o
“A/UX Command Reference

Section 1(G-P)

Release 3.0

LiMITED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple’s Media Exchange
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the date of your original purchase. See your authorized Apple dealer for program
coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUALS, INCLUDING IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD “AS IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

& Apple Computer, Inc.

© 1992, Apple Computer, Inc., and UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws, this
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original.
Under the law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-k) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, ImageWriter, LaserWriter, and Macintosh are trademarks of Apple Computer,
Inc., registered in the United States and other countries.

B-NET is a registered trademark of UniSoft Corporation.

DEC and VT102 are trademarks of Digital Equipment Corporation.

Diablo and Ethernet are registered trademarks of Xerox Corporation.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

Hewlett-Packard 2631 is a trademark of Hewlett-Packard.

IBM is a registered trademark of International Business Machines Corporation.

NFS is a trademark of Sun Microsystems, Inc.

PostScript and TranScripts are trademarks of Adobe Systems Incorporated, registered in the United States.
UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

A/UX Command Reference

Contents

About This Manual

Section 1 User Commands (G-P)

About This Manual

This manual is one of three primary manuals in the set of A/UX reference
manuals. A/UX Command Reference, A/UX Programmer’s Reference, and
A/UX System Administrator’s Reference contain information about most of the
provisions of A/UX, such as its commands, its library routines, its system calls,
and its file formats.

These reference manuals constitute a compact encyclopedia of A/UX
information. As in an encyclopedia, the information is subdivided into
subdocuments, or ‘‘manual pages.”” The information in each manual-page
subdocument adheres to a distinctive presentation format. For example,
information about command syntax is consistently presented under the heading
““‘Synopsis.”” (This format is described in detail later in this preface.)

Because most of us need occasional reminders regarding the order and kind of
arguments that can accompany a command, the information in the ‘‘Synopsis’’
and ‘‘Arguments’’ sections is presented for use by users at all levels. However,
the information in the ‘‘Description’’ section is often written for more advanced
users; novices most likely will not be able to learn about the provisions of A/UX
from these reference manuals alone.

Because these reference manuals are not intended to be tutorials or learning
guides, they should not be the first A/UX books you read. If you are new to
A/UX or are unfamiliar with a specific functional area (such as the Macintosh
Finder), you should first read A/UX Essentials and the other A/UX user guides.
After you have worked with A/UX, the reference manuals can help you
understand new features or refresh your memory about features you already
know.

Manual pages: a standard for presenting information

The headings conventionally used in the manual pages have virtually become an
industry standard for reference documents. Furthermore, the way that this large
collection of subdocuments is conventionally organized into sections and books
is also something of a standard.

Despite the standardization, locating specific information within this large body
of documentation can often be difficult. First you must locate the correct
manual page. Once you have the correct manual page, you can usually go

- Vii -

directly to the correct subsection.

To help you locate information, you should read the next section, which
explains several means of finding the information you need.

To help you learn to use these books more effectively, other sections in this
preface describe the presentation standards that are being used. Some of these
are organizational standards that apply at the book and section level. Other
conventions and content standards apply within the scope of each manual page,
such as the use of standard subheadings and the conventional use of certain
fonts and text styles.

Note that the most durable standards have been the standards that apply to the
organization and primary headings of each manual page. Of course there are
areas in which the A/UX reference books are exceptional, particularly in their
more regular use of headings. These books also deviate from industry standards
in a few typographic and style areas, which are described later in this preface.
For example, the Courier font is used consistently to represent text that is
displayed in a terminal window or entered as part of a command line. Other
UNIX® books often use boldface type to represent such text.

There has been more instability with respect to how the manual pages are
collected into sections and books. For more detailed information, see ‘‘Previous
Organization of Sections into Books’’ later in this preface.

Locating information in the reference manuals
You can locate information in the reference manuals by using one of the
following tools:

e Table of contents. Each reference manual contains one general table of
contents for the entire manual. Located at the beginning of each new
section of manual pages is a detailed table of contents. (If a section must
span from one binder to another, a tailored table of contents is provided for
each of the subdivisions.) The general table of contents lists the sections
covered in the complete manual. The detailed table of contents lists the
manual pages contained within one section (or section subdivision) along
with a brief description of the A/UX provision that is covered in each
manual page.

¢ Query commands. The man, whatis, and apropos commands display
on-screen all the information contained in a manual page or just the
information in the ‘‘Name’’ section of one or more manual pages that

- viii -

satisfy a search criterion. The next sections tells you how to use the on-line
versions of the manual pages.

o A/UX Reference Summary and Index. This separate manual is considered
part of the A/UX set of reference manuals, but it is not a ‘‘standard’’
resource like the other reference materials. Its primary purpose is to help
you locate the correct manual page to refer to in other books. From its
summaries, you might also occasionally find all the information you
required. It contains the following subsections:

o ‘‘Commands by function.”” This subsection classifies the A/UX user
and system administrator commands by the general or most important
function each performs. The summary gives you a broader view of the
commands that are available and the context in which each is often
used. Each command is mentioned just once in this listing.

¢ ‘““Command synopses.”” This subsection is a compact collection of
syntax descriptions for all of the commands in A/UX Command
Reference and in A/UX System Administrator’s Reference. It may
help you find the syntax of commands more quickly when the syntax
is all you need.

o “‘Index.”” The index lists key terms associated with A/UX
subroutines and commands. These key terms can help you locate the
manual page you need when you don’t know if such a keyword-
related command or subroutine exists.

The index provided in A/UX Reference Summary and Index is designed to be
more compact and easier to use than the more industry-standard permuted
index, which indiscriminately indexes manual pages under each of the words
found in their ‘“Name’’ sections.

The manual pages listed in the index portion A/UX Reference Summary and
Index are indexed under more than one entry; for example, 1order(1) is
included under ‘‘archive files,”” ‘‘sorting,”’ and ‘‘cross-references.”” By using
this type of index, you are more likely to find the reference you are looking for
on the first try.

Using the on-line documentation

In addition to the paper documentation in the reference manuals, A/UX provides
several ways to search and read the contents of each manual page from your
A/UX system. An advantage to the on-line version of the documentation is that
the computer performs the work of filtering out (or skipping) all the manual

pages other than the one you specifically queried. The only prerequisite is that
you already know its name (or a proper search string). However, you don’t have
to know how manual pages are organized by section numbers and by book titles.

To display a manual page on your screen, enter the man command followed by
the name of the manual page you want to see. For example, to display the
manual page for the cat command, including its description, syntax, options,
and other pertinent information, you would enter

man cat

After the first screen of the text of a manual page appears, you can display
subsequent screens of the text with each press of the SPACE BAR, until you reach
the end of the man page. To display subsequent text one line at a time, press
RETURN instead of the SPACE BAR. By pressing Q, you can quit the man
command before viewing all of the manual page.

To display the descriptive information in the ‘‘Name’’ section of any manual
page, enter the what is command followed by the name of the provision you
want described. In the following example, the command prompt is the percent
sign, and the provision that is being queried is the 1 s command:

% whatis 1s
s (1) - lists the contents of a directory

o

(1
[
To display a list of all manual pages whose ‘‘Name’’ sections contain a given
keyword or string, enter the apropos command followed by a search word or
search string enclosed in double quote characters. The names of A/UX
provisions are listed on separate lines along with the descriptive information in
the ‘“‘Name’’ section of the manual page that describes those provisions.
Sometimes several A/UX provisions are listed on the same line. In those cases,
several A/UX provisions are described on a single manual page. You can tell
which of these names is the formal name for the manual page because it will be
followed by parentheses and an enclosed section number. In the following
example, the command prompt is the percent sign, and the A/UX provisions that
are queried are those which are described in manual pages whose ‘‘Name’’
section contains the word “‘tape’”:

% apropos tape

mt (1) - magnetic tape manipulating program

frec (1M) - recover files from a backup tape

mtio(7) - interface conventions for magnetic tape devices
tc(7) - Apple Tape Backup 40SC device driver

z il

These documentation query commands are described more fully in the manual
pages man(l), whatis(l), and apropos(l) in A/UX Command Reference.

Book- and section-level presentation standards
Customarily, three books are used to house three collections of manual pages
that are of concern to three different audiences:

e A/UX Command Reference is intended for users with normal file and
device access privileges.

o A/UX System Administrator’s Reference is intended for system
administrators or equivalent users with unlimited device and file access
privileges.

o A/UX Programmer’s Reference is intended for programmers.

These books are further divided into sections, each of which contains a set of
manual pages in alphabetical order. The standard sections and the audiences
they serve are as follows:

o For users with normal access privileges, Section 1 and Section 6 describe
utility and game commands.

o For users with unlimited access privileges, Section 1M and Section 8
describe system maintenance commands.

o For programmers, Section 2 describes system calls, Section 3 describes
library routines, Section 4 describes file formats, Section 5 describes
miscellaneous A/UX provisions, and Section 7 describes drivers and
interfaces for devices.

While most of the manual pages describe an A/UX provision of some sort, there
is one important exception per section: The first manual page in Sections 1, 1M,
2,3,4,5,6,7 and 8 has the same name, intro. The int ro manual pages do
not describe a command or other provision of A/UX. Instead, they serve as an
introduction to the rest of the manual pages in the section, providing section-

- Xi -

specific information and conventions. (These section-introduction manual pages
are also exceptions in terms of the normal alphabetical arrangement of manual
pages inside sections.)

For example, the manual page intro(2) introduces you to return values and
provides an exhaustive list of error code values and their associated error
strings. In the rest of the Section 2 manual pages, the error codes are mentioned
briefly or merely listed, without detailed explanations.

More advanced readers will probably have occasion to use more than one of the
reference manuals. For example, manual pages in the A/UX Programmer’s
Reference frequently make references to manual pages in sections contained in
the other two primary reference manuals.

More information about the organization of the reference books is given later in
this preface in ‘‘Current Organization of Sections into Books.”’

How manual-page information is presented

The name of the manual page normally appears in both upper corners of each
physical page. Some manual pages describe several routines or commands. For
example, chown and chgrp are both described in a manual page with the
primary name chown(1) at the upper corners. If you turn to the page
chgrp(1), you find a reference to chown(1). (These cross-reference pages are
included only in A/UX Command Reference and A/UX System Administrator’s
Reference.) However, if you enter the command man chgrp, the extended-
coverage chown(1) manual page is displayed automatically.

All of the manual pages have a common format that uses the following
subheadings. For the most part, the same kind of information appears under each
of these subheadings. However, for manual pages that describe different kinds
of A/UX provisions, the information under the same heading may differ. So, for
example, the heading ‘‘Synopsis’’ contains syntax illustrations for Sections 1,
1M, and 8, but contains C declaration statements for Sections 2 and 3.

NAME

This section lists the names of the commands, programming routines, or other
A/UX provisions that are described in the manual page. A succinct statement of
their purpose is also provided.

SYNOPSIS
This section provides the syntax of a command or the data-type declarations
associated with a programming routine.

- Xii -

ARGUMENTS
This section lists and describes the command options and arguments that can
follow the command name on the command line.

DESCRIPTION
This section describes in detail the usage of a particular command or
programming provision.

EXAMPLES
This section offers representative command lines that illustrate various uses of a
command.

STATUS MESSAGES AND VALUES

This section describes possible error outcomes and, when applicable, possible
success outcomes. For commands, exit values are not usually described if the
command produces the customary zero exit value for success and a nonzero exit
value for failure. For programming routines, the return value from a function is
often an indication of completion status. In such cases, the return value is
normally discussed in the ‘‘Description’’ section as well as in this section.

WARNINGS
This section describes possible usage scenarios that can damage the file system
or file integrity or that produce results you would not normally anticipate.

LIMITATIONS

This section describes how the performance of a command or routine could
become unreliable, or areas of functionality that an A/UX provision does not
address.

NOTES
This section provides miscellaneous information regarding a command or
routine, such as author or copyright information.

FILES
This section lists any files needed by the command, along with a brief
description that identifies it as a file, directory, or link.

SEE ALSO
This section provides a list of references to related information.

Visual conventions for the A/UX reference manuals
A/UX books follow specific styling conventions. For example, words that
require special emphasis appear in specific fonts or styles. This section describes

- Xiii -

the conventions used in all the A/UX reference books.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character
keys, often used in combination with other keys, perform various functions. In
this book, the names of these keys appear in the format of an initial capital letter
followed by small capital letters.

Here is a list of the most common key names:

CaAps Lock ENTER SHIFT
COMMAND ESCAPE SPACE BAR
CONTROL OPTION TAB
DELETE RETURN

Sometimes two or more key names are joined by hyphens. The hyphens indicate
that you press these keys simultaneously to perform a specific function. For
example,

Press CONTROL-K
means ‘‘While holding down the CONTROL key, press the K key.”’

Terminology

In A/UX manuals, a certain term can represent a specific set of actions. For
example, the word *‘enter’’ indicates that you type a series of characters, then
press the RETURN key. The instruction

Enter whoami.

means ‘‘“Type whoami, then press the RETURN key.”” (If you entered this text
at a command prompt, the system would respond by displaying your current
account name.)

Here is a list of common terms and their corresponding actions.

- Xiv -

Term

Action

Click

Choose

Drag

Enter

Press

Select

Type

The Courier font

Press and then immediately release the mouse button.

Activate a command that appears in a menu. To
choose a command from a pull-down menu, position
the pointer on the menu title and, while holding down
the mouse button, slide the mouse toward you until
the command is highlighted. Then release the mouse
button.

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse so that the
icon moves to the desired position, and then release
the mouse button.

Type the series of characters indicated, then press the
RETURN key.

Press one key only. (Do not press the RETURN key
afterward.)

To select an icon, position the mouse pointer on the
item, then click (see ‘“‘Click,’” above). To select text,
use a drag-style operation (see ‘‘Drag,’” above).
When selecting a range of text, the drag operation
highlights the text from the starting point over and
across lines to the final position of the pointer when
the mouse button was released.

Type the series of characters indicated, without
pressing the RETURN key afterward.

Throughout the A/UX reference manuals, words that appear on the screen or
that you must type exactly as shown are in the Courier font.

- XV -

Here’s an example:
Type date on the command line and press RETURN.

This instruction means that you should type the word ‘‘date’’ exactly as shown,
then press the RETURN key.

After you press RETURN, text such as this will appear on the screen:
Fri Nov 1 11:15:43 PST 1991

In this case, the Courier font is used to represent exactly what appears on the
screen.

All A/UX manual page names are shown in the Courier font. For example,
1s(1) indicates that 1s is the name of a manual page that occurs in Section 1.
More information about the use of the Courier font in manual pages is given in
*‘Styling of A/UX Command Elements’’ and in ‘‘Styling of Cross-References to
Manual Pages’’ later in this preface.

Font styles
Italics are used to indicate that a word or set of words is a placeholder for part of
a command line. Here is a sample command syntax illustration:

cat file

The italicized term file is a placeholder for the name of a file. If you wanted to
display the contents of a file named E1vis, you would type the filename
Elvis in place of file. In other words, you would enter

cat Elvis

Styling of A/lUX command elements

A/UX commands are entered in accordance with their command syntax. A
typical A/UX command line includes the command name first, followed by
options and arguments. For example, here is an illustration of the syntax for the
wc command:

we [-1] [-w] file...

In this syntax illustration, wc is the command, -1 and -w are options, and file
is an argument.

A “‘command option’” modifies the action of a command, often by changing its
mode of operation (such as read mode or write mode).

- Xvi -

An “‘argument’’ is any element that follows the command name. Command
arguments other than command options typically specify the objects upon which
the command should act. You often supply the names of files that you want a
command to process, so file is frequently the last element in syntax illustrations.

Brackets and ellipsis characters in a syntax illustration should be considered part
of a syntax notation. This is represented by the use of body font instead of
Courier for these characters. Their font treatment tells you that you are not
supposed to type these characters as part of the command line. Their meaning as
a syntax notation is described next.

The brackets enclose an optional item or a group of optional items. If an
optional item has constituent parts that are also optional, these parts are
themselves enclosed in brackets, as in this syntax illustration:

lpr [-1i [numcols]]

This syntax illustration shows that the indent (-1) command option can be
followed by the number of columns to indent the printed page. It also shows that
you can omit the number of columns; if you do, the 1pr command uses the
default indent value.

An ellipsis (...) follows an argument that can be repeated any number of times
on a command line. If the ellipsis follows a bracketed group of items, the group
of items can be repeated any number of times on the command line.

When command options are mutually exclusive, they cannot both be specified at
the same time. In such cases, more than one syntax illustration is usually
provided:

pax -rlother-option-for-archive-reading]...

pax -wlother-option-for-archive-writing]...
Outside of syntax illustrations, command options are shown with a leading
hyphen also in the Courier font. When you supply multiple command options in

an actual command line, only one leading hyphen is normally required. For
example the following command line contains two options, -r and - f:

pax -rf /dev/rfloppy0

In the example, the - f option (pronounced ‘‘minus f’’) is entered without its
own hyphen, even though when mentioned in running text it appears with a
leading hyphen.

- Xvii -

Styling of cross-references to manual pages

The manual pages are organized primarily in terms of sections, and secondarily
in terms of books for different audiences. The standard A/UX cross-reference
notation leaves out the book title, but refers to the section designation:

item(section)

where item is the name of the command, subroutine, or other A/UX provision,
and section is the section where the manual page resides.

For example,
cat(l)

refers to the command cat, which is described in Section 1, which is in A/UX
Command Reference.

As a guide to the location of sections, you can refer to the general table of
contents of each of the primary reference manuals, or to ‘‘Current Organization
of Sections into Books’’ later in this preface. (The binder spines are also labeled
with the section numbers, and occasionally section subdivisions, that are in each
binder.)

Note also that there are a number of subcategory designations that can follow
the digit reference in (1), (2), (3), (4), and (5), such as (IN). Detailed
explanations of these subcategory designations are provided later in this preface.

Previous organization of sections into books

You may be curious about the logic behind the numbering of sections. The
derivation of this numbering is much clearer when you realize that originally
there was only one reference manual, the UNIX User Manual. In fact the
manual pages were once considered the primary UNIX documentation, and the
other books were originally considered supplements.

In the early days, all the manual pages easily fit into one book, in sections
numbered 1 through 8. Section 8 originally contained the manual pages that are
now located in Section 1M.

With the expansion of the original sections as UNIX grew, it became necessary
to split the original book into several books, and this was done according to the
audience they served. However, the original section numbering was preserved
after the split because by then each number had come to have a particular
meaning to UNIX users.

- xviii -

Because the original section numbers were preserved and then sections were
recollated in accordance with the audience they served, the resulting books do
not, for the most part, contain sequentially numbered sections.

The next section explains in detail how the sections are currently mapped into
books.

There was another factor that led to the need to preserve the original section
numbers. Some routines, system calls, and commands have the same names. To
allow you to distinguish one from another, the section number is often included
along with the name. While new section numbers could have helped distinguish
these entities, the old numbers were much more familiar to UNIX users.

Besides distinguishing amongst identically named A/UX provisions, the section
number helps identify each manual page as one that describes a command, a
system call, a library routine, and so forth. Regular UNIX users sooner or later
memorize what category is identified by each section number. After doing so,
you can deduce how the sections must be split up into books—since each book
serves a particular audience and each section category also goes along with a
particular audience, the match-ups become fairly easy for you to make. The
memorization part of this task is more or less considered an initiation rite for
those who wish to learn to use UNIX effectively.

Until the 3.0 release of A/UX, the organization of sections into books was static.
With the 3.0 release however, Section 7 has been moved out of A/UX System
Administrator’s Reference and into A/UX Programmer’s Reference. This means
that command provisions are now the exclusive focus of both A/UX Command
Reference and A/UX System Administrator’s Reference.

Current organization of sections into books
All manual pages are grouped by section. The sections are grouped by general
function and are numbered according to standard conventions as follows:

1 User Commands

IM System Maintenance Commands
2 System Calls

3 Subroutines

4 File Formats

- XiX -

5
6
7
8

Miscellaneous Facilities
Games
Drivers and Interfaces for Devices

A/UX Startup Shell Commands

Each group or section of manual pages is located in one of the reference books.
Each reference book may comprise more than one binder. This section explains
where these sections are currently located with respect to the three primary
reference books. It also describes any subcategories that may be present in a
given section.

A/UX Command Reference contains Sections 1 and 6.

o Section 1—User Commands
This section describes commands that require no special access privileges.
The commands in Section 1 may also belong to a special category, such as
networking commands. Where applicable, these categories are indicated by
a letter designation that follows the section number. For example, the *“‘N”’
in ypcat(1N) indicates that this manual page describes a networking
command. Here is an explanation of each subcategory:

1C Communications commands, such as cu and tip.
1G Graphics commands, such as graph and tplot.

IN Networking commands, such as those that help support various
networking subsystems, including the Network File System
(NFS), Remote Process Control (RPC) subsystem, and Internet
subsystem.

o Section 6—Games
This section contains all of the games provided with A/UX, such as
cribbage and worms.

-XX-

A/UX Programmer’s Reference contains Sections 2 through 5 and Section 7.

Section 2-—System Calls

This section describes the services provided by the A/UX system kernel,
including the C language interface. It includes two special categories.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the ‘N’ in connect(2N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

2N Networking system calls
2P POSIX system calls

Section 3—Subroutines

This section describes the available subroutines. The binary versions of
these subroutines are in the system libraries in the /1ib and /usr/1ib
directories. The section includes seven special categories. Where
applicable, these categories are indicated by the letter designation that
follows the section number. For example, the ‘‘N’” in mount (3N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

3C C and assembly-language library routines
3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

Section 4—File Formats

This section describes the structure of some files, but does not include files
that are used by only one command (such as the assembler’s intermediate
files). The C language st ruct declarations corresponding to these
formats are in the /usr/include and /usr/include/sys
directories. There is one special category in this section, indicated by the
letter designation ‘‘N’’ following the section number:

- XXi -

4N Networking formats

o Section 5—Miscellaneous Facilities
This section describes various character sets, macro packages, and other
miscellaneous facilities. There are two special categories in this section.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the “‘P’’ in t cp(1P)
indicates a protocol. Here is an explanation of each subcategory:

SF Protocol families
5P Protocol descriptions

e Section 7—Drivers and Interfaces for Devices
This section describes the drivers and interfaces through which devices are
normally accessed. Access to one or more disk devices is fairly transparent
when you are working with them in terms of files. When you want to use
A/UX commands to communicate with devices more directly, at a level
beyond the moderation of file systems, device files serve your needs. Such
a level of communication permits you to request more explicit operating
modes that may be supported by a disk (such as accessing disk partition
maps), or that may be supported by other types of devices, such as tape
drives and modems. For example, you can access a tape device in
automatic-rewind mode as described in tc(7).

A/UX System Administrator’s Reference contains Sections 1M and 8.

e Section IM—System Maintenance Commands
This section describes system maintenance programs such as f sck and
mkfs.

o Section 8—A/UX Startup Shell Commands
This section describes the commands that are available from within the
A/UX Startup shell. This section includes detailed descriptions of the
commands that contribute to the boot process and those that help with the
maintenance of inactive file systems.

For more information

To find out where you need to go for more information about how to use A/UX,
see Road Map to A/UX. This guide contains descriptions of each A/UX guide
and ordering information for all the guides in the A/UX documentation suite.

- xxii -

Table of Contents

Section 1: User Commands (G-P)

intro(l) ... introduces the command and application programs
get(l) oo gets a version of an SCCS file
getopt(l) ..o parses command options
grap(l) ... invokes a pic preprocessor for drawing graphs
graph(1G) ... draws a graph
greek(l) ... filters text for vintage display devices
grep(l) o search a file for a specific pattern
groups(l) ... displays group memberships
hashcheck(l) see spell(l)
hashmake(l) see spell(l)
head(l) ... displays the first few lines of a file
help(l) provides help information about SCCS commands and messages
hex(1) ... converts an object file to Motorola S-record format
hostid(IN) sets or displays the identifier of the current host system
hostname(IN) sets or displays the name of the current host system
hyphen(l) .o finds hyphenated words
TACL) oo displays user and group IDs and names
ident(l) .o displays RCS keywords and their values
indent(l) ... indents and formats C program source
indxbib(l) ... builds an inverted index for a bibliography
ipcrm(l) ... removes interprocess communications facilities
ipes(l) oo reports interprocess communication facilities status
isotomac(l) see mactoiso(l)
iw2(l) prepares data to be printed on the Apple ImageWriter II printer
Join(l) ..o combines (joins) two relational files
kermit(1C) invokes the Kermit file-transfer program
KA LD o terminates a process
ksh(l) runs the Korn shell, an enhanced command interpreter that is
backward-compatible with the Bourne shell (sh)
last(l) ..o displays login and logout times for each user of the system
launch(l) ... runs a Macintosh binary application in A/UX
Tav(l) oo displays load average statistics
1AL o invokes the link editor for common object files
leave(l) .o reminds you when you have to leave
Tex(l) oo generates programs for simple lexical tasks
line(l) ..o reads one line from the standard input
TAnt(l) oo invokes a C program checker
I oo makes links
Togin(l) o signs you on a terminal session

Section 1 i

Togname(l) ..o gets the login name

LookbAB(L) oo finds references in a bibliography
lorder(l) ..o finds the ordering relation for an object library
101 o spools print requests to printers .
Ipa(l) oo queries the print spooler for progress information
Tor(1) spools print requests to printers
lprm(l) ... removes jobs from the line printer spooling queue for a
Berkeley file system (4.2)
lpstat(l) .o prints Ip status information
1s(l) lists the contents of a directory
mA(L) o processes macros for C and other languages
MG 8RO see machid(l)
machid(l) ... provide truth values about processor type
macref(l) ... produces a cross-reference listing of macro files
mactoiso(l)...................... convert between Macintosh encoding and International
Standards Organization (ISO) encoding
mail(l) . oo send mail to users or read mail
mailx(l) ... enables you to send and receive messages electronically
make(l) ... maintains, updates, and regenerates groups of files
makedev(l) ... prepares t rof £ description files
makekey(l) ... generates an encryption key
man(l) ... displays the named manual page entries
merge(l) ... merges three files into one
mesg(l) ..o permits or denies the receipt of messages
MKAIT(L) o creates a directory
MRShLIAB(L) oo creates a shared library
nkstr(l) ... creates an error message file by massaging C source programs
mm(l) ... formats documents that contain nrof f and mm macro formatting requests
mmt(l) .. typeset documents that contain troff and mm or mv
macro-formatting requests
more(l) ... show the contents of a file in display-size chunks
MECL) manipulates magnetic tape media
(L) moves or renames files
V() see mmt(1)
ndx(l) ... creates a subject-page index for a document
negn(l) ... formats mathematical text for nrof £
netstat(IN) ... displays network status information
newform(l) ... changes the format of a text file
newgrp(l) ..o logs you into a new group
news(l) ... displays local news items
nice(l) ... executes a command at low priority
nl(l) .o processes a file through a line numbering filter
nm(l) . displays the symbol table of a common object file

i User Commands (G-P)

nohup(l) runs a command so that it can continue to run even after
your session has ended

nrof (L) Lo text formatter
nslookup(l) interactively queries name servers
od(l) ... converts binary data to a displayable form in octal, decimal,
hexadecimal, or ASCII
otrofE(1) ..o formats text for a specific phototypesetter
pack(l) o compress and expand files
Page(l) oo see more(l)
pagesize(l) ... displays the system page size
passwd(l) ..o changes the login password
paste(l) ... merges lines of several files or subsequent lines of one file
pax(l) ... e copies files to or from an archive in an IEEE format
At () o see pack(l)
PAR L L) see machid(l)
pg(l) shows the contents of a file in display-size chunks
pic(l) ..o preprocesses trof £ files that contain drawings
Pr (L) formats text for a print device
printenv(l) displays the value of variables set in the current environment
Prof(l) o displays profile data
prs(l) . displays information about an SCCS file
() reports process status
psdit(ly ... converts t rof f intermediate format to POSTSCRIPT format
psroff(l) ... formats a file through t rof £ so it can be printed on a POSTSCRIPT printer
XL) generates a permuted index
PWACL) . prints the name of the working directory

Section 1 iii

get (1) get(l)

NAME
get — gets a version of an SCCS file

SYNOPSIS
get [-aseq-no] [-b] [-ccutoff] [-e] [-g] [-1lisf] [-k] [-1[p]] [-m] [-n]
[-p] [-rSID] [-s] [-t] [-wstring] [-xlist] file...
ARGUMENTS
-aseq-no
The delta sequence number of the SCCS file delta (version) to be
retrieved (see sccsfile(4)). This keyletter is used by the comb(1)
command; it is not a generally useful keyletter, and users should not
use it. If both the -r and -a options are specified, the —a options is
used. Care should be taken when using the -a option in conjunction
with the —e option, as the SID of the delta to be created may not be
what one expects. The -r option can be used with the -a and -e
options to control the naming of the SID of the delta to be created.

-b Indicates that the new delta should have an SID in a new branch as
shown in Table 1, when used with the -e option. This option is
ignored if the b is not present in the file (see admin(1)) or if the
retrieved delta is not a leaf delta. (A leaf delta is one that has no
successors on the SCCS file tree.)

Note: A branch delta may always be created from a nonleaf
delta.

~ccutoff
Specifies the cutoff date-time, in the form: YY[MM[DD][
HH[MM[SS]I11]. No changes (deltas) to the SCCS file which were
created after the specified cutoff date-time are included in the
generated ASCII text file. Units omitted from the date-time default to
their maximum possible values; that is, -c7502 is equivalent to
-c750228235959. Any number of non-numeric characters may
separate the various 2-digit pieces of the cutoff date-time. This feature
allows one to specify a cutoff date in the form:
-c77/2/2 9:22:25. Note that this implies that one may use the
%E% and %U% identification keywords (see later) for a nested get
within, for example, the input to a send(2N) command:

“lget "-c%E% 3U%" s.file
-e Indicates that the get is for the purpose of editing or making a change
(delta) to the SCCS file via a subsequent use of delta(l). When this
option is used in a get command for a particular version (SID) of the

SCCS file, it prevents a further get from editing on the same SID
until delta is executed or the j (joint edit) flag is set in the SCCS

November 1991 1

get(1)

file

get(1)

file (see admin(1l)). Concurrent use of get -e for different SIDs is
always allowed.

If the g-file generated by get with an -e option is accidentally ruined
in the process of editing it, it may be regenerated by re-executing the
get command with the -k option in place of the -e option.

SCCS file protection specified via the ceiling, floor, and authorized
user list stored in the SCCS file (see admin(1)) are enforced when the
-e keyletter is used.

Specifies the file to be processed.

Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an I-file, or to verify the existence of a
particular SID.

—-1list

Specifies a list of deltas to be included (forced to be applied) in the
creation of the generated file. The /ist has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID-SID

SID, the SCCS Identification of a delta, may be in any form shown in
the “*SID Specified’’ column; partial SIDs are interpreted as shown in
the ‘‘SID Retrieved’’ column of Table 1.

Suppresses the replacement of identification keywords (described
below) in the retrieved text by their value. The -k option is implied
by the -e option.

-1lp]

Causes a delta summary to be written into an [-file. If -1p is used,
then an [-file is not created; the delta summary is written on the
standard output instead. See NOTES for the format of the I-file.

Causes each text line retrieved from the SCCS file to be preceded by
the SID of the delta that inserted the text line in the SCCS file. The
format is: SID, followed by a horizontal tab, followed by the text line.

Causes each generated text line to be preceded with the $M%
identification keyword value (described later) The format is: $M%
value, followed by a horizontal tab, followed by the text line. When
both the -m and -n options are used, the format is: $M% value,
followed by a horizontal tab, followed by the -m option generated
format.

Causes the text retrieved from the SCCS file to be written on the
standard output. No g-file is created. All output which normally goes
to the standard output goes to file descriptor 2 instead, unless the - s

November 1991

get (1) get(1)

option is used, in which case it disappears.

-rSID
Specifies the SCCS identification string (SID) of the version (delta) of
an SCCS file to be retrieved. The table that follows these descriptions
shows, for the most useful cases, what version of an SCCS file is
retrieved (as well as the SID of the version to be eventually created by
delta(l) if the -e keyletter is also used) as a function of the SID
specified.

-s Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor 2)
remain unaffected.

-t Accesses the most recently created (top) delta in a given release (for
example, -r1), or release and level (for example, -r1.2).

-wstring
Substitutes string for all occurrences of $W% when running get on the
file.

-xlist
Specifies a list of deltas to be excluded (forced not to be applied) in
the creation of the generated file. See the -1 option for the list
format.

DESCRIPTION
get generates an ASCII text file from each named SCCS file according to
the specifications given by keyletter arguments that begin with -. The
arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, get behaves as though
each file in the directory is specified as a named file, except that non-SCCS
files (last component of the pathname does not begin with s .) and
unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an
SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file, the name
of which is derived from the SCCS filename simply by removing the
leading s . (see also NOTES, later in this section).

For each file processed, get responds (on the standard output) with the
SID being accessed and with the number of lines retrieved from the SCCS
file.

If the - e options is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more
than one named file or if a directory or standard input is named, each

November 1991 3

get(l) get(1)

filename is printed (preceded by a newline) before it is processed. If the
-1 option is used included deltas are listed following the notation
Included; if the -x option is used, excluded deltas are listed following
the notation Excluded.

Determination of SCCS Identification String

SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nonei no R defaults to mR mR.mL mR.(mL+1)
noned yes R defaults tomR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1#%%

R no R =mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R __yes R =mR mR.mL mR.mL.(mB+1).1

R - RemRand hRmL** hRmL(mB+1).1
Trunk succ.#

R - in release > R R.mL R.mL.(mB+1).1
and R exists

R.L no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.

R.L - in release > R R.L R.L.(mB+1).1

R.L.B no No branch succ. R.LB.mS R.L.B.(mS+1)

R.L.B yes No branch succ. R.LB.mS R.L.(mB+1).1

R.L.B.S no No branch succ. R.L.B.S R.L.B.(§+1)

R.LB.S yes No branch succ. R.LB.S R.L.(mB+1).1

R.L.B.S - Branch succ. R.L.B.S R.L.(mB+1).1

* R, L, B, and S are the release, level, branch, and sequence
components of the SID , respectively; ‘m’ means maximum. Thus, for
example, R . mL means the maximum level number within release R;
“R.L.(mB+1).1”’ means the first sequence number on the new branch
(i.e., maximum branch number plus one) of level L within release R.
Note that if the SID specified is of the form R.L, R.L.B, or RL.B.S,
each of the specified components must exist.

** ““hR”’ is the highest existing release that is lower than the specified,
nonexistent, release R.

*#% This is used to force creation of the first delta in a new release.

Successor.

1 The -b option is effective only if the b flag (see admin(1)) is present
in the file. An entry of - means *‘irrelevant.”

4 November 1991

get(1) get (1)

+ This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one
of the other cases in this table applies.

Identification keywords
Identifying information is inserted into the text retrieved from the SCCS
file by replacing identification keywords with their value wherever they
occur. The following keywords may be used in the text stored in an SCCS
file:

Keyword Value

&M%
Module name: either the value of the m flag in the file (see
admin(l)), or if absent, the name of the SCCS file with the leading
s . removed.

oe
—
o

SCCS identification (SID) (3R%.%L%.%B%. %5%) of the retrieved
text.

oe

R

oe

Release.

[
=
00

Level.

o°
[vs)
o°

Branch.

oe
10p]
oo

Sequence.

[
lw)}
o0

Current date (YY/MM/DD).

