€
A/UX Shells and Shell Programming

Release 3.0

LiMITED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manual or in the media on which a software product is distributed, Apple will replace
the media or manual at no charge to you provided you return the item to be replaced with proof of purchase to Apple or an
authorized Apple dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple’s Media Exchange Program. While not
an upgrade or update method, this program offers additional protection for up to two years or more from the date of your
original purchase. See your authorized Apple dealer for program coverage and details. In some countries the replacement
period may be different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF
THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD “AS IS,” AND YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension,
or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages,
so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have
other rights which vary from state to state.

Apple Computer, Inc.

© 1992, Apple Computer, Inc., © 1989, Apple Computer, Inc., and UniSoft Corporation. All rights
reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws,
this manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The
same proprietary and copyright notices must be affixed to any permitted copies as were affixed to the
original. Under the law, copying includes translating into another language or format.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.

20525 Mariani Ave.

Cupertino, California 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, LaserWriter, and Macintosh are registered trademarks of Apple Computer, Inc.
Finder is a trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T Unix System Laboratories.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

Contents

About This Guide / xvii

Who should use this guide / xvii
What you need to know / xviii
What's covered in this guide / xviii
What's not covered in this guide / xviii
How to use this guide / xix
Conventions used in this guide / xix

Keys and key combinations / xix

Terminology / xx

The courier font / xx

Font styles / xxi

A/UX command syntax / xxi

Manual page reference notation / xxii
For more inforr.ation / xxiii

Introducing the A/UX Shells / 1-1

What shells are / 1-3
Command interpreter and programming language / 1-3
Command interpreter / 1-4
Programming language / 1-5
When to use shells / 1-6
When not to use a shell / 1-7

vi

Contents

How shells interpret commands / 1-7
Commands recognized by the shell / 1-8
Locating commands: The search path / 1-8

The three A/UX shells / 1-9
Introducing the C shell / 1-9
Introducing the Bourne shell / 1-10
Introducing the Korn shell / 1-11

Using the Shells Interactively / 2-1

The login shell / 2-3
Determining your login shell / 2-4
Changing your login shell / 2-4
Changing your working shell / 2-5
Entering commands / 2-5
Prompts / 2-6
Changing or canceling a command / 2-7
Combining commands on a line / 2-7
Invalid commands / 2-8
Shell metacharacters / 2-9
Asterisk (*) /29
Question mark (?) / 2-10
Brackets ([1) / 2-11
Overriding metacharacter interpretation / 2-12
Variables / 2-14
Shell variables / 2-15
User-created variables / 2-16
Standard input, output, and error / 2-17
Input/output redirection / 2-18
Redirection operators / 2-18
Output redirection / 2-18
Input redirection / 2-19
Filters and pipes / 2-20
Shells and processes / 2-21
Parent and child processes / 2-21
Background commands / 2-22
Controlling background commands with the PID / 2-24
What you have learned / 2-25

Where to go from here / 2-26

3 Bourne Shell Reference / 3-1

The Bourne shell prompt / 3-3
The secondary shell prompt / 3-3
Changing the prompt character / 3-3

Types of commands / 3-4
The parts of a command / 3-4

Interactive use / 3-5
Command termination character / 3-5
Impossible commands / 3-6
Background commands / 3-6
Checking command status / 3-6
Logging out / 3-7
Canceling commands / 3-7
Before you press RETURN / 3-7
While a command is running / 3-8
Canceling background commands / 3-9
Using Bourne shell metacharacters / 3-9
Specifying filenames with metacharacters / 3-10
Input and output redirection / 3-13
Combining commands: Pipelines / 3-14
Command grouping / 3-15
Conditional execution / 3-16
Quoting / 3-16
Working with more than one shell / 3-18
Changing to a new shell / 3-19
Changing your default shell / 3-19
The environment / 3-19
Listing existing values / 3-20
Assigning values to environment variables / 3-20
Removing environment variables / 3-21
Commonly used environment variables / 3-21
The environment and new shell instances / 3-23
Special environments / 3-23
The default environment on your system / 3-25

The .profile file / 3-25
A sample .profile file / 3-26
Locating commands / 3-26
Shortcuts in changing directories / 3-27
Receiving mail / 3-27
Your editing environment / 3-28

Contents Vii

viii Contents

Customizing your login procedure / 3-28

Shell execution options / 3-29
Options that affect the environment / 3-29
Options for invoking new shells / 3-30

Restricted shell / 3-30
Shell layering / 3-31
Overview of shell programming / 3-31

Writing shell programs / 3-32
Executing shell scripts / 3-32
Comments / 3-34
Writing interactive shell scripts / 3-34
Canceling a shell script / 3-34
Writing efficient shell scripts / 3-35

Command evaluation / 3-35
Forcing more than one pass of evaluation / 3-37
Command execution / 3-38
Exit status: The value of the command / 3-38

Defining functions / 3-39

Positional parameters and shell variables / 3-40

Positional parameters / 3-41
Setting values in a script / 3-41
Changing parameter positions / 3-42
Number of parameters / 3-43

Shell variables / 3-43
Assigning values / 3-43
Removing shell variables / 3-44

Setting constants / 3-45

Parameter and variable substitution / 3-45

Testing assignment and setting defaults / 3-46

Parameters and variables set by the shell / 3-48
Control-flow constructs / 3-48

for loops / 3-49

case statements / 3-51

while loops / 3-53

until loops / 3-54

if then else / 3-55

exit [n] / 3-58

Input and output / 3-58

I/O redirection / 3-58
Redirection with file descriptors / 3-58
File descriptors redirecting input / 3-60
File descriptors redirecting output / 3-60
Combining standard error and standard output / 3-60
Changing the shell’s standard input and output / 3-61
Associating file descriptors with other files / 3-61

Reading input / 3-62

Taking input from scripts / 3-63
Using command substitution / 3-67
Writing to standard output / 3-68

Other features / 3-69
Arithmetic and expressions / 3-69
File status and string comparison / 3-70
The null command (:) / 3-71

Error handling / 3-71
Fault handling and interrupts / 3-72
Debugging a shell script / 3-75

Summary of Bourne shell commands / 3-76

Korn Shell Reference / 4-1

The Korn shell prompt / 4-3
The secondary shell prompt / 4-3
The tertiary shell prompt / 4-3
Changing the prompt character / 4-3
Types of commands / 4-4
Learning about built-in commands / 4-4

The parts of a command / 4-5

Interactive use / 4-6
Command termination character / 4-6
Impossible commands / 4-6
Background commands / 4-7
Checking command status / 4-7
Logging out / 4-8
Canceling commands / 4-8
Before you press RETURN / 4-8
While a command is running / 4-9
Canceling background commands / 4-10

Contents

Editing and reusing commands / 4-10

The vi option / 4-11
The editor window / 4-11
Command history / 4-12
Moving the cursor on the command line / 4-13
Changing and inserting text in the command line / 4-14
Replacing text in the command line / 4-15
Deleting text from the command line / 4-15
Copying and moving text within the command line / 4-15
Specialized editing commands / 4-15
Printing and executing edited commands / 4-16

The emacs (and gmacs) options / 4-16
The emacs input edit commands / 4-17
The emacs cursor motion commands / 4-17
The emacs history commands / 4-17
The emacs text modification commands / 4-18
Other emacs line editing commands / 4-19

Using fc or r / 419
Editing and reexecuting previous commands / 4-20
Listing previous commands / 4-21

Using shell metacharacters / 4-22

Shortcuts in working with directories / 4-24
Specifying home directories / 4-24
Current and previous directories / 4-25
Substituting directory names / 4-25

Specifying filenames with metacharacters / 4-26
Input and output redirection / 4-28
Combining commands in Pipelines / 4-29
Connecting a command to standard input and output / 4-30
Command grouping / 4-31
Conditional execution / 4-32
Quoting / 4-32

Working with more than one shell / 4-34
Changing to a new shell / 4-34
Changing your default shell / 4-34

The environment / 4-35
Listing existing values / 4-36
Assigning values to environment variables / 4-36
Removing environment variables / 4-37
Commonly used environment variables / 4-37
The environment and new shell instances / 4-40
Special environments / 4-40
The default environment on your system / 4-42

X Contents

The .profile file / 4-43
Asample .profile file / 4-43

Locating commands / 4-44
Shortcuts in changing directories / 4-44
Receiving mail / 4-45
Your editing environment / 4-45
Customizing your login procedure / 4-46

The .kshrc file / 4-46

Asample .kshrc file / 4-47
Changing history variables / 4-47

Changing the Env filename / 4-47
Aliases for commonly used commands / 4-48
Defining an alias / 4-48
Listing and removing aliases / 4-49
Tracking with aliases / 4-50
Default aliases / 4-50
Shell execution options / 4-51
Options that affect the environment / 4-51
Options for invoking new shells / 4-52
Job control / 4-52
Suspending a job / 4-53
Listing jobs / 4-53
Changing the status of stopped jobs / 4-54
Blocked jobs / 4-55
Canceling jobs / 4-56
Logging out with stopped jobs / 4-56
Using shell layering / 4-57
Overview of shell programming / 4-57
Writing shell programs / 4-58
Executing shell scripts / 4-58
Comments / 4-60
Writing interactive shell scripts / 4-60
Canceling a shell script / 4-60
Writing efficient shell scripts / 4-61
Command evaluation / 4-61
Forcing more than one pass of evaluation / 4-63
Command execution / 4-64
Exit status: The value of the command / 4-65

Defining functions / 4-65

Contents

Positional parameters and shell variables / 4-67

Positional parameters / 4-67
Setting values in a script / 4-68
Changing parameter positions / 4-69
Number of parameters / 4-69

Shell variables / 4-70
Assigning values / 4-70
Arrays of strings / 4-71
Assigning values and types to variables / 4-71
Assigning values on the command line / 4-76
Removing shell variables / 4-76

Setting constants / 4-76
Parameter and variable substitution / 4-77
Referencing arrays / 4-78
Testing assignment and setting defaults / 4-78
Creating substrings in substitution / 4-80
Parameters and variables set by the system / 4-80
Control-flow constructs / 4-82
for loops / 4-83
select statements / 4-84
case statements / 4-85
while loops / 4-87
until loops / 4-88
if then else / 4-89
exit / 4-92
Input and output / 4-92

1/0 redirection / 4-92
Redirection with file descriptors / 4-92
Redirecting input with file descriptors / 4-93
Redirecting output with file descriptors / 4-94
Combining standard error and standard output / 4-94
Changing the shell’s standard input and output / 4-94
Associating other files with file descriptors / 4-95

Reading input / 4-96

Taking input from scripts / 4-98

Using command substitution / 4-101

Writing to the standard output / 4-102

Creating and reading a menu / 4-103
Other features / 4-105

Arithmetic evaluation / 4-105

File status and string comparison / 4-108

The null command (:) / 4-109

xii Contents

Error handling / 4-110
Fault handling and interrupts / 4-110
Debugging a shell script / 4-115

Summary of Korn shell commands / 4-115
Null command (:) / 4-117
Dot command (.) / 4-117
alias command / 4-117
bg command / 4-118
cd command / 4-118
continue command / 4-119
echo command / 4-119
eval command / 4-119
exec command / 4-119
exit command / 4-120
export command / 4-120
fc command / 4-120
fg command / 4-121
getopts command / 4-121
hash command / 4-121
jobs command / 4-121
kill command / 4-122
let command / 4-122
newgrp command / 4-123
print command / 4-123
pwd command / 4-123
read command / 4-124
readonly command / 4-124
return command / 4-124
set command / 4-125
shift command / 4-127
test command / 4-127
trap command / 4-128
typeset command / 4-128
ulimit command / 4-130
umask command / 4-130
unalias command / 4-130
unset command / 4-130
wait command / 4-131
whence command / 4-131

Contents xiii

5 C Shell Reference / 5-1

The C shell prompt / 5-3
The secondary shell prompt / 5-3
Changing the prompt character / 5-3

Types of commands / 5-3
The parts of a command / 5-4

Interactive use / 5-5
Command termination character / 5-5
Impossible commands / 5-5
Background commands / 5-6
Checking command status / 5-6
Logging out / 5-7
Canceling commands / 5-7
Before you press RETURN / 5-8
While a command is running / 5-8
Canceling background commands / 5-9
Listing and reusing commands / 5-9
Listing previous commands / 5-10
Reusing a previous command / 5-11
Changing text in the most recent command line / 5-12
Editing and reexecuting previous commands / 5-12
Reusing parts of previous command lines / 5-15
Using modifiers with your command history / 5-15
Other uses for command history / 5-17

Using shell metacharacters / 5-18
Specifying home directories / 5-19
Specifying filenames with metacharacters / 5-20
Input and output redirection / 5-22
Combining commands: Pipelines / 5-23
Command grouping / 5-24
Conditional execution / 5-25
Quoting / 5-26

Working with more than one shell / 5-27
Changing to a new shell / 5-28
Changing your default shell / 5-28

xiv Contents

The environment / 5-28

Environment variables / 5-29
Listing existing values / 5-29
Adding environment variables and modifying values / 5-30
Removing environment variables / 5-30
Commonly used environment variables / 5-30
C shell variables / 5-32
Listing existing values / 5-32
Adding C shell variables and modifying values / 5-32
Removing C shell variables / 5-33
C shell variables / 5-33

The environment and new shell instances / 5-36

Special environments / 5-37

The default environment on your system / 5-37
The .login file / 5-38

Asample .login file / 5-38
Locating commands / 5-39
Your editing environment / 5-40

Customizing your login procedure / 5-40
The .cshrc file / 5-40
A sample .cshrc file / 5-41
Using history numbers as your prompt / 5-41
Protection against unintentional logout / 5-41
Aliases for commonly used commands / 5-42
Defining an alias / 5-42
Listing and removing aliases / 5-43
Aliases that take arguments / 5-43
Shell execution options / 5-45

Job control / 5-46

Suspending a job / 5-46

Listing jobs / 5-46

Changing the status of stopped jobs / 5-47

Blocked jobs / 5-49

Canceling jobs / 5-49

Logging out with stopped jobs / 5-49
Using shell layering / 5-50

Contents

Overview of shell programming / 5-50
Writing shell programs / 5-51
Executing shell scripts / 5-51
Comments / 5-52
Writing interactive shell scripts / 5-53
Canceling a shell script / 5-53
Writing efficient shell scripts / 5-53
Command evaluation / 5-54
Command execution / 5-56
Exit status: The value of the command / 5-56

Arguments and shell variables / 5-57
Arguments / 5-57

Shell variables / 5-58
Assigning values / 5-58
Changing position of elements / 5-59
Removing shell variables / 5-60

Variable substitution / 5-60

Testing assignment / 5-63

Variables set by the system / 5-63
Control-flow constructs / 5-64

foreach loops / 5-64

switch statements / 5-05

while loops / 5-65

if then else / 566

goto / 5-67

exit / 507
Input and output / 5-67

Standard error and output files / 5-68

Reading input / 5-68

Taking input from scripts / 5-68

Using command substitution / 5-71

Writing to the standard output / 5-72
Other features / 5-72

Arithmetic evaluation / 5-72

Expressions / 5-73

File status / 5-74

Error handling / 5-75
Fault handling and interrupts / 5-76
Debugging a shell script / 5-76
Summary of C shell commands / 5-77

xvi Contents

6 Shell Layering / 6-1

Invoking the sh1 program / 6-3

Creating a shell layer / 6-3

Suspending and resuming shell layers / 6-3
Learning the status of shell layers / 6-4
Deleting shell layers / 6-5

Summary of sh1 commands / 6-5

Appendix Additional Reading / A-1

Glossary / GL-1
Index / IN-1

Contents Xvii

About This Guide

This guide presents the three UNIX® shells provided with A/UX:

= Bourne shell, the original UNIX shell
n Cshell, the shell provided with the BSD version of UNIX

» Korn shell, the newest and arguably most powerful of the shells

These three shells provide access to the wide variety of powerful and flexible
software tools in A/UX. This guide shows you how to start using the shells to put some
of those tools to use in your day-to-day work. It also serves as a reference to the features
specific to each shell.

Who should use this guide

You don't have to be a programmer to use this guide; anyone who uses the UNIX
features of A/UX should find parts of this guide useful. If UNIX shells are new to you,
you can use the tutorial information to get started using them. If you have used the
shells, you can use the reference chapters to learn details about the shells, including shell
programming information.

Xix

XX

What you need to know

To use this guide effectively, you must know basic Macintosh operations. You should
also be familiar with the material presented in A/UX Essentials, especially the information
regarding CommandShell.

What's covered in this guide

This guide contains the following chapters:

Chapter 1, “Introducing the A/UX Shells,” describes the shells and why you might use
them in your day-to-day work.

Chapter 2, “Using the Shells Interactively,” uses a tutorial approach to teach basic
interactive use of the shells, providing hands-on examples of commands that you can
use in your day-to-day work.

Chapter 3, “Bourne Shell Reference,” presents the details of the Bourne shell.
Chapter 4, “Korn Shell Reference,” presents the details of the Korn shell.
Chapter 5, “C Shell Reference,” presents the details of the C shell.

Chapter 6, “Shell Layering,” describes the sh1 program and how to use it to run
and manage multiple concurrent processes.

Appendix, “Additional Reading.”

What's not covered in this guide

Using CommandShell, the Macintosh window-based interface to the shells, is presented
in A/UX Essentials and is therefore not covered in this guide.

The nuances of shell programming are beyond the scope of this guide. Several third-

party books cover advanced shell programming tricks.

About This Guide

How to use this guide

If you are not familiar with the UNIX shells, you should read Chapters 1 and 2. They will
get you started by explaining basic shell concepts and illustrating them with hands-on
examples.

If you are familiar with basic interactive use of the shells, but occasionally run into
problems making a command perform properly, you should read Chapter 2, entering the
example commands, to gain a more detailed understanding of how the shell works.

If you are familiar with one shell and intend to continue using that shell, you should
use the reference chapter for that shell as necessary. If you are familiar with one shell,
but need to learn one of the other shells, you should read the reference chapter for that
other shell.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by SMALL cAPITAL letters.

The key names are

Caps Lock DowN Arrow (1) OPTION SPACE BAR
COMMAND (%) ENTER RETURN TaB

CONTROL EScAPE RIGHT ARROW (—) Up Arrow (T)
DELETE LEFT ARROW (¢—) SHIFT

About This Guide xxi

xxii

Sometimes you will see two or more names joined by hyphens. The hyphens
indicate that you use two or more keys together to perform a specific function. For
example,

Press COMMAND-K

means “Hold down the CommanD key and then press the K key.”

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the ReTurN key. The instruction

Enter 1s
means “Type 1s and press the RETURN key.”

Here is a list of common terms and the corresponding actions you take.

Term Action
Click Press and then immediately release the mouse button.
Drag Position the mouse pointer, press and hold down the mouse button

while moving the mouse, and then release the mouse button.

Choose Activate a command in a menu. To choose a command from a pull-
down menu, position the pointer on the menu title and hold down the
mouse button. While holding down the mouse button, drag down
through the menu until the command you want is highlighted. Then
release the mouse button.

Select Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type Type a series of characters without pressing the RETURN key.

Enter Type the series of characters indicated and press the RETURN key.

The courier font

Throughout A/UX guides, words that appear on the screen or that you must type exactly
as shown are inthe courier font.

About This Guide

For example, suppose you see this instruction:

Type date onthe command line and press RETURN.
The word date isinthe courier fontto indicate that you must type it.

Suppose you then read this explanation:
After you press RETURN, information such as this appears on the screen:
Tues Oct 17 17:04:00 PDT 1989

In this case, courier isused to represent the text that appears on the screen.

All A/UX manual page names are also shown in the Courier font. For example,
the entry 1s(1) indicates that 1s is the name of a manual page in an A/UX reference
manual. See “Manual Page Reference Notation,” later in this preface for more information
on the A/UX command reference manuals.

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat filename

tells you that filename s a placeholder for the name of a file you want to display. For
example, if you wanted to display the contents of a file named E1lvis, you would type
the word Elvis in place of filename. In other words, you would enter

cat Elvis

New terms appear in boldface where they are defined. Boldface is also used for
steps in a series of instructions.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the
syntax for the we command:

we [-11 [-w] [-c] [filename ...

About This Guide — xxiii

XXiv

In this example, wc is the command, -1, -w,and -c are options and filename
is an argument. Brackets ([]) enclose elements that are not necessary for the command
to execute. The ellipsis (...) indicates that you can specify more than one argument.
Brackets and ellipses are not to be typed. Also, note that each command element is
separated from the next element by a space.

The following table gives more information about the elements of an A/UX
command.

Element Description
command The command name.
option A character or group of characters that modifies the command. Most

options have the form - option, where option is a letter representing an
option. Most commands have one or more options.

argument A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

[] Brackets used to enclose an optional item—that is, an item that is not
essential for execution of the command.

Ellipses are used to indicate that you can enter more than one argument.

For example, the wc command is used to count lines, words, and characters in a
file. Thus, you can enter

wc -w Priscilla

In this command line, -w is the option that instructs the command to count all of
the words in the file, and the argument Priscilla is the file to be searched.

Manual page reference notation

The A/UX Command Reference, the A/UX Programmer’s Reference, the A/UX System
Administrator’s Reference, the X11 Command Reference for A/UX, and the X11
Programmer’s Reference for A/UX contain descriptions of commands, subroutines, and
other related information. Such descriptions are known as manual pages (often
shortened to man pages). Manual pages are organized within these references by section
numbers. The standard A/UX cross-reference notation is

command (section)

About This Guide

where command is the name of the command, file, or other facility; and section is the
number of the section in which the item resides.

= Items followed by section numbers (IM) and (8) are described in the A/UX System
Administrator’s Reference.

n Items followed by section numbers (1) and (6) are described in the A/UX Command
Reference.

= [Items followed by section numbers (2), (3), (4), and (5) are described in
the A/UX Programmer’s Reference.

= [tems followed by section number (1X) are described in the X711 Command
Reference for A/UX.

» Items followed by section numbers (3X) and (3Xt) are described in the X171
Programmer’s Reference for A/UX.

For example

cat (1)
refers to the command cat, which is described in Section 1 of the A/UX Command
Reference.

You can display manual pages on the screen by using the man command. For
example, you could enter the command

man cat

to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit a manual page, press the SPACE BAR
until you see a command prompt, or type g at any time to return immediately to your
command prompt.

For more information

To find out where you need to go for more information about how to use A/UX; see
Road Map to A/UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

About This Guide XXV

Introducing the A/UX Shells

What shells are / 1-3
When to use shells / 1-6

How shells interpret commands / 1-7
The three A/UX shells / 1-9

Nearly everyone who uses A/UX will need to use a shell at some time. The UNIX® shells
are known for their power and flexibility, yet it is easy to master the fundamental use of

a shell. With a basic understanding of shell concepts, you can take advantage of many
A/UX features.

This chapter introduces you to the three A/UX shells—the C shell, Bourne shell, and
Korn shell—and the ways you can use them to tap the power of A/UX. The chapter

covers what the shells are, what you can do with shells, and how a shell works.

This chapter provides sample commands to illustrate the concepts it presents. Entering
the commands is not essential to understanding the concepts presented, but it will give
you hands-on experience with using a shell. If you do enter the commands, the output

of some of the commands will differ slightly on your A/UX system.

1-2 Chapter 1 Introducing the A/UX Shells

What shells are

By allowing most basic human/computer interactions to be expressed in mouse actions,
the Macintosh Finder has greatly simplified the use of the computer. For example, to
copy a file from a floppy disk to a hard disk, you merely drag the icon for that file from
the floppy disk window to the hard disk icon. In the Macintosh environment, the Finder
serves as a shell around the operating system: you point, click, and drag with the mouse
to tell the Finder what you want done, and the Finder works with the operating system to
ensure that the computer performs the task.

In any UNIX system, a shell also provides you with a mechanism for getting the
system to perform certain tasks for you. The UNIX shells do not provide the ease of the
Macintosh Finder, but they do allow you to perform a greater variety of functions, and
with a greater degree of flexibility. For example, with the Finder you can copy all the files
from one directory to another with a couple of mouse actions, while with a UNIX shell,
you must type in an entire command, including the exact destination pathname. On the
other hand, to copy all of the files whose names start with an uppercase P, you can issue
a single command in a UNIX shell, but with the Finder, you must inspect each file in the
directory, possibly scrolling through the directory’s window, selecting each relevant file.

In A/UX, you can use both techniques: you can perform most of your day-to-day
operations with the Finder, and when you need more power or flexibility, you can use
the UNIX shells.

Command interpreter and programming language

Each A/UX shell is a program that provides two services: command interpretation and
program processing. Everyone who uses even the most basic UNIX commands uses the
command interpretation services of the shells. The program processing services are more
difficult to master, and are therefore less widely used. These services are introduced here
and are described in greater detail in later chapters.

What shells are 13

1-4

Command interpreter

Normally, you enter a shell command in a CommandShell window. (CommandShell itself
is not a shell: it is a program that makes it easier for you to work with the shells.) Acting
as a command interpreter, the shell processes the commands that you give it, decoding
them so the operating system can immediately perform all the functions that the
commands specify. Such use of the shell is called interactive because, in a sense, you are

carrying on a dialogue with the shell, proceeding step by step, with the shell responding
to each command before you enter another.

¢ Note Using CommandShell is documented in A/UX Essentials. This book assumes
that you already know how to use CommandShell.

A common interactive use of the shell is maneuvering through the UNIX file systems.
You might enter the following sequence of commands in a typical shell session. (The
responses from the shell are indented here to distinguish them from the commands; such
responses are not normally indented on your screen.)
pwd

/users

1ls -C

howard jo_ann doris arthur

cd howard
pwd

/users/howard
1s -C

tests notes samples letter

The command pwd prints the name of the current directory (or working

directory), the directory that serves as the reference point for all file-related
commands—/users in this instance. The 1s -C command lists the contents of the
directory. The ca command changes the current directory to /users/howard.
(Because howard is a subdirectory of /users, the current directory, the cd
command did not require the full pathname, /users/howard.)

Chapter 1 Introducing the A/UX Shells

Using the shell interactively enables you to perform a wide variety of functions, from
moving and copying files to performing complex sorts. To expand your knowledge of
interactive shell use, read Chapter 2, “Using Shells Interactively.”

Programming language
Often you need to perform repetitive tasks, such as backing up files. Such tasks can be

done interactively, but doing so is inefficient and prone to error. Imagine backing up
twenty files from a directory named

/users/marianne/current_unposted_journals

if you had to type the name of each file. The program-processing side of the shells comes
in very handy for such tasks. Each shell contains a very sophisticated programming
language with features such as flow control and conditional execution that programmers
would expect from a programming language. These features allow you to enter shell
commands into a file that can then be executed whenever it is required. Such a file is
called a shell program or shell script.

A shell script can be as simple as a single command, or it can be a lengthy
combination of commands that performs calculations, text manipulation, file and terminal
input/output, and many other functions. For example, the following three-line program,
named backup, copies all the new or changed files for the day from your current
directory into a backup archive on a floppy disk.

backup -- copy new files to backup directory

cd $SHOME

find . -mtime -1 -print | cpio -pdm /dev/rdsk/c8d0s0
For a look at a somewhat more sophisticated shell program, enter

more /etc/adduser

in a CommandShell window. (The more command lists a file one screenful at a time;
press the SPACE Bar to advance through the listing, or press the Q key to exit and return
to the shell prompt.) This adduser shell program facilitates adding a user account to
the system,; its use is documented in A/UX Local System Administration. In the file,
you'll see many of the usual programming constructs: variable initialization and value
assignment, conditional statements (if/then/else constructs), case statements, functions,
loops, and so forth.

What shells are 1-5

In fact, many functions of A/UX are performed by shell scripts. The file named
/FILES indicates which files in the system are actually shell programs. The following
command lists the name and purpose of each A/UX shell program.

grep 'shell script' /FILES | more

(As before, press the Space Bar to advance through the listing, or press the Q key to exit
and return to the shell prompt.)

When to use shells

1-6

Nearly everyone who uses A/UX can benefit from an understanding of a shell.
Understanding some of the subtleties of the shells will enable you to easily perform
operations that would take a great deal of thought otherwise. You've seen above how
you can use shell commands suchas cd and pwd interactively to maneuver through
the file system. Here are some other things you can do using the shells interactively:

= inspect the contents of files and directories

= abbreviate otherwise lengthy commands

= customize your working environment

= monitor the state of active processes

= run a lengthy process in the background while you continue working
= change permissions or owners of files

» perform the same command on several files at once

The programming features of shells give you even more power and flexibility. Small
shell programs are often used to do routine system administration tasks. Since shell
programs are not compiled, they are also easily modifiable and therefore good for
ongoing processes that may vary slightly over time. Because the shells can use most of
the A/UX operating system features, shell programs are also good for making prototype
routines and user interfaces. With a shell program you can

» access files in any directory for which you have permission
= perform input and output for files and devices

= use program loops to repeat actions within a script

Chapter 1 Introducing the A/UX Shells

» make decisions that affect the flow of the script

m test attributes of files (Does the file exist? Is it a directory?)

m use variables (both default shell variables and variables that you create)
= run other programs and shell scripts

» quickly and easily automate routine tasks

= quickly make prototypes for larger, more complex programs

= examine the exit status of jobs

When not to use a shell

The Finder is convenient for performing most simple file manipulations, such as moving,
copying, renaming, and deleting. It can also access files in both Macintosh file systems
and UNIX file systems. For these reasons, it is often better to use the Finder than a UNIX
shell for simple interactive file manipulation.

A shell program is not compiled, which means that other people can read a script if
they can read the file. If security is of any concern, a compiled program is better. Also,
compiled code is likely to run faster than shell programs, so shell programs are usually
not the right choice when speed is a concern.

