
NUX Command Reference
Section l(G-P)

Release 3.0

LIMITED W ARRAN1Y ON MEDIA AND REPIACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple's Media Exchange
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the date of your original purchase. See your authorized Apple dealer for program
coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON TIIE MEDIA AND MANUMS, INCLUDING IMPLIED WARRANTIES
OF MERCHANTABIIJ1Y AND FITNESS FOR A PARTICULAR PURPOSE, ARE UMITED IN
DURATION TO NINE1Y (90) DAYS FROM TIIE DATE OF TIIE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITIIER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFIWARE, ITS QUAIITY, PERFORMANCE, MERCHANTABII11Y, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFIWARE IS SOLD "AS IS," AND YOU, TIIE PURCHASER, ARE
ASSUMING TIIE ENTIRE RISK AS TO ITS QUAIITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN TIIE SOFIW ARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

TIIE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF All
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

S Apple Computer, Inc.

© 1992, Apple Computer, Inc., and UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws, this
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original.
Under the law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" Apple logo
(Option-Shift-k) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, Image Writer, LaserWriter, and Macintosh are trademarks of Apple Computer,
Inc., registered in the United States and other countries.

B-NET is a registered trademark of UniSoft Corporation.

DEC and VT102 are trademarks of Digital Equipment Corporation.

Diablo and Ethernet are registered trademarks of Xerox Corporation.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

Hewlett-Packard 2631 is a trademark of Hewlett-Packard.

IBM is a registered trademark of International Business Machines Corporation.

NFS is a trademark of Sun Microsystems, Inc.

Postscript and TranScripts are trademarks of Adobe Systems Incorporated, registered in the United States.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

A/UX Command Reference

Contents

About This Manual

Section 1 User Commands (G-P)

- v -

About This Manual

This manual is one of three primary manuals in the set of A/UX reference
manuals. AIUX Command Reference, A/UX Programmer's Reference, and
A/UX System Administrator's Reference contain information about most of the
provisions of A/UX, such as its commands, its library routines, its system calls,
and its file formats.

These reference manuals constitute a compact encyclopedia of A/UX
information. As in an encyclopedia, the information is subdivided into
subdocuments, or ''manual pages.'' The information in each manual-page
subdocument adheres to a distinctive presentation format. For example,
information about command syntax is consistently presented under the heading
"Synopsis." (This format is described in detail later in this preface.)

Because most of us need occasional reminders regarding the order and kind of
arguments that can accompany a command, the information in the ''Synopsis''
and "Arguments" sections is presented for use by users at all levels. However,
the information in the ''Description'' section is often written for more advanced
users; novices most likely will not be able to learn about the provisions of A/UX
from these reference manuals alone.

Because these reference manuals are not intended to be tutorials or learning
guides, they should not be the first A/UX books you read. If you are new to
A/UX or are unfamiliar with a specific functional area (such as the Macintosh
Finder), you should first read AIUX Essentials and the other A/UX user guides.
After you have worked with A/UX, the reference manuals can help you
understand new features or refresh your memory about features you already
know.

Manual pages: a standard for presenting information
The headings conventionally used in the manual pages have virtually become an
industry standard for reference documents. Furthermore, the way that this large
collection of subdocuments is conventionally organized into sections and books
is also something of a standard.

Despite the standardization, locating specific information within this large body
of documentation can often be difficult. First you must locate the correct
manual page. Once you have the correct manual page, you can usually go

- vii -

directly to the correct subsection.

To help you locate information, you should read the next section, which
explains several means of finding the information you need.

To help you learn to use these books more effectively, other sections in this
preface describe the presentation standards that are being used. Some of these
are organizational standards that apply at the book and section level. Other
conventions and content standards apply within the scope of each manual page,
such as the use of standard subheadings and the conventional use of certain
fonts and text styles.

Note that the most durable standards have been the standards that apply to the
organization and primary headings of each manual page. Of course there are
areas in which the A/UX reference books are exceptional, particularly in their
more regular use of headings. These books also deviate from industry standards
in a few typographic and style areas, which are described later in this preface.
For example, the Courier font is used consistently to represent text that is
displayed in a terminal window or entered as part of a command line. Other
UNIX® books often use boldface type to represent such text.

There has been more instability with respect to how the manual pages are
collected into sections and books. For more detailed information, see ''Previous
Organization of Sections into Books'' later in this preface.

Locating information in the reference manuals
You can locate information in the reference manuals by using one of the
following tools:

• Table of contents. Each reference manual contains one general table of
contents for the entire manual. Located at the beginning of each new
section of manual pages is a detailed table of contents. (If a section must
span from one binder to another, a tailored table of contents is provided for
each of the subdivisions.) The general table of contents lists the sections
covered in the complete manual. The detailed table of contents lists the
manual pages contained within one section (or section subdivision) along
with a brief description of the A/UX provision that is covered in each
manual page.

• Query commands. The man, what is, and apropos commands display
on-screen all the information contained in a manual page or just the
information in the "Name" section of one or more manual pages that

- viii -

satisfy a search criterion. The next sections tells you how to use the on-line
versions of the manual pages.

• AIUX Reference Summary and Index. This separate manual is considered
part of the A/UX set of reference manuals, but it is not a ''standard''
resource like the other reference materials. Its primary purpose is to help
you locate the correct manual page to refer to in other books. From its
summaries, you might also occasionally find all the information you
required. It contains the following subsections:

• ''Commands by function.'' This subsection classifies the A/UX user
and system administrator commands by the general or most important
function each performs. The summary gives you a broader view of the
commands that are available and the context in which each is often
used. Each command is mentioned just once in this listing.

• ''Command synopses.'' This subsection is a compact collection of
syntax descriptions for all of the commands in A!UX Command
Reference and in AIUX System Administrator's Reference. It may
help you find the syntax of commands more quickly when the syntax
is all you need.

• ''Index.'' The index lists key terms associated with A/UX
subroutines and commands. These key terms can help you locate the
manual page you need when you don't know if such a keyword­
related command or subroutine exists.

The index provided in AIUX Reference Summary and Index is designed to be
more compact and easier to use than the more industry-standard permuted
index, which indiscriminately indexes manual pages under each of the words
found in their "Name" sections.

The manual pages listed in the index portion A/UX Reference Summary and
Index are indexed under more than one entry; for example, lorder(l) is
included under ''archive files,'' ''sorting,'' and ''cross-references.'' By using
this type of index, you are more likely to find the reference you are looking for
on the first try.

Using the on-line documentation
In addition to the paper documentation in the reference manuals, A/UX provides
several ways to search and read the contents of each manual page from your
A/UX system. An advantage to the on-line version of the documentation is that
the computer performs the work of filtering out (or skipping) all the manual

- ix -

pages other than the one you specifically queried. The only prerequisite is that
you already know its name (or a proper search string). However, you don't have
to know how manual pages are organized by section numbers and by book titles.

To display a manual page on your screen, enter the man command followed by
the name of the manual page you want to see. For example, to display the
manual page for the cat command, including its description, syntax, options,
and other pertinent information, you would enter

man cat

After the first screen of the text of a manual page appears, you can display
subsequent screens of the text with each press of the SPACE BAR, until you reach
the end of the man page. To display subsequent text one line at a time, press
RETURN instead of the SPACE BAR. By pressing Q, you can quit the man
command before viewing all of the manual page.

To display the descriptive information in the ''Name'' section of any manual
page, enter the what is command followed by the name of the provision you
want described. In the following example, the command prompt is the percent
sign, and the provision that is being queried is the 1 s command:

% whatis ls
ls(l)
% I

- lists the contents of a directory

To display a list of all manual pages whose ''Name'' sections contain a given
keyword or string, enter the apropos command followed by a search word or
search string enclosed in double quote characters. The names of A/UX
provisions are listed on separate lines along with the descriptive information in
the ''Name'' section of the manual page that describes those provisions.
Sometimes several A/UX provisions are listed on the same line. In those cases,
several A/UX provisions are described on a single manual page. You can tell
which of these names is the formal name for the manual page because it will be
followed by parentheses and an enclosed section number. In the following
example, the command prompt is the percent sign, and the A/UX provisions that
are queried are those which are described in manual pages whose "Name"
section contains the word ''tape'':

- x -

% apropos tape

mt(l)

frec(lM)

mtio(7)

tc(7)

% I

- magnetic tape manipulating program

- recover files from a backup tape

- interface conventions for magnetic tape devices

- Apple Tape Backup 40SC device driver

These documentation query commands are described more fully in the manual
pages rnan(l), whatis(l), and apropos(!) inAIUX Command Reference.

Book- and section-level presentation standards
Customarily, three books are used to house three collections of manual pages
that are of concern to three different audiences:

• AIUX Command Reference is intended for users with normal file and
device access privileges.

• A/UX System Administrator's Reference is intended for system
administrators or equivalent users with unlimited device and file access
privileges.

• A/UX Programmer's Reference is intended for programmers.

These books are further divided into sections, each of which contains a set of
manual pages in alphabetical order. The standard sections and the audiences
they serve are as follows:

• For users with normal access privileges, Section I and Section 6 describe
utility and game commands.

• For users with unlimited access privileges, Section IM and Section 8
describe system maintenance commands.

• For programmers, Section 2 describes system calls, Section 3 describes
library routines, Section 4 describes file formats, Section 5 describes
miscellaneous A/UX provisions, and Section 7 describes drivers and
interfaces for devices.

While most of the manual pages describe an A/UX provision of some sort, there
is one important exception per section: The first manual page in Sections I, IM,
2, 3, 4, 5, 6, 7 and 8 has the same name, intro. The intro manual pages do
not describe a command or other provision of A/UX. Instead, they serve as an
introduction to the rest of the manual pages in the section, providing section-

- xi -

specific information and conventions. (These section-introduction manual pages
are also exceptions in terms of the normal alphabetical arrangement of manual
pages inside sections.)

For example, the manual page intro(2) introduces you to return values and
provides an exhaustive list of error code values and their associated error
strings. In the rest of the Section 2 manual pages, the error codes are mentioned
briefly or merely listed, without detailed explanations.

More advanced readers will probably have occasion to use more than one of the
reference manuals. For example, manual pages in the A/UX Programmer's
Reference frequently make references to manual pages in sections contained in
the other two primary reference manuals.

More information about the organization of the reference books is given later in
this preface in ''Current Organization of Sections into Books.''

How manual-page information is presented
The name of the manual page normally appears in both upper corners of each
physical page. Some manual pages describe several routines or commands. For
example, chown and chgrp are both described in a manual page with the
primary name chown(l) at the upper corners. If you turn to the page
chgrp(l), you find a reference to chown(l). (These cross-reference pages are
included only in A/UX Command Reference and A/UX System Administrator's
Reference.) However, if you enter the command man chgrp, the extended­
coverage chown(l) manual page is displayed automatically.

All of the manual pages have a common format that uses the following
subheadings. For the most part, the same kind of information appears under each
of these subheadings. However, for manual pages that describe different kinds
of A/UX provisions, the information under the same heading may differ. So, for
example, the heading "Synopsis" contains syntax illustrations for Sections 1,
IM, and 8, but contains C declaration statements for Sections 2 and 3.

NAME
This section lists the names of the commands, programming routines, or other
A/UX provisions that are described in the manual page. A succinct statement of
their purpose is also provided.

SYNOPSIS
This section provides the syntax of a command or the data-type declarations
associated with a programming routine.

- xii -

ARGUMENTS
This section lists and describes the command options and arguments that can
follow the command name on the command line.

DESCRIPTION
This section describes in detail the usage of a particular command or
programming provision.

EXAMPLES
This section offers representative command lines that illustrate various uses of a
command.

STATUS MESSAGES AND VALUES
This section describes possible error outcomes and, when applicable, possible
success outcomes. For commands, exit values are not usually described if the
command produces the customary zero exit value for success and a nonzero exit
value for failure. For programming routines, the return value from a function is
often an indication of completion status. In such cases, the return value is
normally discussed in the "Description" section as well as in this section.

WARNINGS
This section describes possible usage scenarios that can damage the file system
or file integrity or that produce results you would not normally anticipate.

LIMITATIONS
This section describes how the performance of a command or routine could
become unreliable, or areas of functionality that an A/UX provision does not
address.

NOTES
This section provides miscellaneous information regarding a command or
routine, such as author or copyright information.

FILES
This section lists any files needed by the command, along with a brief
description that identifies it as a file, directory, or link.

SEE ALSO
This section provides a list of references to related information.

Visual conventions for the A/UX reference manuals
A/UX books follow specific styling conventions. For example, words that
require special emphasis appear in specific fonts or styles. This section describes

- xiii -

the conventions used in all the A/UX reference books.

Keys and key combinations
Certain keys on the keyboard have special names. These modifier and character
keys, often used in combination with other keys, perform various functions. In
this book, the names of these keys appear in the format of an initial capital letter
followed by small capital letters.

Here is a list of the most common key names:

CAPS LOCK
COMMAND
CONTROL
DELETE

ENTER
ESCAPE
OPTION
RETURN

SHIFT

SPACE BAR
TAB

Sometimes two or more key names are joined by hyphens. The hyphens indicate
that you press these keys simultaneously to perform a specific function. For
example,

Press CONTROL-K

means "While holding down the CONTROL key, press the K key."

Terminology
In A/UX manuals, a certain term can represent a specific set of actions. For
example, the word ''enter'' indicates that you type a series of characters, then
press the RETURN key. The instruction

Enter whoami.

means ''Type whoami, then press the RETURN key.'' (If you entered this text
at a command prompt, the system would respond by displaying your current
account name.)

Here is a list of common terms and their corresponding actions.

- xiv -

Term

Click

Choose

Drag

Enter

Press

Select

Type

The Courier font

Action

Press and then immediately release the mouse button.

Activate a command that appears in a menu. To
choose a command from a pull-down menu, position
the pointer on the menu title and, while holding down
the mouse button, slide the mouse toward you until
the command is highlighted. Then release the mouse
button.

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse so that the
icon moves to the desired position, and then release
the mouse button.

Type the series of characters indicated, then press the
RETURN key.

Press one key only. (Do not press the RETURN key
afterward.)

To select an icon, position the mouse pointer on the
item, then click (see "Click," above). To select text,
use a drag-style operation (see "Drag," above).
When selecting a range of text, the drag operation
highlights the text from the starting point over and
across lines to the final position of the pointer when
the mouse button was released.

Type the series of characters indicated, without
pressing the RETURN key afterward.

Throughout the A/UX reference manuals, words that appear on the screen or
that you must type exactly as shown are in the Courier font.

- xv -

Here's an example:

Type date on the command line and press RETURN.

This instruction means that you should type the word "date" exactly as shown,
then press the RETURN key.

After you press RETURN, text such as this will appear on the screen:

Fri Nov 1 11:15:43 PST 1991

In this case, the Courier font is used to represent exactly what appears on the
screen.

All A/UX manual page names are shown in the Courier font. For example,
1 s (1) indicates that 1 s is the name of a manual page that occurs in Section 1.
More information about the use of the Courier font in manual pages is given in
"Styling of A/UX Command Elements" and in "Styling of Cross-References to
Manual Pages'' later in this preface.

Font styles
Italics are used to indicate that a word or set of words is a placeholder for part of
a command line. Here is a sample command syntax illustration:

cat file

The italicized term.file is a placeholder for the name of a file. If you wanted to
display the contents of a file named Elvis, you would type the filename
E 1 vis in place of file. In other words, you would enter

cat Elvis

Styling of A/UX command elements
A/UX commands are entered in accordance with their command syntax. A
typical A/UX command line includes the command name first, followed by
options and arguments. For example, here is an illustration of the syntax for the
wc command:

wc [-1] [-w] file ...

In this syntax illustration, wc is the command, -1 and -ware options, andfile
is an argument.

A ''command option'' modifies the action of a command, often by changing its
mode of operation (such as read mode or write mode).

- xvi -

An ''argument'' is any element that follows the command name. Command
arguments other than command options typically specify the objects upon which
the command should act. You often supply the names of files that you want a
command to process, so file is frequently the last element in syntax illustrations.

Brackets and ellipsis characters in a syntax illustration should be considered part
of a syntax notation. This is represented by the use of body font instead of
Courier for these characters. Their font treatment tells you that you are not
supposed to type these characters as part of the command line. Their meaning as
a syntax notation is described next.

The brackets enclose an optional item or a group of optional items. If an
optional item has constituent parts that are also optional, these parts are
themselves enclosed in brackets, as in this syntax illustration:

lpr [- i [numcols]]

This syntax illustration shows that the indent (- i) command option can be
followed by the number of columns to indent the printed page. It also shows that
you can omit the number of columns; if you do, the lpr command uses the
default indent value.

An ellipsis (...) follows an argument that can be repeated any number of times
on a command line. If the ellipsis follows a bracketed group of items, the group
of items can be repeated any number of times on the command line.

When command options are mutually exclusive, they cannot both be specified at
the same time. In such cases, more than one syntax illustration is usually
provided:

pax - r[other-option-for-archive-reading] ...
pax -w[other-option-for-archive-writing] ...

Outside of syntax illustrations, command options are shown with a leading
hyphen also in the Courier font. When you supply multiple command options in
an actual command line, only one leading hyphen is normally required. For
example the following command line contains two options, - r and - f:

pax -rf /dev/rfloppyO

In the example, the - f option (pronounced ''minus f' ') is entered without its
own hyphen, even though when mentioned in running text it appears with a
leading hyphen.

- xvii -

Styling of cross-references to manual pages
The manual pages are organized primarily in terms of sections, and secondarily
in terms of books for different audiences. The standard A/UX cross-reference
notation leaves out the book title, but refers to the section designation:

item(section)

where item is the name of the command, subroutine, or other A/UX provision,
and section is the section where the manual page resides.

For example,

cat(l)

refers to the command cat, which is described in Section 1, which is in AIUX
Command Reference.

As a guide to the location of sections, you can refer to the general table of
contents of each of the primary reference manuals, or to ''Current Organization
of Sections into Books'' later in this preface. (The binder spines are also labeled
with the section numbers, and occasionally section subdivisions, that are in each
binder.)

Note also that there are a number of subcategory designations that can follow
the digit reference in (1), (2), (3), (4), and (5), such as (IN). Detailed
explanations of these subcategory designations are provided later in this preface.

Previous organization of sections into books
You may be curious about the logic behind the numbering of sections. The
derivation of this numbering is much clearer when you realize that originally
there was only one reference manual, the UNIX User Manual. In fact the
manual pages were once considered the primary UNIX documentation, and the
other books were originally considered supplements.

In the early days, all the manual pages easily fit into one book, in sections
numbered 1 through 8. Section 8 originally contained the manual pages that are
now located in Section 1 M.

With the expansion of the original sections as UNIX grew, it became necessary
to split the original book into several books, and this was done according to the
audience they served. However, the original section numbering was preserved
after the split because by then each number had come to have a particular
meaning to UNIX users.

- xviii -

Because the original section numbers were preserved and then sections were
recollated in accordance with the audience they served, the resulting books do
not, for the most part, contain sequentially numbered sections.

The next section explains in detail how the sections are currently mapped into
books.

There was another factor that led to the need to preserve the original section
numbers. Some routines, system calls, and commands have the same names. To
allow you to distinguish one from another, the section number is often included
along with the name. While new section numbers could have helped distinguish
these entities, the old numbers were much more familiar to UNIX users.

Besides distinguishing amongst identically named A/UX provisions, the section
number helps identify each manual page as one that describes a command, a
system call, a library routine, and so forth. Regular UNIX users sooner or later
memorize what category is identified by each section number. After doing so,
you can deduce how the sections must be split up into books-since each book
serves a particular audience and each section category also goes along with a
particular audience, the match-ups become fairly easy for you to make. The
memorization part of this task is more or less considered an initiation rite for
those who wish to learn to use UNIX effectively.

Until the 3.0 release of A/UX, the organization of sections into books was static.
With the 3.0 release however, Section 7 has been moved out of AJUX System
Administrator's Reference and into AJUX Programmer's Reference. This means
that command provisions are now the exclusive focus of both AJUX Command
Reference and AJUX System Administrator's Reference.

Current organization of sections into books
All manual pages are grouped by section. The sections are grouped by general
function and are numbered according to standard conventions as follows:

User Commands

IM System Maintenance Commands

2 System Calls

3 Subroutines

4 File Formats

- xix -

5 Miscellaneous Facilities

6 Games

7 Drivers and Interfaces for Devices

8 A/UX Startup Shell Commands

Each group or section of manual pages is located in one of the reference books.
Each reference book may comprise more than one binder. This section explains
where these sections are currently located with respect to the three primary
reference books. It also describes any subcategories that may be present in a
given section.

A/UX Command Reference contains Sections I and 6.

• Section I-User Commands
This section describes commands that require no special access privileges.
The commands in Section I may also belong to a special category, such as
networking commands. Where applicable, these categories are indicated by
a letter designation that follows the section number. For example, the ''N''
in ypcat(IN) indicates that this manual page describes a networking
command. Here is an explanation of each subcategory:

IC Communications commands, such as cu and tip.

IG Graphics commands, such as graph and tplot.

IN Networking commands, such as those that help support various
networking subsystems, including the Network File System
(NFS), Remote Process Control (RPC) subsystem, and Internet
subsystem.

• Section 6-Games
This section contains all of the games provided with A/UX, such as
cribbage and worms.

- xx -

A/UX Programmer's Reference contains Sections 2 through 5 and Section 7.

• Section 2-System Calls
This section describes the services provided by the A/UX system kernel,
including the C language interface. It includes two special categories.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the "N" in connect(2N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary versions of
these subroutines are in the system libraries in the /1 ib and /usr /1 ib
directories. The section includes seven special categories. Where
applicable, these categories are indicated by the letter designation that
follows the section number. For example, the "N" in mount(3N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

3C C and assembly-language library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

• Section 4-File Formats
This section describes the structure of some files, but does not include files
that are used by only one command (such as the assembler's intermediate
files). The C language struct declarations corresponding to these
formats are in the /usr/include and /usr/include/sys
directories. There is one special category in this section, indicated by the
letter designation ''N'' following the section number:

- xxi -

4N Networking formats

• Section 5-Miscellaneous Facilities
This section describes various character sets, macro packages, and other
miscellaneous facilities. There are two special categories in this section.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the "P" in t cp(IP)
indicates a protocol. Here is an explanation of each subcategory:

5F Protocol families

5P Protocol descriptions

• Section 7-Drivers and Interfaces for Devices
This section describes the drivers and interfaces through which devices are
normally accessed. Access to one or more disk devices is fairly transparent
when you are working with them in terms of files. When you want to use
A/UX commands to communicate with devices more directly, at a level
beyond the moderation of file systems, device files serve your needs. Such
a level of communication permits you to request more explicit operating
modes that may be supported by a disk (such as accessing disk partition
maps), or that may be supported by other types of devices, such as tape
drives and modems. For example, you can access a tape device in
automatic-rewind mode as described in t c(7).

A/UX System Administrator's Reference contains Sections IM and 8.

• Section IM-System Maintenance Commands
This section describes system maintenance programs such as f s ck and
rnkf s.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from within the
A/UX Startup shell. This section includes detailed descriptions of the
commands that contribute to the boot process and those that help with the
maintenance of inactive file systems.

For more information
To find out where you need to go for more information about how to use A/UX,
see Road Map to A/UX. This guide contains descriptions of each A/UX guide
and ordering information for all the guides in the A/UX documentation suite.

- xxii -

Table of Contents

Section 1: User Commands (G-P)

intro(l) introduces the command and application programs
get(l) ... gets a version of an SCCS file
getopt(l) .. parses command options
grap(l) invokes a pie preprocessor for drawing graphs
graph(lG).. draws a graph
greek(l) .. filters text for vintage display devices
grep(l) search a file for a specific pattern
groups(l) ... displays group memberships
hashcheck(l) ... see spell(l)
hashmake(l) ... see spell(l)
head(l) .. displays the first few lines of a file
help(l) provides help information about SCCS commands and messages
hex(l) converts an object file to Motorola S-record format
host id(IN) sets or displays the identifier of the current host system
hostname(IN) sets or displays the name of the current host system
hyphen(1) ... finds hyphenated words
id(1) .. displays user and group IDs and names
ident(l) ... displays RCS keywords and their values
indent(!) .. indents and formats C program source
indxbib(l) builds an inverted index for a bibliography
ipcrm(l) removes interprocess communications facilities
ipcs(l) reports interprocess communication facilities status
isotomac(l) .. see mactoiso(l)
iw2(1) prepares data to be printed on the Apple Image Writer II printer
j oin(l) combines (joins) two relational files
kermi t(IC) invokes the Kermit file-transfer program
kill(l) .. terminates a process
ksh(l) runs the Korn shell, an enhanced command interpreter that is

backward-compatible with the Bourne shell (sh)
last(l) displays login and logout times for each user of the system
launch(!) runs a Macintosh binary application in A/UX
lav(l) . displays load average statistics
ld(l) ... invokes the link editor for common object files
leave(l)....................... reminds you when you have to leave
1 ex(l) ... generates programs for simple lexical tasks
1 ine(l) reads one line from the standard input
lint(l) invokes a C program checker
ln(l) makes links
login(l) ... signs you on a terminal session

Section 1

logname(l) gets the login name
lookbib(l) finds references in a bibliography
lorder(l) finds the ordering relation for an object library
lp(l) spools print requests to printers .
lpq(l) queries the print spooler for progress information

. spools print requests to printers lpr(l)
lprm(l) removes jobs from the line printer spooling queue for a

Berkeley file system (4.2)
lpstat(l) ..
ls(l) .
m4(1)
m68k(l)
machid(l) .. .
macref(l)
mactoiso(l).

. prints lp status information
. lists the contents of a directory

. . processes macros for C and other languages
. see machid(l)

. provide truth values about processor type
. produces a cross-reference listing of macro files

. convert between Macintosh encoding and International
Standards Organization (ISO) encoding

ma i 1 (1) send mail to users or read mail
ma i 1x(1) enables you to send and receive messages electronically
make(1) maintains, updates, and regenerates groups of files
makedev(l) prepares troff description files
makekey(l) ... generates an encryption key
man(l) displays the named manual page entries
merge(l) merges three files into one
mes g(1) permits or denies the receipt of messages
mkdir(l).. . . creates a directory
mkshlib(l) . creates a shared library
mkstr(l) creates an error message file by massaging C source programs
mm(1) formats documents that contain nroff and mm macro formatting requests
mmt(l). typeset documents that contain troff and mm or mv

more(l)
mt(l) ..
mv(l)
mvt(l)
ndx(l)
neqn(l) ..
netstat(lN) .
newf orm(l)
newgrp(l)
news(l)
nice(l)
nl(l) .. .
nm(l)

ii

macro-formatting requests
.... show the contents of a file in display-size chunks

.. manipulates magnetic tape media
. moves or renames files

..................... see mmt(l)
........ creates a subject-page index for a document

.......... formats mathematical text for nroff
. displays network status information

. changes the format of a text file
. logs you into a new group

. displays local news items
. executes a command at low priority

. processes a file through a line numbering filter
. .. displays the symbol table of a common object file

User Commands (G-P)

nohup(l)

nrof f(l)
nslookup(l)
od(l).

.... runs a command so that it can continue to run even after
your session has ended

... text formatter
............ interactively queries name servers

... converts binary data to a displayable form in octal, decimal,
hexadecimal, or ASCII

otrof f(l) . formats text for a specific phototypesetter
pack(l).................. compress and expand files
page(l) see more(l)
pagesize(l) displays the system page size
passwd(l). changes the login password
paste(l) merges lines of several files or subsequent lines of one file
pax(l) . . copies files to or from an archive in an IEEE format
pcat(l) see pack(l)
pdpll(l)....................... see machid(l)
pg(1) shows the contents of a file in display-size chunks
pic(l)............ preprocesses troff files that contain drawings
pr(l) .. formats text for a print device
printenv(l) . displays the value of variables set in the current environment
prof(l) displays profile data
prs(l). displays information about an SCCS file
ps(l) reports process status
psdi t(l) .. converts troff intermediate format to POSTSCRIPT format
psrof f(l) .. formats a file through troff so it can be printed on a POSTSCRIPT printer
ptx(1) generates a permuted index
pwd(1) prints the name of the working directory

Section 1 iii

get (1) get (1)

NAME
get - gets a version of an SCCS file

SYNOPSIS
get [-aseq-no] [-b] [-ccutoff] [-e] [-g] [-ilist] [-k] [-l[p]] [-rn] [-n]
[-p] [-rS/D] [-s] [-t] [-wstring] [-xlist]file ...

ARGUMENTS
-aseq-no

The delta sequence number of the SCCS file delta (version) to be
retrieved (see sccsf ile(4)). This keyletter is used by the cornb(l)
command; it is not a generally useful keyletter, and users should not
use it. If both the - r and - a options are specified, the - a options is
used. Care should be taken when using the -a option in conjunction
with the - e option, as the SID of the delta to be created may not be
what one expects. The - r option can be used with the - a and - e
options to control the naming of the SID of the delta to be created.

- b Indicates that the new delta should have an SID in a new branch as
shown in Table 1, when used with the - e option. This option is
ignored if the bis not present in the file (see adrnin(l)) or if the
retrieved delta is not a leaf delta. (A leaf delta is one that has no
successors on the secs file tree.)

Note: A branch delta may always be created from a nonleaf
delta.

-ccutoff
Specifies the cutoff date-time, in the form: YY[MM[DD[
HH[MM[SS]]]]]. No changes (deltas) to the SCCS file which were
created after the specified cutoff date-time are included in the
generated ASCII text file. Units omitted from the date-time default to
their maximum possible values; that is, - c 7 5 0 2 is equivalent to
- c 7 5 0 2 2 8 2 3 5 9 5 9. Any number of non-numeric characters may
separate the various 2-digit pieces of the cutoff date-time. This feature
allows one to specify a cutoff date in the form:
- c 7 7 I 2 I 2 9 : 2 2 : 2 5. Note that this implies that one may use the
%E% and %U% identification keywords (see later) for a nested get
within, for example, the input to a s end(2N) command:

-!get "-c%E% %U%" s.file

-e Indicates that the get is for the purpose of editing or making a change
(delta) to the SCCS file via a subsequent use of del ta(l). When this
option is used in a get command for a particular version (SID) of the
SCCS file, it prevents a further get from editing on the same SID
until de 1 ta is executed or the j (joint edit) flag is set in the SCCS

November 1991

get (1) get (1)

2

file (see admin(l)). Concurrent use of get -e for different SIDs is
always allowed.

If the g-file generated by get with an - e option is accidentally ruined
in the process of editing it, it may be regenerated by re-executing the
get command with the -k option in place of the -e option.

SCCS file protection specified via the ceiling, floor, and authorized
user list stored in the SCCS file (see admin(l)) are enforced when the
- e key letter is used.

file Specifies the file to be processed.

- g Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an I-file, or to verify the existence of a
particular SID.

-ilist
Specifies a list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following syntax:

<list> : : = <range> I <list> , <range>
<range> : : = SID I SID-SID

SID, the SCCS Identification of a delta, may be in any form shown in
the "SID Specified" column; partial SIDs are interpreted as shown in
the ''SID Retrieved'' column of Table 1.

- k Suppresses the replacement of identification keywords (described
below) in the retrieved text by their value. The -k option is implied
by the - e option.

-l[p]
Causes a delta summary to be written into an I-file. If -lp is used,
then an I-file is not created; the delta summary is written on the
standard output instead. See NOTES for the format of the I-file.

-m Causes each text line retrieved from the SCCS file to be preceded by
the SID of the delta that inserted the text line in the SCCS file. The
format is: SID, followed by a horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the %M%
identification keyword value (described later) The format is: %M%
value, followed by a horizontal tab, followed by the text line. When
both the -m and -n options are used, the format is: %M% value,
followed by a horizontal tab, followed by the -m option generated
format.

-p Causes the text retrieved from the SCCS file to be written on the
standard output. No g-file is created. All output which normally goes
to the standard output goes to file descriptor 2 instead, unless the - s

November 1991

get (1) get (1)

option is used, in which case it disappears.

-rS/D
Specifies the SCCS identification string (SID) of the version (delta) of
an SCCS file to be retrieved. The table that follows these descriptions
shows, for the most useful cases, what version of an SCCS file is
retrieved (as well as the SID of the version to be eventually created by
delta(l) if the -e keyletter is also used) as a function of the SID
specified.

- s Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor 2)
remain unaffected.

-t Accesses the most recently created (top) delta in a given release (for
example, - r 1), or release and level (for example, - r 1 . 2).

-wstring
Substitutes string for all occurrences of %W% when running get on the
file.

-xlist
Specifies a list of deltas to be excluded (forced not to be applied) in
the creation of the generated file. See the - i option for the list
format.

DESCRIPTION
get generates an ASCII text file from each named SCCS file according to
the specifications given by key letter arguments that begin with - . The
arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, get behaves as though
each file in the directory is specified as a named file, except that non-SCCS
files (last component of the pathname does not begin with s .) and
unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an
SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file, the name
of which is derived from the SCCS filename simply by removing the
leading s. (see also NOTES, later in this section).

For each file processed, get responds (on the standard output) with the
SID being accessed and with the number of lines retrieved from the SCCS
file.

If the - e options is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more
than one named file or if a directory or standard input is named, each

November 1991 3

get (1) get(l)

filename is printed (preceded by a newline) before it is processed. If the
- i option is used included deltas are listed following the notation
Inc 1 uded; if the -x option is used, excluded deltas are listed following
the notation Exe 1 uded.

SID*
Specified
none:j:
none:j:

R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B

R.L.B.S
R.L.B.S
R.L.B.S

4

*

**

t

Determination of SCCS Identification String
-b Keyletter Other SID SID of Delta

Usedt Conditions Retrieved to be Created

no R defaults to mR mR.mL mR.(mL+l)
yes R defaults to mR mR.mL mR.mL.(mB + 1).1

no R>mR mR.mL R.l ***
no R=mR mR.mL mR.(mL+l)
yes R>mR mR.mL mR.mL.(mB + 1).1
yes R=mR mR.mL mR.mL.(mB + 1).1

R<mRand
hR.mL** hR.mL.(mB+l).l

R does not exist
Trunk succ.#
in release > R R.mL R.mL.(mB+ 1).1
and R exists

no No trunk succ. R.L R.(L+l)
yes No trunk succ. R.L R.L.(mB+ 1).1

Trunk succ.
R.L R.L.(mB+ 1).1

in release ~ R

no No branch succ. R.L.B.mS R.L.B.(mS+ 1)
yes No branch succ. R.L.B.mS R.L.(mB+ 1).1

no No branch succ. R.L.B.S R.L.B.(S+ 1)
yes No branch succ. R.L.B.S R.L.(mB+l).1

Branch succ. R.L.B.S R.L.(mB + 1).1

R, L, B, and Sare the release, level, branch, and sequence
components of the SID , respectively; 'm' means maximum. Thus, for
example, R . mL means the maximum level number within release R;
''R.L.(mB+ 1). l '' means the first sequence number on the new branch
(i.e., maximum branch number plus one) of level L within release R.
Note that if the SID specified is of the form R.L, R.L.B, or R.L.B.S,
each of the specified components must exist.
"hR" is the highest existing release that is lower than the specified,
nonexistent, release R.
This is used to force creation of the first delta in a new release.
Successor.
The -b option is effective only if the b flag (see admin(l)) is present
in the file. An entry of - means ''irrelevant.''

November 1991

get(l) get(l)

:j: This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one
of the other cases in this table applies.

Identification keywords
Identifying information is inserted into the text retrieved from the SCCS
file by replacing identification keywords with their value wherever they
occur. The following keywords may be used in the text stored in an SCCS
file:

Keyword Value
%M%

%I%

%R%

%L%

%B%

%S%

%D%

%H%

%T%

%E%

%G%

%U%

Module name: either the value of them flag in the file (see
admin(l)), or if absent, the name of the secs file with the leading
s. removed.

SCCS identification (SID) (%R%. %L%. %B%. %S%) of the retrieved
text.

Release.

Level.

Branch.

Sequence.

Current date (YYIMMIDD).

Current date (MMIDDIYY).

Current time (HH:MM:SS).

Date newest applied delta was created (YYIMM/DD).

Date newest applied delta was created (MM/DDIYY).

Time newest applied delta was created (HH:MM:SS).

November 1991 5

get(l) get(l)

%Y%

%F%

%P%

%Q%

%C%

%Z%

%W%

%A%

Module type: value of the t flag in the SCCS file (see admin(l)).

SCCS filename.

Fully qualified SCCS filename.

The value of the q flag in the file (see admin(l)).

Current line number. This keyword is intended for identifying
messages output by the program such as this should not have
happened type errors. It is not intended to be used on every line to
provide sequence numbers.

The 4-character string @ (#) recognizable by what(l).

A shorthand notation for constructing what(l) strings for A/UX
system program files.
%W%=%Z%%M%<horizontal-tab>%I%

Another shorthand notation for constructing what(l) strings for non­
A/UX system program files.
%A%= %Z%%Y% %M% %I%%Z%

EXAMPLES
The command:

get -e s.filel

generates from the SCCS format file, s . f i 1e1, the text file, f i 1e1, for
editing.

NOTES

6

Several auxiliary files may be created by get. These files are known
generically as the g-file, l-file, p-file, and z-file. The letter before the
hyphen is called the tag. An auxiliary filename is formed from the SCCS
filename; the last component of all SCCS filenames must be of the form
s . module-name, and the auxiliary files are named by replacing the leading
s with the tag. The g-file is an exception to this scheme: the g-file is named
by removing the s. prefix. For example, s. xyz. c, the auxiliary
filenames would be xyz. c, 1. xyz. c, p. xyz. c, and z. xyz. c,
respectively.

November 1991

get (1) get (1)

The g-file, which contains the generated text, is created in the current
directory (unless the -p option is used). Ag-file is created in all cases,
whether or not any lines of text were generated by the get. It is owned by
the real user. If the - k option is used or implied its mode is 644;
otherwise, its mode is 444. Only the real user need have write permission
in the current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The I-file is created in the current directory if the -1
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the l-file have the following format:

a. A blank character if the delta was applied;
*otherwise.

b. A blank character if the delta was applied or was not applied and
ignored;
* if the delta was not applied and was not ignored.

c. A code indicating a "special reason" why the delta was or was not
applied:

I : Included.

X: Excluded.

C : Cut off (by a - c option).

d. Blank.

e. SCCS identification (SID).

f. TAB character.

g. Date and time (in the form YY/MMIDD HH:MM:SS) of creation.

h. Blank.

i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
option along to delta. Its contents are also used to prevent a subsequent
execution of get with an -e option for the same SID until delta is
executed or the joint edit flag, j, (see adrnin(l)) is set in the secs file.
The p-file is created in the directory containing the SCCS file and the
effective user must have write permission in that directory. Its mode is 644
and it is owned by the effective user. The format of the p-file is: the
acquired SID, followed by a blank, followed by the SID that the new delta
will have when it is made, followed by a blank, followed by the login name

November 1991 7

get(l) get(l)

of the real user, followed by a blank, followed by the date-time the get
was executed, followed by a blank and the - i option argument if it was
present, followed by a blank and the - x option argument if it was present,
followed by a newline. There can be an arbitrary number of lines in the
p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates.
Its contents are the binary (2 bytes) process ID of the command (that is,
get) that created it. The z-file is created in the directory containing the
SCCS file for the duration of get. The same protection restrictions as
those for the p-file apply for the z-file. The z-file is created mode 444.

LIMIT A TIO NS
If the effective user has write permission (either explicitly or implicitly) in
the directory containing the secs files, but the real user does not, then
only one file may be named when the - e option is used.

DIAGNOSTICS
Use help for explanations.

FILES
/usr/bin/get

Executable file
SEE ALSO

8

admin(l), cdc(l), cornb(l), del ta(l), help(l), prs(l), rrndel(l),
sact(l), sccs(l), sccsdi f f(l), unget(l), val(l), what(l)

sccsf ile(4) inAIUX Programmer's Reference

"SCCS Reference" in A/UX Programming Languages and Tools, Volume
2

November 1991

getopt(l) getopt(l)

NAME
get opt - parses command options

SYNOPSIS
get opt [flag-letter[:]] ... [input-string]

ARGUMENTS
flag-letter[:]

Helps control how input-string is manipulated to detect flags and flag
arguments. If a.flag-letter is followed by a: (colon), get opt expects
to find a flag-specific argument following that flag in the input-string.
For example,

getopt a: $*

requires that -a always be followed by its own argument (either with
or without a space separator), as in the following:

yourcommand -a pararn .. .
yourcommand -apararn .. .

input-string
Specifies the input string to be parsed. The special option - - can be
used within input-string to request that only a portion of input-string
actually be processed for the presence of flags. Any text following - -
is not processed. If it is not supplied explicitly, get opt still
generates the symbol in its output to help separate any options and
arguments found from any nonflag arguments that might remain in
input-string. For example,

getopt abo: $*

returns

-a -o pararn -- xxxx yyyy zzzz

when you place the getopt command line (shown above) in a
command script invoked with

yourcommand -aopararn xxxx yyyy zzzz

Even though a hyphen was not specified in front of each option in this
example, the output of get opt includes hyphens in front of both a
and o.

DESCRIPTION
getopt returns input-string with additional separators to help distinguish
any options, any arguments associated with the options, and any arguments
not associated with the options. By replacing input-string with the
command arguments $ * for a script, get opt helps shell scripts to parse
their command-line arguments by making a regularized copy of them as
well as checking them for legal options. The regularization that getopt

November 1991

getopt(l) getopt(l)

can perform for each option is twofold or threefold:

1. Each option on the command line is returned separated with white
space.

2. Each option on the command line is returned with a leading hyphen.

3. Optionally, the argument associated with a given is returned with
white space.

To reset the shell's positional parameters ($1 $ 2 ...) so that they are
regularized by getopt and so that each discrete flag and flag argument is
stored as a unique positional parameter, specify the output of getopt as
the argument for set by using command substitution:

set -- 'getopt abo: $*'

Quoted Arguments
getopt correctly parses quoted arguments within input-string. However,
if the input string you wish to parse with get opt is specified as $ * in
order to request the parsing of command-line arguments, any quotes that
may be present in the command line are automatically stripped by the shell.
In such cases you need to use a reference to the unstripped version of the
command-line arguments, $@,which is available in the sh and ksh shells.
For example

getopt a:b: "$@"

correctly returns

-a 'hello world' -b oneword --

when the getopt command line (shown above) is in a script invoked with

yourcornrnand -a'hello world' -b oneword

The challenge then becomes resetting the shell's positional parameters so
that ' he 11 o wo r 1 d ' is interpreted as one positional argument rather
than two positional arguments ('hello as one argument and world' as
another). To do so, use eval to invoke the set function, as in the
following:

eval set -- 'getopt abo: "$@"'

To preserve the opportunity to process the exit status of getopt, the
eval command line cannot be used as shown preceding. (The exit status
from getopt is lost when eval is used to evaluate a command string.)

The only recourse is to defer the resetting of positional arguments until
after the exit status stored in the $? variable can be tested:

x='getopt abo: "$@"'
if [$? != 0 J

2 November 1991

getopt(l) get opt(1)

then

f i

echo $USAGE
exit 2

eval set -- $x

A nonzero exit value conventionally indicates that processing was
terminated abnormally. So in the example preceding, the value of the exit
status variable is used to detect whether or not the string processing
performed by getopt succeeded: which in tum depends on whether or
not get opt recognized and regularized the input string in terms of the
control arguments supplied.

EXAMPLES
The following code fragment shows how one might process the arguments
for a command that can take the options a orb, as well as the option o,
which requires an argument:

x='getopt abo: "$@"'
if [$? != 0 J

then

if

echo $USAGE
exit 2

eval set -- $x
for i in "$@"
do

done

case $i in
-a I -b)
-o)
--)
esac

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break;;

If this code is placed in a script called cmd, then any of the following
invocations are accepted as equivalent:

cmd -aoarg file] file2
cmd -a -oarg file] file2
cmd -o arg -a file] file2
cmd - a - oarg - - file 1 file2

The script also interprets any imbedded blanks in arguments correctly, as
long as the arguments are quoted as in the following:

cmd - aoarg "file one" "file two"
cmd - a - o "an arg " "file two" "file two "
cmd - o "an arg " - a "file one " "file two"

November 1991 3

get opt(1) get opt(1)

cmd -a -o "an arg" - - "file two" "file two"

DIAGNOSTICS
The get opt command prints an error message on the standard error when
it encounters an option letter not included as aflag-letter.

FILES
/bin/getopt

Executable file

SEE ALSO
csh(l), ksh(l), sh(l)

getopt(3C) in AIUX Programmer's Reference

4 November 1991

grap(l)

NAME
grap - invokes a pie preprocessor for drawing graphs

SYNOPSIS
grap [-Ttty-type] [-1] [-][file] ...

ARGUMENTS
Specifies the standard input.

file Specifies the file to be preprocessed by the grap command.

-1 Stops grap from looking for a library file of macro defines,
/usr/lib/dwb/grap.defines.

-Ttty-type

grap(l)

Specifies tty-type as grap's output device. Currently supported
devices are pse (POSTSCRIPT device such as the Apple LaserWriter)
and aps (Autologic APS-5). The default is -Tpse.

DESCRIPTION
grap is a language for typesetting graphs. It is also the name of a
preprocessor that feeds input to pie. Thus, a typical command line would
appear as follows:

grap files I pie I troff I output-device

Graphs are surrounded by the troff commands . Gland . G2. Data that
is enclosed is scaled and plotted, with tick marks supplied automatically.
Commands exist to modify the frame, add labels, override the default ticks,
change the plotting style, define coordinate ranges and transformations, and
include data from files. In addition, grap provides the same loops,
conditionals, and macro processing that pie does.

FILES
/usr/bin/grap

Executable file
/usr/lib/dwb/grap.defines

File containing definitions of standard plotting characters

SEE ALSO
pie(l)

"grap Reference," inAIUX Text Processing Tools

November 1991

graph(lG) graph(lG)

NAME
graph-draws a graph

SYNOPSIS
graph [-a [sp] [st]] [-b] [-clabel] [-g [style]] [-h hspace] [-1 title]
[-m[mode]] [-r rspace] [-s] [-t] [-u uspace] [-w wspace] [-x [l] [a]
[b] [c]] [-y [l] [a] [b] [c]]

ARGUMENTS
-a [sp] [st]

Supplies abscissas automatically (they are missing from the input);
spacing is given by sp (default 1). The option, st, is the starting point
for automatic abscissas (default 0 or the lower limit given by the -x
option.

- b Breaks (disconnects) the graph after each label in the input.

-clabel
Specifies a character string given by label which is the default label
for each point.

-g [style]
Specifies a grid style. where Replace style with one of the following:
O=no grid, l=frame with ticks, and 2=full grid (default).

-h hspace
Specifies the fraction of the space for height.

-1 title
Specifies the label for the graph.

-m[mode]
Specifies the mode (style) of connecting lines: O=disconnected,
!=connected (default). Some devices give distinguishable line styles
for other small integers (e.g., the Tektronix 4014: 2=dotted, 3=dash­
dot, 4=short-dash, 5=long-dash).

-r rspace
Specifies the fraction of the space to move right before plotting.

-s Saves the screen, don't erase before plotting.

- t Transposes horizontal and vertical axes.

-u uspace
Specifies the fraction of the space to move up before plotting.

-w wspace
Specifies the fraction of the space for width. (- x now applies to the
vertical axis.)

November 1991

graph(IG) graph(IG)

-x [l] [a] [b] [c]
Specifies certain quantities for the x axis. If 1 is present, x axis is
logarithmic. a (and b) are lower (and upper) x limits. c, if present, is
the grid spacing on the x axis. Normally, these quantities are
determined automatically.

-y [l] [a] [b] [c]
Specifies certain quantities for the x axis. If 1 is present, x axis is
logarithmic. a (and b) are lower (and upper) x limits. c, if present, is
the grid spacing on the x axis. Normally these quantities are
determined automatically.

DESCRIPTION
graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by
the tplot filters.

If the coordinates of a point are followed by a non-numeric string, that
string is printed as a label beginning on the point. Labels may be
surrounded with quotes ("), in which case they may be empty or contain
blanks and numbers; labels never contain newlines.

A legend indicating grid range is produced with a grid unless the - s option
is present. If a specified lower limit exceeds the upper limit, the axis is
reversed.

LIMIT A TIO NS
The graph command stores all points internally and drops those for which
there isn't room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

Options and their arguments must be delimited by at least one space.

FILES
/usr/bin/graph

Executable file

SEE ALSO
spline(lG), tplot(lG)

November 1991 2

greek(1) greek(1)

NAME
greek - filters text for vintage display devices

SYNOPSIS
greek [-Tterminal]

ARGUMENTS
-Tterminal

Specifies an alternate terminal type to be used with the greek
command. The following terminals are currently recognized:

300
DASI 300

300-12
DASI 300 in 12-pitch

300s
DASI 300s

300s-12
DASI 300s in 12-pitch

450
DASI450

450-12
DASI 450 in 12-pitch

1620
Diablo 1620 (alias DASI 450)

1620-12
Diablo 1620 (alias DASI 450) in 12-pitch

4014
Tektronix 4014

tek
Tektronix 4014

DESCRIPTION
greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character Teletype Model 37
terminal and certain other terminals. Special characters are simulated by
overstriking, if necessary and possible. If the argument is omitted, greek
attempts to use the environment variable $TERM (see environ(5)).

EXAMPLES
The command:

nroff fik I greek -T4014

November 1991

greek(l) greek(1)

reinterprets the extended character set on a Tektronix 4014 terminal.

FILES
/usr/bin/greek

Executable file
/usr /bin/3 0 0

File containing terminal information
/usr /bin/3 0 0 s

File containing terminal information
/usr/bin/4014

File containing terminal information
/usr/bin/450

File containing terminal information

SEE ALSO
3 0 0(1), 4014(1), 4 5 0(1), eqn(l), mm(l), nroff (1), tplot(lG)

terrn(4), environ(5), greek(5) in AIUX Programmer's Reference

November 1991 2

grep(l) grep(l)

NAME
grep, egrep, f grep - search a file for a specific pattern

SYNOPSIS
grep [-b] [-c] [-i] [-1] [-n] [-s] [-v] expression [file] ...

egrep [-b] [-c] [-e expression] [-f file] [-i] [-1] [-n] [-v]
[expression] [file]. ..

fgrep [-b] [-c] [-e expression] [-f file] [-i] [-1] [-n] [-v] [-x]
[strings] [file] ...

ARGUMENTS
- b Precedes each line by the block number on which it was found. This

is sometimes useful in locating disk block numbers by context.

- c Prints only a count of matching lines.

-e expression
Acts the same as a simple expression argument, but useful when the
expression begins with a - . This option does not work with the grep
command.

expression
Specifies the regular expression that is used in the egrep command.

-f file
Takes the regular expression (egrep) or strings list (fgrep) from
the.file.

file Specifies the file that will be searched.

- i Ignores upper/lowercase distinction during comparisons.

-1 Lists (once) only the names of files with matching lines, separated by
newlines.

-n Precedes each line by its relative line number in the file.

- s Suppresses the error messages produced for nonexistent or unreadable
files. This option is used for grep only.

string
Specifies the string of character to look for in the specified file.

-v Prints all lines but those matching.

-x Means exact. Only lines matched in their entirety are printed. This
option is only used for f grep.

DESCRIPTION
grep searches the input.files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output. The
grep command patterns are limited regular expressions in the style of ed;

November 1991

grep(l) grep(l)

they use a compact nondeterministic algorithm.

egrep patterns are full regular expressions; they use a fast deterministic
algorithm that sometimes needs exponential space.

f grep patterns are fixed strings; it is fast and compact.

In all cases, the filename is output if there is more than one input file. Care
should be taken when using the characters $, *, [, ", I , (,) , and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotation marks (' ... ').

The fgrep command searches for lines that contain one of the strings
separated by newlines.

The egrep command accepts regular expressions as in ed(l), except for
\ (and \) , with the addition of:

1. A regular expression followed by + matches one or more occurrences
of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by I or by a newline match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [J , then * ? +, then concatenation,
then I and newline.

EXAMPLES
The command:

grep -v -c 'regular' grep.1

reports a count of the number of lines that do not contain the word regular
in the file grep . 1.

LIMITATIONS
Ideally there should be only one grep, but we do not know a single
algorithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to BUF SI z characters; longer lines are truncated.
(BUFSIZ is defined in /usr I include/ stdio. h.)

The egrep command does not recognize ranges, such as [a-z J , in
character classes.

If there is a line with embedded nulls, grep will only match up to the first
null; if it matches, it will print the entire line.

November 1991 2

grep(1) grep(1)

STATUS MESSAGES AND VALVES
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

FILES
/bin/grep

Executable file
/bin/egrep

Executable file
/bin/fgrep

Executable file

SEE ALSO
awk(l), csh(l), ed(l), ex(l), ksh(l), lex(l), sed(l), sh(l), vi(l)

3 November 1991

groups(1) groups(l)

NAME
groups - displays group memberships

SYNOPSIS
groups [user]

ARGUMENTS
user

Specifies the name of the user whose groups you want displayed.

DESCRIPTION
groups shows the groups to which you or the optionally-specified user
belong. Each user belongs to a group specified in the password file
I etc/passwd and possibly to other groups as specified in the file
I etc I group. If you do not own a file, but belong to the group which
owns it, you are granted group access to the file.

When a new file is created, it is given the group of the containing directory.

LIMITATIONS
More groups should be allowed. Eight groups is currently the limit.

FILES
/usr/bin/groups

Executable file
/etc/passwd

File containing user passwords.
/etc/group

File containing group passwords.

SEE ALSO
setgroups(2) in A/UX Programmer's Reference

November 1991

hashcheck(1) hashcheck(1)

See spell(l)

November 1991

hashmake (1) hashmake (1)

See spell(l)

November 1991

head(1)

NAME
head - displays the first few lines of a file

SYNOPSIS
head [-count] [file]. ..

ARGUMENTS
count

head(1)

Specifies the number of lines to be displayed. If this option is not
given, the default is 10.

file Specifies the file to be displayed. If you specify file as a dash, (-), the
standard input is read.

DESCRIPTION
This filter displays the first lines (specified by count), for each of the
specified files or for the standard input.

EXAMPLES
The command:

head -6 filea f ileb f ilec

will print out the first six lines of the three specified files. The filename will
appear before each new set of headlines listed, if more than one file has
been specified.

FILES
/bin/head

Executable file

SEE ALSO
awk(l), cat(l), more(l), pg(l), tail(l)

November 1991

help(l) help(l)

NAME
help - provides help information about SCCS commands and messages

SYNOPSIS
help [args] ...

ARGUMENTS
args

Specifies the message number (which normally appear in parentheses
following the message) or command name for which you want
information. If this option is not specified, help will prompt you for
one.

DESCRIPTION
help finds information to explain a message from an SCCS command or
explain the use of an SCCS command. Zero or more arguments may be
supplied.

The arguments must be of one of the following types:

type 1
Begins with non-numerics, ends in numerics. The non-numeric prefix
is usually an abbreviation for the program or set of routines which
produced the message (for example, ge4, for message 6 from the get
command).

type 2
Does not contain numerics as a command (such as get)

type 3
Is all numeric (for example, 2 6)

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, enter:

help stuck

EXAMPLES
The command:

help he2

prints the message for error number he2.

STATUS MESSAGES AND VALUES
Use help for explanations.

November 1991

help(l)

FILES
/usr/bin/help

Executable file
/usr/lib/help/*

Message files
/usr/lib/help/helploc

File containing pathnames leading to custom message files
/usr/lib/help/lib/help2

Executable file called by help

SEE ALSO

help(l)

admin(l), cdc(l), comb(l), del ta(l), get(l), unget(l), help(l),
prs(l), rmdel(l), sact(l), sccsdiff(l), val(l), what(l)

2 November 1991

hex(l) hex(1)

NAME
hex - converts an object file to Motorola S-record format

SYNOPSIS
hex [-f] [-1] [-n#] [-ns8] [-r] [-sO] [-s2] [+saddr] ifile

ARGUMENTS
+saddr

Specifies the starting load address (in hex).

- f Causes the file specified to be shipped as is without treating it as an
object file.

ifile Specifies the file to be downloaded. The file's starting address is used
if saddr is not present.

-1 Outputs the "Loading at" message.

-n#
Specifies the number of characters to output per record. Replace #
with a decimal number.

-ns8
Does not output a trailing s 8 (s 9) record.

- r Outputs a carriage return at the end of each S-record (instead of a
newline).

-so
Outputs a leading s 0 record.

-s2
Records only (no s 1 records are produced).

DESCRIPTION
hex translates executable object files into ASCII formats suitable for
Motorola S-record downloading.

EXAMPLES
In the command:

hex objfile

obj f i 1 e is the object file to be downloaded.

FILES
/usr/bin/hex

Executable file

SEE ALSO
as(l), od(l), rcvhex(l)

November 1991

hex(l) hex(l)

a. out(4) inA/UX Programmer's Reference

2 November 1991

host id(IN) host id(IN)

NAME
host id - sets or displays the identifier of the current host system

SYNOPSIS
host id [identifier]

ARGUMENTS
identifier

Specifies the identifier to be displayed.

DESCRIPTION
host id displays the identifier of the current host in hexadecimal. This
numeric value is expected to be unique across all hosts and is normally set
to the host's Internet address (for Ethernet or TCP/IP). The superuser may
set the hostid by giving a hexadecimal argument; this is usually done in the
startup script I etc I sysini trc.

FILES
/bin/host id

Executable file

SEE ALSO
gethos t id(2N)

November 1991

hostnarne(lN) hostnarne(IN)

NAME
hostnarne - sets or displays the name of the current host system

SYNOPSIS
hos tnarne [nameofhost]

ARGUMENTS
nameofhost

Specifies the name of the host system you wish to be displayed or set.

DESCRIPTION
host name displays the name of the current host. The superuser can set
the hostname by giving an argument; this is usually done in the startup
script /etc/sysinitrc.

FILES
/bin/hostnarne

Executable file

SEE ALSO
get hos tnarne(2N)

November 1991

hyphen(1) hyphen(l)

NAME
hyphen - finds hyphenated words

SYNOPSIS
hyphen [file] ...

ARGUMENTS
file Specifies the file that is searched for hyphenated words. If this option

is not given, hyphen uses the standard input.

DESCRIPTION
hyphen finds all the hyphenated words ending lines in.files and prints
them on the standard output. If hyphen encounters a - , it uses the
standard input. Thus, hyphen may be used as a filter.

EXAMPLES
You would use the following command line to proofread nroff's
hyphenation in.files:

mm file I hyphen

LIMITATIONS
The hyphen command cannot cope with hyphenated italics (or underlined
words); it frequently will either miss them altogether or mishandle them.

The hyphen command occasionally gets confused but with no ill effects
other than spurious extra output.

FILES
/usr/bin/hyphen

Executable file

SEE ALSO
grep(l), rnrn(l), troff(l)

November 1991

id(l) id(l)

NAME
id - displays user and group IDs and names

SYNOPSIS
id

DESCRIPTION
id writes a message on the standard output giving the user and group IDs
and the corresponding names of the invoking process. If the effective and
real IDs do not match, both are displayed.

EXAMPLES
If logged in as the user guest, the command:

id

will return

uid=lOO (guest) gid=lOO (users)

where 10 0 and guest are the user's ID number and name; 10 0 and
users are the user's group ID number and group name. These values are
set up in the administrative file /etc/passwd.

FILES
/usr/bin/id

Executable file
/etc/passwd

File containing user IDs

SEE ALSO
logname(l), whoami(l)

getuid(2) in AJUX Programmer's Reference

November 1991

ident(l) ident(l)

NAME
i dent - displays RCS keywords and their values

SYNOPSIS
ident file ...

ARGUMENTS
file Specifies the file that is to be searched.

DESCRIPTION
i dent searches the named files for all occurrences of the pattern
$keyword: ... $,where keyword is one of the following:

Author
Date
Header
Locker
Log
Revision
Source
State

These patterns are normally inserted automatically by the RCS command
co(l), but can also be inserted manually.

The i dent program works on text files as well as object files.

EXAMPLES
If the C program in file f . c contains the line

char rcsid[] = "$Header: utility$";

and f . c is compiled into f . o, then the command

ident f. c f. o

will print

f. c:
$Header: utility $

f .o:
$Header: utility $

NOTES
Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907
Copyright© 1982 by Walter F. Tichy.

SEE ALSO
ci(l), co(l), rcs(l), rcsdiff(l), rcsintro(l), rcsmerge(l),
rlog(l)

November 1991

ident(l) ident(l)

2

rcsfile(4) inA/UX Programmer's Reference

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System,'' in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, September 1982

November 1991

indent(l) indent(l)

NAME
indent - indents and formats C program source

SYNOPSIS
indent input [output] [-be, -nbe] [-br, -bl] [-en] [-edn]
[[-dj] , -ndj] [-dn] [-in] [-ln] [-v, -nv]

ARGUMENTS
[-be, -nbe]

Causes a newline to be forced after each comma in a declaration. If
-be is specified, a newline will be forced after each comma in a
declaration. If - nbe is specified, this option is turned off. The default
is -be.

[-br,-bl]

-en

Specifies the format of complex statements. If -bl is specified,
complex statements will be lined up like this:

if (...)
{

code

If - br (the default) is specified, they will look like this:

if (...)
code

Specifies the column in which comments will start. Replace n with
the column number. The default is 33.

