
A/UX Programming 
Languages and Tools 
Volume 2 

Release 3.0 



LIMITED W ARRAN1Y ON MEDIA AND REl'IACEMENT 

If you discover physical defects in the manuals distributed with an Apple product or in the media on which a 
software product is distributed, Apple will replace the media or manuals at no charge to you, provided you 
return the item to be replaced with proof of purchase to Apple or an authorized Apple dealer during the 90-
day period after you purchased the software. In addition, Apple will replace damaged software media and 
manuals for as long as the software product is included in Apple's Media Exchange Program. While not an 
upgrade or update method, this program offers additional protection for up to two years or more from the 
date of your original purchase. See your authorized Apple dealer for program coverage and details. In some 
countries the replacement period may be different; check with your authorized Apple dealer. 

All IMPLIED WARRANTIES ON THE MEDIA AND MANUAIS, INCLUDING IMPLIED WARRANTIES OF 
MERCHANTABIUTY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO 
NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT. 

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, EI111ER EXPRESS, OR IMPLIED, WI11I RESPECT TO 
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABIUTY, OR FITNESS FOR A PARTICULAR 
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE 
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE. 

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN IBE SOFTWARE OR ITS 
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no 
liability for any programs or data stored in or used with Apple products, including the costs of recovering 
such programs or data. 

THEW ARRANTY AND REMEDIES SET FORIB ABOVE ARE EXCLUSIVE AND IN LIEU OF All 
OIBERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is 
authorized to make any modification, extension, or addition to this warranty. 

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or 
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you 
specific legal rights, and you may also have other rights which vary from state to state. 



9 Apple Computer, Inc. 

© 1992, Apple Computer, Inc. and UniSoft Corporation. All rights reserved. 

Portions of this document have been previously copyrighted by AT&T Information Systems and the 
Regents of the University of California, and are reproduced with pennission. Under the copyright laws, this 
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same 
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original. 
Under the law, copying includes translating into another language or format. 

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" logo (Option­
Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark 
infringement and unfair competition in violation of federal and state laws. 

Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, CA 95014-6299 
(408) 996-1010 

Apple, the Apple logo, APDA, AppleShare, AppleTalk, A/UX, EtherTalk, Image Writer, LaserWriter, 
LocalTalk, Macintosh, MacTCP, MPW, MultiFinder, SANE, and TokenTalk are trademarks of Apple 
Computer, Inc., registered in the United States and other countries. 

Apple Desktop Bus, Finder, MacX, QuickDraw, ResEdit, and SuperDrive are trademarks of Apple 
Computer, Inc. 

Adobe, Adobe Illustrator, and Postscript are registered trademarks of Adobe Systems Incorporated. 

cdb is a trademark of Third Eye Software, Inc. 

DEC, Internet, PDP-11, VAX, and VTlOO are trademarks of Digital Equipment Corporation. 

Electrocomp 2000 is a trademark of Image Graphics, Inc. 

IBM is a registered trademark, and System 370 is a trademark, of International Business Machines Corporation. 

ITC Garamond and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation. 

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation. 

Motorola is a registered trademark of Motorola Corporation. 

NFS, SP ARC, and SUN are trademarks of Sun Microsystems, Inc. 

NuBus is a trademark of Texas Instruments. 

QuarkXPress is a registered trademark of Quark, Inc. 

UNIX is a registered trademark of UNIX System Laboratories, Inc. 

X Window System is a trademark of Massachusetts Institute of Technology. 

Zilog is a registered trademark of Zilog, Inc. 

Simultaneously published in the United States and Canada. 

Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor 
a recommendation. Apple assumes no responsibility with regard to the performance or use of these products. 





Contents 

Figures, Tables, and Listings I xvii 

About This Guide I xxi 

Who should use this guide I xxi 
What you need to know I xxi 
What's covered in this guide I xxii 
Where to go for more information I xxii 
How to use this guide I xxiii 
Conventions used in this guide I xxiii 

Keys and key combinations I xxiii 
Terminology I xxiv 
The Courier font I xxiv 
Font styles I xxv 
A/UX command syntax I xxv 
Manual page reference notation I xxvi 

For more information I xxvii 

1 Overview of Programming Tools I 1-1 

Program development tools I 1-2 
Program structure: cb I 1-2 
Execution: cflow and prof I 1-2 
Processing: m4, lex, and yacc I 1-3 
Debugging: nm and od I 1-3 



File manipulation tools I 1-4 
File characteristics: size, diff, and corrun I l-4 
Maintenance: make, SCCS, and ar I l-5 
A file-processing language: awk I l-6 

Math functions: de and be I 1-6 
Screen-oriented tools: curses and Commando I 1-6 

Part 1 Program Development Tools 

2 Programming Tools I 2-1 

Improving C program structure: cb I 2-2 
Generating a C flowgraph: c fl ow I 2-2 
Displaying profile data: prof I 2-2 
A C language preprocessor: cpp I 2-3 
Finding a function definition quickly: ctags I 2-4 
Sharing strings from C programs: xstr I 2-4 
Printing the symbol table for a COPP file: nm I 2-5 
Obtaining an octal dump of a file: od I 2-5 

3 yacc: A Compiler-Writing System I 3-1 

Usage I 3-3 

vi Contents 

Basic specifications I 3-6 
Actions I 3-8 
Lexical analysis I 3-12 
Parser operation I 3-14 
Ambiguity and conflicts I 3-19 
Precedence I 3-23 
Error handling I 3-27 
The yacc environment I 3-29 
Input style I 3-31 
Left recursion I 3-31 
Lexical considerations I 3-32 
Reserved words I 3-34 



Simulating error and accept in actions I 3-34 
Accessing values in enclosing rules I 3-34 
Arbitrary value types I 3-36 
Example: A desk calculator I 3-38 
Example: yacc input syntax I 3-43 
Example: An advanced grammar I 3-46 
Backward compatibility I 3-56 

4 m4: A Macro Processor I 4-1 

Invoking m4 I 4-3 
Defining macros I 4-3 

define / 4-3 
Quoting I 4-5 
changequote / 4-6 
undefine I 4-6 
ifdef I 4-6 
Arguments I 4-7 
ifelse / 4-8 

Arithmetic built-ins I 4-9 
1/0 manipulation I 4-10 

include and sinclude I 4-10 
divert, undivert, and divnurn I 4-11 
ctn1 I 4-14 

String manipulation I 4-14 
len I 4-14 
substr / 4-15 
index and translit I 4-15 

Printing I 4-16 
errprint / 4-16 
durnpdef / 4-16 

Executing system commands I 4-16 
syscrnd and rnaketernp I 4-16 

Interactive use of rn4 I 4-17 
Recursive definitions I 4-17 
Built-in macro summary I 4-19 

Contents vii 



5 lex: A Lexical Analyzer I 5-l 

viii Contents 

Overview of lex usage I 5-3 
lex and yacc I 5-4 
Program syntax I 5-6 
Character set I 5-7 

Character classes I 5-7 
Arbitrary characters I 5-9 
Operators I 5-9 

Definitions I 5-10 
Repetitions and definitions I 5-12 

Rules I 5-12 
Regular expressions I 5-12 
Optional expressions I 5-13 
Repeated expressions I 5-13 
Alternation and grouping I 5-14 
Context sensitivity I 5-14 

Left context sensitivity I 5-15 
Flags I 5-16 
Start conditions I 5-17 

Ambiguous rules I 5-18 
Actions I 5-19 

The null statement I 5-20 
The repetition character I 5-20 
printf and ECHO I 5-20 
yyleng / 5-21 
yymore and yyless I 5-22 
lex input and output routines I 5-23 
yywrap I 5-24 
REJECT I 5-25 

Compilation I 5-27 
Examples I 5-27 
Summary I 5-29 



Part 2 File Manipulation Tools 

6 File Attribute Tools I 6-l 
Comparing source files I 6-2 
Finding files: find I 6-2 
Printing the section sizes of COFF files: size I 6-2 
Finding the version number of a file: version I 6-3 
Maintaining portable archives and libraries: ar I 6-3 

7 make: A File Production Tool I 7-1 

Using make I 7-3 
Writing a makefile I 7-3 
make command syntax I 7-5 

Options I 7-6 
Using make on individual files I 7-8 

The description file I 7-8 
Makefile entries I 7-9 

Targets versus rules I 7-9 
Built-in targets I 7-10 
Dependency statements I 7-11 
Commands I 7-12 

Comments I 7-13 
include lines I 7-13 
Macro definitions I 7-13 

Internal macros I 7-15 
Dynamic dependency parameters I 7-l 6 

Options I 7-18 
Suppressing printing of commands I 7-18 
Ignoring errors I 7-18 
Combining commands I 7-19 
Default commands I 7-19 
Saving files I 7-20 
Use of selected options I 7-20 

Suffixes and rules I 7-20 
Suffixes I 7-20 
Transformation rules I 7-21 

The default macro settings I 7-26 
Changing default suffixes and rules ./ 7-27 

The default suffix list I 7-27 
The default rules I 7-28 

Contents ix 



Operation I 7-28 
Environment variables I 7-28 
Macros I 7-29 
Precedence I 7-35 
Macro Testing I 7-37 
Attributes I 7-38 
Archive libraries I 7-40 
SCCS files I 7-42 

SCCS filename prefixes I 7-42 
SCCS filename suffixes I 7-43 
secs transformation rules I 7-43 
SCCS makefiles I 7-43 

Advanced topics I 7-44 
Walking the directory tree I 7-44 
The make predecessor tree I 7-45 
The makefile as shell script I 7-46 

Unintended targets I 7-46 
Mnemonic targets I 7-47 
Macro translation I 7-47 

Dynamic Include File Dependency Generation I 7-50 
A warning for system administrators I 7-52 

8 SCCS Reference I 8-1 

x Contents 

SCCS for beginners I 8-3 
Creating an SCCS file I 8-3 
Retrieving a file and storing a new version I 8-4 
Retrieving versions I 8-5 
On-line information I 8-6 

SCCS files I 8-7 
Standard A/UX: protection I 8-7 
SCCS protection mechanisms I 8-8 
Administering SCCS I 8-9 

Group project administration I 8-9 
SCCS file formats I 8-12 
SCCS file auditing I 8-12 
Delta numbering I 8-13 

Branch deltas I 8-14 

SCCS command conventions I 8-16 
SCCS command arguments I 8-16 
Flags I 8-17 
Diagnostics I 8-17 



Temporary files I 8-l 7 
SCCS ID keywords I 8-20 

secs command summary I 8-22 
Create SCCS files: admin I 8-22 

SCCS flags I 8-23 
Comments and MR numbers I 8-24 
Descriptive text I 8-25 

Change comments in an SCCS file: cdc I 8-26 
Combine deltas to save space: comb I 8-26 
Store a new SCCS file version: delta I 8-27 

Required temporary files I 8-27 
Comments and MR numbers I 8-28 
Keywords I 8-29 
Removal of temporary files I 8-30 

Retrieve an SCCS file version: get I 8-30 
Retrieving different versions I 8-31 
Retrieving a file to create a new delta I 8-32 
Concurrent edits of different versions I 8-34 
Concurrent edits of the same SID I 8-36 
Keyletters that affect output I 8-37 

Restore a version unchanged: unget I 8-38 
On-line explanations: help I 8-39 
Print parts of an SCCS file: prs I 8-39 
Remove a specific delta: rmdel -r I 8-41 
Account for open SCCS files: sact I 8-42 
Compare two SCCS files: sccsdiff I 8-43 
Check SCCS file characteristics: val I 8-43 
Find identifying information: what I 8-44 

9 awk Programming Language I 9-l 
awk operation I 9-3 
Comments I 9-5 
Command-line options I 9-6 
Invocation modes I 9-7 

Interactions with the shell I 9-9 
Text input processing I 9-11 
Patterns I 9-14 

Using expressions for patterns I 9-15 
Regular expression syntax I 9-17 
BEGIN and END I 9-19 

Contents xi 



xii Contents 

Actions I 9-20 
Components of awk programs I 9-21 
Flow of control I 9-23 
Report generation I 9-27 
Reading input: getline I 9-29 
Printing output: print and printf I 9-30 

print I 9-31 
printf I 9-33 

The system command I 9-34 
Directing output to other programs I 9-34 

Data structures I 9-35 
Variables I 9-35 
Initialization of variables I 9-37 
Assignment operators I 9-37 
Arrays I 9-38 
Built-in variables and arrays I 9-40 

Expressions I 9-41 
Combining true-or-false expressions I 9-45 
Implied concatenation operations I 9-45 
Determination of data type I 9-46 
Built-in string functions I 9-47 
Built-in numeric functions I 9-49 

Lexical conventions I 9-50 
Numeric constants I 9-50 
String constants I 9-51 
Predefined variables, reserved keywords, and reserved function names I 9-51 
Identifiers I 9-52 
Record and field tokens I 9-52 
Separators I 9-53 

Record separators I 9-53 
Field separator I 9-53 

Multiline records I 9-54 
Output record and field separators I 9-54 
Separators and braces I 9-54 

Primary expressions I 9-55 
Numeric constants I 9-55 
String constants I 9-56 
Variables I 9-56 
Functions I 9-57 



Terms I 9-58 
Binary terms I 9-58 
Unary terms I 9-59 
Incremented variables I 9-59 
Terms with parentheses I 9-60 

Expressions I 9-60 
Concatenation of terms I 9-60 
Assignment expressions I 9-61 

Part 3 Math Tools 

10 de: A Desk Calculator I 10-1 

Using de I 10-2 
Command syntax I 10-2 

Operators I 10-3 
Relational operators I 10-3 

de command set I 10-4 
Input/output format and base I 10-4 
Input conversion and base I 10-4 
Output commands I 10-5 
Scale I 10-5 
Stack commands I 10-6 
Subroutine definitions and calls I 10-6 
Internal registers I 10-6 
Pushdown registers and arrays I 10-7 
Miscellaneous commands I 10-7 

de command quick reference I 10-8 

Programming de I 10-9 

11 be: A Basic Calculator I 11-1 

Using be I 11-3 
be command syntax I 11-3 
Entering a program at the terminal I 11-4 
Program files I 11-4 
Exiting from be I 11-4 

Contents xiii 



Program syntax I 11-5 
Comments I 11-5 
Constants I 11-6 
Keywords I 11-6 
Identifiers I 11-6 
Defining functions I 11-7 

Function calls and function arguments I 11-7 
The return statement I 11-8 

Automatic variables I 11-8 
Global variables I 11-9 
Arrays or subscripted variables I 11-9 
Statements I 11-10 
Assignment statements I 11-12 
Control statements I 11-13 

Relational operators I 11-13 
The if statement I 11-14 
The while statement I 11-14 
The for statement I 11-15 

Expressions I 11-15 
Input and output bases: ibase and obase I 11-17 
ibase / 11-17 
obase / 11-18 
scale / 11-19 

Part 4 Screen-Oriented Tools 

12 curses: Terminal-Independent Screen I/0 I 12-1 

xiv Contents 

Overview of curses usage I 12-3 
Output I 12-4 
Input I 12-5 
Highlighting I 12-8 
Multiple windows I 12-10 
Multiple terminals I 12-11 
Low-level terminfo usage I 12-13 
A larger example I 12-16 

List of curses routines I 12-18 
Structure I 12-18 
Initialization I 12-19 
Option setting I 12-20 



Terminal mode setting I 12-23 
Window manipulation I 12-24 
Causing output to the terminal I 12-25 
Writing on window structures I 12-27 

Moving the cursor I 12-27 
Writing one character I 12-27 
Writing a string I 12-28 
Clearing areas of the screen I 12-28 
Inserting and deleting text I 12-29 
Formatted output I 12-30 
Miscellaneous I 12-30 

Input from a window I 12-30 
Input from the terminal I 12-31 
Video attributes I 12-32 
Bells and flashing lights I 12-33 
Portability functions I 12-33 
Delays I 12-34 
Lower-level functions I 12-35 

Cursor motion I 12-35 
terminfo level I 12-35 

Operation details I 12-39 
Insert and delete line and character I 12-39 
Additional terminals I 12-40 
Multiple terminals I 12-40 
Video attributes I 12-41 
Special keys I 12-42 
Scrolling region I 12-43 
mini-curses / 12-43 
TTY-mode functions I 12-45 
Typeahead check I 12-45 
getstr I 12-46 
longname / 12-46 
nodelay mode I 12-46 
Portability I 12-46 

Example program: scatter I 12-47 
Example program: show I 12-49 
Example program: highlight I 12-51 
Example program: window I 12-53 
Example program: two I 12-55 
Example program: terrnhl I 12-59 
Example program: editor I 12-62 

Contents xv 



13 Commando I 13-1 

xvi Contents 

Introduction I 13-2 
Macintosh dialog boxes I 13-3 
Commando dialog boxes I 13-4 

The Commando script language I 13-5 
Dialog box layout I 13-5 
Layout examples I 13-8 

Single-row example I 13-8 
Multiple-row example I 13-10 
Column example I 13-12 
Nested dialog box example I 13-14 

Control examples I 13-16 
Checkbox I 13-16 

Radio buttons I 13-17 
Text boxes I 13-19 
Text I 13-21 
Buttons I 13-21 

Dependencies I 13-25 
Boxes I 13-28 
Leniencies I 13-28 
Keywords I 13-28 

Creating Commando dialogs I 13-30 
Invoking Commando dialogs I 13-30 
Writing Commando dialogs I 13-31 
Testing Commando dialogs I 13-31 
Compiling Commando dialogs I 13-32 

Dialog design guidelines I 13-32 
Dialog layout guidelines I 13-32 
Dialog aesthetics I 13-33 
Descriptive information I 13-34 

Index I In-1 



Figures, Tables, and Listings 

Chapter 3 yacc: A Compiler-Writing System 

Table 3-1 
Table 3-2 

C language escapes recognized by yacc I 3-7 
Arithmetic operators I 3-39 

Chapter 4 m4: A Macro Processor 

Table 4-1 Arithmetic operators I 4-9 

Chapter 5 lex: A Lexical Analyzer 

Figure 5-1 
Figure 5-2 

Table 5-1 

Overview of 1 ex I 5-3 
lex with yacc / 5-5 

Regular expression operators I 5-31 

Chapter 7 make: A File Production Tool 

Listing 7-1 
Listing 7-2 

Table 7-1 
Table 7-2 

Sample listing of default rules file I 7-23 
Replacing a defauh rule I 7-28 

Default suffix list I 7-21 
Macro names and default compilers I 7-27 



Chapter 8 SCCS Reference 

Listing 8-1 

Figure 8-1 
Figure 8-2 
Figure 8-3 
Figure 8-4 
Figure 8-5 

Table 8-1 
Table 8-2 

Sample interface program for group projects I 8-10 

A linear progression of versions I 8-14 
A branching SCCS tree I 8-15 
A complicated branch structure I 8-15 
Relationships among temporary files I 8-18 
Removing a delta I 8-41 

SCCS ID keywords I 8-20 
Determination of a new SID I 8-35 

Chapter 9 awk Programming Language 

Table 9-1 
Table 9-2 
Table 9-3 
Table 9-4 
Table 9-5 
Table 9-6 
Table 9-7 
Table 9-8 

Arithmetic operators I 9-42 
Assignment operators I 9-42 
Relational operators I 9-43 
Logical operators I 9-44 
Regular expression pattern-matching operators I 9-44 
Reserved strings I 9-52 
Values for sample numeric constants I 9-55 
Values for sample string constants I 9-56 

Chapter 10 de: A Desk Calculator 

Table 10-1 de operators I 10-3 

Chapter 11 be: A Basic Calculator 

Table 11-1 
Table 11-2 
Table 11-3 

xviii Figures, Tables, and Listings 

Assignment statements I 11-12 
Relational operators I 11-14 
Operators and their precedence I 11-16 



Chapter 12 curses: Terminal-Independent Screen 1/0 

Listing 12-1 
Listing 12-2 
Listing 12-3 

Chapter 13 Commando 

Figure 13-1 
Figure 13-2 
Figure 13-3 
Figure 13-4 
Figure 13-5 
Figure 13-6 
Figure 13-7 
Figure 13-8 
Figure 13-9 
Figure 13-10 
Figure 13-11 
Figure 13-12 
Figure 13-13 
Figure 13-14 
Figure 13-15 
Figure 13-16 
Figure 13-17 

Listing 13-1 
Listing 13-2 
Listing 13-3 
Listing 13-4 
Listing 13-5 
Listing 13-6 
Listing 13-7 
Listing 13-8 

Framework of a curses program I 12-3 
Sending a message to several terminals I 12-13 
terminfo-level framework I 12-14 

Schematic dialog box I 13-3 
Commando dialog box for the UNIX command lpr I 13-4 
Commando dialog box for the UNIX command tar I 13-5 
Dialog box layout example I 13-6 
Single-row dialog box I 13-8 
Multiple-row dialog box I 13-10 
Multiple-column dialog box I 13-12 
Further dialog example I 13-14 
Checkbox dialog example I 13-16 
Radio button dialog example I 13-17 
Text box dialog example I 13-19 
Button example: Initial dialog box I 13-22 
Button example: Save a File dialog box I 13-22 
Button example: Save a File control was selected I 13-22 
Button example: Redirection subdialog box I 13-23 
Dependencies example: First control selected I 13-25 
Dependencies example: Second control selected I 13-26 

Dialog box layout example script I 13-7 
Single-row dialog script I 13-8 
Multiple-row dialog script I 13-11 
Multiple-column dialog script I 13-12 
Further dialog script I 13-15 
Checkbox example script I 13-16 
Radio button example script I 13-18 
Text box example script I 13-20 

Figures, Tables, and Listings xix 



Listing 13-9 
Listing 13-10 

Table 13-1 
Table 13-2 

xx Figures, Tables, and Listings 

Button example script I 13-24 
Dependencies example script I 13-27 

File dialog keywords I 13-23 
Commando keyword reference I 13-29 



About This Guide 

This guide describes many A/UX tools to assist in program management and other 
tasks. This guide details program development tools to improve program structure, 
monitor program executions, and debug programs. Tools to assist in file management 
tasks, such as finding files, determining file characteristics, and maintaining groups of 
files, are also detailed in this guide. And finally, tools for processing and parsing text 
and code are described. 

Who should use this guide 

This guide is intended for programmers and developers. This guide does not serve as a 
tutorial to help you learn programming skills; rather, it serves as a reference to determine 
what tools are available in A/UX and how to use them effectively. 

What you need to know 

To get the most out of this guide, you need to have a good working knowledge of 
programming practices. This guide assumes that you are conversant with a programming 
language and with the general process of coding, compiling, testing, debugging, and so 
forth. A general knowledge of UNIX® is also assumed. You need to know the basic skills 
of using a Macintosh, such as double-dicking to open a file and dragging the mouse to 
choose a menu command. 

xxi 



What's covered in this guide 

This guide describes the following topics: 

• A/UX program development tools 

• a compiler-writing system, yacc 

• a macro processor, m4 

• a lexical analyzer, 1 ex 

• file manipulation tools 

• program maintenance tool, make 

• version management tools for source code, SCCS 

• a file-processing language, awk 

• desk calculators, de and be 

• terminal-independent input and output, curses 

• screen-oriented input and output through Macintosh dialog boxes, Commando 

If you need information about the tools directly involved in the compilation process, 
such as compilers (cc and f77), assemblers (as), link-editors (ld), and debuggers 
(sdb and dbx) see A/UX Programming Languages and Tools, Volume 1. Volume 1 
also covers various libraries, the lint tool, efl, and the POSIX environment. 

Where to go for more information 

If you need information about the tools directly involved in the compilation process, see 
A/UX Programming Languages and Tools, Volume 1. If you need more information 
about the Macintosh interface, see A/UX Toolbox: Macintosh ROM Inteiface. If you would 
like information about porting applications to A/UX, see the A/UX Porting Guide. 

xxii About This Guide 



How to use this guide 

This guide serves as a reference to help you when programming and using these tools. 
As a reference book, it is not designed to be read from cover to cover. Each chapter is a 
discrete description of a particular tool or class of tools; therefore, you should skip 
directly to these compact references. 

Conventions used in this guide 

A/UX guides follow specific conventions. For example, words that require special 
emphasis appear in specific fonts or font styles. The following sections describe the 
conventions used in all A/UX guides. 

Keys and key combinations 

Certain keys on the keyboard have special names. These modifier and character keys, 
often used in combination with other keys, perform various functions. In this guide, the 
names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters. 

The key names are 

CAPS LOCK DOWN ARRow ( J,) OPTION SPACE BAR 

COMMAND(~) ENTER RETURN TAB 

CONTROL ESCAPE RIGHT ARROW ( ~) UP ARRow(i) 

DELETE LEFT ARROW ( f-) SHIFT 

Sometimes you will see two or more names joined by hyphens. The hyphens indicate 
that you use two or more keys together to perform a specific function. For example, 

Press COMMAND-K 

means "Hold down the COMMAND key and press the K key." 

Conventions used in this guide xxiii 



Terminology 

In A/UX guides, a certain term can represent a specific set of actions. For example, the 
word enter indicates that you type a series of characters on the command line and press 
the RETURN key. The instruction 

Enter ls 

means "Type ls and press the RETURN key." 

Here is a list of common terms and the corresponding actions you take: 

Term 

Click 

Drag 

Choose 

Select 

Type 

Enter 

Action 

Press and then immediately release the mouse button. 

Position the mouse pointer, press and hold down the mouse button 
while moving the mouse, and then release the mouse button. 

Activate a command in a menu. To choose a command from a pull­
down menu, click once on the menu title and, while holding down the 
mouse button, drag down until the .command is highlighted. Then 
release the mouse button. 

Highlight a selectable object by positioning the mouse pointer on the 
object and clicking. 

Type an entry without pressing the RETURN key. 

Type the series of characters indicated and press the RETURN key. 

The Courier font 

Throughout A/UX guides, words that you see on the screen or that you must type exactly 
as shown are in the courier font. For example, suppose you see this instruction: 

Type date on the command line and press RETURN. 

The word date is in the Courier font to indicate that you must type it. Suppose 
you then read this explanation: 

Once you press RETURN, you'll see something like this: 
Tues Oct 17 17:04:00 PDT 1989 

In this case, courier is used to represent exactly what appears on the screen. 

xxiv About This Guide 



All A/UX manual page names also are shown in the courier font. For example, 
the entty ls(l) indicates that ls is the name of a manual page in an A/UX reference 
manual. See "Manual Page Reference Notation" below for more information on A/UX 
command reference manuals. 

Font styles 

Italics are used to indicate that a word or set of words is a placeholder for part of a 
command. For example, 

cat filename 

tells you that filename is a placeholder for the name of a file you wish to view. If you 
want to view the contents of a file named El vis, type the word El vis in place of 
filename. In other words, enter 

cat Elvis 

New terms appear in boldface where they are defined. 

A/UX command syntax 

A/UX commands follow a specific command syntax. A typical A/UX command gives the 
command name first, followed by options and arguments. For example, here is the 
syntax for the we command: 

we [-ll [-wl [directory] ... 

In this example, we is the command, -1 and -w are options, directory is an 
argument, and the ellipses( ... ) indicate that more than one argument can be used. Note 
that each command element is separated by a space. 

The following list gives more information about the elements of an A/UX command: 

Element 

command 

option 

argument 

Description 

The command name. 

A character or group of characters that modifies the command. Most 
options have the form - option, where option is a letter representing an 
option. Most commands have one or more options. 

A modification or specification of a command, usually a filename or 
symbols representing one or more filenames. 

Conventions used in this guide xxv 



[ l Brackets used to enclose an optional item-that is, an item that is not 
essential for execution of the command. 

Ellipses used to indicate that more than one argument can be entered. 

For example, the wc command is used to count lines, words, and characters in a 
file. Thus, you can enter 

wc -w Priscilla 

In this command line, -w is the option that instructs the command to count all of the 
words in the file, and the argument Priscilla is the file to be searched. 

Manual page reference notation 

A/UX Command Reference, A/UX Programmer's Reference, A!UX System Administrator's 
Reference, Xl 1 Command Reference for A!UX, and Xl 1 Programmer's Reference for 
A/UX contain descriptions of commands, subroutines, and other related information. 
Such descriptions are known as manual pages (often shortened to man pages). Manual 
pages are organized within these references by section numbers. The standard A/UX 
cross-reference notation is 

command (section) 

where command is the name of the command, file, or other facility; section is the 
number of the section in which the item resides. 

• Items followed by section numbers (lM) and (8) are described in A!UX System 
Administrator's Reference. 

• Items followed by section numbers (1) and (6) are described in A/UX Command 
Reference. 

• Items followed by section numbers (2), (3), ( 4), and (5) are described in A!UX 
Programmer's Reference. 

• Items followed by section number (lX) are described in Xl 1 Command Reference for 
A!UX. 

• Items followed by section numbers (3X) and (3Xt) are described in Xl 1 
Programmer's Reference for A!UX. 

For example, 

cat(l) 

xxvi About This Guide 



refers to the command cat, which is described in Section 1 of A/UX Command 
Reference. 

You can display manual pages on the screen by using the man command. For 
example, enter the command 

man cat 

to display the manual page for the cat command, including its description, syntax, 
options, and other pertinent information. To exit, press the SPACE BAR until you see a 
command prompt, or type q at any time to return immediately to your command prompt. 

For more information 

To find out where you need to go for more information about how to use A/UX, see 
Road Map to A!UX This guide contains descriptions of each A/UX guide and ordering 
information for all the guides in the A/UX documentation suite. 

For more information :xxvii 



Part 1 Program Development Tools 



This section describes several tools you might find useful during program development 

and execution. The chapter "Programming Tools" describes utilities for 

• structuring programs: cb 

• observing program execution: cflow and prof 

• processing: cpp 

• finding functions in programs: ctags 

• sharing strings in C programs: xstr 

• debugging: nm and od 

The following chapters in this section describe tools for 

• a macro processor: m4 

• a lexical analyzer: 1 ex 

• a compiler-writing system: yacc 



1 Overview of Programming Tools 

Program development tools I 1-2 

File manipulation tools I 1-4 

Math functions: de and be I 1-6 

Screen-oriented tools: curses and Commando I 1-6 

The A/UX environment provides many varied and useful tools to assist in program 

development and other related tasks. Tools are provided to find file characteristics, parse 

and process files, perform math, and control functions on the screen. This chapter 

provides a brief description of many of the tools and what primary tasks each one 

performs. The remaining chapters provide a more detailed discussion of these tools. 

For information about tools directly related to the compilation process-the compilers, 

the assembler, the link editors, libraries, and debuggers-see A!UX Programming 

Languages and Tools, Volume 1. 



Program development tools 
In addition to the tools used for program compilation discussed in A/UX Programming 
La.nguages and Tools, Volume 1, A/UX offers several tools related to program 
development. These tools perform a varieLy of functions ranging from improving the 
format of your code to tracing your program execution and providing additional 
information for debugging. This section outlines these tools. 

Program structure: cb 

You can use the cb utility to improve the legibility and structure of C code. The cb 

utility reads C programs and writes them to the standard output with spacing and 
indentation that display the structure of the code. 

Execution: cflow and prof 

A/UX provides several tools for tracking the execution of a program. You can create a C 
flowgraph for a program using cflow. AC flowgraph shows how the program is put 
together, the flow control of the program, and how the subroutines are called. This 
flowgraph shows the order in which routines are called graphically, by level of indentation. 
The graph is built of external references, which include globals and function calls. 

Another utility to show program execution is prof, which displays profile data on 
the running of a program to aid in optimization of the program. For each function, it 
gives the percentage of time spent executing it, the number of times it was called, and the 
time (in milliseconds) per call. You must compile your program with a special option to 
enable this capability. 

1 ~2 Chapter 1 Overview of Programming Tools 



Processing: m4, lex, and yacc 

The A/UX environment includes several tools for processing text and code. This section 
provides a brief description of some of the more useful tools. 

If you need a macro facility, you can use m4 instead of cpp. m4 is a general­
purpose macro processor. The primary function of rn4 is to allow the replacement of 
certain text by other text. The rn4 utility reads every alphanumeric token (string of 
letters and digits) in the input and determines whether the token is the name of a macro. 
It then replaces the names of a macros by their defining text and pushes the resulting 
strings back into the input to be rescanned. 

In addition to the straightforward replacement of one string of text by another, the 
m4 macro processor also provides arguments to macros, arithmetic capabilities, file 
manipulation, conditional macro expansion, string and substring functions, and 
recursive definitions. 

Another type of processor is 1 ex. It is designed for lexical processing of character 
input streams. lex accepts high-level, problem-oriented specifications for character 
string matching. The 1 ex utility can be useful when writing programs involving regular 
expressions as input and formatting input for parsing. 

The yacc program is a parser generator used to impose structure on program 
input. After you create a specification of the input process, yacc generates a parser 
function, which calls the user-supplied low-level input routine (the lexical analyzer) to 
pick up the basic items, called "tokens," from the input stream. Tokens are organized 
according to the input structure rules, called "grammar rules." When one of these rules 
has been recognized, the user code (the "action") supplied for this rule is invoked. 
Actions have the ability to return values and make use of the values of other actions. 

Debugging: run and od 

This book outlines a few tools useful in the debugging stage of program development. 
(The primary A/UX debuggers are detailed in A/UX Programming Languages and Tools, 
Volume 1.) The nm utility writes the symbol table for a Common Object File Format 
(COFF) file to standard output. nm lists each symbol and its value along with the 
location at which it is stored in memory. 

Program development tools 1-3 



The od command (octal dump) provides a means for examining binary files 
(usually unreadable on A/UX systems). If you need to know the function and procedure 
of some file available only in binary, you can use the od command with various 
options to discover what the file contains. The options correspond to available formats 
for interpreting bytes, characters, or words. If no options are specified, you can obtain a 
true octal dump, as words are interpreted in octal. 

File manipulation tools 

The A/UX tools detailed in this section help you perform file-related tasks such as finding 
a file size or location, determining the differences between two files, and obtaining the 
version of a program. Additionally, A/UX provides tools to control the file versions to 
ensure that they are the most recent and provides a way of updating and maintaining 
groups of files. The final tools in this section help you maintain current library archives 
and provide you with a file-processing language for parsing files. 

File characteristics: size, dif f, and comm 

Often, you need to know characteristics of files. Some of the tools needed to obtain these 
attributes are briefly discussed here. 

The size command produces size information for each section in the common 
object format files. The name of the section is shown followed by its size in bytes, 
physical address, and virtual address. 

A/UX includes a number of programs that compare files to find differences, including 
di ff, bdiff, diff3, diffmk, diffdir, sdiff, cmp, and comm. These 

__J programs all compare files or directories for differences. 
The find command helps you locate files based on certain characteristics such as 

name, group, owner name, time of last modification or access, and so on. This powerful 
utility performs a recursive search for files of the given characteristics. 

1-4 Chapter 1 Overview of Programming Tools 



Maintenance: make, SCCS, and ar 

The A/UX environment includes tools to update and maintain groups of files and to 
control the accessible versions of files to ensure that they are the most recent. Commands 
also exist to obtain the version number of programs you are running and to maintain up­
to-date library archives. 

The make program is a program-maintenance tool that keeps track of (and 
updates) groups of related files. All information about special libraries, special treatments, 
or options necessary for compiling multiple files is contained in a make description file. 
Using it ensures that your compilations reflect your latest changes. 

The source code control system (SCCS) and revision control system (RCS) are version­
management tools for source code or text files. In group projects, SCCS and RCS prevent 
multiple inconsistent versions of files from accumulating in several places. A single user 
can store multiple versions of a file without using a lot of disk space, easily reconstruct 
previous versions of a file, and keep track of versions with a simple, consistent 
numbering scheme. 

The version command is useful for determining which version of a program you 
are running. version takes a list of files and reports the version number for each. The 
version command also reports the object file format of each file; that is, either Co ff 
object file format,or Old a.out object file format. 

You can use the archive command ar to combine several files into one archive. 
Archives consist of a collection of files, plus a table of contents. They are used mainly as 
libraries to be searched by the link editor ld. A library (or library archive) is an archive 
that contains object files (plus a table of contents). Putting together your own library 
allows you to use locally produced functions (instead of limiting you to the functions 
supplied in standard libraries). ar also provides the facility to append and delete 
archive files. Putting together your own library allows you to use locally produced 
functions (instead of limiting you to the functions supplied in standard libraries). With the 
ar command you can also move files around within the archive, as well as extract them, 
print them, and produce a table of contents. 

File manipulation tools 1-5 



A file-processing language: awk 

The awk programming language is a file-processing language designed to make 
common information retrieval and manipulation tasks easy. The awk language can be 
used to generate reports, match patterns, validate data, or filter data for transmission. 

Math functions: de and be 

A/UX provides two specialized tools for handling arbitrary precision arithmetic, de and 
be. The de program is an interactive desk calculator program. It has provisions for 
manipulating scaled fixed-point numbers and for input and output in bases other than 
decimal. be is a specialized language and compiler for handling arbitrary precision 
arithmetic using the de program. 

Screen-oriented tools: curses 

and Commando 
A/UX also provides the curses package to write screen-oriented programs. curses 

provides a terminal-independent method of screen-oriented input and output. It includes 
facilities for taking input from the terminal, sending output to a terminal, creating and 
manipulating windows on the screen, and performing screen updates in an optimal 
fashion. A program using the curses routines and functions generally needs to know 
nothing about the capabilities of any particular terminal; these characteristics are 
determined at execution time and guide the program in taking input and producing 
output. Thus, programs using this package can interact with a large variety of terminals 
and terminal types. 

The Commando tool is useful for screen-oriented input and output on Macintosh 
computers. Commando lets you create CommandShell command lines by selecting 
controls within Macintosh dialog boxes. Controls direct the placement of options on the 
command line. When the user selects a particular control, Commando places a specific 
option on the command line. Once they are constructed, the command lines are either 
placed in a CommandShell window for execution or executed in a subshell. 

1-6 Chapter 1 Overview of Programming Tools 



2 Programming Tools 

Improving C program structure: cb I 2-2 

Generating a C flowgraph: cflow I 2-2 

Displaying profile data: prof I 2-2 

A C language preprocessor: cpp I 2-3 

Finding a function definition quickly: ctags I 2-4 

Sharing strings from C programs: xstr I 2-4 

Printing the symbol table for a COFF file: nm I 2-5 

Obtaining an octal dump of a file: od I 2-5 

A/UX offers several tools related to program development. These tools perform a variety 

of functions, ranging from improving the format of your code to tracing your program 

execution and providing additional information for debugging. This chapter outlines 

many of these tools. The primary tools used for program compilation (the compilers, 

assembler, link editor, debuggers, and libraries) are discussed in A/UX Programming 

Languages and Tools, Volume 1. 



Improving C program structure: cb 

cb is used to improve the legibility and structure of C code. It reads C programs either 
from its arguments or from the standard input and writes them on the standard output 
with spacing and indentation that display the structure of the code. See cb(l) in A!UX 
Command Reference for more information. 

Generating a C flowgraph: cf 1 ow 

cf 1 ow generates a C flowgraph. A C flowgraph gives an idea of the following 
program features: 

• how the program is put together 

• the program flow of control 

• how subroutines are called (that is, by which other routines and in which order) 

This flowgraph shows the order in which routines are called graphically, by level of 
indentation. The graph is built of external references, which include globals and function 
calls. See cflow(l) in A/UX Command Reference for more information. 

Displaying profile data: prof 

prof displays profile data on the running of a program to aid in its optimization. For each 
function or global, it gives the percentage of time spent executing it, the number of times it 
was called, and the time (in milliseconds) per call. You must compile your program with a 
special option to enable profiling (see cc(l) in A!UX Command Reference for more 
details). See pro f(l) in A/UX Command Reference for more information. 

2-2 Chapter 2 Programming Tools 



AC language preprocessor: cpp 

You can use cpp, the C preprocessor, as a simple programming language that takes less 
time to compile than more complex languages. It strips comments, expands macros into 
their definitions, allows files to be read in (through #inc 1 ude statements), and 
provides a facility for conditional command execution. This means that you can 
intersperse text with comments. Comments are stripped; commands are executed. 

Normally, cpp is invoked automatically as (the first) part of the cc command. 
If you need a macro facility, you can use m4 instead of cpp. m4 is generally 

much more powerful than cpp as a macro processor. (For instance, m4 allows 
recursive macro substitutions, while cpp does not.) 

cpp is useful for 

• stripping comments 

• standardizing included definitions among many files for one project 

• debugging (certain commands executed if in this mode, others if not) 

• minimizing file space, combining many files into one 

One of the most useful applications of cpp is as a debugging and program-control 
tool. Any statement included after an #if def definition is executed only if the 
definition was actually defined previously by means of a #define statement (or a 
-Ddefinition in the command line). If not, and if there is an #else present, the 
statements between it and the #endi f are executed. Otherwise, control is resumed at 
the level of the statement immediately following #en di f. See cpp(l) in A!UX 
Command Reference for more information. 

A C language preprocessor: cpp 2-3 



Finding a function definition quickly: 
ctags 

Programs can rapidly accumulate a large number of functions, either in one source file 
or scattered across many files. ctags goes through the files given as its arguments 
and creates a new file, called tags. Each line in the file tags contains the 
following components: 

• the name of one function 

• where that function is located 

• a scanning pattern that can be used to find the function 

Unless ctags is used with either the -a (append) or the -u (update) option, a 
new tags file is created each time it is invoked. 

Once the tags file is created, it can be accessed (thanks to the scanning pattern in 
the last field of each line) from vi (also from ex) by typing 

: ta function-name 

This causes the named function to appear on the editor's screen. 
ctags can be used on Fortran and Pascal sources as well as C programs. See 

ctags(l) in A/UX' Command Reference. 

Sharing strings from C programs: xstr 

The object of using xs tr is to share one copy of a string among several files. If you 
need to modify the string throughout your program, you can modify it once instead of 
doing global searches through all your modules. If you have, in two different files, 

char *ptrl = "blah"; 

char *ptr2 = "blah"; 

xstr combines this into one string, in its strings file, and replaces occurrences of 
the string in the original files with a pointer to this string. This allows for shared constant 
strings among several files, or possibly among several users. 

2-4 Chapter 2 Programming Tools 



In practice, use of xstr can save memory space. After making the xstr array 
read only, you can arrange to have multiple users share these strings, thereby saving even 
more memory space. See xstr(l) in A/UX Command Reference for more information. 

Printing the symbol table for a COFF file: nm 

nm writes the symbol table for a COFF file to standard output. This is useful for 
debugging. nm lists each symbol and its value, along with the location at which it is 
stored in memory. See nm(l) in A/UX Command Reference for more information. 

Obtaining an octal dump of a file: od 

ad provides a means for examining binary files (usually unreadable on A/UX systems). 
If you need to know the function and procedure of some file available only in binary, 
you can try the od command with various options to discover what the file contains. 
The options correspond to available formats for interpreting bytes, characters, or words. 
If no options are specified, a true octal dump is obtained, as words are interpreted in 
octal. See od(l) in A/UX Command Reference for more information. 

You can also use the strings program to write the printable ASCII strings in a 
binary file onto standard output. This is useful for identifying unknown binary files. See 
strings(l) in A/UX Command Reference for more information. 

Obtaining an octal dump of a file: od 2-5 



3 yacc: A Compiler-Writing 
System 

Usage I 3-3 

Basic specifications I 3-6 

Actions I 3-8 

Lexical analysis I 3-12 

Parser operation I 3-14 

Ambiguity and conflicts I 3-19 

Precedence I 3-23 

Error handling I 3-27 

The yacc environment I 3-29 

Input style I 3-31 

Left recursion I 3-31 

Lexical considerations I 3-32 

Reserved words I 3-34 

Simulating error and accept in actions I 3-34 

Accessing values in enclosing rules I 3-34 

Arbitrary value types I 3-36 



Example: A desk calculator I 3-38 

Example: yacc input syntax I 3-43 

Example: An advanced grammar I 3-46 

Backward compatibility I 3-56 

The yacc program is a general tool for imposing structure on the input to a computer 

program. yacc converts context-free grammar into a set of tables for a simple 

automaton that executes an lr(l) parsing algorithm. The grammar can be ambiguous; 

specified precedence rules are used to break ambiguities. 

3-2 Chapter 3 yacc: A Compiler-Writing System 



Usage 
The first step in using yacc is to create a specification of the input process, which 
includes rules describing the input structure, code to be invoked when these rules are 
recognized, and a low-level routine to do the basic input. yacc then generates a 
function to control the input process. This function, called a "parser,'' calls the user­
supplied low-level input routine (the lexical analyzer) to pick up the basic items (called 
"tokens") from the input stream. 

Tokens are organized according to the input structure rules called "grammar rules." 
When one of these rules is recognized, the user code supplied for this rule (that is, an 
action) is invoked. Actions have the ability to return values and make use of the values of 
other actions. 

yacc is written in a portable dialect of the C language, and the actions and output 
subroutine are written in the C language as well. Moreover, many of the syntactic 
conventions of yacc follow those of the C language. 

The heart of the input specification is a collection of grammar rules. Each rule 
describes an allowable structure and gives it a name. For example, one grammar rule 
might be 

date : rnonth_name day ',' year; 

where date, month_name, day, and year represent structures of interest in the 
input process; presumably, month_name, day, and year are defined elsewhere. 
The comma (, ) is enclosed in single quotes. This implies that the comma is to appear 
literally in the input. The colon and semicolon serve merely as punctuation in the rule 
and have no significance in controlling the input. With proper definitions, the following 
input might be matched by the rule given above: 

July 4, 1776 

An important part of the input process is carried out by the lexical analyzer. This user 
routine reads the input stream, recognizes the lower-level structures, and communicates 
these tokens to the parser. For historical reasons, a structure recognized by the lexical 
analyzer is called a terminal symbol, while the structure recognized by the parser is 
called a nonterminal symbol. To avoid confusion, terminal symbols are usually referred 
to as tokens. 

Usage 3-3 



There is considerable leeway in deciding whether to recognize structures using the 
lexical analyzer or grammar rules. For example, the following rules might be used in the 
preceding example: 

month_name 'J' 'a' 'n' 

month_name 'F' 'e' 'b' 

month_name : 'D' 'e' 'c' 

The lexical analyzer needs to recognize only individual letters, and month_name is 
a nonterminal symbol. Such low-level rules tend to waste time and space and might 
complicate the specification beyond the ability of yacc to deal with it. Usually, the 
lexical analyzer recognizes the month names and returns an indication that a 
month_name is seen. In this case, month_name is a token. Literal characters (such 
as the comma above) must also be passed through the lexical analyzer and are also 
considered tokens. 

Specification files are very flexible. If the rule 

date : month'/' day'/' year; 

were added to the above example, entering 7/4/177 6 would be equivalent to July 

4 , 177 6 on input. In most cases, this new rule could be "slipped in" to a working 
system with minimal effort and little danger of disrupting existing input. 

The input being read might not conform to the specifications. These input errors are 
detected as early as is theoretically possible with a left-to-right scan. Thus, not only is the 
chance of reading and computing with bad input data substantially reduced, but the bad 
data can usually be quickly found. Error handling, provided as part of the input 
specifications, permits the reentry of bad data or the continuation of the input process 
after skipping over the bad data. 

In some cases, yacc fails to produce a parser when given a set of specifications. 
For example, the specifications might be self-contradictory, or they might require a more 
powerful recognition mechanism than that available to yacc. The former cases 
represent design errors; the latter cases can often be corrected by making the lexical 
analyzer more powerful or by rewriting some of the grammar rules. 

3-4 Chapter 3 yacc: A Compiler-Writing System 



While yacc cannot handle all possible specifications, its power compares favorably 
with similar systems. Moreover, the constructions that are difficult for yacc to handle 
are also frequently difficult for human beings to handle. Some users have reported that 
the discipline of formulating valid yacc specifications for their input revealed errors of 
conception or design early in the program development. 

yacc has been used extensively in numerous practical applications on the A/UX 
system, including the syntax checker 1 int, the Portable C Compiler, and a system for 
typesetting mathematics. 

The remainder of this chapter describes 

• basic process of preparing a yacc specification 

• parser operation 

• handling ambiguities 

• handling operator precedence in arithmetic expressions 

• error detection and recovery 

• the operating environment and special features of the parsers yacc produces 

• suggestions to improve the style and efficiency of the specifications 

• advanced topics 

In addition, there are four sections that illustrate the earlier material: 

• "A Desk Calculator" contains a brief example of using yacc to design a simple 
program. 

• "yacc Input Syntax" contains a summary of the yacc input syntax. 

• "An Advanced Grammar" contains an example using some of the more advanced 
features of yacc. 

• "Backward Compatibility" contains a description of the mechanisms and syntax that, 
though no longer actively supported, are provided for historical continuity with older 
versions of yacc. 

Usage 3-5 



Basic specifications 
Names refer to either tokens or nonterminal symbols. yacc requires token names to be 
declared as such. In addition, it is often desirable to include the lexical analyzer as part of 
the specification file. It might be useful to include other programs as well. 

Every specification file consists of three sections: 

• declarations 

• grammar rules 

• programs 

These sections are separated by double percent symbols(%%). The percent symbol is 
generally used in yacc specifications as an escape character. 

The following is a syntactic description of a yacc specification file: 

declarations 
%% 
rules 
%% 
programs 

The declarations section might be empty and, if the programs section is omitted, the 
second %% mark might also be excluded. The smallest legal yacc specification is 
therefore 

%% 

rules 

Blanks, tabs, and newlines are ignored, but they cannot appear in names or 
multicharacter reserved symbols. Comments can appear wherever a name is legal. They 
are enclosed in I* and *I, as in the C language. 

The rules section is made up of one or more grammar rules. A grammar rule has the 
following form: 

a : body; 

In this example, a represents a nonterminal name, and body represents a sequence of 
zero or more names and literals. The colon and the semicolon are yacc punctuation. 

3-6 Chapter 3 yacc: A Compiler-Writing System 



Names can be of arbitrary length and can be made up of letters, dots, underscores, 
and noninitial digits. Uppercase and lowercase letters are distinct. The names used in the 
body of a grammar rule can represent tokens or nonterminal symbols. 

A literal consists of a character enclosed in single quotes (' '). 
As in the C language, the backslash ( \) is an escape character within literals, and all 

the C language escapes are recognized. Table 3-1 lists the escapes recognized by yacc. 

Table 3-1 C language escapes recognized by yacc 

Escape Meaning 

\n Newline 

\r Return 

\' Single quote ( ') 

\\ Backslash ( \) 

\t Tab 

\b Backspace 

\f Form feed 

\XXX xxxinoctal 

For a number of technical reasons, the null character (\0 or O) should never be used 
in grammar rules. 

If there are several grammar rules with the same left side, the vertical bar ( I ) can be 
used to avoid rewriting the left side. The semicolon at the end of a rule can be dropped 
before a vertical bar. Thus, the grammar rules 

A : B C D; 

A E F; 

A G; 

can be given to yacc using the vertical bar: 

A : B C D 

E F 

G; 

It is not necessary that all grammar rules with the same left side appear together in the 
grammar rules section, although it makes the input much easier to read and change. 

Basic specifications 3-7 



Actions 

If a nonterminal symbol matches the empty string, this can be indicated by 

empty : ; 

Names representing tokens must be declared in the declarations section. For example, 

%token namel name2 

Every name not defined in the declarations section is assumed to represent a 
nonterminal symbol. Nonterminal symbols must appear on the left side of at least one rule. 

The parser is designed to recognize the nonterminal start symbol. Thus, this symbol 
represents the largest, most general structure described by the grammar rules. By default, 
the start symbol is taken to be the left side of the first grammar rule in the rules section. 

It is possible and desirable to declare the start symbol explicitly in the declarations 
section using the %start keyword. For example, 

%start symbol 

The end of the input to the parser is signaled by a special token, called the end­
marker. If the tokens up to but not including the end-marker form a structure that 
matches the start symbol, the parser function returns to its caller after the end-marker is 
seen and accepts the input. If the end-marker is seen in any other context, it is an error. 

It is the job of the user-supplied lexical analyzer to return the end-marker when 
appropriate. Usually the end-marker represents some reasonably obvious I/0 status, 
such as end-of-file or end-of-record. 

With each grammar rule, the user can associate actions to be performed each time the 
rule is recognized in the input process. These actions can return values and can obtain 
the values returned by previous actions. Moreover, the lexical analyzer can return values 
for tokens, if desired. 

An action is an arbitrary C language statement and as such can do input and output, 
call subprograms, and alter external vectors and variables. An action is specified by one 
or more statements enclosed in braces ( { and } ). 

3-8 Chapter 3 yacc: A Compiler-Writing System 



For example, 
A : I(' B I) I 

hello( 1, "abc" ); 

and the following is an example of grammar rules with actions: 

xxx : yyy zzz 
{ 

printf("a message\n"); 

flag = 25; 

To facilitate easy communication between the actions and the parser, the action 
statements are altered slightly. The dollar sign symbol($) is used as a signal to yacc in 
this context. To return a value, the action normally sets the pseudovariable $ $ to some 
value. The following action does nothing except return the value of one: 

{ $$ = 1; } 

To obtain the values returned by previous actions and the lexical analyzer, the action 
can use the pseudovariables $1, $ 2, and so on, which refer to the values returned by 
the components of the right side of a rule, reading from left to right. For example, if the 
rule is 

A : B C D; 

then $2 has the value returned by c, and $3 the value returned by D. 

With the following rule, the value returned is usually the value of the exprin 
parentheses: 

expr: '(' expr ')' 
{ 

$$ = $2 

By default, the value of a rule is the value of the first element in it ($1). 
Grammar rules of the following form frequently need not have an explicit action: 

A : B; 

Actions 3-9 



In the preceding examples, all the actions came at the end of rules. Sometimes, 
though, it is desirable to obtain control before a rule is fully parsed. The yacc program 
permits an action to be written in the middle of a rule as well as at the end. 

This kind of rule is assumed to return a value accessible through the usual $ 

mechanism by the actions to the right of it. In turn, it can access the values returned by 
the symbols to the left of the action. For example, in the following rule x is set to 1 (the 
value returned by the action to its left) and y is set to the value returned by c: 

A : B 

$$ 1 · ' 

c 

x $2; 

y = $3; 

This is because every component of the right side of the rule, including an action, is 
associated with a positional pseudovariable, so the $1 refers to B, $ 2 to the value 
returned by the action associated with B, $3 to c, and so on. 

Actions that do not terminate a rule are actually handled by yacc hy manufacturing 
a new nonterminal symbol name and a new rule matching this name to the empty string. 
The interior action is the action triggered by recognizing this added rule. 

yacc actually treats the preceding example as if it were written like the following 
example ($ACT is an empty action): 

$ACT /* empty */ 

$$ l; 

A 

B $ACT C 

3-10 Chapter 3 yacc: A Compiler-Writing System 



x $2; 

y = $3; 

In many applications, output is not produced directly by the actions. A data structure, 
such as a parse tree, is constructed in memory and transformations are applied to it 
before output is generated. Parse trees are particularly easy to construct, given routines to 
build and maintain the tree structure desired. 

In the following example, the C function node creates a node with label land 
descendants nl and n2 and returns the index of the newly created node: 

node ( l, nl, n2) 

Then a parse tree is built by supplying the actions following in the yacc 

specification file as follows: 

expr : expr ' + ' expr 
{ 

$$=node('+', $1, $3 ); 

The user can define other variables to be used by the actions. 
Declarations and definitions can appear in the declarations section enclosed in the 

marks % { and % } • These declarations and definitions have global scope, so they are 
known to the action statements and the lexical analyzer. For example, 

%{ int variable = O; %} 

could be placed in the declarations section, making variable accessible to all of 
the actions. 

The yacc parser uses only names beginning with yy. The user should avoid such 
names. In these examples, all the values are integers. A discussion of values of other 
types is found in the section "Arbitrary Value Types." 

Actions 3-11 



Lexical analysis 
The user must supply a lexical analyzer to read the input stream and communicate 
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued 
function called yylex. The function returns an integer, the token number, representing 
the kind of token read. If there is a value associated with that token, it should be assigned 
to the external variable yyl val. 

The parser and the lexical analyzer must agree on these token numbers for 
communication between them to take place. The numbers can be chosen by yacc or 
by the user. In either case, the #define mechanism of the C language is used to allow 
the lexical analyzer to return these numbers symbolically. For example, suppose that the 
token name DIGIT is defined in the declarations section of the yacc specification 
file. The relevant portion of the lexical analyzer might look like the following example: 

yylex() 

extern int yylval; 

int c; 

c = getchar(); 

switch( c ) 

case '0' 

case '1' 

case '9' : 

yylval = c - '0' 

return( DIGIT); 

3-12 Chapter 3 yacc: A Compiler-Writing System 



The intent is to return a token number of DIGIT and a value equal to the numeric 
value of the digit. Provided that the lexical analyzer code is placed in the programs 
section of the specification file, the identifier DIGIT is defined as the token number 
associated with the token DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall to 
avoid is using any token names in the grammar that are reserved or significant in the C 
language or the parser. For example, the use of token names if or whi 1 e almost 
certainly causes severe difficulties when the lexical analyzer is compiled. 

The token name error is reserved for error handling and should not be used naively. 
As mentioned earlier, the token numbers can be chosen by yacc or by the user. In 

the default situation, the numbers are chosen by yacc. The default token number for a 
literal character is the numeric value of the character in the local character set. Other 
names are assigned token numbers starting at 257. 

To assign a token number to a token (including literals), the first appearance of the 
token name or literal in the declarations section can be immediately followed by a non­
negative integer. This integer is taken to be the token number of the name or literal. 
Names and literals not defined by this mechanism retain their default definitions. It is 
important that all token numbers be distinct. 

For historical reasons, the end-marker must have token number 0 or be negative. This 
token number cannot be redefined by the user. Thus, all lexical analyzers should be 
prepared to return 0 or a negative number as a token upon reaching the end of their input. 

The 1 ex program is a very useful tool for constructing lexical analyzers. These 
lexical analyzers are designed to work in close harmony with yacc parsers. The 
specifications for these lexical analyzers use regular expressions instead of grammar rules. 

lex can easily be used to produce quite complicated lexical analyzers, but there 
remain some languages (such as Fortran) that do not fit any theoretical framework and 
whose lexical analyzers must be crafted by hand. See Chapter 5 in this manual, "lex: A 
Lexical Analyzer," for more information on lex. 

Lexical analysis 3· 13 



Parser operation 

The yacc program turns the specification file into a C language program, which parses 
the input according to the specification given. The algorithm used to go from the 
specification to the parser is complex and is not discussed here. The parser itself, 
however, is relatively simple, and understanding how it works makes treatment of error 
recovery and ambiguities much more comprehensible. 

The parser produced by yacc consists of a finite-state machine with a stack. The 
parser also is capable of reading and remembering the next input token (called the "look­
ahead token"). The current state is always the one on the top of the stack. The states of 
the finite-state machine are given small integer labels. 

Initially, the machine is in state 0 (the stack contains only state 0) and no look-ahead 
token has been read. The machine has only four actions available: 

shift 

reduce 

accept 

error 

Push current state onto stack; go into specified new state. 

Pop some number of states from stack; push new state; execute user 
code. 

End of input has been (successfully) reached. 

An unparsable situation has been detected. 

A step of the parser is done as follows: 

1. Based on its current state, the parser decides whether it needs a look-ahead token to 
choose the action to be taken. If it needs one and does not have one, it calls yylex 

to obtain the next token. 

2. Using the current state and the look-ahead token if needed, the parser decides on its 
next action and carries it out. This can cause states to be pushed onto the stack or 
popped off the stack and the look-ahead token to be processed or left alone. 

The shift action is the most common action the parser takes. Whenever a 
shift action is taken, there is always a look-ahead token. In the following example, in 
state 56, if the look-ahead token is IF, the current state (56) is pushed down on the 
stack, and state 34 becomes the current state (on the top of the stack): 

IF shift 34 

The look-ahead token is cleared. 

3-14 Chapter 3 yacc: A Compiler-Writing System 



The reduce action keeps the stack from growing without bounds. reduce 

actions are appropriate when the parser has seen the right side of a grammar rule and is 
prepared to announce that it has seen an instance of the rule replacing the right side by 
the left side. 

It might be necessary to consult the look-ahead token to decide whether to reduce 
(usually it is not necessary). In fact, the default action (represented by a dot) is often a 
reduce action. 

reduce actions are associated with individual grammar rules. Grammar rules are 
also given small integer numbers, and this leads to some confusion. For example, in the 
following display, the action refers to grammar rule 18: 

. reduce 18 

While in this example, the action refers to state 34: 

IF shift 34 

Suppose the following rule is being reduced: 

A : x y z ; 

The reduce action depends on the left symbol (A in this case) and the number of 
symbols on the right side (three in this case). To reduce, first pop off the top three states 
from the stack. (In general, the number of states popped equals the number of symbols 
on the right side of the rule.) In effect, these states were the ones put on the stack while 
recognizing x, y, and z, and no longer serve any useful purpose. 

After popping these states, a state is uncovered that was the state the parser was in 
before beginning to process the rule. Using this uncovered state and the symbol on the 
left side of the rule, perform what is, in effect, a shift of A. A new state is obtained and 
pushed onto the stack, and parsing continues. 

There are significant differences between the processing of the left symbol and an 
ordinary shift of a token, however, so this action is called a goto action. In particular, 
the look-ahead token is cleared by a shift but is not affected by a goto. In any case, the 
uncovered state contains an entry such as the following one, which causes state 20 to be 
pushed onto the stack and become the current state: 

A goto 20 

In effect, the reduce action "turns back the clock" in the parse, popping the states 
off the stack to go back to the state where the right side of the rule was first seen. The 
parser then behaves as if it had seen the left side at that time. If the right side of the rule is 
empty, no states are popped off the stacks. The uncovered state is, in fact, the current state. 

Parser operation 3-15 



The reduce action also is important in the'treatment of user-supplied actions and 
values. When a rule is reduced, the code supplied with the rule is executed before the 
stack is adjusted. In addition to the stack holding the states, another stack running in 
parallel with it holds the values returned from the lexical analyzer and the actions. 

When a shift takes place, the external variable yyl val is copied onto the value 
stack. After the return from the user code, the reduction is carried out. When the goto 

action is done, the external variable yyval is copied onto the value stack. The 
pseudovariables $1, $ 2, and so on refer to the value stack. The other two parser actions 
are conceptually much simpler. The accept action indicates that the entire input has 
been seen and that it matches the specification. This action appears only when the look­
ahead token is the end-marker and indicates that the parser successfully did its job. 

The error action, on the other hand, represents a place where the parser can no 
longer continue parsing according to the specification. The input tokens it has seen 
(together with the look-ahead token) cannot be followed by anything that would result in 
a legal input. The parser reports an error and attempts to recover the situation and resume 
parsing. The error recovery (as opposed to the detection of error) is discussed later. 

Consider the following example as a yacc specification: 

%token DING DONG DELL 

%% 

rhyme sound place 

sound DING DONG 

place DELL 

When yacc is invoked with the -v option, a file called y. output is produced 
with a human-readable description of the parser. 

The following example is the y. output file corresponding to the above grammar 
(with some statistics stripped off the end), where the actions for each state are specified 
and there is a description of the parsing rules being processed in each state. 

3-16 Chapter 3 yacc: A Compiler-Writing System 



state 0 

$accept : _rhyme $end 

DING shift 3 

error 

rhyme goto 1 

sound goto 2 

state 1 

$accept rhyme_$end 

$end accept 

error 

state 2 

rhyme sound_place 

DELL shift 5 

error 

place goto 4 

state 3 

sound DING_DONG 

DONG shift 6 

error 

state 4 

rhyme sound place_ 

reduce 1 

state 5 

place DELL_ 

reduce 3 

state 6 

sound DING DONG_ 

reduce 2 

(1) 

(3) 

(2) 

Parser operation 3-17 



The underscore character _ is used to indicate what was seen and what is yet to 
come in each rule. 

The following input can be used to track the operations of the parser: 

DING DONG DELL 

Initially, the current state is state 0. The parser needs to refer to the input to decide 
between the actions available in state 0, so the first token (DING) is read and becomes 
the look-ahead token. 

The action in state 0 on DING is shift 3. State 3 is pushed onto the stack, and 
the look-ahead token is cleared. State 3 becomes the current state. The next token 
(DONG) is read and becomes the look-ahead token. The action in state 3 on the token 
DONG is shift 6. State 6 is pushed onto the stack, and the look-ahead is cleared. 

The stack now contains 0, 3, and 6. In state 6, without even consulting the look­
ahead, the parser reduces by the following, which is rule 2: 

sound : DING DONG 

Two states, 6 and 3, are popped off the stack, uncovering state 0. Consulting the 
description of state 0 (looking for a goto on sound), the following is obtained: 

sound goto 2 

State 2 is pushed onto the stack and becomes the current state. In state 2, the next 
token (DELL) must be read. The action is shift s, so state 5 is pushed onto the stack, 
which now has 0, 2, and 5 on it, and the look-ahead token is cleared. 

In state 5, the only action is to reduce by rule 3. This has one symbol on the right 
side, so one state (5) is popped off and state 2 is uncovered. The goto in state 2 on 
place (the left side of rule 3) is state 4. Now, the stack contains 0, 2, and 4. 

In state 4, the only action is to reduce by rule 1. There are two symbols on the right, 
so the top two states are popped off, uncovering state 0 again. In state 0, there is a goto 

on rhyme causing the parser to enter state 1. In state 1, the input is read and the end­
marker is obtained indicated by $end in the y. output file. The action in state 1 
(when the end-marker is seen) successfully ends the parse. 

The reader is urged to consider how the parser works when confronted with such 
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, 

and so on. A few minutes spent studying this and other simple examples can be repaid 
when problems arise in more complicated contexts. 

3-18 Chapter 3 yacc: A Compiler-Writing System 



Ambiguity and conflicts 
A set of grammar rules is ambiguous if there is some input string that can be structured in 
two or more different ways. For example, the following grammar rule is a natural way of 
expressing the fact that one way of forming an arithmetic expression is to put two other 
expressions together with a minus sign between them: 

expr : expr ' - ' expr 

Unfortunately, this grammar rule does not completely specify the way that all 
complex inputs should be structured. For example, if the input is 

expr - expr - expr 

the rule allows this input to be structured as either 

( expr - expr ) - expr 

or 

expr - ( expr - expr ) 

(The first is called left association, the second right association.) The yacc 

program detects such ambiguities when it is attempting to build the parser. 
Consider the problem that confronts the parser when provided with the following input: 

expr - expr - expr 

When the parser has read the second expr, the input seen matches the right side of the 
previous grammar rule: 

expr - expr 

The parser can reduce the input by applying this rule. After applying the rule, the input is 
reduced to expr(the left side of the rule). The parser then reads the final part of the input 
(displayed in the following example) and again reduces: 

- expr 

The effect of this is to take the left associative interpretation. Alternatively, if the parser 
sees the following input: 

expr - expr 

it can defer the immediate application of the rule and continue reading the input until it 
sees the following input, 

expr - expr - expr 

Ambiguity and conflicts 3-19 



It can then apply the rule to the right-most three symbols, reducing them to expr, which 
results in the following input being left: 

expr - expr 
Now the rule can be reduced once more. The effect is to take the right associative 

interpretation. The parser can do one of two legal things, a shift or a reduction. It has no 
way of deciding between them. This is called a shift/reduce conflict. 

It might also happen that the parser has a choice of two legal reductions. This is 
called a reduce/reduce conflict. (Note that there are never any shift/shift conflicts.) When 
there are shift/reduce or reduce/reduce conflicts, yacc still produces a parser. It does 
this by selecting one of the valid steps wherever it has a choice. 

A rule describing the choice to make in a given situation is called a disambiguating 
rule. The yacc program invokes two disambiguating rules by default: 

• In a shift/reduce conflict, the default is to do the shift. 

• In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in 
the input sequence). 

The first rule implies that reductions are def erred in favor of shifts when there is a 
choice. The second rule gives the user rather crude control over the behavior of the 
parser in this situation, but reduce/reduce conflicts should be avoided when possible. 

Conflicts can arise because of mistakes in input or logic or because the grammar rules 
(while consistent) require a more complex parser than yacc can construct. The use of 
actions within rules can also cause conflicts if the action must be done before the parser 
can be sure which rule is being recognized. In these cases, the application of 
disambiguating rules is inappropriate and leads to an incorrect parser. For this reason, 
yacc always reports the number of shift/reduce and reduce/reduce conflicts resolved 
by rule 1 and rule 2. 

In general, whenever it is possible to apply disambiguating rules to produce a correct 
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but 
there are no conflicts. For this reason, most previous parser generators have considered 
conflicts to be fatal errors. Experience has suggested that this rewriting is somewhat 
unnatural and produces slower parsers. Thus, yacc produces parsers even in the 
presence of conflicts. 