How shells interpret commands

When you open a CommandShell window, the shell displays a prompt and waits for you
to enter a command. When you enter a command, the shell interprets that command, that
is, it breaks the command into components and determines how to handle each
component. For example, the 1s -c command used above lists the files in the current
directory, displaying the results in columns on the screen. 1s is the name of the
command; -c specifies that the filenames are to be formatted in columns. The shell
determines that 1s is really the name of a compiled program in the directory /bin
and runs that program, passing it the -C option as a parameter.

How shells interpret commands 1-7

1-8

Commands recognized by the shell

The shell recognizes three types of commands:

» Built-in shell commands, such as the cd command used above. Each shell has
built-in commands, some of which are unique to that shell. Built-in commands differ
from A/UX commands in that they are executed directly within the shell; the shell
does not have to search for the program that implements the command and then wait

for that program to run. For this reason, built-in commands often run faster than other
A/UX commands.

= Names of executable compiled programs, such as applications (for example,
TextEditor) and A/UX commands (for example, 1s and cat).

= Names of shell scripts. For example, if you have a shell script in a file named
shell_prog, you can enter the command shell_prog ina CommandShell
window, and the shell will attempt to execute the program. Permissions for
shell_prog must be set so that you can execute the script. For information about
permissions, see A/UX Essentials.

Locating commands: The search path

If a command you enter in a shell is the name of a built-in shell command or the full
pathname of an executable file, the shell can immediately try to execute that command.
Otherwise, A/UX must first locate the command before it can try to execute it. The shell
finds the command by checking the search path. The search path is a list of directories
containing commands you may wish to use. A typical search path for A/UX is as follows:

/bin:/usr/bin:/usr/ucb:/mac/bin:/etc

Colons separate the directories in the list. The shell searches through the search-path
directories in the order in which they are listed and executes the first version of the
command that it finds. Given the above search path, if both the /usr/ucb directory
and the /usr/bin directory contain an executable file named grep, then the shell
will run the version of grep in /usr/bin.

To check the search path for the current shell, enter

echo SPATH

Chapter 1 Introducing the A/UX Shells

This command displays the contents of the PATH variable, which contains the
search path.

You can change the search path to include or exclude directories. For example, many
people put their own commands in the directory /usr/local/bin. They must add
/usr/local/bin to the search path so the shell can find those commands. For

information on changing a particular shell’s search path, see the reference chapter for
that shell.

The three A/UX shells

There are a number of UNIX shells. Of these, the C, Bourne, and Korn shells are most
widely used; all three are available as part of the standard A/UX distribution. Each differs
slightly from the others, and each has its proponents. Which shell to use depends on
several factors, including which shell was used for existing shell programs, which shell
your coworkers are using, and so forth. The default shell in A/UX is the C shell, but the
default is easy to change. The Korn shell is used for the tutorial chapters in this book, due
to its extended set of features.

While it is convenient to use one shell, you might choose to use different shells for
different purposes. For example, you could use the C shell interactively, but program in
the Korn shell to take advantage of its more sophisticated programming features. Your
system administrator may recommend that you use one particular shell. If you don’t have
an administrator, the following sections should help you decide which shell to use for
Various purposes.

Introducing the C shell

The C shell is the default shell in A/UX. Developed as part of Berkeley Software
Distribution (BSD) UNIX,; it’s considered by its advocates to be the easiest to program,
and it also makes the most concessions to interactive use. It's called the C shell because
the syntax of its programming constructs (such as loops) resembles the syntax of the C
programming language.

The three A/UX shells 1-9

1-10

You may want to use the C shell if you spend much time using the shell interactively.
The C shell allows you to edit commands on the command line, view a list of previous
commands you have entered (a feature known as command history), and reuse
commands you have entered. Using the C shell’s alias feature, you can create shorthand
command names for complicated commands. In addition, the C shell includes job
control, a feature that allows you to switch among processes and move processes to the
foreground or background.

The C shell has some disadvantages. For instance, C shell scripts execute more slowly
than Bourne and Korn shell scripts. In addition, scripts written in the C shell generally
won't work in the Bourne and Korn shells (whereas a propetly written Bourne shell
script will always work in the Korn shell).

For more information on the C shell, see Chapter 5, “C Shell Reference.”

Introducing the Bourne shell

The Bourne shell is the original UNIX shell. It is efficient and fast, and it provides a
variety of powerful programming constructs. It also includes more error-handling
features than the C shell does, making Bourne shell scripts easier to debug than C shell
scripts. Another advantage of Bourne shell programs is that they are compatible with the
Korn shell, so you can run them in either the Bourne shell or the Korn shell.

Most Bourne shell programs cannot run in the C shell because the Bourne shell
supports programming constructs that the C shell does not and because constructs
common to both shells use different syntax. However, if the C shell determines that a
script did not originate from the C shell, it will invoke the Bourne shell to run the script.
This feature is convenient, but it can be confusing if error conditions occur.

The Bourne shell does not have the C shell features that simplify interactive use—
features such as command-line editing, listings of previous commands, and reusing
commands.

You should use this shell if you want to write sophisticated shell scripts that run
quickly.

For more information on the Bourne shell, see Chapter 3, “Bourne Shell Reference.”

Chapter 1 Introducing the A/UX Shells

Introducing the Korn shell

The Korn shell is an extension of the Bourne shell, so it is compatible in many ways. It
provides all the Bourne shell’s capabilities and even greater programming efficiency. In
addition, the Korn shell includes many of the features that make the C shell easy to use:
listings of previous commands, reusing previous commands, and the alias feature. Like
the C shell, the Korn shell has a job control feature that enables you to switch among
processes and move processes to the foreground or background. The Korn shell
command-line editing capabilities are more sophisticated than those of the C shell.

You may want to use the Korn shell for its power and flexibility, especially if your site
has many existing Bourne shell scripts.

The examples in the tutorial chapters of this book are written for the Korn shell. You
can gain a basic knowledge of the Korn shell from Chapter 2. For more detailed
information, see Chapter 4, “Korn Shell Reference.”

The three A/UX shells 1-11

Using the Shells Interactively

The login shell / 2-3

Entering commands / 2-5

Shell metacharacters / 2-9

Overriding metacharacter interpretation / 2-12
Variables / 2-14

Standard input, output, and error / 2-17
Filters and pipes / 2-20

Shells and processes / 2-21

What you have learned / 2-25

Where to go from here / 2-26

A basic understanding of how to use the shells interactively can greatly improve your
control over the A/UX system. With a little experience, you can use the shells

interactively to do everyday tasks more quickly and efficiently.

In this chapter you'll find many example commands that will give you hands-on
experience at creating and editing commands. Try to work through as much of the
chapter at a time as possible, trying all the examples that the text suggests that you enter.
To ensure that you are running the Korn shell, enter the command ksh just after you
log in. Also keep in mind that most of the commands used in this chapter have many
additional options not covered here. A/UX Command Reference describes all the options

of each command in detail.

2-2 Chapter 2 Using the Shells Interactively

The login shell

When you log in to an A/UX system, one of the three shells starts to run to accept
commands that you enter in a CommandShell window. This shell is called your login
shell. The login shell can be any of the three A/UX shells. The entry for your account
in the password file (/ et c/passwd) specifies which of the three shells will be your
login shell.

For example, the password file might look as follows:
root:1TkIJFna9/hzk:0:0::/:/bin/ksh
daemon:*:1:1::/:
bin:*:2:2::/bin:
sys:*:3:3::/bin:
adm:*:4:4::/usr/adm:
uucp: :5:5:UUCP admin:/usr/spool/uucppublic:
lp:*:7:7:1p:/usr/spool/lp:
chelsea:QxJR/bgfdrTG:75:75:Personnel: /users/chelsea: /bin/csh
elaine:RbQxJgfdpoG:75:75:Accounting: /users/elaine: /bin/sh
Guest::90:90:A/UX Guest account:/users/Guest:/bin/rsh

The login shell for an account is specified as the last field in each account record. In
the example, the account root is assigned the Korn shell, ksh; the account elaine
is assigned the Bourne shell, sh;and the account chelsea isassigned the C shell,
csh. (All three shells are located in the directory /bin.)

Note If you look closely at the above password file, you'll find an account assigned
the rsh shell. This is not a fourth shell, but a restricted version of the Bourne shell.
You will also notice accounts for which no shell is assigned; these accounts typically
represent programs that run without the need for a shell. o

The login shell 2-3

24

Determining your login shell

If you don’t know which shell is your login shell, you can find out with a simple
command.

Enter the command echo $SHELL

Be sure to type the word SHELL in uppercase. This command will cause the shell to print
the pathname of your login shell, /bin/ksh for the Korn shell, /bin/csh for the
Cshell, and /bin/sh for the Bourne shell.

You can also determine your login shell by inspecting the password file,
/etc/passwd.

Enter the command more /etc/passwd

This command shows the password file one screenful at a time. Look for the entry for
your account. (If you don’t find it, look for the word More highlighted at the bottom
of the screen: this indicates that the file is too big to fit on the screen. Press the SPACE BAr
to display another screenful until you find your account entry.) The name of your login
shell is at the end of your account entry.

Quit the more program.

If the word more is highlighted at the bottom of the screen, press the Q key to
terminate the more program.

Changing your login shell

To change your login shell, you use the chsh command. The syntax of this command is
chsh name shell

where name is your account name and shell is the name of shell you want as your login
shell, asin chsh janine csh or chsh janine ksh.

Chapter 2 Using the Shells Interactively

Changing your working shell

Your login shell setting specifies which shell starts up when you log in, but you can switch
shells any time in a CommandShell window by entering a command that is just the name of
the shell you wish to run: sh for the Bourne shell, csh for the Cshell, and ksh for the
Korn shell. You can also use another shell temporarily to run a shell program written for
that shell. For example, in the Korn shell you can run a C shell program cs_prog by
entering csh cs_prog. The C shell will start up, run the program, then shut itself down,
leaving you in the Korn shell. In fact, if you have a program that doesn’t seem to work
propetly, you might try running it with the other shells. You should note, however, that this
new working shell will be subordinate to the login shell. That is, the login shell continues to
run, and if you shut down the login shell, you may shut down the subordinate shell as well.

If you want to switch completely to another shell, you can use the exec command,
asin exec csh. This command will shut down the existing shell and cause the C shell
to run in its place. If your login shell is set properly, it is usually not necessary to switch
shells in this manner.

Entering commands

In A/UX; shell commands are typically entered in a CommandShell window.
CommandShell provides several nice features, including the ability to change fonts and
font sizes, set how many lines are saved from an editing session, and cut and paste lines.
You might consider CommandShell to be a shell for the shells—its purpose is to give you
a friendly, Macintosh-like way to use the shells. (See A/UX Essentials if you need a
review of CommandShell features.)

The shells themselves are independent of CommandShell, and they provide you with
a great degree of flexibility even in how you enter commands. This section discusses
how to issue commands to the shells, how to edit those commands, and how to use
some shell features to make it easier and more efficient to enter commands.

Entering commands 25

Prompts

When you open a CommandShell window, you will notice a cursor (usually a
rectangular box or an underscore character) preceded by one or more characters. Those
characters are known collectively as the primary prompt; by default it is usually a
dollar sign in the Korn shell, but it can vary. The prompt indicates that the shell is ready
to accept a command.

You can change the prompt to any string of characters. Often an administrator will
establish the prompt to be the name of your computer or your own account name.

To experiment with changing prompts, do the following:

m Enter the command PsS1="$LOGNAME "

Be sure to leave a space before the last quotation mark. If you make a mistake, just
retype the command. This command changes the primary prompt to the name of your
login account, as you can see by the new prompt.

There is also another prompt, known as the secondary prompt; by default it is a
greater-than symbol (>). The shell uses the secondary prompt to indicate that it is
waiting for completion of a command.

m Enter print

The shell is waiting for you to tell it what to print, so it displays the secondary prompt.
Now enter the following:

m Enter $HOME"

The second quotation mark tells the shell that the command is complete. The shell prints
the name of your home directory, then displays the primary prompt, indicating that it is
ready to accept a new command.

2-6 Chapter 2 Using the Shells Interactively

Changing or canceling a command

When you are entering commands to the shell interactively, the shell will not begin
executing the command until you press ReTurn. The shell processes the RETURN by
interpreting the keystrokes since the previous RETURN and executing the resulting
command line. Therefore, if you make a typing mistake, you can erase back to the
mistake and correct it before pressing ReTurN. (Typically, you erase using the DELETE key.
If the DeLeTE key doesn’t work, see your system administrator.)

You can cancel a command and start over by using the ConTROL-C key combination.

Type psSl="newprompt " and press CONTROL-C.

The ControL-C key combination signals the shell to ignore the characters on the current
line and to accept a new command. The shell expects a new command, but does not
return the prompt.

Press ReTURN to display the prompt.

The prompt should remain the same as it was before (your account name, if you have
entered the tutorial examples).

The Korn shell and the C shell both have sophisticated editing capabilities that you
can use to edit commands. These features are discussed in detail in the reference
chapters for those shells.

Combining commands on a line

Typically, you type a single command and press RETURN to enter (notify the shell to begin
processing) it. Everything you type before pressing RETURN is known as the command
line. You can combine two or more commands in a command line by separating each
new command from the previous one with a semicolon (;).

Entering commands 2-7

2-8

m Enter cd $HOME; pwd; 1ls -la

This command line consists of three commands that change the current directory to your
home directory, display the directory name, then list the contents of that directory.

You have seen these commands in Chapter 1, but there are two new options here to the
1s command. The -1 option specifies a “long” listing, which displays extra
information about each file in the directory. The -a option specifies that all filenames
should be displayed, including filenames beginning with a dot (.), which are not
normally displayed.

In interactive use it is generally best to keep command lines short to minimize editing
and retyping. However, combining commands in this manner comes in handy for short
series of commands that you use often. You can use the alias command to combine
a series of commands under a short name.

Enter alias homey="cd S$HOME; pwd; ls -la"

This command line groups the cd and 1s commands as before, but it also assigns
the name homey to the combined commands. Now to execute these three commands,
you can enter the short name homey.

Enter ca /; pwd

This command line changes the current directory to the root directory, named /, then
verifies that the change was successful by displaying the directory name.

Enter homey

You should see the name of your home directory followed by the long listing, just as it
was displayed before. The alias homey will last throughout your login session. You can
make aliases permanent; for more information, see the reference chapter for your shell.

Invalid commands

If you enter a command that doesn't exist or a command line that uses improper syntax,
the shell will print an error message and prompt you for another command. Often the
shell will display the syntax of the command.

Chapter 2 Using the Shells Interactively

Shell metacharacters

Some characters, known as metacharacters, have a special meaning to the shell. The
following are some shell metacharacters:

"HS L& () % <> 2
When the shell finds a metacharacter in a command line, it performs some special
processing. For example, the shell interprets a semicolon (;) as a metacharacter that

separates two commands on the command line. Metacharacters can be used to perform
different types of functions, including

= grouping commands together
= specifying sources and destinations for data

» specifying filename templates

Perhaps the most common use of metacharacters is in specifying filename
templates that can be used to represent more than one file. The metacharacters used for
this purpose are the asterisk (*), the question mark (?), square brackets ([and]), and the
hyphen (-). These characters are often called wildcards because they can be used to
represent other characters. Using them to match other characters is often called pattern
matching. Using these characters can be very helpful; not understanding their use can
result in invalid shell commands or unexpected (and sometimes very unfortunate)
results.

Asterisk (%)

An asterisk in the name of a file or directory can represent almost any number of
characters (or none). This metacharacter can be very useful when you want to perform
an operation on several files at a time.

m Enter 1s to list the files in your current directory.

You should be familiar now with the contents of your directory.

Shell metacharaters 29

2-10

Enter > file > file2 > file3 > file22 to create some new files in
your directory.

The use of the greater-than symbol (>) is explained in greater detail later; in this
command, it directs the shell to create a new file with the filename you specify.

Enter 1s file*

This version of the 1s command uses the asterisk metacharacter to list all files whose
names start with the string £11e. The resulting list should include the four files you just
created.

Enter 1s f*

This command uses the asterisk metacharacter to list all files whose names start with the
letter £. The resulting list should include the four files you just created and any other
files in your directory that start with the letter £.

Question mark (?)

A question mark in the name of a file or directory can match almost any single character.

Enter 1s file?

This version of the 1s command uses the question mark metacharacter to list all files
whose names include only the letters £file followed by one character. The resulting
list should include only file2 and file3.The filename file22 does not match
because of the extra 2. The filename file doesnot match because the question mark
metacharacter requires one character to match (unlike the asterisk metacharacter).

Enter 1s fil?

This command should display only the filename file.

Enter 1s file??

This command should display only the filename file22.You can repeat the question
mark metacharacter to match any specific number of individual characters.

Chapter 2 Using the Shells Interactively

Brackets ([])

The square brackets in the name of a file or directory can match a single character in a
specified set of characters or, when used with the hyphen, in a range of characters. For
example, the set [2468] matches all even integers less than ten; the range [1-9] matches all
integers less than ten.

Enter 1s file([124]

This command displays only the filename f£i1e2. The command does not work for
file because a character is required for a match, for file3 because 3 is not
included in the set of characters [124], nor for file22 because each bracketed
character set will match only a single character.

Enter 1s file[1-4]

This command displays the filenames file2 and file3 because the hyphen
specifies a range of characters from 1 to 4, inclusive.

You can repeat and combine these metacharacters to specify almost any group of
files. For example, the command 1s z*.[0-9][0-9] would display the names of
any files that started with z and had a suffix from .00 to .99.

With these metacharacters you can issue a single command that operates on a group
of files. This use of metacharacters is especially helpful in maintaining your system and
backing up your files.

Consider—but don’t enter—the following command:

rm file file?*

The rm command removes (deletes) files. You can use the rm command to
remove one file at a time, or you can use it with filename templates. This instance of the
command uses filename templates that should match only the example files created in
this section. From this command you can see that you should be especially careful when
using these metacharacters. For example, you could use the command rm * to delete
the example files, but you would also delete all the other files in your directory. To avoid
undesired results from using these filename templates, you can try them first in a
nondestructive command such as 1s.

Shell metacharaters 2-11

m Enter 1s file file?*

This 1s command uses the same filename templates, so you can see exactly which
files match before you issue an irreversible command. If the resulting list contains only
the four files file, file2, file3,and file22,you can safely use the rm
command with these filename templates.

Overriding metacharacter interpretation

2-12

Sometimes you need to override the usual interpretation of shell metacharacters, as
when a filename actually contains a question mark or an asterisk. The shell feature called
quoting makes this possible. The shell provides three quoting mechanisms:

» The backslash character (\) overrides the interpretation of a single character that
follows it.

= Two double quotation mark characters (* ") limit interpretation of metacharacters
between them.

= Two single quotation mark characters (* ') prevent interpretation of metacharacters
between them.

The different mechanisms often can be used interchangeably, but not always; for
more detail, read the chapter for your shell.

You may have trouble using the shells if you work with filenames containing blank
spaces, because the shells use spaces to determine where parts of a command begin and
end. Therefore, the shell can misinterpret commands that include filenames with
embedded spaces. If you are using a shell and want to use a space in a filename, you
must quote the space or the entire filename.

Chapter 2 Using the Shells Interactively

Enter cp /etc/inittab bigfile

The copy command, cp, copies the contents of one file to another file. The file whose
contents are copied is called the source file, and the file into which the contents are
copied is called the destination file. If the destination file does not exist, the shell
creates it.

Enter head bigfile

The head command lists the beginning of a file; by default, it prints up to ten lines.
You should see the first ten lines of bigfile on your screen.

If you want the filename to be two words (big file) instead of one, you have to
use quoting.

Enter mv bigfile 'big file'
The move command, mv, moves the contents of one source file to one destination file.

In this command, the quoting character is the single “straight” apostrophe, not the grave
accent () or the single “curly” apostrophe (), and it is required both before and after
the entire filename.

Enter head big\ file

This head command displays the same ten lines as before, but this time they are from
a different file. The shell created the new destination file (big file), and the mv
command moved the contents of bigfile toit.

Note that in this instance, the quoting character is the backslash, inclined to the left, and
it immediately precedes the space character. This type of quoting is also known as
escaping; the backslash is said to “escape the space.”

Enter 1s big*

The new file, big file,appears in the list, but the original file, bigfile, does not;
unlike the cp command, the mv command deletes the source file.

Overriding metacharacter interpretation ~ 2-13

m Enter mv "big file" big filel

Variables

The shell responds with an error message. This invalid command illustrates the problem
with unquoted spaces in filenames.

The shell does not interpret the space in big file because it is quoted. The spaces
between the other words in the command cause the shell to see the command as having
four parts:

1. the command name, mv
2. the name of the source file, big file, that contains the material to be moved
3. the name of the destination file, big, to receive the contents of big file

4. athird argument, £ilel, which the command doesn't expect

As mentioned above, the mv command expects one source file and one destination
file. When it encounters the third file name, it assumes that you have made a mistake and
displays an error message.

The quoting character in this instance is the double “straight” quotation mark—not the
“curly” quotation marks (» ~)—and it is required both before and after the entire
filename.

Enter rm 'big file'

The command removes the file big f1i1e, which should be the only file remaining in
your directory from the examples in this section. To be sure, you can use the 1s
command to list the files and the rm command to remove any extra files.

Variables are another powerful shell feature. Variables are named storage places for
values; with them, you can make general-purpose commands that will accommodate
different circumstances.

2-14 Chapter 2 Using the Shells Interactively

There are two basic types of variables: shell variables and user-created variables.
Each of these types can be local variables, which retain their meaning only within a
limited set of circumstances, and global variables (or environment variables), which
retain their meaning across login sessions and whose values don’t change unless you
explicitly change them. This section introduces variables. For a detailed explanation, see
the reference chapter for the appropriate shell.

¢ Note By convention, the names of global variables are in all uppercase letters, and
the names of local variables are in all lowercase letters. &

Shell variables

The shell maintains a number of values pertaining to your login session. These values
are kept in variables known as shell variables that can be very useful in your everyday
work. One example of a shell variable is HOME, which holds the pathname of your
home directory.

Enter print $HOME

The dollar-sign metacharacter specifies that the print command should print the
value represented by the variable instead of the name of the variable.

Enter print HOME

Without the dollar-sign metacharacter, the print command prints the name of the
variable (HOME).

You have, in fact, already used several other shell variables:
» ps1, which contains the primary prompt
= ps2, which contains the secondary prompt
m LOGNAME, which contains your login account name
To display the value of any of these variables, simply use the print command and
the dollar-sign metacharacter, as in the command
print SLOGNAME

Variables 2-15

2-16

There are many other shell variables; some of these hold values that you might
find useful:

= pwD, which contains the name of the working directory
= oLDPWD, which contains the name of the previous working directory (if any)

® HISTFILE, which contains the name of the file used to store the history of
commands you have entered

= PATH, which contains a list of directories for the shell to search for commands

There are other shell variables; for a complete list, see the reference chapter for the
appropriate shell.

User-created variables

You can create your own variables to hold values you want to use again. Such values are
typically numbers or letters. This feature is especially useful in shell programs, but it can
also be helpful in interactive shell use.

Enter the command my_ prompt="Enter your name: "

This command sets the value of a variable named my_prompt to the string of
characters Enter your name:. The operation of setting a variable to a specific value
is known as variable assignment.

Enter the command print $my_prompt

This command displays the prompt on your screen by printing the value of the variable,
as indicated by the dollar-sign metacharacter.

Enter the command read response

This read command accepts a value entered from the keyboard and assigns that value
to the variable response.

Type your name and press RETURN.

The RETURN signals the read command that you have completed your response to the
prompt.

Chapter 2 Using the Shells Interactively

m Enter the command name=$response

This command assigns the value of the variable response to the variable name.

m Enter the command print "Hello, " $name

This print command prints Hello, followed by your name, which was stored in
the variable name.

The following guidelines apply to defining your own variables:

= A variable name can include letters, digits, and underscores (_) but cannot start with
a digit.
» A variable name cannot include any spaces.

= meaningful variable names (for example, response) are better than short names
(for example, res).

» A variable assignment consists of a variable followed by an equal sign (=) followed
by a value.

= A variable assignment cannot contain spaces next to the equal sign.

The simple examples above give you just a hint of what you can do with variables.
As you continue to use the shell, you will find many more uses for variables.

Standard input, output, and error

Most commands either expect some input, produce some output, or both. For example,
the cat command typically expects you to enter the name of a file, and it typically
displays the contents of that file on the screen. The shell expects that input will come
from the standard input and that output will be sent to the standard output and error
messages to the standard error; these are not files or devices, but conceptual entities.
When you are using the shell interactively, the standard input is usually the keyboard,
and both standard output and standard error are usually the active CommandShell
window. What all this means to you is that you usually enter shell commands on the
keyboard and receive output and error messages in a CommandShell window.

Standard input, output, and error ~ 2-17

2-18

Input/output redirection

The reason for standard input, output, and error is to allow sources and destinations to
be redefined using a shell feature called input/output redirection (or I/O redirection).
1/0 redirection simply means directing a command to receive input from someplace
other than the keyboard and to send its output and error messages someplace other than
to a CommandShell window.

Redirection operators

To redirect I/O, you use redirection operators. The three common redirection
operators and their functions are as follows:

> file Redirect output (write): write data over the contents of the named
destination file

>> file Redirect output (append): write data at the end of the named
destination file

< file Redirect input: read data from the named source file

Note that the named file can be a special file that represents a device.

Output redirection

If the destination file is empty or doesn't already exist, the two output redirection
operators (> and >>) cause the named file to contain only the output from the
command. If the destination file contains data, the > operator causes the output of the
command to overwrite the contents of the file, whereas the >> operator causes the
output of the command to be appended to the end of the file.

You can also use the write output redirection operator (>) to create a new file by
specifying it with just a filename, as shown in the “Shell Metacharacters” section, earlier.

Chapter 2 Using the Shells Interactively

Enter the command print "First line of file22" > file22

This command prints some characters, as you have seen before, but the output is
redirected to the file file22 instead of to your screen.

Enter the command head file22

You can see that the file has been created, and that the line has been written into it.

Enter the command 1s $HOME >> file22

This command lists the contents of your home directory, as you have seen before, but
the output is redirected to be appended to the file £i1e22 instead of being displayed
on your screen.

Enter the command head file2?2

You can see that the one line previously in the file has not changed and the directory
listing has been appended to it.

Input redirection

The input redirection operator causes a command to get information from a file rather
than from the keyboard.

Enter the command read input

This command accepts a line from the keyboard and assigns the characters in that line to
the variable input.The read command is waiting to accept input, so the shell
prompt does not appear.

Enter the line Input from the keyboard

When you press RETURN, the read command assigns the value of the line you entered
to the variable input.

Standard input, output, and error ~ 2-19

m Enter the command print $input

This command verifies that the variable input now holds the line you entered.

Enter the command read input < file22

This command redirects input so that the read command accepts a line from

file22 (instead of the keyboard) and assigns the characters in that line to the variable
input. The read command does not have to wait for its input, so the shell prompt
appears immediately.

Enter the command print $input

This command verifies that the variable input now holds the line from file22.

Filters and pipes

2-20

Any command that accepts its input from standard input, writes its output to standard
output, and writes its error messages to standard error is known as a filter. Most A/UX
commands are filters.

The power and simple elegance of the filter mechanism and I/O redirection make it
possible for A/UX to provide a feature called a pipeline or pipe. A pipe is a string of
commands in which the standard output of one command is used as the standard input
for the next command. This allows you to perform many operations on the same data
without having to store information in temporary files. The pipe is one of the most
distinctive features of the UNIX operating system. It allows for small, single-purpose
commands that can be used in many different combinations, enabling you to use a small
set of software tools to perform a wide variety of tasks.

You use the vertical bar (1) metacharacter, also known as the pipe metacharacter, to
connect commands in a pipe.

Chapter 2 Using the Shells Interactively

m Enter the command grep /bin/ksh /etc/passwd | wc -1

This grep command searches for the character string /bin/ksh in the password
file. It writes every such line that it finds to standard output. The pipe metacharacter
specifies that those lines are the input to the following command.

The next command is the word count command, wec. This instance of wc simply
counts the number of lines it receives from standard input and prints that number to
standard output. In this case, the standard input to wc is the output from the grep
command. Since wc s the last command in the pipe and its output is not redirected, its
standard output is the screen. Therefore, the number on your screen is the number of
lines in the password file that contain /bin/ksh. By inference, this is probably the
number of people who use the Korn shell as their login shell.

Shells and processes

The A/UX system is 2 multitasking system. The term multitasking implies that the
system does many tasks at once. While this is not true in the strictest sense, the system
performs in such a way as to give the impression that it is. It does so by processing all
the current tasks, one at a time, each for a very short period of time. As you can imagine,
keeping track of all the information required to do this can be a complicated job. The
system is able to manage this job by breaking large tasks down into smaller tasks known
as processes and assigning each process a number called a process ID (PID). The
system uses the PIDs to keep track of all the current processes. By using the PID, you
can also exercise some control over processes that you have started.

Parent and child processes

A process can start (or spawn) other processes. The original process is then known as
the parent process, and the subordinate processes that it starts are known as its child
processes (or its children). Each shell is a process. The shells often spawn child
processes to perform discrete tasks. The shell typically spawns a child process to run
commands other than its own built-in shell commands.

Shells and processes ~ 2-21

2-22

m Enter the command print $$; ps -ef

This print command displays the PID of your shell. The first dollar sign is the
metacharacter you have seen before, which specifies that the print command should
use the value of the following variable. The second dollar sign is actually the name of a
variable that holds the PID of your shell.