[
sy
oe

Current date (MM/DD/YY).

op
(=]
ae

Current time (HH:MM_:SS).

oo
&3]
oe

Date newest applied delta was created (YY/MM/DD).

oe
@
oe

Date newest applied delta was created (MM/DD/YY).

oe
g
o°

Time newest applied delta was created (HH:MM:SS).

November 1991 5

get (1) get(1)

Y%
Module type: value of the t flag in the SCCS file (see admin(1)).

oe
el
oe

SCCS filename.

op
J
oo

Fully qualified SCCS filename.

0P

oe

Q
The value of the g flag in the file (see admin(1)).

[

C

oe

Current line number. This keyword is intended for identifying
messages output by the program such as this should not have
happened type errors. It is not intended to be used on every line to
provide sequence numbers.

oe
N
Y

The 4-character string @ (#) recognizable by what(1).

o

W

oo

A shorthand notation for constructing what (1) strings for A/UX
system program files.
$W% = $Z2%%M%<horizontal-tab>%I%

oo

%A
Another shorthand notation for constructing what (1) strings for non-
A/UX system program files.

A% =FZBTYS TMY $L%ZS

EXAMPLES
The command:

get -e s.filel

generates from the SCCS format file, s. £ilel, the text file, filel, for
editing.

NOTES
Several auxiliary files may be created by get. These files are known
generically as the g-file, [-file, p-file, and z-file. The letter before the
hyphen is called the fag. An auxiliary filename is formed from the SCCS
filename; the last component of all SCCS filenames must be of the form
s . module-name, and the auxiliary files are named by replacing the leading
s with the tag. The g-file is an exception to this scheme: the g-file is named
by removing the s . prefix. For example, s.xyz. c, the auxiliary
filenames would be xyz.c,l.xyz.c,p.xyz.c,and z.xyz.c,
respectively.

6 November 1991

get (1) get (1)

The g-file, which contains the generated text, is created in the current
directory (unless the -p option is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get. It is owned by
the real user. If the -k option is used or implied its mode is 644;
otherwise, its mode is 444. Only the real user need have write permission
in the current directory.

The [-file contains a table showing which deltas were applied in generating
the retrieved text. The [-file is created in the current directory if the -1
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the [-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or was not applied and
ignored;
* if the delta was not applied and was not ignored.

c. A code indicating a ‘‘special reason’’ why the delta was or was not
applied:

I: Included.

X: Excluded.

C: Cutoff (by a -c option).

Blank.

SCCS identification (SID).

TAB character.

Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
Blank.

Login name of person who created delta.

5w oo oA

—-

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
option along to delta. Its contents are also used to prevent a subsequent
execution of get with an -e option for the same SID until delta is
executed or the joint edit flag, j, (see admin(1)) is set in the SCCS file.
The p-file is created in the directory containing the SCCS file and the
effective user must have write permission in that directory. Its mode is 644
and it is owned by the effective user. The format of the p-file is: the
acquired SID, followed by a blank, followed by the SID that the new delta
will have when it is made, followed by a blank, followed by the login name

November 1991 7

get (1) get (1)

of the real user, followed by a blank, followed by the date-time the get
was executed, followed by a blank and the -1 option argument if it was
present, followed by a blank and the -x option argument if it was present,
followed by a newline. There can be an arbitrary number of lines in the
p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates.
Its contents are the binary (2 bytes) process ID of the command (that is,
get) that created it. The z-file is created in the directory containing the
SCCS file for the duration of get. The same protection restrictions as
those for the p-file apply for the z-file. The z-file is created mode 444.

LIMITATIONS
If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user does not, then
only one file may be named when the —-e option is used.

DIAGNOSTICS
Use help for explanations.

FILES
/usr/bin/get
Executable file
SEE ALSO
admin(l), cde(l), comb(l), delta(l), help(l), prs(l), rmdel(l),
sact(l), sccs(l), scesdiff£(l), unget(l), val(l), what(l)

sccsfile(d) in A/UX Programmer’s Reference

““‘SCCS Reference’’ in A/UX Programming Languages and Tools, Volume
2

8 November 1991

getopt(1l) getopt (1)

NAME

getopt — parses command options
SYNOPSIS

getopt [flag-letter[:1]... [input-string]
ARGUMENTS

flag-letter| :]
Helps control how input-string is manipulated to detect flags and flag
arguments. If a flag-letter is followed by a : (colon), get opt expects
to find a flag-specific argument following that flag in the input-string.
For example,

getopt a: $*

requires that —a always be followed by its own argument (either with
or without a space separator), as in the following:

yourcommand -a param ..
yourcommand -aparam ...

input-string
Specifies the input string to be parsed. The special option - - can be
used within input-string to request that only a portion of input-string
actually be processed for the presence of flags. Any text following - -
is not processed. If it is not supplied explicitly, getopt still
generates the symbol in its output to help separate any options and
arguments found from any nonflag arguments that might remain in
input-string. For example,

getopt abo: $*
returns
-a -0 param -- XXXX YVYVY ZZZZ

when you place the get opt command line (shown above) in a
command script invoked with

yourcommand -aoparam XXXX YYVY ZZZZ

Even though a hyphen was not specified in front of each option in this
example, the output of getopt includes hyphens in front of both a
and o.

DESCRIPTION
getopt returns input-string with additional separators to help distinguish
any options, any arguments associated with the options, and any arguments
not associated with the options. By replacing input-string with the
command arguments $* for a script, getopt helps shell scripts to parse
their command-line arguments by making a regularized copy of them as
well as checking them for legal options. The regularization that getopt

November 1991 1

getopt(1l) getopt(1l)

can perform for each option is twofold or threefold:

1. Each option on the command line is returned separated with white
space.

2. Each option on the command line is returned with a leading hyphen.

3. Optionally, the argument associated with a given is returned with
white space.

To reset the shell’s positional parameters (S1 $2...) so that they are
regularized by get opt and so that each discrete flag and flag argument is
stored as a unique positional parameter, specify the output of getopt as
the argument for set by using command substitution:

set -- ‘getopt abo: S$*

Quoted Arguments
getopt correctly parses quoted arguments within input-string. However,
if the input string you wish to parse with getopt is specified as $* in
order to request the parsing of command-line arguments, any quotes that
may be present in the command line are automatically stripped by the shell.
In such cases you need to use a reference to the unstripped version of the
command-line arguments, $@, which is available in the sh and ksh shells.
For example

getopt a:b: "sa@r

correctly returns
-a 'hello world’ -b oneword --

when the get opt command line (shown above) is in a script invoked with
yourcommand -a’hello world’ -b oneword

The challenge then becomes resetting the shell’s positional parameters so
that 'hello world’ is interpreted as one positional argument rather
than two positional arguments (‘ hello as one argument and world’ as
another). To do so, use eval to invoke the set function, as in the
following:

eval set -- ‘getopt abo: "$S@"’

To preserve the opportunity to process the exit status of getopt, the
eval command line cannot be used as shown preceding. (The exit status
from getopt is lost when eval is used to evaluate a command string.)

The only recourse is to defer the resetting of positional arguments until
after the exit status stored in the $? variable can be tested:

x='getopt abo: "s@"’
if [$? = 0]

2 November 1991

getopt(1) ' getopt(1)

then
echo SUSAGE
exit 2

fi

eval set -- $x

A nonzero exit value conventionally indicates that processing was

terminated abnormally. So in the example preceding, the value of the exit

status variable is used to detect whether or not the string processing

performed by getopt succeeded: which in turn depends on whether or
not getopt recognized and regularized the input string in terms of the

control arguments supplied.
EXAMPLES

The following code fragment shows how one might process the arguments
for a command that can take the options a or b, as well as the option o,

which requires an argument:

x=‘getopt abo: "s@"’

if [$? 1= 0 1

then
echo SUSAGE
exit 2

if

eval set -- $x

for 1 in "s@r

do
case S$i in
-a | -b) FLAG=S$1; shift;;
-0) OARG=S$2; shift 2;;
-=) shift; break; ;
esac

done

If this code is placed in a script called cmd, then any of the following
invocations are accepted as equivalent:

cmd -aoarg filel file2

cmd -a -oarg filel file2
cmd -o arg -a filel file2
cmd -a -oarg -- filel file2

The script also interprets any imbedded blanks in arguments correctly, as

long as the arguments are quoted as in the following:

cmd -aoarg "file one" “file two"
cmd -a -o "anarg" "filetwo" “file two"
cmd -o “anarg" -a "fileone" “file two"

November 1991

getopt(1) getopt(1)

cmd -a -o"anarg" -- "“filetwo" “file two"

DIAGNOSTICS
The getopt command prints an error message on the standard error when
it encounters an option letter not included as a flag-letter.

FILES
/bin/getopt
Executable file

SEE ALSO
csh(l), ksh(l), sh(l)

getopt(3C) in A/UX Programmer’s Reference

4 November 1991

grap(l) grap(1)

NAME
grap — invokes a pic preprocessor for drawing graphs

SYNOPSIS

grap [-Tuy-type] [-1] [-] [file]...
ARGUMENTS

- Specifies the standard input.

file Specifies the file to be preprocessed by the grap command.

-1 Stops grap from looking for a library file of macro defines,
/usr/lib/dwb/grap.defines.

- Ttty-type
Specifies tty-type as grap’s output device. Currently supported
devices are psc (POSTSCRIPT device such as the Apple LaserWriter)
and aps (Autologic APS-5). The defaultis -Tpsc.

DESCRIPTION
grap is a language for typesetting graphs. It is also the name of a
preprocessor that feeds input to pic. Thus, a typical command line would
appear as follows:

grap files | pic | troff | output-device

Graphs are surrounded by the t roff commands .G1 and .G2. Data that
is enclosed is scaled and plotted, with tick marks supplied automatically.
Commands exist to modify the frame, add labels, override the default ticks,
change the plotting style, define coordinate ranges and transformations, and
include data from files. In addition, grap provides the same loops,
conditionals, and macro processing that pic does.

FILES
/usr/bin/grap
Executable file
/usr/lib/dwb/grap.defines
File containing definitions of standard plotting characters
SEE ALSO
pic(l)
““‘grap Reference,”” in A/UX Text Processing Tools

November 1991 1

graph(1G) graph(1G)

NAME

graph — draws a graph

SYNOPSIS
graph [-a [sp] [st1]] [-b] [-clabel]l [-g [style]] [-h hspace] [-1 title]
[-m[mode]] [-x rspace] {-s][-t}[-u uspace] [-w wspace] [-x [1] [a]
(bl [c]] [-vy (1] [a] [b] [<]]

ARGUMENTS

-a

-b

[sp] [st]
Supplies abscissas automatically (they are missing from the input);
spacing is given by sp (default 1). The option, st, is the starting point
for automatic abscissas (default 0 or the lower limit given by the -x
option.

Breaks (disconnects) the graph after each label in the input.

-clabel

-9

-h

-1

Specifies a character string given by label which is the default label
for each point.

[style]
Specifies a grid style. where Replace style with one of the following:
O=no grid, 1=frame with ticks, and 2=full grid (default).

hspace
Specifies the fraction of the space for height.

title
Specifies the label for the graph.

-m[mode]

Specifies the mode (style) of connecting lines: O=disconnected,
I=connected (default). Some devices give distinguishable line styles
for other small integers (e.g., the Tektronix 4014: 2=dotted, 3=dash-
dot, 4=short-dash, 5=long-dash).

rspace
Specifies the fraction of the space to move right before plotting.

Saves the screen, don’t erase before plotting.
Transposes horizontal and vertical axes.

uspace
Specifies the fraction of the space to move up before plotting.

wspace
Specifies the fraction of the space for width. (-x now applies to the
vertical axis.)

November 1991

graph(1G) graph(1G)

-x [1] [a] [B] [c]
Specifies certain quantities for the x axis. If 1 is present, x axis is
logarithmic. a (and b) are lower (and upper) x limits. ¢, if present, is
the grid spacing on the x axis. Normally, these quantities are
determined automatically.

-y [} [a] [b] [c]
Specifies certain quantities for the x axis. If 1 is present, x axis is
logarithmic. a (and b) are lower (and upper) x limits. c, if present, is
the grid spacing on the x axis. Normally these quantities are
determined automatically.

DESCRIPTION
graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by
the tplot filters.

If the coordinates of a point are followed by a non-numeric string, that
string is printed as a label beginning on the point. Labels may be
surrounded with quotes ("), in which case they may be empty or contain
blanks and numbers; labels never contain newlines.

A legend indicating grid range is produced with a grid unless the - s option
is present. If a specified lower limit exceeds the upper limit, the axis is
reversed.

LIMITATIONS
The graph command stores all points internally and drops those for which
there isn’t room.

Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.
Options and their arguments must be delimited by at least one space.

FILES
/usr/bin/graph
Executable file

SEE ALSO
spline(1G), tplot(1G)

November 1991 2

greek(1) greek(1)

NAME
greek — filters text for vintage display devices

SYNOPSIS
greek [-Tterminal]

ARGUMENTS
~Tterminal
Specifies an alternate terminal type to be used with the greek
command. The following terminals are currently recognized:

300
DASI 300

300-12
DASI 300 in 12-pitch

300s
DASI 300s

300s-12
DASI 300s in 12-pitch

450
DASI 450

450-12
DASI 450 in 12-pitch

1620
Diablo 1620 (alias DASI 450)

1620-12
Diablo 1620 (alias DASI 450) in 12-pitch

4014
Tektronix 4014

tek
Tektronix 4014

DESCRIPTION
greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character Teletype Model 37
terminal and certain other terminals. Special characters are simulated by
overstriking, if necessary and possible. If the argument is omitted, greek
attempts to use the environment variable $TERM (see environ(5)).

EXAMPLES
The command:

nroff file | greek -T4014

1 November 1991

greek(l) greek(1)

reinterprets the extended character set on a Tektronix 4014 terminal.

FILES

/usr/bin/greek

Executable file
/usr/bin/300

File containing terminal information
/usr/bin/300s

File containing terminal information
/usr/bin/4014

File containing terminal information
/usr/bin/450

File containing terminal information

SEE ALSO
300(1), 4014(1), 450(1), egn(1), mm(1), nrof £(1), tplot(1G)

term(4), environ(5), greek(5) in A/UX Programmer’s Reference

November 1991 2

grep(1) grep(1)

NAME
grep, egrep, fgrep — search a file for a specific pattern
SYNOPSIS
grep [-b] [-c] [-1][-1] [-n] [-s] [-V] expression [file]...
egrep [-b] [-c] [-e expression] [-f file] [-1][-1][-n][-V]
[expression] [file]...
fgrep [-b] [-c] [-e expression] [-f file] [-i]1[-1][-n] [-v][-X]
[strings] [file]...
ARGUMENTS

-b Precedes each line by the block number on which it was found. This
is sometimes useful in locating disk block numbers by context.

~c Prints only a count of matching lines.

-e expression
Acts the same as a simple expression argument, but useful when the
expression begins with a —. This option does not work with the grep
command.

expression
Specifies the regular expression that is used in the egrep command.

-t file
Takes the regular expression (egrep) or strings list (£grep) from
the file.

file Specifies the file that will be searched.
-1 Ignores upper/lowercase distinction during comparisons.

-1 Lists (once) only the names of files with matching lines, separated by
newlines.

-n Precedes each line by its relative line number in the file.

-5 Suppresses the error messages produced for nonexistent or unreadable
files. This option is used for grep only.

string
Specifies the string of character to look for in the specified file.

-v Prints all lines but those matching.

-x Means exact. Only lines matched in their entirety are printed. This
option is only used for fgrep.

DESCRIPTION
grep searches the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output. The
grep command patterns are limited regular expressions in the style of ed;

1 November 1991

grep(1) grep(l)

they use a compact nondeterministic algorithm.

egrep patterns are full regular expressions; they use a fast deterministic
algorithm that sometimes needs exponential space.

fgrep patterns are fixed strings; it is fast and compact.

In all cases, the filename is output if there is more than one input file. Care
should be taken when using the characters $, *, [, ~,|, (,), and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotation marks (”...").

The fgrep command searches for lines that contain one of the strings
separated by newlines.

The egrep command accepts regular expressions as in ed(1), except for
\ (and \), with the addition of:

1. A regular expression followed by + matches one or more occurrences
of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by | or by a newline match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [], then * ? +, then concatenation,

then| and newline.

EXAMPLES
The command:

grep -v -c ‘regular’ grep.l

reports a count of the number of lines that do not contain the word regular
in the file grep. 1.

LIMITATIONS
Ideally there should be only one grep, but we do not know a single
algorithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to BUFSIZ characters; longer lines are truncated.
(BUFSIZisdefinedin /usr/include/stdio.h.)

The egrep command does not recognize ranges, such as [a-z] , in
character classes.

If there is a line with embedded nulls, grep will only match up to the first
null; if it matches, it will print the entire line.

November 1991 2

grep(1) grep(l)

STATUS MESSAGES AND VALUES
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

FILES
/bin/grep
Executable file
/bin/egrep
Executable file
/bin/fgrep
Executable file

SEE ALSO
awk(1), csh(l), ed(l), ex(1), ksh(l), 1ex(1), sed(l), sh(l), vi(l)

3 November 1991

groups(1) groups(1)

NAME

groups — displays group memberships
SYNOPSIS

groups [user]
ARGUMENTS

user
Specifies the name of the user whose groups you want displayed.

DESCRIPTION
groups shows the groups to which you or the optionally-specified user
belong. Each user belongs to a group specified in the password file
/etc/passwd and possibly to other groups as specified in the file
/etc/group. If you do not own a file, but belong to the group which
owns it, you are granted group access to the file.

When a new file is created, it is given the group of the containing directory.

LIMITATIONS
More groups should be allowed. Eight groups is currently the limit.

FILES
/usr/bin/groups
Executable file
/etc/passwd
File containing user passwords.
/etc/group
File containing group passwords.

SEE ALSO
setgroups(2) in A/UX Programmer’s Reference

November 1991 1

hashcheck(1) hashcheck(1)

See spell(l)

1 November 1991

hashmake(1) hashmake(1)

See spell(l)

November 1991 1

head(1) head(1)

NAME
head — displays the first few lines of a file

SYNOPSIS
head [-count] [file]...

ARGUMENTS
count
Specifies the number of lines to be displayed. If this option is not
given, the default is 10.

file Specifies the file to be displayed. If you specify file as a dash, (-), the
standard input is read.

DESCRIPTION
This filter displays the first lines (specified by count), for each of the
specified files or for the standard input.

EXAMPLES
The command:

head -6 filea fileb filec

will print out the first six lines of the three specified files. The filename will
appear before each new set of headlines listed, if more than one file has
been specified.

FILES
/bin/head
Executable file

SEE ALSO
awk(1l), cat(l), more(l), pg(l), tail(l)

1 November 1991

help(l) help(l)

NAME
help — provides help information about SCCS commands and messages
SYNOPSIS
help [args]...
ARGUMENTS
args
Specifies the message number (which normally appear in parentheses
following the message) or command name for which you want
information. If this option is not specified, help will prompt you for
one.

DESCRIPTION
help finds information to explain a message from an SCCS command or
explain the use of an SCCS command. Zero or more arguments may be
supplied.

The arguments must be of one of the following types:

type 1
Begins with non-numerics, ends in numerics. The non-numeric prefix
is usually an abbreviation for the program or set of routines which
produced the message (for example, ged, for message 6 from the get
command).

type 2
Does not contain numerics as a command (such as get)

type 3
Is all numeric (for example, 26)

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, enter:
help stuck
EXAMPLES
The command:
help he2
prints the message for error number he2.

STATUS MESSAGES AND VALUES
Use help for explanations.

November 1991 1

help(1l) help(1)

FILES
/usr/bin/help
Executable file
/usr/lib/help/*
Message files
/usr/lib/help/helploc
File containing pathnames leading to custom message files
/usr/lib/help/lib/help2
Executable file called by help

SEE ALSO
admin(l), cde(l), comb(l), delta(l), get(l), unget(l), help(l),
prs(l), rmdel(l), sact(l), sccediff(l), val(l), what(l)

2 November 1991

hex(1) hex(1)

NAME
hex — converts an object file to Motorola S-record format

SYNOPSIS
hex [-£][-1][-n#] [-ns8] [-x] [-s0] [-s2] [+saddr] ifile

ARGUMENTS
+saddr
Specifies the starting load address (in hex).

-f Causes the file specified to be shipped as is without treating it as an
object file.

ifile Specifies the file to be downloaded. The file’s starting address is used
if saddr is not present.

-1 Outputs the "Loading at" message.
-n#

Specifies the number of characters to output per record. Replace #
with a decimal number.

-ns8
Does not output a trailing 8 (s9) record.

-r Outputs a carriage return at the end of each S-record (instead of a
newline).

-s0
Outputs a leading s0 record.
-s2
Records only (no s1 records are produced).

DESCRIPTION
hex translates executable object files into ASCII formats suitable for
Motorola S-record downloading.

EXAMPLES
In the command:

hex objfile
objfile is the object file to be downloaded.

FILES
/usr/bin/hex
Executable file

SEE ALSO
as(1), od(1), rcvhex(1l)

November 1991 1

hex(1) hex(1)

a.out(4) in A/UX Programmer’s Reference

2 November 1991

hostid(1IN) hostid(IN)

NAME
hostid — sets or displays the identifier of the current host system

SYNOPSIS
hostid [identifier]

ARGUMENTS
identifier
Specifies the identifier to be displayed.

DESCRIPTION
hostid displays the identifier of the current host in hexadecimal. This
numeric value is expected to be unique across all hosts and is normally set
to the host’s Internet address (for Ethernet or TCP/IP). The superuser may
set the hostid by giving a hexadecimal argument; this is usually done in the
startup script /etc/sysinitre.

FILES
/bin/hostid
Executable file

SEE ALSO
gethostid(2N)

November 1991 1

hostname(1N) hostname(1N)

NAME
hostname — sets or displays the name of the current host system

SYNOPSIS
hostname [nameofhost]

ARGUMENTS
nameofhost
Specifies the name of the host system you wish to be displayed or set.

DESCRIPTION
hostname displays the name of the current host. The superuser can set
the hostname by giving an argument; this is usually done in the startup
script /etc/sysinitre.

FILES
/bin/hostname
Executable file

SEE ALSO
gethostname(2N)

1 November 1991

hyphen(l) hyphen(1)

NAME

hyphen — finds hyphenated words
SYNOPSIS

hyphen [file]...
ARGUMENTS

file Specifies the file that is searched for hyphenated words. If this option
is not given, hyphen uses the standard input.

DESCRIPTION
hyphen finds all the hyphenated words ending lines in files and prints
them on the standard output. If hyphen encounters a -, it uses the
standard input. Thus, hyphen may be used as a filter.

EXAMPLES
You would use the following command line to proofread nroff’s
hyphenation in files:

mm file | hyphen
LIMITATIONS

The hyphen command cannot cope with hyphenated italics (or underlined
words); it frequently will either miss them altogether or mishandle them.

The hyphen command occasionally gets confused but with no ill effects
other than spurious extra output.

FILES
/usr/bin/hyphen
Executable file

SEE ALSO
grep(l), mm(1), trof£(1)

November 1991 1

id(l) ida(l)

NAME
id — displays user and group IDs and names

SYNOPSIS
id

DESCRIPTION
id writes a message on the standard output giving the user and group IDs
and the corresponding names of the invoking process. If the effective and
real IDs do not match, both are displayed.

EXAMPLES
If logged in as the user guest, the command:

id
will return
uid=100 (guest) gid=100 (users)

where 100 and guest are the user’s ID number and name; 100 and
users are the user’s group ID number and group name. These values are
set up in the administrative file /etc/passwd.

FILES
/usr/bin/id
Executable file
/etc/passwd
File containing user IDs

SEE ALSO
logname(1l), whoami(l)

getuid(2) in A/UX Programmer’s Reference

1 November 1991

ident(1) ident (1)

NAME
ident — displays RCS keywords and their values

SYNOPSIS
ident file...

ARGUMENTS
file Specifies the file that is to be searched.

DESCRIPTION
ident searches the named files for all occurrences of the pattern
Skeyword: ... S, where keyword is one of the following:

Author
Date
Header
Locker
Log
Revision
source
State

These patterns are normally inserted automatically by the RCS command
co(1), but can also be inserted manually.

The ident program works on text files as well as object files.

EXAMPLES
If the C program in file f . ¢ contains the line

char rcsid[] = "SHeader: utility S$";
and £ . c is compiled into f . o, then the command
ident f.c f.o

will print
f.c:
SHeader: utility $
f.o:
SHeader: utility $
NOTES

Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci(l), co(l), rcs(l), rcsdiff(l), resintro(l), rcsmerge(l),
rlog(l)

November 1991 1

ident(1) ident(1)

rcsfile(d) in A/UX Programmer’s Reference

Walter F. Tichy, ‘‘Design, Implementation, and Evaluation of a Revision
Control System,’” in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, September 1982

November 1991

indent(1) indent(1)

NAME
indent — indents and formats C program source

SYNOPSIS
indent input [output] [-bc, -nbc] [-br, -bl] [-cn] [-cdn]
[[-d31,-ndj]l-dn] [-in] [-1n] [-v, -nV]

ARGUMENTS

[-be, —nbc]
Causes a newline to be forced after each comma in a declaration. If
-bc is specified, a newline will be forced after each comma in a
declaration. If -nbc is specified, this option is turned off. The default
is -bc.

|-br, -bl]
Specifies the format of complex statements. If -b1 is specified,
complex statements will be lined up like this:

if (...)
{
code
3
If -br (the default) is specified, they will look like this:
if (o.o0) o
code
}

-chn
Specifies the column in which comments will start. Replace n with
the column number. The default is 33.

-cdn
Specifies the column in which comments on declarations will start.
Replace n with the column number. The default is for these
comments to start in the same column as other comments.

[-dj], -ndj
Specifies the justification of the declarations. -dj will cause
declarations to be left justified. -ndj will cause them to be indented
the same as code. The default is -ndj.

~-dn
Controls the placement of comments which are not to the right of
code. Specifying —-d2 means that such comments will be placed two
indentation levels to the left of code. The default, -d1, places
comments one indentation level to the left of code. -Ad0 lines up these
comments with the code. See the section on comment indentation
following.

November 1991 1

indent (1) indent (1)

-in
Specifies the number of spaces for one indentation level. Replace n
with the number of spaces. The default is 4.

input
Specifies the file to be formatted.

-1n
Specifies the maximum length of an output line. Replace n with the
length of the output line. The default is 75.

output
Specifies the results of the formatted input file. When specified,
indent checks to make sure it is different from input. This option is
not given, the formatted file will be written back into input and a
“‘backup’’ copy of input will be written in the current directory.

[-v], -nv
Turns verbose mode on or off. -v turns on verbose mode, and -nv
turns it off. When in verbose mode, indent will report when it splits
one line of input into two or more lines of output, and it will give
some size statistics at completion. The default is -nv.

DESCRIPTION
indent is intended primarily as a C program formatter. Specifically,
indent can indent code lines, align comments, insert spaces around
operators where necessary, and break up declaration lists as in
inta, b, c;.

The indent command will not break up long statements to make them fit
within the maximum line length, but it will flag lines that are too long.
Lines will be broken so that each statement starts a new line. Comments
will be lined up one indentation level to the left of the code, and an attempt
is made to line up identifiers in declarations.

The options may appear before or after the file names. If input is named
/blah/blah/file, the backup file will be named .Bfile.

You may set up your own ‘‘profile’’ of defaults to indent by creating the
file . indent . pro in your home directory and including whatever
switches you like. If indent is run and a profile file exists, then it is read
to set up the program’s defaults. Switches on the command line, though,
will always override profile switches. The profile file must be a single line
of not more than 127 characters. The switches should be separated on the
line by spaces or tabs.

2 November 1991

indent (1) indent(l)

Multiline expressions
The indent command will not break up complicated expressions that
extend over multiple lines, but it will usually correctly indent such
expressions which have already been broken up. Such an expression might
end up looking like this:

X =
(
(Arbitrary parenthesized expression)
+
(
(Parenthesized expression)
*
(Parenthesized expression)
)
)
Comments

The indent command recognizes four kinds of comments. They are:
straight text, box comments, UNIX-style comments, and unchanged
comments. The action taken with these various types are as follows:

Straight Text
All other comments are treated as straight text. The indent
command will fit as many words (separated by blanks, tabs, or
newlines) on a line as possible. Straight text comments will be
indented.

Box Comments
The indent command assumes that any comment with a dash
immediately after the start of comment (i.e. /*-)is a comment
surrounded by a box of stars. Each line of such a comment will be left
unchanged, except that the first nonblank character of each successive
line will be lined up with the beginning slash of the first line. Box
comments will be indented (see below).

UNIX-style Comments
This is the type of section header which is used extensively in the
UNIX system source. If the start of comment (/*) appears on a line
by itself, indent assumes that it is a UNIX-style comment. It will be
treated similarly to box comments, except the first nonblank character
on each line will be lined up with the ““**” of the / *.

Unchanged Comments
Any comment which starts in column 1 will be left completely
unchanged. This is intended primarily for documentation header
pages. The check for unchanged comments is made before the check

November 1991 3

indent (1) indent (1)

for UNIX-style comments.

Comment Indentation
Box, UNIX-style, and straight text comments may be indented. If a
comment is on a line with code, it will be started in the
comment column which is set by the —cn option. Otherwise, the
comment will be started at n indentation levels less than where code is
currently being placed, where n is specified by the -dn option. (Indented
comments will never be placed in column 1.) If the code on a line extends
past the comment column, the comment will be moved to the next line.

LIMITATIONS
The indent command does not know how to format ‘‘long’’ declarations.

STATUS MESSAGES AND VALUES
Status messages generally tell that a text line has been broken or is too long
for the output line.

FILES
/usr/ucbh/indent
Executable file
~/.indent .pro
Profile file

SEE ALSO
cb(1)

4 November 1991

indxbib(1) indxbib(1)

NAME
indxbib — builds an inverted index for a bibliography

SYNOPSIS
indxbib [database]... [file]...

ARGUMENTS
database
Specifies the database from which to make the index.

file Specifies the file from which to make the index.

DESCRIPTION
indxbib makes an inverted index to the named databases or files for use
by locokbib and refer. These files contain bibliographic references (or
other kinds of information) separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of
bibliographic information. Each field starts on a line beginning with a %,
followed by a key-letter, then a blank, and finally the contents of the field,
which may continue until the next line starting with %.

The indxbib command is a shell script that calls
/usr/lib/refer/mkey and /usr/lib/refer/inv. The first
program, mkey, truncates words to 6 characters, and maps uppercase to
lowercase. It also discards words shorter than 3 characters, words among
the 100 most common English words, and numbers (dates) < 1900 or >
2000. These parameters can be changed; see refer(l). The second
program, inv, creates an entry file (. ia), a posting file (. 1b), and a tag
file (. 1¢), all in the working directory.

LIMITATIONS
Probably all dates should be indexed, since many disciplines refer to
literature written in the 1800s or earlier.

FILES
/usr/ucb/indxbib
Executable file
file.ia
Output file where file is the name of the file or database
file.ib
Output file where file is the name of the file or database
file.ic
Output file where file is the name of the file or database
file.ig
Output file where file is the name of the file or database

November 1991 1

indxbib(1) indxbib(1)

SEE ALSO
addbib(l), lookbib(l), refer(l), rof fbib(l), sortbib(l)

2 November 1991

ipcrm(l) ipcrm(1)

NAME
ipcrm — removes interprocess communications facilities

SYNOPSIS
ipcrm [-m shmid] [-M shmkey) [-q msqid] [-Q msgkey] [-s semid]
[-S semkey]
ARGUMENTS
-m shmid
Removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are
destroyed after the last detach.

-M shmkey
Removes the shared memory identifier, created with key shmkey, from
the system. The shared memory segment and data structure associated
with it are destroyed after the last detach.

-g msqid
Removes the message queue identifier msqgid from the system and
destroys the message queue and data structure associated with it.

-Q msgkey
Removes the message queue identifier, created with key msgkey, from

the system and destroys the message queue and data structure
associated with it.

-s semid

Removes the semaphore identifier semid from the system and destroys
the set of semaphores and data structure associated with it.
-S semkey
Removes the semaphore identifier, created with key semkey, from the
system and destroys the set of semaphores and data structure
associated with it.
DESCRIPTION
ipcrm will remove one or more specified message, semaphore, or shared
memory identifiers. The identifiers are specified by the options.
The details of the removes are described in msgct 1(2), shmct 1(2), and
semct 1(2). The identifiers and keys may be found by using ipcs(l1).
FILES
/bin/ipcrm
Executable file

November 1991 1

ipcrm(l) ipcrm(1)

SEE ALSO
ipcs(l)

msgct1(2), msgget(2), msgop(2), semct1(2), semget(2), semop(2),
shmct 1(2), shmget(2), shmop(2) in A/UX Programmer’s Reference

2 November 1991

ipes(l) ipcs(1)

NAME
ipcs — reports interprocess communication facilities status

SYNOPSIS
ipcs [-a]l [-b] [-c][-C corefile] [-m] [-N namelist] [-o] [-p] [-d]
[-s][-t]
ARGUMENTS
-a Uses all print options. (This is a shorthand notation for the -b, -c,
-0, -p, and -t options.)

-b Prints information on largest allowable size (maximum number of
bytes in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for
semaphores). See below for meaning of columns in a listing.

—-c Prints the creator’s login name and group name.

-C corefile
Uses the file corefile in place of /dev/kmem.

~-m Prints information about active shared memory segments.

-N namelist
Takes the argument as the name of an alternate namelist (/unix is
the default).

-o Prints information on outstanding usage (number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory
segments).

-p Prints the process number information (process ID of last process to
send a message, process ID of last process to receive a message on
message queues, and process ID of creating process and process ID of
last process to attach or detach on shared memory segments).

—-g Prints information about active message queues.
-s Prints information about active semaphores.

-t Prints time information (time of the last control operation that changed
the access permissions for all facilities; time of last msgsnd and last
msgrcy on message queues, last shmat and last shmdt on shared
memory, last semop(2) on semaphores).

November 1991 1

ipcs(1l) ipcs(l)

DESCRIPTION
ipcs prints certain information about active inter-process communication
facilities. Without options, information is printed in short format for
message queues, shared memory, and semaphores that are currently active
in the system.

If any of the -q, -m, or - options are specified, information about only
those indicated will be printed. If none of these are specified, information
about all three will be printed.

The column headings and the meaning of the columns in an ipcs listing
follow. The letters in parentheses indicate the options that cause the
corresponding heading to appear, while the word in parentheses, all, means
that the heading always appears. Note that these options determine only
what information is provided for each facility; they do not determine which
facilities will be listed.

T (all)
Type of the facility:

g message queue
m shared memory segment
s semaphore

ID (all)
The identifier for the facility entry.

KEY (all)
The key used as an argument to msgget, semget, or shmget to create
the facility entry.

Note: The key of a shared memory segment is changed to
IPC_PRIVATE when the segment has been removed until all
processes attached to the segment detach it.

MODE (all)
The facility access modes and flags. The mode consists of 11
characters that are interpreted as follows:

The characters are:
R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd,

D if the associated shared memory segment has been removed,
it will disappear when the last process attached to the
segment detaches it;

2 November 1991

ipcs(l) ipcs(l)

C if the associated shared memory segment is to be cleared
when the first attach is executed;

- if the corresponding special flag is not set.

