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About This Guide

This guide describes many A/UX tools to assist in program management and other
tasks. This guide details program development tools to improve program structure,
monitor program executions, and debug programs. Tools to assist in file management
tasks, such as finding files, determining file characteristics, and maintaining groups of
files, are also detailed in this guide. And finally, tools for processing and parsing text
and code are described.

Who should use this guide

This guide is intended for programmers and developers. This guide does not serve as a
tutorial to help you learn programming skills; rather, it serves as a reference to determine
what tools are available in A/UX and how to use them effectively.

What you need to know

To get the most out of this guide, you need to have a good working knowledge of
programming practices. This guide assumes that you are conversant with a programming
language and with the general process of coding, compiling, testing, debugging, and so
forth. A general knowledge of UNIX® is also assumed. You need to know the basic skills
of using a Macintosh, such as double-clicking to open a file and dragging the mouse to
choose a menu command.



What's covered in this guide

This guide describes the following topics:

= A/UX program development tools
= 2 compiler-writing system, yacc
® 2 MAcro Processor, ma
»  alexical analyzer, lex
= file manipulation tools
= program maintenance tool, make
= version management tools for source code, SCCS
= afile-processing language, awk
m desk calculators, dc and bc
» terminal-independent input and output, curses
» screen-oriented input and output through Macintosh dialog boxes, Commando
If you need information about the tools directly involved in the compilation process,
such as compilers (cc and £77), assemblers (as), link-editors (1d), and debuggers

(sdb and dbx) see A/UX Programming Languages and Tools, Volume 1. Volume 1
also covers various libraries, the 1int tool, ef1,and the POSIX environment.

Where to go for more information

If you need information about the tools directly involved in the compilation process, see
A/UX Programming Languages and Tools, Volume 1. If you need more information
about the Macintosh interface, see A/UX Toolbox: Macintosh ROM Interface. If you would
like information about porting applications to A/UX; see the A/UX Porting Guide.
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How to use this guide

This guide serves as a reference to help you when programming and using these tools.
As a reference book, it is not designed to be read from cover to cover. Each chapter is a
discrete description of a particular tool or class of tools; therefore, you should skip
directly to these compact references.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by smaLL caPITAL letters.

The key names are

Caps Lock DowN ArrOW (1) OPTION SPACE BAR
COMMAND (3€) ENTER RETURN TaB

CONTROL ESCAPE RIGHT ARROW (—) Up Arrow (T)
DELETE LEFT ARROW (¢—) SHIFT

Sometimes you will see two or more names joined by hyphens. The hyphens indicate
that you use two or more keys together to perform a specific function. For example,

Press CoMMAND-K

means “Hold down the CommanD key and press the K key.”

Conventions used in this guide — xxiii



Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the ReTUrN key. The instruction

Enter 1s

means “Type 1s and press the RETURN key.”

Here is a list of common terms and the corresponding actions you take:

Term Action
Click Press and then immediately release the mouse button.
Drag Position the mouse pointer, press and hold down the mouse button

while moving the mouse, and then release the mouse button.

Choose Activate a command in a menu. To choose a command from a pull-
down menu, click once on the menu title and, while holding down the
mouse button, drag down until the command is highlighted. Then
release the mouse button.

Select Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type Type an entry without pressing the RETURN key.

Enter Type the series of characters indicated and press the RETURN key.

The courier font

Throughout A/UX guides, words that you see on the screen or that you must type exactly
as shown are in the courier font. For example, suppose you see this instruction:
Type date on the command line and press RETURN.

The word date isinthe Courier font to indicate that you must type it. Suppose
you then read this explanation:

Once you press RETURN, you'll see something like this:
Tues Oct 17 17:04:00 PDT 1989

In this case, courier isused to represent exactly what appears on the screen.
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All A/UX manual page names also are shown in the courier font. For example,
the entry 1s(1) indicates that 1s is the name of a manual page in an A/UX reference
manual. See “Manual Page Reference Notation” below for more information on A/UX
command reference manuals.

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat filename

tells you that filename is a placeholder for the name of a file you wish to view. If you
want to view the contents of a file named E1lvis, type the word Elvis in place of
filename. In other words, enter

cat Elvis

New terms appear in boldface where they are defined.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the
syntax for the wc command:

we [-11 [-w] [directory]...

In this example, wc is the command, -1 and -w are options, directoryis an
argument, and the ellipses (...) indicate that more than one argument can be used. Note
that each command element is separated by a space.

The following list gives more information about the elements of an A/UX command:

Element Description
command The command name.
option A character or group of characters that modifies the command. Most

options have the form - option, where option is a letter representing an
option. Most commands have one or more options.

argument A modification or specification of a command, usually a filename or
symbols representing one or more filenames.
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[] Brackets used to enclose an optional item—that is, an item that is not
essential for execution of the command.

Ellipses used to indicate that more than one argument can be entered.

For example, the we command is used to count lines, words, and characters in a
file. Thus, you can enter

wc -w Priscilla

In this command line, -w is the option that instructs the command to count all of the
words in the file, and the argument Priscilla is the file to be searched.

Manual page reference notation

A/UX Command Reference, A/UX Programmer’s Reference, A/UX System Administrator’s
Reference, X11 Command Reference for A/UX, and X11 Programmer’s Reference for
A/UX contain descriptions of commands, subroutines, and other related information.
Such descriptions are known as manual pages (often shortened to man pages). Manual
pages are organized within these references by section numbers. The standard A/UX
cross-reference notation is

command (section)

where command is the name of the command, file, or other facility; section is the

number of the section in which the item resides.

= Items followed by section numbers (IM) and (8) are described in A/UX System
Administrator’s Reference.

= [tems followed by section numbers (1) and (6) are described in A/UX Command
Reference.

» Items followed by section numbers (2), (3), (4), and (5) are described in A/UX
Programmer’s Reference.

= Items followed by section number (1X) are described in X711 Command Reference for

A/UX.

= Jtems followed by section numbers (3X) and (3Xt) are described in X117
Programmer’s Reference for A/UX.

For example,

cat (1)
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refers to the command cat, which is described in Section 1 of A/UX Command
Reference.

You can display manual pages on the screen by using the man command. For
example, enter the command

man cat

to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit, press the SpAcE Bar until you see a
command prompt, or type g at any time to return immediately to your command prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to A/UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

For more information ~ XXvii
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This section describes several tools you might find useful during program development
and execution. The chapter “Programming Tools” describes utilities for

® structuring programs: cb

= observing program execution: cflow and prof

® processing: cpp

= finding functions in programs: ctags

»  sharing strings in C programs: xstr

debugging: nm and od

The following chapters in this section describe tools for
® 2 MAcro processor: m4
= alexical analyzer: lex

= a compiler-writing system: yacc



Overview of Programming Tools

Program development tools / 1-2
File manipulation tools / 1-4
Math functions: dc and be / 1-6

Screen-oriented tools: curses and Commando / 1-6

The A/UX environment provides many varied and useful tools to assist in program
development and other related tasks. Tools are provided to find file characteristics, parse
and process files, perform math, and control functions on the screen. This chapter
provides a brief description of many of the tools and what primary tasks each one

performs. The remaining chapters provide a more detailed discussion of these tools.

For information about tools directly related to the compilation process—the compilers,
the assembler, the link editors, libraries, and debuggers—see A/UX Programming

Languages and Tools, Volume 1.



Program development tools

1-2

In addition to the tools used for program compilation discussed in A/UX Programming
Languages and Tools, Volume 1, A/UX offers several tools related to program
development. These tools perform a variety of functions ranging from improving the
format of your code to tracing your program execution and providing additional
information for debugging. This section outlines these tools.

Program structure: cb

You can use the cb utility to improve the legibility and structure of C code. The cb
utility reads C programs and writes them to the standard output with spacing and
indentation that display the structure of the code.

Execution: cflow and prof

A/UX provides several tools for tracking the execution of a program. You can create a C
flowgraph for a program using c£1ow. A C flowgraph shows how the program is put
together, the flow control of the program, and how the subroutines are called. This
flowgraph shows the order in which routines are called graphically, by level of indentation.
The graph is built of external references, which include globals and function calls.

Another utility to show program execution is prof, which displays profile data on
the running of a program to aid in optimization of the program. For each function, it
gives the percentage of time spent executing it, the number of times it was called, and the
time (in milliseconds) per call. You must compile your program with a special option to

enable this capability.
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Processing: m4, lex,and yacc

The A/UX environment includes several tools for processing text and code. This section
provides a brief description of some of the more useful tools.

If you need a macro facility, you can use m4 instead of cpp. m4 isa general-
purpose macro processor. The primary function of m4 is to allow the replacement of
certain text by other text. The m4 utility reads every alphanumeric token (string of
letters and digits) in the input and determines whether the token is the name of a macro.
It then replaces the names of a macros by their defining text and pushes the resulting
strings back into the input to be rescanned.

In addition to the straightforward replacement of one string of text by another, the
md macro processor also provides arguments to macros, arithmetic capabilities, file
manipulation, conditional macro expansion, string and substring functions, and
recursive definitions.

Another type of processor is 1ex. It is designed for lexical processing of character
input streams. lex accepts high-level, problem-oriented specifications for character
string matching. The lex utility can be useful when writing programs involving regular
expressions as input and formatting input for parsing.

The yacc program is a parser generator used to impose structure on program
input. After you create a specification of the input process, yacc generates a parser
function, which calls the user-supplied low-level input routine (the lexical analyzer) to
pick up the basic items, called “tokens,” from the input stream. Tokens are organized
according to the input structure rules, called “grammar rules.” When one of these rules
has been recognized, the user code (the “action”) supplied for this rule is invoked.
Actions have the ability to return values and make use of the values of other actions.

Debugging: nm and od

This book outlines a few tools useful in the debugging stage of program development.
(The primary A/UX debuggers are detailed in A/UX Programming Languages and Tools,
Volume 1.) The nm utility writes the symbol table for a Common Object File Format
(COFF) file to standard output. nm lists each symbol and its value along with the
location at which it is stored in memory.

Program development tools 13



The od command (octal dump) provides a means for examining binary files
(usually unreadable on A/UX systems). If you need to know the function and procedure
of some file available only in binary, you can use the od command with various
options to discover what the file contains. The options correspond to available formats
for interpreting bytes, characters, or words. If no options are specified, you can obtain a
true octal dump, as words are interpreted in octal.

File manipulation tools

1-4

The A/UX tools detailed in this section help you perform file-related tasks such as finding
a file size or location, determining the differences between two files, and obtaining the
version of a program. Additionally, A/UX provides tools to control the file versions to
ensure that they are the most recent and provides a way of updating and maintaining
groups of files. The final tools in this section help you maintain current library archives
and provide you with a file-processing language for parsing files.

File characteristics: size, diff, and comm

Often, you need to know characteristics of files. Some of the tools needed to obtain these
attributes are briefly discussed here.

The size command produces size information for each section in the common
object format files. The name of the section is shown followed by its size in bytes,
physical address, and virtual address.

A/UX includes a number of programs that compare files to find differences, including
diff, bdiff, Aiff3, diffmk, diffdir, sdiff, cmp,and comm. These
programs all compare files or directories for differences.

The find command helps you locate files based on certain characteristics such as
name, group, owner name, time of last modification or access, and so on. This powerful
utility performs a recursive search for files of the given characteristics.
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Maintenance: make, SCCS, and ar

The A/UX environment includes tools to update and maintain groups of files and to
control the accessible versions of files to ensure that they are the most recent. Commands
also exist to obtain the version number of programs you are running and to maintain up-
to-date library archives.

The make program is a program-maintenance tool that keeps track of (and
updates) groups of related files. All information about special libraries, special treatments,
or options necessary for compiling multiple files is contained ina make description file.
Using it ensures that your compilations reflect your latest changes.

The source code control system (SCCS) and revision control system (RCS) are version-
management tools for source code or text files. In group projects, SCCS and RCS prevent
multiple inconsistent versions of files from accumulating in several places. A single user
can store multiple versions of a file without using a lot of disk space, easily reconstruct
previous versions of a file, and keep track of versions with a simple, consistent
numbering scheme.

The version command is useful for determining which version of a program you
are running. version takes a list of files and reports the version number for each. The
version command also reports the object file format of each file; that is, either coff
object file format,0r 0ld a.out object file format.

You can use the archive command ar to combine several files into one archive.
Archives consist of a collection of files, plus a table of contents. They are used mainly as
libraries to be searched by the link editor 1d. A library (or library archive) is an archive
that contains object files (plus a table of contents). Putting together your own library
allows you to use locally produced functions (instead of limiting you to the functions
supplied in standard libraries). ar also provides the facility to append and delete
archive files. Putting together your own library allows you to use locally produced
functions (instead of limiting you to the functions supplied in standard libraries). With the
ar command you can also move files around within the archive, as well as extract them,
print them, and produce a table of contents.
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A file-processing language: awk

The awk programming language is a file-processing language designed to make
common information retrieval and manipulation tasks easy. The awk language can be
used to generate reports, match patterns, validate data, or filter data for transmission.

Math functions: dc and bc

A/UX provides two specialized tools for handling arbitrary precision arithmetic, dc and
be. The de program is an interactive desk calculator program. It has provisions for
manipulating scaled fixed-point numbers and for input and output in bases other than
decimal. be is a specialized language and compiler for handling arbitrary precision
arithmetic using the dc program.

Screen-oriented tools: curses
and Commando

1-6

A/UX also provides the curses package to write screen-oriented programs. curses
provides a terminal-independent method of screen-oriented input and output. It includes
facilities for taking input from the terminal, sending output to a terminal, creating and
manipulating windows on the screen, and performing screen updates in an optimal
fashion. A program using the curses routines and functions generally needs to know
nothing about the capabilities of any particular terminal; these characteristics are
determined at execution time and guide the program in taking input and producing
output. Thus, programs using this package can interact with a large variety of terminals
and terminal types.