The ps command displays a report about all the active processes. This report looks
like the following:

UID PID PPID C STIME TTY TIME COMMAND
michael 157 154 1 10:46:24 C1 0:01 ksh
michael 159 157 9 10:46:32 C1 0:00 ps -ef

The Command field in each line contains the name of the process, and the PID field
contains its PID. The PID you just printed should match the PID in the line for your shell
inthe ps report. A line like this should appear in any ps report you generate.

There should also be a line in your ps report for the ps command itself. This line
will show a different PID, indicating that the ps command is being run as a separate
process. The number in the PPID column is the PID of the parent process for that
command. The PPID for the ps command is the PID of the shell, showing that the ps
command is a child process of the shell.

Typically, when a shell spawns a child process, the shell will then wait for the child
process to complete before performing any other work. This is what happens in normal
interactive use of the shell. When you enter a command, the shell spawns a child process
to run that command. The shell then waits for the child process to terminate. The shell
then determines the outcome of the child process; if an error occurred, the shell may
display an error message. If the command ran as it should have, the shell displays the
prompt for you to enter your next command.

Background commands

You can take advantage of multitasking to avoid waiting for long tasks to complete. To
do this, you can direct the shell to execute commands in the background while you
continue to work at the shell prompt (the foreground).

Chapter 2 Using the Shells Interactively

Enter 1s -rR /

This command displays on your screen the names of most of the directories in the

system. The -R option specifies that the 1s command should list all subdirectories

within a directory. The slash (/) specifies that the listing should start with the root
directory. This list should take about a minute to display.

Enter tail qw

The tail command works much like the head command, except that it displays
the last ten lines in a file. The file qw probably doesn’t exist, so you should receive an
error message. (If the command displays text, the file exists; pick another name and try
the tail command again. Then substitute the new name wherever you see qw in

these examples.)
To run a command in the background, you end the command line with an
ampersand (&) before the final RETURN.

Enter 1s -R / > qw &

This command uses output redirection to put the same list you saw on your screen
into a file.

Enter tail qw

You should now see some text from the file. In processing the command, the shell
checked your working directory for a file named qw (or a file with your substitute
name). Because this file did not exist, the shell created it for you.

The next example slows down the background command so that you can see
it in operation.

Enter (sleep 20; 1s -R / > qw) &
The sleep command postponesthe 1s command for 20 seconds.

You can now use the tail command to see the 1s command in operation.

Shells and processes

2-23

2-24

Enter tail qw

If you are quick enough to have entered the tail command before the 20-second
sleep command completed, you may get an error message. Ignore it and go on to the
next command.

Enter r

The r command tells the shell to repeat the last command you entered, so the shell
runsthe tail command again. By now you should see ten lines from the file.

Continue to enter r until the same ten lines repeat on your screen.

The 1s command adds lines to the end of the file, so you see different results from
your tail commandsaslongasthe 1s command is still running. Thus you have
seen that commands (1s, in this case) can run uninterrupted in the background while
you enter other commands (tai1, in this case) in the foreground.

Enter rm qw

If you used another name above, be sure to use that name instead of qw. You may want
touse the 1s command to verify that the rm command is successful.

Controlling background commands with the PID

The PID is your key to controlling commands, especially those running in the
background. When you enter a command to run in the background, the shell responds
with the PID for that command. After the PID is displayed, the shell returns the prompt
s0 you can use the terminal immediately for other work.

You can then use the PID to monitor existing background commands and terminate
them if necessary.

Enter sleep 120 &
The shell should respond with a line like the following:
[1] 343

The first number (1, in this case) is called the job number, and the second (343, in this
case) is the PID. Note the PID before continuing.

Chapter 2 Using the Shells Interactively

m Enter the ps command.

This version of the ps command displays a shorter report like the following:

PID TTY TIME COMMAND
298 C1 0:02 ksh

343 C1 0:00 sleep
344 C1 0:01 ps

You should see a line for your sleep command, and the PID at the beginning of the
line should match the one you noted.

m Enter ki1l followed by a space and the PID for your sleep command.

For example, the command to terminate the sleep command aboveis kill 343.

m Enter ps again.

Your sleep command is terminated, and the line for it in the ps report is gone.

What you have learned

If you have entered all of the commands in this chapter, you should now have enough
experience with the shell to significantly enhance your use of A/UX. You have learned
how to:

= maneuver through the file system with cd and pwd

= inspect the contents of files and directories with cat, more, head, tail,
and 1s

» create and delete files with > and rm, respectively
» combine commands in a command line with the semicolon (;) metacharacter

= copy and move information between files with cp and mv as well as with
I/O redirection

m specify groups of files with filename templates

» repeat commands with the r command

What you have learned ~ 2-25

= use shell variables to find information about your login session

= create variables to store information

= create a pipe to pass the results of one command to another for further processing
» execute commands in the background with the ampersand (s) metacharacter

= execute commands in the background and cancel them with the ki11 command

Where to go from here

2-26

Many of the commands you have used offer a variety of options. You can find further
details about built-in shell commands in this book and in the ksh(1) manual page in
A/UX Command Reference. The other commands are documented in detail in manual
pages of the same name in A/UX Command Reference (for example, the grep
command documentation is found in the grep(1) manual page).

As you become comfortable using the shell features you have learned in this chapter,
you may want further information. The reference chapter for your shell provides more
details to answer your questions and to help you improve your skills.

When you are familiar with using a shell interactively, the benefits of shell
programming will become more obvious. To learn about programming with your shell,
see the reference chapter for that shell.

Appendix A, “Additional Reading,” lists some additional books about using and
programming UNIX shells.

Chapter 2 Using the Shells Interactively

Bourne Shell Reference

The Bourne shell prompt / 3-3

Types of commands / 3-4

The parts of a command / 3-4

Interactive use / 3-5

Using Bourne shell metacharacters / 3-9
Working with more than one shell / 3-18

The environment / 3-19

Assigning values to environment variables / 3-20
The .profile file / 3-25

Shell execution options / 3-29

Restricted shell / 3-30

Shell layering / 3-31

Overview of shell programming / 3-31

Writing shell programs / 3-32

Command evaluation / 3-35

Defining functions / 3-39

Positional parameters and shell variables / 3-40

Control-flow constructs / 3-48

Input and output / 3-58
Other features / 3-69
Error handling / 3-71

Summary of Bourne shell commands / 3-76

The Bourne shell is the original UNIX shell. It is faster and less complex than the C shell,
but it does not have the C shell’s editing power nor its programming structures. The Korn
shell is backward-compatible with the Bourne shell; that is, Bourne shell commands and

scripts run unchanged in the Korn shell.

3-2 Chapter 3 Bourne Shell Reference

The Bourne shell prompt

The Bourne shell is a program that interprets commands and arranges for their execution.
The Bourne shell displays a character called the prompt (or primary shell prompt)
whenever it is ready to begin reading a new command from the terminal. By default, the
Bourne shell prompt character is set to the dollar sign ($).

The secondary shell prompt

If you press the RETURN key when the shell expects further input, you will see the
secondary shell prompt. By default, this prompt character is set to the greater-than
sign (>). Like the primary shell prompt, this can be redefined.

The secondary prompt will appear, for example, if you enter a multiline construct
(such as a function definition) at the primary shell prompt. The secondary prompt will
appear at each line until you give the final delimiter. Whenever you have a secondary
prompt (either because you are using a multiline construct or because of an error), an
interrupt will abort the process and issue a primary prompt ($) for another command.
See “Canceling Commands” for information about the interrupt on your system.

Changing the prompt character

You may change the primary prompt character by redefining the environment variable
PS1 toany other character or string of characters. You can change the secondary
prompt character by redefining the ps2 environment variable. See “Commonly Used
Environment Variables.”

The Bourne shell prompt 33

Types of commands

The shell works with three types of commands:

» Built-in commands Built-in commands are written into the shell itself and are
generally used for writing shell programs. Each A/UX shell has a slightly different set
of built-in commands. The built-in Bourne shell commands are listed under
“Summary of Bourne Shell Commands.”

» A/UX commands Every shell can invoke all A/UX commands (see “Command
Summary by Function” in A/UX Command Reference for a complete list of these).
A/UX commands are executable programs stored in system directories such as /bin
and /usr/bin. When you enter an A/UX command (for example, 1s), the shell
searches all directories specified by your pATH variable (see “Locating Commands”)
to locate the program and invoke it.

» User-defined commands You can combine built-in shell commands and A/UX com-
mands to define your own shell programs (see “Overview of Shell Programming”).
Shell programs can be typed in at the shell prompt or entered in a file. A shell
program contained in a file is generally called a shell script. Once a shell script is
defined, it can be used like any other command or program, with certain limitations.

You can also write your own commands in a high-level language such as C. (See
A/UX Programming Languages and Tools, Volume 1 for more information.) The name
of a user-defined command should not be the same as that of any existing shell or
A/UX command.

The parts of a command

3-4

Whenever you see a shell prompt, you can run a command by entering the command name.
Most A/UX commands have one or more flag options, which follow the command name
and modify the way the command operates. Flag options are usually a hyphen followed
by one or more characters; for example, -1 isa flagoptiontothe 1s command:
1s -1

In this case, the -1 is a flag option that modifies the way the 1s command
operates, producing a long listing that contains more information than the standard 1s

Chapter 3 Bourne Shell Reference

output. For the flag options that apply to a particular A/UX command, see the manual
page entry for that command in A/UX Command Reference. For options to the Bourne
shell built-in commands, see “Summary of Bourne Shell Commands.”

Many A/UX commands also expect one or more arguments, which pass information
to the command. An argument may be any data expected by the command; for example,
a directory name may be an argument to the 1s command:

1s /bin

The entire command specification, including any flag options and other arguments, is
called the command line. A command line is terminated by ReTurN. For example, in the
command line

l1s -1 /bin

1s isthe command name, -1 isa flag option (specifying a long listing), and /bin is
an argument (specifying which directory to list).

To give a command longer than one line, you must precede ReTUrN with a backslash
(\). This prevents the shell from interpreting RETURN as the end of a command. You can
continue this for several lines; the shell will wait for a plain RETURN (not preceded by a
backslash) to execute the multiline command.

Commands can also be combined; see “Command Grouping.”

Interactive use

When you use the Bourne shell interactively, it acts as a command interpreter, processing
each command or group of commands as it is entered. This section describes how you
enter, monitor, and control commands interactively.

Command termination character

When you are entering commands to the shell interactively, the shell will not begin
executing the command until you press the ReTUrN key. Therefore, if you mistype
something, you can back up and correct the mistake before pressing RerurN. When the
shell recognizes the RETURN, it executes the command line; after the process is finished, a
new prompt is printed on the screen. The shell is again ready to accept commands.

Interactive use 3-5

3-6

Impossible commands

If you give an impossible command (a command that doesn'’t exist or a command line
that uses improper syntax), the shell prints an error message and returns the prompt for
another command.

Background commands

You can direct the shell to execute commands in the “background” while you continue to
work at the shell prompt (the “foreground”). To run background processes, end the
command line with an ampersand (&) before the final ReTurn. For example,

cat smallfilel smallfile2 > bigfile & 1234

The number shown below the command line is the process ID (PID) associated with
the sample cat command as long as it is executing. After the process ID is displayed,
the shell returns the prompt so you can use the terminal immediately for other work.

¢ Note To save the output from a job you are running in the background, you must
redirect it to a file or pipe it to a printer. If you do not redirect the command output, it
will appear on your screen and will not be saved. In addition, remember that the output
of a background command is not complete until the command has finished. The
presence of a prompt does not mean the output is ready for use. &

To suspend processes that require input from the keyboard, (such as an editor
or a remote login across a network), you can use shell layering. See Chapter 6,
“Shell Layering.”

Checking command status
To check on the status of a background command, use
ps

This command shows the process status of all your commands; they are identified by
PID and by name. See ps(1) in A/UX Command Reference for details.

Chapter 3 Bourne Shell Reference

Logging out
The shell terminates all processes when you log out of the system (or are forced to log
out, for example, by a broken dialup connection). To make sure that a process will

continue to execute after you log out, use the nohup command (which stands for “no
hang up”) as follows:

nohup command &
See nohup(l) in A/UX Command Reference for details.

Canceling commands

You can use several special control sequences when canceling commands. The A/UX
standard distribution defines these sequences as follows:

Name A/UX standard key sequence
interrupt CONTROL-SHIFT-C

quit ControL - | (pipe character)
erase DELETE

kill ControL -U

eof CoNTROL -D

switch CONTROL -'

susp CONTROL -Z

However, you may reassign any of these sequences using the stty command. See
stty(1) in A/UX Command Reference for more information.

Before you press RETURN

If you type part of a command and then decide you do not want to execute it, you can
send an interrupt or kill to the system at any point in the command line.

Interactive use 3-7

3-8

While a command is running

There are several ways to stop a command that is executing. You can redefine these
using stty unless otherwise noted.

Send the interrupt signal. For example, the output of a command such as
cat /etc/termcap

will scroll by on your terminal. If you want to terminate the process, you can send the
interrupt signal. Because the cat command does not take any precautions to avoid
or otherwise handle this signal, the interrupt will (eventually) cause it to terminate.

Use CoNTROL-S to suspend scrolling output. The A/UX control-flow keys are CONTROL-S
(suspend scrolling output) and ControL-Q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a screenful again.
ConTroL-S and ConTrOL-Q cannot be redefined with st ty; however, you can enable
and disable control flow by entering stty -ixon.

Send an eof character. Many programs (including the shell) terminate when they get
an eof condition from their standard input. You could accidentally terminate the shell
(which would log you off the system) if you entered eofat a prompt or, in terminating
some other program, if you sent an eof one time too many.

Wait for the eof condition from a file. If a command receives its standard input from
a file, then it will terminate normally when it reaches the end of that file. If you give
the command

mail ellen < note

(where note isan existing file), the mai1l program will terminate when it detects
the eof condition from the file.

Send the quit signal. If you run programs that are not fully debugged, it may be
necessary to stop them abruptly. You can stop programs that hang or repeat
inappropriately by using quit. This will usually produce a message such as

Quit (Core dumped)
indicating that a file named core has been created containing information about
the status of the running program when it terminated because of the quit signal. You

can examine this file yourself or forward information to the person who maintains the
program, telling him or her where the core file is.

Chapter 3 Bourne Shell Reference

» Send a suspend signal. If you are using shell layering, you can type suspend to
stop temporarily jobs that are running on a shell layer. You can then resume the job
with a special sh1 command. See Chapter 6, “Shell Layering.”

Canceling background commands

If you have a job running in the background and decide you do not want the command
to finish executing, use the A/UX kill command.

When a job is running in the background, it ignores interrupt and break signals. To
terminate a background command, use
kill process-ID

The ki1l command takes the process ID as an argument. See ki11(1) and
ps(1) in A/UX Command Reference for details.

Using Bourne shell metacharacters

Shell metacharacters are characters that perform special functions in the shell. This
section discusses how to use these metacharacters. The following are the Bourne shell
metacharacters:

& Anampersand at the end of a command line causes the shell to run the
command(s) in the background and print the process ID(s).

2 A question mark used as part of a file or directory name causes the shell to match
any single character (except a leading period).

* Anasterisk used as part of a file or directory name causes the shell to match zero
or more characters (except a leading period).

[1 Brackets around a sequence of characters (except the period) cause the shell to
match each character one at a time.

- Ahyphen used within brackets to designate a range of characters (for example,
[a-z]) causes the shell to match each character in the range.

< Aless-than sign following a command and preceding a filename causes the shell to
take the command’s input from that file.

Using Bourne shell metacharacters 39

> A greater-than sign following a command and preceding a filename causes the shell
to redirect the command’s standard output into the file. See “Input and Output” for
a description of how this metacharacter is used to redirect error output.

>> Two greater-than signs following a command and preceding a filename cause the
shell to append the command’s output to the end of an existing file.

A vertical bar (pipe) between two commands on a command line causes the shell
to redirect the output of the first command to the input of the second command.
Pipes can occur multiple times on a command line, forming a pipeline.

; A semicolon between two commands on a command line causes the shell to
execute the commands sequentially in the order in which they appear.

{ } Bracesaround a series of commands group the output of the commands.

() Parentheses around a pipeline or sequence of pipelines cause the whole series to
be treated as a simple command (which may in turn be a component of a
pipeline), and a subshell to be spawned for the commands’ execution.

\ Abackslash prevents the shell from interpreting the metacharacter that follows it.

'+ Single quotation marks around a command, a command name and argument, or
an argument prevent the shell from interpreting the enclosed metacharacters.

" = Double quotation marks around a command, an argument, or a command name
and argument prevent the shell from interpreting the enclosed metacharacters with
the exception of back quotes (* *) and the dollar sign ($).

Back quotes around a command cause the characters in that command to be
replaced with the output from that command.

s The dollar sign causes evaluation of the variable it precedes. $a causes evaluation
of the variable a.

Specifying filenames with metacharacters

Using the filename expansion metacharacters (also called wildcards) spares you the job
of typing long lists of filenames in commands, looking to see exactly how a filename is
spelled, or specifying several filenames that differ only slightly.

3-10 Chapter 3 Bourne Shell Reference

These metacharacters are interpreted and take effect when the shell evaluates
commands. At this point, the word incorporating the metacharacter(s) is replaced by an
alphabetic list of filenames if any are found that match the pattern given. Filename
expansion metacharacters can be used in any type of command; however, in the case of
filenames given for input and output redirection, filename expansion may cause
unexpected results if the metacharacter usage expands into more than a single filename.
To turn off the special meaning of metacharacters and use them as ordinary letters, you
must quote them. (See “Quoting.”)

The following are filename expansion metacharacters in the Bourne shell:

? A question mark matches any single character in a filename. For example, if you
have files named

a bb ccc dddd

the command

echo ??7?

matches a sequence of any three characters and returns

ccc

* An asterisk matches any sequence of characters, including the empty sequence, in
a filename. (It will not, however, match the leading period in such names as
.profile.) To list the sequence of files named

chap chapl chap2 chap3 chap3A chapl?2

you can use the notation

1ls chap*

The files are listed as

chap chapl chapl2 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the null sequence
composed of no characters.

Using Bourne shell metacharacters ~ 3-11

[1 Brackets enclosing a set of characters match any single character, one at a time,
from the set of enclosed characters. Thus,

1s chap.[12]
matches the filenames
chap.l chap.2

Note that this does not match chap. 12. To match filenames chap.10,
chap.11,and chap.12,use the notation chap.1[012]

You can also place a hyphen (-) between two characters in brackets to denote a
range. For example,

1ls chap.[1-5]
is the equivalent of
ls chap.[12345]

The notation [a-z] matches any lowercase character, [A-7z] matches any
uppercase character, and [a- za-7z] matches any character, regardless of case.

To match anything except a certain character or range of characters, use the
exclamation point inside the brackets. When the first character following the left
bracket () is an exclamation character (1), any character not enclosed in the
brackets is matched. For example,

[!b]

matches any filename composed of one letter, except a file named b.

None of these metacharacters will match the initial period at the beginning of special
filessuchas .profile. These must be matched explicitly. Periods that do not begin a
filename can be matched by metacharacters.

If you use these metacharacters and the shell fails to match an existing filename, it
will pass the character on as an argument to the command. For example, if you have one
file named bb, the command

echo ??
prints

bb

The command
echo ?

prints

?

3-12 Chapter 3 Bourne Shell Reference

Input and output redirection

An executing command may expect to accept input and create output, possibly including
error output (error messages). In the A/UX system, there are default locations set for
input and output:

» Standard input is taken from the terminal keyboard.

= Standard output is printed on the terminal screen.

= Standard error output is printed on the terminal screen.

You can change these defaults with the following metacharacters (also called
redirection symbols). The redirection metacharacters are a way of using file
descriptors, described in detail in “Redirection With File Descriptors.”

< Aless-than sign followed by a filename redirects standard input (takes command
input from a file or device other than the keyboard). For example,

mail ellen < note

uses a file named note instead of a message typed from the keyboard as the
inputto mail.

> A greater-than sign followed by a filename redirects standard output (prints
command output in a file or to a device other than the terminal screen). If a file by
that name already exists, its previous contents are overwritten; otherwise a new
file is created. For example,

sort filel > file2

uses a file for the output of the sort command. When sort completes, file2
contains the sorted contents of filel.

See “Input and Output” for information on redirecting standard error output using
file descriptors.

>> Two greater-than signs followed by a filename append the output of a command
to a file. If no file by that name exists, one is created. For example,

who >> log

appends the output of the who command to the end of the existing file log.

Using Bourne shell metacharacters ~ 3-13

3-14

Combining commands: Pipelines

You can send the output of one command as input to another command by using the
vertical bar (1), also known as the pipe character. When two or more commands are
joined by a vertical bar, the command line is called a pipeline.

For example, to see which files in a directory contain the sequence o1d in their
names, you can use a pipeline as follows:

1ls | grep old

The pipe character (1) tells the shell that output from the first command (the list of
files produced by the 1s command) should be used as input to the grep command.
The output of the pipeline (filenames in the current directory containing the string 014)
prints on standard output (unless you redirect it to a file).

Pipelines may consist of more than two commands; for example,

ls | grep old | wc -1

prints the number of files in the current directory whose names contain the string o1d.

Pipelines may be executed in the background. For example, to avoid the time-
consuming process of waiting for a very large file to be sorted and printed, you could
give the following pipeline:

sort mail.list | 1p &

This pipeline would sort the contents of a file named mail.list and send the sorted
information to the 1p program to be placed on the printer queue. The shell would
respond with the process ID of the last command in the pipeline.

The tee command is a “pipe fitting”; it can be put anywhere in a pipeline to copy
the information passing through the pipeline to a file. See tee(1) in A/UX Command
Reference for more information.

A filter is a program or a pipeline that transforms its input in some way, writing the
result to the standard output. For example, the grep command finds those lines that
contain some specified string and prints them as output.

grep 'correction' draftl

prints only the lines in draft1 that contain the string correction.

Chapter 3 Bourne Shell Reference

Filters are often used in pipelines to transform the output of some other command.
For example,

who | grep jon
prints
jon ttyp8 Jul 21 12:25

if a user whose login name is jon is currently logged in to the system on tty01.

Command grouping

You can use the following metacharacters to group commands together:

; Group several commands on one command line by separating one command from
another with a semicolon (;). The commands will be executed sequentially in the
order in which they appear. For example, the command line

cd test; 1ls
changes to the test directory and then lists its contents.

& Group background commands on a single line by separating them with
ampersands (&) and then ending the line with another ampersand. The
background commands will exit independently while the shell continues to accept
new commands in the foreground.

{ } Use braces to group commands for functions and control-flow constructs (see
“Defining Functions” and “Control-Flow Constructs”). You can also use braces to
group the output from several sequential commands; the output is then used as
the input to a following command in a pipeline. Braces used in the latter way are
recognized only when they are the first word of a command or are preceded by a
semicolon or newline, and when the first brace is followed by a space. For
example, to put the date and the list of users into one file (1og), you could give
the command

{ date; who;} > log

Note the space following the first brace and the semicolon following the last
command in the braces; these are required. If you type a newline before closing
with another brace, you will see the secondary prompt until you give the closing
brace. Note that commands enclosed in braces are executed by the current shell
(that is, a new instance of the shell is not invoked to execute them).

Using Bourne shell metacharacters ~ 3-15

3-16

() Enclose a group of commands in parentheses to execute them as a separate
process in a subshell (a new instance of the shell). For example,

(cd test; rm junk)

first invokes a new instance of the shell. This shell changes the directory to test
and then removes the file junk. After this, control is returned to the parent shell,
where the current directory is not changed. Thus, when execution of the
commands is over, you are still in your original directory.

The commands
cd test; rm junk

(without the parentheses) are executed in the current shell and have the same
effect but leave you in the directory test.

Conditional execution
You can use the following symbols to indicate that your command should be executed
only if some condition is met:
&& The command form
commandls.s.command?

means “If command1 executes successfully (returns a zero exit status), then
execute commandZ2.”

Il The command form
commandl| | command2
does the reverse. This form means “If command1 does not execute successfully
(returns a nonzero exit status), then execute commandZ2.”

For information on exit status, see “Exit Status: The Value of the Command.”
Conditional execution is also available in pipelines. For other ways of obtaining
conditional execution, see “Control-Flow Constructs.”

Quoting

If you need to use the literal meaning of one of the shell metacharacters or control the
type of substitution allowed in a command, use one of the following quoting mechanisms:

Chapter 3 Bourne Shell Reference

A backslash preceding a metacharacter prevents the shell from interpreting the
metacharacter. For example, to use the A/UX echo command to display a ques-
tion mark, you must precede the question mark with a single backslash (\). Thus,

echo \?

prints
?

Without the backslash, the echo command would generate a list of all single-
character filenames in the current directory. If there are none, the command returns

2

Single quotation marks prevent the shell from interpreting any metacharacters in
the enclosed string s. The command

echo '*test'

prints

*test

while the command

echo *test

attempts to list all the files in your current directory ending with the characters
test. If there are none, the command returns

*test

Within double quotation marks, variable substitution and command substitution
occur, but filename expansion and the interpretation of blanks do not. For

example, if the variable messagel hasthevalue this is a test,the
command

echo "Smessagel"
prints
this 1s a test

Double quotation marks can also be used to give a multiword argument to
commands; for example,

echo "type a character"

For more information on variable substitution, see “Positional Parameters and Shell

Variables.” You can also suppress filename expansion universally by invoking the
shell with the -£ option; see “Shell Execution Options.”

Using Bourne shell metacharacters ~ 3-17

A command name enclosed in back quotes is replaced by the output from that
command. This is called command substitution. For example, if the current
directory is /usr/marilyn/bin, the command

i="pwd"®

is equivalent to

i=/usr/marilyn/bin

If a back quote occurs within the command to be executed, you must escape
it with a backslash (\ *); otherwise the usual quoting conventions apply within
the command.

Command substitution takes place before the filenames are expanded. If the
output of substituted command is likely to be more than one word, the command
must be enclosed in double quotation marks as well as back quotes; for example,

a=""head -1""

Double quotation marks are necessary because the command head -1 (read
the first line of input) might yield more than one word.

Working with more than one shell

3-18

When you wish to use another A/UX shell, you can use one of the following commands:
sh This spawns another instance of the Bourne shell.
ksh This spawns an instance of the Korn shell.

csh This spawns an instance of the C shell.

You can type these at your shell prompt; for example,
csh

In this case, your new shell will run as a subshell or “child” of your current one. You can
use the exit command or the eof sequence to return to your login shell whenever you
wish. The login shell is the shell that is automatically invoked when you log in. (If you
accidentally give the exit command or the eof'sequence in your login shell, you will
be logged out of the system altogether.)

Chapter 3 Bourne Shell Reference

Changing to a new shell

You can also obtain a new shell using the exec command; for example,
exec csh

If you use the exec command, the C shell program csh replaces your current
shell. You cannot return to your original shell; it has disappeared.

Generating new instances of a shell affects the environment settings for each shell.
See “The Environment and New Shell Instances” for more information.

Changing your default shell

To change your default shell from the Bourne shell to the Korn or C shell, use the chsh
command. For example,

chsh login.name /bin/ksh

(where login.name is your login name on this system) changes your default login shell to
the Korn shell. See chsh(1) in A/UX Command Reference for more information.

The environment

The environment is a list of variables and other data that is available to all programs
(including subshells) invoked from the shell. A shell inherits the environment that was
active when it started and passes that environment (including any modifications) to all
programs it invokes.

If you assign values to variables using the set command or the assignment
operator (=) at the shell prompt (or within a shell script), these remain local to the shell in
which you assigned them. If you use the export command (or setthe -a shell
option; see “Shell Execution Options”), these changes will be passed on to any subshells
you invoke and to executing commands.

The environment 3-19

¢ Note Modifying the environment in a subshell (for example, in a shell script) never
changes the parent shells or their environments. Because these changes are made to a
copy of the parent shell’s environment, the parent shell’s environment is never affected
by changes in a subshell, even if you use the export command. When a subshell
terminates, its environment no longer exists.

In general, the most essential variables are assigned default values during login or by
the shell every time you invoke it. Convenient but inessential variables are simply left
unassigned. Thus a default environment is created for you.

Listing existing values

The env command and the printenv command both list the values of all variables
in the current environment.

The export command without an argument lists all explicitly exported variables in
the environment. Variables with default values assigned by the shell, variables not
exported in the current shell, and variables local to the current shell are not listed.

The set command without arguments lists the values of all variables in the current
shell, including default values, values in the environment, local shell variables, and the
text of all functions defined.

Assigning values to environment variables

3-20

Setting up your own customized environment is not necessary, but it can make your
work easier and more efficient. To customize your working environment, you may
change the default values assigned to some of the environment variables and add others
that have not been included in the default environment.

Unless you have set the -a shell execution option (which tells the shell to export all
variables automatically; see “Shell Execution Options”), the process of assigning a value
to an environment variable requires two commands. The command syntax

name=value

Chapter 3 Bourne Shell Reference

sets a variable nameto value. Note that there are no spaces around the equal sign. By
convention, environment variables have uppercase characters in their names.
After you have assigned a value, the command

export name
includes the variable name and the value you assigned to it in the environment for this
shell. If you don’t export the variable, the shell will not be able to pass it to your
commands or programs.

Thus, the complete process of assigning a value to the variable user would be
USER=daphne
export USER

Removing environment variables

The command
unset name

removes the specified variable. The PATH, PS1, PS2, MATLCHECK,and IFS
variables cannot be removed.

Commonly used environment variables

The following variables are typically inserted into the environment. By convention,
environment variable names are uppercase. Some of these variables are assigned default
values at login or when the shell is invoked. All of them can be reset by the user.

HOME This variable specifies your home directory. The login procedure sets
the value of this variable to the pathname of your login directory.