The next characters are interpreted as three sets of three bits each.
The first set refers to the owner’s permissions; the next to permissions
of others in the user-group of the facility entry; and the last to all
others. Within each set, the first character indicates permission to
read, the second character indicates permission to write or alter the
facility entry, and the last character is currently unused.

The permissions are indicated as follows:
r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;
- if the indicated permission is not granted.

OWNER (all)
The login name of the owner of the facility entry.

GROUP (all)
The group name of the owner’s group of the facility entry.

CREATOR (a,c)
The login name of the creator of the facility entry.

CGROUP (a,c)
The group name of the creator’s group of the facility entry.

CBYTES (a, o)
The number of bytes in messages currently outstanding on the
associated message queue.

QNUM (a, o)
The number of messages currently outstanding on the associated
message queue.

QBYTES (a,b)
The maximum number of bytes allowed in messages outstanding on
the associated message queue.

LSPID (a,p)
The process ID of the last process to send a message to the associated
queue.

LRPID (a,p)
The process ID of the last process to receive a message from the
associated queue.

November 1991 3

ipcs(l) ipcs(1)

STIME (a,t)
The time the last message was sent to the associated queue.

RTIME (a,t)
The time the last message was received from the associated queue.

CTIME (a,t)
The time when the associated entry was created or changed.

NATTCH (a,o0)
The number of processes attached to the associated shared memory
segment.

SEGSZ (a,b)
The size of the associated shared memory segment.

CPID (a,p)
The process ID of the creator of the shared memory entry.

LPID (a,p)
The process ID of the last process to attach, or detach, the shared
memory segment.

ATIME (a,t)
The time the last attach was completed to the associated shared
memory segment.

DTIME (a,t)
The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b)
The number of semaphores in the set associated with the semaphore
entry.

OTIME (a,t)
The time the last semaphore operation was completed on the set
associated with the semaphore entry.

LIMITATIONS
Things can change while ipcs is running; the picture it gives is only a
close approximation to reality.

FILES
/bin/ipcs
Executable file
/unix
System namelist directory
/dev/kmem
Memory file

4 November 1991

ipcs(l) ipcs(l)

/etc/passwd

File containing user names
/etc/group

File containing group names

SEE ALSO
ipcrm(l)

msgop(2), semop(2), shmop(2) in A/UX Programmer’s Reference

November 1991 5

isotomac(l) isotomac(l)

See mactoiso(l)

1 November 1991

iw2(1)

NAME

iw2(1)

iw2 — prepares data to be printed on the Apple ImageWriter II printer

SYNOPSIS
iw2 [-a dotspace] [-b] [-¢ color] [-A] [-D udcfile] [-£] [-h]
[-k mode] [-1 language] [-m margin] [-n1 length] [-o file]
[-p pitch] [-g quality] [-s spacing] [-t tabs] [-u] [-U udcfile]
[-w value] [-x] [-2z] [file]...

ARGUMENTS
-a dotspace

-b

Adds dot spaces to proportional pitch text. When the Apple
Imagewriter II is printing in a proportional pitch, the space allotted to
each character depends on the shape of the character. Each character
has one dot space added after it to keep it from running into the next
character. This option allows from 1 to 6 additional dot spaces to be
added after each proportional character.

Prints boldface text. Each dot of the character is printed twice with a
small shift of position.

-c color

-d

Prints text in color. The Apple Imagewriter II can print in color by
using the color ribbon. The color ribbon contains four bands of color:
yellow, cyan, magenta, and black. In addition, the Apple Imagewriter
IT automatically prints orange, green, and purple by overprinting one
color with another, as follows:

black
Selects the black color ribbon band.
vellow
Selects the yellow color ribbon band.
red
Selects the magenta color ribbon band. You can specify this
color by magenta as well.
blue
Selects the cyan color ribbon band. You can specify this
color by cyan as well.
orange
Prints orange by overprinting yellow and magenta.
green
Prints green by overprinting yellow and cyan.
purple
Prints purple by overprinting magenta and cyan.

Prints double-width characters. Each character is printed with double
the number of dots with which it is normally printed.

November 1991 1

iw2(1) iw2(1)

-D udcfile
Works the same as the —U option, except that the udcfile filename is
prefixed with the directory pathname /usr/1ib/iw2/ (see the -U
option later in this section).

-f Outputs an initial formfeed before any files are printed. Generally
used with the Apple Imagewriter II sheetfeeder.

file Specifies the file that is prepared for printing. If no file is specified,
the standard input is assumed.

-h Prints half-height characters. Half-height characters are printed by
cutting in half the vertical distance between the rows of dots that make
up the characters.

-k mode
Selects print direction mode. The Apple Imagewriter II can print from
left-to-right or bidirectional. Left-to-right, while slower, improves the
precision at which characters line up.

1r Print left-to-right only.
bi Print bidirectional.

-1 language
Selects language font. As an aid, there are 8 different language fonts
used for printing text in other languages. Each of these fonts
substitutes characters for these ten American font symbols:

#e [N 1 0 1y 7
american
Selects the American language font.

italian
Selects the Italian language font.

danish
Selects the Danish language font.

british
Selects the British language font.

german
Selects the German language font.

swedish
Selects the Swedish language font.

french
Selects the French language font.

2 November 1991

iw2(1) iw2(1)

spanish
Selects the Spanish language font.
-m margin
Specifies the left page margin. This sets the leftmost column to start
printing in. Normally zero, the column number may be set from zero
(leftmost) to a value that depends on the current character pitch, as
shown in the following list.
Pitch Chars/line Range

9 72 0to71
10 80 0to 79
12 96 0t0 95
13.4 107 0 to 106
15 120 0Oto 119
17 136 0to 135
pica depends Oto71
elite depends 0to79

For setting the margin when using proportional fonts, elite uses 10
characters per inch and pica uses 12 characters per inch.
-n length
Specifies page length. This must be an integer value in inches. If the
number is preceded by a /, it will be considered as length/144 in.
That is, both -n 11 and -n /1584 will set a page length of 11
inches.
-o file
Specifies an output file. By default, iw2 writes to the standard output,
so this option will redirect the output to file.
-p pitch
Specifies pitch, or characters per inch. The Apple Imagewriter 11
prints in eight different widths (character pitches), from 9 characters
per inch (cpi) to 17 cpi. Two of the character pitches print
proportionally; that is, the space allotted to each character depends on
the shape of the character.
9 Prints at 9 cpi, for 72 characters per line.
10 Prints at 10 cpi, for 80 characters per line.
12 Prints at 12 cpi, for 96 characters per line.

13 Prints at 13.4 cpi, for 107 characters per line. 13 .4 may
also be specified.

15 Prints at 15 cpi, for 120 characters per line.

November 1991 3

iw2(l) iw2(1)

17 Prints at at 17 cpi, for 136 characters per line.
pica
Prints pica proportional font. Averages 10 cpi.
elite
Prints elite proportional font. Averages 12 cpi.
-q quality
Specifies quality of printing. The Apple Imagewriter II can print

ASCII text in one of three qualities: draft (250 characters per second),
correspondence (180 cps), and near letter quality (45 cps).

draft
Prints in draft quality mode.

better
Prints in better, or correspondence quality mode.
nlqg
Prints in best, near letter quality. You may also specify
best for this mode.
-s spacing
Specifies spacing, or distance between lines. This value can be
specified in two ways.

2 Sets line spacing to 2 lines per inch.
3 Sets line spacing to 3 lines per inch.
4 Sets line spacing to 4 lines per inch.
6 Sets line spacing to 6 lines per inch.
8 Sets line spacing to 8 lines per inch.
9 Sets line spacing to 9 lines per inch.

The value can also have a slash (/) affixed to it. Then, this value
indicates line spacing at 1/144 in. For example, three lines per inch
would be a spacing of 48/144 in., and could be specified by either -s
3or-s /48.

-t tabs
Specifies tab settings. Default tabs are set every 8 columns (9, 17, 25,
...). This option clears all default tab stops and is used to set custom
tab stops. Tabs are specified by numbers followed by commas. For
example, to set tabs every four columns (up to column 25):

-t 5,9,13,17,21,25

The limit on the number of settable tabs is 8. The highest legal
column for the tab stop must lie in the left margin range. See the -m

4 November 1991

iw2(1) iw2(1)

option for the margin range table.
-u Causes all characters and spaces to be underlined.

-U udcfile
Loads user defined characters from the file udcfile, the contents of
which are defined later in this section.

-w value
Sets dot spacing for proportional pitch text. When the Apple
Imagewriter II is printing in a proportional pitch, the space allotted to
each character depends on the shape of the character. Each character
has a single dot space added after it to keep it from running into the
next character. This option allows setting dot spaces for the
proportional character set. Dot spacing may be set from 0 to 9 dot
spaces. Each proportional character will always include one dot
space, thus the settings of O through 9 allow you to set the dot spacing
from 1 to 10.

-x Resets the Apple Imagewriter II initialization sequences (that set the
default settings). In this program, first the default sequences are
processed (see ‘‘Defaults’” later in this section), then the environment
variable, and then the options. This option, when encountered, resets
the buffer holding the initialization sequences that were built by
processing the default and environmental variable.

-z Specifies that all zeros are to be printed with a slash through them.

DESCRIPTION
The Apple Imagewriter II is a dot matrix printer that works as a normal
ASCII character set printer. It has many options, including color ribbons,
various print qualities, national language character sets, downloadable
fonts, and more. iw?2 is a program that accepts options indicating that a
file or files (or standard input) is to be printed with various Apple
Imagewriter II option sets.

The iw2 command prepares the named files for eventual printing on the
Apple Imagewriter I by sending appropriate Apple Imagewriter 11 control
codes and then the named files to the standard output.

UDC files
A UDC (user defined character) file consists of ASCII text that defines the
bit patterns that make up a character. More than one character can be
defined in a UDC file, and any character may be redefined. Characters that
are not defined in a UDC file print out in the normal ASCII character bit
pattern. For example, to define the ASCII space character (SP) to resemble
an upside down and backwards capital L:

=040

November 1991 5

iw2(1) iw2(1)

1###4.

O J Uk WN
B i S

In a UDC file, each character is defined by 9 text lines. The first line starts
with an equal sign (=), and is followed by an octal, decimal, or
hexadecimal number that indicates the character to be defined. Octal,
decimal, or hexadecimal is selected by using the standard C language
conventions.

The next 8 lines define the 8 rows of the character. Notice that the lines are
numbered. These numbers correspond to the nine-wire print head. You
are limited to 8 rows. You can specify rows 1 through 8, or rows 2 through
9. Each line contains a period (.) to indicate no dot, and a pound sign (#)
to indicate dot. The width of the character is computed by the longest line
encountered in the 8 lines. You should place extra periods at the right
columns of the character definition to allow for space between it and the
adjacent character.

For example, we have redefined the letter ‘“A’’ to be a vertical bar, with a
small amount of space between it and the character on its left, and a lot of
space between it and the character on the right.

=0x41
CHHEL L.
L L

CHHL

O~ O U WM

e
The maximum width of any character is 16 columns of dots.

Defaults
Draft font Standard ASCII
American language Pitch is 12 cpi (Elite)
Black color Set default tabs every 8 columns (12 cpi)
Stop double width print Stop underlining

6 November 1991

iw2(1) iw2(1)

Stop boldface Stop half-height text

Stop sub/super scripting Zeros unslashed

Set left margin at O Set page length to 11 inches
Bidirectional printing 6 lines per inch spacing
Forward line feeding Paper-out sensor on

Insert CR before LF/FF No LF when line is full
CR, LF, FF cause printing Ignore 8th data bit
Perforation skip disabled Dot spacing is zero

Environment variables
The environment variable

APPLE_IMAGEWRITER_II_PRINT_OPTIONS

can be used to supply default print options. All options may be specified in
the environment variable. In the C shell, a typical setting of the
environment variable would be

setenv APPLE_IMAGEWRITER_IT_PRINT_OPTIONS\
"-c red -g better"

EXAMPLES
The command:

iw2 -c¢ red -g nlg -1 british

will print text using the red color ribbon, in near letter quality (n1q) mode,
using the British language font.

NOTES
When using the —x option, you specify character strings, as needed, to set
various Apple Imagewriter II capabilities, without knowing the machine
dependent codes. For example, if you wished to print a file, using pr(1),
but wanted the header to be in red and the rest of the file in black, you
could do the following:
set red='iw2 -x -c red < /dev/null’

black='iw2 -x -c black < /dev/null’
pr -h "$red this is the heading $black" $1 | 1p

If you wanted to change the word ‘‘red”’ in the file foobar to print in the
color red, you could do the following:

set red='iw2 -x -c red < /dev/null’

set black=‘iw2 -x -c black < /dev/null’

sed s/red/"Sred"red"Sbhlack"/g foobar | 1p

Always remember that you must set and unset the capability, or else the
characters following what you have set will remain that way. Also note
that in the set redand set black lines is the ‘ character (the ASCII
character with the value of hexadecimal 60).

November 1991 7

iw2(1) iw2(1)

The ~o option is ignored when iw2 reads from the standard input. If an
input file is specified as an argument, then the —o option works as
documented.

FILES
/usr/bin/iw2
Executable file

SEE ALSO
daiw(l), 1p(1)

8 November 1991

join(l) join(l)

NAME
join — combines (joins) two relational files

SYNOPSIS
join[-an] [-e string] [-in m] [-o list] [-tc] filel file2

ARGUMENTS
—an
Produces a line for each unpairable line in file n, in addition to the
normal output. Replace n with a 1 or a 2 which refers to either file!
or file2, respectively.

-e Sstring
Replaces empty output fields with the string s.

filel
Specifies the first file to be joined with file2.

file2
Specifies the second file to be joined with file].

-jn m
Joins on the mth field of file n. If » is missing, use the mth field in
each file. Fields are numbered starting with 1. Replace n with a 1 or
a 2 which refers to either file! or file2, respectively.

-o list
Causes each output line to comprise the fields specified in list, each
element of which has the form n. m, where 7 is a file number and m
is a field number. The common field is not printed unless specifically
requested.

—tc Uses the character ¢ as a separator (tab character). Every appearance
of ¢ in a line is significant. The character c is used as the field
separator for both input and output. Note that this option must be used
to preserve tabs and multiple spaces in a file.

DESCRIPTION
join forms, on the standard output, a join of the two relations specified by
the lines of filel and file2. If filel is -, the standard input is used.

filel and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line from file!l, then the rest of the line from file2.

The default input field separators are blank, tab, or newline. In this case,
multiple separators count as one field separator, and leading separators are
ignored. Thus, to preserve tabs and multiple occurrences of spaces in a

November 1991 1

join(1) join(l)

file, you must select tabs as the alternate delimiter using the -t option
where c is the tab character (see -t option above). The default output field
separator is a blank.

EXAMPLES
If filel contains:

Austen -
Bailey -
Clark -
Dawson -
Smith -
and file2 contains:
Austen Jack Anchor Brewery
Clark Maryann Shoeshop
Daniels Steve Computer Software

Dawson Sylvia Toot Sweets
Smith Sally Talcum Powdery

then the command:
join -31 1 -j2 1 -0 2.2 2.1 1.2 2.3 2.4 filel file2
will generate

Jack Austen - Anchor Brewery
Maryann Clark - Shoeshop
Sylvia Dawson - Toot Sweets
Sally Smith - Talcum Powdery

The command:
join -jl1 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group

joins the password file and the group file, matching on the numeric group
ID, and the login name, the group name, and the login directory. It is
assumed that the files have been sorted in ASCII collating sequence on the
group ID fields.

LIMITATIONS
With default field separation, the collating sequence is that of sort -b;
with -t, the sequence is that of a plain sort.

The conventions of join(l), sort(l), comm(1), unig(l) and awk(1) are
wildly incongruous.

Filenames that are numeric may cause conflict when the -o option is used
right before listing filenames.

2 November 1991

join(1) join(l)

FILES
/usr/bin/join
Executable file

SEE ALSO
awk(1), comm(1), sort(l), unig(l)

November 1991 3

kermit (1C) kermit (1C)

NAME

kermit — invokes the Kermit file-transfer program
SYNOPSIS
kermit [-a fnl][-b n][-c}[-dl[-£][-g rfn] [-h][-1][-K]
[-1 dev[-n]l[-p x][-al [-x][-s fn] [-t][-w][-x] [file]...
ARGUMENTS
-a fnl

-f
file

Specifies an alternative name for a single file if you have specified a
file transfer option. For example,

kermit -s foo -a bar

sends the file foo, telling the receiver that its name is bar. If more
than one file arrives or is sent, only the first file is affected by this
option: For example:

kermit -ra baz
stores the first incoming file under the name baz.

n
Specifies the baud rate for the line given in the -1 option, as in

kermit -1 /dev/ttyi5 -b 9600

This option should always be used when the -1 option is used, since
the speed of an external communication line is not necessarily what
you expect.

Establishes a terminal connection over the specified or default
communication line, before any protocol transaction takes place. Get
back to the local system by typing the escape character (normally
CONTROL-Backslash) followed by the letter c.

Records debugging information in the file debug . 1og in the current
directory. Use this option if you believe the program is misbehaving,
and show the resulting log to your local kermit maintainer.

Sends a “‘finish’” command to a remote server.

Specifies the file to be moved.

rfn

Requests (actively) a remote server to send the named file or files; rfn
is a file specification in the remote host’s own syntax. If fn happens to
contain any special shell characters, like *, these must be quoted, as in

kermit -g x*.\?

Displays a brief synopsis of the command-line options.

November 1991

kermit (1C) kermit(1C)

-i

Specifies that files should be sent or received exactly ‘‘as is’” with no
conversions. This option is necessary for transmitting binary files. It
can also be used to slightly boost efficiency in UNIX-to-UNIX®
transfers of text files by eliminating carriage-return line-feed/newline
conversion.

Receives (passively) a file or files, sending them to standard output.
This option can be used in several ways. Here are some examples.

kermit -k

displays the incoming files on your screen; this command is to be used
only in “‘local mode.”” (Local mode is described in ‘Interactive
Operation,”’ later in this manual page.)

kermit -k > fnl

sends the incoming file or files to the named file, fn/. If more than one
file arrives, all are concatenated together into the single file fn/.

kermit -k | command

pipes the incoming data (single or multiple files) to the indicated
command, as in

kermit -k | sort > sorted.stuff

-1 dev

Specifies a terminal line to use for file-transfer operations and terminal
connection, as in:

kermit -1 /dev/ttyi5

When an external line is being used, you might also need some
additional options for successful communication with the remote
system.

Acts like the -c option, but after a protocol transaction takes place.
The -c and -n options can both be used in the same command.

-p X

November 1991

Specifies the parity: e, o, m, s, or n (even, odd, mark, space, or
none). If parity is other than none, then the 8th-bit prefixing
mechanism will be used for transferring 8-bit binary data, provided
the opposite kermit command uses the same mechanism. The
default parity is none.

Specifies background mode (quiet); suppresses screen update during
file transfer, for instance to allow a file transfer to proceed in the
background.

kermit (1C) kermit (1C)

-r Receives a file or files. Causes kermit to wait passively for files to
arrive.

-s fn
Sends the specified file or files. If fn contains metacharacters, the
A/UX shell expands fn into a list. If fn is -, then kermit sends from
standard input, which must come either from a file or from a parallel
process, as shown in these lines:

kermit -s - < foo.bar

ls -1 | kermit -s -

You cannot use this mechanism to send the terminal type. If you want
to send a file whose name is -, you can precede it with a pathname, as
in

kermit -s ./-
-t Specifies half-duplex, line turnaround with XON as the handshake
character.
-w Specifies write-protect; avoid filename collisions for incoming files.

-x Begins server operation. This option can be used in either local or
remote mode.

DESCRIPTION
kermit is a file-transfer program that allows you to move files between
computers with many different operating systems and architectures. This
manual page describes version 4C of the program.

Arguments are optional. If kermit is executed without arguments, it
enters command mode. Otherwise, kermi t reads the arguments off the
command line and interprets them.

The following notation is used in command descriptions:

[1 Any field in brackets is optional.

{x.y .z}
Alternatives are listed in braces.

¢ A decimal number between 0 and 127 representing the value of an
ASCII character.

cc A decimal number between 0 and 31, or else exactly 127, representing
the value of an ASCII control character.

frn Specifies an A/UX file specification, possibly containing the asterisk
(*) metacharacter which matches all character strings, or the question
mark metacharacter (7), *“?°’, which matches any single character.

3 November 1991

kermit (1C) kermit (1C)

fnl An A/UX file specification that may not contain * or ?.
n A decimal number between 0 and 94.

rfin A remote file specification in the remote system’s own syntax, which
can denote a single file or a group of files.

rfnl A remote file specification that should denote only a single file.

The command-line options can specify either actions or settings. If
kermit is invoked with a command line that specifies no actions, it issues
a prompt and begins interactive dialog. Action options specify either
protocol transactions or terminal connection.

The command line must not contain more than one protocol action option.

Interactive Operation
The interactive prompt for the kermit command is:

C-Kermit>

In response to this prompt, you can type any valid command. The kermit
command executes the command and then prompts you for another
command. The process continues until you tell the program to terminate.

Commands begin with a keyword, normally an English verb, such as
send. You can omit trailing characters from any keyword, so long as you
specify sufficient characters to distinguish it from any other keyword valid
in that field. Certain commonly used keywords (such as send, receive,
and connect) have special nonunique abbreviations (sfor send, (rfor
receive, (cfor connect).

Certain characters have special functions in interactive commands:

? A question mark, typed at any point in a command, causes kermit to
display a message explaining what is possible or expected at that
point. Depending on the context, the message may be a brief phrase, a
menu of keywords, or a list of files.

\ Backslash; causes any of the other characters in this list to be entered
into the command, literally. To enter a backslash, type two
backslashes in a row (\\). A single backslash immediately preceding
a carriage return allows you to continue the command on the next line.

CR Carriage return; enters the command for execution. A line-feed (LF)
or form-feed (FF) can also be used for this purpose.

DEL
The DELETE or RUBOUT key; deletes the preceding character from the
command. You can also use BS (CONTROL-H) for this function.

ESC
The ESCAPE or ALTMODE key; requests completion of the current

November 1991 4

kermit (1C) kermit (1C)

keyword or filename, or insertion of a default value. The result will
be a beep if the requested operation fails.

"R CONTROL-R; redisplays the current command.

SP Space; delimits fields (keywords, filenames, numbers) within a
command. HT (Horizontal Tab) can also be used for this purpose.

~U CONTROL-U; erases the entire command.
"W CONTROL-W; erases the rightmost word from the command line.

You can type the editing characters (DEL, "W, and so on.) repeatedly, to
delete all the way back to the prompt. No action will be performed until
you enter the command by pressing RETURN, the line-feed key, or the
form-feed key. Command is entered by typing carriage return, linefeed, or
formfeed. If you make any mistakes, you will receive an informative error
message and a new prompt; make liberal use of ? and ESC to feel your
way through the commands. One important command is help; you should
use it the first time you run kermit.

In interactive mode, kermit accepts commands from files as well as from
the keyboard. When you enter interactive mode, kermit looks for the file
.kermrc in your home or current directory (first looking in the home
directory, then looking in the current one) and executes any commands it
finds there. These commands must be in interactive format, not A/UX
command-line format. A take command is also provided for use at any
time during an interactive session. Command files can be nested to any
reasonable depth.

Here is a brief list of kermit interactive commands:
! Executes an A/UX shell command.

bye
Terminates the connection to and log outs of a remote kermit
server.

close
Closes a log file.

connect
Establishes a terminal connection to a remote system.

cwd
Changes the working directory.

dial
Dials a telephone number.

directory
Displays a directory listing.

5 November 1991

kermit(1C) kermit (1C)

echo
Displays arguments literally.

exit
Exits from the program, closing any open logs.
finish
Instructs a remote kermit server to exit, but not log out.

get
Gets files from a remote kermit server.

help
Displays a help message for a given command.

log
Opens a log file — debugging, packet, session, or transaction.

quit
Acts the same as exit.

receive
Passively waits for files to arrive.

remote
Issues file-management commands to a remote kermit server.

script
Executes a login script with a remote system.

send
Sends files.

server
Begins server operation.

set
Sets various parameters.

show
Displays values of set parameters.

space
Displays current disk-space usage.

statistics
Displays statistics about the most recent transaction.

take
Executes commands from a file.

The set parameters are as follows:

block-check
Specifies the level of packet error detection.

November 1991 6

kermit (1C) kermit (1C)

delay
Specifies how long to wait before sending the first packet.

duplex
Specifies which side echoes during connect.

escape-character
Specifies the character with which to prefix escape commands during
connect.

file
Sets various file parameters.

flow-control
Specifies the communications line full-duplex flow control.

handshake
Specifies the communications line half-duplex turnaround character.

line
Specifies the communications line device name.

modem-dialer
Specifies the type of modem-dialer on the communications line.

parity
Specifies the communications line character parity.

prompt
Changes the kermit program’s prompt.

receive
Sets various parameters for inbound packets.

send
Sets various parameters for outbound packets.

speed
Specifies the communications line speed.

The remote commands are as follows:

cwd
Changes the remote working directory.

delete
Deletes remote files.

directory
Displays a listing of names of remote files.

help
Requests help from a remote server.

7 November 1991

kermit (1C) kermit (1C)

host
Issues a command to the remote host in its own command language.

space
Displays current disk-space usage on the remote system.

type
Displays a remote file on your screen.

who
Displays who’s logged in, or information about a user.

Remote and Local Operation
The kermit program is ‘‘local’’ if it is running on a personal computer or
workstation that you are using directly, or if it is running on a multi-user
system and transferring files over an external communications line, not
from your job’s controlling terminal or console. The kermit program is
remote if it is running on a multi-user system and transferring files over
its own controlling terminal’s communications line, connected to your
personal computer or workstation.

If you are running kermit on a personal computer, it is in local mode by
default, with the ‘‘back port’’ designated for file transfer and terminal
connection. If you are running kermit on a multi-user (time-sharing)
system, it is in remote mode unless you explicitly point it at an external line
for file transfer or terminal connection.

The -g rfn, - £, -c, and -1 commands can be used only with a kermit
program that is local, either by default or because the -1 option has been
specified.

On a time-sharing system, the -1 and -b options must also be included
with the -, -k, or —s option if the other kermit program is on a remote
system.

If kermit is in local mode, the screen (standard output) is continuously
updated to show the progress of the file transfer. A dot is printed for every
four data packets; other packets are shown by type (for example, S for
Send-Init); T is printed when there’s a timeout; and % is printed for each
retransmission. In addition, you can type (to standard input) the following
“interrupt’’ commands during file transfer:

CONTROL-F
Interrupts the current file and goes on to the next (if any).

CONTROL-B
Interrupts the entire batch of files and terminates the transaction.

CONTROL-R
Resends the current packet.

November 1991 8

kermit(1C) kermit(1C)

CONTROL-A
Displays a status report for the current transaction.

These interrupt characters differ from the ones used in other kermit
implementations to avoid conflict with A/UX shell interrupt characters.
With System I1I and System V implementations of the UNIX system,
interrupt commands must be preceded by an escape character (such as
CONTROL-\).

LIMITATIONS
See recent issues of the Info-Kermit digest (on ARPANET or Usenet) for a
list of bugs.

STATUS MESSAGES AND VALUES
The diagnostics produced by kermi t itself are intended to be self-
explanatory.

FILES
SHOME/ . kermrc
File containing kermit initialization commands
./ .kermrc
File containing kermi t initialization commands
/usr/bin/kermit
Executable file
/usr/spool/locks
Directory in which kermit makes a lock file, which prevents other
programs from using the serial port that kermit is using
SEE ALSO
cu(1C), uucp(1C)

Kermit User’s Guide, Frank da Cruz and Bill Catchings, Columbia
University, 6th Edition

9 November 1991

kill(l) kill(1l)

NAME
kill — terminates a process

SYNOPSIS
kill [-sig] pid...
ARGUMENTS
pid Specifies the process identification number (pid) of the process to be
killed.
-Sig
Sends the corresponding signal instead of terminate (see
signal(3)),ifthe -sig option is given. In particular ki1l -9... is
the surest kill; especially with NFS, the 9 signal does not always
destroy the process.

DESCRIPTION
kill sends signal 15 (terminate) to the specified processes. This will
normally kill processes that do not catch or ignore the signal. The process
number (pid) of each asynchronous process started with & is reported by
the shell (unless more than one process is started in a pipeline, in which
case the number of the last process in the pipeline is reported). Process
numbers may also be found by using ps.

Details of the kill are described in ki11(2). For example, if process
number 0 is specified, all processes in the process group are signaled.

The to-be-killed process must belong to the current user unless he is the
superuser.

Similar versions of ki11 are built into ksh(1) and csh(1).

EXAMPLES
The command:

kill 24068
sends signal 15 to the process with the ID number 24068.

FILES
/bin/kill
Executable file

SEE ALSO
ps(l), sh(1), csh(l), ksh(l)

ki111(2), signal(3) in A/UX Programmer’s Reference

November 1991 1

ksh(l) ksh(l)
NAME
ksh — runs the Korn shell, an enhanced command interpreter that is
backward-compatible with the Bourne shell (sh)
SYNOPSIS

ksh [-a] [-c string] [-e] [-f] [-h] [-1] [-k] [-m] [-n] [-o option]...
[-p] [--positional-arg]... [tpositional-arg]... [-r][-s] [-t][-u] [-V]
[-x] [file]...

ARGUMENTS
+ [positional-arg]...
- [positional-arg]...

Turn off -x and -v options and suppress examination of remaining
shell arguments for interpretation as command options. Instead, the
positional variables of the shell are reassigned in terms of the
positional-arg values supplied, which makes it possible to set $1toa
value beginning with a hyphen.

- - [positional-arg]...

-a

Reassigns the positional variables. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, and so on.
If no arguments follow this option, the positional parameters are unset.

Exports the new values for any subsequently modified variables
without your having to use an explicit export command.

-C String

Specifies a command line (string) that you want the ksh subshell to
run before exiting. Using this option is one way to run the Korn shell
noninteractively.

Executes the command associated with the ERR condition by the
trap command, if any was set. Exits if a command returns false.
This mode is disabled while the system is reading the startup files
(.kshrcand .profile).

Disables filename generation. (See ‘‘Filename Generation’’ in the
“‘Description’” section later in this manual page.)

Specifies the filename for a shell script you want the ksh subshell to
run before exiting.

Affects the way the built-in alias command builds aliases. The
command-name portion of the aliased command is expanded into a
full pathname so that the alias can continue to locate the same
command program even when identically named commands are later
created and located in directories that are also part of the search path.
An alias built in this fashion is a tracked alias. See ‘‘Aliasing’’ in the
“‘Description’” section for more information about tracked aliases.

November 1991

ksh(l) ksh(l)

-1 Establishes an interactive mode of operation.

-k Establishes a mode of operation where any command-line elements
that are variable assignments are placed in the environment of a
command, regardless of their position on the command line.
Otherwise, only variable assignments that precede the command name
are placed in the environment of a command.

-m Causes background jobs to run in a separate process group that is not
associated with the terminal. The exit status of background jobs is
reported in a completion message. This mode is turned on
automatically for interactive shells.

-n Reads commands and checks them for syntax errors, but does not
execute them. This option is ignored for interactive shells.

-0 [option]
Puts into effect the option specified.

With no option arguments, -o prints the current preference settings.
The option letters corresponding to the active settings are also merged
into a single string that is stored in the variable named ‘‘hyphen’’
(5-). To set or unset these options once an interactive session is
underway, use set as described in ‘‘Built-in Commands’’ in the
““Description’’ section later in this manual page. You can replace
option with any of the following values:

allexport
Exports variables automatically whenever they are reset;
establishes the same operating mode as does the —a option.

bgnice
Runs all background jobs at a lower priority.

emacs
Establishes an emacs-style, command-input editor for command
entry.

errexit
Executes the ERR trap; establishes the same operating mode as
does the -e option.

gmacs
Establishes a gmacs-style, command-input editor for command
entry.

ignoreeof
Prevents ksh from exiting when an end-of-file character is
received. The exit command must be explicitly executed.

November 1991 2

ksh(l)

ksh(l)
keyword
Affects the way parameters are placed in the environment;
establishes the same operating mode as does the -k option.
markdirs
Appends a trailing slash (/) to all directory names resulting from
filename generation.
monitor
Alters the usual process group assigned to background jobs;
establishes the same operating mode as does the -m option.
noclobber
Prevents the overwriting of existing files when output is
redirected to files.
noexec
Checks command lines without executing them; establishes the
same operating mode as does the -n option. Using noexec
helps you determine whether ksh can interpret an input data
stream as valid commands.
noglob
Disables filename generation; establishes the same operating
mode as does the - £ option.
nolog
Prevents ksh from saving function definitions in the history file.
nounset
Causes an error to be reported when an uninitialized variable is
referenced within a command line; establishes the same operating
mode as does the -u option.
privileged

Resets PATH to the default search path; establishes the same
operating mode as does the -p option.

trackall
Tracks aliases by way of storing the full pathname to the aliased
command; establishes the same operating mode as does the -h
option.

verbose
Prints each command line (exactly as it appears in the input)
before it is executed; establishes the same operating mode as
does the -v option.

vi Establishes a command-line-input editor for command entry.
This is also called the ‘‘cooked’’ (processed) mode. This editor

November 1991

ksh(1) ksh(l)

has fewer features than the viraw editor, and thus has faster
response time than it.

vViraw
Establishes a command-character-input editor for command entry
similar to the vi argument, except that input is processed on a
character-by-character basis. This editor mode is also known as
the ‘‘raw’” mode. The viraw editor has more features and is
more reliable, but causes longer response times for all users on
multi-user systems. This editor has horizontal scrolling and
Tabs are always expanded.

xtrace
Prints each command and its arguments after those arguments
have been processed for metacharacters but just prior to the
execution of the command; establishes the same operating mode
as does the -x option.

-p Resets the PATH variable to the system default value, disables
processing of the SHOME/ . profile file, and uses the file
/etc/suild_profile instead of the ENV file. This mode is
automatically enabled whenever the effective user ID (or group ID) is
not equal to the real user ID (or group ID).

-r Restricts certain shell functions. The following actions are not
allowed: (1) changing the directory; (2) setting the value of SHELL,
ENV, or PATH; (3) specifying path or command names containing /;
and (4) redirecting output by using > or >>. These restrictions are
enforced after the .profile and ENV files are interpreted.

When you enter a command that ksh determines to be a shell script,
the restricted shell invokes another instance of ksh to execute it.
These secondary Korn shells are not restricted as is the parent shell.
Thus, the restricted form of ksh allows shell scripts to run with more
complete privileges despite the limitations of the parent shell.

By administering the account so that certain setup actions are placed
in .profile (where these restrictions are not yet enforced), an
operating environment is established that precisely limits the actions
that can be taken by its users. One of these setup actions should be to
set the working directory to a designated directory other than the login
directory. To maintain these security limitations, the so-designated
working directory should deny the restricted account write permission.
If write permission is granted for the designated working directory,
then uma sk should be set to deny execute permission for any new
files.

November 1991 4

ksh(l) ksh(l)

Also, the system administrator usually sets up a new directory of
commands. For example, /usr/rbin can be created and a limited
number of links placed there so that /usr/bin can be made
inaccessible for restricted accounts through their PATH variable
setting in .profile. Applications intended for restricted account
use should also be placed there.

-5 Ends the interactive mode of entering commands from standard input.
Also, sorts the positional parameters when used with set -s, but not
on the command line.