3-20 Chapter 3 yacc: A Compiler-Writing System 



As an example of the power of disambiguating rules, consider 

stat IF '(' cond ')' stat 

I IF '(' cond ')' stat ELSE stat 

which is a fragment from a programming language involving an if-then-else statement. 
In these rules, IF and ELSE are tokens, cond is a nonterminal symbol 

describing conditional (logical) expressions, and stat is a nonterminal symbol 
describing statements. The first rule is called the simple-if rule and the second the if-else 
rule. These two rules form an ambiguous construction because input of the following 
form can be structured according to these rules in two ways: 

IF ( Cl ) IF ( C2 ) Sl ELSE S2 

The input can be structured as in the following example or as in the subsequent 
example, which is the one given in most programming languages having this construct: 

IF ( Cl 

IF ( C2 

Sl 

ELSE 

S2 

or: 

IF ( Cl 

IF C2 

Sl 

ELSE 

S2 

Each ELSE is associated with the preceding IF that is without an ELSE. 

Ambiguity and conflicts 3-21 



In the following example, consider the situation where the parser has seen the IF­

ELSE construct and is looking at the ELSE. 

IF ( Cl ) IF ( C2 ) Sl 

It can immediately reduce by the simple-if rule to get 

IF ( Cl ) stat 

and then read the remaining input 

ELSE S2 

and reduce by the if-else rule. This leads to the first of the above groupings of the input. 
On the other hand, the ELSE can be shifted, s2 read, and then the right portion 

reduced by the if-else rule to get the following line, which can be reduced by the simple­
if rule: 

IF ( Cl ) stat 

This leads to the second of the above groupings of the input, which is usually 
desired. Once again, the parser can do two valid things-there is a shift/reduce conflict. 
The application of disambiguating rule 1 tells the parser to shift in this case, which leads 
to the desired grouping. This shift/reduce conflict arises only when there is a particular 
current input symbol, ELSE, and particular inputs, such as have already been seen: 

IF ( Cl ) IF ( C2 ) Sl 

In general, there might be many conflicts, and each one is associated with an input 
symbol and a set of previously read inputs. The previously read inputs are characterized 
by the "state" of the parser. The conflict messages of yacc are best understood by 
examining the verbose (-v) option output file. For example, the output corresponding to 
the above conflict state might be 

23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

stat 

stat 

IF 

IF 

cond 

cond 

ELSE shift 45 

reduce 18 

stat (18) 

stat_ELSE stat 

where the first line describes the conflict, giving the "state" and the input symbol. 
The ordinary state description gives the grammar rules active in the state and the 

parser actions. 

3-22 Chapter 3 yacc: A Compiler-Writing System 



Recall that the underline marks the portion of the grammar rules that has been seen. 
Thus, in the example, in state 23 the parser has seen input corresponding to IF ( 

cond ) stat, and the two grammar rules shown are active at this time. 

The parser can do two things: 

• If the input symbol is ELSE, it is possible to shift into state 45. State 45 has, as part of 
its description, the following line: 

stat IF ( cond ) stat ELSE_stat 

because the ELSE will have been shifted in this state. In state 23, the alternative 
action (describing a dot (.))is to be done if the input symbol is not mentioned 
explicitly in the actions. 

• If the input symbol is not ELSE, the parser reduces to 

stat : IF '(' cond ')' stat 

by grammar rule 18. 

Once again, notice that the numbers following shift commands refer to other 
states, while the numbers following reduce commands refer to grammar rule numbers. 

In the y. output file, the rule numbers are printed after those rules that can be 
reduced. In most states, only one reduce action is possible, and it is the default 
command. 

The user who encounters unexpected shift/reduce conflicts probably wants to look at 
the verbose output to decide whether the default actions are appropriate. 

Precedence 
There is one common situation where the rules given above for resolving conflicts are not 
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly used 
constructions for arithmetic expressions can be naturally described by the notion of 
precedence levels for operators, together with information about left or right associativity. 

Precedence 3-23 



It turns out that ambiguous grammars with appropriate disambiguating rules can be 
used to create parsers that are faster and easier to write than parsers constructed from 
unambiguous grammars. The basic notion is to write grammar rules of the following two 
forms for all binary and unary operators desired: 

expr expr OP expr 

and 

expr UNARY expr 

This creates a very ambiguous grammar with many parsing conflicts. As 
disambiguating rules, the user specifies the precedence or binding strength of all the 
operators and the associativity of the binary operators. This information is sufficient to 
allow yacc to resolve the parsing conflicts in accordance with these rules and 
construct a parser that realizes the desired precedences and associativities. 

The precedences and associativities are attached to tokens in the declarations 
section. This is done by a series of lines beginning with one of the following yacc 

keywords: %left, %right, or %nonassoc, followed by a list of tokens. All of the 
tokens on the same line are assumed to have the same precedence level and associativity; 
the lines are listed in order of increasing precedence or binding strength. For example, 

%left '+' '-' 

%left '*' 'I' 

describes the precedence and associativity of the four arithmetic operators. Plus and 
minus are left associative and have lower precedence than star and slash, which are also 
left associative. 

The keyword %right is used to describe right associative operators, and the 
keyword %nonassoc is used to describe operators like the operator . LT in Fortran 
that cannot associate with themselves. For example, the following line is illegal in Fortran 
and such an operator would be described with the keyword %nonassoc in yacc: 

A .LT. B .LT. C 

As an example of the behavior of these declarations, the following description might 
be used to structure the subsequent input: 

%right ,_, 

%left '+' '-' 

%left'*''/' 

%% 

3-24 Chapter 3 yacc: A Compiler-Writing System 



expr expr '-' expr 
expr '+' expr 
expr ' - ' expr 
expr '*' expr 
expr , I, expr 
NAME 

The following line is the input to be structured by the above description to perform 
the correct precedence of operators: 

a = b = c * d - e - f * g 

The result of the structuring is as follows: 

a= ( b = ( ((c*d)-e) - (f*g) ) ) 

When this mechanism is used, unary operators must, in general, be given a 
precedence. Sometimes a unary operator and a binary operator have the same symbolic 
representation but different precedences. An example is unary and binary minus ( - ). 
Unary minus can be given the same strength as multiplication, or even higher, while 
binary minus has a lower strength than multiplication. 

The keyword %prec changes the precedence level associated with a particular 
grammar rule. %prec appears immediately after the body of the grammar rule, before 
the action or closing semicolon, and is followed by a token name or literal. The keyword 
causes the precedence of the grammar rule to become that of the following token name 
or literal. For example, the following rules might be used to give unary minus the same 
precedence as multiplication: 

%left '+' ' - ' 

%left '*' 'I, 

%% 

expr expr '+' expr 
expr expr 
expr '*' expr 
expr 'I' expr 
' - ' expr %prec '*' 

NAME 

Precedence 3-25 



A token declared by %left, %right, and %nonassoc need not be, but can be 
declared by %token as well. 

The precedences and associativities are used by yacc to resolve parsing conflicts. 
They give rise to disambiguating rules. Formally, the rules work as follows: 

• The precedences and associativities are recorded for those tokens and literals that 
have them. 

• A precedence and associativity is associated with each grammar rule. It is the 
precedence and associativity of the last token or literal in the body of the rule. If the 
%prec construction is used, it overrides this default. Some grammar rules can have 
no precedence and associativity associated with them. 

• When there is a reduce/reduce conflict or there is a shift/reduce conflict and either 
the input symbol or the grammar rule has no precedence and associativity, then the 
two disambiguating rules given at the beginning of the section are used, and the 
conflicts are reported. 

• If there is a shift/reduce conflict and both the grammar rule and the input character 
have precedence and associativity associated with them, then the conflict is resolved 
in favor of the action (shift or reduce) associated with the higher precedence. If the 
precedences are the same, then the associativity is used; left associative implies 
reduce, right associative implies shift, and nonassociating implies error. 

Conflicts resolved by precedence are not counted in the number of shift/reduce and 
reduce/reduce conflicts reported by yacc. This means that mistakes in the specification 
of precedences can disguise errors in the input grammar. It is a good idea to be sparing 
with precedences and use them in an essentially "cookbook" fashion until some 
experience has been gained. The y . output file is very useful in deciding whether the 
parser is actually doing what was intended. 

3-26 Chapter 3 yacc: A Compiler-Writing System 



Error handling 
Error handling is an extremely difficult area, and many of the problems are semantic 
ones. When an error is found, for example, it might be necessary to reclaim parse tree 
storage, delete or alter symbol table entries, and typically, set switches to avoid 
generating any further output. It is seldom acceptable to stop all processing when an 
error is found. It is more useful to continue scanning the input to find further syntax 
errors. This leads to the problem of getting the parser "restarted" after an error. 

A general class of algorithms to do this involves discarding a number of tokens from 
the input string and attempting to adjust the parser so that input can continue. To allow 
the user some control over this process, yacc provides a simple but reasonably 
general feature. The token name error is reserved for error handling. This name can 
be used in grammar rules. In effect, it suggests places where errors are expected and 
recovery might take place. 

The parser pops its stack until it enters a state where the token error is legal. It 
then behaves as if the token error were the current look-ahead token and performs 
the action encountered. The look-ahead token is then reset to the token that caused the 
error. If no special error rules are specified, the processing halts when an error is detected. 

To prevent a cascade of error messages, the parser, after detecting an error, remains 
in error state until three tokens are successfully read and shifted. If an error is detected 
when the parser is already in error state, no message is given and the input token is 
quietly deleted. 

As an example, a rule of the following form means that on a syntax error the parser 
attempts to skip over the statement in which the error is seen: 

stat error 

More precisely, the parser scans ahead, looking for three tokens that might legally 
follow a statement, and starts processing at the first of these. If the beginnings of 
statements are not sufficiently distinctive, it might make a false start in the middle of a 
statement and end up reporting a second error where there is, in fact, no error. 

Actions can be used with these special error rules. These actions might attempt to 
reinitialize tables, reclaim symbol table space, and so on. Error rules such as the ones 
mentioned are very general but difficult to control. Rules such as the following ones are 
somewhat easier. Here, when there is an error, the parser attempts to skip over the 
statement but does so by skipping to the next semicolon: 

stat error I• I 
I 

Error handling 3-27 



All tokens after the error and before the next semicolon cannot be shifted and are 
discarded. When the semicolon is seen, this rule is reduced and any "cleanup" action 
associated with it performed. 

Another form of error rule arises in interactive applications where it might be 
desirable to permit a line to be reentered after an error. The following example is one 
way to do this: 

input error , \n' 

printf("Reenter last line: "); 

input 

$$ = $4; 

There is one potential difficulty with this approach. The parser must correctly process 
three input tokens before it admits that it correctly resynchronized after the error. If the 
reentered line contains an error in the first two tokens, the parser deletes the offending 
tokens and gives no message. This is clearly unacceptable. For this reason, there is a 
mechanism that can force the parser to believe that error recovery is accomplished. The 
following statement in an action resets the parser to its normal mode: 

yyerrok ; 

The last example can be rewritten somewhat more usefully, as the following 
example shows: 

input error '\n' 

yyerrok; 

printf("Reenter last line: "); 

input 

$$ = $4; 

3-28 Chapter 3 yacc: A Compiler-Writing System 



As previously mentioned, the token seen immediately after the error symbol is 
the input token at which the error was discovered. Sometimes this is inappropriate. For 
example, an error recovery action might take upon itself the job of finding the correct 
place to resume input. In this case, the previous look-ahead token must be cleared. The 
following statement in an action has this effect: 

yyclearin ; 

For example, suppose the action after error were to call some sophisticated 
resynchronization routine (supplied by the user) that attempted to advance the input to 
the beginning of the next valid statement. After this routine is called, the next token 
returned by yy 1 ex is presumably the first token in a legal statement. The old illegal 
token must be discarded and the error state reset. A rule similar to the following one 
could perform this: 

stat error 

re synch (); 

yyerrok 

yyclearin; 

These mechanisms are admittedly crude but do allow for a simple, fairly effective 
recovery of the parser from many errors. Also, the user can get control to deal with the 
error actions required by other portions of the program. 

The yacc environment 
When the user enters a specification to yacc, the output is a file of C language 
programs called y. tab. c. The function produced by yacc is an integer-valued 
function called yyparse. When it.is called, it in tum repeatedly calls yylex, the 
lexical analyzer supplied by the user (see "Lexical Analysis"), to obtain input tokens. 

Eventually, if an error is detected, yyparse returns the value 1, and no error 
recovery is possible, or the lexical analyzer returns the end-marker token and the parser 
accepts. In this case, yyparse returns the value 0. 

The yacc environment 3-29 



The user must provide a certain amount of environment for this parser to obtain a 
working program. For example, as with every C language program, a program called 
main must be defined that eventually calls yyparse. Also needed is a routine called 
yyerror that prints a message when a syntax error is detected. These two routines 
(main and yyerror) must be supplied in one form or another by the user. 

To ease the initial effort of using yacc, a library is provided with default versions of 
main and yyerror. Use the - ly option of ld to incorporate these routines into 
your program. The following source code examples show the simplicity of these routines: 

main() 

return ( yyparse() ) ; 

and 

#include <stdio.h> 

yyerror(s) 

char *s; 

fprintf ( stderr, "%s\n", s ) ; 

The argument to yyerror is a string containing an error message, usually the 
string syntax error. The average application wants to do better than this. 
Ordinarily, the program should keep track of the input line number and print it along 
with the message when a syntax error is detected. 

The external integer variable yychar contains the look-ahead token number at the 
time the error was detected. This might be of some interest in giving better diagnostics. 

Because the main program is probably supplied by the user (to read arguments, 
and so on), the yacc library is useful only in small projects or in the earliest stages of 
larger ones. 

The external integer variable yydebug is normally set to 0. If it is set to a nonzero 
value, the parser sends as output a verbose description of its actions, including a discussion 
of the input symbols read and what the parser actions are. Depending on the operating 
environment, it might be possible to set yydebug by using a debugging system. 

3-30 Chapter 3 yacc: A Compiler-Writing System 



Input style 

It is difficult to provide rules with substantial actions and still have a readable 
specification file. The following suggestions are a few style hints: 

• Use all uppercase letters for token names and all lowercase letters for nonterminal 
names. 

• Put grammar rules and actions on separate lines. This allows either to be changed 
without an automatic need to change the other. 

• Put all rules with the same left side together. Put the left side in only once and let all 
following rules begin with a vertical bar. 

• Put a semicolon only after the last rule with a given left side and put the semicolon on 
a separate line. This allows new rules to be easily added. 

• Indent rule bodies by two tab stops and action bodies by three tab stops. 

The example in "Example: A Desk Calculator" is written following this style (where 
space permits). You must make up your own mind about these stylistic questions. The 
central problem, however, is to make the rules visible through the morass of action code. 

Left recursion 

The algorithm used by the yacc parser encourages so-called left recursive grammar 
rules. Rules of the following form match this algorithm: 

name name rest-of-rule 

Rules such as the following two frequently arise when writing specifications of 
sequences and lists. In each of these cases, the first rule is reduced for the first item only; 
the second rule is reduced for the second and all succeeding items: 

list item 
list ' , ' item 

seq item 
seq item 

Left recursion 3-31 



With right recursive rules, such as t9e following examples, the parser is a bit bigger 
and the items are seen and reduced from right to left: 

seq item 
item seq 

More seriously, an internal stack in the parser is in danger of overflowing if a very 
long sequence is read. The user should use left recursion wherever reasonable. 

It is worth considering whether a sequence with zero elements has any meaning; if 
so, consider writing the sequence specification as in the following, using an empty rule: 

seq /* empty *I 

seq item 

Once again, the first rule is always reduced exactly once before the first item is read; 
the second rule is reduced once for each item read. Permitting empty sequences often 
leads to increased generality. However, conflicts might arise if yacc is asked to decide 
which empty sequence it has seen when it hasn't seen enough to know. 

Lexical considerations 
Some lexical decisions depend on context. For example, the lexical analyzer might want 
to delete blanks normally but not within quoted strings, or names might be entered into a 
symbol table in declarations but not in expressions. 

One way of handling this situation is to create a global flag that is examined by the 
lexical analyzer and set by actions. The following example specifies a program that 
consists of zero or more declarations followed by zero or more statements. The flag 
dflag is 0 when reading statements and 1 when reading declarations, except for the 
first token in the first statement. This token must be seen by the parser before it can tell 
that the declaration section ended and the statements began. In many cases, this single 
token exception does not affect the lexical scan. 

3-32 Chapter 3 yacc: A Compiler-Writing System 



%{ 

int dflag; 

%} 

... other declarations ... 

%% 

prog decls stats 

dee ls /* empty */ 

dflag 1; 

decls declaration 

stats /* empty */ 

dflag 0; 

stats statement 

... other rules ... 

This kind of "back door" approach can be elaborated to an unpleasant degree. 
Nevertheless, it represents a way of doing some things that are difficult, if not impossible, 
to do otherwise. 

Lexical considerations 3-33 



Reserved words 
Some programming languages permit you to use words (like if) that are normally 
reserved as label or variable names, provided that such use does not conflict with the 
legal use of these names in the programming language. This is extremely hard to do in 
the framework of yacc. It is difficult to pass information to the lexical analyzer telling it 
"this instance of if is a keyword and that instance is a variable." The user can try it 
using the mechanism described in the last section, but it is difficult. A number of ways of 
making this easier are being studied. For the time being, it is better that the keywords be 
reserved-that is, forbidden for use as variable names. 

Simulating error and accept in actions 
The parsing actions of error and accept can be simulated in an action by use of the macros 
YYACCEPT and YYERROR. The YYACCEPT macro causes yyparse to return the 
value 0. YYERROR causes the parser to behave as if the current input symbol had been a 
syntax error. The function yyerror is called, and error recovery takes place. 

These mechanisms can be used to simulate parsers with multiple end-markers or 
context-sensitive syntax checking. 

Accessing values in enclosing rules 
An action can refer to values returned by actions to the left of the current rule. The 
mechanism is the same as with ordinary actions, a dollar sign followed by a digit. 

sent adj noun verb adj noun 

look at the sentence ... 

3-34 Chapter 3 yacc: A Compiler-Writing System 



adj THE 

$$ = THE; 

I YOUNG 

$$ = YOUNG; 

noun DOG 

$$ = DOG; 

CRONE 

if( $0 ==YOUNG ) 

printf( "what?\n" ); 

} 

$$ CRONE; 

In this case, the digit can be 0 or negative. 
In the action following the word CRONE, a check is made that the preceding token 

shifted was not YOUNG. Obviously, this is only possible when a great deal is known 
about what might precede the symbol noun in the input. 

There also is a distinctly unstructured flavor about this. Nevertheless, at times, this 
mechanism prevents a great deal of trouble, especially when a few combinations are to 
be excluded from an otherwise regular structure. 

Accessing values in enclosing rules 3-35 



Arbitrary value types 
By default, the values returned by actions and the lexical analyzer are integers. The 
yacc program also can support values of other types, including structures. The yacc 

program keeps track of the types and inserts appropriate union member names so that 
the resulting parser is strictly type checked. 

The yacc value stack is declared to be a union of the various types of values 
desired. The user declares the union and associates union member names to each token 
and nonterminal symbol having a value. When the value is referenced through a $ $ or 
$n construction, yacc automatically inserts the appropriate union name so that no 
unwanted conversions take place. This makes type-checking commands such as lint 

much quieter. 

Three mechanisms are used to provide for this typing: 

• First, there is a way of defining the union. This must be done by the user because other 
programs, notably the lexical analyzer, must know about the union member names. 

• Second, there is a way of associating a union member name with tokens and 
nonterminal symbols. 

• Third, there is a mechanism for describing the type of those few values where yacc 

cannot easily determine the type. 

To declare the union, the user includes the following statement in the declaration 
section: 

%union 

body of union 

This declares the yacc value stack and the external variables yyl val and yyval 

to have type equal to this union. If yacc was invoked with the -d option, the union 
declaration is copied onto the y. tab. h file. Alternatively, the union can be declared 
in a header file, and a typedef used to define the variable YYSTYPE to represent 
this union. Thus, the header file might have said the following, instead: 

3-36 Chapter 3 yacc: A Compiler-Writing System 



typedef union 

body of union 

YYSTYPE; 

The header file must be included in the declarations section by use of % { and % } . 

Once YYSTYPE is defined, the union member names must be associated with the 
various terminal and nonterminal names. The following construction is used to indicate a 
union member name: 

<name> 

If this follows one of the keywords %token, %left, %right, or %nonassoc, the 
union member name is associated with the tokens listed. For example, the following 
causes any reference to values returned by these two tokens to be tagged with the union 
member name optype: 

%left <optype> '+' 

Another keyword, %type, is used to associate union member names with 
nonterminals. For example, the following line can be used to associate the union 
member nodetype with the nonterminal symbols exprand stat. 

%type <nodetype> expr stat 

There remain a couple of cases where these mechanisms are insufficient. If there is an 
action within a rule, the value returned by this action has no a priori type. Similarly, 
reference to left context values (such as $ o) leaves yacc with no easy way of 
knowing the type. In this case, a type can be imposed on the reference by inserting a 
union member name between''<" and">'' immediately after the first $,as in the 
following example. 

Arbitrary value types 3-37 



rule aaa 

$<intval>$ 3; 

bbb 

fun( $<intval>2, $<other>0 ); 

This syntax has little to recommend it, but the situation arises rarely. A sample 
specification is given in "Example: An Advanced Grammar." The facilities in this 
subsection are not triggered until they are used. In particular, the use of %type turns 
on these mechanisms. When they are used, there is a fairly strict level of checking. For 
example, use of $n or $ $ to refer to something with no defined type is diagnosed. If 
these facilities are not triggered, the yacc value stack is used to hold int values, as 
was true historically. 

Example: A desk calculator 
This section contains an example that gives the complete yacc applications for a small 
desk calculator. The calculator has 26 registers labeled a through z and accepts 
arithmetic expressions made up of the operators shown in Table 3-2. 

If an expression at the top level is an assignment, the value is printed. Otherwise, the 
expression is printed. As in the C language, an integer that begins with 0 (zero) is 
assumed to be octal. Otherwise, it is assumed to be decimal. 

As an example of a yacc specification, the desk calculator does a reasonable job of 
showing how precedence and ambiguities are used and demonstrates simple recovery. 
The major oversimplifications are that the lexical analyzer is much simpler than what is 
necessary for most applications, and the output is produced immediately line by line. 

3-38 Chapter 3 yacc: A Compiler-Writing System 



Table 3-2 Arithmetic operators 

Symbol Meaning 

+ Addition 

Subtraction 

* Multiplication 

I Division 

% Modulus (Remainder) 

& Binary AND 

Binary OR 

Assignment 

Note the way that decimal and octal integers are read in by grammar rules. This job is 
probably better done by the lexical analyzer. 

%{ 

#include <stdio.h> 

#include <ctype.h> 

int regs[26]; 

int base; 

%} 

%start list 

%token DIGIT LETTER 

%left ' I ' 

%left '&' 

%left '+' ' - ' 

%left '*' 'I' '%' 

%left UMINUS 

%% 

/* precedence for unary minus */ 

/* beginning of rule section */ 

(continued~ 

Example: A desk calculator 3-39 



list 

stat 

expr 

/* empty */ 

list stat ' \n' 

list error ' \n' 

yyerror; 

expr 

printf( "%d\n", $1 ) ; 

LETTER ' - ' expr 

regs[$1] $3 

' (' expr ')' 

$$ = $2; 

expr '+' expr 

$$ = $1 + $3 

expr ' - ' expr 

$$ = $1 - $3 

expr '*' expr 

$$ = $1 * $3; 

expr '/' expr 

3-40 Chapter 3 yacc: A Compiler-Writing System 



$$ = $1/$3; 

exp I%' expr 

$$ = $1 % $3 

expr '&' expr 

$$ = $1 & $3; 

expr 'I, expr 

$$ = $1 I $3 

I - I expr %prec UM I NUS 

$$ = - $2; 

LETTER 

{ 

$$ = reg[$1]; 

number 

number DIGIT 

$$ = $1; base ($1==0) ? 8 10; 

number DIGIT 

$$ = base * $1 + $2 

(continued>--

Example: A desk calculator 3-41 



%% /* start of program */ 

/* 

* lexical analysis routine 

* return LETTER for lowercase letter 

* (i.e., yylval = 0 through 25) 

* returns DIGIT for digit 

* (i.e., yylval = 0 through 9) 

* all other characters are returned immediately 

* 
*/ 

yylex( 

int c; 

while (c=getchar( )) ') /*skip blanks*/ 

if( islower( c )) 

yylval = c - 'a' 

return( LETTER ) ; 

if( isdigit( c )) 

yylval = c - '0' 

return( DIGIT); 

return ( c ) ; 

3-42 Chapter 3 yacc: A Compiler-Writing System 



Example: yacc input syntax 
This section contains a description of the yacc input syntax as a yacc specification. 
Context dependencies, and so forth, are not considered. Ironically, the yacc input 
specification language is most naturally specified as an LR(2) grammar. The sticky part 
comes when an identifier is seen in a rule immediately following an action. If this 
identifier is followed by a colon, it is the start of the next rule; otherwise, it is a 
continuation of the current rule, which just happens to have an action embedded in it. 

As implemented, the lexical analyzer looks ahead after seeing an identifier and 
decides whether the next token (skipping blanks, newlines, comments, and so on) is a 
colon. If so, it returns the token c_IDENTIFIER. Otherwise, it returns IDENTIFIER. 

Literals (quoted strings) are also returned as IDENTIFIER but never as part of 
C_IDENTIFIER. 

/* grammar for the input to yacc */ 

/* basic entries */ 

/* includes identifiers and literals */ 

%token IDENTIFIER 

/* identifier (but not literal) followed by a colon */ 

%token C_IDENTIFIER 

%token NUMBER /* [0-9]+ */ 

/* reserved words: */ 

/* %type -> TYPE, %left -> LEFT, etc. *I 

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION 

%token MARK 

%token LCURL 

%token RCURL 

/* the %% mark */ 

/* the %{ mark */ 

/* the %} mark */ 

/* ASCII character literals stand for themselves */ 

%token spec 

%% 

(continued)tt> 

Example: yacc input syntax 3-43 



spec 

tail 

def s 

def s 

rword 

tag 

defs MARK rules tail 

MARK 

.. . In this action, read the rest of the file ... 

/* empty: the second MARK is optional */ 

/* empty */ 

def s def 

START IDENTIFIER 

UNION 

... Copy union definition to output ... 

LC URL 

... Copy C code to output file ... 
RCURL 

ndef s rword tag nlist 

TOKEN 

LEFT 

RIGHT 

NONASSOC 

TYPE 

/* empty: union tag is optional */ 

'<' IDENTIFIER '>' 

3-44 Chapter 3 yacc: A Compiler-Writing System 



nlist nmno 

nlist nmno 

nlist ' ' ' 
nmno 

/* Note: literal illegal with %type */ 

nmno IDENTIFIER 

IDENTIFIER NUMBER 

/* rule section */ 

rule 

rule 

rbody 

act 

prec 

C IDENTIFIER rbody proc 

rule rule 

C_IDENTIFIER rbody prec 

' I ' rbody prec 

/* empty */ 

rbody IDENTIFIER 

rbody act 

' { ' 

... Copy action, translate $ $ 's etc .... 

' } ' 

/* empty */ 

PREC IDENTIFIER 

PREC IDENTIFIER act 

prec';' 

Example: yacc input syntax 3-45 



Example: An advanced grammar 
This section gives an example of a grammar using some of the advanced features. It 
modifies the example from "Example: A Desk Calculator" to provide a desk calculator 
that does floating-point interval arithmetic. 

The calculator understands floating-point constants, as well as the arithmetic 
operations +, - , *, I, unary - , and the letters a through z. The calculator also 
understands intervals written as is the following example, where x is less than or equal 
to Y: 

(X,Y} 

There are 26 interval valued variables A through z that can also be used. The 
usage is similar to that in "Example: A Desk Calculator." That is, assignments return no 
value and print nothing, while expressions print the floating or interval value. 

Intervals are represented by a structure consisting of the left and right endpoint 
values stored as doubles. This structure is given a type name, INTERVAL, by using 
typedef. The yacc value stack can also contain floating-point scalars and integers 
that are used to index into the arrays holding the variable values. The entire strategy 
depends strongly on being able to assign structures and unions in the C language. In fact, 
many of the actions call functions that return structures as well. 

Note the use of YYERROR to handle error conditions: division by an interval 
containing 0 and an interval presented in the wrong order. The error-recovery 
mechanism of yacc is used to throw away the rest of the offending line. In addition to 
the mixing of types on the value stack, this grammar also demonstrates an interesting use 
of syntax to keep track of the type (for example, scalar or interval) of intermediate 
expressions. Scalars can be automatically promoted to an interval if the context demands 
an interval value. This causes a large number of conflicts when the grammar is run 
through yacc-18 shift/reduce and 26 reduce/reduce. The problem can be seen by 
looking at the following input lines: 

2.5+(3.5-4.) 

and 

2.5 + ( 3.5,4 ) 

Notice that the 2 . s is to be used in an interval-value expression in the second 
example, but this fact is not known until the comma is read. By this time 2 . 5 is 
finished, and the parser cannot go back and change its mind. 

3-46 Chapter 3 yacc: A Compiler-Writing System 



More generally, it might be necessary to look ahead an arbitrary number of tokens to 
decide whether to convert a scalar to an interval. This problem is evaded by having two 
rules for each binary interval valued operator, one when the left operand is a scalar and 
one when the left operand is an interval. In the second case, the right operand must be 
an interval, so the conversion is applied automatically. 

Despite this evasion, there are still many cases where the conversion might be 
applied or not, leading to the above conflicts. They are resolved by listing the rules that 
yield scalars first in the specification file. In this way, the conflict is resolved in the 
direction of keeping scalar-valued expressions scalar valued until they are forced to 
become intervals. This way of handling multiple types is very instructive, but not very 
general. If there were many kinds of expression types instead of just two, the number of 
rules needed would increase dramatically and the conflicts even more dramatically. Thus, 
while this example is instructive, it is better practice in a more normal programming 
language environment to keep the type information as part of the value and not as part of 
the grammar. 

Finally, a word about the lexical analysis. The only unusual feature is the treatment of 
floating-point constants. The C language library routine at of is used to do the actual 
conversion from a character string to a double-precision value. If the lexical analyzer 
detects an error, it responds by returning a token that is illegal in the grammar, provoking 
a syntax error in the parser and thence error recovery. 

%{ 

#include<stdio.h> 

#include<ctype.h> 

typedef struct interval 

double lo, hi; 

INTERVAL; 

INTERVAL vmul(), vdiv( ); 

double atof(); 

double dreg[26]; 

INTERVAL vreg[26]; 

%} 

(continuedY. 

Example: An advanced grammar 3-47 



%start line 

%union 

int ival; 

double dval; 

INTERVAL vval; 

%token <ival> DREG VREG /*indices into dreg, vreg */ 

%token <dval> CONST 

%type <dval> dexp 

%type <vval> vexp 

/* floating point constant */ 

/* expression */ 

/* interval expression */ 

/* precedence information about the operators */ 

%left 

%left 

%left 

%% 

lines 

line 

'+' 

'*' 'I' 

UM I NUS /* precedence for unary minus */ 

/* empty */ 

lines line 

dexp '\n' 

printf( "%15.Sf\n" .$1 ) ; 

vexp '\n' 

printf (" (%15. Bf, %15. Sf) \n", $1. lo, $1.hi ) ; 

DREG ' '\n' 

dreg [ $1 J $3; 

VREG ' vexp '\n' 

3-48 Chapter 3 yacc: A Compiler-Writing System 



vreg[$1] = $3; 

error '\n' 

yyerrork; 

dexp CONST 

DREG 

$$ = dreg [$1] 

dexp , +' dexp 

$$ = $1 + $3 

dexp , - , dexp 

$$ = $1 - $3 

} 

I dexp , *, dexp 

{ 

$$ = $1 * $3 

I dexp , I, dexp 

{ 

$$ = $1 I $3 

, - , dexp %prec UMINUS 

$$ - $2 

(continuedY. 

Example: An advanced grammar 3-49 



I ' (' dexp ')' 

{ 

$$ = $2 . 

vexpp dexp 

$$.hi = $$.lo = $1; 

I ' ( ' dexp ' , ' dexp ' ) ' 

{ 

$$.lo = $2; 

$$.hi = $4; 

if( $$.lo > $$.hi ) 

printf( "interval out of order n" ); 

YYERROR; 

VREG 

$$ = vreg[$1] 

vexp '+' vexp 

$$.hi $1.hi + $3 .hi; 

$$.lo $1.lo + $3.lo 

dexp '+' vexp 

$$.hi $1 + $3.hi; 

$$.lo $1 + $3.lo 

3-50 Chapter 3 yacc: A Compiler-Writing System 



vexp 

$$.hi 

$$.lo 

I=' vexp 

$1.hi - $3.lo; 

$1.lo - $3.hi 

dvep '-' vdep 

$$.hi 

$$.lo 

$1 - $3.lo; 

$1 - $3.hi 

vexp '*' vexp 

$$ vmul( $1.lo,$.hi,$3 ) 

dexp ' *' vexp 

$$ vmul( $1, $1, $3 ) 

vexp '/' vexp 

if( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1.lo, $1.hi, $3 

dexp '/' vexp 

if( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1.lo, $1.hi, $3 

'-' vexp %prec UMINUS 

$$.hi -$2.lo;$$.lo =-$2.hi 

' (' vexp ')' (continued)lt> 

Example: An advanced grammar 3-51 



$$ $2 

%% 

/* buffer size for floating point number */ 

# define BSZ 50 

/* 

*lexical analysis 

*/ 

yylex( 

register c; 

while ((c=getchar()) ' ' ) /* skip blanks */ 

/* 

if (isupper (c)) 

yylvalval = c - 'A' 

return(VREG); 

if(islower(c)) 

yylvalval = c - 'a' , 

return (DREG) ; 

* gobble up digits, points, exponents 

*/ 

if(isdigit(c) 11 c ' ) 

char buf[BSZ+l], *cp = buf; 

int dot = 0, exp = O; 

3-52 Chapter 3 yacc: A Compiler-Writing System 



for(; (cp - buf) < BSZ 

*cp = c; 

if(isdigit(c)) 

continue; 

if(c == 

if (dot++ I I exp) 

++cp,c=getchar()) 

/* causes syntax error */ 

return( ' ' ) ; 

continue; 

if (c 'e' ) 

if( exp++ ) 

/* causes syntax error */ 

return( 'e' ) ; 

continue; 

break; /* end of number */ 

*cp = I\ 0 I ; 

if((cp - buff) >= BSZ) 

printf( "constant too long truncated\n"); 

else 

/* push back last char read */ 

ungetc(c, stdin); 

yylval.dval = atof(buf); 

return (CONST); 

return(c); 

(continuedY. 

Example: An advanced grammar 3-53 



/* 

* returns the smallest interval 

* between a, b, c and d 

*/ 

INTERVAL hilo( a, b, c, d ) 

double a, b, c, d; 

INTERVAL v; 

if( 

else 

{ 

if( 

a>b ) 

v.hi a; 

v.lo b; 

v.hi b; 

v.lo a; 

C>d ) 

if( C>V.hi ) 

v.hi = c; 

if ( d<v. lo ) 

v.lo = d; 

else 

if( d>v.hi ) 

v.hi = d; 

if ( C<V. lo ) 

v. lo = c; 

3-54 Chapter 3 yacc: A Compiler-Writing System 



return( v ) ; 

INTERVAL vrnul( a, b, v ) 

double a, b; 

INTERVAL v; 

return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo) ); 

dcheck( v ) 

INTERVAL v; 

if( v.hi >=0.&& v.lo <=0. ) 

printf( "divisor internal contains O.\n" ) ; 

return( 1); 

return( 0 ); 

INTERVAL vdiv( a, b, v ) 

double a, b; 

INTERVAL v; 

return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo) ); 

Example: An advanced grammar 3-55 



Backward compatibility 
This section mentions synonyms and features that are supported for historical continuity 
but, for various reasons, are not encouraged. 

• Literals can also be delimited by double quotes. 

• Literals can be more than one character long. If all the characters are alphabetic, 
numeric, or _, the type number of the literal is defined just as if the literal did not 
have the quotes around it. Otherwise, it is difficult to find the value for such a literal. 

The use of multicharacter literals is likely to mislead those unfamiliar with yacc, 
because it suggests that yacc is doing a job that actually must be done by the 
lexical analyzer. 

• Most places where(%) is legal, the backslash(\) can be used. In particular, \ \ is 
thesameas %%, \left thesameas %left,andsoon. 

• There are a number of other synonyms: 
%< is the same as %left 
%> is the same as 
%binary is the same as 
%2 is the same as 
%0 is the same as 
%term is the same as 
%= is the same as 

• Actions can also have the form 

= { ... } 

%right 
%nonassoc 
%nonassoc 
%token 
%token 
%prec 

and the braces can be dropped if the action is a single C language statement. 

• C language code between % { and % } used to be permitted at the head of the rules 
section as well as in the declaration section. 

3-56 Chapter 3 yacc: A Compiler-Writing System 



4 m4: A Macro Processor 

Invoking m4 I 4-3 

Defining macros I 4-3 

Arithmetic built-ins I 4-9 

I/0 manipulation I 4-10 

String manipulation I 4-14 

Printing I 4-16 

Executing system commands I 4-16 

Interactive use of m4 I 4-17 

Recursive definitions I 4-17 

Built-in macro summary I 4-19 

The m4 macro processor is a general-purpose macro-processing utility. It can also be 

considered to be an interpreter for the m4 language. The #define statement in the C 

language is an example of the basic facility provided by any macro processor: the 

replacement of some text by some (other) text. For several reasons, m4 is a more 

powerful macro processor than the standard C preprocessor, cpp. 



The basic operation of m4 is to read every alphanumeric token (string of letters and 

digits) in the input and to determine whether the token is the name of a macro. The 

name of a macro is replaced by its defining text and the resulting string is pushed back 

onto the input to be rescanned. 

In addition to the straightforward replacement of one string of text by another, the m4 

macro processor also provides the following features: 

• arguments to macros 

• arithmetic capabilities 

• file manipulation 

• conditional macro expansion 

• string and substring functions 

• recursive definitions 

When a macro is called with arguments, the arguments are collected and substituted into 

the right places in the defining text before the defining text is rescanned. 

The m4 macro processor accepts user-defined macros as well as its "built-in" macros. 

Both types of macros work exactly the same way, except that some of the built-in macros 

have side effects on the state of the process. 

4-2 Chapter 4 m4: A Macro Processor 



Invoking m4 

To run m4, give the command 

m4 files 

Each argument file is processed in order. If there are no arguments, or if an argument is 
- , the standard input is read at that point. 

The processed text is written on the standard output. The output can be redirected for 
subsequent processing, as follows: 

m4 files > outputfile 

Defining macros 
The m4 macro allows you to define macros, remove their definition, have conditional 
definitions, specify arguments in a definition, and many other tasks. This section outlines 
important aspects of macro definition. 

define 

The primary built-in function of m4 is define. This function is used to define new 
macros. The general form is 

define (name, replacement) 

All subsequent occurrences of name are replaced by replacement. The name must be 
alphanumeric and must begin with a letter (the underscore U counts as a letter). The 
replacement is any text that contains balanced parentheses. An escaped RETIJRN or an 
embedded newline character allows a multiline replacement to be specified. 

Defining macros 4-3 



The following is a typical example of the use of define, in which N is defined to 
be the string 1 o o and is then used in a later if statement: 

define (N, 100) 

if (i > N) echo "number too large" 

The left parenthesis must immediately follow the word define to signal that define 
has arguments. If a user-defined macro or built-in name is not followed immediately by 
this character, the macro call is assumed to have no arguments. 

Macro calls have the following general form: 

name ( arg 1, arg2, .. ., argn) 

A macro name is recognized as such only if it appears surrounded by nonalphanumerics. 
In the following example, the variable NNN is absolutely unrelated to the defined macro 
N, even though the variable contains a lot of N's: 

define(N, 100) 

if (NNN > 100) echo "number too large" 

Macros can be defined in terms of other macros. For example, the following defines 
both M and N to be 1 o o. If N is redefined and subsequently changes, M retains the 
value of 100, not N. 

define (N, 100) 

define(M, N) 

The m4 macro processor expands macro names into their defining text as soon as 
possible. The string N is immediately replaced by 1 o o. The string M is then defined 
to be 100. The overall result is the same as using the following input in the first place: 

define(M, 100) 

The order of the definitions can be interchanged as follows: 

define(M, N) 

define(N, 100) 

Now M is defined to be the string N, so when the value of M is requested later, the 
result is the value of N at that time (because the M is replaced by N, which is replaced 
by 100). 

4-4 Chapter 4 m4: A Macro Processor 



Quoting 

The more general solution to the problem of making sure the correct strings get 
substituted is to delay the expansion of the arguments of define by quoting them. 
The quoting characters initially recognized by m4 are the left and right single quotes, (' 
and '). Any text surrounded by left and right single quotes is not expanded 
immediately but has the quotes stripped off. The value of a quoted string is the string 
stripped of the quotes. If the input is 

define(N, 100) 

define (M, 'N') 

the quotes around the N are stripped off as the argument is being collected. The result 
ofusing quotes is to define M as the string N, not as 1 o o. 

The general rule is that m4 always strips off one level of single quotes whenever it 
evaluates something. This is trne even outside macros. 

If the word define itself is to appear in the output, the word must be quoted in 
the input as follows: 

'define' = 1; 

Another example of using quotes is to redefine a macro. To redefine N, the 
evaluation must be delayed by quoting: 

define(N, 100) 

define ( 'N', 200) 

In m4, it is often wise to quote the first argument of a macro. The following example, 
for instance, does not redefine N: 

define(N, 100) 

define(N, 200) 

The N in the second definition is replaced by 1 o o. The result is equivalent to the 
following statement: 

define(lOO, 200) 

This statement is ignored by m4, however, because only names that begin with an 
alphanumeric character can be defined. 

Defining macros 4-5 



changequote 

If left and right single quotes are not convenient for some reason, the quote characters 
can be changed with the following built-in macro: 

changequote([, ]) 

The built-in changequote makes the new quote characters the left and right 
brackets. The original characters can be restored by using changequote without 
arguments, as follows: 

changequote 

undef ine 

The undefine macro removes the definition of some macro or built-in as follows: 

undefine ( 'N') 

The macro removes the definition of N. Built-ins can be removed with undefine, 

as follows: 

undefine ('define') 

Once removed, the definition cannot be reused. 

if def 

The built-in if def provides a way to determine whether a macro is currently defined. 
Depending on the system, a definition appropriate for the particular machine can be 

made as follows: 

ifdef ( 'pdpll', 'define (wordsize, 16) ') 

if def ( 'u3b', 'define (wordsize, 32) ') 

Remember to use the quotes. 
The if def macro actually permits three arguments. If the first argument is defined, 

the value of if def is the second argument. If the first argument is not defined, the 
value of if def is the third argument. If there is no third argument, the value of 

4-6 Chapter 4 m4: A Macro Processor 



if def is null. If the name is undefined, the value of if def is then the third 
argument, as in 

ifdef('unix', on UNIX, not on UNIX) 

Arguments 

User-defined macros can also have arguments, so different invocations can have different 
results. Within the replacement text for a macro (the second argument of its define), 

any occurrence of $ n is replaced by the nth argument when the macro is actually used. 
Thus, the following macro, bump, generates code to increment its argument by 1: 

define(bump, $1 = $1 + 1) 

The statement 

bump(x) 

is equivalent to 

x = x + 1 

A macro can have as many arguments as needed, but only the first nine are accessible 
($1 through $9) (see "Built-In Macro Summary" under shift for more information). 
The macro name is $ o, although that is less commonly used. Arguments that are not 
supplied are replaced by null strings, so a macro can be defined that simply concatenates 
its arguments like this: 

define(cat, $1$2$3$4$5$6$7$8$9) 

Thus, 

cat (x, y, z) 

is equivalent to 

xyz 

Arguments $ 4 through $ .9 are null, because no corresponding arguments are 
provided. Leading unquoted blanks, tabs, or newlines that occur during argument 
collection are discarded. All other white space is retained. Thus, 

define(a, b c) 

defines a to be b c. 

Defining macros 4-7 



Arguments are separated by commas; however, when commas occur within 
parentheses, the argument is neither terminated nor separated. For example, 

define (a, (b, c)) 

has only two arguments. The first argument is a. The second is literally (b, c). A bare 
comma or parenthesis can be inserted by quoting it. 

Three other constructions are useful in macro definitions: 

$# 

$* 

$@ 

During macro replacement, the construction $ # is replaced by the number of arguments. 
The $ * construction is replaced by a list of the arguments separated by commas. The 
construction $@ is like $ * except that each argument is quoted (using the current 
quotes). See the section "Recursive Definitions" for examples of the first two constructions. 

if else 

Arbitrary conditional testing is performed through the built-in macro ifel se. In the 
simplest form, 

ifelse (a, b, c, d) 

compares the two strings a and b. If a and bare identical, if else returns the string c. 
Otherwise, string dis returned. Thus, a macro called compare can be defined to 
compare two strings and return yes or no if they are the same or different, as follows: 

define(cornpare, 'ifelse($1, $2, yes, no)') 

Note the quotes, which prevent evaluation of if else occurring too early. If the 
fourth argument is missing, it is treated as empty. Thus, 

ifelse (a, b, C) 

is c if a matches b, and null otherwise. 
if else can actually have any number of arguments and provides a limited form of 

multiway decision capability. In the input 

ifelse (a, b, c, d, e, J, g) 

if the string a is the same as the string b, the result is c. Otherwise, if dis the same as e, 
the result is J Otherwise, the result is g. If the final argument is omitted and the specified 
strings don't match, the result is null. 

4-8 Chapter 4 m4: A Macro Processor 



Arithmetic built-ins 
The m4 program provides three built-in functions for doing arithmetic on integers (only): 

iner 

deer 

eval 

The simplest are in er, which increments its numeric argument by 1, and deer, 

which decrements by 1. Thus, to handle the common programming situation where a 
variable is to be defined as "one more than N," use the following form: 

define(N, 100) 

define (Nl, 'iner (N) ' ) 

Then Nl is defined as one more than the current value of N. 

The more general mechanism for arithmetic is a built-in function called eval, which 
is capable of arbitrary arithmetic on integers. The operators in decreasing order of 
precedence are shown in Table 4-1. 

Parentheses can be used to group operations where needed. All the operands of an 
expression given to eval must ultimately be numeric. The numeric value of a true 
relation (like l>O) is 1 and false is 0. The precision in eval is 32 bits under the A/UX 
operating system. 

Table 4-1 Arithmetic operators 

Symbol 

+ -

* I % 

+-

!= < <= > >= 

& && 

I 11 

Meaning 

Unary plus and minus 

Exponentiation 

Multiplication and division 

Binary plus and minus 

Relational operators 

Logical negation (NOD 

Logical multiplication (AND) 

Logical addition (OR) 

Arithmetic built-ins 4-9 



As a simple example, define M to be 2==N+ 1 using eval as follows: 

define(N, 3) 

define (M, 'eval (2==N+l) ') 

First N is defined as 3; then M is defined as 0, since 2 is not equal to N + 1. If M were 
defined as 

define (M, 'eval (2==N-1) ') 

then its defined value would be 1, because the result of the comparison would be true. 
The defining text for a macro should be quoted unless the text is very simple. 

Quoting the defining text usually gives the desired result and is a good habit to get into. 

I/0 manipulation 
The m4 utility provides numerous functions to handle input and output. These routines 
are detailed in this section. 

include and sinclude 

A new file can be included in the input at any time by the built-in function include. 

For example, 

include (filename) 

inserts the contents of filename in place of the inc 1 u de command. The contents of 
the file are often a set of definitions. The value of include (the replacement text of 
include) is the contents of the file. If needed, the contents can be captured in 
definitions, and so on. A fatal error occurs if the file named by filename cannot be 
accessed. To get some control over this situation, you can use the alternate form, 
sinclude, or quote the filename. The built-in sinclude (silent include) says 
nothing and continues if the file named cannot be accessed. 

4-10 Chapter 4 m4: A Macro Processor 



divert, undi vert, and di vnum 

The output of m4 can be diverted to temporary files during processing, and the 
collected material can be generated upon command. The m4 program maintains nine of 
these diversions, numbered 1through9. If the built-in macro 

divert ( n) 

is used, all subsequent output is put onto the end of a temporary file referred to as n. 
Diverting to this file is stopped by the divert or divert ( o) command, which 
resumes the normal output process. 

Diverted text is normally produced all at once at the end of processing with the 
diversions produced in ascending numerical order. Diversions can be brought back at 
any time by appending the new diversion to the current diversion. Output diverted to a 
stream other than 0 through 9 is discarded. The following code, for example, throws 
away excess newlines: 

divert(-1) 

define(N, 100) 

define (M, 2 00) 

define(L, 300) 

divert 

+ Note The newline character at the end of each define is passed to the output, as 
described in the following section. + 

The built-in macro undi vert, with no arguments, brings back all diversions in 
numerical order. With arguments, undi vert brings back the selected diversions in the 
order specified by the argument. undi vert discards the diverted text. You can also 
discard text by using a diversion number that is not between 0 and 9, inclusive. 

The value of undi vert is not the diverted text, but rather the number of the 
diversion to bring back into the text. Furthermore, the diverted material is not rescanned 
for macros. 

I/0 manipulation 4-11 



As an example of the interaction between divert, undi vert, and current 
diversion, consider the following code: 

this is current diversion 

divert(l) 

this is diversion 1 

divert(2) 

this is diversion 2 

divert(3) 

this is diversion 3 

divert 

this is current diversion again 

undivert 

once again, current diversion 

In the above trivial code there are three diversions between the two lines of current 
diversion code. The use of divert at the end of diversion 3 is needed to inform m4 

that what follows is not part of diversion 3. undi vert with no arguments inserts at the 
current position all previous diversions, with no rescanning of any macros that might be 
there. The output of the above code is 

this lS current diversion 

this is current diversion again 

this is diversion 1 

this is diversion 2 

this is diversion 3 

once again, current diversion 

4-12 Chapter 4 m4: A Macro Processor 



Note that the diverted text is not brought back again at the end of the output by the 
normal process; the diverted text is discarded by the use of undi vert. Another 
example can make this clearer: 

this is main diversion 

divert(l) 

this is diversion 1 

divert(2) 

this is diversion 2 

divert(3) 

this is diversion 3 

divert 

this is main diversion again 

undivert(3) 

once again, main diversion 

undivert(2) 

The ouput for the above is 

this is main diversion 

this is main diversion again 

this is diversion 3 

once again, main diversion 

this is diversion 2 

this is diversion 1 

As you can see, only diversion 1 is brought back by the normal process, because only 
diversion 1 is not undiverted and, therefore, discarded. Note also that you can change the 
order of appearance of the diverted versions. 

The built-in macro di vnum returns the number of the currently active diversion. 
The current output stream is 0 during normal processing. 

I/0 manipulation 4-13 



dnl 

There is a built-in macro called dnl that deletes all characters that follow it, up to and 
including the next newline. The dnl macro is useful mainly for throwing away empty 
lines that otherwise tend to clutter up m4 output. Using input 

define (N, 100) 

define (M, 200) 

define(L, 300) 

results in a newline at the end of each line that is not part of the definition. The newline 
is copied into the output so that each define statement is followed by a blank line. If 
the built-in macro dnl is added to each of these lines, the newlines disappear. 

define(N, lOO)dnl 

define(M, 200)dnl 

define(L, 300)dnl 

String manipulation 

The m4 utility provides numerous functions to handle string manipulation. These 
routines are detailed in this section. 

len 

The built-in macro len returns the length of the string (number of characters) that 
makes up its argument. Thus, 

len(abcdef) 

is 6, and 

len ( (a,b)) 

is 5 (the parentheses and comma are counted along with a and b). 

4-14 Chapter 4 m4: A Macro Processor 



substr 

The built-in macro substr can be used to produce substrings of strings. The input 

substr (S, i, n) 

returns the substring of sthat starts at the ith position (origin O) and is n characters long. 
If n is omitted, the rest of the string is returned. For example, 

substr('now is the time' ,1) 

returns the following string: 

ow is the time. 

If i or n is out of range, various actions occur. 

index and translit 

The built-in macro index returns the index (position) in one string where the first 
character of another given string occurs, or -1 if it does not occur. It is written as 

index ( sl, s2) 

where sl is the string to be searched and s2 is the string to be searched for. As with 
substr, the origin for strings is 0. 

The built-in macro transli t performs character transliteration and has the 
general form 

translit (S, J, t) 

which modifies s by replacing any character found in/by the corresponding character of 
t. Using 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding digits. If tis shorter than f, characters that do 
not have an entry in tare deleted. As a limiting case, if tis not present at all, characters 
from/are deleted from s. So, 

translit(s, aeiou) 

deletes vowels from s. 

String manipulation 4-15 



Printing 
This section details the m4 routines for printing. 

errprint 

The built-in macro errprint writes its arguments out on the standard error file. An 
example is 

errprint('fatal error') 

dumpdef 

The built-in macro dumpdef is a debugging aid that dumps the current names and 
definitions of items named as arguments. If no arguments are given, then all current 
names and definitions are printed. Remember to quote the names. 

Executing system commands 
This section describes the m4 routines that execute system commands. 

syscmd and maketemp 

Any program in the local operating system can be run by using the built-in macro 
syscmd. For example, 

syscmd(date) 

on the A/UX system runs the date command. Normally, syscmd is used to create a 
file for a subsequent include. 

To facilitate making unique filenames, the built-in macro maketemp is provided 
with specifications identical to the system function mktemp. The maketemp macro 
fills in a string of xxxxx in the argument with the process ID of the current process. 

4-16 Chapter 4 m4: A Macro Processor 



Interactive use of rn 4 

The input to m4 can come from a file, the standard input, or both. Thus, it is possible to 
use m4 interactively, by telling it to take its input from the standard input. There are 
several ways to do this. The simplest is to invoke m4 as follows: 

m4 

At this point, m4 reads from the standard input. 
If you have an existing set of m4 commands stored in a file, you can instruct m4 to 

process those commands first by invoking it as 

m4 file -

The minus sign is required here to instruct m 4 to read file and then the standard input. 
Alternatively, if you invoke m4 using just the m4 command with no arguments, you 
can tell m4 to fetch the set of commands from file by typing the following line: 

include (file) 

The effect is the same in both cases. 

Recursive definitions 

Since m4 rescans any text that arises from the replacement of a macro by its defining 
text, it is possible to construct recursive macro definitions. That is, it is perfectly legal to 
define a macro in terms of itself. As with any well-constructed recursive definition, 
however, you must take care that the definition has a well-defined stopping point. 
Generally, this is easy to do with the if else command. 

For instance, suppose that you need a macro that returns its last argument and 
discards the rest. You might write the following definition: 

define(last, 

'ifelse ($#, 1, $1, 'last (shift($*))')') 

When there are multiple arguments, last drops the first argument and then calls 
itself to look for the last argument in the remaining argument list. This definition is well 
behaved because when there is only one argument, it alone is returned. 

Recursive definitions 4-17 



A more interesting example is the following definition of the factorial function: 

define(fact, 

'ifelse($1,1,1, 'eval($l*fact(decr($1)))')') 

If you give m4 the following input, 

The factorial of 1 is fact(l). 

The factorial of 2 is fact (2). 

The factorial of 3 is fact (3). 

The factorial of 4 is fact (4). 

The factorial of 5 is fact (5). 

The factorial of 6 is fact(6). 

The factorial of 7 is fact(7). 

The factorial of 8 is fact(8). 

you get the following output: 

The factorial of 1 is 1. 

The factorial of 2 is 2. 

The factorial of 3 is 6. 

The factorial of 4 is 24. 

The factorial of 5 is 120. 

The factorial of 6 is 720. 

The factorial of 7 is 5040. 

The factorial of 8 is 40320. 

Finally, you might want to define a recursive macro with two arguments. The 
standard power function serves nicely: 

define(pow, 

'ifelse($2,1,$1, 'eval ($1*pow($1,decr ($2))) ')') 

If you then give m 4 the following input, 

3 to power 1 is pow (3, 1) . 

3 to power 2 is pow (3, 2) . 

3 to power 3 is pow ( 3, 3) . 

3 to power 4 is pow ( 3, 4) . 

3 to power 5 is pow (3, 5). 

3 to power 6 is pow (3, 6). 

4-18 Chapter 4 m4: A Macro Processor 



3 to power 7 is pow(3, 7). 

3 to power 8 is pow(3, 8). 

you get 

3 to power 1 is 3. 

3 to power 2 lS 9. 

3 to power 3 is 27. 

3 to power 4 is 81. 

3 to power 5 lS 243. 

3 to power 6 is 729. 

3 to power 7 lS 2187. 

3 to power 8 is 6561. 

Built-in macro summary 

The following items are m4 built-in macros: 

change com Changes left and right comment markers from the default # and 
newline. With no arguments, the comment mechanism is disabled. 
Comment markers can be up to five characters long. 

changequote Changes quoting symbols to the first and second arguments. The 
symbols can be up to five characters long. With no arguments, this 
macro restores the original quote characters. 

deer Returns the value of its argument decremented by 1. 

define Defines new macros. 

de fn Returns the quoted definition of its arguments. 

divert Diverts output to one of ten diversions (named 0 through 9). 

di vnum Returns the number of the currently active diversion. 

dnl Reads and discards characters up to and including the next newline. 

dumpdef Dumps the current names and definitions of items named as arguments. 
With no arguments, definitions of all current macros are dumped. 

errprint Prints its arguments on the standard error file. 

eval Performs arbitrary arithmetic on integers. 

Built-in macro summary 4-19 



if def 

if else 

include 

incr 

index 

len 

rn4exit 

rn4wrap 

make temp 

popdef 

pushdef 

shift 

sinclude 

subs tr 

syscrnd 

sysval 

traceof f 

traceon 

transl it 

undefine 

undivert 

unix 

Determines whether a macro is currently defined. 

Performs arbitrary conditional testing. 

Returns the contents of the file named in the argument. A fatal error 
occurs if the file named cannot be accessed. 

Returns the value of its argument incremented by 1. 

Returns the position where the second argument begins in the first 
argument. 

Returns the number of characters that make up its argument. 

Causes immediate exit from rn4. 

Pushes the exit code back at final end-of-file (EOF). 

Facilitates making unique filenames. 

Removes the current definition of its arguments, exposing any 
previous definitions. 

Defines new macros but saves any previous definition. 

Returns all arguments except the first argument. 

Returns the contents of the file named in the arguments. The macro 
remains silent and continues if the file is inaccessible. 

Produces substrings of strings. 

Executes the A/UX system command given in the first argument. 

Gives the exit value of the most recent system command. 

Turns the macro trace off. 

Turns the macro trace on. 

Performs character transliteration. 

Removes user-defined or built-in macro definitions. 

Discards the diverted text. 

Null; indicates that the underlying system is derived from the UNIX 
operating system. 

4-20 Chapter 4 m4: A Macro Processor 



5 1 ex: A Lexical Analyzer 

Overview of lex usage I 5-3 

lex and yacc I 5-4 

Program syntax I 5-6 

Character set I 5-7 

Definitions I 5-10 

Rules I 5-12 

Actions I 5-19 

Compilation I 5-27 

Examples I 5-27 

Summary I 5-29 

lex is a program generator that produces a program in a general-purpose language that 

recognizes regular expressions. It is designed for lexical processing of character input 

streams. It accepts high-level, problem-oriented specifications for character string matching. 



-
Input to 1 ex is a table of regular expressions and corresponding program fragments. 

The table is translated to a program that reads an input stream, copies the input stream to 

an output stream, and partitions the input into strings that match the given expressions. 

As each such string is recognized, the corresponding program fragment is executed. 

The recognition of the regular expressions is performed by a deterministic finite 

automaton generated by lex. The program fragments are executed in the order in 

which the corresponding regular expressions occur in the input stream. 

The code written by 1 ex is not itself a complete language, but rather a generator 

representing a new language feature that can be added to different programming 

languages, called host languages. For example, one high-level language can be used for 

recognizing patterns, while a more general-purpose language is used for action statements. 

The 1 ex program generator can be used alone for simple transformations or for 

analysis and statistics gathering on a lexical level. The 1 ex generator also can be used 

with a parser generator (for example, yacc) to perform the lexical analysis phase. 

Just as general-purpose languages can produce code to run on different computer 

hardware, lex can write code in different host languages. The host language is used 

for the output code generated by 1 ex and the program fragments that comprise the 

1 ex source program. 

Compatible run-time libraries for the different host languages are provided, making 1 ex 

adaptable to many environments and users. However, at present, the only supported 

host language is the C language. 

5-2 Chapter 5 lex: A Lexical Analyzer 



Overview of 1 ex usage 
The program generated by 1 ex is called yy 1 ex. The yy 1 ex program recognizes 
expressions in an input stream and performs the specified actions for each expression as 
it is detected. See Figure 5-1. 

For example, 

%% 

[ \t]+$ 

This sample lex source program is all that is required to generate a program to delete 
all blanks or tabs at the ends of the input lines. The %% delimiter is a lex convention 
to mark the beginning of the rules, the pattern-matching expressions. The rule itself, 

[ \t]+$ 

matches one or more instances of the characters blank and tab. The brackets enclose the 
character class consisting of blank and tab; the + indicates "one or more instance of the 
previous characters or character class" and the $ indicates end-of-line. No action is 
specified, so the yylex () program (generated by lex) ignores these characters. 
Everything else is copied. 

y lex y yylex 

Source 

Q yylex y 

Input Output 

Figure 5-1 Overview of lex 

Overview of lex usage 5-3 



Consider this next example: 

%% 

[ \t]+$ 

[ \t]+ printf(" "); 

The coded instructions in yy 1 ex scan for both rules at once. Once a string of blanks or 
tabs is recognized, yy 1 ex determines whether the string is followed by a newline 
character. If it is, then the first rule has been matched so that the corresponding action is 
performed; yy 1 ex does not copy the string to output. The second rule matches strings 
of one or more blanks and tabs not already satisfying the first rule, and causes yylex 

to replace a string of one or more blanks and tabs with a single space. 
In yylex, the program generated by lex, the actions to be performed as each 

regular expression is found are gathered as cases of a switch. The automaton interpreter 
directs the control flow. It is possible to insert either declarations or additional statements 
in the routine containing the actions and to add subroutines outside this action routine, 
should you need to do so. 

The lex program generator is not limited to one-character look-ahead. For 
example, if there are two rules, one looking for ab and another for abcdefg, and the 
input stream is abcdefh, lex recognizes ab and leaves the input pointer just 
before cdefh. 

lex and yacc 

It is particularly easy to use lex and yacc together. The lex program recognizes 
only regular expressions; yacc writes parsers that accept a large class of context-free 
grammars but requires a lower level analyzer to recognize input tokens. Thus, a 
combination of lex and yacc is often appropriate. When used as a preprocessor for 
a later parser generator, lex is used to partition the input stream; the parser generator 
assigns structure to the resulting pieces. The flow of control in such a case is shown in 
Figure 5-2. Additional programs, written by other generators or by hand, can be added 
easily to programs written by lex. The name "yylex" is what yacc expects its 
lexical analyzer to be named. If lex uses this name, it simplifies interfacing. 

5-4 Chapter 5 lex: A Lexical Analyzer 



Lexical 
rules 

lex 

~ y yylex 

Input 

Figure 5-2 lex with yacc 

Grammar 
rules 

yacc 

~ y yyparse 

Out/JUt 

To use lex with yacc, observe that lex writes a function named yylex, 

which is the name required by yacc for its analyzer. Normally, the default main 
program on the lex library calls the yylex routine, but if yacc is loaded and its 
main program is used, yacc calls yylex. In this case, each lex rule ends with 

return (token) ; 

where the appropriate token value is returned. An easy way to gain access to the names 
for tokens in yacc is to compile the lex output file as part of the yacc output file 
by placing the line 

#include "lex.yy.c" 

in the last section of the yacc input. If the grammar is to be named good and the 
lexical rules are to be named better, the command sequence could be 

yacc good 

lex better 

cc y.tab.c -ly -11 

The yacc library (- ly) should be loaded before the lex library to obtain a main 
program that invokes the yacc parser. The generations of lex and yacc programs 
can be done in either order. 

lex and yacc 5-5 



Program syntax 

The general format of 1 ex input is 

{ definitions 

%% 

{ rules } 
%% 

{ user subroutines 

where the definitions and the user subroutines are often omitted. The first % % is 
required to mark the beginning of the rules, but the second % % is optional. The 
absolute minimum 1 ex program is 

%% 

This lex source generates a program that copies the input to output unchanged. 

In the 1 ex program format just shown, the rules consist of two parts: 

• a left column with regular expressions 

• a right column with actions and program fragments to be executed when the 
expressions in the left column are recognized 

For example, 

integer printf("found keyword INT"); 

The sample rule mentioned earlier gives the instructions to look for the string integer 

and, when found, produces the statement 

found keyword INT 

In this example, because the host procedural language is C, the C language library 
function print f is used to print the string. 

The end of the expression is indicated by the first blank or tab character. If the action 
is a single C language expression, it can just be given in the right column, as illustrated in 
the example. If the action is compound or requires more than one line, it should be 
enclosed in braces. Consider the following example: 

colour 

mechanise 

petrol 

printf("color"); 

printf("mechanize"); 

printf("gas"); 

5-6 Chapter 5 lex: A Lexical Analyzer 



This lex source segment could be used to generate a program to change a number of 
words from British to American spelling. It should be noted, however, that these rules 
would have to be changed somewhat to be really useful. For example, if the word 
petroleum appeared in the input stream, the program generated by this segment 
would change it to gaseum. 

Character set 

Internally, a character is represented as a small integer. If the standard library is used, the 
value of a character is equal to the integer value of the bit pattern representing the 
character on the host computer. For example, the character A has the value\ 101 (octal) 
in ASCII. 

Of course, you need not use the integer value of a character to access the value. The 
character a is represented in the same form as the character constant ' a ' . If this 
interpretation is changed by providing I/0 routines that translate the characters, lex 

must be given a translation table that is in the definitions section of the source, and this 
translation table must be bracketed by lines containing only %T. The translation table, 
then, contains lines of the form 

%T 

{ integer } { character string 

%T 

which indicate the value associated with each character. 

Character classes 
Classes of characters can be specified using the operator pair [ and J • For example, 
the construction [ abc J matches a single character, which can be a, b, or c. 

Within brackets, most operator meanings are ignored. Only three characters are special: 

\ 

Character set 5-7 



The - character indicates a range. For example, 

[a-z0-9<>_] 

specifies the character class containing all the lowercase letters (a to z), digits (o 

through 9 ), angle brackets ( < and > ), and the underline character U. 
Using - between any pair of characters that are not both uppercase letters, both 

lowercase letters, or both digits is sometimes acceptable to lex, but this is 
implementation-dependent. (It works on A/UX, but it might not be portable to other 
systems.) Therefore, if such a range is declared, lex issues a warning message. One 
reason for this is that [ o - z J matches many more characters in ASCII than in EBCDIC. 

If it is necessary to include the character - in a character class, it should either be 
first or last within the brackets. For example, 

[-+0-9] 

matches all digits ( o through 9) and the two symbols - and +. 

The \ character acts as an escape character within class brackets. For example, 

[a-z\*J 

matches all lowercase letters (a to z) and the character *. 
If the "' operator appears as the first character after the left bracket, 1 ex ignores 

the characters within the brackets, therefore matching all characters except those within 
the designated character class range. If an operation is to be performed on recognition of 
a string expressed using this construction, it is done on strings other than those within 
the brackets. For example, 

["'abc] 

matches all characters except a, b, or c, including all special and control characters. 
Also, 

["'a-zA-Z] 

matches any character that is not a letter (neither in the range a through z nor in the 
range A through z). 

5-8 Chapter 5 lex: A Lexical Analyzer 



Arbitrary characters 

There are several other ways to specify characters to 1 ex. The period operator (.) 
instructs lex to match any character except a newline. The meaning of the period does 
not change within brackets. 

Also, all characters and ranges can be designated using the octal representations of 
those characters. This method, however, is difficult to read and most likely not portable. 
Nonetheless, the character class range 

[\40-\176] 

can be used to match all printable ASCII characters from octal 40 (blank) to octal 176 
(tilde:-). 

Operators 

The operator characters are 

"\[]"-?.*+! ()$/{}%<> 

If these are to be used as text characters, an appropriate "escape" should be used. For 
example, to get the character \, you must escape its significance as an operator. You can 
do so easily with another backslash: \ \. For more information on escaping, refer to 
AIUX Shells and Shell Programming. 