The Commando tool is useful for screen-oriented input and output on Macintosh
computers. Commando lets you create CommandShell command lines by selecting
controls within Macintosh dialog boxes. Controls direct the placement of options on the
command line. When the user selects a particular control, Commando places a specific
option on the command line. Once they are constructed, the command lines are either
placed in a CommandShell window for execution or executed in a subshell.
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Programming Tools

Improving C program structure: cb / 2-2
Generating a C flowgraph: cflow / 2-2
Displaying profile data: prof / 2-2

A C language preprocessor: cpp / 2-3

Finding a function definition quickly: ctags / 2-4
Sharing strings from C programs: xstr / 2-4
Printing the symbol table for a COFF file: nm / 2-5
Obtaining an octal dump of a file: oa / 2-5

A/UX offers several tools related to program development. These tools perform a variety
of functions, ranging from improving the format of your code to tracing your program
execution and providing additional information for debugging. This chapter outlines
many of these tools. The primary tools used for program compilation (the compilers,
assembler, link editor, debuggers, and libraries) are discussed in A/UX Programming

Languages and Tools, Volume 1.



Improving C program structure: cb

cb is used to improve the legibility and structure of C code. It reads C programs either
from its arguments or from the standard input and writes them on the standard output
with spacing and indentation that display the structure of the code. See cb(1) in A/UX
Command Reference for more information.

Generating a C flowgraph: cflow

cflow generates a C flowgraph. A C flowgraph gives an idea of the following
program features:

= how the program is put together

m the program flow of control

= how subroutines are called (that is, by which other routines and in which order)

This flowgraph shows the order in which routines are called graphically, by level of
indentation. The graph is built of external references, which include globals and function
calls. See cf1ow(1) in A/UX Command Reference for more information.

Displaying profile data: prof

2-2

prof displays profile data on the running of a program to aid in its optimization. For each
function or global, it gives the percentage of time spent executing it, the number of times it
was called, and the time (in milliseconds) per call. You must compile your program with a
special option to enable profiling (see cc(1) in A/UX Command Reference for more
details). See prof(1) in A/UX Command Reference for more information.
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A C language preprocessor: cpp

You canuse cpp, the C preprocessor, as a simple programming language that takes less
time to compile than more complex languages. It strips comments, expands macros into
their definitions, allows files to be read in (through #include statements), and
provides a facility for conditional command execution. This means that you can
intersperse text with comments. Comments are stripped; commands are executed.

Normally, cpp is invoked automatically as (the first) part of the cc command.

If you need a macro facility, you can use m4 instead of cpp. m4 is generally
much more powerful than cpp as a macro processor. (For instance, m4 allows
recursive macro substitutions, while cpp does not.)

cpp is useful for

®  stripping comments
» standardizing included definitions among many files for one project
»  debugging (certain commands executed if in this mode, others if not)

= minimizing file space, combining many files into one

One of the most useful applications of cpp is as a debugging and program-control
tool. Any statement included after an #ifdef definition is executed only if the
definition was actually defined previously by means of a #define statement (ora
-Ddefinition in the command line). If not, and if there is an #else present, the
statements between it and the #endif are executed. Otherwise, control is resumed at
the level of the statement immediately following #endif. See cpp(l)in A/UX
Command Reference for more information.

A C language preprocessor: cpp 2-3



Finding a function definition quickly:

ctags

Programs can rapidly accumulate a large number of functions, either in one source file
or scattered across many files. ctags goes through the files given as its arguments
and creates a new file, called tags. Each line in the file tags contains the
following components:

= the name of one function
m  where that function is located

® 2 scanning pattern that can be used to find the function

Unless ctags isused with either the -a (append) orthe -u (update) option, a
new tags file is created each time it is invoked.

Once the tags file is created, it can be accessed (thanks to the scanning pattern in
the last field of each line) from vi (also from ex) by typing
:ta function-name

This causes the named function to appear on the editor’s screen.
ctags can be used on Fortran and Pascal sources as well as C programs. See
ctags(l) in A/UX Command Reference.

Sharing strings from C programs: xstr

The object of using xstr is to share one copy of a string among several files. If you
need to modify the string throughout your program, you can modify it once instead of
doing global searches through all your modules. If you have, in two different files,
char *ptrl = "blah";

char *ptr2 = "blah";

xstr combines this into one string, inits strings file, and replaces occurrences of

the string in the original files with a pointer to this string. This allows for shared constant
strings among several files, or possibly among several users.
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In practice, use of xstr can save memory space. After making the xstr array
read only, you can arrange to have multiple users share these strings, thereby saving even
more memory space. See xstr(1) in A/UX Command Reference for more information.

Printing the symbol table for a COFF file: nm

nm writes the symbol table for a COFF file to standard output. This is useful for
debugging. nm lists each symbol and its value, along with the location at which it is
stored in memory. See nm(1) in A/UX Command Reference for more information.

Obtaining an octal dump of a file: od

od provides a means for examining binary files (usually unreadable on A/UX systems).
If you need to know the function and procedure of some file available only in binary,
you can try the od command with various options to discover what the file contains.
The options correspond to available formats for interpreting bytes, characters, or words.
If no options are specified, a true octal dump is obtained, as words are interpreted in
octal. See od(1) in A/UX Command Reference for more information.

You can also use the strings program to write the printable ASCII strings in a
binary file onto standard output. This is useful for identifying unknown binary files. See
strings(l) in A/UX Command Reference for more information.

Obtaining an octal dump of a file: oa 25
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Example: An advanced grammar / 3-46
Backward compatibility / 3-56

The yacc program is a general tool for imposing structure on the input to a computer
program. yacc converts context-free grammar into a set of tables for a simple
automaton that executes an 1r(1) parsing algorithm. The grammar can be ambiguous;

specified precedence rules are used to break ambiguities.
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Usage

The first step in using yacc is to create a specification of the input process, which
includes rules describing the input structure, code to be invoked when these rules are
recognized, and a low-level routine to do the basic input. yacc then generates a
function to control the input process. This function, called a “parser,” calls the user-
supplied low-level input routine (the lexical analyzer) to pick up the basic items (called
“tokens”) from the input stream.

Tokens are organized according to the input structure rules called “grammar rules.”
When one of these rules is recognized, the user code supplied for this rule (that is, an
action) is invoked. Actions have the ability to return values and make use of the values of
other actions.

yacc is written in a portable dialect of the C language, and the actions and output
subroutine are written in the C language as well. Moreover, many of the syntactic
conventions of yacc follow those of the C language.

The heart of the input specification is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. For example, one grammar rule
might be

date : month_name day ‘,’ year;

where date, month_name, day,and year represent structures of interest in the
input process; presumably, month_name, day,and year are defined elsewhere.
The comma (, ) is enclosed in single quotes. This implies that the comma is to appear
literally in the input. The colon and semicolon serve merely as punctuation in the rule
and have no significance in controlling the input, With proper definitions, the following
input might be matched by the rule given above:

July 4, 1776

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizes the lower-level structures, and communicates
these tokens to the parser. For historical reasons, a structure recognized by the lexical
analyzer is called a terminal symbol, while the structure recognized by the parser is
called a nonterminal symbol. To avoid confusion, terminal symbols are usually referred
to as tokens.
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There is considerable leeway in deciding whether to recognize structures using the
lexical analyzer or grammar rules. For example, the following rules might be used in the
preceding example:

month_name : 'J’ ra’ 'n’ ;
month_name : 'F’ e’ b
month_name : ’'D’ e’ e’ ;

The lexical analyzer needs to recognize only individual letters, and month_name is
a nonterminal symbol. Such low-level rules tend to waste time and space and might
complicate the specification beyond the ability of yacc to deal with it. Usually, the
lexical analyzer recognizes the month names and returns an indication that a
month_name is seen. In this case, month_name is a token. Literal characters (such
as the comma above) must also be passed through the lexical analyzer and are also
considered tokens.

Specification files are very flexible. If the rule

date : month '/’ day '/’ year;

were added to the above example, entering 7/4/1776 would be equivalentto July
4, 1776 oninput. In most cases, this new rule could be “slipped in” to a working
system with minimal effort and little danger of disrupting existing input.

The input being read might not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan. Thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad
data can usually be quickly found. Error handling, provided as part of the input
specifications, permits the reentry of bad data or the continuation of the input process
after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications might be self-contradictory, or they might require a more
powerful recognition mechanism than that available to yacc. The former cases
represent design errors; the latter cases can often be corrected by making the lexical
analyzer more powerful or by rewriting some of the grammar rules.
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While yacc cannot handle all possible specifications, its power compares favorably

with similar systems. Moreover, the constructions that are difficult for yacc to handle
are also frequently difficult for human beings to handle. Some users have reported that
the discipline of formulating valid yacc specifications for their input revealed errors of
conception or design early in the program development.

yacc has been used extensively in numerous practical applications on the A/UX

system, including the syntax checker 1int, the Portable C Compiler, and a system for
typesetting mathematics.

The remainder of this chapter describes

basic process of preparinga yacc specification

parser operation

handling ambiguities

handling operator precedence in arithmetic expressions

error detection and recovery

the operating environment and special features of the parsers yacc produces
suggestions to improve the style and efficiency of the specifications

advanced topics

In addition, there are four sections that illustrate the earlier material:

“A Desk Calculator” contains a brief example of using yacc to design a simple
program.

“yacc Input Syntax” contains a summary of the yacc input syntax.

“An Advanced Grammar” contains an example using some of the more advanced
features of yacc.

“Backward Compatibility” contains a description of the mechanisms and syntax that,
though no longer actively supported, are provided for historical continuity with older
versions of yacc.
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Basic specifications
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Names refer to either tokens or nonterminal symbols. yacc requires token names to be
declared as such. In addition, it is often desirable to include the lexical analyzer as part of
the specification file. It might be useful to include other programs as well.

Every specification file consists of three sections:
»  declarations
= grammar rules
®  programs
These sections are separated by double percent symbols (%%). The percent symbol is

generally used in yacc specifications as an escape character.
The following is a syntactic description of a yacc specification file:

declarations

programs

The declarations section might be empty and, if the programs section is omitted, the
second %% mark might also be excluded. The smallest legal vacc specification is
therefore

oe
oe

rules

Blanks, tabs, and newlines are ignored, but they cannot appear in names or
multicharacter reserved symbols. Comments can appear wherever a name is legal. They
are enclosed in /* and */, as in the C language.

The rules section is made up of one or more grammar rules. A grammar rule has the
following form:

a : bOdy;

In this example, a represents a nonterminal name, and bod)y represents a sequence of
zero or more names and literals. The colon and the semicolon are yacc punctuation.

Chapter 3 yacc: A Compiler-Writing System



Names can be of arbitrary length and can be made up of letters, dots, underscores,
and noninitial digits. Uppercase and lowercase letters are distinct. The names used in the
body of a grammar rule can represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes (* ).

As in the C language, the backslash (\) is an escape character within literals, and all
the C language escapes are recognized. Table 3-1 lists the escapes recognized by yacc.

Table 3-1 C language escapes recognized by yacc

Escape Meaning

\n Newline

\r Return

\’ Single quote ()
\W\ Backslash (\)
\t Tab

\b Backspace

\f Form feed

\XXX xxx in octal

For a number of technical reasons, the null character (\0 or 0) should never be used
in grammar rules.

If there are several grammar rules with the same left side, the vertical bar (1) can be
used to avoid rewriting the left side. The semicolon at the end of a rule can be dropped
before a vertical bar. Thus, the grammar rules

A : B C D;
A : E F;
A G;

canbe givento yacc using the vertical bar:
A:BCD

| EF

I G;

It is not necessary that all grammar rules with the same left side appear together in the
grammar rules section, although it makes the input much easier to read and change.
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If 2 nonterminal symbol matches the empty string, this can be indicated by
empty : ;

Names representing tokens must be declared in the declarations section. For example,
$token namel name2

Every name not defined in the declarations section is assumed to represent a
nonterminal symbol. Nonterminal symbols must appear on the left side of at least one rule.

The parser is designed to recognize the nonterminal start symbol. Thus, this symbol
represents the largest, most general structure described by the grammar rules. By default,
the start symbol is taken to be the left side of the first grammar rule in the rules section.

It is possible and desirable to declare the start symbol explicitly in the declarations
section using the $start keyword. For example,

gstart symbol

The end of the input to the parser is signaled by a special token, called the end-
marker. If the tokens up to but not including the end-marker form a structure that
matches the start symbol, the parser function returns to its caller after the end-marker is
seen and accepts the input. If the end-marker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-marker when
appropriate. Usually the end-marker represents some reasonably obvious 1/O status,
such as end-of-file or end-of-record.

Actions

With each grammar rule, the user can associate actions to be performed each time the
rule is recognized in the input process. These actions can return values and can obtain
the values returned by previous actions. Moreover, the lexical analyzer can return values
for tokens, if desired.

An action is an arbitrary C language statement and as such can do input and output,
call subprograms, and alter external vectors and variables. An action is specified by one
or more statements enclosed in braces ({ and }).
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For example,

A:I(IBI)I

{

hello( 1, "abc" );
}

and the following is an example of grammar rules with actions:

XXX : YYY 27Z
{
printf ("a message\n") ;
flag = 25;
}

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The dollar sign symbol ($) is used as a signal to yacc in
this context. To return a value, the action normally sets the pseudovariable $$ to some
value. The following action does nothing except return the value of one:

{ 8¢ =1;

To obtain the values returned by previous actions and the lexical analyzer, the action
can use the pseudovariables $1, $2,and so on, which refer to the values returned by
the components of the right side of a rule, reading from left to right. For example, if the
rule is
A : BCD;

then $2 has the value returned by ¢, and $3 the value returned by D.
With the following rule, the value returned is usually the value of the exprin
parentheses:

expr : (" expr ')’
{
$$ = $2
}
By default, the value of a rule is the value of the first element in it ($1).
Grammar rules of the following form frequently need not have an explicit action:

A : B;
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In the preceding examples, all the actions came at the end of rules. Sometimes,
though, it is desirable to obtain control before a rule is fully parsed. The yacc program
permits an action to be written in the middle of a rule as well as at the end.

This kind of rule is assumed to return a value accessible through the usual $
mechanism by the actions to the right of it. In turn, it can access the values returned by
the symbols to the left of the action. For example, in the following rule x is set to 1 (the
value returned by the action to its left) and v is set to the value returned by c:

A : B
{

$$ = 1;
}
C
{
= $2;
= $3;

This is because every component of the right side of the rule, including an action, is
associated with a positional pseudovariable, so the $1 refersto B, $2 to the value
returned by the action associated with B, $3 to ¢, and soon.

