file is . sh_history in your home directory.
The command

HISTSIZE

typeset -x HISTFILE=/users/neal/my.history

assigns and exports the value of the HISTFILE as the file named
my. history in the directory /users/neal.

This variable specifies how many past commands should be saved.
The command

typeset -x HISTSIZE=l5

assigns and exports the value of the HISTSIZE as 15. After this
command, only 15 past commands would be saved.

Changing the ENV filename

The A/UX system defines the ENV variable to $HOME/. kshrc in the system
file I etc /profile. This assigns this variable a value when you log in.

To change the name of this file, you can reset ENV in your . prof i 1 e file;
for example,

typeset -x ENV=filename

or

ENV =filename
export filename

The . kshrc file 4-47

Aliases for commonly used commands
The Korn shell alias command renames existing commands or creates a name for a
long command line. Aliases may be defined at the shell prompt or in the . kshrc file.

+ Note The Korn shell also provides a facility for defining functions. This is similar to
aliasing and may be preferable for some of your tasks. See "Defining Functions." +

The Korn shell keeps a list of aliases. Each time you give a command, the first word
of the command is compared with the list. If it is an alias name, then it is replaced with
the definition of that alias. You can use an alias to redefine any shell or A/UX command;
however, you cannot redefine keywords such as if or done.

Defining an alias

You define an alias with the command

alias name=definition

where name may begin with any printable character, but the rest of the characters must
be letters, digits, or underscores (generally it is a good idea to avoid using I, ; , *, ?

and so on); the = sign cannot be surrounded by blank spaces; and definition may
contain any valid commands, including shell scripts and metacharacters. If definition
includes spaces, the whole command must be inclosed in quotes.

For example, the alias

alias ls='ls -C'

causes the 1 s command to produce output as if you had typed

ls -c
which displays its output in columns. The alias definition is quoted because it contains a
blank. In the example above, every time you type ls, you will get ls -c, and this may
not be desirable. It is recommended that you invent a new command name, as in

alias le = 'ls -C'

This allows you to use both 1 s (in any form desired) and 1 c.

4-48 Chapter 4 Korn Shell Reference

Alias definitions can also include all shell metacharacters, variables, positional
parameters, command substitution, and so forth. For example,

alias prtsort='sort *.list'

creates a command prtsort. When you type

prtsort

the command line

sort *.list

executes, sorting files in the current directory that end in the characters . 1 is t.

When you create aliases at the shell prompt, they are not exported to the
environment unless you use the -x option:

alias -x lc='ls -C'

Exported aliases remain in effect for subshells but must be reinitialized for separate
invocations of the shell. To make aliases available to every invocation of the Korn shell or
any script run with a separate shell, put their definitions in the . kshrc file, which is
read every time a Korn shell is started up.

Note that for 2.0.1 and later versions of A/UX, definition can include another alias.
The following rules apply:

• The alias will not be substituted (expanded) if not in an alias to itself. For example,
alias list=cat cat=ls causes list to expand to ls.

• The alias will not be substituted (expanded) within an alias to itself. This
accommodates the use of constructs such as the ls=' ls-c · above.

+ Note Aliasing is performed when scripts are read, not while they are executing.
Therefore, for an alias to take effect, the alias command has to be executed before
the command that references the alias is read. •

Listing and removing aliases

The alias command with no arguments lists all aliases that have been defined in your
environment. To list the text of exported aliases, use the alias -x command.

Aliases can be removed with the command

unalias name [name ...]

Aliases for commonly used commands 4-49

Tracking with aliases

Aliases invoked with the - t option are used to reduce the amount of time the shell
spends searching the directories specified by the PATH variable for a particular
command. This is called tracking: when you use a "tracked" command, it is treated like
an alias that corresponds to the full pathnames of that particular command. For example,
if you give the command

alias -t sort

the shell interprets sort as an alias for the full pathname of the sort command
(/bin/ sort). After you have used the above command, sort is defined as the
following alias:

alias sort=/bin/sort

This allows the shell to substitute the full pathname and bypass the directory search
specified in your PATH variable.

Note that the same effect can be produced for all A/UX commands using the - h

option of the set command. This makes each command name a tracked alias.
The value of all tracked aliases becomes undefined each time the PATH variable is

reset. Another subsequent reference to the command will once again reset the alias.

Default aliases

The following aliases are compiled into the Korn shell. They may be unset or redefined at
anytime:

autoload='typeset -fu'

false='let 0'

history='fc -1'

integer='typeset -i'

r='fc -e -'

true='let 1'

type='whence -v'

hash='alias -t'

functions='typeset -f'

nohup=nohup

4-50 Chapter 4 Korn Shell Reference

Shell execution options
The shell is a program like other NUX commands, and it too has a variety of options
used to control how it executes. All shell execution options can be set using the set

command as follows:

set -opt [opt ...]

Or they can be specified on the command line when you invoke a new shell or run a
shell script with the ksh command:

ksh opt [opt ... J name

Use the set command to set new options in your current shell. Use the ksh

command to invoke a subshell with the options specified or to run a script with options.
To tum options off, precede the option with a plus (+)instead of a minus (-).
The variable $- contains a list of all the options set. For example, if you have the a

and x shell execution options set, the command

print $-

returns

ax

For more details on the set command and shell execution options, see "Summary of Korn
Shell Commands."

Options that affect the environment

- a When the - a shell option is set, all variable assignments result in that variable
and its value being inserted in the environment. You do not need to use the
export command to insert new values.

- k The shell execution option - k can be used to insert variables and values into the
environment for a particular command; see "Special Environments."

Shell execution options 4-51

Options for invoking new shells
In addition to the options available with the set command, there are four options that
can be used only when a new shell is invoked with the ksh command.

- c string If the - c flag is present, string is executed. After execution, control is returned
to the parent shell. This command is often used to execute shell scripts.

- s If the - s flag is present or if no arguments remain, commands are read from
the standard input.

]ob control

- i If the - i flag is present, the shell is interactive. The terminate signal is
ignored (so that ki 11 o does not kill an interactive shell), and the interrupt
signal is caught and ignored (so that wait is interruptible). In all cases, the
quit signal is ignored by the shell.

- r If the -r flag is present, the shell invoked is a restricted shell. Restricted
shells cannot change directories, alter the value of the PATH environment
variable, redirect output, or specify path or command names containing the
symbol /.See "Restricted Shell" in Chapter 3, "Bourne Shell Reference."

Korn shell job control allows you to suspend current jobs, move a foreground job to the
background (and vice versa), check on the status of background jobs, refer to specific
background jobs by number or name and change their status, and receive notification
when a job is done.

Every job you run in the Korn shell is associated with a job number; for example,
when you give a background command

diff filel file2>>file3 &

the job number (in brackets) displays before the process ID:

[3] 12345

]ob numbers are assigned sequentially, so your first job is 1, the second job is 2, and
so forth.

You can also refer to jobs by name using the construct % ? string, where string is part
of the job name.

4-52 Chapter 4 Korn Shell Reference

Suspending a job

To suspend your current foreground job, type the current suspend character.
Typically this is set to CoNTROL-Z, but if that does not work, you may need to set
your suspend character:

stty susp "z

(If you also intend to use shell layering, see "Using Shell Layering" on resolving possible
conflicts in use of CoNTROL-Z.) Once the suspend character is set, typing it sends an
immediate stop signal to the current job; pending output and unread input are discarded.

When the shell interprets CoNTROL-Z, it prints a message in the form

[job-number] + Stopped name

where job-number is the job number of the current job; + indicates that it is the current
job; and name is the command name of the stopped job. For example,

[2] + Stopped diff

Listing jobs

You can list your jobs with the command

jobs

Your jobs will be listed, and their status as running or stopped will be indicated like this:

[3] + Running lp chapterl &

[2] - Stopped vi chapter2

[1] Running diff filel file2 > diff.file &

The + indicates the current job, and the - indicates the preceding job.
If you include the -1 option, as in

jobs -1

process IDs will be shown as well as the job numbers.

Job control 4-53

Changing the status of stopped jobs

Once you have a stopped job, you can give another command at the shell prompt
(leaving the job suspended), resume the job in the foreground, resume another stopped
job, or continue the command processing in the background.

To leave a job suspended, do nothing. When you give the command

jobs

you will see it listed as Stopped. To run a stopped job in the background, give the
command

bg %number

For example,

bg %2

The bg command with no argument puts the current (most recent) stopped job in the
background to continue executing. If a job number is given as an argument to bg, it
must be preceded by a percent sign (%) . The following notation is available for job
numbers:

%number

%+

%­

%string

refers to a specific job by number

refers to the current job

refers to the preceding job

refers to the most recent stopped job that began with those characters

Thus, if you had a current stopped lp job whose job number was 4, you could
resume this job in the background with any of the following commands:

bg

bg %+

bg %4

bg %lp

After one of these commands, you would be shown the command line of the job that
was being put in the background, and then the shell prompt would be returned.

4-54 Chapter 4 Korn Shell Reference

A job running in the background will stop if it tries to read from the terminal.
Background jobs are normally allowed to send output to the terminal, but this can be
disabled by giving the command

stty tostop

This causes background jobs to stop when they try to send output, just as they do when
they try to read input.

If a background job needs neither input nor output and completes execution in the
background, the shell displays a message in the form

[number] + Done name

For example,

[2] + Done diff

You can bring a job to the foreground with the command

fg %number
The same conventions for referring to a stopped job given above under the bg

command work for the f g command. The f g command works exactly like bg. Once
your job is in the foreground, you can continue working as before.

Blocked jobs

The Korn shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked, so that no further progress is possible. For
example, a job may become blocked if you execute the following sequence of
commands:

CONTROL-Z

bg

fg

If the shell is busy with another process when it learns about a blocked job, it waits
until it is about to print another prompt before displaying a message.

Job control 4-55

Canceling jobs

To cancel a job, use the command

kill [% J number

The value number can be either a process ID, or a job number preceded by a percent
sign(%). The rules about job numbers that apply to bg and fg also apply to the
kill command. Using the kill command with PIDs to cancel jobs is discussed in
"Canceling Background Commands." Thus if you had a current background lp job
whose job number was 4, you could cancel this job with any of the following commands:

kill %+

kill %4

kill %lp

The shell would display a message indicating that the job had been terminated:

(4] + Terminated lp bigfile &

Logging out with stopped jobs

If you try to log out while any of your jobs are stopped, you will be warned with the
message

You have stopped jobs.

If you use the jobs command to see what the stopped jobs are, or if you
immediately try to log out again, the shell will not warn you a second time. The stopped
jobs will be terminated when you log out.

The same process will occur if you attempt to log out while you have background
jobs running that are not preceded by nohup. You will be warned once with

You have running jobs.

4-56 Chapter 4 Korn Shell Reference

Using shell layering
Before using shell layering, you should make sure the swtch and susp characters are
defined to different control sequences. Otherwise, job control will function correctly in
the shell layer you invoke, but the shl program will be inaccessible. The A/UX
standard distribution sets swtch to CONTROL-' and susp to CoNTROL-Z. To check that these
are defined to different control sequences on your system, enter the command

stty -a

at the shell prompt. This displays the settings for various user-definable sequences. See
st ty(l) in A/UX Command Reference for additional details.

For more information on the shl program, see Chapter 6, "Shell Layering".

Overview of shell programming
A shell program is simply a list of commands. These commands can be entered at the
prompt or inserted in a file. They may contain

• variables and assignments

• typing of variables, including integer, uppercase and lowercase, justified, and so on

• one-dimensional arrays

• integer arithmetic

• control-flow statements (for example, if, for, case, or while)

• built-in shell commands

• any A/UX command

Input for the shell program can be read from the keyboard (this is the default
standard input), taken from files, or embedded in the program itself (using here
documentr-see "Taking Input From Scripts"). The Korn shell also allows you to create
menus that may provide input for a shell script (see "Creating and Reading a Menu").

Overview of shell programming 4-57

Shell programs can write output to the terminal screen (the default standard output),
to files, or to other processes (via pipes).

When the shell program executes, each command is executed until the shell
encounters either an end-of-file character or a command delimiter that directs it to stop.
During execution, you can trap errors and take appropriate action.

Writing shell programs

You can enter a shell program at the prompt. When you use a built-in shell command
that expects a delimiter (such as done) or a certain type of input, the secondary shell
prompt appears after you press RETURN. This prompt(> by default) appears at each line
until you give the expected delimiter; for example,

$ for i in *

> do

> cat $i

> done

$

Note that you can send an interrupt to cancel the script and return to the
primary prompt.

You can also write a shell program in a text file (using a text editor) and then execute
it (see "Executing Shell Scripts"). These program files are often called shell scripts. Note
that all shell programs may be entered at the shell prompt or inserted in a file. This does
not affect their actions. Hereafter "shell scripts" will be used to refer to shell programs
that reside in a file.

Executing shell scripts

There are several ways to execute a shell script; these differ mostly in terms of which
instance of the shell is used for the execution.

• You can use the ksh command to read and execute commands contained in a file.
The script will be run in a subshell, which means that it will have access only to the val­
ues set in the environment and will be unable to alter the parent shell. The command

4-58 Chapter 4 Korn Shell Reference

ksh filename args ...

causes the shell to run the script contained in filename, taking the args given as
positional parameters. Shell scripts run with the ksh command can be invoked with
all the options possible for the set command.

• You can change the mode of the shell script file to make it executable. For example,

chrnod + x filename

makes filename executable. Note that you may want to modify your PATH variable
to include a personal directory (for example, $HOME/bin) containing your shell
scripts. When you have done this, you can use your script names as ordinary
commands, regardless of your current location in the file system.

Then the command

filename args ...

has the same effect as using the ksh command. The arguments become the posi­
tional parameters; the script is run in a subshell, which means that it will have access
only to the values set in the environment and will be unable to alter the parent shell.

• You can run a shell script inside the current shell by using the "dot" command (.) .
The dot command (.) tells the current shell to run the script; no subshell is invoked.
This should be used if you wish to use local shell variables or functions, or modify the
current shell:

. filename args ...

Note that there must be a space between the dot and the filename. Because the
commands are executed in the current shell, run a script with the dot command when
you want to change values in the shell. The arguments become positional parameters.
Otherwise the positional parameters are unchanged.

• You can run an executable shell script with the exec command. This should be
used when the shell script program is an application designed to execute in place of
the shell and replace interaction with it:

exec filename args ...

In this case, the shell script replaces the current shell. This means that when the script
is over, control will not return to the shell. If you were in a login shell, you will be
logged out.

Overview of shell programming 4-59

Comments

A word beginning with a number sign (#) causes that word and all the following
characters up to a newline to be ignored.

Writing interactive shell scripts

A shell script can invoke an interactive program such as the vi editor. If standard input
is attached to the terminal, vi reads commands from the terminal and executes them
just as if invoked from an interactive shell. After the session with vi is finished, control
passes to the next line in the script. In a similar manner, a script can invoke another copy
of a shell (using sh, csh, or ksh), which will interpret commands from the terminal
until you send an eof Control will be returned to the script. You can use this to create a
special environment for certain tasks by setting environment variables in a shell script
and then invoking a new subshell.

You can also write interactive shell scripts by using the read and eval

commands, prompting users to enter commands:

read command

eval $command

The first line will read the user's command line into the variable command. The
eval command will then cause the command to execute.

Canceling a shell script

You can cancel a shell script just like an ordinary NUX command. If the script is running
in the background, use the ki 11 command. See "Canceling Commands" for details on
ki 11 and various types of interrupts that can stop a command.

+ Note Interrupts can be trapped and handled within the script with the trap

command. See "Fault Handling and Interrupts." •

4-60 Chapter 4 Korn Shell Reference

Writing efficient shell scripts

In general, built-in commands execute more efficiently than A/UX commands. See
"Summary of Korn Shell Commands" at the end of this chapter for a complete list of these
commands. The following built-in commands are useful in constructing efficient shell
scripts:

hash

ulimit

times

This causes the shell to remember the search path of the command
named.

This can be used to set a limit on the size of files written by processes.

This prints the accumulated user and system times for processes.

You can also set the -h shell execution option using

set -h

This will locate and remember functions as they are defined, instead of when they are
invoked.

Careful setting (or resetting inside a shell script) of the PATH and CDPATH

environment variables ensures that the most frequently used directories are listed first.
This also improves efficiency.

Command evaluation
When you give a command, the shell evaluates the command in one pass and then
executes it. To force more than one pass of evaluation, use the eval command
described below.

While evaluating the command, the shell performs the following substitutions on
variables:

• Alias substitution The shell checks the first word of every command to see if it is an
alias, that is, a user-defined name for another command or group of commands. If an
alias is found, it is replaced by the text of the alias. For information on aliases, see
"Aliases for Commonly Used Commands."

Command evaluation 4-61

• Tilde substitution The shell replaces an initial tilde with a directory name (see
"Shortcuts in Working With Directories"). The following forms are recognized:

This is replaced by the value of the HOME variable.

- name This is replaced by the home directory of another user (where name is the
user's login name).

-+ This is replaced by your current working directory. (Expanded from $ PWD.)

This is replaced by your last working directory. (Expanded from $OLDPWD.)

• Variable substitution The shell replaces variables preceded by $ (for example,
$user) with their values. Only one pass of evaluation is made. For example, if the
value of the variable user is daphne, then the command

print $user

prints

daphne

However, if the value of the variable user is $name, then the command

print $user

prints

$name

The second variable is never evaluated and the value is not substituted. See
"Parameter and Variable Substitution" for more information.

• Command substitution The shell replaces a command enclosed in back quotes
with the command's output. For example, if the current directory is
/users/doc/virginia, then the command
print 'pwd'

prints

/users/doc/virginia

• Blank interpretation The shell breaks the characters of the command line into words
separated by delimiters (called "blanks"). The delimiters that are interpreted as blanks
are set by the shell variable IFS; by default, they are blank spaces, tabs, and
newlines. The null string is not regarded as a word unless it is quoted; for example,

print ''

passes the null string as the first argument to print, whereas the commands

4-62 Chapter 4 Korn Shell Reference

print

and

print $local_null

(where the variable local_nul 1 is not set or set to the null string) pass no
arguments to the print command.

• Filename expansion The shell scans each word for filename expansion
metacharacters (see "Using Shell Metacharacters") and creates an alphabetical list of
filenames that are matched by the pattern(s). Each filename in the list is a separate
argument. Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated with a for loop.

Forcing more than one pass of evaluation

Sometimes more than one pass of evaluation is necessary for a command to be
interpreted correctly. For example, suppose that the following two lines occur near the
beginning of a shell script:

err_33='echo $name: user not found'

name=elaine

If you give the command

$err_33

you get

$name: user not found

(which is not quite what you want). In cases like this, you can use the built- in command
eval. So, the command

eval $err_33

forces two evaluations of the variable err_3 3. Thus, it prints

elaine: user not found

In general, the eval command evaluates its arguments (as do all commands) and
treats the result as input to the shell. The input is read and the resulting command(s)
executed.

Command evaluation 4-63

There is an easier way to do what the above example intended without the use of
eval. If you use double quotation marks ("), you have the following:

name=eli

err_l="echo $name"

Then the command

$err_l

prints

eli

Command execution

After all substitution has been carried out, commands are executed as follows:

• Built-in commands, functions, and shell scripts run with the dot command (.) are
executed in the current shell. The command has available all current shell execution
options, the values of shell variables, environment variables, and functions defined in
the current shell.

• A/UX commands, programs, executable shell scripts, shell scripts run with the ksh

command, and series of commands enclosed in parentheses are executed in a
subshell. The current shell invokes a child shell that executes the commands and then
returns control to the parent shell. Only the values in your environment are available
to these processes.

• Commands and executable scripts run with the exec command execute in place of
the current shell.

If the A/UX command or program name does not specify a pathname, the
environment variable PA TH is used to determine which directories should be searched
for the command. The only exceptions to this are built-in commands.

For more information about the execution of shell scripts, see "Executing Shell Scripts."

4-64 Chapter 4 Korn Shell Reference

Exit status: The value of the command

If a command executes successfully, its exit value is usually zero (0). If it terminates
abnormally, its exit value is nonzero. The shell saves the exit value of a command. These
are used primarily in shell scripts. See signal(3), exi t(2), and wai t(2) in A!UX
Programmer's Reference for the values of various exit statuses.

Defining functions

You can use a function definition to assign a name to a command or list of commands.
Korn shell function definitions may use the following syntax:

function name { command-list ; }

or they may use the Bourne shell syntax:

name () { command-list ; }

In either syntax, the first brace ({) must be followed by a space or newline, and the
second brace(}) must be preceded by a semicolon or newline. See Chapter 3, "Bourne
Shell Reference,'' for more information about the Bourne shell syntax above.

Using the function keyword, a function maintaining a daily log of users could be
written as follows:

function users { date>>log; who>>log;}

Note that when you use the multiline form at the shell prompt, the shell prints
the secondary prompt at each line after the opening brace ({) until you enter the
final brace(}).

After you have defined a function, you can use the command syntax

name [m;gsJ

Defining functions 4-65

For example,

users

This causes the commands in command-list to be executed.
Korn shell functions are read in and stored in the shell. Alias names are resolved

when the function is read. Functions are executed like commands, with the arguments
passed as positional parameters (see "Positional Parameters and Shell Variables").

Functions behave like shell procedures, except that functions have the ability to share
data. Normally, the calling program and the function share variables. You can use the
typeset command inside a function to define local variables for the function; these
variables will exist only while that function (and any functions it calls) is executing.

You can cause a function to return before reaching the end of command-list using
the command

return n

n sets the exit status of the function. If n is not set, the exit status is the status of the last
command executed.

Functions are not typically available to an executing shell script. There are two
separate ways of making a function available to an executing script. If the shell script is
executing in the current shell, use the command

typeset -xf name

at the shell prompt. Functions that need to be defined across separate invocations of the
shell should be defined in the . kshrc file (that is, the file named by the ENV

variable).
To list the functions you have defined, enter

typeset -f

without arguments. This displays function names and the text of functions you have
entered at the keyboard.

To undefine a function, use the command

unset -f name

where name is the name of the function you want to remove.

4-66 Chapter 4 Korn Shell Reference

Pos tional parameters and shell variables
A shell script may use two types of variables:

• Positional parameters These are string variables referred to by the numbers [0-9].
These numbers refer to the position of the parameter on the command line. Positional
parameters are set on the command line and contain the arguments to the script.
Positions greater than 9 must be enclosed in braces, for example, 112), or accessed
with the shift command (see "Changing Parameter Positions").

• Shell variables These string variables are referred to by name. They may be assigned
on the command line or inside the script itself.

The relationship between variables inside a shell script and existing shell variables
depends on how the script is run. See "Executing Shell Scripts." In all cases, shell scripts
have access to the variables and values in the environment.

Positional parameters

Positional parameters may be referred to by the numbers [0-9] and set as arguments on a
command line. When you enter a command at the prompt, the shell stores the elements
of the command line in parameters: the command name is stored in parameter 0, the first
argument is stored in parameter 1, the second argument in parameter 2, and so forth.
Thus, for the command

diff letterl letter2

parameterOis diff,parameterlis letterl,andparameter2is letter2.For
the command

print "not a directory"

parameter 0 is print and parameter 1 is "not a directory".
A shell script may refer to parameters by number; for example,

print $1

print $2

Positional parameters and shell variables 4-67

These will be substituted by the arguments given in that position on the command
line; for example, for the command

myscript argl arg2

parameter 0 is myscript, parameter 1 is argl, and parameter 2 is arg2. This prints

argl

arg2

Setting values in a script

The set command creates a new sequence of positional parameters and assigns them
values. After execution, all the old parameters are lost. For example, the command

set *

creates a sequence of positional parameters set to the names of the files in the current
directory (parameter 1 is the first filename, parameter 2 is the next filename, and so on).
A subsequent command

set hi there

creates new positional parameters, discarding the old values. This time there
will be only two values set; the other positional parameters will have no values. A
subsequent command,

print $2 $1

displays

there hi

The command

print $3

would print a blank line, because there is no longer a parameter 3.
To set a positional parameter to a string of words separated by blanks, you must

enclose the entire string in double quotation marks. For example,

set "this is one positional parameter"

sets this entire string to the first positional parameter. Without the quotation marks, the
phrase would be set, one word at a time, to the first five positional parameters.

4-68 Chapter 4 Korn Shell Reference

Because the set command creates a new series of parameters, it is impossible to
set only one parameter in a series. If only one parameter is set, it will be the first, and the
remaining parameters will be lost.

The set command can also be used within a script to create positional parameters
if none are given on the command line. Such parameters can then be used as a one­
dimensional array.

You can use the set command with the -A option to assign values to a positional
parameter that is an array variable. The format for this is

set -A array-name value-list

After the set command is used to reset positional parameters, the system­
maintained variable #, which contains the number of positional parameters, is reset to
reflect the new number of parameters. For details on the system-maintained variables,
see "Parameters and Variables Set by the System."

Changing parameter positions

The shift command shifts positional parameters one or more positions to the left,
discarding the value in the first position(s). The syntax is

shift [nJ

If n is omitted, it defaults to 1. If n is specified, the shift takes place at the position
n+ 1. For example,

shift 6

moves parameter 7 into position 1, parameter 8 into position 2, and so on, discarding the
values that were stored in positions 1 through 6.

This can be useful, for example, when a command is working through a list of files.
After each file is processed, a shift can be performed, letting the next filename become
parameter 1.

Number of parameters

The current number of positional parameters is available, stored in the system­
maintained variable #.See "Parameter and Variable Substitution" and "Parameters and
Variables Set by the System."

Positional parameters and shell variables 4-69

Shell variables
Shell variables are named string variables. These variables can be assigned values anywhere
in the script or on the command line. Variable names begin with a letter and consist of
letters, digits, and underscores. Environment variables, described above, are simply
special kinds of shell variables (namely, shell variables that are available to all subshells).

Assigning values

Shell variables are assigned values with the syntax

name= value [name= value ... J

Note that there cannot be any spaces surrounding the equal sign.
All values are stored as strings. Pattern-matching is performed. To set a variable to a

string of words separated by blanks, the entire string must be quoted; for example,

longvar="this is a long variable"

After the variable assignments

user="fred stone" box='???' acct=l8999

the following values are assigned: user is set to fred stone.

user = fred stone

box = ???

acct = 18999

Because the Korn shell supports only string variables, all of these values (including
18999) will be strings of characters. Note that the question mark metacharacters must be
quoted to prevent pattern matching, and that the value for user must be quoted
because it contains a blank. Either single or double quotes may be used to enclose such
values, provided the types are not mixed within a single value enclosure.

A variable may be set to the null string with the syntax

variable=
Shell variables may be set at the shell prompt to provide abbreviations for frequently

used strings; for example,

b=/users/fred/bin

mv file $b

moves f i 1 e from the current directory to the directory

4-70 Chapter 4 Korn Shell Reference

/users/fred/bin

See "Assigning Values on the Command Line" for more information.

Arrays of strings

The shell supports a limited one- dimensional array facility. An element of an array
parameter is referenced by a subscript, as follows:

variable [number]

number can be any arithmetic expression. The subscripts must be in the range of 0
through 511. The first subscript is 0.

Arrays do not need to be declared. Any reference to a variable with a valid subscript
is legal, and an array will be created if necessary.

The elements of an array are assigned just like individual variables; see the next section.

Assigning values and types to variables

Korn shell variables and arrays and array elements can be assigned in two ways:

• with an equal sign (=); for example,
name=diane

list[l]=first

line[lO]="Please include your number"

• with the Korn shell typeset command

The typeset command is used

• to assign values

• to assign types

• to create constants (read-only variables)

• to export variables and functions

• to create and assign local variables within functions

This section covers using the typeset command to assign values, types, variables,
arrays, and constants. For information on using the typeset command to export values
to the environment, see "Assigning Values to Environment Variables" For information on
using the typeset command with functions, see "Defining Functions."

Positional parameters and shell variables 4-71

The form of the typeset command is

typeset [-HLRZfilprtux [nJ [name[=Value}] ... J

Types may be assigned using the flag options. For name, you can give a variable name,
the name of an array, or an indexed array element. All elements of an array must be of the
same type. The value you give will depend on the type(s) chosen. There are no spaces
around the equal sign. If no value is given, then name is simply given the type(s) specified.