CDPATH The value of this variable should be a list of absolute pathnames of
directories (separated by colons) that you use frequently. The shell uses
this variable when you give an argument to the cd command that is
not a relative or absolute pathname. This variable is usually set in the
.profile file; otherwise its default value is the current directory.

EXINIT This variable indicates various options for your editing environment
when you are using the ex or vi textediting program (see “Using
ex”and “Using vi”in A/UX Text-Editing Tools).

Assigning values to environment variables 3-21

3-22

PATH

MAIL

MAILCHECK

PSl

PS2

IFS

SHELL

TZ

TERM

The value of this variable is a series of pathnames separated by colons
(:). The shell uses the value of PATH executable programs whenever
you give a command. If the directory containing the command is not
specified, the shell displays an error message. For example, if you
enter the command foo, the shell prints

foo: not found

paTH isusually setinthe .profile file. For efficiency, the list of
directories in the PATH variable should be in order from the directories
containing commands most often used to those least often used. The
default value for paTH is the current directory, (.) /bin, and
/usr/bin.

The shell uses this variable as the pathname of the file where your mail
is delivered. This variable is typically set in the file .profile inthe
user’s login directory.

This variable specifies how often (in seconds) the shell will check for
the arrival of mail in the file specified in MaTL. The default value is
600 seconds (10 minutes). If set to 0, the shell will check before each
prompt.

This variable specifies the primary prompt string (the prompt you see
when the shell is waiting for you to give a command). The default
setting is the dollar sign ().

This variable specifies the secondary prompt string (the prompt you
see when the shell is waiting for more information for a command you
have already started). The default setting is the greater-than sign ().

The shell uses this variable to interpret command strings. IFs stands
for “Input Field Separator,” meaning the characters used to separate
the parts of commands. The default values of this variable are space,
tab, and newline. You can reset this to include any data delimiters.

This variable specifies your preferred login shell. It is set at login to the
value found in the /etc/passwd file. The default shell is the C
shell.

This variable indicates your time zone. It is set at login.

This variable specifies the type of terminal you are using. The default
value is mac2. You can find out what your current terminal type is
with the command

echo STERM

Chapter 3 Bourne Shell Reference

The environment and new shell instances

When you invoke a new instance of the shell (using the sh command for the Bourne
shell), the values you have exported to the environment (using the export command)
are copied to the environment of the new shell. If you have assigned values to variables
without exporting them to the environment, these values remain local to the parent shell.
You may reset the value of any exported variable within the subshell. Because these
changes are made to a copy of the parent shell’s environment, the parent shell’s
environment is never affected by changes in a subshell, even if you use the export
command. Note, however, that these changes will be passed on to new instances
invoked from the subshell. When a subshell terminates, its environment no longer exists.

In the Bourne shell the .profile fileisread only once, at login. Thus, if you
change the value of an environment variable in a shell, the subshell inherits the new
value, not the value set routinely in .profile. You can force a new instance of the
shelltoread .profile by using the “dot” command (.); see “Executing Shell Scripts.”

In general, running one shell as the child of another (for example, running the C shell
under the Bourne shell) does not cause any problems. The only exception may be if you
have assigned values to environment variables that are significant to the other shell. See
Chapters 4 and 5, “Korn Shell Reference” and “C Shell Reference.”

Special environments

Normally, the environment for a command is the complete environment of the shell
where the command was given. You can change the environment used by a command in
three ways:

= Augment the environment by inserting additional variables and new values into the
environment. This is done by preceding the command with one or more assignments
to variables on the command line. For example,

a=b command

Note that because variable substitution occurs before the environment is changed,
you cannot assign environment variables whose values are then immediately
referenced on the command line. For example, the sequence of commands

Assigning values to environment variables ~ 3-23

3-24

x=5

x=3 echo $x
prints

5

not

3

because the value of x is inserted into the command line before the environment is
changed.

Setthe -k shell option using the command
set -k
When set, this shell option inserts variables and values given on the command line

into the environment for a particular command. For example, if the -k option is not
set, the command

echo a=b c

prints

a=b c

After -k hasbeen set, a=b is interpreted as a variable assignment instead of an
argument, and the same command prints

C

Note that because values are substituted for variables before the environment is
changed, this is subject to the same limitation described above.

Use the A/UX command
env [-] [name=value .. [command] [args]

to set the environment for the command. With this command, you can not only add
things to the environment inherited by a command, but also exclude the current
environment. To add variables and their values to the current environment, give the
variables and values before the command name. For example, to run a subshell with
achanged PATH environment variable, you could give the command

env PATH=directory-list sh

where directory-list is one or more directory pathnames separated by colons. For the
duration of the new shell (and its subshells), the paTH variable would be set to the
directories in the list.

Chapter 3 Bourne Shell Reference

To set up a completely new environment, first give the option -, which excludes the
current environment, and then assign the variables and values you want. These (and
only these) will be available in the environment for the new command.

The default environment on your system

When you log in, the following procedures occur:

® The login program assigns the default value to pATH and sets values for the
variables HOME, LOGNAME, and SHELL from the information in the system file
/etc/passwd.

= The login shell then checks the file /etc/profile to find out the default
environment to set up for all users. This file may contain settings for PATH, Tz, and
TERM.

» The login shell assigns default values to ps1 (the primary prompt), ps2 (the
secondary prompt), MATLCHECK, and IFs (Input Field Separator).

When you invoke new instances of the shell (for example, using the sh command),
the new shell checks the environment for any new values of these variables you may
have placed there. If it doesn’t find any values in the environment, it assigns the default
values.

Then the new shell reads your .profile file. If you have assigned new values
there, it uses your values instead of the defaults.

The .profile file

The .profile fileissimply a text file. It contains a series of commands typed exactly
as you would type them at the shell prompt. Every time you log in, the shell looks in your
home directory for a file named .profile and executes all the commands found there
before issuing the shell prompt and taking commands. If no .profile file exists, your
environment will simply be the default environment created by the shell at login.

The .profile file 3-25

3-26

A sample .profite file

The following is a sample .profile file:

PATH=:/bin:/usr/bin:/users/elaine/bin: SHOME
export PATH
CDPATH=:/users/group.project/elaine/revisions
export CDPATH

MAILCHECK=0

export MAILCHECK

EXINIT="'set wm=10"

export EXINIT

date

1s

The variables and commands in this file are discussed in the sections that follow.

Locating commands

The pATH environment variable lists the directories (separated by colons) where the
shell will look for the executable files that are A/UX (or user-defined) commands. Each
time you give a command, the shell searches the directories listed in the order specified.
Most A/UX commands are located in the /bin, /usr/bin,or /usr/ucb directory.
When you assign a value to PATH, be sure to include these directories.

If the shell cannot find the file in one of the directories specified, the command
cannot be executed and A/UX displays the message

command-name: not found

The directories listed in the PATH variable are specified by their absolute
pathnames, separated by colons. If the list of directories begins with a colon, the path
search begins in the current directory. At login, the PATH variable is set as follows:
PATH=:/bin:/usr/bin:/usr/ucb
This assignment sets the PATH variable to the current directory and the system
directories /bin and /usr/bin.

Toreset the PATH variablein .profile, insert the lines
PATH=:/bin: /usr/bin:/usr/ucb: /users/name/bin: SHOME
export PATH

Chapter 3 Bourne Shell Reference

See “Assigning Values to Environment Variables” for a discussion of the export
command.

If you include the pathnames of personal directories that contain shell programs you
have written, these will be accessible to the shell no matter what your current directory is.
You can execute a command or shell program that is not in one of the directories in your
pATH variable by using the absolute pathname of the command or shell program.

For information on referencing variables using the $ syntax (asin $HOME earlier),
see “Parameter and Variable Substitution.”

Shortcuts in changing directories

If cDPATH is set, you can use the cd command with a simple directory name that is
neither an absolute nor a relative pathname. The shell then searches for that directory in
all the directories listed in cpPATH. The directories are searched in the order specified.
If copaTH is not set, only the current directory is searched.

If the directory you specify, for example tmp, is not found in any of the directories
given in CDPATH, you will see the message

tmp: bad directory
After cDPATH is set, you can still, of course, give the relative or absolute pathname

of any directory you wish. When you give an absolute or relative pathname in the cd
command, CDPATH is not used.

Receiving mail

The MAILCHECK environment variable specifies how often (in seconds) the shell
should check for new mail. When you log in, the shell sets MATLCHECK to 600 seconds
(10 minutes). You can change this to whatever you wish using the commands
MAILCHECK=Seconds

export MAILCHECK

where seconds equals the number of seconds the shell is to wait each time it checks for
new mail. These commands assign and export the value of the MATLCHECK as 0. When
MATLCHECK is 0, the shell checks for new mail before each prompt.

The .profile file 3.27

3-28

Your editing environment

The EXINIT environment variable tells the shell how to initialize the vi or ex
editing program. This variable is set to a series of editor commands that should be run
every time the editor is called and before any commands are read from the terminal. In
the sample .profile above, for example, the commands

EXINIT='set wm=10"

export EXINIT

assign and export the value of EXINIT asthe command
set wm=10

which sets the word-wrap margin so that the editor will automatically break lines ten
spaces before the right margin. The command is enclosed in single quotation marks
because the entire string must be treated as one word and not divided.

For details on EXINTIT, see A/UX Text-Editing Tools. For the use of double quotation
marks, see “Quoting.”

Customizing your login procedure

You can also use your .profile file to customize your login procedure. In the
sample .profile above, the commands

date

1s

direct the shell to display the date and time and then list all the files in the current
directory before displaying the shell prompt. These will be executed at login.

You can include any commands you wish in .profile, including your own
functions and shell scripts.

Chapter 3 Bourne Shell Reference

Shell execution options

The shell is a program like other A/UX commands, and it too has a variety of options
used to control how it executes. You can specify all shell execution options using the
set command as follows:

set -optlopt.]

or you can specify them on the command line when you invoke a new shell or run a
shell script with the sh command:

sh -opt[opt..] script_name
Use the set command to set new options in your current shell. Use the sh
command to invoke a subshell with the options specified or to run a script with options.
To turn options off, precede the option with a plus (+) instead of a minus (-).

The variable $- contains a list of all the options set. For example, if you have the a
and x shell execution options set, the command

echo $-
returns

ax

Options that affect the environment

-a Whenthe -a shell option is set, all variable assignments result in that variable
and its value being inserted into the environment.

You do not need to use the export command to insert new values.

-k The shell execution option -k can be used to insert variables and values into the
environment for a particular command; see “Special Environments.”

Shell execution options 3-29

Options for invoking new shells

In addition to the options available with the set command, there are four options that
can be used only when a new shell is invoked with the sh command. These are
~c string 1fthe -c flag is present, string is executed. After execution, control is

returned to the parent shell. This command is often used to execute shell
scripts; see “Executing Shell Scripts.”

-s Ifthe -s flagis present or if no arguments remain, commands are read from
the standard input.
-i Ifthe -i flag is present, the shell is interactive. The terminate signal is

ignored (so that ki11 0 does not kill an interactive shell), and the
interrupt signal is caught and ignored (so that wait is interruptible). In all
cases, the quit signal is ignored by the shell.

-r Ifthe -r flagis present, the shell invokes a restricted shell. Restricted shells
cannot change directories, alter the value of the PATH environment
variable, redirect output, or specify path or command names containing the
symbol /. See “Restricted Shell.”

During shell invocation, if the first character of the first argument is a -, commands
are read from the .profile file.

Restricted shell

3-30

The Bourne shell supports a limited version called the restricted shell, or rsh (note
that in A/UX, the BSD rsh remote shell network program has been renamed remsh
to prevent conflict with this program).

This version of the shell is used to set up accounts for users who have restricted
access to the file system (they cannot execute the cd command or redirect output) and
a limited menu of commands (they cannot specify absolute pathnames or change the
value of their PATH variable).

This is useful if you want to allow several users to log in to your machine but want to
restrict them to a single directory or to a limited subset of commands. In that case, you
may want to set up a special directory of commands (for example, /usr/rbin) that
can be safely invoked by all users, and include only that directory in the value of the
pATH variable. Because rsh isinvoked after .profile isread, you can setup

Chapter 3 Bourne Shell Reference

such an environment by writing special .profile filesfor such users. See sh(1)in
A/UX Command Reference for more information.

Shell layering

The shl program allows you to create up to seven labeled subshells called shell
layers within your login shell. These layers can then be referred to by name (or
number), suspended and resumed, deleted, and so on. Each of these layers appears like
your login shell, but can be used to run a process while you switch to another layer. This
provides a management scheme for multiple concurrent processes. See Chapter 6, “Shell
Layering,” for more information.

Overview of shell programming

A shell program is simply a list of commands that are entered at the prompt or inserted in
a file. They may contain

= variables and assignments

= control-flow statements (for example, if, for, case,or while)
» built-in shell commands

= any A/UX command

m user-created commands

Input for the shell program can be read from the keyboard (this is the default standard
input), taken from files, or embedded in the program itself (using here documents, see
“Taking Input From Scripts.”).

Shell programs can write output to the terminal screen (the default standard output),
to files (including device special files), or to other processes (via pipes).

When the shell program executes, each command is executed until the shell
encounters either an eof character or a command delimiter that directs it to stop. During
execution, you can trap errors and take appropriate action.

Shell program variables are strings. Arithmetic is not provided, but is available
indirectly through the expr command.

Overview of shell programming 3-31

Writing shell programs

3-32

You can enter a shell program at the prompt. When you use a built-in shell command
that expects a delimiter (such as done) or a certain type of input, the secondary shell
prompt appears after you press RETURN. This prompt (> by default) appears at each line
until you give the expected delimiter; for example,

$ for i in *

> do

> cat $i

> done

Note that you can send an interrupt to cancel the script and return to the primary
prompt.

You can also write a shell program in a text file (using a text editor) and then execute
it (see “Executing Shell Scripts”). These program files are often called shell scripts. Note
that all shell programs may be entered at the shell prompt or inserted in a file. This does
not affect their actions. Hereafter “shell scripts” will be used to refer to shell programs
that reside in a file.

Executing shell scripts

There are several ways to execute a shell script; these differ mostly in terms of which
instance of the shell is used for the execution.

= You canuse the sh command to read and execute commands contained in a file.
The script will be run in a subshell, which means that it will have access only to the
values set in the environment and will be unable to alter the parent shell. The
command

sh filename args..

causes the shell to run the script contained in filename, taking the args (arguments)
given as positional parameters. Shell scripts run with the sh command can be
invoked with all the options possible for the set command.

Chapter 3 Bourne Shell Reference

= You can change the mode of the shell script file to make it executable. For example,
chmod +x filename

makes filename executable. Note that you may want to modify your PATH variable
to include a personal directory containing your shell scripts. When you have done
this, you can use your script names as ordinary commands, regardless of your current
location in the file system. Then the command

filename args..

has the same effect as using the sh command to run the script. The arguments
become the positional parameters (see “Positional Parameters”); the script is run in a
subshell, which means that it will have access only to the values set in the
environment and will be unable to alter the parent shell.

= You can run a shell script inside the current shell by using the “dot” command (.).
The dot command tells the current shell to run the script; no subshell is invoked. This
should be used if you wish to use local shell variables or functions, or modify the
current shell:

. filename args...

Note that there must be a space between the dot and the filename. Because the
commands are executed in the current shell, this is the way to run a script that is to
change values in the shell. The arguments become positional parameters. Otherwise
the positional parameters are unchanged.

= You can run an executable shell script with the exec command (the file containing
the shell script must have execute permission). This should be used when the shell
script program is an application designed to execute in place of the shell and replace
interaction with it:
exec filename args..

In this case, the shell script replaces the current shell. This means that when the script
is over, control will not return to the shell. If you were in a login shell, you will be
logged out.

Writing shell programs 3-33

3-34

Comments

A word beginning with a number sign (#) causes that word and all the following
characters up to a newline to be ignored.

Writing interactive shell scripts

A shell script can invoke an interactive program such as the vi editor. If standard input
is attached to the terminal, vi will read commands from the terminal and execute them
just as if they had been invoked from an interactive shell. After the session with vi is
finished, control will pass to the next line in the script. In a similar manner, a script can
invoke another copy of a shell (using sh, csh, or ksh), which will interpret
commands from the terminal until you send an eof. Control will be returned to the script.
You can use this to create a special environment for certain tasks by setting environment
variables in a shell script and then invoking a new subshell.

You can also write interactive shell scripts by using the read and eval
commands and prompting users to enter commands:

read command

eval $command

The first line will read the user’s command line into the variable command. The
eval command will then cause the command to execute.

Canceling a shell script

You can cancel a shell script just like an ordinary A/UX command. If the script is running
in the background, use the A/UX ki1l command. See “Canceling Commands” for
details on ki11 and various types of interrupts that can stop a command.

Chapter 3 Bourne Shell Reference

¢ Note Interrupts can be trapped and handled within the script using the trap
command. See “‘Summary of Bourne Shell Commands.”

Writing efficient shell scripts

In general, built-in commands execute more efficiently than A/UX commands. See
“Summary of Bourne Shell Commands” at the end of this chapter for a complete list of
these commands. The following built-in commands are useful in constructing efficient
shell scripts:

hash This causes the shell to remember the search path of the command named.
ulimit This can be used to set a limit on files written by processes.

times This prints the accumulated user and system times used by the current shell.

You can also set the -h shell execution option using
set -h
This will locate and remember functions as they are defined, instead of when they are
invoked, which is normal.

Careful setting (or resetting inside a shell script) of the PATH and cpPaTH
environment variables ensures that the most frequently used directories are listed first.
This also improves efficiency.

Command evaluation

When you give a command, the shell evaluates the command in one pass and then
executes it. To force more than one pass of evaluation, use the eval command (see
“Forcing More Than One Pass of Evaluation”).

Command evaluation 3-35

3-36

While evaluating the command, the shell performs the following substitutions on
variables:

Variable substitution This replaces variables preceded with $ (for example,
suser) with their values. Only one pass of evaluation is made. For example, if the
value of the variable user is daphne, then the command

echo Suser

prints

daphne

However, if the value of the variable user is $name, then the command
echo sSuser

prints

Sname

The second variable is never evaluated, and the value is not substituted. See
“Parameter and Variable Substitution” for more information.

Command substitution The shell replaces a command enclosed in back quotes with
the command’s output. For example, if the current directory is
/users/doc/virginia, then the command

echo “pwd®
prints
/users/doc/virginia

Blank interpretation The shell breaks the characters of the command line into words
separated by delimiters (called “blanks”). The delimiters that are interpreted as blanks
are set by the shell variable 1Fs; by default, they are spaces, tabs, and newlines. The
null string is not regarded as a word unless it is quoted; for example,

echo '!'

passes the null string as the first argument to echo, whereas the commands
echo

and

echo Snull

(where the variable nul1 isnot set or is set to the null string) pass no arguments to
the echo command.

Chapter 3 Bourne Shell Reference

» Filename expansion The shell scans each word for filename expansion
metacharacters (see “Using Bourne Shell Metacharacters”) and creates an alphabetical
list of filenames that are matched by the pattern(s). Each filename in the list is a
separate argument. Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated witha for loop.

Forcing more than one pass of evaluation

Sometimes more than one pass of evaluation is necessary for a command to be
interpreted correctly. For example, suppose that the following two lines occur near the
beginning of a shell script:

name=elaine

err_33='echo S$name: user not found'

If you give the command
Serr_33

you get

Sname: user not found

(which is not quite what you want). In cases like this, you can use the built-in command
eval. The syntax of the eval command is as follows:

eval arg

where arg can be a variable or a command. For example, the command
eval Serr_33

forces two evaluations of the value of the variable err_33. Thus it prints
elaine: user not found

In general, the eval command evaluates its arguments (as do all commands) and
treats the result as input to the shell. The input is read and the resulting command(s)
executed.

Command evaluation 3-37

3-38

Command execution

After all substitution has been carried out, commands are executed as follows:

= Built-in commands, functions, and shell scripts run with the dot command (.) are
executed in the current shell. The command has available all current shell execution
options, the values of variables and environment variables, and functions defined in
the current shell.

m A/UX commands, programs, executable shell scripts, shell scripts run with the sh
command, and series of commands enclosed in parentheses are executed in a
subshell. The current shell invokes a child shell that executes the commands and then
returns control to the parent shell. Only the values in your environment are available
to these processes.

= Commands and executable scripts run with the exec command execute in place of
the current shell.

If an A/UX command or program name does not specify a pathname, the environ-
ment variable PATH is used to determine what directories should be searched for the
command. The only exception to this is built-in commands.

For more information about the execution of shell scripts, see “Executing Shell Scripts.”

Exit status: The value of the command

If a command executes successfully, its exit value is usually zero (0). If it terminates
abnormally, its exit value is often nonzero. The shell saves the exit value of a command.
These are used primarily in shell scripts.

To check the exit status of a command, use the command

exit $?
See “Parameters and Variables Set by the Shell” for more information. See the manual

entry for the command in question in A/UX Command Reference or A/UX System
Administrator’s Reference for exit status values.

Chapter 3 Bourne Shell Reference

Defining functions

You can use a function definition to assign a name to a command or list of commands.

After you have defined a function, typing the function name (and any required

arguments) causes the commands in command-list to be executed by the current shell.
The form of a function definition can be

name () { command-list; }
or

name () {
command-list
}

The first brace ({) must be followed by a space or newline; the second must be
preceded by a semicolon or newline. There cannot be a semicolon between the
parentheses and the first brace.

For example, a function maintaining a daily log of users could be written as follows:

users () { date>>log; who>>log;}
or

users () {
date>>log;who>>1og
}

The function would first append the date and then the listing provided by the who
command to the file named 1log.

Functions are commonly defined in the .profile file, although they can also be
defined at the terminal or in a shell script.

Functions execute in the current shell, not in a subshell. During execution, any
arguments become the positional parameters. After execution, they are reset to their
former values, if any. This means that if a function is defined and used inside a shell
script, the parameters of functions will not conflict with the parameters of the script.

Because they are executed in the current shell, functions share their variables with
this shell and can create, alter, and assign shell and environment variables. Functions
themselves, however, cannot be exported. This means that they are available only in the

Defining functions ~ 3-39

shell where they were defined (for example, the login shell if they are defined in the
.profile file) and that a function defined in a particular shell will be available only to
shell scripts run with the dot command (.) in that shell.

In a function definition, the return command,

return 7

causes a function to terminate with the exit status specified by the integer . For
example,

users () {
date>>log;who>>1og
return 1

}

causes the function to terminate normally with a return value of 1. If the # is omitted from
the return command, the exit status is that of the last command executed.

To list the text of the defined functions, use the set command without arguments.
(This will list the values of all variables currently set in the shell, including functions.) To
remove a function, use the unset command followed by the name of the function.

Positional parameters and shell variables

3-40

A shell script may use two types of variables:

» Positional parameters These are string variables referred to by the numbers
[0 through 9]. These numbers refer to the position of the parameter on the command
line. Positional parameters are set on the command line and contain the arguments to
the script. If more than ten positional parameters are required, the shift
command can be used to discard old values.

m Shell variables These are string variables referred to by name. They may be assigned
on the command line or inside the script itself.

The relationship between variables inside a shell script and existing shell variables
depends on how the script is run. See “Executing Shell Scripts.” In all cases, shell scripts
have access to the variables and values in the environment.

Chapter 3 Bourne Shell Reference

Positional parameters

Positional parameters may be referred to by the numbers [0 through 9] and set as
arguments on a command line. When you enter a command at the prompt, the shell
stores the elements of the command line in parameters: the command name is stored in
parameter 0, the first argument is stored in parameter 1, the second argument in
parameter 2, and so forth. Thus, for the command

diff letterl letter2

parameter 0 is diff, parameter 1is letterl, and parameter 2is letter2. Forthe
command

echo "not a directory"

parameter 0 is echo and parameter 1is not a directory.
A shell script may refer to parameters by number; for example,

echo $1
echo $2

These will be substituted by the arguments given in that position on the command line;
for example, for the command

myscript argl arg?2

parameter 0 is myscript, parameter 1is argl, and parameter 2is arg2. The echo
command above prints

argl
arg?

Setting values in a script

The set command creates a new sequence of positional parameters and assigns them
values. After execution, all the old parameters are lost. For example, the command

set *

creates a sequence of positional parameters set to the names of the files in the current
directory (parameter 1 is the first filename, parameter 2 is the next filename, and so on).

Positional parameters and shell variables ~ 3-41

3-42

A subsequent command,
set hi there

creates new positional parameters, discarding the old values. This time there will be only
two values set; the other positional parameters will have no values. A subsequent
command,

echo $2 $1
displays
there hi

The command
echo $3

would have no effect, because there is no longer a third parameter.
To set a positional parameter to a string of words separated by blanks, you must
enclose the entire string in quotation marks. For example,

set "this is one positional parameter"

sets this entire string to the first positional parameter. Without the quotes, the phrase
would be set, one word at a time, to the first five positional parameters.

Because the set command creates a new series of parameters, it is impossible to
set only one parameter in a series. If only one parameter is set, it will be the first, and the
remaining parameters will be lost.

The set command can also be used within a script to create positional parameters
if none are given on the command line. Such parameters can then be used as a one-
dimensional array.

Afterthe set command is used to reset positional parameters, the internal shell
variable #, which contains the number of positional parameters, is reset to reflect the
new number of parameters. For details on the internal shell variables, see “Parameters
and Variables Set by the Shell.”

Changing parameter positions

The shift command shifts positional parameters one or more positions to the left,
discarding the value in the first position(s). The syntax is

shift [n]

Chapter 3 Bourne Shell Reference

If nis omitted, it defaults to 1. If n is specified, the shift takes place at the position
n+1. For example,

shift 6

moves parameter 7 into position 1, parameter 8 into position 2, and so on, discarding the
values that were stored in positions 1 through 6.

This can be useful, for example, when you are working through a list of files. After
each file is processed, a shift can be performed, to let the next filename become
parameter 1.

Number of parameters

The current number of positional parameters is stored in the system-maintained variable #.
See “Parameter and Variable Substitution” and “Parameters and Variables Set by the Shell.”

Shell variables

Shell variables are named string variables. These variables can be assigned values
anywhere in the script or on the command line. Variable names begin with a letter and
consist of letters, digits, and underscores. Environment variables, which we have already
encountered, are simply special kinds of shell variables (namely, shell variables that are
available to all subshells).

Assigning values
Shell variables are assigned values with the syntax
name=value [name=value...

Note that there cannot be spaces surrounding the equal sign.
All values are stored as strings. Pattern-matching is performed. To set a variable to a
string of words separated by blanks, you must quote the entire string; for example,

longvar="this is a long variable"

Positional parameters and shell variables ~ 3-43

3-44

After the variable assignments
user="fred stone" box='???' acct=18999
the following values are assigned:
user = fred stone
box = ?72?
acct = 18999
Because the Bourne shell supports only string variables, all of these values (including
18999) will be strings of characters. Note that the question mark metacharacters must be

quoted with single quotation marks to prevent pattern matching.
A variable may be set to the null string with the syntax

variable=

Shell variables may be set at the shell prompt to provide abbreviations for frequently
used strings; for example,
b=/usr/fred/bin
mv file S$b
moves file from the current directory to the directory /usr/fred/bin.

An argument to a shell program of the form name=value that precedes the command
name causes valueto be assigned to name before execution begins. The value of name
in the invoking shell is not affected. For example,
user=fred command
will execute command with user setto fred.

After variable assignments, any additional arguments are assigned to the positional
parameters.

The -x flag causes arguments of the form name=value to be interpreted in this way
anywhere in the argument list. See “Special Environments.”

Removing shell variables

You can remove shell variables by using the unset command followed by the name of
the variable:

unset name

The variable and its value will be removed.

Chapter 3 Bourne Shell Reference

Setting constants

Names whose values are intended to remain constant may be declared read-only. The
form of this command is

readonly name..

Subsequent attempts to assign values to read-only variables are illegal.

Parameter and variable substitution

Positional parameters and shell variables are referenced and their values are substituted
when the identifier (the variable name or positional parameter number) is preceded by a
dollar sign (3):

sidentifier

For example,

$31 $1 $8 $version

For variables, identifier can be any valid name; for positional parameters, identifier
must be a digit between 0 and 9. Additional positional parameters must be moved into
this range with the shift command described earlier, referenced with the $+*
notation described next, or accessed through the for construct.

Another notation for substitution uses braces to enclose identifier:

echo ¢ {identifiery

This is equivalent to - $identifier. Braces are generally used when you may want to
append a letter or digit to identifier. For example,

tmp=/tmp/ps ps a >S{tmpla

substitutes the value of the variable tmp and directs the output of ps to the file
/tmp/psa, whereas

ps a >Stmpa

causes the value of the variable tmpa to be substituted.

Positional parameters and shell variables ~ 3-45

3-46

A special shell parameter, *, can be used to substitute for all positional parameters
(except 0, which is reserved for the name of the file being executed). The notation e is
the same as * except when it is quoted. Thus,

echo "s*"

prints all values of all the positional parameters, and

echo "s@-"

passes the positional parameters, unevaluated, to echo and is equivalent to
echo "s1" g2

Testing assignment and setting defaults

If a parameter or variable is not set, then the null string is substituted for it. For example,
if the variable d is not set,

echo $d

or

echo ${d}

prints a blank line.

The following structures allow you to test whether variables or parameters are set and
not null, and to provide default values or messages. In these structures, string is
evaluated only if it is to be substituted (command substitution, another variable, and so
forth). If the colon is omitted, the shell checks only that the variable has been set; no
action is taken if the variable or parameter is currently null.

$ {identifier: - string}

If the parameter or variable whose name is represented by identifier is set and is non-
null, substitute its value; otherwise substitute string. The value of the variable or
parameter is not changed. For example, if the variable test is null or unset, then

S{test:-unset}

returns the string unset; otherwise the value of test is returned.