Actions that do not terminate a rule are actually handled by yacc by manufacturing
a new nonterminal symbol name and a new rule matching this name to the empty string.
The interior action is the action triggered by recognizing this added rule.

vacc actually treats the preceding example as if it were written like the following
example ($ACT is an empty action):

SACT /* empty */
{
$$ = 15
}
A
B SACT C
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It

$2;
$3;

}

In many applications, output is not produced directly by the actions. A data structure,
such as a parse tree, is constructed in memory and transformations are applied to it
before output is generated. Parse trees are particularly easy to construct, given routines to
build and maintain the tree structure desired.

In the following example, the C function node creates a node with label /and
descendants n1 and n2and returns the index of the newly created node:

node (I, nl, n2)

Then a parse tree is built by supplying the actions following in the yacc
specification file as follows:
expr : expr '+ expr

{
$$ = node('+', $1, $3 );
}

The user can define other variables to be used by the actions.

Declarations and definitions can appear in the declarations section enclosed in the
marks ¢{ and %}. These declarations and definitions have global scope, so they are
known to the action statements and the lexical analyzer. For example,

%{ int variable = 0; %}
could be placed in the declarations section, making variable accessible to all of
the actions.

The yacc parser uses only names beginning with vy. The user should avoid such
names. In these examples, all the values are integers. A discussion of values of other
types is found in the section “Arbitrary Value Types.”
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Lexical analysis

The user must supply a lexical analyzer to read the input stream and communicate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued
function called yy1ex. The function returns an integer, the token number, representing
the kind of token read. If there is a value associated with that token, it should be assigned
to the external variable yy1val.

The parser and the lexical analyzer must agree on these token numbers for
communication between them to take place. The numbers can be chosen by yacc or
by the user. In either case, the #define mechanism of the C language is used to allow
the lexical analyzer to return these numbers symbolically. For example, suppose that the
token name DIGIT is defined in the declarations section of the yacc specification
file. The relevant portion of the lexical analyzer might look like the following example:

yylex()
{
extern int yylval;

int c;
c = getchar();

switch( ¢ )
{

case '0’
case 1’
case '9’
yylval = ¢c - ‘0" ;

return( DIGIT );
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The intent is to return a token number of DIGIT and a value equal to the numeric
value of the digit. Provided that the lexical analyzer code is placed in the programs
section of the specification file, the identifier DIGIT is defined as the token number
associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall to
avoid is using any token names in the grammar that are reserved or significant in the C
language or the parser. For example, the use of token names if or while almost
certainly causes severe difficulties when the lexical analyzer is compiled.

The token name error is reserved for error handling and should not be used naively.

As mentioned earlier, the token numbers can be chosen by yacc or by the user. In
the default situation, the numbers are chosen by yacc. The default token number for a
literal character is the numeric value of the character in the local character set. Other
names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the
token name or literal in the declarations section can be immediately followed by a non-
negative integer. This integer is taken to be the token number of the name or literal.
Names and literals not defined by this mechanism retain their default definitions. It is
important that all token numbers be distinct.

For historical reasons, the end-marker must have token number 0 or be negative. This
token number cannot be redefined by the user. Thus, all lexical analyzers should be
prepared to return 0 or a negative number as a token upon reaching the end of their input.

The lex program isa very useful tool for constructing lexical analyzers. These
lexical analyzers are designed to work in close harmony with yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of grammar rules.

lex can easily be used to produce quite complicated lexical analyzers, but there
remain some languages (such as Fortran) that do not fit any theoretical framework and
whose lexical analyzers must be crafted by hand. See Chapter 5 in this manual, “1ex: A
Lexical Analyzer,” for more information on 1lex.
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The yacc program turns the specification file into a C language program, which parses
the input according to the specification given. The algorithm used to go from the
specification to the parser is complex and is not discussed here. The parser itself,
however, is relatively simple, and understanding how it works makes treatment of error
recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite-state machine with a stack. The
parser also is capable of reading and remembering the next input token (called the “look-
ahead token”). The current state is always the one on the top of the stack. The states of
the finite-state machine are given small integer labels.

Initially, the machine is in state 0 (the stack contains only state 0) and no look-ahead
token has been read. The machine has only four actions available:

shift Push current state onto stack; go into specified new state.

reduce Pop some number of states from stack; push new state; execute user
code.

accept End of input has been (successfully) reached.

error An unparsable situation has been detected.

A step of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a look-ahead token to
choose the action to be taken. If it needs one and does not have one, it calls yylex
to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser decides on its
next action and carries it out. This can cause states to be pushed onto the stack or
popped off the stack and the look-ahead token to be processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a look-ahead token. In the following example, in
state 56, if the look-ahead token is TF, the current state (56) is pushed down on the
stack, and state 34 becomes the current state (on the top of the stack):

IF shift 34

The look-ahead token is cleared.
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The reduce action keeps the stack from growing without bounds. reduce
actions are appropriate when the parser has seen the right side of a grammar rule and is
prepared to announce that it has seen an instance of the rule replacing the right side by
the left side.

It might be necessary to consult the look-ahead token to decide whether to reduce
(usually it is not necessary). In fact, the default action (represented by a dot) is often a
reduce action.

reduce actions are associated with individual grammar rules. Grammar rules are
also given small integer numbers, and this leads to some confusion. For example, in the
following display, the action refers to grammar rule 18:

reduce 18
While in this example, the action refers to state 34:
IF shift 34

Suppose the following rule is being reduced:
A XY Z ;
The reduce action depends on the left symbol (a in this case) and the number of
symbols on the right side (three in this case). To reduce, first pop off the top three states
from the stack. (In general, the number of states popped equals the number of symbols
on the right side of the rule.) In effect, these states were the ones put on the stack while
recognizing x, v, and z, and no longer serve any useful purpose.

After popping these states, a state is uncovered that was the state the parser was in
before beginning to process the rule. Using this uncovered state and the symbol on the
left side of the rule, perform what is, in effect, a shift of A. A new state is obtained and
pushed onto the stack, and parsing continues.

There are significant differences between the processing of the left symbol and an
ordinary shift of a token, however, so this action is called a goto action. In particular,
the look-ahead token is cleared by a shift but is not affected by a goto. In any case, the
uncovered state contains an entry such as the following one, which causes state 20 to be
pushed onto the stack and become the current state:

A goto 20

In effect, the reduce action “turns back the clock” in the parse, popping the states
off the stack to go back to the state where the right side of the rule was first seen. The
parser then behaves as if it had seen the left side at that time. If the right side of the rule is
empty, no states are popped off the stacks. The uncovered state is, in fact, the current state.
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The reduce action also is important in the treatment of user-supplied actions and
values. When a rule is reduced, the code supplied with the rule is executed before the
stack is adjusted. In addition to the stack holding the states, another stack running in
parallel with it holds the values returned from the lexical analyzer and the actions.

When a shift takes place, the external variable yy1val is copied onto the value
stack. After the return from the user code, the reduction is carried out. When the goto
action is done, the external variable yyval is copied onto the value stack. The
pseudovariables $1, $2,and so on refer to the value stack. The other two parser actions
are conceptually much simpler. The accept action indicates that the entire input has
been seen and that it matches the specification. This action appears only when the look-
ahead token is the end-marker and indicates that the parser successfully did its job.

The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen
(together with the look-ahead token) cannot be followed by anything that would result in
a legal input. The parser reports an error and attempts to recover the situation and resume
parsing. The error recovery (as opposed to the detection of error) is discussed later.

Consider the following example asa yacc specification:

%token DING DONG DELL

rhyme : sound place
sound : DING DONG
place : DELL

When yacc isinvoked with the -v option, a file called y.output is produced
with a human-readable description of the parser.

The following example is the y .output file corresponding to the above grammar
(with some statistics stripped off the end), where the actions for each state are specified
and there is a description of the parsing rules being processed in each state.
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state

state

state

state

state

state

state

0
Saccept : _rhyme $end

DING shift 3

error

rhyme goto 1

sound goto 2

1
Saccept : rhyme_Send

Send accept

error

2

rhyme : sound_place

DELL shift 5

error
place goto 4

3
sound : DING_DONG

DONG shift 6

error

4

rhyme : sound place_ (1)

reduce 1

5

place : DELL_ (3)
reduce 3

6

sound : DING DONG_ (2)
reduce 2
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The underscore character _ is used to indicate what was seen and what is yet to
come in each rule.

The following input can be used to track the operations of the parser:
DING DONG DELL

Initially, the current state is state 0. The parser needs to refer to the input to decide
between the actions available in state 0, so the first token (DING) is read and becomes
the look-ahead token.

The action in state 0 on DING is shift 3. State 3 is pushed onto the stack, and
the look-ahead token is cleared. State 3 becomes the current state. The next token
(powa) is read and becomes the look-ahead token. The action in state 3 on the token
DONG is shift 6. State 6 is pushed onto the stack, and the look-ahead is cleared.

The stack now contains 0, 3, and 6. In state 6, without even consulting the look-
ahead, the parser reduces by the following, which is rule 2:

sound : DING DONG

Two states, 6 and 3, are popped off the stack, uncovering state 0. Consulting the
description of state 0 (looking fora goto on sound), the following is obtained:

sound goto 2

State 2 is pushed onto the stack and becomes the current state. In state 2, the next
token (DELL) must be read. The actionis shift 5, so state 5 is pushed onto the stack,
which now has 0, 2, and 5 on it, and the look-ahead token is cleared.

In state 5, the only action is to reduce by rule 3. This has one symbol on the right
side, so one state (5) is popped off and state 2 is uncovered. The goto in state 2 on
place (the left side of rule 3) is state 4. Now, the stack contains 0, 2, and 4.

In state 4, the only action is to reduce by rule 1. There are two symbols on the right,
so the top two states are popped off, uncovering state 0 again. In state 0, thereisa goto
on rhyme causing the parser to enter state 1. In state 1, the input is read and the end-
marker is obtained indicated by $end inthe y.output file. The action in state 1
(when the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted with such
incorrect strings a5 DING DONG DONG, DING DONG, DING DONG DELL DELL,
and so on. A few minutes spent studying this and other simple examples can be repaid
when problems arise in more complicated contexts.
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Ambiguity and conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the following grammar rule is a natural way of
expressing the fact that one way of forming an arithmetic expression is to put two other
expressions together with a minus sign between them:

expr : expr ‘-’ expr

Unfortunately, this grammar rule does not completely specify the way that all
complex inputs should be structured. For example, if the input is
expr - expr - expr
the rule allows this input to be structured as either
( expr - expr ) - expr
or
expr - ( expr - expr )

(The first is called left association, the second right association.) The yacc
program detects such ambiguities when it is attempting to build the parser.

Consider the problem that confronts the parser when provided with the following input:
expr - expr - expr
When the parser has read the second expr, the input seen matches the right side of the
previous grammar rule:
expr - expr
The parser can reduce the input by applying this rule. After applying the rule, the input is
reduced to expr (the left side of the rule). The parser then reads the final part of the input
(displayed in the following example) and again reduces:
- expr
The effect of this is to take the left associative interpretation. Alternatively, if the parser
sees the following input:
expr - expr
it can defer the immediate application of the rule and continue reading the input until it
sees the following input,

expr - expr - expr
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It can then apply the rule to the right-most three symbols, reducing them to expr, which
results in the following input being left:

expr - expr

Now the rule can be reduced once more. The effect is to take the right associative
interpretation. The parser can do one of two legal things, a shift or a reduction. It has no
way of deciding between them. This is called a shift/reduce conflict.

It might also happen that the parser has a choice of two legal reductions. This is
called a reduce/reduce conflict. (Note that there are never any shift/shift conflicts.) When
there are shift/reduce or reduce/reduce conflicts, yacc still produces a parser. It does
this by selecting one of the valid steps wherever it has a choice.

A rule describing the choice to make in a given situation is called a disambiguating
rule. The yacc program invokes two disambiguating rules by default:

® [n a shift/reduce conflict, the default is to do the shift.

» Ina reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in
the input sequence).

The first rule implies that reductions are deferred in favor of shifts when there is a
choice. The second rule gives the user rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided when possible.

Conflicts can arise because of mistakes in input or logic or because the grammar rules
(while consistent) require a more complex parser than yacc can construct. The use of
actions within rules can also cause conflicts if the action must be done before the parser
can be sure which rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect parser. For this reason,
yacc always reports the number of shift/reduce and reduce/reduce conflicts resolved
by rule 1 and rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Experience has suggested that this rewriting is somewhat
unnatural and produces slower parsers. Thus, yacc produces parsers even in the
presence of conflicts.

Chapter 3 yacc: A Compiler-Writing System



As an example of the power of disambiguating rules, consider

stat : IF ('’ cond ')’ stat
| IF ' ('’ cond ')’ stat ELSE stat

which is a fragment from a programming language involving an if-then-else statement.

In these rules, TF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat isa nonterminal symbol
describing statements. The first rule is called the simple-if rule and the second the if-else
rule. These two rules form an ambiguous construction because input of the following
form can be structured according to these rules in two ways:
IF (Cl ) IF ( C2 ) Sl ELSE S2

The input can be structured as in the following example or as in the subsequent
example, which is the one given in most programming languages having this construct:
IF ( Cl )

{

IF ( C2 )
Sl
}
ELSE
S2
or:
IF (Cl)
{
IF (C2)
S1
ELSE
S2

}

Each ELSE isassociated with the preceding TF thatis withoutan ELSE.
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In the following example, consider the situation where the parser has seen the 1F-
ELSE construct and is looking at the ELSE.

IF ( Cl ) IF ( Cc2 ) s1

It can immediately reduce by the simple-if rule to get
IF ( Cl ) stat

and then read the remaining input

ELSE S2

and reduce by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE can be shifted, s2 read, and then the right portion
reduced by the if-else rule to get the following line, which can be reduced by the simple-
if rule:

IF ( Cl ) stat

This leads to the second of the above groupings of the input, which is usually
desired. Once again, the parser can do two valid things—there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case, which leads
to the desired grouping. This shift/reduce conflict arises only when there is a particular
current input symbol, ELSE, and particular inputs, such as have already been seen:

IF ( Cl1 ) IF ( C2 ) s1

In general, there might be many conflicts, and each one is associated with an input
symbol and a set of previously read inputs. The previously read inputs are characterized
by the “state” of the parser. The conflict messages of yacc are best understood by
examining the verbose (-v) option output file. For example, the output corresponding to
the above conflict state might be
23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF ( cond ) stat_ (18)
stat : IFr ( cond ) stat_ELSE stat
ELSE shift 45

reduce 18
where the first line describes the conflict, giving the “state” and the input symbol.