The quotation mark operator (") indicates that whatever characters follow, up to a 
second " character, are to be taken as text characters without any "magic" meaning or 
operator significance. The quotation mark, then, is another way to escape the special 
meaning of a character. For example, 

xyz"++" 

matches the string xyz++ wherever it appears. Of course, it is unnecessary, though 
harmless, to quote an ordinary text character. Consequently, the expression 

"xyz++" 

is equivalent to the one that quoted only the ++.However, by quoting every character 
being used as a text character, you can avoid remembering the list of current operator 
characters, and avoid problems should further extensions to lex lengthen the list. 

Another use of the quoting mechanism is for forcing a blank into an expression. 
Normally, as explained earlier, blanks or tabs end a rule. Any blank character not 
contained within brackets must be quoted. 

Character set 5-9 



Definitions 

There is also a third way to match the literal value of these operators, using the \ 
escape character. You could specify the string discussed earlier as 

xyz\+\+ 

Several C language escapes using \ are recognized: 

\n newline 

\ t tab 

\ b backspace 

\ \ backslash 

Since newline is illegal in an expression, \n must be used. 

Recall that the basic format of a 1 ex source is 

{ definitions 

%% 

{ rules } 
%% 

{ user subroutines 

In addition to the rules(discussed later), lex includes options to define variables. 
Variables can occur either in the definitions section or in the rules section. 

Remember, lex is generating the rules into a program, and any source not 
intercepted by 1 ex is copied into the generated program. Also, 

• Any line not part of a lex rule or action and that begins with a blank or tab is 
copied into the lex generated program. 

• Any line not part of a 1 ex rule or action that begins with a blank or tab and is 
found prior to the first %% delimiter is "external" to any function in the code. 

• Any line not part of a 1 ex rule or action that begins with a blank or tab and is 
found immediately after the first % % appears in an appropriate place for declarations 
in the function written by lex that contains the actions. This material must look like 
program fragments and should precede the first lex rule. 

5-10 Chapter 5 lex: A Lexical Analyzer 



• Lines that begin with a blank or tab, and that contain a comment, are passed 
through to the generated program. This can be used to include comments in either 
the lex source or the generated code. The comments should follow the host 
language convention. 

• Anything included between lines containing only % { and % } is copied to output. The 
delimiters are discarded. This format permits entering text-like preprocessor statements 
that must begin in column 1, or copying lines that do not look like programs. 

• Anything after the third % % delimiter, regardless of formats, and so on, is copied to 
output afterthe lex output. 

Definitions intended for lex are given before the first %% delimiter. Any line in 
this section not contained between % { and % } and beginning in column 1 is assumed 
to define lex substitution strings. The format of such lines is 

name translation 

This facility enables the string given as translation to be associated with the name. 
The name and translation must be separated by at least one blank or tab, and the name 
must begin with a letter. The translation can be called by the {name} syntax in a rule. 
Using { D} for the digits and { E} for an exponent field, you might have 

D [0-9] 

E 

%% 

[DE de] [ - +] ? { D} + 

{D}+ printf("integer"); 

{D}+"."{D}*({E})? 

{D}*"."{D}+({E})? 

{D}+{E} printf("real"); 

This example abbreviates rules to recognize numbers. The first two rules for real 
numbers both require a decimal point and contain an optional exponent field. The first 
requires at least one digit before the decimal point ( { D} + • . • { D} * ( { E} ) ? ), and the 
second requires at least one digit after the decimal point ( { D} * • . • { D} + ( { E} l ? ). To 
correctly handle the Fortran expression 3 5 . EQ . I, which does not contain a real 
number, a context-sensitive rule such as 

[0-9]+/"."EQ printf("integer"); 

could be used, in addition to the normal rule for integers (see "Context Sensitivity"). 

Definitions 5-11 



Rules 

The definitions section also can contain other commands, including the selection of a 
host language, a character set table, a list of start conditions, or adjustments to the default 
size of arrays within 1 ex itself for larger source programs. 

Repetitions and definitions 

The operators { and } specify either 

• repetitions (if they enclose numbers) 

• definition expansion (if they enclose a name) 

For example, 

{digit} 

looks for a predefined string named digit and inserts it at that point in the 
expression. The definitions are given in the first part of the 1 ex input, before the rules. 
On the other hand, the expression 

a{l,5} 

looks for one to five occurrences of a. 

An initial % is not an ordinary character, but has a special meaning to 1 ex as the 
separator for source program segments. 

Regular expressions 

The regular expressions in lex function just as do those in the A/UX text editors vi, 

ed, and so on. A regular expression specifies a set of strings to be matched. It contains 
"text characters,'' which match characters in the input stream, and "operator characters,'' 
which, together with those "text characters,'' express a string that is to be recognized 
before the action in the right column takes place. 

5-12 Chapter 5 lex: A Lexical Analyzer 



Letters of the alphabet and digits are always text characters. For example, 

integer 

matches the string integer wherever it appears, and the expression 

a57D 

looksforthestring a57D. 

Optional expressions 

The question mark (?) operator indicates that what immediately precedes it is an 
optional element of an expression. Thus, 

ab?c 

matches either ac or abc. 

Repeated expressions 

Repetitions of classes are indicated by the operators * and +. The expression 

a* 

matches zero or more consecutive a characters. The expression 

a+ 

matches one or more instances of a characters. The expression 

[a-z]+ 

matches all strings of lowercase letters. The expression 

[A-Za-z] [A-Za-z0-9] * 

matches all alphanumeric strings that have a leading alphabetic character. This is a typical 
expression for recognizing identifiers in computer languages. 

Rules 5-13 



Alternation and grouping 

The operator I indicates alternation. For example, 

(ab led) 

matches either ab or ed. The parentheses are used here for grouping only. They are 
not required in such a simple and clear-cut example, but are often used for clarity or to 
force correct interpretation of more complex expressions. For example, 

(abled+)?(ef)* 

matches such strings as 

abefef 

ef ef ef 

edef 

eddd 

but not 

abe 

abed 

abedef 

Context sensitivity 

The 1 ex program recognizes a small amount of surrounding context. The two simplest 
operators for this are " and $. 

As in the A/UX text editors, if the first character of an expression is ", the expression 
is matched only if found at the beginning of a line, either after a newline character or at 
the beginning of the input stream. Do not confuse this with the use of the " operator 
within brackets, which instructs lex to match any character except those in the 
designated character class range. If you want to use 1 ex to find occurrences of a 
particular range of characters, but only if they occur as the first character on a line, you 
must use the " operator on the outside of the brackets. For example, the expression 

A [ 0-9 J 

matches lines whose first character is a digit, o through 9. The expression 

"["0-9] 

matches lines whose first character is not a digit o through 9. 

5-14 Chapter 5 lex: A Lexical Analyzer 



The operator $ is matched only at the end of a line, immediately followed by 
newline. This operator is a special case of the I operator character, which indicates 
"trailing context." The expression 

ab/cd 

matches the string ab only if followed by ed. Therefore, the expression 

ab$ 

can also be expressed 

ab/\n 

That is, the use of the $ operator can be interpreted as an instruction to match the 
characters only when followed by a newline. 

Left context is handled in lex by "start conditions." If a rule is only to be executed 
when the lex automaton interpreter is in start condition x, the rule should be 
enclosed within the angle-bracket operator characters: 

<X> 

If "being at the beginning of a line" is considered to be start condition ONE, then the " 
operator is equivalent to 

<ONE> 

See the sections entitled "Left Context Sensitivity," "Examples,'' and "Summary" for 
further explanation and illustration of start conditions. 

Left context sensitivity 

Sometimes it is desirable to have several sets of lexical rules applied at different times in 
the input. For example, a compiler preprocessor might distinguish preprocessor 
statements and analyze them differently from ordinary statements. This requires 
"sensitivity" to prior context. There are several ways of handling such occurrences. For 
example, the " operator is a "prior context operator" because it must recognize the 
immediately preceding left context to discern whether a character appears at the 
beginning of a line, just as the $ operator must recognize the immediately following 
right context to discern whether a character appears at the end of a line. 

Adjacent left context can be extended to produce a facility similar to that for adjacent 
right context. This is likely to be less useful, however, since often the relevant left 
context, such as the beginning of a line, appeared some time earlier. 

Rules 5-15 



There are three basic ways of dealing with different environments so as to achieve a 
lexical analysis with a greater degree of context sensitivity. 

• The use of flags. This is most useful when only a few rules change from one 
environment to another. 

• The use of start conditions on rules. 

• The possibility of making multiple lexical analyzers all run together. If the sets of rules 
for the different environments are very dissimilar, clarity might best be achieved by 
writing several distinct lexical analyzers and switching from one to another, as necessary. 

In each case, there are rules that recognize the need to change the environment in 
which the following input text is analyzed and a parameter is set to reflect the change. 
The remainder of this section describes in greater detail the first two ways of dealing with 
different environments. 

Flags 

The simplest way of changing the environment in which input is analyzed is by use of a 
flag explicitly tested by the user's action code. If done in this way, lex is not involved 
at all. 

To illustrate, consider the following program requirements: 

• Copy the input to the output. 

• Change the word magic to first on every line that begins with the letter a. 

• Change magic to second on every line that begins with the letter b. 

• Change magic to third on every line that begins with the letter c. 

All other words and all other lines are left unchanged. These rules are so simple that the 
easiest way to do this job is with a flag. For example, 

int flag. 

%% 

"a {flag 'a'; ECHO;} 

"'b {flag 'b' i ECHO;} 

"'c {flag 'c'; ECHO;} 

\n {flag 0 i ECHO;} 

5-16 Chapter 5 lex: A Lexical Analyzer 



magic 

switch (flag) 

case 'a': printf("first"); break; 

case 'b': printf("second"); break; 

case 'c': printf("third"); break; 

default: ECHO; break; 

Start conditions 

It might be more convenient to have 1 ex "remember" the flags as start conditions on 
the rules. Any rule can be associated with a start condition. That rule, then, is recognized 
only when 1 ex is in that start condition. The current start condition can be changed at 
any time. To handle the same problem using start conditions, begin by introducing each 
start condition to 1 ex in the definitions section with a line reading 

%Start namel name2 ... 

where the conditions (namel, name2, and so on) can be named in any order. The 
word start can be abbreviated to s or s. Then, to reference the conditions, use 
angle brackets: 

<namel> expression 

The rule illustrated earlier is recognized only when 1 ex is in the start condition 
namel. To enter that start condition, execute the following action statement: 

BEGIN namel; 

The action statement 

BEGIN O; 

resets the initial condition of the 1 ex automaton interpreter. 
A rule can be active in several start conditions. For example, 

<namel, name2, name3> expression 

is a legal expression. Any rule not beginning with the < prefix operator is always active. 

Rules 5-17 



The following example illustrates the use of start conditions: 

%START AA BB CC 

%% 

"a {ECHO; BEGIN AA;} 

"b {ECHO; BEGIN BB;} 

"c {ECHO; BEGIN CC;} 

\n {ECHO; BEGIN 0 i } 

<AA>magic printf("first"); 

<BB>magic printf("second"); 

<CC>magic printf("third"); 

Obviously, this example is a rewrite of the previous example; the problem-solving logic 
is exactly the same. However, in this case 1 ex was instructed to do the work instead of 
the host language code. 

Ambiguous rules 

The lex program can handle ambiguous specifications. When more than one 
expression can match the current input, the longest match is preferred, among rules that 
matched the same number of characters, the rule given first is preferred. For example, 
using the rules 

integer keyword-action ; 
[a-z]+ identifier-action ; 

(if the input were integers), lex interprets the input as an identifier because 
[ a-z J + matches all eight characters (including the final s), while integer matches 
only seven characters. 

If the input were integer, both rules would match the seven characters. In that 
case, 1 ex selects the keyword rule because it was given first. If the input were anything 
shorter (for example, int), the input would not match the expression integer. It 
would, however, match the [a - z J + expression, so the identifier interpretation would 
be used. 

5-18 Chapter 5 lex: A Lexical Analyzer 



Actions 

The principle of preferring the longest match makes rules containing expressions like 
. * dangerous. For example, 

' *' 

appears to instruct 1 ex to find a match for a string in single quotes. However, it is an 
instruction for the program to read far ahead looking for a distant single quote. For 
example, if the above expression were given the following input: 

'first' quoted string here, 'second' here 

the expression would match almost the entire input line: 

'first' quoted string here, 'second' 

which is most likely not the desired result. A better rule for matching strings within single 
quotes might he 

' [A' \n] *' 

which, given the same input, matches 'first'. The consequences of errors like this 
are greatly lessened by the fact that the period (.) operator does not match newline. 
Expressions like . * stop on the current line. 

+ Note Do not try to defeat the protection of . not matching the newline character 
with expressions such as [. \nl + or an equivalent, because the program generated by 
1 ex then tries to read the entire input file, causing internal buffer overflows. • 

When an expression written as the previous one is matched, yy 1 ex executes the 
corresponding action. The default action for yy 1 ex is to copy input to output, and is 
performed on all strings not otherwise matched. Therefore, a rule that merely copies can 
be omitted. If you want to absorb the entire input without producing any output, you 
must provide rules to match everything. (When yylex is being used with yacc, this 
is the normal situation.) In other words, by default, a character combination in input that 
was omitted from the rules is printed on the output. 

Actions 5-19 



The null statement 

One of the simplest things that can be done is to ignore the input. To accomplish this, use 
a semicolon (;) as the action (a semicolon is the C language "null statement"). The rule 

[ \t\n] 

causes the spacing characters (that is, blank, tab, and newline) to be ignored because it 
gives the null statement as its associated action. 

The repetition character 

The vertical bar character ( I ) represents the instruction to use the action designated for 
the next rule for the current rule as well. For example, 

II\ t II 

II \nll 

This example instructs yy 1 ex to ignore the spacing characters, as did the previous 
example. The first line gives the rule "match blank characters" and instructs the program 
to perform the action indicated for the next rule. Then, the second line gives the rule 
"match \ t characters" and instructs the program to perform the action indicated for the 
next rule. Finally, the third line gives the rule "match \n characters,'' and gives the 
action ; , the null statement. Therefore, the action for all three rules is the null statement. 

printf and ECHO 

In more complex actions, you might often want to know the actual text that matched a 
regular expression. The yylex program leaves this text in an external character array, 
named yytext. Consider the following example: 

[a-z]+ printf("%s", yytext); 

This example illustrates a way of accessing the characters matching a regular expression. 
Using this example, the rule given is to find the strings matching the regular expression 
[a - z J + and the action is to print those strings in the character array yyt ext using 
the C language function printf. 

5-20 Chapter 5 lex: A Lexical Analyzer 



The printf function accepts a format argument and data to be printed. Still using 
this example, the format is %s (print string). The % character indicates data 
conversion, and s indicates data type string, in this case the character array yytext. 

This places the matched string on the output. 
The action of printing the strings matching the regular expressions is so common that 

it can be written simply as ECHO. For example, 

[a-z]+ ECHO; 

This example accomplishes the same action as the previous one using the printf 

statement. 
Even though the default action is to copy input to output, the ECHO facility is 

included explicitly to provide a more discriminating copy function. For example, a rule 
that matches read normally matches all instances of read, even those contained in 
other words (bread, treadmill, and so on). To avoid this, a rule of the form 
[a - z J + is needed. This is explained further in the following section. 

yyleng 

Sometimes it is necessary to know what is at the end of a matched pattern. To facilitate 
this, 1 ex provides a count of the number of characters matched, yy 1 eng. To count 
both the number of words in the input and the number of characters in those words, you 
might write 

[a-zA-Z]+ {words++; chars += yyleng;} 

This instruction takes the strings that match the regular expression [a - zA- z J + and 
accumulates the number of characters in these strings in chars. Then, the action 
instruction 

yytext[yyleng-1] 

can be used to access the last character in the string matched. 

Actions 5-21 



yymore and yyless 

Occasionally, a lex action might decide that a rule did not recognize the correct span 
of characters. Two routines are provided to aid with this situation: 

yyrnore () 

yyless ( n) 

This routine instructs yy 1 ex to tack the next input expression 
recognized on to the end of this input. Normally, the next input string 
overwrites the current entry in yytext. 

This routine instructs yy 1 ex to retain in yyt ext only n (a 
number) of those characters resulting from the current expression. 
Further characters previously matched are returned to the input. This 
provides the same sort of look-ahead offered by the I operator, 
though in a very different form. 

Consider a language that defines a string as a set of characters between quotation 
marks ("),and requires that the " character be preceded by a \ to be included in a 
string. The regular expression which matches that is somewhat confusing, so it might be 
preferable to write the following segment: 

\ H [A" l * { 

if (yytext[yyleng-1] 

yyrnore(); 

else 

... normal user processing 

'\ \') 

The previous lex segment, when it finds the string 

"abc\"def" 

first matches the five characters "abc \ and then calls the yyrnore routine, which 
causes the next part of the string, "def, to be tacked on the end of the input. Note that 
the final quote terminating the string should be picked up in the code labeled normal 
user processing. 

The function yyless might be used to reprocess text in various circumstances. 
Consider, for example, the problem of disambiguating a C language statement such as 

S=-a 

5-22 Chapter 5 lex: A Lexical Analyzer 



One way to parse this statement treats the - as part of the operator: 

=- [a-zA-Z] { 

printf("Operator (=-) ambiguous\n"); 

yyless(yyleng-1); 

action for = -

This 1 ex segment prints a message, treats the operator as = - , and returns the letter 
found after the operator to the input stream. However, you might want to treat this syntax 
as = -a. In that case, 

=- [a-zA-Z] { 

printf("Operator (=-) ambiguous\n"); 

yyless(yyleng-2); 

action/or = 

prints a message, treats the operator as =,and returns -a to the input stream. 
It is possible to avoid the misinterpretation of operators by rewriting the regular 

expression. To indicate that the operator is = - , using the same example, use the 
following rule: 

=-/[A-Za-z] 

To indicate that the operator is =,use the following rule: 

=/-[A-Za-z] 

No backup is required in the rule action. It is not necessary to recognize the whole 
identifier to observe the ambiguity. However, the possibility of =-3 makes 

=-/["' \t\n] 

a still better rule. 

lex input and output routines 

The programs generated by lex handle character I/0 only through the routines 
input, output, and unput. The character representation provided in these routines 
is accepted by lex and used to return values in yytext. These are provided as lex 

macro definitions, as shown in the following list. 

Actions 5-23 



input () 

output ( C) 

unput ( C) 

returns the next input character 

writes the character con the output 

pushes the character c back onto the input stream to be read later by 
input 

(As shown previously, you can use printf to generate error messages.) These 
routines are provided by default, but you can override them by providing your own 
versions. To redefine or override a lex routine, include your own version in the user 
subroutines section. These routines must be standard C and be named according to the 
lex routine you want to replace. However, because these routines define the 
relationship between external files and internal characters, they must all be retained 
and/ or modified consistently. 

These routines can be redefined to cause input or output to be transmitted to or from 
other programs or internal memory. The character set used must be consistent in all 
routines and a value of 0 returned by input must mean end-of-file. 

The relationship between unput and input must be retained or the lex look­
ahead does not work. The lex program does not look ahead at all if it does not have 
to; rules ending in +, *, ? , or $,or those containing a I, however, force look-ahead. 
Look-ahead is necessary to match an expression that is a prefix of another expression. 
The standard lex library imposes a 100-character limit on backup. 

yywrap 

Another lex library routine that you might sometimes want to redefine is yywrap. To 
redefine or override a lex routine, include your own version in the user subroutines 
section. These routines must be standard C and be named according to the 1 ex routine 
you want to replace. This routine is called whenever lex reaches an end-of-file. If 
yywrap returns a 1, which it does by default, lex continues with the normal wrap-up 
on end of input. 

It is sometimes convenient to arrange for input to continue from a new source. In 
this case, yywrap can be redefined to arrange for new input and return 0. This then 
instructs lex to continue processing. 

5-24 Chapter 5 lex: A Lexical Analyzer 



This routine provides a convenient way to print tables, summaries, and so on, at the 
end of a program. It is not possible to write a normal rule that recognizes end-of-file. The 
only access to this condition is through yywrap. In fact, unless a private version of 
input is supplied, a file containing nulls cannot be handled because a value of O 
returned by input is taken to be end-of-file by yywrap. 

REJECT 

Note that 1 ex is normally partitioning the input stream, not searching for all possible 
matches of each expression. This means that each character is accounted for once and 
only once. Consider the following example: 

she s++; 

he h++; 

\n 

The first rule matches all occurrences of the string she and the action increments s 

for each one found. The second matches all occurrences of the string he and its action 
increments h for each one found. The last two rules match newline and everything else 
and take the action of ignoring them. Normally, lex would not recognize the instances 
of he included in she, because once it passed a she, those characters are gone. To 
override this default, the action REJECT can be used to instruct 1 ex to go to the next 
alternative. REJECT causes the rule after the current rule to be executed. The position 
of the input pointer is adjusted accordingly. 

Suppose you want to count the instances of he included in she. To do that, use 
the following rules: 

she {s++; REJECT;} 

he {h++; REJECT;} 

\n 

In this example, after counting each expression, the expression is "rejected" (whenever 
appropriate), and the other expression is evaluated. In this example, because he does 
not include she, the REJECT action on he can be eliminated. In other cases, it is 
not possible to state which input characters are in both classes. 

Actions 5-25 



Consider the following two rules: 

a[bc]+ 

a[cd]+ 

REJECT;} 

REJECT;} 

• If the input to the rules above were ab, only the first rule would match. 

• If the input to these same rules were ad, only the second would match. 

• If the input were accb, the first rule would match four characters and the second 
rule would match three characters. 

• If the input were aced, however, the second rule would match four characters and 
the first rule would match three characters. 

In general, REJECT is useful whenever the purpose of 1 ex is to detect all examples 
of some items in the input for which the instances of these items might overlap or include 
one another, instead of the usual purpose of 1 ex of partitioning the input stream. 

Suppose you want a diagram of some input. Normally, the digrams overlap, that is, 
the word the is considered to contain both th and he. Assuming a two­
dimensional array named digram [ J to be incremented, an appropriate lex 

procedure is 

%% 

[a-z] [a-z] {digram[yytext[O]] [yytext[l]J++; REJECT;} 

\n 

In this example, REJECT is used to pick up a letter pair beginning at every 
character, rather than at every other character. 

The action REJECT does not rescan the input. Instead, it "remembers" the results of 
the previous scan. Therefore, if yy 1 ex is instructed to find a rule with trailing context 
and execute REJECT, unput cannot have been called to change the characters 
forthcoming from the input stream. This is the only restriction on the user's ability to 
manipulate the not-yet-processed input. 

5-26 Chapter 5 lex: A Lexical Analyzer 



Compilation 

Examples 

The following steps are involved in compiling a lex source file: 

1. The 1 ex source must be transformed into a program in the host general-purpose 
language. The generated program is put into a file named lex. yy. c. 

2. That program must then be compiled and loaded, usually with a library of 1 ex 

subroutines. The I/0 library is defined in terms of the C language standard library. On 
the A/UX operating system, the library is accessed by the loader flag -11. In this 
case, an appropriate set of commands is 

lex inputf ile 

cc lex.yy.c -11 

The resulting program is placed in the file a. out for later execution. 

Although the default lex 1/0 routines use the C language standard library, lex 

routines such as input, output, and unpu t do not. Therefore, if your own 
versions of these routines are given, the library is avoided. 

For the sake of example, consider copying an input file while adding three to every 
positive number divisible by 7. A suitable lex source program follows: 

%% 

int k; 

[0-9]+ 

k = atoi(yytext); 

if (k%7 -- 0) 

printf ( "%d", k+3); 

else 

printf ( "%d", k); 

} 

Examples 5-27 



The rule [ o - 9 l + recognizes strings of digits, 0 through 9; at o i converts the 
digits to binary and stores the result in k. The operator % (remainder) is used to check 
whether k is divisible by seven; if it is, k is incremented by 3 as it is written out. It 
might be objected that this program alters such input items as 4 9 . 6 3 or x7. 

Furthermore, it increments the absolute value of all negative numbers divisible by 7. To 
avoid this, add a few more rules after the active one. For example, 

%% 

int k; 

-?[0-9]+ 

k = atoi(yytext); 

printf("%d", k%7 0 ? k+3 k) i 

-?[0-9.]+ ECHO; 

[A-Za-z] [A-Za-z0-9]+ ECHO; 

Numeric strings containing a period C. ), or preceded by a letter, are picked up by one 
of the last two rules and not changed. The if - e 1 s e is replaced by a C language 
conditional expression to save space. The expression a ? b : c is evaluated as "if a 

then b else c." 
The following is an example using 1 ex for gathering statistics. This program reports 

how many words of various lengths there are. (A word is defined here as a string of letters.) 

int lengs[lOO]; 

%% 

[a-z]+ lengs[yyleng]++; 

\n 

%% 

yywrap( 

int i; 

printf ("Length No. words\n"); 

for(i=O; i<lOO; i++) 

if (lengs[i] > 0) 

printf("%5d%10d\n", i, lengs[i]); 

5-28 Chapter 5 lex: A Lexical Analyzer 



Summary 

return(l); 

In the preceding example, the data is accumulated but no output is generated until, at 
the end of the input, the table is printed. The final statement, return ( 1) ; , indicates 
that lex is to perform wrap-up. If yywrap returns 0 (false), it implies that further 
input is available and the program is to continue reading and processing. Remember, 
providing a yywrap that never returns true causes an infinite loop. 

The general form of a 1 ex source file is 

{ definitions 
%% 

{ rules } 

%% 

{ user subroutines 

The definitions section contains a combination of the following items: 

• Definitions in the form 

name translation 

• Included code in the form 

code 

where a space (or tab) must precede code. 

• Included code in the form 

%{ 

code 
%} 

• Start conditions given in the form 

%s namel name2 ... 

Summary 5-29 



• Character set tables in the form 

%T 

number character-string 

%T 

• Changes to internal array sizes in the form 

%x nnn 

where nnn is a decimal integer representing an array size and x selects the 
parameter as follows: 

Letter Parameter 

p positions 

n states 

e tree nodes 

a transitions 

k packed character classes 

0 output array size 

Lines in the rules section have the form 

expression action 

where the action can be continued on succeeding lines by using braces to delimit it. 
Regular expressions in 1 ex use the operators shown in Table 5-1. 

5-30 Chapter 5 lex: A Lexical Analyzer 



Table 5-1 Regular expression operators 

Expression 

x 

"xn 

\x 

[xy] 

[x-z] 

["x] 

"x 

<y>X 

x$ 

x? 

x* 

x+ 

xly 

(x) 

x/y 

{xx} 

x{m, n} 

Meaning 

The character x 

An x, even if it is an operator 

An x, even if it is an operator 

The character x or y 

The characters x, y, or z 

Any character but x 

Any character but newline 

An x at the beginning of a line 

An x when lex is in start condition y 

An x at the end of a line 

An optional x 

0 or more instances of x 

1 or more instances of x 

Anxoray 

An x 

An x, but only if followed by y 

Expands to xx definition in lex definition section 

m through n occurrences of x 

Summary 5-31 



Part 2 File Manipulation Tools 



The A/UX tools detailed in this section help you perform file-related tasks such as 

finding a file size or location, determining the differences between two files, and 

obtaining the version number of a program. Additionally, A/UX provides tools to control 

the file versions to ensure that they are the most recent and provides a way of updating 

and maintaining groups of files. 

The chapter "File Attribute Tools" describes the tools to 

• compare source files: di ff and comm 

• find files: find 

• determine file characteristics: size 

• find the version number of a file: version 

• maintain portable archives: ar 

The following chapters in this section describe the file maintenance tools to 

• maintain and keep track of related program files: make 

• manage versions of source code: sccs 

• process and parse files: awk 



6 File Attribute Tools 

Comparing source files I 6-2 

Finding files: find I 6-2 

Printing the section sizes of COPP files: size I 6-2 

Finding the version number of a file: version I 6-3 

Maintaining portable archives and libraries: ar I 6-3 

The A/UX tools detailed in this section help you perform file-related tasks such as finding 

a file size or location, determining the differences between two files, and obtaining the 

version number of a program. 



Comparing source files 
A/UX includes a number of programs that compare files, including 

bdiff 

diff 

diff3 

diffmk 

diffdir 

comm 

Used similarly to di ff; its purpose is to allow processing of files that 
are too large for di ff. 

A differential file comparator. It tells what lines differ in two files. 

A three-way differential file comparator, which works only on files less 
than or equal to 64K bytes. It compares three versions of a file and 
publishes disagreeing ranges of text, flagged with special codes. 

Marks the differences between files. It compares two versions of a file 
and creates a third file that includes "change mark" commands for the 
nroff and troff formatters. 

Compares the differences in two directories of files. 

Selects or rejects lines common to two sorted files. 

Finding files: find 

find is a powerful l!tility that performs a depth-first recursive search for files of a given 
characteristic such as name, group, owner name, time of last modification or access, and 
so on. See f ind(l) ir;i A/UX Command Reference for more information. 

Printing the section sizes of COFF files: 
' size 

The size command produces size information for common object format files (COFF). 
See s i z e(l) in A/UX Command Reference for more information. 

6-2 Chapter 6 File Attribute Tools 



Finding the version number of a file: 
version 

version is useful for determining which version of a program you are running. 
version takes a list of files and reports the version number for each. If the file is not a 
binary, it reports that. If a version number is not associated with the file, the program 
reports that fact. version also reports the object file format of each file-that is, either 
Co ff object file format, or Old a. out object file format. 

The user can associate a version number with a file by defining a string constant at 
the top of the source code. The string must have the form 

{Apple version RELEASE.LEVEL YY/MM/DD HH:MM:SS}" 

In this string, the words Apple version must appear followed by the values for the release 
number, level number, year, month, day, hour, minute, and second. For example 

char *_Version_ \ 

"(c) Copyright 1986 {Apple version 2.1 86/09/12 18:05:24}" 

See version(l) in A!UX Command Reference for more details. 

Maintaining portable archives and libraries: 
ar 

You can use the archive command ar to combine several files into one archive. An 
archive consists of a collection of files, plus a table of contents. Archives are used mainly 
as libraries to be searched by the link editor ld. A library (or library archive) is an 
archive that contains object files (plus a table of contents). Putting together your own 
library allows you to use locally produced functions (instead of limiting you to the 
functions supplied in standard libraries). 

ar also provides the facility to append files to and delete files from the archive. 
Because the order of files is so important to the efficient operation of ld, you can also 
move files around within the archive, as well as extract them, print them, and produce a 
table of contents. See ar(l) in A!UX Command Reference for more information. 

Maintaining portable archives and libraries: ar 6-3 



7 make: A File Production Tool 

Using make I 7-3 

The description file I 7-8 

Suffixes and rules I 7-20 

Operation I 7-28 

Advanced topics I 7-44 

The make program automates the production of related sets of files. It simplifies the 

task of administering libraries, functions, related source and object files, and many other 

administration tasks that must reflect a change when you update one file in the set. 

Although make is normally used to maintain program code, it can also be used for 

other batch data-processing activities. (For example, make is often used to produce 

technical manuals with troff.) 



The make program keeps track of file dependencies; when you change one part of a 

program, make recompiles related files with a minimum amount of effort. The required 

information is maintained by the make program itself (which has built-in "rules" for 

recompilation), by using certain system information, such as the time stamp of the files, 

and by the description of operations kept in a file called the description file or makefile. 

Once you set up a makefile for a large project, make keeps track of your dependencies 

for you and frees you to concentrate on programming or other tasks. 

7-2 Chapter 7 make: A File Production Tool 



Using make 

The simplest use of make is 

make filel 

where a file named f i 1e1 . c resides in the current directory. The file f i 1e1 . c can 
use information from other files by using #inc 1 ude statements. This command causes 
make to find filel. c in the local directory and issue the proper command to 
compile it into f i 1e1. 

+ Note If filel. c has the same filename prefix (the same filename without the . c 
suffix) as another file, make might compile that file instead. If, for example, there is a 
more recent f i 1e1 . 1 file, it is compiled instead, and f i 1e1 . c is overwritten in the 
process. If these files are not different incarnations of the same program, losing the . c 

file could be quite troublesome. • 

As long as only one file is involved and only a standard compilation is required, you 
do not need to create a makefile to make your files. 

If, however, your program is spread over multiple files, you do need to create a 
makefile, which is a control file containing the filenames, a description of their 
interrelations, and actions to be performed on them. When it does not have enough to go 
on, make looks in the current directory for a file named makefile (or Makefile) 

that contains the necessary administrative information. In general, you must put an entry 
in the makefile for any file that has a nonstandard compilation procedure. 

Writing a makefile 

To write a makefile, you must determine the following elements: 

• the target filename 

• filenames of related compilation units (files) 

• file dependencies 

• related libraries 

• the command that produces the target (including options for the programs to be run) 

Using make 7-3 



Targets are filenames, or placeholders for filenames, that are meant to be compiled. 
The make program defines a dependency as follows: filel depends onfile2 only if 

filel needs to be recompiled whenever file2 is changed. For example, if file x. c 
contains the line 

#include "defs.h" 

the object file x . o depends on def s . h. If def s . h is changed, the x . o file must 
be remade by compiling x. c. Note that the x. c (source) file does not depend on 
def s . h, because it does not need to be re-created when def s . h changes. 

For example, a file named zeke depends on zeke. o and uses library functions 
from libm. a. To relink zeke, you enter 

cc -lm zeke.o -o zeke 

cc passes the two options, -lm and -o, to ld. 

• - lm causes library 1 ibm. a to be searched. 

• -o renames the compiled binary file zeke (instead of the default a. out). 

The example requires the following makefile: 

zeke: zeke.o 

(TAB) cc -lm zeke.o -o zeke 

The first line states the dependency (that zeke depends on zeke. o). The second line is 
the command line describing the action that must take place whenever zeke. o changes. 
The command line must begin with a tab (represented by (TAB) in the examples). 

In a more complicated example, a file named xavier depends on three files 
named yancy. o, quincy. o, and wally. o, all of which depend on defs .h and 
use the library 1 ibm. a. The command to link xavi er is 

cc -o xavier yancy.o quincy.a wally.a -lm 

The makefile for xavier follows: 

xavier: yancy.o quincy.a wally.a 

(TAB) cc yancy.o quincy.a wally.a -o xavier -lm 

yancy.o quincy.a wally.a: defs.h 

When makefiles become more complicated, you can use macros and other features 
described in the sections that follow. 

7-4 Chapter 7 make: A File Production Tool 



When you have included the interfile dependencies and command sequences in a 
makefile, the command 

make 

updates the appropriate files, regardless of how many files you edited since the last time 
you executed make. The make utility uses the date and time that a file was last 
modified to find files that are out of date with respect to their targets. 

make command syntax 

make uses the following command syntax: 

make [option ... ] [macro= def .. ] [-f filename] [ta~et .. .] 

make interprets these arguments in the following order: 

1. First, make analyzes the macro definition arguments (arguments with embedded 
equal signs) and the assignments made. Command-line macros override 
corresponding definitions found in the description files. See "Macro Definitions" for 
more information. 

2. Next, make examines the options. See "Options" for details. 

3. Finally, make assumes the remaining arguments to be the names of targets to be 
made, and these are made in the order in which they appear on the command line. If 
there are no remaining arguments, the first target in the description file is made. 

+ Note make finds the first target by scanning the description file for a target that 
does not represent an internal file transformation rule (see "Transformation Rules"). 
These "built-in" rules are of the form 

.n[ .m]: 

Where n and m are suffixes, any rule begins with a period and contains no slashes (as 
a full pathname might). Thus, the first target is the first name in the description file that 
does not begin with a period or begins with a period but contains a slash. • 

Using make 7-5 



Options 

make accepts the following options: 

-a 

-b 

-B 

-a digits 

-e 

-f filename 

-g 

-G 

-l 

-k 

Update all targets. This option is useful for completely rebuilding all files. 

Use compatibility mode for old makefiles. This mode is on by default. 

Turn off compatability mode. 

Debug mode. If specified without digits, full debug mode is invoked. If 
specified with digits, a particular level of debugging is invoked. Debug 
levels 0, 1, and 2 tell you increasing levels of information about the 
make operation. Level 4 shows you how the macros are expanded. 
Level 9 displays actual flag names. The -a option also can be 
invoked by sending the signal USRl to make. 

Cause environment variables to override macro definitions. 

Use a different description file. filename is the name of a description 
file. A filename of hyphen ( - ) denotes the standard input. If there are 
no -f arguments, make reads the file named makefile or 
Make f i 1 e in the current directory in the order stated. Failing these, 
s .makefile or s .Makefile is sought in the SCCS directory, if 
such a directory exists. If a description file is present, its contents 
override the default rules. 

Turn on capabilites to automatically check out SCCS files. See "SCCS 
File Handling." 

Enable the Dynamic Include File Dependency Generation (DIFDG). 
The DIFDG also can be enabled by defining the variable 
MAKEDIFDGSUFFIXES as a list of legal suffixes for the source files 
to be searched. 

Ignore error codes that might be returned by a shell command. This 
mode can be entered if the target name . IGNORE: appears in the 
description file. See "Built-in Targets." 

If a shell command returns a nonzero status, abandon work on the 
current target but continue to process other targets that do not depend 
upon the abandoned target. (Targets are described under "Makefile 
Entries," and branches are discussed in "The make Predecessor Tree.") 

7-6 Chapter 7 make: A File Production Tool 



-K 

-M 

-n 

-p 

-P 

-q 

-r 

-s 

-t 

-u 

-v 

Tum off the - k option. The - K option is on by default. The - K 

option is most often used in a descripton file that invokes make, that 
is a member of a multilevel make hierarchy, and that is invoked by a 
top-level make with the - k option. 

Store the dependency map for all object files in a file. The default 
name for this file is ._Make_State. (You can change the default 
name by changing the value in the MAKEDEPFILE variable to the 
desired name.) This option also can be enabled by defining the 
variable MAKEDEPFILE as the name of the file in which you want to 
store the map. 

No-execute mode. Print the commands in the description file as they 
would be executed, but do not actually execute them. Even lines 
beginning with an @ (at) sign are printed. However, if a command 
line has the string $ (MAKE) in it, the line is always executed. 

Print out the built-in rules of make including a complete set of 
macro definitions. 

Search for PRE and POST files in the directory /usr /lib. For 
example, for a description file named x. mk, make searches for and 
reads /usr/lib/x.mkPre and /usr/lib/x.mkPost. 

Question mode. The make command returns a zero or nonzero 
status code, depending on whether the target file is up to date. 

Do not use the built-in rules of make. To do any useful work, this 
option must be accompanied by an appropriate description file. 

Silent mode. Do not print command lines before executing them. This 
mode is entered if the built-in target name . s I LENT : appears 
anywhere in the description file. 

Update the target files using the touch command without executing 
any commands in the target files. 

Look for makecomm and Makecomm files in the user's home 
directory, as specified by the $HOME environment variable, and in 
the current directory. The search order is $HOME/makecomm, 

$HOME/Makecomm, . /makecomm and . /Makecomm. At most, 
make reads one file from each directory. These files are read before 
any description files and can be used to define macros and rules. 

Display current version of make. 

Using make 7-7 



Using make on individual files 

Individual files mentioned in the makefile also can be used as arguments on the 
command line, if you want to compile only a single file. For example, with the makefile 
from the previous example 

xavier: yancy.a quincy.a wally.a 

(TAB) cc yancy.a quincy.a wally.a -a xavier -lm 

yancy.a quincy.a wally.a: defs.h 

and the command line 

make yancy.a 

make remakes only yancy. a, including def s. h in the process. To make both 
yancy.a and wally.a,youtype 

make yancy.a wally.a 

and both files are remade properly. 

The description file 

The description file (often called the makefile) defines the target file and its 
dependencies. A description file can contain the following elements: 

• makefile entries, consisting of dependency statements and commands or command 
sequences 

• comments 

• inc 1 ude lines 

• macro definitions 

+ Note If you do not supply a description file, make uses its default rules to produce 
the file named on the command line. See the section "The Default Rules," later in this 
chapter. If you name your description file something other than make f i 1 e or 
Makefile, you must use the -f option on the make command line. See the section 
"Options," later in this chapter, for details. • 

7-8 Chapter 7 make: A File Production Tool 



Makefile entries 

A makefile entry defines the relationship between a target and its dependents and 
usually stipulates the command as well. A description file often contains multiple entries. 
The general form of a makefile entry is 

targetl [target2 .. .] : [:] [dependentl...] [; commands] [#commend 

[(TAB) commands][# .. .] 

[(TAB) commands][# .. .] 

where (TAB) represents a tab character. Shell metacharacters such as * and ? are 
expanded only in the command sequence. For example, 

zeke: zeke.o 

(TAB) cc zeke.o -o zeke -lm 

+ Note Even though the tables generated by the makefiles are dynamically allocated, 
there are certain limits for the length of a line and the number of targets per line. If you 
run into problems with these limits, you can use the adb debugger to increase the 
max_GPBuffer_size for line length and max_lefts_entries for the number 
of targets per line. For more information on the adb debugger, see A/UX Programming 

Languages and Tools, Volume 1. • 

Targets versus rules 

Within a description file, user-defined rules can replace the built-in rules of make. User­
defined rules can appear in the makefile entry anywhere a target name can be given. 

You also can create a /usr /lib/MakeRules file that overrides the built-in rules. 
This allows site-specific rules. In either case, make still observes the -r option. 

Some aspects of rule syntax are similar to target syntax. A target can be differentiated 
from a rule by the following criteria: 

• A target name can begin with or without a period, and it contains slashes. 

• A rule begins with a period and does not contain slashes. (See "Transformation Rules" 
for more information.) 

The description file 7-9 



Built-in targets 

Not all targets correspond to files. make has defined certain built-in targets (targets to 
which no files correspond) to modify the behavior of make. These targets are passed to 
make in the description file. Because make reads the entire description file before 
beginning to process dependency statements, the built-ins, which must appear at the 
beginning of a line, are processed first, whether they appear at the beginning, middle, or 
end of the description file. Examples of built-in targets are as follows: 

.DEFAULT: 

.IGNORE: 

.PRECIOUS: 

. MAKESTOP [ exit-code l : 

.SILENT: 

7-10 Chapter 7 make: A File Production Tool 

If a file must be made but there are no explicit shell 
commands or relevant built-in rules, make uses 
the shell commands listed under . DEFAULT:. 

If present, . IGNORE has the same effect as the 
- i option, which is to ignore nonzero return codes 
from commands. 

The default behavior of make is to remove a target 
and its dependents when a quit or interrupt signal is 
received while processing the commands that 
update the target. Because the actions of make 

depend in large part on the mere existence of a file, 
removal of potentially incomplete files helps ensure 
that the proper files are regenerated each time. 
Removal can be avoided by making specific files 
dependent on . PRECIOUS:. 

If present, . MAKE STOP: causes make to exit. 
. MAKESTOP: is useful in a multilevel directory 
and description file hierarchy to quickly bypass a 
make in one particular directory or in several 
directories. exit-code is optional and defaults to 
zero if not specified. If exit-code is not specified or 
if the specified exit code is zero, make exits 
silently. If a nonzero exit code is specified, make 

prints a warning message. 

If present, . SILENT: has the same effect as the 
-s option. 



Dependency statements 

A dependency statement in a makefile asserts the logical relation between a target and 
its dependents. The syntax for a dependency statement is 

targetl [target2 ... ] : [:] [dependentl...] [; commands] [#com men~ 

A sample dependency statement is 

dancing: music.a 

A more complex dependency statement with an associated command sequence is 

yancy.o wally.a: defs.h ; 

(TAB) echo "defs.h has been changed" 

A dependency statement can contain either a single colon or a double colon. 

+ Note A target name can appear in more than one dependency statement, but each of 
those statements must have the same number of colons (either one or two). + 

Usually, dependency statements contain only a single colon. In this case, a command 
sequence can be associated with, at most, one dependency line; that is, a target cannot 
appear in more than one dependency line if there is a command sequence associated 
with more than one of them. For example, the fragment 

yancy.o wally.a: defs.h 

yancy.o quincy.a: menus.h 

works because there is no command sequence associated with the dependencies in 
which yancy. o appears. 

The following fragment is also correct, because there is only one command sequence 
associated with the dependencies in which yancy. o appears: 

yancy.o wally.a: defs.h 

(TAB) echo "defs .h has been changed" 

yancy.o quincy.a: menus.h 

If the target is out of date with respect to any of the dependents on any of the lines, 
and a command sequence is specified (even a null one following a semicolon or tab), 
that command sequence is executed. Otherwise (if a command sequence is not 
specified), default rules can be invoked. 

The description file 7-11 



The following fragment uses incorrect syntax; it uses only a single colon, but a target 
appears in two dependency lines, each of which is associated with a command: 

yancy.o wally.a: defs.h 

(TAB) echo "defs.h has been changed" 

yancy.o quincy.a: menus.h 

(TAB) echo "menus. h has been changed" 

In a dependency statement using two columns, a command sequence can be 
associated with each dependency line. For example: 

yancy.o wally.a:: defs.h 

(TAB) echo "defs. h has been changed" 

yancy.o quincy.o:: menus.h 

(TAB) echo "menus . h has been changed" 

If the target is out of date with respect to any of the files on a particular line, make 

executes the associated commands, possibly in addition to default rules. If a target must 
be created, make executes the entire sequence of commands. This detailed form is of 
particular value in updating archive-type files. 

If you have a single-colon and double-colon version of the same target, such as 

x: x.o 

x:: x.c 

make issues a warning and continues. make executes the rules of the double-colon 
statement first and then the rules of the single-colon statement. If the double-colon rules 
have commands, make does not execute the commands associated with the single­
colon rules. If this is the case, you receive a warning statement informing you that the 
commands are being ignored. 

Commands 

A command is usually the command line required for producing the targets from the 
dependents. Syntactically, a command is any string of characters, not including a number 
sign(#) (except when the# is in quotes) and not including a newline. 

+ Note When a command appears on a line separate from a dependency statement, it 
must be preceded by a tab. If not preceded by a tab, the command usually results in the 
message Make: must be a separator on rules line X. Stop. + 

7-12 Chapter 7 make: A File Production Tool 



Comments 

Comments are lines beginning with a number sign ( #) and ending with a newline. 
make ignores these lines. make also ignores blank lines. 

include lines 

The C syntax for inc 1 ude lines 

#include include_file 

cannot be used in description files, because comments begin with a number sign. Therefore, 
the following policy was adopted for inc 1 ude lines in make description files. 

If the string inc 1 ude appears as the first seven letters of a line in a makefile and is 
followed by a blank or a tab, make assumes the string following to be a filename that is 
to be read by the current invocation of make. Thus, a makefile might contain the 
following line: 

include macro_def s #reads in file macro_def s 

In this example, macro_defs is a file containing make macro definitions. No more 
than 16 levels of nested include statements are supported. 

Macro definitions 

Macros are defined in make command-line arguments or in the makefile. In the 
makefile, a macro definition is a line containing an equal sign, and the line must not 
begin with a colon or a tab. For example: 

OBJECTS = x.o y.o z.o 

The syntax for macro substitution is 

$(name) 

or 

${name} 

The description file 7-13 



The name of the macro is either a single character after the dollar sign or a name 
inside parentheses or braces. Macro names longer than one character must be put inside 
parentheses or braces. For example, the following macro invocations are valid: 

$(CFLAGS) 

$2 

$ {xy} 

$Z 

$ (Z) 

The last two invocations listed are functionally identical. Note that two dollar signs 
($$)can also be used to denote a dollar sign. The following fragment illustrates the 
assignment and use of some macros: 

OBJECTS = x.o y.o z.o 

LIBS = -lm 

prog: $(OBJECTS) 

(TAB) cc $(OBJECTS) -o prog $(LIBS) 

In this example, make loads the three object files with the math library. The command line 

make "LIBES = -11 -lm" 

loads them with both the 1 ex ( -11) and the math ( - lm) libraries. 
Macro definitions on the command line override definitions in the description file, 

which, in turn, override the default macros. 
For example, if you defined macros in your makefile, you can redefine the library on 

the command line for a single run of make, without changing the meaning of the 
macros defined in the makefile. For example, the command 

make "LIBES = -lg" 

redefines the LIBES macro for this run. 
To see a listing of the default macros, you can consult the Macros part of the 

listing produced by the command 

make -np 

7-14 Chapter 7 make: A File Production Tool 



Intemal macros 

The following macros are internal and change values during the execution of a 
description file. These internal macros are useful generic terms for current targets and 
out-of-date dependents. make sets these internal macros as follows: 

$@ 

$? 

$< 

$* 

Current target. The $@ macro is set to the full target name of the 
current target. This macro is evaluated only for explicitly named 
dependencies. For example, in the following makefile, the current 
target is zeke, so $@ is translated as zeke: 
zeke: zeke.o 
(TAB) cc zeke.o -o $@ 

Out of date relative to target. The $ ? macro is set to the string of 
names that were found to be younger than the target. This macro is 
evaluated when explicit rules from the makefile are evaluated. For 
example, the following makefile prints all files younger than 
springtime: 
springtime: lp $? 

Related file causing action. If the command was generated by a default 
rule, the $< macro expands to the name of the related dependent 
that caused the action. For example, the following makefile establishes 
an implicit rule to create targets from " . o" files: 
.o: 
(TAB) cc $< -o $@ 

Shared prefix, current, and dependent files. If the command was 
generated by a default rule, the $ * macro is given the value of the 
filename prefix shared by the current and dependent filenames. For 
example, the following makefile sets the prefix $ * to z eke and 
links zeke. o: 
zeke: zeke.o 
(TAB) cc $*.o -o $* 

In the following additions, the D refers to the directory part of the single-letter 
macro, and the F refers to the filename part of the single-letter macro. These are useful 
when building hierarchical makefiles. 

$ ( @D ) current target directory 

$(@F) 

$ ( *D) 

current target filename 

shared directory prefix 

The description file 7-15 



$(*F) 

$(<D) 

$(<F) 

shared filename prefix 

related dependent directory 

related dependent filename 

For example, the following instruction uses the D to gain access to directory names to 
use the cd command: 

cd $(<D); $(MAKE) $(<F) 

Dynamic dependency parameters 

The following parameters have meaning onrywithin a dependency statement in a makefile. 

$$@ The current item to the left of the colon. The double dollar signs 
denote a metalevel macro-that is, a macro referring to another macro. 
Thus, $ $@ is a macro variable for whatever target is current, and $@ 
is a macro for the current target. If the target is static, $@ can be used 
instead of $$@;however, $$@ allows for use of a dynamic target, a 
macro defined to denote many files, each of which is processed in 
turn. This is useful for building a large number of executable files, each 
of which has only one source file. 

For example, the following makefile defines CMDS as the stipulated 
subset of single-file programs in the A/UX software command 
directory. Each of the programs (or CMDS) is compiled correctly in 
turn using this syntax. 

CMDS = cat dd echo date cc cmp comm ar ld chown 

$ (CMDS) : $$@. c 

(TAB) $(CC) -0 $? -o $@ 

(See "The Default Macro Settings" for more information on $ (cc) .) 

The dependency statement for the first item in the list of CMDS is 
translated as follows: 

1. The target is set to cat. 

2. The dependent is set to cat. c (the current target plus . c). 

3. The cc command (optimized using -o) runs on the dependent 
(cat. c) if it is younger than the target. 

4. The results are linked into the target file (cat). 

7-16 Chapter 7 make: A File Production Tool 



+ Note This syntax cannot be used for multiple-file programs. To deal with multiple­
file programs, you usually allocate a separate directory and write a separate makefile. 
Then, a specific makefile entry is made for files requiring nonstandard compilation. + 

$$(@F) Another form of $ $ @, representing just the filename part of $ $ @. 
This parameter is also evaluated at execution time. For example, the 
following makefile maintains the /usr I include directory from a 
makefile in another directory: 

INCDIR = /usr/include 

INCLUDES = \ 

(TAB) $(INCDIR)/stdio.h \ 

(TAB) $(INCDIR)/pwd.h \ 
(TAB) $(INCDIR)/dir.h \ 
(TAB) $(INCDIR)/a.out.h 

$(INCLUDES): $$(@F) 
(TAB) cp $? $@ 
(TAB) chrnod 0444 $@ 

The $ $ ( @F ) macro represents the filename prefix part of the current 
target $@.Because the target is also a macro, its value is equal to each 
of the four files named in tum. On the run of the first file, 

1. The target is stdio. h. 

2. Themacro $$(@Fl is stdio (thetargetfilenameprefix). 

3. The next line copies the younger file($?), if it exists, into the 
target file. 

4. The last line changes the mode of the new target file($@) (in this 
case, stdio. h) to read-only. 

This pattern is repeated for the other three files stated. 

1be description file 7-17 



Options 

Suppressing printing of commands 

Normally, when make processes a description file, each command is printed and then 
passed to a separate invocation of the shell after make substitutes for macros. The 
printing is suppressed in the silent mode (make -s), or if the special name . SILENT 

appears on a line by itself as a target in the makefile, or if the command line begins with 
an @ sign. For example, 

@size make /usr/bin/make 

If the command line above were in a description file, the printing of the command 
line itself would be suppressed by the @ sign, but the output of the command would 
be printed. 

Ignoring errors 

The make program normally stops if any command signals an error by returning a 
nonzero exit status. The make program ignores errors if any of the following options 
are used: 

• The - i flag on the make command line (where the scope is global) 

• The built-in target name . IGNORE in the description file (where the scope is the 
description file) 

• A hyphen beginning the command string in the description file (where the scope is 
the command following the hyphen) 

Thus, if you use the - i option, the target is f i 1 e . o, and the compilation is 
unsuccessful, make effectively pretends that it worked. When f i 1 e . o is found to be 
a dependent of some other files, make tries, for instance, to load all the object files 
together, and fails with an error message when one (file. o) is found to be missing. For 
all subsequent accesses (within this make), make treats file. o as though it existed 
and as though it were up to date. You should be aware of this possible consequence of 
the - i option. 

Some commands return with nonzero status even though they worked correctly. For 
example, di ff returns 1 to indicate the presence of differences in the compared files, 
and rm returns a nonzero status if the file you remove is already nonexistent. It is safer 

7-18 Chapter 7 make: A File Production Tool 



to use a leading hyphen for commands that might return a nonzero exit status without 
indicating an error, so make can continue processing. 

Combining commands 

As stated previously, when make processes a description file, each command or 
individual command line is printed and then passed to a separate invocation of the shell 
after substituting for macros. Because the shell to which make passes each command 
line is a completely new invocation, you must be careful with certain commands (for 
example, cd and shell control commands) that have meaning only within a single shell 
process. If special means are not taken, the results of these commands are lost before the 
next line is executed. 

One way to avoid this is to combine two or more shell commands on one line, thus 
keeping the same shell active on each. This can be done in one of two ways. If both 
commands are kept on one physical line, a semicolon (;) can be inserted between the 
commands. If the commands are put on separate physical lines but form one logical line, 
a semicolon (;) and a backslash ( \) are supposed to be the first commands. In the latter 
case, the semicolon separates the commands and the backslash escapes the newline. 
Examples of these two methods follow: 

# with ; both commands can be on the same line 

cd .. ; cc -c x.o y.o z.o 

# with and \ before <CR>, this is read as one line 

cd .. ; \ 

cc -c x.o y.o z.o 

Default commands 

If you need to run make on a file, prog for example, but there are no explicit 
commands given or relevant rules to apply, make looks for commands dependent on the 
target . DEFAULT to use. If there is no . DEFAULT target, make prints a message, 

Don't know how to make prog. Stop 

and stops. Thus, . DEFAULT can be set up by the user to specify default-case 
treatments for files not covered by the built-in rules of make. (For a listing of the types 
of file compilations covered by these rules, see the "Transformation Rules" section.) 

The description file 7-19 



Saving files 

If a file or files are assigned as dependent to . PRECIOUS, those files are not removed, 
regardless of any command to the contrary. This is especially helpful to avoid the 
removal of targets when make receives an interrupt or quit. 

Use of selected options 

-n The -n option is useful to discover what commands make would execute. 
This option instructs make to print out the commands it would issue, without 
actually executing them. 

-t The -t (touch) option updates the modification times on the affected files 
without changing anything else, and thereby can avoid a large number of 
superfluous recompilations. Be careful when using this option. 

-d The -d (debug) option prints out a detailed description of what it is doing, 
including the file times. The output is verbose. Attaching a single digit to the -d 

option scales the output. If you wish to control the output, select a digit from 0 
to 9. (Level 0 is minimal output, but is very clear; level 9 shows everything 
including flag names.) 

Suffixes and rules 
The make program uses a table of significant suffixes and a set of transformation rules 
to supply default dependency information and implied commands. All of this information 
is stored in an internal table (the default rules) that has the form of a description file. (If 
the - r option is specified, this internal table is not used.) 

Suffixes 

The list of suffixes is actually the dependency list for the built-in target . SUFFIXES in 
the description file. The make program searches for a file with any of the suffixes on 
the list. If such a file exists and there is a transformation rule for that combination, make 

transforms a file with one suffix into a file with another suffix. 

7-20 Chapter 7 make: A File Production Tool 



The order of the suffix list is significant because the list is scanned from left to 
right. The first name formed that is associated with both a file (in the directory) and a 
rule (in the makefile or default rules) is made, and no others. The default suffix list is 
shown in Table 7-1. 

+ Note You should know the order of the default suffix list if you are not specifying a 
command in the makefile. Otherwise, you might make an unexpected file. • 

Table 7-1 Default suffix list 

Suffix File type 

.0 Object file 

.c C source file 

.e EFL source file 

.r rat for source file 

.f Fortran source file 

.s Assembler (as(l)) source file 

.y yacc-C source grammar 

.yr yacc-rat for source grammar 

.ye yacc-EFL source grammar 

.1 lex source grammar 

Transformation rules 

make has an internal table of transformation rules that perform certain default 
commands if there is no command specified in the makefile. Note that the default rules 
also are known as the implicit rules. There are two types of transformation rules, double 
suffix rules and single suffix rules. In double suffix rules, make discerns the stage of 
compilation from the suffix (for example, x. c is a source file and x. o is an object 
file). These rules are phrased in terms of transformations from one type of suffix to 
another. make forms the names of these rules by concatenating the two filename 
suffixes; for example, the name of the rule to transform a . r file to a . o file is . r. o. 

Suffixes and rules 7-21 



Single suffix rules describe the transformation of a file with a given suffix into one 
with no suffixes or a null suffix. 

If a rule is listed in the internal table and there is no command sequence given in the 
description file, make uses the rule. Thus, standard transformations (from one type of 
file to another; for example, from a source file to an object file) do not call for a makefile 
entry unless nonstandard treatment is required. 

If a rule is used (that is, if a default command is generated), the $ * macro is given 
the value of the filename prefix of the file to be maintained. Then, the $ < macro is the 
name of the dependent that caused the command. 

make has all the required information for compiling programs written in languages 
supported by A/UX. For example, after the command 

make x.o 

where x. o is a C language object file, make searches for a file called x. c (a C 
language source file) in the local directory. If it finds x. c, make consults its default 
rules for compilation. make finds the rule . c. o, which states the default command 

cc -0 -c x.c 

which make then issues to produce x. o. 

make uses the default suffix list (see "Suffixes") to decide when to invoke which 
rules. This list tells the order in which to search for certain suffixes. 

Within the make default rules file, the name of the rule to follow appears in the 
place of the target filename. Thus, the . c . o rule is represented by 

. c .o: 

(TAB) cc -o -c f!ilename]. c 

The contents of the current default rules file used by make can be directed to 
standard output with the command 

make -np 

Any error messages produced at the end of this output should be ignored. The 
example shown in Listing 7-1 is a representative file, giving one version of the default 
rules used by make. 

7-22 Chapter 7 make: A File Production Tool 



Listing 7-1 Sample listing of default rules file 

# LIST OF SUFFIXES 

.SUFFIXES: .o .c .c- .y .y- .1 .1-

.s .s- .sh .sh- .h .h-

# PRESET VARIABLES 

MAKE=make 

YACC=yacc 

YFLAGS= 

LEX= lex 

LFLAGS= 

LD=ld 

LDFLAGS= 

CC=CC 

CFLAGS=-o 

AS=as 

ASFLAGS= 

GET=get 

GFLAGS= 

# SINGLE SUFFIX RULES 

.c: 

$(CC) -n -0 $< -o $@ 

c-· 

$(GET) $(GFLAGS) -p $< > $*.c 

$(CC) -n -0 $*.c -o $* 

-rm -f $*.c 

.sh: 

cp $< $@ 

(continued)• 

Suffixes and rules 7-23 



.sh-: 

$(GET) &(GFLAGS) -p $< > .sh 

cp $* .sh $* 

-rm -f $* .sh 

# DOUBLE SUFFIX RULES 

.c.o: 

$(CC) $(CFLAGS) -c $< 

.c-.o: 

$(GET) $(CFLAGS) -p $< > $*.c 

$(CC) $(CFLAGS) -c $*.c 

-rm -f $*.c 

.c-.c: 

$(GET) $(GFLAGS) -p $< >$*.c 

. s.o: 

$(AS) $(ASFLAGS) -o $@ $< 

.s-.o: 

$(GET) $(GFLAGS) -p $< > $*.s 

$(AS) $(ASFLAGS) -o $*.o $*.s 

-rm -f $*.s 

.y.o: 

$(YACC) $(YFLAGS) $< 

$(CC) $(CFLAGS) -c y.tab.c 

rm y.tab.0$@ 

.y-.o: 

$(GET) $(GFLAG) -p $< > $*.y 

$(YACC) $(YFLAGS) $*.y 

$(CC) $(CFLAG) -c y.tab.c 

rm -f y. tab $ *. y 

mv y. tab. o $ * . o 

7-24 Chapter 7 make: A File Production Tool 



.l.o: 

$(LEX) $(LFLAGS) $< 

$(CC) $(CFLAGS) -c lex.yy.c 

rm lex.yy.c 

mv lex.yy.o $@ 

.1-.o: 

$(GET) $(GFLAGS) -p $< > $*.l 

$(LEX) $(LFLAGS) $*.l 

$(CC) $(CFLAGS) -c lex.yy.c 

rm -f lex.yy.c $*.l 

mv lex.yy.o $*.o 

.y.c: 

$(YACC) $(YFLAGS) $< 

mv y. tab. c $@ 

.y-.c: 

$(GET) $ ( GFLAGS) -p $< 

$(YACC) $ (YFLAGS) $* .y 

mv -f $*.c 

-rm -f $* .y 

. l.c: 

$(LEX) $< 

mv lex.yy.c$@ 

.c.a: 

$(CC) -c $(FLAGS) $< 

ar rv $@ $*.o 

rm -f $*.o 

.c-.a: 

> $*.y 

$(GET) $(GFLAGS) -p $< > $*.c 

$(CC) -c $(CFLAGS) $*.c 

ar rv $@ $*.o 

(continuedY. 

Suffixes and rules 7-25 



.s-.a: 

$(GET) $(GFLAGS) -p $< > $*.s 

$(AS) $(ASFLAGS) -o $*.o $*.s 

ar rv $@ $*.o 

-rm -f $*.[so] 

.h-.h 

$(GET) $(GFLAGS) -p $< > $*.h 

If two paths in the rules connecting a pair of suffixes exist, make uses the longer 
one only if the intermediate file exists or if it is named in the description file. The 
following examples show how this works: 

1. If an x . o file is needed and a file called x . c is found in the current directory or 
specified in the description file, the x. o file is compiled using x. c. If an x. 1 

also exists and is out of date with respect to x. c, that file is processed through lex 

before compiling the result. This is a case of the longer path (x. 1 to x. c to x. o) 

being used since the intermediate file (x. c) exists. 

2. If the file x. o is needed and x. 1 but not x. c is found, make discards the 
intermediate C language file (in this case, x. yy. c) and uses the shorter path (x .1 

to x.o). 

The default macro settings 

If you know the macro names that make uses, you can change the names of some of 
the compilers used in the default rules, or the flag arguments with which they are 
invoked. These macro names, the default compilers they denote, and their associated 
flags are shown in Table 7-2. 

These macros can be used as arguments on the command line to change defaults for 
one run of make. For example, the command 

make CC=newcc ... 

causes the newcc compiler to be used instead of the usual C language compiler. An 

example of the use of flags follows: 

make "CFLAGS=-0" ... 

passes the -o flag to the C compiler, cc, causing the C language optimizer to be used. 

7-26 Chapter 7 make: A File Production Tool 



Table 7-2 Macro names and default compilers 

Compiler Macro Flag 

make command MAKE MAKEFLAGS 

Assembler (as) AS 

C compiler (cc) cc CFLAGS 

ratfor compiler RC RFLAGS 

EFL compiler EC EFLAGS 

yacc-C compiler YACC YFLAGS 

yacc-ratfor compiler YA CCR YFLAGS 

yacc-EFL compiler YACCE YFLAGS 

lex compiler LEX LFLAGS 

get command GET GFLAGS 

Sometimes it is possible to use macro redefinition instead of stating a local version of 
the default rule. Of course, this change is temporary because it takes place on the 
command line and must be restated, whenever desired, every time the file is remade. To 
change the . c . o rule you can say 

make "CFLAGS=-V" thorax.a 

and the option -v replaces the default setting for CF LAGS for this one run. 

Changing default suffixes and rules 

This section describes several ways you can modify the defaults in a makefile. 

The default suffix list 

You can add suffixes to the end of the default suffix list, change the order of the list, or 
change the contents of the list. 

If you append new names to the suffix list, an entry can be included for 
. SUFFIXES in the description file. The dependents to . SUFFIXES are then added 
to the end of the default list. 

Suffixes and rules 7-27 



Operation 

To change the order or contents of the list, you must be aware that a . SUFFIXES line 
without any dependents deletes the current list of suffixes. Therefore, you must clear the 
current list to change the order of names. Thus, to install a new list, include lines such as 

.SUFFIXES # removes old list 

.SUFFIXES : .n .n- .1 .1- # installs new list 

The default rules 

You can modify or replace a default rule in a makefile. For example, if you define a 
. c . o rule in a makefile, your definition overrides the default one. For example, 
Listing 7-2 defines a new . c. o rule. 

Listing 7-2 Replacing a default rule 

.c.o: cc -V -c $< #Rule, not target 

stomach.c: stomach.l #First target 

stomach.l: defs.h 

This invokes the -v option of cc every time a . o file is linked, printing the 
version of the assembler that was used. 

This section describes many aspects of make operation, including variables, macros, 
precedence, and SCCS. 

Environment variables 

The make program reads environment variables from the shell and considers them in 
processing makefiles. These variables include PATH, HOME, TERM, SHELL, TERMCAP, 

and LOGNAME (see AIUX Shells and Shell Programming for more information on 
environment variables). Thus, a reference to $ (HOME) , otherwise undefined in a 
makefile, is translated correctly into the full pathname for the user's home directory. 

7-28 Chapter 7 make: A File Production Tool 



+ Note The value of the SHELL variable determines which shell is used to execute 
commands in the makefile (by default, your login shell). If you want to include shell 
scripts that require a different shell (for example, a Bourne shell script when your login 
shell is the C shell), you must specify the new shell either on the command line 

make [options] SHELL= /bin/ sh 

or you can do it by including the following line at the beginning of your description file: 

SHELL=/bin/sh + 

To see which environment variables make recognizes in the present directory 
(directed to standard output), give the command 

make -np I head -50 I more 

The first part of the output of this command prints the environment variables. 

Macros 

A macro is a variable whose value is set in a description file and can be overridden from the 
make command line. The entity that make terms a macro is very similar to environment 
variables in the shell. Although make and the shell use these entities in nearly identical 
ways, there are differences, which are described in the following paragraphs. 

The following sample shell script 

NAME= Joe 
echo NAME 
echo $NAME 

produces the following result: 

NAME 
Joe 

The difference between the first and second echo commands is that the first simply 
requests that the string NAME be echoed, while the second, through the dollar sign($) 
requests that the contents of NAME be echoed. Such a request is called expansion. 

Operation 7-29 



Expansion is handled differently in make. The following example description file 

NAME=joe 

all: 

echo NAME 

echo $NAME 

produces the following result: 

NAME 

AME 

This is because make requires that macro names longer than one character be 
enclosed in parentheses or braces for expansion to occur. In this case, make sees the 
$ and attempts to expand a variable named N. No such variable is set, so nothing is 
echoed and the echo command finishes by echoing the string AME. The following 
description file produces the desired result: 

NAME=joe 
all: 

echo NAME 
echo $(NAME) 

The use of braces is equivalent to the use of parentheses, so that $ {NAME} is 
equivalentto $ (NAME) . 

Each time make evaluates a macro, it strips one dollar sign($) from it. Therefore, 
an extra dollar sign should be added before any macro that is part of a shell command 
line. When make is invoked, it reads the user's environment and makes all the variables 
found there available for modification by the description file. 