Chapter 3 Bourne Shell Reference

$ { identifier: +string}

If identifier is set and is non-null, substitute string; otherwise substitute nothing. The
value of the variable or parameter is not changed. For example, if the variable test
was null or unset, then

S{test:+unset}

returns nothing.

$ {variable: =string}
If variable is not set or is null, set it to string; then substitute the new value. Positional
parameters may not be assigned in this way. For example,

S{HOME:=/user/doc}

tests the environment variable HOME to see if it had a non-null value. If it did not, it
would be assigned the value /user/doc and this value would be substituted.
Otherwise the original value of HoME would be removed.

$ { identifier: 2 string}
If identifieris set and is non-null, substitute its value; otherwise print string and exit from
the shell. If string is omitted, the message

[filename: identifier: parameter null or not set

prints. For example, a shell script named distribute that requires the parameter
directory to be set might start as follows:

echo S${directory:?"distribution directory not set"}
If directory wasnot set, the script would immediately exit with the message

distribute:directory:distribution directory not set

Positional parameters and shell variables ~ 3-47

Parameters and variables set by the shell

Except for the exclamation point (1), the following parameters are initially defined by the
shell; the 1 is defined only after a background task is executed. These parameters can
be referenced anywhere identifier or variable appears in the standard forms described in
the previous section; for example echo $2.

?

The exit status of the last command as a decimal string. Most commands

return a zero exit status if they complete successfully; otherwise a nonzero

exit status is returned. This is used inthe if and while constructs for control
of execution.

The number of positional parameters in decimal. For example, this notation is
used in a script to refer to the number of arguments. An example of this use
appears in the case section.

All the positional parameters (arguments) of a shell script. For example,
for i in $*
do

echo $i
done

The above shell subroutine prints all the positional parameters.

The process ID of this shell in decimal. Because process IDs are unique
among all existing processes, this string is frequently used to generate
unique temporary filenames. For example,

ps a > /tmp/pss$S
command-list
rm /tmp/ps$s

The process ID of the last process run in the background.

The current shell flags, suchas -x and -v.

Control-flow constructs

The shell has a variety of ways of controlling the flow of execution. In the Bourne shell,
you canuse for loops, case statements, while loops, until loops, select
statements, and if statements to control a program’s flow. The actions of the for

3-48 Chapter 3 Bourne Shell Reference

loop and the case branch are determined by data available to the shell. The actions of
the while or until loopand if then else branch are determined by the exit
status returned by commands or tests. Control-flow constructs can be used together, and
loops can be nested.

In the following constructs, reserved words like do and done are recognized only
following a newline or semicolon. The designation command-list represents a sequence
of one or more simple commands separated or terminated by a newline or a semicolon.

for loops

To repeat the same set of commands for several files or arguments, use the for loop:
for name in wordl word2
do

command-list

done

& Note The words for, do,and done must follow a newline or semicolon. &

An example of such a procedure is te1, which searches a file of telephone
numbers, /usr/1ib/telnos, for the various names given as arguments to the
command and passed as positional parameters. The text of tel is

for 1
do
grep $i /usr/lib/telnos

done

Note thatthe for i notation is shorthand for for i in $*.
The command

tel fred

sets i tothe name fred and prints those lines in the file /usr/1ib/telnos that
contain the string fred. It is equivalent to

Control-flow constructs 3-49

for 1 in fred
do
grep $i /usr/lib/telnos

done
The command
tel fred bert

prints those lines containing fred followed by those containing bert.

To terminate a loop before the condition fails (or is met), or to continue a loop and
cause it to reiterate before the end of command-list is reached, use the loop-control
commands:

break [n]

continue [7]

These commands can appear only between the loop delimiters do and done. The
break command terminates execution of the current loop; execution resumes after the
nearest done. The continue command causes execution to resume at the beginning
of the current loop.

Forboth break and continue, the optional # indicates the number of levels of
enclosing loops at which execution should resume or continue. For example, the
break 2 command in

for 1 in 0 1

do
for j in 0 1
do
for k in 0 1 2 3
do
echo ijsk
break 2
done
done
done

causes execution to resume two levels above the current loop.

3-50 Chapter 3 Bourne Shell Reference

case Statements

The form of the case statement is

case word in

pattern) command-list; ;

pattern) command-list; ;
esac

Each command-list except the last must end with ; ;. (The semicolons after the last
command-list are optional.) After execution of command-list, the case statement is
complete, and control passes to the command following esac.

Patterns may include filename expansion metacharacters. However, the initial dot,
slashes, and a dot following a slash do not have to be matched explicitly, as they do in
filenames. Different patterns to be associated with the same command-list are separated
by the OR operator, the vertical bar (1). To be used literally, pattern-matching
metacharacters must be quoted. Because an asterisk (*) matches any sequence of
characters, it can be used to set up a default case. However, be careful in setting up the
default; there is no check to ensure that only one pattern matches the case argument. The
first match found defines the set of commands to be executed. In the next example, the
commands following the first asterisk will never be executed because the first asterisk
matches everything it receives.
case $# in *) exit ;;

0) echo "no arguments given"
exit ;;
esac

The following is an example of a case statement within a script named append
which appends files:
case $# in

1) cat >>%$1 ;;
2) cat $1>>$2 ;;
*) echo ‘usage: append [from] to’ ;;

esac

Control-flow constructs 3-51

3-52

When it is called with one argument, as in
append file
the system-set variable # is assigned the value 1 (the number of parameters in the call);

and the cat command appends the standard inputto file.
When append is called with two arguments, as in

append filel file2
the value of # is 2 and the command appends the contents of filel onto file2.If
the number of arguments supplied to append (that is, the value of $#) is greater than
2 or is 0, then the shell prints an error message indicating proper usage.
The following example illustrates the use of alternative patterns separated by a
vertical bar (1):
case S$i in
-x|-y) command; ;
esac
You can achieve the same effect using the bracket metacharacters ([and 1), as in
case $1 1in
- [xy1) command; ;
esac
When using metacharacters, the usual quoting conventions apply so that
case $i 1in

\?) echo "input is 2" ;;

esac

matches the character 2 for the first pattern.

A common use of the case construct is to distinguish between different forms of an
argument. The following example is a fragment of a script that usesa case statement
insidea for loop:

Chapter 3 Bourne Shell Reference

for 1

do
case $1 in
-locs]) ... ;;
-*) echo "unknown flag $i" ;;
*.c) /lib/cO si ... ;;
*) echo "unexpected argument $i" ;;
esac
done

while loops

The while and until commands cause the program to loop depending on
whether or not a certain condition is met.
A while loop has the form

while command-list]
do
command-list2

done
& Note The words while, do,and done must follow a newline or semicolon. e

The while command tests the exit status of the last simple command in
command-list1. Each time round the loop, command-list1 is executed. if the last
command executes successfully (a zero [true] exit status is returned), then command-list2
is executed; otherwise the loop terminates. If the last command executes successfully but
returns a nonzero exit status, the while loop will think it is false and terminate. For
example, the script

Control-flow constructs 3-53

3-54

while test S1
do
command-list
shift

done

loops through all the positional parameters. For each iteration of the loop, the test
command is used to determine if the parameter exists. If it does, then test returnsa
zero (true) exit status and the following commands execute.

The shift command is used to rename the positional parameters $2, $3, .. as
$1, $2, .., and remove the first one, $1. This entire loop is equivalent to
for i
do

command-list

done

To create an endless nonconditional while loop, use the A/UX true command,
which always returns a zero exit status.

until loops

The until loop has the form
until command-list]
do

command-list2

done
¢ Note The words until, do,and done must follow a newline or semicolon. &

It works the same way asa while loop, except that the termination condition is
reversed. Each time round the loop, command-list1 executes; if the last command does
not execute successfully (returns a nonzero [false] exit status), then command-list2 is
executed.

Chapter 3 Bourne Shell Reference

A common use foran until loop is to wait until some external event occurs and
then run some commands. For example,

until test -f file

do

sleep 300
done
commands

will loop until file exists. Each time round the loop, it waits for 5 minutes (300 seconds)
before trying again. (Presumably, another process will eventually create the file.)

To terminate a loop before the condition fails (or is met), or to continue a loop and
cause it to reiterate before the end of the command list is reached, use the loop-control
commands:
break [#]
continue [n]

These commands can appear only between the loop delimiters do and done, as in
the for loop. See “for Loops” for more information on using the break and
continue commands.

Forboth while and until loops, the exit status of the loop is that of the last
command executed in command-list2. If no commands in command-list2 are executed,
then a zero exit status is returned.

To create an endless nonconditional until loop, use the A/UX false
command. See true(l) in A/UX Command Reference for details.

if then else

The form of the if then else conditional branch is

if command-list]

then
command-list2
[else
command-list3)
fi

Control-flow constructs 3-55

3-56

In this structure, else and command-list3 are optional. The 1if command tests
the exit status of the last simple command in command-list1. If the last command
executes successfully (a zero [true] exit status is returned), then command-list2 is
executed; otherwise command-list3, if present, is executed. For example, the if
command can be used with the test command to test for the existence of a file, as
below:

if test -f file

then

command-list1
else

command-list2
fi

See “Summary of Bourne Shell Commands” for details about the test command.
Avoid naming test files test; the name makes it awkward (and dangerous) to use
the test command as well. A harmless alternative isthe [1 construct:

if [-f file]
then

command-list1
else

command-list2
fi

Multiple conditions can be tested with a nested if command:
if conditionl

then
command-list1
else
if condition2
then
command-list2
else
if condition3
command-list3
fi
fi
fi

Chapter 3 Bourne Shell Reference

Note that each of the nested if commands requires its own f1i.You can also use a
single if construct to achieve this effect:

if conditionl

then

command-list1
elif condition2
then

command-list2

elif condition3
command-list3
fi
Note that this is a single if construct with only one terminating f1.

An example of the if statement can be found in the following script, which
updates the last modified time for a list of files.

flag=
for i
do
case $i in
-c) flag=N ;;
*) 1f test -f $i
then
touch $i
elif test $flag
then
>$1
else
echo "file $i does not exist"
fi
esac
done

Control-flow constructs 3-57

The -c flag in this command forces subsequent files to be created if they do not
already exist. Without the -c flag, an error message prints if the file does not exist. The
shell variable f1lag is set to some non-null string if the -c argument is encountered.

The exit status of the if command is the exit status of the last command following
a then or else.If nosuch commands are executed, then the exit status is zero.

Conditional execution of commands can also be achieved with the symbols &s and
I'l. See “Conditional Execution” for details.

exit [#)

A shell script terminates when it reaches eof. The exit status of the script is that of the fast

command executed. The built-in exit command can cause the script to terminate with
exit status set to . If 7 is omitted, exit status is that of the last command executed before

exit wasencountered.

Input and output

3-58

The treatment of input and output in A/UX allows for much flexibility. This section
describes in detail how to perform some of the more common I/O operations.

I/O redirection

All forms of 1/0 redirection are allowed in shell scripts. If I/O redirection (using <, >, or
>>) is done in any of the control-flow commands, the entire command is executed in a
subshell. This means that any values assigned during execution of the command will not
be available after the command is over, and control returns to the parent shell. If
necessary, you can change the shell’s standard input and output. See “Changing the
Shell’s Standard Input and Output.”

Redirection with file descriptors

The A/UX system considers standard input, standard output, and standard error output to
be files and associates a file descriptor with each of them.

Chapter 3 Bourne Shell Reference

File descriptors are numbers used to identify files. File descriptors run from 0 to
(oPEN_MAX-1) (see intro(2) in A/UX Programmer’s Reference). By default, the file
descriptors 0, 1, and 2 have the following associations:

m () is associated with standard input.
» 1 is associated with standard output.

= 2is associated with standard error output.

Thus, standard input can be referenced via file descriptor 0, standard output can be
referenced via file descriptor 1, and standard error can be referenced via file descriptor 2.

Input and output redirection uses the syntax

[x1< filename

and

[x]> filename

where x isan optional file descriptor number indicating a file; > and < are
redirection operators; and filename s a file containing input, or to which output will be
directed. The simple forms omit the file descriptor x and use the defaults listed earlier.
If no descriptor appears, it is assumed to be 0 for input redirection and 1 for output
redirection.

Standard error output must be redirected explicitly using a numeric file descriptor as
documented below. The >> form may be used to append output to an existing file
rather than overwrite the file’s contents.

All file descriptors can be used with redirection characters in a command line. The file
descriptor immediately precedes the redirection symbol. For example,

cc X.c 2>&1 | more

redirects standard error on top of standard output and pipes the result to more. Note
that there must be no spaces between the characters in 2>&1.

In all forms, specifications are evaluated by the shell from left to right as they appear
in the command. Filenames are subject to variable and command substitution only. No
filename expansion or blank interpretation takes place; for example, the command
cat testfile > *.c

simply writes testfile intoa file named *.c.

Input and output 3-59

3-60

File descriptors redirecting input

The default file descriptor for redirecting standard input is 0. This may be specified as
cat O<filename

Because this is the default file descriptor, it may be omitted, as follows:

cat >filename

File descriptors redirecting output

The default file descriptor for redirecting output is 1. This may be specified as
cat 1>filename

Because this is the default file descriptor, it may be omitted, as follows:

cat >filename

Combining standard error and standard output

The default file descriptor for redirecting standard error output is 2. If you want to direct
the error output of a command to a file (to save the error messages), use the syntax

1s filename 2>errors

This saves error output (for example, filename not found)ina file named
errors. If you want to save the command output and error output in separate files, use
the syntax

1s filename >output 2>errors
To print the output and the error output in the same file, use the syntax
1s filename >output 2>&1

This writes both standard output and error output in the file output. Note that 2>&1
references the output file because you have already redirected standard output (file
descriptor 1) to this file.

For example, to save the output and the error output of the make command in a file
named make.log, use the command

make > make.log 2>&1

Chapter 3 Bourne Shell Reference

Changing the shell’s standard input and output

To associate standard input or standard output with a file, use the exec command:
exec >filename
for standard output and

exec <filename

for standard input.

Output will be written to, or input taken from, the file specified until further
redirection is done with the exec command. This can be useful if all output is to be
taken from a file or written to a file. This construct is unlike normal shell redirection with
> and < in that the redirection remains in effect until you log out or explicitly reset the
standard 1/0 files.

To return output and input to the terminal, use the commands

exec > /dev/tty (foroutput)
exec < /dev/tty (forinput)

Reassignment can be used to avoid the problems involved in redirecting output or
input in a control-flow structure.

Associating file descriptors with other files

The exec command can also be used to associate file descriptors with specific files.
This can be an advantage in shell scripts that need to read or write a file line by line (see
also “Reading Input”), because writing output to a file descriptor cannot overwrite a file’s
contents. The command syntax

exec Xx<filename

where xis a number [3 to (OPEN_MAx-1)], associates filename with x (see intro(2) in
A/UX Programmer’s Reference for a definition of 0PEN_wmaXx). For example, the
commands

exec 4<filel

exec 5<file2

associate file descriptor 4 with £i1e1 and file descriptor 5 with £ile2. After these
commands, the syntax

Input and output ~ 3-61

3-62

command <s4
takes input from filel and
command >&5
writes output to £ile2. Using the ampersand (&) prevents the shell from creating or
looking for a file named 4 or 5 in these examples.
The following example shows how the >&n file descriptor syntax may be used:
$ exec 4>file2
$ echo hello >&4
Scat file2
hello
Secho bye >&4
$ cat file2
hello
bye
Note that this file descriptor syntax can be repeated in a loop without the contents of
file2 being overwritten.

Reading input

The built-in read command reads a line of input from the terminal or a file and assigns
it to the variables specified. The form of the read command is

read [name..]

One line is read from the standard input and the first word is assigned to the first
name, the second word to the second name, and so on, with leftover words assigned to
the last name. If only one name is specified, the entire line read will be assigned to that
name. The exit status is zero while there is data to be read. I an eof or an interrupt is
encountered, the exit status is nonzero.

For example, you could use the read command to take input from the terminal as
follows:

$ read first middle last abbreviations

Alyssa Elizabeth Lynch Dr. Ph.D.

Chapter 3 Bourne Shell Reference

This would result in the following variable assignments:
first=Alyssa

middle=Elizabeth

last=Lynch

abbreviations=Dr. Ph.D.

The read command can also take input from a file, but it always reads the first line.
If you wish to move sequentially through a file, reading it line by line, you must first use
the exec command to make the file standard input as follows:
exec < name.list
while read first middle last abbreviations
do

command-list

done

exec < /dev/tty

In the above example, the exec command is used to reassign standard input to the
file name.list.The while loop usesthe read command to read each line of the
file into the variables first, middle, last,and abbreviations,and then it
executes command-list.

When read reaches the end of the file, it will return a nonzero exit status, and the
while loop will terminate. The final exec command then assigns standard input
back to the terminal. For information about reassignment with the exec command, see
the preceding section.

The A/UX line command functions exactly like the read command, except that
a whole line is read into a single variable. The line will be terminated with a newline.

Taking input from scripts

Input to a shell script can be embedded inside the script itself. This is called a here
document. The information in a here document is enclosed as follows:

<<[-1 word

information

word

Input and output 3-63

The first word may appear anywhere on a line; the second must appear alone on a line, that
is, it cannot be indented. The words must be identical and should not be anything that will
appear in information. The second word is the end-of-file for the here document. Variable
and command substitution will occur on information. Normal quoting conventions apply,
so $ can be escaped with \. To prevent all substitution, quote any character of the first
instance of word. (If substitution is not required, this is more efficient.)

To strip leading tabs from word and information, precede the first instance of word
with the optional hyphen (-), as follows:

<<-word

¢ Note If you intend to indent your code, you must use the hyphen preceding word
unless the commands you use can tolerate leading tabs. &

For example, a shell procedure could contain the lines
for i
do

grep $i /usr/lib/telnos

done

Here the grep command looks for the pattern specified by $1i in the file
/usr/1lib/telnos. This file could contain the lines
fred mh0123
bert mh0789

An alternative to using an external file would be to include this data within the shell
procedure itself as a here document:

for i
do

grep S$i <<!

fred mh0123
bert mh0789

done

3-64 Chapter 3 Bourne Shell Reference

In this example, the shell takes the lines between <<t and ! asthe standard input
for grep. The second ! represents the eof. The choice of ! is arbitrary. Any string
can be used to open and close a here document, provided that the string is quoted if
white space is present and the string does not appear in the text of the here document.

Here documents are often used to provide the text for commands to be given for
interactive processes, such as an editor, called in the middle of a script. For example,
suppose you have a script named change that changes a product name in every file in
a directory to a new name:

for i in *

do
echo S$i
ed $i <<!

g/oldproduct/s//newproduct/g
W

!

done

(Note that ed commands will not tolerate leading tab characters and there is no
hyphen preceding the first word; therefore the code is not indented.) The metacharacter
* is expanded to match all filenames in the current directory, so the for loop
executes once for each file. For each file, the ed editor is invoked. The editor
commands are given in the here document between <<t and 1. They direct the editor
to search globally for the string oldproduct and, each time it is found, substitute the
string newproduct. After the substitution is made, the editor saves the new copy of the
file with the w command.

You could make the change script more general by using parameter substitution,
as follows:

for i in *

do

echo $i

ed $i <<!
g/$1/s//$2/9
w

!

done

Input and output 3-65

3-66

Now the old and new product names (or any other strings) can be given as positional
parameters on the command line:

change Sstringl string2

You can prevent substitution of individual characters by using a backslash (\) to
quote the special character $, as in

for i in *

do

echo $i

ed $i <<!
1,\$s/81/%2/g
w

!

done

This version of the script is equivalent to the first, except that the substitution is
directed to take place on the first to the last lines of the file (1, $) instead of “globally”
(g) as in the first example. This way of giving the command has the advantage that the
editor will print a question mark (?) if there are no occurrences of the string $1.

Substitution can be prevented entirely by quoting the first instance of the terminating
string; for example,
ed $1i <<\!

Note that backslash, single quotation marks, and double quotation marks all have the
same effect in this context: they turn off variable expansion and filename expansion.

To prevent leading tabs from becoming part of the here document, precede the first
word with a hyphen, as follows:

for 1 in *

do
echo $i
ed $i <<-!
1,\s$s/$1/s2/g
W
!
done

Chapter 3 Bourne Shell Reference

Using command substitution

Command substitution can occur in all contexts where variable substitution occurs. You
can use command substitution in a shell script to avoid typing long lists of filenames. For
example,

ex ‘grep -1 TRACE *.c’
runs the ex editor, supplying as arguments those files whose names end in .c and
that contain the string TRACE. Another example,
for i in "1s -t~
do
command-list $1i

done

sets the variable i to each consecutive filename in the current directory, with the most
recent filename first.
Command substitution is also used to generate strings. For example,

set “date’; echo $6 $2 $3, $4

first sets the positional parameters to the output of the date command and then prints;
for example,

1986 Nov 1, 23:59:59

Another common example of command substitution uses the basename
command. This command removes the suffix from a string, so

basename main.c .c

prints the string main. The following fragment illustrates its application in a command
substitution:

case SA in ... *.c) B="basename $A .c ... esac

Here B issetto the part of sa with the suffix .c stripped off.

Input and output 3-67

3-68

Writing to standard output

The echo command is used to write to standard output (by default, the terminal). The
form of the echo command is

echo arguments escapes

The arguments are what is written. They are evaluated like the arguments of any other

command with variable and command substitution, filename expansion, and blank

interpretation. Normal quoting conventions apply. Strings containing blanks must be

enclosed in double quotation marks. The arguments will be written sequentially,

separated by blanks, and by default they will be terminated with a newline. If there are

no arguments or the arguments are unset or null variables, a blank line will be returned.

The escapes indicate how the arguments should be printed. The possible escapes are

\b backspace

\c print line without newline

\f form feed

\n newline

\r carriage return

\t tab

\v vertical tab

\\ backslash

\n the 8-bit character whose ASCII code is the 1-, 2-, or 3-digit octal number #, which
must start with a zero

The backslash in each escape must be quoted; that is, it must appear twice or be
enclosed in quotation marks. Escapes can occur anywhere in the arguments. For
example, to produce two lines of output with a single echo command, you could give
the command

echo "line one"\\n"line two"

To print the value of a variable and keep the cursor in the same line, you could give
the command

echo $jj\\c

See echo(l) in A/UX Command Reference for more information.

Chapter 3 Bourne Shell Reference

Other features

Arithmetic and expressions

The Bourne shell has no built-in arithmetic. The A/UX expr command can be used for
integer arithmetic, logical operations, comparison, and some pattern matching and
creation of substrings.

Integers and operands are passed to the expr command as separate arguments,
which means that they must be separated by spaces as follows:

expr 1 + 1

Shell metacharacters such as the asterisk (*) must be quoted with the backslash ().
For instance, to have the shell compute the value of 5 factorial (in symbols: 5!), you could
enter

expr 5 * 4 * 3 * 2

The following are some of the operators allowed in expr expressions, in increasing
precedence:

1. = \> \>= \< \<= != These symbols return the result of an integer comparison if
both arguments are integers; otherwise they return the result of a lexical comparison.

2. + - These symbols return the result of addition or subtraction of integer-valued
arguments.

3. * / % These symbols return the result of multiplication or division, or the
remainder of the integer-value arguments.

For a complete list, see expr(1) in A/UX Command Reference.

The primary use of expr is in command substitution to set variables. For example,
to count the iterations of a loop, you could increment the variable a as follows:
a="expr S$a + 1 °

The expr command can also be used to pick apart strings and do pattern
matching. To perform floating-point calculation, use awk or bc. See A/UX
Programming Languages and Tools, Volume 2, for details.

Other features 3-69

File status and string comparison

The built-in test command evaluates an expression and returns a zero (true) exit
status if the expression is true, and a nonzero (false) exit status if the expression is false
or there is no argument. It is often used in the shell control-flow constructs.

For example,

test -f file
returns zero exit status if file exists and nonzero exit status otherwise. Some of the more

frequently used test arguments are given below. See “Summary of Bourne Shell
Commands” at the end of this chapter for a complete list.

¢ Note Because people often name test programs test, you may obtain
unpredictable results using the test command as well. A harmless alternative

isthe [1 construct, such as
if [-f file]
then

command-list
£i

Be sure to surround each bracket with spaces, or they will not be recognized as a

command.

tests True if s is not the null string.

test sI = §2 True if s7 and s2 are identical.

test §] != §2 True if s1 and s2are not identical.

test -f file True if file exists.

test -r file True if file exists and is readable.

test -wfile True if file exists and is writable.

test -dfile True if file exists and is a directory.

test nl-eqn2 True if the integers n1 and n2are algebraically equal. Any of

the comparisons -ne, -gt, -ge, -1t,and -le may be
used in place of -eq.

3-70 Chapter 3 Bourne Shell Reference

In addition, there are the following operators:
! the unary negation operator

-a binary AND operator

-0 binary OR operator

The -a operator has higher precedence than -o.

All the operators and flags are separate arguments to test. Parentheses can be used
for grouping, but must be escaped with the backslash.

The following is a typical use of the test command in a shell script:

if test -d foo
then
echo "foo is a directory"
fi
This prints the message foo is a directory if foo isfound to be a directory
when the test command is run.

The null command (:)

The null command (:) does nothing and returns a zero exit status. The form of the
command is

:args
This command can also be used wherever true can be used; for example,

while : args

Error handling

The treatment of errors detected by the shell depends on the type of error and on
whether the shell is being used interactively.

Error handling ~ 3-71

3-72

Execution of a command may fail for any of the following reasons:

» 1/O redirection may fail if a file does not exist or cannot be created.
s The command itself does not exist or cannot be executed.

m The command terminates abnormally, for example, with a bus error or memory
fault signal.

= The command terminates normally but returns a nonzero exit status.

In most cases, the shell will print an error message and go on to execute the next
command. An interactive shell will return to read another command from the terminal. If
the command is a shell script, nonzero exit status or abnormal termination of a command
may allow the script to continue on to execute the next command.

Other types of errors, such as failed 1/0 redirection, invalid command, syntax errors
suchas if then done,an inferruptsignal that was not trapped, or failure of any of
the built-in commands usually cause a script to terminate.

The shell flag -e causes the shell to terminate if an error is detected.

Fault handling and interrupts

The A/UX system uses signals to communicate between processes. Most signals indicate
an interrupt, termination, error condition, or other break in processing. See signa1(3)
in A/UX Programmer’s Reference for more information.

The signals that are likely to be of interest in fault handling are
= 1 hangup

m 2 interrupt

= 3 quit

m 14, alarm clock

m 15, software termination (kill)

Chapter 3 Bourne Shell Reference

When a process receives a signal, it can handle it in one of three ways:

m Signals can be ignored. Some signals will cause a core dump if they are not caught.

= Signals can be caught, in which case the process must decide what action to take
when the signal is received.

= Signals can be left to cause termination of the process without further action.

¢ Note The built-in trap command is suitable only for simple signal handling (for
example, catching an interrupt from the keyboard in order to terminate the script).
Functions requiring complex signal handling should be implemented as a C program. See
A/UX Programming Languages and Tools, Volume 1, for more information about the C
programming language and associated library routines. &

The built-in trap command allows you to detect error signals and indicate what
action should be taken. The command has the form

trap [command] [number]..

command is a command string that is read and executed when the shell receives
signals whose numbers are given in number. command is scanned once when the trap is
set and once when the trap is executed. trap commands are executed in order of signal
number. Any attempt to set a trap on a signal that was ignored on entry to the current shell
is ineffective. An attempt to trap on signal 11 (memory fault) produces an error.

The trap command with numbers but without any arguments resets the
corresponding signals to their original values. If command is the null string, the signal
whose numberis given is ignored by the shell and by the commands it invokes. If
numberis 0, commands are executed on normal termination from the shell script. The
trap command with no arguments prints a list of commands associated with each
signal number.

For example,

trap 'rm -f /tmp/junk; exit' 0 1 2 3 15

sets a trap for the specified signals, and if any one of these signals is received, the shell
will execute the following commands:

Error handling ~ 3-73

flag=
trap 'rm -f junk$$; exit' 1 2 3 15

for i
do
case $1i in
-c) flag=N ;;
*) if test -f S$i
then
In $1 junk$s$; rm junk$s
elif test sflag
then
echo "file '$Si' does not exist"
else
>$i
£i
esac
done

The cleanup action is to remove the file junk$s. (This file is named after the
process ID of the script, which is kept in the system-maintained variable $; see
“Parameters and Variables Set by the Shell.”) The trap command appears before the
creation of the temporary file; otherwise it would be possible for the process to die
without removing the file.

You can cause a procedure to ignore signals by specifying the null string as the
argument to trap. The fragment

trap ''" 1 2 3 15

causes the system hangup, interrupt, quit, and software termination signals to be ignored
both by the procedure and by invoked commands. These settings could be listed with
the trap command without arguments, and reset by entering

trap 1 2 3 15

which reset the traps for the corresponding signals to their default values.
The following scan procedure is an example of using trap when there is no exit in
the trap command:

3-74 Chapter 3 Bourne Shell Reference

d="pwd"

for i in *

do

done

if test -d sd/s$i

then
cd $d/$i
while echo "$i:" && trap exit 2 && read x
do
trap : 2
eval S$x
done
fi

This procedure steps through each directory in the current directory, prompts with its

name, and then executes commands entered at the terminal until an eof or an interrupt is
received. Interrupts are ignored while executing the requested commands but cause
termination when scan is waiting for input.

Debugging a shell script

Several shell options can be set that will help with debugging shell scripts. These are

-e

Causes the shell to exit immediately if any command exits with a nonzero exit
status. (This can be dangerous in scripts involving until loops and other
constructs where nonzero exit status is desired.)

Prevents execution of subsequent commands. Commands will be evaluated but
not executed. This is usually combined with the -+ option when used for
debugging. (Note that typing set -n ata terminal will render the terminal
useless until an eof is entered.)