-t Exits after reading and executing one command.

-u Treats the presence of unset parameters as an error when substitution
is necessary.

-v Prints command lines exactly as they are read from the input, before
shell metacharacters are interpreted.

-x Prints commands and their arguments after shell metacharacters are
interpreted, but prior to the execution of the command.

DESCRIPTION
ksh is a shell (or command interpreter) that accepts and dispatches
command lines. It is largely responsible, along with CommandShell, for
supporting the command-line interface of A/UX. Like the Macintosh
Finder, the shell allows you to select the A/UX program or utility you want
to run next, or to run it in conjunction with other programs that are already
running.

The ksh program is also one of the A/UX commands that you can run
once an initial shell (command interpreter) is running. Using ksh this way
is one method for switching between the different shell programs available.
(See csh(l) and sh(1) for information about these other shells.) When
you run the ksh command, the previously interactive shell is suspended
until you exit the ksh subshell.

To enter commands, you normally open a CommandShell window. When
you do, CommandShell runs a shell to support the command-entry function
in the window. The choice of shell is controlled by the preference variable
SHELL, which is normally initialized along with other startup values in
.loginor .profile in your home directory. If SHELL is not set in one
of those startup files, the shell spawned will be the same as your login shell
(as described in passwd(4) and chsh(l)).

This manual page treats ksh just like any other command despite the fact
that you need a shell program to support the invocation of commands in the
first place. You should become familiar with one or more of the shells to
allow you to take advantage of the command capabilities of A/UX. As a

5 November 1991

ksh(1) ksh(l)

prerequisite, you should learn about the CommandShell application
(described in CommandShel1(1) and A/UX Essentials). CommandShell
supports the more visible and Macintosh-like elements of your system: the
command windows, the mouse, and the menu functions at your disposal
when you enter command lines.

Using ksh
For the shell program, the work of interpreting the commands you enter
can be broken down into several steps: (1) prompting for and accepting
lines of input; (2) deciphering the text of an input line, one unit of which is
expected to be the name of a command; and (3) locating and running the
(object) file containing the low-level instructions that give the command its
functionality.

The following three subsections that follow briefly discuss each of the three
steps that make up a single computer-human interaction as mediated by a
shell program (running interactively).

Step one: obtaining input. To indicate its readiness to process a
command, the shell displays a prompt message or symbol at the beginning
of the line. You contribute to the text displayed on the command line by
typing a command name after the prompt. During command entry, the shell
displays each character you type, placing it at the end of the command
string and advancing the location of the cursor. During this time, the shell
honors special characters that are not intended as part of the command
string, such as the delete character (generated by the DELETE key). This
“‘silent’” conversation between you and the shell is limited to certain line-
editing operations as well as the processing of other special characters such
as the interrupt and end-of-line characters. The shell interprets these
characters and takes appropriate action. Often this action changes the
composition of the command string being displayed, as in the case of a
delete character.

The end-of-line (newline) character is generated when you press the
RETURN key. When the shell received this character, it considers the
command line to be complete. The command-line processing that the shell
performs next is described in the next two subsections. While processing a
command line, the shell does not display a new prompt, although the cursor
may already be at the beginning of a new line. At any point during
command-line processing and command execution until you see a new
command prompt signaling completion, ksh honors an interrupt signal.
Sometimes the generation of an interrupt signal results in the partial
execution of the command or, if you are very quick, in no execution of the
command. The interrupt character is typically the CONTROL-C key
combination. See ‘‘Controlling Foreground Jobs’’ later in the
““‘Description’’ section.

November 1991 6

ksh(l) ksh(l)

Step two: deciphering input. The shell can recognize and correctly
interpret a variety of command-line elements. Only very experienced
programmers will know how to make the best use of all of the constructs
that the shell is able to interpret. Most users do not need to learn all of
these features in order to build useful command lines.

The simplest acceptable command entry consists of the name of a
command with no other elements, as shown in this example. (The $
symbol is the command prompt in this example.)

S date
Tue Jun 18 12:01:25 PDT 1991
s 1

In addition to the command name, command body may be required,
depending on the command you are entering. The command body is
subject to some processing by the shell, followed by final processing
performed by the command program itself. The command body is typically
broken down into two major elements, command options and arguments.
The command options are typically individual letters. If you want to enter
more than one command option, you normally merge the options into one
character string. Whether you specify one or more command options, you
must usually precede each option with a hyphen (-). Following the
command options are the command arguments. Each argument is a string
of characters, separated from one another or from the command options by
a space or tab character, as shown here:

command -options arguments

When merged together, two or more command options can also be
considered a single command argument, which can be formed into one
string. With most commands, however, the options can be supplied as
multiple space-separated strings, each consisting of a hyphen followed by a
particular option letter:

command -a -f -v
The following command line includes one command option (- 1) and one
command argument (memof i1le) that is not a command option:

1s -1 memofile
Most of the syntax descriptions that follow use the term command to refer
to both the command name and its options and arguments.

Often you can save yourself typing by relying on the shell to preprocess the
command arguments in terms of substituting one element for lengthier text
to which it refers. Sometimes one element will represent a lengthier
replacement that is actually several distinct arguments. Processing of this

7 November 1991

ksh(l) ksh(l)

type is sometimes called a ‘‘substitution.”’

In the ksh shell, an interesting form of substitution is the use of an alias,
which is a brief way to refer to a longer command line. You create these
alias names by using the alias command. See ‘‘Aliasing’’ later in the
“Description’’ section, for more information regarding aliases.

Substitutions other than aliasing require a metacharacter to help trigger
substitution of the appropriate text. To indicate that you are making a
reference to a variable, you precede the variable name with a dollar sign
($) metacharacter. For aliases, a substitution is also performed, but with a
notable difference in the request format: No metacharacter is required
because the name being used as an alias must be placed at the beginning of
a command line, and ksh always checks the command name at the
beginning of a line to see if it is a previously defined alias. Unlike aliases,
variable references can be placed at a point other than the beginning of a
command line and still trigger a substitution.

When ksh finds a properly positioned alias, it replaces it with the
command name and command body that the alias was set to represent. If
you had placed another command body after the alias at the beginning of
the line, the new command body is added to the end of the command body
(if any) that was stored for the alias. Note that the required positioning of
command options ahead of other command arguments can become
disturbed during the substitution process. You should plan the use of an
alias to which you expect to append arguments so that you can define it in
such a way that the enclosing command line that you supply extends the
aliased command in a legal manner. For aliases that are associated with
multiple commands, the last-referenced command is the only one that is
subject to extension when the alias name is substituted.

Another form of substitution applies to specially delimited subcommands:
S ((command))

Unlike substitutions of variables and aliases, which have static values that
you assigned to them at some earlier time, command substitutions create
replacement text by executing a command that generates output text. This
text can reflect the system state precisely at the current moment. See
““‘Command Substitution’’ later in the ‘‘Description’” section, for more
information about this type of substitution.

Shell metacharacters are processed by the shell rather than by a command
program. By processing shell metacharacters, the shell shifts the
determination of the user interface away from individual command
programs, and a more consistent command-line interface is easier to
achieve. The benefit for you is that one shell-supported meta syntax can be
applied to a number of command lines. After learning this metacharacter-

November 1991 8

ksh(1) ksh(l)

based syntax, you can apply it very broadly to most of the commands you
use.

Step three: dispatching other programs. Completion of this step is
closely related to the shell’s ability to complete the previous step
(deciphering of input). For example, if it cannot find a correctly entered
command name (or Korn shell alias), the shell cuts this step short. In this
case, the shell displays an error message instead of dispatching the program
corresponding to a command. After the error message, the shell displays a
new command prompt to initiate the next computer-human interaction.

Suppose you included the ampersand metacharacter (&) on a command
line. In step two, the shell detects its presence and removes it from the
argument string that is passed to the command. In step three, the shell alters
the way it dispatches the command program because of the metacharacter’s
presence. It uses a special invocation mode called ‘‘background mode.”’

When a command is invoked in background mode, the shell does not wait
for it to complete before initiating a new computer-human interaction.
Rather, the shell prompts immediately for a new command, and any work
initiated by the last command is performed concurrently. Thus, there is an
immediate transition from step three of the current computer-human
interaction to step one of a new computer-human interaction. You must
use a dedicated command to delete background-mode processes on those
occasions when the background process does not self-terminate, or when
you want to stop its execution prior to its completion. (See the description
of kill in ‘‘Built-in Commands,”’ near the end of the ‘‘Description’’
section.) You can also bring a background job back to the foreground as
described in ‘‘Controlling Jobs Not in the Foreground,”’’ later in the
‘“‘Description’” section.

Format of Command Lines
The ksh program has certain restrictions on the ordering of elements of
commands. These restrictions make their interpretation easier and their
format more regular.

The metacharacters are often oddball characters that would not normally be
a part of the command you are entering. These characters are less likely to
be confused with command options or arguments.

Many of the specially interpreted metacharacters help you enter and run
commands more efficiently, for example by avoiding lengthy typing. Once
you learn to use the shell well, you will be able to enter shorter commands
that nevertheless take advantage of very specialized processing or
processing modes. For example, a terse notation is used to indicate that you
want to direct the output of a command into a file, or to concurrently run
one program with other programs already running. Another advantage is

9 November 1991

ksh(l) ksh(l)

that these metacharacter-triggered changes in processing are initiated in the
same way for almost all commands.

A disadvantage is that the oddball metacharacters create strange-looking
command lines. Another disadvantage is that they may be difficult to
memorize. When you want them to be treated literally, these
metacharacters must be specially delimited, which also adds to the strange
appearance of some command lines.

This section describes the ksh-imposed rules for the structure of command
lines. One restriction is that the command name must precede the
command options and arguments. There are other requirements as well,
such as the use of a command delimiter when you want to enter multiple
commands on one line.

Some of the shell metacharacters that you must use with care inside
command lines are:

;& 1S () <> 7 2 * [] newline space tab

Not all of the functions of these metacharacters are described in this
section. It makes sense to introduce some of them later, where they can be
discussed along with some of the more advanced topics with which they
are associated. (Additional metacharacter tokens are also described in
‘“Additional Korn Shell Metacharacters,”” near the end of the
“‘Description’” section.)

Spaces and tabs are both referred to as ‘‘white space,’” and one is as
acceptable as the other when white space is required. White space is
required between the command name and its (sometimes optional)
command arguments:

command-name white-space command-arg
(Whether or not arguments are optional depends on the individual syntax

requirements for particular commands.) White space is also used to delimit
command arguments when you want to specify several of them:

command-name [white-space command-arg]...

For more information regarding the treatment of white space characters,
see ‘‘Argument Parsing,’’ later in the ‘‘Description’’ section.

Command separators are one type of shell metacharacter. They permit the
specification of more than one command in the same line. The semicolon is
interpreted as this type of metacharacter.

The ampersand is also a command separator, with added functionality. It
establishes background mode for the preceding command. When you
establish background mode with an ampersand, do not include a semicolon

November 1991 10

ksh(l) ksh(1)

11

as well. Because of this exclusivity, two syntax descriptions are needed to
show the legal command syntaxes involving these command separators:

command | ; command]...

command [& command]...

With each command, you can specify an input and output redirection.
Thus you can expand each occurrence of command as follows:

command [redirect-in] [redirect-out]

The value of the redirect-out element is the metacharacter > (greater-than
sign) followed by a filename:

> output-file

The value of the redirect-in element is the metacharacter < (less-than sign)
followed by a filename:

< input-file

Another form of redirection involves multiple commands that share an
information flow, bypassing the need for intermediate files. Consider these
two commands:

who >/tmp/data
grep ttyl </tmp/data

The preceding sequence is equivalent to a pipe joining the two commands
as a single processing request, as follows:

who | grep ttyl

The output of the first command (who) is channeled directly to the input of
the second command (grep). The pipe metacharacter (a vertical bar)
indicates this channeling of data between commands. You can extend the
pipeline to channel the output of a second command to the input of a third
command, and so forth:

command | command |[|command]...
While syntactically legal, file redirections inside a series of pipelined

commands can conflict with the redirection established by the pipe, as in
this example:

commandl >file |command2 |command3

In this case, the input channeled to command?2 is empty because the output
of commandl is redirected to file first. See tee(l) if you need to channel a
data stream to a file as well as into another command.

November 1991

ksh(1) ksh(1)

Here is the the general format of a sensibly constructed pipeline, with no
data redirection conflicts:

command [<filel] [|command]... |command [>file2] [&]

Note that a processing pipe such as this is equivalent to one processing job,
particularly in terms of job control (as described next in ‘‘Controlling
Foreground Jobs’’ and ‘‘Controlling Jobs Not in the Foreground’’). You
cannot use command separators except at the end of a pipeline. By putting
an ampersand at the end of a pipeline, you place in background mode all of
the processing of the pipelined commands that precede the ampersand. If
you use a semicolon instead of an ampersand, the pipelined commands are
executed completely; after that, the command (or another pipeline) after the
semicolon is executed.

The processing request shown here illustrates how the pipe character
causes a subsequent newline to be ignored (rather than treated as the end-
of-command character).

S who |

> grep console

mikee console Jun 17 10:17
s 1

For brevity of notation, the term command is used to represent any single-
or multiple-command line, such as a pipeline, along with any file
redirections.

Controlling Foreground Jobs
For jobs running in the foreground, a measure of control is available
through certain control characters. To discontinue execution of a
foreground command that is being processed, you can use the interrupt
character. To discontinue processing of an interactive shell other than the
login shell, you can use an end-of-file character (or the exit command).

The interrupt character that stops a foreground command does not affect
commands that are running in the background. For background processes,
also known as ‘‘jobs,”” other control provisions are required. These
provisions are also known as ‘‘job-control facilities.”” Rather than
responding to control characters (such as interrupt characters), jobs respond
to signals that are explicitly sent to them by discrete, signal-sending
commands. Because there can be more than one background job running at
the same time, you must also specify a command argument that can
identify the job. To assist you, commands are available to display the
numbers associated with jobs, including one called jobs. (See the next
section that follows this one for related information.)

November 1991 12

ksh(l) ksh(1)

Two ways of controlling jobs are necessary because there are two kinds of
running jobs: foreground jobs and background jobs. Because foreground
jobs execute one at a time, any command-based means of job control is
awkward for controlling a foreground job. Instead you must use a key that
generates an interrupt character to terminate a foreground job prematurely.
From within the same interactive shell, you cannot cause a newly entered
command to be examined while the prior foreground command is still
running. (Normally you wait, until a new command prompt appears before
you even begin to type another command.)

Besides quitting a foreground job prematurely, you can also suspend its
execution, normally by pressing CONTROL-Z. Later, you can resume its
execution by using the job-control commands of ksh.

To see what key combinations produce various control characters, enter the
stty command with the -a option. In the output of stty, the caret (7) is
used to represent the CONTROL key. By specifying other arguments, you
change the mappings of keys to control characters (see stty(1)).

When you suspend a job, ksh prints a short status line about the job before
it issues the next prompt. Among other things, the status line reports the
ksh-assigned job number (enclosed in brackets). By supplying that
number as an argument to other built-in commands, such as bg and £g,
you can further manipulate the state of the suspended job. For instance,
you can resume its execution in the background by entering this command
format:

bg %job-number

When you no longer want to enter new commands, you may want to place
a stopped job or a background job back in the foreground. To do so, use
this command format:

fg %job-number

For more information about the £g command, see ‘‘Built-in Commands,’’
near the end of the ‘‘Description’’ section. For more information about
monitoring both stopped jobs and jobs running in background mode, see
the next section.

Controlling Jobs Not in the Foreground

13

To help you control and monitor running and stopped background jobs,
ksh keeps track of the state of each job.

This job-tracking service of ksh helps keep you informed about the
progress of jobs and helps prevent you from losing track of running jobs.
For example, if you try to exit from the shell while jobs are suspended, you
receive this warning:

November 1991

ksh(1) ksh(l)

You have stopped (running) Jjobs

You can use the jobs command to see which jobs are suspended. If you
try the exit command again, the shell does not warn you a second time, and
the suspended jobs are terminated.

Whenever a job becomes blocked and no further progress is possible, ksh
informs you of its status. This information is made to appear just before a
new shell prompt so that you can better distinguish it from the output of
other commands. This particular job-tracking feature can be extended so
that any background job that needs to display output similarly stops
running, as described in the paragraphs later in this section that discuss the
tostop argument for stty.

Other customizations are also possible. For example, when you use the
monitor option, each background job can be set to trigger another
command upon its completion. Triggering commands requires setting a
trap for the CHLD signal. (See the description of t rap in ‘‘Built-in
Commands’’ near the end of the ‘‘Description’” section.)

Using the ksh-assigned job number as an argument to certain built-in
commands, you can place existing jobs in the foreground or background
(restarting them in the process). You can determine the ksh-assigned job
number in two ways: (1) You can use the built-in jobs command to
obtain a numbered list of jobs. (2) You can notice the job number ksh
assigns to a command line that is run in the background when ksh displays
its status immediately after entry. The format of this status message is as
follows:

[jobno] process-id
This line indicates that the command just entered is running in the
background (asynchronously); has the process ID shown; and can be
referenced as jobno for use along with the built-in, job control commands
of ksh.

To control jobs with commands that are not shell built-ins, you must use
the process ID to refer to the process. The process ID is also reported by
the process status command, ps, which is described in ps(1).

When you use the built-in ksh commands for controlling jobs, you
reference a job by using a job number, prefixed by the percent character
(%). For instance, to place job number 1 in the foreground, enter

fg %1

The argument $% or %+ can be used to refer to the most recent background
job. The argument % - refers to the next-most-recent job.

November 1991 14

ksh(l) ksh(l)

15

You can also reference a job by using a string that matches the command
name you originally entered to begin the job. Thus, the following
command restarts a suspended ed job, provided a suspended job whose
name begins with the string ed is present:

fg %ed
Similarly, the following command format resumes any job whose original
command line contained the string old-command-substring.

fg %?old-command-substring

The shell keeps track of the most recent job. In ksh messages about jobs
and in the report displayed by the jobs command, the most recent job is
prefixed with a plus sign (+) and the next-most-recent job is prefixed with a
minus sign (-). The following processing request illustrates this point:

S sleep 525 &
$ sleep 330 &
$ sleep 250 &
$
[

jobs

3] + Running sleep 250 &
[2] - Running sleep 330 &
[1] Running sleep 525 &
s i

The process running in the foreground has fairly exclusive access to input
entered at the terminal. If a foreground command is underway, then the
shell shares access to input typed at the terminal with the foreground
command. By sharing access to input, the shell still has a chance to
interpret certain control characters, such as the interrupt character, or to
accept characters of the next command to be run (a type-ahead feature).
However, a job running in the background cannot continue to run if it
requires user input, because it does not have access to any of the data typed
at the keyboard.

Thus, when any of the background jobs requires user input, the shell stops
the job. You can resume its execution by making it the foreground job and
then supplying it with the data that it requires. To make it the foreground
job, you must enter a command, so you will have to wait until any
foreground job still underway completes, or you will have to interrupt it.

Background jobs are normally allowed to send output to the terminal (or
associated CommandShell window) without interference from ksh.
However, this manner of operation can be disabled, so that ksh stops the
execution of any job that needs to display a message. To establish the shell
as a moderator for background jobs that are about to display output, enter

November 1991

ksh(l) ksh(l)

stty tostop

If you have used the monitor option (as described in the next section,
‘‘Establishing Preference Settings,’’), your interactive shell associates a job
with each pipeline.

A/UX provides another set of job-control commands that perform many of
the same functions made available by the built-in commands of ksh. An
advantage of using the discrete job-control commands such as kill,
nice, and ps is that they are always available, even when you change to a
shell other than ksh. These commands are described as separate entries
elsewhere in the A/UX Command Reference. These discrete A/UX
commands use a process ID number to identify jobs. However, the
ksh-assigned job number is usually much shorter than the process ID
number, and the built-in commands offer you greater simplicity.

Establishing Preference Settings
You can establish preference settings in several ways. For example, you
can reduce the likelihood of overwriting an existing file with a new file of
the same name by establishing the noclobber option, as follows:

set -o noclobber
To unset this preference, enter
set +o0 noclobber

If you are able to start the shell yourself, you can request the same
preference on the command line, as follows:

ksh -o noclobber

Preferences such as noclobber are either on or off (set or unset,
established or unestablished, and so on). You can determine the state of
these preferences by using set with the -o option, as shown here:

S set -o

Current option settings
allexport off
bgnice off
emacs off
errexit off
gmacs off
ignoreeof off
interactive on
keyword off
markdirs off
monitor on
noexec offt

November 1991 16

ksh(1l) ksh(l)

17

noglob off
nounset off
protected off
restricted off
trackall off
verbose off
vi on
viraw on
Xtrace off
s 1

Other preferences, particularly those that can assume more states than on or
off, can be stored in variables. To switch to a different command-input
editor, you can make an assignment such as this one:

EDITOR=vi

This particular variable assignment establishes vi as the command-input
editor you wish to use. You could establish other editing styles, such as
emacs and gmacs, in a similar way.

Other preferences with many possible values are handled through
commands built into ksh rather than through variables. For instance, you
use the built-in commands uulimit and umask to establish operating
limits (such as maximum file size) and default permissions for new files.
For more details, see ‘‘Built-in Commands’’ near the end of the
““‘Description’’ section.

The ways of selecting preferences described so far do not make those
settings permanent. They are in effect only as long as you use the shell into
which you entered them. To retain these settings between uses of various
login shells (after logging out and logging back in), you need to place them
in a ‘“‘shell startup’’ file. For ksh, the startup file is .profile. Thisis
the file from which the shell obtains your initial preference settings
whenever you log in to the system.

Even if you have established a preference setting in a startup file or at the
command prompt for the shell that is running, you can lose those settings if
you invoke a subshell. To help establish preferences that persist not only
across login shells, but also from shell to subshell, enter the preference in
another startup file specified by the variable ENV, which is initially set to
.kshrc in your home directory.

A/UX offers another way of retaining preference settings from shell to
subshell without entering them in a startup file, but you can use it only for
preference settings that are held in variables. After you store a value in the
variable, you reset or set its export attribute. The value of an exported
variable in a subshell is the value it had as of the time it was last exported.

November 1991

ksh(l) ksh(l)

However, this way of establishing a preference variable value does not
persist across login sessions, and is subject to override by similar
assignments placed in an ENV file.

To set the export attribute of a variable, enter either one of the following
commands:

typeset -e variable
export variable

In a similar fashion, you can export aliases and functions to any ksh
subshells, as the following commands illustrate:

typeset -ef function-name
alias -e alias-name

Exported variables can affect commands you execute as well as subshells
you invoke. Commands are also able to respond to settings contained in
exported variables (sometimes called ‘‘environmental variables’’).
Typically, however, commands ignore all but a few of the values that you
export into the environment, unless the command is ksh itself. Typically,
you export those values that at the very least affect a ksh subshell.

TERM is an example of a variable that both commands and subshells
regularly honor. The value of this variable also helps establish what type
of terminal device you are using. The value of this variable helps A/UX
programs look up the correct control sequences to use with particular
terminals for various display functions, such as advancing the cursor
location (see termcap(4) and terminfo(4)). Initially, TERM is set to a
value identifying the console terminal as a Macintosh computer. However,
during a CommandShell session in which you communicate with a host
computer over a network, chances are slight that the host will understand
this local setting for TERM, so another value should be used for the remote
shell, such as vt 100.

You can temporarily export a preference variable value for the duration of
one command. For instance, to ignore the currently exported value of
TERM and to use vt 100 instead, but only for the vi command, enter

TERM=vt100 vi
You can use the set command with the -k option to affect the way shell
variable assignments are treated when interspersed with other command
clements. (Also see the discussion of -k in ‘‘Arguments,’’ earlier in this

manual page). For example, consider the variable assignments inside the
following command block:

echo var=b ¢ ; set -k ; echo var=b c

November 1991 18

ksh(l) ksh(1)

19

Because the first echo command is interpreted before the -k option takes
effect, it generates this output:

var=b c

Because the second echo command is interpreted after the -k option takes
effect, it generates this output:

C

Use of this feature is strongly discouraged. This option may not be
supported in future releases.

You can use the discrete command printenv, or the built-in command
typeset with the -x, option to find out the names and values for all
exported variables.

When invoked, ksh gets its environment variable settings either from the
parent shell or from one of the log-in programs. It then passes the settings
to any commands or subshells you invoke, unless you manually removed
them from the environment first (by removing the export attribute).

Here are some other variables with which you should be familiar:

CDPATH
Contains a list of search directories that are honored by the cd
command. See the description of the cd command in ‘‘Built-in
Commands,”” near the end of the ‘‘Description’” section.

CMDSHELLPREFS
Contains the name of a file in your home directory where
CommandShell stores and reads your preferences. See
CommandShel1(1) for more information.

EDITOR

HISTFILE

HISTSIZE
Contain values that select the style of editor for command lines, select
the file where previously entered commands are stored, and set the
number of command lines subject to storage and recall, as described in
the next section, ‘‘Command Reentry.”’

FINDER_EDITOR
Contains the pathname for the editing application to be launched when
you open a text file by way of the A/UX Finder.

PATH
Contains a list of command search directories. (See ‘‘Command
Execution’’ later in the ‘‘Description’’ section.)

November 1991

ksh(l) ksh(l)

Psl
Contains the string used as your primary command prompt.

PS2
Contains the string used as your secondary command prompt for those
occasions when you must enter a block of commands that spans more
than one line. (See ‘‘Using Repetition and Branching Constructs,”’
later in the ‘‘Description’” section, for related information.)

MAIL

MATILCHECK

MATLPATH
Contain values that help enable and customize electronic mail. See
‘‘Other Built-in Variables,”’ near the end of the ‘‘Description’’
section, for more information.

TBMEMORY

TBPATCHES

TBRAM

TBSYSTEM

TBTRAP

TBWARN
Contain values that help configure system parameters that apply to the
virtual Macintosh environment. See startmac(l) for information
regarding these variables.

Command Reentry
The text corresponding to the most recent block of commands is saved in a
history file. The value of the variable HISTSIZE determines how many
lines of commands are saved; it is initially set to 128. The value of the
variable HISTFILE selects the file where the saved commands are stored;
it is initially set to SHOME/ . sh_history.

Subshells also have access to commands that were previously given from
the parent shell, provided that you do not change the value of HISTFILE
for the subshell.

You can use the built-in command fc to select a previous line to edit and
reuse. To display a list of recently performed commands, enter:

fc -1
This command produces a list of recently used commands, such as this one:
416 date
417 whoami
418 cd /tmp
419 ls -tC
420 cat lastfsck

November 1991 20

ksh(l) ksh(l)

421 cd

422 1ls -tC
423 more today
424 rm today
425 fc -1

To edit and reuse one of the commands from the history list, specify the
line number as an argument to the fc command:

fc line-number

If you supply a string rather than a line number, the most recent command
whose starting letters match the letters in the string is recalled for editing
and reuse. You can also specify a range of old commands to be recalled
for editing. Refer to ‘‘Built-in Commands,’” later in the ‘‘Description”’
section, for a more complete description of the command options and
arguments for fc.

The edited command is printed and reexecuted when you leave the editor.

The editor used is that specified by the value of FCEDIT, which is initially
setto /bin/ed. You can also set the value of this variable to vi for full-
screen editing, or you can set it to Text Editor for a mouse-and-menus
style of editing.

The ksh shell has its own built-in command-editing support as well. See
“‘Command-Line Editing Options,”’ later in the ‘‘Description’’ section, and
the sections that follow it.

Frequently Used Built-in Commands

21

This section provides a brief list showing some of the commands that are
more fully described in ‘‘Built-in Commands’’ near the end of the
“‘Description’” section. You may want to familiarize yourself with the
commands listed here sooner than any others.

alias
Creates pseudo commands that you can use as a shortcut for typing in
much longer command lines. Also see ‘‘Using ksh,’’ earlier, and
‘“‘Aliasing,”’ later in the ‘‘Description’’ section.

bg

fg

jobs

kill
Control any running and suspended background jobs you have started.
Also see “‘Controlling Jobs Not in the Foreground,’’ earlier in the
“‘Description’’ section.

cd Sets the current working directory to the directory specified as an
argument.

November 1991

ksh(l) ksh(l)

exit
Exits ksh.
pwd
Displays the current working directory.
ulimit
Establishes the upper size limit for a file as one of the many limits that
can be set.

umask
Establishes how file permissions are initially set for new files that you
create.

Command Execution
The earlier sections in this manual page introduce the general functions of
the shell and its commonly used features. The next series of topics provide
a glimpse into the inner workings of the shell, including: processing that
supports command execution, processing that can change the execution
environment for a command based on metacharacters you placed in a
command line, and processing that can change the value of various
metacharacter-delimited command elements.

If you enter a command name that matches one of the built-in commands,
the command is executed as part of the current shell process. As such, it is
not subject to the job-control commands that would affect an independent
process.

Next, the shell checks whether the command name matches one of the
user-defined functions and evaluates the function’s replacement, if
necessary. A function is also executed as part of the current shell process,
so it is also not subject to job control. For more detailed information about
functions, refer to ‘‘Functions’” near the end of the ‘‘Description’’ section.
That section is generally useful for users who are also programmers.

Then the shell determines if any alias substitutions must be made. Whether
it is the result of an alias substitution or not, the command name can refer
to an A/UX command, a Macintosh application, or a command script.
Before this determination can be made, ksh must locate the executable file
associated with the named command. So ksh performs a search for the
command file. It searches for a file of the same name as the command
entered. It looks in each of the search directories specified in the PATH
variable.

The PATH variable contains a list of directories where commands are
customarily located. Directory names are separated by colons (:). The
default search setting for recent versions of A/UX is as follows:

PATH=/bin:/usr/bin:/usr/ucb:/mac/bin:.

November 1991 22

ksh(1l) ksh(1)

23

When you use this specification, the final directory searched is the current
directory. The current directory is represented by a period. Because the
period appears in the last colon-separated field, the current directory is the
last directory to be searched. For the PATH variable value, the current
directory can also be represented by two or more adjacent colons, or by a
colon at the beginning or end of the path list.

The search process is not performed if the command name is specified with
a leading slash (/) character. In such a case, ksh expects you to supply
the absolute path that locates a file that can be executed, or a relative path
that locates the executable file based upon the current working directory.

Once the executable file is found, the format of the file helps distinguish
whether it should be run as a shell script, a command, or a Macintosh
application. The latter option allows you to launch Macintosh applications
by name, provided that they reside on an A/UX file system in a directory
that 1s listed in the definition of the PATH variable. Note, however, that if
the name contains a space, you need to enclose the command name in
quotation marks. (See ‘‘Escape Characters,”” later in the ‘‘Description’’
section for related information.) To make the application easier to launch
from a command line, you may want to rename the file so that it doesn’t
contain spaces:

mv "MacDraw II" macdraw

Launching Macintosh applications by name is about the same as using the
launch command (described in 1aunch(1)). This method supports the
same -p (print) option described for launch:

mac-application [-p] [app-document]...

For a command to run successfully, ksh must be able to find an associated
executable file. Successful execution also depends upon the execute
permission for that file (which is interpreted according to the login account
you used to log in). The often-misleading File not found error
message is displayed if the file permissions do not permit you to run the
command.

If the result of the command search yields a file that is a command-
containing shell script, a subshell is spawned to interpret the script as
described in ‘‘Command Scripts,”’ later in the ‘‘Description’’ section.

The processing steps described in this section represent the minimum
processing that ksh performs to run a simple command such as:

$ date
Fri Jun 14 13:31:22 PDT 1991
s 1

However, much more shell processing of command lines can optionally

November 1991

ksh(l)

ksh(l)

take place. Before you can master the command-line interface, you need
to better understand how that optional processing is performed by the shell.
To give you a more detailed understanding of the optional ksh processing,
you should read the series of the sections that follow this one. Each
subsection elaborates on one type of optional shell processing:

e Subcommand Execution

e Aliasing

o Tilde Substitution

e Command Substitution

e Variable Substitution

e Filename Generation

e Argument Parsing

o Input/Output Redirection

e Escape Characters

e Extra Initial Processing for a Login Shell

e Extra Initial Processing for Subshells

Subcommand Execution

Parenthesized commands are executed by a subshell. Unlike a subshell that
supports the running of command scripts, this subshell has access to
nonexported variable values from the parent shell as well as exported ones.

You can combine commands to be executed by a subshell with ordinary
commands into a single processing request, in formats such as these:

[command command-separator]... (subcommand)

(subcommand) [command-separator command]...

Because the subshell can be set to a different working directory, you can
use it to help initiate commands that operate in two different directories,
but are still part of a single command-line request. One possibility is
shown in the following example, which copies a directory/file hierarchy
from one location to another:

cd fromdir; tar cf - . | (cd todir; tar xf -)

Aliasing

November 1991

As described earlier, ksh performs a substitution when it encounters an
alias name in the command-name portion of a command line.

24

ksh(l) ksh(l)

25

When declaring aliases with the alias command, you can use any
nonspecial printable character as the first character of the alias name. The
remaining characters must be the same as those for a valid identifier. (See
“‘Lexical Rules for Identifiers’’ later in the ‘‘Description’’ section.) For
syntactic information regarding the use of the alias command, see
“‘Built-in Commands’’ later in the ‘‘Description’’ section.

The replacement string for an alias is a command line. Such a string can
contain one or more references to commands or executable shell scripts. If
it includes multiple commands, command separators must delimit them as
described in ‘‘Format of Command Lines,’” earlier in the ‘‘Description”’
section.

Generally, the command-name portion of the replacement value for an alias
is not tested for additional aliases. However, if the last-entered character of
the replacement value is a space, ksh makes any appropriate alias
substitution for the first command name in the replacement value.

You can use aliases to redefine the built-in commands, but you cannot use
them to redefine the keywords described later in ‘‘Using Repetition and
Branching Constructs’” within the ‘‘Description’” section.

You can create, list, and export aliases with the alias command. You can
remove aliases with the unalias command. Exported aliases remain in
effect for subshells but do not persist across login sessions unless you enter
them in the file .profile. (See ‘‘Establishing Preference Settings’’
within the ‘‘Description’’ section.)

Aliases are frequently used as a shorthand for longer command pathnames.
The tracking feature for aliases enhances this use. It helps avoid the
processing overhead that is otherwise required to locate the associated
command each time an alias is used. The search that is normally
moderated by the list of directories stored in the PATH variable is not
always necessary because the shell can remember the full pathname to the
aliased command after its first use. When such a manner of operation is
enabled for an alias, the alias becomes a tracked alias. All tracked aliases
become subject to reresolution each time the PATH variable is reset. When
you do so, a search will take place to determine the correct location of an
aliased command when the (tracked) alias is next used. Once the location
has been reestablished according to the new PATH setting, the tracked alias
is once again able to inhibit further command searches.

To treat all the aliases you subsequently define as tracked aliases, use ksh
with the —h option as described in the ‘‘Arguments’’ section, earlier in this
manual page. For an interactive shell that is already running, you can use
the set command with the trackall argument to establish the same
ksh preference. (See ‘‘Establishing Preference Settings’’ earlier in the

November 1991

ksh(l) ksh(l)

‘‘Description’’ section.)