The ordinary state description gives the grammar rules active in the state and the
parser actions.
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Recall that the underline marks the portion of the grammar rules that has been seen.
Thus, in the example, in state 23 the parser has seen input corresponding to IF  (
cond ) stat,and the two grammar rules shown are active at this time.

The parser can do two things:

= Ifthe input symbol is ELSE, it is possible to shift into state 45. State 45 has, as part of
its description, the following line:

stat : IF ( cond ) stat ELSE_stat

because the ELSE will have been shifted in this state. In state 23, the alternative
action (describing a dot (.)) is to be done if the input symbol is not mentioned
explicitly in the actions.

= If the input symbol is not ELSE, the parser reduces to
stat : IF ’(’ cond ')’ stat

by grammar rule 18.

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule numbers.
Inthe y.output file, the rule numbers are printed after those rules that can be
reduced. In most states, only one reduce action is possible, and it is the default
command.

The user who encounters unexpected shift/reduce conflicts probably wants to look at
the verbose output to decide whether the default actions are appropriate.

Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly used
constructions for arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left or right associativity.
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It turns out that ambiguous grammars with appropriate disambiguating rules can be
used to create parsers that are faster and easier to write than parsers constructed from
unambiguous grammars. The basic notion is to write grammar rules of the following two
forms for all binary and unary operators desired:

expr : expr OP expr
and
expr : TUNARY expr

This creates a very ambiguous grammar with many parsing conflicts. As
disambiguating rules, the user specifies the precedence or binding strength of all the
operators and the associativity of the binary operators. This information is sufficient to
allow yacc toresolve the parsing conflicts in accordance with these rules and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with one of the following yacc
keywords: $left, $right,or %nonassoc, followed by a list of tokens. All of the
tokens on the same line are assumed to have the same precedence level and associativity;
the lines are listed in order of increasing precedence or binding strength. For example,
sleft ‘47 -

gleft 7 x v

describes the precedence and associativity of the four arithmetic operators. Plus and
minus are left associative and have lower precedence than star and slash, which are also
left associative.

The keyword sright is used to describe right associative operators, and the
keyword $nonassoc is used to describe operators like the operator .LT in Fortran
that cannot associate with themselves. For example, the following line is illegal in Fortran
and such an operator would be described with the keyword %nonassoc inyacc:

A .LT. B .LT. C

As an example of the behavior of these declarations, the following description might
be used to structure the subsequent input:

$right ’="
$left 47 -
$left r*xr 1/

%%
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expr expr =’ expr

| expr '+ expr
| expr '-'  expr
| expr xr expr
! expr '/’ expr
| NAME

The following line is the input to be structured by the above description to perform
the correct precedence of operators:
a=b=c*d-e-f *g
The result of the structuring is as follows:
a= (b= 1(((c*d)-e) - (f*g) ) )

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same symbolic
representation but different precedences. An example is unary and binary minus (-).
Unary minus can be given the same strength as multiplication, or even higher, while
binary minus has a lower strength than multiplication.

The keyword $prec changes the precedence level associated with a particular
grammar rule. $prec appears immediately after the body of the grammar rule, before
the action or closing semicolon, and is followed by a token name or literal. The keyword
causes the precedence of the grammar rule to become that of the following token name
or literal. For example, the following rules might be used to give unary minus the same
precedence as multiplication:

$left 41 -7
gleft ' *’ v
%
expr = expr '+’ expr
I expr -’ expr
| expr '*'  expr
I expr /" expr
| -t expr $prec 1 *’
| NAME
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Atoken declared by $1left, $right,and %nonassoc need not be, but can be
declared by $token aswell.

The precedences and associativities are used by yacc to resolve parsing conflicts.
They give rise to disambiguating rules. Formally, the rules work as follows:

= The precedences and associativities are recorded for those tokens and literals that
have them.

» A precedence and associativity is associated with each grammar rule. It is the
precedence and associativity of the last token or literal in the body of the rule. If the
$prec construction is used, it overrides this default. Some grammar rules can have
no precedence and associativity associated with them.

m  When there is a reduce/reduce conflict or there is a shift/reduce conflict and either
the input symbol or the grammar rule has no precedence and associativity, then the
two disambiguating rules given at the beginning of the section are used, and the
conflicts are reported.

= [f there is a shift/reduce conflict and both the grammar rule and the input character
have precedence and associativity associated with them, then the conflict is resolved
in favor of the action (shift or reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by yacc. This means that mistakes in the specification
of precedences can disguise errors in the input grammar. It is a good idea to be sparing
with precedences and use them in an essentially “cookbook” fashion until some
experience has been gained. The y.output file is very useful in deciding whether the
parser is actually doing what was intended.
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Error handling

Error handling is an extremely difficult area, and many of the problems are semantic
ones. When an error is found, for example, it might be necessary to reclaim parse tree
storage, delete or alter symbol table entries, and typically, set switches to avoid
generating any further output. It is seldom acceptable to stop all processing when an
error is found. It is more useful to continue scanning the input to find further syntax
errors. This leads to the problem of getting the parser “restarted” after an error.

A general class of algorithms to do this involves discarding a number of tokens from
the input string and attempting to adjust the parser so that input can continue. To allow
the user some control over this process, yacc provides a simple but reasonably
general feature. The token name error is reserved for error handling. This name can
be used in grammar rules. In effect, it suggests places where errors are expected and
recovery might take place.

The parser pops its stack until it enters a state where the token error islegal. It
then behaves as if the token error were the current look-ahead token and performs
the action encountered. The look-ahead token is then reset to the token that caused the
error. If no special error rules are specified, the processing halts when an error is detected.

To prevent a cascade of error messages, the parser, after detecting an error, remains
in error state until three tokens are successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given and the input token is
quietly deleted.

As an example, a rule of the following form means that on a syntax error the parser
attempts to skip over the statement in which the error is seen:

stat : error

More precisely, the parser scans ahead, looking for three tokens that might legally
follow a statement, and starts processing at the first of these. If the beginnings of
statements are not sufficiently distinctive, it might make a false start in the middle of a
statement and end up reporting a second error where there is, in fact, no error.

Actions can be used with these special error rules. These actions might attempt to
reinitialize tables, reclaim symbol table space, and so on. Error rules such as the ones
mentioned are very general but difficult to control. Rules such as the following ones are
somewhat easier. Here, when there is an error, the parser attempts to skip over the
statement but does so by skipping to the next semicolon:

stat : error !
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All tokens after the error and before the next semicolon cannot be shifted and are
discarded. When the semicolon is seen, this rule is reduced and any “cleanup” action
associated with it performed.

Another form of error rule arises in interactive applications where it might be
desirable to permit a line to be reentered after an error. The following example is one

way to do this:
input : error ‘\n’
{
printf ("Reenter last line: ");
}
input
{
$$ = $4;

}

There is one potential difficulty with this approach. The parser must correctly process
three input tokens before it admits that it correctly resynchronized after the error. If the
reentered line contains an error in the first two tokens, the parser deletes the offending
tokens and gives no message. This is clearly unacceptable. For this reason, there is a
mechanism that can force the parser to believe that error recovery is accomplished. The
following statement in an action resets the parser to its normal mode:
yyerrok ;

The last example can be rewritten somewhat more usefully, as the following
example shows:
input : error ‘\n’

{

yyerrok;

printf ("Reenter last line: ");
}

input

$S = $4;
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As previously mentioned, the token seen immediately after the error symbol is
the input token at which the error was discovered. Sometimes this is inappropriate. For
example, an error recovery action might take upon itself the job of finding the correct
place to resume input. In this case, the previous look-ahead token must be cleared. The
following statement in an action has this effect:

yyclearin ;

For example, suppose the action after error were to call some sophisticated
resynchronization routine (supplied by the user) that attempted to advance the input to
the beginning of the next valid statement. After this routine is called, the next token
returned by yylex is presumably the first token in a legal statement. The old illegal
token must be discarded and the error state reset. A rule similar to the following one
could perform this:

stat : error

resynch () ;
yyerrok ;
yyclearin;
}
These mechanisms are admittedly crude but do allow for a simple, fairly effective

recovery of the parser from many errors. Also, the user can get control to deal with the
error actions required by other portions of the program.

The vacc environment

When the user enters a specification to yacc, the output is a file of C language
programs called y . tab. c. The function produced by yacc is an integer-valued
function called yyparse. When it is called, it in turn repeatedly calls yy1ex, the
lexical analyzer supplied by the user (see “Lexical Analysis”), to obtain input tokens.

Eventually, if an error is detected, yyparse returns the value 1, and no error
recovery is possible, or the lexical analyzer returns the end-marker token and the parser
accepts. In this case, yyparse returns the value 0.
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The user must provide a certain amount of environment for this parser to obtain a
working program. For example, as with every C language program, a program called
main must be defined that eventually calls yyparse. Also needed is a routine called
yyerror that prints a message when a syntax error is detected. These two routines
(main and yyerror) must be supplied in one form or another by the user.

To ease the initial effort of using yacc, a library is provided with default versions of
main and yyerror. Usethe -1y optionof 14 toincorporate these routines into
your program. The following source code examples show the simplicity of these routines:
main ()

{

return ( yyparse() );
}
and

#include <stdio.h>

yyerror (s)
char *s;
{

fprintf( stderr, "%s\n", s );

The argument to yyerror is a string containing an error message, usually the
string syntax error. The average application wants to do better than this.
Ordinarily, the program should keep track of the input line number and print it along
with the message when a syntax error is detected.

The external integer variable yychar contains the look-ahead token number at the
time the error was detected. This might be of some interest in giving better diagnostics.

Because the main program is probably supplied by the user (to read arguments,
and so on), the yacc library is useful only in small projects or in the earliest stages of
larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero
value, the parser sends as output a verbose description of its actions, including a discussion
of the input symbols read and what the parser actions are. Depending on the operating
environment, it might be possible to set yydebug by using a debugging system.

Chapter 3 yacc: A Compiler-Writing System



Input style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following suggestions are a few style hints:

»  Use all uppercase letters for token names and all lowercase letters for nonterminal
names.

»  Put grammar rules and actions on separate lines. This allows either to be changed
without an automatic need to change the other.

= Putall rules with the same left side together. Put the left side in only once and let all
following rules begin with a vertical bar.

= Puta semicolon only after the last rule with a given left side and put the semicolon on
a separate line. This allows new rules to be easily added.

= Indent rule bodies by two tab stops and action bodies by three tab stops.
The example in “Example: A Desk Calculator” is written following this style (where

space permits). You must make up your own mind about these stylistic questions. The
central problem, however, is to make the rules visible through the morass of action code.

Left recursion

The algorithm used by the yacc parser encourages so-called left recursive grammar
rules. Rules of the following form match this algorithm:
name  :  name rest-of-rule ;

Rules such as the following two frequently arise when writing specifications of
sequences and lists. In each of these cases, the first rule is reduced for the first item only;
the second rule is reduced for the second and all succeeding items:

list .  item

| list , " item
seq : item

| seq item
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With right recursive rules, such as the following examples, the parser is a bit bigger
and the items are seen and reduced from right to left:
seq : dtem

I item  seq

More seriously, an internal stack in the parser is in danger of overflowing if a very
long sequence is read. The user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning; if
so, consider writing the sequence specification as in the following, using an empty rule:
seq : /* empty */

[ seq item

Once again, the first rule is always reduced exactly once before the first item is read,
the second rule is reduced once for each item read. Permitting empty sequences often
leads to increased generality. However, conflicts might arise if yacc is asked to decide
which empty sequence it has seen when it hasn’t seen enough to know.

Lexical considerations

3-32

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally but not within quoted strings, or names might be entered into a
symbol table in declarations but not in expressions.

One way of handling this situation is to create a global flag that is examined by the
lexical analyzer and set by actions. The following example specifies a program that
consists of zero or more declarations followed by zero or more statements. The flag
dflag is 0 when reading statements and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell
that the declaration section ended and the statements began. In many cases, this single
token exception does not affect the lexical scan.
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oe
-~

int dflag;
}

oe

... Other declarations ...
prog : decls stats
decls : /* empty */

{
dflag = 1;
}

| decls declaration

stats : /* empty */

dflag = 0;
}
I stats statement

... Other rules ...

This kind of “back door” approach can be elaborated to an unpleasant degree.

Nevertheless, it represents a way of doing some things that are difficult, if not impossible,

to do otherwise.

Lexical considerations
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Reserved words

Some programming languages permit you to use words (like i) that are normally
reserved as label or variable names, provided that such use does not conflict with the
legal use of these names in the programming language. This is extremely hard to do in
the framework of yacc. Itis difficult to pass information to the lexical analyzer telling it
“this instance of if isa keyword and that instance is a variable.” The user can try it
using the mechanism described in the last section, but it is difficult. A number of ways of
making this easier are being studied. For the time being, it is better that the keywords be
reserved—that is, forbidden for use as variable names.

Simulating error and accept in actions

The parsing actions of error and accept can be simulated in an action by use of the macros
YYACCEPT and YYERROR.The YYACCEPT macro causes yyparse toreturn the
value 0. YYERROR causes the parser to behave as if the current input symbol had been a
syntax error. The function yyerror is called, and error recovery takes place.

These mechanisms can be used to simulate parsers with multiple end-markers or
context-sensitive syntax checking.

Accessing values in enclosing rules

An action can refer to values returned by actions to the left of the current rule. The
mechanism is the same as with ordinary actions, a dollar sign followed by a digit.

sent : adj noun verb adj noun

look at the sentence ...
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adj : THE

$$ = THE;

| YOUNG

$$ = YOUNG;

noun : DOG
{
$$ = DOG;
}
! CRONE
{
if( $0 == YOUNG )

printf( "what?\n" );

In this case, the digit can be 0 or negative.

In the action following the word CRONE, a check is made that the preceding token
shifted was not YounG. Obviously, this is only possible when a great deal is known
about what might precede the symbol noun in the input.

There also is a distinctly unstructured flavor about this. Nevertheless, at times, this
mechanism prevents a great deal of trouble, especially when a few combinations are to
be excluded from an otherwise regular structure.
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Arbitrary value types

3-36

By default, the values returned by actions and the lexical analyzer are integers. The
yacc program also can support values of other types, including structures. The yacc
program keeps track of the types and inserts appropriate union member names so that
the resulting parser is strictly type checked.