-edn
Specifies the column in which comments on declarations will start.
Replace n with the column number. The default is for these
comments to start in the same column as other comments.

[-dj] / -ndj

-dn

Specifies the justification of the declarations. -dj will cause
declarations to be left justified. -ndj will cause them to be indented
the same as code. The default is -ndj.

Controls the placement of comments which are not to the right of
code. Specifying -d2 means that such comments will be placed two
indentation levels to the left of code. The default, -dl, places
comments one indentation level to the left of code. -dO lines up these
comments with the code. See the section on comment indentation
following.

November 1991

indent(l) indent(l)

-in
Specifies the number of spaces for one indentation level. Replace n
with the number of spaces. The default is 4.

input

-ln

Specifies the file to be formatted.

Specifies the maximum length of an output line. Replace n with the
length of the output line. The default is 75.

output
Specifies the results of the formatted input file. When specified,
indent checks to make sure it is different from input. This option is
not given, the formatted file will be written back into input and a
"backup" copy of input will be written in the current directory.

[-v], -nv
Turns verbose mode on or off. -v turns on verbose mode, and -nv
turns it off. When in verbose mode, indent will report when it splits
one line of input into two or more lines of output, and it will give
some size statistics at completion. The default is -nv.

DESCRIPTION

2

indent is intended primarily as a C program formatter. Specifically,
indent can indent code lines, align comments, insert spaces around
operators where necessary, and break up declaration lists as in
inta,b,c;.

The indent command will not break up long statements to make them fit
within the maximum line length, but it will flag lines that are too long.
Lines will be broken so that each statement starts a new line. Comments
will be lined up one indentation level to the left of the code, and an attempt
is made to line up identifiers in declarations.

The options may appear before or after the file names. If input is named
/blah/blah/file, the backup file will be named . Bfile.

You may set up your own "profile" of defaults to indent by creating the
file . indent . pro in your home directory and including whatever
switches you like. If indent is run and a profile file exists, then it is read
to set up the program's defaults. Switches on the command line, though,
will always override profile switches. The profile file must be a single line
of not more than 127 characters. The switches should be separated on the
line by spaces or tabs.

November 1991

indent(l) indent(l)

Multiline expressions
The indent command will not break up complicated expressions that
extend over multiple lines, but it will usually correctly indent such
expressions which have already been broken up. Such an expression might
end up looking like this:

x =

) ;

Comments

(Arbitrary parenthesized expression)
+

(Parenthesized expression)

*
(Parenthesized expression)

The indent command recognizes four kinds of comments. They are:
straight text, box comments, UNIX-style comments, and unchanged
comments. The action taken with these various types are as follows:

Straight Text
All other comments are treated as straight text. The indent
command will fit as many words (separated by blanks, tabs, or
newlines) on a line as possible. Straight text comments will be
indented.

Box Comments
The indent command assumes that any comment with a dash
immediately after the start of comment (i.e. I* -) is a comment
surrounded by a box of stars. Each line of such a comment will be left
unchanged, except that the first nonblank character of each successive
line will be lined up with the beginning slash of the first line. Box
comments will be indented (see below).

UNIX-style Comments
This is the type of section header which is used extensively in the
UNIX system source. If the start of comment (I*) appears on a line
by itself, indent assumes that it is a UNIX-style comment. It will be
treated similarly to box comments, except the first nonblank character
on each line will be lined up with the '' * '' of the I *.

Unchanged Comments
Any comment which starts in column 1 will be left completely
unchanged. This is intended primarily for documentation header
pages. The check for unchanged comments is made before the check

November 1991 3

indent(l) indent(l)

for UNIX-style comments.

Comment Indentation
Box, UNIX-style, and straight text comments may be indented. If a
comment is on a line with code, it will be started in the
comment column which is set by the -en option. Otherwise, the
comment will be started at n indentation levels less than where code is
currently being placed, where n is specified by the -dn option. (Indented
comments will never be placed in column 1.) If the code on a line extends
past the comment column, the comment will be moved to the next line.

LIMITATIONS
The indent command does not know how to format "long" declarations.

STATUS MESSAGES AND VALUES
Status messages generally tell that a text line has been broken or is too long
for the output line.

FILES
/usr/ucb/indent

Executable file
-;.indent.pro

Profile file

SEE ALSO
cb(l)

4 November 1991

indxbib(1)

NAME
indxbib - builds an inverted index for a bibliography

SYNOPSIS
indxbib [database]... [file]. ..

ARGUMENTS
database

Specifies the database from which to make the index.

file Specifies the file from which to make the index.

DESCRIPTION

indxbib(1)

indxbib makes an inverted index to the named databases or files for use
by lookbib and ref er. These files contain bibliographic references (or
other kinds of information) separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of
bibliographic information. Each field starts on a line beginning with a %,
followed by a key-letter, then a blank, and finally the contents of the field,
which may continue until the next line starting with % .

The indxbib command is a shell script that calls
/usr I lib/refer /mkey and /usr I lib/ref er I inv. The first
program, mkey, truncates words to 6 characters, and maps uppercase to
lowercase. It also discards words shorter than 3 characters, words among
the 100 most common English words, and numbers (dates) < 1900 or >
2000. These parameters can be changed; see ref er(l). The second
program, inv, creates an entry file (. ia), a posting file (. ib), and a tag
file (. i c), all in the working directory.

LIMITATIONS
Probably all dates should be indexed, since many disciplines refer to
literature written in the 1800s or earlier.

FILES
/usr/ucb/indxbib

Executable file
file. ia

Output file where file is the name of the file or database
file. ib

Output file where file is the name of the file or database
file. ic

Output file where file is the name of the file or database
file. ig

Output file where file is the name of the file or database

November 1991

indxbib(1) indxbib(1)

SEE ALSO
addbib(l), lookbib(l), refer(l), roffbib(l), sortbib(l)

2 November 1991

ipcrm(1) ipcrm(l)

NAME
ipcrm - removes interprocess communications facilities

SYNOPSIS
ipcrm [-m shmidJ [-M shmkey] [-q msqidJ [-Q msgkey] [- s semidJ
[-S semkey]

ARGUMENTS
-m shmid

Removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are
destroyed after the last detach.

-M shmkey
Removes the shared memory identifier, created with key shmkey, from
the system. The shared memory segment and data structure associated
with it are destroyed after the last detach.

-q msqid
Removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

-Q msgkey
Removes the message queue identifier, created with key msgkey, from
the system and destroys the message queue and data structure
associated with it.

-s semid
Removes the semaphore identifier semid from the system and destroys
the set of semaphores and data structure associated with it.

-s semkey
Removes the semaphore identifier, created with key semkey, from the
system and destroys the set of semaphores and data structure
associated with it.

DESCRIPTION
ipcrm will remove one or more specified message, semaphore, or shared
memory identifiers. The identifiers are specified by the options.

The details of the removes are described in ms get 1(2), shmct 1(2), and
semctl(2). The identifiers and keys may be found by using ipcs(l).

FILES
/bin/ipcrm

Executable file

November 1991

ipcrm(1)

SEE ALSO
ipcs(l)

ipcrm(1)

msgct1(2), msgget(2), msgop(2), semct1(2), semget(2), semop(2),
shmct 1(2), shmget(2), shmop(2) in AIUX Programmer's Reference

2 November 1991

ipcs(l) ipcs(l)

NAME
ipcs - reports interprocess communication facilities status

SYNOPSIS
ipcs [-a] [-b] [-c] [-C core.file] [-rn] [-N namelist] [-o] [-p] [-q]
[-s] [-t]

ARGUMENTS
- a Uses all print options. (This is a shorthand notation for the - b, - c,

-o, -p, and -t options.)

-b Prints information on largest allowable size (maximum number of
bytes in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for
semaphores). See below for meaning of columns in a listing.

- c Prints the creator's login name and group name.

-c core.file
Uses the file core.file in place of I dev I kmem.

-rn Prints information about active shared memory segments.

-N namelist
Takes the argument as the name of an alternate namelist (/unix is
the default).

- o Prints information on outstanding usage (number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory
segments).

-p Prints the process number information (process ID of last process to
send a message, process ID of last process to receive a message on
message queues, and process ID of creating process and process ID of
last process to attach or detach on shared memory segments).

-q Prints information about active message queues.

- s Prints information about active semaphores.

- t Prints time information (time of the last control operation that changed
the access permissions for all facilities; time of last msgsnd and last
msgrcv on message queues, last shmat and last shmdt on shared
memory, last sernop(2) on semaphores).

November 1991

ipcs(l) ipcs(l)

DESCRIPTION
i pc s prints certain information about active inter-process communication
facilities. Without options, information is printed in short format for
message queues, shared memory, and semaphores that are currently active
in the system.

If any of the -q, -m, or -s options are specified, information about only
those indicated will be printed. If none of these are specified, information
about all three will be printed.

The column headings and the meaning of the columns in an i pc s listing
follow. The letters in parentheses indicate the options that cause the
corresponding heading to appear, while the word in parentheses, all, means
that the heading always appears. Note that these options determine only
what information is provided for each facility; they do not determine which
facilities will be listed.

T (all)
Type of the facility:

q message queue

m shared memory segment

s semaphore

ID (all)

The identifier for the facility entry.

KEY (all)
The key used as an argument to msgget, semget, or shmget to create
the facility entry.

Note: The key of a shared memory segment is changed to
IPC_PRIVATE when the segment has been removed until all
processes attached to the segment detach it.

MODE (all)

The facility access modes and flags. The mode consists of 11
characters that are interpreted as follows:

The characters are:

R if a process is waiting on a msgrcv;

S if a process is waiting on a msgsnd;

D if the associated shared memory segment has been removed,
it will disappear when the last process attached to the
segment detaches it;

2 November 1991

ipcs(l) ipcs(l)

C if the associated shared memory segment is to be cleared
when the first attach is executed;

if the corresponding special flag is not set.

The next characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permissions
of others in the user-group of the facility entry; and the last to all
others. Within each set, the first character indicates permission to
read, the second character indicates permission to write or alter the
facility entry, and the last character is currently unused.

The permissions are indicated as follows:

r if read permission is granted;

w if write permission is granted;

a if alter permission is granted;

if the indicated permission is not granted.

OWNER (all)

The login name of the owner of the facility entry.

GROUP (all)

The group name of the owner's group of the facility entry.

CREATOR (a,c)
The login name of the creator of the facility entry.

CGROUP (a,c)
The group name of the creator's group of the facility entry.

CBYTES (a,o)
The number of bytes in messages currently outstanding on the
associated message queue.

QNUM (a,o)
The number of messages currently outstanding on the associated
message queue.

QBYTES (a,b)
The maximum number of bytes allowed in messages outstanding on
the associated message queue.

LSPID (a,p)
The process ID of the last process to send a message to the associated
queue.

LRPID (a,p)
The process ID of the last process to receive a message from the
associated queue.

November 1991 3

ipcs(l) ipcs(l)

STIME (a,t)
The time the last message was sent to the associated queue.

RTIME (a,t)
The time the last message was received from the associated queue.

CTIME (a,t)
The time when the associated entry was created or changed.

NATTCH (a,o)
The number of processes attached to the associated shared memory
segment.

SEGSZ (a,b)
The size of the associated shared memory segment.

CPID (a,p)
The process ID of the creator of the shared memory entry.

LPID (a,p)
The process ID of the last process to attach, or detach, the shared
memory segment.

ATIME (a,t)
The time the last attach was completed to the associated shared
memory segment.

DTIME (a,t)
The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b)
The number of semaphores in the set associated with the semaphore
entry.

OTIME (a,t)
The time the last semaphore operation was completed on the set
associated with the semaphore entry.

LIMITATIONS
Things can change while ipc s is running; the picture it gives is only a
close approximation to reality.

FILES

4

/bin/ipcs
Executable file

/unix
System namelist directory

/dev/kmem
Memory file

November 1991

ipcs(l)

/etc/passwd
File containing user names

/etc/group
File containing group names

SEE ALSO
ipcrm(l)

ipcs(l)

msgop(2), semop(2), shmop(2) in AIUX Programmer's Reference

November 1991 5

isotomac(l) isotomac(l)

See mactoiso(l)

November 1991

iw2 (1) iw2 (1)

NAME
iw2 - prepares data to be printed on the Apple ImageWriter II printer

SYNOPSIS
iw2 [-a dotspace] [-b] [-c color] [-d] [-D udcfile] [-f] [-h]
[-k mode] [-1 language] [-m margin] [-n length] [-o file]
[-p pitch] [-q quality] [-s spacing] [-t tabs] [-u] [-U udcfile]
[-w value] [-x] [-z] [file] ...

ARGUMENTS
-a dotspace

Adds dot spaces to proportional pitch text. When the Apple
Imagewriter II is printing in a proportional pitch, the space allotted to
each character depends on the shape of the character. Each character
has one dot space added after it to keep it from running into the next
character. This option allows from I to 6 additional dot spaces to be
added after each proportional character.

- b Prints boldface text. Each dot of the character is printed twice with a
small shift of position.

-c color
Prints text in color. The Apple Imagewriter II can print in color by
using the color ribbon. The color ribbon contains four bands of color:
yellow, cyan, magenta, and black. In addition, the Apple Imagewriter
II automatically prints orange, green, and purple by overprinting one
color with another, as follows:

black
Selects the black color ribbon band.

yellow
Selects the yellow color ribbon band.

red
Selects the magenta color ribbon band. You can specify this
color by magenta as well.

blue
Selects the cyan color ribbon band. You can specify this
color by cyan as well.

orange
Prints orange by overprinting yellow and magenta.

green
Prints green by overprinting yellow and cyan.

purple
Prints purple by overprinting magenta and cyan.

-d Prints double-width characters. Each character is printed with double
the number of dots with which it is normally printed.

November 1991

iw2 (1) iw2 (1)

2

-D udcfile
Works the same as the - U option, except that the udcfile filename is
prefixed with the directory pathname I us r I 1 i b I i w2 I (see the - U
option later in this section).

- f Outputs an initial formfeed before any files are printed. Generally
used with the Apple Imagewriter II sheetfeeder.

file Specifies the file that is prepared for printing. If no file is specified,
the standard input is assumed.

- h Prints half-height characters. Half-height characters are printed by
cutting in half the vertical distance between the rows of dots that make
up the characters.

-k mode
Selects print direction mode. The Apple Imagewriter II can print from
left-to-right or bidirectional. Left-to-right, while slower, improves the
precision at which characters line up.

lr Print left-to-right only.

bi Print bidirectional.

-1 language
Selects language font. As an aid, there are 8 different language fonts
used for printing text in other languages. Each of these fonts
substitutes characters for these ten American font symbols:

@ \

american
Selects the American language font.

italian
Selects the Italian language font.

danish
Selects the Danish language font.

british
Selects the British language font.

german
Selects the German language font.

swedish
Selects the Swedish language font.

f rench
Selects the French language font.

November 1991

iw2 (1) iw2 (1)

spanish
Selects the Spanish language font.

-m margin
Specifies the left page margin. This sets the leftmost column to start
printing in. Normally zero, the column number may be set from zero
(leftmost) to a value that depends on the current character pitch, as
shown in the following list.

Pitch Chars/line Range
9 72 0 to 71
10 80 0 to 79
12 96 Oto95
13.4 107 0 to 106
15 120 0 to 119
17 136 0 to 135
pica depends 0 to 71
elite depends 0 to 79

For setting the margin when using proportional fonts, elite uses 10
characters per inch and pica uses 12 characters per inch.

-n length
Specifies page length. This must be an integer value in inches. If the
number is preceded by a I, it will be considered as length/144 in.
That is, both - n 11 and - n I 15 8 4 will set a page length of 11
inches.

-o file
Specifies an output file. By default, i w2 writes to the standard output,
so this option will redirect the output to file.

-p pitch
Specifies pitch, or characters per inch. The Apple lmagewriter II
prints in eight different widths (character pitches), from 9 characters
per inch (cpi) to 17 cpi. Two of the character pitches print
proportionally; that is, the space allotted to each character depends on
the shape of the character.

9 Prints at 9 cpi, for 72 characters per line.

1 0 Prints at 10 cpi, for 80 characters per line.

12 Prints at 12 cpi, for 96 characters per line.

13 Prints at 13.4 cpi, for 107 characters per line. 13 . 4 may
also be specified.

15 Prints at 15 cpi, for 120 characters per line.

November 1991 3

iw2 (1) iw2 (1)

4

1 7 Prints at at 17 cpi, for 136 characters per line.

pica
Prints pica proportional font. Averages I 0 cpi.

elite
Prints elite proportional font. Averages 12 cpi.

-q quality
Specifies quality of printing. The Apple Imagewriter II can print
ASCII text in one of three qualities: draft (250 characters per second),
correspondence (180 cps), and near letter quality (45 cps).

draft
Prints in draft quality mode.

better

nlq

Prints in better, or correspondence quality mode.

Prints in best, near letter quality. You may also specify
best for this mode.

-s spacing
Specifies spacing, or distance between lines. This value can be
specified in two ways.

2 Sets line spacing to 2 lines per inch.

3 Sets line spacing to 3 lines per inch.

4 Sets line spacing to 4 lines per inch.

6 Sets line spacing to 6 lines per inch.

8 Sets line spacing to 8 lines per inch.

9 Sets line spacing to 9 lines per inch.

The value can also have a slash (/) affixed to it. Then, this value
indicates line spacing at 11144 in. For example, three lines per inch
would be a spacing of 481144 in., and could be specified by either -s
3 or -s I 48.

-t tabs
Specifies tab settings. Default tabs are set every 8 columns (9, 17, 25,
...). This option clears all default tab stops and is used to set custom
tab stops. Tabs are specified by numbers followed by commas. For
example, to set tabs every four columns (up to column 25):

-t 5,9,13,17,21,25

The limit on the number of settable tabs is 8. The highest legal
column for the tab stop must lie in the left margin range. See the -rn

November 1991

iw2 (1) iw2 (1)

option for the margin range table.

- u Causes all characters and spaces to be underlined.

-U udcfile
Loads user defined characters from the file udcfile, the contents of
which are defined later in this section.

-w value
Sets dot spacing for proportional pitch text. When the Apple
Imagewriter II is printing in a proportional pitch, the space allotted to
each character depends on the shape of the character. Each character
has a single dot space added after it to keep it from running into the
next character. This option allows setting dot spaces for the
proportional character set. Dot spacing may be set from 0 to 9 dot
spaces. Each proportional character will always include one dot
space, thus the settings of 0 through 9 allow you to set the dot spacing
from 1 to 10.

-x Resets the Apple Imagewriter II initialization sequences (that set the
default settings). In this program, first the default sequences are
processed (see ''Defaults'' later in this section), then the environment
variable, and then the options. This option, when encountered, resets
the buffer holding the initialization sequences that were built by
processing the default and environmental variable.

- z Specifies that all zeros are to be printed with a slash through them.

DESCRIPTION
The Apple Imagewriter II is a dot matrix printer that works as a normal
ASCII character set printer. It has many options, including color ribbons,
various print qualities, national language character sets, downloadable
fonts, and more. i w2 is a program that accepts options indicating that a
file or files (or standard input) is to be printed with various Apple
Imagewriter II option sets.

The i w2 command prepares the named files for eventual printing on the
Apple Imagewriter II by sending appropriate Apple Imagewriter II control
codes and then the named files to the standard output.

UDC files
A UDC (user defined character) file consists of ASCII text that defines the
bit patterns that make up a character. More than one character can be
defined in a UDC file, and any character may be redefined. Characters that
are not defined in a UDC file print out in the normal ASCII character bit
pattern. For example, to define the ASCII space character (SP) to resemble
an upside down and backwards capital L:

=040

November 1991 5

iw2 (1) iw2 (1)

1####.
2 ... #.
3 ... #.
4 ... #.
5 ... #.
6 ... #.
7 ... #.
8 ... #.

In a UDC file, each character is defined by 9 text lines. The first line starts
with an equal sign (=), and is followed by an octal, decimal, or
hexadecimal number that indicates the character to be defined. Octal,
decimal, or hexadecimal is selected by using the standard C language
conventions.

The next 8 lines define the 8 rows of the character. Notice that the lines are
numbered. These numbers correspond to the nine-wire print head. You
are limited to 8 rows. You can specify rows 1 through 8, or rows 2 through
9. Each line contains a period (.) to indicate no dot, and a pound sign (#)
to indicate dot. The width of the character is computed by the longest line
encountered in the 8 lines. You should place extra periods at the right
columns of the character definition to allow for space between it and the
adjacent character.

For example, we have redefined the letter "A" to be a vertical bar, with a
small amount of space between it and the character on its left, and a lot of
space between it and the character on the right.

=0x41
1. ## .. .
2. ## .. .
3. ## .. .
4. ## .. .
5. ## .. .
6. ## .. .
7. ## .. .
8. ## .. .

The maximum width of any character is 16 columns of dots.

Defaults

6

Draft font
American language
Black color
Stop double width print

Standard ASCII
Pitch is 12 cpi (Elite)
Set default tabs every 8 columns (12 cpi)
Stop underlining

November 1991

iw2 (1) iw2 (1)

Stop boldface
Stop sub/super scripting
Set left margin at 0
Bidirectional printing
Forward line feeding
Insert CR before LF/FF
CR, LF, FF cause printing
Perforation skip disabled

Environment variables
The environment variable

Stop half-height text
Zeros unslashed
Set page length to 11 inches
6 lines per inch spacing
Paper-out sensor on
No LF when line is full
Ignore 8th data bit
Dot spacing is zero

APPLE_IMAGEWRITER_II PRINT_OPTIONS

can be used to supply default print options. All options may be specified in
the environment variable. In the C shell, a typical setting of the
environment variable would be

setenv APPLE_IMAGEWRITER_II_PRINT_OPTIONS\
"-c red -q better"

EXAMPLES
The command:

iw2 -c red -q nlq -1 british

will print text using the red color ribbon, in near letter quality (nlq) mode,
using the British language font.

NOTES
When using the -x option, you specify character strings, as needed, to set
various Apple Imagewriter II capabilities, without knowing the machine
dependent codes. For example, if you wished to print a file, using pr(l),
but wanted the header to be in red and the rest of the file in black, you
could do the following:

set red='iw2 -x -c red< /dev/null'
black='iw2 -x -c black < /dev/null'
pr -h "$red this is the heading $black" $1 I lp

If you wanted to change the word ''red'' in the file f oobar to print in the
color red, you could do the following:

set red='iw2 -x -c red< /dev/null'
set black='iw2 -x -c black < /dev/null'
sed s/red/"$red"red"$black"/g foobar I lp

Always remember that you must set and unset the capability, or else the
characters following what you have set will remain that way. Also note
that in the set red and set black lines is the 'character (the ASCII
character with the value of hexadecimal 60).

November 1991 7

iw2 (1) iw2 (1)

The - o option is ignored when i w2 reads from the standard input. If an
input file is specified as an argument, then the - o option works as
documented.

FILES
/usr/bin/iw2

Executable file

SEE ALSO
daiw(l), lp(l)

8 November 1991

j oin(l) join(l)

NAME
join - combines (joins) two relational files

SYNOPSIS
join [-an] [-e string] [-jn m] [-o list] [-tc]filel file2

ARGUMENTS
-an

Produces a line for each unpairable line in file n, in addition to the
normal output. Replace n with a 1 or a 2 which refers to either file 1
or file2, respectively.

-e string
Replaces empty output fields with the strings.

file]
Specifies the first file to be joined withfile2.

file2
Specifies the second file to be joined with file 1.

-jn m
Joins on the mth field of file n. If n is missing, use the mth field in
each file. Fields are numbered starting with 1. Replace n with a 1 or
a 2 which refers to either.file} orfile2, respectively.

-o list
Causes each output line to comprise the fields specified in list, each
element of which has the form n . m, where n is a file number and m
is a field number. The common field is not printed unless specifically
requested.

-tc Uses the character c as a separator (tab character). Every appearance
of c in a line is significant. The character c is used as the field
separator for both input and output. Note that this option must be used
to preserve tabs and multiple spaces in a file.

DESCRIPTION
j o in forms, on the standard output, a join of the two relations specified by
the lines of file 1 and file2. If file 1 is - , the standard input is used.

file] andfile2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file I andfile2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line fromfilel, then the rest of the line fromfile2.

The default input field separators are blank, tab, or newline. In this case,
multiple separators count as one field separator, and leading separators are
ignored. Thus, to preserve tabs and multiple occurrences of spaces in a

November 1991

j oin(l) j oin(l)

file, you must select tabs as the alternate delimiter using the - t option
where c is the tab character (see -t option above). The default output field
separator is a blank.

EXAMPLES
If JUel contains:

Austen -
Bailey -
Clark -
Dawson -
Smith -

andfile2 contains:

Austen Jack Anchor Brewery
Clark Maryann Shoeshop
Daniels Steve Computer Software
Dawson Sylvia Toot Sweets
Smith Sally Talcum Powdery

then the command:

join -jl 1 -j2 1 -o 2.2 2.1 1.2 2.3 2.4 filel file2

will generate

Jack Austen - Anchor Brewery
Maryann Clark - Shoeshop
Sylvia Dawson - Toot Sweets
Sally Smith - Talcum Powdery

The command:

join -jl 4 -j2 3 -o 1.1 2.1 1.6 -t: /etc/passwd /etc/group

joins the password file and the group file, matching on the numeric group
ID, and the login name, the group name, and the login directory. It is
assumed that the files have been sorted in ASCII collating sequence on the
group ID fields.

LIMITATIONS

2

With default field separation, the collating sequence is that of sort -b;
with -t, the sequence is that of a plain sort.

The conventions of j oin(l), sort(l), comm(l), uniq(l) and awk(l) are
wildly incongruous.

Filenames that are numeric may cause conflict when the - o option is used
right before listing filenames.

November 1991

join(l)

FILES
/usr/bin/join

Executable file

SEE ALSO
awk(l), comrn(l), sort(l), uniq(l)

November 1991

join(l)

3

kermit(lC) kermi t (IC)

NAME
kermi t - invokes the Kermit file-transfer program

SYNOPSIS
k e rm i t [- a Jn 1] [- b n] [- c] [- d] [- f] [- g tfiz] [- h] [- i] [- k]
[-1 dev [-n]] [-p x] [-q] [-r] [-s fa] [-t] [-w] [-x] [file] ...

ARGUMENTS
-a fal

Specifies an alternative name for a single file if you have specified a
file transfer option. For example,

kermit -s foo -a bar

sends the file foo, telling the receiver that its name is bar. If more
than one file arrives or is sent, only the first file is affected by this
option: For example:

kermit -ra baz

stores the first incoming file under the name ba z.

-b n
Specifies the baud rate for the line given in the -1 option, as in

kermit -1 /dev/ttyi5 -b 9600

This option should always be used when the -1 option is used, since
the speed of an external communication line is not necessarily what
you expect.

- c Establishes a terminal connection over the specified or default
communication line, before any protocol transaction takes place. Get
back to the local system by typing the escape character (normally
CONTROL-Backslash) followed by the letter c.

-d Records debugging information in the file debug. log in the current
directory. Use this option if you believe the program is misbehaving,
and show the resulting log to your local kermi t maintainer.

-f Sends a ''finish'' command to a remote server.

file Specifies the file to be moved.

-g tfiz
Requests (actively) a remote server to send the named file or files; tfiz
is a file specification in the remote host's own syntax. If fa happens to
contain any special shell characters, like *, these must be quoted, as in

kermit -g x*.\?

-h Displays a brief synopsis of the command-line options.

November 1991

kerrni t (lC) kerrni t (lC)

- i Specifies that files should be sent or received exactly ''as is'' with no
conversions. This option is necessary for transmitting binary files. It
can also be used to slightly boost efficiency in UNIX-to-UNIX®
transfers of text files by eliminating carriage-return line-feed/newline
conversion.

-k Receives (passively) a file or files, sending them to standard output.
This option can be used in several ways. Here are some examples.

kerrnit -k

displays the incoming files on your screen; this command is to be used
only in "local mode." (Local mode is described in "Interactive
Operation," later in this manual page.)

kerrni t -k > fnl

sends the incoming file or files to the named file, fnl. If more than one
file arrives, all are concatenated together into the single file fnl.

kerrni t -k I command

pipes the incoming data (single or multiple files) to the indicated
command, as in

kerrnit -k I sort > sorted.stuff

-1 dev
Specifies a terminal line to use for file-transfer operations and terminal
connection, as in:

kerrnit -1 /dev/ttyi5

When an external line is being used, you might also need some
additional options for successful communication with the remote
system.

-n Acts like the -c option, but after a protocol transaction takes place.
The - c and - n options can both be used in the same command.

-p x
Specifies the parity: e, o, rn, s, or n (even, odd, mark, space, or
none). If parity is other than none, then the 8th-bit prefixing
mechanism will be used for transferring 8-bit binary data, provided
the opposite kerrni t command uses the same mechanism. The
default parity is none.

-q Specifies background mode (quiet); suppresses screen update during
file transfer, for instance to allow a file transfer to proceed in the
background.

November 1991 2

kerrni t (IC) kerrni t (IC)

-r Receives a file or files. Causes kerrni t to wait passively for files to
arrive.

-s Jn
Sends the specified file or files. If Jn contains metacharacters, the
A/UX shell expands Jn into a list. If Jn is-, then kerrni t sends from
standard input, which must come either from a file or from a parallel
process, as shown in these lines:

kerrnit -s - < foo.bar

ls -1 I kerrnit -s -

You cannot use this mechanism to send the terminal type. If you want
to send a file whose name is - , you can precede it with a pathname, as
in

kerrnit -s ./-

- t Specifies half-duplex, line turnaround with XON as the handshake
character.

-w Specifies write-protect; avoid filename collisions for incoming files.

- x Begins server operation. This option can be used in either local or
remote mode.

DESCRIPTION
kerrni t is a file-transfer program that allows you to move files between
computers with many different operating systems and architectures. This
manual page describes version 4C of the program.

Arguments are optional. If kerrni t is executed without arguments, it
enters command mode. Otherwise, kerrni treads the arguments off the
command line and interprets them.

The following notation is used in command descriptions:

[] Any field in brackets is optional.

{x,y ,z}
Alternatives are listed in braces.

c A decimal number between 0 and 127 representing the value of an
ASCII character.

cc A decimal number between 0 and 31, or else exactly 127, representing
the value of an ASCII control character.

Jn Specifies an A/UX file specification, possibly containing the asterisk
(*) metacharacter which matches all character strings, or the question
mark metacharacter (?), ''?' ', which matches any single character.

3 November 1991

kermit(IC) kermit(lC)

fnl An A/UX file specification that may not contain * or?.

n A decimal number between 0 and 94.

rfn A remote file specification in the remote system's own syntax, which
can denote a single file or a group of files.

rfnl A remote file specification that should denote only a single file.

The command-line options can specify either actions or settings. If
kermi t is invoked with a command line that specifies no actions, it issues
a prompt and begins interactive dialog. Action options specify either
protocol transactions or terminal connection.

The command line must not contain more than one protocol action option.

Interactive Operation
The interactive prompt for the kermi t command is:

C-Kermit>

In response to this prompt, you can type any valid command. The kermi t
command executes the command and then prompts you for another
command. The process continues until you tell the program to terminate.

Commands begin with a keyword, normally an English verb, such as
send. You can omit trailing characters from any keyword, so long as you
specify sufficient characters to distinguish it from any other keyword valid
in that field. Certain commonly used keywords (such as send, receive,
and connect) have special nonunique abbreviations (s for send, (rfor
receive, (cfor connect).

Certain characters have special functions in interactive commands:

? A question mark, typed at any point in a command, causes kermi t to
display a message explaining what is possible or expected at that
point. Depending on the context, the message may be a brief phrase, a
menu of keywords, or a list of files.

\ Backslash; causes any of the other characters in this list to be entered
into the command, literally. To enter a backslash, type two
backslashes in a row (\ \). A single backslash immediately preceding
a carriage return allows you to continue the command on the next line.

CR Carriage return; enters the command for execution. A line-feed (LF)
or form-feed (FF) can also be used for this purpose.

DEL
The DELETE or RUBOUT key; deletes the preceding character from the
command. You can also use BS (CONTROL-H) for this function.

ESC
The ESCAPE or AL TM ODE key; requests completion of the current

November 1991 4

kerrni t (IC) kerrni t (IC)

5

keyword or filename, or insertion of a default value. The result will
be a beep if the requested operation fails.

"R CONTROL-R; redisplays the current command.

SP Space; delimits fields (keywords, filenames, numbers) within a
command. HT (Horizontal Tab) can also be used for this purpose.

"U CONTROL-U; erases the entire command.

"W CONTROL-W; erases the rightmost word from the command line.

You can type the editing characters (DEL, "W, and so on.) repeatedly, to
delete all the way back to the prompt. No action will be performed until
you enter the command by pressing RETURN, the line-feed key, or the
form-feed key. Command is entered by typing carriage return, linefeed, or
formfeed. If you make any mistakes, you will receive an informative error
message and a new prompt; make liberal use of? and ESC to feel your
way through the commands. One important command is help; you should
use it the first time you run kerrni t.

In interactive mode, kerrni t accepts commands from files as well as from
the keyboard. When you enter interactive mode, kerrni t looks for the file
. kerrnrc in your home or current directory (first looking in the home
directory, then looking in the current one) and executes any commands it
finds there. These commands must be in interactive format, not A/UX
command-line format. A take command is also provided for use at any
time during an interactive session. Command files can be nested to any
reasonable depth.

Here is a brief list of kerrni t interactive commands:

Executes an A/UX shell command.

bye
Terminates the connection to and log outs of a remote kerrni t
server.

close
Closes a log file.

connect
Establishes a terminal connection to a remote system.

cwd
Changes the working directory.

dial
Dials a telephone number.

directory
Displays a directory listing.

November 1991

kerrni t (lC) kerrni t (IC)

echo
Displays arguments literally.

exit
Exits from the program, closing any open logs.

finish
Instructs a remote kerrni t server to exit, but not log out.

get
Gets files from a remote kerrni t server.

help
Displays a help message for a given command.

log
Opens a log file - debugging, packet, session, or transaction.

quit
Acts the same as exit.

receive
Passively waits for files to arrive.

remote
Issues file-management commands to a remote kerrni t server.

script
Executes a login script with a remote system.

send
Sends files.

server
Begins server operation.

set
Sets various parameters.

show
Displays values of set parameters.

space
Displays current disk-space usage.

statistics
Displays statistics about the most recent transaction.

take
Executes commands from a file.

The set parameters are as follows:

block-check
Specifies the level of packet error detection.

November 1991 6

kermit(IC) kermit(lC)

7

delay
Specifies how long to wait before sending the first packet.

duplex
Specifies which side echoes during connect.

escape-character
Specifies the character with which to prefix escape commands during
connect.

file
Sets various file parameters.

flow-control
Specifies the communications line full-duplex flow control.

handshake
Specifies the communications line half-duplex turnaround character.

line
Specifies the communications line device name.

modem-dialer
Specifies the type of modem-dialer on the communications line.

parity
Specifies the communications line character parity.

prompt
Changes the kermi t program's prompt.

receive
Sets various parameters for inbound packets.

send
Sets various parameters for outbound packets.

speed
Specifies the communications line speed.

The remote commands are as follows:

cwd
Changes the remote working directory.

delete
Deletes remote files.

directory
Displays a listing of names of remote files.

help
Requests help from a remote server.

November 1991

kermit(IC) kermit(IC)

host
Issues a command to the remote host in its own command language.

space
Displays current disk-space usage on the remote system.

type
Displays a remote file on your screen.

who
Displays who's logged in, or information about a user.

Remote and Local Operation
The kermi t program is ''local'' if it is running on a personal computer or
workstation that you are using directly, or if it is running on a multi-user
system and transferring files over an external communications line, not
from your job's controlling terminal or console. The kermi t program is
remote if it is running on a multi-user system and transferring files over
its own controlling terminal's communications line, connected to your
personal computer or workstation.

If you are running kermi ton a personal computer, it is in local mode by
default, with the ''back port'' designated for file transfer and terminal
connection. If you are running kermi t on a multi-user (time-sharing)
system, it is in remote mode unless you explicitly point it at an external line
for file transfer or terminal connection.

The -g ifn, - f, - c, and -n commands can be used only with a ke rmi t
program that is local, either by default or because the -1 option has been
specified.

On a time-sharing system, the -1 and -b options must also be included
with the -r, -k, or -s option if the other kermi t program is on a remote
system.

If kermi t is in local mode, the screen (standard output) is continuously
updated to show the progress of the file transfer. A dot is printed for every
four data packets; other packets are shown by type (for example, S for
Send-Init); Tis printed when there's a timeout; and % is printed for each
retransmission. In addition, you can type (to standard input) the following
''interrupt'' commands during file transfer:

CONTROL-F

Interrupts the current file and goes on to the next (if any).

CONTROL-B

Interrupts the entire batch of files and terminates the transaction.

CONTROL-R

Resends the current packet.

November 1991 8

kermit(lC) kermit(lC)

CONTROL-A

Displays a status report for the current transaction.

These interrupt characters differ from the ones used in other kermi t
implementations to avoid conflict with A/UX shell interrupt characters.
With System III and System V implementations of the UNIX system,
interrupt commands must be preceded by an escape character (such as
CONTROL-\).

LIMITATIONS
See recent issues of the Info-Kermit digest (on ARP ANET or Usenet) for a
list of bugs.

STATUS MESSAGES AND VALVES
The diagnostics produced by kermi t itself are intended to be self­
explanatory.

FILES
$HOME/.kermrc

File containing kermi t initialization commands
./.kermrc

File containing kermi t initialization commands
/usr/bin/kermit

Executable file
/usr/spool/locks

Directory in which kermi t makes a lock file, which prevents other
programs from using the serial port that kermi t is using

SEE ALSO

9

cu(lC), uucp(lC)

Kermit User's Guide, Frank da Cruz and Bill Catchings, Columbia
University, 6th Edition

November 1991

kill(l) kill(l)

NAME
ki 11 - terminates a process

SYNOPSIS
kill [-sig] pid ...

ARGUMENTS
pid Specifies the process identification number (pid) of the process to be

killed.

-sig
Sends the corresponding signal instead of terminate (see
s ignal(3)),i fthe -sig option is given. In particular kill - 9 ... is
the surest kill; especially with NFS, the 9 signal does not always
destroy the process.

DESCRIPTION
ki 11 sends signal 15 (terminate) to the specified processes. This will
normally kill processes that do not catch or ignore the signal. The process
number (pid) of each asynchronous process started with & is reported by
the shell (unless more than one process is started in a pipeline, in which
case the number of the last process in the pipeline is reported). Process
numbers may also be found by using ps.

Details of the kill are described in ki 11(2). For example, if process
number 0 is specified, all processes in the process group are signaled.

The to-be-killed process must belong to the current user unless he is the
superuser.

Similar versions of kill are built into ksh(l) and csh(l).

EXAMPLES
The command:

kill 24068

sends signal 15 to the process with the ID number 24068.

FILES
/bin/kill

Executable file

SEE ALSO
ps(l), sh(l), csh(l), ksh(l)

ki 11(2), s ignal(3) in NUX Programmer's Reference

November 1991

ksh(l) ksh(l)

NAME
ksh - runs the Korn shell, an enhanced command interpreter that is
backward-compatible with the Bourne shell (sh)

SYNOPSIS
ksh [-a] [-c string] [-e] [-f] [-h] [-i] [-k] [-m] [-n] [-o option] ...
[-p] [--positional-arg] ... [±positional-arg] ... [-r] [-s] [-t] [-u] [-v]
[-x] [file] ...

ARGUMENTS
+ [positional-arg] .. .
- [positional-arg] .. .

Turn off -x and -v options and suppress examination of remaining
shell arguments for interpretation as command options. Instead, the
positional variables of the shell are reassigned in terms of the
positional-arg values supplied, which makes it possible to set $1 to a
value beginning with a hyphen.

- - [positional-arg] ...
Reassigns the positional variables. The remaining arguments are
positional parameters and are assigned, in order, to $1, $ 2, and so on.
If no arguments follow this option, the positional parameters are unset.

- a Exports the new values for any subsequently modified variables
without your having to use an explicit export command.

-c string
Specifies a command line (string) that you want the ksh subshell to
run before exiting. Using this option is one way to run the Korn shell
noninteractively.

- e Executes the command associated with the ERR condition by the
trap command, if any was set. Exits if a command returns false.
This mode is disabled while the system is reading the startup files
(.kshrc and .profile).

- f Disables filename generation. (See ''Filename Generation'' in the
"Description" section later in this manual page.)

file Specifies the filename for a shell script you want the ksh subshell to
run before exiting.

-h Affects the way the built-in alias command builds aliases. The
command-name portion of the aliased command is expanded into a
full pathname so that the alias can continue to locate the same
command program even when identically named commands are later
created and located in directories that are also part of the search path.
An alias built in this fashion is a tracked alias. See "Aliasing" in the
''Description'' section for more information about tracked aliases.

November 1991

ksh(1) ksh(l)

- i Establishes an interactive mode of operation.

-k Establishes a mode of operation where any command-line elements
that are variable assignments are placed in the environment of a
command, regardless of their position on the command line.
Otherwise, only variable assignments that precede the command name
are placed in the environment of a command.

- m Causes background jobs to run in a separate process group that is not
associated with the terminal. The exit status of background jobs is
reported in a completion message. This mode is turned on
automatically for interactive shells.

-n Reads commands and checks them for syntax errors, but does not
execute them. This option is ignored for interactive shells.

-o [option]
Puts into effect the option specified.

With no option arguments, - o prints the current preference settings.
The option letters corresponding to the active settings are also merged
into a single string that is stored in the variable named ''hyphen''
($ -). To set or unset these options once an interactive session is
underway, use set as described in "Built-in Commands" in the
''Description'' section later in this manual page. You can replace
option with any of the following values:

all export
Exports variables automatically whenever they are reset;
establishes the same operating mode as does the -a option.

bgnice
Runs all background jobs at a lower priority.

emacs
Establishes an emacs-style, command-input editor for command
entry.

errexit
Executes the ERR trap; establishes the same operating mode as
does the - e option.

gmacs
Establishes a gmacs-style, command-input editor for command
entry.

ignoreeof
Prevents ksh from exiting when an end-of-file character is
received. The exit command must be explicitly executed.

November 1991 2

ksh(1) ksh(1)

keyword
Affects the way parameters are placed in the environment;
establishes the same operating mode as does the - k option.

markdirs
Appends a trailing slash (/) to all directory names resulting from
filename generation.

monitor
Alters the usual process group assigned to background jobs;
establishes the same operating mode as does the -m option.

noclobber
Prevents the overwriting of existing files when output is
redirected to files.

no exec
Checks command lines without executing them; establishes the
same operating mode as does the -n option. Using noexec
helps you determine whether ksh can interpret an input data
stream as valid commands.

noglob
Disables filename generation; establishes the same operating
mode as does the - f option.

no log
Prevents ksh from saving function definitions in the history file.

nouns et
Causes an error to be reported when an uninitialized variable is
referenced within a command line; establishes the same operating
mode as does the -u option.

privileged
Resets PA TH to the default search path; establishes the same
operating mode as does the -p option.

trackall
Tracks aliases by way of storing the full pathname to the aliased
command; establishes the same operating mode as does the - h
option.

verbose
Prints each command line (exactly as it appears in the input)
before it is executed; establishes the same operating mode as
does the -v option.

vi Establishes a command-line-input editor for command entry.
This is also called the ''cooked'' (processed) mode. This editor

3 November 1991

ksh(l) ksh(l)

has fewer features than the viraw editor, and thus has faster
response time than it.

vi raw
Establishes a command-character-input editor for command entry
similar to the vi argument, except that input is processed on a
character-by-character basis. This editor mode is also known as
the "raw" mode. The vi raw editor has more features and is
more reliable, but causes longer response times for all users on
multi-user systems. This editor has horizontal scrolling and
Tabs are always expanded.

xtrace
Prints each command and its arguments after those arguments
have been processed for metacharacters but just prior to the
execution of the command; establishes the same operating mode
as does the - x option.

-p Resets the PATH variable to the system default value, disables
processing of the $HOME/ .profile file, and uses the file
/etc/suid_profile instead of the ENV file. This mode is
automatically enabled whenever the effective user ID (or group ID) is
not equal to the real user ID (or group ID).

- r Restricts certain shell functions. The following actions are not
allowed: (1) changing the directory; (2) setting the value of SHELL,
ENV, or PATH; (3) specifying path or command names containing I;
and (4) redirecting output by using> or>>. These restrictions are
enforced after the . prof i 1 e and ENV files are interpreted.

When you enter a command that ksh determines to be a shell script,
the restricted shell invokes another instance of ksh to execute it.
These secondary Korn shells are not restricted as is the parent shell.
Thus, the restricted form of ksh allows shell scripts to run with more
complete privileges despite the limitations of the parent shell.

By administering the account so that certain setup actions are placed
in . profile (where these restrictions are not yet enforced), an
operating environment is established that precisely limits the actions
that can be taken by its users. One of these setup actions should be to
set the working directory to a designated directory other than the login
directory. To maintain these security limitations, the so-designated
working directory should deny the restricted account write permission.
If write permission is granted for the designated working directory,
then urnask should be set to deny execute permission for any new
files.

November 1991 4

ksh(1) ksh(l)

Also, the system administrator usually sets up a new directory of
commands. For example, /usr /rbin can be created and a limited
number of links placed there so that /usr /bin can be made
inaccessible for restricted accounts through their PATH variable
setting in . prof i 1 e. Applications intended for restricted account
use should also be placed there.

- s Ends the interactive mode of entering commands from standard input.
Also, sorts the positional parameters when used with set -s, but not
on the command line.

- t Exits after reading and executing one command.

-u Treats the presence of unset parameters as an error when substitution
is necessary.

-v Prints command lines exactly as they are read from the input, before
shell metacharacters are interpreted.

- x Prints commands and their arguments after shell metacharacters are
interpreted, but prior to the execution of the command.

DESCRIPTION

5

ksh is a shell (or command interpreter) that accepts and dispatches
command lines. It is largely responsible, along with CommandShell, for
supporting the command-line interface of A/UX. Like the Macintosh
Finder, the shell allows you to select the A/UX program or utility you want
to run next, or to run it in conjunction with other programs that are already
running.

The ksh program is also one of the A/UX commands that you can run
once an initial shell (command interpreter) is running. Using ksh this way
is one method for switching between the different shell programs available.
(See csh(l) and sh(l) for information about these other shells.) When
you run the ksh command, the previously interactive shell is suspended
until you exit the ksh subshell.

To enter commands, you normally open a CommandShell window. When
you do, CommandShell runs a shell to support the command-entry function
in the window. The choice of shell is controlled by the preference variable
SHELL, which is normally initialized along with other startup values in
. login or . profile in your home directory. If SHELL is not set in one
of those startup files, the shell spawned will be the same as your login shell
(as described in passwd(4) and chsh(l)).

This manual page treats ksh just like any other command despite the fact
that you need a shell program to support the invocation of commands in the
first place. You should become familiar with one or more of the shells to
allow you to take advantage of the command capabilities of A/UX. As a

November 1991

ksh(I) ksh(I)

prerequisite, you should learn about the CommandShell application
(described in CommandShell(l) andA/UX Essentials). CommandShell
supports the more visible and Macintosh-like elements of your system: the
command windows, the mouse, and the menu functions at your disposal
when you enter command lines.

Using ksh
For the shell program, the work of interpreting the commands you enter
can be broken down into several steps: (1) prompting for and accepting
lines of input; (2) deciphering the text of an input line, one unit of which is
expected to be the name of a command; and (3) locating and running the
(object) file containing the low-level instructions that give the command its
functionality.

The following three subsections that follow briefly discuss each of the three
steps that make up a single computer-human interaction as mediated by a
shell program (running interactively).

Step one: obtaining input. To indicate its readiness to process a
command, the shell displays a prompt message or symbol at the beginning
of the line. You contribute to the text displayed on the command line by
typing a command name after the prompt. During command entry, the shell
displays each character you type, placing it at the end of the command
string and advancing the location of the cursor. During this time, the shell
honors special characters that are not intended as part of the command
string, such as the delete character (generated by the DELETE key). This
''silent'' conversation between you and the shell is limited to certain line­
editing operations as well as the processing of other special characters such
as the interrupt and end-of-line characters. The shell interprets these
characters and takes appropriate action. Often this action changes the
composition of the command string being displayed, as in the case of a
delete character.

The end-of-line (newline) character is generated when you press the
RETURN key. When the shell received this character, it considers the
command line to be complete. The command-line processing that the shell
performs next is described in the next two subsections. While processing a
command line, the shell does not display a new prompt, although the cursor
may already be at the beginning of a new line. At any point during
command-line processing and command execution until you see a new
command prompt signaling completion, ksh honors an interrupt signal.
Sometimes the generation of an interrupt signal results in the partial
execution of the command or, if you are very quick, in no execution of the
command. The interrupt character is typically the CONTROL-C key
combination. See "Controlling Foreground Jobs" later in the
''Description'' section.

November 1991 6

ksh(1) ksh(1)

7

Step two: deciphering input. The shell can recognize and correctly
interpret a variety of command-line elements. Only very experienced
programmers will know how to make the best use of all of the constructs
that the shell is able to interpret. Most users do not need to learn all of
these features in order to build useful command lines.

The simplest acceptable command entry consists of the name of a
command with no other elements, as shown in this example. (The $
symbol is the command prompt in this example.)

$ date
Tue Jun 18 12:01:25 PDT 1991
$ I

In addition to the command name, command body may be required,
depending on the command you are entering. The command body is
subject to some processing by the shell, followed by final processing
performed by the command program itself. The command body is typically
broken down into two major elements, command options and arguments.
The command options are typically individual letters. If you want to enter
more than one command option, you normally merge the options into one
character string. Whether you specify one or more command options, you
must usually precede each option with a hyphen (-). Following the
command options are the command arguments. Each argument is a string
of characters, separated from one another or from the command options by
a space or tab character, as shown here:

command -options arguments

When merged together, two or more command options can also be
considered a single command argument, which can be formed into one
string. With most commands, however, the options can be supplied as
multiple space-separated strings, each consisting of a hyphen followed by a
particular option letter:

command -a - f -v

The following command line includes one command option (-1) and one
command argument (memo f i 1 e) that is not a command option:

ls -1 memofile

Most of the syntax descriptions that follow use the term command to refer
to both the command name and its options and arguments.

Often you can save yourself typing by relying on the shell to preprocess the
command arguments in terms of substituting one element for lengthier text
to which it refers. Sometimes one element will represent a lengthier
replacement that is actually several distinct arguments. Processing of this

November 1991

ksh(l) ksh(l)

type is sometimes called a ''substitution.''

In the ksh shell, an interesting form of substitution is the use of an alias,
which is a brief way to refer to a longer command line. You create these
alias names by using the alias command. See "Aliasing" later in the
"Description" section, for more information regarding aliases.

Substitutions other than aliasing require a metacharacter to help trigger
substitution of the appropriate text. To indicate that you are making a
reference to a variable, you precede the variable name with a dollar sign
($) metacharacter. For aliases, a substitution is also performed, but with a
notable difference in the request format: No metacharacter is required
because the name being used as an alias must be placed at the beginning of
a command line, and ksh always checks the command name at the
beginning of a line to see if it is a previously defined alias. Unlike aliases,
variable references can be placed at a point other than the beginning of a
command line and still trigger a substitution.

When ksh finds a properly positioned alias, it replaces it with the
command name and command body that the alias was set to represent. If
you had placed another command body after the alias at the beginning of
the line, the new command body is added to the end of the command body
(if any) that was stored for the alias. Note that the required positioning of
command options ahead of other command arguments can become
disturbed during the substitution process. You should plan the use of an
alias to which you expect to append arguments so that you can define it in
such a way that the enclosing command line that you supply extends the
aliased command in a legal manner. For aliases that are associated with
multiple commands, the last-referenced command is the only one that is
subject to extension when the alias name is substituted.

Another form of substitution applies to specially delimited subcommands:

$ ((command))

Unlike substitutions of variables and aliases, which have static values that
you assigned to them at some earlier time, command substitutions create
replacement text by executing a command that generates output text. This
text can reflect the system state precisely at the current moment. See
"Command Substitution" later in the "Description" section, for more
information about this type of substitution.

Shell metacharacters are processed by the shell rather than by a command
program. By processing shell metacharacters, the shell shifts the
determination of the user interface away from individual command
programs, and a more consistent command-line interface is easier to
achieve. The benefit for you is that one shell-supported meta syntax can be
applied to a number of command lines. After learning this metacharacter-

November 1991 8

ksh(1) ksh(l)

based syntax, you can apply it very broadly to most of the commands you
use.

Step three: dispatching other programs. Completion of this step is
closely related to the shell's ability to complete the previous step
(deciphering of input). For example, if it cannot find a correctly entered
command name (or Korn shell alias), the shell cuts this step short. In this
case, the shell displays an error message instead of dispatching the program
corresponding to a command. After the error message, the shell displays a
new command prompt to initiate the next computer-human interaction.

Suppose you included the ampersand metacharacter (&)on a command
line. In step two, the shell detects its presence and removes it from the
argument string that is passed to the command. In step three, the shell alters
the way it dispatches the command program because of the metacharacter' s
presence. It uses a special invocation mode called ''background mode.''

When a command is invoked in background mode, the shell does not wait
for it to complete before initiating a new computer-human interaction.
Rather, the shell prompts immediately for a new command, and any work
initiated by the last command is performed concurrently. Thus, there is an
immediate transition from step three of the current computer-human
interaction to step one of a new computer-human interaction. You must
use a dedicated command to delete background-mode processes on those
occasions when the background process does not self-terminate, or when
you want to stop its execution prior to its completion. (See the description
of ki 11 in ''Built-in Commands,'' near the end of the ''Description''
section.) You can also bring a background job back to the foreground as
described in ''Controlling Jobs Not in the Foreground,'' later in the
''Description'' section.

Format of Command Lines

9

The ksh program has certain restrictions on the ordering of elements of
commands. These restrictions make their interpretation easier and their
format more regular.

The metacharacters are often oddball characters that would not normally be
a part of the command you are entering. These characters are less likely to
be confused with command options or arguments.

Many of the specially interpreted metacharacters help you enter and run
commands more efficiently, for example by avoiding lengthy typing. Once
you learn to use the shell well, you will be able to enter shorter commands
that nevertheless take advantage of very specialized processing or
processing modes. For example, a terse notation is used to indicate that you
want to direct the output of a command into a file, or to concurrently run
one program with other programs already running. Another advantage is

November 1991

ksh(1) ksh(l)

that these metacharacter-triggered changes in processing are initiated in the
same way for almost all commands.

A disadvantage is that the oddball metacharacters create strange-looking
command lines. Another disadvantage is that they may be difficult to
memorize. When you want them to be treated literally, these
metacharacters must be specially delimited, which also adds to the strange
appearance of some command lines.

This section describes the ksh-imposed rules for the structure of command
lines. One restriction is that the command name must precede the
command options and arguments. There are other requirements as well,
such as the use of a command delimiter when you want to enter multiple
commands on one line.

Some of the shell metacharacters that you must use with care inside
command lines are:

; & I $ () < > ~ ? * [] newline space tab

Not all of the functions of these metacharacters are described in this
section. It makes sense to introduce some of them later, where they can be
discussed along with some of the more advanced topics with which they
are associated. (Additional metacharacter tokens are also described in
"Additional Korn Shell Metacharacters," near the end of the
''Description'' section.)

Spaces and tabs are both referred to as "white space," and one is as
acceptable as the other when white space is required. White space is
required between the command name and its (sometimes optional)
command arguments:

command-name white-space command-arg

(Whether or not arguments are optional depends on the individual syntax
requirements for particular commands.) White space is also used to delimit
command arguments when you want to specify several of them:

command-name [white-space command-arg] ...

For more information regarding the treatment of white space characters,
see "Argument Parsing," later in the "Description" section.

Command separators are one type of shell metacharacter. They permit the
specification of more than one command in the same line. The semicolon is
interpreted as this type of metacharacter.

The ampersand is also a command separator, with added functionality. It
establishes background mode for the preceding command. When you
establish background mode with an ampersand, do not include a semicolon

November 1991 10

ksh(1) ksh(1)

11

as well. Because of this exclusivity, two syntax descriptions are needed to
show the legal command syntaxes involving these command separators:

command [; command] ...

command [& command]. ..

With each command, you can specify an input and output redirection.
Thus you can expand each occurrence of command as follows:

command [redirect-in] [redirect-out]

The value of the redirect-out element is the metacharacter > (greater-than
sign) followed by a filename:

> output-file

The value of the redirect-in element is the metacharacter < (less-than sign)
followed by a filename:

< input-file

Another form of redirection involves multiple commands that share an
information flow, bypassing the need for intermediate files. Consider these
two commands:

who >/trnp/data
grep ttyl </trnp/data

The preceding sequence is equivalent to a pipe joining the two commands
as a single processing request, as follows:

who I grep ttyl

The output of the first command (who) is channeled directly to the input of
the second command (grep). The pipe metacharacter (a vertical bar)
indicates this channeling of data between commands. You can extend the
pipeline to channel the output of a second command to the input of a third
command, and so forth:

command I command [I command] ...

While syntactically legal, file redirections inside a series of pipelined
commands can conflict with the redirection established by the pipe, as in
this example:

command] >file I command2 I command3

In this case, the input channeled to command2 is empty because the output
of command I is redirected to file first. See t e e(l) if you need to channel a
data stream to a file as well as into another command.

November 1991

ksh(l) ksh(l)

Here is the the general format of a sensibly constructed pipeline, with no
data redirection conflicts:

command [<.file]] [I command]... I command [>file2] [&]

Note that a processing pipe such as this is equivalent to one processing job,
particularly in terms of job control (as described next in ''Controlling
Foreground Jobs" and "Controlling Jobs Not in the Foreground"). You
cannot use command separators except at the end of a pipeline. By putting
an ampersand at the end of a pipeline, you place in background mode all of
the processing of the pipelined commands that precede the ampersand. If
you use a semicolon instead of an ampersand, the pipelined commands are
executed completely; after that, the command (or another pipeline) after the
semicolon is executed.

The processing request shown here illustrates how the pipe character
causes a subsequent newline to be ignored (rather than treated as the end­
of-command character).

$ who I
> grep console
rnikee console Jun 17 10:17
$ I

For brevity of notation, the term command is used to represent any single­
or multiple-command line, such as a pipeline, along with any file
redirections.

Controlling Foreground Jobs
For jobs running in the foreground, a measure of control is available
through certain control characters. To discontinue execution of a
foreground command that is being processed, you can use the interrupt
character. To discontinue processing of an interactive shell other than the
login shell, you can use an end-of-file character (or the exit command).

The interrupt character that stops a foreground command does not affect
commands that are running in the background. For background processes,
also known as "jobs," other control provisions are required. These
provisions are also known as ''job-control facilities.'' Rather than
responding to control characters (such as interrupt characters), jobs respond
to signals that are explicitly sent to them by discrete, signal-sending
commands. Because there can be more than one background job running at
the same time, you must also specify a command argument that can
identify the job. To assist you, commands are available to display the
numbers associated with jobs, including one called jobs. (See the next
section that follows this one for related information.)

November 1991 12

ksh(1) ksh(1)

Two ways of controlling jobs are necessary because there are two kinds of
running jobs: foreground jobs and background jobs. Because foreground
jobs execute one at a time, any command-based means of job control is
awkward for controlling a foreground job. Instead you must use a key that
generates an interrupt character to terminate a foreground job prematurely.
From within the same interactive shell, you cannot cause a newly entered
command to be examined while the prior foreground command is still
running. (Normally you wait, until a new command prompt appears before
you even begin to type another command.)

Besides quitting a foreground job prematurely, you can also suspend its
execution, normally by pressing CONTROL-Z. Later, you can resume its
execution by using the job-control commands of ksh.

To see what key combinations produce various control characters, enter the
st t y command with the - a option. In the output of st t y, the caret (") is
used to represent the CONTROL key. By specifying other arguments, you
change the mappings of keys to control characters (see st ty(l)).

When you suspend a job, ksh prints a short status line about the job before
it issues the next prompt. Among other things, the status line reports the
ksh-assigned job number (enclosed in brackets). By supplying that
number as an argument to other built-in commands, such as bg and f g,
you can further manipulate the state of the suspended job. For instance,
you can resume its execution in the background by entering this command
format:

bg %job-number

When you no longer want to enter new commands, you may want to place
a stopped job or a background job back in the foreground. To do so, use
this command format:

fg %job-number

For more information about the fg command, see "Built-in Commands,"
near the end of the ''Description'' section. For more information about
monitoring both stopped jobs and jobs running in background mode, see
the next section.

Controlling Jobs Not in the Foreground

13

To help you control and monitor running and stopped background jobs,
ksh keeps track of the state of each job.

This job-tracking service of ksh helps keep you informed about the
progress of jobs and helps prevent you from losing track of running jobs.
For example, if you try to exit from the shell while jobs are suspended, you
receive this warning:

November 1991

ksh(I) ksh(I)

You have stopped (running) jobs

You can use the jobs command to see which jobs are suspended. If you
try the exit command again, the shell does not warn you a second time, and
the suspended jobs are terminated.