You can set the export attribute for an alias to indicate that it should also be
passed to any ksh subshells you invoke. To set this attribute, use the
alias command with the -x option. For more information about
exported values and the export attribute, see ‘‘Establishing Preference
Settings,’” earlier. The following ‘‘exported aliases’’ are set, but you can
unset or redefine them:

autoload='"typeset -fu’
false="let 0’
functions='"typeset -f’
hash='alias -t’
history='fc -1-
integer='typeset -i’
nohup='nohup ’

r="fc -e -’

true=":"

type='whence -v’

Tilde Substitution
After performing alias substitution, ksh processes the command line for a
type of substitution known as ‘tilde substitution,”” so-named because the
metacharacter that triggers it is the tilde (~). When used as a discrete
command argument, or when placed at the beginning of a pathname, the
tilde is replaced with the full pathname to your home directory (the
directory that becomes your default working directory when you log in). If
the tilde precedes an argument that is a login name from /etc/passwd,
then ksh substitutes the home directory of the login name specified. If no
maitch is found, ksh leaves the tilde and any attached text unsubstituted,
and treats them literally as command arguments.

You use the tilde primarily to avoid some typing when you want to specify
files in your home directory but your current working directory is set
elsewhere. Using the tilde can also reduce typing when you are specifying
the path to an executable command file located in your home directory.

The syntax for a command request that makes use of tilde substitution for
the command name is as follows:

~[login-namel(/dir].../command arg...

The syntax for a command request that makes use of tilde substitution for a
command argument is as follows:

command ~[login-name][/dir]...[/file]

November 1991 26

ksh(l) ksh(l)

A tilde followed by a + or - is replaced by the value of the current working
directory (PWD) or the old working directory (OLDPWD), respectively.

In addition, tilde substitutions are performed if the tilde is placed at the
beginning of the assignment value for a variable:

variable=~value

The tilde can also be placed elsewhere in the assignment value for a
variable, as long as it is after a colon (:). For example, tilde substitutions
may permit you to specify search directories for the PATH variable more
succinctly, as in this example:

$ PATH=/bin:/usr/bin:":7/Tools:

S echo S$PATH
/bin:/usr/bin:/disk0/mikee:/disk0/mikee/Tools
s i

Command Substitution

27

After performing any tilde substitutions, ksh processes the command line
for metacharacters that request another type of substitution. ‘‘Command
substitution’” permits you to enclose command lines inside other command
lines. The enclosed commands are replaced with the output text they
produce when they are run. Of course, any enclosed commands are run
first.

You delimit an enclosed command by placing it inside parentheses, and by
placing a dollar sign in front of the open parenthesis:

S (enclosed-command-line)

If it occupies the position normally occupied by a command, the enclosed
command must output a legal command. If it occupies the position
normally occupied by a command argument, the enclosed command must
output a legal argument for the enclosing command.

You can use command substitution to avoid typing a long list of filenames,
as in this example:

tbl S$S(grep '"\.TS’ * jcut -fl -d: |sort -u) |nroff
In this example, the enclosed command is as follows:
grep ’'“\.TS’ * |cut -f1 -d: |sort -u

This enclosed command generates the arguments for the tbl (table-
preprocessing) command. In this case it is a list of files in the current
directory that contain at least one occurrence of the table-start instruction,
. TS, located at the beginning of a line. (The function of the grep
command is to find occurrences of strings in files and report them.) The
cut command strips all but the first colon-delimited field from its input

November 1991

ksh(1) ksh(l)

data. Because grep reports the names of files, a colon, and the line that
contains the search string, cut outputs only filenames in this example.
Those filenames are sorted into a list without any duplicates by the next
pipelined command, sort -u. So when the enclosed commands are done
executing, they produce as the arguments for tb1 a list of files containing
tbl instructions. The output of tbl is intended to be processed by a
document-formatting program, such as nrof £, so the enclosing command
pipes tbl output as input to the nrof £ command.

In addition to the usual method of requesting command substitution just
described, you can enclose a command substitution in grave accents:

' command '’

When you use this (archaic) delimiter, the command between the grave
accents goes through two rounds of processing for quotation mark
metacharacters before the command is executed. (See ‘‘Escape
Characters,’’ later.)

Instead of specifying
S(cat file)
you can use the following request, which is faster:

S (<file)

Most built-in commands that are not requested along with input/output
redirection are executed in the same process as ksh when they are used as
a command inside another command.

Variable Substitution
After performing command substitution, ksh processes the command line
for variable substitution (also known as ‘‘parameter substitution’”).

The dollar sign ($) metacharacter that introduces a variable name can be
considered the trigger for variable substitution. The dollar sign and the
variable name that follows it are replaced with the value of the variable.
Here is the format:

Svariable

Usually variable is composed in accordance with the rules for identifiers.
This is the case in particular for all user-defined variables. (See ‘‘Other
Built-in Variables’’ later in this section, for variables that are
preestablished.)

Another class of variables can be referenced in this format:
Sdigit
S {digit...}

These variables are called ‘‘positional parameters.

L]

Their primary use is

November 1991 28

ksh(l) ksh(l)

to allow access to the command-line parameters from inside a user-
programmed shell script. For more information about scripts, see
““Command Scripts,”” later in the ‘‘Description’’ section.

For more information about variables and arrays, see ‘‘Variables and
Arrays,”’ near the end of the ‘‘Description’” section.

Filename Generation

29

After performing variable substitution, ksh processes the command line
for metacharacters that request filename generation. Filename generation
involves replacing a shorthand reference to a file with a more complete
pathname or filename. Such a shorthand reference involves certain
metacharacters, also referred to as ‘‘wildcards.”” Often more than one
argument is generated in place of a shorthand argument. This happens
when several filenames or pathnames satisfy the wildcard criteria.

If you use one or more wildcard metacharacters, ksh regards the word in
which they appear as a shorthand notation to be expanded, as long as the
word is not enclosed in single (*) or double (") quotation marks.

One of the metacharacters, or wildcards, that trigger this processing is the
asterisk (*). Because variable substitution is performed before filename
generation, the wildcard can be part of the text stored in a variable, as the
following processing request shows:

$ files=/.*rc

$ echo S$files
/.cshrc /.kshrc
s il

The same results are evident in the following commands, in which variable
substitution plays no role. Also note that filename generation is suppressed
by the double quotation marks.

$ echo /.*rc
/.cshrc /.kshrc
$ echo "/.*rc"
/.*rc

s i

The ksh program sorts generated arguments alphabetically when multiple
filenames are generated because of a request for filename generation. The
output produced by echo in the following processing request comprises
any files in the current directory that end with the suffix . out. Note that
the output is sorted alphabetically.

$ echo *.out
temp.out work.out

s i

November 1991

ksh(l) ksh(l)

If ksh cannot generate any filenames based upon the wildcards in the
argument you specify, then the argument is treated as a literal argument.
Thus, if the current directory does not contain any files with a . out suffix,
filename generation for the previous example would fail, producing this
output:

S cd
$ echo *.out
*.out

s i

The term “‘pattern’’ is used to refer to the wildcard along with the word in
which it appears. So * . out can be thought of as a single search pattern.

When used as the first character of a search pattern, such as * . out, the
asterisk produces file matches for any filenames containing any number of
characters of any value, that end with the characters . out. When used as
the last character of a search pattern, such as memo *, the asterisk produces
file matches for any filenames containing any number of characters of any
value, that start with the letters memo.

Wildcards other than the asterisk are more restrictive in terms of the
matches they can produce. Particularly, they match only one character
within a filename. You must use multiple occurrences of these other
wildcards in the pattern in order to match a filename of more than one
character. The question mark matches any one character of any value.
Suppose you enter:

1ls 2727

The output produced comprises all the filenames that contain exactly three
characters. When question marks are used along with strings, as in
memo? . out, the matched filenames must be the same length as the
pattern.

To form an even more restrictive wildcard, a wildcard that matches only
certain characters in certain positions, a single character is not sufficient.
For this kind of wildcard specification, a bracketed character list is used.
Suppose you enter

1ls memo[123]

The output produced comprises all the filenames that begin with memo and
that end with either 1, 2, or 3.

The following list describes the criteria established by each of the wildcard
notations. Note that in this list, the brackets shown are supposed to be
typed. (When the brackets appear in the normal text font, as is usually the
case, they surround optional items.)

November 1991 30

ksh(l) ksh(1)

31

* Matches zero or more characters of any value.

? Matches one occurrence of any character value at a particular
location.

[char...]

[!char...]
Match one occurrence of any one of the enclosed characters in a
particular character position (first form). If the first character in the
list is an exclamation mark (second form), a match is produced
whenever any one letter other than char occurs at a particular
character position.

The placeholder char can also be specified as a three-character
sequence representing a range (based upon ASCII ordering) of
characters to be considered matches. This three-character sequence
has the following format:

startchar-endchar

Thus [A-Z] matches one occurrence of any uppercase letter and
[A-Za-z] matches any alphabetic character in either uppercase or
lowercase format. To include a hyphen (-) as one of the list of
possible character matches, make it the first or last character enclosed
within the brackets.

When the filenames you want ksh to generate must be discriminated from
very similar filenames, you may need to use more than one pattern to
generate the desired files. Multiple patterns are separated by a vertical bar
(1), as shown in the following summary of compound pattern syntaxes.
For the patterns in this list, the brackets should not be typed because they
surround optional items.

? (pattern[| pattern]...)
Matches zero or one occurrence of the patterns specified.

* (pattern[| pattern]...)
Matches zero or more occurrences of the patterns specified.

+ (pattern[| pattern]...)
Matches one or more occurrences of any pattern specified.

@ (pattern[| pattern]...)
Matches exactly one of the patterns specified.

! (pattern| | pattern]...)
Matches all strings, except those matched by the patterns specified.

November 1991

ksh(l) ksh(l)

Argument Parsing
After performing filename generation, ksh processes the argument portion
of the command line to determine the number of arguments, the extent of
each, and the level of escapement, if any, that you requested to obtain the
literal interpretation of metacharacters.

The first two functions involve parsing of the command argument string
into discrete arguments according to the presence of argument-separator
metacharacters. The space or tab metacharacters in a command line are in
turn affected by the third function, analyzing the level of escapement.
Escapement is specified by paired quotation marks or the backslash
character. These metacharacters can override the normal interpretation of
spaces or tabs as argument separators, making them legitimate argument
string characters (See ‘‘Escape Characters’’ later in the ‘‘Description’’
section.)

Input/Output Redirection
The ksh shell performs input and output redirections after it has
substituted aliases, evaluated command substitutions, evaluated functions,
generated filenames, and replaced variables in accordance with
metacharacters and other preference settings that you supplied.

You specify a redirection of input, output, or both by using the appropriate
metacharacter notation. Unlike processes that involve substitution, the
process of redirection does not require that you make changes to the
elements of the command line that get passed to the command. Rather, you
accomplish redirection by altering the processing environment with which
the command interacts.

Redirection requests are not propagated to the command they affect. The
shell parses them and processes them by itself. For this reason, redirections
can be intermixed with other command elements in any way:

command arg... [redirect-in] [redirect-out]

[redirect-in] [redirect-out] command arg...

You specify the value of redirect-out as the metacharacter > (greater-than
sign) followed by a filename:

> output-file

You specify the value of redirect-in as the metacharacter < (less-than sign)
followed by a filename:

< input-file

November 1991 32

ksh(1) ksh(l)

33

Another form of redirection involves multiple commands that share an
information flow, bypassing the need for intermediate files. Consider these
two commands:

who >/tmp/data
grep ttyl </tmp/data

The preceding sequence is equivalent to a pipe joining the two commands
as a single processing request, as follows:

who | grep ttyl

The output of the first command (who) is channeled directly to the input of
the second command (grep). The pipe metacharacter (a vertical bar)
indicates this channeling of data between commands. You can extend the
pipeline to channel the output of a second command to the input of a third
command, and so forth:

command | command |[|command]...

More discussion of input and output file redirection and command pipes is
given earlier in ‘‘Format of Command Lines.”’

You can request that filename generation be performed for the filename
portion of a redirection request by using the wildcards described earlier in
‘‘Filename Generation.”’

Filename generation produces a full reference to a filename or pathname,
from a shorthand reference (or pattern) that you provide. Note, however,
that the pattern is treated literally if honoring it would generate multiple
filenames.

More often, a redirection metacharacter introduces the name of a file that
you want to use as the source of input or the destination of output for a
command. You can also specify another parameter in a redirection request,
the channel parameter. A more technical term frequently used in place of
channel is “‘file descriptor.”’ Replace channel with a digit between 0 and
9, where applicable. The following list shows all the redirection formats
available.

<file

channel<file
Establish file as the source of standard input (file descriptor 0) for the
command line in which it appears. If channel is specified (as in the
second form shown), it establishes file as the source of input for the
channel specified.

>file
channel>file
Direct the standard output (file descriptor 1) to file for the command in

November 1991

ksh(l) ksh(l)

which it appears. If file does not exist, it is created. If file exists and
the noclobber option is on, an error is generated; if file exists and
the noclobber option is off, the file is truncated to zero length.

If channel is specified (as in the second form shown), it establishes file
as the destination for output written to the channel specified.

> | file
Directs the standard output (file descriptor 1) to file for the command
in which it appears. This format differs from > because it overrides
the noclobber option, which might produce an error message
because a file by the same name already exists.

>>file
Directs the standard output (file descriptor 1) to file for the command
in which it appears. If file exists, output is appended to it; otherwise,
file is created.

<>file
Establishes file as the source of standard input and the destination of
standard output.

<<[-]word
Establishes a range of lines as the source of standard input for the
command line in which it appears. The range of lines starts with the
next line and continues until a line is reached that consists of word
alone, or that contains an end-of-file character. For this type of
redirection, no parameter substitution, command substitution, or
filename generation is performed on word. The resulting range of
lines that is used as input is sometimes called a ‘‘here-document.’” If
any character of word appears in quotation marks, the input lines are
treated literally. Otherwise, ksh performs parameter and command
substitution on the input lines and the backslash (\) must precede
certain metacharacters to ensure their literal interpretation as input
data. Particularly, the following metacharacters are subject to
interpretation unless escaped: backslash (\), dollar sign ($), and
grave accent (/). If - is appended to <<, ksh strips all leading tabs
from word and from the range of lines used as input.

<&channel
Establishes as the source for input the file (or device) currently
associated with the file descriptor channel for the command in which
it appears.

>&channel
Directs the standard output of a command to the file (or device)
currently associated with the file descriptor channel for the command
in which it appears.

November 1991 34

ksh(l) ksh(l)

35

app-channel<s&channel
Establishes the file (or device) referenced by channel as the source of
input read by the application from app-channel.

app-channel>&channel
Directs data sent by the application to app-channel to the file or device
referenced by channel.

<&-
Closes the current source of standard input for a command.

>&—
Closes the current destination of standard output for a command.

[channel]<&p
Connects the output from the coprocess to the standard input or, if
channel is supplied, to the file or device referenced by channel.

[channel]>&p
Connects the input of the coprocess to standard output or, if channel is
supplied, to the file or device referenced by channel.

The order in which redirections are specified is significant. The shell
evaluates redirections from left to right, making new associations based on
the already established state. For example, the following line first
associates file descriptor 1 with file fname; then it associates file
descriptor 2 with the file currently associated with file descriptor 1 (that is,
fname):

command 1>fname 2>&1
If the order of redirections were reversed, as in
command 2>&1 1>fname

then the output directed to file descriptor 2 would be sent to the display
rather than to the file fname. This is why: File descriptor 2 is first set to
correspond to the file or device associated with the standard output, which
by default is the display since no redirection preceded it; then the standard
output (file descriptor 1) is associated with file fname. The result is that
the standard output alone is redirected to the file fname, which could have
been much more simply requested as follows:

command >fname

If a command is followed by an ampersand (&) and job control is not
active, the default standard input for the command is the empty file
/dev/null. Otherwise, the default execution environment for each new
command is the same as the shell from which it is invoked in terms of its
file descriptors. You can override those defaults by using any of the
input/output redirections described in this section.

November 1991

ksh(l) ksh(l)

Escape Characters
To disable the special interpretation of metacharacters, such as spaces and
dollar signs, you can insert other characters to cause the metacharacters to
be interpreted literally. For example, any metacharacter preceded by a
backslash is interpreted literally.

By preceding a newline character with a backslash, you can allow a long
command to take up more than one line, as follows:

$ command argumentl argument2 argument3 \
argumentd4

$

The conversion of a metacharacter to a nonspecial character that is treated
literally is sometimes called ‘escaping,’”’” and the characters that help
accomplish this are called ‘‘escape characters.”” A casual name for this
(escapement) process is ‘‘quoting.’’

Normally, the shell begins parsing a new argument whenever it encounters
a space character. To launch a program named SpiffWrite II, you could
enter

"SpiffWrite IL"

The double quotation marks suppress the interpretation of this line as a
command named Spif fWrite with one command argument, IT.

When you do not want to supply a value for the first argument to a
command, but you do want to supply values for the second and third
arguments, you need to pass an empty string in the place of the first
argument. Normally, an empty string would not result from the
substitution of a variable that held nothing (or the evaluation of a
subcommand that produced nothing). To ensure that they can be
interpreted as empty arguments when empty, you can enclose such
references within double quotation marks:

paste "s$file" /etc/passwd

The following command will not wait to read from the standard input if
filenames is empty:

cat "‘cat filenames‘"

By enclosing a sequence of characters that includes metacharacters inside
single quotation marks, you prevent the usual interpretation of the
metacharacters (effectively suppressing filename generation, variable
substitution, and subcommand execution). However, a single quotation
mark cannot be treated literally within text delimited in this way, unless it
is preceded by a backslash.

November 1991 36

ksh(l) ksh(1)

Note that the single quotation marks offer a different level of escapement
than do the double quotation marks. For example, to treat two variable
references and an intervening space as one argument, enclose them in
double quotation marks:

command "$variablel $variable2 "

It is a mistake to enclose them in single quotation marks, unless you want
to treat the entire string as one literal argument, as in this example:

$ echo ’Svariablel $variablel2’
‘$variablel $variablel2’

s il

If you enclose a sequence of characters that includes metacharacters in
double quotation marks, the metacharacters triggering variable and
subcommand substitution are not escaped, enabling those functions for the
delimited text. In particular, the following metacharacters are still treated
specially when enclosed in double quotation marks:

AR
To cause these characters to be treated literally when enclosed in double
quotation marks, precede each with a backslash.

You can avoid the special interpretation of keywords and aliases by
escaping any character of the keyword or alias name. The recognition of
function names and built-in command names (listed later in ‘‘Built-in
Commands’’) cannot be altered with escape characters.

Extra Initial Processing for a Login Shell

37

A login shell is invoked in a characteristic way by exec as part of the
login process. The login shell helps trigger processing that should take
place only once, immediately after you log in. This specially-timed
processing permits preference settings stored in the startup file .profile
to take effect each time you log in.

The programs that manage the login process invoke ksh and pass its
execution environment with the $0 positional parameter set to -ksh.
Upon inspecting $0 and finding the leading hyphen, ksh reads commands
from /etc/profile and then from either .profile in the current
directory or $SHOME/ . profile, if either file exists.

You can customize preference settings by using these startup files and by
using exported and unexported attributes for variables. (For more
information, see ‘‘Establishing Preference Settings’’ earlier, and in the next
section.)

November 1991

ksh(l) ksh(1)

Extra Initial Processing for Subshells
For any invocation of ksh, including one for establishing a login shell, the
command lines from the file (if any) stored in the variable ENV are read
and executed. For this reason, preference settings established in the file
referenced by ENV are also established for all invocations of ksh
subshells, whereas preferences established from .profile are passed to
subshells only if the settings are exported and only if they are not
overridden by settings in the ENV file.

(If ENV contains the appropriate metacharacters, ksh processes the
replacement value for further substitutions. This process permits ENV to
contain a reference to the built-in variable SHOME.)

By default, home/ . kshrc is the value stored in ENV, where home is the
home directory for your user account. If ENV is not set or is empty, no
initial commands are executed.

Command-Line Editing Options
This is the first of several sections about the editing of command lines. The
following sections also deal with these topics:

e The emacs Editing Mode

e The vi Editing Mode

e Commands for vi Input Mode

e Cursor Movement Commands for vi Edit Mode
e History Commands for vi Edit Mode

o Text Editing Commands for vi Edit Mode

e Other Commands for vi Edit Mode

If you have already learned how to use a UNIX®-style editor such as vi or
ed, you can invoke those actual programs rather than using the imitations
of them inside ksh. If you prefer to edit command lines by using a
mouse-and-menus approach, you can even use TextEditor. To enter one of
these editors, store the name of the desired editor in FCEDIT and then use
the fc¢ command as described earlier in ‘‘Command Reentry.”” The
editing systems that are described in this section are more tightly integrated
with ksh, so they can offer even speedier access to a previously entered
command.

Because of their reference-style treatment here, you should already be
comfortable with one or more of the editing programs as described in A/UX
Text Editing Tools in order to be comfortable reading these sections. Be
forewarned, however, that not all operations operate identically,
particularly for the vi editing mode.

November 1991 38

ksh(l) ksh(l)

When the command-line editing feature of ksh is active, you can edit the
current command line and scroll up and down to inspect, edit, and reuse
any of your previously entered commands within the range of the history
file. (See ““‘Command Reentry’’ earlier, for more information about the
history file.)

You choose one style of command-line editing by assigning the variable
VISUAL or the variable EDITOR one of these values:

vi

emacs

gmacs

These built-in editors are modeled after the the stand-alone editors that
have the same names. For more introductory information, see the
commercial books that describe the emacs and gmacs editors, or see
A/UX Text Editing Tools for an introduction to the vi editor.

Each of these built-in editors displays a recalled command line after the
most recent command prompt. You can consider the area of the display
affected as a one-line text window, the contents of which you can scroll to
view other command lines in the command history file. You can set the
width of the text window by using the variable COLUMNS. The text
window width is set to 80 columns automatically whenever COLUMNS is
unset.

If the command line that you enter or that you recall from the history file
exceeds the length of the text window, a special character is displayed at its
boundary. This character provides a reference point (mark) for the
characters horizontally scrolled into view as you move the cursor toward
the end of a long command line.

As the cursor reaches the text window boundaries, the text is horizontally
scrolled so that the window continues to enclose the cursor. The mark
changes, depending on where text has scrolled off the window. If text has
scrolled off the end of the window, a > is displayed. If text has scrolled off
the beginning of the window, a < is displayed. If text has scrolled off both
the beginning and the ending of the window, a * is displayed.

Command-Line Editing With vi

39

When you use the vi style of editing, you flip between two modes of
operation, one for entering text-editing commands and one for entering the
text of a command line. The data entry mode is called ‘‘input mode.”” The
command entry mode, called ‘‘edit mode,’” can be broken down further
into modes such as character-insert and character-overwrite modes.

November 1991

ksh(l) ksh(l)

Initially, you are placed in input mode so that you can enter the text of a
command line. To begin editing text that has been entered, you switch to
the edit mode by pressing ESCAPE, move the cursor over the character
position that requires a correction (using motion commands in edit mode),
and enter an edit command that invokes input mode once again, and then
insert or overwrite text.

When you are ready to run the command line, you press RETURN. You can
do so from either input or edit mode.

In the command tables in subsequent sections, the notation for control
characters is caret (~) followed by the character. For example, " £ is the
notation for CONTROL-F. You enter this key combination by pressing the F
key while holding down the CONTROL key. You do not have to press the
SHIFT key.

Commands for vi Input Mode
By default the editor is in input mode which lets you enter a command line
that you wish to run. Within this mode the following character-commands
are accepted.

Erase
Deletes previous character. (You define the erase character by
using the st ty command. This character is usually "H or #.)

"D Terminates the shell.

\ Causes the next erase, kill, or end-of-line character to be
interpreted literally.

Cursor Movement Commands for vi Edit Mode
The following character sequences move the cursor in edit mode. For most
of these commands, you can optionally provide a count parameter that
proportionally increases the distance that the cursor travels.

[count]1
Moves the cursor forward (right) one character.
[countlw
Moves the cursor to the beginning of the next word.
[count]w
Moves the cursor to the beginning of the next word that follows a
space.
[count]e
Moves the cursor to the end of the current word.
[count|E
Moves the cursor to the end of the current space-delimited word.
[count]h
Moves the cursor backward (left) one character.

November 1991 40

ksh(1)

ksh(1)

[count]b
Moves the cursor to the previous word.
[count]B
Moves the cursor to the preceding space-separated word.
[count]fc
Finds the next occurrence of character ¢ in the current line.
[count]Fc
Finds the previous occurrence of character ¢ in the current line.
[count]tc
Finds the next occurrence of ¢ in the current line, then moves
backward one character.
[count]Tc
Finds the previous occurrence of ¢ in the current line, then moves
forward one character.
[count];
Repeats the last single-character find command (f, F, t, or T).
[count],
Reverses the last single-character find command.

0 Moves the cursor to the beginning of the line.

~ Moves the cursor to the first nonblank character in the line.
$ Moves the cursor to the end of the line.

% Moves the cursor to the balancing (,), {, },[, or]. If the

cursor is not on one of these characters, the remainder of the line
is searched for the first occurrence of one of these characters.

History Commands for vi Edit Mode

41

The following character sequences display commands you entered
previously as long as they fall within the range of your command
history file:

[count]k
Displays the previous command each time k is entered. If a count
parameter is supplied, the command that is count commands
prior to the current one is displayed.

[count]-
Displays the previous command. Equivalent to k.

[count];
Displays the next command each time j is entered. If a count
parameter is supplied, the command that is count commands
more recent than the current one is displayed (if such a command
exists).

[count]+
Displays the next command. Equivalent to Jj.

[linenolG
Displays the command numbered lineno. You can obtain the line

November 1991

ksh(l) ksh(l)

numbers associated with commands by entering £c -1. The
default is the least recent history command.

/ [pattern]
Searches backward through the history file for a previous
command containing pattern. You indicate the end of the pattern
by pressing RETURN (or by generating a newline). If you do not
specify a pattern, the most recently specified pattern will be used.

?[pattern]
Searches forward through the history file for a previous
command containing pattern, as a counterpart to /.

n Searches forward for the next match of the last pattern specified
by a / or ? command.

N Searches backward for the next match of the last pattern specified
by a / or ? command.

Text Edit Commands for vi Edit Mode
You can use these commands to modify the currently displayed line.
To use these commands, you either switch from edit mode to input
mode and type new characters into a line; or you remain in edit mode
and directly change a specific amount of text. In the latter case you
can continue supplying other edit-mode commands. In the former
case, you cannot access edit-mode commands again until you leave
input mode.

a Enters input mode. New text is entered after the current
character.

A Enters input mode. New text is entered after the last character of
the current line. Equivalent to the command $Sa.

[count]cmotion

c|count]motion
Enter input mode after marking for deletion the string starting
with the current character and ending with the character that is
count units away in the direction and units given by motion. 1If
motion is c, the entire line is deleted and you enter input mode.

C Enters input mode after marking the current line for deletion.

S Enters input mode after deleting the current line; equivalent to
the command cc.

D Enters input mode after deleting the string starting with the
current character and continuing to the end of the line.
Equivalent to the command ds.

[count]dmotion

d[countmotion
Delete from the current character to the character that is count
units away in the direction and units given by motion. If motion
is d, the entire line is deleted.

November 1991 42

ksh(1)

43

ksh(1l)
i Enters input mode. New text is inserted before the current
character.
I Enters input mode. New text is inserted at the beginning of the
current line. Equivalent to the command " 1.
[count]P
Inserts the contents of the deletion buffer before the cursor.
[count]p
Inserts the contents of the deletion buffer after the cursor.
R Enters input mode. New text replaces existing text as the cursor
advances over the old text.
rc Replaces the current character with ¢, while remaining in
command mode.
[count]x
Deletes the current character.
[count]xX
Deletes the preceding character.
[count] .

Repeats the previous text-modification command, replacing the
previously supplied count with count.

Converts the case of the current character and advances the
Cursor.

[word-number]_

Enters input mode after pasting a word from the most recently
executed command into the current command line. The
particular word inserted depends on the value of word-number.
If this parameter is omitted, the last word of the previous
command line is inserted. Otherwise, word-number selects the
word to be inserted in an ordinal manner.

Attempts filename generation based on the current word.
Filenames that begin with the same letters as the current word are
generated. If no match is found, a beep is generated. Otherwise,
the word is replaced by the matched filename and you enter input
mode.

Attempts pathname completion. Replaces the current word with
the longest common prefix of all filenames that begin with the
same letters as the current word. If the match is unique and the
match is a directory, a slash (/) is appended. If the match is
unique and the match is a file, a space is appended.

November 1991

ksh(l)

ksh(l)

Other Commands for vi Edit Mode
[count]ymotion
y[count]motion

Copy (*‘yank’’) text from the current character to the character
selected by motion and put it into the deletion buffer. The text
and cursor are unchanged.

Y Copies (‘‘yanks’’) text from the current position to the end of the
line and puts it in the deletion buffer. Equivalent to y'$.

u Undoes the last text-modification command.

U Undoes all the text-modification commands performed on the
line.

[count]v
Displays this command into the input buffer.
fc -e ${VISUAL:-S${EDITOR:~-vi}} count
If count is omitted, the current line is used.

"L Inserts a line feed and redisplays the current line if you are in edit
mode. Otherwise, this command is treated literally.

~J
Executes the current line, regardless of mode.

M
Executes the current line, regardless of mode.

Inserts a number sign (#) before the line and then sends the line,

converting it into a shell comment. Use this command to insert
the current line into the history file without executing it.

Generates a lists of filenames that begin with the same letters as
the current word.

@lett&earches for an alias by the name _letter. (Note that an

underscore is prepended to the letter.) If an alias of this name is
defined, its value is displayed.

The emacs and gmacs Editing Mode
You enter the emacs (or gmacs) editing mode by using the emacs (or
gmacs) setting for either the variable EDITOR or the variable VISUAL.
The only difference between emacs and gmacs modes is the way they
handle CONTROL-T: The emacs mode transposes the current character
with the next character, whereas gmacs mode transposes the two previous
characters.

To edit lines, move the cursor to the point needing correction and then
insert or delete characters or words as needed. All edit commands operate
from any place on the line (not just at the beginning). All of the editing
commands are control characters or escape sequences.

November 1991 44

ksh(l) ksh(l)

45

In the command table that follows, the notation for control characters is a
caret (") followed by the character. For example, "F is the notation for
CONTROL-F. The SHIFT key is not pressed. (The notation ~? indicates
DELETE.)

The notation for escape sequences is M- followed by a character. For
example, you enter M- £ (pronounced ‘‘meta {”*) by pressing ESCAPE
(ASCII 033) followed by the F key. The character case is significant; M-F
is not the same as M- f, so in this case you do not press SHIFT.

“F Moves the cursor forward (right) one character.

M-f
Moves the cursor forward one word. (The editor considers a word to
be a string of characters consisting only of letters, digits, and
underscores.)

"B Moves the cursor backward (left) one character.

M-b
Moves the cursor backward one word.

~A Moves the cursor to the beginning of the line.

“E Moves the cursor to the end of the line.

~]char
Moves the cursor to the first occurrence of the letter char on the
current line.

~"XTX
Interchanges the cursor and mark.

erase
Deletes the previous character. (You define the erase character by
using the st ty command. This character is usually CONTROL-H or
#.)

"D Deletes the current character.

M-d
Deletes current word.

M-"H
Deletes the previous word. (Pronounced ‘‘meta backspace’’.)

M-h
Deletes the previous word.

M-"7
Deletes the previous word. (Pronounced ‘‘meta delete’’.) If your
interrupt character is ~ ? (DELETE, the default), this command will not
work.

~T Transposes the current character with next character in emacs mode.
Transposes the two previous characters in gmacs mode.

~C Capitalizes the current character.

November 1991

ksh(1) ksh(1)

M-c
Capitalizes the current word.

M-1
Changes the current word to lowercase.

"K Deletes all characters from the cursor to the end of the line. If given a
parameter of 0, it deletes all characters from the beginning of the line
to the cursor.

"W Deletes all characters from the cursor to the mark.

M-p
Pushes the region from the cursor to the mark on the stack.

kill Deletes the entire current line. (You define the kill character by using
the st ty command. This character is usually CONTROL-G or @.) If
you use two kill characters in succession, all subsequent kill
characters will cause the generation of a line feed (useful when you
are using paper terminals).

~Y Pastes the last-yanked text to the line.

"L Inserts a line feed and prints the current line.

~@ Sets the mark.

M-space
Sets the mark. (Pronounced ‘‘meta space’’.)

Executes the current line.

Executes the current line.

eof Produces the end-of-file character, normally CONTROL-D. This
command terminates the shell if the current command line is empty
except for the end-of-file character.

“P Displays the command previous to the current one. Each time
CONTROL-P is entered, the command prior to the one just fetched is
displayed.

M-<
Displays the least recent (oldest) history line.

M->
Displays the most recent (youngest) history line.

"N Displays the next-most-recent command. As long as more recent ones
exist, each time CONTROL-N is entered, the next command in a
previous sequence of commands is displayed.

“Rstring
Searches backward for a previous command line containing string. If
a parameter of 0 is given, the search is forward. The string is
terminated by a return or newline character. If string is preceded by a
caret ("), the matched line must begin with string. If string is omitted,
the next command line containing the most recently specified string is
accessed. In this case, a parameter of O reverses the direction of the

November 1991 46

ksh(l) ksh(1)

search.

~0 Executes the current line and fetches the next line relative to the
current line from the history file.

M-digits
Defines the numeric parameter; the digits are taken as a parameter to
the next command. The commands that accept a parameter are ., T,
"B, erase, "D, "K, "R, P, "N, M- .,M-_, M-b, M-c, M-d, M- £,
M-h, and M- "H.

M-letter
Searches the alias list for an alias by the name _lefzer.(Note that an
underscore prefix is added.) If an alias of this name is defined, its
value is inserted on the input queue. The letter must not conflict with
one of the metafunctions described in this list (so do not use the letters
f,b,d,p, 1, c, h).

M_
Inserts the last word of the previous command into the current line. If
preceded by a numeric parameter, the value of this parameter
determines which word to insert instead of the last word.

M-
Inserts the last word of the previous command into the current line.
Same as M- ..

M_ *

Attempts filename generation based on the current word. Filenames
that begin with the same letters as the current word are generated.

M-ESCAPE
Attempts filename completion. Replaces the current word with the
longest common prefix of all filenames that begin with the same letters
as the current word. If the match is unique, a slash (/) is appended if
the file is a directory and a space is appended if the file is not a
directory.

M-=
Lists all files that begin with the same letters as the current word.

“U Multiplies the parameter of next command by 4.

\ Causes the next character to be interpreted literally. This character
allows editing characters and your erase, kill, and interrupt characters
to be entered in a command line or a search string.

“v Displays the version number for the shell.

Command Scripts

47

Command scripts are files containing a number of command lines that are
run as one batch. The same command-line user interface that you use for
normal command programs is also used to invoke scripts. You can run a
file containing commands by supplying the name of the file as the
command in a command line.

November 1991

ksh(l) ksh(l)

As described earlier in the section ‘‘Using ksh,”’ a shell performs a search
for the file corresponding to each command. The order of this search is
dictated by the list of directories stored in the PATH variable.

If the file is a shell script containing legal command lines, a subshell is
spawned to interpret it. In the subshell, only ‘‘exported’ aliases, functions,
and variables retain the values they had in the parent shell.

To make your script programs as easy to run as A/UX commands, you need
to locate them in one of the directories specified by PATH and extend
permission to a range of users (or just yourself) to execute the script file.
See chmod(1) for information about permission attributes for a file.