The yacc value stack is declared to be a union of the various types of values
desired. The user declares the union and associates union member names to each token
and nonterminal symbol having a value. When the value is referenced througha $$ or
$n construction, yacc automatically inserts the appropriate union name so that no
unwanted conversions take place. This makes type-checking commands such as 1int
much quieter.

Three mechanisms are used to provide for this typing:

= First, there is a way of defining the union. This must be done by the user because other
programs, notably the lexical analyzer, must know about the union member names.

= Second, there is a way of associating a union member name with tokens and
nonterminal symbols.

= Third, there is a mechanism for describing the type of those few values where yacc
cannot easily determine the type.

To declare the union, the user includes the following statement in the declaration
section:
%union
{

body of union

}
This declares the yacc value stack and the external variables vylval and yyval
to have type equal to this union. If yacc was invoked with the -d option, the union
declaration is copied onto the y.tab.h file. Alternatively, the union can be declared
in a header file, and a typedef used to define the variable YYSTYPE to represent
this union. Thus, the header file might have said the following, instead:
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typedef union
{

body of union
}
YYSTYPE;

The header file must be included in the declarations section by use of %{ and %}.
Once YvySTYPE is defined, the union member names must be associated with the
various terminal and nonterminal names. The following construction is used to indicate a
union member name:

<name>

If this follows one of the keywords $token, %$left, %right, or $nonassoc, the
union member name is associated with the tokens listed. For example, the following
causes any reference to values returned by these two tokens to be tagged with the union
member name optype:

$left <optype> "+’ r—

Another keyword, $type, is used to associate union member names with
nonterminals. For example, the following line can be used to associate the union
member nodetype with the nonterminal symbols exprand stat.

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly,
reference to left context values (such as $0) leaves yacc with no easy way of
knowing the type. In this case, a type can be imposed on the reference by inserting a

union member name between “<” and “>” immediately after the first $, as in the
following example.
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rule : aaa
S<intval>$ = 3;
bbb

fun( $<intval>2, $<other>0 );
}

This syntax has little to recommend it, but the situation arises rarely. A sample
specification is given in “Example: An Advanced Grammar.” The facilities in this
subsection are not triggered until they are used. In particular, the use of $type turns
on these mechanisms. When they are used, there is a fairly strict level of checking. For
example, use of $n or $3 to refer to something with no defined type is diagnosed. If
these facilities are not triggered, the yacc value stack is used to hold int values, as
was true historically.

Example: A desk calculator

3-38

This section contains an example that gives the complete yacc applications for a small
desk calculator. The calculator has 26 registers labeled a through z and accepts
arithmetic expressions made up of the operators shown in Table 3-2.

If an expression at the top level is an assignment, the value is printed. Otherwise, the
expression is printed. As in the C language, an integer that begins with 0 (zero) is
assumed to be octal. Otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a reasonable job of
showing how precedence and ambiguities are used and demonstrates simple recovery.
The major oversimplifications are that the lexical analyzer is much simpler than what is
necessary for most applications, and the output is produced immediately line by line.
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Table 3-2 Arithmetic operators

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (Remainder)
& Binary AND

I Binary OR

= Assignment

Note the way that decimal and octal integers are read in by grammar rules. This job is
probably better done by the lexical analyzer.
%{
#include <stdio.h>

#include <ctype.h>

int regs([26];

int base;
%}
$start list

$token DIGIT LETTER

gleft *|°
gleft '&°
sleft '+’ ‘-

’

%left Tk l/l ’

o°

$left UMINUS /* precedence for unary minus */

%% /* beginning of rule section */

(continued mw
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list : /* empty */
| list stat * \n’

| list error ’ \n’

YyYyerror;
}
stat : expr

{

printf( "%d\n", S1 );
}
| LETTER '=" expr
{

regs([$1] = $3
}

expr : (' expr ')’

{

$$ = $2;
}
| expr '+' expr
{

$$ = S1 + $3
}
I expr '~ expr
{

$$ = $1 - $3
}
| expr ' expr
{

$$ = S1 * $3;
}
I expr '/ expr
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number :

$S = $1/$3;

exp ‘%’ expr

oe

$$ = $1 % $3
expr &’ expr
$$ = $1 & $3;
expr ' | expr
$$ = 51 1 s3
'-' expr %prec UMINUS
$S = - $2;
LETTER
$$ = reg[Sl];
number
DIGIT
$$ = S1; base = ($1==0) 2 8 : 10;
number DIGIT
$$ = base * S1 + $2

(continued
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oe
oe

/* start of program */

~
*

* lexical analysis routine

* return LETTER for lowercase letter
* (i.e., yylval = 0 through 25)

* returns DIGIT for digit

* (i.e., yylval = 0 through 9)

* all other characters are returned immediately

*

*/
yylex( )
{
int c;
while (c=getchar( )) == ' ') /* skip blanks */
if( islower( c ))
{
yylval = c - 'a’ ;
return( LETTER ) ;
}
if( isdigit( c ))
{
yylval = ¢ - 0" ;
return( DIGIT );
}
return( c );
}
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Example: yacc input syntax

This section contains a description of the yacc inputsyntaxasa yacc specification.
Context dependencies, and so forth, are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar. The sticky part
comes when an identifier is seen in a rule immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule; otherwise, it is a
continuation of the current rule, which just happens to have an action embedded in it.
As implemented, the lexical analyzer looks ahead after seeing an identifier and
decides whether the next token (skipping blanks, newlines, comments, and so on) is a
colon. If so, it returns the token Cc_IDENTIFIER. Otherwise, it returns IDENTIFIER.

Literals (quoted strings) are also returned as TDENTIFIER but never as part of
C_IDENTIFIER.

/* grammar for the input to yacc */

/* basic entries */

/* includes identifiers and literals */

%token IDENTIFIER

/* identifier (but not literal) followed by a colon */
%token C_IDENTIFIER

$token NUMBER /* [0-91+ */

/* reserved words: */

* %type -> TYPE, %left -> LEFT, etc. */
$token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
$token MARK /* the %% mark */
$token LCURL /* the %{ mark */
%$token RCURL /* the %} mark */

/* ASCII character literals stand for themselves */

%token spec

oe
oe

(continued )
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spec : defs MARK rules tail
tail :  MARK
...In this action, read the rest of the file...

| /* empty: the second MARK is optional */

defs : /* empty */
| defs def

defs : START IDENTIFIER
| UNION

...Copy union definition to output...
[ LCURL

...Copy C code to output file...
RCURL

| ndefs rword tag nlist

rword : TOKEN
! LEFT
[ RIGHT
I NONASSOC
[ TYPE

tag : /* empty: union tag is optional */
"<’ IDENTIFIER '>'
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nlist : nmno
| nlist nmno
| nlist ’,’ nmno
/* Note: literal illegal with %type */
nmno : IDENTIFIER
| IDENTIFIER NUMBER
/* rule section */
rule : C_IDENTIFIER rbody proc

| rule rule

rule : C_IDENTIFIER rbody prec
|’ rbody prec

rbody : /* empty */
l rbody IDENTIFIER
| rbody act

act : r{

...Copy action, translate s$’ s elc....
I}I

prec : /* empty */
| PREC IDENTIFIER
| PREC IDENTIFIER act

I prec’;’

Example: yacc input syntax
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Example: An advanced grammar

3-46

This section gives an example of a grammar using some of the advanced features. It
modifies the example from “Example: A Desk Calculator” to provide a desk calculator
that does floating-point interval arithmetic.

The calculator understands floating-point constants, as well as the arithmetic
operations +, -, *, /,unary -, and the letters a through z. The calculator also
understands intervals written as is the following example, where x is less than or equal
fo ¥

(X,Y)

There are 20 interval valued variables A through z that can also be used. The
usage is similar to that in “Example: A Desk Calculator.” That is, assignments return no
value and print nothing, while expressions print the floating or interval value.

Intervals are represented by a structure consisting of the left and right endpoint
values stored as doubles. This structure is given a type name, INTERVAL, by using
typedef. The yacc value stack can also contain floating-point scalars and integers
that are used to index into the arrays holding the variable values. The entire strategy
depends strongly on being able to assign structures and unions in the C language. In fact,
many of the actions call functions that return structures as well.

Note the use of YYERROR to handle error conditions: division by an interval
containing 0 and an interval presented in the wrong order. The error-recovery
mechanism of yacc is used to throw away the rest of the offending line. In addition to
the mixing of types on the value stack, this grammar also demonstrates an interesting use
of syntax to keep track of the type (for example, scalar or interval) of intermediate
expressions. Scalars can be automatically promoted to an interval if the context demands
an interval value. This causes a large number of conflicts when the grammar is run
through yacc—18 shift/reduce and 26 reduce/reduce. The problem can be seen by
looking at the following input lines:

2.5+(3.5-4.)
and
2.5 + ( 3.5,4)
Notice that the 2.5 is to be used in an interval-value expression in the second

example, but this fact is not known until the comma is read. By this time 2.5 is
finished, and the parser cannot go back and change its mind.
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More generally, it might be necessary to look ahead an arbitrary number of tokens to
decide whether to convert a scalar to an interval. This problem is evaded by having two
rules for each binary interval valued operator, one when the left operand is a scalar and
one when the left operand is an interval. In the second case, the right operand must be
an interval, so the conversion is applied automatically.

Despite this evasion, there are still many cases where the conversion might be
applied or not, leading to the above conflicts. They are resolved by listing the rules that
yield scalars first in the specification file. In this way, the conflict is resolved in the
direction of keeping scalar-valued expressions scalar valued until they are forced to
become intervals. This way of handling multiple types is very instructive, but not very
general. If there were many kinds of expression types instead of just two, the number of
rules needed would increase dramatically and the conflicts even more dramatically. Thus,
while this example is instructive, it is better practice in a more normal programming
language environment to keep the type information as part of the value and not as part of
the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating-point constants. The C language library routine atof is used to do the actual
conversion from a character string to a double-precision value. If the lexical analyzer
detects an error, it responds by returning a token that is illegal in the grammar, provoking
a syntax error in the parser and thence error recovery.

{

oe

#include<stdio.h>

#include<ctype.h>

typedef struct interval
{

double lo, hi;
} INTERVAL;

INTERVAL vmul (), vdiv( );

double atof () ;
double dregl[26];
INTERVAL vregl[26];

oe

}
(continued
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%$start line

gunion

{

int ival;
double dval;
INTERVAL vval;

}

%token <ival> DREG VREG /*indices into dreg, vreg */
%token <dval> CONST /* floating point constant */
$type <dval> dexp /* expression */

gtype <vval> vexp /* interval expression */

/* precedence information about the operators */

%left
%left
%left

line

’ ’ ’ ’
+ —

1Tk I/I

UMINUS /* precedence for unary minus */

/* empty */

| lines line

dexp '\n’
{
printf( "%15.8f\n".$1 );
}
| vexp '\n’
{

printf (" (%15.8f,%15.8f)\n",$1.10,$1.hi );

| DREG '=' ‘\n’
{
dreg([$1] = $3;
}
| VREG '=" vexp ’'\n’
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dexp

vreg[$1l] = $3;

error ‘\n’

yyerrork;

CONST
DREG

$$ = dreg($1]

dexp '+’ dexp

$$ = $1 + $3
dexp -’ dexp
$$ = $1 - $3

dexp '*’ dexp

$S$ = $1 * $3

dexp '/’ dexp

$$ =381 / S$3
r-r  dexp %prec UMINUS
$$ =- 82

(continued
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| r( dexp’)’

{
$$ = $2 .
}
vexpp . dexp
{
$s.hi = $s.1o = $1;
}
| "(’ dexp ',' dexp ')’
{
$s.1o = 525
$$.hi = $4;

if( $$.1o > $$.hi )
{
printf( "interval out of order n" );

YYERROR;

| VREG

$$ = vregl$l]

}

| vexp '+’ vexp

{
$$.hi = $1.hi + $3.hi;
$$.1o = $1.1o + $3.1o

}

| dexp '+’ vexp

{
$$.hi = $1 + $3.hi;
$$.1o = $1 + s$3.1o

}
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vexp =’ vexp

$S.hi
$$.1o

$1.hi - $3.1o;
$1.1lo - $3.hi

dvep -’ wvdep

$$.hi
$S.1o

$1 - $3.1lo;
$1 - $3.hi

vexp ’'*' vexp

$$ = vmul( $1.10,$.hi, $3

dexp '*’ vexp

$$ = vmul( $1, $1, $3 )

vexp '/’ vexp

)

if ( dcheck( $3 ) ) YYERROR;

$$ = vdiv( $1.lo, $1.hi,

dexp '/’ vexp

$3 )

if( dcheck( $3 ) ) YYERROR;

$$ = vdiv( $1.1lo, $1.hi, $3 )
=’ vexp $prec UMINUS
$$.hi = -$2.10;$%$.1o =-$2.hi

" (! vexp V)

(continued)m

Example: An advanced grammar

351



$$ = 82

oo

%

/* buffer size for floating point number */

# define BSZ 50

/*
*lexical analysis
*/
yylex( )
{
register c;
while ((c=getchar()) == ' ' ) /* skip blanks */ ;
if (isupper (c))
{
yylvalval = ¢ - 'A’
return (VREG) ;
}
if (islower (c))
{
yylvalval = ¢ - 'a’ ,
return (DREG) ;
}
/*
* gobble up digits, points, exponents
*/
if (isdigit(c) Il ¢ == " .7 )
{

char buf[BSzZ+1], *cp = buf;
int dot = 0, exp = 0;
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for(; (cp - buf) < BSZ ; ++cp,c=getchar())

{

*cp = c;

if (isdigit(c))

continue;

if(c ==

if (dot++

L)

|l exp)

/* causes syntax error */

return( .’ );

continue;

if( exp++ )

/* causes syntax error */

return (
continue;
}
break;
}
*cp = '\O’ ;

if ((cp - buff)

e’ );

/* end of number */

>= BSZ)

printf ( "constant too long truncated\n");

else

/* push back last char read */

ungetc(c, stdin);

yylval.dval = atof (buf);

return (CONST) ;
}

return(c) ;

(continued
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/*
* returns the smallest interval
* between a, b, ¢ and d
*/

INTERVAL hilo( a, b, ¢, 4 )

double a, b, c, d;

{

INTERVAL v;

if( a>b )

{
v.hi = a;
v.lo = b;

}

else

{
v.hi = b;
v.lo = a;

}

if( c>d )

{
if( c>v.hi )

v.hi = c¢;
if( d<v.lo )
v.lo = d;

}

else

{

if( d>v.hi )
v.hi = d;

if( c<v.lo )
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return( v );
}
INTERVAL vmul( a, b, v )
double a, b;
INTERVAL v;
{
return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo ) );

}

dcheck( v )
INTERVAL v;
{
if( v.hi >=0.&& v.lo <=0. )
{
printf( "divisor internal contains 0.\n" );
return( 1);
}
return( 0 );

}

INTERVAL vdiv( a, b, v )
double a, b;

INTERVAL v;

{

return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo ) );
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Backward compatibility

3-56

This section mentions synonyms and features that are supported for historical continuity
but, for various reasons, are not encouraged.