The following type(s) are possible. They can be combined. If a variable (or array) that
has already been assigned values changes the type from uppercase (u) to lowercase (1),

for example, its value will usually be altered to the new type.

- H Provides A/UX-to-hostname file mapping on non-UNIX machines.

- L Left-justify and remove leading blanks from value. The width of the field remains
the width assigned with the typeset command. When the variable is assigned
a value, the value is either filled from the right with blanks or truncated as
necessary to fit. Leading zeros are removed if the - z option is also set. The - L

option turns off the - R option. For example, you could set the width of the
variable 1 as t to seven left-justified places as follows:
typeset -L last=1234567

or
typeset -L7 last

If last was then set to Elizabeth, which has nine characters, the last two
characters (th) would be lost, as in the following example:
last=Elizabeth
print $last
Elizabe

If you set last to Mary, this name would be inserted in the first four places on
the left and followed by three spaces.

- R Right-justify and fill with leading blanks. The width of the field remains the width
assigned with the typeset command. When the variable is assigned a value,
the field is left-filled with blanks or truncated from the end as necessary to fit. This
option is the reverse of the - L option above. The - R option turns off the - L

option. Just as with the - L option, you can abbreviate the - R option (for
example, typeset -R7 last).

4-72 Chapter 4 Korn Shell Reference

- z Used alone, or in conjunction with the - R option, the field is right-justified and
filled with leading zeros. Used in conjunction with the -L option, the field is left­
justified and any leading zeros are removed. Note that the -z option does not
override any - R or - L options already in use. The following examples illustrate
the use of the -z option with both right- and left-justified fields:

typeset -RS fl #right-justify, leading blanks

fl=22

periods=" "

print "$fl"

print $periods

prints

22

typeset -z fl #right-justify with leading zeros

print "$fl"

print $periods

prints

00022

and

typeset -L fl #left-justify, drop leading zeros

print "$fl"

print $periods

prints

22

+ Note Quotation marks are necessary around the fields formatted with the typeset

command to preserve the field interpretation you requested. If not quoted, these fields
are printed without the requested justification or blank filling. •

Positional parameters and shell variables 4-73

- f name refers to function names rather than parameter names. No assignments can be
made and the only other valid option is - x. See "Defining Functions" for details.

- i The variable name is an integer. Declaring variables to be integers makes arith­
metic done with the Korn shell let command much faster. A variable declared
to be an integer cannot be assigned anything but an integer value. The alias

integer

is equivalent to

typeset -i

Thus,

integer total average

is the same as

typeset -i total average

The first assignment to an integer variable determines the output base. This base
will be used whenever the variable is printed. The base is shown in numeric
constants as

base# number

For instance, to specify that the variable row always be output in base two, you
can define it as follows:

integer row=2#11010010

You should be sure that there are no spaces before the number sign (#); otherwise
it is interpreted as the beginning of a comment. If no base is given, it is assumed to
be 10.

-1 Convert uppercase characters to lowercase. The flag -u is turned off.

-p Write the output of this typeset command, if any, to the two-way pipe created
for a background command ending with " & I ". For this type of background
command connected to the terminal, see "Connecting a Command to Standard
Input and Output."

- r Mark name read-only. Read-only variables cannot be changed while they are
this type.

-t Tag the named parameters. Tags are user-definable and have no special meaning
to the shell.

-u Convert lowercase characters to uppercase. The flag -1 is turned off.

-x Mark name for automatic export to the environment. Exported parameters pass
values and types to subshells but pass only values to the environment.

4-74 Chapter4 Korn Shell Reference

Using + rather than - causes certain flags to be disabled. Thus, the command

typeset -r OLD

makes the variable OLD a read-only variable, and the command

typeset +r OLD

removes this status.
Flags that may be used with + include rxtifZRL. Note that if a variable's only

attribute is -z, -R, or -L, use of +z, +R, or +L will have the same effect as unset.

If the typeset command is given with options but no arguments, the variables
that have these options are listed with their values. If no arguments or options are given,
all variables are listed with their types.

If used inside a function, the typeset command creates variables local to that
function. See "Defining Functions."

Use the unset command to remove variables.
The following is an example of the use of the typeset command to format data:

typeset -RulO fldl

typeset -LS fld2

typeset -Rl6 fld3

typeset -LZS fld4

fldl="ABCdef"

fld2="002"

fld3= "GHijkl"

fld4="007"

print "$fldl $fld2 $fld3 $fld4"

This sequence of commands would line up four columns of data and print them. In
the first column would be up to ten uppercase characters, right-justified; in the second
column would be up to five characters, left-justified; in the third column would be up to
six lowercase characters, right-justified; and in the fourth column will be up to five
characters, left-justified, with leading zeros removed. For example, if you put these
commands into a file format, you could give the following command:

ksh format

which prints

ABCDEF 002 ghijkl 7

Positional parameters and shell variables 4-75

Assigning values on the command line

An argument to a shell procedure of the form name=value, which precedes the
command name, causes value to be assigned to name before execution begins. The
value of name in the invoking shell is not affected. For example,

user=fred command

executes command with user set to fred.

After variable assignments, any additional arguments are assigned to the positional
parameters.

The - k flag causes arguments of the form name=value to be interpreted in this way
anywhere in the argument list. See "Special Environments" for more information.

Removing shell variables

To remove shell variables, enter the unset command followed by the name of the
variable:

unset name

The variable and its value will be removed.

Setting constants

In the Korn shell, read-only variables whose values are intended to remain constant are
declared with the command

typeset -r name=value
The variable whose name is given is set to value. Attempts to change value are illegal
as long as the variable remains read-only. See "Assigning Values and Types to Variables"

for details.
In addition, the older form,

readonly name ...

maybe used.

4-76 Chapter 4 Korn Shell Reference

Parameter and variable substitution

Positional parameters and shell variables are referenced and their values are substituted
when the identifier (the positional parameter number or variable name) is preceded by a
dollar sign($):

$ identifier

For example,

$jl $1 $8 $version

For variables, identifier can be any valid name; for positional parameters, identifier
must be a digit between 1 and 9, or else the identifier must be enclosed in braces (for
example, $ { 12}).

Another notation for substitution uses braces to enclose the identifier:

echo $ {identifier}

This is equivalent to $identifier. Braces are used when you may want to append a
letter or digit to identifier. For example,

tmp=/tmp/ps
ps a >${tmp}a

substitutes the value of the variable tmp and directs the output of ps to the file
/tmp/psa, whereas

ps a >$tmpa

causes the value of the variable tmpa to be substituted.
A special shell parameter, *, can be used to substitute for all positional parameters

(except 0, which is reserved for the name of the file being executed). The notation @ is
the same as * except when quoted. Thus,

print"$*"

prints all values of all the positional parameters, and

print "$@"

passes the positional parameters, unevaluated, to print and is equivalent to

print "$1" "$2" ...

Positional parameters and shell variables 4-77

Referencing arrays

If the variable is subscripted, the variable name and subscript must be enclosed in the
braces indicated as optional above. Thus the first element of the subscripted array
variable todo would be referenced as

${todo[O]}

because array subscripting starts with 0.
Referencing an array without giving a subscript is equivalent to referencing the first

element, or

array[o l

The subscript [* J references all the elements in an array. The number of elements
in an array can be found with

$ { #array-name [* J }

Thus, for example, if you have the array

name[O]=first name[l]=second name[2]=last

you can give the following sequence of commands and shell responses:

$print ${name[*]}

first second last

$print ${#name[*]}

3

The array subscript is evaluated before the array variable.

Testing assignment and setting defaults

If a parameter or variable is not set, then the null string is substituted for it. For example,
if the variable d is not set,

print $d

or

print ${d}

prints a blank line.

4-78 Chapter 4 Korn Shell Reference

The following structures allow you to test whether variables or parameters are set and
not null, and provide default values or messages. In these structures, string is evaluated
only if it is to be substituted (through command substitution, variable substitution, and so
forth). If the colon is omitted, the shell checks only that the variable has been set; no
action is taken if the variable or parameter is currently null.

$ {identifier: -string}
If the parameter or variable whose name is represented by identifier is set and is non­
null, substitute its value; otherwise substitute string. The value of the variable or
parameter is not changed. For example, if the variable test is null or unset, then

${test:-unset}

returns the string unset; otherwise the value of test is returned.

$ {identifier: +string}
If identifier is set and is non-null, substitute string; otherwise substitute nothing. The
value of the variable or parameter is not changed. For example, if the variable test is
null or unset, then

${test:+unset}

returns nothing.

$ {variable: =string}
If variable is not set or is null, set it to string; then substitute the new value. Positional
parameters may not be assigned in this way. For example,

${HOME:=/user/doc}

tests the environment variable HOME to see if it has a non-null value. If the value is null,
HOME is assigned the value /user I doc and this value is substituted. Otherwise the
original value of HOME is returned.

$ { identifier: ? string}
If identifier is set and is non-null, substitute its value; otherwise print string and exit from
the shell. If string is omitted, the message

filename: identifier: parameter null or not set

prints. For example, a shell script named distribute that requires the parameter
directory to be set might start as follows:

Positional parameters and shell variables 4-79

echo ${directory:?"distribution directory not set"}

If directory is not set, the script immediately exits with the message

distribute:directory:distribution directory not set

Creating substrings in substitution

Substrings can be created during variable substitution or they can be created with the
built-in substring processing feature of the shell. The forms of variable substitution used
to create substrings are

$ { name# pattern}

for stripping off first characters and

$ { name%pattern}

for stripping off last characters
where name is the variable to be truncated. pattern specifies the characters to be

removed. pattern can contain any typed characters as well as the metacharacters *, ? ,

[,and J.

If pattern does not match any characters in the value of name or is null, then the
original value is substituted. If pattern does match the beginning (with #) or ending
(with %) characters, the value of name minus the matched characters is substituted. In
no case is the original value of name changed.

For example, to substitute the filename that is the value of variable called
f i 1 ename with its extension removed, you could use the following variable
substitution:

${filename%.*}

Parameters and variables set by the system

Except for the question mark (?), the following variables are initially set by the shell; the
? is set by each command that executes. These variables can be referenced with the
standard forms discussed above.

4-80 Chapter 4 Korn Shell Reference

(underscore) The last argument of the preceding command.

ERRNO The value of the error number after a system call. Explicitly unsetting this
variable removes its special significance to the shell.

LINENO The line number of the current command in a script or function. Explicitly
unsetting this variable removes its special significance to the shell.

OPTARG The option to the current argument. Set by the getopts command.

OPTIND The index to the next option to the current command. Set by the getopts

command.

PPID The process number of the shell's parent.

PWD The present working directory set by the cd command.

OLDPWD The preceding working directory set by the cd command.

RANDOM Each time this parameter is referenced, a random integer is generated. The
sequence of random numbers can be initialized by assigning a numeric value
to RANDOM.

REPLY Thisparameterissetbythe select statementandbythe read special
command when no arguments are supplied.

SECONDS The number of seconds elapsed since login (or since the present shell was
created).

? The exit status of the last command executed as a decimal string. Most
commands return a zero exit status if they complete successfully; otherwise a
nonzero exit status is returned. This is used in the if and whi 1 e
constructs for control of execution.

The number of positional parameters in decimal. For example, this notation
is used in a script to refer to the number of arguments. An example of this
use appears in the case section.

* All the positional parameters (arguments) of a shell script, evaluated. For
example,

for i in $*

do

print $i

done

This loop prints the values of all the positional parameters.

Positional parameters and shell variables 4-81

@ Synonym for *, except when quoted. The meaning of $ * and $@ is
identical when not quoted or when used as a parameter assignment value or
as a filename. When used as a command argument, however, "$ *" is
equivalent to " $1d$2 d. .. " , where dis the first character of the r F s
parameter, whereas " $@ " is equivalent to " $1 " , " $ 2 " , and so on.

$ The process ID of this shell in decimal. Because process numbers are unique
among all existing processes, this string is frequently used to generate
unique temporary filenames. For example,

ps a > /tmp/ps$$
command-list
rm /tmp/ps$$

The process ID (in decimal) of the last process run in the background.

(hyphen) The current shell flags, such as -x and -v.

Control-flow constructs

The shell has a variety of ways of controlling the flow of execution. In the Korn shell, you
can use for loops, case statements, while loops, until loops, select
statements, and if statements to control a program's flow. The actions of the for
loop and the case branch are determined by data available to the shell. The actions of
the while or until loopand"if then else"brancharedeterminedbytheexit
status returned by commands or tests. Control-flow constructs can be used together, and
loops can be nested.

In the following constructs, reserved words like do and done are recognized only
following a newline or semicolon. The designation command-list represents a sequence
of one or more simple commands separated or terminated by a newline or a semicolon.

4-82 Chapter 4 Korn Shell Reference

for loops

To repeat the same set of commands for several files or arguments, use the for loop:

for name [in word[word. ..]J

do

command-list
done

An example of such a procedure is tel, which searches a file of telephone
numbers, /usr /lib/telnos, forthe various names given as arguments to the
command and passed as positional parameters. The text of tel is

for i

do

grep $i /usr/lib/telnos

done

The command

tel f red

sets i tothename fred andprintsthoselinesinthefile /usr/lib/telnos that
contain the string fred. It is equivalent to the form

for i in fred

do

grep $i /usr/lib/telnos

done

The command

tel fred bert

prints those lines containing £red followed by those containing bert.

Control-flow constructs 4-83

To terminate a loop before the condition fails (or is met), or to continue a loop and
cause it to reiterate before the end of command-list is reached, use the loop-control
commands:

break [nJ

continue [nJ

These commands can appear only between the loop delimiters do and done. The
break command terminates execution of the current loop; execution resumes after the
nearest done. The continue command causes execution to resume at the beginning
of the current loop.

For both break and continue, the optional n indicates the number of levels of
enclosing loops at which execution should resume or continue. For example, the
break 2 in

for i in 0 1

do

for j in 0 1

do

for k in 0 1 2 3

do

print ij$k

break 2

done

done

done

causes execution to resume two levels above the current loop, printing

0 0 0

1 0 0

select statements

A variant form of the for loop is the select loop. Its format is

select identifier [in word... J do command-list done

4-84 Chapter 4 Korn Shell Reference

A select command prints to standard error (file descriptor 2) the set of words,
each preceded by a number. If in word. .. is omitted, the positional parameters are used
instead (see "Positional Parameters"). The PS3 prompt is printed and a line is read from
the standard input. If this line consists of the number of one of the listed words, the value
of the parameter identifier is set to the word corresponding to this number. If this line is
empty, the selection list is printed again. Otherwise the value of the parameter identifier
is set to null. The contents of the line read from standard input are saved in the parameter
REPLY. The commands in command-list are executed for each selection until a break or
end-of-file is encountered.

The select command is especially useful for the generation of menus, as it sends
its menu text to standard error output, leaving standard output free, so you can save
replies in a file. An example of this use is given in "Creating and Reading a Menu."

case statements

The form of the case statement is

case word in

(pattern) command-list;;

(pattern) command-list;;

esac

The left parenthesis before pattern is required if the case statement is part of a
$ () command substitution construct; otherwise, it is optional.

Each command-list except the last must end with " ; ; ". (The semicolons after the last
command-list are optional.) After execution of command-list, the case statement is
complete, and control passes to the command following esac.

Patterns may include filename expansion metacharacters. However, in this pattern
expansion the initial dot, slashes, and a dot following a slash do not have to be matched
explicitly (as they do in filename expansion). Different patterns to be associated with the
same command-list are separated by the OR operator, the vertical bar (I). To be used
literally, pattern-matching metacharacters must be quoted. Because an asterisk (*)

matches any sequence of characters, it can be used to set up the default case. Be careful
in setting up the default, however; there is no check to ensure that only one pattern
matches the case argument. The first match found determines the set of commands to

Control-flow constructs 4-85

be executed. In the next example, the commands following the second pattern (0) will
never be executed because the first pattern (*) executes everything it receives. The
commands following the first pattern will always be executed.

case $# in
*) ... ; ;

0) print "no arguments given"
exit;;

esac

The following is an example of a case statement in a script named append that
appends files:

case $# in

1) cat >>$1 ;;

2) cat $1 »$2
*) print 'usage: append [from) to'

esac

When append is called with one argument, as in

append file

the shell sets the variable # to the value 1 (the number of parameters in the call); and
append uses the cat command to append the standard input to the end of file.

When append is called with two arguments, as in

append filel file2

thevalueof # is2,andthecommandappendsthecontentsof filel to file2.If
the number of arguments supplied to append (that is, the value of $#)is greater than
2, then the shell prints an error message indicating proper usage.

The following example illustrates the use of alternative patterns separated by a
vertical bar (I):

case $i in

-x 1-y) command;;
esac

The same effect could be had by using the bracket metacharacters ([and J), as in

case $i in
- [xyJ) command;;

esac

4-86 Chapter 4 Korn Shell Reference

When you use metacharacters, the usual quoting conventions apply, so that

case $i in

\?) echo "input is ? " ; ;

esac

matches the character ? for the first pattern.
A common use of the case construct is to distinguish among different forms of an

argument. The following example is a fragment of a script that uses a case statement
inside a for loop:

for i

do

case $i in

- [ocs)) ...

-*) print 'unknown flag $i' ;;

*.c) /lib/cO $i ... ;;

*) print 'unexpected argument $i' ii

esac

done

while loops

The whi 1 e command causes the program to loop as long as a certain condition is met.
The while loop has the form

while command-listl
do

command-list2
done

The whi 1 e command tests the exit status of the last simple command in command­
listl. Each time round the loop, command-listl is executed. If the last command executes
successfully (that is, a zero [true) exit status is returned), then command-list2 is executed;
otherwise the loop terminates. For example, the script

Control-flow constructs 4-87

while [[$1]]

do

done

command-list
shift

loops through all the positional parameters. For each iteration of the loop, the test
command (implemented in the first line with the [[J l structure) is used to determine
if the parameter exists. If it does, then the test returns a zero (true) exit status and the
ensuing commands execute.

The shift command is used to rename the positional parameters $ 2, $ 3, ... as
$1, $ 2, . . . and to remove the first one, $1. This entire loop is equivalent to

for i

do

command-list
done

The exit status of the whi 1 e loop is that of the last command executed in
command-list2. If no commands in command-list2 are executed, then a zero exit status is
returned.

To create an endless nonconditional while loop, use the built-in true

command, which always returns a zero exit status.

until loops

The un ti 1 command causes the program to loop until a certain condition is met.
The un ti 1 loop has the form

until command-listl
do

command-list2
done

It works similarly to a whi 1 e loop, except that the termination condition is reversed.
Each time through the loop, command-listl executes; if the last command does not exe­
cute successfully (returns a nonzero [false] exit status), then command-list2 is executed.

4-88 Chapter 4 Korn Shell Reference

A common use for the un ti 1 loop is to wait until some external event occurs and
then run some commands. For example,

until [[-f file J J

do

sleep 300

done

command-list

loops untilfileexists. Each time through the loop, the program waits for 5 minutes (300
seconds) before trying again. (Presumably, another process will eventually create the file.)

To terminate a loop before the condition fails (or is met), or to continue a loop
and cause it to reiterate before the end of the command list is reached, use the loop­
control commands:

break [nJ

continue [n]

These commands can appear only between the loop delimiters do and done, as in
the for loop. See "for Loops" for more information on using the break and
continue commands.

The exit status of the un ti 1 loop is that of the last command executed in
command-list2. If no commands in command-list2 are executed, then a zero exit status is
returned.

To create an endless nonconditional until loop, use the built-in false

command. See true(l) in A/UX Command Reference for details.

if then else

The form of the "if then else" conditional branch is

if command-listl
then

command-list2
[else

command-list3J
fi

Control-flow constructs 4-89

In this structure, else and command-list3 are optional. The i £ command tests
the exit status of the last simple command in command-listl. If the last command
executes successfully (a zero [true] exit status is returned), then command-list2is
executed; otherwise command-list], if present, is executed. For example, the i £

command can be used with the [[J J test command structure to test for the existence
of a file, as below:

if [[-£file ll
then

command-listl
else

command-list2
fi

Multiple conditions can be tested with a nested if command:

if conditionl
then

else

fi

command-listl

if condition2
then

else

fi

command-list2

i f condition3
then command-list3
fi

Note that each of the nested if commands requires its own f i. Nested if

statements can also be written as

if conditionl
then

command-listl
e 1 if condition2

4-90 Chapter 4 Korn Shell Reference

then

command-list2
e 1 if condition]
then command-list]
fi

Note that this is a single if construct with only one terminating f i.

The following script demonstrates the if statement. This script uses the touch

command, which updates the last modified time for a list of files.

flag=

for i

do

done

case $i in

-c) flag=N , ,

*) if [[-f $i l l

then

touch $1

el if [[$flag l l

then

>$i # creat

else

echo "file

fi I I

esac

it

$i does not exist"

The - c flag in this command forces subsequent files to be created if they do not
already exist. Without the -c flag, an error message prints if the file does not exist. The
shell variable f 1 ag is set to some non-null string if the -c argument is encountered.

The exit status of the i f command is the exit status of the last command following
a then or else. If no such commands are executed, then the exit status is zero.

You can also specify conditional execution of commands with the operators &&

and I I . See "Conditional Execution" for details.

Control-flow constructs 4-91

exit

A shell script terminates when it reaches end-of-file. The exit status of the script is that of
the last command executed. The built-in exit command can cause the script to
terminate with exit status set to n. If n is omitted, exit status is that of the last command
executed before exit was encountered.

Input and output
The treatment of input and output in A/UX allows for much flexibility. This section
describes in detail how to perform some of the more common 1/0 operations.

I/ 0 redirection

All forms of 1/0 redirection are allowed in shell scripts. If I/0 redirection (using <, >,or
> >) is done in any of the control-flow commands, the entire command is executed in a
subshell. This means that any values assigned during execution of the command will not
be available after the command is over and control returns to the parent shell. If
necessary, you can change the shell's standard input and output. See "Changing the
Shell's Standard Input and Output."

Redirection with file descriptors

The A/UX system considers standard input, standard output, and standard error output as
files and associates a file descriptor with each of them.

File descriptors are numbers [0 to the value of the variable OPEN_MAx-1] used to
identify files. By default, the file descriptors 0, 1, and 2 have the following associations:

• 0 is associated with standard input.

• 1 is associated with standard output.

• 2 is associated with standard error output.

Thus, standard input can be referenced via file descriptor 0, standard output can be
referenced via file descriptor 1, and standard error can be referenced via file descriptor 2.

4-92 Chapter 4 Korn Shell Reference

I/0 redirection uses the syntax

[xJ < filename

and

[xJ > filename

where xis an optional file descriptor number indicating a file; > and < are redirection
operators; and filename is a file containing input, or to which output is to be directed.
The simple forms omit the file descriptor xand use the defaults listed above. If no descriptor
appears, it is assumed to be 0 for input redirection and 1 for output redirection.

Standard error output must be redirected explicitly using either >& or a numeric file
descriptor as documented in the following sections. The > > form may be used to
append output to an existing file rather than overwrite the file's contents.

All file descriptors can be used with redirection characters in a command line; the file
descriptor immediately precedes the redirection symbol. For example,

... 2>&1 I more

redirects standard error to standard output and pipes the result through more.

In all forms, specifications are evaluated by the shell from left to right as they appear
in the command. Filenames are subject to parameter and command substitution only. No
filename expansion or blank interpretation takes place; for example, the command

cat testfile > *.c

simply writes test file into a file named"*. c".

Redirecting input with file descriptors

The default file descriptor for redirecting standard input is 0. This may be specified as

cat o<filename

Because this is the default file descriptor, it may be omitted as follows:

cat <filename

Input from a background process connected to the current shell (with the I &

construct) can be redirected to a numbered file descriptor. This is accomplished with the
command

exec n<&p

where n is a valid file descriptor.

Input and output 4-93

Redirecting output with file descriptors

The default file descriptor for redirecting output is 1. This may be specified as

cat l>filename

Because 1 is the default file descriptor, it may be omitted as follows:

cat >filename

Output to a background process connected to the current shell (with the I & construct)
can be redirected to a numbered file descriptor. This is accomplished with the command

exec n>&p

where n is a valid file descriptor.

Combining standard error and standard output

The default file descriptor for redirecting standard error output is 2. If you want to direct
the error output of a command to a file (to save the error messages), use the syntax

ls filename 2>errors

This saves error output (in this case, "filename not found") in a file named errors.

If you want to save the command output and error output in separate files, use the syntax

ls filename >output 2>errors

To print the output and the error output in the same file, use the syntax

ls filename >output 2>&1

This writes both standard output and error output to the file output. Note that 2>&1

references the output file because you have already redirected standard output (file
descriptor 1) to this file.

For example, to save the output and the error output of the make command in a file
named make. log, use the command

make > make.log 2>&1

Changing the shell's standard input and output

To associate standard input or standard output with a file, use the exec command:

exec >filename

for standard output and

4-94 Chapter 4 Korn Shell Reference

exec <filename

for standard input.
Output will be written to, or input taken from, the file specified until further

redirection is done with the exec command. This can be useful if all input is to be
taken from a file or all output written to a file. This construct is unlike normal shell
redirection with > and < in that the redirection remains in effect until you either
explicitly reset the standard I/0 files, log out, or exit the current instance of the shell.

To return output and input to the terminal, use the commands

exec > /dev/tty

for output and

exec < /dev/tty

for input.

You can use reassignment to avoid the problems involved in redirecting output or
input in a control-flow structure.

Associating other files with file descriptors

The exec command can also be used to associate files with specific file descriptors.
This can be an advantage in shell scripts that need to read or write a file line by line (see
also "Reading Input") because writing output to a file descriptor cannot overwrite a file's
contents. The command

exec x<filename

where xis a number from 3 to OPEN_MAx-1, associates filename with x. For example

exec 4<filel

exec 5<f ile2

associate file descriptor 4 with f i 1e1 and file descriptor 5 with f i l,e 2. After these
commands, the command

command <&4

takes input from filel, and

command >&5

writes output to file2. For example,

Input and output 4-95

$ exec 4>my.file

$ echo hello >&4

$ cat my.file

hello

$ echo bye >&4

$ cat my.file

hello

bye

Note that this file descriptor syntax can be repeated in a loop without overwriting the
contents of file2.

Reading input

The built-in read command reads a line of input from the terminal or a file and assigns
it to the variables specified. The form of the read command is

read [opt [opt] ... J [name ...]

One line is read from the standard input, and the first word is assigned to the first
name, the second word to the second name, and so on, with leftover words assigned to
the last name. If only one name is specified, the entire line read will be assigned to that
name. The exit status is zero while there is data to be read. If an end-of-file or an
interrupt is encountered, the exit status is nonzero.

For example, you could use the read command to take input from the terminal as
follows. Enter the lines

$read first middle last abbreviations

Alyssa Elizabeth Lynch Dr. Ph.D.

This would result in the following variable assignments:

first=Alyssa

middle=Elizabeth

last=Lynch

abbreviations=Dr. Ph.D.

4-96 Chapter 4 Korn Shell Reference

The read command can also take input from a file, but it reads only the first line. If
you wish to read a file line by line, you must first use the exec command to make the
file standard input as follows:

exec <name.list

while read first middle last abbreviations

do

command-list
done

exec < /dev/tty

In the above example, the exec command reassigns standard input to the file
name. 1 is t. The whi 1 e loop uses the read command to read each line of the file
into the variables first, middle, last, and abbreviations; then the loop
executes command-list. When read reaches the end of the file, it returns a nonzero
exit status, and the while loop terminates. The final exec command then assigns
standard input back to the terminal. For information about reassignment with the exec

command, see "Associating Other Files with File Descriptors."

The opt parameters of the read command can be the following options:

-p Take input from the input pipe of the background process that is
connected to the parent shell with I&.

-r

-unumber

While reading input, \ does not indicate line continuation.

Take input from the file whose file descriptor is number. Files and file
descriptors are associated with the exec command. The default
number is 0, the terminal.

The line command functions exactly like the read command, except that a
whole line is read into a single variable. The line will be terminated with a newline.

Input and output 4-97

Taking input from scripts
Input to a shell script can be embedded inside the script itself. This is called a here
document. The information in a here document is enclosed as follows:

« [- J word
information

word

The first word may appear anywhere on a line; the second must appear alone and first
on a line. The words must be identical and should not be anything that might appear in
iriformation. The second word is the end-of-file for the here document. Parameter and
command substitution will occur on information. Normal quoting conventions apply, so $

can be escaped with \. To prevent all substitution, quote any character of the first instance
of word. If substitution is not required, this is more efficient. (The type of quotation marks
used is relevant: if word is single-quoted, all metacharacter expansion will be suppressed. If
it is double-quoted, file, wildcard, and command substitution will take place.)