As an alternative to treating the shell script just like an A/UX command
program, you can execute it by submitting the file as the input for ksh in
one of these formats:

ksh shell-script-file
cat shell-script-file | ksh

To execute a script this way, you need read permission, but not execute
permission. Note that any setuid and setgid file attributes are
ignored. (These attributes are described in chmod(1).)

When you specify a shell script as an argument to ksh, ksh performs a
PATH-moderated search to discover where the named shell script resides.
This search is exactly like the search for scripts executed like commands.

When executed like a command, a script file for which you have set the
setuid permissions, setgid permissions, or both is executed in a
special way. The shell executes an agent that sets up an altered execution
environment for use when running the script. This special subshell obtains
its startup settings from /etc/suid_profile.

Since ksh reads at least one line at a time, new aliases do not affect
subsequent commands on the same line, but affect only subsequent lines.
For example, if you have two or more simple or compound commands on a
single line, such as this:

alias bo=didley; bo

ksh reads all of the commands on the line before executing them.
Therefore, bo is not equivalent to did1ey because bo does not follow the
alias command line.

To add flexibility to shell scripts, traditional programming constructs are
included. For example, you can establish a block of commands that is run
only when a conditional test evaluates to true (such as whether a file
exists), or when the test evaluates to false. Certain keywords help you
indicate the scope of conditional blocks of commands. The keywords that

November 1991 48

ksh(l) ksh(1)

Use

specify conditional blocks of commands are 1 f, elif, else, and £i.

Other keywords define blocks of commands that can be repeated a number
of times. Each time a repeatable block of commands is executed, a test is
performed to see if another iteration of the loop should be performed. For
example, you could use the program segment shown here to process each
file in a group of files in the same way:

for file in chapl chap2 chap3
do

pr $file | lpr

touch -a $file
done

of Comments

An important part of programming is documenting the components of the
program. Comments help anyone using the shell script understand the job
of each program component.

The # metacharacter tells ksh to ignore the remaining text on a line,
treating it as a comment rather than a command line.

Use comments throughout a lengthy shell script. Often they appear before a
block of commands that has a common processing focus:

Was a valid filename was offered?
If not, report the error and exit.
if [[! -f $file 1]

then

fi

Specialized Command-Line Processing for Scripts

49

When a script is invoked from the command line, the subshell that runs on
its behalf is initialized to reflect the current state of the parent shell and the
state of the command line. For example, any parent shell variables with the
export attribute set are also initialized in the subshell. Furthermore, the
command-line arguments given after the script filename are the source of
assignment values for the positional variables of the subshell. The
following example illustrates how command elements are mapped to
positional variables:

script-name earth wind fire water

$0 $1 82 83 84

November 1991

ksh(l) ksh(1)

This processing can be affected by preference settings for the argument-
separator character, by command options for ksh (see the description of
the - £ and -k options in ‘‘Arguments,”” earlier), by filename generation
(see ‘‘Filename Generation,’’ earlier), and by escape characters (see
‘‘Argument Parsing’’” and ‘‘Escape Characters,”” earlier).

You can change the argument-separator character to something other than
the default space and tab. To change the argument separator character,
assign the desired separator to the TFS variable for the interactive shell you
use to invoke the script.

To refer to the script arguments beyond the ninth one, use this format for
referring to the variable:

S{digit...}
Here is a simple script that displays the first two command-line arguments
given to it:

echo $2 $S1

If you placed the preceding command in a file called swapargs and
established execute permission for the file, you could duplicate the results
of the following command line:

S swapargs one two
two one

s 1

The special built-in variables $* and $@, when not enclosed by quotation
characters, cause identical substitutions to occur. They are replaced with
the text of each of the positional variables, with space characters (or the
character stored in the TFS variable) inserted between each variable.

When the same references are enclosed within quotation characters, the
replacement values are subject to different interpretation if ksh parses
arguments on them again. (See ‘‘Argument Parsing,’’ earlier.) If you want
to obtain the same positional variable assignments after a second
argument-parsing process, use "$@" to refer to the positional parameters
of the subshell. This variable ensures that ‘‘escaped’’ spaces that were
originally part of discrete arguments remain a part of those arguments, and
thereby results in a faithful restoration of the number and composition of
positional variables in subshells to a subshell.

Besides allowing the shell to assign positional variables (described in
‘“‘Argument Parsing,”’ earlier), you can set the positional variables yourself
by using the built-in set command. (See ‘‘Built-in Commands’’ later in
this section.)

November 1991 50

ksh(l) ksh(l)

Using Repetition and Branching Constructs

51

While control constructions such as conditional blocks and loops are
mostly used in scripts, you can also use them in command lines. If you
structure them normally, they will span more than one line. To provide you
with an indication that the command entry is not complete, ksh switches to
a different prompt temporarily. You can change this secondary prompt by
using the PS2 variable.

The usual interpretation of a newline signal is temporarily abandoned when
you have entered one of the control keywords but not an associated
terminating keyword. This signal permits you to enter any number of lines
before you terminate the control construction by using the appropriate
keyword (done, esac, or £1 for loops, case structures, and conditional
command blocks, respectively). For the line in which the terminating
keyword is entered, it indicates the end-of-line character received is
interpreted normally: the end of the command-block entry and the
beginning of its execution.

The following example is a repeat of an earlier one. Shown here are the
prompts that would appear before each of the commands or keywords
during interactive operation:

$ for file in chapl chap2 chap3

> do

> pr sfile | 1lpr
> touch -a $file
> done

s i

Once all of the command blocks have been closed (all nested loop or
branch structures ended with the appropriate terminating keyword), ksh
checks the command blocks for errors. If there are none, the shell runs the
individual commands in each of the blocks one or more times, depending
on the constructions used and the conditional expressions that govern their
execution.

Usually blocks of commands are entered into a script, which is a file that
contains command lines. (See ‘‘Command Scripts,”’ earlier.) This permits
them to be easily recalled without a lot of typing.

A control structure must contain a conditional expression that yields a
Boolean value. Conditional expressions are evaluated upon each iteration
of a loop so that the shell can determine when to exit the loop (for instance,
after a certain number of iterations). Likewise, conditional expressions
control whether a conditional command block executes or is skipped (and
optionally whether an alternative, el se-introduced command block
executes).

November 1991

ksh(1l) ksh(l)

How are these Boolean values obtained? Each A/UX command returns an
exit status value that is habitually not displayed as part of the output text
for a command. Nevertheless, this exit value is communicated to the shell
that dispatched the command and is accessed through the $? variable. If
multiple commands are dispatched together as part of a pipe or as part of a
sequence of commands separated with ampersand or semicolon
metacharacters, the exit status remembered is the exit status of the last
command in the series.

Control Structure Syntax
You can change the normally sequential flow of shell execution from one
command line to the next by using the keywords described in this section.

You use the placeholder list to represent one or more commands that are
executed under the control of a loop or conditional construction. You can
include an arbitrary number of newlines instead of semicolons to delimit
commands in list.

The notation
for identifier [in arg...] ;dolist ;done
is equivalent to

for identifier [in arg...]
do

list
done

Here, the argument identifier is used to represent a name chosen by you
and appearing in the some variations of the for loop. (See also ‘‘Lexical
Rules for Identifiers,’” later.)

Because the argument list is used to represent any sequence of commands,
it can also appear at locations where a Boolean result is required. In such
cases, the real use of the commands in the list is to generate a Boolean
result that in turn dictates whether another block of commands should be
run or should be skipped. Most of the time, the built-in command test
(or an equivalent form of this command) is run as described later in the
section ‘‘Built-in Commands.”” The true or false result generated is based
upon the exit value of the last command in the list. A true result is
generated if the last command has a 0 exit value. A false result is generated
otherwise. Only the exit values of command lists that are located
immediately after one of the keywords 1 £, elif, and while is subject to
this manner of interpretation by ksh. Note that the command blocks
whose execution is affected are also notated with /ist in the syntax
descriptions that follow.

November 1991 52

ksh(1) ksh(1)

53

for identifier [in arg [white-space arg]...]; do list ; done
The commands between the do and done (represented notationally as
list) keywords are repeated as many times as there are white-space
separated arguments between in and do. Each time through that set
of commands, the variable identifier is assigned the value of one of the
arguments represented here as arg values.

The commands in /ist can contain references to $identifier, which
will contain a value equal to the nth arg value upon the nth iteration of
the loop. If no arguments are specified between in and do, the for
command executes the commands in /ist once for each positional
parameter that is set. (See ‘‘Specialized Command-Line Processing
for Scripts,”” earlier.) Iteration ends when the positional parameters
have been exhausted.

select identifier [inarg ...] ;dolist ;done
Writes to standard error channel (file descriptor 2) each arg value
given that is preceded by a number. If

in arg...

is omitted, then the positional parameters are used instead. (See
‘‘Specialized Command-Line Processing for Scripts,’” earlier.) The
PS3 prompt is printed, and a line is read from the standard input. If
this line consists of a number referencing one of the enumerated arg
values, then the value of the variable identifier is set to the
corresponding arg value. If the input line received is empty, the
selection list is printed again. If the input value received is out of
bounds, the variable identifier is set to an empty string. Whether in
bounds or not, the input line received is saved in the variable REPLY.
The commands in list are executed for each selection until a break
character or an end-of-file character is received.

caseword in [pattern|[| pattern]...) list ;;].. esac
Executes the command list associated with the first pattern that
matches word. The form of pattern is the same as that used for
filename generation. (See ‘‘Filename Generation,”’ earlier.)

if list ;thenlist[elif list ;thenlist]...[;elselist] ;fi
Executes the command list following i f and, if a O exit status is
returned, the command list following the first then command.
Otherwise, a command list following any e11f is executed and, if a 0
exit status is returned, executes the command list following the
associated then is executed. Furthermore, when the first command
list following an if command returns a nonzero exit status, any
command list following an else command is executed. If the test
conditions do not permit any command lists that follow either an

November 1991

ksh(l) ksh(l)

else or a then command to be executed, then the i £ command
returns a O exit status.

while list ;dolist ;done

until list ;do list ;done
Repeatedly execute both command lists until the first command list
returns a value that terminates the loop. For a while loop, the
iteration ceases when a nonzero exit value is returned. For an until
loop, the iteration ceases when a 0 exit value is returned. If no
commands in the list following do are executed, then the while and
unt il commands return a O exit status; unt i1 can be used in place
of while as a negation of the loop-termination test.

(list)
Executes [ist in a separate shell environment. Note that if two
adjacent open parentheses are needed for nesting shells, you must
insert a space between them to avoid producing a request for
arithmetic evaluation as described in the next section.

{ list;}
Executes the command block denoted by /isz. Note that { represents
keyword and is not recognized unless it occurs at the beginning of a
line or after a semicolon.

[[expression]]
Evaluates expression and returns a 0 exit status when expression is a
test that evaluates as true. This command replaces the test
command of previous shell versions. (See ‘‘Conditional
Expressions,’’ later.)

function identifier { list;}

identifier () { list;}
Define a function that can then be referenced by the identifier
supplied. Upon reference, the command list provided between { and
} is executed. (See ‘‘Functions,”’ later.)

time pipeline
The commands in pipeline are executed, and the elapsed time, as well
as the user and system time, are printed on standard error.
The following keywords are recognized only when they occur at the
beginning of a line or after a semicolon:

if then else elif fi case esac for do
while until done { } function select time

November 1991 54

ksh(l) ksh(l)

Arithmetic Evaluation

55

Use the following format to request arithmetic operations:
((variable=arithmetic-expression))

This format is equivalent to
let "variable=arithmetic-expression"

You can use arithmetic expressions to keep frack of the
number of loop iterations, as in this example:

max="7
count=0
while [Scount -1t Smax]
do
((count=Scount + 1))

done

You can use arithmetic expressions in two other ways. They can appear in
an indexing expression that references an element in an array, such as

student [$count+1]

You can also use them in a 1et command, which you can use to initialize
variables:

let count=Stests*students

Evaluations are performed by means of long arithmetic. Constants are
expressed in one of the following formats:

decimal-digit...
[base#]digits-n-letters...

In the first format, a decimal value (base 10) is assumed. In the second
format, the base is given by base. It must be a decimal number between 2
and 36, and digits-n-letters specifies a number in that base.

The rules of syntax, precedence, and associativity that apply to expressions
in the C language apply here as well. All of the integral operators other
than ++, - -, ?:, and , are supported.

You can reference variables by name within an arithmetic expression
without using the parameter substitution syntax. When you reference a
variable, its value is evaluated as an arithmetic expression.

Because many of the arithmetic operators also function as metacharacters,
you must suppress their metacharacter interpretation, often by placing them
in question marks. An alternative form of the 1et command is provided to
eliminate their interpretation as metacharacters. This alternative format

November 1991

ksh(l) ksh(l)

uses opening and closing double parentheses to replace 1et, as described
at the beginning of this section.

Conditional Expressions
A conditional expression controls the flow of execution through and around
blocks of commands bounded by keywords such as those described earlier
in *‘Using Repetition and Branching Constructs.”” Many times, a test
command will be included that generates a Boolean result. You can use the
following test-command format. (In this syntax format, brackets are
enterable characters — they do not enclose optional elements.)

if [[test-argument...]]

Another (archaic) way to introduce these options and arguments is after the
keyword test:

if test test-argument...

You can combine several Boolean conditions by replacing test-argument
with a number of binary and unary tests joined together by using logical
operations such as logical AND (&&) and logical OR (| |). You can invert
the Boolean value produced by a test argument by preceding it with a
negation operator (!).

Argument parsing takes place, consuming the white-space that separates
arguments, except when you use escape characters to preserve the literal
interpretation of spaces. Filename generation is not performed even when
test arguments are represented by file as shown in the following list.

The following primitives are available for use as test arguments:

-a file
True if file exists.
-b file
True if file exists and is a block special file.
-c file
True if file exists and is a character special file.
-d file
True if file exists and is a directory.
- file
True if file exists and is an ordinary file.

-g file
True if file exists and has its setgid bit set.

-k file
True if file exists and has its sticky bit set.

November 1991 56

ksh(l) ksh(l)

-n string
True if the length of string is nonzero.
-0 option
True if option is on.
-p file
True if file exists and is a First-In-First-Out (FIFO) special file or a
pipe.
-1 file
True if file exists and is readable by the current process.
-s file
True if file exists and its size is greater than 0.
-tn
True if file descriptor number 7 is open and associated with a terminal
device.
-u file
True if file exists and has its setuid bit set.
-w file
True if file exists and is writable by the curient process.
-x file
True if file exists and is executable by the current process. If file
exists and is a directory, the current process has permission to search
in the directory.
-2z string
True if string is an empty string.
~L file
True if file exists and is a symbolic link.
-0 file
True if file exists and is owned by the effective user ID of this process.
-G file
True if file exists and its group matches the effective group ID of this
process.
-S file
True if file exists and is a socket.
filel -nt file2
True if filel exists and is newer than file2.

filel -ot file2
True if filel exists and is older than file2.

57 November 1991

ksh(l) ksh(l)

filel -ef file2
True if file] and file2 exist and refer to the same file.
stringl = string2
True if the strings match one another.
stringl != string2
True if the strings do not match one another.
stringl < string2
True if stringl comes before string2 based on the ASCII value of their
characters.

stringl > string2
True if stringl comes after string2 based on the ASCII value of their
characters.
expl -eqexp?
True if exp! is equal to exp2.
expl -ne exp2
True if exp! is not equal to exp2.
expl -1t exp2
True if exp! is less than exp2.
expl -gt exp2
True if exp/ is greater than exp2.
expl -le exp2
True if expl is less than or equal to exp?2.
expl -ge exp2
True if exp/ is greater than or equal to exp2.

You can construct compound expressions from these primitives, listed in
decreasing order of precedence:

(expression)
True if expression is true. Used to group expressions.

| expression
True if expression is false.

expression] && expression2
True if expressionl and expression2 are both true.

expressionl | | expression2
True if either expressionl or expression2 is true.

November 1991 58

ksh(1) ksh(1)

Additional Korn Shell Metacharacters
The Korn shell treats several two-character tokens as if they were a single
metacharacter.

The token | & causes asynchronous execution of the preceding command or
pipeline as does the ampersand alone, but with a rather unusual redirection
of input and output. The input and output are both redirected to the
(parent) shell process from which the command was dispatched. To read
and write lines of the input so created, you execute the read and print
commands with the -p option from the parent shell. These commands are
described later in ‘‘Built-in Commands.”’

Only one command redirected in this fashion can be active at any given
time.

The tokens && and | | join two commands together, conditionally
performing the command that follows them. Here is the format of
commands joined this way:

command && conditionally-run-command

command || conditionally-run-command

When conditionally-run-command follows &&, it is executed only if the
preceding command exits with a zero exit status, which is usually an
indication of successful command completion. When
conditionally-run-command follows the | | token, it is executed only if the
preceding command exits with a nonzero exit status.

The precedence of the metacharacter operators is given in the following
list. Those in the first line are given higher precedence than those in the
second line.

&& ||
;& &

Variables and Arrays
Variables do not have to be declared before they are used.

Usually the variable name is composed in accordance with the rules for
identifiers. At least this is the case for all user-defined variables. For
certain built-in variables, names have been previously established that do
not meet the criteria for identifiers. Here are some examples:

s*
se
S#
$?
S-

59 November 1991

ksh(l) ksh(l)

$S
$!

A Korn shell variable has several other attributes besides its associated
value. Using the typeset command, you can set some of these
attributes. For more technical information regarding typeset, see
“‘Built-in Commands,’’ later.

Variables with the export attribute set are passed along to subshells and
commands as part of their inherited execution environment. The passed
variable values, and the passed attribute values (such as export), are those
in effect at the time the exported attribute is made active.

Variables can be assigned the string or number value denoted as value, as
follows:

name=value
[name=value]...

To make an assignment by using an arithmetic expression, use one line per
assignment in the following format:

((name=expression))

For variables with the integer attribute set, arithmetic evaluation is
performed on the assignment even if the double open and close parentheses
are omitted. By declaring count as an integer with the format

typeset -1 count

the result you obtain from the following commands becomes the same
result:

count="3 + 2"
((count=3 + 2))

One way to establish values for positional variables is to use the set
command. (See the description of set in ‘‘Built-in Commands,’’ later.)

When you are writing shell script programs, the positional variables are
automatically set by the invoking shell to support the passing of the
command-line arguments for use inside the program. In such a case, $0 is
set to the script name. See *‘Specialized Command-Line Processing for
Scripts,”” earlier.

The shell supports one-dimensional arrays. An element of an array
variable is referenced by a subscript. A subscript is denoted by an open
bracket ([), followed by an arithmetic expression, followed by a close
bracket (]) as in the following example:

${student[32]}

November 1991 60

ksh(1) ksh(l)

61

To assign values to an array, use the format
set -A name value...

The value of all subscripts must be in the range 0 through 1024, Arrays
need not be declared prior to their use. Any reference to a name with a
valid subscript is legal, and an array is created if necessary. Referencing
an array without an index subscript is equivalent to referencing the first
element.

The following list shows the various syntaxes you can use when referring
to variables:

$ {variable-name}

$ {array-name | index-expression] }
Replace the variable or array specified with its value, if any. The
braces are required when variable-name is followed by a letter, digit,
or underscore that is not supposed to be interpreted as part of its name.
If variable-name is specified as * or @, all the values of positional
variables, starting with $1, are used as the substitution text (separated
by a field-separator character).

If the value of index-expression is given as * or @, the value for each
of the elements of the array is used as the substitution text (separated
by a field-separator character).

$ {#variable-name }
Replaces the variable specified with the length of the string stored in
variable-name. If variable-name is specified as an asterisk (*) or an
“‘at’’ sign (@) , the replacement value is the number of positional
parameters that are set.

${#array-name[*]}
Replaces the array specified with the number of elements in the array.

$ {variable-name : ~word}

S {variable-name-word}
Replace the variable specified with its value if it is set and it is not
empty; otherwise the replacement value is word.

In the second form, the replacement value is word only if the variable
is unset.

$ {variable : =word}
Replaces the variable specified with its value if it is set. If it is unset
or is empty, this syntax assigns word to the variable and also uses
word as the replacement value. You cannot assign positional
parameters this way.

November 1991

ksh(l) ksh(1)

S {variable-name : ?word}

S {variable-name?word}
Replace the variable specified with its value if it is set and it is not
empty; otherwise print word on the standard error and exit from the
shell. If word is omitted, print a standard message.

In the second form (without a colon preceding the question mark), the
message is displayed only if the variable is unset.

$ {variable-name : +word}

S {variable-name+word}
Replace the variable specified with its value if it is set and it is not
empty; otherwise, substitute nothing.

In the second form, if the value of the variable specified is an empty
string, then word is used as the replacement value.

$ {variable-name #pattern }

$ {variable-name# #pattern }
Replace the variable specified with its truncated value, if pattern
matches the beginning of its value. The truncated value is its original
value less the characters matched by the search pattern. Otherwise,
the replacement value is the complete value of variable-name. In the
first form, the smallest matching pattern is deleted. In the second
form, the largest matching pattern is deleted.

S {variable-name%pattern}

$ {variable-name% % pattern }
Replace the variable specified with its truncated value, if pattern
matches the end of its value. The truncated value is its original value
less the characters matched by the search pattern. Otherwise, the
replacement value is the complete value of variable-name. In the first
form, the smallest matching pattern is deleted. In the second form, the
largest matching pattern is deleted.

In the preceding variable-referencing syntaxes, the value of word is not
examined unless it is to be used as the substituted string. Thus, in the
following example, SHOME is subject to variable substitution only if d is
not set or is empty:

echo ${d:- S$SHOME}
Functions
You use the function keyword to define shell functions. When a

function is declared, its command list is read, processed for substitutions
such as aliases, and stored in memory.

November 1991 62

ksh(l) ksh(l)

63

You can use either of these syntaxes for a function declaration:

function identifier { list;}

identifier () { list;}
The command list is executed whenever the function is referenced.

Inside the declared command list for a function, references to positional
variables ($1, $2, $3, and so forth) access the values passed in a
parameterized reference to the function:

function-name ([positional-arg]...)

The only way to make the original positional parameters available inside
the declared commands for the function is to rereference them when calling
the function:

function-name (one two "S$@")

Because of the introduction of two new positional parameters in the
preceding reference to a function, the first positional parameter of the shell
would have to be referenced in terms of $3 inside the declared commands
for the function function-name.

Another common element inside the declared commands for a function is
the command return, which is used to exit the function and return to the
point from which the function was called. See the description of return
in ‘‘Built-in Commands,’” later, for a description of its argument and its
default return value. When the return command is not used as the
means to exit a function, the value of the function is the exit value of the
last command executed within the declared commands for a function.

You can use typeset with the - f option or the + £ option to list the
functions that have been declared. (See ‘‘Built-in Commands,’” later.) If
you use the - f option, typeset lists the declared commands for the
functions as well as the function names. You can undefine functions by
using the unset command with the - £ option. (See ‘‘Built-in
Commands,’’ later.)

Ordinarily, functions are not exported to subshells, such as the subshells
that execute shell scripts. However, you can export functions from the
parent shell where they were declared to any of its subshells by using
typeset with the -x and - £ options. To allow functions to remain
defined across login sessions, place the function declarations in the file
referenced by ENV, as described earlier in ‘‘Establishing Preference
Settings.”’

November 1991

ksh(l) ksh(l)

Errors within functions cause an exit from the function, returning execution
to the point from which it was called. For a function call that runs without
errors, the last command (possibly a return) executes followed by any
commands set to run upon the receipt of an EXIT signal (see the
description of the t rap command in ‘‘Built-in Commands,’’ later).

Functions execute in the same process as the shell in which they were
invoked. They share all of the shell’s opened input and output streams, all
of its traps (other than EXTT and ERR), and its current working directory.
An EXTT signal can be specified for a t rap command placed inside the
declared commands for a function. In such a case, the command associated
with the trap runs after the function completes.

The shell and the called function ordinarily share variables. However, the
typeset command can be used within a function to create instances of
local variables. The scope of these local variables includes the current
function and all of the functions that it calls.

Lexical Rules for Identifiers
The names you choose for variables and functions can vary widely, but are
subject to certain limitations. Throughout this manual page, the use of the
term ‘‘identifier,”” and the use of the placeholder identifier, imply
adherence to these rules.

An identifier must be a sequence of letters, digits, or underscores, starting
with a letter or underscore. Identifiers cannot include shell metacharacters.

Built-in Commands
Sometimes it is useful to call a subshell simply for access to the built-in
commands that are not available otherwise. For example, the capabilities
of the built-in print command are not available in other shells, so you
may need to call ksh solely to use its version of the print command. In
a case such as this, you may need to use the —c option for ksh as
described in ‘‘Arguments,’’ earlier in this manual page.

The commands listed in this section execute within the same process as
ksh rather than through an independent process based upon an executable
A/UX file. For these commands, the usual search moderated by the PATH
variable need not be performed. For this reason, these commands are
called ‘‘built-in”> commands for the ksh shell.

Input/output redirection is permitted. Unless otherwise indicated, the
output is written on the standard output channel (file descriptor 1).

Error processing differs slightly for commands that are preceded by two
daggers (11). When one of these commands produces an error within a
shell script, both the shell script and the command are terminated.

November 1991 64

ksh(1) ksh(l)

Commands that are preceded by one dagger symbol () are given the
following special treatments:

e One or more variable assignments preceding the command remain
in effect after the command runs.

e These commands are executed in a separate process when invoked
as part of a command substitution.

T

: [arg]...
Runs a null command that returns a 0 exit code. The arguments are
processed in terms of argument parsing and variable substitution.

1

. file [positional-value]...
Reads and executes commands from file before returning to the
interactive interpretation of command lines. The commands are
executed in the current shell environment. The search path specified
by PATH is used to find the directory containing file. If any arguments
are given, they become the values of the positional parameters.
Otherwise, the positional parameters are unchanged.

alias

alias alias-name

alias [-tx] [alias-name=command-line]...
Display or create aliases. To display a list of the aliases that have
been set up already, use alias with no other arguments. To display
a single alias, use the second form of the command. To set up an alias
to refer to a command line, use the third form of the command.

A trailing space in command-line causes the first command name to be
checked for alias substitution. Use the -t option to set and list
tracked aliases. The value of a tracked alias is the full pathname
corresponding to the given name. The value becomes undefined when
the value of PATH is reset, but the aliases continue to be tracked
aliases afterwards. The -x option is used to either establish or print
exported aliases, depending on whether you supply an argument
string. An exported alias remains defined in subshells, including those
needed to run shell scripts. The alias command returns a 0 exit
status unless you specify a name for which no alias has been defined.

bg [%job]
Places the specified job in the background. The current job is put in
the background if job is not specified.

T
break [n]
Exits from the enclosing for, while, until, or select loop, if

65 November 1991

ksh(l) ksh(l)

any. If you specify n, break exits from n levels of nested control
structures (if they exist).

cd [directory]

cd old new
Reset the current working directory. The first form of the command
changes the current directory to directory. If you specify directory as
-, the directory is changed to the previous directory. The setting for
the shell variable HOME is used as the default directory when no
directory argument is specified. After successful execution, cd sets
the variable PWD to the new current directory.

If the directory can be found in any of the directory paths stored in the
variable CDPATH, then directory is expanded to the first base
pathname in CDPATH that contains directory. For example, if a
directory named /usr/tools exists and /usr is one of the
directories stored in CDPATH, you can enter

cd tools
to establish /usr/tools as your current directory.

Alternative directory names are separated by colons (:). Initially,
CDPATH is empty so that the current directory is used as the search
directory. To ensure that the current directory will continue to be part
of the search order, include a null directory in the list of paths:

CDPATH=: : SHOME/Tools

When you specify directory with a leading slash (/), no search is
performed. Otherwise, each directory in the CDPATH list is searched
for directory.

The second form of cd substitutes the string new for the string old in
PWD, the current directory name, and tries to change to this new
directory.

T

continue [n]
Resumes the next iteration of the enclosing for, while, until, or
select loop immediately. If you specify n, cont inue resumes
execution at the beginning of the nth enclosing loop.

echo [arg]...
Displays arguments after the interpretation of shell metacharacters.
The built-in echo command writes its arguments (separated by
blanks and terminated by a return on the standard output). See
echo(1) for additional information. The echo command is useful
for producing diagnostics in shell programs and for writing constant
data on pipes. To send diagnostics to the standard error file, use

November 1991 66

ksh(l) ksh(l)

67

echo stringl>&2

T

eval [command-producing-arguments]
Processes its arguments for command and variable substitution and for
filename generation before submitting the resulting output to the
current shell for further (and similar) processing as a command line.
The following command sequence displays your home directory
because variable substitution is performed twice:

homeprint='echo SHOME’
eval Shomeprint

.‘.

exec command

exec redirection-request
Treat the arguments as command input, but do not return to the parent
shell, as if the parent shell had exited upon the completion of the
command(s). The command(s) replace the shell without creating a
new process. Any previously open file descriptors above 2 are closed
when this command invokes another program.

You can use the second form of the command to reset the files (or
devices) associated with various file descriptors, such as standard
input, standard output, and standard error. (See ‘‘Input/Output
Redirection,’’ earlier.) Unlike redirections that are requested for other
commands, these redirections affect the current shell’s execution
environment, and, through inheritance, the execution environment of
any commands subsequently run.

T

exit [status]
Causes the shell to exit with the exit status specified by status. If
status is omitted, the exit status is that of the last command executed.
An end-of-file character also causes the shell to exit unless you have
established the ignoreeof option. (See the description of set,
later in this list.)

Tt
export [variable]...
Sets the export attribute for the named variables.

Tt

fc [-e editor] [-nlr] [lineno]

fc [-e editor] [-nlr] [start-command] [end-command]
fc -e - [old=new] [command]

November 1991

ksh(l)

ksh(l)

fc -1 [rn] n-history-lines

Display, optionally edit, and dispatch previous commands. The
redispatched commands, if any, are displayed in their final edited form
upon leaving editing mode, then executed.

In any of the command formats, the operation of fc depends on
reasonable settings for the variables HISTSTZE (the maximum
number of commands recallable) and HISTFILE (the name of the file
in which the command history is saved). Refer to the earlier section
‘‘Establishing Preference Settings’” for more introductory
information.

If you specify a negative number for lineno, start-command,
n-history-lines, or end-command, the system calculates the final line
number by reducing the most recent command number by an amount
equal to the absolute value of the number you supplied.

The arguments start-command, end-command, and lineno can be
specified as numbers or as strings. Specify a string to locate the most
recent command that begins with a particular string.

If you don’t specify editor, the value of the variable FCEDIT is used.
If FCEDIT is empty, /bin/ed is used.

Use the last form of the command, requiring the -1 option, to list the
given number of recently executed commands along with their line
numbers. To reverse the order in which commands are listed, include
the —r option. To prevent the line numbers from being listed along
with the command, include the -n option.

In the first form, a preceding command corresponding to lineno is
rerun after it has been edited with editor.

In the second form, a preceding range of commands starting with
start-command and continuing through end-command are rerun after it
has been edited with editor.

When editing is complete, the edited command(s) are executed. If
end-command is not specified, only start-command is executed.

If you specify neither start-command nor end-command, the most
recent command is used.

Use the third form of the command, requiring the editor name to be
supplied as -, to skip the editing phase and to reexecute the command.
In this case, you can use a substitution of the form old=new to modify
the command *‘on the fly’” before execution.

For example, suppose r is aliased to ' fc -e -'. If you enter

r bad=good c

November 1991 68

ksh(l) ksh(1)

the most recent command that starts with the letter c is executed once
the first occurrence of the string bad is replaced with the string good.

£g [%job]
Converts a previously run command from background to foreground
mode. If job is specified, it is brought to the foreground. Otherwise,
the most recent background job is brought to the foreground.

getopts opt-string name [arg]...

getopts [:]1[flag-letter| :1]...var-name[script-opts]
Parse the string script-opts into its component options as does the
stand-alone command getopt. For each call to getopts, the
variable var-name is assigned the next option letter parsed from the
string script-opts. If a plus sign precedes the option in script-opts,
var-name will contain a leading plus sign as well as the flag letter.
You can specify a trailing colon for any flag-letter argument. A
trailing colon causes getopts to expect that option to be followed
by its own argument inside the string script-opts. When this parsing
mode is established, the argument parsed is stored in the variable
OPTARG. (The options can be separated from the argument by
blanks.) If script-opts is omitted, the positional parameters are used.

The parsing rules for get opt s interpret any letter in script-opts
preceded by a + or a - as a distinct option. When it parses a substring
that doesn’t begin with either a plus or a minus sign, or that consists of
two hyphens (--), getopt s assumes that it has reached the end of
the options list. Any further calls to getopt s produce an error
message and a nonzero exit value. The getopts program keeps a
count of the items parsed so far. The number of the next item that will
be parsed is available in the variable OPTIND.

Errors are also reported when an option is parsed that is not
recognized as one of the flag-letter items specified. A leading :
before the first flag-letter argument changes the mode with which
getopts handles certain types of errors so that it doesn’t report an
error message. In this mode, getopts stores the letter of an invalid
option in OPTARG, and stores either ? or : in var-name. The value
stored in var-name will be a question mark when the error is due to
receipt of an unexpected option; it will be a colon when a required
option argument is missing.

jobs [-1]
Lists the active jobs. If you specify the —1 option, the list includes the
process ID for each job along with the usual information.

kill [-signal] process-no...
Sends either the TERM (terminate) signal or the specified signal to the

69 November 1991

ksh(1)

ksh(l)

specified jobs or processes. Signals are given either by number or by
name (as given in /usr/include/signal.h, stripped of the
prefix SIG). Use kill with the -1 option to list the signal numbers
and names. If the signal you send to a job that is stopped is TERM
(terminate) or HUP (hangup), ki11 sends a CONT (continue) signal.
The argument process-no can be either a process ID or a job. See also
kill(D).

let| variable=expr]...

T

Evaluates each arithmetic expression, expr, assigning the result to the
named variable. All calculations are executed with long integers, and
no check for overflow is performed. Expressions consist of constants,
variables, and operators. The following set of operators, listed in
order of decreasing precedence, have been implemented:
- unary minus
! logical negation
* / %
multiplication, division, modulo
L o-
addition, subtraction
<= >= < >
comparison
|

equality, inequality

1l
Il

Subexpressions in parentheses are evaluated first and can be used to
override the precedence rules listed. The evaluation within a
precedence group is from right to left for the = operator and from left
to right for the others.

newgrp [newgrp-arg]...

Runs the newgrp command in place of the current shell as if the
command

exec /bin/newgrp...

had been used.

print [-nprRs][-ufiledes] [arg]...

Prints its arguments on standard output, separating them with spaces,
and normally adding an end-of-line character after the arguments.

The print command accepts the following options:

-p Causes the arguments to be written onto the pipe of the process
spawned with | & instead of to standard output.

November 1991 70

ksh(l)

71

pwd

ksh(l)

-n Suppresses the addition of an end-of-line character to the end of
the output string.

-r

-R Cause a backslash (/) to be interpreted as data rather than as a
metacharacter when it precedes a, b, ¢, f,n, r, t, v, \, or 0.
The -R option also affects the way print recognizes command
options so that all subsequent options other than -n are treated as
data rather than as elements of the command.

-s Causes the arguments to be written to the history file rather than
to standard output.

-ufiledes
Specifies the one-digit file descriptor on which the output will be
placed. The default is 1. Using this option is similar to
redirecting output in the normal way, except that the print
command does not cause the file (if any) to be opened and closed
or the file descriptor to be duplicated each time.