Environment variables are processed before any description file and after the built-in 
rules; macro definitions in a description file override environment variables of the same 
name. The -e flag option causes environment variables to override macro definitions 
of the same name in a description file. 

The formal definition of a macro is shown here: 

macro-name = string2 

By convention, macro-names are uppercase. macro-name is an alphanumeric string that 
cannot contain a colon or a semicolon. The equal sign can be surrounded by spaces or tabs. 
string2 is defined as all characters up to a comment character or an unescaped newline. 

7-30 Chapter 7 make: A File Production Tool 



make provides several built-in macros. They include the following: 

MAKECDIR 

MAKE FLAGS 

MAKE LEVEL 

MAKEBDIR 

MAKEGOALS 

MAKECDIR is a read-only macro that expands into the full pathname 
of the current directory. 

If not present in the environment, make creates the MAKEFLAGS 

macro and assigns to it the options with which make was invoked. 
MAKEFLAGS is processed by make as containing any legal input 
option (except -f, -p, -P, -r, and -u). Thus, MAKEFLAGS 

always contains the current input options. This proves very useful for 
large make commands. In fact, as noted above, when the -n 

option is used, the command $ (MAKE) is executed anyway; hence, 
one can perform a make -n recursively on a whole software system 
to see what would have been executed. This is because the -n is put 
in MAKE FLAGS and passed to further invocations of $ (MAKE) . This 
is one way of debugging all of the description files for a software 
project without actually causing the execution of update commands. 

If not present in the environment, make creates the MAKELEVEL 

macro, assigns an initial value of zero, and exports it. If the 
MAKELEVEL macro is already present in the environment, make 

increments its value by one. In this way, each subordinate invocation 
of make can know its level in a multilevel make hierarchy. This 
macro is read-only and cannot be modified by the description file. 

If not present in the environment, make creates the MAKEBDIR 

macro and assigns to it the absolute pathname of the current directory. 
If the MAKEBDIR macro is already present in the environment, the 
value is not changed. MAKEBDIR provides a way for each 
subordindate invocation of make to obtain the pathname of the top­
level make. 

For every invocation of make, make creates the MAKEGOALS 

macro and assigns to it the targets that are specified on the command 
line. For the command line 
$ make clean all clobber 

MAKEGOALS is set to clean all clobber. If the current 
invocation of make invokes make, the invocation can be made as 
shown in the following example: 

MAKE=make 

cd dir; $(MAKE) $(MAKEGOALS) 

In this way, the same command-line arguments can be passed to 
subordinate invocations of make. 

Operation 7-31 



VP A TH This version of make supports special processing of the macro 
VPATH, if set. VPATH is useful for processing files that are located in 
a directory other than the current directory. In the following example, 
main. c is located in the current directory. funcl. c is located in 
.. /common,and func2.c is located in .. /incl. make 
searches the directories specified by the VPATH variable for any 
dependencies that are not in the current directory. 

VPATH= .. /common: .. /incl 
main: main.o funcl.o func2.o 

cc -o $@ $> 

In this example, $@ (described later) expands to the target name and 
$> (described later) expands to the list of dependencies on the 
current target. If main. c, funcl. c, or func2. c are not present 
in the current directory, make uses its built-in rules to search for 
SCCS versions of the files in the current directory (see "SCCS File 
Handling," later). If SCCS versions of the files are not found, make 
searches the pathnames specified by VPATH. 

The following built-in macros define values for common software generation 
programs or options to those programs. Description files can replace or supplement the 
values of these macros to change the way in which the built-in rules work: 

AR 

AS 

SFLAGS 

cc 
CF LAGS 

HMOD 

CP 

F77 

F77FLAGS 

This macro is defined as ar. 

This macro is defined as as. 

This macro is defined as null and is provided as an argument 
to the assembler. 

This macro is defined as cc. 

This macro is defined as -o and is provided as an argument 
to the C compiler. 

This macro is defined as chmod. 

This macro is defined as cp. 

This macro is defined as f 7 7. 

This macro is defined as null and is provided as an argument 
to the Fortran compiler. 

7-32 Chapter 7 make: A File Production Tool 



FORTRAN 

FORTRANFLAGS 

GET 

GFLAGS 

LD 

LDFLAGS 

LEX 

LFLAGS 

MAKE 

MV 

PASCAL 

PASCALFLAGS 

PC 

PC FLAGS 

RM 

YACC 

YFLAGS 

This macro is defined as Fortran. 

This macro is defined as null and is provided as an argument 
to the Fortran compiler. 

This macro is defined as get and is used to get SCCS 
versions of files. 

This macro is defined as null and is provided as an argument 
to get. 

This macro is defined as ld. 

This macro is defined as null and is provided as an argument 
to ld. 

This macro is defined as lex. 

This macro is defined as null and is provided as an argument 
to lex. 

This macro is defined as make. 

This macro is defined as mv. 

This macro is defined as pascal. 

This macro is defined as null and is provided as an argument 
to pascal. 

This macro is defined as pc. 

This macro is defined as null and is provided as an argument 
to pc. 

This macro is defined as rm. 

This macro is defined as yacc. 

This macro is defined as null and is provided as an argument 
to yacc. 

The following six built-in macros have special expansion capabilities that are useful 
for writing shell commands: 

* The * macro stands for the filename part of the current dependent with the suffix 
deleted. It is evaluated only for built-in rules. 

@ The @ macro stands for the full target name of the current target. It is evaluated only 
for explicitly named dependencies. 

Operation 7-33 



< The < macro is evaluated only for built-in rules or the . DEFAULT rule. It is the 
module that is out of date with respect to the target (for example, the "manufactured" 
dependent filename). Thus, in the . c . o rule, the < macro evaluates to the . c 
file. An example for making optimized . o files from . c files is 

.c.o: 

cc -c -0 $*.c 

or 

.c.o: 

cc -c -0 $< 

? The ? macro is evaluated when explicit rules from the description file are evaluated. 
It is the list of prerequisites that are out of date with respect to the target; essentially, 
those modules that must be rebuilt. 

% The % macro is only evaluated when the target is an archive library member of the 
form 1 ib (file. o) . In this case, @ evaluates to 1 ib and % evaluates to the 
library member, file. o. 

> The > macro is expanded to list all the dependencies on the current rule. 

These six macros can have alternative forms. When an uppercase D or F is 
appended to any of the six macros, the meaning is changed to "directory part" for D and 
"file part" for F. Thus, $ (@D) refers to the directory part of the string @.If there is no 
directory part, I is generated. 

The following description file demonstrates the use of the ? and > macros in their 
standard and alternative forms: 

pgm: 

@echo II? = $?" 

@echo "?D = $ (?D)" 

@echo "?F = $ ( ?F)" 

@echo "> = $>" 

@echo ">D = $ (>D)" 

@echo ">F = $ (>F)" 

pgm: dir/a.o dir/b.o dir/c.o 

7-34 Chapter 7 make: A File Production Tool 



When a . o is the only object that is newer than the pgm, make produces the 
following output: 

? = dir/a.o 

?D dir 

?F a.o 

> = dir/a.o dir/b.o dir/c.o 

>D dir dir dir 

>F a.o b.o c.o 

Precedence 

Each time make executes, make reads environment variables and adds them to the 
macro definitions. Precedence is a prime consideration in doing this properly. The 
following list is the default precedence of assignments: 

1. command line 

2. makefiles 

3. environment 

4. default macros 

When executed, make assigns macro definitions in the order stated by doing the 
following tasks: 

• Reading the MAKEFLAGS environment variable. Each letter in MAKEFLAGS is 
processed as an input flag argument, unless the letter is - f, -p, or -r. These 
options give directions to make involving overall processing, as follows: 

- f Precedes the makefile filename 

-r Leaves out the built-in rules 

-p Prints out all macro definitions and target descriptions 

If the MAKEFLAGS variable is null or is not present, MAKEFLAGS is set to the null 
string. This pass establishes the debug mode if the -d flag is set. 

• Reading and setting the input flags from the command line. The command line adds 
to the previous settings in the MAKEFLAGS environment variable. 

Operation 7-35 



• Reading macro definitions from the command line. Any macro definitions set from the 
command line cannot be reset. Further assignments to these macro names are ignored. 

• Reading the internal list of macro definitions. make reads its default rules file, 
which contains the internal list of macro definitions. For example, if the command 
make -r ... 

is given, and a makefile already includes all of the rules that are found in the make 

default rules file (for instance, by means of an include line; see "include 

Lines," earlier in this chapter), the -r option does not have the stated effect of 
"ruling out" the rules. It does not go to its default rules itself, but it cannot undo an 
inc 1 ude line in a makefile. In fact, the effect is identical to that occurring if both 
the - r option and the inc 1 ude line in the makefile were excluded, since they 
cancel each other out. 

• Reading the environment settings in the shell. The environment variables are treated 
as macro definitions and marked as exported. 

+ Note Because MAKEFLAGS is not a variable in the make default rules file, 
this step has the effect of doing the same assignment twice. (The exception to this is 
when MAKEFLAGS is assigned on the command line.) • 

The MAKEFLAGS variable is read and set again. 

• Reading the makefiles. Assignments in the makefiles override the environment unless 
the - e flag is used. The command line option - e instructs make to override the 
makefile assignments with the environment settings. 

If assigned, the MAKEFLAGS variable overrides the environment. This is useful for 
further invocations of make from the current makefile. There is no way to override 
command-line assignments. For example, if the command 
make -e ... 

is given, the variables in the environment override the definitions in the makefile and 
reset the precedence of assignments to the following order: 
1. command line 
2. environment 
3. makefiles 
4. default macros 

7-36 Chapter 7 make: A File Production Tool 



This has the effect of giving the environment priority over the makefile, as opposed to 
the reverse in the default case. 

Macro testing 

make supports the testing of macros, where the format is: 

$ (macro-name: test-operator) 

The macro-name can be set or unset and with or without an assigned value. The test­
operator can be one of the following operations: 

L The macro is expanded to the length of its contents. An empty or null value expands 
to zero. This test operator is useful for determining whether to examine the contents 
of a macro. 

v If the macro is set and has a non-null value, the macro is expanded to null; otherwise, 
the macro is expanded to #. This test can be used to control the execution of 
command lines as shown here: 
$ ( macro-name-.v) conditional-command 

If the macro is not set, the macro is expanded to #, which causes make to evaluate 
the line as a comment. As a result, conditional-command is not executed. 

N If the macro is set and has a non-null value, the macro is expanded to #;otherwise, 
the macro is expanded to null. This is the opposite of the v test operator described 
earlier, although it is used in the same way as the v test operator. 

s If the macro is set, the macro expands to null; otherwise, the macro is expanded to #. 

u If the macro is not set, the macro expands to null; otherwise, the macro is expanded 
to #. 

For example, assume you want to have a target called clean if the macro 
$CLNFILES is set. The dependency statement removes the files expanded from this 
macro. Here is how the dependency statement would look: 

$(CLNFILES:V)clean: 

$(CLNFILES:V) @echo "Removing: $(CLNFILES)";\ 

rm -f $(CLNFILES) 

Operation 7-37 



If the $CLNFILES macro is set and contains a non-null value, the 
$ ( CLNF I LES : v) macro becomes null when make reads the description file, and the 
line is processed just as if the description file contained 

clean: 

@echo "Removing: $(CLNFILES) ";\ 

rm -f $(CLNFILES) 

The $ ( CLNFILES) macro is expanded just before the command line is executed. 
Macros that have test operators are expanded during the parsing of the command line. 
This means that the order of macros that have test operators is significant, which is unlike 
the normal behavior of macros that do not have test operators. Normal macros are 
expanded after all description files are read and command-line execution has begun. 
Expansion of macros that have test operators can be delayed by preceding additional $ 

characters, just as can be done with normal macros. 
In the example above, notice that $ (CLNFILES :V) does not appear in front of 

each line. This is because a single command line was used, and that command line was 
spread over two lines, with the newline escaped by the backslash ( \) character. If there 
had been multiple command lines, each command line would have to have been 
preceded by a $ (CLNFILES :V) macro. 

Attributes 

make understands attributes, which can be placed before or after the dependents in a 
dependency list, as shown: 

target: [attributes] [dependents] [attributes] 

Attributes can be any of the following: 

.CURTIME 

.FAKE 

This attribute causes make to use the current time rather than the 
most recent modification time of the target, even if the target does not 
exist. This attribute is used with the . FAKE attribute to prevent the 
associated dependency statement from being invoked unless the 
dependents were updated with a newer time. 

If the target exists and has no dependents, the normal behavior of 
make for single-colon dependency statements is to do nothing. The 
addition of the . FAKE attribute to the dependency statement 
requires make to treat the target is if it does not exist. This, in turn, 
forces make to execute the associated commands. 

7-38 Chapter 7 make: A File Production Tool 



. IDEBUGn: If present, . DEBUGn tells make not to display debugging 
information about this target at the desired debugging level. The 
variable n is set to a debugging level from 0 through 9. For example, to 
prevent this target from showing up in your debugging sections at 
levels 0and1, use .IDEBUGO and .IDEBUGl. 

. IGNORE: This attribute causes errors from any command of the target to be 
ignored . 

. MAIN The normal behavior of make when invoked without a target name 
on the command line is to search the description file for the first target, 
process the target, and then terminate. The addition of .MAIN to a 
dependency statement causes make to treat the associated 
dependency statement as if it were the first dependency statement in 
the description file . 

. PRE This attribute informs make that the associated target is to be made 
before any others, including . MAIN. Hence, this attribute can be used 
to place initialization commands. Because the entire description file is 
read before the targets are processed, the placement of this attribute is 
position-independent within the description file . 

. POST This attribute informs make that the associated target is to be 
processed after all others. Hence, this attribute can be used to place 
cleanup commands . 

. KEEPTIME This attribute causes make to maintain the original modification time 
of the target, even after the target is regenerated . 

. OLDTIME This attribute causes make to ignore the modification time of the 
target and apply a modification time of 0 for the purpose of 
determining whether the target should be updated. After the target is 
regenerated, make sets the correct modification time . 

. NOMESS If present, . NOME SS: causes make not to echo commands or 
issue any warning or error messages from commands. This is useful in 
PRE and POST files where you might not want the user to see 
messages from these files . 

. NOVPATH This attribute causes make to ignore the $VPATH macro for the 
associated target. 

. PRECIOUS: With this attribute, the document is considered "precious." 

. SILENT: With this attribute, the commands of this target are not echoed 
before execution. 

Operation 7 ·39 



If targets that have . MAIN, . PRE, and . POST attributes are dependents of 
other targets, the targets are made in the order dictated by the dependencies and not by 
the attributes. 

Attributes on dependency statements with two colons apply to all of them as a unit. 

Archive libraries 

A . a suffix rule builds libraries. (There is no actual . a suffix appended to the 
filename, however; see below for how to recognize candidates for this rule.) For 
example, the . c . a rule is the rule for the following: 

• compiling a C language source file 

• adding a C language source file to the library 

• removing the . o version of the C language source file 

The . y. a rule is the rule for performing the same functions on a yacc file; the 
. s. a rule, for an assembler file; and the . 1. a rule, for a lex file. 

The current archive rules defined internally are . c. a, . c-. a, and . s-. a. (See 
the section on "SCCS Filename Prefixes" for an explanation of the tilde (-) syntax.) 

Programmers might choose to define additional rules in the makefiles. 
A library is then maintained with the following makefile: 

lib: lib(ctime.o) 

(TAB) @echo lib up-to-date 

+ Note The first parenthesis in the filename identifies the target suffix rule, not an 
explicit . a suffix. + 

For example, the actual rule . c . a is defined as follows: 

.c.a: 

(TAB) $(CC) -c $(CFLAGS) $< 

(TAB) ar rv $@ $*.o 

(TAB) rm -f $*.o 

7-40 Chapter 7 make: A File Production Tool 



In the . c . a rule: 

$@ 

$<and $* 

This macro is the . a target. (Using the library example, this macro is 
defined as 1 ib.) 

These macros are set to the out-of-date C language file, and the 
filename without the suffix, respectively. Using the previous example, 
these macros are defined as ctime. c and ctime. Using this 
example, the $< macro could have been changed to $ *. c. 

When make sees the 1 ib (ct ime . o) instruction in the makefile (assuming the 
object in the library is out of date with respect to ctime. c, and there is no ctime. o 
file), it translates that construct into the following sequence of operations: 

1. make lib. 

2. To make lib, make each dependent ofl ib. 

3. make lib (ctime. o). 

4. To make lib ( ctime. o), make each dependent of lib ( ctime. o). (There are 
none in this example.) The following syntax allows ctime. o to have dependencies: 

lib(ctime.o): $(INCDIR)/stdio.h 

Thus, explicit references to . o files are unnecessary. 

+ Note There is also a macro for referencing the archive member name when this 
form is used. The $ % macro is evaluated each time $@ is evaluated. If there is no 
current archive member, $ % is null. If an archive member exists, then $ % 

evaluates to the expression between the parentheses. • 

5. Use default rules to try to build lib(ctime. o). (There is no explicit rule.) 

+ Note It is the first parenthesis in the name lib(ctime. o) that identifies the 
(.a) target suffix. This is the key. There is no explicit . a at the end of the lib 
library name. The parenthesis forces the . a suffix. In this sense, the suffix is hard­
wired into make. + 

6. Break the name lib(ctime. o) into lib and ctime. o. Define two macros, 
$@ (=lib) and $* (=ctime). 

Operation 7-41 



7. Look for a rule . x. a and a file $ * . x. The first . x (in the . SUFFIXES list in 
the default rules file) that fulfills these conditions is . c, so the rule is . c. a and the 
file is ctime. c. 

8. Set $< to ctime. c and execute the rule. In fact, make must then make 
ct ime . c. The search of the current directory yields no other candidates, however, 
and the search ends. 

9. The library is updated. Perform the next instruction associated with the 1 ib: 
dependency. Therefore, make echos 

lib up-to-date 

SCCS files 

make can be used on SCCS files and can run get on them, if required, before 
otherwise processing them. Those unfamiliar with SCCS (Source Code Control System) 
should refer to Chapter 8, "SCCS Reference." 

secs filename prefixes 

make syntax does not allow for direct prefix references except with secs files. 
SCCS filenames are preceded by an s . prefix. make uses a tilde (-) appended to 

the suffix to identify SCCS files. The expression . c-. o refers to the rule that transforms 
an SCCS C language source file into an object file. 

The following example shows a transformation from an SCCS filename to a name with 
a suffix already fixed for make: the SCCS filename s. filel. c into the non-SCCS, 
make-ready filename filel. c-. This file is then assembled using the command 

.c-.o: 
(TAB) $(GET) $(GFLAGS) -p$<>$*.c 

(TAB) $(CC) $(CFLAGS) -c $*.c 

(TAB) -rm-f$*.c 

The tilde appended to any suffix transforms the file search into a search for an SCCS 
filename with the actual suffix named by the dot and all characters up to (but not 
including) the tilde (-). 

7-42 Chapter 7 make: A File Production Tool 



SCCS filename suffixes 

The following SCCS suffixes are internally defined: 

.c- .y- .s- .sh- .h -

SCCS transfonnation rules 

The following rules involving SCCS transformations are internally defined: 

.c-: .1-.o: .sh-: .y-.c: .c-.o: 

.c-.a: .s-.o: .s-.a: .y-.o: .h-.h: 

These rules transform SCCS files into non-SCCS format and perform the compilations 
indicated by the letter combinations in the rule names. (See "Transformation Rules" for 
how to translate rule names into the rules they designate.) 

Other rules and suffixes that might prove useful can be defined using the tilde as a 
handle on the SCCS filename format. 

SCCS makefiles 

SCCS makefiles are "invisible" to make in that if you give the command 

make 

and only a makefile named s . make f i 1 e resides in the current directory, make will 
get, read, and remove the file. get creates a file called makefile that remains in 
the directory (in addition to the p-file, p. make f i 1 e). If the - f option is used, make 

will get, read, and remove the specified makefile (as well as include files), creating 
a non-SCCS makefile named the same as the old SCCS version, except that the s . 

prefix is removed. 

Operation 7-43 



Advanced topics 

This section details additional capabilities of make. The topics include maneuvering 
through directories, using shell scripts with make, and dynamic include file 
dependency generation. 

Walking the directory tree 

It is possible to get make to walk the directory tree, either by guiding it explicitly or by 
including a shell script that discovers, implicitly, what directories exist, so that it can visit 
them. While make is in each directory, it can make the files specified in the directory 
makefile. This allows you to bring whole systems up to date by having make follow 
directions in one local (meta-)makefile instead of you having to change directories yourself. 

The explicit route is, by far, the easiest. If you know the structure of your tree and the 
names of all the directories you need to use, you can include commands in a makefile in 
the directory at the top of your tree. If, below your current directory, you have directories 
named io, os, and others, you can include lines like the following ones in your makefile: 

all: 

(TAB) cd io; make -f io.mk; \ 

(TAB) cd .. /os; make -f os .mk; 

The backslash(\) at the end of command lines is necessary if you want to keep the 
same invocation of the shell active for a group of commands. If a different shell is 
invoked, the directory information is lost. 

If, for example, no backslash terminates the first command line, and so a different 
shell was invoked on the second line, the second cd would be executed from the 
parent directory for io and os instead of from the io directory. In this case, to 
keep the same effect, the line should read 

(TAB) cd OS; make -f OS .mk; 

As this shows, it is possible to write a script that does invoke a new shell with each 
line and still travels the directory tree. This just changes the mode of travel: With the one­
shell-per-joumey method, you state explicit directions for going to each directory from 
where you are relative to that directory and for going back to the originating directory 
aftenvard. With the one-shell-per-command method, you state explicit directions (that is, 

7-44 Chapter 7 make: A File Production Tool 



a full pathname) for going to the directory, and the return trip is done for you when the 
shell you are using quits. 

To travel a tree of unknown structure but with fairly standard makefile names (like 
dimame. mk, where dimame stands for the name of the directory where the file is 
located), you could use a fragment like the following one in your makefile: 

subdirs: 

(TAB) for i in 'find /pathname -typed -print'; \ 

(TAB) do \ 

(TAB) if test -f $$i/$$i .mk; \ 

(TAB) then \ 

(TAB) cd $$i; \ 

(TAB) $(MAKE) -f $$i .mk; \ 

(TAB) fi \ 

(TAB) done 

+ Note The code section above is a Bourne shell script, and it works only if your 
login shell is /bin/ sh or your SHELL environment variable is set to /bin/ sh. 

See "Environment Variables" for more information on using different shells to execute 
a makefile. + 

The make predecessor tree 

The $ ! macro represents the current predecessor tree. A make predecessor tree 
contains the series of files linked through the dependency relation for one run of make. 

For example, using the make f i 1 e 

all: cat 

(TAB) @echo cat up-to-date 

cat: cat.c 

(TAB) echo $ ! 

when the command echo $ ! is executed, the variable $ ! evaluates to 

cat.c cat all 

Advanced topics 7-45 



which is the current predecessor tree of this run of make, read from left to right (leaf to 
root, respectively). The connection constituting branches is the "is depended on by" 
relation: The left-most file is depended on by the next file to the right, and so on. Thus, 
the nodes are dependents of their right neighbors and are targets of their left neighbors 
(except for the leaf). The predecessor tree can be useful as a debugging tool for make 

itself, if what it has done does not make sense. Examination of the tree can reveal why 
certain files were updated, or which files were touched in this run of make. 

Another means of debugging must be found if make prints the following message: 

$! nulled, predecessor circle 

If the predecessors of a file are circular, they cannot form a tree, and one will not be 
printed. The actual evaluation of the $ ! macro is terminated, and the macro value is set 
to null. 

The makefile as shell script 

If a target cannot be found in the local or specified directory, make attempts to create 
it. When make discovers the absence of the file corresponding to target, it considers 
target to be out of date and so executes the specified command sequence. If the results 
do not include creating the target, this leaves the directory in question in the same state, 
ready for the same scenario to take place whenever the make command is invoked. 

This allows a makefile to function more like a shell script, with each absent target 
causing make to try to create it, using the command sequence specified. 

Unintended targets 

make considers missing files to be out of date and processes them. Conversely, existing 
files might be mistakenly deemed up to date (because of user error) and skipped for 
processing by make. This might happen in the situation described in "The Makefile as 
Shell Script" if one of the targets was 

print: 

(TAB) lp foo bazz fizz 

7-46 Chapter 7 make: A File Production Tool 



Here, the command sequence creates no file called print, so the same description 
file can be used over and over for maintenance, each time executing this line. If, 
however, you inadvertently name a program in that directory print, this latter file's 
modification information is checked to determine whether print needs to be remade. 
make will probably find print to be up to date, and tell you so on the screen. Failure 
to note this might cause a bug that is hard to trace in the working of the shell script 
description file, even though the entry for print is correct. 

Mnemonic targets 

A useful method of using make is to include targets with mnemonic names and 
commands that do not actually produce a file with the same name as the label in the shell 
script. These entries can take advantage of the ability in make to generate files and 
substitute macros. For example, save might be included to copy a certain set of files, 
or an entry cleanup might be used to throw away unneeded intermediate files. It is 
also possible to maintain a zero-length file purely to keep track of the time at which 
certain commands were performed. For example, 

print: $(FILES) 

(TAB) pr $? I lp 

(TAB) touch print 

The print entry prints only the files changed since the last make print 

command. A zero-length file print is maintained to keep track of the time of the 
printing, the time since the file print was last touched. The $? macro in the 
command sequence then picks up only the names of those files changed since print 

was touched. The touch command creates this zero-length file if no file called 
print exists in this directory. 

Macro translation 

To supplement macro definition and substitution, make also provides a macro 
translation facility. As a macro is evaluated, the translation takes place within the set of 
names of items to which the macro refers. (Such item names are probably filenames; in 
any case, they are considered as strings, where a string is delimited by blanks or tabs.) 
Thus, the macro translation facility allows for more refined and narrow macro definitions 
and for more concise code in description file command sequences. 

Advanced topics 7-47 



The formats for macro translation follow: 

$ (macro-name: stringl=string2) 

This tells make to substitute string2for stringl everywhere among the item names 
produced on evaluation of macro-name. The make utility attempts to assume that 
these substitution strings are suffixes; however, a substitute sequence can be any number 
of the trailing characters of stringl. For example: 

SAMPLE=/a/b/file.test 

all: 

@echo 111 $(SAMPLE:file=FILE) 11 

@echo 112 $(SAMPLE:test=TEST) 11 

@echo 113 $(SAMPLE:a/=A/) 11 

@echo 114 $(SAMPLE:b/file.test=K) 11 

@echo II 5 $(SAMPLE:a=A) 

has the following output 

1 /alb/file.test 

2 /alb/file.TEST 

3 /alb/file.test 

4 /a/K 

5 /alb/file.test 

In the preceding example, only the second and fourth examples are successful. The other 
examples fail because they do not substitute the trailing characters of the expanded macro. 

The following example demonstrates the usefulness of string substitution: 

all: /u/test/a.o 

CC -S $(?:a=.C) 

mv $(?:.o=.s) .tmp 

sed 11 s/text/data/ 11 > $(?:.o=.s) < .tmp 

as -o $@ $(?:.o=.s) 

rm .tmp 

7-48 Chapter 7 make: A File Production Tool 



The preceding example uses the @ (expand to the full target name of the current target) 
and the ? (expand to the list of out-of-date dependencies) macros to produce the 
assembly language file for each dependent of the a 11 target, change each occurrence 
of text to data using sed, and assemble each resulting . s file. 

Substitution can even work on macros that are part of shell command lines. This 
version of make supports substitutions of macros that are part of dependency lists. 

Another form of macro expansion similar in style to ed(l) substitution is 

$ (name:/ regular_expression/replacement_text/) 

First, the name variable is expanded and every occurrence of regular_ expression is 
substituted with the replacement_text. For example, if you have the following makefile: 

VAR = %filel %file2 

all: 

@echo "test 1: $(VAR:/%//)" 

@echo "test 2: $(VAR:/%/&/)" 

@echo "test 3: $(VAR:/%/X&/)" 

running the make command produces 

test 1: filel file2 

test 2: %filel %file2 

test 3: X%filel X%file2 

Another form of macro expansion involves pattern-matching. The expansion is in 
the form 

$ (variable: =Pattern) 

The variable is expanded into words separated by white space and all of the words that 
do not match the pattern are removed. Using this macro translation on the makefile 

WORDS= One Two Three Four Five 

all: 

@echo "Words with 'o' in them: ${WORDS: =*o*}" 

produces this output 

Words with 'o' in them: Two Four 

Advanced topics 7-49 



The final form of macro expansion is 

$ ( name: : default) 

The name variable is expanded and if this variable is undefined or NULL, the default 
value is returned. Otherwise the value of name is used. For example, the makefile 

FLG=${CFLAGS::-O} 

all: 

@echo "FLG: ${FLG}" 

produces the following output when just the make command is used 

FLG: -0 

and produces the following output when the make command is used with the 
argument CFLAGS= 

# make CFLAGS= 

FLG: -0 

and produces the following when the make command is used with the argument 
CFLAGS=-F 

# make CFLAGS=-F 

FLG: -F 

Dynamic Include File Dependency Generation 

The make utility includes the ability to examine selected source files for the 
#include directives. These include files are added to the target dependency list. This 
feature relieves you from having to set up and create the include file dependency list. 

The only disadvantage to having make create the dependency list is that some 
include files might be placed on the target dependency list that would normally be left out 
during compilation because of an #if def. However, this does not cause any problems; 
the target is still updated properly. The make utility does not add an include file to the 
target dependency list unless that include file really exists, so no damage can result. 

The Dynamic Include File Dependency Generation (DIFDG) is enabled by defining 
the _MAKE_DIFDG_SUFFIXES variable with a list of source file suffixes to be 
searched, as in this example, or by use of the -G (generate) option to make: 

_MAKE_DIFDG_SUFFIXES= .c .s .f .p .1 .y 

7-50 Chapter 7 make: A File Production Tool 



The _MAKE_DIFDG_SUFFIXES variable must contain at least one suffix to enable 
DIFDG. An empty variable here does not have added meaning. The suffixes that are 
ignored are . o, . h, and . a. 

The list of directories to search for these include files can be specified with the 
_MAKE_DIFDG_INCDIRS variable. The order is important because make searches 
each directory for include files until the files are found. Just like cpp(l), make looks 
for include files of the form header. h first in the same directory as the source file (not 
always the current directory), then in the directories listed in the 
_MAKE_DIFDG_SUFFIXES variable. If the include file has the form <header. h>, 

the only directories searched are those listed in the variable. If this variable is defined but 
not assigned a value, the only directory that is searched is the source file directory. This 
means <header. h> forms always fail because there is not a directory to search. If this 
variable isn't defined, make uses the default /usr /include directory. 

A prefix can be added to each include file dependent whose full pathname starts with 
/usr I include, by use of the _MAKE_DIFDG_PREFIX variable. This is only used 
when the user requested that the include file dependencies be written using the -M 

(map) option. There is no default. An example is 

_MAKE_DIFDG_PREFIX= $$(SGS_INCDIR) 

An alternate way of creating include file dependency files is with the C preprocessor, 
cpp. This method is much slower than make. The last variable for DIFDG, 
_MAKE_DIFDG_CPPFLAGS, is defined with the flags to be passed to cpp. The mere 
defining of this variable enables the cpp method of finding include files. Otherwise, 
the faster version is used. When you assign a value to this variable, keep in mind that 
only words that start with a hyphen are passed to cpp, as in this example (it is assumed 
that DEFINES is a variable that contains -D style macros): 

_MAKE_DIFDG_CPPFLAGS= -Y $(DEFINES) 

If the _MAKE_DIFDG_FILE variable is set and non-null, and DIFDG is enabled, 
the DIFDG include file dependencies are written to it when make exits. 

If the -G option is used, the defaults are 

_MAKE_DIFDG_SUFFIXES= .c .1 .y 

_MAKE_DIFDG_INCDIRS= /usr/include 

_MAKE_DIFDG_CPPFLAGS= 

_MAKE_DIFDG_PREFIX= 

Advanced topics 7-51 



A warning for system administrators 

If the system setting for date is wrong (especially if it is very far behind the actual 
date), make issues a warning message. (Dates are automatically considered incorrect if 
they are before 1970.) Since make works by comparing previous dates with the current 
one, it is important to make sure that the current system date is accurate. To ensure 
proper functioning of make, the accuracy of date should be checked frequently. Also 
check the accuracy of the system dock in the Control Panel. If necessary, reset this dock 
as well, to reflect the correct date. 

7-52 Chapter 7 make: A File Production Tool 



8 SCCS Reference 

SCCS for beginners I 8-3 

SCCS files I 8-7 

SCCS command conventions I 8-16 

SCCS command summary I 8-22 

The Source Code Control System (SCCS) is a collection of NUX commands that controls 

and reports on changes to files of text. SCCS is a valuable tool for version management of 

program source code or ordinary text files. In large group projects, SCCS prevents 

multiple, inconsistent versions of files from accumulating in several places. For a single 

user, multiple versions of a file can be stored without using a lot of disk space, previous 

versions can be easily reconstructed, and versions can be tracked with a simple, 

consistent numbering scheme. SCCS provides facilities for 

• efficient storage of multiple versions of files 

• retrieving earlier versions of files 

• controlling update privileges to files 

• identifying the version of a retrieved file 

• recording when, where, why, and by whom each change was made to a file 



SCCS stores the original file on disk. Whenever changes are made to the file, SCCS stores 

only the changes. Each set of changes is called a delta. When you retrieve a particular 

version of the file (the default is the most recent version), SCCS applies the appropriate 

deltas to the original file to reconstruct that version. 

This chapter provides an introduction and a general reference guide to SCCS. The 

following topics are covered here: 

• SCCS for beginners A step-by-step guide to creating SCCS files, updating them, and 

retrieving a version of a file. 

• SCCS files A description of the protection mechanisms, format, auditing, and delta 

numbering of SCCS files. The differences between individual SCCS use and group or 

project SCCS use are discussed, and the role of the SCCS administrator in a group 

project is introduced. 

• SCCS command conventions A description of the conventions that generally apply to 

SCCS commands and the temporary files created by SCCS commands. 

• SCCS command summary A summary of SCCS commands and their arguments. 

In addition to the programs described in this chapter, the secs command provides a 

front end to SCCS functionality. Basically, the secs front end runs the SCCS commands 

documented in the "SCCS Command Summary" as well as several commands that are 

equivalent but easier to use than the most frequently used SCCS commands. See 

sccs(l) in A!UX Command Reference for more information on the secs front end. 

8-2 Chapter 8 SCCS Reference 



SCCS for beginners 

Creating an SCCS file 

Using a text editor, create an ordinary text file named lang that contains a list of some 
programming languages: 

c 
PL/I 

FORTRAN 

COBOL 

ALGOL 

To bring the tools of SCCS into play, you need to create a (different) file that 
various SCCS commands can read and modify. You can do this with the admin 

command, as follows: 

admin -ilang s.lang 

The admin command with the - i keyletter (and its value, lang) creates a new 
SCCS file and initializes it with the contents of the file named 1 ang. An initial SCCS delta 
is created by applying a set of changes (the contents of lang) to a new (null) SCCS file 
(s. lang). 

All SCCS files must have names that begin with "s. ".This effectively limits SCCS 
filenames to 12 characters. 

Each delta is assigned a name called the SCCS identification string, or SID. The SID is 
normally composed of two components (the release number and the level number) 
separated by a period. For example, the initial version of a file is delta 1.1 (that is, release 
1, level 1). SCCS keeps track of subsequent versions of a file by incrementing the level 
number whenever you create a new delta. The release number can also be changed 
(allowing, for example, deltas 2.1, 3.1, and so on) to indicate a major change to the file. 

The admin command returns a warning message (which also can be issued by 
other SCCS commands): 

No id keywords (cm7) 

SCCS for beginners 8-3 



The absence of keywords is not a fatal error under most conditions, and this warning 
message does not affect the SCCS file you have created. In the following examples, this 
warning message is not shown, although it might actually be issued by the commands. 

You should now remove the lang file from your directory: 

rm lang 

Retrieving a file and storing a new version 

To reconstruct the lang file you just deleted, use the SCCS get command: 

get s.lang 

This retrieves the most recent version of file s. lang and prints the messages 

1.1 

5 lines 

(the SID of the version retrieved, and the length of the retrieved text). The retrieved text 
is placed in another file called the gfile. The name of the gfile is formed by deleting the 
s. prefix from the name of the SCCS file. Hence, the file lang is reconstructed. 

When you use the get command with no keyletters (in the format above) the 
lang file is created with read-only mode (mode 440), and no information about the 
SCCS file is retained. If you want to be able to change an SCCS file and create a new 
version, use the -e (edit) keyletter on the get command line: 

get -e s.lang 

The -e keyletter causes get to create lang with read-write permission and 
places certain information about the SCCS file in another file called the pfile, which is 
read by the delta command when the time comes to create a new delta. The same 
messages are displayed, as well as the SID of the next delta (to be created). For example: 

get -e s.lang 

produces 

1.1 

new delta 1.2 

5 lines 

After this command, you can edit the lang file and make changes. For example, 
suppose that you use vi to create the following new version of the file: 

8-4 Chapter 8 SCCS Reference 



c 
PL/I 

FORTRAN 

COBOL 

ALGOL 

ADA 

PASCAL 

The command 

delta s.lang 

records the changes you made to the lang file within the SCCS file. SCCS prints the 
message 

comments? 

Your response should be a description of why the changes were made. For example: 

comments? added more languages 

The de 1 ta command then reads the p-file and determines what changes were 
made to the file lang. When this process is complete, the changes to lang are stored 
in s. lang, and delta displays 

1. 2 

2 inserted 

0 deleted 

5 unchanged 

The number 1.2 is the SID of the new delta, and the next three lines refer to the changes 
recorded in the s. lang file. 

Retrieving versions 

The -r keyletter allows you to retrieve a particular delta by specifying its SID on the get 

command line. For the previous example, the following commands are all equivalent: 

get s.lang 

get -rl s.lang 

get -rl.2 s.lang 

The numbers following the - r keyletter are SIDs. 

SCCS for beginners 8-5 



The first command retrieves the most recent version of the SCCS file, because no SID 
is specified. When you omit the level number of the SID (as in the second command), 
SCCS retrieves the most recent level number in that release (in the previous example, the 
latest version in release 1, namely 1.2). The third command explicitly requests the 
retrieval of a particular version (in this case, also 1.2). 

Whenever a major change is made to a file, the significance of that change is usually 
indicated by changing the release number (the first component of the SID) of the delta 
being made. Because normal automatic numbering of deltas proceeds by incrementing 
the level number (the second component of the SID), you must explicitly change the 
release number as follows: 

get -e -r2 s.lang 

Because release 2 does not yet exist, get retrieves the latest version before release 2 
and changes the release number of the next delta to 2, naming it 2.1 rather than 1.3. This 
information is stored in the pfile so the next execution of the de 1 ta command 
produces a delta with the new release number. The get command then produces 

1.2 

new delta 2.1 

7 lines 

which indicates that version 1.2 is retrieved and that 2.1 is the version de 1 ta creates. 
Subsequent versions of the file are created in release 2 (deltas 2.2, 2.3, and so on). 

On-line information 

The help command is useful whenever there is any doubt about the meaning of an 
SCCS message. Detailed explanations of almost all SCCS messages can be found using the 
help command and the code printed in parentheses after the message. 

If you give the command 

get abc 

secs prints the message 

ERROR [abc]: not an SCCS file (col) 

8-6 Chapter 8 SCCS Reference 



SCCS files 

The string co 1 is a code that can be used to obtain a fuller explanation of that 
message using the help command. The command 

help col 

produces 

col: 

"not an SCCS file" 

A file that you think is an SCCS file 

does not begin with the characters "s.". 

This section discusses the protection mechanisms used by SCCS, the format of SCCS files, 
recommended procedures for auditing SCCS files, and how deltas are numbered. 

Standard A/UX protection 

In addition to the special SCCS flags and keyletters described in the next section, "SCCS 
Protection Mechanisms," SCCS uses standard A/UX protection mechanisms to prevent 
you from making changes to SCCS files using non-SCCS commands. The following 
precautions are automatically taken by SCCS: 

• When you create an SCCS file (using admin), it is automatically given mode 444 
(read-only) if your umask is less than or equal to 333. If your umask is 334, the 
SCCS file is created with mode 440 (no read permission for others). If your umask 

is 344, the SCCS file is created with mode 400 (read permission for the owner only). If 
your umask is 444 or higher, the SCCS file is created with no permissions across the 
board, and a lock file, also called a zfile, is created. The preferred mode for an SCCS 
file is 444; this protects against modifying SCCS files using non-SCCS commands and 
should not be changed. 

• If you make a hard link from an SCCS file to another file, SCCS commands do not 
process the SCCS file. SCCS commands produce an error message rather than process 
a file that has been linked. The reason for this is the same: Protection is provided 
against using non-SCCS commands to modify SCCS files. 

SCCS files 8-7 



SCCS protection mechanisms 

SCCS provides the following protection features directly: three SCCS file flags (release 
ceiling, release floor, and release lock) and a user list for SCCS files. 

The SCCS file flags are set using the - f keyletter with the admin command. This 
keyletter specifies a flag and possibly a value for the flag, to be placed in the SCCS file. 
Several - f keyletters can be supplied on a single admin command line (see "SCCS 
Flags" under "Create SCCS Files: admin" later in this chapter). 

The flags used for file protection are 

c ceiling The highest release (ceiling) that can be retrieved by a get 
command for editing. ceiling is a number less than or equal to 9999. If 
this flag is not used, the default value for ceiling is 9999, which allows 
all releases up to and including 9999 to be retrieved for editing. 

fjloor 

1 list 

The lowest release (jloor)that can be retrieved by a get command 
for editing. floor is a number less than 9999 and greater than 0. If this 
flag is not used, the default value for floor is 1, which allows the first 
release to be retrieved for editing. 

A list of locked releases to which deltas can no longer be made. (See 
admin(l) in A!UX Command Reference for the complete syntax of this 
list.) The get -e command fails if you attempt to retrieve one of 
these locked releases for editing. The character a in list can be 
specified to protect all releases for the named SCCS file. 

SCCS files can also contain a user list of login names and/ or group IDs of users who 
are or are not allowed to create deltas of that file. This list is empty by default, which 
means that anyone can create deltas. To add names to the list (either to allow permission 
or to deny it) the -a keyletter is used with the admin command. The argument to 
the - a keyletter can be 

login-name 

! login-name 

A login name or numerical group ID can be specified; a group ID is 
equivalent to specifying all login names common to that ID. 

If a login or group ID is preceded by an exclamation character ( ! ), it is 
denied permission to make deltas. 

These features are described in more detail under the admin command. 

8-8 Chapter 8 SCCS Reference 



Administering SCCS 

If you are using SCCS to manage personal files, the protection mechanisms described in 
the previous section should be used to keep certain releases from being modified, or to 
prevent you from accidentally modifying your files without using SCCS. 

Aside from these protections, you can simply use SCCS directly. See "Delta Numbering" 
later in this chapter for information on storing and retrieving different releases. 

Group project administration 

If you are using SCCS to manage and protect files in a large project with several users 
having access to the same files, a single user should own the SCCS files and directories. 
This single user is the only one to administer the SCCS files. 

The following precautions are recommended: 

• Directories containing SCCS files should be mode 755. This allows only the owner of 
the directory to modify its contents. 

• SCCS files should be kept in directories that contain only SCCS files (and any 
temporary files created by SCCS commands). This simplifies protection and auditing 
of SCCS files. The contents of directories should correspond to convenient logical 
groupings-for example, subsystems of a large project. 

• No SCCS users other than the SCCS administrator should be able to use those 
commands that require write permission in the directory containing the SCCS files. 
Instead, a project-dependent program should be written to provide an interface to 
certain SCCS commands, usually the get, delta, and, if desired, rmdel and 
cdc commands. 

This last precaution requires that you write an interface program (usually specific to 
the project) that invokes the desired SCCS command and gives other users (who are not 
the owners of the SCCS files) the permissions they need to modify specific SCCS files, 
using only those commands that are linked to the interface program. 

+ Note If you are not using the sccs front end (see sccs(l) in A/UX Command 
Reference), you might need to write an interface program such as the sample program 
shown in Listing 8-1 to handle special file permissions for a particular project. • 

SCCS files 8-9 



The sample program in Listing 8-1 causes the invoked command to inherit the 
privileges of the interface program for the duration of the execution of that command. 
Users whose login names or group IDs are in the user list for that file (but who are not 
the owner), and who have the path to the executable interface program in their PATH 

variable, are given the necessary permissions only for the duration of the execution of the 
interface program. They can modify the SCCS files only through the use of those 
commands that are linked to the interface program. 

listing 8-1 Sample interface program for group projects 

main (argc, argv) 

int argc; 

char *argv[]; 

register int i; 

char cmdstr [BUFSIZ]; 

/* Process file arguments 

(those that don't begin with'-') */ 

for (i = l; i < argc; i ++) 

if (argv [i] [0] != '-') 

argv[i] = filearg (argv[i]); 

/* Get 'simple name' of name 

used to invoke program 

(strip off directory prefix, if any) */ 

argv[O] = sname (argv[O]); 

/* Invoke actual SCCS command, 

passing arguments */ 

sprintf(cmdstr, "/usr/bin/%s", argv[O]); 

execv(cmdstr,argv); 

8-10 Chapter 8 SCCS Reference 



This sample interface program is an example only; the functions sname and 
filearg are not standard functions. You should write these and any other functions 
required by your project. 

Such an interface program must be owned by the SCCS administrator, must be 
executable by the new owner, and must have the setuid (set user ID on execution) bit 
on (see setuid(2)). 

Links can then be created between the executable interface program and the 
command names. For example, if the path to the file is 

/sccs/interface.c 

then the commands 

cd /secs 

cc interface.c -o inter 

compile the program into the executable module inter. At this point, the command 

chmod 4755 inter 

sets the proper mode and setuid bit. You can then create links from any directory 
with the commands 

ln /secs/inter get 

ln /secs/inter delta 

ln /secs/inter rmdel 

ln /secs/inter cdc 

The full pathname of the directory containing the links must then be included prior to 
the /usr/bin directoryinthe PATH variable(inthe .profile or .login files 
of all SCCS users who need to use the desired SCCS commands). For example, 

PATH=(. :/usr/new:/bin:/sccs:/usr/bin) 

Depending on the type of interface program you wrote, the names of the links can be 
arbitrary (if the program can determine from them the names of the commands to be 
invoked), the pathname to your project can be supplied, and so on. If the pathname to 
your project is supplied in the interface program, the user can use the syntax 

get -e s.abc 

regardless of where the user is currently located in the file system. 

SCCS files 8-11 



SCCS file formats 

SCCS files are composed of ASCII text arranged in six parts, as follows: 

checksum This part of the file contains the sum of the ASCII values of all 
characters in the file (not including the checksum itself). The SCCS 
checksum is described in "SCCS File Auditing." 

delta table This part contains information about each delta, such as type, SID, date 
and time of creation, and commentary. 

user list This is a list of login names and/or group IDs of users who are allowed 
to modify the file by adding or removing deltas. The user list is 
described under "SCCS Protection Mechanisms." 

flags This part contains indicators that control certain actions of SCCS 
commands. Flags are discussed under "Create SCCS Files: admin." 

descriptive text This is arbitrary text provided by the user, usually comments that 
provide a summary of the contents and purpose of the file. Descriptive 
text is discussed under "Create SCCS Files: admin." 

body This is the actual text of the ASCII file being administered by SCCS, 
intermixed with internal SCCS control lines. 

For information regarding the physical layout of SCCS files, see sccsfile(4) in 
A/UX Command Reference. 

+ Note Because SCCS files are ASCII files, they can be processed by other A/UX 
commands such as vi, grep, and cat. This can be convenient when an SCCS file 
must be modified manually or when you simply want to look at the file. However, it is 
extremely important to be careful about introducing changes that affect future deltas. It is 
wise to make a backup copy first. + 

SCCS file auditing 

On rare occasions (such as a system crash), an SCCS file might be destroyed or corrupted 
(that is, one or more blocks of it might be destroyed). If the entire SCCS file has been 
trashed, the SCCS commands issue an error message when you attempt to process that 
file. In this case, you need to restore the file from your most recent backup copy. 

8-12 Chapter 8 SCCS Reference 



If one or more blocks of an SCCS file are trashed by a system crash, the SCCS 
commands recognize this through an inconsistent checksum. In this case, the only SCCS 
command that processes the file is the adrnin command with the - h or - z keyletter: 

adrnin -h s .filel s .file2 ... 

It is a good idea to use these commands routinely to audit your SCCS files to detect 
any inconsistent checksums (indicating file corruptions). If the new checksum of any file 
is not equal to the checksum in the first line of that file, SCCS prints the message 

corrupted file (co6) 

This process continues until all the files are examined. The adrnin - h command 
also can be applied to directories: 

adrnin - h directoryl directory2 ... 

This prints an error message for any corrupted files, but does not automatically report 
missing SCCS files. To determine whether any of your SCCS files are missing, list the 
contents of each directory (ls). 

If you have an SCCS file that is extensively corrupted, the best solution is to restore 
the file from your most recent backup copy. If there is only minor damage, you might be 
able to repair it using a text editor. In this case, after you repair the file, use the command 

adrnin -z s.file 

This recomputes the checksum of the file so that it agrees with the file contents. After 
you use adrnin -z, any corruption that existed in the file is no longer detectable by the 
adrnin - h command. 

Delta numbering 
SCCS deltas are changes applied to an original (null) file to produce different versions 
and releases of your file. 

SCCS names deltas with an SCCS identification string (a SID). SIDs have exactly two 
components (the release number and the level number) separated by a period: 

release. level 

SCCS names the initial delta 1.1. This is considered a set of changes applied to the 
null file. Subsequent deltas are named by incrementing the level number (1.2, 1.3, and so 
on) when the delta is created. If you make a major change to the file, you might want to 

SCCS files 8-13 



specify a new release number when you create the new delta. In this case, SCCS assigns a 
new release number (2.1) and subsequent deltas are incremented as in release 1. This is 
shown in Figure 8-1. 

1.1 1.2 1.3 1.4 2.1 2.2 
' ---------------' 

Release 1 Release 2 

Figure 8-1 A linear progression of versions 

In this simplest case, the deltas progress linearly; that is, any delta is dependent on all 
preceding deltas. When SCCS reconstructs a particular version of your SCCS file, it applies 
all deltas up to and including the number you specify. In most cases, this is all you need 
to know about SCCS delta numbering. 

Branch deltas 

The linear progression of file versions shown above is sometimes called the f'runk of the 
SCCS tree for that file. Under special conditions, you may need to use a branch in the 
tree: an independent progression of deltas that does not depend on all previous deltas for 
that file. 

For example, suppose you have a program at version 1.3 that is being used in a 
production environment. You are developing a new release (release 2) of the program, 
and already have several deltas of that release. This situation uses the simple linear 
organization shown above. 

Now suppose that a user reports a problem in version 1.3 which requires changes 
only to version 1.3 but does not affect subsequent deltas. This requires a branch from the 
previous linear ordering. The new (branch) delta name consists of exactly four 
components: release and level numbers (as in the trunk delta) plus a _branch number and 
sequence number, all separated by periods: 

release. level. branch . sequence 

Thus, a branch delta can always be identified as such from its name. 
Once you create a branch delta, SCCS increments subsequent deltas on that branch 

by incrementing the sequence number. This is shown in Figure 8-2. 

8-14 Chapter 8 SCCS Reference 



Branch 1 
: 1.3.1.1 

' - - - - - - - - - _l)._l.~ - _: 

Figure 8-2 A branching SCCS tree 

While SCCS increments the sequence number on each branch, it increments the 
branch number according to when you create the branch. If you need to complicate your 
SCCS branch structure, consider this carefully. While the trunk delta (the initial linear 
progression) can always be identified by the branch delta name (by the release and level 
numbers), it is not possible to determine the entire path leading from the trunk delta to 
the particular branch delta you might have retrieved. 

For example, if delta 1.3 has one branch, all deltas on that branch are named 1.3.1. n. 
If a delta on this branch (for example, delta 1.3.1.1) has a branch, all deltas on the new 
branch are named 1.3.2. n. This is shown in Figure 8-3. 

1.3.1.2 

Figure 8-3 A complicated branch structure 

If you retrieve version 1.3.2.2, you know that (chronologically) it is the second delta 
on the second branch from delta 1.3. You are not able to deduce how many deltas there 
are between version 1.3.2.2 and version 1.3. Thus, although the branching capability is 
provided for managing files under certain special conditions, it is much easier to manage 
your files if you keep the SCCS organization as linear and simple as possible. 

SCCS files 8-15 



SCCS command conventions 
This section discusses the conventions and rules that apply to SCCS commands. Except 
where noted, these conventions apply to all SCCS commands. A list of the temporary files 
generated by various commands (and referred to in the "SCCS Command Summary") is 
also provided. 

SCCS command arguments 

SCCS commands accept two types of arguments: keyletters and file arguments. 
Keyletters consist of a minus sign followed by a lowercase character, which might 

be followed by a value. For example, -a is a keyletter. Keyletters control the execution 
of the command to which they are supplied. All keyletters specified for a given command 
apply to all file arguments of that command. Keyletters are processed before any file 
arguments, with the result that the placement of keyletters is arbitrary (that is, keyletters 
can be interspersed with file arguments). Somewhat different argument conventions 
applytothe help, what, sccsdiff,and val commands. 

+ Note Keyletters are command-line options equivalent to A/UX flag options. Do not 
confuse keyletters with SCCS flags, discussed in "SCCS Flags." • 

File arguments (names of files and/or directories) specify the files to be processed 
by the given SCCS command. Naming a directory is equivalent to naming all the SCCS 
files within the directory. Non-SCCS files in the named directories are silently ignored. In 
general, file arguments cannot begin with a minus sign, but if the name - (a single 
minus sign) is specified as an argument to a command, the command reads the standard 
input (until end-of-file) and takes each line as the name of an SCCS file to be processed. 
This feature is often used in pipelines. File arguments are processed left to right. 

8-16 ChapterB SCCS Reference 



Flags 

Certain actions of SCCS commands can be controlled by flags, which appear in SCCS 
files. These flags are discussed in "SCCS Flags" later in this chapter. 

Diagnostics 

SCCS commands produce diagnostics (on the standard error output) that use this format: 

ERROR [ji,/enameJ : message text ( code) 

The code in parentheses can be used as an argument to the help command to obtain a 
further explanation of the diagnostic message. Detection of a fatal error during the 
processing of a file causes the SCCS command to stop processing that file and to proceed 
with the next file, in order, if more than one file is named. 

Certain SCCS commands check both the real and effective user IDs (see pas swa(l) 

in A/UX Command Reference). If you are using SCCS to manage your personal files, these 
two IDs are the same; if you are working in a group project, see "SCCS Protection 
Mechanisms" earlier in this chapter. 

Temporary files 

Several SCCS commands generate temporary files and file copies during the process of 
creating, retrieving, and updating SCCS files. 

The temporary files are normally named by stripping off the s . prefix of the SCCS 
filename and replacing it with another single alphabetic character. 

The g-file is named by simply deleting the s . prefix. Thus, if the SCCS file is named 
s . abc the g-file is named abc. The p-file is named p . abc. 

Figure 8-4 demonstrates the relationships of the temporary files. 

SCCS command conventions 8-17 



z-file: 
lock file 

for s. abc 

s.abc 

x-file: 
buffer file 

for s. abc 

' 

i-file 
table 

of deltas 

q-file: 
buffer file 
for p-file 

g-file 
text file 

d-file: 
copy of 
g-file 

p-file 
data on 

user, etc. 

___________________________ J 

Created by get 

Figure 8-4 Relationships among temporary files 

These temporary files are as follows: 

d-file 

g-file 

8-18 Chapter 8 SCCS Reference 

When you invoke a get command, SCCS creates its own temporary 
copy of the g-file by performing an internal get at the SID specified 
in the p-file entry. This temporary copy is called the d-file. 

When you record your changes in a new version, the delta 
command compares the d-fileto to the g-file(using the di ff 

command). The differences between the g-file and the d-file are the 
changes that constitute the delta. 

This is the text file created by a get command. It contains a 
particular version of an SCCS file, and its name is formed by stripping 
off the s. prefix from the SCCS file. 

The g-file is created in the current directory and is owned by the real 
user. The mode assigned to the g-file depends on how the get 
command is invoked. The version ,it contains also depends on how the 
get command is invoked. The default version is the most recent 
trunk delta (that is, excluding branches). 



!-file 

p-file 

q-file 

xfile 

z-file 

The get -1 command creates an !file containing a table showing 
the deltas used in constructing a particular version of the SCCS file. 
This file is created in the current directory with mode 444 (read-only) 
and is owned by the real user. 

When the get -e command creates a g-filewith read-write 
permission (so you can edit it), it places certain information about the 
SCCS file (that is, the SID of the retrieved version, the SID to be given 
to the new delta when it is created, and the login name of the user 
executing get) in another new file called the p-file. 

When you record your changes in a new version, the delta 

command reads the pfile for the SID and the login name of the user 
creating the new delta. 

When the new delta is made, the pjile is updated by removing the 
relevant entry. If there is only a single entry in the p-file, then the p-file 
itself is removed. 

Updates to the pfile are made to a temporary copy, the qfile, whose 
use is similar to the use of the xfile. 

All SCCS commands that modify an SCCS file do so by writing a 
temporary copy, called the x-file (to ensure that the SCCS file is not 
damaged if processing terminates abnormally). When processing is 
complete, the old SCCS file is removed and the x-file is renamed (with 
the s . prefix) to be the SCCS file. 

The xfile is created in the directory containing the SCCS file, given the 
same mode as the SCCS file, and owned by the effective user. 

To prevent simultaneous updates to an SCCS file, commands that 
modify SCCS files create a "lock file" called the z-file. This file exists 
only for the duration of the execution of the command that creates it. 
The zfile contains the process number of the command that creates it. 
While the zfile exists, it indicates to other commands that the SCCS file 
is being updated. SCCS commands that modify SCCS files do not 
process a file if the corresponding zfile exists. 

The z-file is created with read-only mode (mode 444, possibly 
modified by the user's umask) in the directory containing the SCCS 
file. It is owned by the effective user. 

In general, users can ignore most of these temporary files, although they can be 
useful in the event of system crashes or similar situations. 

SCCS command conventions 8-19 



SCCS ID keywords 

When you retrieve an SCCS file to compile it, it is useful to record the date and time of 
creation, the version retrieved, the module name, and so forth, within the g-file. This 
information appears in a load module when one is eventually created. 

SCCS uses ID keywords for recording such information about deltas automatically. 
ID keywords can appear anywhere in the generated file and are replaced by 
appropriate values. 

The format of an ID keyword is an uppercase letter enclosed by percent signs(%). 
When these appear in the generated SCCS file, they are replaced by the values defined 
for that keyword. For example, 

%I% 

is replaced by the SID of the retrieved version of a file. Similarly, 

%H% 

is replaced by the current date (in the form mm/dd!yy). When no ID keywords are 
substituted by get, the following message is issued: 

No id keywords (cm7) 

This message is normally treated as a warning by get, unless the i flag is present 
in the SCCS file (see "SCCS Flags" later in this chapter). 

Table 8-1 shows a complete list of the ID keywords. 

8-20 Chapter 8 SCCS Reference 



Table 8-1 SCCS ID keywords 

Keyword 

%M% 

%I% 

%R% 

%L% 

%B% 

%8% 

%D% 

%H% 

%T% 

%E% 

%G% 

%U% 

%Y% 

%F% 

%P% 

%Q% 

%C% 

%Z% 

%W% 

%A% 

Value 

Module name: either the value of the m flag in the file (see admin(l)), or the name 
of the SCCS file with the leading s . removed 

SCCS identification (SID) (%R%. %L%. %B%. %8%) of the retrieved text 

Release 

Level 

Branch 

Sequence 

Current date (yy/mm/dd) 

Current date (mm/ddlyy) 

Current time (hh:mm:ss) 

Date newest applied delta was created (yy/mm/dd) 

Date newest applied delta was created (mm/ddlyy) 

Time newest applied delta was created (hh:mm:ss) 

Module type: the value of the t flag in the SCCS file (see admin(l)) 

SCCS file name 

Fully qualified SCCS filename 

Value of the q flag in the file (see admin(l)) 

Current line number. This keyword is intended for identifying messages sent by the 
program. It is not intended to be used on every line to provide sequence numbers. 

Four-character string @ ( #) recognizable by what 

Shorthand notation for constructing what strings for A/UX system program files. 
%W% = %Z%%M%"I%I% (where "I is the tab character) 

Another shorthand notation for constructing what strings for non-A/UX system 
program files. %A% = %Z%%Y%%M%%I%%Z% 

SCCS command conventions 8-21 



SCCS command summary 
This section describes the features of all the SCCS commands. The SCCS commands are 
as follows: 

ad.min 

cdc 

comb 

delta 

get 

unget 

help 

prs 

rmdel 

sact 

sccsdif f 

val 

what 

Creates SCCS files and applies changes to characteristics of SCCS files. 

Changes the commentary associated with a delta. 

Combines two or more consecutive deltas of an SCCS file into a single 
delta; often reduces the size of the SCCS file. 

Applies changes (deltas) to the text of SCCS files-that is, creates 
new versions. 

Retrieves versions of SCCS files. 

"Undoes" a get -e command, if invoked before the new delta is 
created. 

Prints explanations of diagnostic messages. 

Prints portions of an SCCS file in user-specified format. 

Removes a delta from an SCCS file; allows the removal of deltas that 
were created by mistake. 

Accounts for SCCS files in the process of being changed. 

Shows the differences between any two versions of an SCCS file. 

Validates an SCCS file. 

Searches any A/UX system files for all occurrences of a special pattern 
and prints out what follows it; what is useful in finding identifying 
information inserted by the get command. 

Create SCCS files: admin 

ad.min creates new SCCS files or changes characteristics of existing ones. You can 
create an SCCS file with the command 

ad.min - ifilename s .filename 

where filename is a file from which the text of the initial delta of the SCCS file 
s .filename is to be taken. 

8-22 Chapter 8 SCCS Reference 



+ Note There is no space between the - i keyletter and the filename argument. + 

SCCS files are created in read-only mode ( 444) and are owned by the effective user 
(see pas swd(l) in A/UX Command Reference). Only a user with write permission in a 
directory containing SCCS files can use the ad.min command on a file in that directory. 

If you omit the value of the - i keyletter, ad.min reads the standard input for the 
text of the initial delta. Thus, the command 

ad.min -is .filename < filename 

is also valid. Only one SCCS file can be created at a time using the - i keyletter. 
If the text of the initial delta does not contain ID keywords, the message 

No id keywords (cm7) 

is issued as a warning. See "SCCS ID Keywords" earlier in this chapter for more information. 
If you set the i flag in the SCCS file (using the - f keyletter with the ad.min 

command; see the next section, "SCCS Flags"), the above message is treated as a fatal 
error and the SCCS file is not created. 

The first delta of an SCCS file is normally 1.1. The - r keyletter to the ad.min 

command is used to specify a different release number for the initial delta. Because it is 
only meaningful in creating the first delta (with ad.min), its use is permitted only with 
the - i keyletter. The command 

ad.min -ifilename -r3 s .filename 

specifies that the first delta should be named 3.1 rather than 1.1. 

SCCS flags 

SCCS file flags are used to direct certain actions of SCCS commands. 
The flags of an SCCS file are initialized or changed using the - f keyletter, and 

deleted using the -d keyletter. When you create an SCCS file, flags are either initialized 
by the - f keyletter on the command line or assigned default values. For example, the 
following command sets the i flag and the m (module name) flag: 

ad.min -ifilename -fi -fmmodname s .filename 

The i flag specifies that a warning message stating that there are no ID keywords 
contained in the SCCS file should be treated as a fatal error. 

SCCS command summary 8-23 



The value modname specified for the m flag is the value that the get command 
uses to replace the s cc s ID keyword. (In the absence of the m flag, the name of the 
gfile is used as the replacement for the secs ID keyword.) 

Note that several - f keyletters can be supplied on the admin command line and 
that - f keyletters can be supplied whether the command is creating a new SCCS file or 
processing an existing one. 

The -a keyletter is used to delete a flag from an SCCS file and can be specified only 
when processing an existing file. For example, the following command removes the m 

flag from the SCCS file: 

admin -dm s .filename 

Several -d keyletters can be supplied on a single invocation of admin and can be 
intermixed with - f keyletters. 

A user list of login names and/ or group IDs of users who are allowed to create deltas 
of that file is checked by several SCCS commands to ensure that the delta is authorized. 
This list is empty by default, which means that anyone can create deltas. The -a 
keyletter is used to specify users who are given permission or denied permission to 
create deltas. You can use the -a keyletter whether admin is creating a new SCCS 
file or processing an existing one, and it can appear several times on a command line. 

For example, the command 

admin -avz -aram -a1234 s .filename 

gives permission to create deltas to the login names vz and ram and the group ID 
12 3 4. The command 

admin -a!vz s.fikname 

denies permission to create deltas to the login name vz. Similarly, the -e keyletter is 
used to remove (erase) login names or group IDs from the list. For example: 

admin -evz s .filename 

removes the login name vz from the user list of s .filename. 

Comments and MR numbers 

When an SCCS file is created, you can insert comments stating your reasons for creating 
the file. In a controlled environment, it is expected that deltas are created only as a result 
of some trouble report, change request, trouble ticket, and so forth, all of which are 
collectively called MRs (for modification request). 

8-24 Chapter 8 SCCS Reference 



The creation of an SCCS file might sometimes be the direct result of an MR. MRs can 
be recorded by number in a delta through the -m keyletter, which can be supplied on 
the admin (or delta) command line. 

The -y keyletter can also be used to supply comments on the command line rather 
than through the standard input. If comments ( -y keyletter) are omitted, a comment line 
of the form 

date and time created YY/MM/DD hh:mm:ss by logname 

is automatically generated. 
If you want to supply an MR number (using the -m keyletter), the v flag must also 

be set (using the -f keyletter described below), as in the command 

admin -ifilename -mmrlist -fv s .filename 

The v flag causes the de 1 ta command to prompt for MR numbers as the reason 
for creating a delta. (See sccsfile(4) in A!UX Programmer's Reference.) Note that the 
-y and -m keyletters are effective only if a new SCCS file is being created. 

Descriptive text 

The portion of the SCCS file reserved for descriptive text can be initialized or changed 
using the - t key letter. Descriptive text is intended as a summary of the contents and 
purpose of the SCCS file. 

To insert descriptive text in a file you are creating, the -t keyletter is followed by 
the name of a file from which the descriptive text is to be taken. For example, when a 
new SCCS file is being created, the following command takes descriptive text from 
description file: 

admin -ifilename -tdescriptionjile s .filename 

When processing an existing SCCS file, the - t keyletter specifies that text found in 
descriptionjile should overwrite current descriptive text (if any). If you omit the file 
name after the -t keyletter, as in 

admin -t s .filename 

the descriptive text currently in the SCCS file is removed. 

SCCS command summary 8-25 



Change comments in an SCCS file: cdc 

cdc changes the comments or MR numbers that were supplied when a delta was 
created. It is invoked as follows: 

cdc -r3. 4 s .filename 

This specifies that you want to change the comments of delta 3.4 of s . filename. You 
can also use cdc to delete selected MR numbers by preceding the selected MR 
numbers by the exclamation character ( ! ). 

cdc prompts for MR numbers and new comments: 

cdc -r3. 4 s .filename 
MRs? mrlist ! mrlist 
comments? deleted wrong MR number and inserted\ 

correct MR number 

The new MR numbers in the first mr 1 is t are inserted, and the old MR numbers 
(preceded by the exclamation character) are deleted. The old comments are kept and 
preceded by a line, indicating that they are changed. The inserted comment line records 
the login name of the user executing cdc and the time of its execution. 

Combine deltas to save space: comb 

The comb command generates a shell script (see sh(l) in A!UX Command Reference) 
that is written to standard output. When executed, the script attempts to save space by 
discarding deltas that are no longer useful and combining other specified deltas. 

+ Note comb should be used only a few times in the life of an SCCS file. Before any 
actual reconstructions, comb should be run with the -s keyletter (in addition to any 
other keyletters desired). • 

In the absence of any keyletters, comb preserves only the most recent deltas and 
the minimum number of "ancestor" deltas necessary to preserve the SCCS file tree. The 
effect of this is to eliminate middle deltas on the trunk and on all branches of the tree. 

8-26 Chapter 8 SCCS Reference 



Some of the comb keyletters are as follows: 

-p Specifies the oldest delta that is to be preserved in the reconstruction. All older 
deltas are discarded. 