Whenever a job becomes blocked and no further progress is possible, ksh
informs you of its status. This information is made to appear just before a
new shell prompt so that you can better distinguish it from the output of
other commands. This particular job-tracking feature can be extended so
that any background job that needs to display output similarly stops
running, as described in the paragraphs later in this section that discuss the
tostop argument for stty.

Other customizations are also possible. For example, when you use the
rnoni tor option, each background job can be set to trigger another
command upon its completion. Triggering commands requires setting a
trap for the CHLD signal. (See the description of trap in "Built-in
Commands" near the end of the "Description" section.)

Using the ksh-assigned job number as an argument to certain built-in
commands, you can place existing jobs in the foreground or background
(restarting them in the process). You can determine the ksh-assigned job
number in two ways: (1) You can use the built-in jobs command to
obtain a numbered list of jobs. (2) You can notice the job number ksh
assigns to a command line that is run in the background when ksh displays
its status immediately after entry. The format of this status message is as
follows:

Uobno] process-id

This line indicates that the command just entered is running in the
background (asynchronously); has the process ID shown; and can be
referenced as jobno for use along with the built-in, job control commands
of ksh.

To control jobs with commands that are not shell built-ins, you must use
the process ID to refer to the process. The process ID is also reported by
the process status command, ps, which is described in ps(l).

When you use the built-in ksh commands for controlling jobs, you
reference a job by using a job number, prefixed by the percent character
(%). For instance, to place job number I in the foreground, enter

fg %1

The argument % % or % + can be used to refer to the most recent background
job. The argument %- refers to the next-most-recent job.

November 1991 14

ksh(1) ksh(l)

15

You can also reference a job by using a string that matches the command
name you originally entered to begin the job. Thus, the following
command restarts a suspended ed job, provided a suspended job whose
name begins with the string ed is present:

f g %ed

Similarly, the following command format resumes any job whose original
command line contained the string old-command-substring.

f g % ? old-command-substring

The shell keeps track of the most recent job. In ksh messages about jobs
and in the report displayed by the jobs command, the most recent job is
prefixed with a plus sign (+) and the next-most-recent job is prefixed with a
minus sign (-). The following processing request illustrates this point:

$ sleep 525 &

$ sleep 330 &

$ sleep 250 &

$ jobs
[3] + Running sleep 250 &

[2] - Running sleep 330 &
[1] Running sleep 525 &

$ I

The process running in the foreground has fairly exclusive access to input
entered at the terminal. If a foreground command is underway, then the
shell shares access to input typed at the terminal with the foreground
command. By sharing access to input, the shell still has a chance to
interpret certain control characters, such as the interrupt character, or to
accept characters of the next command to be run (a type-ahead feature).
However, a job running in the background cannot continue to run if it
requires user input, because it does not have access to any of the data typed
at the keyboard.

Thus, when any of the background jobs requires user input, the shell stops
the job. You can resume its execution by making it the foreground job and
then supplying it with the data that it requires. To make it the foreground
job, you must enter a command, so you will have to wait until any
foreground job still underway completes, or you will have to interrupt it.

Background jobs are normally allowed to send output to the terminal (or
associated CommandShell window) without interference from ksh.
However, this manner of operation can be disabled, so that ksh stops the
execution of any job that needs to display a message. To establish the shell
as a moderator for background jobs that are about to display output, enter

November 1991

ksh(l) ksh(1)

stty tostop

If you have used the monitor option (as described in the next section,
''Establishing Preference Settings,''), your interactive shell associates a job
with each pipeline.

A/UX provides another set of job-control commands that perform many of
the same functions made available by the built-in commands of ksh. An
advantage of using the discrete job-control commands such as ki 11,
nice, and psis that they are always available, even when you change to a
shell other than ksh. These commands are described as separate entries
elsewhere in the A/UX Command Reference. These discrete A/UX
commands use a process ID number to identify jobs. However, the
ksh-assigned job number is usually much shorter than the process ID
number, and the built-in commands offer you greater simplicity.

Establishing Preference Settings
You can establish preference settings in several ways. For example, you
can reduce the likelihood of overwriting an existing file with a new file of
the same name by establishing the noclobber option, as follows:

set -o noclobber

To unset this preference, enter

set +o noclobber

If you are able to start the shell yourself, you can request the same
preference on the command line, as follows:

ksh -o noclobber

Preferences such as noclobber are either on or off (set or unset,
established or unestablished, and so on). You can determine the state of
these preferences by using set with the -o option, as shown here:

$ set -o
Current option settings
all export off
bgnice off
emacs
errexit
gmacs
ignoreeof
interactive
keyword
markdirs
monitor
no exec

November 1991

off
off
off
off
on
off
off
on
off

16

ksh(1) ksh(l)

17

noglob off
nouns et off
protected off
restricted off
trackall off
verbose off
vi on
vi raw on
xtrace off
$ I

Other preferences, particularly those that can assume more states than on or
off, can be stored in variables. To switch to a different command-input
editor, you can make an assignment such as this one:

EDITOR=vi

This particular variable assignment establishes vi as the command-input
editor you wish to use. You could establish other editing styles, such as
emacs and gmacs, in a similar way.

Other preferences with many possible values are handled through
commands built into ksh rather than through variables. For instance, you
use the built-in commands uulimit and umask to establish operating
limits (such as maximum file size) and default permissions for new files.
For more details, see "Built-in Commands" near the end of the
"Description" section.

The ways of selecting preferences described so far do not make those
settings permanent. They are in effect only as long as you use the shell into
which you entered them. To retain these settings between uses of various
login shells (after logging out and logging back in), you need to place them
in a "shell startup" file. For ksh, the startup file is .profile. This is
the file from which the shell obtains your initial preference settings
whenever you log in to the system.

Even if you have established a preference setting in a startup file or at the
command prompt for the shell that is running, you can lose those settings if
you invoke a subshell. To help establish preferences that persist not only
across login shells, but also from shell to subshell, enter the preference in
another startup file specified by the variable ENV, which is initially set to
. kshrc in your home directory.

A/UX offers another way of retaining preference settings from shell to
subshell without entering them in a startup file, but you can use it only for
preference settings that are held in variables. After you store a value in the
variable, you reset or set its export attribute. The value of an exported
variable in a subshell is the value it had as of the time it was last exported.

November 1991

ksh(l) ksh(1)

However, this way of establishing a preference variable value does not
persist across login sessions, and is subject to override by similar
assignments placed in an ENV file.

To set the export attribute of a variable, enter either one of the following
commands:

typeset -e variable
export variable

In a similar fashion, you can export aliases and functions to any ksh
subshells, as the following commands illustrate:

typeset -ef function-name
alias -e alias-name

Exported variables can affect commands you execute as well as subshells
you invoke. Commands are also able to respond to settings contained in
exported variables (sometimes called "environmental variables").
Typically, however, commands ignore all but a few of the values that you
export into the environment, unless the command is ksh itself. Typically,
you export those values that at the very least affect a ksh subshell.

TERM is an example of a variable that both commands and subshells
regularly honor. The value of this variable also helps establish what type
of terminal device you are using. The value of this variable helps A/UX
programs look up the correct control sequences to use with particular
terminals for various display functions, such as advancing the cursor
location (see terrncap(4) and terrninf o(4)). Initially, TERM is set to a
value identifying the console terminal as a Macintosh computer. However,
during a CommandShell session in which you communicate with a host
computer over a network, chances are slight that the host will understand
this local setting for TERM, so another value should be used for the remote
shell, such as vt 100.

You can temporarily export a preference variable value for the duration of
one command. For instance, to ignore the currently exported value of
TERM and to use vt 10 0 instead, but only for the vi command, enter

TERM=vtlOO vi

You can use the set command with the - k option to affect the way shell
variable assignments are treated when interspersed with other command
elements. (Also see the discussion of - k in ''Arguments,'' earlier in this
manual page). For example, consider the variable assignments inside the
following command block:

echo var=b c ; set -k ; echo var=b c

November 1991 18

ksh(l) ksh(l)

19

Because the first echo command is interpreted before the -k option takes
effect, it generates this output:

var=b c

Because the second echo command is interpreted after the -k option takes
effect, it generates this output:

c

Use of this feature is strongly discouraged. This option may not be
supported in future releases.

You can use the discrete command printenv, or the built-in command
typeset with the -x, option to find out the names and values for all
exported variables.

When invoked, ksh gets its environment variable settings either from the
parent shell or from one of the log-in programs. It then passes the settings
to any commands or subshells you invoke, unless you manually removed
them from the environment first (by removing the export attribute).

Here are some other variables with which you should be familiar:

CD PATH
Contains a list of search directories that are honored by the c d
command. See the description of the cd command in "Built-in
Commands,'' near the end of the ''Description'' section.

CMDSHELLPREFS
Contains the name of a file in your home directory where
CommandShell stores and reads your preferences. See
CorrunandShell(l) for more information.

EDITOR
HISTFILE
HISTSIZE

Contain values that select the style of editor for command lines, select
the file where previously entered commands are stored, and set the
number of command lines subject to storage and recall, as described in
the next section, ''Command Reentry.''

FINDER_EDITOR
Contains the pathname for the editing application to be launched when
you open a text file by way of the A/UX Finder.

PATH
Contains a list of command search directories. (See ''Command
Execution" later in the "Description" section.)

November 1991

ksh(l) ksh(l)

PSl
Contains the string used as your primary command prompt.

PS2
Contains the string used as your secondary command prompt for those
occasions when you must enter a block of commands that spans more
than one line. (See ''Using Repetition and Branching Constructs,''
later in the ''Description'' section, for related information.)

MAIL
MAILCHECK
MAILPATH

Contain values that help enable and customize electronic mail. See
"Other Built-in Variables," near the end of the "Description"
section, for more information.

TBMEMORY
TBPATCHES
TB RAM
TBSYSTEM
TB TRAP
TB WARN

Contain values that help configure system parameters that apply to the
virtual Macintosh environment. See s tartmac(l) for information
regarding these variables.

Command Reentry
The text corresponding to the most recent block of commands is saved in a
history file. The value of the variable HISTSIZE determines how many
lines of commands are saved; it is initially set to 128. The value of the
variable HISTFILE selects the file where the saved commands are stored;
it is initially set to $HOME/. sh_history.

Subshells also have access to commands that were previously given from
the parent shell, provided that you do not change the value of HISTFILE
for the subshell.

You can use the built-in command f c to select a previous line to edit and
reuse. To display a list of recently performed commands, enter:

fc -1

This command produces a list of recently used commands, such as this one:

416 date
417
418
419
420

November 1991

whoami
cd /tmp
ls -tc
cat lastf sck

20

ksh(1) ksh(l)

421 cd
422 ls -tc
423 more today
424 rm today
425 f c -1

To edit and reuse one of the commands from the history list, specify the
line number as an argument to the f c command:

f c line-number

If you supply a string rather than a line number, the most recent command
whose starting letters match the letters in the string is recalled for editing
and reuse. You can also specify a range of old commands to be recalled
for editing. Refer to "Built-in Commands," later in the "Description"
section, for a more complete description of the command options and
arguments for f c.

The edited command is printed and reexecuted when you leave the editor.

The editor used is that specified by the value of FCEDIT, which is initially
set to /bin/ ed. You can also set the value of this variable to vi for full­
screen editing, or you can set it to Text Edi tor for a mouse-and-menus
style of editing.

The ksh shell has its own built-in command-editing support as well. See
"Command-Line Editing Options," later in the "Description" section, and
the sections that follow it.

Frequently Used Built-in Commands

21

This section provides a brief list showing some of the commands that are
more fully described in "Built-in Commands" near the end of the
"Description" section. You may want to familiarize yourself with the
commands listed here sooner than any others.

alias

bg

Creates pseudo commands that you can use as a shortcut for typing in
much longer command lines. Also see "Using ksh," earlier, and
''Aliasing,'' later in the ''Description'' section.

f g
jobs
kill

Control any running and suspended background jobs you have started.
Also see ''Controlling Jobs Not in the Foreground,'' earlier in the
"Description" section.

cd Sets the current working directory to the directory specified as an
argument.

November 1991

ksh(l) ksh(1)

exit
Exits ksh.

pwd
Displays the current working directory.

ulimit
Establishes the upper size limit for a file as one of the many limits that
can be set.

umask
Establishes how file permissions are initially set for new files that you
create.

Command Execution
The earlier sections in this manual page introduce the general functions of
the shell and its commonly used features. The next series of topics provide
a glimpse into the inner workings of the shell, including: processing that
supports command execution, processing that can change the execution
environment for a command based on metacharacters you placed in a
command line, and processing that can change the value of various
metacharacter-delimited command elements.

If you enter a command name that matches one of the built-in commands,
the command is executed as part of the current shell process. As such, it is
not subject to the job-control commands that would affect an independent
process.

Next, the shell checks whether the command name matches one of the
user-defined functions and evaluates the function's replacement, if
necessary. A function is also executed as part of the current shell process,
so it is also not subject to job control. For more detailed information about
functions, refer to "Functions" near the end of the "Description" section.
That section is generally useful for users who are also programmers.

Then the shell determines if any alias substitutions must be made. Whether
it is the result of an alias substitution or not, the command name can refer
to an A/UX command, a Macintosh application, or a command script.
Before this determination can be made, ksh must locate the executable file
associated with the named command. So ksh performs a search for the
command file. It searches for a file of the same name as the command
entered. It looks in each of the search directories specified in the PA TH
variable.

The PATH variable contains a list of directories where commands are
customarily located. Directory names are separated by colons (:). The
default search setting for recent versions of A/UX is as follows:

PATH=/bin:/usr/bin:/usr/ucb:/mac/bin:.

November 1991 22

ksh(1) ksh(l)

23

When you use this specification, the final directory searched is the current
directory. The current directory is represented by a period. Because the
period appears in the last colon-separated field, the current directory is the
last directory to be searched. For the PA TH variable value, the current
directory can also be represented by two or more adjacent colons, or by a
colon at the beginning or end of the path list.

The search process is not performed if the command name is specified with
a leading slash(/) character. In such a case, ksh expects you to supply
the absolute path that locates a file that can be executed, or a relative path
that locates the executable file based upon the current working directory.

Once the executable file is found, the format of the file helps distinguish
whether it should be run as a shell script, a command, or a Macintosh
application. The latter option allows you to launch Macintosh applications
by name, provided that they reside on an A/UX file system in a directory
that is listed in the definition of the PATH variable. Note, however, that if
the name contains a space, you need to enclose the command name in
quotation marks. (See "Escape Characters," later in the "Description"
section for related information.) To make the application easier to launch
from a command line, you may want to rename the file so that it doesn't
contain spaces:

mv "MacDraw II" macdraw

Launching Macintosh applications by name is about the same as using the
launch command (described in launch(l)). This method supports the
same -p (print) option described for launch:

mac-application [-p] [app-document]. ..

For a command to run successfully, ksh must be able to find an associated
executable file. Successful execution also depends upon the execute
permission for that file (which is interpreted according to the login account
you used to log in). The often-misleading File not found error
message is displayed if the file permissions do not permit you to run the
command.

If the result of the command search yields a file that is a command­
containing shell script, a subshell is spawned to interpret the script as
described in "Command Scripts," later in the "Description" section.

The processing steps described in this section represent the minimum
processing that ksh performs to run a simple command such as:

$ date
Fri Jun 14 13:31:22 PDT 1991
$ I

However, much more shell processing of command lines can optionally

November 1991

ksh(1) ksh(1)

take place. Before you can master the command-line interface, you need
to better understand how that optional processing is performed by the shell.
To give you a more detailed understanding of the optional ksh processing,
you should read the series of the sections that follow this one. Each
subsection elaborates on one type of optional shell processing:

• Subcommand Execution

• Aliasing

• Tilde Substitution

• Command Substitution

• Variable Substitution

• Filename Generation

• Argument Parsing

• Input/Output Redirection

• Escape Characters

• Extra Initial Processing for a Login Shell

• Extra Initial Processing for Subshells

Subcommand Execution
Parenthesized commands are executed by a subshell. Unlike a subshell that
supports the running of command scripts, this subshell has access to
nonexported variable values from the parent shell as well as exported ones.

You can combine commands to be executed by a subshell with ordinary
commands into a single processing request, in formats such as these:

[command command-separator] ... (subcommand)

(subcommand) [command-separator command] ...

Because the subshell can be set to a different working directory, you can
use it to help initiate commands that operate in two different directories,
but are still part of a single command-line request. One possibility is
shown in the following example, which copies a directory/file hierarchy
from one location to another:

cd fromdir; tar cf - . (cd todir; tar xf -)

Aliasing
As described earlier, ksh performs a substitution when it encounters an
alias name in the command-name portion of a command line.

November 1991 24

ksh(l) ksh(l)

25

When declaring aliases with the a 1 i as command, you can use any
nonspecial printable character as the first character of the alias name. The
remaining characters must be the same as those for a valid identifier. (See
"Lexical Rules for Identifiers" later in the "Description" section.) For
syntactic information regarding the use of the a 1 i as command, see
''Built-in Commands'' later in the ''Description'' section.

The replacement string for an alias is a command line. Such a string can
contain one or more references to commands or executable shell scripts. If
it includes multiple commands, command separators must delimit them as
described in ''Format of Command Lines,'' earlier in the ''Description''
section.

Generally, the command-name portion of the replacement value for an alias
is not tested for additional aliases. However, if the last-entered character of
the replacement value is a space, ksh makes any appropriate alias
substitution for the first command name in the replacement value.

You can use aliases to redefine the built-in commands, but you cannot use
them to redefine the keywords described later in "Using Repetition and
Branching Constructs" within the "Description" section.

You can create, list, and export aliases with the a 1 i as command. You can
remove aliases with the unal ias command. Exported aliases remain in
effect for subshells but do not persist across login sessions unless you enter
them in the file . profile. (See "Establishing Preference Settings"
within the "Description" section.)

Aliases are frequently used as a shorthand for longer command pathnames.
The tracking feature for aliases enhances this use. It helps avoid the
processing overhead that is otherwise required to locate the associated
command each time an alias is used. The search that is normally
moderated by the list of directories stored in the PA TH variable is not
always necessary because the shell can remember the full pathname to the
aliased command after its first use. When such a manner of operation is
enabled for an alias, the alias becomes a tracked alias. All tracked aliases
become subject to reresolution each time the PATH variable is reset. When
you do so, a search will take place to determine the correct location of an
aliased command when the (tracked) alias is next used. Once the location
has been reestablished according to the new PA TH setting, the tracked alias
is once again able to inhibit further command searches.

To treat all the aliases you subsequently define as tracked aliases, use ksh
with the - h option as described in the ''Arguments'' section, earlier in this
manual page. For an interactive shell that is already running, you can use
the set command with the trackall argument to establish the same
ksh preference. (See "Establishing Preference Settings" earlier in the

November 1991

ksh(l) ksh(1)

''Description'' section.)

You can set the export attribute for an alias to indicate that it should also be
passed to any ksh subshells you invoke. To set this attribute, use the
a 1 i as command with the - x option. For more information about
exported values and the export attribute, see ''Establishing Preference
Settings,'' earlier. The following ''exported aliases'' are set, but you can
unset or redefine them:

autoload='typeset -fu'
false='let 0'
functions='typeset -f'
hash='alias -t'
history='fc -1'
integer='typeset -i'
nohup='nohup '
r='fc -e -'
true=':'
type='whence -v'

Tilde Substitution
After performing alias substitution, ksh processes the command line for a
type of substitution known as "tilde substitution," so-named because the
metacharacter that triggers it is the tilde (-). When used as a discrete
command argument, or when placed at the beginning of a pathname, the
tilde is replaced with the full pathname to your home directory (the
directory that becomes your default working directory when you log in). If
the tilde precedes an argument that is a login name from I etc Ip ass wd,
then ksh substitutes the home directory of the login name specified. If no
match is found, ksh leaves the tilde and any attached text unsubstituted,
and treats them literally as command arguments.

You use the tilde primarily to avoid some typing when you want to specify
files in your home directory but your current working directory is set
elsewhere. Using the tilde can also reduce typing when you are specifying
the path to an executable command file located in your home directory.

The syntax for a command request that makes use of tilde substitution for
the command name is as follows:

-[login-name][! dir] ... I command arg ...

The syntax for a command request that makes use of tilde substitution for a
command argument is as follows:

command -[login-name][! dir]. .. [/jile]

November 1991 26

ksh(1) ksh(l)

A tilde followed by a + or - is replaced by the value of the current working
directory (PWD) or the old working directory (OLDPWD), respectively.

In addition, tilde substitutions are performed if the tilde is placed at the
beginning of the assignment value for a variable:

variable=-value

The tilde can also be placed elsewhere in the assignment value for a
variable, as long as it is after a colon (:). For example, tilde substitutions
may permit you to specify search directories for the PATH variable more
succinctly, as in this example:

$ PATH=/bin:/usr/bin:~:~/Tools:
$ echo $PATH
/bin:/usr/bin:/diskO/mikee:/diskO/mikee/Tools
$ I

Command Substitution

27

After performing any tilde substitutions, ksh processes the command line
for metacharacters that request another type of substitution. ''Command
substitution'' permits you to enclose command lines inside other command
lines. The enclosed commands are replaced with the output text they
produce when they are run. Of course, any enclosed commands are run
first.

You delimit an enclosed command by placing it inside parentheses, and by
placing a dollar sign in front of the open parenthesis:

$ (enclosed-command-line)

If it occupies the position normally occupied by a command, the enclosed
command must output a legal command. If it occupies the position
normally occupied by a command argument, the enclosed command must
output a legal argument for the enclosing command.

You can use command substitution to avoid typing a long list of filenames,
as in this example:

tbl $(grep '~\.TS' * lcut -fl -d: lsort -u) !nroff

In this example, the enclosed command is as follows:

grep '~\.TS' * lcut -fl -d: lsort -u

This enclosed command generates the arguments for the tbl (table­
preprocessing) command. In this case it is a list of files in the current
directory that contain at least one occurrence of the table-start instruction,
. TS, located at the beginning of a line. (The function of the grep
command is to find occurrences of strings in files and report them.) The
cut command strips all but the first colon-delimited field from its input

November 1991

ksh(1) ksh(l)

data. Because grep reports the names of files, a colon, and the line that
contains the search string, cut outputs only filenames in this example.
Those filenames are sorted into a list without any duplicates by the next
pipelined command, sort -u. So when the enclosed commands are done
executing, they produce as the arguments for tbl a list of files containing
tbl instructions. The output of tbl is intended to be processed by a
document-formatting program, such as nroff, so the enclosing command
pipes tbl output as input to the nroff command.

In addition to the usual method of requesting command substitution just
described, you can enclose a command substitution in grave accents:

'command'

When you use this (archaic) delimiter, the command between the grave
accents goes through two rounds of processing for quotation mark
metacharacters before the command is executed. (See ''Escape
Characters," later.)

Instead of specifying

$(cat file)

you can use the following request, which is faster:

$ (<file)

Most built-in commands that are not requested along with input/output
redirection are executed in the same process as ksh when they are used as
a command inside another command.

Variable Substitution
After performing command substitution, ksh processes the command line
for variable substitution (also known as "parameter substitution").

The dollar sign ($) metacharacter that introduces a variable name can be
considered the trigger for variable substitution. The dollar sign and the
variable name that follows it are replaced with the value of the variable.
Here is the format:

$variable

Usually variable is composed in accordance with the rules for identifiers.
This is the case in particular for all user-defined variables. (See ''Other
Built-in Variables" later in this section, for variables that are
preestablished.)

Another class of variables can be referenced in this format:

$digit
$ {digit ... }

These variables are called ''positional parameters.'' Their primary use is

November 1991 28

ksh(1) ksh(1)

to allow access to the command-line parameters from inside a user­
programmed shell script. For more information about scripts, see
''Command Scripts,'' later in the ''Description'' section.

For more information about variables and arrays, see ''Variables and
Arrays,'' near the end of the ''Description'' section.

Filename Generation

29

After performing variable substitution, ksh processes the command line
for metacharacters that request filename generation. Filename generation
involves replacing a shorthand reference to a file with a more complete
pathname or filename. Such a shorthand reference involves certain
metacharacters, also referred to as ''wildcards.'' Often more than one
argument is generated in place of a shorthand argument. This happens
when several filenames or pathnames satisfy the wildcard criteria.

If you use one or more wildcard metacharacters, ksh regards the word in
which they appear as a shorthand notation to be expanded, as long as the
word is not enclosed in single(') or double(") quotation marks.

One of the metacharacters, or wildcards, that trigger this processing is the
asterisk(*). Because variable substitution is performed before filename
generation, the wildcard can be part of the text stored in a variable, as the
following processing request shows:

$ files=/.*rc
$ echo $files
/.cshrc /.kshrc
$ I

The same results are evident in the following commands, in which variable
substitution plays no role. Also note that filename generation is suppressed
by the double quotation marks.

$echo /.*re
/.cshrc /.kshrc
$echo "/.*re"
/.*re
$ I

The ksh program sorts generated arguments alphabetically when multiple
filenames are generated because of a request for filename generation. The
output produced by echo in the following processing request comprises
any files in the current directory that end with the suffix . out. Note that
the output is sorted alphabetically.

$ echo *.out
temp.out work.out
$ I

November 1991

ksh(l) ksh(l)

If ksh cannot generate any filenames based upon the wildcards in the
argument you specify, then the argument is treated as a literal argument.
Thus, if the current directory does not contain any files with a . out suffix,
filename generation for the previous example would fail, producing this
output:

$ cd
$ echo *.out
*.out
$ I

The term "pattern" is used to refer to the wildcard along with the word in
which it appears. So * . out can be thought of as a single search pattern.

When used as the first character of a search pattern, such as * . out, the
asterisk produces file matches for any filenames containing any number of
characters of any value, that end with the characters . out. When used as
the last character of a search pattern, such as memo*, the asterisk produces
file matches for any filenames containing any number of characters of any
value, that start with the letters memo.

Wildcards other than the asterisk are more restrictive in terms of the
matches they can produce. Particularly, they match only one character
within a filename. You must use multiple occurrences of these other
wildcards in the pattern in order to match a filename of more than one
character. The question mark matches any one character of any value.
Suppose you enter:

ls ???

The output produced comprises all the filenames that contain exactly three
characters. When question marks are used along with strings, as in
memo? . out, the matched filenames must be the same length as the
pattern.

To form an even more restrictive wildcard, a wildcard that matches only
certain characters in certain positions, a single character is not sufficient.
For this kind of wildcard specification, a bracketed character list is used.
Suppose you enter

ls memo[123]

The output produced comprises all the filenames that begin with memo and
that end with either 1, 2, or 3.

The following list describes the criteria established by each of the wildcard
notations. Note that in this list, the brackets shown are supposed to be
typed. (When the brackets appear in the normal text font, as is usually the
case, they surround optional items.)

November 1991 30

ksh(l) ksh(1)

31

*
?

Matches zero or more characters of any value.

Matches one occurrence of any character value at a particular
location.

[char ...]
[!char ...]

Match one occurrence of any one of the enclosed characters in a
particular character position (first form). If the first character in the
list is an exclamation mark (second form), a match is produced
whenever any one letter other than char occurs at a particular
character position.

The placeholder char can also be specified as a three-character
sequence representing a range (based upon ASCII ordering) of
characters to be considered matches. This three-character sequence
has the following format:

startchar-endchar

Thus [A- z J matches one occurrence of any uppercase letter and
[A- za- z J matches any alphabetic character in either uppercase or

lowercase format. To include a hyphen (-) as one of the list of
possible character matches, make it the first or last character enclosed
within the brackets.

When the filenames you want ksh to generate must be discriminated from
very similar filenames, you may need to use more than one pattern to
generate the desired files. Multiple patterns are separated by a vertical bar
(I), as shown in the following summary of compound pattern syntaxes.
For the patterns in this list, the brackets should not be typed because they
surround optional items.

? (pattern[I pattern] ...)
Matches zero or one occurrence of the patterns specified.

* (pattern[I pattern]. ..)
Matches zero or more occurrences of the patterns specified.

+ (pattern[I pattern] ...)
Matches one or more occurrences of any pattern specified.

@(pattern[I pattern] ...)
Matches exactly one of the patterns specified.

! (pattern[I pattern] ...)
Matches all strings, except those matched by the patterns specified.

November 1991

ksh(l) ksh(1)

Argument Parsing
After performing filename generation, ksh processes the argument portion
of the command line to determine the number of arguments, the extent of
each, and the level of escapement, if any, that you requested to obtain the
literal interpretation of metacharacters.

The first two functions involve parsing of the command argument string
into discrete arguments according to the presence of argument-separator
metacharacters. The space or tab metacharacters in a command line are in
tum affected by the third function, analyzing the level of escapement.
Escapement is specified by paired quotation marks or the backslash
character. These metacharacters can override the normal interpretation of
spaces or tabs as argument separators, making them legitimate argument
string characters (See "Escape Characters" later in the "Description"
section.)

Input/Output Redirection
The ksh shell performs input and output redirections after it has
substituted aliases, evaluated command substitutions, evaluated functions,
generated filenames, and replaced variables in accordance with
metacharacters and other preference settings that you supplied.

You specify a redirection of input, output, or both by using the appropriate
metacharacter notation. Unlike processes that involve substitution, the
process of redirection does not require that you make changes to the
elements of the command line that get passed to the command. Rather, you
accomplish redirection by altering the processing environment with which
the command interacts.

Redirection requests are not propagated to the command they affect. The
shell parses them and processes them by itself. For this reason, redirections
can be intermixed with other command elements in any way:

command arg ... [redirect-in] [redirect-out]

[redirect-in] [redirect-out] command arg ...

You specify the value of redirect-out as the metacharacter > (greater-than
sign) followed by a filename:

> output-file

You specify the value of redirect-in as the metacharacter < (less-than sign)
followed by a filename:

< input-file

November 1991 32

ksh(1) ksh(1)

33

Another form of redirection involves multiple commands that share an
information flow, bypassing the need for intermediate files. Consider these
two commands:

who >/tmp/data
grep ttyl </tmp/data

The preceding sequence is equivalent to a pipe joining the two commands
as a single processing request, as follows:

who I grep ttyl

The output of the first command (who) is channeled directly to the input of
the second command (grep). The pipe metacharacter (a vertical bar)
indicates this channeling of data between commands. You can extend the
pipeline to channel the output of a second command to the input of a third
command, and so forth:

command I command [I command] ...

More discussion of input and output file redirection and command pipes is
given earlier in "Format of Command Lines."

You can request that filename generation be performed for the filename
portion of a redirection request by using the wildcards described earlier in
''Filename Generation.''

Filename generation produces a full reference to a filename or pathname,
from a shorthand reference (or pattern) that you provide. Note, however,
that the pattern is treated literally if honoring it would generate multiple
filenames.

More often, a redirection metacharacter introduces the name of a file that
you want to use as the source of input or the destination of output for a
command. You can also specify another parameter in a redirection request,
the channel parameter. A more technical term frequently used in place of
channel is ''file descriptor.'' Replace channel with a digit between 0 and
9, where applicable. The following list shows all the redirection formats
available.

<file
channel<file

Establish.file as the source of standard input (file descriptor 0) for the
command line in which it appears. If channel is specified (as in the
second form shown), it establishes file as the source of input for the
channel specified.

>file
channel> file

Direct the standard output (file descriptor 1) to file for the command in

November 1991

ksh(l) ksh(l)

which it appears. If file does not exist, it is created. If file exists and
the noclobber option is on, an error is generated; if file exists and
the noclobber option is off, the file is truncated to zero length.

If channel is specified (as in the second form shown), it establishes file
as the destination for output written to the channel specified.

>!file
Directs the standard output (file descriptor 1) to file for the command
in which it appears. This format differs from >because it overrides
the noclobber option, which might produce an error message
because a file by the same name already exists.

>>file
Directs the standard output (file descriptor 1) to file for the command
in which it appears. If file exists, output is appended to it; otherwise,
file is created.

<>file
Establishes file as the source of standard input and the destination of
standard output.

<<[-]word
Establishes a range of lines as the source of standard input for the
command line in which it appears. The range of lines starts with the
next line and continues until a line is reached that consists of word
alone, or that contains an end-of-file character. For this type of
redirection, no parameter substitution, command substitution, or
filename generation is performed on word. The resulting range of
lines that is used as input is sometimes called a ''here-document.'' If
any character of word appears in quotation marks, the input lines are
treated literally. Otherwise, ksh performs parameter and command
substitution on the input lines and the backslash (\) must precede
certain metacharacters to ensure their literal interpretation as input
data. Particularly, the following metacharacters are subject to
interpretation unless escaped: backslash (\), dollar sign ($), and
grave accent ('). If - is appended to<<, ksh strips all leading tabs
from word and from the range of lines used as input.

<&channel
Establishes as the source for input the file (or device) currently
associated with the file descriptor channel for the command in which
it appears.

>&channel
Directs the standard output of a command to the file (or device)
currently associated with the file descriptor channel for the command
in which it appears.

November 1991 34

ksh(1) ksh(1)

35

app-channel< &channel
Establishes the file (or device) referenced by channel as the source of
input read by the application from app-channel.

app-channel >&channel

<&-

>&-

Directs data sent by the application to app-channel to the file or device
referenced by channel.

Closes the current source of standard input for a command.

Closes the current destination of standard output for a command.

[channel]<&p
Connects the output from the coprocess to the standard input or, if
channel is supplied, to the file or device referenced by channel.

[channel]>&p
Connects the input of the coprocess to standard output or, if channel is
supplied, to the file or device referenced by channel.

The order in which redirections are specified is significant. The shell
evaluates redirections from left to right, making new associations based on
the already established state. For example, the following line first
associates file descriptor 1 with file f name; then it associates file
descriptor 2 with the file currently associated with file descriptor 1 (that is,
fname):

command l>fname 2>&1

If the order of redirections were reversed, as in

command 2>&1 l>fname

then the output directed to file descriptor 2 would be sent to the display
rather than to the file f name. This is why: File descriptor 2 is first set to
correspond to the file or device associated with the standard output, which
by default is the display since no redirection preceded it; then the standard
output (file descriptor 1) is associated with file f name. The result is that
the standard output alone is redirected to the file fname, which could have
been much more simply requested as follows:

command > f name

If a command is followed by an ampersand(&) and job control is not
active, the default standard input for the command is the empty file
I dev In u 11. Otherwise, the default execution environment for each new
command is the same as the shell from which it is invoked in terms of its
file descriptors. You can override those defaults by using any of the
input/output redirections described in this section.

November 1991

ksh(l) ksh(1)

Escape Characters
To disable the special interpretation of metacharacters, such as spaces and
dollar signs, you can insert other characters to cause the metacharacters to
be interpreted literally. For example, any metacharacter preceded by a
backslash is interpreted literally.

By preceding a newline character with a backslash, you can allow a long
command to take up more than one line, as follows:

$ command argument] argument2 argument3 \
argument4
$ I

The conversion of a metacharacter to a nonspecial character that is treated
literally is sometimes called "escaping," and the characters that help
accomplish this are called ''escape characters.'' A casual name for this
(escapement) process is "quoting."

Normally, the shell begins parsing a new argument whenever it encounters
a space character. To launch a program named SpiffWrite II, you could
enter

"SpiffWrite II"

The double quotation marks suppress the interpretation of this line as a
command named SpiffWrite with one command argument, II.

When you do not want to supply a value for the first argument to a
command, but you do want to supply values for the second and third
arguments, you need to pass an empty string in the place of the first
argument. Normally, an empty string would not result from the
substitution of a variable that held nothing (or the evaluation of a
subcommand that produced nothing). To ensure that they can be
interpreted as empty arguments when empty, you can enclose such
references within double quotation marks:

paste "$file" /etc/passwd

The following command will not wait to read from the standard input if
f i 1 ename s is empty:

cat "'cat filenames'"

By enclosing a sequence of characters that includes metacharacters inside
single quotation marks, you prevent the usual interpretation of the
metacharacters (effectively suppressing filename generation, variable
substitution, and subcommand execution). However, a single quotation
mark cannot be treated literally within text delimited in this way, unless it
is preceded by a backslash.

November 1991 36

ksh(1) ksh(1)

Note that the single quotation marks offer a different level of escapement
than do the double quotation marks. For example, to treat two variable
references and an intervening space as one argument, enclose them in
double quotation marks:

cormnand 11 $variable I $variable2 11

It is a mistake to enclose them in single quotation marks, unless you want
to treat the entire string as one literal argument, as in this example:

$ echo '$variablel $variable2'
'$variablel $variable2'
$ I

If you enclose a sequence of characters that includes metacharacters in
double quotation marks, the metacharacters triggering variable and
subcommand substitution are not escaped, enabling those functions for the
delimited text. In particular, the following metacharacters are still treated
specially when enclosed in double quotation marks:

\ I $

To cause these characters to be treated literally when enclosed in double
quotation marks, precede each with a backslash.

You can avoid the special interpretation of keywords and aliases by
escaping any character of the keyword or alias name. The recognition of
function names and built-in command names (listed later in "Built-in
Commands") cannot be altered with escape characters.

Extra Initial Processing for a Login Shell

37

A login shell is invoked in a characteristic way by exec as part of the
login process. The login shell helps trigger processing that should take
place only once, immediately after you log in. This specially-timed
processing permits preference settings stored in the startup file . prof i 1 e
to take effect each time you log in.

The programs that manage the login process invoke ksh and pass its
execution environment with the $ 0 positional parameter set to -ksh.
Upon inspecting $ 0 and finding the leading hyphen, ksh reads commands
from /etc/profile and then from either .profile in the current
directory or $HOME/. profile, if either file exists.

You can customize preference settings by using these startup files and by
using exported and unexported attributes for variables. (For more
information, see "Establishing Preference Settings" earlier, and in the next
section.)

November 1991

ksh(1) ksh(1)

Extra Initial Processing for Subshells
For any invocation of ksh, including one for establishing a login shell, the
command lines from the file (if any) stored in the variable ENV are read
and executed. For this reason, preference settings established in the file
referenced by ENV are also established for all invocations of ksh
subshells, whereas preferences established from . prof i 1 e are passed to
subshells only if the settings are exported and only if they are not
overridden by settings in the ENV file.

(If ENV contains the appropriate metacharacters, ksh processes the
replacement value for further substitutions. This process permits ENV to
contain a reference to the built-in variable $HOME.)

By default, home I . kshrc is the value stored in ENV, where home is the
home directory for your user account. If ENV is not set or is empty, no
initial commands are executed.

Command-Line Editing Options
This is the first of several sections about the editing of command lines. The
following sections also deal with these topics:

• The emacs Editing Mode

• The vi Editing Mode

• Commands for vi Input Mode

• Cursor Movement Commands for vi Edit Mode

• History Commands for vi Edit Mode

• Text Editing Commands for vi Edit Mode

• Other Commands for vi Edit Mode

If you have already learned how to use a UNIX®-style editor such as vi or
ed, you can invoke those actual programs rather than using the imitations
of them inside ksh. If you prefer to edit command lines by using a
mouse-and-menus approach, you can even use TextEditor. To enter one of
these editors, store the name of the desired editor in FCEDIT and then use
the f c command as described earlier in ''Command Reentry.'' The
editing systems that are described in this section are more tightly integrated
with ksh, so they can offer even speedier access to a previously entered
command.

Because of their reference-style treatment here, you should already be
comfortable with one or more of the editing programs as described in AIUX
Text Editing Tools in order to be comfortable reading these sections. Be
forewarned, however, that not all operations operate identically,
particularly for the vi editing mode.

November 1991 38

ksh(1) ksh(l)

When the command-line editing feature of ksh is active, you can edit the
current command line and scroll up and down to inspect, edit, and reuse
any of your previously entered commands within the range of the history
file. (See ''Command Reentry'' earlier, for more information about the
history file.)

You choose one style of command-line editing by assigning the variable
VISUAL or the variable EDITOR one of these values:

vi
emacs
gmacs

These built-in editors are modeled after the the stand-alone editors that
have the same names. For more introductory information, see the
commercial books that describe the emacs and gmacs editors, or see
AIUX Text Editing Tools for an introduction to the vi editor.

Each of these built-in editors displays a recalled command line after the
most recent command prompt. You can consider the area of the display
affected as a one-line text window, the contents of which you can scroll to
view other command lines in the command history file. You can set the
width of the text window by using the variable COLUMNS. The text
window width is set to 80 columns automatically whenever COLUMNS is
unset.

If the command line that you enter or that you recall from the history file
exceeds the length of the text window, a special character is displayed at its
boundary. This character provides a reference point (mark) for the
characters horizontally scrolled into view as you move the cursor toward
the end of a long command line.

As the cursor reaches the text window boundaries, the text is horizontally
scrolled so that the window continues to enclose the cursor. The mark
changes, depending on where text has scrolled off the window. If text has
scrolled off the end of the window, a > is displayed. If text has scrolled off
the beginning of the window, a< is displayed. If text has scrolled off both
the beginning and the ending of the window, a * is displayed.

Command-Line Editing With vi

39

When you use the vi style of editing, you flip between two modes of
operation, one for entering text-editing commands and one for entering the
text of a command line. The data entry mode is called ''input mode.'' The
command entry mode, called ''edit mode,'' can be broken down further
into modes such as character-insert and character-overwrite modes.

November 1991

ksh(I) ksh(l)

Initially, you are placed in input mode so that you can enter the text of a
command line. To begin editing text that has been entered, you switch to
the edit mode by pressing ESCAPE, move the cursor over the character
position that requires a correction (using motion commands in edit mode),
and enter an edit command that invokes input mode once again, and then
insert or overwrite text.

When you are ready to run the command line, you press RETURN. You can
do so from either input or edit mode.

In the command tables in subsequent sections, the notation for control
characters is caret (") followed by the character. For example, "f is the
notation for CONTROL-F. You enter this key combination by pressing the F
key while holding down the CONTROL key. You do not have to press the
SHIFT key.

Commands for vi Input Mode
By default the editor is in input mode which lets you enter a command line
that you wish to run. Within this mode the following character-commands
are accepted.

Erase
Deletes previous character. (You define the erase character by
using the stty command. This character is usually "Hor#.)

"D Terminates the shell.
\ Causes the next erase, kill, or end-of-line character to be

interpreted literally.

Cursor Movement Commands for vi Edit Mode
The following character sequences move the cursor in edit mode. For most
of these commands, you can optionally provide a count parameter that
proportionally increases the distance that the cursor travels.

[count] 1
Moves the cursor forward (right) one character.

[count]w
Moves the cursor to the beginning of the next word.

[count]W
Moves the cursor to the beginning of the next word that follows a
space.

[count]e
Moves the cursor to the end of the current word.

[count]E
Moves the cursor to the end of the current space-delimited word.

[count]h
Moves the cursor backward (left) one character.

November 1991 40

ksh(l)

[count]b
Moves the cursor to the previous word.

[count]B
Moves the cursor to the preceding space-separated word.

[count] fc

ksh(l)

Finds the next occurrence of character c in the current line.
[count]Fc

Finds the previous occurrence of character c in the current line.
[count]tc

Finds the next occurrence of c in the current line, then moves
backward one character.

[count]Tc
Finds the previous occurrence of c in the current line, then moves
forward one character.

[count];
Repeats the last single-character find command (f, F, t, or T).

[count],
Reverses the last single-character find command.

0 Moves the cursor to the beginning of the line.
Moves the cursor to the first nonblank character in the line.

$ Moves the cursor to the end of the line.
% Moves the cursor to the balancing (,) , { , } , [, or] . If the

cursor is not on one of these characters, the remainder of the line
is searched for the first occurrence of one of these characters.

History Commands for vi Edit Mode

41

The following character sequences display commands you entered
previously as long as they fall within the range of your command
history file:

[count]k
Displays the previous command each time k is entered. If a count
parameter is supplied, the command that is count commands
prior to the current one is displayed.

[count]-
Displays the previous command. Equivalent to k.

[count]j
Displays the next command each time j is entered. If a count
parameter is supplied, the command that is count commands
more recent than the current one is displayed (if such a command
exists).

[count]+
Displays the next command. Equivalent to j.

[lineno]G
Displays the command numbered lineno. You can obtain the line

November 1991

ksh(1) ksh(1)

numbers associated with commands by entering f c -1. The
default is the least recent history command.

I [pattern]
Searches backward through the history file for a previous
command containing pattern. You indicate the end of the pattern
by pressing RETURN (or by generating a newline). If you do not
specify a pattern, the most recently specified pattern will be used.

? [pattern]
Searches forward through the history file for a previous
command containing pattern, as a counterpart to I.

n Searches forward for the next match of the last pattern specified
by a I or ? command.

N Searches backward for the next match of the last pattern specified
by a I or ? command.

Text Edit Commands for vi Edit Mode
You can use these commands to modify the currently displayed line.
To use these commands, you either switch from edit mode to input
mode and type new characters into a line; or you remain in edit mode
and directly change a specific amount of text. In the latter case you
can continue supplying other edit-mode commands. In the former
case, you cannot access edit-mode commands again until you leave
input mode.

a Enters input mode. New text is entered after the current
character.

A Enters input mode. New text is entered after the last character of
the current line. Equivalent to the command $a.

[count] emotion
c [count]motion

Enter input mode after marking for deletion the string starting
with the current character and ending with the character that is
count units away in the direction and units given by motion. If
motion is c, the entire line is deleted and you enter input mode.

C Enters input mode after marking the current line for deletion.
S Enters input mode after deleting the current line; equivalent to

the command cc.
D Enters input mode after deleting the string starting with the

current character and continuing to the end of the line.
Equivalent to the command d$.

[count] dmotion
d[count]motion

Delete from the current character to the character that is count
units away in the direction and units given by motion. If motion
is d, the entire line is deleted.

November 1991 42

ksh(l) ksh(l)

43

i Enters input mode. New text is inserted before the current
character.

I Enters input mode. New text is inserted at the beginning of the
current line. Equivalent to the command ~ i.

[count]P
Inserts the contents of the deletion buffer before the cursor.

[count]p
Inserts the contents of the deletion buffer after the cursor.

R Enters input mode. New text replaces existing text as the cursor
advances over the old text.

re Replaces the current character with c, while remaining in
command mode.

[count]x
Deletes the current character.

[count]X
Deletes the preceding character.

[count].
Repeats the previous text-modification command, replacing the
previously supplied count with count.

Converts the case of the current character and advances the
cursor.

[word-number]_

*

\

Enters input mode after pasting a word from the most recently
executed command into the current command line. The
particular word inserted depends on the value of word-number.
If this parameter is omitted, the last word of the previous
command line is inserted. Otherwise, word-number selects the
word to be inserted in an ordinal manner.

Attempts filename generation based on the current word.
Filenames that begin with the same letters as the current word are
generated. If no match is found, a beep is generated. Otherwise,
the word is replaced by the matched filename and you enter input
mode.

Attempts pathname completion. Replaces the current word with
the longest common prefix of all filenames that begin with the
same letters as the current word. If the match is unique and the
match is a directory, a slash (/) is appended. If the match is
unique and the match is a file, a space is appended.

November 1991

ksh(l) ksh(1)

Other Commands for vi Edit Mode
[count]ymotion
y[count]motion

Copy ("yank") text from the current character to the character
selected by motion and put it into the deletion buffer. The text
and cursor are unchanged.

Y Copies ("yanks") text from the current position to the end of the
line and puts it in the deletion buffer. Equivalent toy$.

u Undoes the last text-modification command.
u Undoes all the text-modification commands performed on the

line.
[count]v

Displays this command into the input buffer.
fc -e ${VISUAL:-${EDITOR:-vi}} count
If count is omitted, the current line is used.

~ L Inserts a line feed and redisplays the current line if you are in edit
mode. Otherwise, this command is treated literally.

~J

Executes the current line, regardless of mode.

Executes the current line, regardless of mode.
Inserts a number sign(#) before the line and then sends the line,

converting it into a shell comment. Use this command to insert
the current line into the history file without executing it.

Generates a lists of filenames that begin with the same letters as
the current word.

@lett8earches for an alias by the name _letter. (Note that an
underscore is prepended to the letter.) If an alias of this name is
defined, its value is displayed.

The emacs and gmacs Editing Mode
You enter the emacs (or gmac s) editing mode by using the emacs (or
gmacs) setting for either the variable EDITOR or the variable VISUAL.
The only difference between emacs and gmacs modes is the way they
handle CONTROL-T: The emacs mode transposes the current character
with the next character, whereas gmacs mode transposes the two previous
characters.

To edit lines, move the cursor to the point needing correction and then
insert or delete characters or words as needed. All edit commands operate
from any place on the line (not just at the beginning). All of the editing
commands are control characters or escape sequences.

November 1991 44

ksh(1) ksh(1)

45

In the command table that follows, the notation for control characters is a
caret (") followed by the character. For example, "F is the notation for
CONTROL-F. The SHIFT key is not pressed. (The notation "? indicates
DELETE.)

The notation for escape sequences is M- followed by a character. For
example, you enter M - f (pronounced ''meta f' ') by pressing ESCAPE
(ASCII 033) followed by the F key. The character case is significant; M-F
is not the same as M - f, so in this case you do not press SHIFT.

"F Moves the cursor forward (right) one character.
M-f

Moves the cursor forward one word. (The editor considers a word to
be a string of characters consisting only of letters, digits, and
underscores.)

"B Moves the cursor backward (left) one character.
M-b

Moves the cursor backward one word.
"A Moves the cursor to the beginning of the line.
"E Moves the cursor to the end of the line.
"J char

Moves the cursor to the first occurrence of the letter char on the
current line.

"X"X
Interchanges the cursor and mark.

erase
Deletes the previous character. (You define the erase character by
using the st ty command. This character is usually CONTROL-Hor
#.)

"D Deletes the current character.
M-d

Deletes current word.
M-"H

Deletes the previous word. (Pronounced ''meta backspace''.)
M-h

Deletes the previous word.
M-"?

Deletes the previous word. (Pronounced ''meta delete''.) If your
interrupt character is "? (DELETE, the default), this command will not
work.

"T Transposes the current character with next character in emacs mode.
Transposes the two previous characters in gmacs mode.

"C Capitalizes the current character.

November 1991

ksh(l) ksh(l)

M-c
Capitalizes the current word.

M-1
Changes the current word to lowercase.

AK Deletes all characters from the cursor to the end of the line. If given a
parameter of 0, it deletes all characters from the beginning of the line
to the cursor.

AW Deletes all characters from the cursor to the mark.
M-p

Pushes the region from the cursor to the mark on the stack.
kill Deletes the entire current line. (You define the kill character by using

the st ty command. This character is usually CONTROL-G or@.) If
you use two kill characters in succession, all subsequent kill
characters will cause the generation of a line feed (useful when you
are using paper terminals).

AY Pastes the last-yanked text to the line.
AL Inserts a line feed and prints the current line.
A @ Sets the mark.
M-space

Sets the mark. (Pronounced "meta space".)

Executes the current line.

Executes the current line.
eof Produces the end-of-file character, normally CONTROL-D. This

command terminates the shell if the current command line is empty
except for the end-of-file character.

AP Displays the command previous to the current one. Each time
CONTROL-Pis entered, the command prior to the one just fetched is
displayed.

M-<
Displays the least recent (oldest) history line.

M->
Displays the most recent (youngest) history line.

AN Displays the next-most-recent command. As long as more recent ones
exist, each time CONTROL-N is entered, the next command in a
previous sequence of commands is displayed.

ARstring
Searches backward for a previous command line containing string. If
a parameter of 0 is given, the search is forward. The string is
terminated by a return or newline character. If string is preceded by a
caret n, the matched line must begin with string. If string is omitted,
the next command line containing the most recently specified string is
accessed. In this case, a parameter of 0 reverses the direction of the

November 1991 46

ksh(l) ksh(1)

search.
"O Executes the current line and fetches the next line relative to the

current line from the history file.
M-digits

Defines the numeric parameter; the digits are taken as a parameter to
the next command. The commands that accept a parameter are . , "F,
"B, erase, "D, "K, "R, "p, "N, M-.' M-_, M-b, M-c, M-d, M-f,
M-h, and M- "H.

M-letter

M-.

M-

M-*

Searches the alias list for an alias by the name _letter.(Note that an
underscore prefix is added.) If an alias of this name is defined, its
value is inserted on the input queue. The letter must not conflict with
one of the metafunctions described in this list (so do not use the letters
f' b, d, p, l, c, h).

Inserts the last word of the previous command into the current line. If
preceded by a numeric parameter, the value of this parameter
determines which word to insert instead of the last word.

Inserts the last word of the previous command into the current line.
Same as M- ..

Attempts filename generation based on the current word. Filenames
that begin with the same letters as the current word are generated.

M-ESCAPE

M-=

Attempts filename completion. Replaces the current word with the
longest common prefix of all filenames that begin with the same letters
as the current word. If the match is unique, a slash (/) is appended if
the file is a directory and a space is appended if the file is not a
directory.

Lists all files that begin with the same letters as the current word.
"U Multiplies the parameter of next command by 4.
\ Causes the next character to be interpreted literally. This character

allows editing characters and your erase, kill, and interrupt characters
to be entered in a command line or a search string.

"V Displays the version number for the shell.

Command Scripts

47

Command scripts are files containing a number of command lines that are
run as one batch. The same command-line user interface that you use for
normal command programs is also used to invoke scripts. You can run a
file containing commands by supplying the name of the file as the
command in a command line.

November 1991

ksh(1) ksh(1)

As described earlier in the section "Using ksh," a shell performs a search
for the file corresponding to each command. The order of this search is
dictated by the list of directories stored in the PATH variable.

If the file is a shell script containing legal command lines, a subshell is
spawned to interpret it. In the subshell, only ''exported'' aliases, functions,
and variables retain the values they had in the parent shell.

To make your script programs as easy to run as A/UX commands, you need
to locate them in one of the directories specified by PATH and extend
permission to a range of users (or just yourself) to execute the script file.
See chrnod(l) for information about permission attributes for a file.

As an alternative to treating the shell script just like an A/UX command
program, you can execute it by submitting the file as the input for ksh in
one of these formats:

ksh shell-script-file
cat shell-script-file I ksh

To execute a script this way, you need read permission, but not execute
permission. Note that any setuid and setgid file attributes are
ignored. (These attributes are described in chrnod(l).)

When you specify a shell script as an argument to ksh, ksh performs a
PATH-moderated search to discover where the named shell script resides.
This search is exactly like the search for scripts executed like commands.

When executed like a command, a script file for which you have set the
setuid permissions, setgid permissions, or both is executed in a
special way. The shell executes an agent that sets up an altered execution
environment for use when running the script. This special subshell obtains
its startup settings from /etc/suid_profile.

Since ksh reads at least one line at a time, new aliases do not affect
subsequent commands on the same line, but affect only subsequent lines.
For example, if you have two or more simple or compound commands on a
single line, such as this:

alias bo=didley; bo

ksh reads all of the commands on the line before executing them.
Therefore, bo is not equivalent to didley because bo does not follow the
a 1 i as command line.

To add flexibility to shell scripts, traditional programming constructs are
included. For example, you can establish a block of commands that is run
only when a conditional test evaluates to true (such as whether a file
exists), or when the test evaluates to false. Certain keywords help you
indicate the scope of conditional blocks of commands. The keywords that

November 1991 48

ksh(1) ksh(l)

specify conditional blocks of commands are if, e 1 if, e 1 s e, and f i.

Other keywords define blocks of commands that can be repeated a number
of times. Each time a repeatable block of commands is executed, a test is
performed to see if another iteration of the loop should be performed. For
example, you could use the program segment shown here to process each
file in a group of files in the same way:

for file in chapl chap2 chap3
do

pr $file I lpr
touch -a $file

done

Use of Comments
An important part of programming is documenting the components of the
program. Comments help anyone using the shell script understand the job
of each program component.

The# metacharacter tells ksh to ignore the remaining text on a line,
treating it as a comment rather than a command line.

Use comments throughout a lengthy shell script. Often they appear before a
block of commands that has a common processing focus:

Was a valid filename was offered?
If not, report the error and exit.
if [[! -f $file JJ
then

f i

Specialized Command-Line Processing for Scripts

49

When a script is invoked from the command line, the subshell that runs on
its behalf is initialized to reflect the current state of the parent shell and the
state of the command line. For example, any parent shell variables with the
export attribute set are also initialized in the subshell. Furthermore, the
command-line arguments given after the script filename are the source of
assignment values for the positional variables of the subshell. The
following example illustrates how command elements are mapped to
positional variables:

script-name earth wind fire water
i i i i i

$0 $1 $2 $3 $4

November 1991

ksh(l) ksh(l)

This processing can be affected by preference settings for the argument­
separator character, by command options for ksh (see the description of
the - f and -k options in "Arguments," earlier), by filename generation
(see "Filename Generation," earlier), and by escape characters (see
"Argument Parsing" and "Escape Characters," earlier).

You can change the argument-separator character to something other than
the default space and tab. To change the argument separator character,
assign the desired separator to the IFS variable for the interactive shell you
use to invoke the script.

To refer to the script arguments beyond the ninth one, use this format for
referring to the variable:

$ {digit ... }

Here is a simple script that displays the first two command-line arguments
given to it:

echo $2 $1

If you placed the preceding command in a file called swapargs and
established execute permission for the file, you could duplicate the results
of the following command line:

$ swapargs one two
two one
$ I

The special built-in variables $ * and $@,when not enclosed by quotation
characters, cause identical substitutions to occur. They are replaced with
the text of each of the positional variables, with space characters (or the
character stored in the IFS variable) inserted between each variable.

When the same references are enclosed within quotation characters, the
replacement values are subject to different interpretation if ksh parses
arguments on them again. (See "Argument Parsing," earlier.) If you want
to obtain the same positional variable assignments after a second
argument-parsing process, use 11 $@ 11 to refer to the positional parameters
of the subshell. This variable ensures that ''escaped'' spaces that were
originally part of discrete arguments remain a part of those arguments, and
thereby results in a faithful restoration of the number and composition of
positional variables in subshells to a subshell.

Besides allowing the shell to assign positional variables (described in
"Argument Parsing," earlier), you can set the positional variables yourself
by using the built-in set command. (See "Built-in Commands" later in
this section.)

November 1991 50

ksh(1) ksh(1)

Using Repetition and Branching Constructs

51

While control constructions such as conditional blocks and loops are
mostly used in scripts, you can also use them in command lines. If you
structure them normally, they will span more than one line. To provide you
with an indication that the command entry is not complete, ksh switches to
a different prompt temporarily. You can change this secondary prompt by
using the PS2 variable.

The usual interpretation of a newline signal is temporarily abandoned when
you have entered one of the control keywords but not an associated
terminating keyword. This signal permits you to enter any number of lines
before you terminate the control construction by using the appropriate
keyword (done, esac, or fi for loops, case structures, and conditional
command blocks, respectively). For the line in which the terminating
keyword is entered, it indicates the end-of-line character received is
interpreted normally: the end of the command-block entry and the
beginning of its execution.

The following example is a repeat of an earlier one. Shown here are the
prompts that would appear before each of the commands or keywords
during interactive operation:

$ for file in chapl chap2 chap3
> do
> pr $file I lpr
> touch -a $file
> done
$ I

Once all of the command blocks have been closed (all nested loop or
branch structures ended with the appropriate terminating keyword), ksh
checks the command blocks for errors. If there are none, the shell runs the
individual commands in each of the blocks one or more times, depending
on the constructions used and the conditional expressions that govern their
execution.

Usually blocks of commands are entered into a script, which is a file that
contains command lines. (See "Command Scripts," earlier.) This permits
them to be easily recalled without a lot of typing.

A control structure must contain a conditional expression that yields a
Boolean value. Conditional expressions are evaluated upon each iteration
of a loop so that the shell can determine when to exit the loop (for instance,
after a certain number of iterations). Likewise, conditional expressions
control whether a conditional command block executes or is skipped (and
optionally whether an alternative, e 1 s e-introduced command block
executes).

November 1991

ksh(l) ksh(l)

How are these Boolean values obtained? Each A/UX command returns an
exit status value that is habitually not displayed as part of the output text
for a command. Nevertheless, this exit value is communicated to the shell
that dispatched the command and is accessed through the $? variable. If
multiple commands are dispatched together as part of a pipe or as part of a
sequence of commands separated with ampersand or semicolon
metacharacters, the exit status remembered is the exit status of the last
command in the series.

Control Structure Syntax
You can change the normally sequential flow of shell execution from one
command line to the next by using the keywords described in this section.

You use the placeholder list to represent one or more commands that are
executed under the control of a loop or conditional construction. You can
include an arbitrary number of newlines instead of semicolons to delimit
commands in list.

The notation

for identifier [in arg ...] ; do list ; done

is equivalent to

for identifier [in arg ...]
do

list
done

Here, the argument identifier is used to represent a name chosen by you
and appearing in the some variations of the for loop. (See also "Lexical
Rules for Identifiers,'' later.)

Because the argument list is used to represent any sequence of commands,
it can also appear at locations where a Boolean result is required. In such
cases, the real use of the commands in the list is to generate a Boolean
result that in tum dictates whether another block of commands should be
run or should be skipped. Most of the time, the built-in command test
(or an equivalent form of this command) is run as described later in the
section "Built-in Commands." The true or false result generated is based
upon the exit value of the last command in the list. A true result is
generated if the last command has a 0 exit value. A false result is generated
otherwise. Only the exit values of command lists that are located
immediately after one of the keywords if, el if, and while is subject to
this manner of interpretation by ksh. Note that the command blocks
whose execution is affected are also notated with list in the syntax
descriptions that follow.