To strip leading tabs and blanks from word and information, precede the first
instance of word with the optional hyphen(-), as follows:

<<-word

+ Note If you intend to indent your code, you must use the hyphen preceding word
unless the commands you use can tolerate leading tabs and blanks. +

For example, a shell procedure could contain the lines

for i

do

grep $i /usr/lib/telnos

done

Here the grep command looks for the pattern specified by $ i in the file
/usr I lib/telnos. The file could contain the lines

fred mh0123

bert mh0789

An alternative to using an external file would be to include this data within the shell
procedure itself as a here document:

4-98 Chapter 4 Korn Shell Reference

for i

do

done

grep $i <<!

fred mh0123

bert mh0789

In this example, the shell takes the lines between « ! and ! as the standard input for
grep. The second ! represents the end-of-file. The choice of ! is arbitrary. Any string
can be used to open and dose a here document, provided that the string is quoted if
white space is present and the string does not appear in the text of the here document.

Here documents are often used to provide the text for commands to be given for
interactive processes, such as an editor, called in the middle of a script. For example,
suppose you have a script named change that changes a product name in every file in
a directory to a new name:

for i in *

do

echo $i

ed $i <<!

g/oldproduct/s//newproduct/g

w

done

(Note that ed commands will not tolerate leading tab characters and there is no
hyphen preceding the first word; therefore the code is not indented.) The metacharacter
* is expanded to match all filenames in the current directory, so the for loop
executes once for each file. For each file, the ed editor is invoked. The editor
commands are given in the here document between < < ! and ! . They direct the editor
to search globally for the string oldproduct and change it to the string
newproduct. After the substitution is made, the editor saves the new copy of the file
with the w command.

Input and output 4-99

You could make the change script more general by using parameter substitution:

for i in *

do

echo $i

ed $i <<!

g/$1/s//$2/g
w

done

Now the old and new product names (or any other strings) can be given as positional
parameters on the command line:

change stringl string2

You can prevent substitution of individual characters by using a backslash (\) to
quote the special character $, as in

for i in *

do

echo $i

ed $i <<!

l,\$s/$1/$2/g
w

done

This version of the script is equivalent to the first, except that the substitution is directed
to take place on the first to the last lines of the file (1, $)instead of "globally" (g) as in
the first example. This way of giving the command has the advantage that the editor will
print a question mark (?) if there are no occurrences of the string $1.

You can prevent substitution entirely by quoting the first instance of the terminating
string; for example,

ed $i <<\ !

Note that the backslash and single quotation marks have the same effect in this
context: all metacharacter expansion is suppressed. Double quotation marks, however,
do not prevent substitution.

4-100 Chapter 4 Korn Shell Reference

To use leading tabs, precede the first word with a hyphen, as follows:

for i in *

do

done

echo $i

ed $i <<-!

1,\$s/$1/$2/g

w

Using command substitution

Command substitution can occur in all contexts where parameter substitution occurs.
You can use command substitution in a shell script to avoid typing long lists of filenames.
For example,

ex 'grep -1 TRACE *.c'

runs the ex editor, supplying as arguments those files whose names end in . c and
that contain the string TRACE. Another example,

for i in 'ls -t'

do

command-list
done

sets the variable i to each consecutive filename in the current directory, with the most
recent filename first.

Command substitution is also used to generate strings. For example,

set 'date'; print $6 $2 $3, $4

first sets the positional parameters to the output of the date command and then prints
the output; for example,

1986 Nov 1, 23:59:59

Another example of command substitution is the basename command. This
command removes the suffix from a string so

basename main.c .c

Input and output 4-101

prints the string main. The following fragment illustrates its application in a command
substitution:

case $A in

*.c) B='basename $A .c

esac

Here B is set to the part of $A with the suffix . c stripped off.

Writing to the standard output

The print command is used to write to standard output (by default, the screen). The
form of the print command is

print [opt [optJ ... J [argument [argument] ...] [escapes]

The arguments are what is written. They are evaluated like the arguments of any
other command with parameter and command substitution, filename expansion, and
blank interpretation. Normal quoting conventions apply. Strings containing blanks must
be enclosed in double quotation marks. The arguments are written sequentially,
separated by blanks, and by default they are terminated with a newline. If there are no
arguments or the arguments are unset or null variables, a blank line is returned.

The escapes indicate how the arguments should be printed. The possible escapes are

\a bell

\ b backspace

\ c print line without newline

\f form feed

\n newline

\ r carriage return

\ t tab

\ v vertical tab

\ \ backslash

\ n the 8-bit character whose ASCII code is the 1-, 2-, or 3-digit octal number n, which
must start with a zero.

4-102 Chapter 4 Korn Shell Reference

The backslash in each escape must be quoted; that is, it must appear twice or be
enclosed in quotes. Escapes can occur anywhere among the arguments. For example, to
produce two lines of output with a single print command, you could give the
command

print "line one"\\n"line two"

You could also give the command

print "line one\nline two"

To print the value of a variable and keep the cursor on the same line, you could give
the command

print $j j \\c

The print command is also useful for inserting a few lines of data into a pipe.
The options to the print command indicate how the arguments should be

printed. These include

This option has the same effect as no options at all and allows the first
argument to begin with a dash or hyphen.

-n This option causes the output to be written without a final newline (same
effect as \c).

-p This option causes the arguments to be written onto the input pipe of the
background process connected to the parent shell via I&.

- r This option causes the escape sequences listed above to be ignored.

-unumber This option causes the output to be written on the file whose file descriptor
is given by number. Files and file descriptors are associated with the exec
command. The default number isl, the terminal.

Creating and reading a menu

The Korn shell select command is used to create a menu, read the response, and
then execute commands (see "select Statements"). The form of the select

command is

select choice in word-list
do

command-list
done

Input and output 4-103

The s e 1 e ct command first creates a menu by printing the list of words specified
on standard error output, by default the terminal. (This is to avoid writing a menu on the
output, which may be going to a file.) Each word in the list is preceded by its number.
The variable PS3 is then printed below the menu as a prompt.

When the user types a response followed by RETuRN, the line is read into the shell
variable REPLY and checked to see if it corresponds to one of the menu numbers given
with words. If REPLY begins with a number corresponding to a word, then the variable
whose name is given as choice is set to the word whose number is given. Otherwise
choice is set to null.

In any case, after the REPLY, command-list is executed. If the line typed for REPLY

is empty, the selection menu is redisplayed.
command-list continues to be executed until a break or end-of-file is encountered.

For example, the commands

PS3= 11 Give number of your choice 11

select activity in add delete print view stop

do

case $activity in

done

add) command-list;;
delete) command-list;;
print) command-list; ;
view) command-list; ;
stop) break;;

*) print 11 try again 11 ;;

esac

print the following on the screen:

1) add

2) delete

3) print

4) view

5) stop

Give number of your choice

4-104 Chapter 4 Korn Shell Reference

The cursor is left on the space after choice. When the user types the number of the
activity he or she wishes, the commands associated with that activity in the case
statement are executed.

For example, if the user types 2, the commands for delete are carried out. If the
user types 5, for stop, the select command terminates with break. If the user
types something not given on the menu, he or she is prompted to try again. As long as
the user continues to give some REPLY, then after each activity is completed, the PS3

prompt is redisplayed and he or she is given a new choice. The menu is not redisplayed.
If the user presses RETURN without specifying an activity, the menu is redisplayed

along with the prompt.
Note that the final space after the string given for PS3 is necessary to prevent the

user's response from following directly after the prompt.

+ Note If $activity is replaced with $REPLY in the example above, the user
may enter his selection as a string (add, delete, ...) instead of a number. •

Other features

Arithmetic evaluation

The built-in let command allows you to perform integer arithmetic. Evaluations are
performed using long arithmetic. The forrn of the 1 et command is

1 et expressions

For example, a simple let command could be used to increment a counter as follows:

let i=i+l

The expressions are evaluated. They can contain constants, variables, and one or
more of the following operators, listed in decreasing order of precedence:

Otherfeatures 4-105

1. _ unary minus

2. logical negation

3. * I % multiplication, division, remainder (modulus)

4. + - addition, subtraction

5. << >> bit shift left , right by value of second expression

6. <= >= < > ! = " I comparison

7.

8. &

9, A

! = equality, inequality

bitwise AND

bitwise exclusive OR

10. bitwise inclusive OR

11. && logical AND

12. I I logical OR

13. = *= I= %= += -= «= »= &= "= I= arithmeticassignment

You can change the order of precedence by enclosing subexpressions in parentheses.
These subexpressions are evaluated first. The order of evaluation within a precedence
group is from right to left for the = operator and from left to right for the others. The
operators that have special meaning to the shell (*, <, and >) must be quoted.

Variable names must be valid identifiers. (An identifier is a sequence of letters,
digits, or underscores, beginning with a letter or underscore.) When a variable is
encountered, its value is substituted and expression evaluation resumes. Up to nine
levels of recursion are permitted.

For an example of variable substitution,

for var in 1 2 3

do print $var

done

prints

1

2

3

4-106 Chapter 4 Korn Shell Reference

The secondary shell prompt precedes the lines beginning with do and done
when this example is entered interactively within the Korn shell.

Constants are of the form

base#nurnber

where base is a decimal number between 2 and 36 representing the arithmetic base, and
number is a number in that base. If base is omitted, then base 10 is used unless number
is preceded by o for base 8 or Ox for base 16.

Multiple evaluations can be made _with a single let command, as long as the
expressions to be evaluated are separated by spaces. For example,

let average=(top+bottorn)/2 "j=j*lO"

The second expression is quoted to remove the special meaning of the character *. In
addition, any individual expressions that contain spaces must be enclosed in quotes.

The let command does not need to include an assignment. A standard use for the
let command is for conditions in the if and while statements. The exit code of
the 1 et command is 0 if the value of the last expression is nonzero, and 1 otherwise.
Thus the comparison(<=, >=, < and >)and equal operators(== and ! +)can be
used as follows:

while let "tirne>20"

As long as the variable t irne has a value greater than 20, the 1 et command will
return an exit status of 0. When t irne is less than 20, the exit status will become 1. (For
a description of the while statement, see "while Loops.")

An internal integer representation of a named variable can be specified with the - i
option of the typeset special command. When this attribute is selected, the first
assignment to the parameter determines the arithmetic base to be used when parameter
substitution occurs.

Because many of the arithmetic operators require quoting, an alternative form of the
let command is provided. For any command that begins with a ((,all the characters
until a matching)) are treated as a quoted expression. More precisely,

((...))

is equivalent to

let "

Other features 4-107

File status and string comparison

The built-in test command evaluates an expression and returns a zero (true) exit
status if the expression is true and a nonzero (false) exit status if the expression is false or
if there is no argument. It is often used in the shell control-flow constructs.

The Korn shell implemented in A/UX 2.0.l and later versions includes the [[J J

conditional expression construct, replacing the test command. It is recommended
that this construct be used in place of the older and less reliable test command and its
alternate construct, [J . Note that the double brackets , [[and J J , are implemented
as reserved words, and therefore require surrounding white-space characters. The
[[l l construct takes all the same arguments as test.

For example, the command

[[-f file Jl

or, in its older form,

test -f file

returns zero exit status if file exists and nonzero exit status otherwise. Some of the more
frequently used test arguments are given below. See "Summary of Korn Shell Commands"
for a complete list of test arguments.

[[- L file l l True if file is a symbolic link.

[[filel -nt file2 J J

[[filel -otfile2 J J

[[filel -ef file2 J J

[[-ffile J l

[[-ofile J l

[[-Gflle]]

[[-sflle J l

[[-r file J J

[[-wfile J l

[[' -dfile l l

[[s l l

[[sl = s2 J l

4-108 Chapter4 Korn Shell Reference

True if filel is newer thanfile2.

True if filel is older thanfile2.

True if filel has the same device and i-node number as file2.

True if file is a regular file.

True if the owner of file is the effective user ID.

True if the group of file is the effective group ID.

True if file is a socket-special file.

True if file is readable.

True if file is writable.

True if file is a directory.

True ifs is not the null string.

True if sl and s2are identical.

[[sl ! = s2 J l True if sl and s2are not identical.

[[nl -eq n2 J l True if the integers nl and n2 are algebraically equal. Any of
thecomparisons -ne, -gt, -ge, -lt,and -le maybe
used in place of -eq.

In addition, there are the following operators:

the unary negation operator

-a binary AND operator

- o binary OR operator

The -a operator has higher precedence than -o.

All the operators and flags are separate arguments to the test command. Parentheses
can be used for grouping but must be escaped with the backslash.

A typical use of test commands in a shell script is the following, which prints the
message "foo is a directory" if foo is found to be one when the test is run.

if [[-d foo]]

then

print "foo is a directory"

fi

The null command (:)

The null command (:) does nothing and returns a zero exit status. The form of the
command is

: args

The null command is therefore equivalent to the command true. Because it does
nothing, this command can be used to introduce comments. It is generally better,
however, to use the number sign (#) as a comment indicator, as back quotes and
parentheses retain their meaning.

Other features 4-109

Error handling
The treatment of errors detected by the shell depends on the type of error and on
whether the shell is being used interactively.

Execution of a command may fail for any of the following reasons:

• Input/output redirection may fail, for example, if a file does not exist or cannot
be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus error or memory
fa ult signal.

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell will go on to execute the next command. An interactive
shell will return to read another command from the terminal. If a shell script is being
executed, the next command in the script will be read. Except for the last case, an error
message will be printed by the shell.

All other types of errors cause the shell to exit from a shell script. Such errors include

• Syntax errors, for example, if then done.

• A signal such as interrupt. The shell waits for the current command, if any, to finish
execution and then either exits or returns to the terminal.

• Failure of any of the built-in commands.

The shell flag - e causes the shell to terminate if an error is detected.

Fault handling and interrupts

The A/UX system uses signals to communicate between processes. Most signals indicate
an interrupt, termination, error condition, or other break in processing. See signal(3)

in A!UX Programmer's Reference for more information.

4-110 Chapter4 Korn Shell Reference

The signals that are likely to be of interest in fault handling are

• SIGHUP,hangup

• SIGINT, interrupt

• SIGQUIT, quit

• SIGALRM, alarm clock

• SIGTERM, software termination (srGKILL sent by another process)

The Korn shell also provides three signals:

• EXIT

• DEBUG

• ERR

When a process receives a signal, it can handle it in one of three ways:

• Signals can be ignored. Some signals will cause a core dump if they are not caught.

• Signals can be caught, in which case the process must decide what action to take
when the signal is received.

• Signals can be left to cause termination of the process without further action.

+ Note The built-in trap command is only suitable for simple signal handling (for
example, catching an interrnptfrom the keyboard in order to terminate the script).
Functions requiring complex signal handling should be implemented as a C program. See
A/UX Programming Languages and Tools, Volume 1 for more information about the C
language and associated library routines. •

The built-in trap command allows you to detect error signals and indicate what
action should be taken. The command has the form

trap [command J [signal J ...

The command is a command string to be read and executed when the shell receives
signal. The command is scanned once when the trap is set and once when the trap is
executed.The trap command uses the following (descending) signal priority:

Error handling 4-111

• DEBUG

• ERR

• Signals other than DEBUG, ERR, and EXIT-in order of their signal numbers. See
signal(3) for the A/UX signals and their numbers.

• EXIT or the number zero (O)

For DEBUG, command executes when each simple command has finished executing.
For ERR, command executes upon receipt of a non-zero return value from a command.
For EXIT, command executes upon exit from the shell unless the trap occurs inside a
function, in which case command executes when function execution completes.

Any attempt to set a trap on a signal that was ignored on entry to the current shell is
ineffective. An attempt to trap on SIGSEGV (memory fault, signal 11) produces an
error.

The trap command with signal but without command resets signal to its original
value. If command is the null string, signal is ignored by the shell and by the commands
it invokes. If signal is 0, commands are executed on normal termination from the shell
script. The trap command with no arguments prints a list of commands associated
with each signal number.

For example,

trap 'rm -f /tmp/junk; exit' SIGINT

sets a trap for the interrupt signal (SIGINT). If this signal is received, then the
commands enclosed in quotes will be executed:

rm -f /tmp/junk; exit

This removes the temporary file I tmp I junk and then exits from the script (exit is a
built-in command that terminates execution of a shell procedure). The exit is
required; otherwise after the trap has been taken, the shell will resume executing the
procedure at the place where it was interrupted.

4-112 Chapter 4 Korn Shell Reference

The use of trap is illustrated in the following script:

flag=

trap 'rm -f junk$$; exit' 1 2 3 15

for i

do

case $i in

-c) flag=N

*) if [[-f $i l l

then

ln $i junk$$; rm junk$$

elif [[$flag]]

then

>$i

else

print "file '$i' does not exist"

fi ;;

esac

done

The cleanup action is to remove the file junk$$. (This file is named after the
process ID of the script, which is kept in the system-maintained variable $; see
"Parameters and Variables Set by the System.") The trap command appears before the
creation of the temporary file; otherwise it would be possible for the process to die
without removing the file.

Error handling 4-113

A procedure may itself elect to ignore signals by specifying the null string as the
argument to trap. The fragment

trap ' ' 1 2 3 15

causes the system hangup, interrupt, quit, and software termination signals to be ignored
both by the procedure and by invoked commands. These settings could be listed with
the trap command without arguments, and reset by entering

trap 1 2 3 15

which resets the traps for the corresponding signals to their default values.
The following scan procedure is an example of using trap where there is no

exit in the trap command:

d='pwd'

for i in *
do

if [[-d $d/$i]]

then

fi

done

cd $d/$i

while print "$i:" && trap exit 2 && read x

do

done

trap : 2

eval $x

This procedure steps through each directory in the current directory, prompts with its
name, and then executes commands entered at the terminal until an end-of-file or an
interrupt is received. Interrupts are ignored while the requested commands are
executing, but cause termination when scan is waiting for input.

4-114 Chapter 4 Korn Shell Reference

Debugging a shell script

Several shell options can help with the debugging of shell scripts. These are

- e e causes the shell to exit immediately if any command exits with a nonzero exit
status. (This can be dangerous in scripts involving un ti 1 loops and other
constructs where nonzero exit status is desired.)

-n n prevents execution of subsequent commands. Commands will be evaluated but
not executed. (Note that typing set -n at a terminal will render the terminal
useless until an end-of-file is entered.)

-u u causes the shell to treat unset variables as an error condition.

-v v causes lines of the procedure to be printed as they are read. Use this to help
isolate syntax errors.

-x x provides an execution trace. Following parameter substitution, each command
is printed as it is executed.

These execution options can be turned on with the set command:

set -option

either inside the script or before its execution (except -n, which will freeze the terminal
until you send an eo/J. Options may be turned off by typing

set +option

Alternatively, they can be turned on with the ksh command if the script is executed
this way. The current setting of the shell flags is available as $-.

Summary of Korn shell commands
The Korn shell provides a number of its own commands, known as built-in commands.
Input/output redirection is permitted for these commands. For most purposes, the built­
in shell commands perform in the same manner as A/UX commands. This section
describes the Korn shell built-in commands.

Summary of Korn shell commands 4-115

File descriptor 1 is the default output location for all built-in commands. The
commands

cd

shift

are treated specially as follows:

• Parameter assignment lists preceding the command remain in effect when the
command completes.

• The commands are executed in a separate process when used within command
substitution.

The commands

break

continue

eval

exec

exit

export

fc

newgrp

readonly

return

typeset

are treated specially in the following ways:

• Parameter assignment lists preceding the command remain in effect when the
command completes.

• The commands are executed in a separate process when used within command
substitution.

• Errors in these commands cause the script that contains them to terminate.

The following pages contain a complete summary of Korn shell built-in commands.

4-116 Chapter 4 Korn Shell Reference

Null command (:)

: [ar.g .. .l
The command only expands parameters. A zero exit code is returned. This is equivalent
to true,sothat while : isequivalentto while true.Forexample,

while : 'echo hi > /dev/tty'
do

done

Note that expressions in back quotes or parentheses may have side effects when used as
arguments. See "while Loops."

Dot command (.)

. file [ar.g .. .]
Read and execute commands from.file and return. The commands are executed in the
current shell environment. The search path specified by PATH is used to find the
directory containing file. If any arguments are given, they become the positional
parameters. Note that this differs from sh(l). Otherwise, the positional parameters are
unchanged. See "Executing Shell Scripts."

alias command
alias [-tx][namci=value]] ...
With no arguments, print the list of aliases in the form name=value on standard output.
An alias is defined for each name whose value is given. A trailing space in value causes
the next word to be checked for alias substitution.

The - t flag is used to set and list tracked aliases. The value of a tracked alias is the
full pathname corresponding to the given name. The value becomes undefined when the
value of PATH is reset, but the aliases remained tracked. Without the -t flag, for each
name in the argument list for which no value is given, the name and value of the alias is
printed.

Summary of Korn shell commands 4-117

The -x flag is used to set or print exported aliases. An exported alias is defined
across subshell environments. The alias command returns true unless a name is
given for which no alias has been defined. See "Defining an Alias."

bg command

bg [%job]

If job is specified, put it into the background; otherwise put the current job in the
background. See 'Job Control."

break [n]

Exitfromtheenclosing for, while, until,or select loop,ifany.Ifnis
specified, break n levels. See "for Loops."

cd command

cd [arg]
cd old new
This command can be in either of two forms. In the first form, it changes the current
directory to arg. If arg is - - , the directory is changed to the previous directory. The shell
parameter HOME is the default arg. The parameter PWD is set to the current directory.
The shell parameter CDPATH defines the search path for the directory containing arg.
Alternative directory names are separated by a colon (:). The default path is <nul 1 >

(specifying the current directory). Note that the current directory is specified by a null
pathname, which can appear immediately after the equal sign or between the colon
delimiters anywhere else in the path list. If arg begins with /, the search path is not
used. Otherwise each directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old in the current
directory name, PWD, and tries to change to this new directory.

See "Shortcuts in Working With Directories."

4-118 Chapter4 Korn Shell Reference

continue command

continue [n]

Resume the next iteration of the enclosing for, while, until, or select loop. If
n is specified, resume at the nth enclosing loop. See "for Loops."

echo command

echo [-n][mg ..]

The built-in echo command writes its arguments (separated by blanks and terminated
by a RETuRN) on the standard output (see also pr int). If the -n flag is used, no
newline is added to the output. This command is useful for producing diagnostics in shell
programs and for writing constant data on pipes. To send diagnostics to the standard
error file, do

echo ... 1>&2

eval command

eval [arg. . .]

Read arguments as input to the shell and execute the resulting commands. See
"Command Evaluation."

exec command

exec [mg ...]

If arg is given, execute the command specified by the arguments in place of this shell
without creating a new process. I/0 arguments may appear and affect the current
process. If no arguments are given, the effect of this command is to modify file
descriptors as prescribed by the I/0 redirection list. In this case, any file descriptor
numbers greater than 2 that are opened with this mechanism are closed when another
program is invoked. See "Executing Shell Scripts."

Summary of Korn shell commands 4-119

exit command
exit [n]

Cause the shell to exit with the exit status specified by n. If n is omitted, the exit status is
that of the last command executed. An end-of-file will also cause the shell to exit, unless
the shell has the ignoreeof option turned on (see set). See "Fault Handling and
Interrupts."

export command
export [name ...]
Mark names for automatic export to the environment of subsequently executed
commands. See "The Environment."

fc command
fc [-e enamel [-nlr] [fir.s-rj [lasrj

fc -e -[old=new] [command]
In the first form, a range of commands from fir.s-t to last is selected from the last
HISTS I ZE commands that were typed at the terminal. The arguments fir.s-t and last may
be specified as a number or as a string. A string is used to locate the most recent
command starting with the given string. A negative number is used as an offset to the
current command number. If the flag -1 is selected, the commands are listed on
standard output. Otherwise, the editor program ename is invoked on a file containing
these keyboard commands. If ename is not supplied, the value of the parameter
FCEDIT (default /bin/ ed) is used as the editor. When editing is complete, the edited
commands are executed. If last is not specified, it will be set to fir.s-t. If fir.s-t is not
specified, the default is the preceding command for editing and -16 for listing. The flag r

reverses the order of the commands, and the flag -n suppresses command numbers
when listing.

In the second form, the command is reexecuted after the substitution old=new is
performed. See "Editing and Reusing Commands."

4-120 Chapter 4 Korn Shell Reference

fg command
fg [%jobJ
If job is specified, bring it to the foreground; otherwise bring the current job into the
foreground. See "]ob Control."

getopts command

get opts options var[arg_lisd ...
This command processes options and their associated arguments.

hash command

hash command
This causes the shell to remember the search path of the command named. See "Writing
Efficient Shell Scripts."

jobs command

jobs [-1]

List the active jobs. Given the -1 option, list process IDs in addition to the normal
information. See 'Job Control."

Summary of Korn shell commands 4-121

kill command

ki 11 [- sigl process ...
Send either the terminate signal or a specified signal to the specified jobs or processes.
Signals are given either by number or by name (as in signal(3) in A!UX Programmer's
Reference stripped of the prefix SIG). The signal numbers and names can be listed
by typing

kill -1

If the signal being sent is SIGTERM or SIGHUP, the job or process will be sent a
continue signal if it is stopped. process can be either a process ID or a job number. See
"Canceling Background Commands" and "Job Control."

let command

let arg ...
Each arg is an arithmetic expression to be evaluated. All calculations are done as long
integers, and no check for overflow is performed. Expressions consist of constants,
named parameters, and operators. The following set of operators, listed in order of
precedence, has been implemented:

* I %

+ -

<= >= < >

!=

unary minus

logical negation

multiplication, division, remainder (modulus)

addition, subtraction

comparison

equality, inequality

arithmetic assignment

Subexpressions in parentheses, (),are evaluated first and can be used to override the
above precedence rules. The evaluation within a precedence group is from right to left
for the = operator and from left to right for the others.

A parameter name must be a valid identifier. When a parameter is encountered, the
value associated with the parameter name is substituted and expression evaluation
resumes. Up to nine levels of recursion are permitted.

4-122 Chapter 4 Korn Shell Reference

The return code is 0 if the value of the last expression is nonzero, and 1 otherwise.
See "Arithmetic Evaluation."

newgrp command

newgrp [att? .. .]
Equivalent to

exec newgrp arg. ..

See newgrp(l) in A/UX Command Reference.

print command

print [-Rnprsu[n]] [att? . ..l
The shell output mechanism. With no flags or with flag - , the arguments are printed on
standard output as described by echo. In raw mode, -R or -r, the escape
conventions of echo are ignored. The - R option will print all subsequent arguments
and options other than -n. The -p option causes the arguments to be written onto the
pipe of the process spawned with I & instead of standard output. The - s option
causes the arguments to be written onto the history file instead of standard output. The
-u flag can be used to specify a one-digit file descriptor unit number non which the
output will be placed. The default is 1. If the flag -n is used, no newline is added to the
output.

pwd command

pwd

Print the current working directory. This is equivalent to

print -r -$PWD

Summary of Korn shell commands 4-123

read command

read [-prsu[n]] [name? prompt] [name .. .]
The shell input mechanism. One line is read and broken up into words using the
characters in IFS as separators.

In raw mode, -r, a \ at the end of a line does not signify line continuation. The
first word is assigned to the first name, the second word to the second name, and so on,
with leftover words assigned to the last name.

The -p option causes the input line to be taken from the input pipe of a process
spawned by the shell using I &. If the - s flag is present, the input will be saved as a
command in the history file. The flag -u can be used to specify a one-digit file descrip­
tor unit to read from. The file descriptor can be opened with the exec command.

The default value of n is 0. If name is omitted, REPLY is used as the default name.
The return code is 0 unless an end-of-file is encountered. An end-of-file with the -p

option causes cleanup for this process so that another can be spawned. If the first
argument contains a ? , the remainder of this word is used as prompt when the shell is
interactive. If the given file descriptor is open for writing and is a terminal device, prompt
is placed on this unit. Otherwise prompt is issued on file descriptor 2. The return code is
0 unless an end-of-file is encountered. See "Reading Input."

readonly command

readonly [name ...]
Mark the given names read-only. These names cannot be changed by subsequent
assignment. See "Setting Constants."

return command

return [n]

Cause a shell function to return to the invoking script with the return status specified by n. If
n is omitted, the return status is that of the last command executed. If return is invoked
while not in a function or a script, it is the same as exit. See "Defining Functions."