-c Specifies a list of deltas to be preserved (see get(l) in A!UX Command 
Reference for the syntax of this list). All other deltas are discarded. 

- s Causes the generation of a shell script that, when run, produces only a report 
summarizing the percentage space (if any) to be saved by reconstructing each 
named SCCS file. You should run comb with this keyletter (in addition to any 
others desired) before any actual reconstructions. 

Note that the shell script generated by comb is not guaranteed to save space. In 
fact, it is possible for the reconstructed file to be larger than the original. Note, too, that 
the shape of the SCCS file tree might be altered by the reconstruction process. 

Store a new SCCS file version: delta 

de 1 ta creates a new delta by recording the changes made to a g-file. The differences 
between the g-file and the d-file are the changes that constitute the delta. These changes 
are normally stored as a delta; they can also be printed on the standard output by using 
the -p keyletter. The format of this output is similar to that produced by di ff. 

Required temporary ftles 

All temporary files used by the delta command are described in the previous section, 
"Temporary Files." There must be a p-file and a d-file for delta to work. 

delta looks in the p-file for the user's login name and a valid SID for the next delta. 
There should be just one entry for the user (created when the user does a 
get -e) and it should be the same user who is trying to create a delta. Otherwise, 
delta prints an error message and stops. If the user's login name appears in more than 
one entry in the p-file, the same user executed more than one get -e on the SCCS 
file. In this case, the -r keyletter must then be used with delta to specify the SID 
that uniquely identifies the p-file entry. This entry is the one used to obtain the SID of the 
delta to be created. 

SCCS command summary 8-27 



The de 1 ta command also performs the same permission checks performed by 
get -e. If all checks are successful, delta performs a diff on the g-fileand the d-file 
and records the changes as a new delta. 

Comments and MR numbers 

In practice, the most common use of delta is 

delta s .filename 

which prompts 

comments? 

on the screen. Your response can be up to 512 characters long if you escape all newlines 
with a backslash ( \). The response is terminated by a newline character. 

In a controlled environment, deltas are usually created only as a result of some 
trouble report, change request, trouble ticket, and the like. These are collectively called 
MRs (modification requests) and can be recorded in each delta. If the SCCS file has a v 

flag set, delta first prompts with 

MRs? 

on the screen. The standard input is then read for MR numbers, separated by blanks 
and/or tabs. Your response can be up to 512 characters long if you escape all newlines 
with a backslash(\). The response is terminated by a newline character. 

The -y and/or -m keyletters on the delta command line can also be used to 
supply comments and MR numbers, respectively, instead of supplying these through the 
standard input. The format of the delta command is then 

delta -ydescriptive comment -mmrlist s .filename 

The -m keyletter is allowed only if the SCCS file has a v flag. These keyletters are 
useful when delta is executed from within a shell script (see sh(l) in A/UX 
Command Reference). 

The - s keyletter suppresses all output that is normally directed to the standard 
outputexceptfortheprompts comments? and MRs?. Use of the -s keyletter 
together with the -y keyletter (and possibly the -m keyletter) causes delta to 
neither read standard input nor write to standard output. 

8-28 Chapter 8 SCCS Reference 



The comments and/or MR numbers are recorded as part of the entry for the delta 
being created and apply to all SCCS files processed by the same invocation of delta. If 
delta is invoked with more than one file argument and the first file named has a v 

flag, all files named must have the v flag. Similarly, if the first file named does not have 
this flag, then none of the files named can have it. Any file that does not conform to these 
rules is not processed. 

When processing is complete, the SID of the created delta (obtained from the p-file 
entry) and the counts of lines inserted, deleted, and left unchanged by the delta are 
written to the standard output. Thus, a typical output might be 

1. 4 

14 inserted 

7 deleted 

345 unchanged 

+ Note The counts of lines reported as inserted, deleted, or unchanged by delta 

might not agree with your perception of the changes applied to the g-file. There are 
usually several ways to describe a set of changes, especially if lines are moved around in 
the g-file, and delta is likely to find a description that differs from your perception. 
However, the total number of lines of the new delta (the number inserted plus the 
number left unchanged) should agree with the number of lines in the edited g-file. • 

Keywords 

If de 1 ta finds no ID keywords in the edited g-file, it prints the message 

No id keywords (cm7) 

after it prompts for comments, but before any other output. This indicates that any ID 
keywords that might have existed in the SCCS file have been replaced by their values or 
deleted during the editing process. This can be caused by 

• creating a delta from a g-filethat was created by a get command without the -e 

keyletter (ID keywords are replaced by get in that case) 

• accidentally deleting or changing the ID keywords while you are editing the g-file 

• the file not having any ID keywords to begin with 

SCCS command summary 8-29 



In any case, it is left up to the user to determine what to do about it. The delta is 
created whether or not ID keywords are present, unless there is an i flag in the SCCS 
file indicating that this should be treated as a fatal error. In this last case, the delta is not 
created until the ID keywords are inserted in the gjile and the de 1 ta command is 
executed again. 

See "SCCS ID Keywords" earlier in this chapter for more information. 

Removal of temporary files 

When processing of an SCCS file is complete, the corresponding pjile entry is removed 
from the pfile. All updates to the pfile are made to a temporary copy called the qjile. If 
there is only one entry in the pfile, then the p-file itself is removed. 

When processing of the corresponding SCCS file is complete, de 1 ta also removes 
the edited gjile unless the -n keyletter is specified. The command 

delta -n s .filename 

keeps the gjile upon completion of processing. 

Retrieve an SCCS file version: get 

get creates a text file containing a particular version of an SCCS file. The get command 
applies deltas to the initial version of the file to obtain the version you specify or the most 
recent version (excluding branch versions, which must be retrieved specifically). 

The resulting text file is called the gjile (see "Temporary Files" earlier in this chapter). 
The mode of the g-file depends on how the get command is invoked. For example, 
the command 

get s .filename 

produces 

1. 3 

67 lines 

No id keywords (cm7) 

on the standard output. This indicates that version 1.3 (the most recent delta) was 
retrieved, that there are 67 lines of text in this version, and that no ID keywords were 
substituted in the file. 

8-30 Chapter 8 SCCS Reference 



The generated g-file is assigned mode 444 (read-only), which does not allow you to 
modify the file, although you can read the file or compile it, and so on. The file is not 
intended for editing (that is, for making deltas). 

If you specify several file arguments (or directory-name arguments) on the get 

command line, similar information is displayed for each file processed, preceded by the 
SCCS filename. For example, the command 

get s.abc s.def 

produces 

s.abc: 

1. 3 

67 lines 

No id keywords (cm7) 

s.def: 

1. 7 

85 lines 

No id keywords (cm7) 

See "SCCS ID Keywords" earlier in this chapter. 

Retrieving different versions 

By default, the get command retrieves the most recent delta of the highest-numbered 
release on the basic trunk of the SCCS file tree (exclusive of branches). To change this 
default, you can 

• Set the d flag in the SCCS file. Then, the SID specified as the value of this flag is 
used as a default. 

• Use the -r keyletter on the get command line to specify which SID you want to 
retrieve. (If the version you specify does not exist, an error message results.) For 
example: 

get -rl. 3 s .filename 

In this case, the d flag (if any) is ignored. A branch delta can be retrieved similarly: 

get -rl. 5. 2. 3 s .filename 

SCCS command summary 8-31 



If you omit the level number 

get -r3 s .filename 

the highest-level number (most recent delta) within the given release will be 
retrieved. If the given release does not exist, get retrieves the most recent trunk 
delta (not in a branch) with the highest-level number within the highest-numbered 
existing release that is lower than the release you specify. 

• Use the -t keyletter to retrieve the most recent (top) version in a particular release 
(when no -r keyletter is supplied or when its value is simply a release number). 
Most recent is independent of location in the SCCS tree (see "Delta Numbering" 
earlier in this chapter). For example, if the most recent delta in release 3 is 3.5, 

get -r3 -t s .filename 

might produce 

3.5 

59 lines 

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the 
same command might produce 

3.2.1.5 

46 lines 

Retrieving a file to create a new delta 

When you specify the -e keyletter to get, the retrieved file has read-write permission 
and can be edited to make a new delta. For example, the command 

get -e s .filename 

produces 

1. 3 

new delta 1.4 

67 lines 

on the standard output. The use of get -e is restricted (because a new delta can be 
created), causing a check of the SCCS protection mechanisms (user list and protection 
flags; see "SCCS Protection Mechanisms" earlier in this chapter). SCCS also checks for 
permission to make concurrent edits (specified by the j flag in the SCCS file; see 
"Concurrent Edits of Same SID"). 

8-32 Chapter 8 SCCS Reference 



If the permission checks succeed, get -e creates a gfilewith mode 644 
(readable by everyone, writable only by the owner) in the current directory. This mode 
can be modified by the user's umask. 

If a writable gfi/ealready exists, get -e terminates with an error. This is to 
prevent inadvertent destruction of a gfile that already exists and is being edited for the 
purpose of making a delta. 

ID keywords appearing in the gfile are not substituted by get -e because the 
generated gfile is subsequently used to create another delta. Replacement of ID 
keywords causes them to be permanently changed within the SCCS file. 

The following keyletters can be used with get -e: 

- r Used to specify a particular version to be retrieved for editing. If the number 
specified to - r does not exist, it is assigned to the new delta. 

- t Specifies the most recent version in a given release be retrieved for editing. 

- i Used to specify a list of deltas to be included by get. Including a delta means 
forcing the changes that constitute the particular delta to be included in the 
retrieved version. This is useful if you want to apply the same changes to more 
than one version of the SCCS file. When a delta is included, get checks for 
possible interference between those deltas and deltas that are normally used in 
retrieving the particular version of the SCCS file. Two deltas can interfere, for 
example, when each one changes the same line of the retrieved gfile. Any 
interference is indicated by a warning that shows the range of lines within the 
retrieved gfile in which the problem might exist. The user is expected to 
examine the g-file to determine whether a problem actually exists and to do 
whatever is necessary (for example, edit the file). The - i keyletter should be 
used with extreme care. 

-x Used to specify a list of deltas to be excluded by get. Excluding a delta means 
forcing it not to be applied. This can be used to undo (in the version of the SCCS 
file to be created) the effects of a previous delta. Whenever deltas are excluded, 
get checks for possible interference between those deltas and deltas that are 
normally used in retrieving the particular version of the SCCS file. (See the 
explanation under -i.) The -x keyletter should be used with extreme care. 

- k Facilitates regeneration of a g-file that might have been accidentally removed or 
ruined after a get - e command, or the simple generation of a g-file in 
which the replacement of ID keywords has been suppressed. A g-file generated 
by the -k keyletter is identical to one produced by get -e, except that 
no processing related to the pfile takes place (see "Temporary Files" earlier in 
this chapter). 

SCCS command summaiy 8-33 



Concurrent edits of different versions 

There is a possibility (in a group project) that several get -e commands might be 
executed at the same time on the same file. However, unless concurrent edits are 
explicitly allowed (see the next section "Concurrent Edits of Same SID"), no two 
get -e executions can retrieve the same version of an SCCS file. This protection uses 
information from the p-file (see "Temporary Files"). 

The first execution of get -e causes the creation of the p-file for the 
corresponding SCCS file. Subsequent executions only update the p-filewith a line 
containing the above information. Before updating, however, get checks to ensure 
that no entry (already in the p-file) specifies that the SID (of the version to be retrieved) is 
already retrieved, unless multiple concurrent edits are allowed. (See the next section, 
"Concurrent Edits of Same SID.") 

If both checks succeed, the user is informed that other deltas are in progress and 
processing continues. If either check fails, an error message results. It is important to note 
that the various executions of get should be carried out from different directories. 
Otherwise, only the first execution succeeds because subsequent executions attempt to 
overwrite a writable g-file, which is an SCCS error condition. In practice, such multiple 
executions are petformed by different users so that this problem does not arise (each 
user normally has a different working directory). (See the section "SCCS Protection 
Mechanisms" earlier in this chapter for a discussion about how different users are 
permitted to use SCCS commands on the same files.) 

Table 8-2 shows a sample SCCS file retrieved by get -e and the SID of the version 
that is subsequently created by delta, as a function of the SID specified to get. 

In Table 8-2, R, L, B, and S are release, level, branch, and sequence components of 
the SID. The letter "m" means "maximum." Thus, for example, R.mL means "the 
maximum level number within release R"; R.L.(mB+ 1).1 means "the first sequence 
number on the (maximum branch number plus 1) of level L within release R." 

Also note that if the SID specified is of the form R.L, R.L.B, or R.L.B.S, each of the 
specified components must exist. 

The - b keyletter is effective only if the b flag is present in the file (see 
admin(l)). In this state, an entry of - i means "irrelevant." 

8-34 Chapter 8 SCCS Reference 



Table 8-2 Detennination of a new SID 

SID Key letter SID SID of delta 
specified used Other conditions retrieved to be created 

none* no R default to mR mR.mL mR.(mL+l) 

none* yes R default to mR mR.mL mR.mL.(mB+ 1) 

R no R>mR mR.mL R.lt 

R no R==mR mR.mL mR.(mL+l) 

R yes R>mR mR.mL mR.mL.(mB+ 1).1 

R yes R==mR mR.mL mR.mL.(mB+ 1).1 

R R< mR and does not exist hR.mL * hR.mL.(mB+ 1).1 

R Trunk successor in R.mL R.mL.(mB+ 1).1 
release >Rand R exists 

R.L. no No trunk successor R.L R.(L+ 1) 

R.L. yes No trunk successor R.L R.L.(mB+ 1).1 

R.L Trunk in release >= R R.L R.L.(mB+ 1).1 

R.L.B no No branch successor R.L.B.mS R.L.B.(mS+ 1) 

R.L.B yes No branch successor R.L.B.mS R.L.(mB+ 1).1 

R.L.B.S no No branch successor R.L.B.S R.L.B.(S+ 1) 

R.LB.S no No branch successor R.L.B.S R.L.(mB+ 1).1 

R.LB.S Branch successor R.L.B.S R.L.(mB+ 1).1 

*Applies if the d (default SID) flag is not present in the file. If the d flag is present in the file, 
the SID obtained from the d flag is interrupted as if it had been specified on the command line. 
Thus, one of the other cases in this table applies. 

t Used to force the creation of the first delta in the new release. 

* hR is the highest existing release that is lower than the specified, nonexisting, release R. 

SCCS command summary 8-35 



Concurrent edits of the same SID 

Unless the j flag is set in the SCCS file (see "SCCS Flags" earlier in this chapter), 
get -e commands are not permitted to occur concurrently on the same SID. That is, 
delta must be executed before another get -e is executed on the same SID. If the 
j flag is set in the SCCS file, two or more successive executions of get -e on the 
same SID are allowed. The command 

adrnin -fj s .filename 

sets the j flag. Then, the command 

get -e s .filename 

might produce 

1.1 

new delta 1.2 

5 lines 

which might be immediately followed by the commands 

mv filename newfilename 
get -e s .filename 

The second edit request without an intervening execution of delta causes a 
warning to be generated: 

1.1 

WARNING: being edited: '1.1 1.2 username date-stamp' (ge18) 

new delta 1.1.1.1 

5 lines 

In this case, a delta command corresponding to the first get produces delta 1.2, 
assuming 1.1 is the latest (most recent) delta, and the delta command corresponding 
to the second get produces delta 1.1.1.1. 

8-36 Chapter 8 SCCS Reference 



Keyletters that affect output 

The following keyletters affect output: 

-p The retrieved text is written on standard output rather than on a g-file. In this 
case, all output normally directed to the standard output (such as the SID of the 
version retrieved and the number of lines retrieved) is directed instead to the 
standard error output. The -p keyletter is used, for example, to create g-files 
with arbitrary names: 
get -p s .filename > filename 

- s Suppresses all output that is normally directed to the standard output (the SID of 
the retrieved version, the number of lines retrieved, and so forth, are not 
written). This does not affect messages to the standard error output. This 
keyletter is used to prevent nondiagnostic messages from appearing on the 
user's terminal, and is often used in conjunction with the -p keyletter to pipe 
the output of get. For example: 
get -p -s s .filename I nroff 

-g Suppresses the actual retrieval of the text of a version of the SCCS file. This can 
be used in a number of ways; for example, to verify the existence of a particular 
SID in an SCCS file: 
get -g -r4. 3 s .filename 

This prints the given SID if it exists in the SCCS file or generates an error 
message if it does not exist. The - g key letter is also used to regenerate a p-file 
that was accidentally destroyed. For example: 
get -e -g s .filename 

-1 Creates an I-file named by replacing the s . of the SCCS file name with 1. See 
"Temporary Files" earlier in this chapter. For example, the command 
get -r2. 3 -1 s .filename 

generates an I-file that shows the deltas applied to retrieve version 2.3 of the 
SCCS file. Specifying a value of p with the -1 keyletter 
get -lp -r2.3 s.filename 

causes the generated output to be written to the standard output rather than to 
the I-file. You can use the -g keyletter with the -1 keyletter to suppress the 
actual retrieval of the text. 

SCCS command summary 8-37 



-m Identifies the changes applied to an SCCS file, line by line. When you specify 
this keyletter to the get command, each line of the generated g-file is 
preceded by the SID of the delta that caused that line to be inserted. The SID is 
separated from the text of the line by a tab character. 

-n Causes each line of the generated g-file to be preceded by the value of the %M% 

ID keyword (the module name) and a tab character. The -n keyletter is most 
often used in a pipeline with the grep command. For example: 
get -p -n -s directory I grep pattern 

searches the latest version of each SCCS file in a directory for all lines that 
match a given pattern. If both the -m and -n keyletters are specified, each 
line of the generated g1ile is preceded by the value of the s cc s ID keyword 
and a tab (caused by the -n keyletter) and shown in the format produced by 
the -m keyletter. 

Because the contents of the g1ile are modified when you use the -m and/or 
-n keyletters, this g1ilecannot be used for creating a delta, and neither -m 

nor -n can be used with the -e keyletter. 

Restore a version unchanged: unget 

If invoked before a delta, unget undoes a get -e command. The following 
keyletters can be used with unget: 

-rSID 

-s 

-n 

Uniquely identifies the delta that is no longer intended (the SID for the 
new delta is included in the p-file). This is necessary only if two or 
more get -e commands of the same SCCS file are in progress. 

Suppresses the display of the intended SID of the delta on standard 
output. 

Retains the gjile in the current directory instead of removing it. 

For example, the command 

get -e s .filename 

followed by 

unget s .filename 

causes the last version to be unchanged. 

8-38 Chapter 8 SCCS Reference 



On-line explanations: help 

The help command prints explanations of SCCS commands and the messages printed 
by some of these commands. If you use help without an argument, it prompts for one. 
Valid arguments are names of SCCS commands or the code numbers that appear in 
parentheses after SCCS messages. Keyletter arguments or file arguments are not valid 
arguments to help. 

Explanatory information related to a command is a synopsis of the command. For 
example, the command 

help ge5 rmdel 

produces 

ge5: 

'nonexistent sid' 

The specified sid does not exist in the 

given file. 

Check for typos. 

rmdel: 

rmdel -rSID name ... 

This is printed on standard output by default. If no information is found, help 

prints an error message. Note that help processes each argument independently, and 
an error resulting from one argument will not terminate the processing of the other 
arguments on the command line. 

Print parts of an SCCS file: prs 

The pr s command is used to print on the standard output all or parts of an SCCS file in 
a format you specify. The format is called the output data specification. It is a string 
consisting of SCCS file data keywords (not to be confused with get ID keywords), 
supplied using the -d keyletter on the prs command line. These keywords can 
(optionally) be interspersed with text. 

Data keywords specify which parts of an SCCS file are to be retrieved and produced. 
All parts of an SCCS file (see s cc sf il e( 4)) have an associated data keyword. Data 

SCCS command summary 8-39 



keywords are an uppercase character, two uppercase characters, or an uppercase and a 
lowercase character, enclosed by colons. For example, 

: I: 

is the keyword replaced by the SID of a specified delta. Similarly, 

:F: 

is the keyword replaced by the SCCS filename currently being processed, and 

:C: 

is replaced by the comment line associated with a specified delta. For a complete list of 
the data keywords, see prs(l) in A!UX Command Reference. 

There is no limit to the number of times a data keyword can appear in a data 
specification. For example, the command 

prs -d": I: this is the top delta for : F: : I:" s .filename 

might produce on the standard output (for example) 

2. 1 this is the top delta for s .filename 2 .1 

Information can be obtained from a single delta by specifying the SID of that delta 
using the - r keyletter. For example: 

prs -d":F:: :I: comment line is: :C:" -rl.4 s.filename 

might produce the following output: 

s .filename: l. 4 comment line is: THIS IS A COMMENT 

If the - r keyletter is not specified, the value of the SID defaults to the most recently 
created delta. 

Information can be obtained from a range of deltas by specifying the - e or -1 

keyletters. The - e keyletter substitutes data keywords for the SID designated by the -
r keyletter and all earlier deltas. 

prs -d : I: -rl. 4 -e s .filename 

might produce 

1. 4 

1. 3 

1.2.1.1 

1. 2 

1.1 

8-40 Chapter 8 SCCS Reference 



The -1 key letter substitutes data keywords for the SID designated by the - r 

keyletter and all later deltas. 

prs -d : I: -rl. 4 -1 s .filename 

might produce 

3. 3 

3. 2 

3.1 

2.2.1.1 

2.2 

2.1 

1. 4 

Substitution of data keywords for all deltas of the SCCS file can be obtained by specifying 
both the - e and -1 keyletters. 

Remove a specific delta: rmcte1 -r 

rmdel removes a delta from an SCCS file. Normally, you should use it only if incorrect 
global changes were incorporated in a delta. 

The - r keyletter is required to specify the complete SID of the delta to be removed. 
The delta to be removed must be the most recent delta on its branch or on the trunk 

of the SCCS file tree. In Figure 8-5, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed; 
once they are removed, then deltas 1.3.2.1 and 2.1 can be removed. 

1.3.1.1 1.3.2.1 1.3.2.2 

- - - _t 

1.3.1.2 

Figure 8-5 Removing a delta 

SCCS command summary 8-41 



The command 

rmdel -r2. 2 s .filename 

specifies that delta 2.2 of the SCCS file should be removed. Before removing it, rmdel 

checks that the release number (R) of the given SID satisfies the relation 

floor <= R <= ceiling 

and that the SID specified is not a version that is being changed (for which a get -e 

has been executed and whose associated delta has not yet been made). 
The A/UX and SCCS protection mechanisms are also checked. If the checks are not 

successful, processing is terminated and the delta is not removed. 
If the checks are successful, the delta is removed and its type indicator in the delta 

table of the SCCS file is changed from D (delta) to R (removed). 

Account for open SCCS files: sact 

The sact command reports any impending deltas to an SCCS file. An impending delta 
is a change that has not yet been incorporated into the SCCS file with the delta 

command. This would occur if a get -e has been executed but an associated 
delta has not yet been made. 

sact reports five fields for each named file: 

field 1 The SID of the existing SCCS file being changed 

field 2 The SID of the new delta to be created 

field 3 The login name of the user who executed the get -e command 

field 4 The date the get -e command was executed 

field 5 The time the get -e command was executed 

The command 

sact s .filename 

produces a display such as 

1.2 1.3 john 85/06/20 16:15:15 

8-42 Chapter 8 SCCS Reference 



Compare two SCCS files: sccsdif f 

sccsdiff compares two specified versions of one or more SCCS files and prints the 
differences on standard output. The versions to be compared are specified using the - r 

keyletter in the same format used for the get command. For example, 

sccsdiff -r3. 4 -rs. 6 s .filename 

The two versions must be specified as the first two arguments to this command in the 
order in which they were created (the older version is specified first). Any following 
keyletters are interpreted as arguments to the pr command (which prints the 
differences on standard output in di ff format) and must appear before any filenames. 

The SCCS files to be processed are named last. Directory names and a name of a 
single minus sign(-) are not acceptable to sccsdi ff. 

Check SCCS file characteristics: val 

val is used to determine whether a file is an SCCS file meeting the characteristics 
specified by an optional list of keyletter arguments. Any characteristics not met are 
considered errors. 

The val command checks for the existence of a particular delta when the SID for 
that delta is explicitly specified through the -r keyletter. The string following the -y 

or -m keyletter is used to check the value set by the t or m flag, respectively (see 
admin(l) in A!UX Command Reference for a description of the flags). 

The val command treats the special argument - differently from other SCCS 
commands. This argument allows val to read the argument list from the standard input 
as opposed to obtaining it from the command line. The standard input is read until an 
end-of-file. 

This capability allows for one invocation of val with different values for the 
keyletter and file arguments. For example: 

val -

-ye -mabc s .filename 
-mxyz -ypll s.xyz 

(EOF) 

first checks whether the s . filename file has a value c for its type flag and value 
filename for the module name flag. Once processing of the first file is completed, val 

SCCS command summary 8-43 



then processes the remaining files, in this case s. xyz, to determine whether they meet 
the characteristics specified by the keyletter arguments associated with them. 

The val command returns an 8-bit code; each bit set indicates the occurrence of a 
specific error (see val(l) for a description of possible errors and the codes). The 
appropriate diagnostic is also printed unless suppressed by the - s keyletter. A return 
code of zero indicates all named files met the characteristics specified. 

Find identifying information: what 

what is used to find identifying information within any A/UX system file whose name is 
given as an argument to what. Directory names and a name of - (a single minus sign) 
are not treated specially as they are by other SCCS commands, and no keyletters are 
accepted by the command. 

The what command searches the given files for all occurrences of the string @ ( #) 

(which is the replacement for the @ ( #) ID keyword) and prints (on the standard 
output) the balance following that string until the first double quote ( "), greater than(>), 
backslash ( \), newline, or (nonprinting) null character. For example, if the SCCS file 
s . prog . c (a C language program) contains the following line, 

char id[] = "@(#)%Z%%M%:%I%"; 

the command 

get -r3.4 s.prog.c 

is executed, and the resulting g-file is compiled to produce prog. o and a.out. Then 
the command 

what prog.c prog.o a.out 

produces 

prog.c: 

prog.c:3.4 

prog.o: 

prog.c:3.4 

a.out: 

prog.c:3.4 

The string searched for by what does not need to be inserted in the SCCS file 
through an ID keyword of get; it can be inserted in any convenient way. 

8-44 Chapter 8 SCCS Reference 



9 awk Programming Language 

awk operation I 9-3 

Comments I 9-5 

Command-line options I 9-6 

Invocation modes I 9-7 

Interactions with the shell I 9-9 

Text input processing I 9-11 

Patterns I 9-14 

Actions I 9-20 

Data structures I 9-35 

Expressions I 9-41 

Lexical conventions I 9-50 

Primary expressions I 9-55 

Terms I 9-58 

Expressions I 9-60 



• 
awk is a special-purpose language for processing text in terms of input records and 

fields. The awk language can be used to 

• generate reports 

• match patterns 

• tabulate, summarize, and format information 

• validate data 

• filter data for transmission 

Another guide to the awk programing language is The A WK Programming Language 

by A.V. Aho, B.W. Kemigan, and P.]. Weinberger (Addison-Wesley, 1988). In addition to 

its other merits, this book offers fully functional programs for you to use and inspect. 

9-2 Chapter 9 awk Programming Language 



awk operation 

An awk program is a sequence of instructions of the form 

pattern ( action l 
pattern ( action ) 

These pattern-action instructions specify text scanning and text manipulation functions. 
Sometimes these instructions merely establish settings that affect text processing that is 
undertaken by awk as part of its standard operation. 

The standard operation of awk is to scan each input file once and look for matches 
between each input record and any of a set of patterns you supply. An action associated 
with a pattern is taken while processing each input record that contains text that matches the 
pattern. So that text patterns can be sought in specific positions in an input record, awk 

automatically splits the input record into fields when it encounters field-separator characters. 
After awk splits each input record into fields, each field is assigned to a field 

variable, such as $1, $ 2, $ 3, and so forth. These variables can be used to reference 
input fields either in the pattern or action portions of an instruction. Although $ o looks 
like a field reference, it refers to the entire input record with field delimiters unstripped. 

When an input record satisfies the pattern criteria, the text of that input record can be 
accessed through references to the variables $1, $ 2, $ 3, and so on (as well as $ o, the 
entire input record). For example, to print only those input records containing the string 
Mac, you can use 

/Mac/ { print $0 } 

A pattern in front of an action acts as a selector that determines whether that action 
is performed. After awk compares all the patterns to the current input record, it looks 
at the next input record and repeats the process starting with the first pattern in the 
awk program. 

When you want to specify two or more actions for the same pattern, a semicolon or 
newline character must separate each action. For example, if you want the number 5 
printed, you can create the following program: 

{ x = 5 ; print x } 

awk operation 9-3 



When several actions are performed for a given pattern, they can also be denoted as 
one action block. So 

pattern { action [ ; action J • • • } 

and 

pattern { block } 

denote the same thing. 
Newline characters can also be used to separate actions in an action block: 

pattern { 
action 

Occasionally, action blocks are nested inside other action blocks. In such cases, each 
nested block is delimited with a pair of opening and closing braces: 

pattern { 
main-block 

sub-block 

Typically, sub-blocks occur within execution loops or branches, also known as 
control-flow structures. 

In an awk program, either the pattern or the action can be omitted, but not both. If 
there is no action for a pattern, the matching record is simply printed. If there is no pattern 
for an action, then the action is performed for every input record. (An empty awk 

program does nothing.) Because both patterns and actions are optional, you must enclose 
actions in braces to distinguish them from patterns. For example, the awk program 

/xi { print } 

prints every input record that has the letter x in it, as does 

/xi 

9-4 Chapter 9 awk Programming Language 



Comments 

Some of the possible replacements for action are the following statements. Each is 
discussed later in this chapter. As can be seen, awk provides a complete set of flow 
control constructs. 

if ( condition ) { blockl } [ else { block2 } J 

while ( condition ) { block } 
for ( expression ; condition ; expression ) { block 
break 

continue 

next 

exit 

Some of the possible replacements for pattern are regular expressions such as /x/, 

and the special patterns, BEGIN and END. The regular expression syntax is the same 
as that used by the line editor ed as well as other NUX tools, such as grep. The 
section "Patterns,'' later in this chapter, describes the pattern possibilities in greater detail. 

The BEGIN pattern introduces an initialization section that is run before awk reads 
any input records. Likewise, the END pattern introduces a finalization section that is run 
after awk exhausts all the input streams. If awk encounters exit as one of the 
actions for a pattern, the END section is run prematurely and no further input data is read. 

You can create variables and assign them values in either the initialization or 
finalization sections of an awk program as well as in the main body. You can assign 
values from the awk command line using parameters (see the upcoming section 
"Command-line Options"). When you assign the same variable a value in the BEGIN 

section and through parameters on the command line, the command-line assignments are 
the ones that remain in effect within the main body. The reason for this is that awk 

executes the initialization section before establishing any of the command-line parameters. 

Although comments are neither patterns nor actions, you can include them inside awk 

programs. Comments begin with the character # and end with the end-of-line 
character, as in 

# this is a comment line 

/xyz/ { print "xyz" # this is a comment inside the action} 

Comments 9-5 



Command-line options 

You can use the following arguments for awk when you want awk program lines to 
appear in the command line itself: 

awk [ -Ffield-separator ] 'pattern-action ... ' [parameter] ... input-file ... 

You may use the following arguments for awk when you maintain the awk 

program lines in a separate file: 

aw k [ - F field-separator J - f prog-file [parameter] .. . input-file ... 

If you do not specify input files, awk reads from the standard input. Alternatively, awk 

reads from the standard input where you specify hyphen ( -) as a filename. The command 

awk 'program' filel - file2 

first reads from f i 1e1, then from the standard input, and finally from f i 1e2. 

Variables that are initialized on the command line are parameters. Passing shell­
maintained values to awk is a form of parameter passing. The format of these 
assignments is similar to variable assignments, except that unescaped spaces cannot be 
used on either side of the equal sign. (Spaces are treated as argument delimiters, while the 
entire awk parameter must be able to hang together as one command-line argument.) 

awk -f awkfile datafile variablel=x variable2=yy 

Often, parameters are used inside a shell script that contains a reference to awk. 

When invoking a shell script and supplying arguments along with its filename, you can 
pass the argument strings to awk. You can reference these arguments from within script 
command lines as $1, $ 2, and so forth, as described in the documentation for each of 
the shells. In such a case, the awk portion of the script might be 

awk -f awkfile variable1=$l variable2=$2 datafile 

Normally, you cannot assign values to variables in the BEGIN section in this way 
because the initialization section is evaluated before any command-line parameters are 
supplied. By using the -v option in front of an assignment parameter, however, you 
can make the assigned value available in the BEG IN section. 

The following example illustrates how x can be initialized on the command line as 
an awk parameter. 

awk '{print x }' x=S chapl 

prints 5 on the standard output once for each input record obtained from the file chapl. 

9-6 Chapter 9 awk Programming Language 



To change the field separator, you can use a parameter that makes an assignment 
directly to the field separator variable F s. For example, 

awk -f awk_program FS=: chapl 

changes the field separator to a colon. This affects the field-parsing operations of awk. 

(See the section, "awk Operation," earlier in this chapter.) 
Another way to establish the character to be used as the field separator for field­

parsing purposes is to use the - F flag option followed by an explicit field-separator 
character. For example: 

awk -F: -f awk_program chapl 

also changes the field separator to the colon character. 
The - F option can also be followed by a regular expression that specifies one or 

more characters to be used as field separators. For example: 

awk -F[:,;] -f awk.program chapl 

sets the field separator to be any of the three characters comma, semicolon, or colon. 
Note that if you specifically set the field separator to a tab (that is, with the - F 

option or by making a direct assignment to FS) then awk does not recognize blanks as 
separating fields. If, however, you specifically set the field separator to a blank, tabs are 
still recognized as separating fields. Certain characters must be escaped to protect them 
from interpretation by the shell (for example, blank, tab, asterisk, and so forth). 

Invocation modes 
There are three other ways to invoke awk from the command line (brackets appear 
around optional items). 

1. If the program is short, about one or two lines, it is often easiest to specify it directly 
on the command line: 
awk [flag-options] 'program' [options] ... 

where program is your awk program. 

Invocation modes 9-7 



Note that there are single quotes around the contents of the program to prevent the 
shell from trying to interpret and alter the program. For example, you might enter 
awk '/findme/' chapl 

to run the awk program consisting of /findme/ on the input file chapl, and 
obtain a report of all lines containing the string f indme. 

2. Often, it is more convenient to put the program into a separate file, say awkprog, 

and then to tell awk to find it from there. To do so, use the - f flag option with the 
awk command, as follows: 
awk - f awkprog [other-flag-options] . . . [options] ... 

For example, suppose that you put the following text into a file called awkprog: 

BEGIN { 

print "hello, world" 

exit 

Then you can give the command 
awk -f awkprog 

to the shell, producing 
hello, world 

Recall that the word BEG IN is a special pattern indicating that the action following 
in braces is run before any data is read. print and exit are both discussed in 
later sections, but their effects here are obvious. 

3. Finally, the awk program can be put into a file together with the awk invocation 
for use as a shell script of the format 
script-name [script-options] ... 

This becomes handy when the textual input to awk needs to be transformed in 
some static way by other A/UX utilities such as sort or m4. Sometimes the 
required preprocessing can also be performed by a first-pass awk program, in 
which case you can stack two calls to awk in the same script. 

9-8 Chapter 9 awk Programming Language 



This manner of invocation also allows you to pass command-line arguments to awk. 

After inserting 

awk ' 

BEGIN { 

} , 

print "hello, '$1' " 

exit 

in a file called greet and establishing execute permission, you can invoke the new 
shell script from the command line with 
greet Jim 

and the output is 
hello, Jim 

The next section provides more detailed information about possible interactions with 
the shell when you present awk programs inside of command lines. 

Interactions with the shell 
Since this is a rather involved topic that has as much to do with shell behavior as with 
awk, you might wish to skip this section. As described in the preceding section, awk 

can be invoked in several ways. You can avoid any possibility of shell interaction with 
awk instructions by using the - f flag option as an alternative to presenting an awk 

program inside a command line. This does not prevent you from placing references to 
the awk command in a shell script. However, it does require that a file other than the 
shell script itself be used to hold the awk program instructions. 

Sometimes, an awk program is contained in a shell script (the - f flag option is 
not used) or is entered interactively within a command line. In either case, the awk 

instructions themselves become subject to processing by the shell, as in 

awk '/A\.H/ {print "level " $2 " head" }' chapl 

Interactions with the shell 9-9 



awk interprets many of the same reserved characters as the shell (such as $ and 
the double quotation marks in the preceding example). The awk program instructions 
are usually enclosed inside single quotation marks to help ensure that these characters, 
such as $ 2 in the example, are not interpreted by the shell instead of by awk. In this 
way, the shell can be made to pass the awk program instructions intact. 

Sometimes you might want your awk program to interact with the shell, so you 
deliberately place awk instructions inside a shell script, and perhaps alter the manner of 
escape (from single quotation marks to double quotation marks, for example) to allow 
the shell to interpret the awk instructions. This can become complicated because of the 
similarity of variable names built into the shell and into awk. It might take some work to 
get parameters passed from the shell into awk program lines. 

Suppose you want to write an awk program to print lines containing the text specified 
as an argument to the script. That is, you want a program called search so that 

search Macintosh chapl 

runs the awk program 

awk '/Macintosh/ {print }' chapl 

How does the value Macintosh get from the command line into the awk program? 
There are several ways to do this. One is to define search as a shell script, as follows: 

# search: print each record containing the 

# string specified in the first argument 

# inside the file that is the second argument 

awk '/'$1'/ {print }' $2 

+ Note These are not nested quotes. • 

When the shell parses this script, it does not interpret anything contained within the first 
pair of single quotes (' I '),but passes it as input to awk. Because it is outside of the 
protective quotes, $1 is acted upon by the shell, which replaces it with the first argument 
given on the command line. The shell then passes the remaining portion of the awk 

program without attempting to interpret any of it, since it is enclosed in single quotes. 

9-10 Chapter 9 awk Programming Language 



Note that the string passed in the first argument to the script must not contain a 
space character (which is a little unusual because unescaped spaces are commonly used 
to delimit arguments). If you did use an escaped space in the first argument, awk 

would "see" an incomplete program and it would also "see" the last part of the program 
as if it were a discrete input file argument-causing it to try to open a nonexistent file. 
To avoid this problem, consider using double quotation marks around the first argument 
($1). For example: 
, I, II $1" , I , 

In general, the escape character used to set off the awk instructions from the rest of the 
command line becomes more difficult, if not impossible, to use inside the program. 

Text input processing 
The default behavior of awk is for the awk instructions in your programs to have a 
chance to execute once for each input record read. This section describes the default 
behavior of awk in greater detail and tells you how to alter it. 

The way awk determines that it has read sufficient characters from the input source 
to obtain one complete record is by scanning the input for one or more record-separator 
characters. By default, the end-of-record character is a newline. So, an input record 
normally corresponds to a single line from the input source. However, if the end-of-file 
character is reached without an immediately preceding end-of-record character, then the 
end-of-file character is treated as if it were also an end-of-record character. 

Accordingly, a record is a sequence of characters from the input ending with a 
newline character or with an end-of-file character. You can change the character that 
indicates the end of a record by assignihg a new character to the special variable RS 

(the record separatorvariable). 
Once awk reads a record, it splits the record into fields, determined through 

occurrences of one or more field-separator characters. By default, the end-of-field 
character is a space or tab character. Accordingly, a field is a sequence of characters 
derived from the input record that does not contain blanks or tabs. You can change the 
field-separator character by assigning a new character to the special variable FS (the 
field separatorvariable). 

Text input processing 9-11 



To help explain the text input processing that awk normally performs, the precise 
composition of a sample file is described next, and many examples throughout the 
remainder of this chapter show what happens to this sample file after processing by an 
awk program. 

For explanatory purposes, assume that a file named countries has been created 
and that it contains information about the ten largest countries in the world, including the 
area in thousands of square miles, the population in millions, and the continent. (Figures 
are from 1978; Russia is placed in Asia.) The countries file looks like this 
before it is processed: 

Russia 8650 262 Asia 

Canada 3852 24 N. America 

China 3692 866 Asia 

USA 3615 219 N. America 

Brazil 3286 116 s. America 

Australia 2968 14 Australia 

India 1269 637 Asia 

Argentina 1072 26 s. America 

Sudan 968 19 Africa 

Algeria 920 18 Africa 

The wide spaces are tabs in the original input, while a single blank separates N. and 
s. from America. This sample file is used as the input for many of the awk sample 
programs in this guide because it is typical of the kind of material that awk is best at 
processing (a mixture of words and numbers separated into fields or columns separated 
by blanks and tabs). 

Each of the lines in the sample file has either four or five fields if the default field 
separators are not altered. So, using the default settings, the first record of the countries 
file that awk parses is 

Russia 8650 262 Asia 

Once parsed, this text (less the newline).is assigned to the variable $0. If you want 
to refer to the full text of an input record that awk is processing, use the variable $ o. 
For example, the following action: 

{ print $0 } 

prints the entire record. 

9-12 Chapter 9 awk Programming Language 



Once parsed, the fields within an input record are stored in the variables $1, $ 2, 

$ 3, and so forth. Use $1 to refer to the first field, $ 2 to refer to the second field, $ 3 

to ref er to the third field, and so forth. If you ref er to a field number that is higher than 
the field that was last parsed, you reference an empty string. 

Once records and fields are parsed, awk also sets certain variables that provide 
additional information about the current state. These are the built-in variables that are 
used to maintain record and field counts: 

NF 

NR 

the number of fields parsed from the current input record 

the total number of records fetched so far 

FNR the number of input lines fetched with respect to the current input file 

The variable FILENAME is set to the name of the current source of input. Thus, 
while awk processes the first record of the file countries, $1 is equal to the string 
Russia, $2 is equal to the string 8650, NF is equal to 4, FILENAME is equal to 
countries, NR is equal to 1, and FNR is equal to 1. 

The following examples show different ways to take advantage of the default text 
input processing of awk. 

To print the number of fields, followed by the continent, the name of the country, 
and the country's population, run the following awk program: 

awk '{print NF, $4, $5, $1, $3 }' countries 

to produce 

4 Asia Russia 262 

5 N. America Canada 24 

4 Asia China 866 

5 N. America USA 219 

5 s. America Brazil 116 

4 Australia Australia 14 

4 Asia India 637 

5 s. America Argentina 26 

4 Africa Sudan 19 

4 Africa Algeria 18 

Note that values referenced by $ 4 and $ 5 together comprise the continent name 
because N. America and s. America contain an embedded space. 

Text input processing 9--13 



Patterns 

To produce a numbered list of the values in the first field in the file countries, you 
can enter 

awk '{print NR, $1 }' countries 

which prints the following line numbers and names of countries: 

1 Russia 

2 Canada 

3 China 

4 USA 

5 Brazil 

6 Australia 

7 India 

8 Argentina 

9 Sudan 

10 Algeria 

A pattern in front of an action acts as a selector that determines whether the action is to 
be executed. Several types of expressions can be used as patterns: 

• the special patterns BEG IN and END 

• isolated regular expressions 

• expressions that evaluate to true or false 

An isolated regular expression also evaluates to true or false, so the second and third 
pattern cases are essentially the same. (Only the second case does not qualify as a 
syntactially complete expression, since it lacks an operator.) 

Expressions are used more frequently as patterns than are the BEGIN and END 

patterns. 

9-14 Chapter 9 awk Programming Language 



Using expressions for patterns 

The pattern portion of an awk instruction is equivalent to a conditional expression, 
since it must produce only a true or false result that gates an action. See the section 
"Expressions" later in this chapter for a lengthier explanation regarding expressions, 
including conditional expressions. 

By using the operators - or ! - , you can create patterns that return true when the 
value of a field or variable is sought by a regular expression, or when its value is not 
sought by a regular expression. This form of operation is either called a matching 
operation or a pattern-seeking operation. In general, the format of this type of operation 
is as follows: 

string -I pattern; 

Such an expression returns true if the string given in place of string contains a 
substring that is sought by the regular expression pattern. For example: 

$0 - /Total/ 

evaluates to true if the current input record contains the string Total. With the input 
file countries as before, the program 

$1 - /ia$/ {print $1} 

prints all countries (field 1 items) whose names end in ia (The $ symbol represents 
the end of a string. An explanation of the symbol can be found in the next section): 

Russia 

Australia 

India 

Algeria 

As it turns out, the following two patterns are equivalent: 

$0 - /Total/ 

/Total/ 

So, whenever an isolated regular expression is specified, awk performs this pattern­
seeking operation, yielding a true result whenever awk finds at least one string sought 
by the regular expression somewhere within the current input record. 

To be able to construct a regular expression that can seek many different substrings, 
refer to the next section, "Regular Expression Syntax," for more detailed information. 

Patterns 9-15 



To construct a pattern that returns true for a contiguous set of input records starting 
from the first record that matches patternl and ending with the first record that matches 
pattern2, specify two regular expressions separated by a comma: 

patternl, pattern2 

Any expression that returns true or false upon evaluation is suitable for use as a 
pattern. So, expressions consisting of comparisons between strings of characters or 
numbers can be an awk pattern. For example, if you want to print only countries with 
more than 100 million population, use 

$3 > 100 

This tiny awk program is a pattern without an action, so it prints each line whose third 
field is greater than 100, as follows: 

Russia 8650 262 Asia 

China 3692 866 Asia 

USA 3615 219 N. America 

Brazil 3286 116 S. America 

India 1269 637 Asia 

To print the names of the countries that are in Asia, type 

$4 == "Asia" {print $1} 

which produces 

Russia 

China 

India 

A comparison expression is one that makes use of a comparison operator, such as 

< 

<= 

!= 

>= 

> 

9-16 Chapter 9 awk Programming Language 



In such comparisons, if both operands are numeric, a numeric comparison is made. 
Otherwise, the operands are compared as strings. Thus, 

$1 >= "S" 

selects lines that begin with s, T, u, and so forth, which in this case is 

USA 3615 219 N. America 

Sudan 968 19 Africa 

In the absence of other information, fields are treated as strings, so the program 

$1 == $4 

compares the first and fourth fields as strings of characters and prints the single line 

Australia 2968 14 Australia 

If the variables for two fields contain numbers, comparisons involving two such field 
variables are performed numerically. 

Regular expression syntax 

These additional search capabilities make use of regular expressions. The simplest 
regular expression is a literal string of characters enclosed in slashes. 

/Asia/ 

This is a complete awk program that prints all lines that contain any occurrence of the 
string Asia. If a line contains Asia as part ofa larger word like Asiatic, the larger 
word is also printed (but there are no such words in the countries file). 

awk regular expressions are often like those found in the text editor ed and the 
pattern finder egrep, in which certain characters have special meanings. For example, 
you can print all lines that begin with A by using 

/"A/ 

or all lines that begin with A, B, or c by using 

!"[ABC) I 

or all lines that end with ia by using 

/ia$/ 

Patterns 9-17 



The circumflex ("')means "match the beginning of a line." The dollar sign($) means 
"match the end of the line," and enclosing characters in brackets ( [ and J) means 
"match any of the characters enclosed." In addition, awk allows parentheses for 
grouping, the vertical bar (I) for alternatives, the plus sign ( +) for "one or more" 
occurrences, and the question mark (?) for "zero or one" occurrences. For example: 

/xly/ { print } 

prints all records that contain either an x or a y. And 

/ax+b/ { print } 

prints all records that contain an a followed by one or more x characters followed by 
a b. For example: axb, Paxxxxxxxb, QaxxbR. 

/ax?b/ {print} 

prints all records that contain an a followed by zero or one x followed by a b. For 
example: ab, axb, yaxbPPP, CabD. 

The two characters . and * have the same meaning as they have in ed or 
grep: namely, . matches any character and * matches zero or more occurrences of 
the character preceding it. For example: 

/a.bl 

matches any record that contains the letter a followed by any character followed by the 
letter b. That is, the record must contain an a and a b separated by exactly one 
character. For example, I a. b/ matches axb, a Pb, and xxxxaxbxx, but not ab 

or axxb. 

/ab*c/ 

matches a record that contains an a followed by zero or more b characters followed 
by a c. For example, it matches ac, abc, and pqr abbbbbbbbbbc 9O1. 

It is possible to turn off the special meaning of metacharacters such as "' and * by 
preceding these characters with a backslash. An example of this is the pattern 

/\/.*\// 

which matches any string of characters enclosed in slashes. 

9-18 Chapter 9 awk Programming Language 



BEGIN and END 

The awk program executes the action corresponding to the special pattern BEGIN 

before the input is read. The action corresponding to the special pattern END is 
executed after all the input is processed. Thus, BEGIN provides a way to gain control 
before processing for initialization and END helps you wrap up after processing. 

You can use BEG IN to put column headings on the output. For example, if you put 
the following awk program in the file awkprog: 

BEGIN 

print "Country", 

11 Area", 

"Population", 

"Continent" 

print 

and invoke awk with the command line 

awk -f awkprog countries 

The output is 

Country Area Population Continent 

Russia 8650 262 Asia 

Canada 3852 24 N. America 

China 3692 866 Asia 

USA 3615 219 N. America 

Brazil 3286 116 S. America 

Australia 2986 14 Australia 

India 1269 637 Asia 

Argentina 1072 26 South Africa 

Sudan 968 19 Africa 

Algeria 920 18 Africa 

+ Note Formatting is obviously not very good here; print f does a better job and is 
usually mandatory if you really care about appearance (see the section "printf" for 
more information). • 

Patterns 9-19 



Actions 

Recall also that the BEG IN section is a good place to establish settings for special 
variables, such as FS or RS, that affect the record-parsing and field-parsing activity 
about to occur. For example, 

BEGIN 

{ FS = II 

print "Country", 

"Area", 

"Population", 

"Continent" 

} 

{ print } 

#tab 

END {print "The number of records is", NR} 

contains an initialization section that assigns a tab to FS for use as the field separator. 
As a result, all records (in the file countries) have exactly four fields. 

The most common type of action is the evaluation of an expression. The operators and 
functions that help form expressions perform most of your computational work. 
However, expressions are allowable only in certain action and control-flow contexts. 
This section explains where expressions can occur within the larger context of actions. 
"Expressions," a separate section later in this chapter, covers the specification of text­
manipulating and number-computing expressions in detail. 

The simplest actions are probably those that print a constant string or a number value 
such as 

print "Hello world" } 

Other output and input functions that are available are 

print 

printf 

get line 

9-20 Chapter 9 awk Programming Language 



Actions that assign discrete values to a variable or an array are about as simple as 
printing statements. Note that there is no need to declare the name of a variable or its 
data type in advance of its use: 

variable = value 

More detailed information about variables and arrays is provided in the "Data 
Structures" section later in this chapter. 

Two topics that should also be considered along with input and output functions are 
the redirection of input and the redirection of output. Because these are more advanced 
topics, they are discussed last. 

Components of awk programs 

Input, output, and assignment actions can be placed nearly anywhere inside the action 
portion of a pattern-action instruction. 

Other action statements must be placed at appropriate locations. For example, certain 
flow-control actions, such as break and continue, make sense only inside a 
looping construct. 

Precisely speaking, the action placeholder represents one or more action statements. 
Control-flow structures require introductory keywords, such as while and if, 

and require a particular ordering of these and other elements: 

if ( condition ) { blockl } [ else { block2 } J 

whi 1 e ( condition ) { block } 
for ( expression ; condition ; expression ) { block 

An expression is a sequence of values (or subexpressions that evaluate to values) 
interspersed with the operations that are performed on them. Refer to "Expressions" 
later in this chapter for more detailed information concerning expressions. Refer to 
"Flow of Control" later in this chapter for a more detailed explanation of each of the 
control-flow structures. 

Actions 9-21 



Operator symbols such as 

+ 

* 
% 

I 

can appear throughout long expressions. These can be categorized as binary operators 
since they act upon values (or subexpression results) to their left and their right: 

left-value binary-operator right-value 

To help denote nested subexpressions in the following listing, binary-expression 
represents the binary operation structure. It can appear inside of an enclosing binary 
expression as the left operand, the right operand, or both operands: 

binary-expression 

left-value 

binary-expression 

binary-operator 

binary-operator 

binary-expression 

right-value 

binary-expression 

binary-operator 

Parentheses can be used to establish the order of evaluation when the default 
operator precedence is not desired. 

Other basic ways to transform a value involve functions. Each function affects a 
particular number of input values (individual function syntax formats are about to be 
supplied), and evaluates a single string or number result based upon them. The overall 
format for a function is 

function-name (value [value-sep value] ... ) 

Wherever a value placeholder appears in the function or binary-operation syntax, 
either an expression (even a function-containing one) or a function can be supplied: 

function-name ( expression [Value-sep expression J ••• ) 

Junction (values) binary-operator function (values) 

A condition is any expression that evaluates to either true or false. Comparison 
operators can be used as binary operators inside of expressions to obtain a true or false 
result. In such a case, the left or right value for the comparison operator can also be a 
subexpression or function. In the following example, the left operand for the greater-than 
operation is an expression, the result of which is compared to a variable named max: 

$1 % 9 > max 

9-22 Chapter 9 awk Programming Language 



Certain flow-control constructs, such as if and whi 1 e structures, require 
conditions. Such structures are designed to cause certain actions to be skipped when the 
result of a condition is false. The pattern por,tion of an awk must evaluate to true or 
false to select the associated action or actions. So a pattern is really one form of a 
condition expression, and can even be technically considered a flow-control construct. 

Although it can be done, using a variable assignment as the left or right operand for a 
comparison makes little sense. The value "returned" by an assignment is a boolean value 
(always equal to "true"). So, composing a condition based on an assignment really makes 
the performance of the associated action static rather than conditional. 

Flow of control 

Besides the flow control established through the associations between patterns and 
actions, more traditional flow-control constructs are available in the action component. 

The control structures for the awk language are 

• if-else 

• while 

• for 

They are used to establish the flow of evaluation of actions based on the value 
resulting from a conditional expression. For looping constructs, the condition is 
evaluated repeatedly until a loop-terminating value is reached. 

The conditional expression can include subexpressions, as long as the result finally 
evaluated is a true or false condition. For example, it can include regular expressions that 
are specified along with one of the "pattern-seeking" (- and ! -) operators. To test 
multiple true and false conditions, use the logical operators as well. (See "Combining true­
or-false expressions" later in this chapter.) Finally, it can include parentheses for grouping. 

A more complete treatment of these structures is given throughout the remainder of 
this section. In general, the syntax formats for these structures closely follow the 
corresponding control structures of the C language. 

For the looping constructs, the flow-altering functions break and continue are 
available. Use break to terminate further loop iterations and to skip past any 
remaining code in the current loop iteration. Use continue to skip past any 
remaining code in the current loop iteration, then continue with the next iteration. 

Actions 9-23 



In addition to the control-flow structures, there are the flow-establishing statements 
next and exit. 

The next statement skips past any remaining lines of awk instructions for the 
current input record, finds the next input record, and resumes processing from the 
beginning of the awk program. (Note the difference between next and getline. 

get 1 ine does not skip to the top of the awk program.) 
An exit statement in the BEGIN section of an awk program stops further 

program execution so even the END section (if there is one) is not executed. An exit 

statement in the main body of the awk program stops execution of the main body of the 
awk program. No more input records are reviewed, but the END section is executed. An 
exit statement in the END section causes execution to terminate at that point. 

The remainder of this section provides the syntax description for the three major 
control structures. 

The if statement is used as follows: 

if ( condition ) { blockl } [ e 1 s e { block2 } J 

The condition is evaluated; if it is true, blockl is executed. Otherwise, block2 is executed. 
The else part is optional. In the context of an if construct, any number of actions 
enclosed in braces ( { } ) are either evaluated or skipped as a block, depending on the 
value resulting from condition. One way to determine the country with the maximum 
population using an if construct is 

if (maxpop < $3) 

maxpop = $3 

country = $1 

END { print country, maxpop 

The while loop syntax is: 

while ( condition ) block 

The condition is evaluated; if it is true, the block is executed. The condition is evaluated 
again, and if true, the block is executed. The cycle repeats as long as the condition is true. 
For example, the following action prints all input fields one per line: 

9-24 Chapter 9 awk Programming Language 



i 1 

while (i <= NF) 

print $i 

l++ 

Another example is the Euclidean algorithm for finding the greatest common divisor 
of two values: 

print "the greatest common divisor of" 

print $1 " and " $2 " is " 

while ($1 != $2) 

print $1 

if ($1 > $2) $1 = $1 - $2 

else $2 = $2 - $1 

The for loop syntax is similar to that of C. 

for ( expressionl ; condition ; expression2 ) block 

This has the same effect as 

expression 1 
while ( condition 

statement 

expression2 
} 

Actions 9-25 



So, 

{ for (i=l ; i <= NF; i++) print $i } 

is another awk program that prints all input fields one per line. Note that multiple 
initializations are not permitted, as in 

for (i=l,j=2; .\I .\I.; .\I .\I.) 

The alternative form of the for loop is suitable for accessing the elements of an array: 

for ( var in array ) block 

performs block once for each element in the array after assigning the subscript used to 
access the element to the variable var. The subscripts are accessed in no predictable 
order. Chaos ensues if the variable var is altered or if any new elements for array are 
assigned within the loop. 

You can use this form of the for loop to print each input record preceded by its 
record number (NR): 

{ x[NR] = $0 } 

END { for(i in x) { print i, x[i] } } 

A more practical example is the following use of strings to index arrays to add the 
populations of countries by continents: 

BEGIN { FS="\t" } 

{ population[$4] += $3 

END { 

for (i in population) 

print i, population[i] 

In this program, the body of the for loop is executed for i equal to the string Asia, 

then for i equal to the string N. America, and so forth, until all the possible values 
of i are exhausted; that is, the program is repeated until all the strings of names of 
continents are used. Note, however, that the order in which the loops are executed is not 
specified. If the iteration associated with N. America is executed before the iteration 
associated with the string Asia, such a program might produce the following: 

9-26 Chapter 9 awk Programming Language 



S. America 142 

Africa 37 

N. America 243 

Asia 1765 

Australia 14 

Report generation 

The flow-of-control statements in the last section are especially useful when awk is 
used as a report generator. awk is useful for tabulating, summarizing, and formatting 
information. The last section shows an example of awk tabulating populations. 
Following is another example of this. Suppose you have a file, prog. usage, that 
contains lines of three fields: name, program, and usage. For example: 

Smith draw 3 

Brown eqn 1 

Jones nroff 4 

Smith nroff 1 

Jones spell 5 

Brown spell 9 

Smith draw 6 

The first line indicates that Smith used the draw program three times. If you 
want to create a program that has the names in alphabetical order and then shows the 
total usage, use the following program, called list. a: 

{ use[$1 "\t" $2) += $3 } 

END { 

for (np in use) 

print np "\t" use[np) I "sort +O +2nr" 

Actions 9-27 



This program produces the following output when used on the input file prog. usage: 

Brown eqn 1 

Brown spell 9 

Jones nroff 4 

Jones spell 5 

Smith draw 9 

Smith nroff 1 

If you want to format the previous output so that each name is printed only once, 
pipe the output of the previous awk program into the following program, called 
format. a: 

if ($1 != prev) 

print $1 ":" 

prev = $1 

} 

print "\t" $2 "\t" $3 

The variable prev prints the unique values of the first field. The command 

awk -f list.a prog.usage I awk -f format.a 

gives the output 

Brown: 

eqn 1 

spell 9 

Jones: 

nroff 4 

spell 5 

Smith: 

draw 9 

nroff 1 

It is often useful to combine different awk scripts and other shell commands, such 
as sort, as was done in the list. a script on the preceding page. 

9-28 Chapter 9 awk Programming Language 



Reading input: get 1 ine 

The get 1 ine function instructs awk to read the next input record, despite the fact 
that many pattern-actions might not get a chance to execute for the preceding input 
record. Furthermore, control is left at exactly the same spot in the awk program, rather 
than resuming at the start of the program, as with next (see "Flow of Control" earlier 
in this chapter). 

Whether the field-parsing functions previously discussed (see "Text Input 
Processing") are performed, depends on whether getline is specified with a variable 
name as an argument. If a variable reference is present they are skipped, leaving it up to 
you to specify a particular field-parsing function (see the description of the split in "Built­
in String Functions"). 

Here are the forms you can use: 

get line 

getl ine <file 

getline variable 

getline variable <file 

For the first form, field-referencing variables such as $ o, $1, and so on, are all set, 
as well as the field and record-counting variables NR and FNR and NF. The second 
form does not increment the record-counting variables but it does set the field-counting 
variable (NF). 

The third and fourth forms shown do not parse the input line into fields, but they do 
read it into the named variable. These forms of the command also do not set any of the 
field-referencing variables and do not set the field-counting variable. The third form 
increments the record-counting variables, but the fourth form does not. In short, the 
fourth form affects none of the built-in variables. 

Two forms of the command involve input redirection: The files named as sources 
of input on the command line are ignored. Instead, the file to be read from is the one 
that is supplied as an argument following the < redirection symbol within the 
getline statement. In these cases, the getline function returns 0 for the end-of-file 
character and 1 for a normal record. A handy use for these forms of the get line 

statement is the initialization of array elements in the BEGIN section of a program, 
as in the following example. 

Actions 9-29 



BEGIN 

count 1 

while getline array[count] <"table" > 0 ) 

{ count = count + 1 } 

A similar example follows. It uses the first field of each record as the subscript for 
an array element and the second field as the value to be assigned to the subscripted 
array element. 

BEGIN 

count 1 

while ( getline <"table" > 0 ) 

{ array[$1] = $2 

Note that there is an upper limit to the number of files that can be read this way. 
However, through use of the close function, you can work with an indefinite number 
of files as long as you don't try to keep them all open at once. The syntax for close is 

close (jile) 

For related discussions, see "Directing Output to Other Programs" later in this chapter. 

Printing output: print and printf 

The output functions include two forms of print statements, including one that resembles 
the C function used for printing. Either one can be used, but the C-like printf 

function is capable of formatting its arguments however you want, such as in a dollars­
and-cents format. 

The print statements normally guide data to the standard output, but both forms of 
the print command also allow redirection into a file named within awk statements: 

print-command [expression-list] [ >fileJ 

9-30 Chapter 9 awk Programming Language 



If the redirection symbol > is replaced by », output is appended to the file rather 
than overwriting it. 

Use quotation marks around file if file is not a string constant. Without quotation 
marks, the filenames are likely to be treated as variables that, upon reference, are 
initialized to empty strings. 

So, besides redirecting all output on the command line used to invoke awk, you 
have the option within your program to write individual items of data into specific files. 

Using the previous example, with the input file countries, you might want to print all the 
data from countries in Asia in a file called ASIA, all the data from countries in Africa 

in a file called AFRICA, and so forth. To do so, use the following awk program: 

$4 - "Asia" { print > "ASIA" } 

$4 - "Europe" { print > "EUROPE" 

$4 - "North" print > "N_AMERICA" 

$4 - "South" print > "S_AMERICA" 

$4 - "Australia" { print > "AUSTRALIA" 

$4 - "Africa" { print > "AFRICA" } 

Note that there is an upper limit to the number of files that are written in this way. 
However, through use of the close function, you can work with an indefinite number 
of files as long as you don't try to keep them all open at once. 

In general, you can direct output into a file after a print or a printf statement 
by using a statement of the form 

print > •file· 

where file is the name of the file receiving the data, and the print statement can have any 
of its allowable arguments. 

print 

The overall format for the print command is 

print [expression] ... [>fileJ 

One of the simplest actions is to print each line of the input to the output, which can 
be performed by using print without a specified pattern. An action might not have a 
pattern, and in this case awk executes the action for all of the lines and prints the entire 
input record. 

{ print } 

Actions 9-31 



To print an empty line, use 

print 11 11 

To print one or more fields in the current input record, replace expression with 
references to field variables. For instance, when using the previously described file 
countries for data input, the command line 

awk '{print $1, $3 }' countries 

prints the names of the countries and their populations: 

Russia 262 

Canada 24 

China 866 

USA 219 

Brazil 116 

Australia 14 

India 637 

Argentina 26 

Sudan 19 

Algeria 18 

There are two special variables that affect the print command, OFS and ORS. 

Items (expressions) that are separated by commas within the print statement are 
regarded as fields, so the print statement inserts the character that is established as 
the output field separator between them. By default, the output field separator is a space. 
The output field separator (oFs) is a variable. 

The value stored in ORS is the output record separator, which awk places at the 
end of any (evaluated) expressions. By default, the output record separator is the 
newline character. The output field separator (ORS) is a variable. 

In the following example, 

{ x= 11 hello 11 ; y= 11 world 11 ; print x, y ; print y x} 

the default field separator (blank) is used in the first print statement, but not the 
second, producing 

hello world 

worldhello 

9-32 Chapter 9 awk Programming Language 



To place a comma within the output, you can either insert it in the print statement, as 
in this case: 

{ x= "hello"; y= "world" ; print x "," y 

or you can change OFS in the BEGIN section, as in 

BEGIN { OFS=", II} 

{ x="hello"; y="world" ; print x, y } 

Both of these last two programs yield 

hello, world 

printf 

For more demanding printing problems, awk also provides a C-like print f 

statement. Before printing, print f formats strings or numbers in accordance with 
format-string, as the following syntax description shows: 

printf format-string, expr [, expr J ... 

The format-string format specifier is exactly like the one used with printf in the 
C library, except that the formatting symbol * is not supported. For example, 

{ printf "%10s %6d %6d\n", $1, $2, $3 } 

prints $1 as a string of ten characters (right-justified). The second and third fields (six­
digit numbers) make a neatly columned table: 

Russia 8650 262 

Canada 3852 244 

China 3692 866 

USA 3615 219 

Brazil 3286 116 

Australia 2968 14 

India 1269 637 

Argentina 1072 26 

Sudan 968 19 

Algeria 920 18 

With print f, no output separators or newlines are produced automatically. You 
must add them, as in this example. As in the C library version of printf, the escape 
characters \n (newline)and \t (tab)arevalidwith printf. 

Actions 9-33 



The system command 

The system () command allows you to run another program, in fact, any UNIX 
command, from inside an awk script. The command has the format 

system ( expression) 

where expression is a string. The system command executes the command in 
expression. For example: 

system("cat " $1) 

runs the cat command on the file whose name is in the first field of the input line. 
The command 

system( "date") 

runs the date command. 
Output can be created by using the system ( ) command, if the command used as 

expression creates the output. 

Directing output to other programs 

It is also possible to direct printing into a pipe instead of a file. For example: 

{ if ( $2 == "XX") print I "mail harry" } 

(where harry is a login name), any record with the second field equal to xx is sent 
to the user harry as mail. But instead of passing each such record across the pipe to 
mail individually, awk waits until the entire print input is processed before passing its 
output on to mail. Also, 

{ print $1 I "sort" } 

takes the first field of each input record, accumulates them until the input to print is 
exhausted, and then passes the entire list to sort, which then generates the sorted list. The 
command in double quotation marks can be any A/UX command. 

Only one output pipe is permitted in an awk program at one time. 
However, through use of the close function, you can work with an indefinite 

number of pipes as long as you don't try to keep them all open at once. If you want to 
write a file and then read it later, you must close it in between. 

In all output statements involving redirection of output, the files or pipes are 
identified by their names, but they are created and opened only once in the entire run. 

9-34 Chapter 9 awk Programming Language 



Data structures 

This section describes the different types of variables, arrays, and operators that are 
available with awk. 

Variables 

awk provides the ability to store the results of arithmetic and string expressions in 
variables for later use in the program. Referring to the previous example, consider 
printing the population density for each country in the file countries: 

{ print $1, ( 1000000 * $3) I ( $2 * 1000) } 

(Recall that in this file the population is in millions and the area is in thousands of square 
miles.) The result provides the number of people per square mile: 

Russia 30.289 

Canada 6.23053 

China 234.561 

USA 60.5809 

Brazil 35.3013 

Australia 4.71698 

India 501.97 

Argentina 24.2537 

Sudan 19.6281 

Algeria 19.5652 

To improve the formatting, use printf as follows: 

{printf "%10s %6.lf", $1, 

(1000000 * $3)/($2 * 1000) 

produces 

Russia 30.3 

Canada 6.2 

China 234.6 

USA 60.6 

Brazil 35.3 

Data structures 9-35 



Australia 4.7 

India 502.0 

Argentina 24.3 

Sudan 19.6 

Algeria 19.6 

awk performs arithmetic internally in floating point. The arithmetic operators are +, 
- *, I, and % (modulo or remainder). 