November 1991 52

ksh(1) ksh(l)

53

for identifier [in arg [white-space arg] ...]; do list ; done
The commands between the do and done (represented notationally as
list) keywords are repeated as many times as there are white-space
separated arguments between in and do. Each time through that set
of commands, the variable identifier is assigned the value of one of the
arguments represented here as arg values.

The commands in list can contain references to $identifier, which
will contain a value equal to the nth arg value upon the nth iteration of
the loop. If no arguments are specified between in and do, the for
command executes the commands in list once for each positional
parameter that is set. (See ''Specialized Command-Line Processing
for Scripts," earlier.) Iteration ends when the positional parameters
have been exhausted.

select identifier [in arg ...] ; do list ; done
Writes to standard error channel (file descriptor 2) each arg value
given that is preceded by a number. If

in arg ...

is omitted, then the positional parameters are used instead. (See
"Specialized Command-Line Processing for Scripts," earlier.) The
P s 3 prompt is printed, and a line is read from the standard input. If
this line consists of a number referencing one of the enumerated arg
values, then the value of the variable identifier is set to the
corresponding arg value. If the input line received is empty, the
selection list is printed again. If the input value received is out of
bounds, the variable identifier is set to an empty string. Whether in
bounds or not, the input line received is saved in the variable REPLY.
The commands in list are executed for each selection until a break
character or an end-of-file character is received.

case word in [pattern [I pattern] ...) list ; ;] ... esac
Executes the command list associated with the first pattern that
matches word. The form of pattern is the same as that used for
filename generation. (See "Filename Generation," earlier.)

if list ; then list [el if list ; then list] ... [; else list] ; fi
Executes the command list following i f and, if a 0 exit status is
returned, the command list following the first then command.
Otherwise, a command list following any e 1 i f is executed and, if a 0
exit status is returned, executes the command list following the
associated then is executed. Furthermore, when the first command
list following an i f command returns a nonzero exit status, any
command list following an e 1 s e command is executed. If the test
conditions do not permit any command lists that follow either an

November 1991

ksh(1) ksh(l)

else or a then command to be executed, then the if command
returns a 0 exit status.

while list ; do list ; done
un ti 1 list ; do list ; done

Repeatedly execute both command lists until the first command list
returns a value that terminates the loop. For a while loop, the
iteration ceases when a nonzero exit value is returned. For an un ti 1
loop, the iteration ceases when a 0 exit value is returned. If no
commands in the list following do are executed, then the whi 1 e and
un ti 1 commands return a 0 exit status; un ti 1 can be used in place
of while as a negation of the loop-termination test.

(list)
Executes list in a separate shell environment. Note that if two
adjacent open parentheses are needed for nesting shells, you must
insert a space between them to avoid producing a request for
arithmetic evaluation as described in the next section.

{ list;}
Executes the command block denoted by list. Note that { represents
keyword and is not recognized unless it occurs at the beginning of a
line or after a semicolon.

[[expression]]
Evaluates expression and returns a 0 exit status when expression is a
test that evaluates as true. This command replaces the test
command of previous shell versions. (See ''Conditional
Expressions,'' later.)

fun ct ion identifier { list; }
identifier () { list; }

Define a function that can then be referenced by the identifier
supplied. Upon reference, the command list provided between { and
} is executed. (See "Functions," later.)

time pipeline
The commands in pipeline are executed, and the elapsed time, as well
as the user and system time, are printed on standard error.

The following keywords are recognized only when they occur at the
beginning of a line or after a semicolon:

if then else elif f i case esac for do
while until done { } function select time

November 1991 54

ksh(l) ksh(1)

Arithmetic Evaluation

55

Use the following format to request arithmetic operations:

((variable=arithmetic-expression))

This format is equivalent to

let 11 variable=arithmetic-expression 11

You can use arithmetic expressions to keep track of the
number of loop iterations, as in this example:

max=7
count=O
while [$count -lt $max
do

((count=$count + 1))

done

You can use arithmetic expressions in two other ways. They can appear in
an indexing expression that references an element in an array, such as

student[$count+l]

You can also use them in a 1 et command, which you can use to initialize
variables:

let count=$tests*students

Evaluations are performed by means of long arithmetic. Constants are
expressed in one of the following formats:

decimal-digit ...
[base#]digits-n-letters ...

In the first format, a decimal value (base 10) is assumed. In the second
format, the base is given by base. It must be a decimal number between 2
and 36, and digits-n-letters specifies a number in that base.

The rules of syntax, precedence, and associativity that apply to expressions
in the C language apply here as well. All of the integral operators other
than + +, - - , ? : , and , are supported.

You can reference variables by name within an arithmetic expression
without using the parameter substitution syntax. When you reference a
variable, its value is evaluated as an arithmetic expression.

Because many of the arithmetic operators also function as metacharacters,
you must suppress their metacharacter interpretation, often by placing them
in question marks. An alternative form of the 1 et command is provided to
eliminate their interpretation as metacharacters. This alternative format

November 1991

ksh(l) ksh(1)

uses opening and closing double parentheses to replace let, as described
at the beginning of this section.

Conditional Expressions
A conditional expression controls the flow of execution through and around
blocks of commands bounded by keywords such as those described earlier
in "Using Repetition and Branching Constructs." Many times, a test
command will be included that generates a Boolean result. You can use the
following test-command format. (In this syntax format, brackets are
enterable characters - they do not enclose optional elements.)

if [[test-argument ...]]

Another (archaic) way to introduce these options and arguments is after the
keyword test:

if test test-argument ...

You can combine several Boolean conditions by replacing test-argument
with a number of binary and unary tests joined together by using logical
operations such as logical AND(&&) and logical OR (I I). You can invert
the Boolean value produced by a test argument by preceding it with a
negation operator (!).

Argument parsing takes place, consuming the white-space that separates
arguments, except when you use escape characters to preserve the literal
interpretation of spaces. Filename generation is not performed even when
test arguments are represented by file as shown in the following list.

The following primitives are available for use as test arguments:

-a file
True if file exists.

-bfile
True if file exists and is a block special file.

-cfile
True if file exists and is a character special file.

-dfile
True if file exists and is a directory.

-f file
True if file exists and is an ordinary file.

-g file
True if file exists and has its setgid bit set.

-kfile
True if file exists and has its sticky bit set.

November 1991 56

ksh(l) ksh(l)

57

-n string
True if the length of string is nonzero.

-o option
True if option is on.

-p file
True if file exists and is a First-In-First-Out (FIFO) special file or a
pipe.

-r file
True if file exists and is readable by the current process.

-s file
True if file exists and its size is greater than 0.

-t n
True if file descriptor number n is open and associated with a terminal
device.

-ufile
True if file exists and has its setuid bit set.

-w file
True if file exists and is writable by the current process.

-xfile
True if file exists and is executable by the current process. If file
exists and is a directory, the current process has permission to search
in the directory.

-z string
True if string is an empty string.

-Lfile
True if file exists and is a symbolic link.

-0 file
True if file exists and is owned by the effective user ID of this process.

-Gfile
True if file exists and its group matches the effective group ID of this
process.

-s file
True if file exists and is a socket.

file I -n t file2
True if filel exists and is newer thanfile2.

file I -ot file2
True if filel exists and is older thanfile2.

November 1991

ksh(1) ksh(1)

file I - e f file2
True if file I and file2 exist and refer to the same file.

string] = string2
True if the strings match one another.

string 1 ! = string2
True if the strings do not match one another.

string I < string2
True if string I comes before string2 based on the ASCII value of their
characters.

string] > string2
True if string] comes after string2 based on the ASCII value of their
characters.

exp] -eq exp2
True if exp] is equal to exp2.

exp/ -ne exp2
True if exp/ is not equal to exp2.

exp] -1 t exp2
True if exp I is less than exp2.

exp] -gt exp2
True if exp/ is greater than exp2.

expl -le exp2
True if expl is less than or equal to exp2.

exp/ -ge exp2
True if expl is greater than or equal to exp2.

You can construct compound expressions from these primitives, listed in
decreasing order of precedence:

(expression)
True if expression is true. Used to group expressions.

! expression
True if expression is false.

expression] && expression2
True if expression] and expression2 are both true.

expression] I I expression2
True if either expression] or expression2 is true.

November 1991 58

ksh(l) ksh(1)

Additional Korn Shell Metacharacters
The Korn shell treats several two-character tokens as if they were a single
metacharacter.

The token I & causes asynchronous execution of the preceding command or
pipeline as does the ampersand alone, but with a rather unusual redirection
of input and output. The input and output are both redirected to the
(parent) shell process from which the command was dispatched. To read
and write lines of the input so created, you execute the read and print
commands with the -p option from the parent shell. These commands are
described later in "Built-in Commands."

Only one command redirected in this fashion can be active at any given
time.

The tokens && and I I join two commands together, conditionally
performing the command that follows them. Here is the format of
commands joined this way:

command && conditionally-run-command

command I I conditionally-run-command

When conditionally-run-command follows&&, it is executed only if the
preceding command exits with a zero exit status, which is usually an
indication of successful command completion. When
conditionally-run-command follows the I I token, it is executed only if the
preceding command exits with a nonzero exit status.

The precedence of the metacharacter operators is given in the following
list. Those in the first line are given higher precedence than those in the
second line.

&& I I
& I &

Variables and Arrays

59

Variables do not have to be declared before they are used.

Usually the variable name is composed in accordance with the rules for
identifiers. At least this is the case for all user-defined variables. For
certain built-in variables, names have been previously established that do
not meet the criteria for identifiers. Here are some examples:

$*
$@
$#
$?
$-

November 1991

ksh(l)

$$
$!

ksh(1)

A Korn shell variable has several other attributes besides its associated
value. Using the typeset command, you can set some of these
attributes. For more technical information regarding typeset, see
"Built-in Commands," later.

Variables with the export attribute set are passed along to subshells and
commands as part of their inherited execution environment. The passed
variable values, and the passed attribute values (such as export), are those
in effect at the time the exported attribute is made active.

Variables can be assigned the string or number value denoted as value, as
follows:

name=value
[name= value] ...

To make an assignment by using an arithmetic expression, use one line per
assignment in the following format:

((name=expression))

For variables with the integer attribute set, arithmetic evaluation is
performed on the assignment even if the double open and close parentheses
are omitted. By declaring count as an integer with the format

typeset -i count

the result you obtain from the following commands becomes the same
result:

count="3 + 2"
((count=3 + 2))

One way to establish values for positional variables is to use the set
command. (See the description of set in "Built-in Commands," later.)

When you are writing shell script programs, the positional variables are
automatically set by the invoking shell to support the passing of the
command-line arguments for use inside the program. In such a case, $ 0 is
set to the script name. See "Specialized Command-Line Processing for
Scripts," earlier.

The shell supports one-dimensional arrays. An element of an array
variable is referenced by a subscript. A subscript is denoted by an open
bracket ([), followed by an arithmetic expression, followed by a close
bracket (J) as in the following example:

${student[32]}

November 1991 60

ksh(l) ksh(l)

61

To assign values to an array, use the format

set -A name value ...

The value of all subscripts must be in the range 0 through 1024. Arrays
need not be declared prior to their use. Any reference to a name with a
valid subscript is legal, and an array is created if necessary. Referencing
an array without an index subscript is equivalent to referencing the first
element.

The following list shows the various syntaxes you can use when referring
to variables:

$ {variable-name}
$ {array-name [index-expression] }

Replace the variable or array specified with its value, if any. The
braces are required when variable-name is followed by a letter, digit,
or underscore that is not supposed to be interpreted as part of its name.
If variable-name is specified as * or @, all the values of positional
variables, starting with $1, are used as the substitution text (separated
by a field-separator character).

If the value of index-expression is given as * or @, the value for each
of the elements of the array is used as the substitution text (separated
by a field-separator character).

$ {#variable-name}
Replaces the variable specified with the length of the string stored in
variable-name. If variable-name is specified as an asterisk (*) or an
"at" sign (@) , the replacement value is the number of positional
parameters that are set.

$ { #array-name [* J }
Replaces the array specified with the number of elements in the array.

$ {variable-name: -word}
$ {variable-name-word}

Replace the variable specified with its value if it is set and it is not
empty; otherwise the replacement value is word.

In the second form, the replacement value is word only if the variable
is unset.

$ {variable: =word}
Replaces the variable specified with its value if it is set. If it is unset
or is empty, this syntax assigns word to the variable and also uses
word as the replacement value. You cannot assign positional
parameters this way.

November 1991

ksh(l) ksh(l)

$ {variable-name: ?word}
$ { variable-name?word}

Replace the variable specified with its value if it is set and it is not
empty; otherwise print word on the standard error and exit from the
shell. If word is omitted, print a standard message.

In the second form (without a colon preceding the question mark), the
message is displayed only if the variable is unset.

$ {variable-name: +word}
$ {variable-name+word}

Replace the variable specified with its value if it is set and it is not
empty; otherwise, substitute nothing.

In the second form, if the value of the variable specified is an empty
string, then word is used as the replacement value.

$ { variable-name#pattern}
$ {variable-name# #pattern}

Replace the variable specified with its truncated value, if pattern
matches the beginning of its value. The truncated value is its original
value less the characters matched by the search pattern. Otherwise,
the replacement value is the complete value of variable-name. In the
first form, the smallest matching pattern is deleted. In the second
form, the largest matching pattern is deleted.

$ { variable-name%pattern}
$ {variable-name% %pattern}

Replace the variable specified with its truncated value, if pattern
matches the end of its value. The truncated value is its original value
less the characters matched by the search pattern. Otherwise, the
replacement value is the complete value of variable-name. In the first
form, the smallest matching pattern is deleted. In the second form, the
largest matching pattern is deleted.

In the preceding variable-referencing syntaxes, the value of word is not
examined unless it is to be used as the substituted string. Thus, in the
following example, $HOME is subject to variable substitution only if dis
not set or is empty:

echo ${d:- $HOME}

Functions
You use the function keyword to define shell functions. When a
function is declared, its command list is read, processed for substitutions
such as aliases, and stored in memory.

November 1991 62

ksh(1) ksh(1)

63

You can use either of these syntaxes for a function declaration:

function identifier { list; }

identifier () { list; }

The command list is executed whenever the function is referenced.

Inside the declared command list for a function, references to positional
variables ($1, $ 2, $ 3, and so forth) access the values passed in a
parameterized reference to the function:

function-name ([positional-arg] ...)

The only way to make the original positional parameters available inside
the declared commands for the function is to rereference them when calling
the function:

function-name (one two 11 $@ 11
)

Because of the introduction of two new positional parameters in the
preceding reference to a function, the first positional parameter of the shell
would have to be referenced in terms of $ 3 inside the declared commands
for the functionfunction-name.

Another common element inside the declared commands for a function is
the command return, which is used to exit the function and return to the
point from which the function was called. See the description of return
in "Built-in Commands," later, for a description of its argument and its
default return value. When the return command is not used as the
means to exit a function, the value of the function is the exit value of the
last command executed within the declared commands for a function.

You can use typeset with the - f option or the + f option to list the
functions that have been declared. (See ''Built-in Commands,'' later.) If
you use the - f option, typeset lists the declared commands for the
functions as well as the function names. You can undefine functions by
using the unset command with the - f option. (See "Built-in
Commands,'' later.)

Ordinarily, functions are not exported to subshells, such as the subshells
that execute shell scripts. However, you can export functions from the
parent shell where they were declared to any of its subshells by using
typeset with the -x and - f options. To allow functions to remain
defined across login sessions, place the function declarations in the file
referenced by ENV, as described earlier in ''Establishing Preference
Settings.''

November 1991

ksh(l) ksh(1)

Errors within functions cause an exit from the function, returning execution
to the point from which it was called. For a function call that runs without
errors, the last command (possibly a return) executes followed by any
commands set to run upon the receipt of an EXIT signal (see the
description of the trap command in "Built-in Commands," later).

Functions execute in the same process as the shell in which they were
invoked. They share all of the shell's opened input and output streams, all
of its traps (other than EXIT and ERR), and its current working directory.
An EXIT signal can be specified for a trap command placed inside the
declared commands for a function. In such a case, the command associated
with the trap runs after the function completes.

The shell and the called function ordinarily share variables. However, the
typeset command can be used within a function to create instances of
local variables. The scope of these local variables includes the current
function and all of the functions that it calls.

Lexical Rules for Identifiers
The names you choose for variables and functions can vary widely, but are
subject to certain limitations. Throughout this manual page, the use of the
term "identifier," and the use of the placeholder identifier, imply
adherence to these rules.

An identifier must be a sequence of letters, digits, or underscores, starting
with a letter or underscore. Identifiers cannot include shell metacharacters.

Built-in Commands
Sometimes it is useful to call a subshell simply for access to the built-in
commands that are not available otherwise. For example, the capabilities
of the built-in print command are not available in other shells, so you
may need to call ksh solely to use its version of the print command. In
a case such as this, you may need to use the - c option for ksh as
described in ''Arguments,'' earlier in this manual page.

The commands listed in this section execute within the same process as
ksh rather than through an independent process based upon an executable
A/UX file. For these commands, the usual search moderated by the PATH
variable need not be performed. For this reason, these commands are
called "built-in" commands for the ksh shell.

Input/output redirection is permitted. Unless otherwise indicated, the
output is written on the standard output channel (file descriptor 1).

Error processing differs slightly for commands that are preceded by two
daggers (tt). When one of these commands produces an error within a
shell script, both the shell script and the command are terminated.

November 1991 64

ksh(1) ksh(l)

65

Commands that are preceded by one dagger symbol (t) are given the
following special treatments:

t

tt

• One or more variable assignments preceding the command remain
in effect after the command runs.

• These commands are executed in a separate process when invoked
as part of a command substitution.

[arg] ...
Runs a null command that returns a 0 exit code. The arguments are
processed in terms of argument parsing and variable substitution.

file [positional-value] ...
Reads and executes commands fromfile before returning to the
interactive interpretation of command lines. The commands are
executed in the current shell environment. The search path specified
by PATH is used to find the directory containing file. If any arguments
are given, they become the values of the positional parameters.
Otherwise, the positional parameters are unchanged.

alias
alias alias-name
alias [-tx] [alias-name=command-line] ...

Display or create aliases. To display a list of the aliases that have
been set up already, use alias with no other arguments. To display
a single alias, use the second form of the command. To set up an alias
to refer to a command line, use the third form of the command.

A trailing space in command-line causes the first command name to be
checked for alias substitution. Use the -t option to set and list
tracked aliases. The value of a tracked alias is the full pathname
corresponding to the given name. The value becomes undefined when
the value of PATH is reset, but the aliases continue to be tracked
aliases afterwards. The - x option is used to either establish or print
exported aliases, depending on whether you supply an argument
string. An exported alias remains defined in subshells, including those
needed to run shell scripts. The a 1 i as command returns a 0 exit
status unless you specify a name for which no alias has been defined.

bg [%job]

t

Places the specified job in the background. The current job is put in
the background if job is not specified.

break [n]
Exits from the enclosing for, while, until, or select loop, if

November 1991

ksh(l) ksh(1)

any. If you specify n, break exits from n levels of nested control
structures (if they exist).

cd [directory]
cd old new

t

Reset the current working directory. The first form of the command
changes the current directory to directory. If you specify directory as
-, the directory is changed to the previous directory. The setting for
the shell variable HOME is used as the default directory when no
directory argument is specified. After successful execution, cd sets
the variable PWD to the new current directory.

If the directory can be found in any of the directory paths stored in the
variable CDPATH, then directory is expanded to the first base
pathname in CDPATH that contains directory. For example, if a
directory named /usr I tools exists and /usr is one of the
directories stored in CDPATH, you can enter

cd tools

to establish /usr I tools as your current directory.

Alternative directory names are separated by colons (:). Initially,
CDPATH is empty so that the current directory is used as the search
directory. To ensure that the current directory will continue to be part
of the search order, include a null directory in the list of paths:

CDPATH=::$HOME/Tools

When you specify directory with a leading slash (/), no search is
performed. Otherwise, each directory in the CDPATH list is searched
for directory.

The second form of cd substitutes the string new for the string old in
PWD, the current directory name, and tries to change to this new
directory.

continue [n]
Resumes the next iteration of the enclosing for, while, until, or
select loop immediately. If you specify n, continue resumes
execution at the beginning of the nth enclosing loop.

echo [arg]. ..
Displays arguments after the interpretation of shell metacharacters.
The built-in echo command writes its arguments (separated by
blanks and terminated by a return on the standard output). See
echo(l) for additional information. The echo command is useful
for producing diagnostics in shell programs and for writing constant
data on pipes. To send diagnostics to the standard error file, use

November 1991 66

ksh(l) ksh(1)

67

echo stringl >&2

t
eva 1 [command-producing-arguments]

t

Processes its arguments for command and variable substitution and for
filename generation before submitting the resulting output to the
current shell for further (and similar) processing as a command line.
The following command sequence displays your home directory
because variable substitution is performed twice:

homeprint='echo $HOME'
eval $homeprint

exec command
exec redirection-request

t

Treat the arguments as command input, but do not return to the parent
shell, as if the parent shell had exited upon the completion of the
command(s). The command(s) replace the shell without creating a
new process. Any previously open file descriptors above 2 are closed
when this command invokes another program.

You can use the second form of the command to reset the files (or
devices) associated with various file descriptors, such as standard
input, standard output, and standard error. (See ''Input/Output
Redirection," earlier.) Unlike redirections that are requested for other
commands, these redirections affect the current shell's execution
environment, and, through inheritance, the execution environment of
any commands subsequently run.

exit [status]

tt

Causes the shell to exit with the exit status specified by status. If
status is omitted, the exit status is that of the last command executed.
An end-of-file character also causes the shell to exit unless you have
established the ignoreeof option. (See the description of set,
later in this list.)

export [variable]. ..
Sets the export attribute for the named variables.

tt
f c [-e editor] [-nlr] [lineno]
f c [-e editor] [-nlr] [start-command] [end-command]
f c -e - [old=new] [command]

November 1991

ksh(1) ksh(l)

f c -1 [rn] n-history-lines
Display, optionally edit, and dispatch previous commands. The
redispatched commands, if any, are displayed in their final edited form
upon leaving editing mode, then executed.

In any of the command formats, the operation of f c depends on
reasonable settings for the variables HISTSIZE (the maximum
number of commands recallable) and HI STFILE (the name of the file
in which the command history is saved). Refer to the earlier section
"Establishing Preference Settings" for more introductory
information.

If you specify a negative number for lineno, start-command,
n-history-lines, or end-command, the system calculates the final line
number by reducing the most recent command number by an amount
equal to the absolute value of the number you supplied.

The arguments start-command, end-command, and lineno can be
specified as numbers or as strings. Specify a string to locate the most
recent command that begins with a particular string.

If you don't specify editor, the value of the variable FCEDIT is used.
If FCEDIT is empty, /bin/ ed is used.

Use the last form of the command, requiring the -1 option, to list the
given number of recently executed commands along with their line
numbers. To reverse the order in which commands are listed, include
the - r option. To prevent the line numbers from being listed along
with the command, include the -n option.

In the first form, a preceding command corresponding to lineno is
rerun after it has been edited with editor.

In the second form, a preceding range of commands starting with
start-command and continuing through end-command are rerun after it
has been edited with editor.

When editing is complete, the edited command(s) are executed. If
end-command is not specified, only start-command is executed.

If you specify neither start-command nor end-command, the most
recent command is used.

Use the third form of the command, requiring the editor name to be
supplied as - , to skip the editing phase and to reexecute the command.
In this case, you can use a substitution of the form old=new to modify
the command "on the fly" before execution.

For example, suppose r is aliased to ' f c - e - ' . If you enter

r bad=good c

November 1991 68

ksh(1) ksh(l)

69

the most recent command that starts with the letter c is executed once
the first occurrence of the string bad is replaced with the string good.

fg [%job]
Converts a previously run command from background to foreground
mode. If job is specified, it is brought to the foreground. Otherwise,
the most recent background job is brought to the foreground.

get opts opt-string name [arg] ...
get opts [:][flag-letter[:]] ... var-name[script-opts]

Parse the string script-opts into its component options as does the
stand-alone command getopt. For each call to getopts, the
variable var-name is assigned the next option letter parsed from the
string script-opts. If a plus sign precedes the option in script-opts,
var-name will contain a leading plus sign as well as the flag letter.
You can specify a trailing colon for any flag-letter argument. A
trailing colon causes getopts to expect that option to be followed
by its own argument inside the string script-opts. When this parsing
mode is established, the argument parsed is stored in the variable
OPTARG. (The options can be separated from the argument by
blanks.) If script-opts is omitted, the positional parameters are used.

The parsing rules for getopts interpret any letter in script-opts
preceded by a + or a - as a distinct option. When it parses a substring
that doesn't begin with either a plus or a minus sign, or that consists of
two hyphens (- -), get opts assumes that it has reached the end of
the options list. Any further calls to getopts produce an error
message and a nonzero exit value. The getopts program keeps a
count of the items parsed so far. The number of the next item that will
be parsed is available in the variable OPTIND.

Errors are also reported when an option is parsed that is not
recognized as one of the flag-letter items specified. A leading :
before the first flag-letter argument changes the mode with which
getopts handles certain types of errors so that it doesn't report an
error message. In this mode, get opts stores the letter of an invalid
option in OPTARG, and stores either? or : in var-name. The value
stored in var-name will be a question mark when the error is due to
receipt of an unexpected option; it will be a colon when a required
option argument is missing.

jobs [-1]
Lists the active jobs. If you specify the -1 option, the list includes the
process ID for each job along with the usual information.

ki 11 [-signal] process-no ...
Sends either the TERM (terminate) signal or the specified signal to the

November 1991

ksh(1) ksh(l)

specified jobs or processes. Signals are given either by number or by
name (as given in /usr I include/ signal. h, stripped of the
prefix SIG). Use kill with the -1 option to list the signal numbers
and names. If the signal you send to a job that is stopped is TERM
(terminate) or HUP (hangup), ki 11 sends a CONT (continue) signal.
The argument process-no can be either a process ID or a job. See also
kill(l).

let[variable=expr]. ..

t

Evaluates each arithmetic expression, expr, assigning the result to the
named variable. All calculations are executed with long integers, and
no check for overflow is performed. Expressions consist of constants,
variables, and operators. The following set of operators, listed in
order of decreasing precedence, have been implemented:

unary minus
logical negation

* I %
multiplication, division, modulo

+ -
addition, subtraction

<= >= < >
comparison
!=
equality, inequality

Subexpressions in parentheses are evaluated first and can be used to
override the precedence rules listed. The evaluation within a
precedence group is from right to left for the = operator and from left
to right for the others.

newgrp [newgrp-arg]. ..
Runs the newgrp command in place of the current shell as if the
command

exec /bin/newgrp ...

had been used.

print [-nprRs][-ufiledes] [arg] ...
Prints its arguments on standard output, separating them with spaces,
and normally adding an end-of-line character after the arguments.

The print command accepts the following options:

-p Causes the arguments to be written onto the pipe of the process
spawned with I & instead of to standard output.

November 1991 70

ksh(1) ksh(1)

71

pwd

-n Suppresses the addition of an end-of-line character to the end of
the output string.

-r
- R Cause a backslash (/) to be interpreted as data rather than as a

metacharacter when it precedes a, b, c, f, n, r, t, v, \, or 0.
The -R option also affects the way print recognizes command
options so that all subsequent options other than -n are treated as
data rather than as elements of the command.

- s Causes the arguments to be written to the history file rather than
to standard output.

-u.filedes
Specifies the one-digit file descriptor on which the output will be
placed. The default is 1. Using this option is similar to
redirecting output in the normal way, except that the print
command does not cause the file (if any) to be opened and closed
or the file descriptor to be duplicated each time.

Displays the currently selected working directory.

read [-prs][-ufiledes] [variable?prompt]
[variable]... Reads a line of text input, assigning it to variable. The

shell reads one line of input, parses it into fields, using the characters
in IFS as separators, and assigns the resulting field values to the
specified variables, one field per variable. If there are fewer variables
specified than fields parsed, the last variable specified is assigned the
contents of two or more fields. If no variable names are specified, the
input text is stored in the variable REPLY. If the shell is running
interactively and the first field contains a ? , the remainder of that field
is treated as an input prompt. The return code is 0 unless an end-of­
file character is encountered.

The read command accepts the following command options:

-p Causes the input line to be taken from the input pipe of a process
spawned by the shell by means of I&. If an end-of-file character
is received, it closes the so-redirected process and another so­
redirected process can be spawned.

- r Reads in a raw character mode so that a backslash (\) is treated
as data rather than as a metacharacter.

- s Saves the input text in the history file.

-u[filedes]
Specifies a one-digit file descriptor, selecting a source of text
stream input. You can use the built-in command exec to

November 1991

ksh(l)

tt

ksh(1)

establish the file or device to be associated with a particular file
descriptor. The default value of n is 0. If the file descriptor
specified is open for writing and is a terminal device, any prompt
specified is sent to that terminal instead of the standard error.

readonly [variable=value]
readonly [variable]. ..

t

Make the specified variables read-only. These variables cannot be
changed by subsequent assignment.

return [n]

set

Returns execution to the original place in a script where a user-defined
function was called, with the return status specified by n. If you omit
n, the return status is that of the last command executed. If you
invoke return outside the declared commands for a function, it has
the same effect as the built-in exit command.

set [aefhkmnostuvx] [-o option] ... [positional-param] ...
set -A array [value] ...
set +A array [value]. ..

Display or set operating modes or array elements. To display the
options that are currently established, use the first form of the
command, with no arguments. This format displays the values of all
variables affecting shell operation.

To set modes of operation for the shell, use the second form of the
command which has many selectable options (aefhimnostuvx).
See the description of each of these options in the ''Arguments''
section at the beginning of this manual page.

The second form of the command resets the positional parameters.
The supplied values are parsed (as described in "Argument Parsing")
and each resulting argument is assigned to the variables: $1, $ 2, and
so forth.

Use the third form to nullify (unset) and reset the values stored in
array, assigning them new values for as many elements as there are
values offered. Use the fourth form of the command to add and assign
new members to an array. If you specify +A rather than -A, the old
values are not unset first, and the number of array elements is
increased by the number of values given.

t
shift[n]

Reassigns the value of each of the positional parameters according to

November 1991 72

ksh(1) ksh(l)

73

the value stored in the parameter n positions away. For example,
sh i ft 1 causes $1 to be assigned the value of $ 2, $ 2 to be
assigned the value of $ 3, and so forth. The default shift value for n is
1. You can replace n with any arithmetic expression that evaluates to
a nonnegative number less than or equal to the total number of
positional parameters set, as given by $ #.

test argument ...

t

Evaluates its arguments to produce a Boolean value as described in
test(l). The same functionality is available through the
[[argument J J construct as described earlier in ''Conditional

Expressions.''

times

t

Prints the accumulated user and system times for the shell and for
processes run from the shell.

trap command [signal] ...
trap - signal .. .
trap 11 11 signal .. .
trap

Execute the command specified when the shell receives the signal(s)
named. The value of signal can be a number or the name of the
signal. Trap commands are executed in order of signal number.
When entered in the second format shown, where the command is
specified as -, trap resets the handling of the specified signals to
their default treatment. When entered in the third format shown,
without any arguments, trap prints a list of the already established
commands for each signal along with the signal number. When
entered in the fourth format shown, where the command is specified
with the null string, signals are set to be ignored for the current shell
and any subshells. Within subshells, you cannot set a trap on a signal
that was set to be ignored by the parent shell.

If signal is ERR, command is executed whenever a command has a
nonzero exit code. This trap is not inherited by functions. If signal is
O or EXIT and the trap statement is executed inside the declared
commands for a function, the command is executed after the function
completes. If signal is 0 or EXIT for a trap command entered
normally (not inside a function), the associated command is executed

November 1991

ksh(I) ksh(l)

upon exit from the shell.

tt
typeset -i[Hrtx][LR[Z]width]] [variable[=integer]]. ..
typeset - i [Hrtx][base] [variable[=integer]]. ..
typeset +i[Hrtx][variable[=integer]] ...
types et - f [tu] [function]. ..]
typeset +f[tu] [function]. ..]

tt

Set, unset, or display the attributes and values for shell integer
variables or shell functions. All options that are not described here are
the same as those described in the next list, where typeset is treated
more generally. Options described here are either exclusively for
integers or functions, or they function differently for integers or
functions.

-f
+ f Cause the remaining arguments to be interpreted appropriately

for functions. Use + f to turn off the trace mode (- t), unresolved
name (-u), and (-x) exported attributes by following it with the
appropriate option letter.

-i[base]
+ i Cause the values of the specified variable(s) to be treated as

integers, making arithmetic speedier. If base is nonzero, it
defines the output arithmetic base; otherwise, the first assignment
determines the output base. Use + i to turn off the read-only
(- r), tagged (- t), and exported (- x) attributes by following it
with the appropriate option letter.

- t function ...
Specifies that trace mode will be in effect when the specified
function is run. To be effective, this option must be preceded by
the - f option.

-u Declares the specified function(s) as currently undefined. The
FPATH variable is searched to find the function definition when
the function is referenced. To be effective, this option must be
preceded by the - f option.

- x Marks the named function(s) for automatic export, allowing the
function(s) to remain in effect in subshells in the same process
environment. To be effective, this option must be preceded by
the - f option.

typeset
typeset +

November 1991 74

ksh(1) ksh(l)

75

typeset -
typeset -[Hlrtux][LRwidth] [variable[=value]] ...
typeset +[Hlrtux] [variable[=value]]. ..

Set, unset, or display the attributes and values for shell variables. If
no arguments are specified (the first command format shown), the
names and attributes of all variables are displayed. With no
arguments but+ (the second command format shown), typeset
displays the names of all variables, but not their values.

With no arguments but - (the third command format shown),
typeset displays the names and current values of all variables.

When variables are specified as arguments, typeset changes their
attributes in accordance with any options you supply. With options
that can be toggled on and off, such as H, 1, r, t, u, and x, typeset
activates the setting when you precede the option letter with a hyphen
(-), and disables it when you precede the option letter with a plus (+).

When no variables are specified as arguments, yet option letters are
present, typeset lists the names and values of the variables that
have the specified options enabled. In such cases, if you precede the
option letters with a plus sign instead of a minus sign, only the names
of the variables that have the named options set are displayed.

When this command is invoked inside a function, a local instance of
the variable is created. If a global variable by the same name exists,
then its value outside of the function corresponds to that of the global
variable.

The following options are accepted:

- H Provides A/UX-to-host name.file mapping on non-UNIX
machines.

-1 Converts all uppercase characters assigned to the named
variable(s) to lowercase. Tums off the uppercase option, -u.

- L Left-justifies and removes leading blanks from value. If width is
nonzero, this option defines the width of the field; otherwise the
width is determined by the width of the value first assigned to the
variable. When a value is assigned to the variable, it is filled on
the right with blanks or truncated, if necessary, to fit into the
field. Leading zeros are removed if the - z option is also set.
The - R option is turned off.

-r Makes the named variable(s) read-only. These variables cannot
be changed by subsequent assignment.

- R Right-justifies and adds leading blanks. If width is nonzero, this
option defines the width of the field; otherwise the width is

November 1991

ksh(l) ksh(l)

determined by the width of the value first assigned to the
variable. The field is filled with blanks or truncated from the end
if the variable is reassigned. The L option is turned off.

-t Sets the "tagged" attribute for the named variable(s). Tags are
user-definable and have no special meaning to the shell.

-u Converts all lowercase characters assigned to the named
variable(s) to uppercase. Turns off the lowercase option, -1.

-x Marks the named variable(s) for automatic export to the
environment of subsequently executed commands.

-z
[-Z]width

Establishes leading zero as the fill character when right-justifying
a numeric value in a field width characters wide. A variable need
only contain a single digit as the first nonblank character to be
treated as a numeric value. This option is incompatible with the
left-justification (- L) option. Using this option is equivalent to
using the - Rand - z options together. The width can also be
determined dynamically based on the content first assigned to the
variable.

ulimit [acdfmnpstv][limit]
ulimit -H[acdfmnpstv][limit]
ulimi t -S[acdfmnpstv][limit]

Set or display a resource limit. The available resource limits are listed
later in this description. Many systems do not contain one or more of
these limits. The limit for a specified resource is set when a limit
number is specified. Alternatively, you can specify unlimited for
limit. Use the H option or the S option to specify whether the hard
limit or the soft limit is desired. A hard limit cannot be increased once
it is set. A soft limit can be increased up to the value of the hard limit.
If you specify neither the H or the S option, the limit applies to both.
The current resource limit is printed when limit is omitted. In this
case the soft limit is printed unless His specified. When more than
one resource is specified, the limit name and unit are printed before
the value. If no option is given, - f is assumed.

- a Lists all of the current resource limits.

- c Displays the number of 512-byte blocks available for core
dumps.

-d Displays the number of kilobytes available for the data area.

- f Displays the number of 512-byte blocks available for files written
by child processes (files of any size may be read).

November 1991 76

ksh(l) ksh(l)

77

-m Displays the number of kilobytes available for physical memory.

-n Displays the number of file descriptors available.

-p Displays the number of 512-byte blocks available for pipe
buffering.

- s Displays the number of kilobytes available for the stack area.

- t Displays the number of seconds available for each process.

-v Displays the number of kilobytes available for virtual memory.

umask
umask complemented-chmod-digits
umask chmod-opstring

Set the user file-creation mask to the octal value
complemented-chmod-digits. (See umask(2).) You can also specify
a chmod-opstring argument as described in chmod(l). In that case,
the new value of umask is recomputed based on the old value and the
change in that value requested by chmod-opstring. If umask is entered
with no argument, the current value of the mask is printed.

unalias alias ...
Removes the named aliases.

unset [- f] variable ...
Unsets the named variables. Unsetting these variables erases their
values and their attributes. Read-only variables cannot be unset. If
the - f option is set, the names refer to function names. Unsetting
ERRNO,LINENO,MAILCHECK,OPTARG,OPTIND,RANDOM,SECONDS,
TMOUT, and_ removes their special meaning, even if you subsequently
assign them values.

wait fpid]
wait %n

Wait for the specified child process and report its termination status.
If process is not given, wait suspends shell operation until all
currently active child processes terminate. The exit status from this
command is the same as that of the process on which it was waiting.
See "Controlling Jobs Not in the Foreground," earlier, for a
description of the format of n.

whence [-pv] name ...
For each name, displays information about how a command named
name would be interpreted. The output could include information
about command locations on a given system and account, and about
current alias settings.

November 1991

ksh(l) ksh(1)

The -v option produces a more verbose report. The -p option causes
a path search to take place even when name is an alias, a function, or a
reserved word.

Shell-Maintained, Built-in Variables
The following variables are automatically maintained by ksh. If you unset
some of these variables, ksh removes their special meaning even if you
subsequently set them.

Contains the process number of the last background command
invoked.

Contains the number of positional parameters in decimal.

$ Contains the process number of this shell.

Contains the preferences currently set, whether they were set upon
shell invocation or through the set command.

? Contains the decimal exit value returned by the last executed
command.

(Underscore) Contains the last argument of the previous command.
This parameter is not set for asynchronous commands. This
parameter is also used to hold the name of the matching MAIL file
when the system is checking for mail. Finally, the value of this
parameter is set to the full pathname of each program the shell invokes
and is passed in the environment. Unsetting this variable removes its
special meaning.

A_z
Contains information about exported variables that have special
meaning, or that have been made read-only.

ERRNO
Contains the value of errno as set by the most recently failed system
call. This value is system dependent and is intended for debugging
purposes. Unsetting this variable removes its special meaning.

LINENO
Contains the line number of the current line within the script or
function being executed. Unsetting this variable removes its special
meaning.

OLDPWD
Contains the previous working directory set by the cd command.

OPTARG
Contains the value of the last option argument processed by the
getopts built-in command. Unsetting this variable removes its
special meaning.

November 1991 78

ksh(1) ksh(1)

OPT IND
Contains the index of the last option argument processed by the
getopts built-in command. Unsetting this variable removes its
special meaning.

PPID
Contains the process number of the parent of the shell.

PWD
Contains the present working directory set by the cd command.

RANDOM
Generates a random integer each time this pseudo variable is
referenced. You initiate the sequence of random numbers by
assigning a numeric value to RANDOM. Unsetting this variable
removes its special meaning.

REPLY
Contains the error message set through the select command and
displayed by the read command when no arguments are entered.

SECONDS
Contains the duration of time that the shell has been running, in
seconds. If this parameter is assigned a value, the value returned is
the value that was assigned plus the number of seconds since the
assignment. Unsetting this variable removes its special meaning.

Other Built-in Variables

79

The following variables are used by the shell. In A/UX, the default values
shown may have been set (by means of a . profile or . kshrc file) to
different values.

CD PATH
Contains a list of directory paths used by the cd command to expand
arguments that match the base component of one of the directory
paths.

COLUMNS
Defines the width of the edit window, if set. Applies to shell edit
modes and to the display of character-oriented menus through the
select command.

EDITOR

ENV

Contains the user preference for choice of command editor. If the
value of this variable ends in emacs, gmacs, or vi and the VISUAL
variable is not set, the corresponding command option is turned on.
(See "Built-in Commands," earlier.)

Contains the pathname for the file from which initial commands are

November 1991

ksh(1) ksh(l)

read and performed by each new ksh process as it starts up. By
default, this variable is set to the file . kshrc in your home directory.
(Variable substitution is performed again on the value stored in ENV
to help generate the final pathname, permitting the use of a reference
to yet another variable such as $HOME.)

This "startup" file is typically used for alias and function
definitions that you want to remain available in any subshells you
might run.

FCEDIT

IFS

Contains the default editor name for the f c command.

Contains the characters to be used as field separators. Normally the
field separators are the space, tab, and newline characters. Affects
command and parameter substitution as well as the built-in command
read. When the shell generates certain values such as the value of
$ *, it uses the first character stored in IFS as the character separating
one positional parameter from the next. (Also see ''Filename
Generation," earlier.)

HISTFILE
Contains the pathname of the file that is used to store previously
entered command lines. If this variable is not set, no record of
previously entered command lines is kept. (See ''Command
Reentry," earlier.)

HISTSIZE
Contains the maximum number of previously entered lines that will be
available to the command editor, if HISTFILE has been set. The
default is 128. Setting this variable to a relatively large value, such as
10000, may result in a delay for each new invocation of ksh.

HOME
Contains the pathname corresponding to the login directory for the
current user. When given no arguments, the cd command establishes
this directory as the working directory.

LINES
Defines the length of the edit window, if set. Applies to shell edit
modes and to the display of character-oriented menus through the
select command.

MAIL
Contains the name of your mail file when set. If MAIL is set and if the
MAIL PATH is not set, the shell notifies you of the arrival of mail in
the specified file.

November 1991 80

ksh(l) ksh(l)

81

MAILCHECK
Specifies in seconds how often the shell checks for changes in the
modification time of any of the files specified by the MAIL PATH or
MAIL variable. The default value is 600 seconds. When the time has
elapsed, the shell checks for mail before issuing the next prompt.
Unsetting this variable removes its special meaning.

MAILPATH
Contains a list of filenames separated by colons (:). If this variable is
set, the shell informs the user of any modifications to the specified
files that have occurred within the last MAILCHECK seconds. Each
filename can be followed by a ? and a message that will be printed.
The message undergoes parameter and command substitution, and the
variable $ _ is set to the name of the file that has changed. The default
message is produced by the following message:

you have mail in $_

PATH

PSl

PS2

PS3

PS4

Contains a list of the directories to be searched for command files or
command scripts.

Contains the string that the shell displays to prompt you for a
command. This string is subject to parameter substitution. By default,
it is set to $. The metacharacter ! in the prompt string is replaced by
the command number (See ''Command Reentry,'' earlier.) Two
successive occurrences of ! produce a single ! when the prompt
string is printed.

Contains the string that the shell displays to prompt you for a block of
commands to be executed together. By default, this variable is set to
>.

Contains the string that the shell displays to prompt you for a select
choice. By default, this variable is set to #?.

Contains the string that the shell displays before each line of an
execution trace. The value of this variable is expanded for parameter
substitution. If PS 4 is unset, the execution trace indicator is set to a
plus sign (+).

SHELL
Contains the pathname to the login shell preference for a particular
account, and is stored in the processing environment. A leading r in

November 1991

ksh(1) ksh(I)

the filename indicates that the login shell is restricted.

TM OUT
Contains the amount of time in seconds that the system will wait for
input before exiting. (The shell can be compiled so that it will
establish a maximum value for this variable.) Unsetting this variable
removes its special meaning.

VISUAL
Contains the user preference for choice of command editor. If the
value of this variable ends in emacs, gmacs, or vi, ksh turns on the
corresponding option regardless of the setting stored in the EDITOR
variable.

The shell gives default values to PATH, PSl, PS2, MAILCHECK, TMOUT,
and IFS. The shell does not set initial values for ENV and MAIL. Initial
values for HOME, MAIL, and SHELL are set by login and inherited by the
shell as part of its execution environment.

STATUS MESSAGES AND VALVES
Errors detected by the shell, such as syntax errors, cause the shell to return
a nonzero exit status. Otherwise, the shell returns the exit status of the last
command executed. (See also the description of the exit command in
"Built-in Commands," in the "Description" section.) If the shell is being
used noninteractively, execution of the shell file is abandoned.

The system reports run-time errors for shell scripts by printing the
command or function name and the error condition. If the number of the
line on which the error occurred is greater than 1, the line number is also
printed in square brackets ([J) after the command or function name.

WARNINGS
If a command that is a tracked alias is executed, and then a command with
the same name is installed in a directory in the search path prior to the
directory where the original command was found, the shell continues to
execute the original command. Use the - t option of the a 1 i as command
to correct this situation.

Some very old shell scripts use a caret (~) as a synonym for the pipe
character (I). This synonym is not supported in releases of A/UX later
than 2.0.

If a command is piped into a shell command, all variables set in the shell
command are lost when the command is executed.

Using the f c built-in command within a compound command causes the
whole command to disappear from the history file.

November 1991 82

ksh(1) ksh(l)

The built-in dot command (.)reads the whole file named.file before any
commands are executed. Thus, for

. file

any alias and unal ias commands in.file will not be available within
file.

Traps are not processed while a job is waiting for a foreground process.
Thus a trap on CHLD won't be executed until the foreground job
terminates.

Unsetting some special variables removes their special meaning, even if
they are subsequently set.

When you log in over a serial line, the command-input editing options may
require specific settings of the configuration switches of the associated
terminal device.

FILES
$HOME/.profile

User-specific ksh startup settings file
/bin/ksh

Executable file
/etc/passwd

Password and login-account information file
/etc/profile

System-wide ksh startup-settings file
/etc/suid_profile

File from which startup settings are obtained for subshells invoked to
run for a script that has setuid or setgid permission

/tmp/ksh*
Temporary file

SEE ALSO

83

cat(l), chmod(l), CommandShell(l), csh(l), echo(l), ed(l),
env(l), getopt(l), kill(l), launch(l), login(l), newgrp(l),
nice(l), printenv(l), ps(l), sh(l), startmac(l), stty(l), tee(l),
vi(l)

dup(2), exec(2), fork(2), ioct1(2), lseek(2), pipe(2), ul imi t(2),
umask(2), wai t(2), signal(3), rand(3C), a. out(4), passwd(4),
prof ile(4), termcap(4), terminfo(4), environ(5) in

"Korn Shell Reference" in AIUX Shells and Shell Programming

Bolsky, Morris, and David Korn. The KornShell Command and
Programming Language. Englewood Cliffs, NJ: Prentice-Hall, 1989.

November 1991

last(l) last(l)

NAME
1 as t - displays login and logout times for each user of the system

SYNOPSIS
1 as t [name]... [tty]. ..

ARGUMENTS
name

Specifies the names of users who used the system last.

tty Specifies the terminals that were used on the system.

DESCRIPTION
last will look back in the wtrnp file which records all logins and logouts
for information about a user, a terminal or any group of users and
terminals. Arguments specify names of users or terminals of interest.
Names of terminals may be given fully or abbreviated. For example, last
0 is the same as last ttyO. If multiple arguments are given, the
information which applies to any of the arguments is printed. For example,
last root console would list all of "root's" sessions as well as all
sessions on the console terminal.

The 1 as t command reports the sessions of the specified users and
terminals, most recent first, indicating start times, duration, and terminal for
each. If the session is still continuing or was cut short by a reboot, 1 as t so
indicates.

The last command with no arguments prints a record of all logins and
logouts, in reverse order. Since last can generate a great deal of output,
piping it through the more program for screen viewing is advised.

If 1 as t is interrupted with an Interrupt signal, (generated by CONTROL-C)

it indicates how far the search has progressed in wtrnp. If interrupted with
a quit signal (generated by a CONTROL-\), 1 as t exits and dumps core.

CONTROL-D (EOF) signal does nothing. Therefore exit gracefully from
1 as t with an interrupt signal.

EXAMPLES
The command:

last reboot

will give an indication of mean time between reboots of the system.

FILES
/usr/bin/last

Executable file
/etc/wtrnp

Temporary file

November 1991

last(l) last(l)

SEE ALSO
acct(lM) in AIUX System Administrator's Reference

u tmp(4) in A/UX Programmer's Reference

2 November 1991

launch(1) launch(l)

NAME
launch- runs a Macintosh binary application in A/UX

SYNOPSIS
launch [-adr] application [document]. ..

launch -p [adr] application document ...

ARGUMENTS
- a Runs the Macintosh application asynchronously.

application
Specifies the name of the application file to be run.

-d Performs a launch operation that is compatible with applications
requiring 24-bit addressing mode. (Such applications are not 32-bit
clean.)

document
Specifies an individual document to be opened.

-p Prints the specified document. To use the -p option, you must supply
a document name in the command line. Using the -p option is
equivalent to selecting a document through the Macintosh Finder and
then choosing Print from the File menu.

- r Enables certain preprocessing and postprocessing of the standard input
and standard output so that carriage return characters are mapped to
newlines upon reading input and mapped backed to carriage returns
upon writing output.

DESCRIPTION
launch runs the Macintosh binary application specified. The application
and document arguments act much as do icons selected through the
Macintosh Finder.

If your application is in a pair of AppleDouble files, the two files must be in
the same directory. You do not specify both filenames; 1 a un ch
automatically looks for the associated header file when you launch an
AppleDouble data file.

EXAMPLES
This command runs the Macintosh binary application MacPaint:

launch macpaint

This command runs MacPaint and opens the document demo:

launch macpaint demo

A simpler way to run a Macintosh application from the command line is to
enter its name in place of launch. For this method to work, the
Macintosh application must be located within an A/UX file system in a

November 1991

launch(1) launch(!)

directory specified as one of the search paths in the PATH variable. For
example, consider an application named xyz. If it is in AppleDouble
format, the header file for xyz has the A/UX filename %xyz. To launch
xy z, enter this command:

xyz

To launch xyz and open the document file abc, enter this command:

xyz abc

You can nevertheless use the launch command options when invoking a
Macintosh application this way-without a direct reference to launch.

FILES
/mac/bin/launch

Executable file

2 November 1991

lav(1) lav(1)

NAME
lav - displays load average statistics

SYNOPSIS
lav

DESCRIPTION
lav displays the average number of jobs in the run queue over the last 1, 5,
and 15 minutes.

FILES
/usr/bin/lav

Executable file

SEE ALSO
ruptime(IN), uptime(l)

November 1991

ld(l) ld(l)

NAME
ld- invokes the link editor for common object files

SYNOPSIS
ld [-a/actor] [-e epsym] [-f fill] [-ild] [-lx] [-rn] [-o out.file] [-r]
[-s] [-t] [-u symname] [-x] [-z] [-F] [-Ldir] [-M] [-N] [-S] [-V]
[-VS num]file ...

ARGUMENTS
-a/actor

Specifies the expansion factor to be used to increase the size of the
default symbol table.

-e epsym
Sets the default entry point address for the output file to be that of the
symbol epsym.

-f fill
Sets the default fill pattern for holes within an output section as well
as initialized bss sections. The argument.fill is a 2-byte constant.

file Specifies the file to be processed by ld.

-ild
Generates the sections reserved for use by the incremental loader and
retains relocation entries in the new object file (as does the -r option).

- lx Searches a library 1 ibx.a, where x is a string of up to seven
characters. A library is searched when its name is encountered, so the
placement of this argument is significant. The default library location
is I lib.

-rn Produces a map or listing of the input/output sections on the standard
output.

-o out.file
Produces an output object file with the name out.file. The name of the
default object file is a . out.

- r Retains relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a
subsequent 1 d run. The link editor does not complain about
unresolved references.

- s Strips line-number entries and symbol table information from the
output object file.

- t Tums off the warning about multiply defined symbols that are not the
same size.

-u symname
Specifies an undefined symbol in the symbol table. This option is

November 1991

ld(l) ld(l)

useful for loading entirely from a library, because initially the symbol
table is empty and an unresolved reference is needed to force the
loading of the first routine. Replace symname with the name of an
undefined symbol.

-x Causes the system not to preserve local (nonglobal) symbols in the
output symbol table. Enter external and static symbols only. This
option saves some space in the output file.

- z Loads the text segment at an offset from 0 so that null-pointer
references generate a segmentation violation.

- F Creates a demand-paged executable.

-Ldir
Changes the algorithm of searching for 1 ibx. a to look in dir before
looking in /1 ib and /usr I 1 ib. This option is effective only if it
precedes the -1 option on the command line.

- M Produces an output message for each multiply defined external
definition. However, if the objects being loaded include debugging
information, extraneous output is produced. (See the description of
-g option in cc(l).)

- N Puts the data section immediately following the text in the output file.
Note that the -N option must be used either with
/usr /lib/unshared. ld or with a user-supplied . ld file.

- S Suppresses the display of progress and error messages unless an error
message occurs that results in the termination of the program.

-V Produces an output message giving information about the version of
1 d being used.

-VS num
Causes 1 d to use num as a decimal version stamp identifying the
a . out file that is produced. The version stamp is stored in the
optional header.

DESCRIPTION
ld combines several object files into one, performs relocation, resolves
external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and ld combines them, producing an object module that can either
be executed or used as input for a subsequent 1 d run. The output of 1 d is
left in a . out. This file is executable if no errors occurred during the load.
If any input file, filename, is not an object file, ld assumes it is either a text
file containing link editor directives or an archive library.

November 1991 2

ld(l) ld(l)

3

If any argument is a library, it is searched exactly once at the point at
which it is encountered in the argument list. Only routines that define an
unresolved external reference are loaded. The library (archive) symbol
table (described in ar(4)) is searched sequentially with as many passes as
are necessary to resolve external references that can be satisfied by library
members. Thus, the ordering of library members is unimportant.

The following information about section alignment and MMU
requirements should be considered at system installation.

The default section-alignment action for 1 d on M68000 systems is to align
the code (.text) and data (. dataand. bsscombined) separately on
512-byte boundaries. Since MMU requirements vary from system to
system, this alignment is not always desirable. This version of 1 d provides
a mechanism to allow the specification of different section alignments for
each system, so that you can align each section separately on n-byte
boundaries, where n is a multiple of 512. The default section-alignment
action for ld on this system is to align the code (.text) at byte 0 and the
data (. dataand. bsscombined) at the 4-megabyte boundary (byte
10487576).

When all input files have been processed (and if no override is provided),
ld searches the list of library directories (as with the -1 option) for a file
named def au 1 t . 1 d. If this file is found, it is processed as an 1 d
instruction file (or i.file). The default . 1 d file should specify the
required alignment as outlined here. If it does not exist, the default
section-alignment action is taken.

The default. ld file should appear as follows, with <alignment>
replaced by the alignment requirement in bytes:

SECTIONS {
.text : {}
GROUP ALIGN (<alignment>) : {

. data {}

.bss {}
}

Note: This system requires a data rounding that is an even multiple
of 1 megabyte. (1 megabyte is the segment size.)

For example, a default. ld file of the following form would provide the
same alignment as the default (512-byte boundary):

SECTIONS {
. text : {}
GROUP ALIGN(512)

November 1991

ld(l) ld(l)

.data

.bss
}

{ }

{ }

To get alignment on 2 kilobyte boundaries, you should specify the
following default. ld file should be specified:

SECTIONS {
.text : {}
GROUP ALIGN(2048) : {

. data : {}

.bss : {}
}

Note that this system requires a data rounding that is an even multiple of 1
megabyte. (1 megabyte is the segment size.)

For more information about the format of 1 d instruction files or the
meaning of the commands, see "ldReference" inAJUX Programming
Languages and Tools, Volume 1.

WARNINGS
Through its options and input directives, the common link editor gives you
great flexibility; however, if you use the input directives, you must assume
some added responsibilities. Input directives should ensure the following
properties for programs:

• C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this requirement, you
must not place any object at virtual address zero in the data space.

• When you call the link editor through cc(l), a startup routine is linked
with your program. This routine calls exit () (see exi t(2)) after
execution of the main program. If you call the link editor directly,

FILES

you must ensure that the program always calls exit () rather than
falling through the end of the entry routine.

/bin/ld
Executable file

/lib/*
Various library files and directories

/usr/lib/*
Various library files and directories

a.out
Default output file

November 1991 4

ld(l)

SEE ALSO
as(l),cc(l)

a.out (4) , ar (4) in A/UX Programmer's Reference

ld(l)

'' ldReference'' in A/UX Programming Ltinguages and Tools, Volume 1

5 November 1991

leave(!) leave(!)

NAME
leave - reminds you when you have to leave

SYNOPSIS
leave [hhmm]

ARGUMENTS
hhmm

Specifies the time of day. Replace hh with the hour of the day (on a
12 or 24 hour clock) and mm with the minutes. All times are
converted to a 12 hour clock, and assumed to be in the next 12 hours.

DESCRIPTION
leave waits until the specified time, then reminds you that you have to
leave. You are reminded 5 minutes and 1 minute before the actual time, at
the time, and every minute thereafter. When you log off, leave exits just
before it would have printed the next message.

If no argument is given, leave prompts with

When do you have to leave?

A reply of newline causes leave to exit, otherwise the reply is assumed to
be a time. This form is suitable for inclusion in a . login or . profile.

The leave command ignores interrupts, quits, and terminates. It sends
messages while other programs are running. To get out of leave, you
should either log off or use ki 11 - 9, giving its process ID.

FILES
/usr/ucb/leave

Executable file

SEE ALSO
calendar(l)

November 1991

lex(l) lex(l)

NAME
1 ex - generates programs for simple lexical tasks

SYNOPSIS
lex [-c] [-n] [-t] [-v] [file] ...

ARGUMENTS
- c Indicates C actions and is the default.

file Specifies the input file to be used by 1 ex. Multiple files are treated as
a single file. If no files are specified, standard input is used.

-n Does not print out the summary.

-t Causes the 1 ex . yy . c program to be written instead to standard
output.

-v Provides a one-line summary of statistics of the machine generated.

DESCRIPTION
1 ex generates programs to be used in simple lexical analysis of text.

The input.files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file 1 ex . yy . c is generated which, when loaded with the library, copies
the input to the output except when a string specified in the file is found;
then the corresponding program text is executed. The actual string
matched is left in yytext, an external character array. Matching is done
in order of the strings in the file. The strings may contain square brackets
to indicate character classes, as in [abx-z] to indicate a, b, x, y, and z;
and the operators*, +,and ? mean, respectively, any nonnegative number
of, any positive number of, and either zero or one occurrence of, the
previous character or character class. Thus [a-zA-Z J + matches a string of
letters. The character . is the class of all ASCII characters except newline.
Parentheses for grouping and vertical bar for alternation are also supported.
The notation r { d,e } in a rule indicates between d and e instances of
regular expression r. It has higher precedence than I , but lower than *, ? ,
+, and concatenation. The character " at the beginning of an expression
permits a successful match only immediately after a newline, and the
character $ at the end of an expression requires a trailing newline. The
character I in an expression indicates trailing context; only the part of the
expression up to the slash is returned in yyt ext, but the remainder of the
expression must follow in the input stream. An operator character may be
used as an ordinary symbol if it is within " symbols or preceded by \ .

Three subroutines defined as macros are expected: input () to read a
character; unput (c) to replace a character read; and output (c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is named

November 1991

lex(l) lex(l)

yylex (),and the library contains a main () which calls it. The action
REJECT on the right side of the rule causes this match to be rejected and
the next suitable match executed; the function yymore () accumulates
additional characters into the same yytext; and the function yyless (p)
pushes back the portion of the string matched beginning at p, which should
be between yytext and yytext+yyleng. The macros input and
output use files yy in and yyou t to read from and write to, defaulted to
stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes % % , it is copied into the external definition area of the
1 ex . yy . c file. All rules should follow a % % , as in YACC. Lines
preceding % % which begin with a nonblank character define the string on
the left to be the remainder of the line; it can be called out later by
surrounding it with { } . Note that curly brackets do not imply parentheses;
only string substitution is done.

The external names generated by 1 ex all begin with the prefix yy or YY.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n
number of positions is n (default 2000)

%n n
number of states is n (500)

%t n
number of parse tree nodes is n (1000)

%a n
number of transitions is n (3000)

The use of one or more of the above automatically implies the -v option,
unless the -n option is used.