Causes the shell to treat unset variables as an error condition.

Causes lines of the procedure to be printed as read. Use this to help isolate syntax
errofs.

Provides an execution trace. After parameter substitution, each command is
printed as it is executed.

Error handling ~ 3-75

These execution options can be turned on with the set command:
set -option
You can turn on options either inside the script or before its execution (except -n,
which freezes the terminal until you send an eof). Options can be turned off by typing
set +option

Alternatively, they can be turned on with the sh command if the script is executed
this way. The current setting of the shell flags is available as $-.

Summary of Bourne shell commands

I/0 redirection is permitted for these commands. File descriptor 1 is the default output
location.

No effect; the command does nothing. A zero exit code is returned. See “The Null
Command (:).”

file
Read and execute commands from file and return. The search path specified by paTH
is used to find the directory containing file. Note that the dot command does not spawn a

subshell. See “Executing Shell Scripts.”

break [#]
Exit from the enclosing for or while loop, if any. If nis specified, break n levels.
See “Control-Flow Constructs.”

cd[arg]

Change the current directory to arg. The environment variable HOME is the default arg.
The environment variable cppaTH defines the search path for the directory containing
arg. If argbegins with /, the search path is not used. Otherwise each directory in the
path is searched for arg. See “The Environment.”

3-76 Chapter 3 Bourne Shell Reference

continue [n]
Resume the next iteration of the enclosing for or while loop. If 7 is specified,
resume at the nth enclosing loop. See “Control-Flow Constructs.”

evallarg ..}
Read arguments as input to the shell and execute the resulting commands. See “Forcing
More Than One Pass of Evaluation.”

execlarg ..]

Execute the command specified by the arguments in place of this shell without creating a
new process. I/O arguments may appear and, if no other arguments are given, cause the
shell I/O to be modified. See “Command Execution.”

exit[n]

Cause the shell to exit with the exit status specified by #. If 7 is omitted, the exit status is
that of the last command executed. (An eof will also cause the shell to exit.) See “Working
With More Than One Shell.”

export [name ...]

Mark names for automatic export to the environment of subsequently executed
commands. If no arguments are given, a list is printed of all names exported in the
current shell. Function names may #ot be exported. See “The Environment.”

hash([-r |[name .. |

For each name, the location in the search path of the command specified by name is
determined and remembered by the shell. The -r option causes the shell to forget all
locations. If no arguments are given, hitsand cost about remembered commands are
presented. hits is the number of times a command has been invoked by the shell process.
cost is a measure of the work required to locate a command in the search path. There are
certain situations that require that the stored location of a command be recalculated.
Commands for which this will be done are indicated by an asterisk (*) adjacent to the
hits information. cost will be incremented when the recalculation is done. See “Writing
Efficient Shell Scripts.”

Summary of Bourne shell commands ~ 3-77

newgrp | arg ..]

Equivalent to exec newgrp arg .., this built-in version executes faster than the A/UX
command but is otherwise identical. See newgrp(1) in A/UX Command Reference for
usage and description.

pwd

Print the current working directory. This built-in version executes faster than the A/UX
command but is otherwise identical. See pwda(1) in A/UX Command Reference for usage
and description.

read [name .. |

Read one line from the standard input and assign the first word to the first name, the
second word to the second name, and so on, with leftover words assigned to the last
name. The exit status is 0 unless an eofis encountered. See “Writing Interactive Shell
Scripts.”

readonly [name .. |

Mark names read-only. The values of these names cannot be changed by subsequent
assignment. If no arguments are given, a list of all read-only names is printed. See
“Setting Constants.”

return|[n]
Cause a function to exit with the return value specified by 7. If # is omitted, the exit
status is that of the last command executed. See “Defining Functions.”

set [[-ll-aefhkntuvx]arg .. |l
-a Mark variables that are modified or created for export.
-e Exit immediately if a command terminates with a nonzero exit status.

-f Disable filename expansion.

-h Locate and remember function commands as functions that are defined (function
commands are normally located when the function is executed).

-k Place all keyword arguments in the environment for a command, not just those
that precede the command name.

3-78 Chapter 3 Bourne Shell Reference

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

-- Do not change any of the flags; useful in setting $1 to -.

Using + ratherthan - causes these flags to be turned off. These flags can also be
used upon invocation of the shell. The current setting of flags may be found in $-. The
remaining arguments are positional parameters and are assigned, in order, to $1, $2,
and so on. If no arguments are given, the values of all names are printed. See “The
Environment” and “Shell Execution Options.”

shift [n]
Change the names of the positional parameters $n+1 ..to $1 .. If nis not given, it is
assumed to be 1. See “Changing Parameter Positions.”

test [expr]

Evaluate conditional expressions. test evaluates the expression exprand, if its value
is true, returns a zero (true) exit status; otherwise, a nonzero (false) exit status is returned.
test also returns a nonzero exit status if there are no arguments.

The following primitives are used to construct expr:

- file True if file exists and is readable.

-w file True if file exists and is writable.

-x file True if file exists and is executable.

-£ file True if file exists and is a regular file.

-d file True if file exists and is a directory.

-c file True if file exists and is a character special file.
-b file True if file exists and is a block special file.

-p file True if file exists and is a named pipe (FIFO).
-u file True if file exists and its set user ID bit is set.

Summary of Bourne shell commands ~ 3-79

-g file
-k file
-s file
-t [fildes]

-z §1

-n §1
sl=s2
sll=s2

s1

nl -eq n2

True if file exists and its set group ID bit is set.
True if file exists and its sticky bit is set.
True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

True if the length of string 1 is zero.

True if the length of the string s7 is nonzero.
True if strings s1 and s2 are identical.

True if strings s1 and s2 are not identical.
True if s1 is not the null string.

True if the integers 1 and n2are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -1t,and -le may be used in place
of -eq.

These primaries may be combined with the following operators:

! unary negation operator

-a binary AND operator

-0 binary OR operator (-a has higher precedence than -o)
(expr) parentheses for grouping

Notice that all the operators and flags are separate arguments to test. Notice also
that parentheses are meaningful to the shell and, therefore, must be escaped.

test istypically used in shell scripts, as in the following example, which prints the
message foo is a directory if foo isfoundtobe one when test isrun:

if test -d foo

then

echo "foo is a dir"

fi

times

Print the accumulated user and system times for processes run from the shell. See
“Writing Efficient Shell Scripts.”

3-80 Chapter 3 Bourne Shell Reference

trap[a@] [n] ..

Read the command arg and execute when the shell receives signal(s) n. (Note that argis
scanned once when the trap is set and once when the trap is taken.) trap commands
are executed in order of signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. An attempt to trap on signal 11
(memory fault) produces an error. If arg is absent, all trap(s) 7 are reset to their original
values. If arg is the null string, this signal is ignored by the shell and by the commands it
invokes. If nis 0, the command arg is executed on exit from the script. See “Fault
Handling and Interrupts.”

umask nnn

Set the file-creation mask to #nn. The three octal digits refer to read/write/execute
permissions for owner, group, and others respectively (see chmod(2) and umask(2)).
The value of each specified digit is subtracted from the corresponding “digit” specified by
the system for the creation of a file (see creat(2)). For example, umask 022
removes group and others write permission (files normally created with mode 777
become mode 755; files created with mode 666 become mode 644). If the argument #nnn
is omitted, the current value of the mask is printed.

Summary of Bourne shell commands ~ 3-81

Korn Shell Reference

The Korn shell prompt / 4-3

Types of commands / 4-4

The parts of a command / 4-5
Interactive use / 4-6

Editing and reusing commands / 4-10
Using shell metacharacters / 4-22
Working with more than one shell / 4-34
The environment / 4-35

The .profile file / 443

The .kshrc file / 4-46

Aliases for commonly used commands / 4-48
Shell execution options / 4-51

Job control / 4-52

Using shell layering / 4-57

Overview of shell programming / 4-57
Command evaluation / 4-61

Defining functions / 4-65

Positional parameters and shell variables / 4-67

Control-flow constructs / 4-82

Input and output / 4-92

Other features / 4-105

Error handling / 4-110

Summary of Korn shell commands / 4-115

The Korn shell (ksh) is the newest of the three A/UX shells. As such, it includes most of
the best features of both the C and Bourne shells. This chapter presents a detailed

description of the Korn shell, including information about programming with ksh.

4-2 Chapter 4 Korn Shell Reference

The Korn shell prompt

The Korn shell is a program that interprets commands and arranges for their execution.
The Korn shell displays a character called the prompt (or primary shell prompt)
whenever it is ready to begin reading a new command from the terminal. By default, the
Korn shell prompt character is set to the dollar sign ().

The secondary shell prompt

If you press the RETURN key when the shell expects further input, you will see the
secondary shell prompt. By default, this prompt character is set to the greater-than
sign (>). Like the primary shell prompt, this can be redefined.

The secondary prompt will appear, for example, if you enter a multiline construct
(such as a function definition) at the primary shell prompt. The secondary prompt will
appear at each line until you give the final delimiter. Whenever you have a secondary
prompt (either because you are using a multiline construct or because of an error), an
interrupt will stop the process and issue a primary prompt ($) for another command. See
“Canceling Commands” for information about the interrupt on your system.

The tertiary shell prompt

If you use the select command to set up a menu, the tertiary shell prompt
displays on lines that prompt for a user selection. By default, the tertiary shell prompt is
setto #2.

Changing the prompt character

You can change the primary prompt character by redefining the environment variable
Ps1 toany other character or string of characters. Similarly, you can redefine the
secondary shell prompt by changing the environment variable ps2, and the tertiary
prompt, by changing the setting of ps3. See “Commonly Used Environment Variables.”

The Korn shell prompt 4-3

Types of commands

4-4

The shell works with three types of commands:

» Built-in shell commands Built-in commands are written into the shell itself and are
generally used for writing shell programs. Each A/UX shell has a slightly different set
of built-in commands. The built-in Korn shell commands are listed under “Summary
of Korn Shell Commands.”

m A/UX commands Every shell can invoke all A/UX commands (see “Command
Summary by Function” in A/UX Reference Summary and Index for a complete list of
these). A/UX commands are executable programs stored in system directories such as
/bin and /usr/bin. When you enter an A/UX command (for example, 1s), the
shell searches all directories specified by your pATH variable (see “Locating
Commands”) to locate the program and invoke it.

n User-defined commands You can combine built-in shell commands and A/UX
commands to define your own shell programs (see “Overview of Shell
Programming”). Shell programs can be typed in at the shell prompt or entered in a
file. A shell program contained in a file is generally called a shell script. Once a shell
script is defined, it can be used like any other command or program, with certain
limitations.

You can also write your own commands in a high-level language such as C (see A/UX
Programming Languages and Tools, Volume 1 for more information.) The names of
user-defined commands should not be the same as any existing shell or A/UX command.

Learning about built-in commands

To learn about any Korn shell built-in command, use the whence command:
whence [-v] built-in

For example,

whence r

tells you about the Korn shell r command. It prints

fc -e -

Chapter 4 Korn Shell Reference

Use the -v option for a more verbose report. For example,
whence -v r
prints
r is an exported alias for fc -e -

In addition, the full pathnames of commands are given. For example,
whence more
prints

/bin/more

The parts of a command

Whenever you see a shell prompt, you can run a command by entering the command
name. Most A/UX commands have one or more flag options, which follow the
command name to modify the way the command operates. These are usually composed
of a hyphen followed by one or more characters; for example, -1 modifies the 1s
command:
1s -1
In this case, the -1 changes the way the 1s command operates, producing a “long”
listing that contains more information than the standard 1s output. For the options that
apply to a particular A/UX command, see the manual page entry for that command in
A/UX Command Reference. For options to the Korn shell built-in commands, see
“Summary of Korn Shell Commands.”

Many A/UX commands also expect one or more arguments, which pass information
to the command. An argument may be any data expected by the command; for example,
a directory name may follow the 1s command:

1ls /bin

In this case, the directory name /bin specifies which directory the 1s command
should list.

The parts of a command 4-5

The entire command name, including any options and arguments, is called the
command line. A command line is terminated by ReTurN. For example, in the command
line
1s -1 /bin
1s isthe command name, -1 isa flag option (specifying a “long” listing), and /bin
is an argument (specifying which directory to list).

To give a command longer than one line, you must precede ReTurN with a backslash
(\). This prevents the shell from interpreting RETURN as the end of a command. You can
continue this for several lines; the shell will wait for a plain RETURN (not preceded by a
backslash) to execute the multiline command.

Commands can also be combined; see “Command Grouping.”

Interactive use

4-6

When you use the Korn shell interactively, it acts as a command interpreter, processing
each command or group of commands as it is entered. This section describes how you
enter, monitor, and control commands interactively.

Command termination character

When you are entering commands interactively, the shell will not begin executing a
command until you press the RETURN key. Therefore, if you mistype something, you can
back up and correct the mistake before pressing RETURN. When the shell recognizes the
RETURY, it executes the command line; when the process completes, a new prompt will
be printed on the screen. The shell is now ready to accept further commands.

Impossible commands

If you give an impossible command (a command or command line that doesn’t exist or
uses improper syntax), the shell will print an error message and return the prompt for
another command.

Chapter 4 Korn Shell Reference

Background commands

You can direct the shell to execute commands in the “background” while you continue to
work at the shell prompt (the “foreground”). To run background processes, end the
command line with an ampersand (&) before the final RETurN. For example,

cat smallfilel smallfile2 > bigfile &

[1] 1234

The numberin [] is the job number (for job control). The other number is the
process ID (PID) associated with the sample cat command as long as it is executing.

After the PID is displayed, the shell returns the prompt so you can use the terminal
immediately for other work.

& Note To save the output from the job you are running in the background, you must
redirect it into a file or pipe it to a printer. If you do not redirect the output, any output
produced by the command will appear on your screen and will not be saved.

To suspend processes that require input from the keyboard (such as an editor or a
remote login across a network), use shell layering (see “Using Shell Layering”) or job
control (see “Job Control”).

Checking command status

To check on the status of a background command, use

ps

This command shows the process status of all your commands; they are identified by

process number and by name. See ps(1) in A/UX Command Reference for details.
You can use the built-in command jobs to get the status of your current jobs.

Interactive use 47

48

Logging out

The shell terminates all processes when you log out of the system. To make sure that a
process will continue to execute after you log out, use the nohup command (which
stands for “no hang up”) as follows:

nohup command &

See nohup(1) in A/UX Command Reference for details.
nohup is on by default for background processes on the Macintosh II; other
machines should use the command form above.

Canceling commands

A number of special control sequences come into play when you cancel commands. The
A/UX standard distribution defines these sequences as follows:

Name A/UX standard key sequence
interrupt CoNTROL-C

quit CONTROL- |

erase DELETE

kill ConTroL-U

eof ContrOL-D

swtch CoNTROL-"

susp CONTROL-Z

You may reassign any of these sequences, however, using the stty command. See
stty(1) in A/UX Command Reference for more information.

Before you press RETURN

If you type part of a command and then decide you do not want to execute it, you can
send an interrupt or killto the system at any point in the command line.

Chapter 4 Xorn Shell Reference

While a command is running

There are several ways to stop a command that is executing:

Send the interrupt signal. For example, the output of a command such as
cat /etc/termcap

will scroll by on your terminal. If you want to terminate the process, you can send the
interrupt signal. Because the cat command does not take any precautions to avoid
or otherwise handle this signal, the interrupt will (eventually) cause it to terminate.

Use CoNTROL-S to suspend scrolling output. The A/UX control-flow keys are CONTROL-S
(suspend scrolling output and ConTrOL-Q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a screenful again.
ControL-S and CoNTROL-Q cannot be redefined with stty; however, stty can
enable and disable control-flow.

Send an eof character. Many programs (including the shell) terminate when they

get an eof character from their standard input. You could accidentally terminate the
shell (which would log you off the system) if you entered eofat a prompt or, in
terminating some other program, if you sent an eof one time too many.

Wait for the eof condition from a file. If a command has its standard input redirected
from a file, then it will terminate normally when it reaches the end of that file. If you
give the command

mail ellen < note

(where note isan existing file), the mail program will terminate when it detects
the eof condition from the file.

Send the quit signal. If you run programs that are not fully debugged, it may be neces-
sary to stop them abruptly. You can stop programs that hang or repeat inappropriately
using the quit control sequence. This will usually produce a message such as

Quit (Core dumped)

indicating that a file named core has been created containing information about
the state of the running program when it terminated because of the quit signal. You
can examine this file yourself or forward information to the person who maintains the
program telling him or her where the core file is.

Send a suspend signal. You can suspend a program’s execution temporarily by using
the susp control sequence. You can use the f£g built-in command to continue
execution of a program that you have suspended in this manner.

Interactive use 49

Canceling background commands

If you have a job running in the background and decide you do not want the command
to finish executing, use the ki11 command.

When a job is running in the background, it ignores interrupt and break signals. To
terminate a background command, use

kill process-ID

The ki1l command takes the process ID as an argument. See ki11(1) and ps(1) in
A/UX Command Reference for details.
You can also kill by job number, as in the C shell. For example,

kill %1
kills your first job.

Editing and reusing commands

410

The Korn shell provides access to an inline editor to edit your current command line or to
edit past commands for reexecution. The inline editor option may be set at the shell
prompt using the command

set -o option-name
where option-name may be

vi This option provides a window for the current command line
and editing syntax similar to vi.

emacs Of gmacs Either of these options provides a window for the current
command line and editing syntax similar to the emacs
editor. The only difference between the emacs and
gmacs inline editors is the way they handle CoNTROL-T.

If you set the value of the EDITOR environment variable to vi, emacs, or
gmacs, the name of the inline editor will be taken from the environment automatically.
See “The Environment” for more information.

Chapter 4 Korn Shell Reference

Once you have supplied one of the above option names, you can invoke the inline
editor on your current command line by pressing Escape. The vi and emacs inline
editors each have their own way of accessing your previous commands from a file
named $HOME/.sh_history.

The Korn shell automatically saves the text of your past commands in the
SHOME/.sh_history file, which is not an ordinary text file but a special data file that
can be read very quickly by the shell. Its contents are not lost when you log out. You can
specify a special name for the history file with the environment variable HISTFILE, and
the number of past commands you wish to access in the history file with the environment
variable HISTSIZE. See “Commonly Used Environment Variables.”

Alternatively, you can use the fc command to access past commands and perform
substitutions on them:

fc -e -
or
r

The fc command with the -e flagis aliased to r. You can use this command to
perform substitutions on previous commands.

The vi option

Invoke the vi inline editor by pressing Escapk. If you have already started to enter a
command when you press Escapg, the command will be displayed and the cursor will be
on the last character you entered.

To exit the inline command editor and return to the shell prompt, press CoNTROL-D.
This will cancel the current command (the command in the editor window).

The editor window

While you are using the vi inline editor, your command line becomes a one-line
editing screen. All of the vi commands listed below are available to you for editing
commands, searching your command history, moving the cursor, and so on. There are
several additional commands (not available in the full-screen vi editor) that perform
filename generation, append arguments to previous commands, and so on.

Editing and reusing commands ~ 4-11

4-12

The width of the screen will be 80 characters unless you have set the coLs
environment variable to some other width (see “Commonly Used Environment Variables”).

Command-line editing can be illustrated as follows:

1. Type

cat defs chap.l | troff -Tpsc -mm > L.2

2. Now you realize that you typed the wrong filename; it should be chap. 2.

3. Press Escapg; then, using normal editing commands, move the cursor to the 1. (The
quickest way to do this is by typing £1.) Now change the 1 to a 2. (The quickest way
to do this is by typing r2.)

4. Now press RETURN. The command will execute as desired.

If the command is too long to fit in the window, the window will scroll with the
cursor so that you can reach either end of the command. You will see a greater-than
sign (>) on the right end of the command and a less-than sign (<) on the left end of
the command. If both ends of the command are out of the window, you will see an
asterisk (*).

Command history

The following commands give you access to your command history from command-line
editing mode. Most take place as soon as they are typed; the search commands terminate
with RETURN.

Note that the following commands may be preceded by a number to indicate how
many times the command should execute (that is, if preceded by a number 7, the
command will execute the nth previous command, and so on).

k Recall and print the most recent command. Each time k is entered, an earlier

command is recalled. If preceded by a number #, the nth previous command
is printed.

- Equivalentto k.

j Recall and print the next command in your history. Each time 5 is entered, a
later command is recalled. If preceded by a number #, the nth next command
is printed.

+ Equivalent to 3.

Chapter 4 Korn Shell Reference

/ String

/ ~String

2 §tring

27 SIring

Recall command number #. If you don’t supply the ¢ command with a
command number #, it defaults to a command number of one (1).

(Underscore) Append the last argument of the most recent command to the
current command and enter insert mode.

Search backward in the history file for a previous command containing string
and, if found, print it. string is terminated by ReTurn. If string is null, the
preceding string will be used.

Same as /string, but a match is found only if stringis at the beginning of a line.

Search forward in the history file for the next command containing string and,
if found, print it. The string is terminated by ReTurN. If string is null, the
preceding string will be used.

Same as ?string, but a match is found only if string is at the beginning of a line.
Search for the next occurrence of the last string searched for with / or 2.

Search for the most recent occurrence of the last string searched for with /
or 2.

Moving the cursor on the command line

These commands move the cursor around the current command line (the command line
in the editor window). They take effect as soon as you enter them.
Note that the arrow keys cannot be used to move the cursor during inline editing.
The following commands may be preceded by a number to indicate how many times
the command should execute (that is, if preceded by a number #, the command will
move 7 spaces, #words, # lines, and so on, in that direction).

h Move the cursor backward (left) one character.

1 Move the cursor forward (right) one character.

nl Move the cursor to the nth character in the current line. The default for nis 1. If n
is greater than the number of characters in the line, move to the end of the line.

Move the cursor forward one alphanumeric word.

W Move the cursor to the beginning of the next word that follows a blank.

e Move the cursor to the end of the current word.

E Move the cursor to the end of the word (ignoring quotation marks and other
punctuating characters).

Editing and reusing commands ~ 4-13

b Move the cursor backward one word.

B Move the cursor to the preceding word (ignoring quotes and other punctuating
characters).

0 Move the cursor to the start of the line. (This cannot be preceded by #.)

A Move the cursor to the first nonblank character in the line. (This cannot be
preceded by 7.)

$ Move the cursor to end of the line. (This cannot be preceded by #.)
£¢ Search to the right for the next character ¢ in the current line.

Fc Search to the left for the next character ¢ in the current line.

; Repeat the last single character find (£ or F) command.

, Reverse the last single character find (f or F) command.

Changing and inserting text in the command line

These commands are used to replace characters in the current line and to add characters.
Once the command is given, you can simply start typing the text you want. End the text

you type with EScAPE.

a Append text after the cursor.

A Append text after the end of the line.

i Insert text before the cursor.

I Insert text before the beginning of the line.

cmotion Change text. This command deletes from the current character through the
character specified by the motion command (see the preceding section) and
inserts the new characters typed. If 7 is included (preceding the ¢ command
or the motion command), the deletion covers the number of motions indicated.

cc Change the entire line. If 7 follows this command, then # lines are discarded.

¢ Delete from the cursor to the end of the line and replace with the characters typed.
rc Replace the current character with c.

RC Replace characters until the Escape or RETURN key is pressed.

4-14 Chapter 4 Korn Shell Reference

Replacing text in the command line

nrc Replace n characters (default is 1) with c.

Deleting text from the command line

These commands are used to delete characters in the current command line. These
commands take place as soon as they are typed.

D Delete from the cursor through the end of the line.

dmotion Delete the current character through the character indicated by motion. If nis
included (preceding the @ command or the motion command), the deletion
covers the number of motions indicated.

dd Delete the entire line. If 7 follows this command, then the deletion should
cover the number of lines indicated.

x Delete the current character. If preceded by #, n characters are deleted.

Copying and moving text within the command line

P Place the last text modified before the cursor.

D Place the last text modified after the cursor.

Specialized editing commands
These commands take place as soon as they are entered.

Repeat the most recent text modification command. If preceded by #, repeat the
nth previous command that modified text.

~ Invert the case of the current character and advance the cursor.
Undo the last text-modifying command.
Undo all the text-modifying commands performed on the line.

* Appendan * to the current word and attempt filename generation. If no match is
found, the bell rings. Otherwise the word is replaced by the matching pattern and
insert mode is entered.

\ Append characters to the current word and attempt filename generation as long as
the new string matches a unique filename. If no match is found, the bell rings.
Otherwise the word is replaced by the matching pattern and insert mode is entered.

Editing and reusing commands ~ 4-15

4-16

Printing and executing edited commands

These commands take place as soon as you enter them. After they execute, you are
returned to the Korn shell prompt.

Control-L (form feed) Line feed and print the current line. This takes effect only
when you are not entering text.

RETURN Execute the current command line.
CONTROL-J (line feed) Execute the current command line.
ContrOL-M (ReTURN) Execute the current command line.

Insert the character # as the first character in the command line. The
is the comment character, and everything after it will be ignored. This is
useful for inserting the current line in history without being executed
(although you will have to delete the initial # to reuse the command).
This takes effect only when you are not entering text (that is, after you
have pressed EscapE).

The emacs (and gmacs) OptiOIlS

The only difference between the emacs andthe gmacs modes is the way they
handle ControL-T. After you have enabled emacs mode (using set -o emacs or
setting the value of the EDITOR variable), you can enter the emacs inline editor by
pressing Escap. You can then move the cursor to the point needing correction in your
current command line and insert or delete characters or words as needed. All the editing
commands are control characters or escape sequences.

The notation for escape sequences is M- followed by a character. For example, you
enter M-f (pronounced “Meta f”) by pressing Escape (ASCII 033) and then pressing “f”. (M-
F would be the notation for Escapg followed by SHiFr-F

All edit commands operate from any place on the line (not just at the beginning). You
do not press RETURN after editing commands except where noted.

Chapter 4 Korn Shell Reference

The emacs input edit commands

By default, the emacs editor is in input mode.

erase The erase character (see stty(1)). Delete previous character.

eof The eof character (see stty(1)). Terminate the shell if the current line
is null.

\ Escape next character. Editing characters and the erase, kill, and

interrupt characters may be entered in command line or in a search
string if preceded by a \.The \ removes the next character’s editing
features (if any).

CONTROL-V Display version of the shell.

The emacs cursor motion commands

The following commands move the cursor:

ControL-A Move the cursor forward (right) one character.

M Move the cursor forward one word. (A word is a string of
characters consisting of only letters, digits, and underscores.)

ConTrOL-b Move the cursor backward (left) one character.

Mb Move the cursor backward one word.

CONTROL-2 Move the cursor to the start of the line.

CONTROL-€ Move the cursor to the end of the line.

CoNTROL-] char Move the cursor to character char on the current line.

CONTROL-X Interchange the cursor and mark.

The emacs history commands

These commands access your command history:

CONTROL-p Fetch the previous command. Each time CoNTROL-p is entered, the
previous command is accessed.

M=< Fetch the least recent (oldest) history line.

M-> Fetch the most recent (youngest) history line.

Editing and reusing commands ~ 4-17

4-18

CONTROL-N

CONTROL-T String

CONTROL-O

M-letter

Fetch the next command. Each time ConTrOL-n is entered, the next
command forward in time is accessed.

Search backward in the history file for a previous command line
containing string. If a parameter of zero is given, the search is
forward. The string is terminated by a RETURN or newline character.
If string is omitted, then the next command line containing the most
recent string is accessed. In this case, a parameter of zero reverses
the direction of the search.

Execute the current line and fetch the next line relative to the
current line from the history file.

Search the alias list for an alias by the name _/etter, and if an alias of
this name is defined, insett its value on the input queue. The letter
may not be one of the above metafunctions.

Insert the last word of the previous command on the line. If
preceded by a numeric parameter, the value of this parameter
determines which word to insert rather than the last word.

Same as “M-.”

Attempt filename generation on the current word. All files matching
the character pattern are expanded.

Attempt filename generation on the current word. Filename
expansion occurs as long as the string generated matches a
unique filename.

List files matching current word pattern if an asterisk
was appended.

The emacs text modification commands

These commands modify the line:

Contror-d
Md
M-ContrOL-h
M-h
CONTROL-t

Delete the current character.

Delete the current word.

(Meta-backspace) Delete the previous word.
Delete the previous word.

In emacs mode, transpose the current character with the next
character. In gmacs mode, transpose two previous characters.

Chapter 4 Korn Shell Reference

CONTROL-C
M-
M1

ControL-k

CONTROL-W
kill

CONTROL-Y

Capitalize the current character.
Capitalize the current word.
(ell, not one) Change the current word to lowercase.

Delete from the cursor to the end of the line. If given a parameter of
zero, delete from the start of line to the cursor.

Delete from the cursor to the mark.

The kill character (CONTROL-u in the A/UX standard distribution).
Delete the entire current line. If two kill characters are entered in
succession, all kill characters from then on cause a line feed (useful
when using paper terminals).

Restore last item removed from line. (Yank item back to the line.)

Other emacs line editing commands

These miscellaneous commands are also available:

CONTROL-]
CONTROL-@
M-space
CONTROL
CoNTROL-m
Mp
M-digits

CONTROL-U

(ell, not one) Line feed and print the current line.

(null character) Set mark.

(meta-space) Set mark.

(newline) Execute the current line.

(return) Execute the current line.

Push the region from the cursor to the mark on the stack.

(escape) Define numeric parameter; the digits are taken as a parameter
to the next command. The commands that accept a parameter are
ControL-f, CONTROL-b, erase, CONTROL-d, CONTROL-K, CONTROL-,
CONTROL-p, CONTROL-n, M-., M-_, M-b, M-c, M-d, M-f, M-h, and M-
CONTROL-h.