To compute the total population and number of countries from Asia, you can write 

/Asia/ { pop = pop + $3; n = n + 1 

END {print "total population of", n, 
"Asian countries is", pop } 

which produces 

total population of 3 Asian countries is 1765 

Besides writing 

pop = pop + $3; n 

you can write 

{ pop += $3; ++n } 

n + 1 } 

The operators ++, --, -=, !=, *=, +=,and %= function the same in awk as 
the corresponding operations in C. The statement 

x += y 

has the same effect as 

x = x + y 

but + = is shorter and runs slightly faster. The same is true of the + + operator; it adds one 
to the value of a variable. The increment and decrement operators + + and - - (as in C) 
can be used as prefix or as postfix operators. These operators are also used in expressions. 

9-36 Chapter 9 awk Programming Language 



Initialization of variables 

In the previous example, neither pop nor n was initialized, yet everything worked 
properly. This is because (by default) variables are initialized to the null string, which has 
a numeric value of 0. This eliminates the need for most initialization of variables in 
BEG IN sections. 

You can use references to variables in the pattern, as in 

maxpop < $3 { 

maxpop = $3 

country = $1 

END { print country, maxpop } 

which finds the country with the largest population: 

China 866 

Assignment operators 

As described in the preceding section, "Initialization of Variables," variables can be 
created by virtue of an assignment operation. Other assignment operators are also 
available besides equal(=). Like equal, these assignment operators can be used to store a 
value into a variable or an element of an array (see the section that follows for more 
aboutarrays).Theoperatorsare ++, --, -=, !=, *=,+=,and %=.Theyperform 
the same function in awk as the corresponding operations in C. The statement 

x += y 

has the same effect as 

x = x + y 

Most of the assignment operators are binary operators that require a variable name, 
followed by the operator and the value or value-producing expression, as follows: 

variable-name assign-op expression 

Data structures 9-37 



However, the + + and - - assignment operators are unary operators used to 
increment or decrement the value that was previously stored in the variable. The format 
they take is either a prefix or postfix format (with no space between the operator and the 
variable name): 

unary-assign-op variable-name 
variable-name unary-assign-op 

So you can change 

{ pop = pop + $3; n n + 1 } 

to the following line 

{ pop += $3; ++n 

which uses the prefix increment operator to obtain the same processing. 

Arrays 

awk provides one-dimensional arrays as well as ordinary variables, although a name can 
not be both a variable and an array. 

Array elements are not declared; they spring into existence when the program first 
encounters them. Subscripts can have any non-null value, including alphanumeric 
strings. As an example of a conventional numeric subscript, the statement 

x[NR] = $0 

assigns the current input line to the NRth element of the array x. In fact, it is possible in 
principle (though perhaps slow) to process the entire input in arbitrary order with the 
following awk program: 

{ x [NR] = $0 

END { action } 

The first line of this program reads each input line into the array x. 

9-38 Chapter 9 awk Programming Language 



When run on the file countries, the program 

x[NR] = $1 } 

produces an array of elements with 

x[l] "Russia" 

x (2 J "Canada" 

x[3] "China" 

and so forth. Arrays can also be indexed by non-numeric values, thus giving awk a 
capability rather like the associative memory of Snobol tables. For example, you can write 

/Asia/ { pop["Asia"] += $3 } 

/Africa/ { pop["Africa"] += $3 

END { print "Asia=" pop["Asia"], 

"Africa=" pop["Africa"] 

which produces 

Asia=l765 Africa=37 

Notice the concatenation. Also, any expression can be used as a subscript in an array 
reference. Thus, 

area[$1] = $2 

uses the first field of a line (as a string) to index the array area. 
Although awk does not support multidimensional arrays as such, you can simulate 

them using one-dimensional arrays. For example, 

for i l; i <= 10; i++) 

for ( j = 1; j <= 10; j++) 

mult [ i, j] = • \I . \I . 

creates an array whose subscripts have the apparent form i, j (that is, 1, 1; 1, 2; and 
so forth) and thus simulates a two-dimensional array. 

Internally, these subscript strings are transformed so that the comma separator is 
converted into the value of the variable SUBSEP, which, by default, is the ASCII 

character for code 28. Since this character does not normally appear in input text, 
variables can be used as subscripts, even when such variables are assigned comma­
containing strings. 

Data structures 9-39 



A special form of the for loop is available to iterate once through the elements of 
an array. You can even use it along with SUBSEP to reproduce the original array 
subscripts used with each element assignment through the following program: 

BEGIN { 

array["one"] = "1" 

array ["two, three"," four" J 

for ( j in array ) { 

split(j,x,SUBSEP) 

printf "array[" 

sep 

for ( k in x ) { 

"2comma3, 4" 

printf sep "\"" k "\"" 

sep II II 

' 

printf "]\n" 

exit 

} 

This program produces the following output: 

array [ "2" , "1" J 

array [ "1" J 

Built-in variables and arrays 
The following list shows all of the variables maintained by awk: 

ARGC 

ARGV 

FILENAME 

FNR 

Number of command-line arguments. 

Array containing ARGC elements, one for each of the arguments that 
appeared on the awk command line. 

The name of the input file currently being read. This is useful because 
awk commands can accept multiple input files, as in 

awk [flag-options] ... filel file2 file3 

Input record number counting from the first line of the current input file. 

9-40 Chapter 9 awk Programming Language 



FS 

NF 

NR 

OFS 

ORS 

OFMT 

RLENGTH 

RS TART 

RS 

SUB SEP 

$0 

$digit 

Expressions 

Input field separator; by default it is set to a blank or a tab. 

Number of fields in the current record. 

Number of command-line arguments. 

Output-field separator; by default it is set to a blank. 

Output-record separator; by default it is set to the newline character. 

The format for printing numbers; with the print statement, by default it 
is % • 6g. 

Length of the string matched through the use of the match function. 

Beginning position of string matched through the use of the match 
function. 

Input record separator; by default it is set to the newline character. 

Separator for array subscripts. 

The current input record complete with unstripped field separators. 

These variables reference fields in the current input record where $1 
contains field one, $ 2 contains field two, and so on up through to 
the final field parsed. If only one field is found, the value of $1 is the 
same as $0. 

Expressions are allowable wherever awk normally expects a value. Conditionals (or 
conditional expressions) can be used wherever a true or false value is expected. For 
more information about conditionals, see "Components of awk Programs," earlier in 
this chapter. 

Arithmetic expressions can occur wherever awk expects a number value. Likewise, 
string values can occur wherever awk expects a string value. In cases where you 
supply an expression that evaluates to a value of the wrong type for a given context, the 
result is automatically converted into the appropriate data type as described in 
"Determination of Data Type" later in this section. 

To manipulate numeric values, the arithmetic operators can be used. awk performs 
arithmetic internally in floating point. The operators are outlined in Table 9-1. 

Expressions 9-41 



Table 9-1 Arithmetic operators 

Symbol Description 

+ Unary and binary plus 

Unary and binary minus 

* Multiplication 

I Division 

% Modulus 

( ... ) Grouping 

x"y Exponential operator 

Variable assignments can be requested along with each of these arithmetic operations 
by using the hybrid operators for both arithmetic and assignment (see "Assignment 
Operators" earlier in this chapter). Table 9-2 outlines these operators. 

Table 9-2 Assignment operators 

Symbol 

+= 

*= 

%= 

++ 

Description 

Assign right side value to left side 

Increment left side by value of right side 

Decrement left side by value of right side 

Multiply left side by value of right side 

Divide left side by value of right side 

Take modulus of left side by value of right side 

Increment operand by one before/after taking current value 

Decrement operand by one before/after taking current value 

Conditional expressions (also known as relational expressions) can be used to 
generate true or false results. These operators are shown in Table 9-3. 

9-42 Chapter 9 awk Programming Language 



Table 9-3 Relational operators 

Symbol Description 

< Less than 

<= Less than or equal 

Equal 

1= Not equal 

> Greater than 

>= Greater than or equal 

All but two of the operators listed thus far are binary operators, requiring a left-side 
component and a right-side component: 

left-component binary-operator right-component 

The left component, the right component, or both, can be replaced by other 
expressions, as follows: 

left-component 

expression 

expression 

binary-operator 

binary-operator 

binary-operator 

binary-expression 

right-component 

expression 

The left or right components can be references to variable names, number or string 
literals, calls to functions, other subexpressions, or any combination of these. Parentheses 
can be used to establish the order of evaluation when the default operator precedence is 
not desired. 

The ++ (increment) and - - (decrement) operators are unary operators, requiring 
either a left component or a right component, but not both: 

left-component 

unary-op 

unary-op 

right-component 

(Note that there is no space between these unary operations and the component they 
affect, yielding count++ and ++count to increment the variable count either 
after or before use.) 

The left component or right component is often a variable name, but it can also be a 
number literal, a function call, or any subexpression enclosed in parentheses. 

Expressions 9-43 



By nesting expressions as the right component or left component of either binary or 
unary operator expressions, computations can be created to any level of complexity. 

You can also use logical operators and ·pattern-matching operators for regular 
expressions, as shown in Tables 9-4 and 9-5. 

Table 9-4 Logical operators 

Symbol 

11 

&& 

?: 

Description 

OR 

AND 

NOT 

If-then-else contruct. 
For example, x?y: z yields y if x is true, else yields z. 

Table 9-5 Regular expression pattern-matching operators 

Symbol Description 

Matches 

Does not match 

The nesting of expressions is also possible for expressions using the relational 
operators, with an added restriction: the operator at the uppermost level should be the 
AND (&&) or OR (I I) binary operators or the unary NOT ( ! ) operator. For more detailed 
information, see the next section, "Combining True-or-False Expressions." 

If you create an expression without any operators, the expression must be a reference 
to a variable or array, a literal string or number value, or a function. See the sections 
"Variables" and "Arrays" earlier in this chapter for more information. See "Numeric 
Constants" and "String Constants" later in this chapter for more information about literal 
values. See "Built-in String Functions," "Built-in Numeric Functions,'' and "User-Defined 
Functions" later in this chapter for information regarding functions. 

9-44 Chapter 9 awk Programming Language 



Combining true-or-false expressions 

Whether you are specifying the contents of a pattern or an action, expressions that return 
true or false can be combined using the logical operations I I (OR), && (AND), ! 

(NOT), and parentheses. Using the countries example, the program 

$2 >= 3000 && $3 >= 100 

selects lines where both area and population are large: 

Russia 8650 262 Asia 

China 3692 866 Asia 

USA 3615 219 N. America 

Brazil 3286 116 S. America 

The program 

$4 == "Asia" I I $4 == "Africa" 

selects lines with Asia or Africa as the fourth field. An alternate way to write this 
last expression is with a regular expression: 

$4 -/AsialAfrica/ 

The operators && and I I guarantee that their operands are evaluated from left to 
right; evaluation stops as soon as truth or falsehood is determined. 

Implied concatenation operations 

Although none of the lists showing awk operation symbols includes a symbol that 
represents string concatenation, this operation is nevertheless invoked regularly 
within expressions. 

When separated by a space, string or number expressions are concatenated into one 
string with no intervening spaces. If number expressions are used, they are evaluated 
arithmetically and converted into strings before concatenation is performed. The second 
of the three following action statements performs a concatenation: 

x "hello" 

x x world" 

print x 

Expressions 9-45 



This prints the usual: 

hello, world 

With input from the file countries, the program 

/AA/ { S = S $1 " " } 

END { print s } 

prints 

Australia Argentina Algeria 

Determination of data type 

Variables (and fields) take on numeric or string values according to context. For example, in 

pop += $3 

pop is presumably a number, while in 

country = $1 

country is a string. In 

maxpop < $3 

the type of maxpop depends on the data found in $ 3. It is determined when the 
program is run. In general, each variable and field is potentially a string or a number or 
both at any time. When a variable is set by the assignment 

var = expression 

its type is set to that of expression. (Assignment also includes + =, + +, - =, and so 
forth.) An arithmetic expression is of the type number; a concatenation of strings is of the 
type string. 

In comparisons, if both operands are numeric, awk makes the comparison 
numerically. Otherwise, operands are coerced to strings, if necessary, and the 
comparison is made on strings. 

The type of any expression can be coerced to numeric by maneuvers such as 

expression + o 
and to string by 

expression " " 

9-46 Chapter 9 awk Programming Language 



This last expression is a string concatenated with the null string. If a string cannot be 
converted to a number without errors, awk converts it to zero. 

Built-in string functions 

The length function computes the length of a string of characters and the usage 
format is as follows: 

length (String) 

For example, with input taken from the file countries, the following awk program 
prints the longest country name: 

length ( $1) > max 

END { print name 

max=length($1); name=$1 } 

If you don't include a parenthetical argument, 1 ength returns the length of the 
current input record. The following program prints each record preceded by its length: 

{ print length, $0 } 

In this case length is equivalent to length($0). 
The function 

split (string, array [, sepJ ) 

assigns the fields of string to successive elements of the array array. When sep is missing, 
the separator used is that given by the built-in variable FS. For example: 

split("Now is the time", w) 

assignsthevalue Now to w[lJ, is to w[2J, the to w[3J,and time to 
w [ 4 J . All other elements of the array w, if any, are set to the null string. 

When awk evaluates a split function, it returns the number of array elements 
created. Accordingly, 

count = split (string, array, sep) 

assigns the number of elements initialized in array to the variable count. Use 
assignments of this form when you must know how many elements a string is split into. 

Expressions 9-47 



When sep is present, it must be a single character enclosed in double quotation marks 
but only its first character is used as the field separator. For instance, if you use the 
following three lines ( \ t is the tab character), 

{split("Now is+the time", w, "+")} 

{split ("This-is-not-the-end", x , "-")} 

{print w[l] ,x[3] ,w[2] 

the output is 

Now is not the time 

The substring function 

substr (string, position, length) 

produces the substring of string that begins at column position and is, at most, length 
characters long. If the length is omitted, the returned substring extends to the end of 
string. For example, you can abbreviate the country names in the file countries by 
running the awk program 

{ $1 = substr($1, 1, 3); print} 

which produces 

Rus 8650 262 Asia 

Can 3852 24 N. America 

Chi 3692 866 Asia 

USA 3615 219 N. America 

Bra 3286 116 s. America 

Aus 2968 14 Australia 

Ind 1269 637 Asia 

Arg 1072 26 s. America 

Sud 968 19 Africa 

Alg 920 18 Africa 

If string is a number, subs tr uses its string representation; for example, 
substr(123456789,3,4) ~ 3456. 

The function 

index (string, lookup-string) 

returns the left-most position where lookup-string occurs inside string, or zero if string 
does not contain lookup-string. 

9-48 Chapter 9 awk Programming Language 



A variant on the index function is match, the format of which is 

match (string, pattern) 

which returns the left-most position where a substring of string is matched by the regular 
expression pattern, or zero if no match is found. 

The functions gsub and sub 

[g] sub (pattern, new-string, string) 

replace occurrences of substrings within string that are sought by the regular expression 
pattern with new-string. To replace only the first substring sought by the regular 
expression, use sub. To replace all nonoverlapping substrings sought by the regular 
expression, use the global-substitute function gsub. 

The function 

sprintf (format-string, expr [, expr] ... ) 

formats expressions as the print f statement does, but assigns the resulting expression 
to a variable instead of sending the results to the standard output. For example: 

x = sprintf("%10s %6d ", $1, $2) 

sets x to the string produced by formatting the values of $1 and $ 2. The x can then 
be used in subsequent computations. 

Built-in numeric functions 

awk also provides the following mathematical functions: 

atan2 (number) 
cos (radians) 
exp ( number) 
int (number) 
1 og ( number) 
rand() 

srand (seed-number) 
sin (radians) 
sqrt (number) 

Expressions 9-49 



For the most part, these functions are the same as those of the C library, returning the 
same errors as those in libc. (See "C Special Libraries" in A/UX Programming 
Languages and Tools, Volume 1.) The result returned by the random number function is 
a value greater than 0 and less than or equal to 1. The int corresponds to the C library 
floor function because of the way it handles negative numbers. 

Lexical conventions 

All awk programs are made up of lexical units called tokens. awk uses eight types 
of tokens: 

• numeric constants 

• string constants 

• keywords and built-in variables 

• identifiers 

• operators 

• record and field tokens 

• comments (discussed previously) 

• separators 

Precise specifications of each token are given in the following sections. 

Numeric constants 

A numeric constant is either a decimal constant or a floating constant. A decimal constant 
is a non-null sequence of digits containing, at most, one decimal point, as in 

12 

12. 

1.2 

.12 

9-50 Chapter 9 awk Programming Language 



A floating constant is a decimal constant followed by e or E followed by an 
optional + or - sign followed by a non-null sequence of digits, as in 

12e3 

l.2e3 

1. 2e-3 

1.2E+3 

String constants 

A string constant is a sequence of zero or more characters surrounded by double 
quotation marks, as in 

"armadillo" 

Ila" 

"ab 11 

"12" 

A double quotation mark can be put into a string by preceding it with the backslash(\), 
as in 

"He said, \"Sit!\"" 

A newline is put in a string by using \n in its place. No other characters need to be 
escaped except \ itself. Strings can be (almost) any length. 

Predefined variables, reserved keywords, and reserved 
function names 

Table 9-6 lists certain character strings that have special meaning to awk. There are three 
types of these character strings: 

1. Predefined variables are variables defined by awk that have special meanings. 
The meaning of these variables is explained in "Special Variables." 

2. Reserved keywords are a special set of character strings used in awk statements. 
Reserved keywords cannot be used as variables. 

Lexical conventions 9-51 



3. Reserved function names are a special set of character strings used to invoke 
built-in awk functions. These functions are discussed in "Built-in Functions" earlier 
in this chapter. 

Table 9-6 Reserved strings 

Predefined Reserved Reserved 
variables keywords function name 

BEGIN break exp 

END close get line 

FILENAME continue index 

FS exit int 

NF for length 

NR in flog 

OFS next split 

ORS number sprintf 

OFMT print sqrt 

RS printf subs tr 

$0 string 

$i while 

Identifiers 

Identifiers in awk serve to denote variables and arrays. An identifier is a sequence of 
letters, digits, and underscores beginning with a letter or an underscore. Uppercase and 
lowercase letters are different. 

Record and field tokens 

$ o is a special variable whose value is the current input record. $1, $ 2, and so on, are 
special variables whose values are the first field, the second field, and so on, respectively, 
of the current input record. The keyword NF (number of fields) is a special variable 
whose value is the number of fields in the current input record. Thus, $NF has as its 

9-52 Chapter 9 awk Programming Language 



value the value of the last field of the current input record. Notice that the first field of 
each record is numbered 1 and that the number of fields can vary from record to record. 
None of these variables is defined in the action associated with a BEGIN or END 

pattern, where there is no current input record. 
The keyword NR (number of records) is a variable whose value is the number of 

input records read so far. The first input record read is 1. At END it contains the total 
number of input lines. 

Separators 

The awk language provides two data-separator variables to assist in parsing 
information, the record-separator and field-separator variables. 

Record separators 

The keyword RS (record separator) is a variable whose value is the current record 
separator. The value of RS is initially set to newline, indicating that adjacent input 
records are separated by a newline. Keyword RS is changed to any character c by 
including the assignment statement 

RS = "C" 

in an action. 

Field separator 

The keyword FS (field separator) is a variable indicating the current field separator. 
Initially, the value of F s is a blank, indicating that fields are separated by white space­
that is, any sequence of blanks and tabs. Keyword F s can be changed to any single 
character c by including the assignment statement 

FS = "C" 

in an action or by using the flag option - F c. Two values of c , space and \ t, have 
special meaning. The assignment statement 

FS = " " 

makes white space (blank spaces or tabs) the field separator; on the command line, 
- F " \ t " makes a tab the field separator. 

Lexical conventions 9-53 



If the field separator is not a blank, there is a field in the record on each side of the 
separator. For instance, if the field separator is 1, the record 1xxx1 has three fields. 
The first and last are null, and the value of the second is xxx. If the field separator is 
blank, fields are separated by white space, and none of the NF fields are null; that is, 
record 1xxx1 has one field, not three, as in the previous case. 

Multiline records 

The assignment 

RS = II II 

as part of the action associated with a BEG IN pattern makes an empty line the record 
separator. It also makes a sequence of blanks, tabs, and possibly a newline, the field 
separator. With this setting, none of the first fields of any record is null, as discussed earlier. 

Output record and field separators 

The value of OFS (output field separator) is the character or string separating output 
fields. It is put between fields by print. The value of ORS (output record separator) is 
put after each record by print. Initially, ORS is set to a newline and OFS to a space. 
These values can be changed to any string by assignments such as the following two: 

ORS 11 abc 11 

OFS = 11 xyz 11 

Separators and braces 

Tokens in awk are usually separated by non-null sequences of blanks, tabs, and 
newlines, or by other punctuation symbols, such as commas and semicolons. Braces 
( { } ) surround actions, slashes(; ;) surround regular expression patterns, and double 
quotation marks ( 11 11 ) surround strings. Braces also can be used to group statements 
within actions. 

9-54 Chapter 9 awk Programming Language 



Primary expressions 

In awk, patterns and actions are made up of expressions. The basic building blocks of 
expressions are the following primary expressions: 

• numeric constants 

• string constants 

• variables 

• functions 

Each expression has both a numeric and a string value, and defaults to one or the other, 
depending on context. The rules for determining the default value of an expression are 
explained in the following sections. 

Numeric constants 

A numeric constant is simply a number. The format of a numeric constant was previously 
defined in the section "Lexical Conventions." The value of a numeric constant is always 
its numeric value in decimal unless it is coerced to type string. Table 9-7 shows the result 
of coercing various numeric constants to type string. Coercion of a numeric constant can 
occur explicitly as defined in "Type" or implicitly within the context of an expression. 

Table 9-7 Values for sample numeric constants 

Numeric Numeric 
constant value String value 

0 0 0 

1 1 1 

.5 0.5 5 

.5e2 50 50 

Primary expressions 9-55 



String constants 

A string constant is simply a series of characters enclosed in double quotation marks. The 
format of a string constant was defined in "Lexical Conventions" earlier in this chapter. 

The value of a string constant is the content-, of the string itself unless it has been 
coerced to type numeric. The numeric value of a string coerced to type numeric depends 
on the contents of the string: If the string is composed entirely of numbers (either 
decimal or floating-point format), its numeric value is the number contained in the string. 
If the string does not contain a recognizable decimal or floating-point number, its 
numeric value is zero. Table 9-8 shows the result of coercing various string constants to 
type numeric. Coercion of a string constant can occur explicitly as defined in "Type" or 
implicitly within the context of an expression. 

Table 9-8 Values for sample string constants 

String Numeric 
constant value String value 

0 null string 

0 space 

na" 0 a 

"XYZ" 0 XYZ 

"0" 0 0 

11111 ' J_ 

II• 511 0.5 .5 

".Se2 11 50 .5e2 

Variables 

A variable or var is in one of the following forms: 

identifier 
identifier [ expression J 

$term 

9-56 Chapter 9 awk Programming Language 



The numeric value of any uninitialized variable is o, and the string value is the empty 
string. An identifier by itself is a simple variable. A variable of the form 

identifier [ expression J 

represents an element of an associative array named by identifier. 
The string value of expression is used as the index into the array. The default value of 

identifier or identifier[ expression} is determined by context. 
The variable $ o refers to the current input record. Its string and numeric values are 

those of the current input record. If the current input record represents a number, the 
numeric value of $ o is the number and the string value is the literal string. The default 
value of $ o is string unless the current input record is a number. $ o cannot be 
changed by assignment. 

The variables $1 and $ 2 refer to fields 1 and 2 of the current input record. The 
string and numeric values of $ i for 1 < = i< =NF are those of the it:h field of the current 
input record. As with $ o, if the ith field represents a number, the numeric value of $ i is 
the number and the string value is the literal string. The default value of $ i is a string 
unless the ith field is a number. The $ i can be changed by assignment. The value of 
$ o is then changed accordingly, but the results might not be apparent unless NF is 
changed to at least i. 

In general, $term refers to the input record if term has the numeric value o and to 
field i if the greatest integer in the numeric value of term is i. If i<O or if i>= 100, then 
accessing $i causes awk to produce an error diagnostic. If NF<i<=lOO, then $i 
behaves like an uninitialized variable. Accessing $ i for i > NF does not change the 
value of NF. 

Functions 

The awk language has a number of built- in functions that perform common arithmetic 
and string operations. 

exp [ ( expression) J 

int [ (expression) J 

log [ (expression) J 

sqrt [ (expression) J 

Primary expressions 9-57 



Terms 

These functions (exp, int, log, and sqrt) compute the exponential, integer 
part, natural logarithm, and square root, respectively, of the numeric value of expression. 
The (expression) can be omitted; then the function is applied to $ o. The default value of 
an arithmetic function is numeric. 

get line 

index ( expressionl, expression2) 
length [ (expression) J 

s p 1 it ( expression, identifier [ , " separator" J ) 

sprintf [ ("format", expressionl [, expression2 ... J ) J 

subs tr ( expressionl, expression2 [, expression3 J ) 

These functions (get line, index, length, split, sprintf, and 
subs tr) perform string operations. See "Built-in String Functions" earlier in this 
chapter for more details. 

Various arithmetic operators are applied to primary expressions to produce larger 
syntactic units called terms. All arithmetic is done in floating point. A term has one of the 
following forms: 

primary expression 
terml binop term2 
unop term 
incremented var 
(term) 

Binary terms 

In a term of the form 

terml binop term2 

binop can be one of the five binary arithmetic operators + (addition), - (subtraction), 
* (multiplication), / (division), or % (modulus). The binary operator is applied to the 

9-58 Chapter 9 awk Programming Language 



numeric value of the operands terml and term2, and the result is the usual numeric 
value. This numeric value is the default value, but it can be interpreted as a string value 
(see "Numeric Constants" earlier in this chapter). The operators *, I, and % have 
higher precedence than + and - . All operators are left associative. 

Unary terms 

In a term of the form 

unop term 

unop can be unary + or - . The unary operator is applied to the numeric value of term, 
and the resulting numeric value is the default value. However, it can be interpreted as a 
string value. Unary + and - have higher precedence than *, I, and % . 

Incremented variables 

An incremented variable has one of the following forms: 

++var 

--var 

var++ 

var--

That is, it can be either pre- or post-incremented. 
The form + + var has the effect of the assignment 

var= var + 1 

and so has the value var+l before it is further evaluated or assigned. Similarly, the form 
- - var has the effect of the assignment 

var= var - 1 

and so has the value var- l before it is further evaluated or assigned. 
The form var++ has the same value as var before it is evaluated or assigned, and 

after that it has the effect of the assignment 

var= var + 1 

Tenns 9-59 



Similarly, the form var- - has the same value as var before it is evaluated or 
assigned, and after that it has the effect of the assignment 

var= var - 1 

The default value of an incremented var is numeric. You shouldn't use the ++ or 
- - operators where the incremented variable is used more than once (such as a = 

b++ * b), since the results are indeterminate. 

Terms with parentheses 

Parentheses are used to group terms in the usual manner. 

Expressions 

An awk expression is one of the following: 

term 
terml term2 ... 
var asgnop expression 

Concatenation of terms 

In an expression of the form terml term2, the string values of the terms are concatenated. 
If the terms are numeric expressions, they are first evaluated and then also treated as 
strings; that is, the default value of the resulting expression is a string value that can be 
interpreted as a numeric value. Concatenation of terms has lower precedence than binary 
+ and - . For example, the expression 

1+2 3+4 

has the string (and numeric) value 37. 

9-60 Chapter 9 awk Programming Language 



Assignment expressions 

An assignment expression is one of the form 

var asgnop expression 

whereasgnopisoneofthesixassignmentoperators(=, +=, - *=, I=,%=,++,--) 

(see "Operators" earlier in this chapter). 
The default value of var is the same as that of expression. 

In an expression of the form 

var = expression 

the numeric and string values of var become those of expression. 
An expression of the form 

var op = expression 

is equivalent to 

var = var op expression 

where op is one of the arithmetic operators (see "Operators" earlier in this chapter). 
The asgnops are right associative and have the lowest precedence of any operator. 

Thus, the assignment 

a += b *= c - 2 

is interpreted as 

a += ( b *= ( c - 2 ) ) 

which is equivalent to the sequence of assignments 

b b * (c - 2) 

a = a + b 

Expressions 9-61 



Part 3 Math Tools 



A/UX provides two specialized tools for handling arbitrary precision arithmetic, de and 

be. The de program is an interactive desk calculator program. It has provisions for 

manipulating scaled fixed-point numbers and for input and output in bases other than 

decimal. be is a specialized language and compiler for handling arbitrary precision 

arithmetic using the de program. The following two chapters describe these tools. 



10 de: A Desk Calculator 

Using de I 10-2 

Programming de I 10-9 

de is an interactive desk calculator program for handling arbitrary-precision integer 

arithmetic. It has provisions for manipulating scaled fixed-point numbers and for input 

and output in bases other than decimal. 

The de program works like a stacking calculator using reverse Polish notation. 

Ordinarily, de operates on decimal integers; however, the input base, output base, and 

scale can be set according to user specifications. Because de is based on a dynamic 

storage allocator, number size is limited only by available core storage. 

de can also be used in conjunction with be, a high-level language and compiler 

designed specifically as a front end for de. Complex functions can be defined and saved 

in a file for later execution through be. When a program is executed, be compiles the 

input and automatically pipes it to the de interpreter, which produces the final result. 

See the next chapter, "be: A Basic Calculator," in this manual for more information. 



Using de 

To begin using de, simply type its name to the shell: 

de 

Anything you then enter is interpreted as de input, up to an end-of-file (CoNTROL-D). 

You also can exit from de by using the q command, discussed later. 
For very complex computations, you might find it more efficient to place the instructions 

into a file. You can then pass the filename as an argument to the de command: 

de filename 

de reads and executes the contents of the filename argument before accepting 
further commands from the keyboard. 

de operates like a stacking calculator using reverse Polish notation. Initially, the 
value of a number is pushed onto the stack. The top two values on the stack can then be 
added ( + ), subtracted ( - ), multiplied ( * ), divided(;), remaindered(%), or exponentiated 
("'),according to the current operator. The two entries are popped off the stack, and the 
result is pushed on the stack in their place. 

Similarly, the top value on the stack can be duplicated, removed, stored in a register, 
and so forth. For the full list of operations, see the following section. 

Command syntax 

You can have any number of commands on a line. Blanks and newline characters are 
ignored, except when used to delineate numbers and in places where a register name is 
expected. Tabs are not allowed. 

A number is an unbroken string of digits 0 through 9 and uppercase letters A through 
F (treated as digits with values 10 through 15, respectively). A negative number can be 
indicated by preceding a number with an underscore(_). Numbers also can contain 
decimal points. 

To perform simple operations, you can use the following format: 

24.2 56.2 + p 

10-2 Chapter 10 de: A Desk Calculator 



The p command instructs de to print the result of the computation (in this case, an 
addition). Here is an example of a more complex problem, using a variety of commands: 

[lal+dsa*plalO>y]sy 

Osa 

lyx 

This example prints the first ten values of the factorial function (that is, 1! through 10!). To 
fully understand how it does so, please see "Programming de" later in this chapter. 

Operators 

Table 10-1 shows the operators that can be used in de expressions: 

Table 10-1 de operators 

Operator 

* 

% 

I 

+ 

v 

Function 

Exponentiation 

Multiplication 

Remaindering modulus (integer result truncated toward zero) 

Division 

Addition 

Subtraction 

Square root 

Relational operators 

de allows the following relational operators (also referred to as testing commands): 

<X >X =X !<x !>X !=x 

These cause the top two elements of the stack to be popped and compared. Register x 

is executed if the top two elements of the stack satisfy the stated relation. The 
exclamation point indicates negation. 

Using de 10-3 



de command set 

The following sections describe the de commands in detail, categorized by subject. At 
the end of the categorized sections is a quick-reference list of all de commands, with 
brief descriptions of each. 

Input/ output format and base 

The input and output bases affect only the interpretation of numbers on input and 
output. They have no effect on internal arithmetic computations. 

Large numbers are generated with 70 characters per line; a backslash ( \) indicates a 
continued line. All choices of input and output bases work correctly, although not all are 
useful. A particularly useful output base is 100000, which has the effect of grouping digits 
in fives. Bases of 8 and 16 are used for decimal-octal or decimal-hexadecimal conversions. 

Input conversion and base 

Numbers are converted to their internal representation as they are read in to de. 

Negative numbers are indicated by preceding the number with an underscore U. 
i The i command can be used to change the base of the input numbers. This 

command pops the stack, truncates the resulting number to an integer, and uses 
it as the input base for all further input. The default for input base (ibase) is 10 
(decimal) but can, for example, be changed to 8or16 for octal-to-decimal or 
hexadecimal-to-decimal conversions. 

r The r command pushes the value of the input base on the stack. 

No mechanism is provided for the input of arbitrary numbers in bases less than 1 or 
greater than 16. The hexadecimal digits A through F correspond to the numbers 10 
through 15, regardless of input base. 

10-4 Chapter 10 de: A Desk Calculator 



Output commands 

p The p command causes the top of the stack to be printed. It does not remove 
the top of the stack. 

f The f command prints the contents of all of the stack registers. 

o The o command is used to change the output base (obase). This command 
uses the top of the stack truncated to an integer as the base for all further 
output. The default output base is 10 (decimal). 

o The o command pushes the value of the output base on the stack. 

Scale 

de can accommodate scales up to 99 decimal places. The default scale is 0. 

k The k command sets the scale to the number on the top of the stack, truncated 
to an integer. 

K The K command can be used to push the value of scale on the stack The 
value of scale must be greater than or equal to 0 and less than 100. 

The rules governing how the scale of a result is resolved for the different operations 
are as follows: 

Operator 

* 

% 

I 

+ 

v 

Scale 

The scale of the result is the sum of the scales of the two operands. If 
this exceeds the value of scale, it is truncated to that value. 

The scale of the result is the sum of the scales of the two operands. If 
this exceeds the value of scale, it is truncated to that value. 

The scale of the remainder is the maximum of the dividend scale and 
quotient scale, plus the divisor scale. 

The scale of the result is the value of scale. You must specify a 
scale value for any scale to occur. 

The scale of the result is the larger scale of the two operands. 

The scale of the result is the smaller scale of the two operands. 

The scale of the result is given the scale of the operand or the value of 
scale, whichever is larger. 

Using de 10-5 



Stack commands 

c The c command clears the stack. 

d The d command pushes a duplicate of the top number onto the stack. 

z The z command pushes the stack size onto the stack. 

x The x command replaces the number on the top of the stack with its scale factor. 

z The z command replaces the top of the stack with its length. 

Subroutine definitions and calls 

[ J Enclosing a string in brackets pushes the ASCII string onto the stack. 

q The q command quits or (when executing a string) pops the recursion level 
by two. 

Internal registers 

Numbers or strings can be stored in internal registers or loaded on the stack from 
registers with the commands s and 1: 

sx The sx command pops the top of the stack and stores the result in register x. 
The x can be any character; even a blank or newline is considered a valid 
register name. 

lx The lx command puts the contents of register x on the top of the stack. The x 
can be any character; even a blank or newline is considered a valid register name. 

+ Note The 1 command has no effect on the contents of register x. The s 
command, however, is destructive. • 

10-6 Chapter 10 de: A Desk Calculator 



Pushdown registers and arrays 

+ Note The following commands are intended for use by a compiler, rather than for 
direct use by programmers. + 

de can be thought of as having individual stacks for each register. These registers are 
operated on by the commands s and L: 

sx 

LX 

s and 1 

sx pushes the top value of the main stack onto the stack for the 
register x. 

LX pops the stack for register x and puts the result on the main stack. 

The s and 1 commands also work on registers, but not as 
pushdown stacks. The 1 command does not affect the top of the 
register stack, but s destroys what was there before. 

The commands that work on arrays are : and ; . 

: x The : x command pops the stack and uses this value as an index into the array 
x. The next element on the stack is stored at this index in x. An index must be 
greater than or equal to 0 and less than 2048. 

; x The ; x command loads the main stack from the array x. The value on the top 
of the stack is the index into the array x of the value to be loaded. 

Miscellaneous commands 

The ! command interprets the rest of the line as an A/UX system command 
and passes it to the operating system to execute. 

Q The Q command uses the top of the stack as the number of levels of recursion 
to skip. 

Using de 10-7 



de command quick reference 

The following list is a quick reference to de command characters and their functions: 

[ ... ] 

? 

c 

d 

f 

i and r 

k and K 

lX and LX 

o and o 

p 

q and Q 

sx and sx 

Puts the bracketed character string on top of the stack. 

Interprets the rest of the line as an A/UX: system command. Control 
returns to de when the command terminates. 

Takes a line of input from the input source (usually the console) and 
executes it. 

Pops all values on the stack; the stack becomes empty. 

Duplicates the top value on the stack. 

Prints all values on the stack and in registers. 

Pops the top value on the stack and uses it as the number radix for 
further input. The command r pushes the value of the input base on 
the stack. 

Pops the top of the stack and uses that value as a scale factor that 
determines the maximum number of decimal places that are maintained 
during multiplication, division, and exponentiation. The scale factor 
must be greater than or equal to zero and less than 100. The K 

command can be used to push the value of scale on the stack. 

The 1 command puts the contents of register x on top of the stack. 
The initial value of a new register is treated as a zero by the command 
1, but treated as an error by the command L. The Lx command 
pops the stack for register x and puts the result on the main stack. 

The top value on the stack is popped and used as the number radix for 
further output. The command o pushes the value of the output base 
on the stack. 

The top value on the stack is printed. The top value remains unchanged. 

Exits from the program. If executing a string, the recursion level is 
popped by two. If Q is used, the top value on the stack is popped; 
and the string execution level is popped by that value. 

The top of the main stack is popped and stored in a register named x 
(where xcan be any character). The value of register xis pushed onto 
the stack. Register xis not altered. sx pushes the top value of the 
main stack onto the stack for the register x. 

10-8 Chapter 10 de: A Desk Calculator 



v 

x and x 

z and z 

Programming de 

Replaces the top element on the stack by its square root. The square 
root of an integer is truncated to an integer. 

The x command assumes the top of the stack is a string of de 

commands, removes it from the stack, and executes it. The x command 
replaces the number on the top of the stack with its scale factor. 

The value of the stack level is pushed onto the stack. The z 
command replaces the top of the stack with its length. 

By combining a few of the available constructs, such as the load, store, execute, and print 
commands (1, s, x, p), the [ J construct to store strings, and the testing commands 
(relational operators), it is possible to program de. For example, the following 
expressions instruct de to print the numbers 0 through 9: 

[lipl+sililO>a]sa 

Osi 

lax 

Consider the first expression in this example: 

[lipl+sililO>a)sa 

This first instruction makes use of the [ J construct for storing strings. The entire 
expression is stored as a character string on top of the stack. Reading from left to right, 
this character array holds the following commands: 

• Load the contents of register i on top of the stack, and print it. 

+ Note Using the print command does not remove the top of the stack. • 

• Add ( +) 1 to the value found on top of the stack, and place the result on top of the stack. 

• Store the value currently found on top of the stack in register i. 

Programming de 10-9 



• Load the contents of register i on top of the stack, then load the number 10 onto 
the stack. Use the testing operator > on these top two stack elements to see whether 
10 is greater than the number that was loaded from register i. If 10 is greater, 
execute register a. This is the "control element" in this example, because it stops the 
processing of the expressions as soon as the value in register i is equal to 10. 

• Store the character array in register a. The second and third lines of the example 
contain the expressions 
0 si 

la x 

• The o s i instruction clears register i by storing 0 in that register, thereby 
removing any previous value it may have had. 

• The la and x instructions load the contents of register a on top of the stack and 
execute it. 

+ Note The size of numbers in de is limited only by the size of available memory. • 

10-10 Chapter 10 de: A Desk Calculator 



11 be: A Basic Calculator 

Using be I 11-3 

Program syntax I 11-5 

be is a specialized language and compiler for handling arbitrary-precision arithmetic. 

be calls the de calculator program to perform any actual computations. In fact, be 

was designed specifically to augment de routines for manipulating infinitely large 

numbers, scaled up to 99 decimal places. 

Because be is based on a dynamic storage allocator, overflow does not occur until all 

available core storage is exhausted. be has a complete control structure, and can be 

used either in immediate mode (direct immediate input/output to and from be) or as an 

interactive processor for be programs. Consequently, complex functions can be 

defined and saved in a file for later execution. A small library of predefined functions is 

also available, among which are the sine, cosine, arctangent, logarithmic, exponential, 

and Bessel functions of integer order. 



• 
be contains scaling provisions that permit the use of decimal-point notation, as well as 

input and output in bases other than base 10. Numbers can be converted from decimal to 

octal simply by setting the output base to 8. The limit on the number of digits that can be 

manipulated depends only on the amount of core storage available. 

While be is not intended as a complete programming language, it can be used 

effectively to do a number of specific tasks, most notably the following ones: 

• compile large integers 

• compute accurately to many decimal places 

• convert numbers from one base to another base 

11-2 Chapter 11 be: A Basic Calculator 



Using be 

In this chapter, the term "be command" refers to the command you type from the shell 
command line, and the term "be program" refers to the set of calculations to be 
performed by the be command. These calculations can reside in a be program file. 

be command syntax 

The be command has the following syntax: 

be [-cl [-1] [file] 

The - c compile-only option directs be to output that it would normally pass as 
input to de. The output is instructive but complicated. 

The -1 (library) option calls the set of math library functions in be: 

Function syntax Operation 

s(X) 

c (X) 

a(X) 

1 (X) 

e(X) 

j (n, X) 

Sine 

Cosine 

Arctangent 

Natural logarithm 

Exponential 

Bessel function integer order 

The library option initially sets the scale (number of available decimal places after 
the decimal point) to 20, but this can be reset using the scale function call. See the 
section "scale" later in this chapter. 

The file is an optional be program file from which be can read calculations. 

Using be 11-3 



Entering a program at the terminal 

For the immediate evaluation of simple arithmetic expressions that do not involve 
standard be library functions or any user-defined functions, simply enter the be 

program at the terminal. For example, to perform a simple operation, first invoke be 

and then enter the calculation to be performed: 

be 

142857 + 285714 

be then responds immediately with the result 

428571 

Program files 

For more complicated calculations, you might find it more efficient to define the 
functions or procedures in a program file. You would then pass the filename as an 
argument to the be command: 

be filename 

be then reads and executes the contents of the named file before accepting further 
commands from the keyboard. 

Exiting from be 

To exit from be, even when using a command file, you must issue a quit or an end­
of-file character (see st ty(l) in A/UX Command Reference for more information). 
Unless you use the syntax be < filename, be does not quit when it reaches the end 
of the program file. If no quit statement is given, be simply waits for further 
instructions, and your shell prompt is not returned. 

To exit, you can either place a quit statement at the end of your file or enter 
quit or your end-of-file character directly when be completes the file. Your end­
of-file character can still be used as an interrupt and terminate signal while the file is 
being processed. 

The quit statement is not treated as an executable statement, and so cannot be 
used in a function definition or in an if, for, or while statement. 

11-4 Chapter 11 be: A Basic Calculator 



Program syntax 
The syntax of a be program is very similar to that of a C-language program. In general, 
statements and control structures are identical in be and in C. A good example of this 
similarity is the manner in which a be function is defined. The following program 
defines a function that computes the approximate value of the exponential function and 
prints the result for the first ten integers. The pieces of this example are discussed in 
individual sections that follow. 

scale = 10 

define e(x) 

auto a,b,c,i,s 

a 1 

b = 1 

s = 1 

for(i=l; l==l; i++) { 

a a*x 

b = b*i 

c = a/b 

if (c == 0) return(s) 

s = s+c 

for(i=l; i<=lO; i++) e(i) 

Comments 

The characters I and * introduce a comment that terminates with the characters 
* and I. Anything between the asterisks is ignored by the be compiler. 

Program syntax 11-5 



Constants 

Constants are primitive expressions and consist of arbitrarily long numbers with an 
optional decimal point. The hexadecimal digits A through F are also recognized as digits 
with values 10 through 15, respectively. 

Keywords 

The following terms are reserved as be keywords, and cannot be used other than for 
their predefined purposes: 

auto 

break 

define 

Identifiers 

for 

ibase 

if 

length 

obase 

quit 

return 

scale 

sqrt 

while 

In be, an identifier is a character, or sequence of characters, that names an expression. 
The identifier is the "place" where the value of that expression is stored. Therefore, 
identifiers are legal on the left side of an assignment statement. 

be has three kinds of identifiers: 

• simple identifiers 

• function calls 

• array, or subscripted, variables 

All three types should be indicated with single lowercase letters. Identifier names do 
not conflict; a be program can have a simple variable identifier named x, an array 
named x, and a function named x, all of which are separate and distinct. 

11-6 Chapter 11 be: A Basic Calculator 



Defining functions 

Functions are specified by a single lowercase letter, followed immediately by a set of 
parentheses: 

a() 

Since function names are permitted to coincide with simple variable names, the 
parentheses indicate the difference between a function and a variable, and provide a 
means of passing arguments to the function. Twenty-six different defined functions are 
permitted in addition to the 26 variable names. 

A function is defined in the following manner: 

define a(x) { 

defining statements 
return 

The word define initiates the function definition; a (x) names the function and 
indicates that the function requires one argument; the left brace opens the body of the 
definition and must occur on the same line as the define keyword; return returns 
control to the calling function; and the right brace closes the definition. The body of the 
definition must contain one or more statements, and must begin and close with a left and 
right brace, respectively. 

Function calls and function arguments 

A function call consists of the function name followed by parentheses, which in tum 
should contain any required arguments to be passed to the function. Individual 
arguments should each be separated by commas. Functions with no arguments are called 
and defined using empty parentheses. If a function is called with the wrong number of 
arguments, the result is unpredictable. 

All function arguments are passed by value, and as a result the values remain discrete, 
local to the called function. Therefore, changes made to the argument values within the 
called function do not alter the original parameters outside the function. 

Program syntax 11-7 



The return statement 

Return of control from a function occurs when a return statement is executed, or 
when the end of the function is reached. The return statement can take either of the 
following two forms: 

return 

return (X) 

In the first case, the value returned from the function is O; in the second, the value 
returned from the function is the expression in parentheses. 

Automatic variables 

Automatic variables are allocated space and initialized to zero on entry to the function, 
and thrown away on return (exit). The values of any similarly named variables outside 
the function are not disturbed. Functions can be called recursively and the automatic 
variables at each level of call are protected. 

It should be noted, however, that automatic variables in be do not work exactly the 
same way as they do in the C language. On entry to a function, the old values of 
automatic variables or parameters named previously are pushed onto a stack. Until return 
is made from the function, reference to these names refers only to the new values. 

Variables used in a function can be declared as automatic by a statement of the form 

auto x,y,z 

There can be only one such auto statement in a function, and it must be the first 
statement in the definition. 

The following example is a function definition that uses an automatic variable: 

define a (x, y) 

auto z 

z = x*y 

return(z) 

11-8 Chapter 11 be: A Basic Calculator 



When called, the value of this function a is the product of its two arguments, x and 
y. Consequently, the input 

a(7,3.14) 

sends the result, 21.98, to the standard output. Using this same function, the input 

z = a(a(3,4) ,5) 

sends the result, 60, to the standard output. 

Global variables 

There are only two storage classes in be: automatic variables and global variables. 
Unlike automatic variables, global variables retain their values between function calls, 
and are available to all functions. However, both types have initial values of zero. 

Arrays or subscripted variables 

An array, also referred to as a subscripted variable, is indicated with a single lowercase 
letter (the array name) followed by an expression in brackets (the subscript). For example, 

f [ expression J 

The names of arrays can coincide with simple variable names or function names 
without conflicting. The subscript values must be greater than or equal to 0 and less than 
or equal to 2047; any fractional part of a subscript is discarded before use. Only one­
dimensional arrays are permitted. 

Subscripted variables can be used in expressions, function calls, and return 
statements. An array name can be used as an argument to a function or can be declared 
as automatic in a function definition by the use of empty brackets. For example: 

f (a [ J) 

define f(a[J) 

auto a [ J 

When an array name is declared automatic, the entire contents of the array is copied 
for the use of the function and thrown away on exit from the function. Such array names, 
used with empty brackets and referring to whole arrays, cannot be used in any context 
other than that just shown. 

Program syntax 11-9 



Statements 

A statement is any direct instruction. Statements can be grouped together by surrounding 
them with braces, as in the body of a function definition: 

define a (x) { 

statement 
statement ; statement 
return 

When statements are grouped, each individual statement must end with a semicolon 
or a newline to distinguish it from the next. Except where altered by control statements 
(such as a while loop), execution of grouped statements is sequential. 

When a statement is an expression, the value of the expression is printed, followed 
by a newline character, unless the main operator is an assignment operator. 

The following is a basic dictionary of be predefined statements. 

"string" 
The quote statement prints the string contained within the quotation marks. 

break 

The break statement causes termination of a for or while statement. 

auto identifier[ , identifier] ... 
The auto statement causes the values of one or more identifiers to be pushed down 
on the stack. The identifiers can be ordinary identifiers or array identifiers. Array 
identifiers are specified by following the array name with empty brackets. The auto 

statement must be the first statement in a function definition. 

define function-name ( rparameter!, parameten ... ]) {statements} 
The define statement defines a function. The parameters can be ordinary identifiers 
or array names. Array names must be followed by empty brackets. 

11-10 Chapter 11 l:x:: A Basic Calculator 



return 

return (expression) 

The return statement causes the following actions: 

• Termination of a function. 

• Popping of the auto variables on the stack. 

• Specifying the results of the function. The first form is equivalent to return ( o) . 
The result of the function is the result of the expression in parentheses. 

quit 

The quit statement stops execution of a be program and returns control to the 
A/UX system software when it is first encountered. Because it is not treated as an 
executable statement, it cannot be used in a function definition or in an if, for, or 
while statement. 

sqrt (expression) 
The result is the square root of the expression. The result is truncated in the least 
significant decimal place. The scale of the result is the scale of the expression or the value 
of scale, whichever is larger. 

length (expression) 

The result is the total number of significant decimal digits in the expression. The scale of 
the result is 0. 

scale ( expression) 

The result is the number of the decimal point in the expression. The scale of the result is 0. 

Program syntax 11-11 



Assignment statements 

be assignment statements work in exactly the same manner as they do in the C 
programming language. Table 11-1 lists the assignment statement constructs. 

Table 11-1 Assignment statements 

X=Y=Z Is the same as X= (y=z) 

x =+y Is the same as x = x+y 

x =-y Is the same as x = x-y 

x = -y Is the same as x = -y 

x =*y Is the same as x = x*y 

x =IY Is the same as x = x/y 

x =%y Is the same as x = x%y 

x ="y Is the same as x = x"y 

x++ Is the same as (X=X+l)-1 

x-- Is the same as (x=x-1)+1 

++x Is the same as x = x+l 

--x Is the same as x = x-1 

+ Note In some of these constructs, spaces are significant. There is an important 
difference between x=-y and x= -y. The first replaces x by x-y and the second 
replaces x by -y. • 

All assignment operators are interpreted from right to left. The variables in an 
assignment statement should have single lowercase letter names. Ordinary variables are 
used as internal storage registers to hold integer values, and have an initial value of zero. 
The statement 

X=X+3 

has the effect of increasing by three the value of the contents of register x. In this case, 
although the increase in value is performed, that value is not printed. To print the value 
of x after the assignment, either explicitly call x, as in the following example: 

11-12 Chapter 11 be: A Basic Calculator 



X=X+3 

x 

or surround the assignment with parentheses. The latter instructs be to treat the 
statement as the value of the result of the operation. The assignment can then be used 
anywhere an expression can be used. For example: 

(x=x+3) 

In this example, the value of x is incremented and the resulting value is printed. 
The value of an assignment statement can be used even when it is not placed within 

parentheses. For example, 

X=a[i=i+l] 

instructs be to increment i before using it as a subscript and then assign the resulting 
value to x. 

Since each variable register name must be a unique, single lowercase letter, there can 
be only 26. 

Control statements 

The if, while, and for control statements are available in be to alter the flow 
within programs or to cause iteration. They can be used individually as a simple 
statement or grouped to form a compound statement. A compound statement consists of 
a collection of statements enclosed in braces, as in a function definition. 

Relational operators 

Unlike all other operators, the be relational operators are valid only as the object of an 
if or while statement or inside a for statement. Similarly, all control structures 
rely at least in part on the evaluation of a relational statement or expression. Table 11-2 
illustrates the six relational operators and their definitions. 

Program syntax 11-13 



Table 11-2 Relational operators 

Operator Definition 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal to 

Equal to 

!= Not equal to 

+ Note Do not use = instead of == as a relational operator. Both of these are legal, 
so there is no diagnostic message, but = does not do a comparison. The = operator is 
an assignment operator. • 

The if statement 

The i f statement is a conditional statement that causes execution of its instruction if 
and only if the relation is true. Then, control passes to the next statement in sequence. 
The following is the standard format for an if statement in be: 

i f ( relation) statement 

The while statement 

while causes repeated execution of its instruction as long as the relation tests as true. 
The relation is tested before each execution of its range; if the result is true, the body of 
the whi 1 e statement is executed, and the loop continues. If the relation is false, control 
passes to the next statement beyond the range of the whi 1 e statement. The following 
format is standard for the while statement in be: 

while (relation) { 
statement 
statement 

11-14 Chapter 11 be: A Basic Calculator 



The for statement 

The typical use of a for statement is for controlled iteration. For example: 

for ( expressionl; relation; expression2) statements 

The for statement begins by executing expression I. Then the relation is tested. If the 
relation is true, the statements in the body of the for are executed. Then expression2 is 
executed. The relation is then tested, and so forth, until the relational test fails. 

The following example (in immediate mode) shows the proper use of the for 

statement. In this example, the function returns the factorial of the integer given as input: 

define f (n) 

auto i, x 

X=l 

for(i=l; i<=n; i=i+l) x=x*i 

return(x) 

f ( 5) 

120 

f (3) 

6 

Expressions 

The simplest be expression is a single digit. An expression can consist of any number 
of operators and operands, provided that they represent a value. 

The following points are important to remember when using expressions in be: 

• Any term in an expression can be preceded by a minus sign to indicate that it is a 
negative (the unary minus sign). 

• The value of an expression is printed unless the main operator is an assignment. 

• Division by zero produces an error comment. 

Table 11-3 shows the operators that can be used in be expressions, in order of 
precedence. Operators with the same precedence are grouped together. 

Program syntax 11-15 



Table 11-3 Operators and their precedence 

Operator 

* 

% 

I 

+ 

Function 

Exponentiation 

Multiplication 

Remaindering (integer result truncated toward 0) 

Division 

Addition 

Subtraction 

Assignment 

Contents of parentheses are evaluated before items outside the parentheses. 
Exponentiations are performed from right to left, while the other operations are 
performed from left to right. 

• a"b"c and a" (b"c) are equivalent 

• a-b*c is the same as a- (b*c) 

• a/b*c is equivalent to (a/b) *c because the expression is evaluated from left 
to right. 

Brief descriptions of the various types of expressions recognized by be are as follows : 

- expression 

++expression 

- - expression 

expression + + 

expression - -

expression" expression 

11-16 Chapter 11 be: A Basic Calculator 

The result is the negative of the expression. 

The expression is incremented by one. The result is the value 
of the expression after incrementing. 

The expression is decremented by one. The result is the value 
of the expression after decrementing. 

The expression is incremented by one. The result is the value 
of the expression before incrementing. 

The expression is decremented by one. The result is the value 
of the expression before decrementing. 

The result is the first expression raised to the power of the 
second expression. The second expression must be an integer. 
If a is the scale of the left expression and bis the absolute 
value of the right expression, the scale of the result is 
min(a*b,max(scale,a)) 



expression* expression 

expression I expression 

expression% expression 

expression+ expression 

expression- expression 

The result is the product of the two expression values. If a and 
bare the scales of the two expressions, the scale of the result is 
min (a*b,max (scale, a,b)) 

The result is the quotient of the two expression values. The 
scale of the result is the value of s ca 1 e. 

The % (modulus) operator produces the remainder of the 
division of the two expression values. More precisely, a% b has 
the same value as a-((a; b)* b). 

The scale of the result is the sum of the scales of the quotient 
and the divisor. 

The additive operators bind left to right. 

The result is the sum of the two expression values. The scale of 
the result is the maximum of the scales of the expression values. 

The result is the difference of the two expression values. The 
scale of the result is the maximum of the scales of the 
expression values. 

Input and output bases: ibase and obase 

be possesses a scaling provision that enables it to work in bases other than decimal. In 
addition, input and output can be set to different bases, for automatic conversion from 
one base to another. ibase handles the conversion for input, and obase for output. 

ibase and obase have no effect on the course of internal computation or on the 
evaluation of expressions. They affect only input and output conversions, respectively. 

ibase 

The setting for ibase determines the base used for interpreting input, and is initially 
set to 10 (decimal). To set ibase to another base, use the = assignment operator. For 
example, the following assignment sets the input base to base 8: 

ibase = 8 

Program syntax 11-17 



Assuming that the output base is set to decimal, with the ibase now set to octal, 
the input 

11 

automatically produces the following output: 

9 

If, at this point, you want to change the input base back to decimal, you must 
compensate for the fact that input is now being interpreted as octal. So, in setting the new 
base, you must use the correct octal value: 

ibase = 12 

Because the ibase is still set to octal, it interprets the 12 as an octal 10, and resets 
the base to decimal. Until reset again, ibase interprets all input in decimal. 

For handling hexadecimal notation, the characters A through F are permitted in 
numbers (regardless of what base is in effect) and are interpreted as digits having values 
10 through 15, respectively. The statement 

ibase = A 

changes the base to decimal regardless of the current input base. 
ibase can handle base settings from 1to16. If larger or smaller settings are 

attempted, ibase disregards them. There is no error message to this effect and the last 
valid setting remains intact. 

obase 

The setting for obase is used for interpreting the output base and is initially set to 10 
(decimal). Assuming that ibase is set to 10, 

obase = 16 

1000 

produces the following output: 

3E8 

thus providing a simple decimal-to-hexadecimal conversion facility. 

11-18 Chapter 11 be: A Basic Calculator 



Very large output bases are permitted and are sometimes useful; for example, large 
numbers can be generated in groups of five digits by setting abase to 100000. Very 
large numbers are split across lines with 70 characters per line. To force the continuation 
of a line, end it with a backslash ( \). 

Decimal output conversion is practically instantaneous, but output of very large 
numbers (that is, more than 100 digits) with other bases is rather slow. Nondecimal 
output conversion of a 100-digit number takes about 3 seconds. 

scale 

The number of digits after the decimal point of a number is referred to as its scale. be 

can handle numbers possessing up to 99 decimal places. The initial default setting for 
scale is 0. When the library option is invoked, however, the default is automatically 
set to 20. To set scale to a specific value, use the following statement: 

scale = n 

where n equals the new value of the scale setting. The contents of scale must be 
no greater than 99 and no less than its initial value of 0. However, appropriate scaling can 
be arranged when more than 99 fraction digits are required. 

When two scaled numbers are combined by means of an arithmetic operation, the 
scale of the result is determined by the following rules: 

Addition and 
subtraction 

Multiplication 

Division 

The scale of the result is the larger of the scales of the two operands. In 
this case, there is never any truncation of the result. 

The scale of the result is never less than the maximum of the two 
scales of the operands and never more than the sum of the scales of 
the operands. Subject to those two restrictions, the scale of the result is 
set equal to the contents of the internal quantity scale. 

The scale of a quotient is the contents of the internal quantity scale. 

The scale of a remainder is the sum of the scales of the quotient and 
the divisor. 

Program syntax 11-19 



Exponentiation 

Square root 

The result of an exponentiation is scaled as if the implied 
multiplications were performed. An exponent must be an integer. 

The scale of a square root is set to the maximum of the scale of the 
argument and the contents of scale. 

All of the internal operations are actually carried out in terms of integers, with digits 
being discarded when necessary. In every case where digits are discarded, truncation 
(not rounding) is performed. 

The value held in scale can be used in expressions just like other variables. 
The expression 

scale = scale + 1 

increases the value of scale by 1, and the statement 

scale 

causes the current value of scale to be printed. 
It should be noted that, regardless of the ibase or obase settings, the scale 

setting is always interpreted in decimal base. 

11-20 Chapter 11 be: A Basic Calculator 



Part 4 Screen-Oriented Tools 



A/UX also provides tools to control screen functions and to use dialog boxes for input 

and output. 

You can use the curses package to write screen-oriented programs. curses 

provides a terminal-independent method of screen-oriented input and output. It includes 

facilities for taking input from the terminal, sending output to a terminal, creating and 

manipulating windows on the screen, and performing screen updates in an optimal 

fashion. A program using the curses routines and functions generally needs to know 

nothing about the capabilities of any particular terminal; these characteristics are 

determined at execution time and guide the program in taking input and producing 

output. Thus, programs using this package can interact with a large variety of terminals 

and terminal types. 

The Commando tool is useful for screen-oriented input and output on Macintosh 

computers. Commando lets you create CommandShell command lines by selecting 

controls within Macintosh dialog boxes. Controls direct the placement of options on the 

command line. When the user selects a particular control, Commando places a specific 

option on the command line. Once they are constructed, the command lines are either 

placed in a CommandShell window for execution or executed in a subshell. 

The following chapters detail these tools. 



12 curses: Terminal-Independent 
Screen 1/0 

Overview of curses usage I 12-3 

List of curses routines I 12-18 

Operation details I 12-39 

Example program: scatter I 12-47 

Example program: show I 12-49 

Example program: highlight I 12-51 

Example program: window I 12-53 

Example program: two I 12-55 

Example program: termhl I 12-59 

Example program: editor I 12-62 

The curses package provides a terminal-independent method of providing screen­

oriented input and output. It includes facilities for taking input from the terminal, sending 

output to a terminal, creating and manipulating windows on the screen, and performing 

screen updates in an optimal fashion. A program using the curses routines and 

functions generally needs to know nothing about the capabilities of any particular 

terminal; these characteristics are determined at execution time and guide the program in 

taking input and producing output. Thus, programs using this package can interact with a 

large variety of terminals and terminal types. 



This chapter is an introduction to the curses and terminfo packages for writing 

screen-oriented programs. This chapter documents each curses function and 

discusses several sample programs. The sample programs are at the end of this chapter. 

For older programs, termcap is provided for backward compatibility; new programs 

should use terminfo. 

12-2 Chapter 12 curses: Terminal-Independent Screen I/0 



Overview of curses usage 

For curses to be able to produce the proper output, it must know what kind of 
terminal you have. curses uses the standard A/UX system convention for this; the 
name of the terminal is stored in the environment variable TERM. 

A program using curses always starts by calling ini tscr (see Listing 12-1). 
Other modes can then be set as needed by the program. Possible modes include 
cbreak and idlok ( stdscr, TRUE). These modes are explained later. 

A curses program follows the framework shown in Listing 12-1. 

Listing 12-1 Framework of a curses program 

#include <curses.h> 

main() 

initscr(); /* Initialization */ 

cbreak (); 

nonl(); 

noecho(); 

/* Various optional mode settings */ 

while (!done) { /*Main body of program*/ 

/* Sample calls to draw on screen */ 

move (row, col); 

addch (ch); 

printw("Formatted print with value %d\n", value); 

endwin(); 

exit ( 0); 

!* Clean up */ 

Overview of curses usage 12-3 



Output 

During the execution of the program, output to the screen is done with routines such as 

addch(ch) 

and 

printw (jmt, args) 

which behave just like put char and printf exceptthat they go through 
curses. The cursor can be moved with the call 

move ( row, co/) 

These routines generate output only to a data structure called a window, not to the 
actual screen. A window is a representation of a CRT screen, containing such things as an 
array of characters to be displayed on the screen, a cursor, a current set of video 
attributes, and various modes and options. Unless you use more than one of them, you 
don't need to worry about windows except to realize that a window is buffering your 
requests for output to the screen. For further information about windows, see the section 
"Multiple Windows" later in this chapter. 

To send all accumulated output, you must call 

refresh () 

Finally, before the program terminates, it should call 

endwin() 

which restores all terminal settings and positions the cursor at the bottom of the screen. 
See the sample program scatter at the end of this chapter. This program reads a 

file and displays it in a random order on the screen. Some programs assume all screens 
are 24 lines by 80 columns. It is important to understand that many are not. The variables 

LINES 

and 

COLS 

are defined by ini t scr with the current screen size. Programs should use them 
instead of assuming a 24 by 80 screen. 

No output to the terminal actually happens until refresh is called. Instead, 
routines such as move and addch draw on a window data structure called stdscr 

(standard screen). curses always keeps track of what is on the physical screen, as 
well as what is in stdscr. 

12-4 Chapter 12 curses: Terminal-Independent Screen 1/0 



When refresh is called, curses compares the two screen images and sends a 
stream of characters to the terminal that turns the current screen into what is desired. 
curses considers many different ways to do this, taking into account the various 
capabilities of the terminal and similarities between what is on the screen and what is 
desired. It usually produces as few characters as is possible. This function is called cursor 
optimization and is the source of the name of the curses package. 

+ Note Because of the hardware scrolling of terminals, writing to the lower-right 
character position is impossible. • 

Input 

curses functions are also provided for input from the keyboard. The primary function is 

get ch () 

which is like get char except that it goes through curses. This function waits for 
the user to type a character on the keyboard and then returns that character. Its use is 
recommended for programs using the options 

cbreak() 

or 

noecho () 

because several terminal-dependent or system-dependent options become available that 
are not possible with get char. 

Options that you can use with get ch include 

keypad 

which allows extra keys such as arrow keys, function keys, and other special keys that 
transmit escape sequences to be treated just as any other key. (The values returned for 
these keys are listed later; these values are over octal 400, so they should be stored in a 
variable larger than a char.) 

The 

node lay 

option causes the value -1 to be returned if there is no input waiting. Normally, get ch 

waits until a character is typed. 

Overview of curses usage 12-5 



Finally, the routine 

getstr (str) 

can be called, allowing input of an entire line, up to a newline. This routine handles 
echoing and the erase and kill characters of the user. 

Examples of the use of these options are in later sample programs. 
The following function keys might be returned by get ch, if keypad is enabled. 

Note that not all of these can be supported by a particular terminal/keyboard, because the 
key doesn't exist or the terminal is not transmitting a unique code when the key is pressed. 

Name Value 

KEY_BREAK 0401 

KEY_DOWN 0402 

KEY_UP 0403 

KEY_LEFT 0404 

KEY_RIGHT 0405 

KEY_HOME 0406 

KEY_BACKSPACE 0407 

KEY_FO 0410 

KEY_F(n) (KEY_FO+ (n)) 

KEY_DL 0510 

KEY_IL 0511 

KEY_DC 0512 

KEY_IC 0513 

KEY_EIC 0514 

KEY_CLEAR 0515 

KEY_EOS 0516 

KEY_EOL 0517 

12-6 Chapter 12 curses: Terminal-Independent Screen I/0 

Key name 

Break key (unreliable) 

The four arrow keys ... 

Home key (upward+ left arrow) 

Backspace (unreliable) 

Function keys; space for 64 keys is 
reserved (only KFO through KFlO are 
currently supported) 

Formula for fn 

Delete line 

Insert line 

Delete character 

Insert character or enter insert mode 

Exit from insert character mode 

Clear screen 

Clear to end of screen 

Clear to end of line 



KEY_SF 0520 Scroll one line forward 

KEY_SR 0521 Scroll one line backward (reverse) 

KEY_NPAGE 0522 Next page 

KEY_PPAGE 0523 Previous page 

KEY_STAB 0524 Set tab 

KEY_CTAB 0525 Clear tab 

KEY_CATAB 0526 Clear all tabs 

KEY_ENTER 0527 Enter or send (unreliable) 

KEY_SRESET 0530 Soft (partial) reset (unreliable) 

KEY_RESET 0531 Reset or hard reset (unreliable) 

KEY_PRINT 0532 Print or copy 

KEY_LL 0533 Home down or bottom (lower left) 

The following keys are not currently supported on the Macintosh II: KEY_BREAK, 

KEY_ENTER, KEY_SRESET, KEY_RESET, and KEY_PRINT. 

See the sample program show at the end of this chapter for an example of the use 
of get ch. The show program pages through a file, showing one full screen each time 
the user presses the space bar. By creating an input file for show made up of 12-line 
pages, each segment varying slightly from the previous page, nearly any exercise for 
curses can be created. Such input files are called show scripts. 

The following activities take place in the sample show program: 

• cbreak is called so that you can press the space bar without having to press RETURN. 

• noecho is called to prevent the space from echoing in the middle of a refresh, 

messing up the screen. 

• nonl is called to enable more screen optimization. 

• idlok is called to allow insert and delete lines, because many show scripts are 
constructed to duplicate bugs caused by that feature. 

• clrtoeol clears from the cursor to the end of the line. 

• clrtobot clears from the cursor to the end of the screen. 