EXAMPLES
The following is output that was generated by 1 ex:

D
%%
if
[a-z]+
O{D}+
{D}+
"++"
II+ II

II I*"

November 1991

[0-9]

printf ("IF statement\n");
printf ("tag, value %s\n" ,yytext);
printf ("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf ("unary op\n");
printf ("binary op\n");
{ loop:
while (input() != '*');

2

lex(l) lex(1)

switch (input ())
{

case '/':break;
case '*': unput('*');
default: go to loop;
}

LIMIT A TIO NS
When given an illegal option, lex reports the fact that it has been given an
illegal option but then continues to execute with the default options, rather
than stopping the execution and printing a usage statement.

FILES
/usr/bin/lex

Executable file

SEE ALSO
awk(l), grep(l), sed(l), yacc(l)

rnal loc(3X) in A/UX Programmer's Reference

"lex Reference" inA/UX Programming Lcmguages and Tools, Volume 2

3 November 1991

line(l) line(l)

NAME
1 ine - reads one line from the standard input

SYNOPSIS
line input

ARGUMENTS
input

Specifies the standard input. Replace input with a line of text.

DESCRIPTION
1 ine copies one line (up to a newline) from the standard input and writes
it on the standard output. It returns an exit code of 1 on EOF and always
prints at least a newline. It is often used within shell files to read from the
user's terminal.

EXAMPLES
If you enter:

line
Hello world

this command will return:

Hello world

When using the Bourne shell (sh(l)), the command:

a='line'
hi there
echo $a

will return:

hi there

In the C-shell (csh(l)), the command:

set a='line'
bye bye
echo $a

will return:

bye bye

FILES
/bin/line

Executable file

November 1991

line(l) line(l)

SEE ALSO
csh(l), ksh(l), sh(l)

read(2) in A!UX Programmer's Reference

2 November 1991

lint(l) lint(l)

NAME
lint - invokes a C program checker

SYNOPSIS
lint [-a] [-b] [-Dname[=dej]] [-h] [-Idir] [-lx] [-n] [-o lib] [-p]
[-u] [-Uname] [-v] [-x]file ...

ARGUMENTS
- a Suppresses complaints about assignments of long values to variables

that are not long.

-b Suppresses complaints about break statements that cannot be
reached. (Programs produced by lex or yacc will often result in
many such complaints.)

- Dname[=def]
Defines name as if by a #define directive. If no =def if given, name
is defined as 1.

file Specifies the file to be checked.

- h Does not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

-Idir
Searches for #include files (whose names do not begin with/) in
dir before looking in the directories on the standard list. When this
option is used, #include files whose names are enclosed in double
quotes are searched for first in the directory of the ifile argument, then
in directories named in - I options, and last in directories on a
standard list, which, at present, consists of /usr I inc 1 ude. If the
- Y option (see below) is specified, the standard list is not searched.
For #include files whose names are enclosed in<>, the directory of
the ifile argument is not searched, unless - I. is specified.

-lx Includes an additional lint library, llib-lx. ln. For example,
you can include a 1 int version of the Math Library 11 ib- lrn. ln
by inserting - lrn on the command line. This argument does not
suppress the default use of 11 i b-1 c . 1 n.

These 1 int libraries must be in the assumed directory. This option
can be used to reference local 1 int libraries and is useful in the
development of multifile projects. To generate 11 ib- lX. ln from
11 ib-lX, use

cc -E -c -Dlint llib-lX I \
/usr/lib/lintl -vx -H/trnp/lint$$ > llib-lX.ln

rm -f /trnp/lint$$

November 1991

lint(l) lint(l)

- n Does not check compatibility against either the standard or the
portable lint library.

-o lib
Causes lint to create a new lint library that has the name
llib-1/ib. ln. The lint library produced is the input that is given
to the second pass of 1 int.

This option simply causes this file to be saved in the named lint
library. To produce a 11 ib-1/ib. ln without extraneous messages,
use of the - x option is suggested.

The -v option is useful if the source file(s) for the 1 int library are
just external interfaces (for example, the way the file 11 ib-lc is
written). These option settings are also available through the use of
lint comments (as shown later in this section).

-p Attempts to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all nonexternal names
to be truncated to eight characters and all external names to be
truncated to six characters and one case.

-u Suppresses complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for
running 1 int on a subset of files of a larger program.)

-Uname
Removes any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. The list of
reserved symbols is shown below:

operating system:
unix

hardware:
m68k

UNIX System varient:
_SYSV _SOURCE
_BSD _SOURCE
_AUX_SOURCE

-v Suppresses complaints about unused arguments in functions.

- x Does not report variables referred to by external declarations but
never used.

DESCRIPTION

2

1 int attempts to detect features of the C program files that are likely to be
bugs, nonportable, or wasteful. It also checks type usage more strictly than
the compilers. Features currently detected include unreachable statements,

November 1991

lint(l) lint(l)

loops not entered at the top, automatic variables declared and not used, and
logical expressions whose value is constant. Moreover, function usage is
checked to find functions that return values in some places and not in
others, functions that are called with varying numbers or types of
arguments, and functions whose values are not used or whose values are
used but not returned.

Arguments whose names end with . c are taken to be C source files.
Arguments whose names end with . ln are taken to be the result of an
earlier invocation of lint with the -o option used. The . ln files are
analogous to . o (object) files that are produced by the cc command when
given a . c file as input. Files with other suffixes are warned about and
ignored.

The 1 int command will take all the . c, . 1 n, and 11 i b- lx . 1 n
(specified by -lx) files and process them in command line order. By
default, 1 int appends the standard C 1 int library (11 i b-1 c . 1 n) to the
end of the list of files. However, if the -p option is used, the portable C
lint library (llib-port. ln) is appended instead. The second pass of
1 int checks this list of files for mutual compatibility.

Any number of lint options may be used, in any order, intermixed with
filename arguments. The -a, -b, -h, -u, -v, and -x options are used to
suppress certain kinds of complaints.

The -g and -0 options are ignored, but, by recognizing them, the behavior
of lint is closer to that of the cc(l) command. Other options are warned
about and ignored. The pre-processor symbol 1 int is defined to allow
certain questionable code to be altered or removed for 1 int. Therefore,
the symbol lint should be thought of as a reserved word for all code that
is planned to be checked by 1 int.

Certain conventional comments in the C source will change the behavior of
lint.

/*NOTREACHED*/
Stops comments about unreachable code at appropriate points. (This
comment is typically placed just after calls to functions like exi t(2).)

/*VARARGSn*/
Suppresses the usual checking for variable numbers of arguments in
the function declaration that follows it. The data types of the first n
arguments are checked; a missing n is assumed to be 0.

/*ARGSUSED*/
Turns on the -v option for the next function.

/*LINTLIBRARY*/
Shuts off (at the beginning of a file) complaints about unused

November 1991 3

lint(l) lint(l)

functions and function arguments in this file. This is equivalent to
using the -v and -x options.

1 int produces its first output on a per-source-file basis. Complaints
pertaining to included files are collected and printed after all source files
have been processed. Finally, information gathered from all input files is
collected and checked for consistency. At this point, if it is not clear
whether a complaint stems from a given source file or from one of its
included files, the source filename will be printed followed by a question
mark.

EXAMPLES
The command:

lint -b myfile.c

checks the consistency of the file my f i 1 e . c. The - b option indicates that
unreachable break statements are not to be checked. This option might
well be used on files that 1 ex generates.

LIMIT A TIO NS
exi t(2), longjmp(3C), and other functions that do not return are not
understood; this causes various lies.

FILES
/usr/bin/lint

Executable file
/usr/lib

Directory where the 1 int libraries specified by the - lx option must
exist

/usr/lib/lint[12]
File containing first and second passes

/usr/lib/llib-lc.ln
Declarations for C Library functions (binary format)

/usr/lib/llib-port.ln
File containing declarations for portable functions (binary format)

/usr/lib/llib-lm.l
File containing declarations for Math Library functions (binary
format)

/usr/tmp/*lint*
Temporary files

SEE ALSO

4

cc(l), cpp(l), make(l)

"lint Reference," inAIUX Programming wnguages and Tools, Volume
1

November 1991

ln(l)

NAME
1 n - makes links

SYNOPSIS
1 n [- s] file 1 [file2]

lnfile ... directory

ln -f directory] directory2

ARGUMENTS

ln(l)

- f Causes ln to make a hard link to an existing directory. Only the
superuser is permitted to use this option.

directory
Specifies the directory to which the file is linked.

directory]
Specifies the directory that will be hard linked to directory2.

directory2
Specifies the directory that will be hard linked to directory 1.

file Specifies the file that will be linked to the current directory
(directory).

file]
Specifies the file that will be symbolically linked to f ile2.

file2
Specifies the file that will be symbolically linked to file 1.

- s Causes ln to create symbolic links.

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its
size, all its protection information, and so forth) may have several links to
it.

There are two kinds of links: hard links and symbolic links. By default ln
makes hard links. A hard link to a file is indistinguishable from the original
directory entry; any changes to a file are effective, independent of the name
used to reference the file. Hard links may not span file systems and (unless
created with the - f option by the superuser) may not refer to directories.

A symbolic link contains the name of the file to which it is linked. The
referenced file is used when an open operation is performed on the link.
A stat on a symbolic link will return the linked-to file; an ls tat must
be done to obtain information about the link. The readl ink call may be
used to read the contents of a symbolic link. Symbolic links may span file
systems and may refer to directories.

November 1991

ln(l) ln(l)

The ln command may be invoked with one, two, or more than two
arguments. If given one argument, ln creates a link in the current
directory to file 1. The file named by file 1 must not already exist in the
current directory, or ln will exit with the message.file]: File exists.

Given two arguments, ln creates a link to an existing file.file] having the
namefile2. The argument.file2 may also be a directory in which to place
the link. If only the directory is specified, the link will be made to the last
component of file 1. If file 1 is not found, 1 n will so indicate and no link
will be created. If file2 already exists, it will not be overwritten.

Given more than two arguments, ln makes links to all the named files in
the named directory. The links made will have the same name as the files
being linked to.

Any files or directories located in directory 1 will also be found in
directory2. Moreover, new files created in either directory will appear in
the other.

FILES
/bin/ln

Executable file

SEE ALSO

2

cp(l), rnv(l), rrn(l)

link(2), stat(2), readlink(2), stat(2), syrnlink(2) inA/UX
Programmer's Reference

November 1991

login(1) login(l)

NAME
login - signs you on a terminal session

SYNOPSIS
login [name [env-var ...]]

ARGUMENTS
env-var

Specifies the environment variable you wish to add to the default
''environment.'' This option may take either the form xxx or
xxx=yyy. If this option is used without an equal sign, the variable is
placed in the environment as

Ln=xxx

where n is a number starting at 0 and is incremented each time a new
variable name is required. Variable definitions containing an = are
placed into the environment without modification. If they already
appear in the environment, then they replace the older value.

name
Specifies the name of the person who is logging in to the system.

DESCRIPTION
login is used at the beginning of each terminal session and allows you to
identify yourself to the system. It may be invoked as a command or by the
system when a connection is first established. Also, it is invoked by the
system when a previous user has terminated the initial shell by typing a
CONTROL-D to indicate an ''end-of-file''.

If login is invoked as a command, it must replace the initial command
interpreter. This is accomplished by typing

exec login

from the initial shell, if it is the Bourne shell, sh(l). For the C shell,
c sh(l), and the Korn shell, ksh(l), you may just type:

login [user]

The login command asks for your user name (if not supplied as an
argument), and, if appropriate, your password. Echoing is turned off (when
possible) during the typing of your password, so it will not appear on the
written record of the session.

At some installations, an option may be invoked that will require you to
enter a second dialup password. This will occur only for dialup
connections, and will be prompted by the message:

dialup password:

Both passwords are required for a successful login.

November 1991

login(1) login(1)

If you do not complete the login successfully within a certain period of
time (for example, one minute), you are likely to be disconnected silently.
Note that login does a sleep to settle the line and waits for a few
seconds before accepting your input. If it misses the first character of your
input, type it slower.

After a successful login, accounting files are updated, the procedure
/etc/profile is performed for users whose login shell is either sh or
ksh, and the message-of-the-day, if any, is printed. Then, the user ID, the
group ID, the working directory, and the command interpreter are
initialized, according to specifications found in the I etc /passwd file
entry for the user. If the command interpreter is sh, the file . profile, if
it exists, in the initial working directory is executed. To indicate that this
invocation of the command interpreter is the 1 og in shell, the name of the
interpreter is prefixed with a minus sign (-), (for example, - sh). If the last
field in the password file is empty, then the default command interpreter,
the Bourne shell (/bin I sh) is used. If the last field is *, then a chroot
is done to the directory named in the directory field of the entry. At that
point login is re-executed at the new level, which must have its own root
structure, including I etc I login and I etc /passwd.

The basic "environment" (see environ(5)) is initialized to

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL= /usr /rnai 1 /your-login-name
T Z =timezone-specification

The environment may be expanded or modified by supplying additional
arguments to login, either at execution time or when login requests
your login name. The login command will not change the variables
PATH and SHELL in order to prevent users from spawning secondary
shells with fewer security restrictions. Both login and get ty
understand simple single-character quoting conventions. Typing a
backslash in front of a character quotes it and allows the inclusion of such
things as spaces and tabs.

EXAMPLES

2

At the beginning of each terminal session, the following sort of message is
displayed on the screen

Apple Computer A/UX

login:

to which a user name is the appropriate response.

November 1991

login(l) login(l)

STATUS MESSAGES AND VALUES
Login incorrect

If the user name or the password cannot be matched.

No shell
cannot open password file
no directory

Consult a system administrator.

No utmp entry.
You must exec login from the

FILES

If you attempted to execute 1 og in as a command without using the
shell's exec internal command (sh(l) only) or from other than the
login shell (sh(l) and ksh(l)).

/bin/login
Executable file

/etc/utmp
Accounting file

/etc/wtmp
Accounting file

/etc/motd
File containing message-of-the-day entries

/etc/passwd
Password file

/etc/profile
Systemwide personal profile files for (sh(l) and ksh(l))

/etc/cshrc
System wide personal cs h startup file for (cs h(l))

$HOME/.profile
Personal profile file for (sh(l) and ksh(l))

$HOME/.login
Personal file for csh startup used at login time (csh(l))

$HOME/.cshrc
Personal csh startup file for (csh(l))

$HOME/.logout
Personal csh logout file used at logout time for (csh(l))

/usr/mail/name
Mailbox file for user name

SEE ALSO
csh(l), ksh(l), mail(l), newgrp(l), rlogin(lN), sh(l), su(l)

get ty(IM), ini t(IM) in AIUX System Administrator's Reference

November 1991 3

login(1) login(1)

4

passwd(4), profile(4), environ(5) inA/UX Programmer's
Reference

A/UX Essentials

AIUX Shells and Shell Programming

November 1991

logname(1) logname(1)

NAME
1 ogname - gets the login name

SYNOPSIS
logname

DESCRIPTION
1 ogname returns the contents of the environment variable $LOG NAME,
which is set when a user logs into the system.

EXAMPLES
The command:

logname

displays the $ LOGNAME of the user logged into the system on the current
port.

FILES
/bin/logname

Executable file
/etc/profile

File containing the user's login profile

SEE ALSO
env(l), login(l), printenv(l)

logname(3X), environ(5) in A/UX Programmer's Reference

November 1991

lookbib(1) lookbib(l)

NAME
lookbib - finds references in a bibliography

SYNOPSIS
lookbib [-n] database

ARGUMENTS
database

Specifies the database to be searched.

-n Turns off the prompt for instructions.

DESCRIPTION
lookbib uses an inverted index made by indxbib(l) to find sets of
bibliographic references. A bibliographic reference is a set of lines,
constituting fields of bibliographic information. Each field starts on a line
beginning with a %, followed by a key-letter, then a blank, and finally the
contents of the field, which may continue until the next line starting with % •

The lookbib command reads keywords typed after the> prompt on the
terminal and retrieves records containing all these keywords. If nothing
matches, nothing is returned except another > prompt.

The lookbib command will ask if you need instructions and will print
some brief information if you reply y.

It is possible to search multiple databases, as long as they have a common
index made by indxbib. In that case, only the first argument given to
indxbib is specified to lookbib.

If lookbib does not find the index files (the . i[abc] files), it looks for a
reference file with the same name as the argument, without the suffixes. It
creates a file with a . ig suffix, suitable for use with f grep. It then uses
this f grep file to find references. This method is simpler to use, but the
. i g file is slower to use than the . i [abc] files, and does not allow the use
of multiple reference files.

FILES
/usr/ucb/lookbib

Executable file
file. ia

Output file where file is the name of the index
file. ib

Output file where file is the name of the index
file. ic

Output file where file is the name of the index
file. ig

Output file where file is the name of the index

November 1991

lookbib(1) lookbib(1)

SEE ALSO
addbib(l), indxbib(l), ref er(l), rof fbib(l), sortbib(l)

November 1991 2

larder(l) larder(1)

NAME
larder - finds the ordering relation for an object library

SYNOPSIS
larder file ...

ARGUMENTS
file Specifies the object or library archive file.

DESCRIPTION
larder produces a global cross-reference, given a list of object modules
(. afiles), which can then be passed to tsart to produce a properly
ordered archive file. The input is one or more object or library archive files
(see ar(l)). The standard output is a list of pairs of object filenames,
meaning that the first file of the pair refers to external identifiers defined in
the second. The output may be processed by tsart to find an ordering of
a library suitable for one-pass access by 1 d .

Note: The link editor ld is capable of multiple passes over an
archive in the portable archive format (see ar) and does not require
that larder be used when building an archive.

Use of the larder command may, however, allow for a slightly more
efficient access of the archive during the link edit process.

EXAMPLES
The command:

ar er library 'larder *.a

builds a new library from existing . a files.

LIMITATIONS

tsart'

Object files whose names do not end with . a, even when contained in
library archives, are overlooked. Their global symbols and references are
attributed to some other file.

FILES
/bin/larder

Executable file
*symref

Executable file
*symdef

Executable file

SEE ALSO
ar(l), ld(l), tsart(l)

November 1991

lorder(l) lorder(l)

ar(4) inA/UX Programmer's Reference

November 1991 2

lp(l) lp(l)

NAME
lp - spools print requests to printers

SYNOPSIS
lp [-c] [-ddest] [-rn] [-nnumber] [-ooption] [-s] [-ttitle] [-w] [file] ...

ARGUMENTS
- c Makes copies of the files specified by files immediately after you enter

the lp command. Normally, the system doesn't copy files, but links
files whenever possible. If you don't include this option, be careful
not to remove any of the files being printed until all printing is
complete. Also note that without this option, any changes you make
to the files after you enter the 1 p command and before printing is
complete will appear in the printed output.

-ddest
Specifies the printer or class of printers to use when printing particular
jobs. If dest specifies a printer, then the system uses that specific
printer. If dest specifies a class of printers, then the system prints on
the first available printer that is a member of the class. Under certain
conditions (printer unavailability, insufficient file space, and so forth),
the system can not accept requests for specific destinations (see
accept(lM) and lpstat(l)). By default, the system uses dest
from the environment variable LPDEST (if it is set). Otherwise, lp
goes to the default destination (if one exists) for the system you are
using. Destination names vary between systems (see lpstat(l)).

file Specifies the file to be spooled.

-rn Sends mail by means of ma i 1 (1) after the files have been printed. By
default, the system sends no mail upon normal completion of the print
request.

-nnumber
Specifies the number of copies to be printed for particular jobs. The
default is 1.

-ooption
Specifies the printer-dependent or class-dependent options. You can
specify multiple options by using the key character - o more than
once. For more information about valid options, see ''Models'' in
lpadrnin(lM).

-s Suppresses messages from lp such as request id is id.

-ttitle
Specifies the title that prints on the banner page for particular jobs.

-w Writes a message on your terminal after the the system prints the files.
If you aren't logged on at the time the message is written, the system

November 1991

lp(l) lp(l)

sends mail instead.

DESCRIPTION
lp spools the named files (or standard input if it is used at the end of a
pipe) for printing.

If you don't include filenames, the lp command waits to receive text data
typed on the standard input followed by an end-of-file character. You can
also use a hyphen (-)on the command line (with or without filenames) to
represent the standard input, which could be a pipe rather than text typed at
the keyboard. (See the "Limitations" section later in this manual page.)
The lp command prints the files (including the standard input) in the same
order as that in which they appear on the command line.

The lp command associates a unique job identification number with each
request and displays that number as part of its status message (sent to the
standard output). You can use this ID to stop a job which is printing or is
scheduled to print (see cancel(!)).

LIMIT A TIO NS
Any files specified must be readable by the lp user account because
/usr /bin/ lp changes the effective user ID to lp. If the file
permissions assigned to files don't allow lp to read them, you must use a
pipe to direct the files to lp, as shown here. (Besides cat, other
frequently used printer-formatting utilities are pr and troff.)

cat files I lp

FILES
/usr/bin/lp

Executable file
/usr/spool/lp/*

Print job information files
SEE ALSO

cancel(!), enable(!), lpq(l), lpr(l), lpstat(l), mail(l)

accept(lM), lpadmin(lM), lpsched(IM) in A/UX System
Administrator's Reference

November 1991 2

lpq(l) lpq(l)

NAME
lpq - queries the print spooler for progress information

SYNOPSIS
lpq [+[sleep-interval]] [-1] [-Pprinter] Uobno] ... [user]. ..

ARGUMENTS
+[sleep-interval]

Displays the spool queue until the last job has printed. If desired, you
can replace sleep-interval with the number of seconds lpq should
sleep between scans of the queue.

job no
Limits the query to information about a specific job or several jobs.
See the "Examples" section later in this manual page.

-1 Prints additional information about the file or files that have been sent
to the print spooler as one print job. Normally, only as much
information as fits on one line is displayed. Job ordering depends on
the algorithm used to scan the spooling directory and is supposed to be
FIFO (First In First Out). The filenames for a job may be unavailable
when lpr is used as the last command in a pipeline, in which case the
file is identified as standard input.

-Pprinter

user

Limits the query to information about jobs that are destined for a
particular printer. If this option is not specified, the default line printer
(or the value of the PRINTER variable in the environment) is used.

Limits the query to information about jobs that belong to the user or
users specified.

DESCRIPTION
lpq responds to your queries about print jobs by examining particular files
and directories that are used by lpd. The lpd program normally runs
continuously in order to service print requests (see lpr(l)).

By running lpq without any arguments, you can obtain a report describing
all the print jobs currently in the queue.

For each print job that remains to be done, lpq reports the user's name, the
current rank in the queue, the names of files included in the job, the job
identifier, and the total size in bytes. You can also supply the job number
as an argument to lprm to remove a job before it is printed (see lprm(l)).

EXAMPLES
In the following processing request, a job-specific query is made to see the
status of job number 286.

November 1991

lpq(l) lpq(l)

% lpq 286
cashew is ready and printing
Rank Owner Job Files
active root 286 /etc/passwd
% I

STATUS MESSAGES AND VALUES

Total Size
742 bytes

Beyond the normal information reported by lpq regarding the status of
print jobs, certain error messages may also be provided.

If lpq warns that no daemon is present because of some malfunction, you
can use the lpc command to restart the printer daemon (see lpc(IM)).

The lpq program may also report that it is unable to open various files.

LIMITATIONS
Because of the dynamic nature of the information in the spooling directory,
lpq may not reliably report information concerning newly arriving or
newly dispatched print jobs.

Output formatting depends upon the line length of the terminal. The line
length can result in widely spaced columns.

FILES
/etc/printcap

File containing printer capabilities
/etc/termcap

File containing terminal capabilities
/usr/spool/*

Directory used by a variety of spooling utilities for configuration and
data files

/usr/spool/*/cf*
Control files specifying jobs

/usr/spool/*/lock
Printer lock files

SEE ALSO
lpr(l), lprrn(l)

lpc(IM), lpd(IM) in AIUX System Administrator's Reference

November 1991 2

lpr(l) lpr(l)

NAME
lpr - spools print requests to printers

SYNOPSIS
lpr [-#copies] [-C class] [-h] [-i [indent-cols]] [-J cover-title] [-1]
[-m] [-p] [- P printer] [-r] [- s] [-T title] [-wpage-width] [file] ...

ARGUMENTS
-#copies

Specifies the number of copies to be printed of each of the named
files.

-C class
Specifies a particular class of print job for routing to a particular class
of printers. For example,

lpr -C Postscript foo.c

causes the file f oo . c to be sent to a PostScript®-class printer.

file Specifies the name of the file to be sent to the printer.

- h Suppresses the printing of the burst page.

- i [indent-cols]
Specifies the number of columns each line is indented from the left
margin. If no argument is supplied, 8 space characters are printed
before each line.

-J cover-title
Specifies how the job is identified on the cover page that appears
before the print job. If this option is not specified, the name of the first
file is used.

-1 Causes lpr to use a filter that allows control characters to be printed
and suppresses page breaks.

-m Sends mail upon completion.

-p Causes lpr to use pr to format the files (equivalent to print).

-P printer
Specifies the name of the printer to which the job is sent.

- r Removes the file upon completion of spooling or upon completion of
printing (when used with the - s option).

- s Causes symbolic links to be created in the spooler directories to
conserve file-system space. If this option is not specified, files to be
printed are copied into the spooler directories. Be careful not to
modify or remove the files submitted for printing until they have
completed printing.

November 1991

lpr(l) lpr(l)

-T title
Specifies how the job is identified on the header portion of each page
of the print job. This option requires the use of the -p option, which
invokes pr; together these options operate like the -h option of the
pr command.

-w Specifies the page width in columns. This number is used by the pr
command. To invoke pr, you must also supply the -p option.
Together these options operate like the -w option of the pr command.

DESCRIPTION
lpr uses a spooling daemon to print the named files when facilities
become available. If no files appear, the standard input is assumed.

You can used the - P option to force output to a specific printer. Normally,
the default printer is used (which is site dependent), or the value of the
environment variable PRINTER is used.

EXAMPLES
To print three copies of the file f oo. c, followed by three copies of the file
bar. c, followed by three copies of more. c, enter

lpr -#3 foo.c bar.c more.c

To obtain three copies of the combined text of the same three files, enter

cat foo.c bar.c more.c I lpr -#3

LIMITATIONS
If you try to spool a file that is too large, it will be truncated.

The lpr command can not be used to print files containing binary codes.

STA TVS MESSAGES AND VALVES
Error messages will be produced if lpr finds binary files among the files to
be printed.

If a user other than root prints a file and spooling is disabled, lpr prints a
message saying so and does not put jobs in the queue.

If a connection to lpd on the local computer cannot be made, lpr prints a
message saying that the daemon cannot be started.

Diagnostics may be printed in the daemon's log file, regarding missing
spool files by lpd.

FILES
/etc/passwd

Personal identification file
/etc/printcap

Printer-capabilities database file

November 1991 2

lpr(1)

/usr /lib/lpd*
Files containing line printer daemons

/usr/spool/*
Directories used for spooling

/usr/spool/*/cf*
Daemon control files

/usr/spool/*/df*
Data files specified in cf* files

/usr/spool/*/tf*
Temporary copies of cf* files

SEE ALSO
lpq(l), lprrn(l), pr(l)

lpc(lM), lpd(lM) in AIUX System Administrator's Reference

syrnlink(2), printcap(4) inAIUX Programmer's Reference

lpr(l)

3 November 1991

lprrn(l) lprrn(l)

NAME
lprrn - removes jobs from the line printer spooling queue for a Berkeley
file system (4.2)

SYNOPSIS
lprrn [- Pprinter] [-] Uobno]... [user] ...

ARGUMENTS
Removes all jobs that a user owns. If the superuser employs this
option, the spool queue is emptied entirely. The owner is determined
by the user's login name and host name on the machine where the
lpr command was invoked.

jobno
Specifies the job number that is to be removed.

-Pprinter
Specifies the queue associated with a specific printer; otherwise the
default printer, or the value of the PRINTER variable in the
environment is used.

user
Specifies the name of the user who owns the job that is being
removed.

DESCRIPTION
lprrn removes a job, or jobs, from a printer spool queue. Since the
spooling directory is protected from users, using lprrn is normally the only
method by which a user may remove a job.

The lprrn command without any arguments deletes the currently active job
if it is owned by the user who invoked lprrn.

Specifying a user's name or list of users' names causes lprrn to attempt to
remove any queued jobs belonging to that user (or users). This form of
invoking lprrn is useful only to the super-user.

A user may remove an individual job from a queue by specifying its job
number. This number may be obtained from the lpq(l) program, for
example,

% lpq -1

ken : 1st
(standard input)
% lprrn 13

[job 013ucbarpa]
100 bytes

The lprrn command announces the names of any files it removes and is
silent if there are no jobs in the queue that match the request list.

November 1991

lprm(1) lprm(1)

The lprm command kills off an active daemon, if necessary, before
removing any spooling files. If a daemon is killed, a new one is
automatically restarted upon completion of file removals.

STATUS MESSAGES AND VALVES
A "Permission denied" is received if the user tries to remove files other
than his own.

LIMITATIONS
Since there are race conditions possible in the update of the lock file, the
currently active job may be incorrectly identified.

FILES
/etc/printcap

Printer characteristics file
/usr/spool/*

Spooling directories
/usr/spool/*/lock

Lock file used to obtain the process ID of the current daemon and the
job number of the currently active job

SEE ALSO
lpr(l), lpq(l)

lpd(lM) in A/UX System Administrator's Reference

2 November 1991

lpstat(l) lpstat(l)

NAME
1 p stat - prints Ip status information

SYNOPSIS
lpstat [-a[list]] [-c[list]] [-d] [-o[list]] [-p[list]] [-r] [-s] [-t]
[-u[list]] [-v[list]]

ARGUMENTS
-a[list]

Prints acceptance status (with respect to lp) of destinations for
requests. Replace list with a list of intermixed printer names and class
names.

- c [list]
Prints the class names and their members. Replace list with a list of
class names.

-d Prints the system default destination for lp.

-o[list]
Prints the status of output requests. Replace list with a list of
intermixed printer names, class names, and request IDs.

-p[list]
Prints the status of printers. Replace list with a list of printer names.

- r Prints the status of the Ip request scheduler.

- s Prints a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names and
their members, and a list of printers and their associated devices.

- t Prints all status information.

-u[list]
Prints status of output requests for users. Replace list with a list of
login names.

-v[list]
Prints the names of printers and the pathnames of the devices
associated with them. Replace list with a list of printer names.

DESCRIPTION
1 p stat prints information about the current status of the Ip line printer
system.

If no options are given, then lps tat prints the status of all requests made
to lp by the user. Any arguments that are not options are assumed to be
request IDs (as returned by lp). The lpstat command prints the status
of such requests.

November 1991

lpstat(l) lpstat(l)

Some of the options may be followed by an optional list that can be in one
of two forms: a list of items separated from one another by a comma, or a
list of items enclosed in double quotes and separated from one another by a
comma and/or one or more spaces. For example:

-u userl, user2, user3

The omission of a list following such options causes all information
relevant to the options to be printed, for example:

lpstat -o

prints the status of all output requests.

FILES
/usr/bin/lpstat

Executable file
/usr/spool/lp/*

Spooler files

SEE ALSO
enable(!), lp(l), lpq(l)

2 November 1991

ls(l) ls(l)

NAME
1 s - lists the contents of a directory

SYNOPSIS
ls [-a] [-b] [-c] [-C] [-d] [-F] [-g] [-i] [-1] [-L] [-rn] [-n] [-o]
[-p] [-q] [-r] [-R] [-s] [-t] [-u] [-x] [names]

ARGUMENTS
-a Lists all entries. Usually entries whose names begin with a period (.)

are not listed.

- b Forces printing of nongraphic characters to be in the octal \ ddd
notation.

-c Uses the time of the last modification of the i-node (file created, mode
changed, and so forth) for sorting (- t) or printing (- 1).

-C Specifies multicolumn output with entries sorted vertically.

-d Lists the directory name only, not its contents. This option is often
used with the -1 option to get the status of a directory. This option
does not apply if the a file is specified.

- F Puts a slash(/) after each filename if that file is a directory, an
asterisk (*) after each filename if that file is executable, and an (@)
after each filename if that file is a symbolic link.

-g Acts the same as the -1 option except that the owner is not printed.

- i Prints the i-number in the first column of the report, for each file.

-1 Lists in long format, giving mode, number of links, owner, group, size
in bytes, and time of last modification for each file (see below). If the
file is a special file, the size field will contain the major and minor
device numbers, instead of a size. If the file is a symbolic link, the
pathname of the linked-to file is printed preceded by - >.

- L Lists the file's or directory's (if it is a symbolic link) link references
rather than the link itself.

-rn Specifies stream output format.

-n Acts the same as the -1 option, except that the owner's user ID and
group's group ID numbers, rather than the associated character
strings, are printed.

names
Specifies the files or directories to be listed.

- o Acts the same as the - 1 option except that the group is not printed.

-p Puts a slash (I) after each filename if that file is a directory.

November 1991

ls(l) ls(l)

-q Forces printing of nongraphic characters in filenames as the character
(?).

- r Reverses the order of sort to get reverse alphabetic or oldest first, as
appropriate.

- R Recursively lists subdirectories encountered.

- s Gives size in 512-byte blocks, including indirect blocks, for each
entry.

-t Sorts by time modified (latest first), instead of by name.

-u Uses the time of the last access, instead of the last modification, for
sorting (with the -t option) or printing (with the -1 option).

-x Specifies multicolumn output with entries sorted horizontally, rather
than down the page.

DESCRIPTION

2

For each directory argument, 1 s lists the contents of the directory; for each
file argument, 1 s repeats the filename and any other information requested.
The output is sorted alphabetically by default. When no argument is given,
the current directory is listed. When several arguments are given, the
arguments are first sorted appropriately, but with file arguments appearing
before directory arguments and their contents.

There are three major listing formats. The default format is to list one
entry per line, the -c and -x options enable multicolumn formats, and the
-m option enables stream output format, in which files are listed across the
page, separated by commas. In order to determine output formats for the
-c, -x, and -m options, ls uses an environment variable, COLUMNS, to
determine the number of character positions available on one output line.
If this variable is not set, the terminf o database is used to determine the
number of columns, based on the environment variable TERM. If this
information cannot be obtained, 80 columns are assumed.

The mode printed under the -1 option consists of 10 characters that are
interpreted below. The first character can be one of the following:

d if the entry is a directory

b if the entry is a block special file

c if the entry is a character special file

1 if the entry is a symbolic link

p if the entry is a fifo (named pipe) special file

if the entry is an ordinary file

November 1991

ls (1) ls(l)

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set, the
three characters indicate permission to read, to write, and to execute the file
as a program, respectively. For a directory, "execute" permission is
interpreted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set­
group-ID mode; likewise, the user-execute permission character is given as
s if the file has set-user-ID mode. The last character of the mode
(normally x or -) is t if the I 000 (octal) bit of the mode is on; see
chrnod(l) for the meaning of this mode. The indications of set-ID and
1000 bits of the mode are capitalized (S and T, respectively) if the
corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

EXAMPLES
The command:

ls -1 /etc

will list all entries in I etc in long format, as, for example,

-rw-r--r- 1 root bin 115 Mar 17 1986 mtab

where the fields represent the file's permissions, number of links, owner,
group, size in bytes, date of last modification, and name, respectively.

LIMIT A TIO NS
Unprintable characters in filenames may confuse the columnar output
options.

FILES
/bin/ls

Executable file
/etc/passwd

File to get user IDs for 1 s -1 and 1 s -o
/etc/group

File to get group IDs for 1 s -1 and 1 s - g

November 1991 3

ls(l) ls(l)

/usr/lib/terminfo/*
Files to get terminal information

SEE ALSO
chown(l), chmod(l), f ind(l)

4 November 1991

rn4 (1) rn4 (1)

NAME
rn4 - processes macros for C and other languages

SYNOPSIS
rn4 [-Bint] [-e] [-Hint] [-s] [-Sint] [-Tint] [-Dname[=val]] [-Uname]
[file]. ..

ARGUMENTS
-Bint

Changes the size of the push-back and argument collection buffers
from the default of 4096.

- Dname [=val]
Defines name to val or to null in the absense of val.

-e Causes rn4 to operate interactively. Interrupts are ignored and the
output is unbuffered.

file Specifies the file to be processed. If this argument is not specified, or
if a dash (-) is used as the filename, the standard input is read.

-Hint
Changes the size of the symbol table hash array from the default of
199. The size should be prime.

-s Enables line sync output for the C preprocessor (# 1 ine ...).

-Sint
Changes the size of the call stack from the default of 100 slots.
Macros take 3 slots, and nonmacro arguments take 1.

-Tint
Changes the size of the token buffer from the default of 512 bytes.

-Uname
U ndefines name.

DESCRIPTION
rn4 is a macro processor intended as a front end for C and other languages.
Each of the argument files is processed in order. The processed text is
written on the standard output.

To be effective, the options must appear before any filenames and before
any -Dor -u options.

Macro calls have the form:

name(arg J ,arg2, . . . ,argn)

The right parenthesis, (, must immediately follow the name of the macro.
If the name of a defined macro is not followed by a (, it is deemed to be a
call of that macro with no arguments. Potential macro names consist of
alphabetic letters, digits, and underscore (_), where the first character is not

November 1991

m4(1) m4(1)

a digit.

Leading unquoted blanks, tabs, and newlines are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The
value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. If fewer arguments are supplied
than are in the macro definition, the trailing arguments are taken to be null.
Macro evaluation proceeds normally during the collection of the
arguments, and any commas or right parentheses that happen to turn up
within the value of a nested call are as effective as those in the original
input text. After the argument collection, the value of the macro is pushed
back onto the input stream and rescanned.

Built-in macros

2

The m4 program makes available the following built-in macros. They may
be redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define
Installs the second argument as the value of the macro whose name is
the first argument. Each occurrence of $n in the replacement text,
where n is a digit, is replaced by the nth argument. Argument 0 is the
name of the macro; missing arguments are replaced by the null string;
$# is replaced by the number of arguments; $ * is replaced by a list of
all the arguments separated by commas; $@ is like $ *, but each
argument is quoted (with the current quotes).

undef ine
Removes the definition of the macro named in the argument.

defn
Returns the quoted definition of the argument(s). This macro is useful
for renaming macros, especially built-in macros.

pushdef
Acts similarly to define, but also saves any previous definition.

popdef
Removes the current definition of the argument(s), exposing the
previous one, if any.

if def
Installs the second argument as its value, if the first argument is
defined; otherwise, install the third argument. If there is no third
argument, the value is null. The word unix is predefined on the
UNIX® system versions of m4.

November 1991

rn4 (1) rn4 (1)

shift
Returns all but the first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies the
effect of the extra scan that is subsequently performed.

changequote
Changes quote symbols to the first and second arguments. The
symbols may be up to five characters long. changequote without
arguments restores the original values, that is, '' ''.

change com
Changes left and right comment markers from the default # and
newline. With no arguments, the comment mechanism is effectively
disabled. With one argument, the left marker becomes the argument
and the right marker becomes newline. With two arguments, both
markers are affected. Comment markers may be up to five characters
long.

divert
Changes the current output stream to its (digit-string) argument. rn4
maintains 10 output streams, numbered 0-9. The final output is the
concatenation of the streams in numerical order; initially stream 0 is
the current stream. Output diverted to a stream other than 0 through 9
is discarded.

undivert
Causes immediate output of text from diversions named as arguments,
or all diversions if there is no argument. Text may be undiverted into
another diversion. Undiverting discards the diverted text.

divnurn
Returns the value of the current output stream.

dnl
Reads and discards characters up to and including the next newline.

if else
Provides three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If not, and if
there are more than four arguments, the process is repeated with
arguments 4, 5, 6, and 7. Otherwise, the value is either the fourth
string or, if it is not present, null.

incr
Returns the value of the argument incremented by 1. The value of the
argument is calculated by interpreting an initial digit-string as a
decimal number.

November 1991 3

m4(I) m4(I)

4

deer
Returns the value of the argument decremented by 1.

eval

len

Evaluates the argument as an arithmetic expression, using 32-bit
arithmetic. Operators include+,-, *, /,%,"(exponentiation), bitwise
&, I , ", and - as well as relationals and parentheses. Octal and
hexidecimal numbers may be specified as in C. The second argument
specifies the radix for the result; the default is 10. The third argument
may be used to specify the minimum number of digits in the result.

Returns the number of characters in the argument.

index
Returns the position in the first argument where the second argument
begins (zero-origin), or -1 if the second argument does not occur.

subs tr
Returns a substring of its first argument. The second argument is a
zero-origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

transl it
Transliterates the characters in the first argument from the set given by
the second argument to the set given by the third. No abbreviations
are permitted.

include
Returns the contents of the file named in the argument.

sinclude
Acts the same as inc 1 ude, except that nothing is returned if the file
is inaccessible.

syscmd
Executes the system command given in the first argument. No value
is returned.

sysval
Specifies the return code from the last call to sys cmd.

make temp
Fills in a string of XXXXX in the argument with the current process ID.

m4exit
Causes immediate exit from m4. Argument 1, if given, is the exit
code. The default is 0.

November 1991

m4 (1) m4(1)

m4wrap
Pushes back argument 1 at final EOF. An example is:
m4wrap ('cleanup () ').

errprint
Prints the argument on the diagnostic output file.

dumpdef
Prints current names and definitions for the named items, or for all
items if no arguments are given.

traceon
Turns on tracing for all macros including built-ins, with no arguments.
Otherwise, turns on tracing for named macros.

traceof f
Turns off tracing globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific calls
to traceof f.

EXAMPLES
The command:

m4 f ilel f ile2 > outputf ile

runs the m 4 macro processor on the files f i 1e1 and f i 1e2 and redirects
the output into output file.

FILES
/usr/bin/m4

Executable file

SEE ALSO
cc(l), cpp(l)

"m4 Reference," inAJUX Programming Languages and Tools, Volume 2

November 1991 5

m68k(l) m68k(l)

See machid(l)

November 1991

machid(1) machid(1)

NAME
m68k, pdpll, u3b, u3b2, u3b5, u3b15, vax - provide truth
values about processor type

SYNOPSIS
m68k

pdpll

u3b

u3b2

u3b5

u3b15

vax

DESCRIPTION
The following commands (corresponding to programs) will return a true
value (exit code of 0) if program currently runs on a processor that is
indicated by the command name.

m68k
True if program currently runs on a 680x0.

pdpll
True if program currently runs on a PDP-11/45 or PDP-11/70.

u3b
True if program currently runs on a 3B 20S.

u3b2
True if program currently runs on a 3B 2 computer.

u3b5
True if program currently runs on a 3B 5 computer.

u3b15
True if program currently runs on a 3B 15 computer.

vax
True if program currently runs on a V AX-11/750 or V AX-11/780.

The commands that do not apply will return a false (nonzero) value. These
commands are often used within make(l) makefiles and shell
procedures to increase portability.

FILES
/bin/m68k

Executable file
/bin/pdpll

Executable file

November 1991

machid(l)

/bin/u3b
Executable file

/bin/u3b2
Executable file

/bin/u3b5
Executable file

/bin/u3b15
Executable file

/bin/vax
Executable file

SEE ALSO
csh(l), ksh(l), make(l), sh(l), test(l), true(l)

2

machid(l)

November 1991

rnacref (1) rnacref (1)

NAME
rnacref - produces a cross-reference listing of macro files

SYNOPSIS
mac re f [- n] [- s] [- t] [- -] file ...

ARGUMENTS
Delimits the end of options.

file Specifies the macro file.

-n Causes one line to be printed for each reference to a symbol.

- s Causes symbol-use statistics to be printed.

- t Causes a macro table of contents to be printed.

DESCRIPTION
rnacref reads the named files (which are assumed to be
nroff(l)/troff(l) input) and produces a cross-reference listing of the
symbols in the input.

The options may be grouped behind one dash(-). The rnacref program
does not accept - as standard input.

The default output is a list of the symbols found in the input, each
accompanied by a list of all references to that symbol. The rnacref
command lists the symbols alphabetically in the leftmost column, with the
references following to the right. Each reference is given in the form:

[[(NMname)] Mname-] type lnum [#]

where the fields have the following meanings:

Mname
Specifies the name of the macro within which the reference occurs.
This field is missing if the reference occurs outside a macro. Any
names listed in the NMname part are macros within which Mname is
defined.

type Specifies the type associated, by context, with this occurrence of the
symbol. The types may be:

r request

rn macro

d diversion

s string

n number register

p parameter (for example, \$xis a parameter reference to x. Note
that parameters are never modified, and that the only valid

November 1991

macref (l) macref (1)

parameter symbol names are 1, 2, ... 9).

lnum
Specifies the line number on which the reference occurred.

Modifies the value of the symbol.

Generated names are listed under the artificial symbol name - sym.

FILES
/usr/bin/macref

Executable file

SEE ALSO
nrof f(l), troff(l)

2 November 1991

mactoiso(l) mactoiso(l)

NAME
mactoiso, isotomac - convert between Macintosh encoding and
International Standards Organization (ISO) encoding

SYNOPSIS
mactoiso [-c char] [file]

isotomac [-c char] [file]

ARGUMENTS
-c char

Specifies the use of a character other than the default (blank).

file Specifies a file from which input is to be read.

DESCRIPTION
mac to is o reads, from the file specified by the optional file argument, or
from standard input, characters encoded according to the Macintosh
character set, converts them to the ISO 8859-1 character-set-encoding
scheme, and writes them to standard output.

i sotomac reads characters from the ISO character set as input, converts
them to the Macintosh character set, and writes them to standard output.

Each character set contains characters that are not represented in the other
character set. By default, the is o t oma c and mac to is o commands
place a blank character in place of any character that is not represented in
the character set to which they are converting the file.

STATUS MESSAGES AND VALUES
The exit status is 0 upon successful completion, and 1 for a usage error.

SEE ALSO
charcvt(3C), iso(5) mac(5), inA!UX Programmer's Reference

November 1991

mail(l)

NAME
ma i 1 - send mail to users or read mail

SYNOPSIS
mail [-e] [-fjile] [-p] [-q] [-r] [-t] address ...

ARGUMENTS
address

Specifies the address where the mail is to be sent.

mail(l)

- e Causes mail not to be printed. An exit value of 0 is returned if the
user has mail; otherwise, an exit value of 1 is returned.

- fjile
Causes mail to use.file (e.g., mbox) instead of the default
''mailfile.''

-p Causes all mail to be printed without prompting for disposition.

-q Causes mai 1 to terminate after interrupts. Normally an interrupt only
causes the termination of the message being printed.

-r Causes messages to be printed in first-in, first-out order.

- t Causes the message to be preceded by all addresses the ma i 1 is sent
to. An address is usually a user name recognized by login(l). If an
address being sent mail is not recognized, or if mai 1 is interrupted
during input, the file dead. letter will be saved to allow editing
and resending. Note that this is regarded as a temporary file in that it
is recreated every time needed, erasing the previous contents of
dead. letter.

DESCRIPTION
mai 1 without arguments, prints a user's mail, message-by-message, in
last-in, first-out order. For each message, the user is prompted with a ? ,
and a line is read from the standard input to determine the disposition of the
message:

newline
Goes on to next message.

+ Acts the same as newline.

d Deletes the message and goes on to next message.

p Prints the message again.

Goes back to the previous message.

s [file] ...
Saves the message in the named file (mbox is default).

November 1991

mail (1) mai 1 (1)

w [file] ...
Saves the message, without its header, in the named file (mbox is
default).

m [address] ...
Mails the message to the named addresses (yourself is default).

q Puts undeleted mail back in the mailfile and stops.

EOT (CONTROL-d)
Acts the same as the q option.

x Puts all the mail back in the mailfile unchanged and stops.

!command
Escapes to the shell to perform command.

* Prints a command summary.

When address is named, mail takes the standard input up to an end-of-file
(or up to a line consisting of just a .) and adds it to each address's mailfile.
The message is preceded by the sender's name and a postmark. Lines that
look like postmarks in the message, (i.e., From ...) are preceded with a >.

To denote a recipient on a remote system, prefix address by the system
name and exclamation mark (see uucp(lC)). Everything after the first
exclamation mark in address is interpreted by the remote system. In
particular, if address contains additional exclamation marks, it can denote a
sequence of machines through which the message is to be sent on the way
to its ultimate destination. For example, specifying a! b ! cde as a
recipient's name causes the message to be sent to user b ! cde on system a.
System a will interpret that destination as a request to send the message to
user cde on system b. This might be useful, for instance, if the sending
system can access system a but not system b, and system a has access to
system b. mai 1 will not use uucp if the remote system is the local system
name (i.e., local system! user).

The mailfile may be manipulated in two ways to alter the function of
mai 1. The other permissions of the file may be read-write, read-only, or
neither read nor write to allow different levels of privacy. If changed to
other than the default, the file will be preserved even when empty to
perpetuate the desired permissions. The file may also contain the first line:

Forward to address

which causes all mail sent to the owner of the mailfile to be forwarded to
address. This is especially useful to forward all of a user's mail to one
machine in a multiple machine environment. In order for forwarding to
work properly, the mailfile should have mail as group ID, and the group
permission should be read-write.

November 1991 2

mail (1) mail (1)

When a user logs in, the presence of mail, if any, is indicated. Also,
notification is made if new mail arrives while using ma i 1.

EXAMPLES
The command:

mail cj

accepts whatever message is typed up to an EOF. The user c j will be
notified that he has mail the next time he logs in.

If you want to read mail that has been sent to you, simply type

mail

LIMITATIONS
Conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

FILES
/bin/mail

Executable file
/etc/passwd

File containing user addresses
/usr /mai 1 I user

File containing incoming mail for user; i.e., the mailfile
$HOME/mbox

File containing saved mail
$MAIL

File containing pathname of mailfile
/tmp/ma*

Temporary file
/usr/mail/*.lock

Lock file for mail directory
$HOME/dead.letter

Unmailable text file

SEE ALSO
biff(l), login(l), mailx(l), uucp(lC), write(l)

3 November 1991

mailx(l) mailx(l)

NAME
mai lx - enables you to send and receive messages electronically

SYNOPSIS
mailx [-d] [-e] [-f [filename]] [-F] [-h number] [-H] [-i] [-n]
[-N] [-r address] [-s subject] [-u user] [-U] [name]. ..

ARGUMENTS
-d Turns on debugging output; neither particularly interesting nor

recommended.

-e Tests for the presence of mail. The mai lx program prints nothing
and exits with a successful return code if there is mail to read.

- f [filename]
Read messages from.filename instead of /usr /mai 1 I login-name. If
no.filename is specified, the default is used, $HOME/mbox or $MBOX
is used. (See "Environment Variables.")

- F Records the message in a file named after the first recipient.
Overrides the record variable, if set. (See "Environment
Variables.'')

-h number
Specifies the number of network "hops" made so far. This is
provided for network software to avoid infinite delivery loops.

-H Prints the header summary only.

- i Ignores interrupts. See also ignore in "Environment Variables."

-n Does not initialize from the system default
/usr/lib/mailx/mailx.rc.

- N Does not print the initial header summary.

name
Specifies the login name of the user you wish to send mail to.

The name specification can take several forms: login names, shell
commands, or alias groups. Login names may alternately be any
network address, including mixed network addressing. If a name
replacement begins with a pipe symbol (I), the remainder of the name
must be a shell command through which the message can be routed.
This provides an automatic interface with any program that reads the
standard input. For example, I lp can be specified as one of the
destination names so that the outgoing mail message is also printed.
Alias groups are set by the a[lias] command (see "Commands," later
in this section). The alias command establishes lists of recipients of
any type.

November 1991

mailx(l) mailx(l)

-r address
Passes address to network delivery software. All tilde commands are
disabled.

-s subject
Sets the Subject header field to subject.

-u user
Reads any incoming mail for a user with the specified login name.
This is only effective if the mailbox file associated with the user
account is not read-protected.

-U Converts uucp style addresses to internet standards. Overrides the
conv environment variable.

DESCRIPTION

2

mai lx provides a flexible environment for sending and receiving
messages electronically. To select a send or receive operating mode,
mai lx examines its command-line arguments. Any arguments supplied
that are not command options select a send mode. In send mode, each name
argument is interpreted as a mail destination (recipient). If no name
arguments are supplied, mai lx selects read-incoming-mail mode. The
incoming mail messages are read from a mailbox file (see the - f option).

When reading mail, mai lx provides commands to facilitate saving,
deleting, and responding to messages. When sending mail, mailx allows
editing, reviewing, and other modifications of the message as it is entered.

In send mode, you are expected to continue typing in lines once the
command line is accepted. Each line you type is treated as a portion of the
message you are sending. To specify the end of a mail message, type an
end-of-file character, or enter a single period at the start of a new line.

The mail messages sent by you become incoming mail for the specified
recipients. Incoming mail messages are stored in a standard file for each
user, called the system mailbox for that user, usually named
/usr /mai 1 I login-name. (You may alter this default by using the - f
option, as shown later.) When a mailx command is specified to read
messages, the mailbox is the default place ma i 1 x expects to find them. As
messages are read, they are usually marked to be moved to a secondary file
for longer-term storage. This secondary file is named mbox and is
normally located in the user's home directory (see "Environment
Variables," later, for a description of this file). Messages remain in this
file until you remove them using an A/UX provision other than one of the
mail commands (such as the rm command or an editor such as
TextEditor).

November 1991

mailx(l) mailx(l)

When reading mail, mailx expects you to enter mail-handling commands
in response to the command prompt (normally the ? character). A
summary of the incoming mail messages is displayed before the command
prompt. This ''header'' summary can be redisplayed at any time using the
appropriate (h) command.

When sending mail, mai lx is in input mode. In input mode, the characters
you type are treated as part of the outgoing message, unless you force
mailx to treat subsequent text as a command by typing the escape
character. If no subject is specified on the command line, a prompt for the
subject is printed. As the message is typed, mai lx will read the message
and store it in a temporary file. Commands may be entered by beginning a
line with the escape character (tilde C) by default) followed by a single
command letter and optional arguments. See ''Tilde Escapes'' later in this
section, for a summary of these commands.

At any time, the behavior of mai lx is governed by a set of environment
variables. These are flags and valued parameters that are set and cleared
via the se[t] and uns[et] commands. See "Environment Variables,"
later, for a summary of these parameters.

At startup time, mailx reads commands from a system-wide file
(I us r I 1 i b I ma i 1 x I ma i 1 x . r c) to initialize certain parameters, then
from a private startup file ($HOME I . mai lrc) for personalized variables.
Most regular commands are legal inside startup files, the most common use
being to set up initial display options and alias lists. The following
commands are not legal in the startup file: ! , C[opy], e[dit],
fo[llowup], F[ollowup], ho[ld], m[ail], pre[serve], r[eply],
R[eply], sh[ell], and v[isual]. Any errors in the startup file cause the
remaining lines in the file to be ignored.

Command Interpretation
If you press RETURN without an accompanying command while in
command mode, the first incoming mail message is displayed. Thereafter
(or any time after any message has been displayed), pressing RETURN with
no accompanying command displays the next message.

Each message is assigned a sequential number, which makes it possible to
visit messages in any order, not just newest-to-oldest order. At any time,
mai lx keeps track of the "current" message, which is the message most
recently displayed. In a ''message header'' report (see the h command) the
current message is preceded by a > symbol in the one-line-per-message
summary.

When you do not supply a message number with those interactive
commands that can accept a msglist argument, such commands operate on
the current message.

November 1991 3

mailx(l) mailx(l)

A msglist is one or more message specifications separated by spaces. A
message specification may take any of the forms shown in the following
list. (Note that the command context affects whether the message
specification you supply for msglist can be honored or not.)

number

$

*
n-m

user

Specifies the message number.

Specifies the current message.

Specifies the first undeleted message.

Specifies the last message.

Specifies all messages.

Specifies an inclusive range of message numbers.

Specifies all messages from user.

I string
Specifies all messages with string in the subject line (case ignored).

:char
Specifies all messages of type char, where char is one of the
following:

d Specifies all deleted messages.

n Specifies all new messages.

o Specifies all old messages.

r Specifies all previously read messages.

u Specifies all previously unread messages.

The overall format of the commands is shown here:

command [msglist] [arguments]

The commands and their functions are described in the following
subsection.

Other arguments are usually arbitrary strings whose usage depends on the
command involved. Filenames, where expected, are expanded via the
normal shell conventions (see csh(l)). Special characters are recognized
by certain commands and are documented with the commands later.

Commands
The following is a complete list of mailx commands:

! shell-command
Escapes to the shell. (See SHELL under ''Environment Variables.'')

4 November 1991

rnailx(l) rnailx(l)

comment
Specifies a comment. This may be useful in . rnai lrc files.

+ Displays the next message (the same as then command with no
arguments).

Displays the previous message.

Prints the current message number.

? Prints a summary of commands.

a[lias] alias name .. .
g[roup] alias name .. .

Declares an a[lias] or g[roup] for the given names. The names
will be substituted when alias is used as a recipient. Useful in the
.rnailrc file.

al t[ernates] name ...
Declares a list of alternate names for your login. When responding to
a message, these names are removed from the list of recipients for the
response. With no arguments, alt [erna t es] prints the current list
of alternate names. (See also allnet under "Environment
Variables.'')

cd [directory]
ch[dir] [directory]

Changes directory. If directory is not specified, $HOME is used.

c [opy] [filename]
c[opy] [msglist] filename

Copies messages to the file without marking the messages as saved.
Otherwise equivalent to the s[ave] command.

C[opy] [msglist]
Saves the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the S[ave] command.

d[elete] [msglist]
Deletes messages from the mailbox. If autoprint is set, the next
message after the last one deleted is printed. (See ''Environment
Variables.") Otherwise, the next message after the last one deleted is
made the current message, but it is not automatically displayed. (So
without autoprint, after you use the delete command then press
RETURN with no accompanying command, rnailx attempts to display
the second message beyond the deleted message.)

di[scard] [header-file]

November 1991 5

mailx(l) mailx(l)

6

ig[nore] [header-file]
Suppresses printing of (discards or ignores) the specified header fields
when displaying messages on the screen. Examples of header fields to
ignore are status and cc. The fields are included when the
message is saved. The P[rint] and T[ype] commands override this
command.

dp[msglist]
dt[msglist]

Deletes the specified messages from the mailbox and prints the next
message after the last one deleted. Roughly equivalent to a d[elete]
command followed by a p[rint] command.

ec[ho] string ...
Echos the given strings (like echo(l)).

e[di t] [msglist]
Edits the given messages. The messages are placed in a temporary file
and the EDITOR variable is used to get the name of the editor (See
"Environment Variables.") Default editor is ed(l).

ex[i t]
x[it]

Exits from mai lx, without changing the mailbox. No messages are
saved in the mbox (see also q[uit]) .

f i [le] f.filename]
fold[er] [filename]

Quits the current file of messages and read-in the specified file
(folder). Several special characters are recognized when used as
filenames, with the following substitutions:

% the current mailbox.

%user
the mailbox for user.

the previous file.

& the current mbox.

Default file is the current mailbox.

folders
Prints the names of the files in the directory set by the folder
variable. (See ''Environment Variables.'')

fo[llowup] [message]
Responds to (follows up on) a message, recording the response in a
file whose name is derived from the author of the message. Overrides
the record variable, if set. See also the F[ol lowup], S[ave], and

November 1991

mailx(l) mailx(l)

C[opy] commands and out folder under "Environment
Variables.''

F[ollowup] [msglist]
Responds to (follows up on) the first message in the msglist, sending
the message to the author of each message in the msglist. The subject
line is taken from the first message and the response is recorded in a
file whose name is derived from the author of the first message. See
also the fo[llowup], S[ave], and C[opy] commands and
out folder under "Environment Variables."

f [rom] [msglist]
Prints the header summary(' 'from'' portion) for the specified
messages.

g[roup]alias name .. .
a[lias]alias name .. .

Declares an a[lias] or g[roup] for the given names. The names
will be substituted when alias is used as a recipient. Useful in the
.mailrc file.

h[eaders] [message]
Prints the page of headers which includes the message specified. The
screen variable sets the number of headers per page. (See
"Environment Variables.") See also the z command.

hel[p]
Prints a summary (help list) of commands.

ho[ld] [msglist]
pre[serve] [msglist]

Holds (preserves) the specified messages in the mailbox.

i[f] s I r
mail-commands
el[se]
mail-commands
en[dif]

Conditional executions, where s will execute following
mail-commands, up to an el[se] or en[dif], ifthe program is in
send mode (that is, not receiving or reading mail), and r causes the
mail-commands to be executed only in receive mode. Useful in the
.mailrc file.

ig[nore] header-file .. .
di[scard] header-file .. .

Suppresses printing of (ignores or discards) the specified header fields
when displaying messages on the screen. Examples of header fields to
ignore are status and cc. All fields are included when the message

November 1991 7

mailx(l) mailx(l)

8

is saved. The P[rint] and T[ype] commands override this
command.

l[ist]
Prints (lists) all commands available. No explanation is given.

m[ai l] name ...
Mails a message to the specified users.

mb[ox] [msglist]
Arranges for the given messages to end up in the standard mbox save
file when mai lx terminates normally. See mbox under
''Environment Variables'' for a description of this file. See also the
ex[i t] and q[ui t] commands.

n[ext] [message]
Displays the next message matching message. A msglist may be
specified, but in this case, the first valid message in the list is the only
one used. This is useful for jumping to the next message from a
specific user, since the name would be taken as a command in the
absence of a real command. See the discussion of msglists, preceding,
for a description of possible message specifications.

pi[pe] [msglist] [shell-command]
I [msglist] [shell-command]

Pipes the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current
message is piped through the command specified by the value of the
cmd variable. If the page variable is set, a formfeed character is
inserted after each message. (See "Environment Variables.")

pre[serve] [msglist]
ho[ld] [msglist]

Preserves (holds) the specified messages in the mailbox.