4-124 Chapter 4 Korn Shell Reference

set command
set [-aefhkrnnopstuvx)[-o opt ...][ar;g .. .]

-a Automatically export all subsequent parameters that are defined.

- e If the shell is noninteractive and if a command fails, execute the ERR trap, if set,
and exit immediately. This mode is disabled while reading profiles.

- f Disable filename generation.

- h Each command whose name is an identifier becomes a tracked alias when first
encountered.

- k Place all parameter assignment arguments in the environment for a command, not
just those that precede the command name.

-m Run background jobs in a separate process group and print a line upon
completion. The exit status of background jobs is reported in a completion
message. On systems with job control, this flag is turned on automatically for
interactive shells.

-n Read commands but do not execute them. Ignored for interactive shells.

-o The following arguments can be one of the following option names:

all export

errexit

bgnice

ignoreeof

keyword

markdirs

monitor

noexec

noclobber

noglob

Same as -a.

Same as -e.

All background jobs are run at a lower priority. This option is on
by default.

The shell will not exit on end-of-file. The exit command
must be used.

Same as -k.

All directory names resulting from filename generation have a
trailing I appended.

Same as -m.

Same as -n.

Prevents the shell from writing over an existing file as a result of
the redirection operator >.The construct >I overrides
noclobber.

Same as -f.

Summary of Korn shell commands 4-125

no log

nouns et

Prevents the shell from putting function definitions into the
history file.

Same as -u.

privileged Same as -p.

verbose

trackall

vi

vi raw

xtrace

Same as -v.

Same as -h.

Puts you in insert mode of a vi-style in-line editor until you
press ESCAPE, which puts you in move mode. A RETURN sends the
line.

Each character is processed as it is typed in vi mode.

Same as -x.

If no option name is supplied, the current option settings are printed.

-p Reset the PATH variable to the default value, disable processing of the
$HOME/ .profile file, and use the file /etc/suid__profile instead of the
ENV file. This option is automatically enabled whenever the effective user ID
(group ID) is not equal to the real user ID (group ID).

- s Sort the positional parameters.

- t Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Turn off -x and -v flags and stop examining arguments for flags.

Do not change any of the flags. This is useful in setting $1 to a value beginning
with - . If no arguments follow this flag, the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These flags can also be
used upon invocation of the shell. The current set of flags may be found in $-. The
remaining arguments are positional parameters and are assigned, in order,

$1 $2 ...

If no arguments are given, the values of all names are printed on the standard output.
See "The Environment."

4-126 Chapter 4 Korn Shell Reference

shift command
shift [n]

Rename the positional parameters from

Sn +1 ...

to

$1 ...

The default n is 1. The parameter n can be any arithmetic expression that evaluates to
a non-negative number less than or equal to $ #. See "Changing Parameter Positions."

test command
test [exprl
[[expr J l

Evaluate conditional expression expr. See "File Status and String Comparison." The
arithmetic comparison operators are not restricted to integers. They allow any arithmetic
expression. The test command has been superseded by the [[J l construct in
A/UX 2.0.1 and later versions. This new construct differs from the old form in that it

• does not perform pathname expansion on expr
• does not perform field separator processing (word splitting)

• uses the logical operators && and I I in place of the -a and -o options,
respectively

• allows the use of a pattern as the right side of an equality (=) or inequality (! =) test

(Note that each set of brackets in the construct is implemented as a reserved word and
thus requires white space separators.) Four additional primitive expressions are allowed:

- L file True if file is a symbolic link

filel -nt file2 True if filel is newer thanfile2

filel -ot file2 True if filelis olderthanfile2

filel -ef file2 True if filel has the same device and i-node number asfile2

Note that the left bracket, [,is a synonym for test, but must be matched by a right
bracket, J. Like test, the [J construct has been superseded by the [[J J

construct. See "File Status and String Comparison."

Summary of Korn shell commands 4-127

times

Print the accumulated user and system times for the shell and for processes run from the
shell. See "Writing Efficient Shell Scripts."

trap command

trap [ar.g] [sig] ...
arg is a command to be read and executed when the shell receives the signal(s) sig.
(Note that arg is scanned once when the trap is set and once when the trap is taken.)
Each sig can be given as a number or as the name of the signal. trap commands are
executed in order by signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective.

If arg is omitted or is - , then all sigs are reset to their original values. If arg is the null
string, this signal is ignored by the shell and by the commands it invokes.

If sig is ERR, arg will be executed whenever a command has a nonzero exit code.
This trap is not inherited by functions. If sig is 0 or EXIT and the trap statement is
executed inside the body of a function, the command arg is executed after the function
completes. If sig is 0 or EXIT for a trap set outside any function, the command arg is
executed on exit from the shell. The trap command with no arguments prints a list of
commands associated with each signal number. See "Fault Handling and Interrupts."

typeset command

typeset [- HLRZfilrtux[n] [namd=value]] ...]
When invoked inside a function, typeset creates a new instance of the parameter
name. The parameter value and type are restored when the function completes. The
following attributes may be specified:

- H Provide NUX-to-hostname file mapping on non-NUX machines.

- L Left-justify and remove leading blanks from value. If n is nonzero, it defines the
width of the field; otherwise the width is determined by the width of the value of
the first assignment. When the parameter is assigned value, it is filled on the right
with blanks or truncated if necessary to fit into the field. Leading zeros are
removed if the - z flag is also set. The - R and - z flags are turned off.

4-128 Chapter 4 Korn Shell Reference

-R Right-justify and fill with leading blanks. If n is nonzero, it defines the width of the
field; otherwise the width is determined by the width of the value of the first
assignment. The field is left filled with blanks or truncated from the end if the
parameter is reassigned. The - L flag is turned off.

- z Right-justify and fill with leading zeros if the first nonblank character is a digit and
the - L flag has not been set. Used in conjunction with the - L option, the field
is left justified and any leading zeros are removed. If n is nonzero, it defines the
width of the field; otherwise the width is determined by the width of the value of
the first assignment.

- f name refers to function name rather than parameter name. No assignments can be
made, and the only other valid flags are - t, which turns on execution tracing for
this function, and -x, which allows the function to remain in effect across shell
procedures executed in the same process environment.

- i Make the parameter an integer. This makes arithmetic faster. If n is nonzero, it
defines the output arithmetic base; otherwise the first assignment determines the
output base.

-1 Convert all uppercase characters to lowercase. The uppercase flag, u, is turned
off.

-r Mark the given names read-only. These names cannot be changed by subsequent
assignment.

-t Tag the named parameters. Tags are user-definable and have no special meaning
to the shell.

-u Convert all lowercase characters to uppercase. The lowercase flag, 1, is turned
off.

-x Mark the given names for automatic export to the environment of subsequently
executed commands.

Using + rather than - causes these flags to be turned off. If no name arguments
are given but flags are specified, the typeset command prints a list of names (and
optionally values) of the parameters that have these flags set. (Using + rather than -
keeps the values to be printed.) If no names and flags are given, the names and attributes
of all parameters are printed. See "Assigning Values and Types to Variables."

Summary of Korn shell commands 4-129

ulirnit command

ulimit [-f] [n]

-f Impose a size limit of n 512-byte blocks on files written by child processes (files of
any size may be read). If no option is given, - f is assumed. If n is not given, the
current limit is printed.

See "Writing Efficient Shell Scripts."

urnask command
umask [nnn]
Set the user file-creation mask nnn. (See umask(2) in A/UX Programmer's Reference). If
nnn is omitted, the current value of the mask is printed.

unalias command

unalias name ...
Remove the specified names from the alias list. See "Listing and Removing Aliases."

unset command

unset [- f] name ...
The parameters given by the names are unassigned; that is, their values and attributes are
erased. Read-only variables cannot be unset. If the flag - f is set, the names refer to
function names. See "Removing Shell Variables."

4-130 Chapter 4 Korn Shell Reference

wait command

wait Uob]
Wait for the child process identified by job and report its termination status. The
argument job must be either a job name (specified with the % ? string construct) or a job
number. If job is not given, all currently active child processes are waited for. The return
code from this command is that of the process waited for. (See wai t(2) in A!UX
Programmer's Reference.)

whence command

whence [-v] name ...
For each name, indicate how it would be interpreted if used as a command name. The
flag -v produces a more verbose report. See "Learning About Built-in Commands."

Summary of Korn shell commands 4-131

5 C Shell Reference

The C shell prompt I 5-3

Types of commands I 5-3

The parts of a command I 5-4

Interactive use I 5-5

Listing and reusing commands I 5-9

Using shell metacharacters I 5-18

Working with more than one shell I 5-27

The environment I 5-28

The . login file I 5-38

The . cshrc file I 5-40

Aliases for commonly used commands I 5-42

Shell execution options I 5-45

Job control I 5-46

Using shell layering I 5-50

Overview of shell programming I 5-50

Command evaluation I 5-54

Arguments and shell variables I 5-57

Control-flow constructs I 5-64

Input and output I 5-67

Other features I 5-72

Error handling I 5-75

Summary of C shell commands I 5-77

The C shell, c sh, incorporates programming constructs like those of the C

programming language. In addition, csh has advanced command-editing and

command-history capabilities.

The C shell is not compatible with the Korn shell or the Bourne shell, but it

accommodates Bourne shell scripts by launching the Bourne shell as a subshell to

process them.

5-2 Chapter 5 C Shell Reference

The C shell prompt
The C shell is a program that interprets commands and arranges for their execution. The
C shell displays a character called the prompt (or primary shell prompt) whenever it
is ready to begin reading a new command from the terminal. By default, the C shell
prompt character is set to the percent sign(%).

The secondary shell prompt

If you press the RETURN key when the shell expects further input, you will see the
secondary shell prompt. By default, this prompt character is set to the question mark
(?).Like the primary shell prompt, this can be redefined.

When you enter a multiline construct (such as a foreach loop) at the shell
prompt, the question mark appears as the first character of each line until you give the
final delimiter. When you see a ? as a prompt (either because you are using a multiline
construct or because of an error), an interrupt will stop the process and issue the
primary shell prompt(%) for another command. See "Canceling Commands" for
information about the interrupt on your system.

Changing the prompt character

You may change the primary shell prompt character by redefining the variable prompt

to any other character or string of characters. See "C Shell Variables."

Types of commands

The shell works with three types of commands:

• Built-in commands Built-in commands are written into the shell itself and are
generally used for writing shell programs. Each A/UX shell has a slightly different set
of built-in commands. The built-in C shell commands are listed under "Summary of C
Shell Commands."

Types of commands 5-3

• A/UX commands Every shell can also invoke all A/UX commands (see "Command
Summary by Function" in A/UX Command Reference for a complete list of these).
A/UX commands are executable programs stored in system directories such as
/bin and /usr /bin. When you enter an A/UX command (for example, ls), the
shell searches all directories specified by your PATH variable (see "Locating
Commands") to locate the program and invoke it.

• User-defined commands You can combine built-in commands and A/UX commands
to define your own shell programs (see "Overview of Shell Programming"). Shell
programs can be typed in at the shell prompt or entered in a file. A shell program
contained in a file is generally called a shell script. Once a shell script is defined, it
can be used like any other command or program, with certain limitations.

You can also create your own commands using a high-level language such as C. See
A/UX Programming Languages and Tools, Volume 1 for more information.

The parts of a command
Whenever you see a shell prompt, you can run a command by entering the command
name. Most A/UX commands have one or more flag options, which follow the command
name to modify the way the command operates. Flag options are usually a hyphen fol­
lowed by one or more characters; for example, -1 is a flag option to the 1 s command:

ls -1

In this case, the -1 is a flag option that modifies the way the 1 s command operates,
producing a "long" listing that contains more information than the standard 1 s output.
For the flag options that apply to a particular A/UX command, see the manual page entry
for that command in A/UX Command Reference. For options to the C shell built-in
commands, see "Summary of C Shell Commands."

Many A/UX commands also expect one or more arguments, which pass information
to the command. An argument may be any parameter expected by the command; for
example, a directory name may be an argument to the ls command:

ls /bin

In this case, the directory name /bin is an argument that specifies which directory the
1 s command should list.

5-4 Chapter 5 C Shell Reference

The entire command specification, including any options and arguments, is called
the command line. A command line is terminated by RETURN. For example, in the
command line

ls -1 /bin

ls is the command name, -1 is a flag option (specifying a "long" listing), and /bin

is an argument (specifying which directory to list).
To give a command longer than one line, you must precede the final RETURN with a

backslash(\). This prevents the shell from interpreting RETURN as the end of a command.
You can continue this for several lines; the shell will wait for a plain RETURN (not
preceded by a backslash) to execute the multiline command.

Commands can also be combined; see "Command Grouping."

Interactive use

Command termination character

When you are entering commands to the shell interactively, the shell will not begin
executing the command until you press the RETURN key. Therefore, if you mistype
something, you can backspace and correct the mistake before pressing RETURN. When
the shell recognizes the RETURN, it executes the command line; after the process is
finished, a new prompt is printed on the screen. The shell is again ready to accept
further commands.

Impossible commands

If you give an impossible command (a command or command line that doesn't exist or
uses improper syntax), the shell prints an error message and returns the prompt for
another command.

Interactive use 5-5

Background commands

You can direct the shell to execute commands in the "background" while you continue
to work at the shell prompt (the "foreground"). To run background processes, end the
command line with an ampersand(&) before the final RETURN. For example,

cat filelfile2 > higfile &

[1] 1234

The number shown in brackets below the command line is the job number; the other
number is the process ID (PID) associated with the cat command as long as it is
executing. After the process ID is displayed, the shell returns the prompt so you can use
the terminal immediately for other work.

+ Note To save the output from a job you are running in the background, you must
redirect it to a file or pipe it to a printer. If you do not redirect the command output, it
will appear on your screen and will not be saved. In addition, remember that the output
of a background command is not complete until the command has finished. The
presence of a prompt does not mean that the output is ready for use. +

To suspend processes that require input from the keyboard (such as an editor or a
remote login across a network), you can simply send a suspend to temporarily stop the
job. See "Job Control" for more information.

Checking command status

To check on the status of a background command, use

jobs

This command shows the process status of all your commands; they are identified by
job number, process ID, and name. See "Job Control" for more details.

5-6 Chapter 5 C Shell Reference

Logging out

If you are logged out of the system while running a foreground job (for example, if a
telephone connection is lost or the get ty process on your terminal is disconnected),
the shell terminates your foreground processes. You can prevent this by using the
nohup command (which stands for "no hang up") as follows:

nohup command

This also applies if you stop a foreground job using a suspend signal and then log
out. If you ran the foreground job with nohup, the job will remain (stopped) after you
log out.

If you are running a job in the background, you do not need to use nohup; your
background process will continue to run after you log out (see "Background
Commands"). See nohup(l) in A/UX Command Reference for details.

Canceling commands

You can use several special control sequences when canceling commands. The A/UX
standard distribution defines these sequences as follows:

Name A/UX standard key sequence

interrupt CONTROL-C

quit CONTROL-SHiff-1

erase DELETE

kill CONTROL-U

eof CONTROL-D

swtch CONTROL- '

susp CONTROL-Z

However, you may reassign any of these sequences using the st ty command. See
stty(l) in A/UX Command Reference for more information.

Interactive use 5-7

Before you press RETURN

If you type part of a command and then decide you do not want to execute it, you can
send an interrupt or kill to the system at any point in the command line.

While a command is running

There are several ways to stop a command that is executing:

• Send the interrupt signal. For example, the output of a command such as

cat /etc/termcap

will scroll by on your terminal. If you want to terminate the process, you can send
the interrupt signal. Because the cat command does not take any precautions to
avoid or otherwise handle this signal, the interrupt will cause it to terminate.

• Use CoNTROL-S to suspend scrolling output. The A/UX control-flow keys are CONTROL­
S (suspend scrolling output) and CoNTROL-Q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a screenful again.
CoNTROL-S and CONTROL-Q cannot be redefined with st ty; however, you can use
st ty to enable and disable control flow.

• Send an end-of-file character. Many programs (including the shell) terminate when
they get an eof from their standard input. You could accidentally terminate the shell
(which would log you off the system) if you entered eof at a prompt or, in
terminating some other program, if you sent an eof one time too many. See "C Shell
Variables" for information about the ignoreeof option; when this option is set,
the shell will not terminate when it receives an eof

• Wait for the end-of file condition from a file. If a command receives its standard
input from a file, then it will terminate normally when it reaches the end of that file. If
you give the command

mail ellen < note

(where note is an existing file), the mail program will terminate when it detects
the end-of-file condition from the file.

5-8 Chapter 5 C Shell Reference

• Send the quit signal. If you run programs that are not fully debugged, it may be
necessary to stop them abruptly. You can stop programs that hang or repeat
inappropriately by using quit. This will usually produce a message such as

Quit (Core dumped)

indicating that a file named core has been created containing information about
the state of the running program when it terminated because of the quit signal. You
can examine this file yourself or forward information to the person who maintains
the program, telling him or her where the core file is.

• Send a suspend signal. You can send a suspend signal to temporarily stop
commands that are executing. You can then resume the job or cause it to run in the
background. See ''Job Control" for more information.

Canceling background commands

If you have a job running in the background and decide you do not want the command
to finish executing, use the kill command.

When a job is running in the background, it ignores interrupt and break signals. To
terminate a background command, use

kill process-ID

The ki 11 command takes as an argument the process ID or the job number preceded
by a percent sign(%). See "Job Control" and "Summary of C Shell Commands" for
information on the ki 11 command.

Listing and reusing commands
The C shell retains your most recent commands in accordance with the setting of the
history variable. In the /etc/cshrc file in the NUX standard distribution, this
variable is set to 200. You can change the number of commands the shell remembers by
setting the history variable to another number. See "C Shell Variables" for more
information.

Listing and reusing commands 5-9

The exclamation point (!) invokes the C shell history substitution mechanism. The
may be preceded by the \ escape character to prevent it from being interpreted

with this special meaning.
History substitution allows you to reexecute previous commands or reuse words

from a previous command as portions of a new command. History substitutions begin
with the ! character and may begin anywhere in the command line. (Note, however, that
you cannot nest history substitutions by using more than one ! character on a
command line.)

History substitutions also occur when an input line begins with the caret ("'). See
"Changing Text in the Most Recent Command Line."

Listing previous commands

To see the list of your previous commands, type

history [nJ

This prints a numbered list of commands, from your 50th (or nth) previous command to
your most recent. For example,

101 mail

102 Vl note

103 mail ell en < note

104 date

105 ls

106 cd revisions/additions

107 ls

108 vi prog.c

109 WC prog.c

110 cd /usr/source/information

111 history

5-10 Chapter 5 C Shell Reference

Reusing a previous command
The exclamation point (!) is used to reexecute previous commands. It may be used in
the following notations:

' ' Repeat the most recent command.

! n Repeat the nth command, where n is the (history) number of a previous
command.

! s Repeat the most recent command beginning with the string s. The string sis one
or more characters. For example, you could repeat the cd command, number
106, by typing
!cd

! - n Repeat the command that occurred n commands preceding this command line.

! ? s? Repeat the most recent command that contains the string s anywhere in the
command line.

To reexecute your most recent command, use the command

! !

This will echo the previous command line on the screen and reexecute it.
The ! character can also be followed by a command number or a string that

identifies the beginning of a previous command line. For example, the command

!108

echoes and reexecutes command number 108 from the list above.
You may also reuse a command by specifying a string that identifies it; for example,

in the history list above, the command

!v

echoes and invokes

vi prog.c

Listing and reusing commands 5-11

Changing text in the most recent command line

You may also edit previous command lines. In the simplest case, in which you modify
the text of the most recent command, use the shorthand notation

"old"' new"'

This is useful for correcting typing errors in a line command (where old identifies the
typing error and new is the corrected spelling) or for modifying the most recent
command to run with a different parameter (such as a filename).

+ Note The caret ("') shorthand only works on the most recent command. It must be
used on the command line that immediately follows the command you wish to modify.
In addition, this shorthand only works on one instance of a string; it will not be
propagated to every instance of the replaced string in the command line. Including a few
extra characters to obtain a unique string guarantees that the substitution occurs at the
place you intended. •

For example, if you enter the erroneous command line

cs /usr/bin/new.file /usr/personal/new.file

the shell prints the message

Command not found.

At the next shell prompt, you can change your command line as follows:

"'cs"'cp

This substitutes the correct command (cp) for the misspelled version and executes the
correct command line.

Editing and reexecuting previous commands

When you want to reexecute a previous command with a slightly different command
line, you may invoke and edit a command line using the following notations:

5-12 Chapter 5 C Shell Reference

! { identifier} x Repeat the most recent command specified by identifierwith x
appended to it directly without intervening space. The identifier may
be the history number of a command or the string beginning a
command. x may be a character or a string. For example,

more filel

may be reinvoked on filelA with the notation

! {m}A

This invokes the command

more filelA

The braces may be omitted if the string to be appended (x) begins
with a space or if the resulting string unambiguously picks out a
command from the history list. For example, if the current history list
is as follows:

261 mail

262 vi note

263 mail fred < note

264 rm note

265 ls

266 cd manual/texts

267 ls -1

268 vi chap.1

269 make chap.1

270 more chap.1

271 history

Then the history substitution

!ma

will reinvoke command number 269, not the command

more chap.la

as you might have expected. To invoke this latter command, you
could have given

! {m}a

Listing and reusing commands 5-13

!n:s/x/y/
!S:s/X!y/

Repeat the nth command (or the command beginning with strings)
and substitute y for x. x and y may be characters or strings. This can be
done on any previous command. For example,

cat filel I lp

may be edited using the notation

!cat:s/filel/file2/

This invokes the command

cat file2 I lp

! n: gs/ x1y1 Repeat the nth command and replace every instance of xwithy. xand
y may be characters or strings. When xis a string, this is global
substitution. For example,

nroff filel > outfilel &

may be edited using the notation

!! :gs/filel/file2/

This invokes the command

nroff file2 > outfile2 &

When xis a character, only the first instance of x per word will be
replaced by y. For example, if the command

echo 111 2211

is modified by the notation

! ! :gs/1/3/

The following command invoked:

echo 311 2231

When you use the ! notation, a character or characters following a colon (as in : s
or : gs) is called a modifier. They are used to modify previous command lines. See
"Using Modifiers With Your Command History." Another use of modifiers is described in
"Variable Substitution."

5-14 Chapter 5 C Shell Reference

Reusing parts of previous command lines
The following history notations use special notations or numeric modifiers to refer to
parts of a command line:

! $ Refers to the last word on the preceding command line. For example, after the
command
mv filel /usr/bin

you may use the notation
cd !$

to invoke the command
cd /usr/bin

! n: x Refers to the .xth argument of the nth command, where n is the (history) number
of a previous command. For example, if the following command is number 5 in
your history listing:
nroff filel > outfile.1&

the first argument of the command line (the filename) may be referred to using
the notation
WC -1 !5:1

(where 5 is the history number). This invokes the command
WC -1 filel

because filel is the first argument to the nroff command referenced by
the number 5. (The command name nroff is argument zero here.)

! W' Refers to the first argument of the nth command, where n is the history number of
a previous command. This is the equivalent of
!n:l

Using modifiers with your command history

The C shell provides modifiers that can be used to alter previous command lines. A
modifier is a colon followed by one or more characters. The sections above show how to
use modifiers to substitute text or refer to parts of a previous command line. This section
describes modifiers that perform a variety of other functions, including changing
arguments and affecting how the shell evaluates your new command.

Listing and reusing commands 5-15

The following are possible modifiers:

: h Remove the last pathname component, leaving the head. See "Variable
Substitution" for examples of how to use this modifier.

: t Remove all leading pathname components, leaving the tail. See "Variable
Substitution" for examples of how to use it.

: r Remove a filename extension (. xxx), leaving the root name. See "Variable
Substitution" for examples of how to use this modifier.

: e Remove all but the filename extension (. xxx). This modifier does not work
in conjunction with the history command; see "Variable Substitution" for
examples of how to use it.

: s I XI y I Substitute the stringy for x. See "Editing and Reexecuting Previous
Commands."

: & Repeat the most recent substitution.

: g This modifier must be followed by one of the substitution modifiers (s or
&). It indicates that the substitution will be applied globally. See "Editing and
Reexecuting Previous Commands."

: p Print the command but do not execute it. For example,
!v:p

prints your most recent vi command but does not reexecute it. You can
use the : p modifier to determine the effect of editing a command; for
example, to change a previous vi command to an 1 s command and
print the command instead of executing it:
!vi:s/vi/ls/:p

The shell prints
ls prog.c

This becomes your "most recent command" and you may execute it using
the notation

! !

: q Quote substituted words and prevent further substitution. See "Variable
Substitution" for examples of how to use this modifier.

: x Quote substituted words but allow blank interpretation. See "Variable
Substitution" for examples of how to use this modifier.

5-16 Chapter 5 C Shell Reference

These modifiers can be combined with each other, as with the :gs and :g& global
modifiers, or with the : p no-execute modifier. The : h, : t, : r, and : e modifiers
may also be used in combination with one another. For instance, if command number 15
in the history list is

cat /etc/termcap

Then

cd !l5:l:h

cat !15:1:t

ls !15:l:h:t

expands to

expands to

expands to

Other uses for command history

cd /etc

cat termcap

ls etc

You can use the history mechanism (!) to set your C shell prompt so it will increment
sequentially at each command, beginning at one. See the explanation of the prompt

variable under "C Shell Variables" for details.
You can also use the command

repeat n command

to repeat command n times. The command must be a simple command, not a pipeline, a
command list, or a parenthesized command list (see "Using Shell Metacharacters" for an
explanation of these terms). I/0 redirection occurs once, even if n is 0. For example, to
execute the date command three times, you can use the command

repeat 3 date

If you use a large number by mistake and the command starts repeating many times,
you can send an interrupt to stop the process.

Listing and reusing commands 5-17

Using shell metacharacters
Shell metacharacters are characters that perform special functions in the shell. This
section discusses how to use these metacharacters. The following are the C shell
metacharacters:

An exclamation mark invokes the history mechanism. See "Listing and
Reusing Commands."

A tilde is used as the first part of a directory name. It is replaced with either your
home directory (if it is used alone or followed by a pathname below your home
directory such as - /project /phasel) or the home directory of another user
(if it is followed by the login name of that user, such as -lori). See "Specifying
Home Directories" for details.

& An ampersand at the end of a command line causes the shell to run the
command(s) in the background and print the process ID(s).

? A question mark used as part of a file or directory name causes the shell to match
any single character (except a leading period).

* An asterisk used as part of a file or directory name causes the shell to match zero
or more characters (except a leading period).

[J Brackets around a sequence of characters (except the period) cause the shell to
match each character one at a time. The shell will not match a leading period,
even if the period is included within the brackets.

A hyphen used within brackets to designate a range of characters (for example,
[A-z J) causes the shell to match each character in the range.

< A less-than sign following a command and preceding a filename causes the shell
to take the command's input from that file.

> A greater-than sign following a command and preceding a filename causes the
shell to redirect the command's standard output into the file. When followed by an
ampersand(>&), it causes the shell to redirect the command's standard error
output to the same file as standard output. See "Input and Output" for a description
of how to redirect standard output and standard error output using > and >&.

» Two greater-than signs following a command and preceding a filename cause the
shell to append the command's output to the end of an existing file. When followed
by an ampersand(»&), they cause the shell to redirect the command's standard
error output to the end of the same file as standard output. See "Input and Output
Redirection" for a description of how to redirect standard output using ».

5-18 Chapter 5 C Shell Reference

{ Braces around a series of filenames cause the shell to perform an action on each
file in the series. The filenames must be separated by commas.

Parentheses around a pipeline or sequence of pipelines cause the whole series to
be treated as a simple command (which may in tum be a component of a
pipeline), and a subshell to be spawned for the commands' execution.

A vertical bar (pipe) between two commands on a command line causes the shell
to redirect the output of the first command to the input of the second command.
Pipes can occur multiple times on a command line, forming a pipeline.

A semicolon between two commands on a command line causes the shell to
execute the commands sequentially in the order in which they appear.