*)

Multiply parameter of next command by 4.

Using fc or r

Another way to access and edit the commands listed in your .sh_history fileisto
usethe fc command. The fc command uses the value of the FCEDIT
environment variable as its editor; this is set to /bin/ed by default. See “Commonly
Used Environment Variables” for more information.

Editing and reusing commands ~ 4-19

420

Editing and reexecuting previous commands

In the command

fc -e - String=new-siring

the option “~e -” means that you wish to execute a command indicated either by string
or by its number. If it is indicated by string, the most recent command with those
characters will be selected. If string=new-string is included, new-string replaces string

before execution. If the command is specified by number and it does not include string,
the shell displays the message

bad substitution
andthe fc command fails. For example, the command
fc -e - vi
reexecutes your most recent vi command. If you want to substitute another filename
to your most recent vi command, you can use a command such as
fc -e - chapl=chap2 vi
An abbreviated form of
fc -e -...
is the command
r old=new command

This command works exactly like the fc command and is provided simply because
it is easier to type. For example, to edit and reexecute the vi command discussed
above, you type
r chapl=chap2 vi

The command
r command >file
reexecutes command with the output directed into file.

To edit command(s) with fc, use the form
fc first last
fc string

where first is the number of the first command in a range, last is the number of the last
command in that range, and string is the first characters in a command name. The
specified command(s) are copied into a temporary file, and the editor named by the
FCEDIT variable is invoked.

Chapter 4 Korn Shell Reference

Once you are in the editor, you can use any of its commands. When you exit, your
edited command or commands are read by the Korn shell and executed. As each
command is executed, it is printed at the terminal.

For example, to edit and reexecute the list of commands

15 cp chapl chapl.bck

16 lp chapl

17 mv chapl /printed

you give the command

fc 15 17

After this command, you see these commands displayed and can edit them as you desire
with any editor command (for example, replacing the 1 in chap1 with the number 2).
When you exit the editor, the new commands are executed and entered in the history file.

Likewise, to edit and reexecute the last diff command you gave, you can use the
command

fc diff

Finally, you can also use the fc command without using an editor. This can be
useful when you want to reexecute a command without changing it, or when you wish to
make a simple change and do not want to spend the time necessary to use an editor.

Listing previous commands

Withthe -1 option, fc accepts command numbers or strings as arguments. With
command numbers

fc -1 firstlast

fc prints a list of commands, where first is the history number of the oldest command
you wish to review and /ast is the number of the most recent. For example,

fc -1 10 12

Sfirstand last may also be negative numbers:

fc -1 -10

A negative number is interpreted as the nth previous command. If first is given but not

last, then commands from first through the current command are listed. If no numbers
are specified, the 16 most recent commands are listed.

Editing and reusing commands ~ 4-21

If you ask for commands that are not available, either because the command is too
old (remember that only the number of commands specified in HISTSIZE are saved)
or because you have not given that many commands, the shell will display the message

Bad number

The command fc -1 can be combined with two other options:
-r List specified commands from most recent to oldest.

-n List specified commands without command numbers.

For example, the command
fc -1r 10 12

prints command numbers 10, 11, and 12 from your history file in reverse order. The
output might look like this:

12 vi chap2.ksh
11 1s chap*
10 rm chap2.bck

With string as an argumentto fc -1:
fc -1 string
you can search for and print a list of commands beginning with a command containing

string. For example, to obtain a list from your most recent rm command to your current
command, you could type

fc -1 rm

Using shell metacharacters

4-22

Shell metacharacters are characters that perform special functions in the shell. This
section discusses how to use these metacharacters. The following are the Korn shell
metacharacters:

Chapter 4 Korn Shell Reference

<>

Atilde is used as the first part of a directory name. It is replaced with either your
home directory (if it is used alone or followed by a pathname below your home
directory such as ~/project/phasel) or the home directory of another user
(if it is followed by the login name of that user, such as ~1ori). See “Specifying
Home Directories” for details.

An ampersand at the end of 2 command line causes the shell to run the
command(s) in the background and print the process ID(s).

A question mark used as part of a file or directory name causes the shell to match
any single character (except a leading period). Followed by a pattern list enclosed
in parentheses, the question mark causes the shell to match zero or one
occurrence of any pattern in the list.

An asterisk used as part of a file or directory name causes the shell to match zero
or more characters (except a leading period). Followed by a pattern list enclosed
in parentheses, the asterisk causes the shell to match zero or more occurrences of
any pattern in the list.

An at-sign, when followed by a pattern list enclosed in parentheses, causes the
shell to match zero or one occurrence of any pattern in the list.

An exclamation mark, when followed by a pattern list enclosed in parentheses,
causes the shell to match all but occurrences of any pattern in the list.

Brackets around a sequence of characters (except the period) cause the shell to
match each character one at a time.

A hyphen used within brackets to designate a range of characters (for example,
[a-z]) causes the shell to match each character in the range.

A less-than sign following a command and preceding a filename causes the shell to
take the command’s input from that file.

A greater-than sign following a command and preceding a filename causes the shell
to redirect the command’s standard output into the file. See “Input and Output” for
a description of how this metacharacter is used to redirect error output.

Two greater-than signs following a command and preceding a filename cause the
shell to append the command’s output to the end of an existing file.

A less-than sign combined with a greater-than sign preceding a filename causes the
shell to open that file for input and output. When this construct is used with a com-
mand, it also causes the shell to redirect the command’s standard input to that file.

A vertical bar between two commands on a command line causes the shell to
redirect the output of the first command to the input of the second command. This
can occur multiple times on a command line, forming a pipeline.

Using shell metacharacters ~ 4-23

|& Avertical bar and ampersand at the end of a command cause the shell to connect
this background command to the parent shell (and the terminal, if this shell’s
output and input are connected to the terminal). Output and input can be read and
written to the background process. See “Connecting a Command to Standard Input
and Output.”

; A semicolon between two commands on a command line causes the shell to
execute the commands sequentially in the order in which they appear.

() Parentheses around a pipeline or sequence of pipelines cause the whole series to
be treated as a simple command (which may in turn be a component of a
pipeline), and a subshell to be spawned for the commands’ execution. Normally,
built-in commands, functions, and compound commands used as the last element
in a pipeline are not processed by a subshell; parentheses around these elements
can force the spawning of a subshell.

{ } Bracesaround a series of commands group the output of the commands.
\ Abackslash prevents the shell from interpreting the metacharacter that follows it.

 + Single quotation marks around a command, a command name and argument, or
an argument prevent the shell from interpreting the enclosed metacharacters.

" Double quotation marks around a command, a command name and argument, or
an argument prevent the shell from interpreting the enclosed metacharacters, but
only as follows: file, wildcard, and command substitution will take place, but
filename expansion and interpretation of blanks will not.

Back quotes around a command cause the characters in that command to be
replaced with the output from that command.

Shortcuts in working with directories

Full pathnames in a hierarchical file system can rapidly become lengthy and unwieldy.
This section describes some features that aid you in working with directory pathnames.

Specifying home directories

You can use the tilde (~) as the initial character in a filename or pathname to avoid

typing the absolute or relative pathnames of home (login) directories. An initial tilde in a
pathname, for example,

~/chapter2

4-24 Chapter 4 Korn Shell Reference

indicates a file below your own home directory. When the command is executed, the
tilde is replaced by the value of your environment variable HOME. A tilde followed by
the login name of another user, for example,

~virginia
indicates the login directory of that user and will be replaced by the absolute pathname

of that user’s home directory.

You can use this notation when giving a pathname as an argument to any command;
for example,

cp ~virginia/memol ~/memos/virginia.memo

Current and previous directories

The tilde can also be used to represent your current and previous working directories. A
tilde followed by a plus sign (+) represents the current working directory (the value of
the variable pwp); tilde followed by a minus sign (-) is replaced by the most recent
working directory (the value of the variable or.DPWD).

For example, use the cd command to return to your most recent working directory
with the command

cd ~-

You can toggle between two directories by repeating this command several times.

Substituting directory names

The Korn shell also allows substitution on directory names as arguments to the cd
command

cd old new

where the directory name new replaces old in the full pathname of the current
working directory (the variable pwD). For example, suppose you had the directories

/users/doc/anne/manuals/drafts
/users/doc/anne/manuals/reviewl

/users/doc/steve/manuals/reviewl

Using shell metacharacters ~ 4-25

4-26

After the command

cd /users/doc/anne/manuals/drafts

you could goto /users/doc/anne/manuals/reviewl Wwiththe command
cd drafts reviewl

From there, you could then go on to
/users/doc/steve/manuals/reviewl

with the command

cd anne steve

Each time you change to a directory using “ca substitution,” the full pathname of the
new directory is displayed.

Specifying filenames with metacharacters

Using the filename expansion metacharacters (also called “wildcards”) spares you the job
of typing long lists of filenames in commands, looking to see exactly how a filename is
spelled, or specifying several filenames that differ only slightly.

These metacharacters are interpreted and take effect when the shell evaluates
commands. At this point, the word incorporating the metacharacter(s) is replaced by an
alphabetic list of filenames, if any are found that match the pattern given. Filename
expansion metacharacters can be used in any type of command; however, in the case of
filenames given for input and output redirection, filename expansion may cause
unexpected results if the metacharacter usage expands into more than a single filename.
To turn off the special meaning of metacharacters and use them as ordinary letters, you
must quote the characters. See “Quoting.”

The following are filename expansion metacharacters in the Korn shell:

2 Aquestion mark matches any single character in a filename. For example, if you
have files named

a bb ccc dddd
the command
print ?°?°?

matches a sequence of any three characters and returns
ccc

Chapter 4 Korn Shell Reference

* Anasterisk matches any sequence of characters, including the empty sequence,
in a filename. (It will not, however, match the leading period in such files as
.profile.) To list the sequence of files named

chap chapl chap2 chap3 chap3A chapl?2
you can use the notation

1ls chap*

The files are listed as

chap chapl chapl2 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the null sequence
composed of no characters.

[1 Brackets enclosing a set of characters match any single character, one at a time,
from the set of enclosed characters. Thus,
ls chap.[12]

matches the filenames

chap.l chap.2

Note that this does not match chap.12. To match filenames chap. 10,
chap.11,and chap.12, use the notation

chap.1[012]

You can also place a hyphen (-) between two characters in brackets to denote a
range. For example,

ls chap.[1-5]

is the equivalent of
chap. [12345]
A range of characters can also be indicated in brackets. The notation [a-z]

matches any lowercase character, [A-z] matches any uppercase character, and
la-za-z] matches any character, regardless of case.

To match anything except a certain character or range of characters, use the
exclamation point inside the brackets. When the first character following the left
bracket ([) is an exclamation character (1), any character not enclosed in the
brackets is matched. For example,

[1Db]
matches any filename composed of one letter, except a file named b.

None of these metacharacters will match the initial period at the beginning of special
filessuchas .profile. These must be matched explicitly. Periods that do not begin a
filename can be matched by metacharacters.

Using shell metacharacters ~ 4-27

4-28

If you use these metacharacters and the shell fails to match an existing filename, it
displays a message such as

ksh: *: not found.

Input and output redirection

An executing command may expect to accept input and create output, possibly including
error output (error messages). In the A/UX system, there are default locations set for
input and output:

» Standard input is taken from the terminal keyboard.
» Standard output is printed on the terminal screen.

» Standard error output is printed on the terminal screen.

These defaults can be changed using the following metacharacters (also called
redirection symbols). The redirection metacharacters also allow you to use file
descriptors to specify files, as described in detail in “Redirection With File Descriptors.”
< Aless-than sign followed by a filename “redirects standard input” (takes command

input from a file or device other than the keyboard). For example,
mail ellen < note

uses a file named note instead of a message typed from the keyboard as the
inputto mail.

> A greater-than sign followed by a filename “redirects standard output” (prints
command output in a file or to a device other than the terminal screen). If a file by
that name already exists, its previous contents are overwritten; otherwise a new
file is created. For example,

sort filel > file2

uses a file for the output of the sort command. When sort is finished, file2
contains the sorted contents of filel.

See “Input and Output” for information on redirecting standard error output using
file descriptors.

>> Two greater-than signs followed by a filename append the output of a command
to a file. If no file by that name exists, one is created. For example,

who >> log

appends the output of the who command to the end of the existing file 1og.

Chapter 4 Korn Shell Reference

Combining commands in pipelines

You can send the output of one command as input to another command by using the
vertical bar or “pipe” (1). When two or more commands are joined by a pipe, the
command line may be considered a pipeline.

For example, to see which files in a directory contain the sequence old in their names,
you can use a pipeline as follows:

1ls | grep old

The pipe character (1) tells the shell that output from the first command (the list of files
produced by the 1s command) should be used as input to the grep command. The
output of the pipeline (filenames in the current directory containing the string o1d)
prints on standard output (unless you redirect it to a file).

Pipelines may consist of more than two commands; for example,

ls | grep old | wc -1

prints the number of files in the current directory whose names contain the string o/d.

Pipelines may also be executed in the background. For example, to avoid the time-
consuming process of waiting for a very large file to be sorted and printed, you could
give the following pipeline:

sort mail.list | 1lp &

This pipeline would sort the contents of a file named mail.list and send the sorted
information to the 1p program to be placed on the printer queue. The shell would
respond with the process ID of the last command in the pipeline.

The tee command isa “pipe fitting”; it can be put anywhere in a pipeline to copy
the information passing through the pipeline to a file. See tee(1) in A/UX Command
Reference for more information.

A filter is a program or a pipeline that transforms its input in some way, writing the
result to the standard output. For example, the grep command finds those lines that
contain some specified string and prints them as output.

grep ‘correction’ draftl

prints only the linesin draft1 that contain the string correction.
Filters are often used in pipelines to transform the output of some other command.
For example,

who | grep jon

Using shell metacharacters ~ 4-29

4-30

prints
jon ttyp8 Jul 21 12:25

if a user whose login name is jon is currently logged into the system on ttyp8.

Connecting a command to standard input and output

In the Korn shell, the input and output of a command or pipeline running in the
background can be connected to standard input and output by ending the command line
with | &. This establishes a two-way pipe with the shell.

Output created by the background process can then be read with the read -p
command as follows:

read -p variable

The input line from the pipe will be read into variable and then used as desired.
Input for the pipe can be inserted with the print -p command:

print -p arguments
The arguments are written onto the pipe for use by the background process.

Only one background process connected to the shell with & can be running at a
time. For example,

cat |&

[1]1 6420
print -p "hello"
print -p "goodbye"
read -p var
echo S$var

hello
read -p var
echo Svar

goodbye
where the indented lines show output printed on the terminal.

Chapter 4 Korn Shell Reference

Command grouping

You can use the following metacharacters to group commands together:

; Group several commands on one command line by separating one command from
another with a semicolon (;). The commands are executed sequentially in the
order in which they appear. For example, the command line

cd test; 1s
changes to the test directory and then list its contents.

& Group background commands on a single line by separating them with
ampersands (&) and then ending the line with another ampersand. The
background commands exit independently while the shell continues to accept
new commands in the foreground.

{ } Use braces to group commands for functions and control-flow constructs (see
“Defining Functions” and “Control-Flow Constructs”). You can also use braces to
group the output from several sequential commands, which is then used as the input
to a following command in a pipeline. Braces used in the latter way are recognized
only when they are the first word of a command or are preceded by a semicolon or
newline, and when the first brace is followed by a space. For example, to put the
date and the list of users into one file (10g), you can give the command
{ date; who;} | cat > log

Note the space following the first brace and the semicolon following the last
command in braces; these are required. If you type a newline before closing with
another brace, you will see the secondary prompt until you give the closing brace.
Note that commands enclosed in braces are executed by the current shell (that is, a
new instance of the shell is not invoked to execute them).

() Enclose a group of commands in parentheses to execute them as a separate
process in a subshell (a new instance of the shell). For example,
(cd test; rm junk)
first invokes a new instance of the shell. This shell changes the directory to test
and then removes the file junk. After this, control is returned to the parent shell,
where the current directory is not changed. Thus, when execution of the
commands is over, you are still in your original directory.
The commands
cd test; rm junk

(without the parentheses) are executed in the current shell and have the same
effect but leave you in the directory test.

Using shell metacharacters ~ 4-31

Conditional execution

You can use the following symbols to indicate that your command should be executed
only if some condition is met:

&& The command form
commandls.scommand?2
means “If command1 executes successfully (returns a zero exit status), then
execute command2.”
'l The command form
commandl| | command2

does the reverse. This form means “If command1 does not execute successfully
(returns a nonzero exit status), then execute command2.”

For exit status, see “Exit Status: The Value of the Command.” Conditional execution is
also available in joining pipelines. For other ways of obtaining conditional execution, see
“Control-Flow Constructs.”

Quoting

If you need to use the literal meaning of one of the shell metacharacters or control the
type of substitution allowed in a command, use one of the following quoting
mechanisms:

\ Abackslash preceding a metacharacter prevents the shell from interpreting the

metacharacter. For example, to use the print command to display a question
mark, you must precede the question mark with a single backslash (\). Thus,

print \?

prints

?

Without the backslash, the print command would generate a list of all one-
character filenames in the current directory. If there were none, the command
would return

?

4-32 Chapier 4 Korn Shell Reference

+ + Single quotation marks prevent the shell from interpreting any metacharacters in

the enclosed string. The command

print '$EDITOR'

prints

$EDITOR

Within double quotation marks, parameter substitution and command substitution

occur, but filename expansion and the interpretation of blanks do not. For
example, the command

print "$EDITOR"
prints
/bin/ed

Here parameter substitution fills in the value of the environment variable
EDITOR.

Double quotation marks can also be used to give a multiword argument to
commands; for example,

print "type a character"

For more information on parameter substitution, see “Positional Parameters and

Shell Variables.” You can also suppress filename expansion universally by setting
the shell option - £; see “Shell Execution Options.”

A command name enclosed in back quotes is replaced by the output from that
command. This is called command substitution. For example, if the current
directory is /users/marilyn/bin, the command

i="pwd"’

is equivalent to

i=/users/marilyn/bin

If a back quote occurs within the command to be executed, you must escape it

with a backslash (\ *); otherwise the usual quoting conventions apply within the
command.

Command substitution takes place before the filenames are expanded. If the
output of a substituted command is likely to be more than one word, the
command must be enclosed in double quotes as well as back quotes; for example,

a=""head -1 /dev/tty "

where the command head -1 (read the first line of input) might yield more
than one word.

Using shell metacharacters ~ 4-33

Working with more than one shell

4-34

When you wish to use another A/UX shell, you can use one of the following commands:
sh This spawns an instance of the Bourne shell.
ksh This spawns another instance of the Korn shell.

csh This spawns an instance of the C shell.

You can type these at your shell prompt; for example,
ksh

In this case, your new shell will run as a subshell or “child” of your current one. You can
use the exit command or the eof sequence to return to your original login shell
whenever you wish. (If you accidentally give the exit command or send an eofin
your login shell, you will be logged out of the system altogether.)

Changing to a new shell

You can also obtain a new shell using the exec command; for example,
exec csh

If you use the exec command, the C shell program csh replaces your current shell.
You cannot return to your original shell; it has disappeared.

Generating new instances of a shell affects the environment settings for each shell.
See “The Environment and New Shell Instances” for more information.

Changing your default shell

To change your default shell from the Korn shell to the Bourne or C shell, use the chsh
command. For example,

chsh login.name /bin/csh

(where login.name s your login name on this system) changes your default login shell to
the C shell. See chsh(1) in A/UX Command Reference for more information.

Chapter 4 Korn Shell Reference

The environment

The environment is a list of variables, aliases, and functions that is available to all
programs (including subshells) invoked from the shell. A shell inherits the environment
that was active when it started, and passes that environment (including any
modifications) to all programs it invokes.

If you assign values to variables using the typeset command at the shell prompt
(or within a shell script), these remain local to the shell in which you assigned them. If
you use the typeset -x command (orsetthe -a shell option; see “Shell Execution
Options”), these changes will be passed on to any subshells you invoke and to executing
commands.

¢ Note Modifying the environment in a subshell (for example, in a shell script) never
changes the parent shells or their environments. Because these changes are made to a
copy of the parent shell’s environment, the parent shell’s environment is never affected
by changes in a subshell, even if you use the export command. When a subshell
terminates, its environment no longer exists. &

In general, the most essential variables are assigned default values during login or by
the shell every time you invoke it. The Korn shell also defines a number of default aliases
(see “Aliases for Commonly Used Commands”). Convenient but inessential variables are
simply left unassigned. Thus a default environment is created for you. You can modify
the default environment by defining new environment variables and aliases.

The environment 4-35

4-36

Listing existing values

Table 4-1 shows commands you can use to list existing values in the environment.

Table 4-1 Listing functions, aliases, and variables

Command Output

set Lists everything defined

env Lists exported variables

export Lists exported and read-only variables
typeset Lists all variables

typeset option Lists variables of type option
typeset -f Lists functions

typeset -x Lists exported variables and functions
alias Lists aliases

alias -x Lists exported aliases

Assigning values to environment variables

Setting up your own customized environment is not necessary, but it can make your
work easier and more efficient. To customize your working environment, you may
change the default values assigned to some of your environment variables and add others
that have not been included.

Unless you have set the -a shell execution option (which tells the shell to export all
variables automatically; see “Shell Execution Options”), you assign a value to an
environment variable using the command

typeset -x name=value

This command sets the variable name to value and automatically inserts the variable
and its value in the environment. Thus, for example, to assign and export the variable
HISTFILE, you could give the command

typeset -x HISTFILE=/users/daphne/hist

Chapter 4 Korn Shell Reference

In addition to the typeset -x command, the Korn shell also recognizes the
Bourne shell syntax:

name=value
export name

This is the form that should be used in .profile if you are ever going to log into the
Bourne shell.

Removing environment variables

The command
unset name

removes the specified variable.

Commonly used environment variables

The following variables are typically inserted into the environment. By convention,
environment variable names are uppercase. Some of these variables are assigned default
values at login or by the shell at invocation. You can reset all of them.

The variables used only by the Korn shell are as follows:

COLS This variable defines the width of the edit window for the inline
editing. The default is 80 columns.

EDITOR This variable and the vIsuar variable specify the editor for inline
editing of commands. The default is ed. This is the same as setting the
option -o ed withthe set command.

ENV This variable specifies the name of the Korn shell environment file. If
this variable is set to a filename and exported in the /etc/profile
system file (it is initially set to $HOME/.kshrc and exported on
A/UX systems), then all subsequent instances of the Korn shell read
the specified filename when the shell starts up. The Env file is
typically used to set up inline command editing and command reuse,
andfor alias and function definitions. Command and
parameter substitution are performed in referencing this variable.

The environment ~ 4-37

4-38

FCEDIT

FPATH

HISTFILE

HISTSIZE

PS3

PS4

VISUAL

This variable specifies the editor for the command reentry with the fc
command. The default editor is ed.

This variable specifies the search path for a file of function definitions.

This variable gives the pathname of the file to be used to store
command history for command reentry. The default filename is
$SHOME/ .sh_history, thatis, a file named sh_history inyour
home directory.

This variable specifies the number of previously entered commands
that will be saved for command reentry.

This variable gives the prompt to be used by the select command
after a menu is given. The default is #2.

This variable gives the debugging prompt to be used during an
execution trace. The default is +.

This variable specifies the visual editor to be used in line-editing mode.
Initially, this variable is unset.

The variables used by all shells follow:

CDPATH

EXINIT

HOME

IFS

The value of this variable should contain a list of pathnames (separated
by colons) that you use frequently. The shell uses this variable when
you give an argument to the cd command that is not a relative or
absolute pathname. This variable is usually set inthe .profile file;
otherwise its default value is the current directory.

This variable indicates various options for your editing environment
when you are using the ex or vi text editing program (see “Using
ex” and “Using vi” in A/UX Text-Editing Tools).

This variable specifies your home directory. The login procedure sets
the value of this variable to the pathname of your login directory.

The shell uses this internal field separator variable to interpret words
within a command. The default values of this variable are space, tab,
and newline, the characters used to separate the parts of commands.
You can reset this to include any data delimiters. The shell resets IFS to
the default value after reading the environment file, so exporting IFS
does not affect the operation of subsequent scripts.

Chapter 4 Korn Shell Reference

MAIL

MAILCHECK

PATH

PS1

PS2

SHELL

TERM

TZ

The shell uses this variable as the pathname of the file where your mail
is delivered. This variable is typically set in the file .profile inthe
user’s login directory.

This variable specifies how often (in seconds) the shell will check for
the arrival of mail in the file specified in MATL. The default value is
600 seconds (10 minutes). If set to 0, the shell will check before each
prompt.

The value of this variable should be a series of pathnames separated
by colons (:). The shell uses the value of pATH executable programs
whenever you give a command. If the directory containing the
command is not specified, the shell will display the message
Command not found.

PATH isusually setinthe .profile file. For efficiency, the list of
directories in the PATH variable should be in order from directories
containing commands most often used to those least often used. The
default value for pATH is the current directory, /bin,and
/usr/bin.

This variable specifies the primary prompt string (the prompt you see
when the shell is waiting for you to give a command). The default
setting is the dollar sign ($).

This variable specifies the secondary prompt string (the prompt you
see when the shell is waiting for more information for a command you
have already started). The default setting is the greater-than sign ().

This variable specifies your login shell. It is set at login to the value
found inthe /etc/passwd file. If no shell is specified in
/etc/passwd, the value of SHELL is /bin/sh. For instructions
on how to change your login shell, see chsh(1) in A/UX Command
Reference.

This variable specifies the type of terminal you are using. The default
value is mac2. You can find out what your current terminal type is
with the command

print S$TERM

This variable indicates your time zone. It is set at login.

The environment ~ 4-39

4-40

The environment and new shell instances

Ifthe Env variable is set and exported, the Korn shell reads the contents of the file
(initially set to $HOME/ . kshrc) every time it starts up. Thus, the values you have
defined there are available to every new instance of the Korn shell. Any values you have
assigned using the typeset -x command are in the environment and will be
available to new shell instances.

If you have assigned values to variables using the set command at the shell
prompt (or within a shell script), these values remain local to the shell in which you
assigned them. Because these changes are made to a copy of the parent shell’s
environment, the parent shell’s environment is never affected by changes in a subshell,
even if you use the typeset -x command in the subshell. Note, however, that
changes made using typeset -x ina subshell will be passed on to new instances
invoked from the subshell. When a subshell terminates, its environment no longer exists.

Note that the .profile file isread only once, at login. Thus, if you have changed
the value of an environment variable, the subshell will inherit the new value, not the
value set routinely in .profile. You can force a new instance of the shell to read
.profile by using the “dot” command (.); see “Executing Shell Scripts.”

Special environments

Normally, the environment for a command is the complete environment of the shell
where the command was given. You can change the environment used by a command in
three ways:

= Augment the environment by inserting additional variables and new values into the
environment. This is done by preceding the command with one or more assignments
to variables on the command line. For example,
a=b command

Note that because parameter substitution occurs before the environment is changed,
you cannot assign environment variables whose values are then immediately
referenced on the command line. For example, the sequence of commands

X=5

X=3 print $x

Chapter 4 Korn Shell Reference

prints

5
not
3

because the value of x is inserted into the command line before the environment
is changed.

Setthe -k shell option using the command
set -k

When set, this shell option inserts variables and values given on the command line
into the environment for a particular command. For example, if the -k option is not
set, the command

print a=b c

prints

a=b c

After -k hasbeenset, a=b is interpreted as a variable assignment instead of an
argument, and the same command prints

C

Note that because values are substituted for variables before the environment is
changed, this is subject to the same limitation described above.

Use the A/UX command
env [-] [name=value...] [command) [args]

to set the environment for the command. With this command, you can not only add
things to the environment inherited by a command, but also exclude the current
environment. To add variables and their values to the current environment, give the
variables and values before the command name. For example, to run a subshell with
a changed PATH environment variable, you could give the command

env PATH=directory-list sh

For the duration of the new shell (and its subshells), the PATH variable would be
set to the directories in the list.

To set up a completely new environment, first give the option -, which excludes the
current environment, and then assign the variables and values you want. These (and
only these) will be available in the environment for the new command.

The environment 4-41

4-42

The default environment on your system

Whenever you log in, the following procedures occur:

» The login program sets the variables HOME and SHELL from the information
in the system file /etc/passwd.

» The login program then checks the file /etc/profile to find out the default
environment to set up for all users. This file may contain default settings for PATH,
TZ,and TERM.

= The login shell (the shell that is automatically invoked when you log in) assigns
default values to ps1 (the primary prompt), ps2 (the secondary prompt), PS3
(the prompt for the select command), MATLCHECK, and IFs (Input Field
Separator, which can be blank characters or tabs).

When you invoke new instances of the shell (for example, using the ksh
command), the new shell checks the environment for any new values you may have
placed there for these variables. If it doesn'’t find any values in the environment, it assigns
the default values.

Then the new shell reads your .profile file. If you have assigned new values
there, it uses your values instead of the defaults.

Ifthe Env variable is assigned a filename and exported, whether in the
/etc/profile systemfile orinthe .profile file in your home directory, the new
shell reads the contents of that file and sets the values you have assigned there.

» The Korn shell reads the .profile file when you log in; if appropriate, it shares
the variable assignments with the Bourne shell.

m [fthe ENV variable is assigned a filename and exported, whether in the
/etc/profile systemfileorinthe .profile file in your home directory, the
Korn shell reads the contents of that file every time it starts up. This is initially set to
$SHOME/ .kshrc on most systems; in this case, use the .kshrc file in your home
directory to set the environment variables unique to the Korn shell and to define
aliases you wish to be available across invocations of the shell.