P[rint] [msglist]
T[ype] [msglist]

Prints (types) the specified messages on the screen, including all
header fields. Overrides suppression of fields by the ig[nore]
command.

p[rint] [msglist]
t[ype] [msglist]

Prints (types) the specified messages. If crt is set, the messages
longer than the number of lines specified by the crt variable are
paged through the command specified by the PAGER variable. The
default command is pg(l). (See "Environment Variables.")

November 1991

rnailx(l) rnailx(l)

q[uit]
Exits (quits) from rnailx, storing messages that were read in rnbox
and unread messages in the mailbox. Messages that have been saved
explicitly in a file are deleted.

R[eply] [msglist]
R[es pond] [msglist]

Responds to the author of each message in the msglist. The subject
line is taken from the first message. If record is set to a filename,
the response is saved at the end of that file. (See ''Environment
Variables.'')

r[eply] [message]
r[espond] [message]

Replies to the specified message, including all other recipients of the
message. If record is set to a filename, the response is saved at the
end of that file. (See "Environment Variables.")

S[ave] [msglist]
Saves the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
C[opy], fo[llowup], and F[ollowup] commands and
out folder under "Environment Variables."

s[ave] [filename]
s[ave] [msglist] filename

Appends the specified messages to the end of the given file. The file is
created if it does not exist. The message is deleted from the mailbox
when rnailx terminates unless keepsave is set. (See also
"Environment Variables" and the ex[it] and q[uit] commands.)
rnbox is the default filename.

se[t]
se[t] name
se[t] name=string
se[t] name=number

Defines (sets) a variable called name. The variable may be given a
null, string, or numeric value. s e [t] by itself prints all defined
variables and their values. See ''Environment Variables'' for detailed
descriptions of the rnai lx variables.

sh[ell]
Invokes an interactive shell. (See also SHELL under ''Environment
Variables.'')

si[ze] [msglist]
Prints the size in characters of the specified messages.

November 1991 9

mailx(l) mailx(l)

10

so[urce] filename
Reads (sources) commands from the given file and returns to
command mode.

to[p] [msglist]
Prints the top few lines of the specified messages. If the topl ines
variable is set, it is taken as the number of lines to print. (See
''Environment Variables.'') The default is 5.

tou[ch] [msglist]
Touches the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox upon normal
termination. See ex[i t] and q[ui t].

T[ype] [msglist]
P[rint] [msglist]

Prints (types) the specified messages on the screen, including all
header fields. Overrides suppression of fields by the ig[nore]
command.

t[ype] [msglist]
p[rint] [msglist]

Prints (types) the specified messages. If crt is set, the messages
longer than the number of lines specified by the crt variable are
paged through the command specified by the PAGER variable. The
default command is pg(l). (See "Environment Variables.")

u[ndelete] [msglist]
Restores (undeletes) the specified deleted messages. Will restore only
those messages deleted in the current mail session. If autoprint is
set, the last message of those restored is printed. (See ''Environment
Variables.'')

uns[et] name ...
Causes the specified variables to be erased (unset). If the variable was
imported from the execution environment (i.e., a shell variable) then it
cannot be erased.

ve[rsion]
Prints the current version and release date.

v[i sual] [msglist]
Edits the given messages with a (visual) screen editor. The messages
are placed in a temporary file and the VISUAL variable is used to get
the name of the editor. (See ''Environment Variables.'')

w[r i te] [msglist] filename
Writes the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the s[ave] command.

November 1991

rnailx(l) rnailx(l)

x[i t]
ex[i t]

Exits from rnai lx, without changing the mailbox. No messages are
saved in the rnbox (see also q[ui t]).

z[+I -]
Scrolls the header display forward or backward one screenful. The
number of headers displayed is set by the screen variable. (See
''Environment Variables.'')

Tilde escapes
The following commands may be entered only from input mode, by
beginning a line with the escape character (tilde C) by default). See
escape under "Environment Variables" for changing this special
character.

- ! shell-command
Escapes to the shell.

Simulates end-of-file (terminates message input).

- : mail-command
- _mail-command

Performs the command-level request. Valid only when sending a
message while reading mail.

- ? Prints a summary of tilde escapes.

- A Inserts the autograph string Sign into the message. (See
"Environment Variables.")

a Inserts the autograph string sign into the message. (See
"Environment Variables.")

-b name ...
Adds the names to the blind carbon copy (be c) list.

c name ...
Adds the names to the carbon copy (cc) list.

-d Reads in the dead. letter file. See DEAD under "Environment
Variables'' for a description of this file.

e Invokes the editor on the partial message. See also EDITOR under
"Environment Variables."

- f [msglist]
Forwards the specified messages. The messages are inserted into the
message, without alteration.

-h Prompts for Subject line and To, Cc, and bee lists. If the field is
displayed with an initial value, it may be edited as if you had just

November 1991 11

mailx(l) mailx(l)

typed it.

- i string
Inserts the value of the named variable into the text of the message.
For example, - A is equivalent to - i Sign.

m [msglist]
Inserts the specified messages into the letter, shifting the new text to
the right one tab stop. Valid only when sending a message while
reading mail.

p Prints the message being entered.

q Quits from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead. letter.
(See DEAD "Environment Variables" for a description of this file.)

-r filename
- < filename

< ! shell-command
Reads in the specified file. If the argument begins with an
exclamation point (!), the rest of the string is taken as an arbitrary
shell command and is executed, with the standard output inserted into
the message.

s string ...
Sets the subject line to string.

-t name ...
Adds the given name to the To list.

v Invokes a preferred (visual) screen editor on the partial message. See
also VISUAL under ''Environment Variables.''

-w filename
Writes the partial message onto the given file without the header.

x Exits as with - q except the message is not saved in the DEAD file.

- I shell-command
Pipes the body of the message through the given shell-command. If
the shell-command returns a successful exit status, the output of the
command replaces the message.

Environment variables

12

The following are environment variables taken from the execution
environment and cannot be altered within mailx.

HOME= directory
Specifies the user's base of operations.

November 1991

rnailx(l) rnailx(l)

MAILRC= filename
Specifies the name of the startup file. The default is
$HOME/ .rnailrc.

The following variables are internal rnai lx variables. They may be
imported from the execution environment or set via the se[t] command at
any time. The uns[et] command may be used to erase variables.

allnet
Specifies all network names whose last component (login name)
matches are treated as identical. This causes the msglist message
specifications to behave similarly. The default is noallnet. See
also the al t[ernates] command and the rnetoo variable.

append
Appends messages to the end of rnbox file instead of at the top of
rnbox, upon termination. The default is noappend (i.e., by default
rnailx saves messages at the top of rnbox on exit).

askcc
Prompts for the cc list after message is entered. The default is
noaskcc.

asksub
Prompts for subject if it is not specified on the command line with the
- s option. This option is enabled by default.

autoprint
Enables automatic printing of messages after d[elete] and
u[ndelete] commands. The default is noautoprint.

bang
Enables the special-casing of exclamation points (!) in shell escape
command lines, as in vi(l). The default is nobang.

cmd=shell-command
Sets the default command for the pi[pe] command. There is no
default value.

conv=conversion
Converts uucp addresses to the specified address style. The only
valid conversion now is internet, which requires a mail delivery
program conforming to the RFC822 standard for electronic mail
addressing. Conversion is disabled by default. See also s endrna i 1
and the - U option.

crt=number
Pipes messages having more than number lines through the command
specified by the value of the PAGER variable (pg(l) by default). This
option is disabled by default.

November 1991 13

mailx(l) mailx(l)

14

DEAD=.filename
Specifies the name of the file in which to save partial letters in case of
untimely interrupt or delivery errors. The default is
$HOME/dead.letter.

debug

dot

Enables verbose diagnostics for debugging. Messages are not
delivered. The default is node bug.

Takes a period on a line by itself during input from a terminal as end­
of-file. The default is nodot.

ED I TOR=shell-command
Specifies the command to run when the e[di t] or - e command is
used. The default is ed(1).

escape=c
Substitutes c for the - escape character.

f older=directory
Specifies the directory for saving standard mail files. User-specified
filenames beginning with a plus (+) are expanded by preceding the
filename with this directory name to obtain the real filename. If
directory does not start with a slash(/), $HOME is prefixed to it. In
order to use the plus (+) construct on a ma i 1 x command line,
folder must be an exported sh environment variable. There is no
default for the folder variable. See also out folder, later.

header
Enables printing of the header summary when entering mai lx. This
command is enabled by default.

hold
Preserves all messages that are read in the mailbox instead of putting
them in the standard mbox save file. The default is nohold.

ignore
Ignores interrupts while entering messages. Handy for noisy dial-up
lines. The default is noignore.

ignoreeof
Ignores end-of-file during message input. Input must be terminated by
a period (.) on a line by itself or by the - . command. The default is
noignoreeof. See also dot, above.

keep
Truncates the mailbox to zero length instead of removing it, when the
mailbox is empty. The option is disabled by default.

November 1991

rnailx(l) rnailx(l)

keepsave
Keeps messages that have been saved in other files in the mailbox
instead of deleting them. The default is nokeepsave.

MBOX=filename
The name of the file in which to save messages that have been read.
The x[i t] command overrides this function, as does saving the
message explicitly in another file. The default is $HOME/rnbox.

me too
Does not delete your login from the list, if your login appears as a
recipient. The default is nornetoo.

LI STER=shell-command
Specifies the command (and flag options) to use when listing the
contents of the folder directory. The default is ls(l).

onehop
Disables alteration of the recipients' addresses, improving efficiency
in a network where all machines can send directly to all other
machines (i.e., one hop away). When responding to a message that
was originally sent to several recipients, the other recipient addresses
normally are forced to be relative to the originating author's machine
for the response.

out folder
Causes the files used to record outgoing messages to be located in the
directory specified by the folder variable, unless the pathname is
absolute. The default is nooutfolder. See folder above and the
S[ave], C[opy], fo[llowup], and F[ollowup] commands.

page
Inserts a formfeed after each message sent through the pipe. This
option is used with the pi[pe] command. The default is nopage.

PAG ER=shell-command
Specifies the command to use as a filter for paginating output. This
can also be used to specify the flag options to be used. The default is
pg(l).

prompt =string
Sets the command mode prompt to string. The default is ? .

quiet
Refrains from printing the opening message and version when
entering rnailx. The default is noquiet.

record=filename
Records all outgoing mail infilename. This option is disabled by
default. See also out folder, above.

November 1991 15

rnailx(l) rnailx(l)

save
Enables the saving of messages in dead. letter on interrupt or
delivery error. See DEAD for a description of this file. This option is
enabled by default.

screen=number
Sets the number of lines in a screenful of headers for the h[eaders]
command.

s endrna i 1 =shell-command
Alternates command for delivering messages. The default is
rnai 1(1).

sendwait
Waits for background mailer to finish before returning. The default is
nosendwai t.

SHELL =shell-command
Specifies the name of a preferred command interpreter. The default is
sh(l).

showto
Prints the recipient's name instead of the author's name, when
displaying the header summary and the message is from you.

s i gn=string
Specifies the variable inserted into the text of a message when the - a
(autograph) command is given. This option has no default (see also
- i (in "Tilde Escapes")).

Sign=string
Specifies the variable inserted into the text of a message when the - A
command is given. This option has no default (see also - i ("Tilde
Escapes'')).

toplines=number
Specifies the number of lines of header to print with the to (top)
command. The default is 5.

VI SUAL=shell-command
Specifies the name of a preferred screen editor. The default is vi(l).

LIMITATIONS

16

Where shell-command is shown as valid, arguments are not always
allowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot be
unset (uns[et]).

November 1991

mailx(l) mailx(l)

The full internet addressing is not fully supported by mailx. The new
standards need some time to settle down.

Attempts to send a message having a line consisting only of a . are treated
as the end of the message by mai 1(1) (the standard mail delivery
program).

FILES
/usr/bin/mailx

Executable file
/usr/lib/mailx

Executable file
$HOME/.mailrc

Personal startup file
$HOME/mbox

Secondary storage file
/usr/mail/*

Post office directory
/usr/lib/mailx/mailx.help*

Help message files
/usr/lib/mailx/mailx.rc

Global startup file
/tmp/R[emqsx]*

Temporary files

SEE ALSO
biff(l), csh(l), ksh(l), ls(l), mail(l), pg(l), sh(l)

A/UX Essentials

November 1991 17

mailx(l) mailx(l)

18 November 1991

make(1) make(1)

NAME
make - maintains, updates, and regenerates groups of files

SYNOPSIS
make [-a] [-b] [-B] [-ddigits] [-e] [-f description-file] [-g] [-G] [-i]
[-k] [-K] [-M] [-n] [-p] [-P] [-q] [-r] [-s] [-t] [-u] [-V] [target]. ..

ARGUMENTS
- a Updates all targets as if they were all out-of-date. This option is

useful for completely rebuilding all files.

-b Uses compatibility mode for old description files. This mode is on by
default.

- B Turns off compatibility mode.

-ddigits
Specifies debug mode. If you specify this option without a digits
argument, full debug mode is invoked. If you specify this option with
a single digit, the specified debug subset is invoked; this option
invokes each specified subset. Currently, subsets 0 and 1 are
implemented.

- e Causes environment variables to override macro definitions within the
description file.

- f description-file
Uses the description file specified by description-file. A description
file of - (hyphen) denotes the standard input.

-g Turns on additional capabilities to automatically check-out Source
Code Control System (SCCS) files. See "SCCS File Handling" in the
"Description" section, later in this manual page.

-G Enables the Dynamic Include File Dependency Generation (DIFDG).
You can also enable DIFDG by defining the variable
MAKEDIFDGSUFFIXES as a list of legal suffixes for the source files
to be searched.

- i Ignores any error code that might be returned by a shell command.
This mode can also be entered if the target . IGNORE: appears in the
description file. (See "Built-in Targets" in the "Description"
section, later in this manual page.)

- k Causes make to abandon work on the current target, but continues to
process other targets that do not depend on the abandoned target, if a
shell command returns a nonzero status.

- K Turns off the - k option. This option is on by default. This option is
most often used in a description file that invokes make, which is a
member of a multilevel make hierarchy, and that is invoked by a top-

November 1991

make (1) make (1)

level make command with the - k option.

- M Stores the dependency map for all object files in a file. The default
name for this file is . _Make_S tat e. (You can change the default
name by changing the value in the MAKEDEPFILE variable to the
desired name.) You can also enable this option by defining the
variable MAKEDEPFILE as the name of the file in which you want to
store the map.

-n Prints the commands in the description file as they would be executed,
but does not actually execute them. Even lines beginning with an @

(at sign) are printed. (See "Targets and Dependency Statements" in
the "Description" section, later in this manual page.) However, if a
command line has the string $ (MAKE) in it, the line is always
executed. (See discussion of the $MAKEFLAGS macro in
"Environment Variables and Macros," in the "Description" section.)

-p Prints out the built-in rules of make, including a complete set of
macro definitions.

-P Searches for Pre and Post files in the directory /usr/lib. (See
"MakeFile Preprocesing and Postprocessing" in the "Description"
section.) For example, for a description file named x. mk, make will
search for and read /usr /lib/x .mkPre and
/usr/lib/x.mkPost.

-q Specifies a question. The make command returns a zero or a nonzero
status code depending on whether or not the target file is up-to-date.

- r Causes make not to use its built-in rules. To do useful work, this
option must be accompanied by an appropriate description file.

- s Specifies silent mode. Does not print command lines before executing
them. This mode is also entered if the target . SI LENT : appears at
any place in the description file.

-t Touches the target files (causing them to be up-to-date) without
executing any commands.

target
Specifies the program to be run.

-u Looks for makecornrn and Makecornrn files in the user's home
directory, as specified by the $HOME environment variable, and in the
current directory. The search order is $HOME I make c ornrn,
$HOME/Makecornrn, . /makecornrn, and . /Makecornrn. At most,
one file from each directory is read by make. These files are read
before any description files and can be used to define macros and
rules.

2 November 1991

make(l) make(l)

-V Displays the current version of make.

DESCRIPTION
make is used to maintain, update, and regenerate groups of files. The
make program was designed to manage the systematic regeneration of
programs and is typically used for, but is not limited to, that purpose.

The actions of make are governed by a set of built-in rules. You can
supplement or replace these rules by providing an appropriate description­
file.

Suffix List and Built-in Rules
The make command uses a suffix list and a set of built-in rules to
determine how to regenerate a file. The suffix list and the built-in rules are
based on the file-naming requirements of the various software generation
tools in the A/UX environment. For example, a file whose suffix is . s is
typically an assembly-language program that is processed by the as
command. A file whose suffix is . c is typically a C program that is
processed by the cc command.

For example, if make is requested to regenerate a file called x. o, make
examines the name of each file in the current directory and looks for all
files that have a base name of x and a suffix. In this case, make finds the
file x. c and then extracts and saves the suffix, . c. make then prepends
the suffix to each member of the default suffix list, one at a time, and
attempts to match the resulting string against each built-in rule, from the
first to the last. If no match is found, make prepends the suffix to the next
element in the suffix list. If no match is ever found, make concludes that it
does not know how to regenerate the requested file. When a match is
found, make executes the commands that are associated with the matched
rule. In this case, the string . c. o matches the . c. o built-in rule. For the
. c . o rule, the associated command is cc -0 - c base-name . c. The
make command then executes the command, which in this case generates
the requested file, x. o.

For this version of make, the suffix list is as follows, reading across the
columns:

.obj .obj- .for .for -

.pas .pas . f .c

.o .c .c .y

.y .1 .i- . s

. s .sh .sh- .h

.h- . l

For this version of make, the built-in rules are as follows, reading across
the columns:

.c .c .sh

November 1991 3

make(l) make(l)

- -.c.o .c .0 .c .c .s.o
. s - .o . c. i .c - .l .c.s
.y.o .y - .0 . l.o .1-.0

.y.c .y - .c .1. c .c.a

.c - .a . s - .a .h- .h . f.o

.f-.o .p.o .p - .0 .for.obj

.for-.obj .pas.obj .pas-.obj

The suffix list and built-in rules demonstrate three important features of
make. First, the order of the suffix list and the built-in rules is extremely
important because the order of both governs which rule will be used to
process a file.

Second, the built-in rules demonstrate that the rightmost suffix member of a
rule can be empty. This is true for the first four built-in rules. For
example, the . c rule allows make to regenerate the file x, which has no
suffix, from the file x . c.

Third, both the suffix list and the built-in rules contain the tilde C)
character. To make, the tilde character indicates an SCCS file (see
sec sf ile(4)). Because make was designed to parse suffixes, and SCCS
files are identified by their s . prefix, make internally converts references
of the form s .filename to filename-. Thus, the rule . c-. o would
transform an secs c source file into an object file (. 0).

By definition, a rule starts with a period (.) and cannot contain a slash (I).
The format of a rule is:

. target: [:] [dependency-list]
<tab>[shell-command]

where target and at least one colon are required. Items enclosed in square
brackets ([J) are optional.

A built-in rule cannot rely on another built-in rule to resolve a dependency.
Only explicit dependencies can be listed in the dependency list of a rule.

Description Files

4

The built-in rules are often supplemented or overridden by the contents of a
user-written description file. If the - f option is not present, the search
order for description files is as follows:

./makefile

./Makefile

./MakeFile

.ls.makefile

November 1991

make(1) make(l)

./SCCS/s.makefile

./s.Makefile

./SCCS/s.Makefile

./s.MakeFile

./SCCS/s.MakeFile

The new description file, MakeFile, is described in "MakeFile
Preprocessing and Postprocessing'' later in the ''Description'' section. If
the description file is - , the standard input is taken. More than one - f
description-file argument pair can appear on the command line.

Include Files
If the string inc 1 ude or Inc 1 ude appears as the first seven characters of
a line in a description file and is followed by a blank or tab character,
make assumes that the rest of the line is the name of a description file,
which is read by the current invocation of make, after macro substitution.
The difference between include and Include is that if include
does not exist, make will terminate with an error message. If Include
does not exist, make will continue processing and will not issue an error
message.

Targets and Dependency Statements
Although make can use its built-in rules to perform simple regeneration
tasks, make requires direction from the user to accomplish more
complicated tasks, such as regenerating a program that comprises multiple
source files. You provide that direction in a description file from which
make reads and processes user-written dependency statements to update
one or more targets. The target is usually, but does not have to be, a
program. If a dependency statement is incomplete, make uses its built-in
rules to supplement the dependency statement.

The format for a dependency statement is nearly identical to the format for
a built-in rule; a distinction is maintained so that if you want to completely
replace an existing built-in rule, you can do so by providing the new rule in
the description file. The format of a dependency statement is as follows:

target [target] : [:] [dependency-list] [;]
<tab> shell-command

Each target argument is an alphanumeric string separated by a blank. A
target name cannot begin with a tab or a period (.) and cannot contain a
colon (:) or a semicolon (;). At least one colon is required; a second
colon is optional. The colon must be preceded by at least one target. The
dependency-list argument is a blank-separated list of items on which the

November 1991 5

make(1) make(1)

6

target depends. The items can be filenames or other targets. The
shell-command arguments are the commands that will be executed to
update the target. Each shell command must be preceded by a tab
character.

If a shell command extends over two or more lines, you can escape the
newline character, which is automatically placed at the end of the each line
by the standard text editors, by preceding it with a backslash(\).

Command lines are executed one at a time, each by its own shell. To have
a series of commands executed by the same shell, append a semicolon (;)
to the end of each shell command and escape any newlines, as just
described. This treatment of shell commands is particularly important for
any command that is executed directly by the shell and whose result is
effective only for the lifetime of the shell, such as the cd command.

By default, make hands shell commands to the Bourne shell, but if the
$SHELL variable is set and exported in the user's environment, make
hands shell commands to the specified shell.

The make command interprets the number sign (#) as the beginning of a
comment. When parsing lines in a description file, make determines that
the first line that does not begin with a tab or a # begins a new dependency
statement or macro definition. (Macros are discussed later in the
"Description" section.)

The following example illustrates many of the concepts described here. In
this dependency statement, the target is a program called pgm. pgm
depends on two files, a . o and b . o, and they in turn depend on their
corresponding source files, a. c and b. c and a common file, inc 1 . h:

Making pgm.

pgm: a.o b.o

cc a.o b.o -o pgm
a. o: incl. h a. c

cc -c a.c;\
echo "Done compiling a.c"

b.o: incl.h b.c
cc -c b.c;\
echo "Done compiling b.c"

The make command updates a target only if its dependents are newer than
the target. For this example, make will generate a new a . o file if the
modification time of either inc 1 . h or a . c is newer than the modification
time of a. o or if a. o does not exist. The same is true of b. o.

November 1991

make(l) make(1)

Each line in a description file is terminated by a newline character. In the
previous example, a semicolon is appended to the end of the line that
invokes the C Compiler and the newline is escaped by a backslash
character to pass both the invocation of the C Compiler and the echo
command to the same instance of the shell.

Because the built-in rules can be used to determine that a. c and b. c can
be used to generate a. o and b. o, respectively, the dependency statement
for making pgm can be written more briefly:

pgm: a.o b.o
cc a.o b.o -o pgm

a.o b.o: incl.h

When parsing shell commands, make first prints the command and then
passes everything except the initial tab character directly to the shell as is.
The following example uses "<tab>" to represent the tab character.

<tab>echo a\
<tab>b

When this example is processed by make, the following output will be
produced:

<tab>echo a\
<tab>b
ab

The first and second lines are printed by make before the initial tab
character is stripped, and the third line is printed by the echo command.

You can tum off printing of the command before execution by preceding
each command with the @ character. For example, if the description file
contains

@echo a\
b

the output of make will be

ab

Single-Colon and Double-Colon Targets
As described in the format for a dependency statement earlier, a
dependency statement must have at least one colon, and can have an
optional second colon. For the dependency statement

a: b.o
a: c.o
a: d.o

the make command concludes that a depends on b. o, c. o, and d. o; that

November 1991 7

make(1) make(l)

8

is, the preceding dependency statements are equivalent to

a: b.o c.o d.o

The make command treats dependency statements that have two colons
differently, so that a description file that contains

a·· b.o
a·· c.o
a·· d.o

contains three separate dependency statements. If you use the single-colon
rule, the target is updated when either of these conditions is true:

• Any dependent is newer than the target.

• The target does not exist.

If you use the double-colon rule, the target is updated when any of these
conditions is true:

• Any dependent is newer than the target.

• The target does not exist.

• The target does not have a dependency list.

Double-colon dependency statements are useful for situations where a
single target name is desired, but depending on the context, different
commands need to be executed to update the target. For example:

a·· a. sh
cp a.sh a

a·· a.c
cc -o a a.c

The first dependency statement is executed if the current directory contains
the file a. sh, and the second dependency statement is executed if the
current directory contains the file a. c. If both a. sh and a. c exist in the
current directory, one or both target statements could be executed
depending on whether the target is older than the dependents. If the target
is missing, the target is considered to be older than the dependents.

Double-colon dependency statements are also useful for situations in which
a target has the same name as a subdirectory in the current directory. For
example, if the dependency statement is

mail:
cd mail;\
cc mail.o -o mail

and the current directory contains a directory called ma i l, the commands
to update the target will never be invoked. This is because make assumes

November 1991

make(1) make(1)

that if the target ma i 1 exists (even if it is a directory) and has no
dependency list, the target is up-to-date. As a result, the target name in a
single-colon dependency statement should never be the name of a
subdirectory in the current directory. Often, however, assigning the target
the same name as the directory that contains the files on which the target
depends makes the description file more meaningful to the user. The make
command processes double-colon dependency statements differently, so
that

mail::
cd mail;\
cc mail.o -o mail

works as desired. This is because if a double-colon dependency statement
has no dependency list, make processes the commands that update the
target even if the target already exists. The caveat is, however, that make
always recompiles mail. c even when the executable mail file is newer
than ma i 1 . c. A better solution to this problem is described under
"Attributes," later in the "Description" section.

As mentioned earlier, you can replace a built-in rule by providing a new
rule of the same name in the description file. You can also disable a built­
in rule, as shown by the following example:

. c. a:;

The make command interprets a semicolon (;) that is not preceded by a
command as a null command, which has the effect of disabling the
specified rule.

Just as the built-in rules can be replaced, so can the default suffix list. The
following line in a description file clears the suffix list:

.SUFFIXES:

The following line appends additional suffixes to the end of the existing
suffix list:

.SUFFIXES: .n .x

Multiple suffix lists accumulate until cleared, as just shown, or until make
terminates.

Built-in Targets
The targets described in this section are actually built-in rules that you can
enable by including them in a description file. If present, they modify the
default behavior of make. Because make reads the entire description file
before beginning to process dependency statements, the following built-ins,
which must appear at the beginning of a line, are processed first, whether
they appear at the beginning, middle, or end of the description file.

November 1991 9

make(l) make(1)

.DEFAULT:
If a file must be made but there are no explicit shell commands or
relevant built-in rules, the shell commands listed under . DEFAULT:
are used .

. IGNORE:
If present, . IGNORE has the same effect as the - i option, which is to
cause make to ignore nonzero return codes from commands .

. MAKE STOP [exit-code]:
If present, . MAKESTOP: causes make to exit. . MAKESTOP: is
useful in a multilevel directory and description file hierarchy for
quickly bypassing a make command in a particular directory or
directories. The exit-code argument is optional. If you do not specify
a value, the exit code defaults to 0. If no exit code is specified or if
the specified exit code is zero, make exits silently. If a nonzero exit
code is specified, make prints a warning message .

. PRECIOUS:
The default behavior of make is to remove a target and its dependents
when a quit or interrupt signal is received while make is processing
the commands that update the target. Because the actions of make
depend in large part on the mere existence of a file, removal of
potentially incomplete files helps ensure that the proper files are
regenerated each time. You can avoid removal by making specific
files dependent on . PRECIOUS: . See "Error Handling," later in
the "Description" section, for further details .

. SILENT:
If present, . SI LENT : has the same effect as the - s command
option.

Environment Variables and Macros

10

The documentation for make uses the term ''macro'' to name the entities
that the shell documentation calls ''environment variables.'' A macro is a
variable whose value is set in a description file and can be overridden from
the make command line. Although make and the shell use these entities in
nearly identical ways, there are differences, which are described in this
section.

The sample shell script

NAME=Joe
echo NAME
echo $NAME

produces the following result:

NAME

November 1991

make(l) make(l)

Joe

The difference between the first and second echo commands is that the
first simply requests that the string NAME be echoed, while the second,
because of the prepended dollar sign ($), requests that the contents of
NAME be echoed. Such a request is called ''expansion.''

Expansion is handled differently by make. The example description file

NAME=joe

all:
echo NAME
echo $NAME

produces the following result

NAME
AME

This result is produced because make requires that macro names that are
longer than one character be enclosed in parentheses or braces for
expansion to occur. In this case, make sees the $ and attempts to expand
a variable named N. No such variable is set, so nothing is echoed and the
echo command completes by echoing AME. The following description
file produces the desired result:

NAME=joe

all:
echo NAME
echo $(NAME)

The use of braces is equivalent to the use of parentheses, so that $ {NAME}
is equivalent to $ (NAME) .

Each time make evaluates a macro, make strips one dollar sign($) from
it. Therefore, an extra dollar sign should be prepended to any macro that is
part of a shell command line. When make is invoked, make reads the
user's environment and makes all the variables found there available for
modification by the description file.

Environment variables are processed before any description file and after
the built-in rules; macro definitions in a description file override
environment variables of the same name. The - e option causes
environment variables to override macro definitions of the same name in a
description file.

November 1991 11

make(l) make(I)

12

The formal definition of a macro is

macro-name = string2

By convention, macro names are uppercase. The macro-name argument is
an alphanumeric string that cannot contain a colon (:) or a semicolon (;).
The equal sign (=) can be surrounded by spaces or tabs. The string2
argument is defined as all characters up to a comment character or an
unescaped newline.

The make command provides several built-in macros. Here is a
description of each macro.

MAKECDIR
A read-only macro that expands into the full pathname of the current
directory.

MAKE FLAGS
If the MAKEFLAGS macro is not present in the environment, make
creates and assigns to it the options with which make was invoked.
MAKEFLAGS is processed by make as containing any legal input
option (except -f, -p, -P, -r, and -u). Thus, MAKEFLAGS always
contains the current input options. This macro proves very useful for
"super-makes." In fact, as noted earlier, when the -n option is used,
the command $ (MAKE) is executed anyway; hence, you can perform
a make -n operation recursively on a whole software system to see
what would have been executed. This is because the -n operation is
put in MAKE FLAGS and passed to further invocations of $ (MAKE) .
This is one way of debugging all of the description files for a software
project without actually causing the execution of update commands.

MAKE LEVEL
If the MAKELEVEL macro is not present in the environment, make
creates it, assigns an initial value of zero, and exports it. If it is
already present in the environment, make increments the value of
MAKELEVEL by one. In this way, each subordinate invocation of
make can know its level in a multilevel make hierarchy. This macro
is read-only and cannot be modified by the description file.

MAKEBDIR
If the MAKEDIR command is not present in the environment, make
creates it, and assigns to it the absolute pathname of the current
directory. If it is already present in the environment, the value of
MAKEBDIR is not changed. MAKEBDIR provides a way for each
subordindate invocation of make to obtain the pathname of the top­
level make command.

MAKEGOALS
For every invocation of make, make creates the MAKEGOALS macro

November 1991

make(l) make(1)

and assigns to it the targets that were specified on the command line.
For the command line

$ make clean all clobber

MAKEGOALS will be set to ''clean all clobber.'' If the current
invocation of make invokes make, the invocation can be made as
shown in the following example:

MAKE=make
cd dir; $(MAKE) $(MAKEGOALS)

In this way, the same command-line arguments can be passed to
subordinate invocations of make.

VP A TH
This version of make supports special processing of the macro
VP A TH, if set. VP A TH is useful for processing files that are located in
a directory other than the current directory. In the following example,
main . c is located in the current directory. f unc 1 . c is located in
.. I common, and func2. c is located in .. I incl. The make
command searches the directories specified by the VPATH variable for
any dependencies that are not in the current directory. Consider the
following example.

VPATH= .. /common: .. /incl
main: main.o funcl.o func2.o

cc -o $@ $>

In this example, $@(described later in this section) expands to the
target name and$> (described later in this section) expands to the list
of dependencies on the current target. If main. c, funcl. c, or
func2. c is not present in the current directory, make uses its built­
in rules to search for SCCS versions of the files in the current
directory. (See "SCCS File Handling," later in the "Description"
section.) If SCCS versions of the files are not found, make searches
the pathnames specified by VPATH.

The following built-in macros define values for common software
generation programs or options to those programs. Description files can
replace or supplement the values of these macros to change the way in
which the built-in rules work.

AR This macro is defined as ar.

AS This macro is defined as as.

AS FLAGS
This macro is defined as null and is provided as an argument to the
assembler.

November 1991 13

rnake(l) make(1)

14

cc This macro is defined as cc.

CF LAGS
This macro is defined as -0 and is provided as an argument to the C
Compiler.

CHM OD
This macro is defined as chrnod.

c P This macro is defined as cp.

F77
This macro is defined as f 7 7.

F77FLAGS
This macro is defined as null and is provided as an argument to the
Fortran Compiler.

FORTRAN
This macro is defined as f ortran.

FORTRANFLAGS
This macro is defined as null and is provided as an argument to the
Fortran Compiler.

GET
This macro is defined as get and is used to get SCCS versions of
files.

GFLAGS
This macro is defined as null and is provided as an argument to get.

LD This macro is defined as 1 d.

LDFLAGS
This macro is defined as null and is provided as an argument to 1 d.

LEX
This macro is defined as 1 ex.

LFLAGS
This macro is defined as null and is provided as an argument to 1 ex.

MAKE
This macro is defined as make.

MV This macro is defined as rnv.

PASCAL
This macro is defined as pascal.

PASCALFLAGS
This macro is defined as null and is provided as an argument to pc.

November 1991

make(l)

PC This macro is defined as pc.

PC FLAGS

make(1)

This macro is defined as null and is provided as an argument to pc.

RM This macro is defined as rm.

YACC
This macro is defined as yacc.

YFLAGS
This macro is defined as null and is provided as an argument to
yacc.

The following six built-in macros have special expansion capabilities that
are useful for writing shell commands.

* The * macro stands for the filename part of the current dependent with
the suffix deleted. It is evaluated only for built-in rules.

@ The @ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

< The< macro is evaluated only for built-in rules or the . DEFAULT
rule. It is the module that is out-of-date with respect to the target (that
is, the "manufactured" dependent filename). Thus, in the . c. o rule,
the < macro would evaluate to the . c file. Here is an example for
making optimized . o files from . c files:

.c.o:
cc -c -0 $*.c

Here is another example:

.c.o:
cc -c -0 $<

? The ? macro is evaluated when explicit rules from the description file
are evaluated. It is the list of prerequisites that are out-of-date with
respect to the target; essentially, those modules must be rebuilt.

% The % macro is evaluated only when the target is an archive library
member of the form 1 ib (file. o) . In this case, @ evaluates to 1 ib
and% evaluates to the library member, file. o.

> The > macro is expanded to list all of the dependencies on the current
rule.

These six macros can have alternative forms. When an uppercase Dor Fis
appended to any of the six macros, the meaning is changed to ''directory
part" for D and "file part" for F. Thus, $ (@D) refers to the directory part
of the string @. If there is no directory part, . I is generated.

November 1991 15

make(1) make(l)

The following description file demonstrates the use of the ? and >macros
in their standard and alternative forms:

pgm:
@echo II? = $?II
@echo II ?D = $ (?D) II
@echo II ?F = $ (?F) II
@echo II> = $>11
@echo ll>D $ (>D) II
@echo ll>F = $ (>F) II

pgm: dir/a.o
pgm: dir/b.o
pgm: dir/c.o

When a . o is the only object that is newer than pgm, the following data is
output from make:

? = dir/a.o
?D = dir
?F = a.o
> = dir/a.o dir/b.o dir/c.o
>D dir dir dir
>F = a.o b.o c.o

Macro Substitution

16

The contents of a macro can be substituted as shown here:

$ (macro-name [: substl =[subst2]])

The contents of a macro are replaced by string2, which is delimited by
blanks, tabs, newline characters, or the beginning of a line. A substitute
sequence can replace only the trailing characters of substl. For example,

SAMPLE=/a/b/file.test

all:
@echo 11 1
@echo 11 2
@echo 11 3
@echo 11 4
@echo 11 5

has the following output:

$(SAMPLE:file=FILE) 11

$(SAMPLE:test=TEST) 11

$(SAMPLE:a/=A/) 11

$(SAMPLE:b/file.test=K) 11

$(SAMPLE:a=A)

1 /alb/file.test
2 /alb/file.TEST
3 /alb/file.test
4 /a/K

November 1991

make(l) make(1)

5 /alb/file.test

In this example, only the second and fourth commands are successful. The
other commands fail because they do not substitute the trailing characters
of the expanded macro.

The following example demonstrates the usefulness of string substitution:

all: /u/test/a.o
CC -S $(?:a=.C)
mv $(?: .O=.s) .tmp
sed "s/text/data/" > $(?: .o=.s) < .tmp
as -o $@ $(?: .o=.s)
rm . tmp

This example uses the @ macro (expand to the full target name of the
current target) and the ? macro (expand to the list of out-of-date
dependencies) macros to produce the assembly-language file for each
dependent of the al 1 target, change each occurrence of text to data
by using s ed, and assemble each resulting . s file.

Substitution works only on macros that are part of shell command lines.
This version of make does not support substitutions of macros that are part
of dependency lists.

Macro Testing
This version of make supports the testing of macros, where the format is

$ (macro-name: test-operator)

The macro name can be set or unset and with or without an assigned value.
The test-operator argument can be one of the following values:

L The macro is expanded to the length of its contents. An empty or null
value expands to zero. This test operator is useful for determining
whether or not to examine the contents of a macro.

V If the macro is set and has a non-null value, the macro is expanded to
null; otherwise, the macro is expanded to #. This test can be used to
control the execution of command lines, as shown here:

$ (macro-name : V) conditional-command

If the macro is not set, the macro is expanded to #, which causes
make to evaluate the line as a comment. As a result, conditional­
command is not executed.

N If the macro is set and has a non-null value, the macro is expanded to
#; otherwise, the macro is expanded to null. This macro is the
opposite of the V test operator and is used in the same way as the V
test operator.

November 1991 17

make(l) make(l)

For example, assume that you want to have a target called c 1 ean if the
macro $CLNFILES is set. The dependency statement would remove the
files expanded from this macro. Here is how the dependency statement
would look:

$(CLNFILES:V)clean:
$(CLNFILES:V) @echo "Removing: $(CLNFILES) ";\

rm -f $(CLNFILES)

If the $CLNFILES macro is set and contains a non-null value, the
$ (CLNFILES: V) macro will be ignored when make reads the
description file, and the line will be processed just as if the description file
contained the following code:

clean:
@echo "Removing: $(CLNFILES) ";\
rm -f $(CLNFILES)

The $ (CLNFILES) macro is expanded just before the command line is
executed. Macros that have test operators are expanded during the parsing
of the command line. This means that the order of macros that have test
operators is significant, which is unlike the normal behavior of macros that
do not have test operators. Normal macros are expanded after all
description files have been read and command-line execution has begun.
You can delay the expansion of macros that have test operators by
prefixing more $ characters, just as you can with normal macros.

In the example preceding, notice that $ (CLNFILES: V) does not appear
in front of each line. This is because a single command line was used, and
that command line extended over two lines, with the newline escaped by
the backslash (\) character. If there had been multiple command lines, a
$ (CLNFILES: V) macro would have been required at the beginning of
each line.

Global Macros
This version of make provides special handling of user-defined macros that
begin with G_. Such macros are automatically exported to the
environment, so they can be easily passed to subordinate invocations of
make.

Default Macro Values

18

This version of make supports a default expansion value for nonexistent or
null-valued macros. The default value is specified as follows:

$ (XYZ: : default)

In this case, if the macro XYZ is not defined or has a null value, it is
expanded to default. The default value is restricted to a single word, so
the following example would not have the intended result:

November 1991

make(1) make(l)

$(XYZ: :This is the default)

Instead, XYZ would bd expanded to This. But the following example
would work:

DEFAULT = This is the default

all:
@echo "$(NOTDEFINED: :$(DEFAULT))"

Pattern Matching on Macros
This version of make supports limited shell-style pattern-matching on
macros. Here is an example:

cc -o $@ $(>:=*.o)

Each word in the expanded >macro is tested (shell-style) against the
asterisk (*) pattern and compiled when there is a match.

Attributes
This version of make understands attributes, which can be placed before or
after the dependents in a dependency list as shown here:

target: [attributes] [dependents] [attributes]

You can use any of the following attributes:

.FAKE
If the target exists and has no dependents, the normal behavior of
make for single-colon dependency statements is to do nothing. The
addition of the . FAKE attribute to the dependency statement requires
make to treat the target as if it did not exist. This, in turn, forces
make to execute the associated commands .

. CURTIME
This attribute causes make to use the current time rather than the
most recent modification time of the target, even if the target does not
exist. This attribute is used with the . FAKE attribute to prevent the
associated dependency statement from being invoked unless the
dependents have been updated with a newer time .

. IDEBUGn
If present, . IDEBUGn tells make not to display debugging
information about this target at the desired debugging level. The
variable n is set to a debugging level in the range of 0 to 9. For
example, to prevent this target from showing up in your debugging
sections at levels 0 and 1, you would specify . IDEBUGO and
. IDEBUGl.

.IGNORE
This attribute causes errors from any command of the target to be

November 1991 19

make(l) make(l)

20

ignored .

. MAIN
The normal behavior of make when invoked without a target name on
the command line is to search the description file for the first target,
process the target, and then terminate. The addition of . MAIN to a
dependency statement causes make to treat the associated dependency
statement as if it were the first dependency statement in the
description file .

. NOMESS
If present, . NOMESS causes make not to echo commands or issue any
warning or error messages from commands. This attribute is useful in
Pre and Post files if you do not want to see messages from these
files .

. PRE
This attribute informs make that the associated target is to be made
before any others, including . MAIN. You can use this attribute to
place initialization commands. Because the entire description file is
read before the targets are processed, the placement of this attribute is
position-independent within the description file .

. POST
This attribute informs make that the associated target is to be
processed after all others. You can use this attribute to place cleanup
commands .

. PRECIOUS
With this attribute, the document is considered ''precious.''

.KEEPTIME
This attribute causes make to maintain the target's original
modification time, even after the target has been regenerated .

. OLDTIME
This attribute causes make to ignore the target's modification time
and apply a modification time of 0 for the purpose of determining if
the target should be updated. After the target is regenerated, make
sets the correct modification time .

. SILENT
With this attribute, the commands of this target are not echoed before
execution .

. NOVPATH
This attribute causes make to ignore the $VPATH macro for the
associated target.

November 1991

make(1) make(1)

If targets that have . MAIN, . PRE, and . POST attributes are dependents
of other targets, the targets are made in the order dictated by the
dependencies, not in the order dictated by the attributes.

Attributes in double-colon dependency statements apply to all of them as a
unit.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within
the library. Thus lib(file.o) and$ (LIB) (file.o) both refer to
an archive library that contains file. o. (Assuming that the LIB macro
has been previously defined.) The expression$ (LIB) (f ilel. o
f i le2 . o) is not legal. The built-in rules pertaining to archive libraries
have the form . suffix. a where suffix is the suffix from which the archive
member is to be made. An unfortunate by-product of the current
implementation requires suffix to be different from the suffix of the archive
member. Thus, you cannot have 1 ib (f i 1 e. o) depend upon f i 1 e. o
explicitly.

Here is an example of the most common use of the archive interface. This
example assumes that the source files are all C-type source:

lib:

.c .a:

lib(filel.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

$(CC) -c $(CFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

In fact, the . c . a rule listed in this example is built into make and need not
actually be specified. Here is a more interesting, but more limited, example
of an archive library maintenance construction:

lib:
lib(filel.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?: .o=.c)
ar rv lib $?
rm $?
@echo lib is now up-to-date

. c .a:;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object-file names (inside 1 i b) whose C source files
are out-of-date. The substitution mode translates the . o to . c.
(Unfortunately, you cannot as yet transform to . c-; however, this
capability may become possible in the future.) Note also the disabling of

November 1991 21

make(l) make(1)

the . c. a: built-in rule, which would have created each object file, one by
one. This particular construction speeds up archive library maintenance
considerably. This type of construction becomes very cumbersome if the
archive library contains a combination of assembly-language programs and
C programs.

MakeFile Preprocessing and Postprocessing
If, by employing its search rules, make finds a description file named
MakeFilemSCCS/s.MakeFile,iliefiles
/usr I lib/MakeFilePre and /usr I lib/MakeFilePost, if
present, are read. If, for example, the description file is named x . mk and
the -P option is specified, make will read /usr I lib/x. mkPre and
/usr I lib/x. mkPost, if present.

The preprocessing and postprocessing files are description files that can be
used to store global environmental settings and rules for events that you
want to occur prior to and after processing of a description file.

If the macro G_SGS_ROOT is present in the environment, make
considers this macro to be the root for finding the preprocessing and
postprocessing files. For example, if G_SGS_ROOT is set to newroot,
make will look for the preprocessing and postprocessing files in the
directory /newroot /usr I lib.

SCCS File Handling

22

As described in "Description Files" earlier in the "Description" section,
make can checkout read-only copies of make f i 1 e, Make f i 1 e, or
MakeFile from an SCCS version of the file in the current directory or an
SCCS version of the file located in a subdirectory named SCCS. This
ability is separate from the built-in rules that govern the check-out of SCCS
versions of dependents and is not turned off by the - r option to make.

The built-in rules for dependents can checkout only a file for which there is
an SCCS version in the current directory; the built-in rules cannot checkout
an SCCS version of a file located in a subdirectory named SCCS.

If the -g option is used, however, and the file does not exist in the current
directory, make will first use its built-in rules to check-out the file in the
current directory. If this attempt fails because the SCCS version does not
exist, the -g option causes make to search the current directory again and
then search a subdirectory named SCCS, if present, and check out the file if
found. Note that the current directory is searched twice, once by the built­
in rules and once because the -g option was specified. Searching the
current directory makes the -g option especially useful with the -r option.
The -r option turns off the built-in rules; thus, when -r is used with the
-g option, the current directory is searched just once.

November 1991

make(l) make(l)

If a VPATH variable is present and set, make uses the built-in rules to
search the specified directories for SCCS versions of the file. If the - g
option is specified, any subdirectories named SCCS in the VPATH
directories are also searched.

The built-in rules for checking out dependents from their SCCS versions in
the current directory are not used to process include files. (See ''Include
Files" earlier in the "Description" section.) If an include file exists only
in its SCCS version in the current directory, make will not check it out. If
make is invoked with the -g option, however, make will check out an
include file if it is present in an SCCS version in the current directory or in
a subdirectory named SCCS.

In no case does make check out a copy of a description file, an include file,
or a dependent file if the file already exists.

If a file is checked out by means of the built-in rules, make does not
remove the checked-out copy. If a file is checked out by the action of the
-g option, the checked-out copy is automatically removed when no longer
needed.

Dynamic Include File Dependency Generation (DIFDG)
The make command can examine selected source files for #inc 1 ude
directives. These include files are added to the target's dependency list.
This feature, called DIFDG, relieves you from having to set up and create
the include-file dependency list.

The only disadvantage to having make create the dependency list is that
some include files may be placed on the target's dependency list that would
normally be left out during the compile because of an #if def statement.
However, this behavior does not cause any problems; the target is still
updated properly. The make utility does not add an include file to the
target's dependency list unless that include file really exists, so no damage
can result.

You enable DIFDG by defining the _MAKE_DIFDG_SUFFIXES variable
with a list of source-file suffixes to be searched, as in this example, or by
specifying the -G (generate) option to make:
_MAKE_DIFDG_SUFFIXES= .c .s .f .p .1

The _MAKE_DIFDG_SUFFIXES variable must contain at least one suffix
to enable DIFDG. An empty variable here does not have added meaning.
The suffixes . o, . h, and . a are ignored.

You can specify the list of directories to search for these include files by
using the _MAKE_DIFDG_INCDIRS variable. The order is important
because make searches each directory for include files until the files are
found. Like cpp(l), make looks for include files of the form header. h
first in the same directory as the source file (not always the current

November 1991 23

make(l) make(l)

directory), then in the directories listed in the _MAKE_DIFDG_SUFFIXES
variable. If an include file has the form <header. h>, the only directories
searched are those listed in the variable. If this variable is defined but not
assigned a value, the only directory that will be searched is the source-file
directory. This means that <header. h> forms will always fail because
there will not be a directory to search. If this variable is not defined, make
uses the default /usr I include directory.

You can add a prefix to each include file dependent whose full pathname
starts with /usr I include, by using the _MAKE_DIFDG_PREFIX
variable. Use this variable only when you have specified the -M (map)
option to request that the include-file dependencies be written. There is no
default. Here is an example:

_MAKE_DIFDG_PREFIX= $$(SGS_INCDIR)

You can also use the c preprocessor, cpp, to create include-file
dependency files. This method is much slower than that used by make.
The last variable for DIFDG, _MAKE_DIFDG_CPPFLAGS, is defined with
the flags to be passed to cpp. Merely defining this variable enables the
cpp method of finding include files. If you do not define this variable,
make uses the faster method. When you assign a value to this variable,
keep in mind that only words that start with a hyphen are passed to cpp as
in this example. (It is assumed that DEFINES is a variable that contains
- D style macros.)

_MAKE_DIFDG_CPPFLAGS= -Y $(DEFINES)

If the _MAKE_DIFDG_FILE variable is set and non-null, and DIFDG is
enabled, the DIFDG include-file dependencies will be written to the
variable it when make exits. If the -G option is used, the defaults are as
follows:

_MAKE_DIFDG_SUFFIXES= .c .1 .y
_MAKE_DIFDG_INCDIRS= /usr/include
_MAKE_DIFDG_CPPFLAGS=
_MAKE_DIFDG_PREFIX=

Error Handling

24

Shell commands that return a nonzero status normally terminate make.
You can modify this behavior in a number of ways:

- i If present on the command line, this option causes make to ignore any
nonzero status that is returned by a shell command and to continue
processing the current description file .

. IGNORE:
See "Built-in Targets," earlier in the "Description" section.

November 1991

make(1) make(1)

- k If present on the command line, this option causes make to abandon
work on the current target if a shell command returns a nonzero status.
The make command will continue to work on other targets in the
description file that do not depend on the target for which the error
was received.

If a hyphen is prepended to any shell command, make will not
terminate on an error that might occur as a result of executing the
command, but will continue processing the description file. The -
can be combined with the previously described @ symbol, described
in "Section Name" earlier in the "Description" section, which
suppresses the printing of the command before it is passed to the shell.
The combination can be either - @ or @ - • Both error messages
returned by the shell and make commands standard error messages
are still printed.

As mentioned earlier, make removes a target and its dependents when a
quit or interrupt signal is received. The following conditions apply:

• The dependency statement must be a single-colon dependency
statement. If the dependency statement is a double-colon
dependency statement, make does not remove files.

• The target must have existed before processing of the
dependency statement began.

• The target must not be a dependent of the built-in target
. PRECIOUS:.

• The make must not have been invoked with the -n option.

• The make command must not have been invoked with the -t
option.

An example of the standard termination message generated because of a
nonzero status code is shown here. In this case, make terminates because
the description file, x . mk, does not exist in the directory /di r.

$ make -f x.mk
Make: Cannot read description file /dir/x.mk
Make: Stopped in directory /dir.

LIMITATIONS
The syntax (lib (filel. o file2. o file3. o) is illegal.

You cannot build lib(file.o) from file.o.

The macro $(a: . o=. c-) does not work.

November 1991 25

make(1)

FILES
$HOME/[Mrn]akecornrn

File
/bin/make

Executable file
[Mrn]akecornrn

File
s. [Mrn]ake[Ff]ile

File
SCCS/s. [Mrn]ake[Ff]ile

File

SEE ALSO
cd(l), csh(l), ksh(l), lex(l), sh(l), touch(l), yacc(l)

printf(3S), sccsfile(4) inAIUX Programmer's Reference

make(1)

''make Reference'' in AJUX Programming Languages and Tools, Volume
2

26 November 1991

makedev(l) makedev(l)

NAME
makedev - prepares troff description files

SYNOPSIS
makedev files

ARGUMENTS
files Specifies the description file to be read.

DESCRIPTION
makedev reads description files about a particular device and converts
them into a form suitable for reading by trof f(l). Input to makedev is
in the format described inf ont(5).

FILES
/usr/bin/makedev

Executable file

SEE ALSO
troff(l)

font(5) in AIUX Programmer's Reference

A Typesetter-Independent troff, Brian W. Kernighan (Bell Laboratories,
1982)

Adventures with Typesetter-Independent troff, Mark Kahrs and Lee
Moore (University of Rochester Technical Report 159, 1985)

November 1991

make key(1) makekey(1)

NAME
makekey - generates an encryption key

SYNOPSIS
make key

DESCRIPTION
makekey improves the usefulness of encryption schemes depending on a
key by increasing the amount of time required to search the key space. It
reads 10 bytes from its standard input, and writes 13 bytes on its standard
output. The output depends on the input in a way intended to be difficult to
compute (i.e., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII
characters. The last two (the salt) are best chosen from the set of digits,
. , I, and uppercase and lowercase letters. The salt characters are repeated
as the first two characters of the output. The remaining 11 output
characters are chosen from the same set as the salt and constitute the
output key.

The transformation performed is essentially the following: the salt is used
to select one of 4,096 cryptographic machines all based on the National
Bureau of Standards DES algorithm, but broken in 4,096 different ways.
Using the input key as key, a constant string is fed into the machine and
recirculated a number of times. The 64 bits that come out are distributed
into the 66 output key bits in the result.

makekey is intended for programs that perform encryption (e.g., ed(l)
and crypt(l)). (The encryption scheme provided by them is not secure.)
Usually, makekey's input and output will be pipes.

EXAMPLES
The first line that follows invokes make key, the second line is the input to
makekey, and the third is the new key generated by makekey.

make key
abcdefgh23
23xq5GyrhLTCA

FILES
/usr/lib/makekey

Executable file

SEE ALSO
crypt(l), ed(l), ex(l)

pas swd(4) in A/UX Programmer's Reference

November 1991

man(l) man(l)

NAME
man - displays the named manual page entries

SYNOPSIS
man [-c] [-d] [-Tterm] [-w] [[section] name]. ..

ARGUMENTS
-c Causes man to invoke col(l). Note that col(l) is invoked

automatically by man unless term is one of the standard terminal
types: 300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, or X.

-d Searches the current directory, rather than /usr I catman; requires
the full filename (for example, cu. le, rather than just cu).

name
Specifies the name of the manual page you wish to display.

section
Specifies the section number of the manual page you wish to display.
If section is not specified, the whole manual is searched for name and
all occurrences of it are printed.

Note: If you specify a section number, only one section can be
searched at a time.

This argument may be changed before each name.

-Tterm
Prints the entry as appropriate for terminal type term. For a list of
recognized values of term, type help term2 . The default value
of term is 450.

-w Prints on the standard output only the pathnames of the entries,
relative to /usr I catman, or to the current directory for -d option.

DESCRIPTION
man locates and prints an entry in the AIUX Command Reference, the AIUX
System Administrator's Reference, or the AIUX Programmer's Reference.
The name (name) of the entry is entered in lowercase. The section number
(section) number may not have a letter suffix.

The man command examines the environment variables $TERM and
$PAGER (see environ(5)) and attempts to select options that adapt the
output to the terminal being used. The $PAGER variable defaults to more
if not set otherwise. The user may select pg with the appropriate options.
The -Tterm option overrides the value of $TERM; in particular, one should
use -Tlp when sending the output of man to a line printer.

November 1991

man(l) man(l)

EXAMPLES
The command:

man man

would reproduce this entry on the terminal, as well as any other entries
named man that may exist in other sections of the manual.

The command:

man sync

searches through all sections to find the entry for sync . Since there is a
sync(l) and a sync(2), both entries are provided. If you are looking only
for the sync system call (found in section 2), specify the section number
as follows:

man 2 sync

LIMIT A TIO NS
The man command prints manual entries that were formatted by nroff
and are printed using the correct terminal filters as derived from the -Tterm
and $TERM settings.

Typesetting or other nonstandard printing of manual entries is not
supported.

FILES
/usr/bin/man

Executable file
/usr/catman/?_man/man[l-8]/*

Preformatted manual entry files

SEE ALSO
term(4) in AJUX Programmer's Reference

2 November 1991

merge(1) merge(l)

NAME
merge - merges three files into one

SYNOPSIS
merge [-p]filel file2 file3

ARGUMENTS
file I

Specifies the file into which the other files will be merged, if the -p
option is not given.

file2
Specifies a file to be merged into file 1.

file3
Specifies a file to be merged into file I.

-p Causes the results of the merge to go to the standard output. If this
option is not given, the results go into file I.

DESCRIPTION
merge incorporates all changes that lead fromfile2 to file3 into file].
merge is useful for combining separate changes to an original. Suppose
file2 is the original, and bothfilel andfile3 are modifications of file2. Then
merge combines both changes.

An overlap occurs if both file 1 and file3 have changes in a common
segment of lines. merge prints information on how many overlaps
occurred and includes both alternatives in the result. The alternatives are
delimited as follows:

<<<<<<< file]
lines infilel

lines in file3
>>>>>>> file3

If there are overlaps, the user should edit the result and delete one of the
alternatives.

NOTES
Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
co(l), diff(l), diff3(1), rcsmerge(l)

November 1991

mesg(1)

NAME
mesg - permits or denies the receipt of messages

SYNOPSIS
mesg [choice]

ARGUMENTS
choice

mesg(1)

Specifies whether you want messages printed or not. Replace choice
with either y or n.

DESCRIPTION
mesg permits or denies receipt of messages sent by another user via
writ e(l). With no argument, mes g reports the current permission state.

The mesg command with choice n forbids messages by revoking nonuser
write permission on the user's terminal. The mesg command with
argument y reinstates permission.

EXAMPLES
To change the permission to ''yes,'' enter:

mesg y

The system displays:

Is Yes; Was No

or whatever is the current and former state of your message permission.

STATUS MESSAGES AND VALVES
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

FILES
/bin/mesg

Executable file
/dev/tty*

File containing terminal types

SEE ALSO
talk(lN), wri te(l)

November 1991

mkdir(1)

NAME
mkdir - creates a directory

SYNOPSIS
mkdi r dirname ...

ARGUMENTS
dirname

Specifies the directory to be created.

DESCRIPTION

mkdir(1)

mkdi r creates specified directories in mode 777 (possibly altered by the
user's umask (see sh(l), csh(l) and ksh(l)). Standard entries, . , for the
directory itself, and .. , for its parent, are made automatically. These and
other directories beginning with . are not visible in listings unless you use
the - a flag option to 1 s.

mkdir requires write permission in the parent directory.

EXAMPLES
To create a directory called letters as a subdirectory of the current
directory at the time you employ the command, enter:

mkdir letters

STATUS MESSAGES AND VALUES
The mkdir command returns exit code 0 if all directories were
successfully made; otherwise, it prints a diagnostic and returns nonzero.

FILES
/bin/mkdir

Executable file

SEE ALSO
chmod(l), csh(l), ksh(l), rm(l), sh(l)

November 1991

mkshlib(1) mkshlib(l)

NAME
mkshl ib - creates a shared library

SYNOPSIS
mkshl ib - s specs [-n] -t target [-h host]

ARGUMENTS
-h host

Specifies the name of the host shared library, host. If this option is not
specified, then the command does not produce the host shared library.

- n Does not generate a new target shared library. Use this option if you
want to update the host shared library only. You still need to include
the - t option and the target library name, because the system needs a
version of the target shared library in order to build the host shared
library.

-s specs
Specifies the name of the shared-library specification file, which
contains the information necessary to build the shared library. Its
contents include a list of the object files to be included in the shared
library, the branch-table specifications for the target library, the
pathname directing where to install the target library, and the start
addresses of text and data sections for the target library. This file
includes initialization specifications for imported variables, if
necessary. Imported variables are addresses external to the target
shared library, such as the addresses of routines that the library can
call upon. See the ''Description'' section for details on the shared­
library specification file.

-t target
Specifies the name of the target shared library to be produced. The
specification file includes the location at which the target library is to
be installed. (See the description of the #target directive in
''Shared Library Specification File'' in the ''Description'' section.)

DESCRIPTION
mkshl ib builds and maintains shared libraries. A shared library is similar
in function to a normal, nonshared library. The primary differences
become evident when the program is executed. More than one program
can use the code in shared-library routines simultaneously. The executable
code for a shared library is in Common Object File Format (COFF). The
applications that call shared-library routines access the executable code by
means of a special addressing structure that is provided at link-edit time.

(In contrast to the programs that use a shared library, each program that
uses a nonshared library gets a private copy of any library routines
required.)