\ A backslash prevents the shell from interpreting the metacharacter that follows it.

Single quotation marks around a command, a command name and argument, or
an argument prevent the shell from interpreting the enclosed metacharacters.

Double quotes around a command, a command name and argument, or an argu­
ment prevent the shell from interpreting the enclosed metacharacters. Parameter
substitution and command substitution are still performed. See "Quoting."

Back quotes around a command cause the characters in that command to be
replaced with the output (via standard output) from that command.

Specifying home directories

You can use the tilde (-) as the initial character in a filename or pathname to avoid
typing the absolute or relative pathnames of home (login) directories. An initial tilde in a
pathname, for example,

-/chapter2

indicates your home directory. When the command is executed, the tilde is replaced by
the value of the environment variable HOME. A tilde followed by the login name of
another user, for example,

-virginia/chapter2

indicates the login name of that user and will be replaced by the absolute pathname of
that user's home directory.

You can use this notation when giving a pathname as an argument to any command;
for example,

cp -virginia/memol -/memos/virginia.memo

Using shell metacharacters 5-19

Specifying filenames with metacharacters

Using the filename expansion metacharacters (also called "wildcards") spares you the job
of typing long lists of filenames in commands, looking to see exactly how a filename is
spelled, or specifying several filenames that differ only slightly.

These metacharacters are interpreted and take effect when the shell evaluates
commands. At this point, the word incorporating the metacharacter(s) is replaced by an
alphabetic list of filenames if any are found that match the pattern given. Filename
expansion metacharacters can be used in any type of command, except in the filenames
given for input and output redirection. To turn off the special meaning of metacharacters
and use them as ordinary letters, you must quote them. See "Quoting."

The following are filename expansion metacharacters in the C shell:

? A question mark matches any single character in a filename. For example, if you
have files named

*

a bb CCC dddd

the command
echo ???

matches a sequence of any three characters and returns
CCC

An asterisk matches any sequence of characters, including the empty sequence, in
a filename. (It will not, however, match the leading period in such files as
. login.) To list the sequence of files named
chap chapl chap2 chap3 chap3A chap12

you can use the notation
ls chap*

The files are listed as
chap chapl chap12 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the null sequence
composed of no characters.

[J Brackets enclosing a set of characters match any single character, one at a time,
from the set of enclosed characters. Thus,
ls chap. [12]

matches the filenames

5-20 Chapter 5 C Shell Reference

chap. 1 chap. 2

Note that this does not match chap .12. To match filenames chap .10,

chap. 11, and chap. 12, use the notation
chap.1[012]

You can also place a hyphen (-) between two characters in brackets to denote a
range. For example,
ls chap. [1-5]

is the equivalent of
chap. [12345]

Likewise, the notation [a - z J matches any lowercase character, [A- z J

matches any uppercase character, and [a - zA- z J matches any character,
regardless of case.

{ } Braces specify that the enclosed strings (separated by commas) are to be
consecutively substituted into the containing characters. For example,
A{xxx,yyy,zzz}B

expands to
AxxxB AyyyB AzzzB

This expansion occurs before any other filename expansion, and the results of
each expanded string are sorted separately, preserving left-to-right order. A typical
use of this would be
mkdir ~/{work,home,consult}

to make the subdirectories work, home, and consult in your home
directory. This notation may also be nested. For example, the following command
provides a quick way to see what executable programs are located in the usual
places on an A/UX system:
ls /{bin,usr/{bin,games}}

None of these metacharacters matches the initial period at the beginning of special
files such as . login. These must be matched explicitly. Periods that do not begin a
filename can be matched by metacharacters.

If you use these metacharacters and the shell fails to match an existing filename, it
displays the message

No match.

Using shell metacharacters 5-21

Input and output redirection

An executing command may expect to accept input and create output, possibly
including error output (error messages). In the A/UX system, there are default locations
set for input and output:

• Standard input is taken from the terminal keyboard.

• Standard output is printed on the terminal screen.

• Standard error output is printed on the terminal screen.

You can change these defaults using the following metacharacters (also called
redirection symbols).

< A less-than sign followed by a filename redirects standard input. The name of
the file has variable, command, and filename expansion performed on it first.
For example,
mail ellen < note

uses a file named note instead of a message typed from the keyboard as the
input to mail.

«Word Two less-than signs followed by a word make the shell read input up to a line
that is identical to word. Filename expansion, variable substitution, and
command substitution are not performed on word, and each input line is
compared to word before any substitutions are done on this input line. Unless
a quoting mechanism (\, " , ' , or ') appears in word, variable and
command substitution are performed on the intervening lines, allowing \ to
quote $, \,and '.Commands that are substituted have all blanks, tabs, and
newlines preserved, except for the final newline, which is dropped. The
resulting text is placed in an anonymous temporary file, which is given to the
command as standard input.

> A greater-than sign followed by a filename redirects standard output (prints
command output in a file or to a device other than the terminal). If a file by
that name does not exist, a new file is created; otherwise the file's previous
contents are overwritten. For example,

5-22 Chapter 5 C Shell Reference

sort filel > file2

uses a file for the output of the sort command. When sort is finished,
file2contains the sorted contents ofjilel. Several variants are also available.
For the > symbol, if the variable noclobber is set, then the file must not
exist or be a character special file (for example, a terminal or I dev /nul 1),
or an error results. This helps prevent accidental destruction of files. In this
case, the > ! form can be used to suppress this check. The form >& routes
the diagnostic output into the specified file as well as the standard output. The
form >& ! both suppresses noclobber and routes the diagnostic (as well
as the standard) output into the specified file. In all these forms, name is
expanded in the same way as < input filenames are.

See "Input and Output" for more information on redirecting standard error
output.

» Two greater-than signs followed by a filename append the output of a
command to a file. If no file by that name exists, one is created. For example,
who >> log

appends the output of the who command to the end of the existing file
log. Again, variants are available. If the variable noclobber is set, then it
is an error for the file not to exist unless one of the ! forms, either » !

(put at end of file and clobber) or »& ! (put, with diagnostics, at end of file
and clobber) is given. The »& form puts error (as well as standard) output
at the end of the named file. Otherwise, all these forms are similar to >.

Combining commands: Pipelines

You can send the output of one command as input to another command by using the
vertical bar (I), also known as a pipe character. When two or more commands are
joined by a vertical bar, the command line is called a pipeline.

For example, to see which files in a directory contain the sequence old in their
names, you can use a pipeline as follows:

ls I grep old

The pipe character (I) tells the shell that output from the first command (the list of files
produced by the ls command) should be used as input to the grep command. The
output of the pipeline (filenames in the current directory containing the string old)

prints on standard output (unless you redirect it to a file).

Using shell metacharacters 5-23

Pipelines may consist of more than two commands; for example,

ls I grep old I wc -1

prints the number of files in the current directory whose names contain the string old.

Pipelines may also be executed in the background. For example, to avoid the time­
consuming process of waiting for a very large file to be sorted and printed, you could
give the following pipeline:

sort mail.list I lp &

This pipeline would sort the contents of a file named ma i 1 . 1 i st and send the
sorted information to the lp program to be placed on the printer queue. The shell
would respond with the process ID of the last command in the pipeline.

The tee command is a "pipe fitting"; it can be put anywhere in a pipeline to copy
the information passing through the pipeline to a file. See tee(l) in A/UX Command
Reference for more information.

A filter is a program or a pipeline that transforms its input in some way, writing the
result to the standard output. For example, the grep command finds those lines that
contain some specified string and prints them as output.

grep 'correction' draftl

prints only the lines in draftl that contain the string correction.

Filters are often used in pipelines to transform the output of some other command.
For example,

who I grep jon

prints

jon ttyp8 Jul 21 12:25

if a user whose login name is j on is currently logged in to the system on t typ8.

Command grouping

You can use the following metacharacters to group commands:

Group several commands on one command line by separating one command
from another with a semicolon(;). The commands will be executed sequentially
in the order in which they appear. For example, the command line

5-24 Chapter 5 C Shell Reference

cd test; ls

changes to the test directory and then lists its contents.

& Group background commands on a single line by separating them with
ampersands(&) and then ending the line with another ampersand. The
background commands will exit independently while the shell continues to
accept new commands in the foreground.

() Enclose a group of commands in parentheses to execute them as a separate
process in a subshell (a new instance of the shell). For example,
(cd test; rm junk)

first invokes a new instance of the shell. This shell changes the directory to test
and then removes the file junk. After this, control is returned to the parent shell,
where the current directory has not changed. Thus, when execution of the
commands is over, you are still in your original directory.

The commands
cd test; rm junk

(without the parentheses) are executed in the current shell and have the same
effect but leave you in the directory test.

Conditional execution

You can use the following symbols to indicate that your command should be executed
only if some condition is met:

&& The command form

command1&&command2

means "If commandl executes successfully (returns a zero exit status), then
execute command2."

I I Thecommandform

commandl I I command2

does the reverse. This form means "If commandl does not execute successfully
(returns a nonzero exit status), then execute command2."

For information on exit status, see "Exit Status: The Value of the Command."
Conditional execution is also available in joining pipelines. For other ways of obtaining
conditional execution, see "Control- Flow Constructs."

Using shell metacharacters 5-25

Quoting

If you need to use the literal meaning of one of the shell metacharacters or control the
type of substitution allowed in a command, use one of the following quoting
mechanisms:

\ A backslash preceding a metacharacter prevents the shell from interpreting the
metacharacter. For example, to use the echo command to display a question
mark, you must precede the question mark with a single backslash(\). Thus,
echo \?

prints
?

Without the backslash, the echo command would generate a list of all one­
character filenames in the current directory. If there are none, the command
returns
?

· s · Single quotation marks prevent the shell from interpreting any metacharacters in
the enclosed string s. The command
echo '*test'

prints
*test

while the command
echo *test

attempts to list all the files in your current directory ending with the characters
test. If there are none, the command returns
*test

Within double quotation marks, variable substitution and command substitution
occur, but filename expansion and the interpretation of blanks do not. For
example,ifthevariable messagel hasthevalue this is a test, the
command
echo "$messagel"

prints
this is a test

Double quotation marks can also be used to give a multiword argument to
commands; for example,
echo "type a character"

5-26 Chapter 5 C Shell Reference

For information on variable substitution, see "Arguments and Shell Variables."
You can also suppress filename expansion universally by setting the noglob
environment variable. See "C Shell Variables."

A command name enclosed in back quotes is replaced by the output from that
command. This is called command substitution. For example, if the current
directory is /users /marilyn/bin, the command
set i='pwd'

is equivalent to
set i=/users/marilyn/bin

If a back quote occurs within the command to be executed, you must escape it
with a backslash (\ '); otherwise the usual quoting conventions apply within the
command.

Command substitution takes place before the filenames are expanded. If the
output of substituted command is likely to be more than one word, the command
must be enclosed in double quotation marks as well as back quotes; for example,
in the command
set a="'head -1' /dev/tty"

double quotation marks are necessary because the head command might yield
more than one word. The double quotes in this example preserve the blank
spaces from the input.

Working with more than one shell
When you wish to use another A/UX shell, you can use one of the following commands:

sh This spawns an instance of the Bourne shell.

ksh This spawns an instance of the Korn shell.

c sh This spawns another instance of the C shell.

You can type these at your shell prompt; for example,

csh

In this case, your new shell will run as a subshell or "child" of your current one. You can
use the exit command or the eof sequence to return to your original login shell whenever
you wish. (If you have the ignoreeof C shell variable set, you must use the exit

command; the eof sequence will not work to exit the C shell. See "C Shell Variables.")

Working with more than one shell 5-27

Changing to a new shell

You can also obtain a new shell using the exec command; for example,

exec sh

If you use the exec command, the Bourne shell program sh replaces your current
shell. You cannot return to your original shell; it has disappeared. You can, of course,
use the command

exec csh

to get a new copy of the C shell.
You can also generate new instances of a shell. See "The Environment and New Shell

Instances" for more information.

Changing your default shell

To change your default shell from the C shell to the Bourne or Korn shell, use the chsh

command. For example,

chsh login.name /bin/ksh

(where login.name is your login name on this system) changes your default login shell
to the Korn shell. See chsh(l) in A/UX Command Reference for more information.

The environment

The environment is a list of variables and other data that is available to all programs
(including subshells) invoked from the shell. A shell inherits the environment that was
active when it started and passes the environment (including any modifications you
make to the environment) to all programs it invokes.

You can modify the environment using the setenv command (see "Adding
Environment Variables and Modifying Values.")

5-28 Chapter 5 C Shell Reference

+ Note Modifying the environment in a subshell (for example, in a shell script) never
changes the parent shell or its environment. Values in the environment are copied to
subshells' environment, and any changes there are made only to the copies. •

The most essential environment variables are assigned default values during login or
by the shell every time you invoke it. Convenient but inessential variables are simply left
unassigned. Thus a default environment is created that you can redefine by resetting the
default values or adding new elements.

Environment variables

The C shell maintains a list of environment variables that are required by the A/UX
shells. In addition, any variable that you create or modify using the setenv command
is part of the environment and is passed to new instances of the shells (see "Adding
Environment Variables and Modifying Values").

+ Note Global environment variables in the C shell pass among instances of all three
A/UX shells (the C shell, the Bourne shell, and the Korn shell). •

Listing existing values

To print a list of your current environment, use the command

printenv

This prints a list such as

HOME=/users/doc/elaine

PATH=/bin:/usr/bin:

EXINIT=set wm=lO

LOGNAME=elaine

SHELL=/bin/csh

MAIL=/usr/mail/elaine

TERM=mac2

The environment 5-29

Adding environment variables and modifying values

You may create new environment variables or modify the value of existing ones using
the command

setenv name value

For example,

setenv j 22

creates an environment variable (j) with the value 2 2. This variable can be referenced
and used in the current shell and its sub$hells.

Environment variables can be modified using setenv at the shell prompt or in
your .login file (see "The .login File"). For example, to modify your PATH

variable to include more pathnames, usJ the command

setenv PATH I etc: /usr /bin: /tin: /usr /ucb: I directory ...

Removing environment variables

You can remove environment variables Jn the C shell using the command

unsetenv name ...

Commonly used environment variables

The following variables are typically inserted into the environment. By convention,
environment variable names are uppercase. Some of these variables are assigned default
values at login or by the shell at invocation. All of them can be reset by the user.

HOME At login this variable is set tc!> the pathname of your home directory. Its value
is the default argument (home directory) for the cd command. - is
another name for $HOME.

5-30 Chapter 5 C Shell Reference

PATH The default value for PATH is the current directory, /bin, and
/usr /bin. A valid PATH value is a list of directory names separated by
colons. Whenever you give a command, the shell checks the directories
specified by your PATH variable to locate the command and execute it. If
the directory containing the command file is not specified in PATH, the
shell will not locate the command. PATH is usually s.et in the login

file. For efficiency, the list of directories in the PATH variable should be in
order from the directories containing commands most often used to those
least often used. If you add a command to one of the directories in PATH

other than the current directory, you must give the rehash command, or
the shell will not be able to find the command. See "A Sample login

File" for an example.

EXINIT The value of this variable can be set to various options for your editing
environment when you are using the ex or vi text editing program.
See "Using ex" and "Using vi" in A!UX Text-Editing Tools, and "A
Sample .cshrc File" in this guide.

LOGNAME This variable contains your login name.

MAIL The value of this variable is set to the pathname of the file where your mail
is received. This variable is typically set in the file .login in your home
directory.

SHELL The value of this variable indicates the shell that is invoked when you log in
(your login shell). It is set at login with the information found in the
I etc /passwd system file. In A/UX, if no shell is specified in
etc /passwd, the default shell is the C shell.

TERM This variable specifies the type of terminal you are using. For A/UX systems,
the default is set to mac2. You can see the value of your TERM variable
using the command echo $TERM.

The environment 5-31

C shell variables

The C shell also maintains variables that are only relevant to the C shell (and will be
ignored by the other shells). If these variables are created or modified at the shell
prompt, they are valid only for the current shell. However, if they are assigned a value in
the .cshrc file, they will be available to all new instances of the C shell.

See "Shell Variables" for more information on using variables in the C shell.

+ Note Because the C shell reads your . c shrc file every time a new instance of the C
shell is invoked without the -f flag option, variables that have been set in your . cshrc

file will be available in new instances, although they are not technically in effect. •

Listing existing values

The command

set

lists the value of all your current C shell variables.

Adding C shell variables and modifying values

You can set C shell variables using the command

set name[=value]

For example,

set history=200

If you use the set command at the shell prompt to modify a value or create a new
variable, your variable assignments remain local to the shell you are currently working in
(see "Adding Environment Variables and Modifying Values").

The following metasequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable that is not set. The
following substitutions may not be modified with : (colon) modifiers:

$? o Substitutes 1 if the current input filename is known, 0 if it is not.

$ < Substitutes a line from the standard input, with no further interpretation thereafter.
It can be used to read input from the keyboard in a shell script.

5-32 Chapter 5 C Shell Reference

Removing C shell variables

You can remove any C shell variable using the unset command:

unset name

C shell variables

The following variables are typically assigned a value in the .cshrc file. This makes
them available to all instances of the C shell. Some of these variables are assigned default
values at login or by the shell at invocation. You can reset all of them.

argv Set to the arguments given to the shell. It is from this variable that
arguments are substituted; that is, $1 is replaced by $ argv [1 J , and
so forth.

cdpath

cwd

echo

hist chars

history

set cdpath=path

Lists alternate directories searched to find subdirectories in chdir
commands.

set cwa=path

Lists the full pathname of the current directory. This variable is set by
the shell to cwd= 'pwd' .

set echo

Causes each command and its arguments to be printed on the screen
just before execution. For user-defined commands, all expansions
occur before printing. Built-in commands are printed before command
and filename substitution because these substitutions are then done
selectively. Set when the csh -x command line option is given.

set histchars stringl string2

Changes the characters used in history substitution: stringl
replaces ! and string2 replaces ".

set history=n

The value of this variable is a number specifying how many previous
command lines are saved. In the A/UX standard distribution,
history is given an initial value of 200. If you assign a very large
number to this variable (for example, 500), the history mechanism will
use up a lot of memory.

The environment 5-33

home

ignoreeof

set home=dir

Contains the home directory of the invoker, initialized from the
environment. The filename expansion of - refers to this variable.

set ignoreeof

If set, the shell ignores an eof from the keyboard. This prevents shells
from accidentally being killed by typing the eof character.

ignoreexit set ignoreexit

mail

noclobber

noglob

nonomatch

notify

5-34 Chapter 5 C Shell Reference

If set, the shell ignores an exit from the keyboard.

set mail =[n) maiifile ...

maiifile is the file the shell checks for mail. By default, it checks for
mail every ten minutes after producing a shell prompt. If maiifile has
been modified since you last accessed it, the shell prints the message
You have new mail. Supplying a number (n) before maiifile
specifies a new interval (in seconds) to wait before checking for mail.
If you have more than one maiifile, your mail message reads New
mail in maiifile.

set noclobber

Restrictions are placed on output redirections to ensure that files are
not accidentally overwritten or destroyed, and that > > redirections
refer to existing files.

set noglob

If set, filename expansion is inhibited. This is most useful in shell
scripts that are not dealing with filenames, or after a list of filenames
has been obtained and further expansions are not desirable.

set nonomatch

If set, it is not an error for a filename expansion to not match any
existing files; rather the primitive pattern is returned. It is still an error
for the primitive pattern to be malformed.

set notify

Notifies you when your background job completes, without waiting
until the next prompt.

path

prompt

savehist

shell

set path=pathname[, pathname]...

Each path specifies the absolute pathname of a directory to search to
execute commands. A null path specifies the current directory. If you
don't specify a path variable, only full pathnames execute. The
default search path is
. ' /bin, /usr /bin, and /usr /ucb

The default path for the superuser is
/etc, /bin, /usr/bin,and /usr/ucb

If you start the shell without the -c or -t flag option, it will hash
the contents of the directories in the pa th variable after reading
. c shrc and each time you reset the pa th variable. If you add
new commands to these directories while the shell is active, you may
have to give the rehash command before these commands are
found.

set prompt=string

The value of this variable is the string printed at the beginning of a line
to indicate that the shell is ready to receive input. By default, this is set
to % . If this variable is set to \ ! the prompt will be the history
number of the current command line; prompt is usually set in the
. c shrc file. If you do not define the prompt variable in your
. cshrc file, it will be set by the /etc/cshrd file in the A/UX
standard distribution. See "Using Your . cshrc File."

set savehist=n

Saves n entries from the history list in the file - I . history when
you log out. This is read into your history list when you next log in. If
n is too large, it slows down the shell during startup.

set shell =file

file contains the default shell to use for executing shell files. This is
used in forking shells to interpret files that have execute bits set but
are not executable by the system. Note that this affects only scripts
starting with the number sign (#) because others are passed to the
Bourne shell.

The environment 5-35

status

time

verbose

set status=n

Returns the status of the last command. A status of 0 indicates success
of a built-in command, 1 indicates failure of a built-in command, and
0200 is added to the status of a command terminated abnormally. Note
that this variable is almost never set explicitly. The exi t(2) system
call sets it, as does the exit built-in command.

set time=n

Prints the execution statistics at the completion of any command
running over n CPU seconds. These statistics include user, system, and
real times, and the ratio of user plus system times to real time. There is
also a corresponding time command that can be used to time a
given command or shell.

csh -v

Causes the words of each command to be printed after history
substitution. Set when the c sh command line option is given.

The environment and new shell instances

Because the C shell reads the . cshrc file each time it starts up, the values you have
defined there are available to the new C shell. Any values you have assigned using the
setenv command will also be available in a new instance of the C shell (invoked
without the - f flag option).

If you have assigned values to variables using the set command at the shell
prompt (or within a shell script), these remain local to the shell in which you assigned
them. Because these changes are made to a copy of the parent shell's environment, the
parent shell's environment is never affected by changes in a subshell, even if you use the
setenv command. Note, however, that changes made with setenv in a shell are
passed on to subsequent new instances of the shell. When a subshell terminates, its
environment no longer exists.

Note that the . login file is read only once, at login. Thus, if you have changed
the value of an environment variable, the subshell will inherit the new value, not the
value set routinely in . 1 ogin. You can force a new instance of the shell to read
.login by using the source command; see "Executing Shell Scripts."

5-36 Chapter 5 C Shell Reference

Special environments

Normally, the environment for a command is the complete environment of the shell
where the command was given. You can change the environment used by a command
with the A/UX command

env [- J [name=value ...] [command] [argsJ

With this command, you can not only add things to the environment inherited by a
command, but also exclude the current environment. To add variables and their values
to the current environment, give the variables and values before the command. For
example, to run a subshell with a changed PATH environment variable, you could give
the command

env PATH=directory-list sh

For the duration of the new shell (and its subshells), the PATH variable would be
set to the directories in the list. To set up a completely new environment, first give the
option - , which excludes the current environment, and then assign the variables and
values you want. These (and only these) will be available in the environment for the
new command.

The default environment on your system

Whenever you log in, the following procedures occur:

• The login program sets the variables HOME and SHELL from the information in
the system file /etc/passwd.

• The login program then checks the /etc/ cshrc file to find out the default
environment to set up for all users.

• The login shell (the shell that is automatically invoked when you log in) assigns
default values (for example, to prompt and history).

When you invoke new instances of the shell (for example, by using the c sh

command), the new shell checks the environment for any new values you may have
placed there for these variables. If it doesn't find any values in the environment, it
assigns the default values.

The environment 5-37

Then the new shell reads your . cshrc and . login files. If you have assigned
new values there, it uses your values instead of the defaults.

• The C shell reads the . c shrc file every time it starts up, not only at login. Use the
. cshrc file to set C shell variables and to define aliases you wish to be available for
all invocations of the C shell. All variables and aliases set in this file are available to new
instances of the C shell as if their values were in the environment. However, none of
the local values set in these files are available to instances of the Bourne shell or Korn
shell.

• The C shell reads the . login file when you log in. This file usually contains
values for environment variables that should be available to all instances of the shell,
including the Bourne and Korn shells.

The . login file
The . login file is simply a text file. It contains a series of commands typed exactly as
you would type them at the shell prompt. When you log in, the C shell looks in your
home directory for files named . cshrc (see "The . cshrc File") and . login.

When the shell finds one or both of these files, it executes all the commands found there
before issuing the shell prompt. If no . login or . cshrc file exists, your
environment is the default environment created by the shell at login.

A sample . login file

The following is a sample . login file:

setenv PATH :/bin:/usr/bin:/etc:/usr/new:~/bin

setenv EXINIT "set wm=lO"

date

ls

The variables and commands in this file are discussed in the sections that follow.

5-38 Chapter 5 C Shell Reference

Locating commands

The PATH environment variable lists the directories where the shell looks for A/UX (or
user-defined) commands. Each time you give a command, the shell searches the
directories listed in the order specified. Most A/UX commands are located in the /bin

or /usr /bin directory. When you assign a value to PATH, be sure to include these
directories.

If the shell cannot find the file in one of the directories specified, the command
cannot be executed and A/UX displays the message

Command not found.

If you do not know the directory containing a particular A/UX command, see
whereis(l) in A/UX Command Reference.

A valid PATH value is a list of directory names (specified by absolute pathnames),
separated by colons. If the list of directories begins with a colon, the path search begins
in the current directory. At login, the PATH variable is set as follows:

setenv PATH :/bin:/usr/bin:/usr/ucb

This assignment sets the PATH variable to the current directory and the system
directories /bin, /usr /bin, and /usr /ucb.

To reset the PATH variable in the . login file, insert a line such as

setenv PATH :/bin:/usr/bin:/usr/ucb:/etc:/usr/new:-/bin

The setenv command is discussed under "Adding Environment Variables and
Modifying Values."

If you include the pathnames of personal directories that contain shell programs you
have written, these are accessible to the shell no matter what your current directory is. If
you wish to execute a command or shell program that is not in one of the directories in
your PATH variable, simply give the absolute pathname of the directory containing the
command or shell program.

For information on referencing variables using the $ syntax (as in $HOME), see
"Variable Substitution." For more information about pathnames, see A/UX Essentials.

The . login file 5-39

Your editing environment

The EXINIT environment variable tells the shell how to initialize the vi or
ex editing programs. It is set to a series of editor commands that should be run every
time the editor starts up. In the sample . login as presented earlier, for example,
the command

setenv EXINIT "set wm=l0"

sets the value of EXINIT to the command

set wm=lO

This command sets the word-wrap margin so that the editor will automatically break
lines ten spaces before the right margin. The command is enclosed in double quotation
marks because the entire string must be treated by the C shell as one "word" and not
divided up.

For details on EXINIT, see A!UX Text-Editing Tools. For the use of double
quotation marks, see "Quoting."

Customizing your login procedure

You can also use your . login file to customize your login procedure. In the sample
. login earlier, the commands

date

ls

direct the shell to display the date and time and then list all the files in the current
directory before displaying the shell prompt. These will be executed at login.

You can include any commands you wish in . login, including your own shell
scripts.

The . cshrc file
The . cshrc file is similar to the . login file, but it is normally read at every
invocation of the C shell. Thus, any definitions you include in this file are available to
every instance of the C shell.

5-40 Chapter 5 C Shell Reference

A sample . c shrc file
The following is a sample . cshrc file:

set prompt='\!:'

set ignoreeof

alias le ls -c

These commands are described below.

Using history numbers as your prompt

The C shell history mechanism keeps track of your command lines by a number,
automatically incrementing the number each time you give a command. If you use this
number as your prompt, it is more convenient to ref er to previous commands by number
(see "Listing and Reusing Commands").

In your . cshrc file, the command

set prompt=' \ ! : '

sets your C shell prompt to the history character ! followed by a colon and a blank
space. This will print as a shell prompt a number that increments with each command:

1:

2: ...

+ Note The ! must be escaped (preceded by a backslash) and enclosed in single
quotes to keep the shell from interpreting it at the wrong time, for example, when it
reads and executes your . cshrc file. •

Protection against unintentional logout

The shell terminates, logging you out of the system, when it recognizes the eof sequence.
This can cause you to log out inadvertently when sending mail or using any other
program that also terminates when you type an eof

To prevent this, you may set the ignoreeof variable in your . cshrc file. This
causes the shell to ignore eof from the keyboard.

When this variable is set, you must use the 1 ogou t or exit command to log out.