Chapter 4 Korn Shell Reference

The .profile ﬁle

The .profile fileissimply a text file (created with a text editor). It contains a series
of commands typed exactly as you would type them at the shell prompt. Every time you
log in, the shell looks in your home directory for a file named .profile and executes
all the commands found there before issuing the shell prompt and taking commands. If
no .profile file exists, your environment will simply be the default environment
created by the shell at login.

A sample .profile file

The following is a sample .profile file:

typeset -x PATH=:/bin:/usr/bin:S$SHOME
typeset -x CDPATH=:/users/elaine/revisions
typeset -x MAILCHECK=0

typeset -x EXINIT="set wm=10"

date

1ls

¢ Note You may also use the Bourne shell style .profile usingthe set and
export commands. See “A Sample .profile File” in Chapter 3, “Bourne Shell
Reference.” &

The variables and commands in this file are discussed in the sections that follow. In
theory, any A/UX command or shell script may be invoked in the .profile;typically,
however, you should include commands that customize your login shell or perform login
initialization routines (such as listing the contents of the current directory, or reading your
mail). Commands you want to affect all subshells of the login shell should be put into the
file assigned to the ENV variable (usually the .kshrc file). See “The .kshrc File.”

The .profile file 4-43

4-44

Locating commands

The pATH environment variable lists the directories (separated by colons) where the
shell will look for the executable files that are A/UX (or user-defined) commands. Each
time you give a command, the shell searches the directories listed in the order specified.
Most A/UX commands are located in the /bin or /usr/bin directory. When you
assign a value to PATH, be sure to include these directories.

If the shell cannot find the file in one of the directories specified, the command
cannot be executed and you will see the message

Command not found.

The directories listed in the PATH variable are specified by their absolute path-
names, separated by colons. If the list of directories begins with a colon, the path search
begins in the current directory. At login, the PATH variable might be set as follows:

PATH=:/bin:/usr/bin: /usr/ucb

This assignment sets the PATH variable to the current directory and the system
directories /bin, /usr/bin,and /usr/ucb.
To reset the PATH variable in .profile, insert lines such as

typeset -x PATH=:/bin:/usr/bin:/usr/ucb:SHOME

The typeset -x command is discussed in “Assigning Values to Environmental
Variables.”

If you include the pathnames of personal directories that contain shell programs you
have written, these will be accessible to the shell no matter what your current directory is.
If you wish to execute a command or shell program that is not in one of the directories in
your PATH variable, simply give the absolute pathname of the directory where the
command or shell program is to be found.

For information on referencing variables using the $ syntax (asin $HOME above),
see “Parameter and Variable Substitution.” For more information about pathnames, see
A/UX Essentials.

Shortcuts in changing directories

If copATH is set, you can use the cd command with a simple directory name that is

neither an absolute nor a relative pathname. The shell then searches for that directory in
all the directories listed in cDPATH. The directories are searched in the order specified.
If copaTH is not set, only the current directory is searched.

Chapter 4 Korn Shell Reference

If the directory you specify is not found in any of the directories given in CDPATH,
you will see a message to the effect that the directory could not be found.

After cDPATH is set, you can still, of course, give the relative or absolute pathname
of any directory you wish. When you give an absolute or relative pathname in the ca
command, CDPATH is not used.

Receiving mail

The MATLCHECK environment variable specifies how often (in seconds) the shell
should check for new mail. When you log in, the shell sets MATLCHECK to 600 seconds
(10 minutes). You can change this to whatever period you wish using the command

typeset -x MAILCHECK=0

This command assigns and exports the value of the MATLCHECK as 0. When
MATLCHECK is 0, the shell checks for new mail before each prompt.

Your editing environment

The EXINIT environment variable tells the shell how to initialize the vi or ex
editing program. This variable is set to a series of editor commands that should be run
every time the editor is called before any commands are read from the terminal. In the
sample .profile above, for example, the command

typeset -x EXINIT="set wm=10"
assigns and exports the value of EXINIT asthe command
set wm=10

which sets the word-wrap margin so that the editor will automatically break lines ten
spaces before the right margin. The command is enclosed in double quotation marks
because the entire string must be treated as one “word” and not divided.

For details on EXINIT, see A/UX Text-Editing Tools. For the use of double quotation
marks, see “Quoting.”

The .profile file 4-45

Customizing your login procedure

You can also use your .profile file to customize your login procedure. In the
sample .profile above, the commands

date

1s

direct the shell to display the date and time and then list all the files in the current
directory before displaying the shell prompt. These will be executed at login.

You can include any commands you wish in . profile, including your own
functions and shell scripts.

The .kshrc f 116

4-46

A/UX systems use the /etc/profile systemfile tosetthe ENV variable to a filename
and export this variable. On A/UX systems this is initially set to $HOME/ . kshrc, but
this may be changed to another filename by modifying the value of the ENv variable.
See “Changing the ENv Filename.”

If this variable is set to any filename and exported, that file will be read whenever the
Korn shell starts up. Thus, any definitions you include in the file named as the Env file
(initially $HOME/ . kshrc) will be available to every instance of the Korn shell. You can
createa .kshrc file in your home directory and use it to define variables, aliases, and
functions that are applicable only to the Korn shell.

& Note Ifthe ENV variable is not defined as $HOME/ . kshrc and exported, the
Korn shell will not read your .kshrc file. &

For information on aliases, see “Aliases for Commonly Used Commands.” For
functions, see “Defining Functions.”

Chapter 4 Korn Shell Reference

A sample .xshrc file

The following is a sample .kshrc file:

typeset -x HISTFILE=/users/neal/my.history
typeset -x HISTSIZE=15

These commands are described below.

Changing history variables

The sample .kshrc file resets the following variables:

HISTFILE This variable specifies where the text of past commands should be
stored. The default file is .sh_history inyour home directory.
The command

typeset -x HISTFILE=/users/neal/my.history

assigns and exports the value of the HISTFILE as the file named
my .history inthe directory /users/neal

HISTSIZE This variable specifies how many past commands should be saved.
The command

typeset -x HISTSIZE=15

assigns and exports the value of the HISTSIZE as 15. After this
command, only 15 past commands would be saved.

Changing the xv filename

The A/UX system defines the ENv variable to $HOME/ .kshrc in the system
file /etc/profile. This assigns this variable a value when you log in.

To change the name of this file, you can reset ENV inyour .profile file;
for example,

typeset -x ENV=filename
or

ENV=filename
export‘ﬁkmanw

The .kshrc file 4-47

Aliases for commonly used commands

4-48

The Korn shell alias command renames existing commands or creates a name for a
long command line. Aliases may be defined at the shell prompt or in the .kshrc file.

¢ Note The Korn shell also provides a facility for defining functions. This is similar to
aliasing and may be preferable for some of your tasks. See “Defining Functions.”

The Korn shell keeps a list of aliases. Each time you give a command, the first word
of the command is compared with the list. If it is an alias name, then it is replaced with
the definition of that alias. You can use an alias to redefine any shell or A/UX command,
however, you cannot redefine keywords suchas if or done.

Defining an alias

You define an alias with the command

alias name=definition

where name may begin with any printable character, but the rest of the characters must
be letters, digits, or underscores (generally it is a good idea to avoid using /, ;, *, 2

)

and soon); the = sign cannot be surrounded by blank spaces; and definition may
contain any valid commands, including shell scripts and metacharacters. If definition
includes spaces, the whole command must be inclosed in quotes.

For example, the alias

alias 1s='ls -C'

causes the 1s command to produce output as if you had typed

ls -C

which displays its output in columns. The alias definition is quoted because it contains a

blank. In the example above, every time you type 1s,you will get 1s -C, and this may
not be desirable. It is recommended that you invent a new command name, as in

alias 1lc = 'ls -C!

This allows you to use both 1s (in any form desired) and 1c.

Chapter 4 Korn Shell Reference

Alias definitions can also include all shell metacharacters, variables, positional
parameters, command substitution, and so forth. For example,

alias prtsort='sort *.list'

creates a command prtsort. When you type
prtsort

the command line

sort *.list

executes, sorting files in the current directory that end in the characters .1ist.

When you create aliases at the shell prompt, they are not exported to the
environment unless you use the -x option:
alias -x lc='ls -C'

Exported aliases remain in effect for subshells but must be reinitialized for separate
invocations of the shell. To make aliases available to every invocation of the Korn shell or
any script run with a separate shell, put their definitions in the .kshrc file, which is
read every time a Korn shell is started up.

Note that for 2.0.1 and later versions of A/UX, definition can include another alias.
The following rules apply:

» The alias will not be substituted (expanded) if not in an alias to itself. For example,
alias list=cat cat=1s causes list toexpandto 1s.

» The alias will not be substituted (expanded) within an alias to itself. This
accommodates the use of constructs such asthe 1s='1s-c' above.

& Note Aliasing is performed when scripts are read, not while they are executing.
Therefore, for an alias to take effect, the alias command has to be executed before
the command that references the alias is read. &

Listing and removing aliases

The alias command with no arguments lists all aliases that have been defined in your
environment. To list the text of exported aliases, use the alias -x command.
Aliases can be removed with the command

unalias wname [name..]

Aliases for commonly used commands ~ 4-49

Tracking with aliases

Aliases invoked with the -t option are used to reduce the amount of time the shell
spends searching the directories specified by the paTh variable for a particular
command. This is called tracking: when you use a “tracked” command, it is treated like
an alias that corresponds to the full pathnames of that particular command. For example,
if you give the command

alias -t sort

the shell interprets sort as an alias for the full pathname of the sort command
(/bin/sort). After you have used the above command, sort is defined as the
following alias:
alias sort=/bin/sort

This allows the shell to substitute the full pathname and bypass the directory search
specified in your PATH variable.

Note that the same effect can be produced for all A/UX commands using the -h
option of the set command. This makes each command name a tracked alias.

The value of all tracked aliases becomes undefined each time the PATH variable is
reset. Another subsequent reference to the command will once again reset the alias.

Default aliases

The following aliases are compiled into the Korn shell. They may be unset or redefined at
any time:
autoload="'typeset -fu'
false="let 0°'
history='fc -1"
integer="'typeset -i'
r='fc -e -

true='let 1'
type='whence -v'
hash='alias -t'
functions='typeset -f'

nohup=nohup

4-50 Chapter 4 Korn Shell Reference

Shell execution options

The shell is a program like other A/UX commands, and it too has a variety of options
used to control how it executes. All shell execution options can be set using the set
command as follows:

set -opt [opt..]

Or they can be specified on the command line when you invoke a new shell or run a
shell script with the ksh command:
ksh opt [opt...] name

Use the set command to set new options in your current shell. Use the ksh
command to invoke a subshell with the options specified or to run a script with options.

To turn options off, precede the option with a plus (+) instead of a minus (-).

The variable $- contains a list of all the options set. For example, if you have the a
and x shell execution options set, the command

print $-
returns
ax

For more details on the set command and shell execution options, see “Summary of Korn
Shell Commands.”

Options that affect the environment

-a Whenthe -a shell option is set, all variable assignments result in that variable
and its value being inserted in the environment. You do not need to use the
export command to insert new values.

-k The shell execution option -k can be used to insert variables and values into the
environment for a particular command; see “Special Environments.”

Shell execution options ~ 4-51

Options for invoking new shells

In addition to the options available with the set command, there are four options that
can be used only when a new shell is invoked with the ksh command.

~c string 1fthe -c flagis present, string is executed. After execution, control is returned
to the parent shell. This command is often used to execute shell scripts.

-s Ifthe -s flagis present or if no arguments remain, commands are read from
the standard input.
-i Ifthe -1 flag is present, the shell is interactive. The terminate signal is

ignored (so that k111 0 does not kill an interactive shell), and the interrupt
signal is caught and ignored (so that wait is interruptible). In all cases, the
quit signal is ignored by the shell.

-r Ifthe -r flagis present, the shell invoked is a restricted shell. Restricted
shells cannot change directories, alter the value of the PATH environment
variable, redirect output, or specify path or command names containing the
symbol /. See “Restricted Shell” in Chapter 3, “Bourne Shell Reference.”

Job control

4-52

Korn shell job control allows you to suspend current jobs, move a foreground job to the
background (and vice versa), check on the status of background jobs, refer to specific
background jobs by number or name and change their status, and receive notification
when a job is done.

Every job you run in the Korn shell is associated with a job number; for example,
when you give a background command
diff filel file2>>file3 &
the job number (in brackets) displays before the process ID:
[3] 12345

Job numbers are assigned sequentially, so your first job is 1, the second job is 2, and
so forth.

You can also refer to jobs by name using the construct % 2string, where string is part
of the job name.

Chapter 4 Korn Shell Reference

Suspending a job

To suspend your current foreground job, type the current suspend character.
Typically this is set to ConTrOL-Z, but if that does not work, you may need to set
your suspend character:

~

stty susp "z

(If you also intend to use shell layering, see “Using Shell Layering” on resolving possible

conflicts in use of CoNTROL-Z.) Once the suspend character is set, typing it sends an

immediate stop signal to the current job; pending output and unread input are discarded.
When the shell interprets CoNTROL-Z, it prints a message in the form

[job-number] + Stopped name

where job-number is the job number of the current job; + indicates that it is the current
job; and name is the command name of the stopped job. For example,

[2] + Stopped diff

Listing jobs

You can list your jobs with the command

jobs

Your jobs will be listed, and their status as running or stopped will be indicated like this:
[3] + Running 1lp chapterl &

[2] - Stopped vi chapter2
[1] Running diff filel file2 > diff.file &

The + indicates the current job, and the - indicates the preceding job.
If you include the -1 option, as in

jobs -1

process IDs will be shown as well as the job numbers.

Job control 4-53

454

Changing the status of stopped jobs

Once you have a stopped job, you can give another command at the shell prompt
(leaving the job suspended), resume the job in the foreground, resume another stopped
job, or continue the command processing in the background.

To leave a job suspended, do nothing. When you give the command

jobs

you will see it listed as stopped. To run a stopped job in the background, give the
command

bg $number

For example,

bg %2

The bg command with no argument puts the current (most recent) stopped job in the
background to continue executing. If a job number is given as an argument to bg; it

must be preceded by a percent sign (%). The following notation is available for job
numbers:

snumber refers to a specific job by number

oe

+ refers to the current job

o°

- refers to the preceding job

3string refers to the most recent stopped job that began with those characters
Thus, if you had a current stopped 1p job whose job number was 4, you could

resume this job in the background with any of the following commands:

bg

bg %+

bg %4

bg %1lp

After one of these commands, you would be shown the command line of the job that
was being put in the background, and then the shell prompt would be returned.

Chapter 4 Korn Shell Reference

A job running in the background will stop if it tries to read from the terminal.
Background jobs are normally allowed to send output to the terminal, but this can be
disabled by giving the command

stty tostop

This causes background jobs to stop when they try to send output, just as they do when
they try to read input.

If a background job needs neither input nor output and completes execution in the
background, the shell displays a message in the form

[number] + Done name
For example,
[2] + Done diff
You can bring a job to the foreground with the command
fg snumber

The same conventions for referring to a stopped job given above under the bg
command work for the fg command. The fg command works exactly like bg. Once
your job is in the foreground, you can continue working as before.

Blocked jobs

The Korn shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked, so that no further progress is possible. For
example, a job may become blocked if you execute the following sequence of
commands:

CONTROL-Z
bg

fg
If the shell is busy with another process when it learns about a blocked job, it waits
until it is about to print another prompt before displaying a message.

Job control 4-55

4-56

Canceling jobs

To cancel a job, use the command

kill [%]number

The value number can be either a process ID, or a job number preceded by a percent
sign (%). The rules about job numbers that apply to bg and fg also apply to the
kill command. Usingthe ki1l command with PIDs to cancel jobs is discussed in
“Canceling Background Commands.” Thus if you had a current background 1p job
whose job number was 4, you could cancel this job with any of the following commands:

kill

oe

+
kill %4
kill %lp

The shell would display a message indicating that the job had been terminated:
[4] + Terminated 1lp bigfile &

Logging out with stopped jobs

If you try to log out while any of your jobs are stopped, you will be warned with the
message

You have stopped jobs.

If you use the jobs command to see what the stopped jobs are, or if you
immediately try to log out again, the shell will not warn you a second time. The stopped
jobs will be terminated when you log out.

The same process will occur if you attempt to log out while you have background
jobs running that are not preceded by nohup. You will be warned once with

You have running jobs.

Chapter 4 Korn Shell Reference

Using shell layering

Before using shell layering, you should make sure the swtch and susp characters are
defined to different control sequences. Otherwise, job control will function correctly in
the shell layer you invoke, but the sh1 program will be inaccessible. The A/UX
standard distribution sets swich to ControL-" and susp to ControL-Z. To check that these
are defined to different control sequences on your system, enter the command

stty -a
at the shell prompt. This displays the settings for various user-definable sequences. See

stty(l) in A/UX Command Reference for additional details.
For more information on the sh1 program, see Chapter 6, “Shell Layering”.

Overview of shell programming

A shell program is simply a list of commands. These commands can be entered at the
prompt or inserted in a file. They may contain

= variables and assignments

= typing of variables, including integer, uppercase and lowercase, justified, and so on
= one-dimensional arrays

= integer arithmetic

= control-flow statements (for example, if, for, case,or while)

= built-in shell commands

= any A/UX command

Input for the shell program can be read from the keyboard (this is the default
standard input), taken from files, or embedded in the program itself (using here
documents—see “Taking Input From Scripts”). The Korn shell also allows you to create
menus that may provide input for a shell script (see “Creating and Reading a Menu”).

Overview of shell programming ~ 4-57

4-58

Shell programs can write output to the terminal screen (the default standard output),
to files, or to other processes (via pipes).

When the shell program executes, each command is executed until the shell
encounters either an end-of-file character or a command delimiter that directs it to stop.
During execution, you can trap errors and take appropriate action.

Writing shell programs

You can enter a shell program at the prompt. When you use a built-in shell command
that expects a delimiter (such as done) or a certain type of input, the secondary shell
prompt appears after you press RETURN. This prompt (> by default) appears at each line
until you give the expected delimiter; for example,

$ for i in *

> do

> cat $i

> done

$

Note that you can send an interrupt to cancel the script and return to the
primary prompt.

You can also write a shell program in a text file (using a text editor) and then execute
it (see “Executing Shell Scripts”). These program files are often called shell scripts. Note
that all shell programs may be entered at the shell prompt or inserted in a file. This does
not affect their actions. Hereafter “shell scripts” will be used to refer to shell programs
that reside in a file.

Executing shell scripts

There are several ways to execute a shell script; these differ mostly in terms of which
instance of the shell is used for the execution.

» Youcanusethe ksh command to read and execute commands contained in a file.
The script will be run in a subshell, which means that it will have access only to the val-
ues set in the environment and will be unable to alter the parent shell. The command

Chapter 4 Korn Shell Reference

ksh filename args...

causes the shell to run the script contained in filename, taking the args given as
positional parameters. Shell scripts run with the ksh command can be invoked with
all the options possible for the set command.

You can change the mode of the shell script file to make it executable. For example,
chmod +x filename

makes filename executable. Note that you may want to modify your PATH variable
to include a personal directory (for example, $HOME/bin) containing your shell
scripts. When you have done this, you can use your script names as ordinary
commands, regardless of your current location in the file system.

Then the command
Sfilename args...

has the same effect as using the ksh command. The arguments become the posi-
tional parameters; the script is run in a subshell, which means that it will have access
only to the values set in the environment and will be unable to alter the parent shell.

You can run a shell script inside the current shell by using the “dot” command (.).
The dot command (.) tells the current shell to run the script; no subshell is invoked.
This should be used if you wish to use local shell variables or functions, or modify the
current shell:

. filename args...

Note that there must be a space between the dot and the filename. Because the
commands are executed in the current shell, run a script with the dot command when
you want to change values in the shell. The arguments become positional parameters.
Otherwise the positional parameters are unchanged.

You can run an executable shell script with the exec command. This should be
used when the shell script program is an application designed to execute in place of
the shell and replace interaction with it:

exec filename args...

In this case, the shell script replaces the current shell. This means that when the script

is over, control will not return to the shell. If you were in a login shell, you will be
logged out.

Overview of shell programming ~ 4-59

4-60

Comments

A word beginning with a number sign (#) causes that word and all the following
characters up to a newline to be ignored.

Writing interactive shell scripts

A shell script can invoke an interactive program such as the vi editor. If standard input
is attached to the terminal, vi reads commands from the terminal and executes them
just as if invoked from an interactive shell. After the session with vi is finished, control
passes to the next line in the script. In a similar manner, a script can invoke another copy
of a shell (using sh, csh,or ksh), which will interpret commands from the terminal
until you send an eof. Control will be returned to the script. You can use this to create a
special environment for certain tasks by setting environment variables in a shell script
and then invoking a new subshell.

You can also write interactive shell scripts by using the read and eval
commands, prompting users to enter commands:

read command
eval Scommand

The first line will read the user’s command line into the variable command. The
eval command will then cause the command to execute.

Canceling a shell script

You can cancel a shell script just like an ordinary A/UX command. If the script is running
in the background, use the ki11 command. See “Canceling Commands” for details on
kill and various types of interrupts that can stop a command.

¢ Note Interrupts can be trapped and handled within the script with the trap
command. See “Fault Handling and Interrupts.” o

Chapter 4 Korn Shell Reference

Writing efficient shell scripts

In general, built-in commands execute more efficiently than A/UX commands. See
“Summary of Korn Shell Commands” at the end of this chapter for a complete list of these
commands. The following built-in commands are useful in constructing efficient shell

scripts:

hash This causes the shell to remember the search path of the command
named.

ulimit This can be used to set a limit on the size of files written by processes.

times This prints the accumulated user and system times for processes.

You can also set the -h shell execution option using
set -h
This will locate and remember functions as they are defined, instead of when they are
invoked.

Careful setting (or resetting inside a shell script) of the paTH and cDPATH

environment variables ensures that the most frequently used directories are listed first.
This also improves efficiency.

Command evaluation

When you give a command, the shell evaluates the command in one pass and then
executes it. To force more than one pass of evaluation, use the eval command
described below.

While evaluating the command, the shell performs the following substitutions on
variables:

» Alias substitution The shell checks the first word of every command to see if it is an
alias, that is, a user-defined name for another command or group of commands. If an
alias is found, it is replaced by the text of the alias. For information on aliases, see
“Aliases for Commonly Used Commands.”

Command evaluation ~ 4-61

4-62

n Tilde substitution The shell replaces an initial tilde with a directory name (see

“Shortcuts in Working With Directories”). The following forms are recognized:
~ This is replaced by the value of the HOME variable.

~name This is replaced by the home directory of another user (where name s the
user’s login name).

~t This is replaced by your current working directory. (Expanded from $Pwp.)
~- This is replaced by your last working directory. (Expanded from $orLDPWD.)

Variable substitution The shell replaces variables preceded by ¢ (for example,
suser) with their values. Only one pass of evaluation is made. For example, if the
value of the variable user is daphne, then the command

print Suser

prints

daphne

However, if the value of the variable user is $name, then the command
print Suser

prints

Sname

The second variable is never evaluated and the value is not substituted. See
“Parameter and Variable Substitution” for more information.

Command substitution The shell replaces a command enclosed in back quotes

with the command’s output. For example, if the current directory is
/users/doc/virginia, then the command

print “pwd®

prints

/users/doc/virginia

Blank interpretation The shell breaks the characters of the command line into words
separated by delimiters (called “blanks”). The delimiters that are interpreted as blanks
are set by the shell variable 1Fs; by default, they are blank spaces, tabs, and
newlines. The null string is not regarded as a word unless it is quoted; for example,

print '

passes the null string as the first argument to print, whereas the commands

Chapter 4 Korn Shell Reference

print
and
print $local_null

(where the variable local_null is not set or set to the null string) pass no
arguments to the print command.

» Filename expansion The shell scans each word for filename expansion
metacharacters (see “Using Shell Metacharacters”) and creates an alphabetical list of
filenames that are matched by the pattern(s). Each filename in the list is a separate
argument. Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated witha for loop.

Forcing more than one pass of evaluation

Sometimes more than one pass of evaluation is necessary for a command to be
interpreted correctly. For example, suppose that the following two lines occur near the
beginning of a shell script:

err_33='echo $name: user not found'

name=elaine
If you give the command
Serr_33
you get
Sname: user not found

(which is not quite what you want). In cases like this, you can use the built- in command
eval. So, the command

eval Serr_33
forces two evaluations of the variable err_33. Thus, it prints
elaine: user not found

In general, the eval command evaluates its arguments (as do all commands) and
treats the result as input to the shell. The input is read and the resulting command(s)
executed.

Command evaluation ~ 4-63

4-64

There is an easier way to do what the above example intended without the use of
eval. If you use double quotation marks ("), you have the following:
name=eli
err_l="echo S$name"
Then the command
Serr_1
prints

eli

Command execution

After all substitution has been carried out, commands are executed as follows:

= Built-in commands, functions, and shell scripts run with the dot command (.) are
executed in the current shell. The command has available all current shell execution
options, the values of shell variables, environment variables, and functions defined in
the current shell.

= A/UX commands, programs, executable shell scripts, shell scripts run with the ksh
command, and series of commands enclosed in parentheses are executed in a
subshell. The current shell invokes a child shell that executes the commands and then
returns control to the parent shell. Only the values in your environment are available
to these processes.

= Commands and executable scripts run with the exec command execute in place of
the current shell.

If the A/UX command or program name does not specify a pathname, the
environment variable PATH is used to determine which directories should be searched
for the command. The only exceptions to this are built-in commands.

For more information about the execution of shell scripts, see “Executing Shell Scripts.”

Chapter 4 Korn Shell Reference

Exit status: The value of the command

If a command executes successfully, its exit value is usually zero (0). If it terminates
abnormally, its exit value is nonzero. The shell saves the exit value of a command. These
are used primarily in shell scripts. See signal(3), exit(2),and wait(2)in A/UX
Programmer’s Reference for the values of various exit statuses.

Defining functions

You can use a function definition to assign a name to a command or list of commands.
Korn shell function definitions may use the following syntax:

function name { command-list ;}
or they may use the Bourne shell syntax:
name () { command-list ;}

In either syntax, the first brace ({) must be followed by a space or newline, and the
second brace (}) must be preceded by a semicolon or newline. See Chapter 3, “Bourne
Shell Reference,” for more information about the Bourne shell syntax above.

Using the function keyword, a function maintaining a daily log of users could be
written as follows:

function users { date>>log; who>>log;}

Note that when you use the multiline form at the shell prompt, the shell prints
the secondary prompt at each line after the opening brace ({) until you enter the
final brace (3).

After you have defined a function, you can use the command syntax

name [args]

Defining functions ~ 4-65

4-66

For example,
users

This causes the commands in command-list to be executed.

Korn shell functions are read in and stored in the shell. Alias names are resolved
when the function is read. Functions are executed like commands, with the arguments
passed as positional parameters (see “Positional Parameters and Shell Variables”).

Functions behave like shell procedures, except that functions have the ability to share
data. Normally, the calling program and the function share variables. You can use the
typeset command inside a function to define local variables for the function; these
variables will exist only while that function (and any functions it calls) is executing.

You can cause a function to return before reaching the end of command-list using
the command

return n
n sets the exit status of the function. If 7 is not set, the exit status is the status of the last
command executed.

Functions are not typically available to an executing shell script. There are two

separate ways of making a function available to an executing script. If the shell script is
executing in the current shell, use the command

typeset -xf name

at the shell prompt. Functions that need to be defined across separate invocations of the
shell should be defined in the .kshrc file (that is, the file named by the Env
variable).

To list the functions you have defined, enter
typeset -f
without arguments. This displays function names and the text of functions you have
entered at the keyboard.

To undefine a function, use the command

unset -f name

where name is the name of the function you want to remove.

Chapter 4 Korn Shell Reference

Positional parameters and shell variables

A shell script may use two types of variables:

» Positional parameters These are string variables referred to by the numbers [0-9].
These numbers refer to the position of the parameter on the command line. Positional
parameters are set on the command line and contain the arguments to the script.
Positions greater than 9 must be enclosed in braces, for example, {12}, or accessed
with the shift command (see “Changing Parameter Positions”).

» Shell variables These string variables are referred to by name. They may be assigned
on the command line or inside the script itself.

The relationship between variables inside a shell script and existing shell variables
depends on how the script is run. See “Executing Shell Scripts.” In all cases, shell scripts
have access to the variables and values in the environment.

Positional parameters

Positional parameters may be referred to by the numbers [0-9] and set as arguments on a
command line. When you enter a command at the prompt, the shell stores the elements
of the command line in parameters: the command name is stored in parameter 0, the first
argument is stored in parameter 1, the second argument in parameter 2, and so forth.
Thus, for the command
diff letterl letter2
parameter 0 is diff, parameter 1is letterl, and parameter 2is letter2. For
the command
print "not a directory"
parameter 0 is print and parameter 1is “not a directory”.

A shell script may refer to parameters by number; for example,
print $1
print $2

Positional parameters and shell variables ~ 4-67

4-68

These will be substituted by the arguments given in that position on the command
line; for example, for the command

myscript argl arg2

parameter 0 is myscript, parameter 1is argl, and parameter 2is arg2. This prints

argl
arg2
Setting values in a script

The set command creates a new sequence of positional parameters and assigns them
values. After execution, all the old parameters are lost. For example, the command

set *

creates a sequence of positional parameters set to the names of the files in the current
directory (parameter 1 is the first filename, parameter 2 is the next filename, and so on).
A subsequent command

set hi there

creates new positional parameters, discarding the old values. This time there
will be only two values set; the other positional parameters will have no values. A
subsequent command,

print $2 $1
displays
there hi
The command
print $3
would print a blank line, because there is no longer a parameter 3.

To set a positional parameter to a string of words separated by blanks, you must
enclose the entire string in double quotation marks. For example,

set<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>