November 1991

mkshlib(l) mkshlib(l)

The shared library consists of two files (two sublibraries) containing source
archives and executable object files. These files are referred to as the host
shared library (host) and the target shared library (target), respectively.
The host and target sublibraries can be on different systems. A host shared
library is an archive that provides information used during link-edit (see
ld(l) and ar(4)). The name of the host shared library is included on the
cc command line, just as it is for a nonshared library (see cc(l)). All
operations that can be performed on a nonshared library can be performed
on a host shared library.

The target shared library contains the executable code for all of the routines
in the library and must be fully resolved. This library is brought into
memory, if not already present there, during the execution of a program
that calls it. The library attaches to a user's process during execution. The
text section of target objects is shared by all processes using that target
library, but each process gets its own copy of the data.

The user interface to mkshl ib consists of command line arguments and a
shared-library specification file (specs). The specification file provides
information necessary to build the host and target shared libraries.

To build both sublibraries, provide both the target and host arguments. To
build only the target library, do not provide a host name. (However, a host
library is required to access the target library by means of the link-edit
process. Presumably, you either have a usable host library or will build
one separately.) If you want mkshl ib to build only a new host shared
library and reuse an existing target shared library, use the -n option. You
must supply the target argument, even if you are only building the host.

To build the host and target files, mkshl ib invokes other tools, such as
the archiver, ar(l), the assembler, as(l), and the loader, ld(l).

The shared-library specification file contains all the information necessary
to build both the host and target shared libraries. The file contains directive
names and associated specification information. Directive names must be
at the beginning of the line. Some directives have specification information
on the same line, and some directives introduce multiple specifications on
subsequent lines. Lines following such a directive are interpreted as
specification lines for that directive, until another directive or the end of the
file is encountered.

The following list describes the six possible directive names and explains
how to use them. The directives, except for # ini t, can be given in any
order in the specification file.

comment-text
Specifies that the rest of the line is a comment. All comment text on
that line is ignored. Comment lines may occur anywhere. Comments

November 1991 2

mkshlib(1) mkshlib(1)

3

are recommended, but optional.

#address section address
Specifies the starting address in the virtual address space at which to
bind the specified section of the target shared library. Typically,
address directives are provided for the . text and . data sections of
the target library. Addresses must be on a 256 kilobyte (KB)
boundary.

The . bss section is grouped with the . data section and does not
require a starting address.

#branch
branch-table-specification ...

Interprets all lines following the #branch directive as branch-table
specifications until it encounters another directive. A specification file
can contain only one #branch directive. The branch table built from
these specifications consists of jump instructions to the specified
functions.

Branch-table specification lines have this format:

function position

Give branch-table entries only to external functions. The position
value is the relative location of the function name in the branch table.
Each function can appear only once. The value of position for each
function given is the position (or position range) of the name in the
branch table. The value of position is a single integer, or a range of
integers of the form positionl-position2. Position values start with 1.
Use each position value only once. You must account for all position
values from 1 to the highest value.

When adding functions to an existing library, provide the new
functions at higher positions than those they occupy in the existing
branch table. Changing positions in an existing branch table renders
that shared library unusable by previously linked applications.

A position range can also be used to reserve empty slots in the branch
table for later use. Only the highest value of the range is associated
with the function name. The remaining positions in the range can be
used later for other functions.

#init object
initialization ...

Specifies object, using the name of an object file that requires
initialization code (because it uses an imported variable). Each object
file that requires initialization must be specified. (If the shared library
being built is completely self-contained, that is, if it uses no imported

November 1991

mkshlib(l) mkshlib(l)

variable, no # ini t directive is used because no initialization code is
necessary.)

All # ini t directives must be placed after the #objects directive
and its associated specifications in the specification file.

An # ini t directive is followed by one or more initialization
specification lines pertaining to the object file, object, named in the
directive. Each line following the directive is interpreted as a
specification line until another directive is encountered. To specify
each line of initialization, use the following format:

import importptr

Replace import with an imported variable. Replace importptr with a
pointer defined in the object file named in the # ini t directive
preceding the initialization line. For each initialization line specified
by this method, initialization code is generated in this form:

importptr = &import;

The system sets the value of importptr to the absolute address of
import.

#objects
file ...

Specifies each entry of file, using the names of the object files that
constitute the target shared library.

This directive can be specified only once per shared library
specification file. The system interprets the lines following the
directive as specifications of file until another directive is encountered.

#target pathname
Specifies the absolute pathname for the location of the target shared
library on the target system. This pathname, copied into a . out files,
tells the operating system where to find the target shared library when
executing a file that uses it. The maximum length of pathname is 64
characters.

FILES
/lib/* s.a

Host (archive) library file
/shlib/*_s

Target (executable) library file
I tmp I pid-and-time

Temporary directory
/usr/bin/mkshlib

Executable file

November 1991 4

mkshlib(1) mkshlib(l)

SEE ALSO
ar(l), as(l), cc(l), ld(l)

a. out(4), ar(4) in A/UX Programmer's Reference

"Shared Libraries" in AIUX Programming Languages and Tools, Volume I

5 November 1991

mkstr(l) mks tr(I)

NAME
mks tr - creates an error message file by massaging C source programs

SYNOPSIS
mks tr [-]message.file prefix file ...

ARGUMENTS
Causes the error messages to be placed at the end of the specified
message file for recompiling part of a large mks t red program.

file Specifies the file to be processed.

message.file
Specifies the file into which the error messages are placed.

prefix
Specifies the prefix for the output file. The name of the output file
consists of the prefix (prefix) and the original filename (file).

DESCRIPTION
mks tr is used to create files of error messages. Using it can make
programs with large numbers of error diagnostics much smaller, and reduce
system overhead in running the program as the error messages do not have
to be constantly swapped in and out.

The mks tr program will process each specified.file, placing a massaged
version of the input file in a file whose name consists of the specified prefix
and the original name.

To process the error messages in the source to the message file mks tr
keys on the string error (11 in the input stream. Each time it occurs, the C
string starting at the 11 is placed in the message file followed by a newline
character and a null character; the null character terminates the message so
it can be easily used when retrieved, the newline character makes it
possible to sensibly cat the error message file to see its contents. The
massaged copy of the input file then contains a 1 seek pointer into the file,
which can be used to retrieve the message, i.e.:

char efilname[J = 11 /usr/lib/pi_strings 11
;

int efil = -1;

You have to write the error-handling function yourself. The following is
an example:

error(al, a2, a3, a4)
{

November 1991

char buf [256];
if (efil < 0) {

efil = open(efilname, 0);
if (efil < 0) {

rnkstr(l) rnkstr(l)

oops:
perror(efilnarne);
exit(l);

if (ls eek (ef il, (long) al, 0) < OL
11 read(efil, buf, 256) <= 0)

goto oops;
printf (buf, a2, a3, a4);

EXAMPLES
If the current directory has files a . c and b . c, then

rnkstr exs x *.c

would create a new file exs, which holds all the error messages extracted
from the source files a . c and b . c, as well as two new source files xa . c
and xb. c, which no longer contain the extracted error messages.

LIMITATIONS
All the arguments except the name of the file to be processed are
unnecessary.

FILES
/bin/mks tr

Executable file

SEE ALSO
cc(l), xstr(l)

1 seek(2) in A/UX Programmer's Reference

2 November 1991

mm(1) mm(1)

NAME
mm - formats documents that contain nroff and mm macro formatting
requests

SYNOPSIS
mm [-12] [- c] [- e] [- E] [-t] [-Ttty-type] [file]. ..

ARGUMENTS
-12

Indicates that the document is to be produced in 12-pitch. You can
use this flag option when $TERM is set to one of 3 0 0, 3 0 0 s, 4 5 0,
and 16 2 0. If you use this flag option, you must manually set the
switch to 12 on the DASI 300 and 300s terminals.

-c Causes mm to invoke col; note that col is invoked automatically by
mm unless $TERMisoneof300, 300s, 450, 37, 4000a, 382,
4014, tek, 1620, or X.

- e Causes mm to invoke neqn in a way that causes neqn to read the
/usr /pub/ eqnchar file. See eqnchar(5) for details.

-E Invokesthe-eoptionofnroff.

file Specifies the file to be formatted.

-t Causes mm to invoke tbl.

-Ttty-type
Specifies the type (tty-type) of output terminal.

DESCRIPTION
mm formats documents using nroff and the mm text-formatting macro
package. The mm command has options to specify preprocessing by tbl,
eqn, and neqn and postprocessing by various terminal-oriented output
filters.

Using the options you select, mm generates the proper pipelines and the
required flag options and arguments for nroff and the mm macros. Any
other options that appear on the mm command line are passed to nroff as
appropriate. You may use such options in any order, but you must put
them before the file argument. If you do not specify any arguments, mm
prints a list of its options.

The list of recognized values for the -Ttty-type option follow. Replace
tty-type with one of these values:

3 7 Prepares output for a TELETYPE+ Model 37, which is the default for
nroff.

40/4
Prepares output for a TELETYPE Model 40/4 using the - c option.

November 1991

rnm(l) rnm(l)

4 3 Prepares output for a TELETYPE Model 43 using the - c option.

450
Prepares output for a DASI 450, which is the default for mm. This
value for tty-type is equivalent to -T1620.

450-12
Prepares output for a DASI 450 in 12-pitch mode.

300
Prepares output for a DASI 300 terminal.

300-12
Prepares output for a DASI 300 in 12-pitch mode.

300s
Prepares output for a DASI 300S.

300s-12
Prepares output for a DASI 300S in 12-pitch mode.

382
Prepares output for a DTC-382.

745

832

Prepares output for a Texas Instrument 700 series terminal using the
-c option. This value for tty-type is equivalent to -T735.

Prepares output for an Anderson Jacobson 832 printer using the - c
option.

2631
Prepares output for an HP263 l printer using the - c option.

2631-c
Acts the same as -T2631, but uses compressed mode.

2631-e
Acts the same as -T 2 6 3 1, but uses expanded mode.

4000a
Prepares output for a TRENDATA 4000A.

4014
Prepares output for a TEKTRONIX 4014.

8510
Prepares output for a C. Itoh printer using the - c option.

hp Prepares output for a Hewlett-Packard HP262x or HP264x using the
-c option. This value for tty-type is equivalent to -T2621, -T2640,
and -T2 645.

2 November 1991

mm(l) mm(1)

lp Prepares output for a device with no reverse or partial line motions or
other special features using the - c option.

tn300
Prepares output for a Terminet 300 printer using the - c option.

X Prepares output for an EBCDIC line printer.

If you do not use the -Ttty-type option, mm uses the value of the shell
variable $TERM from the environment (see prof ile(4) and
environ(5)) as the value of tty-type, if $TERM is set; otherwise, mm uses
4 5 0 as the value of tty-type. If you specify several terminal types, the last
one takes precedence.

If you lie to mm about the kind of terminal its output is to be printed on, you
get readily apparent or subtle garbage. If you redirect output to a file, use
the -T3 7 option and then use the appropriate terminal filter when you
actually print the file.

When you specify a hyphen (-) on the command line instead of a filename,
mm reads the standard input. Reading the standard input allows mm to be
used as a filter, as shown here:

cat file I mm -

Specifying a filename in addition to a hyphen does not work.

Options for nroff
The mm command invokes nroff with the - h option, which causes
nroff to assume that the terminal has tabs set every 8 character positions.

You can use the - olist option of nroff to specify ranges of pages to be
output. Note, however, that if you invoke mm with -olist and one or more
of the -e, -t, and - options, a harmless broken pipe diagnostic may
be appear if the last page of the document is not specified in list.

If you use the - s option of nroff to stop between pages of output, use
linefeed (rather than return or newline) to restart the output. The - s option
of nroff does not work with the - c option of mm or if mm automatically
invokes col. See the -c option described earlier.

EXAMPLES
Assuming that the shell variable $TERM is set to 4 5 0, the two command
lines below are equivalent:

mm - t - re 3 -12 file
tbl fik I nroff -cm -T450-12 -h -rC3

November 1991 3

mm(l)

STATUS MESSAGES AND VALVES
The mm command displays

mm: no input file

mm(l)

if none of the arguments is a readable file and mm is not used as a filter.

FILES
/bin/mm

Executable file
/usr/pub/terminals

File containing a list of terminals

SEE ALSO

4

checkmm(l), col(l), env(l), eqn(l), greek(l), mmt(l), nroff(l),
tbl(l), troff(l)

prof i le(4), mm(5), term(5) in AIUX Programmer's Reference

"mm Reference" in AIUX Text Processing Tools

November 1991

mmt (1) mmt (1)

NAME
mmt, mvt - typeset documents that contain troff and mm or mv
macro-formatting requests

SYNOPSIS
mmt [-a] [-Ddest] [-e] [-g] [-p] [-t] [-Ttty-type] [-z] [file] .. .

mvt [-a] [-Ddest] [-e] [-g] [-p] [-t] [-Ttty-type] [-z] [file] .. .

ARGUMENTS
- a Sends the output to an ASCII terminal.

-Ddest
Directs output by means of the device dest, using the tc(l) filter. The
currently supported values for dest are 4014 and i 10 for the
TEKTRONIX 4014 terminal and an Imagen Imprint-IO device,
respectively.

- e Invokes eqn in a way that causes eqn to read the
/usr /pub/ eqnchar file. See eqnchar(5) for details.

file Specifies the file to be typeset. If you specify a hyphen (-) on the
command line instead of a filename, mmt and mvt read the standard
input. Reading the standard input allows either of these commands to
be used as a filter, as shown here:

cat file I mmt -

-g Invokes grap(l), which in turn calls pie.

-p Invokes pic(l).

-t Invokes tbl(l).

-Ttty-type
Creates output for a particular destination device specified by tty-type.
Appropriate output is created through the selection of an appropriate
postprocessor. To create output for an APS-5 device or troff device,
replace tty-type with aps or pt ty. See daps(l) and trof f(l) for
details.

- z Invokes no output filter to process or redirect the output oft ro ff.

DESCRIPTION
mmt and mvt are front-ends for calling troff, just as mm is a front-end
for calling nrof f(l). The mmt command uses the mm macro package and
has options that let you specify preprocessing by eqn, grap, pie, and
tbl. The mvt command uses the mv macro package and has the same
options.

November 1991

nunt(l) nunt(l)

The discussion that follows refers only to nunt, but also applies to rnvt.

Using the options you specify, nunt generates the proper pipelines and the
required arguments and flags for troff and the appropriate macros.

Options can be specified in any order, but they must appear before the file
arguments. If you do not specify any arguments, nunt prints a list of its
options.

You can use the - olist option of troff to specify ranges of pages to be
output. Note, however, that if you invoke nunt with - olist and one or more
of the -e, -g, -p, -t, and - options, a harmless broken pipe
diagnostic may appear if the last page of the document is not specified in
list.

STATUS MESSAGES AND VALUES
If none of the arguments is a readable file and the command is not being
used as a filter, the following error message is displayed:

nut: no input file

LIMIT A TIO NS
Because the programs gcat and vpr are not supplied with A/UX, you
cannot use vp and st as replacement values for tty-type.

FILES
/bin/nunt

Executable file
/bin/rnvt

Executable file

SEE ALSO

2

daps(l), env(l), eqn(l), grap(l), nun(l), nroff(l), pic(l), tbl(l),
tc(l), troff(l)

profile(4), environ(5), nun(5), rnv(5) inA/UX Programmer's
Reference

A/UX Text Processing Tools

November 1991

more(l) more(l)

NAME
more, page - show the contents of a file in display-size chunks

SYNOPSIS
more [-c] [-d] [-f] [-1] [-n] [-s] [-u] [+linenumber] [file]. ..

more [-c] [-d] [-f] [-1] [-n] [-s] [-u] [+/pattern] [file]. ..

page [-c] [-d] [-f] [-1] [-n] [-s] [-u] [+linenumber] [file]. ..

page [-c] [-d] [-f] [-1] [-n] [-s] [-u] [+!pattern] [file] ...

ARGUMENTS
+linenumber

Causes more to start up at linenumber.

+!pattern
Causes more to start up two lines before the line containing the
regular expression pattern, if the input is from a file. If input is from a
pipe, more starts on the line where the pattern was found.

-c Causes more to draw each page by beginning at the top of the screen
and erasing each line just before it draws on it. This avoids scrolling
the screen, making it easier to read while more is writing. This flag
option will be ignored if the terminal does not have the ability to clear
to the end of a line.

-d Causes more to prompt the user with the message

Hit space to continue, Rubout to abort

at the end of each screenful.

- f Causes more to count logical lines, rather than screen lines; that is,
long lines are not folded. This flag option is recommended if nroff
output is being piped through ul, since the latter may generate escape
sequences. These escape sequences contain characters which would
ordinarily occupy screen positions, but which do not print when they
are sent to the terminal as part of an escape sequence. Thus more
may think that lines are longer than they actually are, and, therefore,
fold lines erroneously.

file Specifies the file to be displayed.

-1 Causes more not to treat CONTROL-L (form feed) as special. If this
flag option is not given, more will pause after any line that contains a
CONTROL-L, as if the end of a screenful had been reached. Also, if a
file begins with a form feed, the screen will be cleared before the file
is printed.

-n Specifies an integer which is the size (in lines) of the window which
more will use instead of the default.

November 1991

more(l) more(l)

- s Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on the screen.

-u Suppresses normal processing of underlining. more will handle
underlining such as produced by nroff in a manner appropriate to
the particular terminal; if the terminal can perform underlining or has
a stand-out mode, more will output appropriate escape sequences to
enable underlining or use stand-out mode for underlined information
in the source file.

DESCRIPTION

2

more is a filter which allows examination of continuous text one screenful
at a time on a CRT terminal. It normally pauses after each screenful,
printing - -More- - at the bottom of the screen.

page functions similarly, except that the screen is cleared before each
screenful is displayed (but only if a full screenful is displayed), and that k-1
rather than k-2 lines are printed in each screenful, where k is the number of
lines the terminal can display.

If the user then presses RETURN, one more line is displayed. If the RETURN
is preceded by an integer, that number becomes the new window size. If
the user hits a space, another screenful is displayed. If a space is preceded
by an integer, that number of lines is displayed. If the user presses d or
CONTROL-D, 11 more lines (usually half a screenful) are displayed (a
"scroll"). If d or CONTROL-Dis preceded by an integer, that number
becomes the new scroll size.

The more program looks in the file I etc I termcap to determine
terminal characteristics and to determine the default window size. On a
terminal capable of displaying 24 lines, the default window size is 22 lines.

The more program looks in the environment variable MORE to preset any
flags desired. For example, if you prefer to view files using the - c mode of
operation, the sh command sequence

MORE='-c'; export MORE

or the csh command

setenv MORE -c

would cause all invocations of more, including invocations by programs
such as man and msgs, to use this mode. (Note, however, that the man
command also looks at the PAGER environment variable; see man(l).)
Normally, the user will place the command sequence that sets up the MORE
environment variable in the shell startup file. login, .profile, or
. cshrc.

November 1991

more(l) more(l)

If more is reading from a file rather than a pipe, then a percentage is
displayed along with the - -More- - prompt. This gives the fraction of the
file (in characters, not lines) that has been read so far.

Once inside more, other sequences may be typed when more pauses. The
sequences and their effects are as follows (i is an optional integer
argument, defaulting to 1) :

Displays the current line number.

v Starts up the editor vi at the current line (does not work if the input to
the program is from a pipe).

h Invokes help which provides a description of all the more commands.

i: n Skips to the ith next file given in the command line. (Skips to last file
if i doesn't make sense.)

i: p Skips to the ith previous file given in the command line. If this
command is given in the middle of printing out a file, then more goes
back to the beginning of the file. If i doesn't make sense, more skips
back to the first file. If more is not reading from a file, the bell rings
and nothing more happens.

: f Displays the current filename and line number.

:q
: Q Exits from more (same as q or Q).

Repeats the previous command.

i z Same as typing a space except that i, if present, becomes the new
window size.

is Skips i lines and prints a screenful of lines.

if Skips i screenfuls and prints a screenful of lines.

in Searches for the ith occurrence of the last regular expression entered.

q
Q Exits from more. The interrupt character may also be used.

ii expr
Searches for the ith occurrence of the regular expression expr.
Terminated either by pressing RETURN or the ESCAPE key. If the input
is a file (rather than a pipe), and there are fewer than i occurrences of
expr, then the position in the file remains unchanged and an error
message is printed. If the input is a file (rather than a pipe), and there
are at least i occurrences of expr, a screenful is displayed, starting two
lines before the place where the expression was found. If the input is
a pipe and there are fewer than i occurrences of expr, an error
message is printed and more exits (because the entire input stream

November 1991 3

more(l) more(l)

has been read). If the input is a pipe and there are at least i
occurrences of expr, a screenful is displayed, starting on the line
where the expression was found. The user's erase and kill characters
may be used to edit the regular expression. Erasing back past the first
column cancels the search command.

Goes to the point from which the last search started. If no search has
been performed in the current file, this command goes back to the
beginning of the file. (Doesn't work if the input to the program is
from a pipe.)

!command
Invokes a shell with command. Terminated either by pressing
RETURN or the ESCAPE key.

Up to the time when the command character itself is given, the user
may hit the line kill character to cancel the numerical argument being
formed. In addition, the user may hit the erase character to redisplay
the --More--(xx%) message.

: !command
Invokes a shell with command. (Same as ! command).

CONTROL-L CL)
Redraws the screen by pressing CONTROL-L CL). (This doesn't work
if the input to the program is from a pipe.)

Any time output is being sent to the terminal, the user may press the quit
key (normally CONTROL-\). more will stop sending output, and will
display the usual - - More - - prompt. The user may then enter one of the
commands in the normal manner. Unfortunately, some output is lost when
this is done, due to the fact that any characters waiting in the terminal's
output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can
be continuous. What is typed will not show on the terminal, except for the
I and ! commands.

If the standard output is not a terminal, then more acts just like cat,
except that a header is printed before each file (if there is more than one).

EXAMPLES
The command:

nroff -ms +2 doc.n I more

would show the nroff output on the terminal screen.

4 November 1991

more(1)

FILES
/bin/more

Executable file
/bin/page

Executable file
/etc/termcap

Terminal capabilities file
/usr/lib/more.help

Help information file

SEE ALSO
cat(l), pg(l)

termcap(4), terminfo(4) inNUX Programmer's Reference

November 1991

more(l)

5

mt(l) mt(l)

NAME
mt - manipulates magnetic tape media

SYNOPSIS
mt [- fdevice-file] command [count]

ARGUMENTS
command

Specifies the command that you want to have performed. Supported
commands are bsf, bsr, eof, format, fsf, f sr, off line,
rewind, rewof f 1, status, and weof. (For more information,
see the "Description" section.)

count
Specifies the number of times that command should be performed.
When no count value is supplied, the default is 1. (This value is
ignored for the rewind and format commands).

- f device-file
Specifies the raw device file that addresses the desired device. Your
choices include the device files in the directory I dev I rmt that
reference a port or SCSI ID through which the tape drive is connected.
Note that device-file must reference a raw (not block) tape device
driver.

DESCRIPTION
mt sends commands that you specify to manipulate a magnetic tape drive
as moderated by the tape device interface mt io (see mt io(7)). If
device-file is not specified with the - f option, the environment variable
TAPE is used; if TAPE does not exist, mt attempts to use the device
referenced by I dev I rm t c.

Device Commands
The device commands that you may specify are listed following. You only
need to specify as many characters as needed to uniquely identify a
command within the set.

bsf
Back-spaces count files.

bsr
Back-spaces count records.

eof
weof

Writes count end-of-file markers at the current position on the tape.

format
Formats a tape cartridge. (count is ignored.) This value applies only
to I dev I rm t It ex [n J device files that represent the Apple Tape

November 1991

mt (1) mt (1)

Backup 40SC.

fsf
Forward-spaces count files.

f sr
Forward-spaces count records.

off line
rewof fl

Rewinds the tape and place the tape unit off-line (count is ignored).

rewind
Rewinds the tape. (Count is ignored.)

status
Prints status information about the tape unit.

Note: The number reported as the available space does not
give any consideration to media defects, which could reduce
the usable space. You should subtract about 5 percent of the
total tape capacity to determine the "usable capacity" that
allows for skippage over any defects.

f sr and bsr "Records"
For the f s r and b s r commands, records are equivalent to 8192 KB for all
tape drives. This is not true for 9-track tape drives, however. Other than
those drives, all other tape drives use a logical block size of 8192 KB. Do
not confuse the record size with the physical block size of the tape unit,
which could be anywhere in the range of .5 KB (512 bytes) to 8192 KB.

For example, the number reported by the status command as the
maxblk amount is equivalent to the maximum number of 8192 KB blocks
on the tape media, unless a 9-track drive was queried.

STATUS MESSAGES AND VALUES
The mt program returns a 0 exit status when count invocations of
command are successful, 1 if command was unrecognized, and 2 if any
invocation of command failed.

FILES
/dev/rmt/*

Raw magnetic tape device files
SEE ALSO

ioctl(2), environ(5), mtio(7) inA/UX Programmer's Reference

November 1991 2

mv(l)

NAME
mv - moves or renames files

SYNOPSIS
mv [- i] [- f] [-] file] file2

mv [- i] [- f] [-] file ... directory

ARGUMENTS

mv(l)

Interprets all the following arguments to mv as filenames. This allows
filenames starting with minus.

directory
Specifies the directory into which the files will be placed.

- f Causes mv to use force. This flag option overrides any mode
restrictions or the - i option.

file Specifies the file that will be moved into the directory (directory).

file]
Specifies the file that is to be renamed.

file2
Specifies the file that.file] was renamed to.

- i Specifies interactive mode. Whenever a move is to supercede an
existing file, the user is prompted by the name of the file followed by a
question mark. If he answers with a line starting with y, the move
continues. Any other reply prevents the move from occurring. The
- f option overrides this option.

DESCRIPTION
mv moves (changes the name of) one file (filel) to another file RI (file2).
If file2 already exists, it is removed before file 1 is moved. If file2 has a
mode which forbids writing, mv prints the mode (see chmod(2)) and reads
the standard input to obtain a line; if the line begins with y, the move takes
place; if not, mv exits.

The mv command can also move one or more files (file), which can be
plain files or directories, into a directory (directory) with their original
filenames.

The mv command refuses to move a file onto itself.

LIMITATIONS
If jilel andjile2 lie on different file systems, mv must copy the file and
delete the original. In this case the owner name becomes that of the
copying process and any linking relationship with other files is lost.

November 1991

rnv(1)

FILES
/bin/rnv

Executable file

SEE ALSO
cp(l), ln(l)

November 1991

rnv(1)

2

mvt(l) mvt(l)

See mmt(l)

November 1991

ndx(l)

NAME
ndx - creates a subject-page index for a document

SYNOPSIS
ndx subjfile formatter-command-line

ARGUMENTS
formatter-command-line

Creates the final form of the document. The syntax for
formatter-command-line is:

formatter [option]. .. file ...

subjfile

ndx(l)

Specifies the list of subjects to be included in the index. Each subject
must begin on a new line and have the following format:

word] [word2 ...][, wordn ...]

DESCRIPTION
ndx, given a list of subjects (subjfile), searches a specified document and
writes a subject-page index to the standard output.

Some examples of a subject file are:

printed circuit boards
arrays
arrays, dynamic storage
Smith, W. P.
printed circuit boards, channel-oriented
Aranof f
University of Illinois
PL/I

The subject must start in column 1.

The following are examples of valid formatter command lines:

mm -Tlp files
nroff -mm -Tlp -rW60 file
troff -rB2 -Taps -rOl. Si files

For more information about the formatter command line, see mm(1),
mmt(l), nroff(l), and troff(l).

The document must include formatting commands for mm, nroff, or
troff. The formatter command line tells ndx whether troff, nroff,
mm, or mmt would be used to produce the final version of the document.

troff or mmt
Specifies troff as the formatting program.

November 1991

ndx(l) ndx(l)

nroff or mm
Specifies nroff as the formatting program.

The options are those that would be given to the troff, nroff, mm, or
mm t command in printing the final form of the document and are necessary
to determine the correct page numbers for subjects as they are located in
the document. ndx does not actually cause the final version of the
document to be printed. The author must create the document separately.
The indexer, of course, should not be used until the document is complete
and no further changes are expected.

EXAMPLES
The command:

ndx subj.file "nroff -mm - rW7 0 files" > index.file

would produce a subject-page index for the document.files and take its
subjects from the list, subj.file. The page numbers would correspond to the
document produced by:

nroff -mm -rW70 files

The command:

ndx subj.file "mm -rW60 -rN2 -rOO chl ch2 ch3" > index.file

would produce a subject-page index for the documents chl, ch2, and
ch3. The page numbers would correspond to the documents produced by:

mm -rW60 -rN2 -rOO chl ch2 ch3

The command:

ndx subj.file "troff -rB2 -rWSi -rOl. Si -mm files" > index.file

would produce a subject-page index for the document.file. The page
numbers would correspond to the document produced by:

troff -rB2 -rWSi -rOl. Si -mm files

FILES
/usr/bin/ndx

Executable file

SEE ALSO
mm(l), mmt(l), nroff(l), subj(l), troff(l)

2 November 1991

neqn(l) neqn(l)

NAME
neqn - formats mathematical text for nroff

SYNOPSIS
neqn [-dxy] [- fn] [-pn] [- sn] [-] [file]. ..

ARGUMENTS
Causes neqn to read the standard input, if this option is specified as
the last argument.

-dxy
Sets delimiters to x and y between . EQ and . EN. The left and right
delimiters may be the same character. The dollar sign($) is often
used as such a delimiter. All text that is neither between delimiters
nor between . EQ and . EN is passed through untouched.

file Specifies the file to be formatted. If this option is not given, neqn
reads the standard input.

-fn

-pn

-sn

Specifies the font to be used. Replace n with the desired font.

Specifies the point size of the equation. Replace n with a point size.
The legal point size numbers are:

6 7 8 9 10
16 18 20 22

11 12
24 28

14
36

Specifies the amount to reduce or enlarge the point size of the
equation. The default size is I 0. Replace n with the number in which
you want the default size reduced or enlarged.

DESCRIPTION
neqn is a preprocessor for typesetting mathematical text on typewriter-like
terminals. Normal usage is:

neqn [option] ... [file]. .. I nroff [option]... I [printer]

Full details of use are given in eqn(l).

FILES
/bin/neqn

Executable file

SEE ALSO
eqn(l), mrn(l), nroff(l), tbl(l)

eqnchar(5), mrn(5) in AJUX Programmer's Reference

November 1991

neqn(l) neqn(l)

"eqn Reference" in AIUX Text Processing Tools

2 November 1991

netstat(IN)

NAME
net stat - displays network status information

SYNOPSIS
netstat [-a] [-A] [-n] [-f address-family] [kernel]
[memory-interface]

netstat(IN)

netstat [-h] [-i] [-rn] [-n] [-r] [-s] [-f address-family] [kernel]
[memory-interface]

net stat [-I interface] interval [kernel] [memory-interface]

netstat -I interface [-n] [kernel] [memory-interface]

ARGUMENTS
- a Displays the state of all sockets, including sockets that are used by

server processes, using the default display.

-A Displays the address of any protocol control blocks associated with
sockets as well as the default display. This option is used for
debugging.

- f address-family
Limits the display of statistics or address control blocks to those
specified by the value of address-family. You can use these address
families: inet (for AF _INET) and unix (for AF _UNIX).

- h Displays the state of the ICMP host table, using the default display.

- i Displays the state of interfaces that have been configured into the
kernel by au toconf ig. Interfaces statically configured into the
system but not assigned at the time the system starts up are not shown.

- I interface
Displays information about the interface specified by interface only.
Possible values for interface include aeO, loO, slO, and sll.

interval
Specifies, in seconds, an interval of time during which nets tat
accumulates and displays data continuously for the default interface,
which is the first interface that autoconf ig configured when it
made the kernel.

kernel
Specifies a kernel other than the default, /unix.

-rn Displays statistics recorded by the memory-management routines that
manage a private pool of memory buffers.

memory-interface
Specifies a memory interface other than the default, I dev I kmem.

November 1991

netstat(lN) netstat(lN)

-n Causes netstat to display Internet addresses as numbers. If you do
not specify this option, nets tat interprets addresses and displays
them symbolically. You can use this option with any option that
causes the display of an Internet address.

- r Displays the routing tables. If you also specify the - s option, the - r
option displays routing statistics instead.

- s Displays statistics on a per-protocol basis. The available protocols
include UDP, TCP, ICMP, and IP.

DESCRIPTION
net stat displays the contents of various network-related data structures
in the kernel, including the active sockets for each protocol, interface
information, and packet traffic.

Default Display
When the net stat command is given with no options or with the -a, -A,
or -h option, net stat uses its default display to present the resulting
information for all sockets except those sockets used by server processes.
The .information includes the name of the protocol, the size of the send
queue and the size of the receive queue in bytes, the local and remote
addresses, and the internal state of the protocol. This format is the default
display. If a socket's address specifies a network but no specific host
address, address formats are of the form host.port or network.port. When
the host and network addresses are known, nets tat displays them
symbolically according to I etc /hosts and I etc /networks,
respectively. If a symbolic name for an address is unknown or if you
specify the -n option, nets tat displays the address numerically
according to the address family. For more information on the format of
Internet addresses, see inet(3N). An unspecified or wildcard address or
port appears as an asterick (*).

Routing Table Display

2

Use the - r option to show the available routes and their status. Each route
consists of a destination host or network and a gateway to use in
forwarding packets. The Flags field shows the state of the route (u if
"up"), whether the route is to a gateway (G), and whether the route was
created dynamically by a redirect (D). Direct routes are created for each
interface attached to the local host; the Gateway field for such entries
shows the address of the outgoing interface. The Ref field gives the
current number of active uses of the route. Connection-oriented protocols
usually preserve a single route for the duration of a connection, whereas
connectionless protocols obtain a route while sending to the same
destination. The Use field provides a count of the number of packets sent
over that route. The Interface field indicates the network interface
used for the route.

November 1991

netstat(IN) netstat(IN)

Memory Statistics Display
Use the -rn option to show the number of buffers allocated to packet
headers, socket structures, protocol control blocks, routing table entries,
socket names and addresses, and interface addresses. The output also
includes a summary of mapped pages in use, allocated interface pages,
requests for memory delayed or denied, and the number of calls to the
protocol drain routines.

Interface Display
Use the - i or - I option to show interface information. The Mt u field
gives the maximum transmission unit of the interface. The I pkt s and
Opkt s fields give, respectively, the number of incoming and outgoing
packets transmitted since the system was started. The Ierrs and Oerrs
fields give, respectively, the number of incoming and outgoing errors that
have occurred since the system was started. The Coll field gives the
number of collisions that have occurred since the system was started.

Protocol Display
Use the - s option to produce a summary of protocol-specific information.
For example, the output for the UDP protocol includes the number of
incomplete headers, the number of bad data-length fields, the number of
bad checksums, the number of received packets, the number of received
big packets, and the number of socket overflows.

Interval Display
If you specify the interval argument, nets tat displays five columns of
summary information about the default interface since the system was
started and five columns of summary information about all interfaces.
Subsequent lines of output show values accumulated over the preceding
interval. To stop the output, send an interrupt signal (SIGINT), usually
CONTROL-C, to nets tat. You can change the default interface by using
the - I option.

LIMITATIONS
The notion of errors is ill-defined.

Collisions have a different meaning in the ICMP protocol than in the other
protocols.

FILES
/dev/krnern

Default memory interface file
/unix

Default kernel directory
/usr/bin/netstat

Executable file

November 1991 3

netstat(lN) netstat(lN)

SEE ALSO
hosts(4), networks(4N), protocols(4N), services(4N) inA/UX
Programmer's Reference

trpt(IM) in AIUX System Administrator's Reference

4 November 1991

newf orrn(1) newf orrn(1)

NAME
newforrn- changes the format of a text file

SYNOPSIS
newforrn [-an] [-bn] [-cchar] [-en] [-f] [-itabspec] [-ln]
[-otabspec] [-pn] [-s] [file] ...

ARGUMENTS
-an

-bn

Works the same as -pn except characters are appended to the end of a
line.

Truncates n characters from the beginning of the line when the line
length is greater than the effective line length (see - ln). Default is to
truncate the number of characters necessary to obtain the effective line
length. The default value is used when - b with no n is used. This
option can be used to delete the sequence numbers from a COBOL
program as follows:

newforrn -11 -b7 filename

The -11 must be used to set the effective line length shorter than any
existing line in the file so that the - b option is activated.

-cchar

-en

Changes the prefix/append character to char. Default character for
char is a space.

Works the same as - bn except that characters are truncated from the
end of the line.

- f Writes the tab specification format line on the standard output before
any other lines are output. The tab specification format line which is
printed will correspond to the format specified in the last - o option. If
no - o option is specified, the line which is printed will contain the
default specification of - 8.

file Specifies the file to be reformatted.

-itabspec
Inputs tab specification: expands tabs to spaces, according to the tab
specifications given. tabspec recognizes all tab specification forms
described in tabs(l). In addition, tabspec may be - -, in which
newf orrn assumes that the tab specification is to be found in the first
line read from the standard input (see f spec(4)). If no tabspec is
given, tabspec defaults to - 8. A tabspec of - 0 expects no tabs; if any
are found, they are treated as - 1.

November 1991

newf orrn(1) newf orrn(1)

-ln
Sets the effective line length to n characters. If n is not entered, -1
defaults to 72. The default line length is 80 characters. Note that tabs
and backspaces are considered to be one character (use - i to expand
tabs to spaces).

-otabspec

-pn

Outputs tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as for
- i tabs pee. If no tab spec is given, tab spec defaults to - 8. A tab spec
of - 0 means that no spaces will be converted to tabs on output.

Prefixes n characters (see - cchar) to the beginning of a line when the
line length is less than the effective line length. Default is to prefix the
number of characters necessary to obtain the effective line length.

- s Shears off leading characters on each line up to the first tab and places
up to eight of the sheared characters at the end of the line. If more
than eight characters (not counting the first tab) are sheared, the eighth
character is replaced by an * and any characters to the right of it are
discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used on
a file without a tab on each line. The characters sheared off are saved
internally until all other options specified are applied to that line. The
characters are then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after the
first expanded to spaces, padded with spaces out to column 72 (or
truncated to column 72), and the leading digits placed starting at
column 73, the command would be:

newforrn -s -i -1 -a -e fikname

DESCRIPTION

2

newf orrn reads lines from the named files, or the standard input if no input
file is named, and reproduces the lines on the standard output. Lines are
reformatted in accordance with command line options in effect.

Except for the - s option, options may appear in any order, may be
repeated, and may be intermingled with the optionalfiles. Command
options are processed in the order specified. This means that option
sequences like - e 15 -16 0 will yield results different from -16 0 - e 15.

November 1991

newf orrn(1) newforrn(l)

STATUS MESSAGES AND VALUES
All error messages cause newf orrn to stop.

usage: ...
newf orrn was called with a bad option.

not -s format
There was no tab on one line.

can't open file
Self explanatory.

internal line too long
A line exceeds 512 characters after being expanded in the internal
work buffer.

tabspec in error
A tab specification is incorrectly formatted, or specified tab stops are
not ascending.

tabspec indirection illegal
A tabspec read from a file (or standard input) may not contain a
tabspec referencing another file (or standard input). The following
exit values can be set:

0 Specifies normal execution.

1 Indicates any error.

LIMITATIONS
The newf orrn command normally only keeps track of printable
characters; however, for the - i and - o options, newf orrn will keep track
of backspaces in order to line up tabs in the appropriate logical columns.

The newf orrn command will not prompt the user if a tabspec is to be read
from the standard input (by use of - i - or - o -).

If the - f option is used, and the last - o option specified was - o - , and was
preceded by either a - o - or a - i - , the tab specification format line will be
incorrect.

FILES
/bin/newf orrn

Executable file

SEE ALSO
cs pl i t(l), tabs(l)

f spec(4) in AIUX Programmer's Reference

November 1991 3

newgrp(1) newgrp(l)

NAME
newgrp - logs you into a new group

SYNOPSIS
newgrp [-] [group]

ARGUMENTS
Changes the environment to what would be expected if the user
actually logged in again.

group
Specifies the group you wish to be a part of.

DESCRIPTION
newgrp changes a user's group identification. The user remains logged
in, and the current directory is unchanged, but calculations of access
permissions to files are performed with respect to the new real and
effective group IDs. The user is always given a new shell, replacing the
current shell, by newgrp, regardless of whether it terminated successfully
or terminated due to an error condition (that is, unknown group).

Exported variables retain their values after invoking newgrp; however, all
unexported variables are either reset to their default value or set to null.
System variables (such as PSl, PS2, PATH, MAIL, and HOME), unless
exported by the system or explicitly exported by the user, are reset to
default values. For example, a user has a primary prompt string (PSl)
other than $ (default) and has not exported PSl. After an invocation of
newgrp, successful or not, their PSl will now be set to the default prompt
string $. Note that the shell command export (see sh(l)) is the method
used to export variables so that their assigned value is retained when
invoking new shells.

With no arguments, newgrp changes the group identification back to the
group specified in the user's password file entry.

A password is demanded if the group has a password and the user does not,
or if the group has a password and the user is not listed in I etc I group as
being a member of that group.

EXAMPLES
The command:

newgrp grpnam

would set the user's group ID to that of the group named grpnam.

LIMIT A TIO NS
There is no convenient way to enter a password into I etc I group. Use
of group passwords is not encouraged, because, by their very nature, they
encourage poor security practices. Group passwords may disappear in the

November 1991

newgrp(l)

future.

FILES
/bin/newgrp

Executable file
/etc/group

File containing a list of groups
/etc/passwd

File containing a list of passwords

SEE ALSO
login(l), sh(l)

newgrp(1)

group(4), pas swd(4), environ(5) in A/UX Programmer's Reference

November 1991 2

news(1) news(1)

NAME
news - displays local news items

SYNOPSIS
news [-a] [-n] [-s] [items]

ARGUMENTS
- a Displays all items, regardless of currency. In this case, the stored time

is not changed.

-n Reports the names of the current items without displaying their
contents, and without changing the stored time.

- s Reports how many current items exist, without displaying their names
or contents, and without changing the stored time. It is useful to
include such an invocation of news in one's . profile file, or in the
system's /etc/profile.

items
Specifies the news items that are to be displayed.

DESCRIPTION
news is used to keep the user informed of current events. By convention,
these events are described by files in the directory /usr /news.

When invoked without arguments, news displays the contents of all
current files in /usr /news, most recent first, with each preceded by an
appropriate header. The news program stores the "currency" time as the
modification date of a file named . news_t ime in your home directory
(the identity of this directory is determined by the environment variable
$HOME); only files more recent than this currency time are considered
''current.''

If the interrupt character (usually CONTROL-c) is pressed during the display
of a news item, the display stops and the next item is started. Another
interrupt within one second of the first causes the program to terminate.

EXAMPLES
The command:

news

will display all files in /usr /news that have not been read previously by
the account owner.

FILES
/bin/news

Executable file
/etc/profile

Executable file

November 1991

news (1)

/usr/news/*
Files containing news items

$HOME/.news_tirne
Executable file

SEE ALSO
profile(4), environ(5) inAIUX Programmer's Reference

November 1991

news(l)

2

nice(l) nice(l)

NAME
nice - executes a command at low priority

SYNOPSIS
nice [-increment] command [arguments]

ARGUMENTS
-increment

Specifies the increment of the command. Replace increment with a
number between 1 and 19. If this argument is not specified, an
increment of 10 is assumed. A negative increment (such as -10)
enables the superuser to run commands with priority higher than
normal.

arguments
Specifies the arguments for the specified command.

command
Specifies the command to be executed.

DESCRIPTION
nice executes command with a lower CPU scheduling priority. The
nice command built into the C shell is different from /bin/nice,
which can be used by any shell.

EXAMPLES
For the Bourne shell (sh) or Korn shell (ksh):

nice -10 date

would cause the program date to be processed at a priority lower than
normal (0), i.e., at + 10. In the C shell (c sh), the same is achieved by
typing in

nice +10 date

LIMIT A TIO NS
An increment larger than 19 is equivalent to 19.

STATUS MESSAGES AND VALUES
The nice program returns the exit status of the subject command.

FILES
/bin/nice

Executable file

SEE ALSO
csh(l), ksh(l), nohup(l), sh(l)

nice(2) in A/UX Programmer's Reference

November 1991

nl(1) nl(l)

NAME
nl - processes a file through a line numbering filter

SYNOPSIS
nl [-btype] [-ddelim] [-ftype] [-htype] [-iincr] [-lnum] [-nformat]
[-p] [-ssep] [-vstart#] [-wwidth]file

ARGUMENTS
-btype

Specifies which logical page body lines are to be numbered.
Recognized types and their meanings are:

-ddelim

a number all lines;

t numbers the lines with printable text only;

n no line numbering;

pstring
numbers only the lines that contain the regular expression
specified in string. Default type for logical page body is t
(text lines numbered).

Specifies the delimiter characters indicating the start of a logical page
section may be changed from the default characters (\:)to two user­
specified characters. If only one character is entered, the second
character remains the default character(:). No space should appear
between the -d and the delimiter characters. To enter a backslash,
use two backslashes.

-ftype
Specifies which logical footer lines are to be numbered. The default
for logical page footer is n (no lines numbered).

file Specifies the file to be read. If this argument is not given, the standard
input is read.

-htype
Specifies which logical header lines are to be numbered. The default
type for logical page header is n (no lines numbered).

-iincr
Numbers logical page lines with the increment value of incr. The
default is 1.

-lnum
Specifies the number of blank lines, num, to be considered as one. For
example, -12 results in only the second adjacent blank being
numbered (if the appropriate - ha, - ba, and/or - fa option is set).
The default is 1.

November 1991

nl (1) nl(l)

-nformat
Specifies the line numbering format. The recognized values are:

ln left justified, leading zeroes suppressed;

rn right justified, leading zeroes suppressed;

r z right justified, leading zeroes kept.

The default line numbering format is rn (right justified).

-p Does not restart numbering at logical page delimiters.

-ssep
Separates the line number and the corresponding text line with sep.
The default character is a tab.

-vstart#
Numbers logical page lines with the initial value start#. The default is
1.

-wwidth
Specifies width as the number of characters to be used for the line
number. The default width is 6.

DESCRIPTION
nl reads lines from the named.file and reproduces the lines on the standard
output. Lines are numbered on the left in accordance with the command
options in effect.

The nl program views the text it reads in terms of logical pages. Line
numbering is reset at the start of each logical page. A logical page consists
of a header, a body, and a footer section. Empty sections are valid.
Different line numbering options are independently available for header,
body, and footer (for example, no numbering of header and footer lines
while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing
nothing but the following delimiter character(s):

Line contents Start of

\: \: \:
\: \:
\:

header
body
footer

Unless otherwise specified, nl assumes the text being read is in a single
logical page body.

EXAMPLES
The command:

nl -vlO -ilO -d!+ filel

2 November 1991

nl(1) nl(l)

will number f i 1e1 starting at line number ten with an increment of ten.
The logical page delimiters are !+.

FILES
/bin/nl

Executable file

SEE ALSO
awk(l), cat(l), pr(l), sed(l)

November 1991 3

nm(l) nm(l)

NAME
nm - displays the symbol table of a common object file

SYNOPSIS
nm[-d] [-e] [-f] [-h] [-n] [-o] [-T] [-u] [-v] [-V] [-x] file ...

ARGUMENTS
-d Prints the value and size of a symbol in decimal (the default).

- e Prints only static and external symbols.

-f Produces full output. Redundant symbols (.test, . data, . bss),
normally suppressed, are printed.

file Specifies the common object file.

- h Does not display the output header data.

-n Sorts external symbols by name before they are printed.

- o Prints the value and size of a symbol in octal instead of decimal.

-T Truncates long names. By default, nm prints the entire name of the
symbols listed. Since object files can have symbol names with an
arbitrary number of characters, a name that is longer than the width of
the column set aside for names will overflow, forcing every column
after the name to be misaligned. The -T option causes nm to truncate
every name which would otherwise overflow its column and place an
asterisk as the last character in the displayed name to mark it as
truncated.

-u Prints undefined symbols only.

-v Sorts external symbols by value before they are printed.

-v Prints the version of the nm command executing on the standard error
output.

- x Prints the value and size of a symbol in hexadecimal instead of
decimal.

DESCRIPTION
nm displays the symbol table of each common object file filename. The
argument, filename, may be a relocatable or absolute common object file,
or it may be an archive of relocatable or absolute common object files. The
nm program prints the following information for each symbol. Note that
the object file must have been compiled with the -g option of the cc(l)
command for there to be type, size, or line information.

name
The name of the symbol.

November 1991

nm(l) nm(1)

value
Its value expressed as an offset or an address depending on its storage
class.

class
Its storage class.

tv If the symbol is accessed through a transfer vector, this field contains
tv.

type Its type and derived type. If the symbol is an instance of a structure or
a union, the structure or union tag is given following the type (e.g.,
struct-tag). If the symbol is an array, the array dimensions are given
following the type (e.g., char[n] [m]).

size Its size in bytes, if available.

line The source line number at which it is defined, if available.

section
For storage classes static and external, the object file section
containing the symbol (e.g., text, data, or bss).

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both nm name -e -v
and nm -ve name print the static and external symbols in name, with
external symbols sorted by value.

WARNINGS
When all the symbols are printed, they must be printed in the order they
appear in the symbol table in order to preserve scoping information.
Therefore, the -v and -n options should be used only in conjunction with
the - e option.

STATUS MESSAGES AND VALVES
nm: name: cannot open

name cannot be read.

nm: name: bad magic
name is not an appropriate common object file.

nm: name: no symbols
The symbols have been stripped from name.

FILES
/bin/nm

Executable file

November 1991 2

nm(l) nm(l)

SEE ALSO
as(l), cc(l), ld(l)

a. out(4), ar(4) in AIUX Programmer's Reference

3 November 1991

nohup(l) nohup(l)

NAME
nohup - runs a command so that it can continue to run even after your
session has ended

SYNOPSIS
nohup command-line &

ARGUMENTS
command-line

Specifies a command line.

& Specifies background mode.

DESCRIPTION
nohup executes command-line in such a way that it does not terminate
when an end-of-transmission (EOT, CONTROL-D) signal is received from
the controlling terminal. The end-of-transmission signal is also known as a
hangup signal.

With nohup, the priority is automatically incremented by 5. The nohup
program should be used with processes running in the background (with&)
in order to prevent them from responding to interrupts or stealing the input
from the next person who logs in on the same terminal. In csh, processes
run in the background are automatically immune to hangup signals.

If output is not redirected by the user, both the standard output and standard
error output are sent to a file named nohup. out. If nohup. out is not
writable in the current directory, output is redirected to
$HOME/nohup. out.

EXAMPLES
The command:

nohup nroff -mm docsf ile I lp &

runs the nroff command shown, immune to hangups, quits, and
interrupts.

To apply nohup to pipelines or lists of commands, you need to create a
shell script so that multiple commands can be run through a single filename
reference. For example, when you enter

nohup sh batchf ile &

the processing affected by nohup includes all of the commands inside of
batchfile. To permit the running of this script more simply as

nohup file &

you need to establish execute permission for batchf ile by using chmod
(see chmod(l)). For more information about background processing and
scripts, see csh(l), ksh(l), and sh(l).

November 1991

nohup(1) nohup(1)

WARNINGS
Do not expect the reach of nohup to extend to commands after the first in
a series, such as

nohup command] ; command2

Each of the following command lines is one possible remedy for this kind
of problem:

nohup (command] ; command2)
nohup command] ; nohup command2

If you are not careful when you redirect the standard error output, you can
create unexpected problems. Any error messages produced by the
following command are sent to the same disk used for the archive, possibly
corrupting the archive:

nohup cpio -o < list > /dev/dsk/c8d0s0 2>&1 &

To avoid possible corruption of the archive, redirect the error output to
some other place, such as a file named errors:

nohup cpio -o < list > /dev/dsk/c8d0s0 2>errors &

FILES
. /nohup. out

Default file where standard output and standard error output are sent
/bin/nohup

Executable file

SEE ALSO
chmod(l), csh(l), ksh(l), nice(l), sh(l)

nice(2), signal(3) inA/UX Programmer's Reference

2 November 1991

nroff(!) nroff(l)

NAME
nroff - text formatter

SYNOPSIS
nroff [-e] [-h] [-i] [-mname] [-nstart-no] [-opage-range] [-q]
[-rletter[value]] [-s[pages-per-pause]] [-Ttty-type] [-u[boldening-amt]]
[- z] [file]. ..

ARGUMENTS
- e Produces equally spaced words in adjusted lines, using the full

resolution of the particular terminal.

file Specifies the file to be formatted.

-h Uses output tabs during horizontal spacing to speed output and reduce
output character count. Tab settings are assumed to be every 8
nominal character widths.

- i Reads standard input after files are exhausted.

-mname
Prepends to the input files the macro file
/usr I lib/tmac/tmac. name.

-nstart-no
Numbers the first generated page start-no.

-opage-range
Prints only pages whose page numbers appear in the page-range of
numbers and ranges, separated by commas. A range x-y means pages
x through y; a range given by -y means from the beginning to page y;
a range given by x- means from page x to the end. (See
LIMITATIONS below.)

-q Invokes the simultaneous input-output mode of the . rd request.

-rletter[value]
Sets the number register referenced by letter to integer.

- s [pages-per-pause]
Specifies the number of pages to print between pauses, causing
nroff to halt to allow paper loading or changing. Printing resumes
upon receipt of a linefeed or newline (newlines do not work in
pipelines, e.g., with mm(l)). The default is 1. This option does not
work if the output of nroff is piped through col(l). When nroff
(otrof f) halts between pages, an ASCII BEL is sent to the terminal.

-Ttty-type
Prepares the output for the specified terminal. The known tty-types
are:

November 1991

nroff(l) nroff(l)

2631

2631-c

2631-e

300

300-12

300s

300s-12

37

382

4000a

450

450-12

832

8510

lp

tn300

Hewlett-Packard 2631 printer in regular mode

Hewlett-Packard 2631 printer in compressed mode

Hewlett-Packard 2631 printer in expanded mode

DASI-300 printer

DASI-300 terminal set to 12-pitch (12 characters per
inch)

DASI-300s printer (300s is a synonym)

DASI-300s terminal set to 12-pitch (12 characters per
inch) (300s-12 is a synonym)

TELETYPE Model 37 terminal (default)

DTC-382

Trendata 4000a terminal (4000a is a synonym)

DASI-450 (Diablo Hyterm) printer

DASI-450 (Diablo Hyterm) printer set to 12-pitch (12
characters per inch)

Anderson Jacobson 832 terminal

C.ITOH printer

generic name for printers that can underline and tab
(All text using reverse linefeeds, such as those having
tables, that is sent to lp must be processed with
col(l))

GE Terminet 300 terminal

X Printers equipped with TX print train

-u[boldening-amt]
Sets the emboldening factor (number of character overstrikes) for the
third font position (bold) to boldening-amt, or to zero if boldening-amt
is missing.

- z Prints only messages generated by . tm (terminal message) requests.

DESCRIPTION

2

nroff formats text contained in.files (standard input by default) for
printing on typewriter-like devices and line printers.

An argument consisting of a minus (-) is taken to be a filename
corresponding to the standard input.

November 1991

nroff(l) nroff (I)

LIMIT A TIO NS
The nroff program believes in Eastern Standard Time; as a result,
depending on the time of the year and on your local time zone, the date that
nroff generates may be off by one day from your idea of what the date is.

When nroff is used with the -o option inside a pipeline (e.g., with one or
more of neqn(l), and tbl(l)), it may cause a harmless "broken pipe"
diagnostic if the last page of the document is not specified in page-range.

FILES
/bin/nroff

Executable file
/usr/lib/tmac/tmac.*

Standard macro files
/usr/lib/macros/*

Standard macro files
/usr/lib/nterm/*

Files containing terminal driving tables for nroff
/usr/pub/terminals

File containing a list of supported terminals

SEE ALSO
checknr(l), col(l), deroff(l), greek(l), mm(l), neqn(l), tbl(l)

mm(5) in AIUX Programmer's Reference

"nroff/troff Reference" inAJUXText Processing Tools

November 1991 3

nslookup(l)

NAME
nslookup - interactively queries name servers

SYNOPSIS
nslookup

nslookup -server

ns lookup host-to-find [server]

ARGUMENTS
-server

nslookup(l)

Specifies interactive mode. Replace server with the host name of a
name server.

host-to-find
Specifies the name of the host to be queried.

server
Specifies either the host name or the address for a name server.

DESCRIPTION
nslookup is a program which queries DARPA Internet domain name
servers.

The nslookup program has two modes: interactive and non-interactive.
Interactive mode allows the user to query the name server for information
about various hosts and domains or print a list of hosts in the domain.
Non-interactive mode is used to print just the name and Internet address of
a host or domain.

Interactive mode is entered in the following cases:

a) when no arguments are given (the default name server will be used),
and

b) when the first argument is a hyphen (-) and the second argument is
the host name of a name server.

Non-interactive mode is used when the name of the host to be looked up is
given as the first argument. The optional second argument specifies a
server.

Interactive commands
Commands may be interrupted at any time by typing a CONTROL-C. To
exit, enter the end-of-file signal, CONTROL-D. The command line length
must be less than 80 characters.

Note: an unrecognized command will be interpreted as a host name.

host [server]
Looks up information for host using the current default server, or
using server if it is specified.

November 1991

nslookup(l) nslookup(l)

server domain
lserver domain

Changes the default server to domain. lserver uses the initial
server to look up information about domain while server uses the
current default server. If an authoritative answer can't be found, the
names of servers that might have the answer are returned.

root
Changes the default server to the server for the root of the domain
name space. Currently, the host sri-nic. arpa is used. (This
command is a synonym for the lserversri-nic.arpa.) The name of
the root server can be changed with the set root command.

f inge:r [name] [>filename]
finger [name] [>>filename]

Connects with the finger server on the current host. The current host is
defined when a previous look-up for a host was successful and
returned address information (see the set querytype=A
command). name is optional. >and>> can be used to redirect output
in the usual manner.

ls domain [>filename]
ls domain [>>filename]
ls -a domain [>filename]
ls -a domain [>>filename]
ls -h domain [>filename]
ls -h domain [>>filename]

Lists the information available for domain. The default output
contains host names and their Internet addresses. The - a option lists
aliases of hosts in the domain. The - h option lists CPU and operating
system information for the domain. When output is directed to a file,
hash marks are printed for every 50 records received from the server.

view filename
Sorts and lists the output of the ls command with more(l).

help
? Prints a brief summary of commands.

set keyword[=value]
Changes state information that affects the look-ups. Valid keywords
are:

all
Prints the current values of the various options to set.
Information about the current default server and host is also
printed.

November 1991 2

nslookup(1) nslookup(l)

3

[no]debug
Tums debugging mode on. A lot more information is printed
about the packet sent to the server and the resulting answer.
(Default= nodebug, abbreviation= [no]deb)

[no]defnarne
Appends the default domain name to every look-up.
(Default= nodefnarne, abbreviation= [no]def)

domain=name
Changes the default domain name to name. The default
domain name is appended to all look-up requests if the
defname option has been set.
(Default= value in I etc I re sol v. conf, abbreviation=
do)

querytype=value
Changes the type of information returned from a query to
one of:

A Specifies the host's Internet address (the default).

CNAME
Specifies the canonical name for an alias.

HINFO
Specifies the host CPU and operating system type.

MD Specifies the mail destination.

MX Specifies the mail exchanger.

MG Specifies the mail group member.

MINFO
Specifies the mailbox or mail list information.

MR Specifies the mail rename domain name.

Other types specified in the RFC883 document are valid but
aren't very useful.
(Abbreviation= q)

[no]recurse
Tells the name server to query other servers if it does not
have the information.
(Default= recurse, abbreviation= [no]rec)

retry=number
Sets the number of retries to number. When a reply to a
request is not received within a certain amount of time
(changed with set timeout), the request is resent. The

November 1991

nslookup(l) ns lookup(!)

retry value controls how many times a request is resent
before giving up.
(Default= 2, abbreviation= ret)

root=host
Changes the name of the root server to host. This affects the
root command.

Tutorial

(Default= sri-nic. arpa, abbreviation= ro)

timeout =number
Changes the time-out interval for waiting for a reply to
number seconds.
(Default = 1 0 seconds, abbreviation = t)

[no]vc
Always uses a virtual circuit when sending requests to the
server.
(Default= novc,abbreviation= [no]v)

The domain name space is tree-structured and currently has five top-level
domains:

com
for commercial establishments

edu
for educational institutions

gov
for government agencies

org
for not for profit organizations

mil
for MILNET hosts

If you are looking for a specific host, you need to know something about
the host's organization in order to determine the top-level domain it
belongs to. For instance, if you want to find the Internet address of a
machine at UCLA, do the following:

a) Connect with the root server using the root command. The root
server of the name space has knowledge of the top-level domains.

b) Because UCLA is a university, its domain name is ucla. edu.
Connect with a server for the ucla. edu domain with the command
server ucla. edu. The response will print the names of hosts that act
as servers for the domain ucla. edu. Note that the root server does
not have information about ucla. edu but knows the names and

November 1991 4

nslookup(l) nslookup(1)

addresses of hosts that do. All future queries will be sent to the UCLA
name server.

c) To request information about a particular host in the domain, type the
host name. To request a listing of hosts in the UCLA domain, use the
1 s command. The 1 s command requires a domain name (in this case,
ucla. edu) as an argument.