= Literals can also be delimited by double quotes.

» Literals can be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined just as if the literal did not
have the quotes around it. Otherwise, it is difficult to find the value for such a literal.

The use of multicharacter literals is likely to mislead those unfamiliar with vacc,
because it suggests that yacc is doing a job that actually must be done by the
lexical analyzer.

m  Most places where (%) is legal, the backslash (\) can be used. In particular, \\ is
the same as %%, \left thesameas $left,and soon.

»  There are a number of other synonyms:
isthesameas %left
isthesameas $right
binary isthesameas %nonassoc
isthe same as  %nonassoc
isthe sameas  %token
isthe same as  $token
isthesameas gprec

oe
A

\

o

N o0 o0 o0 o°
N

r'r
®
R
=

oe
]

= Actions can also have the form
={ ..}
and the braces can be dropped if the action is a single C language statement.

»  Clanguage code between %{ and %} used to be permitted at the head of the rules
section as well as in the declaration section.
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4 ma: A Macro Processor

Invoking m4 / 4-3

Defining macros / 4-3

Arithmetic built-ins / 4-9

I/O manipulation / 4-10

String manipulation / 4-14

Printing / 4-16

Executing system commands / 4-16
Interactive use of ma4 / 4-17
Recursive definitions / 4-17

Built-in macro summary / 4-19

The m4 macro processor is a general-purpose macro-processing utility. It can also be
considered to be an interpreter for the m4 language. The #define statement in the C
language is an example of the basic facility provided by any macro processor: the
replacement of some text by some (other) text. For several reasons, m4 is a more

powerful macro processor than the standard C preprocessor, cpp.



The basic operation of m4 is to read every alphanumeric token (string of letters and
digits) in the input and to determine whether the token is the name of a macro. The
name of a macro is replaced by its defining text and the resulting string is pushed back

onto the input to be rescanned.

In addition to the straightforward replacement of one string of text by another, the m4

macro processor also provides the following features:

arguments to macros

= arithmetic capabilities

= file manipulation

= conditional macro expansion
» string and substring functions

= recursive definitions

When a macro is called with arguments, the arguments are collected and substituted into

the right places in the defining text before the defining text is rescanned.

The m4 macro processor accepts user-defined macros as well as its “built-in” macros.
Both types of macros work exactly the same way, except that some of the built-in macros

have side effects on the state of the process.
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Invoking m4

To run m4, give the command

md files

Each argument file is processed in order. If there are no arguments, or if an argument is
-, the standard input is read at that point.

The processed text is written on the standard output. The output can be redirected for
subsequent processing, as follows:

md files > outputfile

Defining macros

The m4 macro allows you to define macros, remove their definition, have conditional
definitions, specify arguments in a definition, and many other tasks. This section outlines
important aspects of macro definition.

define

The primary built-in function of m4 is define. This function is used to define new
macros. The general form is

define (name, replacement)

All subsequent occurrences of name are replaced by replacement. The name must be
alphanumeric and must begin with a letter (the underscore (L) counts as a letter). The
replacement is any text that contains balanced parentheses. An escaped RETURN or an
embedded newline character allows a multiline replacement to be specified.

Defining macros ~ 4-3



44

The following is a typical example of the use of define, in which N is defined to
be the string 100 and is thenused inalater if statement:
define (N, 100)
if (i > N) echo "number too large"

The left parenthesis must immediately follow the word define to signal that define
has arguments. If a user-defined macro or built-in name is not followed immediately by
this character, the macro call is assumed to have no arguments.

Macro calls have the following general form:
name(argl, arg2, .., argn)

A macro name is recognized as such only if it appears surrounded by nonalphanumerics.
In the following example, the variable NNN  is absolutely unrelated to the defined macro
N, even though the variable contains a lot of N’s:

define (N, 100)

if (NNN > 100) echo "number too large"

Macros can be defined in terms of other macros. For example, the following defines
both M and N tobe 100.If N is redefined and subsequently changes, m retains the
value of 100, not N.
define (N, 100)
define (M, N)

The m4 macro processor expands macro names into their defining text as soon as
possible. The string N is immediately replaced by 100. The string v is then defined
to be 100. The overall result is the same as using the following input in the first place:
define (M, 100)

The order of the definitions can be interchanged as follows:
define (M, N)
define (N, 100)

Now u is defined to be the string N, so when the value of ™ is requested later, the
result is the value of N at that time (because the M is replaced by N, which is replaced
by 100).
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Quoting

The more general solution to the problem of making sure the correct strings get
substituted is to delay the expansion of the arguments of define by quoting them.
The quoting characters initially recognized by m4 are the left and right single quotes, (*
and *). Any text surrounded by left and right single quotes is not expanded
immediately but has the quotes stripped off. The value of a quoted string is the string
stripped of the quotes. If the input is
define (N, 100)
define (M, ‘N’)
the quotes around the N are stripped off as the argument is being collected. The result
of using quotes is to define M as the string N, notas 100.

The general rule is that m4 always strips off one level of single quotes whenever it
evaluates something. This is true even outside macros.

If the word define itself is to appear in the output, the word must be quoted in
the input as follows:

‘define’ = 1;

Another example of using quotes is to redefine a macro. To redefine N, the
evaluation must be delayed by quoting:
define (N, 100)
define (N’ , 200)

In m4, it is often wise to quote the first argument of a macro. The following example,
for instance, does not redefine n:

define (N, 100)
define (N, 200)

The N in the second definition is replaced by 100. The result is equivalent to the
following statement:

define (100, 200)

This statement is ignored by ma4, however, because only names that begin with an
alphanumeric character can be defined.
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changequote

If left and right single quotes are not convenient for some reason, the quote characters
can be changed with the following built-in macro:

changequote ([, ])

The built-in changequote makes the new quote characters the left and right
brackets. The original characters can be restored by using changequote without
arguments, as follows:

changequote

undefine

The undefine macro removes the definition of some macro or built-in as follows:
undefine ('N’)

The macro removes the definition of N. Built-ins can be removed with unde fine,
as follows:
undefine (‘define’)

Once removed, the definition cannot be reused.

ifdef

The built-in ifdef provides a way to determine whether a macro is currently defined.
Depending on the system, a definition appropriate for the particular machine can be
made as follows:
ifdef (‘pdpll’, ‘define(wordsize,16)’)
ifdef (‘u3b’, ‘define (wordsize,32)’)
Remember to use the quotes.
The ifdef macro actually permits three arguments. If the first argument is defined,
the value of ifdef isthe second argument. If the first argument is not defined, the
value of ifdef isthe third argument. If there is no third argument, the value of
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ifdef isnull. If the name is undefined, the value of ifdef isthen the third
argument, as in

ifdef (‘unix’, on UNIX, not on UNIX)

Arguments

User-defined macros can also have arguments, so different invocations can have different
results. Within the replacement text for a macro (the second argument of its define),
any occurrence of $#n is replaced by the nth argument when the macro is actually used.
Thus, the following macro, bump, generates code to increment its argument by 1:

define (bump, $1 = $1 + 1)
The statement
bump (x)
is equivalent to
x=x+1
A macro can have as many arguments as needed, but only the first nine are accessible
(1 through $9) (see “Built-In Macro Summary” under shift for more information).

The macro name is  $0, although that is less commonly used. Arguments that are not

supplied are replaced by null strings, so a macro can be defined that simply concatenates
its arguments like this:

define (cat, $1$2$3$45$5565$75859)
Thus,

cat (x, vy, 2z)

is equivalent to

Xyz

Arguments $4 through $9 are null, because no corresponding arguments are
provided. Leading unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white space is retained. Thus,

define(a, b c)

defines a tobe b c.
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Arguments are separated by commas; however, when commas occur within
parentheses, the argument is neither terminated nor separated. For example,
define(a, (b,c))
has only two arguments. The first argument is a. The second is literally (b, c). A bare
comma or parenthesis can be inserted by quoting it.

Three other constructions are useful in macro definitions:

S#

$ *

s@

During macro replacement, the construction $# is replaced by the number of arguments.
The $* construction is replaced by a list of the arguments separated by commas. The
construction $@ islike $* except that each argument is quoted (using the current
quotes). See the section “Recursive Definitions” for examples of the first two constructions.

ifelse

Arbitrary conditional testing is performed through the built-in macro ifelse.Inthe
simplest form,
ifelse(a, b, ¢, d)
compares the two strings aand b. If aand bare identical, ifelse returns the string c.
Otherwise, string d is returned. Thus, a macro called compare can be defined to
compare two strings and return yes or no if they are the same or different, as follows:
define (compare, ‘ifelse($1, $2, yes, no)’)

Note the quotes, which prevent evaluation of ifelse occurring too early. If the
fourth argument is missing, it is treated as empty. Thus,
ifelse(d, b, ©
is cif a matches b, and null otherwise.

ifelse can actually have any number of arguments and provides a limited form of
multiway decision capability. In the input
ifelse(a, b, ¢, d, e, [, Q
if the string a is the same as the string b, the result is ¢. Otherwise, if d is the same as e,

the result is /. Otherwise, the result is g. If the final argument is omitted and the specified
strings don’t match, the result is null.
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Arithmetic built-ins

The m4 program provides three built-in functions for doing arithmetic on integers (only):
incr
decr

eval

The simplest are incr, which increments its numeric argument by 1, and decr,
which decrements by 1. Thus, to handle the common programming situation where a
variable is to be defined as “one more than n,” use the following form:

define (N, 100)
define (N1, ‘incr(N)')

Then N1 is defined as one more than the current value of .

The more general mechanism for arithmetic is a built-in function called eva1, which
is capable of arbitrary arithmetic on integers. The operators in decreasing order of
precedence are shown in Table 4-1.

Parentheses can be used to group operations where needed. All the operands of an
expression given to eval must ultimately be numeric. The numeric value of a true
relation (like 1>0) is 1 and false is 0. The precision in eval is 32 bits under the A/UX
operating system.

Table 4-1 Arithmetic operators

Symbol Meaning

+ - Unary plus and minus

*EA Exponentiation

* /% Multiplication and division
+= Binary plus and minus

= l= < <= > >= Relational operators

! Logical negation (NOT)

& && Logical multiplication (AND)

Il Logical addition (OR)
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As a simple example, define M tobe 2==N+1 using eval as follows:
define (N, 3)
define (M, ‘eval (2==N+1)")
First N is defined as 3; then M is defined as 0, since 2 is not equal to N+1.If M were
defined as
define (M, ‘eval (2==N-1)")
then its defined value would be 1, because the result of the comparison would be true.

The defining text for a macro should be quoted unless the text is very simple.
Quoting the defining text usually gives the desired result and is a good habit to get into.

I/0 manipulation

410

The m4 utility provides numerous functions to handle input and output. These routines
are detailed in this section.

include and sinclude

A new file can be included in the input at any time by the built-in function include.
For example,

include (filename)

inserts the contents of filename in place of the include command. The contents of
the file are often a set of definitions. The value of include (the replacement text of
include) is the contents of the file. If needed, the contents can be captured in
definitions, and so on. A fatal error occurs if the file named by filename cannot be
accessed. To get some control over this situation, you can use the alternate form,
sinclude, or quote the filename. The built-in sinclude (silent include) says
nothing and continues if the file named cannot be accessed.
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divert, undivert,aﬂd divnum

The output of m4 can be diverted to temporary files during processing, and the
collected material can be generated upon command. The m4 program maintains nine of
these diversions, numbered 1 through 9. If the built-in macro

divert (n)

is used, all subsequent output is put onto the end of a temporary file referred to as .
Diverting to this file is stopped by the divert or divert (0) command, which
resumes the normal output process.

Diverted text is normally produced all at once at the end of processing with the
diversions produced in ascending numerical order. Diversions can be brought back at
any time by appending the new diversion to the current diversion. Output diverted to a
stream other than 0 through 9 is discarded. The following code, for example, throws
away excess newlines:

(-1)

define(N, 100)

define (M, 200)
(L, 300)

divert

define

divert

¢ Note The newline character at the end of each define is passed to the output, as
described in the following section. &

The built-in macro undivert, with no arguments, brings back all diversions in
numerical order. With arguments, undivert brings back the selected diversions in the
order specified by the argument. undivert discards the diverted text. You can also
discard text by using a diversion number that is not between 0 and 9, inclusive.

The value of undivert is notthe diverted text, but rather the number of the
diversion to bring back into the text. Furthermore, the diverted material is not rescanned
for macros.
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Asan example of the interaction between divert, undivert,and current
diversion, consider the following code:
this is current diversion
divert (1)
this is diversion 1
divert (2)
this is diversion 2
divert (3)
this is diversion 3
divert
this is current diversion again
undivert
once again, current diversion
In the above trivial code there are three diversions between the two lines of current
diversion code. The use of divert atthe end of diversion 3 is needed to inform m4
that what follows is not part of diversion 3. undivert with no arguments inserts at the

current position all previous diversions, with no rescanning of any macros that might be
there. The output of the above code is

this is current diversion

this is current diversion again
this is diversion 1

this is diversion 2

this is diversion 3

once again, current diversion
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Note that the diverted text is not brought back again at the end of the output by the
normal process; the diverted text is discarded by the use of undivert. Another
example can make this clearer: |
this is main diversion
divert (1)
this is diversion 1
divert (2)
this is diversion 2
divert (3)
this is diversion 3
divert
this is main diversion again
undivert (3)
once again, main diversion
undivert (2)

The ouput for the above is

this is main diversion

this is main diversion again
this is diversion 3

once again, main diversion
this is diversion 2

this is diversion 1

As you can see, only diversion 1 is brought back by the normal process, because only
diversion 1 is not undiverted and, therefore, discarded. Note also that you can change the
order of appearance of the diverted versions.