The . cshrc file 5-41

Aliases for commonly used commands

The C shell alias command renames existing commands or creates a name for a
long command line. Aliases can be defined at the shell prompt or in the . eshre file.

The C shell keeps a list of aliases. Each time you give a command, the first word of
the command is compared with the list. If it is an alias name, then it is replaced with the
definition of that alias. You can use an alias to redefine any shell or A/UX command
except alias; however, it is not advisable to redefine keywords such as foreaeh

or while.

Defining an alias

You define an alias with the command

alias name definition

where name may begin with any printable character, but the rest of the characters must
be letters, digits, or underscores (generally it is a good idea to avoid using I, ; , *, ? ,

and so on), and definition may contain any valid commands, including shell scripts and
metacharacters. Note that definition cannot include another alias. If definition includes
spaces, the whole command must be inclosed in quotation marks.

For example

alias le 'ls -C'

causes the le command to produce output as if you had typed

ls -c
which displays its output in columns. The alias definition is quoted because it contains a
blank.

Note that by specifying a new command name, le, you can use both ls (in any
form desired) and 1 e .

Alias definitions can also use all shell metacharacters, variables, arguments,
command substitution, and so forth.

For example,

alias prtsort 'sort *.list'

5-42 Chapter 5 C Shell Reference

creates a command prtsort. When you type

prtsort

the command line

sort *.list

executes, sorting files in the current directory that end in the characters " . 1 is t ".

The use of double quotation marks in an alias definition allows certain expansions to
occur at the time the alias is defined. For example, the definition

alias lshome "ls $HOME"

allows you to use the command 1 s home to see a listing of your home directory.
When you create aliases at the shell prompt, they are not exported to the

environment. To make aliases available to every invocation of the C shell or any script
run with a separate shell, put their definitions in the . cshrc file, which is normally
read every time a C shell starts up.

Listing and removing aliases

The a 1 i as command with no arguments lists all aliases that have been defined in
your environment.

Aliases can be removed with the command

unalias name(s)

Aliases that take arguments

It is also possible to define aliases that accept arguments and contain multiple commands
or pipelines. The following alias definition instructs the shell to invoke an 1 s command
after any cd (change directory) command. This alias will accept an argument (a
directory name or pathname) where \ ! * occurs in the alias.

alias cdl 'cd \!* ; ls '

Aliases for commonly used commands 5-43

The history notation for accepting an argument is as follows:

\ ! The history character (!) is preceded by a backslash (\) to prevent its default
meaning when the command is invoked.

\ ! * The (\ ! *) indicates that an argument will be substituted at this place in the
command and that it is not considered an error if no argument is given.

The alias command uses history substitution and modifiers in a variety of ways.
Because the cd command will function without an argument (changing to the user's
login directory), the correct notation in our example is "\ ! * ". If you use either "\ ! : 1"

or "\ ! "", the alias will require an argument in order to execute without an error
message. For example,

% alias j 'echo my favorite pastime is \! :l'

% j walking

my favorite pastime is walking

However, it is an error if you use the \ ! : 1 notation and omit the argument:

% j

bad ! arg selector

If you use the \ ! * notation, the argument is optional. If you supply an argument
to the alias, it works as you would expect:

% alias j 'echo my favorite pastime is \!*'

% j walking

my favorite pastime is walking

It is not an error if you omit the argument in this case:

% j

my favorite pastime is

5-44 Chapter 5 C Shell Ref ere nee

Shell execution options
The shell is a program like other A/UX commands, and it too has a variety of options used
to control how it executes. All shell execution options can be specified on the command
line when you invoke a new shell or run a shell script with the csh command:

c sh - opt[opt ...] [ji/e]

This invokes a subshell or runs a script (file) with the options specified.

The C shell execution options are as follows:

-c Commands are read from the (single) following argument file, which must be
present. Any remaining arguments are placed in argv. This cannot be nested.

- e The shell exits if any invoked command terminates abnormally or yields a
nonzero exit status.

- f The shell starts faster because it doesn't search for or execute commands from the
. cshrc file in your home directory. Some scripts may fail if executed with the
-f option because of aliases and variables that will not be read from . cshrc.

- i The shell is interactive and prompts for its top-level input, even if it appears not to
be a terminal. Without this option, a shell is interactive if its standard input and
standard output are a terminal.

-n Commands are parsed but not executed. This may aid in syntactic checking of
shell scripts.

- s Command input is taken from the standard input stream.

- t A single line of input is read and executed. A \ may be used to escape the
newline at the end of this line and continue onto another line.

-v The verbose variable is set, with the effect that command input is printed after
history substitution.

-x The echo variable is set, so commands are printed immediately before
execution.

-v The verbose variable is set even before . cshrc is executed.

-x The echo variable is set even before . cshrc is executed.

If arguments remain after the execution options are processed (but you did not
specify the - c, - i, - s, or - t option), the first argument is taken as the name of a
file containing commands to be executed. The shell opens this file and saves its name for
possible resubstitution by $0. Remaining arguments initialize the variable argv.

Shell execution options 5-45

Job control
C shell job control allows you to suspend current jobs, move a foreground job to the
background (and vice versa), check on the status of background jobs, refer to specific
background jobs by number, change a job's status, and receive notification when a job
is done.

Every job you run in the C shell is associated with a job number; for example, when
you give a background command, such as

diff filel file2 >> file3 &

the job number (in brackets) displays before the process ID:

[3] 12345

]ob numbers are assigned sequentially, so the first job is 1, the second job is 2, and
so forth.

Suspending a job

To suspend your current foreground job, type the suspend character. See "Canceling
Commands" for the A/UX standard distribution suspend character. When you type the
suspend character, it sends an immediate stop signal to the current job; pending output
and unread input are discarded.

When the shell interprets suspend, it prints a message in the form

[job- number] + Stopped name

where job-number is the job number of the current job; + indicates that it is the
current job; and name is the command name of the stopped job. For example,

[2] + Stopped diff

Listing jobs

You can list your jobs with the command

jobs -1

Your jobs will be listed and their status (running or stopped) will be indicated like this:

5-46 Chapter 5 C Shell Reference

[3] + Running lp chapterl &

[2] - Stopped vi chapter2

[1] Running diff filel file2 > diff.file &

The + indicates the current job, and the - indicates the preceding job.
If you include the -1 option, process IDs will be shown as well as the job numbers.

Changing the status of stopped jobs

Once you have a stopped job, you can give another command at the shell prompt
(leaving the job suspended), resume the job in the foreground, resume another stopped
job, or continue the command processing in the background.

To leave a job suspended, do nothing. When you give the command

jobs

you will see it listed as Stopped. To run a stopped job in the background, give the
command

bg %job-number

For example

bg %2

The bg command with no argument

bg

puts the most recently stopped job in the background to continue executing. If a job
number is given as an argument to bg, it must be preceded by a percent sign(%). The
following notation is available for job numbers:

% job-number

%+

%-

%string

refers to a specific job by number

refers to the current job

refers to the preceding job

refers to the most recent stopped job that began with those characters

As a shorthand notation, just naming a job, with an ampersand, resumes that job in
the background. In addition, % * & resumes all stopped jobs in the background.

]ob control 5-47

Thus, if the most recently stopped job was an lp command whose job number was
4, you could resume this job in the background with any of the following commands:

bg

bg %+

bg %4

bg %lp

%4&

After one of these commands, you would be shown the command line of the job that
was being put in the background, and then the shell prompt would be returned.

A job running in the background will stop if it tries to read from the terminal.
Background jobs are normally allowed to send output to the terminal, but you can
disable this by giving the command

stty tostop

This causes background jobs to stop when they try to send output, just as they do when
they try to read input.

If a background job needs neither input nor output and completes execution in the
background, the shell displays a message in the form

[job-number] + Done name

For example,

[2] + Done diff

You can bring a job to the foreground with the command

f g % job-number

The same conventions for referring to a stopped job given earlier under the bg

command work for the fg command. Just naming a job brings it into the foreground,
so the notation % 1 brings job 1 to the foreground. Similarly, the notation % * brings
all stopped jobs to the foreground. Once your job is in the foreground, you can continue
working as before.

5-48 Chapter 5 C Shell Reference

Blocked jobs

A job is considered blocked when no further progress is possible. The C shell learns
immediately when a process becomes blocked, and displays a message to that effect. If
the shell is busy with another process when it learns about a blocked job, it waits until it
is about to print another prompt before displaying a message.

Canceling jobs

To cancel a job, use the command

kill [%]number

number can be either a process ID or a job number preceded by a percent sign(%).
The rules about job numbers that apply to bg and f g also apply to the ki 11

command. Using the ki 11 command with process IDs to cancel jobs is discussed in
"Canceling Background Commands." If you had a current background lp job whose
job number was 4, you could cancel this job with any of the following commands:

kill %+

kill %4

kill %lp

The shell displays a message that the job has been terminated:

[4] + Terminated lp bigfile &

Logging out with stopped jobs

If you try to log out while your jobs are stopped, you will be warned with

You have stopped jobs.

If you use the jobs command to see what the stopped jobs are or if you
immediately try to log out again, the shell will not warn you a second time. The stopped
jobs will be terminated upon logout.

]ob control 5-49

Using shell layering
Many C shell users will not wish to use shell layering (see Chapter 6 for details), since job
control performs essentially the same functions while maintaining your environment.
However, if you do wish to use shell layering with the C shell, you should make sure the
swtch and susp characters are defined to different control sequences. Otherwise job
control functions correctly in the shell layer you invoke, but the shl program is
inaccessible. The A/UX standard distribution sets swtch to CONTROL-' and susp to
CoNTROL-Z. To check that these are defined to different control sequences on your
system, enter the command

stty -a

at the shell prompt. This displays the settings for various user-definable sequences. See
st ty(l) in A/UX Command Reference for additional details.

See Chapter 6, "Shell Layering," for more information.

Overview of shell programming
A shell program is simply a list of commands. These commands can be entered at the
prompt or inserted in a file. They may contain

• variables and assignments

• control-flow statements (for example, if, for, case, or while)

• built-in shell commands

• any A/UX command

• user-defined commands

Input for the shell program may be read from the keyboard (the default standard input),
taken from files, or embedded in the program itself (see "Taking Input From Scripts").

Shell programs may write output to the terminal screen (the default standard output),
to files, or to other processes (via pipes).

When the shell program executes, each command is executed until the shell
encounters either an eof character or a command delimiter that directs it to stop. During
execution, you can trap errors and take appropriate action.

5-50 Chapter 5 C Shell Reference

Writing shell programs

You can enter a shell program at the prompt. When you enter a built-in shell command
that expects a delimiter (such as end) or a certain type of input, the prompt changes to
a question mark on each line until you give the expected delimiter; for example,

% foreach i ([A-Z]*)

? cat $i

? end

%

Note that you can send an interrupt to cancel the script and return to the primary
prompt.

You can also write a shell program in a text file (using a text editor) and then execute
it (see "Executing Shell Scripts"). These program files are often called shell scripts. Note
that all shell programs may be entered at the shell prompt or inserted in a file. This does
not affect their actions. Hereafter "shell scripts" will be used to refer to shell programs
that reside in a file.

Executing shell scripts

There are several ways to execute a shell script; these differ mostly in terms of whether
or not a new instance of the shell is invoked.

• You can use the c sh command to read and execute commands contained in a file.
The script will be run in a "subshell,'' which means that it will have access to only the
values set in the environment and will be unable to alter the parent shell. The
command

c sh filename args ...

causes the shell to run the script contained in.filename. Shell scripts run with the
csh command can be invoked with all the options possible for the set

command.

Overview of shell programming 5-51

• You can change the mode of the shell script file to make the file executable. For
example,

chmod +x filename

makes filename executable. Then the command

filename args ...

has the same effect as using the csh command with the arguments filename

arg s. If the first line of your shell script is a # and your current shell is the C shell,
the script will be run in the C shell. Otherwise, the script is run in a Bourne subshell,
which means that it will have to use Bourne shell syntax. See Chapter 3, "Bourne
Shell Reference." If your script uses C shell built-in commands, it will not execute
successfully in the Bourne shell.

• You can run a shell script inside the current shell by using the source command.
The source command tells the current shell to run the script; no subshell is
invoked. This should be used if you wish to use local shell variables or functions, or
modify the current shell:

source filename args ...

Because the commands are executed in the current shell, use the source

command to run a script that is to change values in the shell.

• You can run executable shell scripts or A/UX commands with the exec command.
This should be used when the shell script program is an application designed to
execute in place of the shell and replace interaction with it:

exec filename args ...

In this case, the script or command replaces the current shell. This means that when
the script is over, control will not return to the shell. If you were in a login shell, you
are logged out.

Comments

A word beginning with a number sign (#) causes that word and all the following
characters up to a newline to be ignored.

5-52 Chapter 5 C Shell Reference

Writing interactive shell scripts

A shell script can invoke an interactive program such as the vi editor. If standard
input is attached to the terminal, vi reads commands from the terminal and executes
them just as if invoked from an interactive shell. After the session with vi is finished,
control passes to the next line in the script. In a similar manner, a script can invoke
another copy of a shell (using sh, csh, or ksh), which will interpret commands
from the terminal until it receives an eof Control will be returned to the script. You can
use this to create a special environment for certain tasks by setting environment variables
in a shell script and then invoking a new subshell.

You can also write interactive shell scripts by using the line and echo

commands. See "Reading Input" and "Writing to the Standard Output."

Canceling a shell script

You can cancel a shell script just as you would cancel an ordinary A/UX command. If the
script is running in the background, use the ki 11 command. See "Canceling
Commands" for details on ki 11 and various types of interrupts that can stop a
command.

+ Note You can handle interrupts within the script using the onintr command.
See "Fault Handling and Interrupts." •

Writing efficient shell scripts

In general, built-in commands execute more efficiently than A/UX commands. See
"Summary of C Shell Commands" at the end of this chapter for a complete list of these
commands. The following built-in commands are useful when you are trying to create
efficient shell scripts:

rehash This causes the shell to remember the search path of any new commands.

times This prints the accumulated user and system times for processes.

Overview of shell programming 5-53

You can also set the - f shell execution option using

c sh - f script

This will prevent the new shell instance from reading . cshrc. You should only use
this if your script does not require any of the settings in . cshrc.

Careful setting (or resetting inside a shell script) of the PATH environment variable
ensures that the most frequently used directories are listed first. This also improves
efficiency.

Command evaluation
When you give a command, the shell evaluates the command in one pass and then
executes it. To force more than one pass of evaluation, use the eval command,
described in "Summary of C Shell Commands."

While evaluating the command, the shell performs the following substitutions on
variables:

• History substitution This checks every word of the command for a word beginning
with ! and replaces that word with the elements of history specified. For more
information, see "Listing and Reusing Commands."

• Alias substitution This checks the first word of every command to see if it is an alias
(a user-defined name for another command). If an alias is found, it is replaced by the
text of the alias. Only one check for aliases is made, so an alias itself cannot contain
an alias. For information on aliases, see "Aliases for Commonly Used Commands."

• Tilde substitution This replaces an initial tilde with a directory name (see "Specifying
Home Directories"). The following forms are recognized:

This is replaced by the value of the HOME variable.

- name This is replaced by the home directory of another user (where name is
the user's login name)

• Variable substitution This replaces variables preceded with $ (for example,
$user) with their values. Only one pass of evaluation is made. For example, if the
value of the variable a is daphne, then the command

echo $d

5-54 Chapter 5 C Shell Reference

prints

daphne

However, if the value of the variable d is $name, then the command

echo $d

prints

$name

The second variable is never evaluated and the value is not substituted. See "Variable
Substitution" for more information.

• Command substitution The shell replaces a command enclosed in back quotes with
the command's output. For example, if the current directory is
/users/doc/virginia, then the command

echo 'pwd'

prints

/users/doc/virginia

• Blank intetpretation The shell breaks the characters of the command line into words
separated by blank spaces or tabs. The null string is not regarded as a word unless it
is quoted; for example,

echo ''

passes the null string as the first argument to echo, whereas the commands

echo

and

echo $null

(where the variable null is not set or set to the null string) pass no arguments to
the echo command.

• Filename expansion The shell scans each word for filename expansion
metacharacters (see "Using Shell Metacharacters") and creates an alphabetical list of
filenames that are matched by the pattern(s). Each filename in the list is a separate
argument. Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated with a foreach loop.

Command evaluation 5-55

Command execution

After all substitution has been carried out, commands are executed as follows:

• Built-in commands and shell scripts run with the source command are executed
in the current shell. The command has available all current shell execution options,
the values of variables and environment variables, and functions defined in the
current shell.

• A/UX commands, programs, executable shell scripts, shell scripts run with the csh

command, and series of commands enclosed in parentheses are executed in a
subshell. The current shell invokes a child shell that executes the commands and
then returns control to the parent shell. Only the values in your environment are
available to these processes.

• Commands and executable scripts run with the exec command execute in place
of the current shell.

If the A/UX command or program name does not specify a pathname, the
environment variable PATH is used to determine what directories should be searched
for the command. The only exception to this is built-in commands.

For more information about the execution of shell scripts, see "Executing Shell Scripts."

Exit status: The value of the command

Although there are exceptions, a command's exit value is usually zero (O) if it executes
successfully, and its exit value is nonzero if it terminates abnormally. In some cases, a
command exits with a nonzero exit status with a normal termination; for example, the
di ff command returns nonzero exit status if it finds no differences between two
versions of a file. The shell saves the exit value of the commands in the variable status.

The exit status is used primarily in shell scripts as $status. See signal(3), exi t(2),

and wait (2) in A/la Programmer's Reference for the values of various exit statuses.

5-56 Chapter 5 C Shell Reference

Arguments and shell variables
A shell script may use two types of variables:

• Arguments Arguments given on the command line are stored as elements in the
special variable argv, and as the parameters $1, ... , $n.

• Shell variables Shell variables may be simple strings or arrays of strings. These
variables can be assigned on the command line or inside the script.

The relationship between variables inside a shell script and existing shell variables
depends on how the script is run. See "Executing Shell Scripts." In all cases, shell scripts
have access to the variables and values in the environment.

Arguments

The shell stores the arguments you give to a script sequentially as elements of the one­
dimensional array argv.

When you enter any command at the prompt, the shell stores the elements of the
command line as follows: the command name is stored in argv [o J , the first argument
is stored in argv [1 J , the second argument in argv [2 J , and so forth. Thus, for the
command

diff letterl letter2

argv[l] istheword letterl and argv[2J istheword letter2.Forthe
command

echo "not a directory"

the phrase

not a directory

is assigned to argv [1 J , whereas the command

echo not a directory

assigns each word to a position in argv.

Arguments and shell variables 5-57

This means that the arguments (for example, filenames) used in the script can be
given on the command line when the script is run. For example, the command line

script argl arg2

assigns argv[OJ to script, argv[l] to argl,and argv[2J to arg2.
These may also be referenced as $ o, $1, and $ 2, respectively. To refer to all argv
values, you may use $ *, which is equivalent to argv [* J .

Shell variables

The C shell supports only string variables. Variables can be simple strings or arrays of
strings. They can be assigned values on the command line or anywhere in the script.
Variable names begin with a letter and consist of letters, digits, and underscores.

Assigning values

You can assign values to variables using the set command with the syntax

set name=value

Blanks or tabs, or both, may surround the equal sign. All values are stored as strings.
Command substitution and filename expansion will be performed on value. It is an error
to attempt to use a variable that has not been set.

To set a variable to a string of words separated by blanks, you must enclose the
entire string in double quotation marks; for example,

set longvar="this is a long variable"

The double quotation marks prevent the shell from carrying out blank interpretation and
breaking up the phrase to be assigned into its constituent words. Without the quotation
marks, the phrase would be considered five words and could not all be assigned to one
variable.

After the variable assignments

set user="fred stone" set box='???' set acct=18999

the following values are assigned:

user = fred stone
box = ???
acct = 18999

5-58 Chapter 5 C Shell Reference

Because the C shell supports only string variables, all of these values (including 18999)
will be strings of characters. Note that the question mark metacharacters must be quoted
with single quotation marks to prevent pattern matching.

A variable may be set to the null string with the syntax

set name

· Arrays are initially set with the command

set name = (word ...)

The array is created and its elements are set to the words inside the parentheses. The first
element of the array is assigned wordl, the second element is assigned word2, and so
forth. Subscripting of elements begins with 1. The words must be separated by spaces.
They are treated like the values assigned simple string variables. If a word itself is to
contain spaces, it must be quoted.

Existing individual elements of arrays already assigned values with the set

command can be assigned new values with the command

set array [subscript] = value

The array element whose subscript is given is assigned value. Subscripts begin with 1.
The value is treated just like the values assigned to simple string variables.

Shell variables can be set and used interactively to provide abbreviations for
frequently used strings. For example, the sequence of commands

set b=/usr/fred/bin

mv file $b

moves file from the current directory to the directory /usr I fred/bin.

Changing position of elements

The command

shift [nameJ

renumbers the elements of the array whose name is given. Elements 2, 3, 4, ... , are
renumbered as 1, 2, 3, ... ,and so forth. The first element is discarded. This can be useful,
for example, when you work through a list of files. After each file is processed, a shift is
performed, and the next filename becomes argument 1.

If name is not given, shift operates on argv.

Arguments and shell variables 5-59

Removing shell variables

Remove variables using the unset command followed by the name of the variable:

unset name

The variable and its value will both be removed.

Variable substitution

Variables, arrays, and the special variable argv are referenced and their values
substituted when the identifier (the variable name or array or argv element) is
preceded by a dollar sign($):

$ identifier

Here identifier is one of the following:

• variable-name

This can be the name of any simple string variable; for example,

$jl $1 $8 $version

This will substitute the value of the variable. For example, after the command

set form=last

the command

echo $form

prints

last

• array-name

This can be the name of any array; the entire array will be substituted. For example,
after setting up the array address with

set address=(333 Delaney St)

the command

echo $address

prints

333 Delaney St

5-60 Chapter 5 C Shell Reference

• subscripted-array-element

Subscripted names of an array or argv elements in the form

name [subscript]
print the value of that element. subscript can be another variable, a number, or a
range of numbers separated by - , where the first number, if omitted, will be assumed
to be 1 and the second number will be assumed to be the last element. For example,

$argv[1]$names[l-3]$argv[-12]

$names[l-Jnames[$choice]

A special shell variable, *, can be used to substitute for all elements of arrays or
argv. Note that this differs from the usual "filename expansion" usage of the asterisk
character (*).

• number

A $ followed simply by a digit refers to that element of argv. For example,

$1

refers to the first element of argv.

• *
A $ followed simply by * refers to all elements of argv.

• $#name

This substitutes the number of elements (words) in the variable whose name is given.

The form

$ { identifien

is equivalent to $identifier and can be used with all of the above forms. It is used
when the identifier is followed by a a letter or digit. For example,

set tmp=/tmp/ps

ps a >${tmp}a

substitutes the value of the variable tmp and directs the output of ps to the file
/tmp/psa, whereas

ps a >$tmpa

causes the value of the variable tmpa to be substituted.
For all forms of substitution, you can use the following modifiers. The modifiers are

shown in examples that assume the following variable substitution:

Arguments and shell variables 5-61

set i=/usr/mail/marilyn

echo $i

/usr/mail/marilyn

: h Remove trailing pathname, leaving only the head.

% echo $i:h

/usr/mail

: t Remove leading pathname, leaving only the tail.

% echo $i:t

marilyn

: e Remove root filename, leaving only the extension.

% set a=oem.address

% echo $a:e

address

: r Remove filename extension, leaving only the root.

% echo $a:r

oem

: q Quote substituted words; prevent further substitution.

% set a='t*'

% ls $a

t.l t.2 t.3 t.4

% ls $a:q

t* not found.

: x Quote substituted words, but allow blank interpretation.

% set a='echo *'

% $a

chap.l chap.2 t.1 t.2 t.3 t.4

% $a:q

echo *: command not found.

% $a:x

*

5-62 Chapter 5 C Shell Reference

The modifiers : h, : t, and : r can be prefixed with g (: gh) for global modifi­
cation. If braces are used, the modifiers must be inside. Only one modifier is allowed for
each substitution. Substitutions of environment variables may not include modifiers.

Testing assignment

If a variable is not set, an error will be reported. For example, if the variable d is
not set,

echo $d

or

echo ${d}

prints

d: Undefined variable

The following structures allow you to test whether variables are set and not null.

$?name

$ {?name}

For both of these, the value 1 is substituted if name is set; and 0 is substituted if name is
not set.

Variables set by the system

The following variables are set by the C shell during execution:

status The exit status of the last command executed as a decimal string. Most
commands return a zero exit status if they complete successfully; otherwise
they return a nonzero exit status. This is used in the if and whi 1 e
constructs for control of execution.

$ The process ID of this shell in decimal. Because process IDs are unique
among all existing processes, this string is frequently used to generate
unique temporary filenames. For example,

ps a > /tmp/ps$$

commands

rm /tmp/ps$$

Arguments and shell variables 5-63

Control-flow constructs

The shell has a variety of ways of controlling the flow of execution. The actions of the
foreach loop and the switch branch are determined by data available to the
shell. The actions of the while loop and if then else branch are determined
by the exit status returned by commands or tests. Control-flow constructs can be used
together, and loops can be nested.

In the following constructs, reserved words such as end are only recognized
following a newline or semicolon. command-list is a sequence of one or more simple
commands separated or terminated by a newline or a semicolon.

foreach loops

To repeat the same set of commands for several files or arguments, use the foreach

loop:

foreach name (word ...)
command-list

end

For each iteration of the loop, name is set to the next word and then command-list is
executed. If no word is given, the elements of argv are used.

To terminate a loop before the end of word, or to continue a loop and cause it to
reiterate before the end of command-list is reached, use the loop-control commands.

break

continue

These commands can appear only between the loop delimiters. The break command
terminates execution of the current loop; execution resumes after the nearest subsequent
end. The continue command causes execution to resume at the beginning of the
current loop.

5-64 Chapter 5 C Shell Reference

switch statements

A multiway conditional branch is provided by the switch command, whose form is

switch (word)

endsw

case pattern:
command-list

breaksw

case pattern:
command-list

breaksw

default pattern:
command-list

breaksw

word is matched against each pattern. If a match is found, command-list after that
pattern is executed. Otherwise command-list after default (if provided) is executed.

Each command-list must end with breaksw; this breaks out of the case

statement after execution.
Patterns may include filename expansion metacharacters. To be used literally,

pattern-matching metacharacters must be quoted.

while loops
The whi 1 e command allows a loop that depends on whether or not a certain
condition is met.

A while loop has the form

while expression
command-listl

end

command-list2

Control-flow constructs 5-65

The value tested by the while command is the exit status of expression. Each time
expression returns a status of zero (true), command-listl is executed. The loop terminates
when expression returns a nonzero exit status; then command- list2 is executed.

To terminate a loop otherwise, or to proceed to the next loop test before the end of
command-listl is reached, use the loop-control commands

break

continue

These commands can appear only between the loop delimiters. The break command
terminates execution of the current loop; execution resumes after the nearest subsequent
end. The continue command causes execution to resume at the beginning of the
current loop.

if then else

A general conditional branch is also available in the C shell, with the forms

if expression command

(The command in this form is a simple command.)

if expression then

command-listl
[else if expression then

command-list2J
[else

command-list]]
endif]

The if command tests expression to see if it is true. If it is true, the commands
following the if are executed; otherwise the commands following the else (if
present) are executed.

Conditional execution of commands can also be achieved with the symbols &&

and I I . See "Conditional Execution" for details.

5-66 Chapter 5 C Shell Reference

goto

The command

goto label

causes the shell to continue execution after the line consisting of label, which has the
form

word:

label must be the only text on the line. It can be preceded by spaces or tabs.

exit

Shell scripts normally end when an eof is encountered. The exit status is that of the last
command executed. The command

exit [expression]

can be used to cause termination. Exit status is set to expression. If expression is omitted,
the exit status is that of the last command executed before exit was encountered.

Input and output
All forms of I/0 redirection are allowed in shell scripts. If I/0 redirection (using <

or >) is done in any of the control-flow commands, the entire command is executed in
a subshell. This means that any values assigned during execution of the command will
not be available after the command is over, and control returns to the parent shell. To
avoid any problems this may cause, you can use the exec command to change
standard input and output before the command begins.