Displays the currently selected working directory.

read [-prs]l-ufiledes] [variable?prompt]

[variable]... Reads a line of text input, assigning it to variable. The
shell reads one line of input, parses it into fields, using the characters
in IFS as separators, and assigns the resulting field values to the
specified variables, one field per variable. If there are fewer variables
specified than fields parsed, the last variable specified is assigned the
contents of two or more fields. If no variable names are specified, the
input text is stored in the variable REPLY. If the shell is running
interactively and the first field contains a ?, the remainder of that field
is treated as an input prompt. The return code is 0 unless an end-of-
file character is encountered.

The read command accepts the following command options:

-p Causes the input line to be taken from the input pipe of a process
spawned by the shell by means of | &. If an end-of-file character
is received, it closes the so-redirected process and another so-
redirected process can be spawned.

-r Reads in a raw character mode so that a backslash (\) is treated
as data rather than as a metacharacter.

-s Saves the input text in the history file.

-ulfiledes])
Specifies a one-digit file descriptor, selecting a source of text
stream input. You can use the built-in command exec to

November 1991

ksh(l) ksh(1)

establish the file or device to be associated with a particular file
descriptor. The default value of n is 0. If the file descriptor
specified is open for writing and is a terminal device, any prompt
specified is sent to that terminal instead of the standard error.

Tt

readonly [variable=value]

readonly [variable]...
Make the specified variables read-only. These variables cannot be
changed by subsequent assignment.

T
return [n]
Returns execution to the original place in a script where a user-defined
function was called, with the return status specified by n. If you omit
n, the return status is that of the last command executed. If you
invoke return outside the declared commands for a function, it has
the same effect as the built-in exit command.

set

set [aefhkmnostuvx] [-o option]... [positional-param]...

set -A array [value]...

set +A array [value]...
Display or set operating modes or array elements. To display the
options that are currently established, use the first form of the
command, with no arguments. This format displays the values of all
variables affecting shell operation.

To set modes of operation for the shell, use the second form of the
command which has many selectable options (aefhimnostuvx).
See the description of each of these options in the “‘Arguments’’
section at the beginning of this manual page.

The second form of the command resets the positional parameters.
The supplied values are parsed (as described in ‘‘Argument Parsing’’)
and each resulting argument is assigned to the variables: $1, $2, and
so forth.

Use the third form to nullify (unset) and reset the values stored in
array, assigning them new values for as many elements as there are
values offered. Use the fourth form of the command to add and assign
new members to an array. If you specify +A rather than -2, the old
values are not unset first, and the number of array elements is
increased by the number of values given.

T
shift[n]
Reassigns the value of each of the positional parameters according to

November 1991 72

ksh(l) ksh(l)

the value stored in the parameter n positions away. For example,
shift 1 causes $1 to be assigned the value of $2, $2 to be
assigned the value of $3, and so forth. The default shift value for n is
1. You can replace n with any arithmetic expression that evaluates to
a nonnegative number less than or equal to the total number of
positional parameters set, as given by S#.

test argument...
Evaluates its arguments to produce a Boolean value as described in
test(l). The same functionality is available through the
[[argument 1] construct as described earlier in ‘‘Conditional

Expressions.”’

.'.

times
Prints the accumulated user and system times for the shell and for
processes run from the shell.

1.

trap command [signal]...

trap - signal...

trap "" signal...

trap
Execute the command specified when the shell receives the signal(s)
named. The value of signal can be a number or the name of the
signal. Trap commands are executed in order of signal number.
When entered in the second format shown, where the command is
specified as -, trap resets the handling of the specified signals to
their default treatment. When entered in the third format shown,
without any arguments, t rap prints a list of the already established
commands for each signal along with the signal number. When
entered in the fourth format shown, where the command is specified
with the null string, signals are set to be ignored for the current shell
and any subshells. Within subshells, you cannot set a trap on a signal
that was set to be ignored by the parent shell.

If signal is ERR, command is executed whenever a command has a
nonzero exit code. This trap is not inherited by functions. If signal is
0 or EXIT and the t rap statement is executed inside the declared
commands for a function, the command is executed after the function
completes. If signalis 0 or EXIT for a t rap command entered
normally (not inside a function), the associated command is executed

73 November 1991

ksh(l) ksh(1)

upon exit from the shell.

i1

typeset -i[Hrtx][LR[Z]width]] [variable|=integer]]...

typeset -i[Hrtx][base] [variable[=integer]]...

typeset +i[Hrtx][variable[=integer]]...

typeset -fltu] [function]...]

typeset +f[tu] [function]...]
Set, unset, or display the attributes and values for shell integer
variables or shell functions. All options that are not described here are
the same as those described in the next list, where typeset is treated
more generally. Options described here are either exclusively for
integers or functions, or they function differently for integers or
functions.

-f

+f Cause the remaining arguments to be interpreted appropriately
for functions. Use +f to turn off the trace mode (-t), unresolved
name (-u), and (-x) exported attributes by following it with the
appropriate option letter.

—-1i[base]

+1 Cause the values of the specified variable(s) to be treated as
integers, making arithmetic speedier. If base is nonzero, it
defines the output arithmetic base; otherwise, the first assignment
determines the output base. Use +1i to turn off the read-only
(-1r), tagged (-t), and exported (-x) attributes by following it
with the appropriate option letter.

-t function...
Specifies that trace mode will be in effect when the specified
function is run. To be effective, this option must be preceded by
the - £ option.

-u Declares the specified function(s) as currently undefined. The
FPATH variable is searched to find the function definition when
the function is referenced. To be effective, this option must be
preceded by the - £ option.

-x Marks the named function(s) for automatic export, allowing the
function(s) to remain in effect in subshells in the same process
environment. To be effective, this option must be preceded by
the - £ option.

Tt
typeset
typeset +

November 1991 74

ksh(l) ksh(l)

typeset -

typeset -[H1rtux][LRwidth] [variable[=value]]...

typeset +[Hlrtux] [variable[=value]]...
Set, unset, or display the attributes and values for shell variables. If
no arguments are specified (the first command format shown), the
names and attributes of all variables are displayed. With no
arguments but + (the second command format shown), typeset
displays the names of all variables, but not their values.

With no arguments but - (the third command format shown),
typeset displays the names and current values of all variables.

When variables are specified as arguments, typeset changes their
attributes in accordance with any options you supply. With options
that can be toggled on and off, such as H, 1, r, t, u, and x, typeset
activates the setting when you precede the option letter with a hyphen
(-), and disables it when you precede the option letter with a plus (+).

When no variables are specified as arguments, yet option letters are
present, typeset lists the names and values of the variables that
have the specified options enabled. In such cases, if you precede the
option letters with a plus sign instead of a minus sign, only the names
of the variables that have the named options set are displayed.

When this command is invoked inside a function, a local instance of
the variable is created. If a global variable by the same name exists,
then its value outside of the function corresponds to that of the global
variable.

The following options are accepted:

-H Provides A/UX-to-host namefile mapping on non-UNIX
machines.

-1 Converts all uppercase characters assigned to the named
variable(s) to lowercase. Turns off the uppercase option, -u.

-L Left-justifies and removes leading blanks from value. If width is
nonzero, this option defines the width of the field; otherwise the
width is determined by the width of the value first assigned to the
variable. When a value is assigned to the variable, it is filled on
the right with blanks or truncated, if necessary, to fit into the
field. Leading zeros are removed if the -Z option is also set.
The -R option is turned off.

-r Makes the named variable(s) read-only. These variables cannot
be changed by subsequent assignment.

-R Right-justifies and adds leading blanks. If width is nonzero, this
option defines the width of the field; otherwise the width is

75 November 1991

ksh(l) ksh(l)

determined by the width of the value first assigned to the
variable. The field is filled with blanks or truncated from the end
if the variable is reassigned. The L option is turned off.

-t Sets the ‘‘tagged’’ attribute for the named variable(s). Tags are
user-definable and have no special meaning to the shell.

-u Converts all lowercase characters assigned to the named
variable(s) to uppercase. Turns off the lowercase option, - 1.

-x Marks the named variable(s) for automatic export to the
environment of subsequently executed commands.

-7

[-Z]lwidth
Establishes leading zero as the fill character when right-justifying
a numeric value in a field width characters wide. A variable need
only contain a single digit as the first nonblank character to be
treated as a numeric value. This option is incompatible with the
left-justification (-L) option. Using this option is equivalent to
using the -R and -Z options together. The width can also be
determined dynamically based on the content first assigned to the
variable.

ulimit [acdfmnpstv][limir]

ulimit -Hlacdfmnpstv]|[/imir]

ulimit -Slacdfmnpstv][limit]
Set or display a resource limit. The available resource limits are listed
later in this description. Many systems do not contain one or more of
these limits. The limit for a specified resource is set when a limit
number is specified. Alternatively, you can specify unlimited for
limit. Use the H option or the S option to specify whether the hard
limit or the soft limit is desired. A hard limit cannot be increased once
itis set. A soft limit can be increased up to the value of the hard limit.
If you specify neither the H or the S option, the limit applies to both.
The current resource limit is printed when /imit is omitted. In this
case the soft limit is printed unless H is specified. When more than
one resource is specified, the limit name and unit are printed before
the value. If no option is given, - f is assumed.

—a Lists all of the current resource limits.

-c Displays the number of 512-byte blocks available for core
dumps.

-d Displays the number of kilobytes available for the data area.

-f Displays the number of 512-byte blocks available for files written
by child processes (files of any size may be read).

November 1991 76

ksh(l) ksh(1l)

-m Displays the number of kilobytes available for physical memory.
-n Displays the number of file descriptors available.

-p Displays the number of 512-byte blocks available for pipe
buffering.

-s Displays the number of kilobytes available for the stack area.
-t Displays the number of seconds available for each process.
-v Displays the number of kilobytes available for virtual memory.

umask

umask complemented-chmod-digits

umask chmod-opstring
Set the user file-creation mask to the octal value
complemented-chmod-digits. (See umask(2).) You can also specify
a chmod-opstring argument as described in chmod(1). In that case,
the new value of umask is recomputed based on the old value and the
change in that value requested by chmod-opstring. If umask is entered
with no argument, the current value of the mask is printed.

unalias alias...
Removes the named aliases.

unset [-f] variable...
Unsets the named variables. Unsetting these variables erases their
values and their attributes. Read-only variables cannot be unset. If
the - £ option is set, the names refer to function names. Unsetting
ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS,
TMOUT, and _ removes their special meaning, even if you subsequently
assign them values.

wait [pid]

wait %n
Wait for the specified child process and report its termination status.
If process is not given, wa it suspends shell operation until all
currently active child processes terminate. The exit status from this
command is the same as that of the process on which it was waiting.
See ‘‘Controlling Jobs Not in the Foreground,’’ earlier, for a
description of the format of ».

whence [-pv] name...
For each name, displays information about how a command named
name would be interpreted. The output could include information
about command locations on a given system and account, and about
current alias settings.

77 November 1991

ksh(l) ksh(l)

The -v option produces a more verbose report. The -p option causes
a path search to take place even when name is an alias, a function, or a
reserved word.

Shell-Maintained, Built-in Variables
The following variables are automatically maintained by ksh. If you unset
some of these variables, ksh removes their special meaning even if you
subsequently set them.

! Contains the process number of the last background command
invoked.

Contains the number of positional parameters in decimal.
Contains the process number of this shell.

- Contains the preferences currently set, whether they were set upon
shell invocation or through the set command.

? Contains the decimal exit value returned by the last executed
command.

(Underscore) Contains the last argument of the previous command.
This parameter is not set for asynchronous commands. This
parameter is also used to hold the name of the matching MATL file
when the system is checking for mail. Finally, the value of this
parameter is set to the full pathname of each program the shell invokes
and is passed in the environment. Unsetting this variable removes its
special meaning.

A_zZ
Contains information about exported variables that have special
meaning, or that have been made read-only.

ERRNO
Contains the value of errno as set by the most recently failed system
call. This value is system dependent and is intended for debugging
purposes. Unsetting this variable removes its special meaning.

LINENO
Contains the line number of the current line within the script or
function being executed. Unsetting this variable removes its special
meaning.

OLDPWD
Contains the previous working directory set by the cd command.

OPTARG
Contains the value of the last option argument processed by the
getopts built-in command. Unsetting this variable removes its
special meaning.

November 1991 78

ksh(l) ksh(1)

OPTIND
Contains the index of the last option argument processed by the
getopts built-in command. Unsetting this variable removes its
special meaning.

PPID
Contains the process number of the parent of the shell.

PWD
Contains the present working directory set by the cd command.

RANDOM
Generates a random integer each time this pseudo variable is
referenced. You initiate the sequence of random numbers by
assigning a numeric value to RANDOM. Unsetting this variable
removes its special meaning.

REPLY
Contains the error message set through the select command and
displayed by the read command when no arguments are entered.

SECONDS
Contains the duration of time that the shell has been running, in
seconds. If this parameter is assigned a value, the value returned is
the value that was assigned plus the number of seconds since the
assignment. Unsetting this variable removes its special meaning.

Other Built-in Variables
The following variables are used by the shell. In A/UX, the default values
shown may have been set (by means of a .profileor . kshrc file) to
different values.

CDPATH
Contains a list of directory paths used by the cd command to expand
arguments that match the base component of one of the directory
paths.

COLUMNS
Defines the width of the edit window, if set. Applies to shell edit
modes and to the display of character-oriented menus through the
select command.

EDITOR
Contains the user preference for choice of command editor. If the
value of this variable ends in emacs, gmacs, or vi and the VISUAL
variable is not set, the corresponding command option is turned on.
(See ‘‘Built-in Commands,’” earlier.)

ENV
Contains the pathname for the file from which initial commands are

79 November 1991

ksh(l) ksh(l)

read and performed by each new ksh process as it starts up. By
default, this variable is set to the file . kshrc in your home directory.
(Variable substitution is performed again on the value stored in ENV
to help generate the final pathname, permitting the use of a reference
to yet another variable such as $SHOME.)

This “‘startup’’ file is typically used for alias and function
definitions that you want to remain available in any subshells you
might run.

FCEDIT
Contains the default editor name for the fc command.

IFS
Contains the characters to be used as field separators. Normally the
field separators are the space, tab, and newline characters. Affects
command and parameter substitution as well as the built-in command
read. When the shell generates certain values such as the value of
$*, it uses the first character stored in TFS as the character separating
one positional parameter from the next. (Also see ‘‘Filename
Generation,”” earlier.)

HISTFILE
Contains the pathname of the file that is used to store previously
entered command lines. If this variable is not set, no record of
previously entered command lines is kept. (See ‘‘Command
Reentry,”’ earlier.)

HISTSIZE
Contains the maximum number of previously entered lines that will be
available to the command editor, if HISTFILE has been set. The
default is 128. Setting this variable to a relatively large value, such as
10000, may result in a delay for each new invocation of ksh.

HOME
Contains the pathname corresponding to the login directory for the
current user. When given no arguments, the cd command establishes
this directory as the working directory.

LINES
Defines the length of the edit window, if set. Applies to shell edit
modes and to the display of character-oriented menus through the
select command.

MATIL
Contains the name of your mail file when set. If MATL is set and if the
MAILPATH is not set, the shell notifies you of the arrival of mail in
the specified file.

November 1991 80

ksh(l) ksh(l)

81

MAILCHECK
Specifies in seconds how often the shell checks for changes in the
modification time of any of the files specified by the MATLPATH or
MATL variable. The default value is 600 seconds. When the time has
elapsed, the shell checks for mail before issuing the next prompt.
Unsetting this variable removes its special meaning.

MATLPATH
Contains a list of filenames separated by colons (:). If this variable is
set, the shell informs the user of any modifications to the specified
files that have occurred within the last MATLCHECK seconds. Each
filename can be followed by a ? and a message that will be printed.
The message undergoes parameter and command substitution, and the
variable $__is set to the name of the file that has changed. The default
message is produced by the following message:

you have mail in $_

PATH
Contains a list of the directories to be searched for command files or
command scripts.

PS1
Contains the string that the shell displays to prompt you for a
command. This string is subject to parameter substitution. By default,
itis set to S. The metacharacter ! in the prompt string is replaced by
the command number (See ‘‘Command Reentry,”’ earlier.) Two
successive occurrences of ! produce a single ! when the prompt
string is printed.

P32
Contains the string that the shell displays to prompt you for a block of

commands to be executed together. By default, this variable is set to
>.

PS3
Contains the string that the shell displays to prompt you for a select
choice. By default, this variable is set to #7?.

PS4
Contains the string that the shell displays before each line of an
execution trace. The value of this variable is expanded for parameter
substitution. If PS4 is unset, the execution trace indicator is set to a
plus sign (+).

SHELL
Contains the pathname to the login shell preference for a particular
account, and is stored in the processing environment. A leading r in

November 1991

ksh(1) ksh(1)

the filename indicates that the login shell is restricted.

™OUT
Contains the amount of time in seconds that the system will wait for
input before exiting. (The shell can be compiled so that it will
establish a maximum value for this variable.) Unsetting this variable
removes its special meaning.

VISUAL
Contains the user preference for choice of command editor. If the
value of this variable ends in emacs, gmacs, or vi, ksh turns on the
corresponding option regardless of the setting stored in the EDITOR
variable.

The shell gives default values to PATH, PS1, PS2, MATLCHECK, TMOUT,
and TFS. The shell does not set initial values for ENV and MATL. Initial
values for HOME, MATL, and SHELL are set by 1ogin and inherited by the
shell as part of its execution environment.

STATUS MESSAGES AND VALUES
Errors detected by the shell, such as syntax errors, cause the shell to return
a nonzero exit status. Otherwise, the shell returns the exit status of the last
command executed. (See also the description of the exit command in
“‘Built-in Commands,’’ in the ‘‘Description’” section.) If the shell is being
used noninteractively, execution of the shell file is abandoned.

The system reports run-time errors for shell scripts by printing the
command or function name and the error condition. If the number of the
line on which the error occurred is greater than 1, the line number is also
printed in square brackets ([]) after the command or function name.

WARNINGS
If a command that is a tracked alias is executed, and then a command with
the same name is installed in a directory in the search path prior to the
directory where the original command was found, the shell continues to
execute the original command. Use the -t option of the alias command
to correct this situation.

Some very old shell scripts use a caret (") as a synonym for the pipe
character (|). This synonym is not supported in releases of A/UX later
than 2.0.

If a command is piped into a shell command, all variables set in the shell
command are lost when the command is executed.

Using the fc built-in command within a compound command causes the
whole command to disappear from the history file.

November 1991 82

ksh

1) ksh(1)

The built-in dot command (.) reads the whole file named file before any
commands are executed. Thus, for

. file
any alias and unalias commands in file will not be available within
file.
Traps are not processed while a job is waiting for a foreground process.
Thus a trap on CHLD won’t be executed until the foreground job
terminates.
Unsetting some special variables removes their special meaning, even if
they are subsequently set.
When you log in over a serial line, the command-input editing options may
require specific settings of the configuration switches of the associated
terminal device.

FILES

SEE

83

SHOME/ .profile

User-specific ksh startup settings file
/bin/ksh

Executable file
/etc/passwd

Password and login-account information file
/etc/profile

System-wide ksh startup-settings file
/etc/suid_profile

File from which startup settings are obtained for subshells invoked to

run for a script that has setuid or setgid permission
/tmp/ksh*

Temporary file

ALSO

cat(l), chmod(1l), CommandShel1(1), csh(l), echo(l), ed(l),
env(l), getopt(l), kil1(1l), launch(l), login(l), newgrp(l),
nice(l), printenv(l), ps(l), sh(l), startmac(l), stty(l), tee(l),
vi(l)

dup(2), exec(2), fork(2), ioctl1l(2), 1seek(2), pipe(2), ulimit(2),
umask(2), wait(2), signal(3), rand(3C), a.out(4), passwd(4),
profile(d), termcap(4), terminfo(4), environ(s)in

““Korn Shell Reference’” in A/UX Shells and Shell Programming

Bolsky, Morris, and David Korn. The KornShell Command and
Programming Language. Englewood Cliffs, NJ: Prentice-Hall, 1989.

November 1991

last (1) last(l)

NAME
last — displays login and logout times for each user of the system

SYNOPSIS
last [namel]... [tty]...

ARGUMENTS
name
Specifies the names of users who used the system last.

tty Specifies the terminals that were used on the system.

DESCRIPTION
last will look back in the wtmp file which records all logins and logouts
for information about a user, a terminal or any group of users and
terminals. Arguments specify names of users or terminals of interest.
Names of terminals may be given fully or abbreviated. For example, 1ast
0 is the same as last tty0. If multiple arguments are given, the
information which applies to any of the arguments is printed. For example,
last root console would list all of ‘‘root’s’” sessions as well as all
sessions on the console terminal.

The 1last command reports the sessions of the specified users and
terminals, most recent first, indicating start times, duration, and terminal for
each. If the session is still continuing or was cut short by a reboot, last so
indicates.

The 1ast command with no arguments prints a record of all logins and
logouts, in reverse order. Since last can generate a great deal of output,
piping it through the more program for screen viewing is advised.

If 1ast is interrupted with an Interrupt signal, (generated by CONTROL-C)
it indicates how far the search has progressed in wtmp. If interrupted with
a quit signal (generated by a CONTROL-\), 1ast exits and dumps core.

CONTROL-D (EOF) signal does nothing. Therefore exit gracefully from
last with an interrupt signal.

EXAMPLES
The command:

last reboot
will give an indication of mean time between reboots of the system.

FILES
/usr/bin/last
Executable file
/etc/wtmp
Temporary file

November 1991 1

last (1) last(1)

SEE ALSO
acct(IM) in A/UX System Administrator’s Reference

utmp(4) in A/UX Programmer’s Reference

2 November 1991

launch(l) launch(l)

NAME
launch — runs a Macintosh binary application in A/UX

SYNOPSIS
launch [-adr] application [document]...

launch -p [adr] application document...

ARGUMENTS
-a Runs the Macintosh application asynchronously.

application
Specifies the name of the application file to be run.

-d Performs a launch operation that is compatible with applications
requiring 24-bit addressing mode. (Such applications are not 32-bit
clean.)

document
Specifies an individual document to be opened.

-p Prints the specified document. To use the ~p option, you must supply
a document name in the command line. Using the -p option is
equivalent to selecting a document through the Macintosh Finder and
then choosing Print from the File menu.

-r Enables certain preprocessing and postprocessing of the standard input
and standard output so that carriage return characters are mapped to
newlines upon reading input and mapped backed to carriage returns
upon writing output.

DESCRIPTION
launch runs the Macintosh binary application specified. The application
and document arguments act much as do icons selected through the
Macintosh Finder.
If your application is in a pair of AppleDouble files, the two files must be in
the same directory. You do not specify both filenames; 1aunch

automatically looks for the associated header file when you launch an
AppleDouble data file.

EXAMPLES
This command runs the Macintosh binary application MacPaint:

launch macpaint
This command runs MacPaint and opens the document demo:
launch macpaint demo

A simpler way to run a Macintosh application from the command line is to
enter its name in place of 1aunch. For this method to work, the
Macintosh application must be located within an A/UX file system in a

November 1991 1

launch(1) launch(1)

directory specified as one of the search paths in the PATH variable. For
example, consider an application named xy z. If it is in AppleDouble
format, the header file for xy z has the A/UX filename $xyz. To launch
xy z, enter this command:

XY 7.
To launch xyz and open the document file abc, enter this command:
xyz abc

You can nevertheless use the 1aunch command options when invoking a
Macintosh application this way—without a direct reference to 1aunch.

FILES
/mac/bin/launch
Executable file

2 November 1991

lav(l) lav(l)

NAME
lav — displays load average statistics

SYNOPSIS
lav

DESCRIPTION
lav displays the average number of jobs in the run queue over the last 1, 5,
and |5 minutes.

FILES
/usr/bin/lav
Executable file

SEE ALSO
ruptime(IN), uptime(l)

November 1991 1

1d4(1)

NAME

1d(1)

1d — invokes the link editor for common object files

SYNOPSIS
1d [-afactor] [-e epsym] [-f fill] [-11d][-1x] [-m]} [-o outfile] [-r]
[-s][-t][-u symname] [-x][-z] [-F][-Ldir] [-M] [-N] [-S] [-V]
[-VS num] file...

ARGUMENTS
-afactor

Specifies the expansion factor to be used to increase the size of the
default symbol table.

-e epsym
Sets the default entry point address for the output file to be that of the
symbol epsym.

-£ fill
Sets the default fill pattern for holes within an output section as well
as initialized bss sections. The argument fill is a 2-byte constant.
file Specifies the file to be processed by 1d.
-ild

Generates the sections reserved for use by the incremental loader and
retains relocation entries in the new object file (as does the -r option).

-1x Searches a library 1ilx.a, where x is a string of up to seven

characters. A library is searched when its name is encountered, so the
placement of this argument is significant. The default library location
is /1ib.

Produces a map or listing of the input/output sections on the standard
output.

outfile
Produces an output object file with the name outfile. The name of the
default object file is a . out.

Retains relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a
subsequent 1d run. The link editor does not complain about
unresolved references.

Strips line-number entries and symbol table information from the
output object file.

Turns off the warning about multiply defined symbols that are not the
same size.

symname
Specifies an undefined symbol in the symbol table. This option is

November 1991

14(1) 1d(1)

useful for loading entirely from a library, because initially the symbol
table is empty and an unresolved reference is needed to force the
loading of the first routine. Replace symname with the name of an
undefined symbol.

-x Causes the system not to preserve local (nonglobal) symbols in the
output symbol table. Enter external and static symbols only. This
option saves some space in the output file.

-z Loads the text segment at an offset from 0 so that null-pointer
references generate a segmentation violation.

-F Creates a demand-paged executable.
-Ldir
Changes the algorithm of searching for 1ibx. a to look in dir before

looking in /1ib and /usr/1lib. This option is effective only if it
precedes the -1 option on the command line.

-M Produces an output message for each multiply defined external
definition. However, if the objects being loaded include debugging
information, extraneous output is produced. (See the description of
-g option in cc(1).)

-N Puts the data section immediately following the text in the output file.
Note that the -N option must be used either with
/usr/lib/unshared. 1d or with a user-supplied . 1d file.

-S Suppresses the display of progress and error messages unless an error
message occurs that results in the termination of the program.

-V Produces an output message giving information about the version of
1d being used.

-VS num
Causes 1d to use num as a decimal version stamp identifying the
a.out file that is produced. The version stamp is stored in the
optional header.

DESCRIPTION
1d combines several object files into one, performs relocation, resolves
external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and 1d combines them, producing an object module that can either
be executed or used as input for a subsequent 1d run. The output of 1d is
left in a . out. This file is executable if no errors occurred during the load.
If any input file, filename, is not an object file, 1d assumes it is either a text
file containing link editor directives or an archive library.

November 1991 2

1d(1) 1d(1)

If any argument is a library, it is searched exactly once at the point at
which it is encountered in the argument list. Only routines that define an
unresolved external reference are loaded. The library (archive) symbol
table (described in ar(4)) is searched sequentially with as many passes as
are necessary to resolve external references that can be satisfied by library
members. Thus, the ordering of library members is unimportant.

The following information about section alignment and MMU
requirements should be considered at system installation.

The default section-alignment action for 1d on M68000 systems is to align
the code (. text) and data (. dataand . bsscombined) separately on
512-byte boundaries. Since MMU requirements vary from system to
system, this alignment is not always desirable. This version of 1d provides
a mechanism to allow the specification of different section alignments for
each system, so that you can align each section separately on n-byte
boundaries, where 7 is a multiple of 512. The default section-alignment
action for 1d on this system is to align the code (. text) at byte 0 and the
data (. dataand . bsscombined) at the 4-megabyte boundary (byte
10487576).

When all input files have been processed (and if no override is provided),
1d searches the list of library directories (as with the -1 option) for a file
named default.1d. If this file is found, it is processed as an 1d
instruction file (or ifile). The default . 1d file should specify the
required alignment as outlined here. If it does not exist, the default
section-alignment action is taken.

The default . 1d file should appear as follows, with <alignment>
replaced by the alignment requirement in bytes:

SECTIONS {
.text ¢ {}
GROUP ALIGN (<alignment>) : {
.data : {}
.bss ¢ {}
}
}

Note: This system requires a data rounding that is an even multiple
of 1 megabyte. (1 megabyte is the segment size.)

For example, a default . 1d file of the following form would provide the
same alignment as the default (512-byte boundary):

SECTIONS {
text ¢ {}
GROUP ALIGN(512) : {

3 November 1991

1d(l) 1d(1)

.data : {3}
.bss : {}

}

To get alignment on 2 kilobyte boundaries, you should specify the
following default. 1d file should be specified:

SECTIONS {
.text : {}
GROUP ALIGN(2048) : {
.data : {}
.bss : {}
}
}

Note that this system requires a data rounding that is an even multiple of 1
megabyte. (1 megabyte is the segment size.)

For more information about the format of 1d instruction files or the
meaning of the commands, see ‘‘1dReference’’ in A/UX Programming
Languages and Tools, Volume 1.

WARNINGS
Through its options and input directives, the common link editor gives you
great flexibility; however, if you use the input directives, you must assume
some added responsibilities. Input directives should ensure the following
properties for programs:

e C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this requirement, you
must not place any object at virtual address zero in the data space.

e When you call the link editor through cc(1), a startup routine is linked
with your program. This routine calls exit () (see exit(2)) after
execution of the main program. If you call the link editor directly,
you must ensure that the program always calls exit () rather than
falling through the end of the entry routine.

FILES
/bin/1d
Executable file
/1lib/*
Various library files and directories
/usr/1lib/*
Various library files and directories
a.out
Default output file

November 1991 4

1d(1) 1d(1)

SEE ALSO
as(l),cc(l)

a.out (4),ar (4) in A/UX Programmer’s Reference

‘“1dReference’’ in A/UX Programming Languages and Tools, Volume 1

5 November 1991

leave(l) leave(l)

NAME
leave — reminds you when you have to leave

SYNOPSIS
leave [hhmm]

ARGUMENTS
hhmm
Specifies the time of day. Replace ih with the hour of the day (on a
12 or 24 hour clock) and mm with the minutes. All times are
converted to a 12 hour clock, and assumed to be in the next 12 hours.

DESCRIPTION
leave waits until the specified time, then reminds you that you have to
leave. You are reminded 5 minutes and 1 minute before the actual time, at
the time, and every minute thereafter. When you log off, 1eave exits just
before it would have printed the next message.

If no argument is given, 1eave prompts with
When do you have to leave?

A reply of newline causes 1eave to exit, otherwise the reply is assumed to
be a time. This form is suitable for inclusionina . loginor .profile.

The 1eave command ignores interrupts, quits, and terminates. It sends
messages while other programs are running. To get out of 1eave, you
should either log off oruse ki1l -9, giving its process ID.

FILES
/usr/ucb/leave
Executable file

SEE ALSO
calendar(l)

November 1991 1

lex(1) lex(1)

NAME
lex — generates programs for simple lexical tasks

SYNOPSIS
lex [-c] [-n] [-t] [-V] [file]...

ARGUMENTS
-c Indicates C actions and is the default.

file Specifies the input file to be used by 1ex. Multiple files are treated as
a single file. If no files are specified, standard input is used.

-n Does not print out the summary.

-t Causes the lex.yy . c program to be written instead to standard
output.

-v Provides a one-line summary of statistics of the machine generated.

DESCRIPTION
lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

Afile 1ex.yy . c is generated which, when loaded with the library, copies
the input to the output except when a string specified in the file is found;
then the corresponding program text is executed. The actual string
matched is left in yytext, an external character array. Matching is done
in order of the strings in the file. The strings may contain square brackets
to indicate character classes, as in [abx-z] to indicate a, b, x, v, and z;
and the operators *, +, and ? mean, respectively, any nonnegative number
of, any positive number of, and either zero or one occurrence of, the
previous character or character class. Thus [a-zA-Z] + matches a string of
letters. The character . is the class of all ASCII characters except newline.
Parentheses for grouping and vertical bar for alternation are also supported.
The notation 7 {d,e } in a rule indicates between d and e instances of
regular expression r. It has higher precedence than |, but lower than *, ?,
+, and concatenation. The character " at the beginning of an expression
permits a successful match only immediately after a newline, and the
character $ at the end of an expression requires a trailing newline. The
character / in an expression indicates trailing context; only the part of the
expression up to the slash is returned in yytext, but the remainder of the
expression must follow in the input stream. An operator character may be
used as an ordinary symbol if it is within " symbols or preceded by \ .

Three subroutines defined as macros are expected: input () toread a
character; unput (c) to replace a character read; and output (c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is named

1 November 1991

lex(1) lex(1)

yylex (), and the library contains amain () which calls it. The action
REJECT on the right side of the rule causes this match to be rejected and
the next suitable match executed; the function yymore () accumulates
additional characters into the same yytext; and the function yyless (p)
pushes back the portion of the string matched beginning at p, which should
be between yytext and yytext+yyleng. The macros input and
output use files yyin and yyout to read from and write to, defaulted to
stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %%, it is copied into the external definition area of the
lex.yy.c file. Allrules should follow a %, as in YACC. Lines
preceding $% which begin with a nonblank character define the string on
the left to be the remainder of the line; it can be called out later by

surrounding it with {}. Note that curly brackets do not imply parentheses;
only string substitution is done.

The external names generated by 1ex all begin with the prefix yy or YY.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:
3P n
number of positions is n (default 2000)
%n n
number of states is n (500)
St n
number of parse tree nodes is n (1000)
%a n
number of transitions is n (3000)

The use of one or more of the above automatically implies the -v option,
unless the —n option is used.

EXAMPLES
The following is output that was generated by lex:
D [0-9]
1f printf ("IF statement\n");

[a-z]+ printf("tag, value %s\n",yytext):;
0{D}+ printf ("octal number %$s\n",yvtext);

{D}+ printf ("decimal number %s\n",yytext);
LR printf ("unary op\n");
"y printf ("binary op\n");
VA { loop:
while (input() != "*7);

November 1991 2

lex(1)

lex(1)
switch (input())
{
case ’'/’: break;
case '*’: unput ('*’);
default: go to loop;
}
}
LIMITATIONS

When given an illegal option, 1 ex reports the fact that it has been given an
illegal option but then continues to execute with the default options, rather

than stopping the execution and printing a usage statement.

FILES
/usr/bin/lex
Executable file

SEE ALSO
awk(l), grep(l), sed(l), yacc(l)

malloc(3X)in A/UX Programmer’s Reference
““lex Reference’’ in A/UX Programming Languages and Tools, Volume 2

November 1991

line(1) line(1)

NAME
1line — reads one line from the standard input

SYNOPSIS
line input

ARGUMENTS
input
Specifies the standard input. Replace input with a line of text.

DESCRIPTION
line copies one line (up to a newline) from the standard input and writes
it on the standard output. It returns an exit code of 1 on EOF and always
prints at least a newline. It is often used within shell files to read from the
user’s terminal.

EXAMPLES
If you enter:

line
Hello world

this command will return:
Hello world
When using the Bourne shell (sh(1)), the command:

a=‘line’
hi there
echo Sa

will return:
hi there
In the C-shell (csh(1)), the command:

set a=‘line’
bye bye
echo sa

will return:
bye bye
FILES

/bin/line
Executable file

November 1991 1

line(l) line(l)

SEE ALSO
csh(l), ksh(l), sh(l)

read(2) in A/UX Programmer’s Reference

2 November 1991

lint(l) lint(l)

NAME
lint — invokes a C program checker

SYNOPSIS
lint [-al[-b] [-Dname[=def]} [-h] [-Idir] [-1x] [-n] [-o [lib] [-p]
[-u] [-Uname] [-v] [-X] file...