Overview of curses usage 12-7 



Highlighting 

The function addch always draws two things on a window. In addition to the 
character itself, it draws a set of "attributes" associated with the character. These attributes 
cover various forms of highlighting of the character. For example, the character can be 
put in reverse video, bold, or underline. You can think of the attributes as the color of the 
ink used to draw the character. 

A window always has a set of current attributes associated with it. The current 
attributes are associated with each character as it is written to the window. The current 
attributes can be changed with a call to 

attrset(attrs) 

(Think of this as dipping the window's pen in a particular color of ink.) The names of the 
attributes are 

A_STANDOUT 

A_REVERSE 

A_BOLD 

A_DIM 

A_INVIS 

A_ UNDERLINE 

For example, to put the word boldface in bold, you might use the following code: 

printw( "A word in "); 

attrset(A_BOLD); 

printw("boldface"); 

attrset(O); 

printw(" really stands out.\n"); 

refresh(); 

Not all terminals are capable of displaying all attributes. If a particular terminal cannot 
display a requested attribute, curses attempts to find a substitute attribute. If none is 
possible, the attribute is ignored. 

12-8 Chapter 12 curses: Terminal-Independent Screen 1/0 



The A_STANDOUT attribute is used to make text attract the attention of the user. 
The particular hardware attribute used for A_STANDOUT varies from terminal to 
terminal, and is chosen to be the most visually pleasing attribute the terminal has. 
A_STANDOUT is typically implemented as reverse video or bold. Many programs don't 
really need a specific attribute, such as bold or inverse video, but instead just need to 
highlight some text. For such applications, the A_STANDOUT attribute is 
recommended. Two convenient functions, 

standout () 

standend() 

tum this attribute on and off. 
Attributes can be turned on in combination. For example, to tum on blinking bold 

text, use 

attrset(A_BLINKIA_BOLD) 

Individual attributes can be turned on and off with at t ron and t troff without 
affecting other attributes. 

For a sample program using attributes, see the highlight program at the end of 
this chapter. The highlight program takes a text file as input and allows embedded 
escape sequences to control attributes. In this sample program, 

\ u turns on underlining 

\ B turns on bold 

\N restores normal text 

Note the initial call to scrollok. This allows the terminal to scroll if the file is 
longer than one screen. When an attempt is made to draw past the bottom of the screen, 
curses automatically scrolls the terminal up a line and calls refresh. 

The highlight program comes as close to being a filter as is possible with 
curses. It is not a true filter, because curses must "take over" the CRT screen. To 
determine how to update the screen, it must know what is on the screen at all times. This 
requires curses to clear the screen in the first call to refresh and to know the 
cursor position and screen contents at all times. 

Overview of curses usage 12-9 



Multiple windows 

A window is a data structure representing all or part of the CRT screen. It has room for a 
two-dimensional array of characters, attributes for each character (a total of 16 bits per 
character: 7 for text and 9 for attributes), a cursor, a set of current attributes, and a 
number of flags. 

curses provides a full screen window, called 

stdscr 

and a set of functions that use st ds c r. Another window is provided called 

curscr 

representing the physical screen. 
It is important to understand that a window is only a data structure. Use of more than 

one window does not imply use of more than one terminal, and it does not involve more 
than one process. A window is merely an object that can be copied to all or part of the 
terminal screen. The current implementation of curses does not allow windows that 
are bigger than the screen. 

You can create additional windows with the function 

newwin ( lines, cols, begin-row, begin-col) 

which returns a pointer to a newly created window. The window is lines by cols, and the 
upper-left corner of the window is at screen position (begin-row, begin-coD. 

All operations that affect st ds c r have corresponding functions that affect an 
arbitrarily named window. Generally, these functions have names formed by putting a w 

on the front of the s tdscr function and adding the window name as the first 
parameter. Thus, 

waddch ( mywin, c) 

writes the character c to window mywin. The wrefresh function is used to flush 
the contents of a window to the screen. 

Windows are useful for maintaining several different screen images, among which 
you can alternate. Also, you can subdivide the screen into several windows, refreshing 
each of them as desired. When windows overlap, the contents of the screen will be 
copied from the more recently refreshed window. 

12-10 Chapter 12 curses: Terminal-Independent Screen I/0 



In all cases, the non-w version of the function calls the w version of the function, 
using stdscr as the additional argument. Thus, a call to 

addch(c) 

results in a call to 

waddch(stdscr, c) 

The sample program window at the end of this chapter shows the use of multiple 
windows. The main display is kept in st ds c r. When the user temporarily wants to put 
something else on the screen, a new window is created covering part of the screen. A call 
to wrefresh on that window causes the window to be written over stdscr on the 
screen. Calling refresh on stdscr causes the original window to be redrawn on 
the screen. 

In the sample window program, note the calls to 

touchwin 

before an overlapping window is written out. These are necessary to def eat an 
optimization in curses. If you have trouble refreshing a new window that overlaps an 
old window, it might be necessary to call touchwin on the new window to get it 
completely written out. 

For convenience, a set of move functions are also provided for most of the common 
functions, which result in a call to move before the other function. For example: 

mvaddch (row, col, c) 

is the same as 

move ( row, co/) ; addch ( c) 

Combinations also exist; for example, 

mvwaddch (row, col, win, c) 

Multiple terminals 

curses can produce output on more than one terminal at once. This is useful for 
single-process programs that access a common database, such as multiplayer games. 
Output to multiple terminals is a difficult business, and curses does not solve all the 
problems for the programmer. The program itself must determine the filename of each 
terminal line and what kind of terminal is on each of those lines. 

Overview of curses usage 12-11 



The standard method (checking $TERM in the environment) does not work 
because each process can examine only its own environment. Another problem that must 
be solved is that of multiple programs reading from one line. This situation produces a 
race condition and should be avoided. Nonetheless, a program wanting to take over 
another terminal cannot just shut off whatever program is currently running on that line. 
(Usually, security considerations also make this inappropriate. However, for some 
applications, such as an interterminal communication program or a program that takes 
over unused 11Y lines, it is appropriate.) 

A typical solution requires that the user logged in on each line run a program that 
notifies the master program that the user is interested in joining the master program, telling 
it the notification program process ID, the name of the 11Y line, and the type of terminal 
being used. Then the program goes to sleep until the master program finishes. When 
done, the master program wakes up the notification program, and all programs exit. 

curses handles multiple terminals by always having a "current terminal." All function 
calls always affect the current terminal. The master program should set up each terminal, 
saving a reference to the terminals in its own variables. When it wishes to affect a terminal, 
it should set the current terminal as desired, and then call ordinary curses routines. 

References to terminals have type struct screen * 
A new terminal is initialized by calling 

newterm ( type,jd) 

newterm returns a screen reference to the terminal being set up; type is a character 
string, naming the kind of terminal being used; and f dis a stdio file descriptor to be 
used for input and output to the terminal. (If only output is needed, the file can be open 
for output only.) 

This call replaces the normal call to ini tscr, which calls 

newterm(getenv("TERM") ,stdout) 

To change the current terminal, call 

set_term (Sp) 

where sp is the screen reference to be made current. set term returns a reference to 
the previous terminal. 

It is important to realize that each terminal has its own set of windows and options. 
Each terminal must be initialized separately with newterm. Options such as cbreak 

and noecho must be set separately for each terminal. The functions endwin and 
refresh must be called separately for each terminal. See Figure 12-2 for a typical 
scenario to send a message to each terminal. 

12-12 Chapter 12 curses: Terminal-Independent Screen 1/0 



Listing 12-2 Sending a message to several terminals 

for (i=O; i<nterm; i++) 
set_term(terms[i]); 
mvaddstr(O, 0, "Important message"); 
refresh(); 

See the sample program two at the end of this chapter for a full illustration. The 
two program pages through a file, showing one page to the first terminal and the next 
page to the second terminal. It then waits for a space to be typed on either terminal, and 
shows the next page to the terminal typing the space. Each terminal must be separately 
put into node lay mode. It is necessary to busy-wait or call sleep (see sleep(3C) 
in A!VX Programmer's Reference) between each check for keyboard input, or use the 
multiplexor select(2). This program sleeps for a second between checks. 

The two program is just a simple example of two-terminal curses. It does not 
handle notification, as described earlier; instead, it requires the name and type of the 
second terminal on the command line. As written, the command 

sleep 100000 

must be typed on the second terminal to put it to sleep while the program runs, and the 
first user must have both read and write permission on the second terminal. 

Low-level terminf o usage 

Some programs need to use lower-level primitives than those offered by curses. For 
such programs, the terminfo-level interface is offered. 

The terminfo-level interface does not manage your CRT screen, but rather gives you 
access to strings and capabilities that you can use to manipulate the terminal. curses 
takes care of all the glitches and odd features present in physical terminals, but at the 
terminfo level you must deal with them yourself. Whenever possible, the higher-level 
curses routines should be used. This makes your program more portable to other A/UX 
systems and to a wider class of terminals. Also, it cannot be guaranteed that this part of the 
interface does not change or is upwardly compatible with previous releases. 

Overview of curses usage 12-13 



There are two circumstances in which you should use terminfo. The first is when 
you are writing a special-purpose tool that sends a special-purpose string to the terminal, 
such as programming a function key, setting tab stops, sending output to a printer port, 
or dealing with the status line. The second situation is when you are writing a filter. A 
typical filter does one transformation on the input stream without clearing the screen or 
addressing the cursor. If this transformation is terminal-dependent and clearing the 
screen is inappropriate, use terminfo. 

A program written at the terminfo level uses the framework shown in Figure 12-3. 
Initialization is done by calling setupterm. 

Passing the values 0, 1, 0 invokes reasonable defaults. If setupterm cannot figure 
out what kind of terminal you are on, it prints an error message and quits. Your program 
should call reset shell_mode before it exits. Global variables with names like 
clear_screen and cursor_address are initialized by the call to setupterm. 

They can be produced using put p or t puts (which allows the programmer more 
control). These strings should not be directly sent to the terminal using printf, 

because they contain padding information. A program that directly generates strings fails 
on terminals that require padding or that use the xon/xoff flow-control protocol. 

In the terminfo level, the higher-level routines described previously are not 
available. It is up to the programmer to generate whatever is needed. For a list of 
capabilities and a description of what they do, see terminfo(4). 

Listing 12-3 terminfo-level framework 

#include <curses.h> 

#include <term.h> 

setupterm(O, 1, 0); 

putp(clear_screen); 

reset_shell_mode(); 

exit(O); 

12-14 Chapter 12 curses: Terminal-Independent Screen I/0 



The termhl sample program at the end of this chapter shows a simple use of 
terminfo. It is a version of the highlight sample program that uses terminfo 

instead of curses. This version can be used as a filter. The strings to enter bold and 
underline mode, and to turn off all attributes, are used. 

This program is more complex than it has to be to illustrate some properties of 
terminfo. The routine vidattr could have been used instead of directly generating 

enter_bold_mode 

enter_underline_mode 

exit_attribute_mode 

In fact, the program would be more robust if it did so, since there are several ways to 
change video attribute modes. However, this program was written to illustrate typical use 
of terminfo. 

The function 

tputs (cap, affcnt, outc) 

applies padding information. Some capabilities contain strings like $<2 o >.This means to 
pad for 20 milliseconds. tputs generates enough pad characters to delay for the 
appropriate time. The first parameter is the string capability to be generated. The second is 
the number of lines affected by the capability. Some capabilities might require padding 
that depends on the number of lines affected. For example, insert_l ine might have 
to copy all lines below the current line, and might require time proportional to the number 
of lines copied. By convention, affcnt is 1 if no lines are affected. For safety, the value 1 is 
used rather than 0 (ajfcnt is multiplied by the amount of time per item, and anything 
multiplied by 0 is O). The third parameter is a routine to be called with each character. 

For many simple programs, affcntis always 1 and outcalways just calls putchar. 

For these programs, the routine putp (cap) is a convenient abbreviation. The 
termhl sample program can be simplified by using putp. 

Note also in this example the special check for the capability underline_char. 

Some terminals, rather than having a code to start underlining and a code to stop 
underlining, have a code to underline the current character. The termhl program 
keeps track of the current mode, and if the current character is supposed to be 
underlined, outputs underline_char if necessary. 

Low-level details such as this are precisely why the curses level is recommended 
over the terminfo level. curses takes care of terminals with different methods of 
underlining and other CRT functions. Programs at the terminfo level must handle 
such details themselves. 

Overview of curses usage 12-15 



A larger example 

For a final example, see the editor sample program at the end of this chapter. 
The editor program illustrates how to use curses to write a screen editor 

patterned after the vi editor. This editor keeps the buffer in stdscr to keep the 
program simple; a real screen editor keeps a separate data structure. Many simplifications 
have been made here. No provision is made for files of any length other than the size of the 
screen, for lines longer than the width of the screen, or for control characters in the file. 

Several points about this program are worth noting. The routine to write out the file 
illustrates the use of the mvinch function, which returns the character in a window at a 
given position. The data structure used here does not have a provision for keeping track 
of the number of characters in a line, or the number of lines in the file, so trailing blanks 
are eliminated when the file is written out. 

The program uses these built-in curses functions: 

ins ch 

delch 

insertln 

deleteln 

These functions behave much as the similar functions on intelligent terminals behave, 
inserting and deleting a character or a line. 

The command interpreter accepts not only ASCII characters, but also special keys. 
(Some editors are "modeless," using nonprinting characters for commands. This is largely 
a matter of taste; the point being made here is that both arrow keys and ordinary ASCII 
characters should be handled.) 

In the editor sample program, note the call to mvaddstr in the input routine. 
adds tr is roughly like the C fputs function, which writes out a string of characters. 
Like fputs, adds tr does not add a trailing newline. It is the same as a series of calls 
to addch using the characters in the string. mvaddstr is the mv version of 
adds tr, which moves to the given location in the window before writing. 

The CoNTROL-L command illustrates a feature that most programs using curses 

should add. Often some program beyond the control of curses has written something 
to the screen, or some line noise has messed up the screen beyond what curses can 
keep track of. In this case, the user types CoNTROL-L, causing the screen to be cleared and 
redrawn. This is done with the call to 

clearok(curscr) 

12-16 Chapter 12 curses: Terminal-Independent Screen I/0 



which sets a flag causing the next refresh to first clear the screen. Then refresh 

is called to force the redraw. 
Note also the call to 

flash () 

which flashes the screen, if possible, and otherwise rings the bell. Flashing the screen is 
intended as a bell replacement, and is particularly useful if the bell bothers someone 
within earshot of the user. The routine 

beep() 

can be called when a real beep is desired. (If, for some reason, the terminal is unable to 
beep but able to flash, a call to beep flashes the screen.) 

Another important point is that the input command is terminated by CONTROL-D, not 
ESCAPE. It is very tempting to use EscAPE as a command, because EscAPE is one of the few 
special keys that is available on most keyboards. (RETIJRN and BREAK are among the 
others.) However, using EscAPE as a separate key introduces an ambiguity. Most terminals 
use sequences of characters beginning with ESCAPE (escape sequences) to control the 
terminal, and have special keys that send escape sequences to the computer. If the 
computer recognizes an ESCAPE coming from the terminal, it cannot determine whether 
the user pressed the ESCAPE key, or whether a special key was pressed. curses 

handles the ambiguity by waiting for up to 1 second. If another character is received 
during this second, and if that character might be the beginning of a special key, more 
input is read (waiting for up to 1 second for each character) until either (1) a full special 
key is read, (2) 1 second passes, or (3) a character is received that cannot have been 
generated by a special key. 

While this strategy works most of the time, it is not foolproof. It is possible for the 
user to press ESCAPE, then to type another key quickly, which causes curses to think a 
special key has been pressed. Also, there is a 1-second pause until the escape can be 
passed to the user program, resulting in slower response to the ESCAPE key. 

Many existing programs use EscAPE as a fundamental command, so it cannot be 
changed without infuriating a large class of users. Such programs cannot make use of 
special keys without dealing with this ambiguity, and at best must resort to a timeout 
solution. The message is clear: When designing your program, avoid the EscAPE key. 

Overview of curses usage 12-17 



List of curses routines 
This section describes all the routines available to the programmer in the curses 

package. The routines are organized by function. For an alphabetical list, see 
curses(3X). 

Structure 

All programs using curses should include the file <curses. h>. This file defines 
several curses functions as macros, and defines several global variables and the 
datatype WINDOW. References to windows are always of type WINDOW * 

curses also defines certain windows as constants: 

stdscr 

curscr 

the standard screen, used as a default to routines expecting a window 

the current screen, used only for certain low-level operations like 
clearing and redrawing a garbaged screen 

Integer variables are declared, containing the size of the screen: 

LINES 

COLS 

number of lines on the screen 

number of columns on the screen 

Boolean constants are defined as follows with values 1 and 0: 

#define TRUE(l) 

#define FALSE(O) 

#define ERR (-1) 

#define OK(O) 

Additional constants are values returned from most curses functions: 

ERR 

OK 

returned if there was some error, such as moving the cursor outside 
a window 

returned if the function was properly completed 

12-18 Chapter 12 curses: Tenninal-Independent Screen I/0 



The include file <curses. h> automatically includes <stdio. h> and an 
appropriate TIY driver interface file, currently either <sgt ty. h> or <termio. h>. 

+ Note The driver interface <sgt ty. h> is a TIY driver interface used in other 
versions of the UNIX system. + 

Including <stdio. h> again is harmless but wasteful; including <sgt ty. h> 

again usually results in a fatal error. 
A program using curses should include the loader option 

-lcurses 

in the makefile. This is true both for the terminfo level and the curses level. 
The compilation flag 

-DMINICURSES 

can be included if you restrict your program to a small subset of curses concerned 
primarily with screen output and optimization. The routines possible with mini -

curses are listed in the section "mini-curses" later in this chapter. 

Initialization 

The following functions are called when initializing a program: 

initscr() 

The first function called should always be ini tscr. This determines the terminal type 
and initializes curses data structures. ini t scr also arranges that the first call to 
refresh clears the screen. 

endwin() 

A program should always call endwin before terminating. This function restores TIY 
modes, moves the cursor to the lower-left corner of the screen, resets the terminal into 
the proper nonvisual mode, and tears down all appropriate data structures. 

List of curses routines 12-19 



newterm ( type,jd) 
A program that generates output to more than one terminal should use newterm 

instead of ini tscr. newterm should be called once for each terminal. It returns a 
variable of type SCREEN * which should be saved as a reference to that terminal. The 
arguments are the type of the terminal (a string) and a stdio file descriptor 
(FILE *) for output to the terminal. The file descriptor should be open for both 
reading and writing if input from the terminal is desired. The program should also call 
endwin for each terminal being used (see set_ term). If an error occurs, the value 
NULL is returned. 

set_term (new) 
This function is used to switch to a different terminal. The screen reference new becomes 
the new current terminal. The previous terminal is returned by the function. All other 
calls affect only the current terminal. 

longname () 

This function returns a pointer to a static area containing a verbose description of the 
current terminal. It is defined only after a call to initscr, newterm, or 
setupterm. 

Option setting 

The functions described here set options within curses. In each case, win is the 
window affected, and bfis a Boolean flag with value TRUE or FALSE (indicating 
whether to enable or disable the option). All options are initially FALSE. It is not 
necessary to turn these options off before calling endwin. 

clearok (win, bf) 
If set, the next call to wrefresh with this window clears the screen and redraws the 
entire screen. If win is curscr, the next call to wrefresh with any window causes 
the screen to be cleared. This is useful when the contents of the screen are uncertain, or 
in some cases for a more pleasing visual effect. 

12-20 Chapter 12 curses: Tenninal-Independent Screen 1/0 



idlok (win, bfl 
If this feature is enabled, curses considers using the hardware insert/ delete line 
feature of terminals so equipped. If disabled, curses never uses this feature. The 
insert/ delete character feature is always considered. Enable this option only if your 
application needs insert/delete line, for example, for a screen editor. It is disabled by 
default because insert/ delete line tends to be visually annoying when used in 
applications where it is not really needed. If insert/delete line cannot be used, curses 

redraws the changed portions of all lines that do not match the desired line. 

keypad (win, bfl 
This option enables the keypad of the user's terminal. If enabled, the user can press a 
function key (such as an arrow key) and get ch returns a single value representing the 
function key. If keypad is disabled, curses does not treat function keys specially. 
If the keypad in the terminal can be turned on (made to transmit) and off (made to work 
locally), turning on this option turns on the terminal keypad. 

leaveok (win, bfl 
Normally, the hardware cursor is left at the location of the window cursor being 
refreshed. This option allows the cursor to be left wherever the update happens to leave 
it. It is useful for applications where the cursor is not used because it reduces the need 
for cursor motions. If possible, the cursor is made invisible when this option is enabled. 

meta (win, bfl 
If enabled, characters returned by get ch are transmitted with all 8 bits, instead of 
stripping the highest bit. The value OK is returned if the request succeeded; the value 
ERR is returned if the terminal or system is not capable of 8-bit input. 

meta mode is useful for extending the nontext command set in applications where 
the terminal has a meta shift key. curses takes whatever measures are necessary to 
arrange for 8-bit input. On other versions of UNIX systems, raw mode is used. On 
A/UX systems, the character size is set to 8, parity checking disabled, and stripping of the 
eighth bit turned off. 

Note that 8-bit input is a fragile mode. Many programs and networks pass only 7 bits. 
If any link in the chain from the terminal to the application program strips the eighth bit, 
8-bit input is impossible. 

List of curses routines 12-21 



nodelay (win, bf) 
This option causes get ch to be a nonblocking call. If no input is ready, get ch 

returns -1. If disabled, get ch hangs until a key is pressed. 

intrflush(Win, bf) 
If this option is enabled when an interrupt key is pressed on the keyboard (interrupt, 
quit, suspend), all output in the TIY driver queue is flushed, giving the effect of faster 
response to the interrupt but causing curses to have the wrong idea of what is on the 
screen. Disabling the option prevents the flush. The default is for the option to be 
enabled. This option depends on support in the underlying teletype driver. 

typeahead (fd) 
Sets the file descriptor for typeahead check. f d should be an integer returned from open 

or fileno. Setting typeahead to-1 disables typeahead check. By default, file 
descriptor 0 (stdin) is used. typeahead is checked independently for each screen, 
and for multiple interactive terminals it should probably be set to the appropriate input 
for each screen. A call to typeahead always affects only the current screen. 

scrollok (win, bf) 
This option controls what happens when the cursor of a window is moved off the edge 
of the window, either from a newline on the bottom line or because the last character of 
the last line was typed. If disabled, the cursor is left on the bottom line. If enabled, 
wrefresh is called on the window, and then the physical terminal and window are 
scrolled up one line. Note that to get the physical scrolling effect on the terminal, it is also 
necessary to call idlok. 

setscrreg ( t, b) 
wsetscrreg (wing, t, bf) 
These two functions allow the user to set a software scrolling region in a window win or 
stdscr. tand bare the line numbers of the top and bottom margins of the scrolling 
region. (Line 0 is the top line of the window.) If this option and scrollok are 
enabled, an attempt to move off the bottom margin line causes all lines in the scrolling 
region to scroll up one line. Note that this has nothing to do with use of a physical 
scrolling region capability in the terminal, like that in the VTlOO. Only the text of the 
window is scrolled. If idlok is enabled and the terminal has either a scrolling region 
or insert/delete-line capability, they are probably used by the output routines. 

12-22 Chapter 12 curses: Terminal-Independent Screen I/0 



Terminal mode setting 

The functions described here are used to set modes in the TIY driver. The initial mode 
usually depends on the setting when the program is called; the initial modes documented 
here represent the normal situation. 

cbreak() 

nocbreak() 

These two functions put the terminal into and out of CBREAK mode. In this mode, 
characters typed by the user are immediately available to the program. When out of this 
mode, the teletype driver buffers characters typed until newline is typed. Interrupt and 
flow-control characters are unaffected by this mode. Initially the terminal is not in 
CBREAK mode. Most interactive programs using curses set this mode. 

echo() 

noecho () 

These functions control whether characters typed by the user are echoed as typed. 
Initially, characters typed are echoed by the teletype driver. Authors of many interactive 
programs prefer to do their own echoing in a controlled area of the screen, or not to echo 
at all, so they disable echoing. 

nl () 

nonl () 

These functions control whether newline is translated into carriage return and line feed 
on output, and whether return is translated into newline on input. Initially, the 
translations do occur. By disabling these translations, curses is able to make better 
use of the line-feed capability, resulting in faster cursor motion. 

raw() 

noraw() 

The terminal is placed into or out of raw mode. raw mode is similar to cbreak 

mode in that characters typed are immediately passed through to the user program. The 
differences are that in raw mode, the interrupt, quit, and suspend characters are passed 
through uninterpreted instead of generating a signal. raw mode also causes 8-bit input 
and output. The behavior of the BREAK key might be different on different systems. 

List of curses routines 12-23 



resetty () 

savetty () 

These functions save and restore the state of the TIY modes. savet ty saves the current 
state in a buffer; resetty restores the state to what it was at the last call to savetty. 

Window manipulation 

newwin ( num-lines, num-cols, beg-row, beg-co/) 
Creates a new window with the given number of lines and columns. The upper-left 
comer of the window is at line beg-row column beg-col. If either num-lines or num-cols 
is 0, they default to LINES-beg-row and coLs-beg-col. A new full-screen window is 
created by calling newwin ( o , o , o , O) . 

newpad ( num-lines, num-cols) 
Creates a new pad data structure. A pad is like a window, except that it is not restricted 
by the screen size and is not associated with a particular part of the screen. Pads can be 
used when a large window is needed, and only a part of the window is on the screen at 
one time. Automatic refreshes of pads (for example, from scrolling or echoing of input) 
do not occur. It is not legal to call refresh with a pad as an argument; the routines 
pre fresh or pnoutrefresh should be called instead. Note that these routines 
require additional parameters to specify the part of the pad to be displayed and the 
location on the screen to be used for display. 

subwin (orig, num-lines, num-cols, begy, begx) 
Creates a new window with the given number of lines and columns. The window is at 
position (begy, begx) on the screen. (It is relative to the screen, not orig.) The window is 
made in the middle of the window orig, so that changes made to one window affect both 
windows. When using this function, it is often necessary to call touchwin before 
calling wrefresh. 

12-24 Chapter 12 curses: Terminal-Independent Screen VO 



delwin (win) 

Deletes the named window, freeing all memory associated with it. In the case of 
overlapping windows, subwindows should be deleted before the main window. 

mvwin (win, hr, be) 
Moves the window so that the upper-left corner is at position (hr, be). If the move would 
cause the window to be off the screen, it is an error and the window is not moved. 

touchwin (win) 

Throws away all optimization information about which parts of the window have been 
touched, by pretending the entire window has been drawn on. This is sometimes 
necessary when using overlapping windows, because a change to one window affects 
the other window, but the records of which lines have been changed in the other 
window does not reflect the change. 

overlay ( winl, win2) 

overwrite ( winl, win2) 

These functions overlay winl on top of win2; that is, all text in winl is copied into win2. 

The difference is that overlay is nondestructive (blanks are not copied) and 
overwrite is destructive. 

Causing output to the terminal 

refresh () 

wrefresh (win) 

These functions must be called to get any output on the terminal, as other routines 
merely manipulate data structures. wrefresh copies the named window to the 
physical terminal screen, taking into account what is already there to do optimizations. 
refresh is the same, using stdscr as a default screen. Unless leaveok is 
enabled, the physical cursor of the terminal is left at the location of the window cursor. 

List of curses routines 12-25 



doupdate () 

wnoutrefresh (win) 
These two functions allow multiple updates with more efficiency than wrefresh. To 
use them, it is important to understand how curses works. In addition to all the 
window structures, curses keeps two data structures representing the terminal 
screen: a "physical" screen, describing what is actually on the screen, and a "virtual" 
screen, describing what the programmer wants to have on the screen. wrefresh 

works by first copying the named window to the virtual screen (wnoutrefresh), and 
then calling the routine to update the screen (doupda te). If the programmer wishes to 
produce several windows at once, a series of calls to wrefresh results in alternating 
calls to wnoutrefresh and doupdate, causing several bursts of output to the 
screen. By calling wnoutrefresh for each window, it is then possible to call 
doupdate once, resulting in only one burst of output, with probably fewer total 
characters transmitted. 

pre fresh (pad, pminrow, pmincol 
sminrow, smincol 
smaxrow, smaxcol) 

pnoutrefresh (pad, pminrow, pmincol 
sminrow, smincol 
smaxrow, smaxcol) 

These routines are analogous to wrefresh and wnoutrefresh except that pads, 
instead of windows, are involved. The additional parameters are needed to indicate what 
part of the pad and screen are involved. pminrow and pmincol specify the upper-left 
corner, in the pad, of the rectangle to be displayed. sminrow, smincol, smaxrow, and 
smaxcol specify the edges, on the screen, of the rectangle to be displayed. The lower­
right corner in the pad of the rectangle to be displayed is calculated from the screen 
coordinates, because the rectangles must be the same size. Both rectangles must be 
entirely contained within their respective structures. 

12-26 Chapter 12 curses: Terminal-Independent Screen I/0 



Writing on window structures 

The routines described here are used to "draw" text on windows. In all cases, a missing 
win is taken to be stdscr. yand xare the row and column, respectively. The upper­
left comer is always (0,0), not (1,1). The mv functions imply a call to move before the 
call to the other function. 

Moving the cursor 

move(y,x) 

wmove (win, y, X) 

The cursor associated with the window is moved to the given location. This does not 
move the physical cursor of the terminal until refresh is called. The position 
specified is relative to the upper-left comer of the window. The position specified is 
relative to the screen, not to the individual window. Thus, if you have a window that is 
not in the upper-left comer of the screen, moving to the upper-left comer of the window 
would require the screen coordinates of that corner of the window rather than (0,0) to be 
passed to move. 

Writing one character 

addch(ch) 

waddch (win, ch) 
mvaddch (y, x, ch) 
mvwaddch (win, y, x, ch) 

The character ch is put in the window at the current cursor position of the window. If ch 
is a tab, newline, or backspace, the cursor is moved appropriately in the window. If ch is 
a different control character, it is drawn in the AX notation. The position of the window 
cursor is advanced. At the right margin, an automatic newline is performed. At the 
bottom of the scrolling region, if scrollok is enabled, the scrolling region is scrolled 
up one line. 

The ch parameter is actually an integer, not a character. Video attributes can be 
combined with a character by ORing them into the parameter. This results in these 
attributes also being set. (The intent here is that text, including attributes, can be copied 
from one place to another with inch and addch.) 

List of curses routines 12-27 



Writing a string 

addstr (str) 

waddstr (win, str) 

mvaddstr (y, x, str) 

mvwaddstr (win, y, x, str) 

These functions write all the characters of the null terminated character string stron the 
given window. They are identical to a series of calls to addch. 

Clearing areas of the screen 

erase () 

werase (win) 

These functions copy blanks to every position in the window. 

clear () 

wclear (Win) 

These functions are like erase and werase but they also call clearok, arranging 
that the screen is cleared on the next call to refresh for that window. 

clrtobot () 

wclrtobot (win) 
All lines below the cursor in this window are erased. Also, the current line to the right of 
the cursor is erased. 

clrtoeol () 

wclrtoeol (win) 
The current line to the right of the cursor is erased. 

12-28 Chapter 12 curses: Terminal-Independent Screen I/0 



Inserting and deleting text 

delch() 

wdelch (win) 

mvdelch (y, X) 

mvwdelch (win, y, X) 

The character under the cursor in the window is deleted. All characters to the right on the · 
same line are moved to the left one position. This does not imply use of the hardware 
delete-character feature. 

deleteln () 

wdeleteln (win) 

The line under the cursor in the window is deleted. All lines below the current line are 
moved up one line. The bottom line of the window is cleared. This does not imply use of 
the hardware delete-line feature. 

insch (C) 

wins ch (win, C) 

mvinsch (y, X, C) 

mvwinsch (win, y, x, c) 

The character c is inserted before the character under the cursor. All characters to the 
right are moved one space to the right, possibly losing the right-most character on the 
line. This does not imply use of the hardware insert-character feature. 

insertln () 

winsertln (win) 
A blank line is inserted above the current line. The bottom line is lost. This does not 
imply use of the hardware insert-line feature. 

List of curses routines 12-29 



Formatted output 

printw (jmt, args) 
wprintw ( win,fmt, args) 

mvprintw (y, x,Jmt, args) 
mvwprintw (win, y, x,fmt, args) 

These functions correspond to printf. The characters that would be produced by 
printf are instead produced using waddch on the given window. 

Miscellaneous 

box (win, vert, hor) 

A box is drawn around the edge of the window. vert and horare the characters with 
which the box is to be drawn. 

scroll (win) 
The window is scrolled up one line. This involves moving the lines in the window data 
structure. As an optimization, if the window is stdscr and the scrolling region is the 
entire window, the physical screen is scrolled at the same time. 

Input from a window 

getyx (win, y, X) 

The cursor position of the window is placed in the two integer variables y and x. Since 
this is a macro, no & is necessary for x or y. 

inch() 

winch(Win) 

mvinch (y, X) 

mvwinch (win, y, X) 

The character at the current position in the named window is returned. If any attributes 
are set for that position, their values are ORed into the value returned. The predefined 
constants A_ATTRIBUTES and A_CHARTEXT can be used with the & operator to 
extract the character or attributes alone. For example: 

12-30 Chapter 12 curses: Terminal-Independent Screen 1/0 



#include <curses.h> 

char c; 

c inch() & A_CHARTEXT; 

Input from the terminal 

get ch () 

wgetch (win) 

mvgetch (y, X) 

mvwgetch (win, y, X) 

A character is read from the terminal associated with the window. In node lay mode, 
if there is no input waiting, the value -1 is returned. In delay mode, the program 
hangs until the system passes text through to the program. Depending on the setting of 
cbreak, this is after one character, or after the first newline. 

If keypad mode is enabled, and a function key is pressed, the code for that 
function key is returned instead of the raw characters. Possible function keys are defined 
with integers beginning with 0401, whose names begin with KEY_. These are listed in 
the section "Input" earlier in this chapter. If a character is received that might be the 
beginning of a function key (such as ESCAPE), curses sets a I-second timer. If the 
remainder of the sequence does not come within 1 second, the character is passed 
through; otherwise the function key value is returned. For this reason, on many terminals 
there is a 1-second delay after a user presses the ESCAPE key. (Using the ESCAPE key for a 
single character function is discouraged.) 

getstr (Str} 

wgetstr (win, str) 

mvgetstr (y, X, str) 

mvwgetstr (win, y, x, str) 

A series of calls to get ch is made, until a newline is received. The resulting value is 
placed in the area pointed at by the character pointer str. The user's erase and kill 
characters are interpreted. 

List of curses routines 12-31 



scanw (jmt, args) 

wscanw ( win,fmt, args) 

mvscanw (y, x,fmt, args) 

mvwscanw (win, y, x,jmt, args) 

This function corresponds to scanf. wgetstr is called on the window, and the 
resulting line is used as input for the scan. 

Video attributes 

at troff (at) 

wattroff (Win, attrs) 

attron(at) 

watt ron ( win, attrs) 

attrset(at) 

wattrset (win, attrs) 

standout () 

standend() 

wstandout (win) 

wstandend (win) 

These functions set the current attributes of the named window. These attributes can be 
any combination of A_STANDOUT, A_REVERSE, A_BOLD, A_DIM, A_BLINK, and 
A_UNDERLINE. These constants are defined in <curses. h> and can be combined 
with the C language OR operator (I). 

The current attributes of a window are applied to all characters that are written into 
the window with waddch. Attributes are a property of the character and move with the 
character through any scrolling and insert/delete line/character operations. To the extent 
possible on the particular terminal, they are displayed as the graphic rendition of 
characters put on the screen. 

attrset(at) 

sets the current attributes of the given window to at. 

attroff(at) 

turns off the named attributes without affecting any other attributes. 

12-32 Chapter 12 curses: Terminal-Independent Screen I/0 



attron(at) 

turns on the named attributes without affecting any others. 

standout 

is the same as attron (A_STANDOUT). 

standend 

is the same as attrset ( o); that is, it turns off all attributes. 

Bells and flashing lights 

beep() 

flash () 

These functions are used to signal the user. beep sounds the audible alarm on the 
terminal, if possible: if not, it flashes the screen (visible bell), if that is possible. flash 

flashes the screen or, if that is not possible, sounds the audible signal. If neither signal is 
possible, nothing happens. Nearly all terminals have an audible signal (a bell or beep) 
but only some can flash the screen. 

Portability functions 

The functions described here do not directly involve terminal-dependent character 
output but tend to be needed by programs that use curses. Unfortunately, their 
implementation varies from one version of UNIX to another. They are included here to 
enhance the portability of programs using curses. 

baudrate () 

ba udr ate returns the output speed of the terminal. The number returned is the integer 
baud rate-for example, 9600, rather than a table index such as B9 6 o o. 

erasechar () 

The erase character chosen by the user is returned. This is the character typed by the user 
to erase the character just typed. 

List of curses routines 12-33 



killchar () 

The line-kill character chosen by the user is returned. This is the character typed by the 
user to abort the entire line being typed. 

flushinp () 

This function throws away any typeahead that was typed by the user but not yet read by 
the program. 

Delays 

The functions described here are highly unportable, but are often needed by programs 
that use curses, especially real-time response programs. Some of these functions 
require a particular operating system or a modification to the operating system to work. 
In all cases, the routine compiles and returns an error status if the requested action is not 
possible. It is recommended that you avoid use of these functions if possible. 

draino (ms) 

The program is suspended until the output queue has drained enough to complete in ms 
additional milliseconds. Thus, 

draino (50) 

at 1200 baud pauses until there are no more than six characters in the output queue, 
because it takes 50 milliseconds to output the additional six characters. The purpose of 
this routine is to keep the program (and thus the keyboard) from getting ahead of the 
screen. If the operating system does not support the ioctls needed to implement 
draino, the value ERR is returned; otherwise, OK is returned. 

napms (ms) 

This function suspends the program for ms milliseconds. It is similar to s 1 e ep except 
with higher resolution. The resolution actually provided varies with the facilities available 
in the operating system, and often a change to the operating system is necessary to 
produce good results. If resolution of at least .1 second is not possible, the routine rounds 
to the next higher second, calls sleep, and returns ERR. Otherwise, the value OK is 
returned. Often the resolution provided is 1/60th second. 

12-34 Chapter 12 curses: Terminal-Independent Screen 1/0 



Lower-level functions 

The functions described here are provided for programs not needing the screen 
optimization capabilities of curses. Programs are discouraged from working at this 
level, because they must handle various glitches in certain terminals. However, a 
program can be smaller if it only brings in the low-level routines. 

Cursor motion 

mvcur ( oldrow, oldcol, newrow, newcol) 
This routine optimally moves the cursor from (oldrow, oldco[) to (newrow, newco[). The 
user program is expected to keep track of the current cursor position. Note that unless a 
full screen image is kept, curses must make pessimistic assumptions, sometimes 
resulting in less than optimal cursor motion. For example, moving the cursor a few 
spaces to the right can be done by transmitting the characters being moved over, but if 
curses does not have access to the screen image, it does not know what these 
characters are. 

terminfo level 

These routines are called by low-level programs that need access to specific capabilities 
of terminfo. A program working at this level should include both <curses. h> 

and <term. h>, in that order. After a call to setupterm, the capabilities are available 
with macro names defined in <term. h>. See terminfo(4) for a detailed description 
of the capabilities. 

Boolean-valued capabilities have the value 1 if the capability is present and 0 if it is 
not. Numeric capabilities have the value -1 if the capability is missing, and a value at 
least 0 if it is present. String capabilities (both those with and those without parameters) 
have the value NULL if the capability is missing, and otherwise have type 

char * 

and point to a character string containing the capability. The special character codes 
involving the \ and "' characters (such as \ r for RETURN, or "'A for CONTROL-A) are 
translated into the appropriate ASCII characters. Padding information (of the form 
$<time>) and parameter information (beginning with % ) are left uninterpreted at this 

List of curses routines 12-35 



stage. The routine tputs interprets padding information, and tparm interprets 
parameter information. 

If the program needs to handle only o~e terminal, the definition - DS INGLE can be 
passed to the C compiler, resulting in static references to capabilities instead of dynamic 
references. This can result in smaller code, but prevents use of more than one terminal at 
a time. Very few programs use more than one terminal, so almost all programs can use 
this flag. 

setupterm ( termJilenum, errret) 
This routine is called to initialize a terminal. term is the character string representing the 
name of the terminal being used. filenum is the A/UX file descriptor of the terminal being 
used for output. errret is a pointer to an integer, in which a success or failure indication is 
returned. The values returned can be 1 (all is well), 0 (no such terminal), or -1 (some 
problem locating the terminfo data base). 

The value of term can be given as 0, which causes the value of TERM in the 
environment to be used. The errret pointer also can he given as 0, meaning no error code 
is wanted. If errretis the default, and something goes wrong, setupterm prints an 
appropriate error message and quits, rather than returning. Thus, a simple program can 
call setupterm ( o, l, o) and not worry about initialization errors. 

If the variable TERMINFO is set in the environment to a pathname, setupterm 

checks for a compiled t erminfo description of the terminal under that path, before 
checking /usr /lib/terminfo. Otherwise, only /usr /lib/terminfo is checked. 

setupterm checks the TIY driver mode bits, usingfilenum, and changes any that 
might prevent the correct operation of other low-level routines. Currently, the mode that 
expands tabs into spaces is disabled, because the tab character is sometimes used for 
different functions by different terminals. (Some terminals use it to move right one space. 
Others use it to address the cursor to row or column 9.) If the system is expanding tabs, 
setupterm removes the definition of the tab and backtab functions, making 
the assumption that because the user is not using hardware tabs, they might not be 
properly set in the terminal. Other system-dependent changes, such as disabling a virtual 
terminal driver, can be made here. 

As a side effect, setupterm initializes the global variable ttytype, which is an 
array of characters, to the value of the list of names for the terminal. This list comes from 
the beginning of the terminfo description. 

12-36 Chapter 12 curses: Terminal-Independent Screen I/0 



After the call to setupterm, the global variable cur_term is set to point to the 
current structure of terminal capabilities. By calling setupterm for each terminal, and 
saving and restoring cur_term, it is possible for a program to use two or more 
terminals at once. 

The mode that turns newlines into "carriage return-line feed" on output is not 
disabled. Programs that use cursor_down or scroll_forward should avoid 
these capabilities if their value is line feed, unless they disable this mode. setupterm 
calls reset_prog_mode after any changes it makes. 

def_prog_mode() 
def_shell_mode() 
reset_prog_mode() 
reset_shell_mode() 
These routines can be used to change the TIY modes between the two states: shell (the 
mode they were in before the program was started) and program (the mode needed by 
the program). def_prog_mode saves the current terminal mode as program mode. 
setupterm and initscr call def_shell_mode automatically. 
reset_prog_mode puts the terminal into program mode, and 
reset_shell_mode puts the terminal into normal mode. A typical calling sequence 
is for a program to call initscr (or setupterm if a terminfo-level program), 
then to set the desired program mode by calling routines such as cbreak and 
noecho, and then to call def_prog_mode to save the current state. Before a shell 
escape or CoNTROL-Z suspension, the program should call reset_shell_mode, to 
restore normal mode for the shell. Then, when the program resumes, it should call 
reset_prog_mode. Also, all programs must call reset_shell_mode before they 
quit. (The higher-level routine endwin automatically calls reset_prog_mode.) 

Normal mode is stored in 

cur_term->Ottyb, 

and program mode is in 

cur_term->Nttyb 

List of curses routines 12-37 



These structures are both of type SGTTYB (which varies depending on the system). 
Currently the possible types are 

struct sgttyb 

(on some other systems) and 

struct termio 

(on this version of the A/UX system). def_prog_mode should be called to save the 
current state in Nt tyb. 

vidputs ( newmode, putc) 
newmode is any combination of attributes, defined in <curses. h>. putc is a 
put char-like function. The proper string to put the terminal in the given video mode 
is generated. The previous mode is remembered by this routine. The result characters are 
passed through put c. 

vidattr ( newmode) 
The proper string to put the terminal in the given video mode is output to stdout. 

tparm ( instring, pl, p2, p3,p4,p5,p6,p7,p8,p9) 
tparm is used to instantiate a parameterized string. The character string returned has 
the given parameters applied, and is suitable for tputs. Up to nine parameters can be 
passed, in addition to the parameterized string. 

tputs ( cp, affcnt, outc) 
A string capability, possibly containing padding information, is processed. Enough 
padding characters to delay for the specified time replace the padding specification, and 
the resulting string is passed, one character at a time, to the routine outc, which should 
expect one character parameter. (This routine often just calls put char.) cp is the 
capability string. affcnt is the number of units affected by the capability, which varies 
with the particular capability. (For example, the affcntfor insert_line is the 
number of lines below the inserted line on the screen-that is, the number of lines that 
must be moved by the terminal.) affcnt is used by the padding information of some 
terminals as a multiplication factor. If the capability does not have a factor, the value 1 
should be passed. 

12-38 Chapter 12 curses: Terminal-Independent Screen 1/0 



putp (str) 

This is a convenient function to output a capability with no affcnt. The string is output to 
put char with an affcnt of 1. It can be used in simple applications that do not need to 
process the output of tputs. 

delay _output (ms) 

A delay is inserted into the output stream for the given number of milliseconds. The 
current implementation inserts sufficient pad characters for the delay. This should not be 
used in place of a high-resolution sleep, but rather for delay effects in the output. Due to 
buffering in the system, it is unlikely that this call results in the process actually sleeping. 
Because large numbers of pad characters can be generated, it is recommended that ms 
not exceed 500. 

Operation details 
These paragraphs describe many of the details of how the curses and terminfo 

package operates. 

Insert and delete line and character 

The algorithm used by curses takes into account insert and delete line and character 
functions, if available, in the terminal. Calling the routine 

idlok(stdscr, TRUE); 

enables insert/delete line. By default, curses does not use insert/delete line. This was 
omitted for performance reasons, because there is no speed penalty involved. Rather, 
experience shows that some programs do not need this facility, and that if curses 

uses insert/delete line, the result on the screen can be visually annoying. Many simple 
programs using curses do not need this, so the default is to avoid insert/delete line. 
Insert/delete character is always considered. 

Operation details 12-39 



Additional terminals 

curses works even if absolute cursor addressing is not possible, as long as the cursor 
can be moved from any location to any other location. It considers local motions, 
parameterized motions, home, and carriage return. 

curses is aimed at full-duplex, alphanumeric, video terminals. No attempt is made 
to handle half-duplex, synchronous, hard copy, or bit-mapped terminals. Bit-mapped 
terminals can be handled by programming the bit-mapped terminal to emulate an 
ordinary alphanumeric terminal. This does not take advantage of the bit-map capabilities, 
but it is the fundamental nature of curses to deal with alphanumeric terminals. 

The curses package handles terminals with the "magic-cookie glitch" in their 
video attributes. The term magic cookie means that a change in video attributes is 
implemented by storing a magic cookie in a location on the screen. This cookie takes up 
a space, preventing an exact implementation of what the programmer wanted. curses 

takes the extra space into account and moves part of the line to the right, as necessary. 
Advantage is taken of existing spaces, but in some cases this unavoidably results in losing 
text from the right edge of the screen. 

Multiple terminals 

Some applications need to display text on more than one terminal, controlled by the 
same process. Even if the terminals are of different types, curses can handle this. All 
information about the current terminal is kept in a global variable 

struct screen *SP; 

Although the screen structure is hidden from the user, the C compiler accepts 
declarations of variables that are pointers. The user program should declare one screen 
pointer variable for each terminal it wants to handle. The routine 

struct screen *newterm ( type,jd) 

sets up a new terminal of the given terminal type, which does output on file descriptor 
fd. A call to in its c r is essentially 

newterm(getenv( "TERM"), stdout) 

12-40 Chapter 12 curses: Terminal-Independent Screen I/0 



A program wanting to use more than one terminal should use newterm for each 
terminal and save the value returned as a reference to that terminal. 

To switch to a different terminal, call 

set_term (term) 

The old value of SP is returned. The programmer should not assign directly to SP 

because certain other global variables must also be changed. 
All curses routines always affect the current terminal. To handle several terminals, 

switch to each one in turn with set_term, and then access it. Each terminal must be 
set up with newterm, and closed down with endwin. 

Video attributes 

Video attributes can be displayed in any combination on terminals with this capability. 
They are treated as an extension of the standout capability, which is still present. 

Each character position on the screen has 16 bits of information associated with it. 
Seven of these bits are the character to be displayed, leaving separate bits for nine video 
attributes. These bits are used for standout, underline, reverse video, blink, dim, bold, 
blank, protect, and alternate character set. Standout is taken to be whatever highlighting 
works best on the terminal, and should be used by any program that does not need 
specific or combined attributes. Underlining, reverse video, blink, dim, and bold are the 
usual video attributes. Blank means that the character is displayed as a space, for security 
reasons. Protect and alternate character set depend on the particular terminal. The use of 
these last three bits is subject to change and not recommended. Note also that not all 
terminals implement all attributes-in particular, no current terminal implements both 
dim and bold. 

The routines to use these attributes include 

attrset(attrs) 

attron(attrs) 

attroff (attrs) 

standout () 

standend () 

wattrset (win, attrs) 

wattron(win, attrs) 

wattroff (win, attrs) 

wstandout (win) 

wstandend (win) 

Operation details 12-41 



Attributes, if given, can be any combination of 

A_STANDOUT 

A_ UNDERLINE 

A_REVERSE 

A_BLINK 

A_DIM 

A_BOLD 

A_INVIS 

A_PROTECT 

A_ALTCHARSET 

These constants, defined in curses. h, can be combined with the C language OR 
operator ( I ) to get multiple attributes. 

attrset ( attrs) 

attron(attrs) 

attroff(attrs) 

standout () 
standend() 

Sets the current attributes to the given attrs 

Tums on the given attrs in addition to any attributes that are 
already on 

Tums off the given attrs, without affecting any others 

Equivalent to 
attron(A_STANDOUT) 

attrset(A_NORMAL) 

If the particular terminal does not have the particular attribute or combination 
requested, curses attempts to use some other attribute in its place. If the terminal has 
no highlighting at all, all attributes are ignored. 

Special keys 

Many terminals have special keys, such as arrow keys, to erase the screen or insert or 
delete text, and keys intended for user functions. The particular sequences these 
terminals send differ from terminal to terminal. curses allows the programmer to 
handle these keys. 

A program using special keys should tum on the keypad by calling 

keypad(stdscr, TRUE) 

12-42 Chapter 12 curses: Terminal-Independent Screen I/0 



at initialization. This causes special characters to be passed through to the program by the 
function get ch. These keys have constants that are listed in the section "Input" earlier 
in this chapter. They have values starting at 0401, so they should not be stored in a 
char variable, as significant bits will be lost. 

A program using special keys should avoid using the ESCAPE key, because most 
sequences start with escape, creating an ambiguity. curses sets a 1-second alarm to 
deal with this ambiguity, which causes delayed response to the ESCAPE key. It is a good 
idea to avoid escape in any case, since there is eventually pressure for nearly any screen­
oriented program to accept arrow-key input. 

Scrolling region 

There is a programmer-accessible scrolling region. Normally, the scrolling region is set to 
the entire window, but the calls 

setscrreg (top, bot) 
wsetscrreg (win, top, bot) 

set the scrolling region for st ds c r or the given window to any combination of top 
and bottom margins. When scrolling past the bottom margin of the scrolling region, the 
lines in the region move up one line, destroying the top line of the region. If scrolling is 
enabled with scrollok, scrolling takes place only within that window. Note that the 
scrolling region is a software feature and only causes a window data structure to scroll. 
This might or might not translate to use of the hardware scrolling-region feature of a 
terminal or of insert/delete line; some "intelligent" terminals perform these operations 
rather than being controlled directly by the software. 

mini-curses 

curses copies from the current window to an internal screen image for every call to 
refresh. If the programmer is interested only in screen-output optimization and does 
not want the windowing or input functions, an interface to the lower-level routines is 
available. This makes the program somewhat smaller and faster. The interface is a subset 
of full curses, so that conversion between the levels is not necessary to switch from 
mini-curses to full curses. 

Operation details 12-43 



The following functions of curses and terminfo are available to the user of 
mini-curses: 

addch(ch) adds tr (str) at troff (attrs) 

attron(attrs) ttrset (at) clear () 

erase () initscr move(y,x) 

mvaddch (y, X, ch) mvaddstr (y, x, str) newterm 

refresh () standend() standout () 

The following functions of curses and terminfo are not available to the user 
of mini-curses: 

box clrtobot clrtoeol 

delch deleteln delwin 

get ch getstrs inch 

ins ch insertln longname 

makenew mvdelch mvgetch 

mvgetstr mvinch mvinsch 

mvprintw mvscanw mvwaddch 

mvwaddstr mvwdelch mvwgetch 

mvwgetstr mvwin mvwinch 

mvwinsch mvwprintw mvwscanw 

newwin overlay overwrite 

printw putp scanw 

scroll setscrreg subwin 

touchwin vidattr waddch 

waddstr wclear wclrtobot 

wclrtoeol wdelch wdeleteln 

werase wgetch wgetstr 

wins ch winsertln wmove 

wprintw wrefresh wscanw 

wsetscrreg 

The subset mainly requires the programmer to avoid use of more than the one­
window stdscr. Thus, all functions beginning with w are generally undefined. 
Certain high-level functions that are convenient but not essential are also not available, 
including printw and scanw. Also, the input routine get ch cannot be used with 

12-44 Chapter 12 curses: Terminal-Independent Screen I/0 



mini-curses. Features implemented at a low level, such as use of hardware 
insert/delete line and video attributes, are available in both versions. Also, mode-setting 
routines such as crmode and noecho are allowed. 

To access mini-curses, add -DMINICURSES to the CFLAGS in the makefile. 
If routines are requested that are not in the subset, the loader prints error messages such as 

Undefined: 
m_getch 

m_waddch 

to tell you that the routines get ch and waddch were used but are not available in the 
subset. Because the preprocessor is involved in the implementation of mini-curses, 
the entire program must be recompiled when changing from one version to the other. 

ITY-mode functions 

In addition to the save/restore routines savetty and resetty, standard routines are 
available for going into and out of normal TIY mode. These routines are reset term, 
which puts the terminal back in the mode it was in when curses was started; 
fixterm, which undoes the effects of reset term-that is, restores the "current 
curses mode"; and saveterm, which saves the current state to be used by 
fixterm. endwin automatically calls reset term, and the routine to handle 
CONTROL-Z (on other systems that have process control) also uses reset term and 
fixterm. Programmers should use these routines before and after shell escapes, and 
also if they write their own routine to handle CoNTROL-Z. These routines are also available 
at the terminfo level. 

Typeahead check 

If the user types something during an update, the update stops, pending a future update. 
This is useful when the user hits several keys, each of which causes a good deal of 
output. For example, in a screen editor, if the user presses the "forward screen" key, 
which draws the next screenful of text, several times rapidly, rather than drawing several 
screens of text, the updates are cut short, and only the last screenful is actually displayed. 
This feature is automatic and cannot be disabled. 

Operation details 12-45 



gets tr 

No matter what the setting of the st ty echo is, strings typed in here are echoed at the 
current cursor location. The user's erase and kill characters are understood and handled. 
This makes it unnecessary for an interactive program to deal with erase, kill, and echoing 
when the user is typing a line of text. 

longname 

The longname function does not need any arguments. It returns a pointer to a static 
area containing the actual long name of the terminal. 

nodelay mode 

The call 

nodelay(stdscr, TRUE) 

puts the terminal in node lay mode. While in this mode, any call to get ch returns -1 
if there is nothing waiting to be read immediately. This is useful for writing programs 
requiring "real-time" behavior, where the users watch action on the screen and press a key 
when they want something to happen. For example, the cursor can be moving across the 
screen, in real time. When it reaches a certain point, the user can press an arrow key to 
change direction at that point. 

Portability 

Several useful routines are provided to improve portability. The implementation of these 
routines is different from system to system, and the differences can be isolated from the 
user program by including them in curses. 

erasechar () Returns the character that erases one character. 

kill char () Returns the character that kills the entire input line. 

12-46 Chapter 12 curses: Terminal-Independent Screen 1/0 



baudrate () Returns the current baud rate as an integer. (For example, at 9600 
baud, the integer 9600 is returned, not the value B 9 6 o o from 
< sgt ty. h>.) 

flushinp () Causes all typeahead to be thrown away. 

Example program: scatter 

/* 

* scatter: this program takes the first 

* screenful of lines from the standard 

* input and displays them on the 

* VDU screen, in a random manner. 

*/ 

#include <curses.h> 

#define MAXLINES 120 

#define MAXCOLS 160 

char s[MAXLINES] [MAXCOLS]; 

main() 

register int row,col; 

register char c; 

int char_count=O; 

long t; 

char buf[BUFSIZ]; 

/* Screen array */ 

initscr(); 

for(row=O;row<MAXLINES;row++) 

for(col=O;col<MAXCOLS;col++) 

s [row] [col]=' '; 

(continuedY. 

Example program: scatter 12-47 



row = O; 

/* Read screen in */ 

while( (c=getchar()) != EOF && row< LINES) { 

if(c != '\n') { 

/* Place char in screen array */ 

s[row][col++] = c; 

if (c != ' ') 

char_count++; 

else { 

col=O; 

row++; 

time(&t); /* Seed random number generator */ 

srand( (int) (t&0177777L)); 

while(char_count) { 

row=rand() % LINES; 

col=(rand()>>2) % COLS; 

if(s[row][col] !=' ') 

move (row, col); 

addch(s[row] [col]); 

s[row] [col]=EOF; 

char_count--; 

refresh(); 

endwin (); 

exit(O); 

12-48 Chapter 12 curses: Terminal-Independent Screen 1/0 



Example program: show 

/* 

* The show program pages through 

* a file, showing one full screen each 

* time the user presses the space bar 

*/ 

#include <curses.h> 

#include <signal.h> 

main(argc, argv) 

int argc; 

char *argv[J; 

FILE *fp; 

char linebuf[BUFSIZ]; 

int line; 

void done(), perror(), exit(); 

if(argc != 2) 

fprintf(stderr, "usage: %s file\n", argv[O]); 

exit(l); 

if( (fp=fopen(argv[l], "r")) NULL) 

perror(argv[l]); 

exit(2); 

signal(SIGINT, done); 

initscr(); 

noecho(); 

cbreak(); 

nonl(); 

idlok(stdscr, TRUE); (continued~ 

Example program: show 12-49 



while(l) 

void 

done() 

move(0,0); 

for(line=O; line<LINES; line++) 

if(fgets(linebuf, sizeof linebuf, fp) 

clrtobot(); 

done(); 

move(line, 0); 

print(•%s•, linebuf); 

refresh (); 

if(getch() 'q') 

done(); 

move(LINES-1, 0); 

clrtoeol(); 

refresh(); 

endwin (); 

12-50 Chapter 12 curses: Terminal-Independent Screen 1/0 

NULL) 



Example program: highlight 

!* 

* highlight: a program to turn \U, \B, and 

* \N sequences into highlighted 

* output, allowing words to be 

* displayed underlined or in bold. 

*/ 

#include <curses.h> 

main(argc, argv) 

char **argv; 

FILE *fp; 

int c, c2; 

if ( argc ! = 2 ) { 

fprintf(stderr, "Usage: highlight file\n"); 

exit(l); 

fp = f open ( argv [ 1 J , "r" ) ; 

if (fp == NULL) { 

perror(argv[l]); 

exit(2); 

initscr(}; 

scrollok(stdscr, TRUE); 

(continued>-" 

Example program: highlight 12-51 



for (;;) { 

c = getc(fp); 

if (c == EOF) 

break; 

if (c == '\\') 

c2 = getc(fp); 

switch (c2) 

case 'B': 

attrset(A_BOLD); 

continue; 

case 'U': 

attrset(A_UNDERLINE); 

continue; 

case 'N': 

attrset(O); 

continue; 

addch(c); 

addch(c2); 

else 

addch(c); 

fclose(fp); 

refresh(); 

endwin(); 

exit(O); 

12-52 Chapter 12 curses: Terminal-Independent Screen I/0 



Example program: window 

/* 

* This program shows the use of multiple windows. 

* The main display is kept in stdscr. 

* When the user temporarily wants to put 

* something else on the screen, 

* a new window is created covering 

* part of the screen. 

*/ 

#include <curses.h> 

WINDOW *cmdwin; 

main() 

int i, c; 

char buf[120]; 

initscr(); 

nonl(); 

noecho(); 

cbreak(); 

/* top 3 lines */ 

cmdwin newwin(3, COLS, 0, 0); 

for (i=O; i<LINES; i++) 

mvprintw(i, 0, "This is line %d of stdscr", i); 

(continuedY. 

Example program: window 12-53 



for (;;) { 

refresh (); 

c = getch(); 

switch (c) { 

case 'c': /* Enter command from keyboard */ 

werase(cmdwin); 

wprintw(cmdwin, "Enter command:"); 

wmove(cmdwin, 2, 0); 

for (i=O; i<COLS; i++) 

waddch(cmdwin, '-'); 

wmove(cmdwin, 1, 0); 

touchwin(cmdwin); 

wrefresh(cmdwin); 

wgetstr(cmdwin, buf); 

touchwin(stdscr); 

/* 

* The command is now in buf. 

* It should be processed here. 

*/ 

break; 

case 'q': 

endwin(); 

exit(O); 

12-54 Chapter 12 curses: Terminal-Independent Screen 1/0 



Example program: two 

/* 

* The two program pages through a file, 

* showing one page to the first terminal and 

* the next page to the second terminal. 

* It then waits for a space to be typed on 

* either terminal, and shows the next 

* page to the terminal typing the space. 

*/ 

#include <curses.h> 

#include <signal.h> 

struct screen *me, *you; 

struct screen *set_term(); 

FILE *fp, *fpyou; 

char linebuf[512]; 

main(argc, argv) 

char **argv; 

int done(); 

int c; 

if (argc != 4) 

fprintf(stderr, 

"Usage: two othertty otherttytype inputfile\n"); 

exit(l); 

fp = fop en ( argv [ 3 J , "r" ) ; 

fpyou = fopen(argv[l], "w+"); 

signal(SIGINT, done); 

/* die gracefully */ 

(continuedY. 

Example program: two 12-55 



me = newterm(getenv( "TERM"), stdout); 

/* initialize my tty */ 

you= newterm(argv[2), fpyou); 

/* Initialize his terminal */ 

/* Set modes for my terminal */ 

set_ term (me) ; 

noecho(); /* turn off tty echo */ 

cbreak(); /* enter cbreak mode */ 

nonl(); /*Allow linefeed*/ 

nodelay(stdscr,TRUE); /*No hang on input*/ 

/* Set modes for other terminal */; 

set_term(you) 

noecho(); 

cbreak (); 

nonl(); 

nodelay(stdscr,TRUE); 

/* Dump first screenful on my terminal */ 

dump_page (me); 

/* Dump second screenful on his terminal */ 

dump_page (you); 

/* for each screenful */ 

for (;;) 

set_ term (me) ; 

c = getch(); 

/* wait for user to read it */} 

if (c == 'q' 

done(); 

if (c == ' ') 

dump_page (me); 

12-56 Chapter 12 curses: Terminal-Independent Screen 1/0 



set_term (you); 

c = getch(); 

/* wait for user to read it */ 

if (c == 'q') 

done(); 

if (c == ' ') 

dump_page (you); 

sleep(l); 

dump_page(term) 

struct screen *term; 

int line; 

set_term (term) ; 

move(O, 0); 

for (line=O; line<LINES-1; line++) 

if (fgets(linebuf, sizeof linebuf, fd) 

clrtobot(); 

done(); 

mvprintw(line, 0, "%s", linebuf); 

standout(); 

mvprintw (LINES-1, 0, "--More--"); 

standend(); 

refresh(); /* sync screen */ 

NULL) 

(continued~ 

Example program: two 12-57 



/* 

* Clean up and exit. 

*/ 

done() 

/* Clean up first terminal */ 

set_term (you); 

move(LINES-1,0); 

clrtoeol(); 

refresh(); 

endwin (); 

/* to lower left corner */ 

/* clear bottom line */ 

/* flush out everything */ 

/* curses cleanup */ 

/* Clean up second terminal */ 

set_term(me); 

move(LINES-1,0); /* to lower left corner */ 

clrtoeol(); I* clear bottom line *I 

refresh(); /* flush out everything */ 

endwin(); /* curses cleanup */ 

exit (0); 

12-58 Chapter 12 curses: Terminal-Independent Screen 1/0 



Example program: termhl 

/* 

* A terminfo-level version of highlight. 

*/ 

#include <curses.h> 

#include <term.h> 

int ulmode = Oi 

main(argc, argv) 

char **argvi 

FILE *fp; 

int c, c2; 

int out ch () i 

if (argc > 2) 

/* Currently underlining */ 

fprintf(stderr, "Usage: termhl [file] \n"); 

exit ( 1) i 

if ( argc = = 2 ) { 

fp = fopen(argv[l], "r") i 

if (fp == NULL) { 

perror(argv[l]) i 

exit(2) i 

else 

fp = stdini 

setupterm(O, 1, 0) i 

(continuedY. 

Example program: termhl 12-59 



for (; ; ) { 

c = getc (fp); 

if (c == EOF) 

break; 

if (c == '\\'} { 
c2 = getc (fp); 

switch (c2) 

case 'B': 

tputs(enter_bold_mode, 1, outch); 

continue; 

case 'U': 

tputs(enter_underline_mode, 1, outch); 

ulmode = l; 
continue; 

case 'N': 

tputs(exit_attribute_mode, 1, outch); 

ulmode = O; 

continue; 

putch(c); 

putch(c2); 

else 

putch(c); 

fclose(fp); 

fflush(stdout); 

reset term () ; 

exit(O}; 

12-60 Chapter 12 curses: Terminal-Independent Screen 1/0 



/* 

* This function is like putchar, 

* but it checks for underlining. 

*/ 

putch(c) 

int c; 

/* 

outch(c); 

if (ulmode && underline_char) 

out ch ( '\b') ; 

tputs(underline_char, 1, outch); 

* Outchar is a function version 

* of putchar that can be passed to 

* tputs as a routine to call. 

*/ 

outch(c) 

int c; 

putchar(c); 

Example program: tennhl 12-61 



Example program: editor 

/* 

* editor: A screen-oriented editor. The user 

* interface is similar to a subset of vi. 

* The buffer is kept in stdscr itself to simplify 

* the program. 

*I 

#include <curses.h> 

#define CTRL(c) ('c' & 037) 

main(argc, argv) 

int argc; 

char **argv; 

int i, n, l; 

int c; 

FILE *fp; 

if ( argc ! = 2 ) { 

fprintf(stderr, "Usage: edit file\n"); 

exit(l); 

fp = fopen(argv[l], "r"); 

if (fp == NULL) { 

perror(argv[l]); 

exit(2); 

initscr(); 

cbreak(); 

nonl(); 

noecho(); 

idlok(stdscr, TRUE); 

keypad(stdscr, TRUE); 

12-62 Chapter 12 curses: Tenninal-Independent Screen 1/0 



/* Read in the file */ 

while ((c = getc(fp)) != EOF) 

addch(c); 

fclose (fp); 

move(0,0); 

refresh(); 

edit(); 

/* Write out the file */ 

fp = fopen(argv[l], "w"); 

for (1=0; 1<23; l++) { 

n = len(l); 

for (i=O; i<n; i++) 

putc(mvinch(l, i), fp); 

putc('\n', fp); 

fclose(fp); 

endwin(); 

exit(O); 

len ( lineno) 

int lineno; 

int linelen = COLS-1; 

while (linelen >=0 

&& mvinch(lineno,linelen) 

return linelen + l; 

' ') linelen--; 

/* Global value of current cursor position */ 

int row, col; 

edit() 

int c; 
(continued>--

Example program: editor 12-63 



for (;;) { 

move (row, col); 

refresh (); 

c = getch(); 

switch (c) { /* Editor commands */ 

/* hjkl and arrow keys: move cursor */ 

/* in direction indicated */ 

case 'h': 

case KEY_LEFT: 

if (col > 0) 

col--; 

break; 

case 'j': 

case KEY_DOWN: 

if (row < LINES-1) 

row++; 

break; 

case 'k': 

case KEY_UP: 

if (row > 0) 

row--; 

break; 

case 'l': 

case KEY_RIGHT: 

if (col < COLS-1) 

col++; 

break; 

/* i: enter input mode */ 

case KEY_IC: 

case 'i': 

input(); 

break; 

12-64 Chapter 12 curses: Terminal-Independent Screen I/0 



/* x: delete current character */ 

case KEY_DC: 

case 'x': 

delch(); 

break; 

/* o: open up a new line and enter input mode */ 

case KEY_IL: 

case 'o': 

move(++row, col=O); 

insertln(); 

input(); 

break; 

/* d: delete current line */ 

case KEY_DL: 

case 'd': 

deleteln(); 

break; 

/* AL: redraw screen */ 

case KEY_CLEAR: 

case CTRL (L) : 

clearok(curscr); 

refresh(); 

break; 

/* w: write and quit */ 

case 'w': 

return; 

(continuedY. 