Input and output 5-67

Standard error and output files

If you want to direct the error output of a command to a file (to save the error messages),
use the syntax

ls filenames >& output

This writes both standard output and error output in the file output. If you want to
save the command output and error output in separate files, use the syntax

(ls filenames > output) >& errors

Reading input

The C shell does not have a built-in function for reading data from standard input;
however, the 1 ine program can be used to provide this capability. Used in
conjunction with the C shell set command, data from standard input can be stored in
C shell variables. In the following example, the C shell variable a will contain the string
hello, world after the line command reads data from standard input:

% set a= 'line'

hello, world

% echo $a

hello, world

See 1 ine(l) in A!UX Command Reference for more information.

Taking input from scripts

Input to a shell script can be embedded inside the script itself. This is called a here
document. The information in a here document is enclosed as follows:

« [- J word
information

word

where word is a string used to delimit the here document. The first word may appear
anywhere on a line; the second must appear alone and first on a line. The words must be

5-68 Chapter 5 C Shell Reference

identical and should not be anything that will appear in information. The second word is
the eof for the here document.

Variable and command substitution will occur on information. Normal quoting
conventions apply, so $ can be escaped with \. To prevent all substitution, quote any
character of the first instance of word. (If substitution is not required, this is more
efficient.) The choice of double or single quotation marks will affect the resulting action.

To strip leading tabs and blanks from word and information, precede the first
instance of word with the optional hyphen(-), as follows:

<<-word

+ Note If you intend to indent your code, you must use the hyphen preceding word
unless the commands you use can tolerate leading tabs and blanks. •

For example, a shell procedure could contain the lines

foreach i

grep $i /usr/lib/telnos

end

Here the grep command looks for the pattern specified by $ i (in this case, the
elements of argv) in the file /usr /lib/telnos. This file could contains the lines

fred rnh0123

bert rnh0789

An alternative to using an external file would be to include this data within the shell
procedure itself as a here document:

foreach i

end

grep $i <<!

fred rnh0123

bert rnh0789

Input and output 5-69

In this example, the shell takes the lines between < < ! and ! as the standard
input for grep. The second ! represents the eof The choice of ! is arbitrary. Any
string can be used to open and close a here document, provided that the string is quoted
if white space is present and the string does not appear in the text of the here document.

Here documents are often used to provide the text for commands to be given for
interactive processes, such as an editor, called in the middle of a script. For example,
suppose you have a script named change that changes a product name in every file
in a directory to a new name, as follows:

foreach i (*)

echo $i

ed $i <<!

g/oldproduct/s//newproduct/g

w

end

(Note that ed commands do not tolerate leading tab characters and there is no
hyphen preceding the first word; therefore the code is not indented.) The metacharacter *
is expanded to match all filenames in the current directory, so the foreach loop
executes once for each file. For each file, the ed editor is invoked. The editor commands
are given in the here document between < < ! and ! . They direct the editor to search
globally for the string oldproduct and substitute the string newproduct. After the
substitution is made, the editor saves the new copy of the file with the w command.

You could make the change script more general by using parameter substitution
as follows:

foreach i (*)

echo $i

ed $i <<!

g/$1/s//$2/g

w

end

Now the old and new product names (or any other strings) can be given as
arguments on the command line:

change stringl string2

5· 70 Chapter 5 C Shell Reference

Substitution of individual characters can be prevented by using a backslash(\) to
quote the special character $, as in

foreach i

echo $i

ed $i <<!

l,\$s/$1/$2/g
w

end

This version of the script is equivalent to the first, except that the substitution is
directed to take place on the first to the last lines of the file (1, $)instead of "globally"
(g) as in the first example. This way of giving the command has the advantage that the
editor prints a question mark (?) if there are no occurrences of the string $1.

You can prevent substitution entirely by quoting the first instance of the terminating
string; for example,

ed $i <<\!

Note that backslash, single quotation marks, and double quotation marks all have the
same effect in this context: they turn off variable substitution and filename expansion.

Using command substitution

Command substitution can occur in all contexts where variable substitution occurs. You
can use command substitution in a shell script to avoid typing long lists of filenames. For
example,

ex 'grep -1 TRACE *.c'

runs the ex editor, supplying as arguments those files whose names end in . c and
that contain the string TRACE. Another example,

foreach i ('ls -t')

command-list
end

sets the variable i to each consecutive filename in the current directory, starting with
the file that was most recently created or modified. The commands specified in
command-list are then performed once for each file.

Input and output 5-71

Writing to the standard output

The echo command is used to write to standard output (by default, the screen). The
form of the echo command is

echo [-nJ argument ...

The arguments are written to the standard output. They are evaluated like the
arguments of any other command with variable and command substitution, filename
expansion, and blank interpretation. Normal quoting conventions apply. Strings
containing tabs or multiple blanks must be enclosed in double quotation marks. The
arguments will be written sequentially, separated by blanks, and unless the -n flag
option is specified, they will be terminated with a newline.

If there are no arguments or the arguments are null variables, no output other than a
blank line will ensue. If the arguments are unset, an error message will be printed.

If the -n flag option is specified, the output is written without a final newline.

Other features

Arithmetic evaluation

The C shell command @ is used for integer arithmetic and to set variables to arithmetic
expressions. The form of the @ command is

@ variable = expression

variable can be a simple variable name or the subscripted element of an array. The
possible expressions are listed in the next section. Each element in an expression must be
surrounded by spaces. A simple example of the @ command would be to increment a
counter as follows:

@ i = $i + 1

5-72 Chapter 5 C Shell Reference

Expressions

The C shell has operators similar to C, with the same precedence. These expressions are
usedinthe @, exit, if,and while commands.Thefollowingoperatorsare
available in this order of precedence:

I I logical (bit-wise) OR

&&

A

&

!=

<= >=

<< >>

+ -

* I %

- !-

< >

logical (bit-wise) AND

binary OR

binary exclusive OR

binary AND

equal, not equal, equal, not equal

comparison

left shift, right shift

addition, subtraction

multiplication, division, modulus

logical negation

binary inversion or binary NOT

Note that many of these do not work with the @ construct.
Parentheses can be used to change operator precedence. The --, ! =, =-,and

! - operators compare their arguments as strings; all others operate on numbers. The
operators =- and ! - are like ! = and == except that the right-hand operand is a
pattern (containing, for example, * s, ? s, and instances of brackets ([J) against which
the left-hand operand is matched. This reduces the need for use of the switch statement
in shell scripts when all that is really needed is pattern-matching.

Strings that begin with 0 are considered octal numbers. Null or missing arguments are
considered 0. The result of all expressions are strings, which represent decimal numbers.
Elements of expressions should be separated by spaces. The operators &, &&, I, I I,

<, >, (,and) should be quoted to avoid interpretation by the shell.

Other features 5-73

Also available in expressions as primitive operands are commands enclosed in braces.
(Note that the command must be surrounded by white space, for example { ls } .)

Commands execute successfully, returning true (that is, 1) if the command exits with
status zero; otherwise they fail, returning false (that is, 0). If more detailed status
information is required, then the command should be executed outside an expression
and the variable status examined.

File status

The C shell allows inquiries about the status of files of the form

opt name

where name is the name of the file and opt is the status query. Possible options are

-r read access

-w write access

-x execute access

-e existence

-o ownership

-z zero size

-f plain file

-d directory

Command and filename expansion are performed on the specified name, and then it
is tested to see if it has the specified relationship to the real user. If the file does not exist
or is inaccessible, then all inquiries return false (0). For example, the form

-e employees

will return a true value (1) if the file employees exists; otherwise it will return 0.

5-7 4 Chapter 5 C Shell Reference

Error handling
The treatment of errors detected by the shell depends on the type of error and on
whether the shell is being used interactively.

Execution of a command may fail for any of the following reasons:

• 1/0 redirection may fail if a file does not exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus error or memory
fault signal.

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell goes on to execute the next command. An interactive
shell returns to read another command from the terminal. If a shell script is being
executed the next command in the script is read. Except for the last case, the shell prints
an error message.

All other types of errors cause the shell to exit from a shell script. Such errors include

• Syntax errors, for example, if then done.

• A signal such as interrupt. The shell waits for the current command, if any, to finish
execution and then either exits or returns to the terminal.

• Failure of any of the built-in commands.

The shell flag - e causes the shell to terminate if an error is detected.

Error handling 5-75

Fault handling and interrupts

You can catch interrupts given to a shell script with the command

onintr label

When an interrupt is detected, execution will be transferred to the command
following the line consisting of label, which has the form

word:

label must be the only text on the line. It can be preceded by spaces or tabs.
For example, onintr can be useful if you wish to clean up temporary files created

by a shell script. After label, the commands to remove the temporary files and execute an
exit command would be invoked.

Debugging a shell script

Several shell options can be set that help with debugging shell scripts. These are

-e Causes the shell to exit immediately if any command exits with a nonzero exit
status. (This can be dangerous in scripts involving constructs where nonzero exit
status is desired.)

-n Prevents execution of subsequent commands. Commands will be evaluated but
not executed. (Note that typing csh -n at a terminal renders the terminal
useless until an eofis entered.)

-u Causes the shell to treat unset variables as an error condition.

-v Causes the shell to print lines of a procedure as it reads them. Use this to help
isolate syntax errors.

-x Provides an execution trace. Following variable substitution, each command is
printed as it is executed.

The execution options can be turned on with the csh command if the script is
executed as follows:

/bin/csh -option script

5-76 Chapter 5 C Shell Reference

Summary of C shell commands
I/0 redirection is permitted for these commands. File descriptor 1 is the default output
location.

alias [name][word-lisrj

Print aliases. With no arguments, this prints all aliases. The second form prints the alias
for name. The final form assigns the specified word-list as the alias of name; command
and filename substitution is performed on word-list. name is not allowed to be alias

or unalias. See "Aliases for Commonly Used Commands."

bg [%job ...]

Put the current or specified jobs in the background, continuing them if they were
stopped. See "Changing the Status of Stopped] obs."

break

Cause execution to resume after the end of the nearest enclosing f oreach or
while. The remaining commands on the current line are executed, including additional
break commands. See "foreach Loops" and "while Loops."

breaksw

Cause a break from a switch and resume after the endsw. See "switch

Statements."

case [label:]
A label in a switch statement, as discussed below. See "switch Statements."

cd [name]
If no argument is given, change to the home directory of the user. If name is specified,
change the shell's working directory to directory name. If name is not found as a
subdirectory of the current directory (and does not begin with I, . I, or .. I), each
component of the variable cdpath (see "C Shell Variables") is checked to see if it has
a subdirectory name. Finally, if all else fails but name is a shell variable whose value
begins with I, this is tried to see if it is a directory.

Summary of C shell commands 5-77

chdir [name]

Another form of the cd command.

continue

Continue execution of the nearest enclosing whi 1 e or f oreach. The rest of the
commands on the current line are executed. See "foreach Loops" and "while

Loops."

default:

Label the default case in a switch statement. The default should come after all
case labels. See "switch Statements."

di rs

Print the directory stack. The top of the stack is at the left, and the first directory in the
stack is the current directory.

echo [-n] [word-tis~

Write the specified words to the shell's standard output, separated by spaces and
terminated with a newline unless the -n option is specified. See "Writing to the
Standard Output."

else

See the description of the i f statement.

end

See the description of the foreach and while statements.

endif

See the description of the if statement.

endsw

See the description of the switch statement.

5-78 Chapter 5 C Shell Reference

eval [arg. ..]
arg is read as input to the shell and the resulting commands execute in the context of the
current shell. This is usually used to execute commands generated by command or
variable substitution because parsing occurs before these substitutions. See "Command
Evaluation."

exec [command]
Execute the specified command in place of the current shell. See "Executing Shell
Scripts" and "Changing to a New Shell."

exit [expn
Cause the shell to exit either with the value of the status variable (first form) or with
the value of the specified expr(second form). See exit under "Control-Flow
Constructs;" also see "Protection Against Unintentional Logout" and "Working With More
Than One Shell."

fg [%job ... J

Bring the current versions of specified jobs into the foreground, continuing them if they
were stopped. See "Changing the Status of Stopped Jobs."

foreach name [(word-list) J

end

Set the variable name successively to each member of word-list and execute the
sequence of commands between this command and the matching end. (Both
foreach and end must appear alone on separate lines.)

When the foreach command is read from the terminal, the loop is read once,
and the shell prompts you with ? before any statements in the loop are executed. If
you make a mistake typing in a loop at the terminal, you can interrupt it. The built-in
command continue may be used to jump to the next cycle of the loop so that any
subsequent commands in the current loop are ignored. The built-in command break

may be used to leave the loop immediately; any remaining members of word-list are
then ignored. See "foreach Loops."

Summary of C shell commands 5-79

glob [word-lisrl
Similar to the echo -n command (see "Writing to the Standard Output"), but no \
escapes are recognized, and words are delimited by null characters in the output. Useful
for programs that use the shell to perform filename expansion on a list of words.

goto [word]
The shell performs filename expansion and command substitution on the specified word
to yield a string of the form label. The shell searches through as much of the input it has
received as possible for a line of the form label, which can be preceded by blanks or
tabs. Execution continues after the specified line. See goto under "Control-Flow
Constructs."

hashstat

Print a statistics line indicating how effective the internal hash table has been in the
shell's locating commands (and avoiding exec commands). An exec is attempted
for each component of the path where the hash function indicates a possible hit, and
in each component that does not begin with a !.

history [n) [-h) [-r)

Display the history event list. Specifying n prints only the n most recent events. The -h

flag option prints the history list without leading numbers. This produces files suitable
for sourcing with the - h flag option to source. The -r flag option reverses the
order of the printout to most recent first rather than oldest first. See "Listing and Reusing
Commands," "Listing Previous Commands,'' and history under "C Shell Variables."

if [(expr)] [command]
If the specified expression evaluates true, the single command with arguments is
executed. Variable substitution on command happens early, at the same time it does for
the rest of the if command. command must be a simple command, not a pipeline, a
command list, or a parenthesized command list. Input/ output redirection occurs even if
expr is false, when command is not executed. Note that expr may be enclosed in
parentheses.

5-80 Chapter 5 C Shell Reference

if [exprJ then

else if [expr2] then

else

endif

If the specified expr is true, the commands to the first e 1 s e are executed; else if
expr2is true, the commands to the second else are executed; and so on. Any
numberof e 1 s e- if pairs are possible; only one endi f is needed. The e 1 s e

part is optional. (The words e 1 s e and endi f must appear at the beginning of
input lines; the if must appear at the beginning of its input line or after an else.)

See "Control-Flow Constructs."

jobs [-1)

List the active jobs. The -1 flag option also lists process IDs. See 'Job Control,"
"Logging Out With Stopped Jobs," "Checking Command Status,'' "Listing Jobs,'' and
"Changing the Status of Stopped Jobs."

kill [-sigJ [%job] [pidJ (-ll

Send either the terminate signal or the specified signal to the specified jobs or processes.
Signals are given either by number or by name (as specified in s i gna 1 (3) in A!UX
Programmer's Reference, but stripped of the prefix "SIG"). ki 11 -1 lists the signal
names. There is no default; typing ki 11 does not send a signal to the current job. If
the signal being sent is terminate or hang up, the job or process is sent a continue signal
as well. See "Canceling Commands," 'Job Control," and "Canceling Background
Commands."

login [name]
Terminate a login shell, replacing it with an instance of /bin/ login. This is one way
to log out, included for compatibility with sh(l).

Summary of C shell commands 5-81

logout

Terminate a login shell. Especially useful if ignoreeof is set. See "Protection Against
Unintentional Logout."

nice [[+ J [-]numben [command]]
Without an argument, lower the run priority for this shell to 4. The form

nice +number

or

nice -number

sets nice to the given number. The forms

nice command

and

nice +number command

run command at priority 4 and priority number, respectively. The superuser may
increase a command's run priority by using

nice -number command

command is always executed in a subshell, and the restrictions placed on commands in
simple if statements apply. See ni c e(l) in A/UX Command Reference for more
information.

nohup [command]
Without an argument, cause hangups to be ignored for the remainder of the script. The
second form causes the specified command to be run with hangups ignored. All processes
running in the background with & are effectively run nohup. See "Logging Out."

notify [%job]
Notify you when the current or specified job completes without waiting for a prompt.
The notify variable sets this automatically. See "C Shell Variables."

5-82 Chapter 5 C Shell Reference

onintr [-] [laben

Control the action of the shell on interrupts. Without an argument, onintr restores
the default action of the shell on interrupts, which is to terminate shell scripts or to return
to the terminal command input level. The form

onintr -

causes all interrupts to be ignored. The form

onintr label

causes the shell to execute a

goto label

when an interrupt is received or a child process terminates because it was interrupted
(see the label command in this summary and "Fault Handling and Interrupts" for a
description of the valid form of label). In any case, if the shell is running detached
and interrupts are being ignored, all forms of onintr have no meaning, and
interrupts continue to be ignored by the shell and all invoked commands.

popd [+n]
Pop the directory stack, returning to the new top directory. With an argument +n,
popd discards the nth entry in the stack. The elements for the directory stack are
numbered from 0 starting at the top.

pushd [name] [+n]
With no arguments, exchange the top two elements of the directory stack. Given a name
argument, pushd changes to the new directory (as in ca) and pushes the old current
working directory (as in cwd) onto the directory stack. With a numeric argument, rotates
the nth argument of the directory stack around to be the top element and changes to it.
The members of the directory stack are numbered from the top starting at 0.

Summary of C shell commands 5-83

rehash

Cause the internal hash table of the contents of the directories in the path variable to
be recomputed. This is needed if new commands are added to directories in the path

while you are logged in. This should only be necessary if you add commands to one of
your own directories, or if someone changes the contents of one of the system
directories. See "Writing Efficient Shell Scripts."

repeat [count commandJ
Execute the specified command, which is subject to the same restrictions as command
in the one-line if statement presented earlier, count times. I/0 redirections occur
exactly once, even if count is 0. See "Other Uses for Command History."

set [name [inde~=wordl
Without an argument, show the value of all shell variables. Variables that have a value
other than a single word are displayed as a word list in parentheses. The form

set name

sets name to the null string. The form

set name=word

sets name to the single word. The form

set name [index] =Word

sets the inde.xth component of name to word; this component must already exist. The
form

set name=word-list

sets name to the list of words in word-list. The shell performs command substituion and
filename expansion on the words in word-list. These arguments can be repeated to set
multiple values in a single set command. Note, however, that variable expansion
happens for all arguments before any setting occurs. See "C Shell Variables."

setenv name value

Set the value of environment variable name to be value, a single string. The variable PATH

is automatically imported to and exported from the c sh variable pa th; there is no need
to use setenv for this. See "Adding Environment Variables and Modifying Values."

5-84 Chapter 5 C Shell Reference

shift [variable]
Shift the members of argv to the left, discarding argv [1 J . It is an error for argv

not to be set or to have less than one word as a value. The second form performs the
same function on the specified variable. See "Changing Position ofElements."

source [-h[name]]
Read commands from name or from standard input. source commands may be
nested; if they are nested too deeply, the shell may run out of file descriptors. An error in
a source at any level terminates all nested source commands. Normally,
commands input interactively during execution of a source command are not placed
on the history list; the - h flag option causes the commands to be placed on the history
list without being executed. See "Command Execution,'' "Executing Shell Scripts,'' and
"The Environment and New Shell Instances."

stop [%job]
Stop the current background job or, if job is specified, the specified background job.

suspend

Cause the shell to stop in its tracks, much as if it had been sent a suspend signal. This is
most often used to stop shells started by su (see su(l) in A/UX Command
Reference). You cannot suspend your login shell.

switch ([string])

case str1:

breaksw

default:

breaksw

endsw

Summary of C shell commands 5-85

Match each case label successively with the specified string, which first has command sub­
stitution and filename expansion performed upon it. The file metacharacters *, ? , and
[.. .] may be used in the case labels, for which variable expansion is petformed. If none
of the labels match before a default label is found, the execution begins after the default
label. Each case label and the default label must appear at the beginning of a line, and
string must be enclosed in parentheses. The command breaksw causes execution to
continue after the endsw. Otherwise control may fall through case labels and default
labels as in the C programming language. If no label matches and there is no default,
execution continues after the endsw. See "switch Statements."

time [command]

With no argument, print a summary of time used by this shell and its children. If
arguments are given, the specified simple command is timed and a time summary as
described under the time variable is printed. If necessary, an extra shell is created to
print the time statistic when the command completes.

umask [value]

If no value is given, display the file creation mask; otherwise, set the mask to the
specified value. The mask is given in octal. Common values for the mask are 002, which
gives all access to the group and read and execute access to others, and 022, which gives
all access except no-write access to users in the group or others.

unalias [pattern]
Discard all aliases whose names match pattern. Thus all aliases are removed by

unalias *

See "Listing and Removing Aliases."

5-86 Chapter 5 C Shell Ref ere nee

unhash

Disable use of the internal hash table to speed location of executed programs.

unset [pattern]

Remove all variables whose names match pattern. Thus all variables are removed by

unset *

See "Removing C Shell Variables."

unsetenv [pattern]

Remove all variables whose name matches pattern from the environment. See also
setenv above and printenv(l) in A!UX Command Reference. See "Removing
Environment Variables."

wait

Wait for all background jobs. If the shell is interactive, an interrupt can disrupt the wait,
at which time the shell prints names and job numbers of all jobs known to be
outstanding.

while [(expr) l

end

While the specified expression evaluates nonzero, evaluate the commands between the
while and the matching end. The break and continue statements may be
used to terminate or continue the loop prematurely. (The whi 1 e and end must
appear alone on their input lines.) Prompting occurs here the first time through the loop,
as for the foreach statement, if the input is from a terminal. See "while Loops."

%job-numbe1{&]
Without the ampersand, bring the specified job into the foreground. With the
ampersand, continue the specified job in the background. See "Job Control."

Summary of C shell commands 5-87

@ [naml{index]=exptl
Without an argument, print the values of all shell variables. The form

@ name=expr

sets the specified name to the value of expr. If the expression contains <, >, & , or I ,

at least this part of the expression must be placed within parentheses. The form

@ name [index] =word

assigns the value of word to the indexth argument of name. Both name and its indexth
component must already exist.

The operators *=, +=,and so on are available as in the C programming language.
The space separating the name from the assignment operator is optional. Spaces are,
however, mandatory in separating components of exprthat would otherwise be single
words.

Special postfix + + and - - operators increment and decrement name,
respectively. For instance, one way to increment the variable i is

@ i++

5-88 Chapter 5 C Shell Reference

6 Shell Layering

Invoking the shl program I 6-3

Creating a shell layer I 6-3

Suspending and resuming shell layers I 6-3

Leaming the status of shell layers I 6-4

Deleting shell layers I 6-5

Summary of shl commands I 6-5

The shl program allows you to create up to seven labeled subshells called shell

layers within your login shell. These layers can then be referred to by name (or number),

suspended and resumed, deleted, and so on. Each of these layers appears like your login

shell, but can be used to run a process while you switch to another layer. This provides a

management scheme for multiple concurrent processes.

When you are using the shl program, you can suspend a shell layer (and the process

you are running in that layer) by sending a swtch character. This returns you to the shl

prompt where you can list other shell layers, resume a layer, delete a layer, and so on.

+ Note If you are using the Korn shell or the C shell, you should make sure the swtch
and susp characters are defined to different control sequences. Otherwise, job control
will function correctly in the shell layer you invoke, but the shl program will be
inaccessible. The A/UX: standard distribution sets the swtch character to CONTROL-' and
the susp character to CoNTROL-Z. To check that these are defined to different control
sequences on your system, enter the command

stty

at the shell prompt. This displays the settings for various user-definable sequences. See
st ty(l) in A/UX Command Reference for additional details. •

6-2 Chapter 6 Shell Layering

Invoking the shl program
To invoke the shell-layering facility, use the command

shl

You will then see the shl prompt:

>>>

Creating a shell layer
At the shl prompt, you can create a new shell with the create command. Like all
shl commands, this can be abbreviated to the first letter of the command:

c [name]

This creates a new shell, where name may be a sequence of characters delimited by a
blank, tab, or newline; only the first eight are significant. If you don't specify a name, the
system will assign the number 1 for the first shell, 2 for the second, and so on, up to 7.
Because the digits 1 through 7 are used for system-assigned names, they cannot be used
for user-assigned names.

It is a good idea to name shells after the process you intend to run. For example, you
can create a shell

c vi

in which you intend to use vi, and another shell

c machine.name

for a continuing rlogin session with another machine.

Suspending and resuming shell layers
The new shell layer uses the name you assigned it as a shell prompt. If you did not
specify a name, it uses the number assigned by the system. When you see this prompt,
you can begin working just as in your regular login shell.

Suspending and resuming shell layers 6-3

To temporarily stop working in that shell, enter the swtch sequence at the beginning
of a line. (If you enter a swtch in the middle of a line, the remainder of the information
on that line will be discarded.)

You may use swtch at the shell layer's prompt, or in the middle of an interactive job
such as vi. Whatever you are doing in that layer will immediately be suspended, and
the shl prompt will be returned:

>>>

To continue working in a layer that you have stopped with swtch, use the command

r name

For example,

r vi

brings your vi job back into the foreground. The shell layer resumes at the point
where you suspended it. If you were in vi, it resumes vi at the same point in the
file. However, you may need to use the vi CoNTROL-L command to redraw your
screen.

+ Note When resuming a shell layer, you will not see a new prompt until you enter a
second RETURN. If you give the resume command without an argument, the last layer
you were working in will be resumed. •

Learning the status of shell layers
You can obtain a listing of the current layers and their status by using the command

1

This returns output that looks something like

vi (02445) executing or awaiting input

where the number is a process ID. Used with the -1 option, this command produces a
listing similar to the ps command.

6-4 Chapter 6 Shell Layering

Deleting shell layers
When you delete a shell layer, all processes running in that layer are killed. If you are
finished using a particular shell layer, you can remove it by leaving that layer using the
exit command or ea/instead of swtch. Or you can remove a shell layer from the shl

prompt by using the delete command:

a name

Summary of shl commands
The following are the commands you can enter in response to the shl prompt. You
can use either the full command name or just the first letter.

c [reateJ [name]
Create a layer called name and make it the current layer. If you don't specify name, a
layer will be created and assigned a digit between 1 and 7.

b [lock] name[name ...]
For each name, block the output of the corresponding layer when it is not the current
layer.

d [elete J name [name .. .]
For each name, delete the corresponding layer. All processes in the process group of the
layer are killed (sent the hangup signal).

h [elp] or ?

Print the syntax of the shl commands.

1 [layers] [-ll [name ...]
For each name, list the layer name and its process group. The -1 option produces a
listing similar to the ps command. If no arguments are given, information is presented
for all existing layers.

Summary of shl commands 6-5

r[esume] [name]
Make the layer referenced by name the current layer. If no argument is given, the last
existing current layer will be resumed.

t[oggle]

Resume the layer that was current before the last current layer.

u [nblockJ name[name ...]
For each name, do not block the output of the corresponding layer when it is not the
current layer.

q[uit]

Exit the shl program and return to the original login shell. All layers are killed (sent
the hangup signal). After you exit the shl program, you will once again see the shell
prompt.

name
Make the layer referenced by name the current layer.

6-6 Chapter 6 Shell Layering

Appendix: Additional
Reading

Morris I. Bolsky and David G. Korn. The KomShell Command and Programming Language.
Prentice Hall, 1989.

Stephen G. Kochan and Patrick H. Wood. UNIX Shell Programming. Hayden Books, 1985.

Barry Rosenberg. KomShell Programming Tutorial. Addison Wesley, 1991.

Glossary

absolute pathname The complete name of a file,
given by listing all of the directories leading down to that
file, starting from root (I) and concluding with the
filename itself. The directories leading to the file are
separated from each other and from the filename by
slashes. For example, /etc/passwd is the absolute
pathname of the system password file, passwd, located
in the etc directory beneath the root (I) directory.

alias An alternate name used to invoke or identify a
command, a particular implementation of a command, a
group of commands, or some other applicable entity.
Established with the alias command.

argument A piece of information included on
the command line in addition to the command; the
shell passes this information to the command, which
then modifies its execution in some particular way.
Filenames, for example, are often supplied as arguments
to commands so that a command will operate on the
named file.

argument list A group of related arguments;
specifically, all of the arguments passed to a program.