The built-in macro divnum returns the number of the currently active diversion.
The current output stream is 0 during normal processing.
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dnl

There is a built-in macro called dan1 that deletes all characters that follow it, up to and
including the next newline. The dnl macro is useful mainly for throwing away empty
lines that otherwise tend to clutter up m4 output. Using input

define(N, 100)

define (M, 200)

define(L, 300)

results in a newline at the end of each line that is not part of the definition. The newline
is copied into the output so that each define statement is followed by a blank line. If
the built-in macro dn1 is added to each of these lines, the newlines disappear.
define (N, 100)dnl

define (M, 200)dnl

define (L, 300)dnl

String manipulation

4-14

The m4 utility provides numerous functions to handle string manipulation. These
routines are detailed in this section.

len

The built-in macro 1en returns the length of the string (number of characters) that
makes up its argument. Thus,

len (abcdef)

is 6, and

len((a,b))

is 5 (the parentheses and comma are counted along with a and b).
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substr

The built-in macro substr can be used to produce substrings of strings. The input
substr (s, i, )

returns the substring of s that starts at the ith position (origin 0) and is # characters long.
If nis omitted, the rest of the string is returned. For example,

substr (‘now is the time’,1)
returns the following string;:
ow is the time.

If i or nis out of range, various actions occur.

index and translit

The built-in macro index returns the index (position) in one string where the first
character of another given string occurs, or -1 if it does not occur. It is written as

index (s8I, $2)

where s1 is the string to be searched and s2 s the string to be searched for. As with
substr, the origin for strings is 0.

The built-in macro translit performs character transliteration and has the
general form

translit(s, f, b

which modifies s by replacing any character found in /by the corresponding character of
t. Using

translit (s, aeiou, 12345)

replaces the vowels by the corresponding digits. If ¢ is shorter than f, characters that do
not have an entry in fare deleted. As a limiting case, if ¢is not present at all, characters
from fare deleted from s. So,

translit (s, aeiou)

deletes vowels from s.
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Printing

This section details the m4 routines for printing.

errprint
The built-in macro errprint writes its arguments out on the standard error file. An

example is

errprint (‘fatal error’)

dumpdef

The built-in macro dumpdef is a debugging aid that dumps the current names and
definitions of items named as arguments. If no arguments are given, then all current
names and definitions are printed. Remember to quote the names.

Executing system commands

This section describes the m4 routines that execute system commands.

syscmd and maketemp

Any program in the local operating system can be run by using the built-in macro
syscmd. For example,

syscmd (date)

on the A/UX system runs the date command. Normally, syscmd is used to create a
file for a subsequent include.

To facilitate making unique filenames, the built-in macro maketemp is provided
with specifications identical to the system function mktemp. The maketemp macro
fills in a string of xxxxx in the argument with the process ID of the current process.
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Interactive use of m4

The input to m4 can come from a file, the standard input, or both. Thus, it is possible to
use m4 interactively, by telling it to take its input from the standard input. There are
several ways to do this. The simplest is to invoke m4 as follows:

mé
At this point, m4 reads from the standard input.

If you have an existing set of m4 commands stored in a file, you can instruct m4 to
process those commands first by invoking it as

m4_ﬂk -
The minus sign is required here to instruct m4 to read file and then the standard input.

Alternatively, if you invoke m4 using just the m4 command with no arguments, you
cantell ma to fetch the set of commands from file by typing the following line:

include (file)

The effect is the same in both cases.

Recursive definitions

Since m4 rescans any text that arises from the replacement of a macro by its defining
text, it is possible to construct recursive macro definitions. That is, it is perfectly legal to
define a macro in terms of itself. As with any well-constructed recursive definition,
however, you must take care that the definition has a well-defined stopping point.
Generally, this is easy to do with the ifelse command.

For instance, suppose that you need a macro that returns its last argument and
discards the rest. You might write the following definition:

define (last,
Vifelse ($#,1,5$1, ‘last(shift ($*))’)’)

When there are multiple arguments, 1ast drops the first argument and then calls
itself to look for the last argument in the remaining argument list. This definition is well
behaved because when there is only one argument, it alone is returned.
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A more interesting example is the following definition of the factorial function:

define (fact,

‘ifelse($1,1,1, ‘eval ($1*fact(decr($1)))’)’)
If you give m4 the following input,

The factorial of 1 is fact(l).
The factorial of 2 is fact (2)
The factorial of 3 is fact(3).
The factorial of 4 is fact (4)
The factorial of 5 is fact (5)
The factorial of 6 is fact(6).
The factorial of 7 is fact (7).

The factorial of 8 is fact(8).
you get the following output:
The factorial of 1 is 1.
The factorial of 2 is 2.
The factorial of 3 is 6.
The factorial of 4 is 24.
The factorial of 5 is 120.
6 is 720.
7 is 5040.
The factorial of 8 is 40320.

The factorial of

The factorial of

Finally, you might want to define a recursive macro with two arguments. The
standard power function serves nicely:
define (pow,
‘ifelse($2,1,%1, ‘eval ($S1*pow($1,decr($2)))’)’)
If you then give m4 the following input,
to power 1 is pow(3,1).
to power is pow(3,2).
to power is pow(3,3).
to power is pow(3,4).

to power is pow(3,5).

w W w w w w
o oW N

to power is pow(3,6).
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3 to power 7 is pow(3,7).

3 to power 8 is pow(3,8).
you get

3 to power 1 is 3.

3 to power 2 is 9.

3 to power 3 is 27.

3 to power 4 is 81.

3 to power 5 is 243.

3 to power 6 is 729.

3 to power 7 is 2187.

3 to power 8 1is 6561.

Built-in macro summary

The following items are m4 built-in macros:

changecom  Changes left and right comment markers from the default # and
newline. With no arguments, the comment mechanism is disabled.
Comment markers can be up to five characters long.

changequote Changes quoting symbols to the first and second arguments. The
symbols can be up to five characters long. With no arguments, this
macro restores the original quote characters.

decr Returns the value of its argument decremented by 1.

define Defines new macros.

defn Returns the quoted definition of its arguments.

divert Diverts output to one of ten diversions (named 0 through 9).

divnum Returns the number of the currently active diversion.

dnl Reads and discards characters up to and including the next newline.

dumpdef Dumps the current names and definitions of items named as arguments.
With no arguments, definitions of all current macros are dumped.

errprint Prints its arguments on the standard error file.

eval Performs arbitrary arithmetic on integers.
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ifdef
ifelse

include

incr

index

len
mdexit
mdwrap
maketemp

popdef

pushdef
shift

sinclude

substr
syscmd
sysval
traceoff
traceon
translit
undefine
undivert

unix

Determines whether a macro is currently defined.
Performs arbitrary conditional testing.

Returns the contents of the file named in the argument. A fatal error
occurs if the file named cannot be accessed.

Returns the value of its argument incremented by 1.

Returns the position where the second argument begins in the first
argument.

Returns the number of characters that make up its argument.
Causes immediate exit from m4.

Pushes the exit code back at final end-of-file (EOF).
Facilitates making unique filenames.

Removes the current definition of its arguments, exposing any
previous definitions.

Defines new macros but saves any previous definition.
Returns all arguments except the first argument.

Returns the contents of the file named in the arguments. The macro
remains silent and continues if the file is inaccessible.

Produces substrings of strings.

Executes the A/UX system command given in the first argument.
Gives the exit value of the most recent system command.

Turns the macro trace off,

Turns the macro trace on.

Performs character transliteration.

Removes user-defined or built-in macro definitions.

Discards the diverted text.

Null; indicates that the underlying system is derived from the UNIX
operating system.
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lex isa program generator that produces a program in a general-purpose language that
recognizes regular expressions. It is designed for lexical processing of character input

streams. It accepts high-level, problem-oriented specifications for character string matching.



5-2

Inputto lex is a table of regular expressions and corresponding program fragments.
The table is translated to a program that reads an input stream, copies the input stream to
an output stream, and partitions the input into strings that match the given expressions.

As each such string is recognized, the corresponding program fragment is executed.

The recognition of the regular expressions is performed by a deterministic finite
automaton generated by 1ex. The program fragments are executed in the order in

which the corresponding regular expressions occur in the input stream.

The code written by 1ex is not itself a complete language, but rather a generator
representing a new language feature that can be added to different programming
languages, called host languages. For example, one high-level language can be used for

recognizing patterns, while a more general-purpose language is used for action statements.

The lex program generator can be used alone for simple transformations or for
analysis and statistics gathering on a lexical level. The 1ex generator also can be used

with a parser generator (for example, yacc) to perform the lexical analysis phase.

Just as general-purpose languages can produce code to run on different computer
hardware, 1ex can write code in different host languages. The host language is used
for the output code generated by 1ex and the program fragments that comprise the

lex source program.

Compatible run-time libraries for the different host languages are provided, making 1ex
adaptable to many environments and users. However, at present, the only supported

host language is the C language.
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Overview of 1ex usage

The program generated by lex iscalled yylex.The yylex program recognizes
expressions in an input stream and performs the specified actions for each expression as
it is detected. See Figure 5-1.

For example,

oe
oe

[ \tl+s

This sample lex source program is all that is required to generate a program to delete
all blanks or tabs at the ends of the input lines. The %% delimiterisa 1ex convention
to mark the beginning of the rules, the pattern-matching expressions. The rule itself,

[ \E]+S$

matches one or more instances of the characters blank and tab. The brackets enclose the
character class consisting of blank and tab; the + indicates “one or more instance of the
previous characters or character class” and the $ indicates end-of-line. No action is
specified, so the yylex () program (generated by 1ex) ignores these characters.
Everything else is copied.

C> lex :> yylex

Source

|:> yylex |:J>

Input Output
Figure 5-1 Overview of lex
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Consider this next example:
%
[ \E]+$
[ \tl+ printf(" ");

o°

The coded instructions in yylex scan for both rules at once. Once a string of blanks or
tabs is recognized, yylex determines whether the string is followed by a newline
character. If it is, then the first rule has been matched so that the corresponding action is
performed; yylex does not copy the string to output. The second rule matches strings
of one or more blanks and tabs not already satisfying the first rule, and causes yy1lex
to replace a string of one or more blanks and tabs with a single space.

In yylex, the program generated by 1ex, the actions to be performed as each
regular expression is found are gathered as cases of a switch. The automaton interpreter
directs the control flow. It is possible to insert either declarations or additional statements
in the routine containing the actions and to add subroutines outside this action routine,
should you need to do so.

The lex program generator is not limited to one-character look-ahead. For
example, if there are two rules, one looking for ab and another for abcdefg, and the
input stream is abcdefh, lex recognizes ab and leaves the input pointer just
before cdefh.

lex and yacc

5-4

It is particularly easy to use lex and yacc together. The lex program recognizes
only regular expressions; yacc writes parsers that accept a large class of context-free
grammars but requires a lower level analyzer to recognize input tokens. Thus, a
combination of lex and yacc is often appropriate. When used as a preprocessor for
a later parser generator, lex isused to partition the input stream; the parser generator
assigns structure to the resulting pieces. The flow of control in such a case is shown in
Figure 5-2. Additional programs, written by other generators or by hand, can be added
easily to programs written by 1ex. The name “yylex” iswhat yacc expects its
lexical analyzer to be named. If 1ex uses this name, it simplifies interfacing.
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Lexical Grammar
rules rules

J

yacc

|:|’> yylex |::> yyparse E:>

Input Output
Figure 5-2 lex with yacc

Touse lex with yacc, observe that lex writes a function named yylex,
which is the name required by yacc for its analyzer. Normally, the default main
programon the lex library calls the yylex routine, butif yacc isloaded and its
main program is used, yacc calls yylex.In thiscase, each 1ex rule ends with

return (token) ;
where the appropriate token value is returned. An easy way to gain access to the names

for tokens in yacc isto compile the 1ex output file as part of the yacc output file
by placing the line

#include "lex.yy.c"
in the last section of the yacc input. If the grammar is to be named good and the
lexical rules are to be named better, the command sequence could be
yacc good
lex better
cc y.tab.c -ly -11
The vacc library (-1y) should be loaded before the 1ex library to obtain a main

program that invokes the yacc parser. The generations of lex and yacc programs
can be done in either order.
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Program syntax

5

6

The general format of 1ex inputis
{ definitions }

o
o

oe

rules 3

o ~

{ user subroutines }
where the definitions and the user subroutines are often omitted. The first %% is

required to mark the beginning of the rules, but the second %% is optional. The
absolute minimum lex program is

oe
o

This 1ex source generates a program that copies the input to output unchanged.

Inthe lex program format just shown, the rules consist of two parts:

» 2 left column with regular expressions

= aright column with actions and program fragments to be executed when the
expressions in the left column are recognized

For example,
integer printf ("found keyword INT");

The sample rule mentioned earlier gives the instructions to look for the string integer
and, when found, produces the statement

found keyword INT
In this example, because the host procedural language is C, the C language library
function printf isused to print the string.

The end of the expression is indicated by the first blank or tab character. If the action
is a single C language expression, it can just be given in the right column, as illustrated in
the example. If the action is compound or requires more than one line, it should be
enclosed in braces. Consider the following example:
colour printf ("color");
mechanise printf ("mechanize");

petrol printf("gas");
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This 1ex source segment could be used to generate a program to change a number of
words from British to American spelling. It should be noted, however, that these rules
would have to be changed somewhat to be really useful. For example, if the word
petroleum appeared in the input stream, the program generated by this segment
would change itto gaseum.

Character set

Internally, a character is represented as a small integer. If the standard library is used, the
value of a character is equal to the integer value of the bit pattern representing the
character on the host computer. For example, the character 2 has the value \101 (octal)
in ASCIL

Of course, you need not use the integer value of a character to access the value. The
character a is represented in the same form as the character constant *a . If this
interpretation is changed by providing I/O routines that translate the characters, 1ex
must be given a translation table that is in the definitions section of the source, and this
translation table must be bracketed by lines containing only %T. The translation table,
then, contains lines of the form

oe

T
{ integer } { character string }
T

which indicate the value associated with each character.