Note that if you are connected with a name server that handles more than
one domain, all look-ups for host name must be fully specified with its
domain. For instance, the domain harvard. edu is served by
seismo. css. gov, which also services the css. gov and
cornell. edu domains. A look-up request for the host aiken in the
harvard. edu domain must be specified as aiken. harvard. edu.
However, the set domain=name and set defname commands can
be used to automatically append a domain name to each request.

After a successful look-up of a host, use the finger command to see who
is on the system or to finger a specific person. To get other information
about the host, use the set querytype=value command to change the
type of information desired and request another look-up. (The finger
requires value to be A.)

STATUS MESSAGES AND VALUES

5

If the look-up request was not successful, an error message is printed.
Possible errors are:

Time-out
The server did not respond to a request after a certain amount of time
(changed with set timeout=value) and a certain number of
retries (changed with set retry=value).

No information
Depending on the query type set with the set querytype
command, no information about the host was available, though the
host name is valid.

Non-existent domain
The host or domain name does not exist.

Connection refused
Network is unreachable

The connection to the name or finger server could not be made at the
current time. This error commonly occurs with finger requests.

Server failure
The name server found an internal inconsistency in its database and
could not return a valid answer.

November 1991

ns 1 ookup (1) nslookup(l)

Refused
The name server refused to service the request.

Format error
The name server found that the request packet was not in the proper
format. This error should not occur. It would indicate a bug in the
program.

FILES
/etc/bind/tools/nslookup

Executable file
/etc/resolv.conf

File containing initial domain name and name server addresses

SEE ALSO
named(IM) in A/UX System Administrator's Reference

re sol ver(4) in A/UX Programmer's Reference

RFC-882, RFC-883 (DNN Network Information Center, SRI International)

November 1991 6

od(l) od(1)

NAME
od - converts binary data to a displayable form in octal, decimal,
hexadecimal, or ASCII

SYNOPSIS
od [-b] [-c] [-d] [-o] [-s] [-x] [file] [[+]offset[.] [b]]

ARGUMENTS
[[+]offset [.] [b]]

Specifies the offset in the file where dumping is to commence. This
argument is normally interpreted as octal bytes. If . is appended, the
offset is interpreted in decimal. If b is appended, the offset is
interpreted in blocks of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by +.

- b Interprets bytes in octal.

- c Interprets bytes in ASCII. Certain nongraphic characters appear as C
escapes: null=\ 0, backspace=\ b, form-feed=\ f, new line=\ n,
return=\ r, tab=\ t; others appear as 3-digit octal numbers.

- d Interprets words in unsigned decimal.

file Specifies the file that is to be dumped. If no file argument is specified,
the standard input is used.

- o Interprets words in octal.

- s Interprets words in signed decimal.

-x Interprets words in hex.

DESCRIPTION
od dumps file in one or more formats as selected by the first argument. If
the first argument is missing or an illegal flag option is specified, the - o
option is default.

Dumping continues until end-of-file. If a file contains many lines of
repeating characters, od represents the repeating lines with an asterisk.

EXAMPLES
The command:

od -d file +2

produces an octal dump off i le divided up into 32-bit words expressed in
decimal equivalents with the dump starting point offset by 2 octal bytes.

FILES
/bin/od

Executable file

November 1991

od(l) od(1)

SEE ALSO
adb(l), durnp(l), nrn(l), strings(l)

November 1991 2

otroff (l) otroff(l)

NAME
ot ro ff - formats text for a specific phototypesetter

SYNOPSIS
otroff [-cname] [-b] [-f] [-kname] [-mname] [-ppoint-size] [-t]
[-w] [file] ...

ARGUMENTS
-cname

Inserts before the input.files the compacted macro files:

/usr I 1 ib/rnacros I crnp. [nt]. [dt]. name
/usr I lib/macros /ucrnp. [nt]. name

- b Reports whether the phototypesetter is busy or available. No text
processing is done.

- f Refrains from feeding out paper and stopping phototypesetter at the
end of the run.

file Specifies the file to be formatted. If this argument is not given, the
standard input is read. An argument consisting of a single minus (-)
is taken to be a filename corresponding to the standard input.

-kname
Compacts the macros used in this invocation of otrof f, placing the
output in files [d t] . name in the current directory.

-mname
Prepends the named macro definition file to the input stream. The
location of the macro file is the pathname constructed as follows:

/usr/lib/trnac/trnac.name

-ppoint-size
Specifies the point size to use for type. It still preserves all prescribed
spacings and motions, reducing phototypesetter elapsed time.

- t Directs output to the standard output, instead of the phototypesetter
(this is the default).

-w Waits until the phototypesetter is available, if it is currently busy.

DESCRIPTION
otrof f is the old version of trof f(l). It formats text contained in files
for standard output. The output is formatted for a Wang Cl AIT
phototypesetter.

EXAMPLES
The command:

otrof f -mm file

November 1991

otroff(l) otroff(l)

formats the text contained in file, and invokes the macro package mm.

FILES
/bin/otroff

Executable file
/usr/lib/suftab

File containing suffix hyphenation tables
/trnp/ta$#

Temporary file
/trnp/trtrnp*

Temporary file
/usr/lib/trnac/trnac.*

Standard macro files
/usr/lib/rnacros/*

Standard macro files
/usr/lib/font/dev*/*

Files containing font width tables for troff

SEE ALSO
cw(l), eqn(l), mmt(l), nrof f(l), pic(l), tbl(l), tc(l), troff(l)

mm(5), rns(5), rnv(5) in A/UX Programmer's Reference

A/UX Text Processing Tools

November 1991 2

pack(l)

NAME
pack, peat, unpack- compress and expand files

SYNOPSIS
pack[-] [-f] file ...

peat file ...

unpack file ...

ARGUMENTS

pack(l)

Sets an internal flag that causes the number of times each byte is used,
its relative frequency, and the code for the byte to be printed on the
standard output. Additional occurrences of - in place of file will
cause the internal flag to be set and reset.

- f Forces the packing of file. This is useful for causing an entire
directory to be packed, even if some of the files will not benefit. If
pack is successful, file will be removed. Packed files can be restored
to their original form using unpack or peat.

file Specifies the file to be compressed or expanded.

DESCRIPTION
pack attempts to store the specified files in a compressed form. Wherever
possible (and useful), each input file is replaced by a packed file.file. z with
the same access modes, access and modified dates, and owner as those of
file.

The pack program uses Huffman (minimum redundancy) codes on a
byte-by-byte basis.

The amount of compression obtained depends on the size of the input file
and the character frequency distribution. Because a decoding tree forms
the first part of each . z file, it is usually not worthwhile to pack files
smaller than three blocks, unless the character frequency distribution is
very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60 to 75 percent of their original size.
Load modules, which use a larger character set and have a more uniform
distribution of characters, show little compression, the packed versions
being about 90 percent of the original size.

The pack program returns a value that is the number of files that it failed
to compress.

No packing will occur if:

the file appears to be already packed; the filename has more than 12
characters; the file has links; the file is a directory; the file cannot be
opened; no disk storage blocks will be saved by packing; the file is of
zero length; a file called file . z already exists; the . z file cannot be

November 1991

pack(l) pack(l)

created; an I/O error occurred during processing.

The last segment of the filename must contain no more than 12 characters
to allow space for the appended . z extension. Directories cannot be
compressed.

The peat command does for packed files what cat(l) does for ordinary
files, except that peat cannot be used as a filter. The specified files are
unpacked and written to the standard output. Thus to view a packed file
named.file. z use:

peat file.z

or just:

peat file

To make an unpacked copy, say nnn, of a packed file named file . z
(without destroying.file. z) use the command:

peat file > nnn

The peat program returns the number of files it was unable to unpack.
Failure may occur if:

the filename (exclusive of the . z) has more than 12 characters; the
file cannot be opened; the file does not appear to be the output of
pack.

The unpack program expands files created by pack. For each file
specified in the command, a search is made for a file called file . z (or just
file, if file ends in . z). If this file appears to be a packed file, it is replaced
by its expanded version. The new file has the . z suffix stripped from its
name, and has the same access modes, access and modification dates, and
owner as those of the packed file.

The unpack program returns a value that is the number of files it was
unable to unpack. Failure may occur for the same reasons that it may in
peat, as well as for the following:

a file with the ''unpacked'' name already exists;

if the unpacked file cannot be created.

EXAMPLES
The command:

pack f ilel

will pack the file, f i 1e1, into the file, f i 1e1 . z, then removes f i 1e1 if
packing is successful.

November 1991 2

pack(l)

FILES
/usr/bin/pack

Executable file
/usr/bin/pcat

Executable file
/usr/bin/unpack

Executable file
SEE ALSO

cat(l), compact(l)

3

pack(l)

November 1991

page(l) page(l)

See more(l)

November 1991

pagesize(l) pagesize(l)

NAME
pagesize -displays the system page size

SYNOPSIS
pagesize

DESCRIPTION
pages i z e prints the size of a page of memory in bytes. This program is
useful in constructing portable shell scripts.

FILES
/bin/pagesize

Executable file

SEE ALSO
uvar(2) in A/UX Programmer's Reference

November 1991

passwd(l) passwd(l)

NAME
passwd- changes the login password

SYNOPSIS
passwd [name]

ARGUMENTS
name

Specifies the login name of the user.

DESCRIPTION
This command changes (or installs) a password associated with the login
name.

Ordinary users may change only the password that corresponds to their
login name.

The passwd program prompts ordinary users for their old password, if
any. It then prompts for the new password twice. The first time the new
password is entered, pas swd checks to see if the old password has aged
sufficiently. If aging is insufficient, the new password is rejected and
passwd terminates; see passwd(4).

Assuming aging is sufficient, a check is made to ensure that the new
password meets construction requirements. When the new password is
entered a second time, the two copies of the new password are compared.
If the two copies are not identical, the cycle of prompting for the new
password is repeated for at most two more times.

Passwords must meet the following requirements:

Each password must have at least six characters. Only the first eight
characters are significant.

Each password must contain at least two alphabetic characters
(uppercase or lowercase) and at least one numeric or special character.

Each password must differ from the user's login name and any reverse
or circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are equivalent.

New passwords must differ from the old by at least three characters.
For comparison purposes, an uppercase letter and its corresponding
lowercase letter are equivalent.

One whose effective user ID is zero is called a superuser; see id(l), and
su(l). Superusers may change any password; hence, passwd does not
prompt superusers for the old password. Superusers are not forced to
comply with password aging and password construction requirements. A
superuser can create a null password by entering a carriage return in
response to the prompt for a new password.

November 1991

passwd(l)

EXAMPLES
Entering:

passwd

will give the response

Changing password for <username>

passwd(l)

and will then prompt for your present password and for the new password
(twice).

FILES
/bin/passwd

Executable file
/etc/passwd

Executable file

SEE ALSO
chsh(l), login(l), id(l), su(l)

crypt(3C), passwd(4) inA/UX Programmer's Reference

2 November 1991

paste(l) paste(l)

NAME
paste - merges lines of several files or subsequent lines of one file

SYNOPSIS
paste.filel file2 ...
paste -dlistfilel file2
paste -s [-dlist]filel jile2

ARGUMENTS
file I
jile2

Specifies the first (jilel) and second (file2) input files. If - is used in
place of any filename, a line is read from the standard input. (There is
no prompting.)

-dlist
Replaces the newline characters of each but the last file (or last line in
case of the - s option) with a tab character, without this option. This
option allows replacing the tab character by one or more alternate
characters (see below). Replace list with one or more characters
immediately following -d. Replace the default tab as the line
concatenation character. The list is used circularly, that is, when
exhausted, it is reused. In parallel merging (i.e., no - s option), the
lines from the last file are always terminated with a newline character,
not from the list. The list may contain the special escape sequences:
\n (newline) \ t (tab), \ \ (backslash), and \ 0 (empty string, not a
null character). Quoting may be necessary, if characters have special
meaning to the shell (e.g., to get one backslash, use -d \\\\"").

- s Merges subsequent lines rather than one from each input file. Use tab,
for concatenation, unless a list is specified with -d option. Regardless
of the list, the very last character of the file is forced to be a newline.

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the
given input files file I ,jile2, etc. It treats each file as a column or columns
of a table and pastes them together horizontally (parallel merging). If you
will, it is the counterpart of cat(l), which concatenates vertically, i.e., one
file after the other. In the last form above, paste replaces the function of
an older command with the same name by combining subsequent lines of
the input file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output is
to the standard output, so it can be used as the start of a pipe, or as a filter,
if - is used in place of a filename.

November 1991

paste(l)

EXAMPLES
The command:

ls I paste -d"" -

lists directories in one column.

The command:

ls I paste

lists directories in four columns.

The command:

paste -s -d"\ t\ n" file

combines pairs of lines into lines.

STATUS MESSAGES AND VALVES
line too long

Output lines are restricted to 511 characters.

too many files

paste(l)

Except for - s option, no more than 12 input files may be specified.

FILES
/usr/bin/paste

Executable file

SEE ALSO
cut(l), grep(l), pr(l)

2 November 1991

pax(1) pax(l)

NAME
pax - copies files to or from an archive in an IEEE format

SYNOPSIS
pax [-cimopuvy] [-f archive] [-s replstr] [-t device] [pattern] ...

pax - r [- c imnopu vy] [- f archive] [- s replstr] [- t device]
[pattern] ...

pax -w [-adimuvy] [-b blocking] [-f archive] [-s replstr]
[-t device] [-x format] [path] ...

pax -rw [-ilmopuvy] [-s replstr] [path] ... directory

ARGUMENTS
-a Appends the files specified by path to the specified archive.

-b blocking
Blocks the output to the archive file at the number of bytes specified
by blocking. A k suffix multiplies the value of blocking by 1024, a b
suffix multiplies blocking by 512, and an m suffix multiplies by
1048576 (1 megabyte). For computers with 16-bit integers, the
maximum buffer size is one byte less than 32K. If the value of
blocking is not specified, it is automatically determined on input and is
ignored for - rw .

- c Excludes the files and directories that match the pattern argument.

-d Instructs pax not to create intermediate directories not explicitly
listed in the archive. This option is ignored unless the - r option is
specified.

directory
Specifies the destination directory for files copied with pax. To
invoke this mode, use both the -rand the -w options. The directory
must exist and be writable before the copy is made; otherwise, an
error results.

-f archive
Specifies archive as the path of the input or output archive and
overrides the default of standard input for - r or standard output for
-w.

- i Interactively renames files. The pax command performs substitutions
specified by the - s option before requesting the new filename from
the user. The pax command skips a file if an empty line is entered
and exits with an exit status of 0 if it encounters the end-of-file signal.

-1 Links files instead of copying them, when possible.

-m Instructs pax not to retain file modification times.

November 1991

pax(l) pax(l)

2

-n Instructs pax to treat the pattern arguments as ordinary filenames,
when - r is specified, but -w is not. Only the first occurrence of each
of these files in the input archive is read. The pax utility exits with an
exit status of 0 after reading all files in the list. If one or more files in
the list are not found, pax writes a message to standard error for each
of the files and exits with a nonzero exit status. The filenames are
compared before any of the -i, -s, or -y options that are present are
applied.

-o Restores file ownership as specified in the archive. The invoking
process must have appropriate privileges restore file ownership.

-p Preserves the access time of the input files after they have been
copied.

path
Specifies a file to be copied into the archive instead of the files named
on the standard input. When a directory is specified, pax recursively
copies all the files and subdirectories of path as well.

pattern
Specifies, in the standard notation for shell filename generation,
particular files to be read from an archive. If you do not specify a
value for pattern, pax selects all files by default.

-r Causes pax to read an archive file from the standard input. Only files
with names that match any of the pattern arguments are selected for
extraction. The selected files are conditionally created and copied
relative to the current directory tree, subject to the other options
specified. By default, the owner and group of selected files are those
of the invoking process, and the permissions and modification times
are the same as those in the archive.

-rw

The supported archive formats are automatically detected on input.
The default output format is us tar, but you can override this default
by using the - x option.

Causes pax to read the files and directories referred to in path and
copy them to the destination specified by directory. The placeholder
path refers to the files and (recursively) subdirectories of that
directory. If the value of path is not given, the standard input is read
to get a list of paths to copy, one path per line. In this case, only those
paths appearing on the standard input are copied. The directory
directory must exist and have the proper permissions before copying
can occur.

-s replstr
Modifies filenames according to the substitution string, using the

November 1991

pax(l) pax(l)

syntax of ed(1), as in this example:

pax -rs /old/new/[gp]

Any non-null character can be used as a delimiter. In the example
shown, I is the delimiter. You can specify multiple - s expressions;
the expressions are applied in the order specified, terminating with the
first successful substitution. The optional trailing p causes successful
mappings to be listed to standard error. The optional trailing g causes
the old expression to be replaced each time it occurs in the source
string. Files that substitute to an empty string are ignored both on
input and output.

-t device
Names the input or output archive device by using the device
argument as an implementation-defined identifier. This option
overrides the default of standard input for - r and standard output for
-w.

-u Copies each file only if it is newer than a pre-existing file with the
same name. This output is used in conjunction with the - a option.

-v Lists filenames as they are encountered. This option produces a
verbose list of the table of contents on the standard output when both
the -rand -w options are omitted; otherwise, the filenames are
printed to standard error as they are encountered in the archive.

-x format
Specifies the format of the output archive. The input format, which
must be one of those listed here, is automatically determined when the
- r option is used. These formats are supported:

cpio
The extended CPIO interchange format specified in ''Extended
CPIO Format" in IEEE Standard 1003.1-1988.

us tar
The extended TAR interchange format specified in ''Extended
TAR Format" in IEEE Standard 1003.1-1988. This is the default
archive format.

-w Writes the files and directories specified by path arguments to the
standard output, together with the path and status information
prescribed by the archive format used. If the argument path refers to a
directory, pax recursively traverses all the files and subdirectories of
path as well. If path is not given, then the standard input is read to get
a list of paths to copy, one path per line. In this case, only those paths
appearing on the standard input are copied.

November 1991 3

pax(1) pax(l)

-y Interactively prompts for the disposition of each file. Substitutions
specified by -s options (described earlier in this list) are performed
before the user is prompted for disposition. The end-of-file signal or
an input line starting with the character q after the prompt causes pax
to exit. Otherwise, an input line starting with anything other than the
-y option causes the file to be ignored. This option cannot be used in
conjunction with the - i option.

DESCRIPTION

4

pax reads and writes archive files that conform to the description in
''Archive/Interchange File Format'' specified in IEEE Standard 1003.1-
1988. The pax utility can also read, but not write, a number of other file
formats in addition to those specified in ''Archive/Interchange File
Format." Support for these traditional file formats, such as V7 tar and
System V cp i o, is provided for backward compatibility and maximum
portability.

The pax command also supports traditional cpio and tar interfaces if
invoked with the name cpio or tar, respectively. See cpio(l) or
tar(l) for more details.

Combinations of the - r and -w options specify whether pax reads, writes,
or lists the contents of the specified archive, or moves the specified files to
another directory.

If neither the - r nor the -w option is given, then pax lists the contents of
the specified archive. In this mode, pax lists normal files one per line, lists
nonsymbolic link paths as

path== link

and lists symbolic link paths, if supported by the implementation, as

path-> link

where path is the name of the file being extracted and link is the name of a
file that appeared earlier in the archive.

If the -v option is specified, then pax lists normal paths in the same
format as that used by the 1 s utility when 1 s is invoked with the -1
option. Nonsymbolic links are shown as follows:

<listing> == link

Symbolic links, if supported, are shown as follows:

<listing> -> link

You can use the pax command to read and write archives that span
multiple physical volumes. Upon detecting an end-of-medium signal on an
archive that is not yet complete, pax prompts you for the next volume of
the archive and allows you to specify the location of the next volume.

November 1991

pax(l) pax(l)

Only the last instance of multiple - f or - t options takes effect.

When pax writes to an archive, the standard input is used as a list of paths
if path is not specified. The format is one path per line. Otherwise, the
standard input is the archive file, which is formatted according to one of the
specifications in "Archive/Interchange File Format" in IEEE Standard
1003.1-1988 or according to some other implementation-defined format.

The user ID and group ID of the process, together with the appropriate
privileges, affect the ability of pax to restore ownership and permissions
attributes of the archived files. (See ''Format-reading Utility'' in
"Archive/Interchange File Format," in IEEE Standard 1003.1-1988.)

The options -a, -c, -d, -i, -1, -p, -t, -u, and -y are provided for
functional compatibility with the historical cpio and tar utilities. The
option defaults reflect the most common usage of these options; therefore,
some of the options have meanings different from those of the historical
commands.

EXAMPLES
To copy the contents of the current directory to tape drive 0, use the
following command:

pax -w -f /dev/rmtO

To copy the contents of olddir to newdir, use the following command:

mkdir newdir
cd olddir
pax -rw . newdir

The following command reads the archive pax . out. All archive files
below /usr are extracted relative to the current directory.

pax -r -s ',/usr/*,,' -f pax.out

In this example, the substitution string delimiter is the comma.

STATUS MESSAGES AND VALUES
The pax program exits with one of two types of values. If all of the files in
the archive were processed successfully, pax exits with a value of 0. If
pax terminated because of errors encountered during operation, pax exits
with a nonzero value.

LIMIT A TIO NS
Special permissions may be required to copy or extract special files.

Device, user ID, and group ID numbers larger than 65535 cause additional
header records to be output. Some historical versions of cpio(l) and
tar(l) ignore these records.

November 1991 5

pax(l) pax(l)

Certain historical restrictions apply to the archive formats described in
''Archive/Interchange File Format.'' For example, the length of paths
stored in the archive is restricted.

In 1 s -1 style listings of tar format archives, link counts are listed as 0
because the us tar archive format does not keep link-count information.

In the event of errors, pax terminates immediately, without processing any
additional files on the command line or in the archive.

NOTES
Portions of this manual page were previously copyrighted (c) 1989 by
Mark H. Colburn. Public distribution has been sponsored by the USENIX
Association.

FILES
/usr/bin/pax

Executable file

SEE ALSO
cpio(l), f ind(l), tar(l)

cpio(4), tar(4) in AIUX Programmer's Reference

6 November 1991

pcat(l) pcat(l)

See pack(l)

November 1991

pdpll(l) pdpll(l)

See machid(l)

November 1991

pg(l) pg(l)

NAME
pg - shows the contents of a file in display-size chunks

SYNOPSIS
pg [-number] [+linenumber] [+/pattern] [-c] [-e] [-f] [-n]
[-p string] [- s] [file]. ..

ARGUMENTS
-number

Specifies an integer the size (in lines) of the window that pg is to use
instead of the default. On a terminal containing 24 lines, the default
window size is 23.

+linenumber
Starts examining the file at linenumber.

+/pattern
Starts examining the file at the first line containing the regular
expression pattern. The terminal I may be omitted from this
command.

- c Homes the cursor and clears the screen before displaying each page.
This option is ignored if clear_screen is not defined for this
terminal type in the terrninfo data base.

- e Causes pg not to pause at the end of each file.

- f Inhibits pg from splitting lines. Normally, pg splits lines longer than
the screen width, but some sequences of characters in the text being
displayed (e.g., escape sequences for underlining) generate
undesirable results.

file The filename - or null arguments indicate that pg should read from
the standard input.

- n Causes an automatic end of command as soon as a command letter is
entered. Normally, commands must be terminated by a newline.

-p string
Causes pg to use string as the prompt. If the prompt string contains a
%d, the first occurrence of %din the prompt will be replaced by the
current page number when the prompt is issued. The default prompt
string is : .

- s Causes pg to print all messages and prompts in standout mode
(usually inverse video).

DESCRIPTION
pg is a filter that examines files, one screenful at a time, on a soft-copy
terminal. Each screenful is followed by a prompt. If the user types a
carriage return, another page is displayed; other possibilities are

November 1991

pg(l) pg(l)

2

enumerated later in this manual page.

This command is different from previous paginators in that it allows you to
back up and review something that has already passed. The method for
doing this is explained later in this manual page.

In order to determine terminal attributes, pg scans the terminf o
database for the terminal type specified by the environment variable TERM.
If TERM is not defined, the terminal type dumb is assumed.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address,
an optionally signed number indicating the point from which further text
should be displayed. This address is interpreted in either pages or lines
depending on the command. A signed address specifies a point relative to
the current page or line, and an unsigned address specifies an address
relative to the beginning of the file. Each command has a default address
that is used if none is provided.

The perusal commands and their defaults are as follows:

+1 newline
(or blank) Causes one page to be displayed. The address is specified
in pages.

+1 1
Causes pg to simulate scrolling the screen forward or backward, the
number of lines specified, with a relative address. With an absolute
address this command prints a screenful beginning at the specified
line.

+ 1 d or CONTROL-ct
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address:

. or CONTROL-I
Causes the current page of text to be redisplayed by typing a single
period or CONTROL-I.

$ Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ed(1) are available. They must
always be terminated by a newline, even if the -n option is specified:

ii pattern/
Searches forward for the ith (default i= 1) occurrence of pattern.

November 1991

pg(1) pg(l)

Searching begins immediately after the current page and continues to
the end of the current file, without wrap-around. The final I may be
omitted unless m, b, or t modifiers are appended.

i~pattern~

i?pattern?
Searches backward for the ith (default i=l) occurrence of pattern.
Begins searching immediately before the current page and continues
to the beginning of the current file, without wrap-around. The final ~
and ? may be omitted from these commands unless the m, b, or t
modifiers are appended. The " notation is useful for Adds 100
terminals that will not properly handle the ? .

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search command
to leave the line found in the middle or at the bottom of the window from
now on. The suffix t can be used to restore the original situation.

The user of pg can modify the environment of perusal with the following
commands:

if Skips i screenfuls and prints a screenful of lines in . Begins perusing
the ith next file in the command line. The i is an unsigned number,
default value is 1.

ip Begins perusing the ith previous file in the command line. i is an
unsigned number, default is 1.

iw Displays another window of text. If i is present, set the window size
to i.

iz Specifies i as the new window size, if present. Otherwise, this option
has the same effect as typing a space.

s filename
Saves the input in the named file. Only the current file being perused
is saved. The white space between the s and.filename is optional.
This command must always be terminated by a newline, even if the -n
option is specified.

h Helps by displaying an abbreviated summary of available commands.

q
Q Quits the pg program.

!command
Passes command to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a newline, even if the -n
option is specified.

November 1991 3

pg(1) pg(l)

At any time when output is being sent to the terminal, the user can press the
quit key (normally CONTROL-\) or the interrupt key. This causes pg to stop
sending output, and display the prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some output is lost
when this is done, due to the fact that any characters waiting in the
terminal':; output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat (1),
except that a header is printed before each file (if there is more than one).

EXAMPLES
A sample usage of pg in reading system news is:

news I pg -p "(Page %d) :"

LIMIT A TIO NS
If terminal tabs are not set every eight positions, undesirable results may
occur.

When using pg as a filter with another command that changes the terminal
1/0 options (e.g., crypt(l)), terminal settings may not be restored
correctly.

NOTES
While waiting for terminal input, pg responds to the interrupt character
(CONTROL-C by default) by terminating execution. Between prompts,
however, the interrupt signal interrupts pg's current task and place the user
in prompt mode. These should be used with caution when input is being
read from a pipe, since an interrupt is likely to terminate the other
commands in the pipeline.

FILES
/usr/bin/pg

Executable file
/usr/lib/terminfo/*

Terminal information files
/tmp/pg*

Temporary file

SEE ALSO
crypt(l), ed(l), grep(l), more(l)

terminf o(4) in AIUX Programmer's Reference

4 November 1991

pie(1) pie(l)

NAME
pie - preprocesses troff files that contain drawings

SYNOPSIS
pie [-Ttty-type] [-] [file] ...

ARGUMENTS
Indicates that pie should read the file from the standard input.

file Specifies the file to be preprocessed.

-Ttty-type
Specifies the device type, tty-type. The currently supported device
types are: p s e (POSTSCRIPT® device such as the Apple
LaserWriter®), iw (the Apple lmageWriter® II printer), and aps
(Autologic APS-5). The default is -Tpse.

DESCRIPTION
pie is a trof f(l) preprocessor for drawing simple figures on a
typesetter. The basic objects are boxes, lines, arrows, circles, ellipses, arcs,
and text.

FILES
/usr/bin/pie

Executable file

SEE ALSO
grap(l), troff(l)

postseript(4) inA/UX Programmer's Reference

"pie Reference" in A/UX Text Processing Tools

November 1991

pr(l) pr(l)

NAME
pr - formats text for a print device

SYNOPSIS
pr [+pageno] [-columns] [-a] [-d] [-eek] [-f] [-h headJ [-ick] [-lk]
[-m] [-nck] [-ok] [-p] [-r] [-sc] [-t] [-wk] [file]. ..

ARGUMENTS
+pageno

Specifies the page number (pageno) to begin formatting. The default
is 1.

-columns
Specifies the number of columns (columns) to produce in the output.
The default is 1. The options - e and - i are assumed for multicolumn
output.

- a Prints multicolumn output across the page.

- d Produces double-spaced output.

-eek
Expands input tabs to character positions k+ 1, 2* k+ 1, 3* k+ 1, etc. If k
is 0 or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the
appropriate number of spaces. If c (any nondigit character) is given, it
is treated as the input tab character (default for c is the tab character).

- f Uses the form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first page if the
standard output is associated with a terminal.

file Specifies the file to be formatted. If file is - , or if no files are
specified, the standard input is assumed.

-h head
Uses the next argument as the header instead of the filename.

-ick
Replaces white space wherever possible by inserting tabs to character
positions k+l, 2* k+l, 3* k+l, etc, in the output. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If c (any
nondigit character) is given, it is treated as the output tab character
(default for c is the tab character).

- lk Sets the length of a page to k lines (default is 66).

-m Merges and formats all files simultaneously, one per column
(overrides the -k, and -a options).

-nck
Provides k-digit line numbering (default fork is 5). The number

November 1991

pr(l) pr(l)

occupies the first k+ 1 character positions of each column of normal
output or each line of -m output. If c (any nondigit character) is
given, it is appended to the line number to separate it from whatever
follows (default for c is a tab).

- ok Offsets each line by k character positions (default is 0). The number
of character positions per line is the sum of the width and offset.

-p Pauses before beginning each page if the output is directed to a
terminal (pr will ring the bell at the terminal and wait for a carriage
return).

- r Prints no diagnostic reports on failure to open files.

- sc Separates columns by the single character c instead of by the
appropriate number of spaces (default for c is a tab).

- t Prints neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit formatting after the last line of
each file without spacing to the end of the page.

-wk Sets the width of a line to k character positions instead of the default
72 characters for multicolumn output. This option must be used with
the -k (number of columns) option.

DESCRIPTION
pr formats the named files on the standard output. By default, the listing is
separated into pages, each headed by the page number, a date and time, and
the name of the file.

By default, columns are of equal width, separated by at least one space;
lines which do not fit are truncated. If the - s option is used, lines are not
truncated and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed formatting.

EXAMPLES
The command:

pr - 3 dh 11 f i 1 e 1 is t 11 f i 1e1 f i 1e2

formats f i 1e1 and f i 1e2 as a double-spaced, three-column listing
headed by " f i 1 e 1 i st" .

The command:

pr -e9 -t < f ilel > file2

writes filel on f ile2, expanding tabs to columns 10, 19, 28, 37, and so
on.

November 1991 2

pr(l)

FILES
/bin/pr

Executable file
/dev/tty*

Device files

SEE ALSO
cat(l), fmt(l), lp(l), lpr(l)

3

pr(l)

November 1991

printenv(l) printenv(l)

NAME
printenv
environment

displays the value of variables set in the current

SYNOPSIS
printenv [argument]

ARGUMENTS
argument

Specifies the environment variable name that will have its values
displayed. Replace argument with environment variables names such
as: HOME, SHELL, PATH, TERM, LOGNAME, TERMCAP, and
EXINIT. If no argument is given, it displays the values for the entire
environment.

DESCRIPTION
printenv takes an environment variable name as an argument and
displays only the value of that variable.

Some environment variable names and their descriptions are:

HOME
Specifies the pathname of user's home directory.

SHELL
Specifies the shell present at login.

PATH
Searchs the path for binary programs.

TERM
Specifies the type of terminal being used.

LOGNAME
Specifies the login name of the user.

TERMCAP
Specifies the terminal capabilities string.

EX IN IT
Specifies a startup list of commands read by ex, edit, and vi.

The man page on the shell you are using (csh (1), ksh (1), or sh (1))
gives a complete list of the environment variables that apply to you.

EXAMPLES
The command:

printenv HOME

displays the pathname of your home directory.

November 1991

printenv(1)

FILES
/bin/printenv

Executable file

SEE ALSO
csh(l), env(l), ksh(l), sh(l), stty(l), tset(l)

environ(5) in A/UX Programmer's Reference

2

printenv(1)

November 1991

prof(l) prof(l)

NAME
prof - displays profile data

SYNOPSIS
prof [- a] [- c] [-g] [- h] [- m mdata] [- n] [- o] [- s] [- t] [- x] [- z]
[objjile]

ARGUMENTS
-a Sorts by increasing symbol address.

- c Sorts by decreasing number of calls.

-g Includes nonglobal symbols (static functions).

-h Suppresses the heading normally printed on the report. (This is useful
if the report is to be processed further.)

-m mdata
Uses the file mdata instead of mon. out for profiling data.

-n Sorts lexically by symbol name.

-o Prints each symbol address (in octal) along with the symbol name.

objfile
Specifies the object file from which the symbol table is used.

- s Prints a summary of several of the monitoring parameters and
statistics on the standard error output.

-t Sorts by decreasing percentage of total time (default).

-x Prints each symbol address (in hexadecimal) along with the symbol
name.

- z Includes all symbols in the profile range (see moni tor(3C)), even if
associated with zero number of calls and zero time.

DESCRIPTION
prof interprets the profile file produced by the moni tor(3C) function.
The symbol table in the object file objjile (a. out by default) is read and
correlated with the profile file (mon. out by default). For each external
text symbol the percentage of time spent executing between the address of
that symbol and the address of the next is printed, together with the number
of times that function was called and the average number of milliseconds
per call.

For the number of calls to a function to be tallied, the -p option of cc(l)
must have been given when the file containing the function was compiled.
This option to the cc command also arranges for the object file to include a
special profiling start-up function that calls moni tor(3C) at the beginning
and end of execution. It is the call to monitor at the end of execution that
causes the mon . out file to be written. Thus, only programs that call

November 1991

prof(l) prof(l)

exi t(2) or return from main cause the mon. out file to be produced.

LIMIT A TIO NS
There is a limit of 600 functions that may have call counters established
during program execution. If this limit is exceeded, other data is
overwritten and the mon . out file is corrupted. The number of call
counters used is reported automatically by the prof command whenever
the number exceeds 250.

FILES
/bin/prof

Executable file
man.out

File used for profile
a.out

File used for namelist

SEE ALSO
cc(l), nm(l)

exit(2), profil(2), monitor(3C) inA!UX Programmer's Reference

2 November 1991

prs(l) prs(l)

NAME
prs - displays information about an SCCS file

SYNOPSIS
prs [-a] [-c[date-time]] [-d[dataspec]] [-e] [-1] [-r[S/D]] file ...

ARGUMENTS
-a Requests information for both removed, i.e., delta type= R, (see

rmdel(l)) and existing, i.e., delta type= D, deltas. If this option is
not specified, information for existing deltas only is provided.

-c [date-time]
Specifies the cutoff date and time. Replace date-time with a value in
the following format:

mm/ dd!yy [hh: mm: ss]

Units omitted from the the date-time default to their maximum
possible values; that is, - c 7 5 0 2 is equivalent to - c 7 5 0 2 2 8 2 3 5 9 5 9.
Any number of nonnumeric characters may separate the various 2-
digit pieces of the cutoff date in the form:

-c77/2/2 9:22:25

-d[dataspec]
Specifies the output data specification. Replace dataspec with a string
consisting of SCCS file data keywords (see "Data Keywords" later in
this manual page) interspersed with optional user-supplied text.

- e Requests information for all deltas created earlier than and including
the delta designated via the - r option or the date given by the - c
option.

file Specifies the SCCS file to be affected. If a name of - is given, the
standard input is read; each line of the standard input is taken to be the
name of an SCCS file or directory to be processed; nonSCCS files and
unreadable files are silently ignored.

-1 Requests information for all deltas created later than and including the
delta designated via the - r option or the date given by the - c option.

-r[S/D]
Specifies the SCCS Identification (SID) string of a delta for which
information is desired. If SID is not specified, the SCCS Identification
string of the most recently created delta is assumed.

DESCRIPTION
prs displays, on the standard output, parts or all of an SCCS file (see
sec sf ile(4)) in a user-supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a named file,
except that nonSCCS files (last component of the pathname does not begin

November 1991

prs(l) prs (1)

with s .) and unreadable files are silently ignored.

Arguments to prs, may appear in any order.

Data keywords
Data keywords specify which parts of an SCCS file are to be retrieved and
output. All parts of an SCCS file (see secs f i le(4)) have an associated
data keyword. There is no limit on the number of times a data keyword
may appear in a dataspec.

The information displayed by prs consists of: (1) the user-supplied text;
and (2) appropriate values (extracted from the SCCS file) substituted for
the recognized data keywords in the order of appearance in the dataspec.
The format of a data keyword value is either Simple (S), in which keyword
substitution is direct, or Multi-line (M), in which keyword substitution is
followed by a RETURN.

"User-supplied text" is any text other than recognized data keywords. A
tab is specified by \ t and RETURN/newline is specified by \n. The default
data keywords are:

:Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:

TABLE 1. SCCS Files Data Keywords
Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* s
:DL: Delta line statistics :Li:/:Ld:/:Lu: s
: Li: Lines inserted by Delta nnnnn s
:Ld: Lines deleted by Delta nnnnn s
:Lu: Lines unchanged by Delta nnnnn s
:DT: Delta type DorR s
: I: SCCS ID string (SID) :R:.:L:.:B:.:S: s
:R: Release number nnnn s
:L: Level number nnnn s
:B: Branch number nnnn s
: S: Sequence number nnnn s
:D: Date Delta created :Dy:/:Dm:/:Dd: s

:Dy: Year Delta created nn s
:Dm: Month Delta created nn s
:Dd: Day Delta created nn s
:T: Time Delta created :Th:: :Tm:: :Ts: s

:Th: Hour Delta created nn s
:Tm: Minutes Delta created nn s
:Ts: Seconds Delta created nn s
:P: Programmer who created Delta logname s

:DS: Delta sequence number nnnn s

2 November 1991

prs(l)

:DP: Predecessor Delta seq-no. nnnn

:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg:
:Dn: Deltas included (seq #) :DS: :DS: ...
:Dx: Deltas excluded (seq #) :DS: :DS: ...
:Dg: Deltas ignored (seq#) :DS: :DS: ...
:MR: MR numbers for delta text
:C: Comments for delta text

:UN: User names User Names text
:FL: Flag list Flags text
:Y: Module type flag text

:MF: MR validation flag yes or no

:MP: MR validation pgm name text

:KF: Keyword error/warning flag yes or no

:KV: Keyword validation string text

:BF: Branch flag yes or no
:J: Joint edit flag yes or no

:LK: Locked releases :R: ...
:Q: User defined keyword text
:M: Module name text

:FB: Floor boundary :R:
:CB: Ceiling boundary :R:
:Ds: Default SID :/:
:ND: Null delta flag yes or no
:FD: File descriptive text Comments text

:BD: Body Body text
:GB: Gotten body text
:W: A form of what(!) string NIA :Z::M:\t:l:

:A: A form of what(l) string NIA :Z::Y: :M: :/::Z:

: z: what(l) string delimiter NIA @(#)

:F: SCCS filename NIA text
:PN: SCCS file pathname NIA text

* :Dt: = :DT: :/: :D: :T: :P: :DS: :DP:

EXAMPLES
The command

prs -d"User IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

User IDs for s.file are:
xyz
131
abc

The command

prs -d"Newest delta for pgrn :PM:: \
:I: Created :D: By :P:" -rs.file

may produce on the standard output:

prs(l)

s
s
s
s
s
M
M
M
M
s
s
s
s
s
s
s
s
s
s
s
s
s
s
M

M
M
s
s
s
s
s

Newest delta for pgrn rnain.c: C.7 Created 77/12/1 By cas

November 1991 3

prs(l)

As a "special" case,

prs s.file

may produce on the standard output:

prs (1)

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the ''D'' type. The only argument allowed to
be used with the "special" case is the -a option.

STATUS MESSAGES AND VALUES
Use help for explanations.

FILES
/usr/bin/prs

Executable file
/trnp/pr?????

Temporary file

SEE ALSO
adrnin(l), cdc(l), cornb(l), del ta(l), get(l), help(l), rrndel(l),
sact(l), sccs(l), sccsdi ff (1), unget(l), val(l), wha t(l)

4

sccs f i le(4) in A/UX Programmer's Reference

"SCCS Reference" in A/UX Programming Languages and Tools, Volume
2

November 1991

ps(l) ps(l)

NAME
p s - reports process status

SYNOPSIS
ps [-a] [-ccorefile] [-d] [-e] [-f] [-ggrplist] [-1] [-nnamelist]
[-pproclist] [- sswapdev] [-ttermlist] [-uuidlist]

ARGUMENTS
- a Prints information about all processes, except process group leaders

and processes not associated with a terminal.

-ccorefile
Use the file core.file in place of I dev I km em.

-d Prints information about all processes, except process group leaders.

- e Prints information about all processes.

- f Generates afull listing.

-ggrplist
Restricts listing to data about processes whose process group leaders
are given in grplist.

-1 Generates a long listing.

-nnamelist
Specifies namelist as the alternate file to be used in place of /unix.

-pproclist
Restricts listing to data about processes whose process ID numbers are
given in proclist.

-sswapdev
Uses the file swapdev in place of I dev I swap. This is useful when
examining a core.file. A swapdev of I dev In u 11 will cause the user
block to be zeroed out.

-ttermlist
Restricts listing to data about the processes associated with the
terminals given in termlist. The termlist may be in one of two forms:
a list of terminal identifiers separated from one another by a comma,
or a list of terminal identifiers enclosed in double quotes and separated
from one another by a command and/or one or more spaces. Terminal
identifiers may be specified in one of two forms: the device's
filename (e.g., t tyO 4), or, if the device's filename starts with tty,
just the digit identifier (e.g., 04).

November 1991

ps(l) ps(l)

-uuidlist
Restricts listing to data about processes whose user ID numbers or
login names are given in uidlist. In the listing, the numerical user ID
will be printed unless the - f option is used, in which case the login
name will be printed.

DESCRIPTION

2

ps prints certain information about active processes. Without options,
information is printed about processes associated with the current terminal.
The output consists of a short listing containing only the process ID,
terminal identifier, cumulative execution time, and the command name.
Otherwise, the information that is displayed is controlled by the selection
of options.

Options using lists as arguments may have the list specified in one of two
forms: a list of identifiers separated from one another by a comma, or a list
of identifiers enclosed in double quotes and separated from one another by
a comma and/or one or more spaces.

The column headings and the meaning of the columns in a ps listing are
given below; the letters f and 1 indicate the option (full or long),
respectively, that causes the corresponding heading to appear; all means
that the heading always appears. Note that these two options determine
only what information is provided for a process; they do not determine
which processes will be listed.

F (1)

Flags (hex and additive) associated with the process:

0 swapped;

system process;

2 being traced by another process;

4 another tracing flag;

8 process cannot be woken by a signal;

10 in core;

20 locked in memory;

100 process group leader;

200 faulting in page

400 COFF binary

1000
process is using select system call

November 1991

ps(l) ps(l)

2000
timing out during sleep

4000
4.2-style job control

8000
restore old mask after signal

s (1)

The state of the process:

nonexistent;
S sleeping;
R running;
I intermediate (between states);
Z terminated;
T stopped.
0 as running on CPU
X waiting for virtual memory

urn (f, 1)
The user ID number of the process owner; the login name is printed
under the - f option.

PID (all)

The process ID of the process; it is possible to kill a process if you
know this datum.

PPID (f I 1)
The process ID of the parent process.

c (f, 1)

Processor utilization for scheduling.

PRI (1)
The priority of the process; higher numbers mean lower priority.

NI (1)
Nice value; used in priority computation.

ADDR (1)

The memory address of the u - are a (a pointer to the page tables) of
the process, if resident; otherwise, the disk address.

sz (1)

The size in logical pages of the core image of the process.

WCHAN (1)

The event for which the process is waiting or sleeping; if blank, the
process is running.

November 1991 3

ps(l) ps(l)

STIME (f)
Starting time of the process.

TTY (all)
The controlling terminal for the process.

TIME (all)
The cumulative execution time for the process.

COMMAND (all)
The command name; the full command name and its arguments are
printed under the - f option.

A process that has exited and has a parent, but has not yet been waited for
by the parent, is marked defunct.

Under the -f option, ps tries to determine the command name and
arguments given when the process was created by examining memory or
the swap area. Failing this, the command name, as it would appear without
the -f option, is printed in square brackets.

EXAMPLES
The command:

ps -ef

displays information about all processes, with or without terminals.

LIMITATIONS
Things can change while ps is running; the picture it gives is only a close
approximation to reality. Some data printed for defunct processes are
irrelevant.

Processes which are swapped onto other than the default swap device (see
swap(lM)) will have some invalid information printed out.

FILES

4

/bin/ps
Executable file

/unix
A/UX kernel file

/dev/kmem
Memory file

/dev/swap
Default swap device file

/etc/passwd
File which supplies UID information

/etc/ps_data
Internal data structure file

November 1991

ps(l) ps(l)

/dev
File containing terminal (tty) names

SEE ALSO
kill(l), nice(l), w(l)

acctcom(lM), pstat(lM) inAIUX System Administrator's Reference

November 1991 5

psdit(l) psdit(l)

NAME
p s di t - converts troff intermediate format to POSTSCRIPT format

SYNOPSIS
psdit [-F fontdir] [-o list] [-p prologue] [file]

ARGUMENTS
-F fontdir

Takes font information fromfontdir instead of the default.

file Specifies the file to be translated. If this argument is not specified, the
standard input is used.

-o list
Prints pages whose numbers are given in the comma-separated list.
The list contains single numbers n and ranges nl-n2. A missing nl
means the lowest-numbered page; a missing n2 means the highest.

-p prologue
Uses the contents of prologue instead of the default POSTSCRIPT
prologue.

DESCRIPTION
p s di t translates a file created by device-independent troff (1) to
POSTSCRIPT format for printing on a POSTSCRIPT printer. The POSTSCRIPT
file is sent to the standard output.

Note: The input for psdi t should be prepared with the
corresponding -Tpsc option of troff, pie, grap, and so forth.
The eqn program should be run with the flags - r 5 7 6 and -m2 to
produce suitable output. The pi c program should be run with the
-D option and the -TS 7 6 option to set the correct resolution.

psdit enables troff to include arbitrary POSTSCRIPT code in the
generated POSTSCRIPT file. psdi t recognizes the heretofore undefined%
command in the troff intermediate file format to signal the start of raw
POSTSCRIPT to be placed "as is" in the output file. Everthing between (but
not including) the percent sign and a line containing a single period
(.) will be placed in the generated POSTSCRIPT output. This POSTSCRIPT
is not insulated from the troff coordinate system or from the state of the
generated POSTSCRIPT. However, two functions are defined in the
prologue so that users may insulate themselves, if they so desire. The PB
function (for "picture begin") will perform a POSTSCRIPT save operation,
translate the POSTSCRIPT coordinate system to troff's idea of the current
position on the page, and change the scale and orientation of the coordinate
system axes to the standard POSTSCRIPT 72 units per inch. The PE macro
(for "picture end") will end this protected environment.

November 1991

psdit(l) psdit(l)

Several methods may be employed to incorporate included POSTSCRIPT
into the troff intermediate file. The . c f . sy and \ ! troff
commands may be useful. For example, the following sequence may
appear anywhere in troff input

\!%PB
.cf mypic.ps
\!PE
\ ! .

to include mypic. ps as an illustration. This facility is both powerful and
useful, but indiscriminate inclusion of poorly behaved POSTSCRIPT code
may be dangerous to your document's health.

Environment variables
PSLIBDIR

Pathname of a directory to use instead of /usr I lib/ps for psdi t
prologue.

EXAMPLES
The following command line will format the file ch . 1 using the troff
text formatting program, translate troff's output into POSTSCRIPT, and
then send the POSTSCRIPT output to the appropriate printer.

troff -Tpsc -mm ch.1 I psdit I lp -dPigs

LIMITATIONS
The B-splines generated by troff are drawn with an approximation. The
functions D~ and D~ ~ in the prologue need a little work.

FILES
/usr/bin/psdit

Executable file
/usr/lib/font/devpsc/*

troff default description files for POSTSCRIPT virtual device
/usr/lib/ps/psdit.pro

default POSTSCRIPT prologue file

SEE ALSO
lp(l), lpr(l), psrof f(l), troff(l)

November 1991 2

psroff (1) psroff (1)

NAME
psrof f - formats a file through troff so it can be printed on a
POSTSCRIPT printer

SYNOPSIS
psroff [-t] [[-a] [-i] [-mname] [-nN] [-olist] [-q] [-raN] [-sN]
[-Tdest]] [[-ddest] [-C class] [-J name] [-h] [-nx] [-P printer] [-r]
[-s] [-m] [-w]] [file] ...

ARGUMENTS
- a Sends a printable ASCII approximation of the results to the standard

output. This is a troff option.

-c class
Sets the job classification for use on the burst page.

-ddest
Causes the output to be sent to the named destination.

file Specifies the file to be processed through troff. If this argument is
not specified, the standard input is used.

- h Suppresses the printing of the job burst page.

- i Reads standard input after the input files are exhausted. This is a
troff option.

-J name
Sets the job name for use on the burst page.

-m Sends mail after files have been printed.

-mname

-nN

Inserts the I us r I 1 i b I tma c I tma c . name macro file at the
beginning of the inputfiles. This is a troff option.

Numbers the first generated page N. This is a troff option.

-nx Causes x copies of the output to be produced. The default is one.

-olist
Prints only pages whose page numbers appear in the comma-separated
list of numbers and ranges. A range N-M means pages N through M;
an initial -N means from the beginning to page N; and a final N­
means from N to the end. (See LIMIT A TIO NS, later in this section.)
This is a troff option.

-Pprinter
Sends the output to the named printer.

-q Invokes the simultaneous input-output mode of the . rd request. This
is a troff option.

November 1991

psroff(l) psroff(l)

-r Does not page-reverse the output when used with the lp spooler.
Removes the file upon completion of spooling or upon completion of
printing, when used with the lpr spooler.

-raN
Sets register a (one character name) to N. This is a troff option.

- s Suppresses messages from lp, when used with the Ip spooler. Uses
symbolic links instead of copying files to the spool directory, when
used with the lpr spooler.

-sN
Generates output to encourage typesetter to stop every N pages,
produce a trailer to allow changing cassettes, and resume when the
typesetter's start button is pressed. This is a troff option.

- t Sends the POSTSCRIPT output to the standard output rather than
spooling it to a printer. Note that this overrides the meaning of the
troff -t option; if that option is needed, then run troff directly.

-Tdest
Prepares output for device dest, which may be a laser printer or a
typesetter. For POSTSCRIPT output destined for an Apple LaserWriter,
use -Tpsc, and pipe the output to the POSTSCRIPT filter psdi t.

The supported typesetter is the Autologic APS-5 (-Taps). For output
destined for an Apple ImageWriter II printer, use the -Tiw option and
pipe the output to daiw(l). Other output devices may be available.
This is a troff option.

-w Writes to the user's terminal after files have been printed.

DESCRIPTION
psrof f is a shell script that runs trof f(l) in an environment to produce
output on a POSTSCRIPT printer. It uses psdi t to convert troff
intermediate output to POSTSCRIPT format and spools this output for
printing.

By default, the print spooler used by p s r off is the Berkeley spooler,
lpr(l), which uses these options: -C class, -J name, -P printer, -r,
and -s.

The environment variable s POOLER may be set to specify the System V
spooler, lp(l), which uses these options: -ddest, -nx, -h, -r, -s, -m,
and -w.

All other options are passed to troff.

Using psrof f is equivalent to using the pipeline of commands:

troff -Tpsc options I psdit I $SPOOLER options

November 1991 2

psroff(l) psroff(l)

Using psro ff instead of this pipeline involves less typing, but the entire
sequence may take slightly more time since a shell script will be executed.

Environment variables
The following environmental variables may be used in conjunction with
psroff:

SPOOLER
The name of the print spooler, lpr or lp, for psroff to use. If
SPOOLER is not set, psrof f spools to lpr.

PRINTER
The name of a printer (as in the -P option) for lpr to use. If no -P
option is specified, lpr uses this printer. If neither - P nor PRINTER
is set, psrof f spools to a printer named Post Script. This
environment variable has no effect on the spooler lp.

LPDEST
The name of a printer (as in the -d option) for lp to use. If no -d
option is specified, lp uses this printer. If neither -d nor LPDEST is
set, psrof f spools to a printer class named Post Script. This
environment variable has no effect on the spooler lpf.

LIMITATIONS I

The eqn supplied with troff is different from the original. Use the
options - r 5 7 6 -m2 for best results. Other programs (for example, pi c)
distributed with troff have the device names compiled in (so much for
device independence!). Use -T576 with the pie distributed with the
Documenter's Workbench®. If your output is destined for an Apple®
Image Writer® II printer, use the -Tiw option for both pie and eqn.

FILES
/usr/bin/psroff

Executable file
/usr/lib/tmac/tmac.*

Standard macro files
/usr/lib/font/devpsc/*

troff description files for POSTSCRIPT virtual device

SEE ALSO

3

daiw(l), eqn(l), lpr(l), lp(l), pic(l), psdi t(l), ref er(l), tbl(l),
troff(l).

"nroff/troff Reference" inA/UXText Processing Tools

November 1991

ptx(1)

NAME
ptx - generates a permuted index

SYNOPSIS
ptx [-b break] [-f] [-g gap] [-i ignore] [-r] [-t] [-w n]
[input [output]]

ptx [-b break] [-f] [-g gap] [-o only] [-r] [-t] [-w n]
[input [output]]

ARGUMENTS
-b break

ptx(1)

Uses the characters in the file break to separate words. Tab, newline,
and space characters are always used as break characters.

- f Folds uppercase and lowercase letters for sorting.

-g gap
Uses the next argument n as the number of characters that ptx
reserves in its calculations for each gap among the four parts of the
line as finally printed. The default gap is 3.

-i ignore
Does not use as keywords any words given in the file ignore. If the
- i and - o options are missing, use I us r I 1 i b I e i gn as the file
ignore. This option cannot be used with the - o option.

input
Specifies the file to be processed with a text formatter.

-o only
Uses as keywords any words given in the file only. This option cannot
be used with the - i option.

output
Specifies the file from which a permuted index is generated.

- r Takes any leading nonblank characters of each input line to be a
reference identifier (as to a page or chapter), separate from the text of
the line, then attaches that identifier as a fifth field on each output line.

-t Prepares the output for the phototypesetter.

-w n
Uses the next argument n as the length of the output line. The default
line length is 72 characters for nroff and 100 for troff.

DESCRIPTION
ptx generates the file output that can be processed with a text formatter
(nroff or troff) to produce a permuted index of file input. Standard
input (-)and standard output are the default. The ptx program has three
phases: first, the permutation is done, generating one line for each keyword

November 1991

ptx(1) ptx(1)

in an input line. The keyword is rotated to the front. Second, the permuted
file is then sorted. Finally, the sorted lines are rotated so the keyword
comes at the middle of each line. ptx output is in the following form:

where . xx is assumed to be an nrof f(l) or trof f(l) macro provided by
the user or provided by ptx(l). The mptx(5) macro package provides the
. xx macro definition. The before keyword and keyword and after fields
incorporate as much of the line as fits around the keyword when it is
printed. The tail and head fields, at least one of which is always the empty
string, are wrapped-around pieces small enough to fit in the unused space at
the opposite end of the line.

LIMITATIONS
Line-length counts do not account for overstriking or proportional spacing.
Lines that contain tildes C) are botched because ptx uses that character
internally. The ptx program does not discard nonalphanumeric
characters.

FILES
/usr/bin/ptx

Executable file
/bin/sort

Executable file
/usr/lib/eign

Executable file
/usr/lib/tmac/tmac.ptx

Executable macro file

SEE ALSO
troff(l)

mm(5), mptx(5) in AIUX Programmer's Reference

''Other Text Processing Tools,'' in A/UX Text Processing Tools

2 November 1991

pwd(l) pwd(l)

NAME
pwd - prints the name of the working directory

SYNOPSIS
pwd

DESCRIPTION
pwd prints the pathname of the working (current) directory.

EXAMPLES
The command:

pwd

produces a pathname, such as /usr I games, indicating the directory you
are currently in.

STATUS MESSAGES AND VALUES
The messages: "Cannot open .. " and "Read error in
indicate possible file system trouble and should be referred to a system
administrator.

FILES
/bin/pwd

Executable file

SEE ALSO
csh(l), ksh(l), sh(l)

November 1991

A/UX Command Reference was written, edited, and
composed on a desktop publishing system using Apple
Macintosh computers, and troff running on A/UX.
Page proofs were created on Apple LaserWriter printers.
Final pages were output directly to 70 millimeter film on
an Electrocomp 2000 Electron Beam Recorder.
Postscript, the page-description language for the
LaserWriter, was developed by Adobe Systems
Incorporated.

Text type and display type are Times, Garamond, and
Helvetica. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Apple
Courier, a fixed-width font.

Writers: Erik Akin, Mike Elola, Kristi Fredrickson,
Michael Hinkson, Linda Kinnier, Paul Pannish, Cheryl
Salgado, Kathy Wallace, and Laura Wirth

Writing Group Lead: Mike Elola

Developmental Editor: Silvio Orsino

Art Director: Tamara Whiteside

Production Editor: Jeannette Allen

Production Supervisor: Robin Kerns

Special thanks to Anne Szabla and Chris Wozniak

	00-01-i
	00-02-ii
	00-03-iii
	00-04-iv
	00-05-v
	00-06-vi
	00-07-vii
	00-08-viii
	00-09-ix
	00-10-x
	00-11-xi
	00-12-xii
	00-13-xiii
	00-14-xiv
	00-15-xv
	00-16-xxvi
	00-17-xvii
	00-18-xviii
	00-19-xix
	00-20-xx
	00-21-xxi
	00-22-xxii
	01-0001
	01-0002
	01-0003
	01-001
	01-002
	01-003
	01-004
	01-005
	01-006
	01-007
	01-008
	01-009
	01-010
	01-011
	01-012
	01-013
	01-014
	01-015
	01-016
	01-017
	01-018
	01-019
	01-020
	01-021
	01-022
	01-023
	01-024
	01-025
	01-026
	01-027
	01-028
	01-029
	01-030
	01-031
	01-032
	01-033
	01-034
	01-035
	01-036
	01-037
	01-038
	01-039
	01-040
	01-041
	01-042
	01-043
	01-044
	01-045
	01-046
	01-047
	01-048
	01-049
	01-050
	01-051
	01-052
	01-053
	01-054
	01-055
	01-056
	01-057
	01-058
	01-059
	01-060
	01-061
	01-062
	01-063
	01-064
	01-065
	01-066
	01-067
	01-068
	01-069
	01-070
	01-071
	01-072
	01-073
	01-074
	01-075
	01-076
	01-077
	01-078
	01-079
	01-080
	01-081
	01-082
	01-083
	01-084
	01-085
	01-086
	01-087
	01-088
	01-089
	01-090
	01-091
	01-092
	01-093
	01-094
	01-095
	01-096
	01-097
	01-098
	01-099
	01-100
	01-101
	01-102
	01-103
	01-104
	01-105
	01-106
	01-107
	01-108
	01-109
	01-110
	01-111
	01-112
	01-113
	01-114
	01-115
	01-116
	01-117
	01-118
	01-119
	01-120
	01-121
	01-122
	01-123
	01-124
	01-125
	01-126
	01-127
	01-128
	01-129
	01-130
	01-131
	01-132
	01-133
	01-134
	01-135
	01-136
	01-137
	01-138
	01-139
	01-140
	01-141
	01-142
	01-143
	01-144
	01-145
	01-146
	01-147
	01-148
	01-149
	01-150
	01-151
	01-152
	01-153
	01-154
	01-155
	01-156
	01-157
	01-158
	01-159
	01-160
	01-161
	01-162
	01-163
	01-164
	01-165
	01-166
	01-167
	01-168
	01-169
	01-170
	01-171
	01-172
	01-173
	01-174
	01-175
	01-176
	01-177
	01-178
	01-179
	01-180
	01-181
	01-182
	01-183
	01-184
	01-185
	01-186
	01-187
	01-188
	01-189
	01-190
	01-191
	01-192
	01-193
	01-194
	01-195
	01-196
	01-197
	01-198
	02-001
	02-002
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-046
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061
	02-062
	02-063
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076
	02-077
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-085
	02-086
	02-087
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-097
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-108
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-135
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-142
	02-143
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150
	02-151
	02-152
	02-153
	02-154
	02-155
	02-156
	02-157
	02-158
	02-159
	02-160
	02-161
	02-162
	02-163
	02-164
	02-165
	02-166
	02-167
	02-168
	02-169
	02-170
	02-171
	03-01
	03-02