Bourne shell The standard UNIX System V shell.

child process A subordinate process created by a
parent process by making a copy of itself.

children See child process.

command line The entire input string that you enter in
response to the shell prompt to issue a command or to
start a program. The command line includes the
command itself and any arguments and options.

control character A nonprinting character that orders
an action to be performed. For example, the interrupt
character (by default, entered by holding down
CONTROL and pressing C) interrupts a program's
execution and returns you to the shell prompt.

C shell The default NUX shell; the standard BSD shell.
See also shell.
current directory The last directory into which you
moved with the cd command; this directory is the
starting reference point for all relative pathnames you
enter. Also called the working directory.

daemon A process that, when started, runs
continuously in the background; daemon processes
typically provide a service, the need for which is
unpredictable and intermittent.

demon See daemon.
device A part of the computer, or a piece of external
equipment, that can transfer information.

environment A list of variables and other data that is
available to all programs (including subshells) invoked from
the shell. You can modify many of these characteristics.

GL-1

escape character A character that causes a program to
interpret the following character or characters in a special
way, for example, the backslash (\), a nonprinting
character that protects the following character from
interpretation as a metacharacter by the shell.

filename template A combination of printable
characters and wildcard characters used to specify a
group of files.

file system The logical organization of data in storage
media, such as partitions on a hard disk drive.

filter A utility that accepts its data from the standard
input, transforms it in some way, and writes this
transformed data to the standard output. Lines submitted
as input to the sort command, for example, are
reordered so that the lines in the output are arranged
alphabetically or numerically.

interrupt character The keyboard character that,
when pressed, interrupts execution of a program and
returns you to the shell prompt. By default, CoNTROL-C is
the A/UX interrupt character (issued by holding down
CONTROL while pressing C).

1/0 redirection See redirection.
Kom shell A command interpreter that combines
many of the best features found in the standard System V
shell (the Bourne shell) and the standard BSD shell (the
C shell). See also shell.

login name The name of a user's account. Used for
identification purposes. Specified as the first field in an
account entry in the file /etc/passwd.

login shell The shell that is started for your use each time
you log in with a particular login name. Specified as the
last field in an account entry in the file /etc/passwd.

GL-2 Glossary

metacharacter A character interpreted by a program as
standing for other characters or as designating a special
function. For example, the ampersand(&) metacharacter
at the end of a command line causes the shell to run the
command as a background job.

pathname A filename prefixed by its directory location.
A pathname may contain a list of directories, separated
from the filename and from each other by slashes. Each
item in a pathname is located in the directory named to its
left. For example, I etc/passwd is a pathname for the
system password file, passwd, located in the etc

directory beneath root (I). See also absolute pathname.
pattern matching A process by which the shell
interprets wildcard characters.
peripheral device A piece of hardware, such as a disk
drive, modem, printer, or terminal, that is connected to a
computer and used for reading or writing data.

permissions Authorization to read, write, or execute a
file or directory. Under UNIX operating systems, each
capability is assigned on an individual, group, and
system-wide basis.

quoting Use of certain metacharacters to prevent the
shell's usual special interpretation of other
metacharacters.

PID See process ID.

pipe (n.) (1) A command line that connects two or
more commands in a series so that the output of one
command becomes the input to the next. Also called a
pipeline. (2) An intermediate file in which data is passed
from one process to another. (v.) To connect two or
more commands in a series so that the output of one
command becomes the input to the next.

pipeline See pipe.
primary prompt A character or string of characters
displayed on the terminal when a shell expects a new
command from you. The Bourne and Korn shells, for
example, are set by default to display the dollar sign($)
as their primary prompt; the C shell is set by default to
display the percentage sign (%)as its primary prompt.

process An instance of a program in execution. Usually
one copy of a program is stored on a UNIX system like
A/UX, but multiple instances of the program-each
having its own address space---can be executed
simultaneously as separate processes.

process ID (PID) A unique number assigned to each
process being executed on the system. The PID is listed
with its associated command when you enter the ps

command. The PID is sometimes called the process
number.

prompt A character or string of characters displayed on
the terminal when a program is waiting for input. See
also primary prompt.

quoting Special syntax in the command linP that tells
the shell to interpret metacharacters literally or to control
the type of substitution allowed in the command.

redirection A feature of the shell that allows you to
pass the output of a command to a file or device instead
of to the terminal screen, and to supply a command with
input from a file or device instead of from the keyboard.

redirection operator An operator (<, >, or ») used
to effect 1/0 redirection.

script A file containing commands. See also shell script

shell A utility that accepts your commands, interprets
them, and passes them on to the appropriate programs
for execution. A/UX provides three shells: Bourne, C,
and Korn. Each can be used as an interpreted
programming language.

shell prompt A character or string of characters
displayed on the terminal to show that the shell is
waiting for input from the user. The Bourne and Korn
shells, for example, are set by default to display the
dollar sign($) as their primary prompt; the C shell is set
by default to display the percentage sign (%) as its
primary prompt.

shell script A shell program contained in a text file.
Entering the name of the shell script from the command
line executes the commands listed in the shell script.

shell variable A variable local to the shell. A shell
variable is available only to the current invocation of the
shell, not to any of its subshells or spawned processes.

spawn The action of creating a child process.
standard error The data stream used for error
messages from a command or a shell. By default, the
shell directs this to the CommandShell window. The
standard error file descriptor is 2.

standard input The data stream used for input to a
command. By default, the shell accepts as input the
characters you type from your keyboard. A less-than sign
(<) used as a redirection operator directs the shell to
accept input from a file or device. The standard input file
descriptor is 0.

standard output The data stream used for output from
a command. By default, the shell directs this to the
terminal screen. The greater-than sign(>) directs the
shell to write the output to a file or device. The standard
output file descriptor is 1.

Glossary GL-3

tilde escape The tilde character(-), used as an escape
character to signal that the next input string is a
command.

toggle option See toggle variable.

toggle variable A setting for the shell environment that
may be turned ON or OFF with the set or unset

command. For example, the set noclobber

command entered from the C shell turns on a toggle
variable that helps ensure existing files are not
accidentally overwritten.

user ID A number that identifies a user at the time of
login. Often called UID.

user name See login name.

GL-4 Glossary

variable A named storage location for a value. Two
types of variables are typically associated with shells:
shell variables and user-defined variables.

variable assignment A construct that causes a value to
be associated with a variable; the process of associating a
value with a variable.

wildcard character A metacharacter used in a
filename template to match a character or pattern of
characters.

working directory The last directory into which you
moved with the cd command; this directory is the
starting reference point for all relative pathnames you
enter. Also called the current directory.

Index

I (pipe) metacharacter 2-20, 3-14, 4-29,
5-23

- home directory specifier 4-23, 5-19
-+ current directory specifier 4-25
-- previous directory specifier 4-25
$ (dollar sign) metacharacter

example 2-15, 2-22
$ Bourne shell prompt 3-3
$ Korn shell prompt 4-3
$ shell PID variable

example 2-22
- k option (Korn shell) 4-41
% C shell prompt 5-3
& (ampersand) metacharacter 2-23
. cshrc file 5-36, 5-40
. kshrc file 4-40, 4-46
. login file 5-38
.profile file 3-25, 4-39

Bourne shell 3-25 to 3-26
Korn shell 4-43

/bin/ csh. See C shell
/bin/ksh. See Korn shell
/bin/ sh. See Bourne shell
I etc /passwd. See password file
: (null) command 3-76
< input redirection operator 2-18, 3-13,

4-28, 5-22
> (greater-than symbol), used to create

files 2-10

> output redirection operator 2-18, 3-13, B
4-28, 5-22

> Bourne shell prompt 3-3
> Korn shell prompt 4-3
> > output redirection operator 2-18,

3-13, 4-28, 5-22
? C shell prompt 5-3

A
alias 4-48 to 4-50, 5-42 to 5-44

default 4-50
defining 4-48 to 4-49, 5-42
listing 4-49, 5-43
removing 4-49, 5-43
tracking 4-50
with arguments (C shell) 5-43

alias command, example 2-8
alias substitution 4-61
& (ampersand) metacharacter, for

background commands 2-23
argument 3-5, 4-5, 5-4, 5-57
arithmetic 3-69, 4-105 to 4-107, 5-72
array variables

moving elements of 5-59
shifting elements of 5-59

assignment, testing 3-46 to 3-47,
4-78 to 4-80, 5-63

A/UX commands 3-4, 4-4, 5-4

background command 2-22 to 2-25
standard input for 4-30
standard output for 4-30

background commands 3-6 to 3-7,
4-7, 5-6

canceling 4-8
PID 3-7, 4-7, 5-6
saving output from 3-7, 4-7, 5-6
status of 3-3, 4-7, 5-6

blank interpretation 3-36, 4-62 to 4-63,
5-55

blocked jobs
C shell 5-49
Korn shell 4-55

Bourne shell, introduced 1-10
built-in commands 3-4, 4-4, 5-3

getting information about 4-4 to 4-5

c
canceling commands 3-7 to 3-9 4-8

4-10,5-7to5-9 ' '
background 4-10
with kill command

by job number 4-10
byPID 4-10 I

canceling jobs, Korn shell 4-56

IN-1

case statement 3-51to3-53,
4-85 to 4-86

cd command
example 1-4, 2-8

CDPATH variable 3-27, 4-44 to 4-45
changing default shell 3-19, 4-34, 5-28
changing login shell 3-19, 4-34, 5-28
changing shells

permanently 3-19, 4-34, 5-28
temporarily 3-18, 4-34, 5-27

child process 2-21
chsh command 3-19, 4-34, 5-28
combining commands 3-14, 4-29, 5-23
command

: (null) 3-71, 3-76
A/UX 1-8, 3-4, 4-4, 5-4
built-in 1-8, 3-4, 4-4, 5-3

getting information 4-4
built-in (Korn shell) 4-115 to 4-131
canceling 2-7, 3-7 to 3-9, 4-8, 4-10, 5-7

to 5-9
changing 2-7
changing text in 4-14
combining 3-14 to 3-15, 4-31, 5-24
combining on a line 2-7, 2-8
combining with pipes 3-14, 4-29 to

4-30, 5-23
conditional execution 3-16, 4-32, 5-25
deleting text from 4-15
editing 4-10 to 4-21
editing (Korn shell)

emacs 4-16 to 4-19
gmacs 4-16 to 4-19
vi 4-11 to 4-16

entering 2-5, 2-7
execution 3-38, 4-64, 5-56
exit status 3-38, 4-65, 5-56
grouping 3-15 to 3-16, 4-31, 5-24
inserting text in 4-14
invalid 2-8
listing (C shell) 5-9 to 5-17
locating 1-7 to 1-8, 3-26, 4-44, 5-39
multiline 3-5, 4-6, 5-5

IN-2 Index

parts of 3-4 to 3-5, 4-5 to 4-6, 5-4
argument 3-5, 4-5 to 4-6, 5-4
flag option 3-4, 4-5, 5-4

recognized by shell 1-8
replacing text in 4-15
reusing 4-10 to 4-21
reusing (C shell) 5-9 to 5-17
running in background 2-22 to 2-25,

3-6, 4-7, 5-6
script names as 1-8
search path 3-26, 4-44, 5-39
status of 3-6, 4-7, 5-6
substitution 3-67, 4-101, 5-71
summary (Bourne shell) 3-76
summary (C shell) 5-77
summary (Korn shell) 4-115
user-defined 3-4, 4-4, 5-4
value 3-38, 4-65, 5-56

command evaluation
Bourne shell 3-35
C shell 5-54
Korn shell 4-61

command history
C shell 5-9 to 5-10
HISTFILE variable 4-11
HISTSIZE variable 4-11
Korn shell 4-11
substitution character 5-9 to 5-10

command interpretation 1-4, 1-7
command line

continuation 3-5, 4-6, 5-5
defined 3-5, 4-6, 5-5

CommandShell 1-4
command substitution 3-18, 3-36, 4-33,

4-62, 5-27, 5-55
command termination 3-5, 4-6, 5-5
comparing strings 3-70 to 3-71,

4-108 to 4-109
conditional branch

if statement 3-55, 4-89 to 4-91, 5-66
constants 3-45, 4-76
continuing commands 3-5, 4-6, 5-5
control flow 3-48 to 3-49, 4-82, 5-64

control sequence
defaults 3-7, 4-8, 5-7
eof 3-7, 4-8, 5-7
erase 3-7, 4-8, 5-7
kill 3-7, 4-8, 5-7
quit 3-7, 4-8, 5-7
reassigning 3-7, 4-8, 5-7
susp (suspend) 3-7, 4-8, 5-7
switch 3-7, 4-8, 5-7

controlling jobs 4-52 to 4-56, 5-46 to
5-49

cp command
example 2-13

csh. See C shell
C shell, introduced 1-9 to 1-10
current directory. See working directory
current shell

changing 2-4
customizing login

Bourne shell 3-28
C shell 5-40

D
debugging shell scripts 3-75, 4-115, 5-76
default environment

Bourne shell 3-25
C shell 5-37
Korn shell 4-42

defaults, setting 3-46, 4-78 to 4-80
definition, function 3-39, 4-65
directory

defined 1-4
directory name shortcuts 3-27, 4-44 to

4-45
directory name substitution 4-25
$ (dollar sign) metacharacter

example 2-15, 2-22

E
echo command

example 1-8
editing commands 4-10

editor
initializing

Bourne shell 3-28
C shell 5-40
Korn shell 4-45

invoking 4-11
setting 4-1 O

EDITOR variable 4-10
EDITOR variable 4-19
emacs editor (Korn shell) 4-16 to 4-19
entering commands 3-4 to 3-5, 4-6, 5-5
env command 3-24, 4-41, 5-37
environment 3-19 to 3-25, 4-35 to 4-42,

5-28 to 5-38
. login file 5-38
.profile file

Bourne shell 3-25
Korn shell 4-35 to 4-42

customized 3-23 to 3-25, 4-40 to 4-41,
5-37

default
Bourne shell 3-25
C shell 5-37
Korn shell 4-42

special 3-23, 4-40 to 4-41, 5-37
environment variables

.profile file 3-25, 4-40
adding 4-36 to 4-37, 5-32
assigning values 3-20 to 3-21, 4-36,

5-32
Bourne shell 3-21to3-22
C shell 5-33 to 5-36
exporting 3-23, 4-40, 5-36
Korn shell 4-36 to 4-39
listing values 3-20, 4-36, 5-32
removing 3-21, 4-37, 5-33
setting 3-19, 4-36, 5-28
subshell 3-23, 4-40, 5-36

erroneous commands 2-7, 2-8
eof control sequence 3-7, 3-8, 4-8, 5-7
erase control sequence 3-7, 4-8, 5-7
error handling 3-71 to 3-72, 5-75

error, standard 2-17
escaping metacharacters 2-13
evaluation, forcing 3-37, 4-63
exec command

example 2-5
executing commands 3-38, 4-64, 5-56
execution options 3-29 to 3-30, 4-51 to

4-52, 5-45
EXINIT variable

Bourne shell 3-28, 5-40
Korn shell 4-45

exit statement 3-58, 4-92, 5-67
exit status 3-38, 4-65, 5-56
expressions 3-69, 4-105 to 4-106, 5-73

F
fault handling 3-72, 4-110, 5-76
file descriptors 3-61, 4-95
filename

quoting blanks in 2-13 to 2-14
expansion 3-37, 4-63, 5-55

metacharacters 3-10, 4-26, 5-20
template 2-9, 3-10, 4-26, 5-20

files, listing current directory 2-9
file status 3-70, 4-108, 5-7 4
filter 3-14, 4-29, 5-24

defined 2-20
find command

example 1-5
flow control 3-48, 4-82, 5-64
forcing evaluation 3-37, 4-63
foreach loop 5-64
for loop 3-49, 4-83
function

defining 3-39, 4-65

G
global variables

naming convention 2-15
gmacs editor (Korn shell) 4-16 to 4-19
goto statement 5-67

grep command
example 1-6, 2-21

grouping commands 3-15, 4-31, 5-24

H
head command

example 2-13
here document 3-63, 4-98, 5-68
HISTFILE variable 4-11, 4-47

defined 2-16
history file

Korn shell 4-47
history substitution (C shell) 5-9 to 5-10

5-54 '
HISTSIZE variable 4-11
HOME variable

example 1-5, 2-6, 2-15

I
I/0 redirection 2-18, 3-13, 4-28, 5-22
I/0, script 3-58 to 3-68, 4-92 to 4-104,

5-67
redirection 3-58, 4-92

with file descriptors 3-58 to 3-59,
4-92

if statement 3-55, 4-89, 5-66
inline editor

invoking 4-11
setting 4-10

EDITOR variable 4-10
input/output redirection 3-13, 4-28, 5-22
input redirection 2-19
input redirection operator (<) 2-18
input, standard 2-17
interpreting commands 1-7
interrupts 3-72, 4-110, 5-76

J
job control 4-52 to 4-56, 5-46 to 5-49
job number 4-52, 5-46

Index IN-3

jobs
blocked

C shell 5-49
Korn shell 4-55

canceling
Korn shell 4-56

changing status
C shell 5-47
Korn shell 4-54 to 4-55

listing
C shell 5-46
Korn shell 4-53

stopped
C shell 5-47
Korn shell 4-54, 4-56

stopping
C shell 5-49

suspending
C shell 5-46
Korn shell 4-53

j obs command

K

C shell 5-46 to 5-47
Korn shell 4-7, 4-53

kill command
example 2-25

kill control sequence 3-7, 4-8, 5-7
Korn shell

introduced 1-11
ksh. See Korn shell

L
listing

C shell 5-46
listing commands (C shell) 5-9 to 5-17
listing jobs

Korn shell 4-53
local variable

naming convention 2-15
login procedure

customizing
Bourne shell 3-28
C shell 5-40

IN-4 Index

login shell 2-3
changing 2-4, 3-19, 4-34, 5-28
determining 2-4
specifier in password file 2-3

loop
for 3-49 to 3-50, 4-83
foreach 5-64
until 3-54, 4-88
while 3-53, 4-87, 5-65

ls command
example 1-4, 2-8, 2-9 to 2-12

M
mail, receiving 3-27, 4-45
MAILCHECK variable 3-27, 4-45
menu

creating 4-103
reading 4-103

metacharacter 2-9 to 2-14, 3-9, 4-22 to

4-32, 5-18
* (asterisk) 2-9

example 2-10
? (question mark)

defined 2-10
example 2-10

[J (square brackets)
defined 2-11
example 2-11

$ (dollar sign)
example 2-15

escaping 2-13
in filename templates 2-9
overriding interpretation 2-12
quoting 2-12, 3-16 to 3-18, 4-32 to

4-33, 5-26 to 5-27
with "" 2-12, 2-14
with ' ' 2-12, 2-13
with \ 2-12, 2-13

I (pipe) 2-20
more command

example 1-6, 2-4
multitasking 2-21
mv command

example 2-13

N
null command (:) 3-71, 4-108

0
OLDPWD variable

defined 2-16
output redirection 2-18 to 2-20
output redirection operators

append (») 2-18
write (>) 2-18

output, standard 2-17

p
parameter

set by shell 3-48, 4-80
parameter, positional 3-40, 3-41, 4-67

changing position 3-42, 4-69
number of 3-43, 4-69
setting values 3-41, 4-68

parameter substitution 3-45, 4-77
parent process 2-21
parent process ID (PPID) 2-22
passwd file. See password file
password file 2-3
PATH variable 3-26, 3-39, 4-44, 4-64,

5-39, 5-56
defined 2-16
example 1-8

pattern matching 2-9
PID. See process ID
pipe

defined 2-20
example 2-21
metacharacter 2-20, 3-14, 4-29, 5-23
two-way 4-30

pipeline 3-14, 4-29, 5-23
defined 2-20

positional parameters 3-40, 3-41, 4-67
changing position 3-42, 4-69
number of 3-43, 4-67 to 4-68
setting values 3-41, 4-68 to 4-69

PPID. See parent process ID

primary prompt. See prompt R
print command, example 2-15, 2-16, 2-22
process

parent process ID (PPID) 2-22
spawning 2-22
status (ps) command 2-22
status report 2-22

PID field 2-22
PPID field 2-22

process ID, monitoring background
commands 2-24 to 2-25

process ID (PID)
defined 2-21

processes 2-21to2-25
process spawning 2-21
programming

Bourne shell 3-21, 3-32
C shell 5-50
Korn shell 4-57 to 4-58

prompt
primary

Bourne shell 3-3
C shell 5-3
changing 2-6, 2-7, 3-3
defined 2-6
Kornshell 4-3

secondary
Bourne shell 3-3
C shell 5-3
changing 3-3
defined 2-6
Korn shell 4-3

ps command
example 2-22
report 2-22

PSl variable, example 2-6
PSl. See also prompt, primary
pwd command, example 1-4
PWD variable, defined 2-16

Q
quit control sequence 3-7, 4-8, 5-7
quoting 3-16 to 3-17, 4-32 to 4-33, 5-26

to 5-27

r command
example 2-24

read command
example 2-16

reading input 3-62 to 3-63, 4-96 to 4_97
5-68 '

readonly command 3-45, 4-76
receiving mail 3-27, 4-45
redirecting input/output 3-58 to 3-60

4-92 '
redirecting I/0 3-58 to 3-60, 4-92
redirection

input 2-19 to 2-20
output 2-18 to 2-19

redirection operators 3-13, 4-28, 5_22
removing environment variables 3-21

4-37, 5-33 '
removing files. See rm command
restricted shell (Bourne shell) 3-30
RETURN key

command terminator 3-5, 4-6, 5_5
reusing commands

Korn shell 4-10
C shell 5-9 to 5-17

rm command
example 2-14

rsh (restricted shell) 3-30

s
search path 3-26 to 3-27, 3-38, 4-44,

4-64, 5-39, 5-56
defined 1-8

select statement 4-84 to 4-85
set command 3-19, 4-36, 5-28
setting defaults 3-46 to 3-47, 4-78 to 4-80
sh. See Bourne shell
shell layer

creating 6-3
deleting 6-5
suspending 6-3 to 6-4
resuming 6-3 to 6-4
status of 6-4

shell program. See also shell script
Bourne shell 3-31

executing 3-32 to 3-33
writing 3-32

C shell 5-50
executing 5-51
writing 5-51

defined 1-5
Korn shell

executing 4-58 to 4-59
writing 4-58

shell programming 4-57
shell script. See also shell program

Bourne shell
canceling 3-34
comments 3-34
efficiency 3-35
executing 3-32 to 3-33
interactive 3-34

Cshell
canceling 5-53
comments 5-52
efficiency 5-53
executing 5-51
interactive 5-53

debugging 3-75 to 3-76, 4-115, 5-76
defined 1-5
input/output 3-58 to 3-68, 4-92 to

4-105, 5-67
input/output redirection 3-58, 4-92

with file descriptors 3-58 to 3-59,
4-92 to 4-94

Korn shell
canceling 4-60
comments 4-60
efficiency 4-61
executing 4-58 to 4-59
interactive 4-60

terminating 3-58, 4-92, 5-67
shell scripts

input from 3-63 to 3-66, 4-98, 5-68
reading input 3-62 to 3-63, 4-96 to

4-97, 5-68

Index IN-5

SHELL variable. See also login shell
example 2-4

shell variables 2-15 to 2-16, 3-40, 3-43,
4-67, 4-70, 5-57, 5-58

assigning types 4-71
assigning values 3-43 to 3-44, 4-70,

4-71, 5-58
removing 3-44, 4-76, 5-60

shell PID variable($), example 2-22
shift command 5-59
shl command, summary of 6-5 to 6-6
shl program 6-2

about 6-2
and C shell 6-2
invoking 6-3
and Korn shell 6-3

sleep command, example 2-23
spawning shells 3-18, 4-34, 5-27
standard error 2-17, 3-60, 4-94, 5-68
standard input 2-17

background command 4-29
changing 3-61, 4-94 to 4-95

standard output 2-17, 3-60 to 3-61, 4-94,
5-68

background command 4-30
changing 3-61, 4-94 to 4-95
writing to 3-68, 4-101, 5-72

stopped jobs at logout, Korn shell 4-56
stopping jobs, C shell 5-49
string comparison 3-70, 4-108 to 4-109
subshells 3-18, 4-34, 5-27
substitution, command 3-67, 4-101, 5-71
substitution, parameter 3-45, 4-77
substitution, variable 3-45, 4-77, 5-60
susp (suspend) control sequence 3-7,

4-8, 5-7
suspending jobs

C shell 5-46
Korn shell 4-53

IN-6 Index

switch control sequence 3-7, 4-8, 5-7
switching shells

permanently 3-19, 4-34, 5-28
temporarily 3-19, 4-34, 5-27

switch statement 5-65

T
tail command

example 2-23
test command 3-70

[[J J construct (Korn shell) 4-107
testing assignment 3-46, 4-78 to 4-80,

5-63
tilde

current directory specifier 4-25
home directory specifier 4-24 to 4-25,

5-19
previous directory specifier 4-25

tilde substitution 4-62, 5-54
two-way pipe 4-30

u
unconditional branch 5-67
until loop 3-54, 4-88
user-created variables 2-16

defining 2-17
user-defined commands 3-4, 4-4, 5-4
uses for shells

interactive 1-6
programmatic 1-6 to 1-7

v
variable

set by shell 3-48, 4-80 to 4-82, 5-63
variable assignment

example 2-17

variable substitution 3-36, 3-45, 4-62,
4-77, 5-54, 5-60

variables 2-14 to 2-17
defined 2-14
displaying value of 2-15
global 2-15
local 2-15
shell 2-15
user-created 2-16

defining 2-17
variables, array

shifting elements 5-59
variables, shell 3-40, 3-43 to 3-44, 4-67,

4-70, 5-57, 5-58
assigning types 4-71 to 4-75
assigning values 3-43 to 3-44, 4-70,

4-71, 5-58
removing 3-44, 4-76, 5-60

vi editor (Korn shell) 4-11 to 4-16
changing text 4-14
cursor movement 4-13 to 4-14
deleting text 4-15
inserting text 4-14
replacing text 4-15
screen width 4-12

W,X,Y,Z
wc command

example 2-21
whence command 4-4
while loop 3-53, 4-87, 5-65
wildcard characters 3-10, 4-26, 5-20
wildcards 2-9
working directory. See also current

directory
defined 1-4

working shell, changing 2-5

The Apple Publishing System

A/UX Shells and Shell Programming was written, edited,
and composed on a desktop publishing system using
Apple Macintosh computers, an AppleTalk network
system, Microsoft Word, and QuarkXPress. Line art was
created with Adobe Illustrator. Proof pages were printed
on Apple LaserWriter printers. Final pages were output
directly to 70-mm film on an Electrocomp 2000 Electron
Beam Recorder. Postscript®, the LaserWriter page­
description language, was developed by Adobe Systems
Incorporated.

Text type and display type are Apple's corporate font, a
condensed version of ITC Garamond®. Bullets are ITC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier, a fixed-width font.

Writer: Michael Hinkson
Developmental Editor: Janine Schenone
Staff Editor: Paul Dreyfus
Design Director: Lisa Mirski
Production Editor: Ron Morton
Production Coordinator: Jeannette Allen
Writing Group Manager: Chris Wozniak
Production Group Manager: Charlotte Clark

Special thanks to Vicki Brown and Mike Elola

	00-01-i
	00-02-ii
	00-03-iii
	00-04-iv
	00-05-v
	00-06-vi
	00-07-vii
	00-08-viii
	00-09-ix
	00-10-x
	00-11-xi
	00-12-xii
	00-13-xiii
	00-14-xiv
	00-15-xv
	00-16-xvi
	00-17-xvii
	00-19-xix
	00-20-xx
	00-21-xxi
	00-22-xxii
	00-23-xxiii
	00-24-xxiv
	00-25-xxv
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	03-77
	03-78
	03-79
	03-80
	03-81
	04-001
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	04-104
	04-105
	04-106
	04-107
	04-108
	04-109
	04-110
	04-111
	04-112
	04-113
	04-114
	04-115
	04-116
	04-117
	04-118
	04-119
	04-120
	04-121
	04-122
	04-123
	04-124
	04-125
	04-126
	04-127
	04-128
	04-129
	04-130
	04-131
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	05-80
	05-81
	05-82
	05-83
	05-84
	05-85
	05-86
	05-87
	05-88
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	A-01
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08