Character classes

Classes of characters can be specified using the operator pair [ and ]. For example,
the construction [abc] matches a single character, which canbe a, b, or c.
Within brackets, most operator meanings are ignored. Only three characters are special:
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The - character indicates a range. For example,
[a-2z0-9<>_]

specifies the character class containing all the lowercase letters (a to z), digits (0
through 9), angle brackets (< and >), and the underline character ().

Using - between any pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is sometimes acceptable to 1ex, but this is
implementation-dependent. (It works on A/UX;, but it might not be portable to other
systems.) Therefore, if such a range is declared, 1ex issuesa warning message. One
reason for this is that [0-z] matches many more characters in ASCII than in EBCDIC.

If it is necessary to include the character - in a character class, it should either be
first or last within the brackets. For example,

[-+0-9]
matches all digits (0 through 9) and the two symbols - and +.

The \ character acts as an escape character within class brackets. For example,
[a-z\*]
matches all lowercase letters (a to z) andthe character *.

Ifthe ~ operator appears as the first character after the left bracket, 1ex ignores
the characters within the brackets, therefore matching all characters except those within
the designated character class range. If an operation is to be performed on recognition of

a string expressed using this construction, it is done on strings other than those within
the brackets. For example,

[~abc]

matches all characters except a, b, or c, including all special and control characters.
Also,

[ra-zA-Z]
matches any character that is nota letter (neither in the range a through z nor in the
range A through 2).
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Arbitrary characters

There are several other ways to specify characters to 1ex. The period operator (. )
instructs 1ex to match any character except a newline. The meaning of the period does
not change within brackets.

Also, all characters and ranges can be designated using the octal representations of
those characters. This method, however, is difficult to read and most likely not portable.
Nonetheless, the character class range

v

[\40-\176]

can be used to match all printable ASCII characters from octal 40 (blank) to octal 176
(tilde:~).

Operators

The operator characters are
"NT -2 o () S/ {8 <>

If these are to be used as text characters, an appropriate “escape” should be used. For
example, to get the character \, you must escape its significance as an operator. You can
do so easily with another backslash: \\. For more information on escaping, refer to
A/UX Shells and Shell Programming.

The quotation mark operator (") indicates that whatever characters follow, up to a
second " character, are to be taken as text characters without any “magic” meaning or
operator significance. The quotation mark, then, is another way to escape the special
meaning of a character. For example,

xXyz"++"

matches the string xyz++ wherever it appears. Of course, it is unnecessary, though
harmless, to quote an ordinary text character. Consequently, the expression

"Xy Z++"

is equivalent to the one that quoted only the ++. However, by quoting every character
being used as a text character, you can avoid remembering the list of current operator
characters, and avoid problems should further extensions to 1ex lengthen the list.

Another use of the quoting mechanism is for forcing a blank into an expression.
Normally, as explained earlier, blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted.
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There is also a third way to match the literal value of these operators, using the \
escape character. You could specify the string discussed earlier as

xyz\+\+
Several C language escapes using \ are recognized:

\n newline
\t tab

\b backspace
\\ backslash

Since newline is illegal in an expression, \n must be used.

Recall that the basic format of a 1ex source is
{ definitions }

%

oe

rules }

o0

[
o

{ user subroutines }

In addition to the rules (discussed later), 1ex includes options to define variables.
Variables can occur either in the definitions section or in the rules section.

Remember, lex is generating the rules into a program, and any source not
intercepted by 1ex is copied into the generated program. Also,

= Any line not part of a 1ex rule or action and that begins with a blank or tab is
copied into the 1ex generated program.

m  Any line not part of a 1ex rule or action that begins with a blank or tab and is
found prior to the first %% delimiter is “external” to any function in the code.

= Any line not part of a 1ex rule or action that begins with a blank or tab and is
found immediately after the first $% appears in an appropriate place for declarations
in the function written by 1ex that contains the actions. This material must look like
program fragments and should precede the first 1ex rule.
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= Lines that begin with a blank or tab, and that contain a comment, are passed
through to the generated program. This can be used to include comments in either
the 1ex source or the generated code. The comments should follow the host
language convention.

= Anything included between lines containing only %{ and %} is copied to output. The
delimiters are discarded. This format permits entering text-like preprocessor statements
that must begin in column 1, or copying lines that do not look like programs.

®  Anything after the third %% delimiter, regardless of formats, and so on, is copied to
output afferthe lex output.

Definitions intended for 1ex are given before the first 2% delimiter. Any line in
this section not contained between %{ and %} and beginning in column 1 is assumed
to define 1ex substitution strings. The format of such lines is

name translation

This facility enables the string given as translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and the name
must begin with a letter. The translation can be called by the {name} syntax in a rule.
Using {D} forthe digitsand {E} foran exponent field, you might have
D [0-9]

E [DEde] [-+]1?2{D}+

%%

{D}+ printf ("integer") ;
{D}+"."{D}*({E})? |
{D}y*"."{D}+({E})? l

{D}+{E} printf("real");

This example abbreviates rules to recognize numbers. The first two rules for real
numbers both require a decimal point and contain an optional exponent field. The first
requires at least one digit before the decimal point ({D}+". " {D}* ({E}) 2), and the
second requires at least one digit after the decimal point ({D}*" . " {D}+ ({E})?). To
correctly handle the Fortran expression 35.EQ. I, which does not contain a real
number, a context-sensitive rule such as

[0-9]+/"."EQ printf("integer");
could be used, in addition to the normal rule for integers (see “Context Sensitivity”).
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The definitions section also can contain other commands, including the selection of a
host language, a character set table, a list of start conditions, or adjustments to the default
size of arrays within 1ex itself for larger source programs.

Repetitions and definitions

The operators { and } specify either

»  repetitions (if they enclose numbers)

= definition expansion (if they enclose a name)

For example,
{digit}
looks for a predefined string named digit and inserts it at that point in the

expression. The definitions are given in the first part of the 1ex input, before the rules.
On the other hand, the expression

af{l,5}
looks for one to five occurrences of a.

Aninitial % is not an ordinary character, but has a special meaningto lex as the
separator for source program segments.

Regular expressions

The regular expressions in 1ex function just as do those in the A/UX text editors v1,
ed, and so on. A regular expression specifies a set of strings to be matched. It contains
“text characters,” which match characters in the input stream, and “operator characters,”
which, together with those “text characters,” express a string that is to be recognized
before the action in the right column takes place.
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Letters of the alphabet and digits are always text characters. For example,
integer
matches the string integer wherever it appears, and the expression
a57D

looks for the string a57D.

Optional expressions

The question mark (?) operator indicates that what immediately precedes it is an

optional element of an expression. Thus,
abrc

matches either ac or abec.

Repeated expressions

Repetitions of classes are indicated by the operators * and +. The expression
a *

matches zero or more consecutive a characters. The expression

a+

matches one or more instances of a characters. The expression

[a-z]+

matches all strings of lowercase letters. The expression

[A-Za-z] [A-Za-z0-9]*

matches all alphanumeric strings that have a leading alphabetic character. This is a typical

expression for recognizing identifiers in computer languages.
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Alternation and grouping

The operator | indicates alternation. For example,
(ablcd)

matches either ab or cd. The parentheses are used here for grouping only. They are
not required in such a simple and clear-cut example, but are often used for clarity or to
force correct interpretation of more complex expressions. For example,
(ablcd+) 2 (ef) *

matches such strings as

abefef
efefef
cdef
cddd

but not
abc

abcd
abcdef

Context sensitivity

The lex program recognizes a small amount of surrounding context. The two simplest
operators for this are ~ and .

As in the A/UX text editors, if the first character of an expression is *, the expression
is matched only if found at the beginning of a line, either after a newline character or at
the beginning of the input stream. Do not confuse this with the use of the ~ operator
within brackets, which instructs 1ex to match any character except those in the
designated character class range. If you want to use 1ex to find occurrences of a
particular range of characters, but only if they occur as the first character on a line, you
must use the ~ operator on the outside of the brackets. For example, the expression

~10-9]

matches lines whose first character is a digit, 0 through 9. The expression
A [ ~0-9 ]

matches lines whose first character is not a digit 0 through 9.
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The operator ¢ is matched only at the end of a line, immediately followed by
newline. This operator is a special case of the / operator character, which indicates
“trailing context.” The expression

ab/cd

matches the string ab only if followed by cd. Therefore, the expression
abs

can also be expressed

ab/\n

That is, the use of the ¢ operator can be interpreted as an instruction to match the
characters only when followed by a newline.

Left context is handled in 1ex by “start conditions.” If a rule is only to be executed
when the 1ex automaton interpreter is in start condition x, the rule should be
enclosed within the angle-bracket operator characters:

<X>

If “being at the beginning of a line” is considered to be start condition ONE, then the ~
operator is equivalent to

<ONE>

See the sections entitled “Left Context Sensitivity,” “Examples,” and “Summary” for
further explanation and illustration of start conditions.

Left context sensitivity

Sometimes it is desirable to have several sets of lexical rules applied at different times in
the input. For example, a compiler preprocessor might distinguish preprocessor
statements and analyze them differently from ordinary statements. This requires
“sensitivity” to prior context. There are several ways of handling such occurrences. For
example, the ~ operator is a “prior context operator” because it must recognize the
immediately preceding left context to discern whether a character appears at the
beginning of a line, just as the $ operator must recognize the immediately following
right context to discern whether a character appears at the end of a line.

Adjacent left context can be extended to produce a facility similar to that for adjacent
right context. This is likely to be less useful, however, since often the relevant left
context, such as the beginning of a line, appeared some time earlier.
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There are three basic ways of dealing with different environments so as to achieve a
lexical analysis with a greater degree of context sensitivity.

»  The use of flags. This is most useful when only a few rules change from one
environment to another.
m  The use of start conditions on rules.

= The possibility of making multiple lexical analyzers all run together. If the sets of rules
for the different environments are very dissimilar, clarity might best be achieved by
writing several distinct lexical analyzers and switching from one to another, as necessary.

In each case, there are rules that recognize the need to change the environment in
which the following input text is analyzed and a parameter is set to reflect the change.
The remainder of this section describes in greater detail the first two ways of dealing with
different environments.

Flags
The simplest way of changing the environment in which input is analyzed is by use of a

Slag explicitly tested by the user’s action code. If done in this way, lex is not involved
atall.

To illustrate, consider the following program requirements:

= Copy the input to the output.

» Change the word magic to first on every line that begins with the letter a.
» Change magic to second on every line that begins with the letter b.

» Change magic to third on every line that begins with the letter c.

All other words and all other lines are left unchanged. These rules are so simple that the
easiest way to do this job is with a flag. For example,

int flag.
~a {flag = ’a’; ECHO;}
b {flag = 'b’; ECHO;}
~c {flag = ‘c’; ECHO;}
\n {flag = 0 ; ECHO;}
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magic {
switch (flag)
{

case ’'a’': printf("first"); break;
case 'b’: printf("second"); break;
case ‘c’: printf("third"); break;

default: ECHO; break;

Start conditions

It might be more convenient to have lex “remember” the flags as start conditions on
the rules. Any rule can be associated with a start condition. That rule, then, is recognized
only when 1lex is in that start condition. The current start condition can be changed at
any time. To handle the same problem using start conditions, begin by introducing each
start condition to 1ex in the definitions section with a line reading

$Start namel namel ...

where the conditions (namel, name2, and so on) can be named in any order. The
word Start canbe abbreviatedto s or s. Then, to reference the conditions, use
angle brackets:

<namel> expression

The rule illustrated earlier is recognized only when lex is in the start condition
namel. To enter that start condition, execute the following action statement:

BEGIN namel;
The action statement
BEGIN 0;

resets the initial condition of the 1ex automaton interpreter.
A rule can be active in several start conditions. For example,

<namel , name2, name3> expression

is a legal expression. Any rule not beginning with the < prefix operator is always active.
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The following example illustrates the use of start conditions:

$START AA BB CC

oe
oe

>
Q

{ECHO; BEGIN 2A;}

~b {ECHO; BEGIN BB;)

e {ECHO; BEGIN CC;}

\n {ECHO; BEGIN 0;}

<AA>magic printf("first");

<BB>magic printf("second");

<CC>magic printf("third");

Obviously, this example is a rewrite of the previous example; the problem-solving logic
is exactly the same. However, in this case 1ex was instructed to do the work instead of
the host language code.

Ambiguous rules

The 1ex program can handle ambiguous specifications. When more than one
expression can match the current input, the longest match is preferred, among rules that
matched the same number of characters, the rule given first is preferred. For example,
using the rules

integer  keyword-action ;

la-z]+ identifier-action ;

(if the input were integers), lex interprets the input as an identifier because
[a-z]+ matches all eight characters (including the final s), while integer matches
only seven characters.

If the input were integer, both rules would match the seven characters. In that
case, lex selects the keyword rule because it was given first. If the input were anything
shorter (for example, int), the input would not match the expression integer. It
would, however, match the [a-z]+ expression, so the identifier interpretation would
be used.
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Actions

The principle of preferring the longest match makes rules containing expressions like
.* dangerous. For example,

’ * 7

appears to instruct 1ex to find a match for a string in single quotes. However, it is an
instruction for the program to read far ahead looking for a distant single quote. For
example, if the above expression were given the following input:

"first’ quoted string here, ’'second’ here
the expression would match almost the entire input line:
'first’ quoted string here, ‘second’

which is most likely ot the desired result. A better rule for matching strings within single
quotes might be

’ [/\ r \n] *x 7
which, given the same input, matches * first ‘. The consequences of errors like this

are greatly lessened by the fact that the period (. ) operator does not match newline.
Expressions like . * stop on the current line.

¢ Note Do not try to defeat the protection of . not matching the newline character
with expressions such as [.\n]+ oran equivalent, because the program generated by
lex then tries to read the entire input file, causing internal buffer overflows.

When an expression written as the previous one is matched, vylex executes the
corresponding action. The default action for yylex isto copy input to output, and is
performed on all strings not otherwise matched. Therefore, a rule that merely copies can
be omitted. If you want to absorb the entire input without producing any output, you
must provide rules to match everything. (When yylex isbeingused with yacc, this
is the normal situation.) In other words, by default, a character combination in input that
was omitted from the rules is printed on the output.
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The null statement

One of the simplest things that can be done is to ignore t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>