Example program: editor 12-65 



/* 

/* q: quit without writing */ 

case 'q': 

endwin (); 

exit(l); 

default: 

flash (); 

break; 

* Insert mode: accept characters and insert them. 

* End with AD or EIC 

*/ 

input () 

int c; 

standout(); 

mvaddstr(LINES-1, COLS-20, "INPUT MODE"); 

standend(); 

move (row, col) ; 

refresh(); 

for (;;) { 

c = getch(); 

if ( c = = CTRL ( D) I I c 

break; 

insch(c); 

move(row, ++col); 

refresh (); 

12-66 Chapter 12 curses: Terminal-Independent Screen I/0 

KEY_EIC) 



move(LINES-1, COLS-20); 

clrtoeol(); 

move(row, col); 

refresh (); 

Example program: editor 12-67 



13 Commando 

Introduction I 13-2 

The Commando script language I 13-5 

Creating Commando dialogs I 13-30 

Dialog design guidelines I 13-32 

This chapter explains how you can write Commando dialog scripts to provide a 

Macintosh front end for your UNIX applications. 

Commando lets you create CommandShell command lines by selecting controls within 

Macintosh dialog boxes. Controls direct the placement of options on the command line. 

By selecting a particular control, a specific option can be placed on the command line. 

The command lines thus constructed are placed in a CommandShell window for 

execution or are optionally executed in a subshell. 

This chapter begins with a general discussion of dialog boxes; readers who are familiar 

with this subject might want to tum directly to the section "Commando Dialog Boxes." 



Introduction 
The Macintosh computer provides you with visual cues when you communicate with an 
application, among them the controls used in dialog boxes. Controls allow you to 
change the way an application functions; when a particular control is used it can place a 
specific option on the command line. The use of dialog boxes provides a consistency of 
interface across applications that decreases learning times for new applications and 
increases retention times for completed tasks. By implementing this interface on UNIX 
applications already running on A/UX, programmers and developers can increase the 
effectiveness of users working with the application. 

Users who are relatively new to command-line interfaces often do not take the time 
necessary to learn all the intricacies needed to make full use of the features of a program. 
Further, they are often frustrated in their attempts to use applications because it is not 
obvious what options are available, or what the application does if they enter a given 
option. This is where Commando can help. Because Commando translates between 
visual controls and command-line options, users can see at a glance what an application 
can do and know what options are available. Further, Commando includes a context­
sensitive help feature, so users receive an explanation of the effect of each control as they 
click it. Programmers can save time because they do not have to explain the workings of 
the application time and time again. 

Commando lets you create command lines using the controls within Macintosh dialog 
boxes. This makes invocation of even complex commands much easier, since users have 
feedback on what the command can do before they execute it. This also benefits 
occasional users of UNIX, because it frees them from having to memorize the options or 
arguments associated with various commands. Even UNIX experts appreciate this feature, 
since few have learned all the options of the more than 500 UNIX commands. 

The contents of Commando dialog boxes are specified in dialog scripts written 
according to the Commando script language, which is discussed in detail later in this 
chapter. Much of the work of laying out the dialog boxes, including automatic vertical 
spacing, is done for you. This leaves you free to concentrate on the logical presentation 
order of the controls. 

13-2 Chapter 13 Commando 



The steps you typically follow to create a Commando dialog are quite simple: 

1. Copy a Commando dialog script from an existing command having similar controls. 
Scripts for all the Commando dialogs are kept in directories in /mac/lib/ cmdo. 

2. Modify the script to reflect the controls for your application or utility. 

3. Test and debug the script. 

4. Make sure the script has read-only permission. 

5. Move the script to the appropriate directory in /mac/ 1 ib/ cmdo. 

These steps are described in detail later in this chapter. 

Macintosh dialog boxes 

Dialog boxes provide the user with several visual cues (see Figure 13-1). The use of 
dialog boxes is governed by several conventions: 

• Checkboxes allow users to select an option individually; these are the default controls 
in Commando. 

• Radio buttons allow users to select mutually exclusive options. 

• Text boxes allow (or require) users to enter additional information. 

• Buttons either allow users to select files or lead to further dialog boxes. 

• Controls that cannot be selected are dimmed. 

D checkboH (unselected) 
1ZJ checkboH (selected) 
CJ ct1ed<!mn (dirnm(!() 

@ radio button (selected) 
O radio button (unselected) 

I teHtboH 

l button J n default button 11 

Figure 13-1 Schematic dialog box 

Introduction 13-3 



Commando dialog boxes 

All Commando dialog boxes have similar structures, though the controls for the 
command they represent are different. Figure 13-2 shows a representative dialog box for 
a UNIX command. Each dialog shows the current command line being built, a box of 
Help information, and buttons to send or cancel the command. Each screen also has an 
area to select among the various options of the command. Each dialog box can have 
multiple controls, allowing command lines to be arbitrarily complex. Further, each 
command can have several nested dialog boxes; in Figure 13-2, the "File type," "Fonts," 
and "More options" buttons each lead to a nested subdialog . 

.-lpr Options------------------~ 
Choose file(s) to print J Printer to print to: 

-----~ l~---~J D Format files using pr -
D Use symbolic links HHe: 
D Suppress burst page [ J 
D Remoue file when done 
D Print control characters 
D Send mail on completion 
Number of copies: 

f Command Line 
lpr 

:··························1 

~ .......................... ~ 

(File type J (Fonts J (More options J 

js~n~l~quosts to• lino printer. Use• spooling daomon to print tho namod ] i?,[ ;;;;;;;;;;;;;;Ca;;;;n;;;;ce;;;;l;;;;;;;;;;~J 
Ll•s. ~'----l""pr;;;;;;;;;;;;;;;;;;;;o#D 

Figure 13-2 Commando dialog box for the UNIX command lpr 

Controls can be set up to enable other controls. In Figure 13-2, the title and page 
width controls are disabled because they are used only when the option "Format files 
using pr" is selected. Since this control hasn't been selected, the title and page width 
controls are inaccessible. Examples of this enabling feature are shown later in this 
chapter in the section "Commando Script Language." 

Figure 13-3 shows another dialog box, this one for the tar command. The 
Operation controls, which control whether the program reads from or writes to the 
backup media, are mutually exclusive and thus are implemented as radio buttons. The 
buttons giving access to dialog boxes containing further controls are enabled only when 
their corresponding radio button has been selected. 

13-4 Chapter 13 Commando 



r-tar Options------------------~ 
r·· Operation ................................................................ ._ 
i @ Write to archiue 

Output 

! O EHtract from archiue ' 
! O List archiue contents ! 
: ......................................................................................................... .: 

Error 

(write options) (!>nrnc\ op\hm1>) (us1 op1hm1>) 

f Command Line 
tar q 

~Help J [ cancel J 
le archive. Save and restore fih:-:s: on ma9netic tapeo ~ floppy disks~ or in an #.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~· 

rchive file. Note: This dialog provides only •subset of the available ~ tar 11 
eatures for tar. Also see the manual ontry for tar(l). lllili~ ..,....,....,....,..Oiiiill!I 

Figure 13-3 Commando dialog box for the UNIX command tar 

The Commando script language 
The Commando script language helps you to create well-designed Commando dialog 
boxes quickly. Commando scripts allow users to start an application by double-clicking 
an icon or by invoking the application dialog script from the command line. The resulting 
dialog boxes allow the user to select various flags and options, then pass the command 
line to CommandShell for execution. By using dialog boxes developed through 
Commando, you can give your applications the front end of a Macintosh application 
without changing the code of your UNIX application. 

Dialog box layout 

All Commando dialogs have several aspects of their layout in common: All have labeled 
Options, Command Line, and Help boxes (see Figure 13-4). All have button controls in 
the lower-right comer of the box, allowing you to cancel the displayed dialog box or (by 
default) complete your selections and send the command line to CommandShell. 

The Option box of the dialog is laid out in rows and columns. There can be several 
rows within a given box. You can have multiple columns within a row, and multiple 
rows within a column. 

The Commando script language 13-5 



Within a column or row are various command controls. Buttons, checkboxes, text 
boxes, and radio buttons define how the command line is built. Additional outline boxes 
can be added to group similar functions visually. Optional definitions might require or 
enable controls. Buttons leading to other dialog boxes can be included. 

Figure 13-4 shows an Option box layout having two rows, a and b, enclosed within 
column 1, and the two columns, 1and2, enclosed within one large row, A. The various 
rows and columns are indicated by rectangles and names (in operation, Commando does 
not draw these rectangles or insert the names unless you specifically direct it to). In this 
simple layout example, no programmer-defined controls are shown. 

Just as all Commando dialogs have some structures in common, all scripts have some 
structures in common. The beginning of the script always defines the name of the 
command, in this case "sample," by using the keyword command name. The name of 
the command appears in the default invocation button, in the Command Line box, and at 
the top left of the Option box (see Figure 13-4). Next, the keyword help defines the 
message shown in the Help box when you are not clicking a specific control. The 
maximum length of a help message varies with the length of the command name, but 
roughly 200 characters can be included. 

r sample Options--------------------. 

row H 

column I 

I row b 

[Command Line 
samplo 

this is samp lo ho lp. 
I Help 

Figure 13-4 Dialog box layout example 

13-6 Chapter 13 Commando 

column 2 

[ Cancel 

( sample J 



The remainder of the script defines rows and columns of controls. Scripts reflect the 
structure displayed. If you want multiple columns within a row, column definitions are 
nested within the row definition. Each definition for a particular row or column is 
enclosed by braces. Row definitions begin with the keyword row, and column 
definitions with the keyword column. The braces might enclose other layout or control 
keywords, further affecting the appearance of the dialog box. (Commando automatically 
adjusts the vertical size to include the defined controls.) Each keyword begins on its own 
line in a dialog script. (A complete list of keywords is given in the section "Keywords.") 

The script shown in Listing 13-1 reflects the structure displayed in Figure 13-4. 
Definitions for the innermost rows, a and b, are nested within column 1. The definitions 
for columns 1 and 2 are nested within row A. This simple example does not include any 
control specifiers; they would be enclosed by the braces between the beginning and end 
of the definition of a column or row. 

+ Note Both within "real" dialog scripts and in the following examples comments are 
bracketed by slashes and asterisks: I* this is a comment *I. Comments are 
used in the following examples to point out specific features of dialog scripts. Comments 
can be only one line long. • 

listing 13-1 Dialog box layout example script 

command name "sample" 

help "this is sample help." 

row { 

column { 

row 

row 

column 

/* this begins row A */ 

/* this begins column 1 */ 

/* this begins row a */ 

/* this ends row a */ 

I* this begins row b */ 

/* this ends row b */ 

/* this ends column 1 */ 

/* this begins column 2 */ 

/* this ends column 2 */ 

/* this ends row A */ 

The Commando script language 13-7 



Layout examples 

This section contains examples of the layout of controls. The controls themselves are not 
discussed in depth; they are discussed later in the chapter in the section "Control Examples." 

Single-row example 

Figure 13-5 shows a trivial example containing only two programmer-defined controls. In 
this example they are both checkboxes. The dialog script that produced this dialog is 
shown in Listing 13-2. 

+ Note In the following examples a sample Commando dialog box is shown first, and 
the dialog script that produced it is shown next. • 

[picker Options 
D Pick a card 

f:~ommand line 
L1cker 

D Pick a name 

Help---------------~ 
This line contains information on the naturie- of the command. 

~----------------~ 

Figure 13-5 Single-row dialog box 

listing 13-2 Single-row dialog script 

command name "picker" 

[ Cancel J 

I picker D 

/* command name */ 

help "This line contains information " /* help message */ 

"on the nature of the command." 

row /* begin only row */ 

option name "Pick a card" /* first control */ 

prefix "-p" 

help "[-pl randomly pick a card." 

option name "Pick a name" /* second control */ 

13-8 Chapter 13 Commando 



prefix "-n" 

help " [ -n] randomly pick a name. " 

/* end of row */ 

A line-by-line dissection of this script shows several general points worth noting: 

• The first line, 
command name "picker" 

defines the command name. As mentioned previously, it is automatically put on the 
command line being built (in the Command Line box of Figure 13-5), in the 
command button (at the lower right of Figure 13-5), and in the Options label at the 
top of the dialog box. 

• The second and third lines, 
help "This line contains information " 

"on the nature of the command." 

define the help message for the command displayed in the bottom Help box. The 
message can span several lines, which are concatenated when the dialog is 
constructed. The help message for the command is displayed whenever the mouse 
button is up. 

• The fourth line, 
row { 

specifies construction of a row. Controls between this point and the closing brace (on 
the last line) are all placed on the same row. 

• On the fifth line, 
option name "Pick a card" 

the opt ion name for the first control defines how the control is to be labeled. 

• On the sixth line, 
prefix "-p" 

the prefix line defines what characters are placed on the command line being 
built when this control is selected. 

• On the seventh line, 
help "[-pl randomly pick a card." 

the help line following an option name keyword defines what appears in the 
Help box when the pointer is positioned over this control and the mouse button is down. 

The Commando script language 13-9 



• The eighth through tenth lines, 
option name "Pick a name" 

prefix "-n" 

help " [ -n] randomly pick a name. " 

specify another control; each control consists of at least the option name, prefix, and 
a help message. 

• The eleventh line, 
} 

has the closing brace for the first row. 

Commando automatically divides a row into columns to space the controls. In 
Figure 13-7 there are two controls, so two columns are used for spacing. This spacing can 
affect the length you choose for control names. 

Multiple-row example 

Figure 13-6 shows a dialog box with different rows having different numbers of controls. 
The first row contains the three controls: "Pick a card," "Pick a name," and "Pick a spot." 
The second row contains the two pop-up menus Output and Error. 

This example shows what the dialog box looks like if the pointer is positioned on the 
"Pick a card" option and the mouse button is down. The control shows that it is selected 
(there is an X in the checkbox), the -p prefix shows in the Command Line box, and the 
Help box displays the message associated with that option. When the mouse button is 
released, the control remains selected and the prefix remains in the command line being 
built, but the help message reverts to the message for the command itself. 

.-picker Options 
~Pick a card D Pick a name D Pick a spot 

Output Error 

I I I I 

rcommand Line 
p1okor -p 

I 
LHelp J [ 

Cancel l his now has information on \h• option [-p I rand om ly pick a card. 

( picker , 
Figure 13-6 Multiple-row dialog box 

13-10 Chapter 13 Commando 



Figure 13-6 and Listing 13-3 show a new point: The type of control displayed in the 
dialog changes when the keyword within an option name section is changed. Note 
that the options within the bold area of Listing 13-3 use the keywords out popup and 
errpopup. These keywords create different kinds of controls from those created by the 
default checkbox. The various types of controls are covered in depth in the section 
"Control Examples." These examples again demonstrate the automatic building of 
columns within rows. The first row has three controls and is displayed in three columns, 
while the second row has two controls and is displayed in two columns. The vertical 
spacing is again adjusted automatically to allow room for the controls. 

Listing 13-3 Multiple-row dialog script 

command name "picker" /* command name */ 

help "This line contains information " 

"on the nature of the command." 

/* help message */ 

row 

row 

option name "Pick a card" 

prefix "-p" 

/* start first row*/ 

/* first control */ 

help "This now has information on the option " 

"[-pl randomly pick a card." 

option name "Pick a name" /* second control */ 

prefix "-n" 

help ""This now has information on the option " 

"[-n] randomly pick a name." 

option name "Pick a spot" /* third control */ 

prefix "-s" 

help ""This now has information on the option " 

"[-s] randomly pick a spot." 

option name "output" 

outpopup 

option name "error" 

errpopup 

/* end first row */ 

/* start second row */ 

/* first control */ 

/* second control */ 

/* end second row */ 

The Commando script language 13-11 



Column example 

The following examples (Figure 13-7 and Listing 13-4) demonstrate the explicit definition 
of a column. Multiple columns can be defined within a row, with the horizontal spacing 
divided equally by the defined number of columns. Multiple columns containing different 
numbers of controls can be contained within the same row. Commando automatically 
adjusts the vertical height of the dialog box based on the number of controls in a 
particular column (within limits, of course). 

rPicker Options-----------------~ 
D Pick a card 
lZI Pick a name 
D Pick a spot 

Output 

r;;Command Line 
I picke<r -n -st -ct 

Error 

lZI Pick a street 
lZI Pick a city 
D Pick a state 
D Pick a country 

jr~;~ ~~amp lo demonstrates columns. I [ 
~L-------------------'·("-....,P•ic•k•e-r_.-") 

Cancel 

Figure 13-7 Multiple-column dialog box 

In the first bold area of Listing 13-4 the keyword column is used within the first 
row to put all three controls in the same column. The plain area between the bold areas 
contains a dummy column, one with nothing between its braces; it is used to create the 
blank column. The lower bold area starts another column specification, this time putting 
four controls in the column. Commando again takes care of adjusting the vertical spacing 
of the dialog box. 

listing 13-4 Multiple-column dialog script 

command name "picker" 

help "This example demonstrates columns." 

/* command name */ 

/* help message */ 

row { /* start first row */ 

colWlUl { /* start first colWlUl */ 

13-12 Chapter 13 Commando 



option name "Pick a card" 

prefix "-p" 

/* first control */ 

help "[-p] randomly pick a card." 

option name "Pick a name" 

prefix 11 -n" 

/* second control */ 

help "[-n] randomly pick a name." 

option name "Pick a spot" /* third control */ 

prefix 11 -s" 

help "[-s] randomly pick a spot." 

} /* end first column */ 

column {} 

column { 

/* dummy second column for spacing */ 

/* start third column */ 

option name "Pick a street" /* first control */ 

prefix "-st" 

help "[-s] randomly pick a street." 

option name "Pick a city" /* second control */ 

prefix "-ct" 

help "[-n] randomly pick a city." 

option name "Pick a state" /* third control */ 

prefix 11 -sta" 

help 11 [-n] randomly pick a state." 

option name "Pick a country" /* fourth control */ 

prefix "-c" 

help 11 [-s] randomly pick a country." 

} /* end third column */ 

} /* end first row */ 

row { 

option name "output" 

outpopup 

option name "error" 

errpopup 

/* start second row */ 

/* first control */ 

/* second control */ 

/* end second row */ 

The Commando script language 13· 13 



Nested dialog box example 

Figure 13-8 shows the next step in changing the structure, the addition of a button 
leading to a further dialog box (nested dialog boxes are also referred to as subdialogs). 
Here, a new dialog named Redirection was added to the first dialog box. Clicking the 
Redirection button leads to the subdialog, shown as the second dialog of Figure 13-8. 

Note that the second dialog box (the lower box shown in Figure 13-8) has a Continue 
button that returns the user to the first dialog box. Multiple nested dialog boxes can be 
specified (see Figure 13-2, "Commando Dialog Box for the UNIX Command lpr"). 

,picker Options------------------, 
D Pick ii card 
0Pick ii name 
IZI Pick ii spot 

rCommand Line 
p1ckE'r -s 

This oxamp lo domonstr ates columns. rHelp 

Output 
~Rod;re,tioo 

':Command Line 
L1cker -s 

(Redirection) 

I [ l Cancel 

picker D € 

Error 

Help-----------------, cancel 
This s1Jbdfalo9 allows you to redirect the comm.:ind output. jF.;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"\,. 

( continue D 
~---------------~ 

Figure 13-8 Further dialog example 

13-14 Chapter 13 Commando 



The bold area of Listing 13-5 shows the addition of the button named Redirection, 
which leads to a further dialog box. Buttons to access further dialogs are automatically 
sized to hold the button name. 

Listing 13-5 Further dialog script 

command name "picker" /* command name */ 

help "This example demonstrates columns." /*help message*/ 

row /* start first row */ 

column /* start first column */ 

option name "Pick a card" 

prefix "-p" 

help "[-p] randomly pick a card." 

option name "Pick a name" 

prefix "-n" 

help "[-n] randomly pick a name." 

option name "Pick a spot" 

prefix "-s" 

help" [-s] randomly pick a spot." 

/* end first column */ 

/* end first row */ 

dial·og name "redirection" /* start second dialog */ 

help "This subdialog allows you to " /* help message */ 

"redirect the command output." 

row { /* start first row */ 

option name "output" 

outpopup 

option name "error" 

errpopup 

} /* end first row */ 

The Commando script language 13-15 



Control examples 

Places in a dialog where the user can make a choice are called controls. These include 
checkboxes, radio buttons, text boxes, and buttons. Keyword specifiers define all 
controls available from the dialog box. The type of control is usually specified (a 
checkbox is the default). In addition, enabling and requirement dependencies can be 
defined (see the section "Dependencies"). An enabling dependency makes access to a 
particular control dependent on the state of some other control. A requirement 
dependency forces the user to select a control before the command line can be sent to 
the shell. The various types of controls are discussed in the following sections. 

Checkbox 

The checkbox is the default control type; it is a square box that the user selects or 
deselects by clicking it. The user selects each checkbox individually. Figure 13-9 shows 
examples of this type of control. 

[picker Options 
D Pick a card 

f:~ommand Line 
L1oker 

D Pick a name D Pick a spot 

Help--------------~ [ Cancel J 
This E'Xamp lie- demonstrates chi?okboxes. · · 

l picker ) 
'-------------------' 

Figure 13-9 Checkbox dialog example 

Listing 13-6 shows the script that produced the checkbox dialog example; the bold 
area contains a representative checkbox definition. You define the option name, 

prefix, and help specifiers for every checkbox. Place the text following each of 
these keywords between double quotation marks. The maximum number of checkboxes 
in a column is ten. 

Listing 13-6 Checkbox example script 

command name "picker" 

help "This example demonstrates " 

"checkboxes." 

13-16 Chapter 13 Commando 



row { 

option name "Pick a card" 

prefix 11 -p" 

help "[-p] randomly pick a card." 

option name "Pick a name" 

prefix "-n" 

help " [ -n] randomly pick a name." 

option name "Pick a spot" 

prefix "-s" 

help" [-s] randomly pick a spot." 

Radio buttons 

Radio buttons are similar to checkboxes but provide users with mutually exclusive 
controls; an example is shown in Figure 13-10. Users see associated radio buttons aligned 
in columns; a box, referred to as a named box, usually surrounds radio buttons to 
visually indicate that they are related. Commando automatically selects the first radio 
button in a set for the user. 

Due to an intentional layout error in the example, one of the labels in Figure 13-10 is 
too long and has extended outside the named box. This example demonstrates that you 
must choose control labels that fit within their column. 

picker Options---------------------, 

locommand Line 
L1cker -p 

----Pick one of these:·········· 
@Pick a card 
0 Pick a name 
O Pick a spot on the map 

Help---------------~ [ Cancel 
This example demonstrates radio buttons. e;;;;;!!;;;;;!!;;;;;!!;;;;;!!;;;;;!!~ 

~----------------~ 
n picker > 

Figure 13·10 Radio button dialog example 

The Commando script language 13-17 



The bold area of Listing 13-7 shows a definition for a set of radio buttons. The 
definition starts with the keyword radio but tons and encloses the set of individual 
controls in braces. Specify the keywords option name, prefix, and help for 
each button. Use a box to visually indicate the grouping of the radio buttons. To do this, 
use the keyword name or the keyword box within the radio button definition. The 
keyword name gives you a labeled box (as shown in Figure 13-10 and Listing 13-7); the 
keyword box creates a simple outline box. Commando automatically aligns radio 
buttons into columns. A maximum of seven radio buttons can be grouped in a set. By 
default, Commando selects the first radio button in a set, so make the first control the one 
that the user most often chooses. 

Listing 13-7 Radio button example script 

command name "picker" 

help "This example demonstrates " 

"radio buttons." 

row { 

column {} /* dummy column for spacing */ 

radio buttons { /* specify a set of radio buttons */ 

name "Pick one of these:" /* create a named grouping box */ 

option name "Pick a card" 

prefix "-p" 

help "[-p] randomly pick a card." 

option name "Pick a name" 

prefix "-n" 

help "[-n] randomly pick a name." 

option name "Pick a spot on the map" 

prefix 11 -s" 

help "[-s] randomly pick a spot." 

} 

column {} /* dummy column for spacing */ 

13-18 Chapter 13 Commando 



Text boxes 

A text box allows the user to enter text to be used in the command arguments. Text 
boxes are the width of the current column. Figure 13-11 shows an example of the use of 
these text input types. Note that when an input string contains blanks, Commando 
automatically encloses the string in single quotation marks to avoid confusing the shell. 
(For example, see the name Wally Eldridge shown in the Command Line box.) 

.-game m er p ions 
Before you play, the GameMaster needs to know: 

Your name: Your age: Games desired: 

I Wally Eldridge I 111 I NerdCity ~ 
Teenage Mutants 

fil: 
Command Line------------------~ 

g>mefindor -N 'W > lly Eldridge' - # 17 - TNordCity - T'T ••n•g• Mut.nts' 

r~~~~.mpl· demonstt-.t •• 1.xt box··- I :er ..... ..,c..,·a..,n..,ce..,• ..... ~ 
L~---------------------'· ( gamefinder D 

Figure 13-11 Text box dialog example 

Listing 13-8 shows the script used to create the dialog in Figure 13-11. As with a 
checkbox, specify the keywords option name, prefix, and help for each text 
box. Use one of the keywords string or stringlist to indicate the type of data 
to be input by the user. The keyword string allows entry of a single line of text, 
while string 1 is t allows entry of several lines, each of which is prefaced on the 
command line with the defined pref ix. Text boxes are the width of the current 
column. You can put a maximum of three string controls or two stringlist 

controls in a column. 
As mentioned previously, when an input string contains blanks, Commando 

automatically encloses the string in single quotation marks to avoid confusing the shell. 
Putting the keyword dontquote on the next line after the keyword command 

name turns off this quoting feature for the entire dialog (this variant is not shown). 

The Commando script language 13-19 



+ Note Some UNIX commands insist that no spaces come between an option and its 
argument on a command line. In these cases, you must include control characters in the 
prefix definition to remove the spaces normally inserted. This is indicated in the listings 
by a circumflex (")before a character. For example, "Y indicates CoNTROL-Y, and is 
placed just after an option to remove the space between the option and its argument. • 

I . Important Control characters do not normally print well; consequently, printouts of 
your dialog scripts might not show all the characters that are actually there. A circumflex 
followed by a letter is not a substitute for a control character. / 

Listing 13-8 shows various ways that text input is translated to the command line. The 
code in the top bold area of the listing formats input text on the command line with a 
space between the input text and the prefix. The code in the plain area between the bold 
areas defines a control having no space between the prefix and the text because of the 
CoNTROL-Y at the end of the prefix. You also can remove the space before a prefix by 
using a CoNTROL-H before the letter of the option. Each of these control characters can be 
used only once per option, though both can be used on a single option. The code in the 
bottom bold area of the listing shows how you can put several arguments having the same 
prefix on the command line, using the keyword stringlist rather than string. 

Listing 13-8 Text box example script 

command name "gamefinder" 

help "This example demonstrates text boxes." 

row 

option name "Before you play, the GameMaster needs to know:" 

text /* first control */ 

row {} /* dummy row for spacing */ 

row 

option name "Your name:" /* second control */ 

prefix "-N" 

13-20 Chapter 13 Commando 



help " [-N] This enters your name. 11 

string 

option name "Your age:" /* third control */ 

prefix "-#"Y" /* use Control-Y for spacing */ 

help"[-#] Your age determines the play level." 

string 

option name "Games desired:" /* fourth control */ 

} 

prefix 11 -T"Y" I* use Control-Y for spacing */ 

help 11 [-T] Specify all the games you want to try." 

stringlist 

Text 

Listing 13-8 also shows the use of the keyword text on the line labeled "first control." 
This control does not allow input, but simply places text in the dialog. Unlike controls 
that allow input, you don't specify the keywords pref ix or help. 

Buttons 

With dialog buttons the user can 

• open additional windows that allow access to files on which to operate and 
directories in which to save files 

• open a nested dialog box, allowing choices of additional options 

Dialog buttons are different from radio buttons, which select between mutually 
exclusive actions. Because dialog buttons have a different function, they are a different 
shape. Figure 13-12 shows examples of both types of dialog buttons; their names indicate 
their purpose. If the user clicks the Save a File button, a second dialog box appears (see 
Figure 13-13) and shows the standard Macintosh file dialog box for selecting a new 
filename. After the user selects a file, the original dialog box reappears (see Figure 13-14; 
note the filename in the Command Line box). If the user clicks the Redirection button, 
the dialog shown in Figure 13-15 comes up, allowing a choice of redirection options. 

The Commando script language 13-21 



,sauerOptions~~~~~~~~~~~~~~~~~~~~~~ 

, ... Required ...................................... , 

! ( Saue a File ) ! 
L ..................................................................... J 

rCommand Line 
saver 

(Redirection) 

[~~~~ample demonstrates both types of buttons. ] ;(;;;;;;;;;;;;;;;;C;;;;a;;;;nc;;;;e;;;;I;;;;;;;;~ 
n sm•or I 

Figure 13-12 Button example: Initial dialog box 

D <Hcl(om 
D <!db 
D <~~-
D <li-

D <!~!~ 
Cl h<!H~mmw 

Saue a file: 

I modem.test 

=I 

DriUe 

I OK D 
( Cancel 

Figure 13-13 Button example: Save a File dialog box 

,sauerOptions~~~~~~~~~~~~~~~~~~~~~~ 

;-··Required········ ............................ , 

!l Saue a File J ! 
L ..................................................................... .J 

f Command Line 
savf'r -s /bin/modem.test 

(Redirection) 

his example demonstrates both types of buttons. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; .... [
Help ] [ Cancel 

~~~~~~~~~~~~~~~~~~~~~ ( sauer J 

Figure 13-14 Button example: Save a File control was selected 

13-22 Chapter 13 Commando 



~:::::·,"'"" Errnr 

I.Command Line 
I :.aver -s /bin/modem.test 

Figure 13-15 Button example: Redirection subdialog box 

With dialog buttons you can call file dialogs or call a subdialog. With dialog buttons 
you don't have to use the keyword prefix, but it is good practice to always use the 
keyword help with them, though it is not required. You create file dialog buttons by 
putting one of the following keywords after the keyword opt ion name: 

file 

filelist 

newfile 

directory 

dirlist 

dirsandfiles 

filesanddirs 

The purpose of each keyword is listed in Table 13-1. (A complete list of keywords 
can be found in the section "Keywords.") 

Table 13-1 File dialog keywords 

Keyword 

file 

filelist 

newfile 

directory 

dirlist 

dirsandf iles 

filesanddirs 

outpopup 

errpopup 

Description 

Presents the single file choice menu 

Presents the file list choice menu 

Presents the new file creation menu 

Presents the single directory choice menu 

Presents the directory list choice menu 

Presents the file/directory choice menu; same as filesanddirs 

Presents the file/directory choice menu; same as dirsandfiles 

Presents the standard output pop-up menu 

Presents the standard error pop-up menu 

The Commando script language 13-23 



To redirect either the standard or error output, use the keywords outpopup and 
errpopup. You can use outpopup alone; however, to use errpopup, you must 
also use outpopup. 

To create dialog buttons that open a subdialog box, use the keyword dialog 

name. You must place this keyword after the close of a row definition (as is shown in the 
lower bold area of Listing 13-9). Define the name of the button with a text string 
(between double quotation marks) following the keyword. You can put a maximum of 
six buttons in a column. 

Listing 13-9 shows the script that produced the dialogs in Figures 13-12 through 13-15. 
The first button in the script (in the upper bold area of the listing) calls a file dialog, in this 
case to create a new file. The first button control is followed by two dummy columns to 
ensure that the button does not extend the entire width of the dialog. The second button 
(in the lower bold area of the listing) opens a subdialog whose only components are the 
redirection pop-up menus. 

These figures also illustrate the effects of a new keyword, required, found within 
the first control. The keyword required has the effect of disabling the command 
button until a file is selected (note the difference in the appearance of the button named 
saver between Figures 13-12 and 13-14). The keyword required can be used only in 
the first dialog of a script. The keyword name is used to place a box around the 
required control to notify the user to complete this control (see Listing 13-7). These 
keywords are discussed further in the next section, "Dependencies." 

Listing 13-9 Button example script 

command name "saver" 

help "This example demonstrates both types of buttons." 

row 

column 

name "Required" /* let user know about this */ 

option name "Save a file:" 

prefix "-s" 

/* first button */ 

help "[-s] Saves to chosen name." 

newfile 

required 

/* get a new file */ 

/* HAVE to get a new file */ 

13-24 Chapter 13 Commando 



} 

column {} 

column {} 

/* dummy column for spacing */ 

/* dummy column for spacing */ 

dialog name "Redirection" 

row { 

/* second button */ 

option name "output" 

outpopup 

option name "error" 

} 

errpopup 

Dependencies 

Controls can be selectively enabled, depending on the selection state of some other 
control. Controls that are disabled appear in gray (and are said to be dimmed); once the 
enabling dependency is satisfied, the control appears in black. Users can also be required 
to select an option. 

Figures 13-16 and 13-17 show a control dependency example. In Figure 13-16, the 
"Pick a card" control is selected (it is the default) so the "Card name" control is enabled, 
while the "Suit" controls are disabled. In Figure 13-17, this order is reversed; the "Suit" 
control is now enabled, while the "Card name" control is disabled. 

rcardfinder Options-------------------, 
·Pick one of these: ....... , Card name: ;···Suits 
i @ Pick a card , l J ! O H!<H k 
i O Pick a suit ~------ ! @ h!d 
L ....................................................................... .: 

r[ommand Line 
cardfinder -p 

L ................................... ································j 

[
Help J [ cancel J 
his exampli? di?monstrates enabling. · · 

K cardfinder B 
~----------------~ 

Figure 13-16 Dependencies example: First control selected 

The Commando script language 13-25 



,cardfinder Options---------------~ 
···Pick one of these: ......... C<n-d n<Hnc , ... suits .... . 
O Pick a card [ J • @ Black 
@ Pick a suit ,.................................................................... i 0 Red 

r,:Command Line 
I cardfinder -n -b 

............ . ............................. ~ 

Help--------------~ Cancel 
This example demonstr.:iti:-s enabling. ~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~ 

~---------------~ ( cardfinder J 
Figure 13-17 Dependencies example: Second control selected 

Controls without dependencies are enabled by default; controls with dependencies 
are disabled by default. To disable a control, simply make its enabling dependent on 
another control by using the keyword enab 1 es. You can enable controls in two ways: 

• Specify the prefix that must be in effect (showing in the Command Line box). The 
prefix must be identical to that used in the control specification, including any control 
characters within the prefix. 

• Specify the control option name (the quoted text following the keywords option 

name or name). For example, radio buttons are enabled as a set by enclosing them 
in a named box and putting the name of the box in double quotation marks after the 
keyword enables. 

For enabling dependencies to work, all dependent controls must be in the same 
dialog box. If necessary, place dependent controls together in a subdialog and enable a 
button that allows the user access to that subdialog. 

You can require that users select an option by using the keyword required. The 
keyword required can be used only on the first dialog of a script. It is helpful to the 
user to enclose any required controls in a box named Required (see the examples in 
Figures 13-12and13-14). 

Listing 13-10 shows the script used to created the dialogs shown in Figures 13-16 and 
13-17. The first control enables the third control (see the first and third bold areas of the 
listing), while the second enables the grouped fourth and fifth controls (see the second 
and fourth bold areas of the listing). The first control enables a single control by prefix; 
you can use this method for all kinds of controls. The second control enables the 
grouped controls by name. Use this method for specifying a set of radio buttons, for 
individual buttons, and for controls with blank prefixes. 

13-26 Chapter 13 Commando 



Listing 13-10 Dependencies example script 

command name "cardfinder" 

help "This example demonstrates enabling." 

row 

column 

name "Pick one of these:" 

radio buttons { 

option name "Pick a card" 

prefix "-p" 

/* first control */ 

help" [-p] This allows selection of a card." 

enables "-c"Y" /* enable a single control */ 

option name "Pick a suit" 

prefix "-n" 

help" [-n] Select a suit." 

/* second control */ 

enables "Suits" /* enable a group of controls */ 

option name "Card name:" 

prefix "-c"Y" 

help" [-cl This enters the card name." 

string 

/* third control */ 

radio buttons /* set up a group of controls */ 

name "Suits" 

option name "Black:" 

prefix "-b" 

!* fourth control */ 

help II [-bl Select from black suits." 

option name "Red:" 

prefix "-r" 

help " [ -r] Select from red suits." 

/* fifth control */ 

The Commando script language 13-27 



The order that options appear on the command line can be specified, in reverse 
order, by using the keywords 1ast1, 1ast2, and so on. An option with the keyword 
lastl appears last on the command line. An option with the keyword last2 

appears next to last, and so on. This feature can be used within a dialog box, and is 
nested across dialog boxes. For example, the lastl specification of an option in the 
first dialog box is put on the command line after an option with the lastl 

specification in any subdialog boxes. 

Boxes 

Outline boxes can be defined by using the keywords box or name. Each draws a box 
around a control or group of controls; the keyword name inserts a name at the top left 
of the box to identify its contents. The name can be as long as you like. However, if it is 
longer than the box, it overwrites the next column. Named boxes can be used to enable a 
group of radio buttons (see Figures 13-16 and 13-17, and Listing 13-10). The width of the 
boxes is the same as that of the current column. You can often make a dialog look better 
by inserting blank columns to reduce the width of the boxes (see Figures 13-7 and 13-10). 

Leniencies 

Commando is fairly forgiving when it comes to specifying column definitions. It is good 
about automatically creating columns, and usually the first column specification in a 
multiple column set does not need to be explicit. Radio buttons are automatically put into 
their own column. Commando is also reasonably well behaved as long as you don't try to 
put more than seven controls in a column (explicit or implicit). 

Keywords 

Table 13-2 alphabetically lists the keywords used in Commando. 

13-28 Chapter 13 Commando 



Table 13-2 Commando keyword reference 

Keyword 

box 

column { } 

cormnand name " name" 

dialog name "name" 

directory 

dirlist 

dirsandfiles 

disabled 

dontquote 

enables "specifier" 

errpopup 

file 

filelist 

filesanddirs 

help "help string" 

lastl .. n 

name 

newfile 

number 

option name "name" 

outpopup 

prefix "Prefix string" 

radio buttons { } 

required 

row { } 

string 

stringlist 

text 

Description 

Puts an outline box around a control or group of controls. 

Contains the contents of a column. 

Sets the name of the command in the invocation button. 

Sets the name for a nested dialog box and the button to access it. 

Presents the single directory choice menu. 

Presents the directory list choice menu. 

Presents the file/directory choice menu. Same as filesanddirs. 

Obsolete keyword. 

Turns off the quoting mechanism for text input. Affects all text fields in a 
dialog script. 

Enables other controls to be used. The control to be enabled is specified 
by its prefix. 

Presents the standard error redirection menu. 

Presents the single file choice menu. 

Presents the file list choice menu. 

Presents the file/directory choice menu. Same as dirsandfiles. 

Sets the help message for this section. 

Used to specify the order of controls. lastl indicates the last option on 
the command line. last2 is the next-to-last, and so on. 

Puts a named outline box around a control or group of controls. 

Presents the new file creation menu. 

Obsolete keyword. 

Sets the name of checkboxes and/or buttons. Required for each control. 

Presents the standard output redirection menu. Required if errpopup 
is used. 

Adels prefix string to the command line. 

Defines a set of radio buttons. The braces enclose the set of controls. 

One of the controls referenced by this keyword must be selected. 

Contains the contents of a row. 

Allows string input. The input box string width is the width of the 
current column. 

Allows several string inputs. The input box string width is the width of the 
current column. 

Displays the control name as text. 

The Commando script language 13-29 



Creating Commando dialogs 
Creating new Commando dialogs is a three-step process. First, you write a new script. 
This usually involves copying a script that has controls similar to the ones you want to 
use, then modifying it to fit your application. Second, you test and, if necessary, debug 
the script. Third, you make the script read-only and move it to one or more places so it 
can be invoked by all the users on the system. If necessary, you can compile the script 
into a resource. 

AB an introduction to the process of creating dialogs, the following section examines 
how dialogs are invoked. 

Invoking Commando dialogs 

To invoke Commando from CommandShell, you can use two methods. Enter 

cmdo commandname 

on the command line, or type 

commandname 

on the command line and choose Commando from the Edit menu. The keyboard 
shortcut for this second method is 

commandname COMMAND-K 

When Commando starts, it first searches the path listed in the variable $CMDODIR 

for resources, then for dialog scripts. After that, Commando searches for resources, then 
dialog scripts, in the directory in /mac I lib/ cmdo that have the same first letter as the 
command name you are invoking. (For example, if the invoked command is lpr, 

Commando searches the directory /mac/lib/cmdo/l.) Finally, Commando searches 
your $PATH variable for resources (this might result in a long search if $PATH 

includes many directories). 
Make sure that the commands on the command line created by your dialog script are 

locatable by the shell. The normal command search path is contained in the $PATH shell 
variable. By default, this variable is set to /bin: /usr /bin: /usr /ucb: /mac /bin:, 

though this might be changed by system initialization files (such as . prof i 1 e or 
. login). 

13-30 Chapter 13 Commando 



Commando is also invoked when you double-click a UNIX application, utility, or 
shell script icon. This method is not efficient when you are testing dialog scripts. 

Writing Commando dialogs 

Although the Commando script language is reasonably straightforward, it is not 
foolproof. The Commando scripts that reside on each A/UX system (in 
/mac/lib/ cmdo/ *I*) have all been debugged and tested. Consequently, you can 
save time if you simply modify a script that already exists instead of trying to write your 
own script from scratch. This is especially true because some scripts use nonprinting 
control characters to enable controls, and such scripts are sometimes difficult to debug 
from printouts. 

Testing Commando dialogs 

Commando dialogs are easy to test, even when the script file is still open. When 
Commando is searching for script files, it searches the directories listed in the section 
"Invoking Commando Dialogs." Therefore, once you have written your script, simply 
place it in the directory within I mac /1 i b I cm do that has the same first letter as the 
name of your script. The file should have read permission for your users. If you've copied 
and modified a file that already existed, you probably don't need to change the 
permissions. To set the permissions so that the file is readable by everyone, use the 
command line 

chmod 444 scriptname 

If you are using TextEditor to edit a Commando file, simply save the file (you don't 
have to close it) in the appropriate directory within /mac/lib/cmdo. Commando 
interprets and runs the last saved version of your script. If it doesn't perform or look quite 
right, simply edit the file, save it again, and reinvoke the script using one of the command 
lines discussed earlier in this chapter. 

Creating Commando dialogs 13-31 



Compiling Commando dialogs 

Compiling a script into a resource file allows you to customize its appearance. Various 
attributes, such as the size of dialog boxes and the shape of controls, can be modified 
using the Commando resource editor available in MPW. 

To create a Commando resource, use the command line 

cmdo scriptname -r -n -o outputfile 

This creates a resource file with the name outputfile. Move the file into a directory 
common to all users' $PATH variable, such as /usr /bin, so that all users can access 
it. After the file is moved, it must be renamed to scriptname so that Commando can locate 
the source dialog. 

The command, the script, and the compiled resource must all have the same name 
(the resource file has a leading %). 

Dialog design guidelines 
This section offers general guidelines to assist you in planning your Commando dialogs. 
It is not meant to be authoritative, but does present what has been found to work best. If 
the needs of your applications demand it, you are free to do anything you want; but keep 
in mind that one of the things that makes the Macintosh so easy to use is its consistency 
of interface. Your design goal is to help users find choices where they expect to find 
them, instead of having to hunt for them. You can find many helpful hints in Human 
Interface Guidelines: The Apple Desktop Interface. 

Dialog layout guidelines 

Generally, it should be easy for the user to see what information is required before a 
command can be run and what controls are currently selected. 

When a script calls for nested dialog boxes, all required arguments, as well as the 
most frequent or useful arguments, should be in the first dialog box. In general, try to 
reduce the number of dialogs to a minimum. Ideally, the user should be able to see 
everything in one dialog, so that it is immediately clear from the dialog box which 
controls have been chosen. 

13-32 Chapter 13 Commando 



The layout of controls within a dialog should correspond to the direction people 
normally read. Required arguments, if any, should be distinguished from optional 
arguments and presented in the first part of the first dialog page. The most important or 
frequently used arguments should follow after the required arguments. For example, in 
France people usually read left to right and top to bottom, so the layout of the dialog and 
controls should follow this pattern. 

Use boxes to group similar items. Boxes can separate columns, portions of columns, 
or clusters of buttons. Boxes do not have to be labeled, though labels are often useful. 

Buttons to select files or directories (or both) should be placed on the first dialog page 
when possible. Use the keywords lastl, last2, and so on to permit this arrangement. 

Normally, each dialog item corresponds to a single control or argument. In some 
cases, however, a command can have one or more commonly used group of controls. In 
these cases, some of the dialog items might correspond to control clusters. Note that the 
user should still be able to select all controls individually. 

Use the keyword string if the possible values are infinite. If the number of values 
is a small, finite number, try to use radio buttons. 

There are several standards for subdialog names: 

• Subdialogs containing only Output and Error pop-up menus should be labeled 
"Output & Error." 

• If a dialog contains only one subdialog of unrelated options, that subdialog should be 
labeled "More options." If the options are closely related, that relationship can be 
used to name the subdialog. 

• If a dialog contains several subdialogs containing unrelated options, these subdialogs 
should be named "Options 1," "Options 2," and so on. 

Dialog aesthetics 

Try to avoid mixing control types (checkboxes, radio buttons, text boxes, and buttons). 
Try to make the dialog page look balanced. With few exceptions, dialog boxes look best 
with two columns per row. Use empty columns for spacing to prevent a column from 
appearing too wide. 

Don't juxtapose unrelated sets of radio buttons. Remember that the first radio button 
in a cluster is turned on by default. Take care to choose a default that is reasonable. It is 
often a good idea to add a button to a cluster of controls to represent the default action. 

Dialog design guidelines 13-33 



Descriptive information 

The labels associated with a dialog item should be understandable by the UNIX-naive 
user whenever possible. Options should be described in terms of the results that the user 
will see, rather than in terms of the underlying UNIX concepts. 

Filename arguments should be specified by their function or role. For example, use 
"Files to be searched" rather than "Input." 

Always try to show the effects of defaults. One example is to label the pop-up menus 
for output files "Output to" so that the default behavior is displayed on the screen. 

Put useful information on the screen if it doesn't lead to clutter. For example, the 
UNIX command date takes as an argument a string formatted mmddhhmm [ yy J • This 
format is small, useful, and easy to forget. It can be placed just above the text box where 
the user can refer to the format when entering the date. Examples of more extended 
information should be placed in the help message. 

The help messages should expand on the text in the upper portion of the dialog box 
to provide information and, where possible, examples. Don't simply repeat the control 
text for the help message. If you can't think of anything else to add, rephrase the control 
text in case the user didn't understand the original text. When the user has to type in 
something, give examples of common usages. 

13-34 Chapter 13 Commando 



Index 

%nonassoc keyword 3-24 
%prec keyword 3-25 
%right keyword 3-24 
%type keyword 3-37, 3-38 
.DEFAULT target 7-10 
• IGNORE target 7-10 
.MAKESTOP target 7-10 
. PRECIOUS target 7-10 
.SILENT target 7-10 
/usr/lib/MakeRules file 7-9 

A 
accept action 3-14 
addch function 12-8 
addch routine 12-4, 12-28 
addstr routine 12-16, 12-28 
admin command 8-3, 8-22 
alphabetic keyword reference 13-29 
ar command 6-3 
archive 6-3 
attroff routine 12-32 
attron routine 12-32 
attrset routine 12-8, 12-32 
auto statement 11-10 
awk 9-1 to 9-61 

action 9-5 
action block 9-4 
actions 9-20 to 9-34 

arrays 9-38 
special for loop 9-40 

assignment operators 9-37 
BEGIN pattern 9-5, 9-19 
braces 9-54 
built-in 

functions 9-47 
numerics 9-49 
variables 9-11, 9-40 
comments 9-5 

conditions 9-22 
expressions 9-22 

data structures 9-35 to 9-41 
data type determination 9-46 
directing output 9-34 
END pattern 9-5, 9-19 
expressions 9-21, 9-41to9-50, 9-60 

assignment 9-61 
field separator 9-6 
flow of control 9-23 
functions 9-22, 9-57 
identifiers 9-52 
input processing 9-11 
invocation 9-7 
lexical conventions 9-50 
looping constructs 9-23 
matching operation 9-15 
numeric constants 9-50 to 9-51, 9-55 
operation 9-3 

operators 
arithmetic 9-42 
assignment 9-42 
logical 9-44 
pattern-matching 9-44 
relational 9-43 
symbols 9-22 

options 9-6 
pattern 9-5 
pattern-seeking operation 9-15 
patterns 9-14 to 9-20 

expressions 9-15 
predefined variables 9-51 
primary expressions 9-55 
printing 

output 9-30, 9-31to9-34 
variables 9-32 

program components 9-21 
reading input 9-29 
records 9-54 
regular expression 9-17 
report generation 9-27 
reserved function names 9-51 
reserved keywords 9-51 
separators 9-53, 9-54 

field 9-53 
record 9-53 

shell interactions 9-9 
shell scripts 9-9 

In-1 



awk (continued) 

B 

special characters 9-17 
string constants 9-51, 9-56 
system command 9-34 
terms 9-58 to 9-60 

binary 9-58 
unary 9-59 

tokens 9-50 
variable initialization 9-37 
variables 9-35, 9-56 to 9-57 

incremented 9-59 

backslash escape 5-9, 5-10 
backspace escape 5-9, 5-10 
baudrate function 12-33, 12-47 
be program 11-1to11-20 

arrays 11-9 
assignment statements 11-12 
automatic variables 11-8 
comments 11-5 
constants 11-6 
control statements 11-13 
defining functions 11-7 
exiting 11-4 
expressions 11-15 to 11-17 
function calls 11-7 
global variables 11-9 
I/0 base 11-17to11-19 
identifiers 11-6 
keywords 11-6 
operators 11-16 
program files 11-4 
program syntax 11-5 
relational operators 11-14 
scale 11-19 to 11-20 
statements 11-10 to 11-11 
syntax 11-3 
usage 11-3 

bdiff command 6-2 
beep routine 12-17, 12-33 
BEGIN pattern 9-5 
box keyword 13-28, 13-29 

In-2 Index 

box routine 12-30 
boxes 13-19, 13-28 
break statement 9-23, 11-10 

c 
C flowgraph, cflow 2-2 
C-language, escapes 5-9 
C preprocessor, cpp 2-3 
calling dialogs 98 
cb 2-2 
CBREAK mode 12-23 
cbreak routine 12-3, 12-5, 12-23 
cdc command 8-26 
cflow command 2-2 
changequote macro 4-4 
checkbox 13-16 
clear routine 12-28 
clearok routine 12-16, 12-20 
close function 9-30 
clrtobot routine 12-28 
clrtoeol routine 12-28 
cmdo command 13-30 
COFF symbol table 2-5 
column keyword 13-7, 13-29 
comb command 8-26 
comm command 6-2 
command name 13-6, 13-9 
command name keyword 13-29 
Commando 

dialog boxes 13-4 
keyword reference alphabetic 13-29 
script language 13-5 

comments 13-7 
awk 9-5 
be 11-5 
make 7-12 
yacc 3-6 

compiling dialogs 13-32 
condition 9-22 
continue statement 9-23 
control 

characters 13-20 
dependencies 13-25 
examples 13-16 

cpp, with make 7-51 
cpp language 2-3 
creating Commando dialogs 13-30 
ctags command 2-4 
curses 12-1to12-67 

additional terminals 12-40 
CBREAK mode 12-23 
constants 12-18 
curses.h fik 1~19 
delays 12-34 
examples 12-47 to 12-67 
function keys 12-6 
highlighting 12-8 
initialization 12-19 
input 12-5 

terminal 12-31 
terminating 12-17 

lower-level functions 12-35 
mini-curses 12-43 
multiple terminals 12-11, 12-40 
operation 12-39 to 12-47 
options 12-20 
output 12-4, 12-25 
portability 12-46 

functions 12-33 
routines 12-18 
scrolling 12-43 
special keys 12-42 
structure 12-18 
terminal mode 12-23 
terminfo 12-35 
terminfo usage 12-13 
TIY-mode functions 12-15 
typeahead check 12-45 
usage 12-3 
variables 12-18 
video attributes 12-32, 12-41 
windows 

attributes 12-8 to 12-9 
manipulation 12-24 
multiple 12-10 
writing 12-27 

curses. h file 12-19 



D 
de program 10-1 to 10-10 

arrays 10-7 
base numbering 10-4 
commands 10-4 
input conversion 10-4 
operators 10-3 
output commands 10-5 
programming 10-9 to 10-10 
reference 10-8 
registers 10-7 
registers, internal 10-6 
scale 10-5 
scale rules 10-5 
stack commands 10-6 
subroutine definitions 10-6 
syntax 10-2 
usage 10-2 

deer function 4-9 
define function 4-3, 11-10 
delay _output routine 12-39 
delch function 12-16 
delch routine 12-29 
deleteln function 12-16, 12-29 
delta command 8-5, 8-28 
delwin routine 12-25 
dependency 7-4 
description file (see makefile) 7-13 
dialog boxes 13-4 

aesthetics 13-33 
design 13-32 
invoking 13-30 
layout 13-5, 13-32 
text in 13-33 

dialog name keyword 13-23, 13-29 
diff command 6-2 
diff3 command 6-2 
diffdir command 6-2 
diffmk command 6-2 
directory keyword 13-23, 13-29 
dirlist keyword 13-23, 13-29 
dirsandfiles keyword 13-23, 13-29 
disabled keyword 13-29 
disambiguating rule 3-20 

divert function 4-11 
di vnum function 4-13 
dnl macro 4-14 
dontquote keyword 13-19, 13-29 
doupdate routine 12-26 
draino routine 12-34 
dummy column 13-12 
dumpdef macro 4-16 

E 
ECHO function 5-20 
echo routine 12-23 
enables 13-26 

keyword 13-29 
enabling 

by name 13-27 
by prefix 13-27 

END pattern 9-5 
end-markertoken 3-8, 3-13 
endwin routine 12-4, 12-19 
erase routine 12-28 
erasechar function 12-33, 12-46 
error 

action 3-14, 3-16 
redirection 13-23 
token 3-13, 3-27 

errpopup keyword 13-23, 13-29 
errprint macro 4-16 
eval function 4-9 
exit statement 9-24 
exp function 9-58 

F 
filelist keyword 13-23, 13-29 
files 

COFF sections 6-2 
comparing 6-2 
dialog keywords 13-23 
finding 6-2 
keyword 13-23, 13-29 
manipulation tools 6-1 
version 6-3 

filesanddirs keyword 13-23, 13-29 

find command 6-2 
flash routine 12-17 
floating-point constants, in lexical 

analysis 3-47 
flushinp routine 12-34, 12-47 
for loop 9-25, 9-40 
for statement 11-13 

be 11-12 
function, finding definition 2-4 

G 
get command 8-6, 8-30 
getch routine 12-6, 12-31 
getline command 9-24, 9-30 
getstr routine 12-6, 12-32, 12-46 
getyx routine 12-30 
goto action 3-15 
grammar rules 3-3 

left recursive 3-31 
right recursive 3-32 

gsub function 9-49 

H 
help 13-6, 13-9 
help command 8-6, 8-39 
help keyword 13-29 
help messages 13-34 

length 13-9 

I, J 
ibase function 11-17 
idlok routine 12-3, 12-20 
if statement 9-24 

be 11-12 
ifdef macro 4-6 
ifelse macro 4-8 
inch routine 12-30 
include function 4-10 
incr function 4-9 
index function 9-52 
index macro 4-15 
initscr routine 12-3, 12-19 

Index In-3 



input routine 5-23 
insch function 12-16, 12-29 
insertln function 12-16, 12-29 
int function 9-57 
intrflush routine 12-22 
invoking dialogs 13-30 
iodlk routine 12-39 

K 
keypad routine 12-6, 12-21, 12-42 
keyword 

box 13-18, 13-28, 13-29 
column 13-7 
corrrrnand name 13-6, 13-9 
dialog name 13-23 
directory 13-23 
dirlist 13-23 
dirsandfiles 13-23 
dontquote 13-19 
enables 13-26 
errpopup 13-23 
file 13-23 
filelist 13-23 
filesanddirs 13-23 
help 13-6, 13-9 
lastl 13-28 
name 13-18, 13-28, 13-29 
newfile 13-23 
outpopup 13-23 
prefix 13-10 
required 13-24, 13-26, 13-29 
row 13-7 
string 13-20 
stringlist 13-20 
text 13-21 

killchar routine 12-34, 12-46 

L 
lastl 13-28 

keyword 13-29 
leaveok routine 12-21 
left association 3-19 
len macro 4-14 

In-4 Index 

length function 9-48, 11-10 
lex 5-1 to 5-31 

actions 5-9 to 5-26 
alternation 5-14 
ambiguous rules 5-18 to 5-19 
arbitrary characters 5-9 
character classes 5-7 
character set 5-7 
compilation 5-27 
context sensitivity 5-14 
definition expansion 5-12 
definitions 5-10 
examples 5-27 to 5-29 
expressions 

operators 5-31 
optional 5-13 
regular 5-12 
repeated 5-13 

flags 5-16 
I/0 routines 5-23 
null statement 5-20 
operators 5-9 
repetition character 5-20 
repetitions 5-12 
rules 5-12 
start conditions 5-17 
substitution strings 5-11 
summary 5-29 
syntax 5-6 
usage 5-3 
variables 5-10 
yacc usage 5-4 

library 6-3 
log function 9-57 
longname routine 12-20, 12-44 
look-ahead token 3-14 

M 
m4 macro processor 4-1 to 4-20 

arguments 4-7 
arithmetic 

functions 4-9 
operators 4-9 

I/0 4-10 

invocation 4-3 
macro 

definition 4-3 
summary 4-19 

printing 4-16 
quoting 4-5 
recursive definitions 4-17 
string manipulation 4-14 
system commands 4-16 

Macintosh dialog boxes 13-3 
macro 

arguments 4-7 
definition 4-3 
replacement 4-7 

make 

archive libraries 7-40 to 7-42 
attributes 7-38 to 7-39 
built-in macros 7-31 
built-in targets 7-10 
colons 7-11 
combining commands 7-19 
command syntax 7-5 
commands 7-12 
comments 7-13 
defaultcommands 7-19 
default rules 7-28 
dependency 7-4 
dependency statement 7-11 
description file 7-8. See also makefile 
dynamic dependency parameters 7-16 
Dynamic Include File Dependency 

Generation (DIFDG) 7-50 
environment variables 7-28 
errors 7-18 
include directives 7-51 
include lines 7-13 
internal macros 7-15 
macros 7-29 

definitions 7-13 
expansion 7-30 
expansion characters 7-33 to 7-34 
setting defaults 7-26 
testing 7-37 
translation 7-48 



makefile 7-3, 7-20 
entries 7-9 

mnemonic targets 7-47 
operation 7-28 
options 7-6, 7-18 
precedence 7-35 
predecessor trees 7-45 
printing command names 7-18 
rules 7-21 

user defined 7-9 
SCCS files 7-42 to 7-43 
special characters 7-33 to 7-34 
suffix list default 7-27 
suffixes 7-20 
target 7-4 
transformation rules 7-21 to 7-27 
usage 7-3 
walking directory trees 7-44 

make program 7-8 to 7-52 
MAKEBDIR macro 7-31 
MAKECDIR macro 7-31 
makefile 7-3, 7-20 

writing 7-3 
MAKEFLAGS environment variable 7-35 
MAKEFLAGS macro 7-31 
MAKEGOALS macro 7-31 
MAKELEVEL macro 7-31 
match function 9-49 
meta routine 12-21 
mini-curses 12-43 
move routine 12-3, 12-27 
mvcur routine 12-35 
mvinch function 12-16 
mvwin routine 12-25 

N 
name 13-18 
name keyword 13-28, 13-29 
napms routine 12-34 
newfile keyword 13-23, 13-29 
newline escape 5-10 
newpad routine 12-24 
newterm routine 12-12, 12-20 
newwin routine 12-10, 12-24 

next statement 9-24 
nl routine 12-23 
nm command 2-5 
node function 3-11 
nodelay routine 12-5, 12-21, 12-46 
noecho routine 12-5 
nonterminal symbol 3-3, 3-6, 3-7 
null statement 5-20 
number keyword 13-29 

0 
obase function 11-17, 11-18 
octal dump 2-5 
od command 2-5 
option 

p 

dependencies 13-25 
leniencies 13-28 
name 13-9 
name keyword 13-29 
order 13-28 
type 

checkboxes 13-16 
radio buttons 13-17 
text 13-20 to 13-21 
text box 13-19 

outpopup keyword 13-23, 13-29 
output redirection 13-23 
output routine 5-23 
overlay routine 12-25 
parse trees 3-11 
parser 3-3 
prefix keyword 13-10, 13-29 
prefresh routine 12-26 
print command 9-30, 9-31 to 9-32 

variables 9-32 
printf command 5-20, 9-31, 

9-33, 9-35 
printw routine 12-4, 12-30 
prof command 2-2 
profile data, prof 2-2 
program structure, cb 2-2 

prs command 8-39 
putp routine 12-39 

Q 
quit statement 11-11 
quotes, macros 4-5 

R 
radio buttons keyword 13-18, 

13-29 
raw routine 12-23 
reduce action 3-14 to 3-15 
refresh mode 12-25 
refresh routine 12-4 
REJECT action 5-25 
repetition character 5-20 
required keyword 13-24, 13-26, 13-29 
resetty routine 12-24 
return statement 11-8, 11-11 
right association 3-19 
rmdel command 8-41 
row keyword 13-7, 13-29 

s 
sact command 8-42 
scalars 3-46 to 3-47 
scale function 11-3, 11-11 
SCCS 8-1 to 8-44 

administering 8-9 
arguments 8-16 
branch deltas 8-14 
change comments 8-26 
command summary 8-22 
commands 8-16 
comments 8-24 to 8-25, 8-28 to 8-29 
delta 

combination 8-26 
numbering 8-13 
removal 8-41 

descriptive text 8-25 
diagnostics 8-17 
ERROR 8-17 

Index In-5 



SCCS (continued) 
files 8-7 to 8-15 

accounts 8-42 
arguments 8-16 
auditing 8-12 
check characteristics 8-43 
comparison 8-43 
corrupt 8-13 
creating 8-3, 8-22 
format 8-12 
temporary 8-17, 8-27 

flags 8-17, 8-23 
group projects 8-9 
!Dke)l\Vords 8-20 
identification string 8-3 
keyletters 8-16, 8-37 
keywords 8-29 
modification request (MR) numbers 

8-24, 8-28 
new versions 8-27 
on-line explanations 8-39 
on-line information 8-6 
printing 8-39 
protection 8-7 
restoring version 8-38 
retrieving versions 8-5, 8-30, 8-31 
SID determination 8-35 

sccsdiff command 8-43 
screen l/0, see curses 12-1 
script structure 13-6, 13-8 
scroll routine 12-30 
scrollok routine 12-22 
set_term routine 12-20 
setscrreg routine 12-22, 12-43 
setuid bit 8-11 
setupterm routine 12-14, 12-36 
SHELL variable 7-29 
shift action 3-14 
shift/reduce conflict 3-20 
SID. See SCCS, identification string 
s include function 4-10 
size command 6-2 
sort command 9-28 
split function 9-47 
sprintf function 9-49 

In-6 Index 

sqrt function 9-57, 11-10 
standend routine 12-32 
standout routine 12-32 
stdscr routine 12-10 
string keyword 13-19, 13-29 
stringlist keyword 13-19, 13-29 
strings 

quoting 4-5 
sharing 2-4 

substr macro 4-15 
substring function 9-48 
subwin routine 12-24 
syscmd macro 4-16 
system command 9-34 

T 
tab escape 5-10 
target 7-4 
termcap database 12-2 
terminal symbol 3-3 
terminfo 

database 12-2, 12-35 
usage 12-13 

terms 9-58 
testing dialogs 13-31 
text box ke)l\Vord 13-19 to 13-20 
text keyword 13-21, 13-29 
tokens 3-3, 9-50 

error 3-27 
look-ahead 3-14 
names 3-13 
number 3-12, 3-13 

touch command 7-47 
touchwin routine 12-25 
tparm routine 12-38 
tputs function 12-15, 12-38 
typeahead routine 12-22 

u 
undefine macro 4-6 
undi vert function 4-11 
unget command 8-38 
unput routine 5-23 

v 
val command 8-43 
version command 6-3 
vidat tr routine 12-38 
viputs routine 12-38 
VPA'l'H macro 7-23 

w 
what command 8-43 
while loop 9-24 

be 11-12 
window structure 12-4 
wrefresh routine 12-10 
writing dialogs 13-31 

x 
xstr command 2-4 

Y,Z 
Y. output file 3-16, 3-26 
yacc 3-1 to 3-56 

actions 3-8 to 3-11, 3-34 
ambiguity 3-19 
arithemetic expressions 3-23 
comments 3-6 
conflict resolution 3-26 
conflicts 3-19 
declarations 3-11, 3-13 
environment 3-29 
error handling 3-4, 3-27 
escapes 3-7 
examples 3-38 to 3-55 
floating-point constants 3-46 
grammar rules 3-6 
hints 3-31 
input 3-31 
lex usage 5-3 
lexical 

analysis 3-12 to 3-13 
considerations 3-32 

library 3-30 
literal characters 3-4 



null character 3-7 
parser 

operation 3-14 to 3-18 
steps 3-14 

precedence 3-23 to 3-26 
rules 3-25 

recursion 3-31 to 3-32 
reserved words 3-34 
specifications 3-6 to 3-8 

files 3-4 

tokens 3-12, 3-13 
type checking 3-37 
union 3-36 
usage 3-3 
values 3-36 

YYACCEPT macro 3-34 
yychar variable 3-30 
yyclearin statement 3-29 
yydebug variable 3-30 

yyerror function 3-30 

YYERROR macro 3-34 
yyerrorok statement 3-28 
yyleng count 5-21 
yyless routine 5-22 
yylex function 3-12 
yymore routine 5-22 
yyparse function 3-29 
yywrap routine 5-24 

Index In-7 



The Apple Publishing System 

A!UX Programming Languages and Tools, Volume 2, 
was written, edited, and composed on a desktop 
publishing system using Apple Macintosh computers, an 
AppleTalk network system, Microsoft Word, and 
QuarkXPress. Line art was created with Adobe Illustrator. 
Proof pages were printed on Apple LaserWriter printers. 
Final pages were output directly to 70-mm film on an 
Electrocomp 2000'Electron Beam Recorder. PostScript, 
the LaserWriter page-description language, was 
developed by Adobe Systems Incorporated. 

Text and display type are Apple's corporate font, a 
condensed version of ITC Garamond®. Bullets are ITC 
Zapf Dingbats®. Some elements, such as program 
listings, are set in Apple Courier, a fixed-width font. 

Writer:]. Eric Akin 
Developmental Editor: Scott Smith 
Design Director: Lisa Mirski 
Art Director: Tamara Whiteside 
Production Editor: Debbie McDaniel 

Special thanks to Jeannette Allen, Tom Berry, Vicki 
Brown, Gene Garbutt, Michael Hinkson, Kristi 
Fredrickson, John Morley, John Sovereign, Earl Wallace, 
Kathy Wallace, Kristen Webster, Laura Wirth, and Chris 
Wozniak. 


	00-01-i
	00-02-ii
	00-03-iii
	00-04-iv
	00-05-v
	00-06-vi
	00-07-vii
	00-08-viii
	00-09-ix
	00-10-x
	00-11-xi
	00-12-xii
	00-13-xiii
	00-14-xiv
	00-15-xv
	00-16-xvi
	00-17-xvii
	00-18-xviii
	00-19-xix
	00-20-xx
	00-21-xxi
	00-22-xxii
	00-23-xxiii
	00-24-xxiv
	00-25-xxv
	00-26-xxvi
	00-27-xxvii
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	06-001
	06-002
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	12-001
	12-002
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	12-49
	12-50
	12-51
	12-52
	12-53
	12-54
	12-55
	12-56
	12-57
	12-58
	12-59
	12-60
	12-61
	12-62
	12-63
	12-64
	12-65
	12-66
	12-67
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08