ARGUMENTS
-a Suppresses complaints about assignments of long values to variables
that are not long.

-b Suppresses complaints about break statements that cannot be
reached. (Programs produced by 1ex or yacc will often result in
many such complaints.)

-Dname| =def]
Defines name as if by a #define directive. If no =def if given, name
is defined as 1.

file Specifies the file to be checked.

-h Does not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

- 1dir
Searches for #1include files (whose names do not begin with /) in
dir before looking in the directories on the standard list. When this
option is used, # include files whose names are enclosed in double
quotes are searched for first in the directory of the ifile argument, then
in directories named in - T options, and last in directories on a
standard list, which, at present, consists of /usr/include. If the
-Y option (see below) is specified, the standard list is not searched.
For #include files whose names are enclosed in <>, the directory of
the ifile argument is not searched, unless - I. is specified.

-1x Includes an additional 1int library, 11ib-1x.1n. For example,
you can include a 1int version of the Math Library 11ib-1m.1n
by inserting - 1m on the command line. This argument does not
suppress the default use of 11ib-1c.1n.

These 1int libraries must be in the assumed directory. This option
can be used to reference local 1 int libraries and is useful in the
development of multifile projects. To generate 1 1ib-1X. 1n from
111ib-1X, use
cc -E -C -Dlint 11ib-1X | \
/usr/1lib/lintl -vx -H/tmp/lint$$ > 11ib-1X.1ln
rm -f /tmp/lints$s

November 1991 1

lint(1) lint(l)

-n Does not check compatibility against either the standard or the
portable 1int library.

-o lib
Causes 1int to create anew 1int library that has the name
11ib-1lib.1n. The 1int library produced is the input that is given
to the second pass of 1int.

This option simply causes this file to be saved in the named 1int
library. To produce a 11ib-1/ib. 1n without extraneous messages,
use of the -x option is suggested.

The -+ option is useful if the source file(s) for the 1 int library are
just external interfaces (for example, the way the file 11ib-1cis
written). These option settings are also available through the use of
lint comments (as shown later in this section).

-p Attempts to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all nonexternal names
to be truncated to eight characters and all external names to be
truncated to six characters and one case.

-u Suppresses complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for
running 1int on a subset of files of a larger program.)

-Uname
Removes any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. The list of
reserved symbols is shown below:

operating system:

unix

hardware:
m68k

UNIX System varient:
_SYSV_SOURCE
_BSD_SOURCE
_AUX_SOURCE

-v Suppresses complaints about unused arguments in functions.

-x Does not report variables referred to by external declarations but
never used.

DESCRIPTION
lint attempts to detect features of the C program files that are likely to be
bugs, nonportable, or wasteful. It also checks type usage more strictly than
the compilers. Features currently detected include unreachable statements,

2 November 1991

1int(1) Tint(1)

loops not entered at the top, automatic variables declared and not used, and
logical expressions whose value is constant. Moreover, function usage is
checked to find functions that return values in some places and not in
others, functions that are called with varying numbers or types of
arguments, and functions whose values are not used or whose values are
used but not returned.

Arguments whose names end with . ¢ are taken to be C source files.
Arguments whose names end with . 1n are taken to be the result of an
earlier invocation of 1int with the —o option used. The . 1n files are
analogous to . o (object) files that are produced by the cc command when
given a . c file as input. Files with other suffixes are warned about and
ignored.

The 1int command will take all the .c, .1n,and 11ib-1x.1n
(specified by - 1x) files and process them in command line order. By
default, 1int appends the standard C 1int library (11ib-1c.1n) to the
end of the list of files. However, if the —-p option is used, the portable C
lint library (11ib-port.1n) is appended instead. The second pass of
lint checks this list of files for mutual compatibility.

Any number of 1int options may be used, in any order, intermixed with
filename arguments. The -a, -b, -h, —u, -v, and —x options are used to
suppress certain kinds of complaints.

The -g and -0 options are ignored, but, by recognizing them, the behavior
of 1int is closer to that of the cc(l) command. Other options are warned
about and ignored. The pre-processor symbol 1int is defined to allow
certain questionable code to be altered or removed for 1 int. Therefore,
the symbol 1int should be thought of as a reserved word for all code that
is planned to be checked by 1int.

Certain conventional comments in the C source will change the behavior of
lint.
/*NOTREACHED* /
Stops comments about unreachable code at appropriate points. (This
comment is typically placed just after calls to functions like exit(2).)
/ *VARARGSn* /
Suppresses the usual checking for variable numbers of arguments in

the function declaration that follows it. The data types of the first n
arguments are checked; a missing n is assumed to be 0.

/ *ARGSUSED* /
Turns on the —v option for the next function.

/*LINTLIBRARY*/
Shuts off (at the beginning of a file) complaints about unused

November 1991 3

lint(1) lint (1)

functions and function arguments in this file. This is equivalent to
using the -v and -x options.

lint produces its first output on a per-source-file basis. Complaints
pertaining to included files are collected and printed after all source files
have been processed. Finally, information gathered from all input files is
collected and checked for consistency. At this point, if it is not clear
whether a complaint stems from a given source file or from one of its
included files, the source filename will be printed followed by a question
mark.

EXAMPLES
The command:

lint -b myfile.c

checks the consistency of the filemyfile.c. The -b option indicates that
unreachable break statements are not to be checked. This option might
well be used on files that 1ex generates.

LIMITATIONS
exit(2), longjmp(3C), and other functions that do not return are not

understood; this causes various lies.

FILES
/usr/bin/lint
Executable file
/usr/1lib
Directory where the 1int libraries specified by the - 1x option must
exist
/usr/lib/1lint[12]
File containing first and second passes
/usr/lib/11lib-1c.1n
Declarations for C Library functions (binary format)
/usr/lib/1llib-port.1ln
File containing declarations for portable functions (binary format)
/usr/1ib/11ib-1m.1
File containing declarations for Math Library functions (binary
format)
/usr/tmp/*lint*
Temporary files

SEE ALSO
cc(1), cpp(l), make(l)

““1int Reference,”’ in A/UX Programming Languages and Tools, Volume
1

4 November 1991

1n(1) 1n(1)

NAME
1n — makes links

SYNOPSIS
1n [-s]file]l [file2]

1n file... directory
1n -f directoryl directory?2

ARGUMENTS
-f Causes 1n to make a hard link to an existing directory. Only the
superuser is permitted to use this option.

directory
Specifies the directory to which the file is linked.

directoryl
Specifies the directory that will be hard linked to directory2.

directory2
Specifies the directory that will be hard linked to directoryl.

file Specifies the file that will be linked to the current directory
(directory).

filel
Specifies the file that will be symbolically linked to £11e2.

file2
Specifies the file that will be symbolically linked to file].

-s Causes 1n to create symbolic links.

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its
size, all its protection information, and so forth) may have several links to
it.

There are two kinds of links: hard links and symbolic links. By default 1n

makes hard links. A hard link to a file is indistinguishable from the original
directory entry; any changes to a file are effective, independent of the name
used to reference the file. Hard links may not span file systems and (unless
created with the - £ option by the superuser) may not refer to directories.

A symbolic link contains the name of the file to which it is linked. The
referenced file is used when an open operation is performed on the link.
A stat on a symbolic link will return the linked-to file; an 1stat must
be done to obtain information about the link. The readl ink call may be
used to read the contents of a symbolic link. Symbolic links may span file
systems and may refer to directories.

November 1991 1

In(l) 1n(1)

The 1n command may be invoked with one, two, or more than two
arguments. If given one argument, 1n creates a link in the current
directory to filel. The file named by file/ must not already exist in the
current directory, or 1n will exit with the message filel : File exists.

Given two arguments, 1n creates a link to an existing file file/ having the
name file2. The argument file2 may also be a directory in which to place
the link. If only the directory is specified, the link will be made to the last
component of filel. If filel is not found, 1n will so indicate and no link
will be created. If file2 already exists, it will not be overwritten.

Given more than two arguments, 1n makes links to all the named files in
the named directory. The links made will have the same name as the files
being linked to.

Any files or directories located in directoryl will also be found in
directory2. Moreover, new files created in either directory will appear in
the other.

FILES
/bin/1ln
Executable file

SEE ALSO
cp(D), mv(1), rm(1)

1ink(2), stat(2), readlink(2), stat(2), symlink(2)in A/UX
Programmer’s Reference

2 November 1991

login(l) login(l)

NAME
login — signs you on a terminal session
SYNOPSIS
login [name [env-var...]]
ARGUMENTS
env-var
Specifies the environment variable you wish to add to the default
“‘environment.’”” This option may take either the form xxx or
xxx=yyy. If this option is used without an equal sign, the variable is
placed in the environment as
Ln=xxx
where n is a number starting at 0 and is incremented each time a new
variable name is required. Variable definitions containing an = are
placed into the environment without modification. If they already
appear in the environment, then they replace the older value.
name
Specifies the name of the person who is logging in to the system.
DESCRIPTION

login is used at the beginning of each terminal session and allows you to
identify yourself to the system. It may be invoked as a command or by the
system when a connection is first established. Also, it is invoked by the
system when a previous user has terminated the initial shell by typing a
CONTROL-D to indicate an ‘‘end-of-file’’.

If 1login is invoked as a command, it must replace the initial command
interpreter. This is accomplished by typing

exec login

from the initial shell, if it is the Bourne shell, sh(1l). For the C shell,
csh(l), and the Korn shell, ksh(l), you may just type:

login [user]

The 1ogin command asks for your user name (if not supplied as an
argument), and, if appropriate, your password. Echoing is turned off (when
possible) during the typing of your password, so it will not appear on the
written record of the session.

At some installations, an option may be invoked that will require you to
enter a second dialup password. This will occur only for dialup
connections, and will be prompted by the message:

dialup password:

Both passwords are required for a successful 1ogin.

November 1991 1

login(l) login(1)

If you do not complete the 1ogin successfully within a certain period of
time (for example, one minute), you are likely to be disconnected silently.
Note that 1ogin does a s1leep to settle the line and waits for a few
seconds before accepting your input. If it misses the first character of your
input, type it slower.

After a successful 1ogin, accounting files are updated, the procedure
/etc/profile is performed for users whose login shell is either sh or
ksh, and the message-of-the-day, if any, is printed. Then, the user ID, the
group ID, the working directory, and the command interpreter are
initialized, according to specifications found in the /etc/passwd file
entry for the user. If the command interpreter is sh, the file .profile,if
it exists, in the initial working directory is executed. To indicate that this
invocation of the command interpreter is the 1 ogin shell, the name of the
interpreter is prefixed with a minus sign (-), (for example, —sh). If the last
field in the password file is empty, then the default command interpreter,
the Bourne shell (/bin/sh) is used. If the last field is *, then a chroot
is done to the directory named in the directory field of the entry. At that
point 1ogin is re-executed at the new level, which must have its own root
structure, including /etc/loginand /etc/passwd.

The basic ‘‘environment’’ (see environ(5)) is initialized to

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MATL=/usr/mail/your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying additional
arguments to 1o0gin, either at execution time or when 1ogin requests
your 1login name. The 1ogin command will not change the variables
PATH and SHELL in order to prevent users from spawning secondary
shells with fewer security restrictions. Both 1ogin and getty
understand simple single-character quoting conventions. Typing a
backslash in front of a character quotes it and allows the inclusion of such
things as spaces and tabs.

EXAMPLES
At the beginning of each terminal session, the following sort of message is
displayed on the screen

Apple Computer A/UX

login:
to which a user name is the appropriate response.

2 November 1991

login(l) login(l)

STATUS MESSAGES AND VALUES
Login incorrect
If the user name or the password cannot be matched.

No shell
cannot open password file
no directory

Consult a system administrator.

No utmp entry.

You must exec login from the
If you attempted to execute Login as a command without using the
shell’s exec internal command (sh(1) only) or from other than the
login shell (sh(1) and ksh(l)).

FILES

/bin/login

Executable file
/etc/utmp

Accounting file
/etc/wtmp

Accounting file
/etc/motd

File containing message-of-the-day entries
/etc/passwd

Password file
/etc/profile

Systemwide personal profile files for (sh(1) and ksh(l})
/etc/cshrc

Systemwide personal csh startup file for (csh(l))
SHOME/ .profile

Personal profile file for (sh(1) and ksh(1))
SHOME/ .login

Personal file for csh startup used at login time (csh(l))
SHOME/ .cshrc

Personal csh startup file for (csh(1))
SHOME/ . logout

Personal csh logout file used at logout time for (csh(1))
/usr/mail/name

Mailbox file for user name

SEE ALSO
csh(l), ksh(l), mail(l), newgrp(l), rlogin(IN), sh(l), su(l)

getty(IM), init(IM) in A/UX System Administrator’s Reference

November 1991 3

login(l) login(l)

passwd@), profile(4), environ(S) in A/UX Programmer’s
Reference

A/UX Essentials

A/UX Shells and Shell Programming

November 1991

logname(1) logname(1)

NAME
logname — gets the login name

SYNOPSIS
logname

DESCRIPTION
logname returns the contents of the environment variable $L.OGNAME,

which is set when a user logs into the system.

EXAMPLES
The command:
logname
displays the SLOGNAME of the user logged into the system on the current
port.
FILES
/bin/logname
Executable file

/etc/profile
File containing the user’s login profile

SEE ALSO
env(l), login(l), printenv(l)

logname(3X), environ(5) in A/UX Programmer’s Reference

November 1991 1

lookbib(1) lookbib(1)

NAME
lookbib — finds references in a bibliography

SYNOPSIS
lookbib [-n] database

ARGUMENTS
database
Specifies the database to be searched.

-n Turns off the prompt for instructions.

DESCRIPTION
lookbib uses an inverted index made by indxbib(l) to find sets of
bibliographic references. A bibliographic reference is a set of lines,
constituting fields of bibliographic information. Each field starts on a line
beginning with a %, followed by a key-letter, then a blank, and finally the
contents of the field, which may continue until the next line starting with %.

The lookbib command reads keywords typed after the > prompt on the
terminal and retrieves records containing all these keywords. If nothing
matches, nothing is returned except another > prompt.

The 1ookbib command will ask if you need instructions and will print
some brief information if you reply y.

It is possible to search multiple databases, as long as they have a common
index made by indxbib. In that case, only the first argument given to
indxbib is specified to lookbib.

If 1ookbib does not find the index files (the . i[abc] files), it looks for a
reference file with the same name as the argument, without the suffixes. It
creates a file with a . i g suffix, suitable for use with fgrep. It then uses

this fgrep file to find references. This method is simpler to use, but the

. 1g file is slower to use than the . i[abc] files, and does not allow the use
of multiple reference files.

FILES

/usr/ucb/lookbib

Executable file
file.ia

Output file where file is the name of the index
file.ib

Output file where file is the name of the index
file.ic

Output file where file is the name of the index
file.ig

Output file where file is the name of the index

1 November 1991

Lookbib(1) 1ookbib(1)

SEE ALSO
addbib(l), indxbib(l), refer(l), rof fbib(l), sortbib(l)

November 1991 2

lorder(1) lorder(1)

NAME
lorder — finds the ordering relation for an object library

SYNOPSIS
lorder file...

ARGUMENTS
file Specifies the object or library archive file.

DESCRIPTION
lorder produces a global cross-reference, given a list of object modules
(. ofiles), which can then be passed to t sort to produce a properly
ordered archive file. The input is one or more object or library archive files
(see ar(1)). The standard output is a list of pairs of object filenames,
meaning that the first file of the pair refers to external identifiers defined in
the second. The output may be processed by t sort to find an ordering of
a library suitable for one-pass access by 1d .

Note: The link editor 1d is capable of multiple passes over an
archive in the portable archive format (see ar) and does not require
that lorder be used when building an archive.

Use of the 1order command may, however, allow for a slightly more
efficient access of the archive during the link edit process.

EXAMPLES
The command:

ar cr library ‘lorder *.o | tsort’
builds a new library from existing . o files.

LIMITATIONS
Object files whose names do not end with . o, even when contained in
library archives, are overlooked. Their global symbols and references are
attributed to some other file.

FILES
/bin/lorder
Executable file
*gymref
Executable file
*symdef
Executable file

SEE ALSO
ar(l), 1d(), tsort(l)

1 November 1991

lorder(l) lorder(l)

ar(4) in A/UX Programmer’s Reference

November 1991 2

1p(1)

NAME

1p(1)

1p — spools print requests to printers

SYNOPSIS
1p [-c] [-ddest] [-m] [-nnumber] [-ooption] [-s] [-ttitle] [-w] [file]...

ARGUMENTS

-C

Makes copies of the files specified by files immediately after you enter
the 1p command. Normally, the system doesn’t copy files, but links
files whenever possible. If you don’t include this option, be careful
not to remove any of the files being printed until all printing is
complete. Also note that without this option, any changes you make
to the files after you enter the 1p command and before printing is
complete will appear in the printed output.

—~ddest

file

Specifies the printer or class of printers to use when printing particular
jobs. If dest specifies a printer, then the system uses that specific
printer. If dest specifies a class of printers, then the system prints on
the first available printer that is a member of the class. Under certain
conditions (printer unavailability, insufficient file space, and so forth),
the system can not accept requests for specific destinations (see
accept(IM) and 1pstat(l)). By default, the system uses dest
from the environment variable LPDEST (if it is set). Otherwise, 1p
goes to the default destination (if one exists) for the system you are
using. Destination names vary between systems (see 1pstat(l)).

Specifies the file to be spooled.

Sends mail by means of mai1(1) after the files have been printed. By
default, the system sends no mail upon normal completion of the print
request.

-nnumber

Specifies the number of copies to be printed for particular jobs. The
default is 1.

-ooption

-8

Specifies the printer-dependent or class-dependent options. You can
specify multiple options by using the key character —c more than
once. For more information about valid options, see ‘‘Models’’ in
lpadmin(IM).

Suppresses messages from 1p such as request id isid.

-ttitle

-W

Specifies the title that prints on the banner page for particular jobs.

Writes a message on your terminal after the the system prints the files.
If you aren’t logged on at the time the message is written, the system

November 1991

1p(1) 1p(1)

sends mail instead.

DESCRIPTION
1p spools the named files (or standard input if it is used at the end of a
pipe) for printing.

If you don’t include filenames, the 1p command waits to receive text data
typed on the standard input followed by an end-of-file character. You can
also use a hyphen (-) on the command line (with or without filenames) to
represent the standard input, which could be a pipe rather than text typed at
the keyboard. (See the ‘‘Limitations’’section later in this manual page.)
The 1p command prints the files (including the standard input) in the same
order as that in which they appear on the command line.

The 1p command associates a unique job identification number with each
request and displays that number as part of its status message (sent to the

standard output). You can use this ID to stop a job which is printing or is
scheduled to print (see cancel(l)).

LIMITATIONS
Any files specified must be readable by the 1p user account because
/usr/bin/1lp changes the effective user ID to 1p. If the file
permissions assigned to files don’t allow 1p to read them, you must use a
pipe to direct the files to 1p, as shown here. (Besides cat, other
frequently used printer-formatting utilities are pr and troff.)

cat files| 1p

FILES
/usr/bin/lp
Executable file
/usr/spool/lp/*
Print job information files
SEE ALSO
cancel(l), enable(l), 1pa(l), 1pr(l), lpstat(l), mail(l)

accept(IM), 1lpadmin(IM), 1psched(IM) in A/UX System
Administrator’s Reference

November 1991 2

1pg(l) 1pa(l)

NAME

1pg — queries the print spooler for progress information
SYNOPSIS

1pq [+[sleep-intervall] [-1] [-Pprinter] [jobnol... [user]...
ARGUMENTS

+[sleep-interval]
Displays the spool queue until the last job has printed. If desired, you
can replace sleep-interval with the number of seconds 1pg should
sleep between scans of the queue.

jobno
Limits the query to information about a specific job or several jobs.
See the ‘‘Examples’’ section later in this manual page.

-1 Prints additional information about the file or files that have been sent
to the print spooler as one print job. Normally, only as much
information as fits on one line is displayed. Job ordering depends on
the algorithm used to scan the spooling directory and is supposed to be
FIFO (First In First Out). The filenames for a job may be unavailable
when 1pr is used as the last command in a pipeline, in which case the
file is identified as standard input.

-Pprinter
Limits the query to information about jobs that are destined for a
particular printer. If this option is not specified, the default line printer
(or the value of the PRINTER variable in the environment) is used.

user
Limits the query to information about jobs that belong to the user or
users specified.

DESCRIPTION
1pqg responds to your queries about print jobs by examining particular files
and directories that are used by 1pd. The 1pd program normally runs
continuously in order to service print requests (see 1pr(1)).

By running 1pg without any arguments, you can obtain a report describing
all the print jobs currently in the queue.

For each print job that remains to be done, 1pq reports the user’s name, the
current rank in the queue, the names of files included in the job, the job
identifier, and the total size in bytes. You can also supply the job number
as an argument to 1prm to remove a job before it is printed (see 1prm(1)).

EXAMPLES
In the following processing request, a job-specific query is made to see the
status of job number 286.

1 November 1991

1pa(l) lpa(l)

% lpg 286

cashew 1is ready and printing

Rank Owner Job Files Total Size
active root 286 /etc/passwd 742 bytes
s 1

STATUS MESSAGES AND VALUES
Beyond the normal information reported by 1pg regarding the status of
print jobs, certain error messages may also be provided.

If 1pg warns that no daemon is present because of some malfunction, you
can use the 1pc command to restart the printer daemon (see 1pc(1M)).

The 1pg program may also report that it is unable to open various files.

LIMITATIONS
Because of the dynamic nature of the information in the spooling directory,
1pg may not reliably report information concerning newly arriving or
newly dispatched print jobs.

Output formatting depends upon the line length of the terminal. The line
length can result in widely spaced columns.

FILES
/etc/printcap
File containing printer capabilities
/etc/termcap
File containing terminal capabilities
/usr/spool/*
Directory used by a variety of spooling utilities for configuration and
data files
/usr/spool/*/cft*
Control files specifying jobs
/usr/spool/*/lock
Printer lock files

SEE ALSO
1pr(l), lprm(l)
1pc(IM), 1pd(1M) in A/UX System Administrator’s Reference

November 1991

lpr(l)

NAME

lpr(l)

lpr — spools print requests to printers
SYNOPSIS
lpr [-# copies] [-C class] [-h] [- 1 [indent-cols]] [-T cover-title] [-1]
[-m] [-p] [-P printer] [-r] [-s] [-T title] [-wpage-width] [file]...
ARGUMENTS
-#copies

Specifies the number of copies to be printed of each of the named
files.

-C class

file
-h

Specifies a particular class of print job for routing to a particular class
of printers. For example,

lpr -C Postscript foo.c
causes the file foo. c to be sent to a PostScript®-class printer.
Specifies the name of the file to be sent to the printer.

Suppresses the printing of the burst page.

-1 [indent-cols]

Specifies the number of columns each line is indented from the left
margin. If no argument is supplied, 8 space characters are printed
before each line.

-J cover-title

-1

-m

-

Specifies how the job is identified on the cover page that appears
before the print job. If this option is not specified, the name of the first
file is used.

Causes 1pr to use a filter that allows control characters to be printed
and suppresses page breaks.

Sends mail upon completion.
Causes 1pr to use pr to format the files (equivalent to print).

-P printer

Specifies the name of the printer to which the job is sent.

Removes the file upon completion of spooling or upon completion of
printing (when used with the -s option).

Causes symbolic links to be created in the spooler directories to
conserve file-system space. If this option is not specified, files to be
printed are copied into the spooler directories. Be careful not to
modify or remove the files submitted for printing until they have
completed printing.

November 1991

lpr(l) lpr(1)

~T title
Specifies how the job is identified on the header portion of each page
of the print job. This option requires the use of the -p option, which
invokes pr; together these options operate like the —h option of the
pr command.

-w Specifies the page width in columns. This number is used by the pr
command. To invoke pr, you must also supply the -p option.
Together these options operate like the -w option of the pr command.

DESCRIPTION
1pr uses a spooling daemon to print the named files when facilities
become available. If no files appear, the standard input is assumed.

You can used the -P option to force output to a specific printer. Normally,
the default printer is used (which is site dependent), or the value of the
environment variable PRINTER is used.

EXAMPLES
To print three copies of the file foo. ¢, followed by three copies of the file
bar.c, followed by three copies of more. c, enter

lpr -#3 foo.c bar.c more.c
To obtain three copies of the combined text of the same three files, enter

cat foo.c bar.c more.c | lpr -#3

LIMITATIONS
If you try to spool a file that is too large, it will be truncated.

The 1pr command can not be used to print files containing binary codes.

STATUS MESSAGES AND VALUES
Error messages will be produced if 1pr finds binary files among the files to
be printed.

If a user other than root prints a file and spooling is disabled, 1pr prints a
message saying so and does not put jobs in the queue.

If a connection to 1pd on the local computer cannot be made, 1pr prints a
message saying that the daemon cannot be started.

Diagnostics may be printed in the daemon’s log file, regarding missing
spool files by 1pd.

FILES
/etc/passwd
Personal identification file
/etc/printcap
Printer-capabilities database file

November 1991 2

lpr(l) lpr(l)

/usr/lib/1lpd*

Files containing line printer daemons
/usr/spool/*

Directories used for spooling
/usr/spool/*/cft*

Daemon control files
/usr/spool/*/df*

Data files specified in cf * files
/usr/spool/*/tf*

Temporary copies of cf * files

SEE ALSO
1pa(l), 1prm(1), pr(l)
1pc(1M), 1pd(1M) in A/UX System Administrator’s Reference
symlink(2), printcap(4) in A/UX Programmer’s Reference

3 November 1991

lprm(1l) lprm(1l)

NAME
1prm — removes jobs from the line printer spooling queue for a Berkeley
file system (4.2)

SYNOPSIS
lprm [-Pprinter] [-] [jobno]... [user]...

ARGUMENTS
- Removes all jobs that a user owns. If the superuser employs this
option, the spool queue is emptied entirely. The owner is determined
by the user’s login name and host name on the machine where the
1pr command was invoked.

Jjobno
Specifies the job number that is to be removed.

- Pprinter
Specifies the queue associated with a specific printer; otherwise the
default printer, or the value of the PRINTER variable in the
environment is used.

user
Specifies the name of the user who owns the job that is being
removed.

DESCRIPTION
1prmremoves a job, or jobs, from a printer spool queue. Since the
spooling directory is protected from users, using 1 prm is normally the only
method by which a user may remove a job.

The 1prm command without any arguments deletes the currently active job
if it is owned by the user who invoked 1prm.

Specifying a user’s name or list of users’ names causes 1prm to attempt to
remove any queued jobs belonging to that user (or users). This form of
invoking 1prm is useful only to the super-user.

A user may remove an individual job from a queue by specifying its job
number. This number may be obtained from the 1pg(1) program, for

example,
% 1lpg -1
ken : 1lst [job 0l3ucbarpal]
(standard input) 100 bytes
% lprm 13

The 1prm command announces the names of any files it removes and is
silent if there are no jobs in the queue that match the request list.

November 1991 1

lprm(1) lprm(1)

The 1prm command kills off an active daemon, if necessary, before
removing any spooling files. If a daemon is killed, a new one is
automatically restarted upon completion of file removals.

STATUS MESSAGES AND VALUES
A ““‘Permission denied’’ is received if the user tries to remove files other
than his own,

LIMITATIONS
Since there are race conditions possible in the update of the lock file, the
currently active job may be incorrectly identified.

FILES

/etc/printcap
Printer characteristics file

/usr/spool/*
Spooling directories

/usr/spool/*/lock
Lock file used to obtain the process ID of the current daemon and the
job number of the currently active job

SEE ALSO
1pr(l), 1pa(l)
1pd(1M) in A/UX System Administrator’s Reference

2 November 1991

lpstat(l) lpstat(l)

NAME
lpstat — prints Ip status information

SYNOPSIS
lpstat [-allist]] [-c[lisf]] [-A] [-ollisf]] [-pllist]] [-x] [-s] [-t]
[-ullist]] [-v([list]]
ARGUMENTS
-allist]
Prints acceptance status (with respect to 1p) of destinations for
requests. Replace list with a list of intermixed printer names and class
names.
—c[list]
Prints the class names and their members. Replace Jist with a list of
class names.

-d Prints the system default destination for 1p.

-ollist]
Prints the status of output requests. Replace /ist with a list of
intermixed printer names, class names, and request IDs.

-pllist]
Prints the status of printers. Replace /ist with a list of printer names.

-r Prints the status of the Ip request scheduler.

-s Prints a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names and
their members, and a list of printers and their associated devices.

-t Prints all status information.

—ullist]
Prints status of output requests for users. Replace list with a list of
login names.

-v[list]
Prints the names of printers and the pathnames of the devices
associated with them. Replace list with a list of printer names.

DESCRIPTION
lpstat prints information about the current status of the Ip line printer
system.

If no options are given, then 1pstat prints the status of all requests made
to 1p by the user. Any arguments that are not options are assumed to be
request IDs (as returned by 1p). The 1pstat command prints the status
of such requests.

November 1991 1

lpstat(l) lpstat(l)

Some of the options may be followed by an optional /ist that can be in one
of two forms: a list of items separated from one another by a comma, or a
list of items enclosed in double quotes and separated from one another by a
comma and/or one or more spaces. For example:

-u userl, user2, user3

The omission of a /ist following such options causes all information
relevant to the options to be printed, for example:
lpstat -o
prints the status of all output requests.
FILES
/usr/bin/lpstat
Executable file

/usr/spool/lp/*
Spooler files

SEE ALSO
enable(l), 1p(1), 1pa(l)

2 November 1991

1s(1) 1s(1)

NAME
1s — lists the contents of a directory
SYNOPSIS
1s [-a][-b] [-c][-C][-A]l [-F][-g] [-1] [-1] [-L] [-m] [-n] [-o]
[-p] [-al [-x] [-R] [-s] [-t] [-u] [-x] [names]
ARGUMENTS
-a Lists all entries. Usually entries whose names begin with a period (.)
are not listed.

-b Forces printing of nongraphic characters to be in the octal \ddd
notation.

-c Uses the time of the last modification of the i-node (file created, mode
changed, and so forth) for sorting (-t) or printing (-1).

-C Specifies multicolumn output with entries sorted vertically.

-d Lists the directory name only, not its contents. This option is often
used with the —1 option to get the status of a directory. This option
does not apply if the a file is specified.

-F Puts a slash (/) after each filename if that file is a directory, an
asterisk (*) after each filename if that file is executable, and an (@)
after each filename if that file is a symbolic link.

-g Acts the same as the -1 option except that the owner is not printed.
-1 Prints the i-number in the first column of the report, for each file.

-1 Lists in long format, giving mode, number of links, owner, group, size
in bytes, and time of last modification for each file (see below). If the
file is a special file, the size field will contain the major and minor
device numbers, instead of a size. If the file is a symbolic link, the
pathname of the linked-to file is printed preceded by ->.

-L Lists the file’s or directory’s (if it is a symbolic link) link references
rather than the link itself.

-m Specifies stream output format.

-n Acts the same as the -1 option, except that the owner’s user ID and
group’s group ID numbers, rather than the associated character
strings, are printed.

names
Specifies the files or directories to be listed.

-0 Acts the same as the -1 option except that the group is not printed.

-p Puts a slash (/) after each filename if that file is a directory.

November 1991 1

1s(l) 1s(1)

-q Forces printing of nongraphic characters in filenames as the character
?).

-r Reverses the order of sort to get reverse alphabetic or oldest first, as
appropriate.

-R Recursively lists subdirectories encountered.

-s Gives size in 512-byte blocks, including indirect blocks, for each
entry.

-t Sorts by time modified (latest first), instead of by name.

-u Uses the time of the last access, instead of the last modification, for
sorting (with the —t option) or printing (with the -1 option).

-x Specifies multicolumn output with entries sorted horizontally, rather
than down the page.

DESCRIPTION
For each directory argument, 1s lists the contents of the directory; for each
file argument, 1s repeats the filename and any other information requested.
The output is sorted alphabetically by default. When no argument is given,
the current directory is listed. When several arguments are given, the
arguments are first sorted appropriately, but with file arguments appearing
before directory arguments and their contents.

There are three major listing formats. The default format is to list one
entry per line, the -C and -x options enable multicolumn formats, and the
-m option enables stream output format, in which files are listed across the
page, separated by commas. In order to determine output formats for the
-C, -x, and -m options, 1s uses an environment variable, COLUMNS, to
determine the number of character positions available on one output line.
If this variable is not set, the t erminfo database is used to determine the
number of columns, based on the environment variable TERM. If this
information cannot be obtained, 80 columns are assumed.

The mode printed under the -1 option consists of 10 characters that are
interpreted below. The first character can be one of the following:

d if the entry is a directory
if the entry is a block special file

b
¢ if the entry is a character special file
1 if the entry is a symbolic link

p

if the entry is a fifo (named pipe) special file
- if the entry is an ordinary file

2 November 1991

1s(1) 1s(l)

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner’s permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set, the
three characters indicate permission to read, to write, and to execute the file
as a program, respectively. For a directory, ‘‘execute’’ permission is
interpreted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:
r if the file is readable;
w if the file is writable;

x if the file is executable;

1

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-
group-1D mode; likewise, the user-execute permission character is given as
s if the file has set-user-ID mode. The last character of the mode
(normally x or -) is t if the 1000 (octal) bit of the mode is on; see
chmod(l) for the meaning of this mode. The indications of set-ID and
1000 bits of the mode are capitalized (S and T, respectively) if the
corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

EXAMPLES
The command:
ls -1 /etc

will list all entries in /etc in long format, as, for example,
-rw-r--r- 1 root bin 115 Mar 17 1986 mtab

where the fields represent the file’s permissions, number of links, owner,
group, size in bytes, date of last modification, and name, respectively.

LIMITATIONS
Unprintable characters in filenames may confuse the columnar output
options.

FILES
/bin/1ls
Executable file
/etc/passwd
File to get user IDs for 1s -1 and 1s -o
/etc/group
File to get group IDs for 1s -1 and 1s -g

November 1991 3

1s(1) 1s(1)

/usr/lib/terminfo/*
Files to get terminal information

SEE ALSO
chown(1), chmod(1), £ind(1)

4 November 1991

m4 (1) m4 (1)

NAME
m4 — processes macros for C and other languages

SYNOPSIS
mé [-Bint] [-e] [-Hint] [-s] [-Sint] [-Tint] [-Dname[=vall] [-Uname]
[file]...
ARGUMENTS
-Rint
Changes the size of the push-back and argument collection buffers
from the default of 4096.

—-Dname[=val]
Defines name to val or to null in the absense of val.

-e Causes m4 to operate interactively. Interrupts are ignored and the
output is unbuffered.

file Specifies the file to be processed. If this argument is not specified, or
if a dash (-) is used as the filename, the standard input is read.

~Hint
Changes the size of the symbol table hash array from the default of
199. The size should be prime.

-s Enables line sync output for the C preprocessor (#1ine...).
-Sint
Changes the size of the call stack from the default of 100 slots.
Macros take 3 slots, and nonmacro arguments take 1.
-Tint
Changes the size of the token buffer from the default of 512 bytes.

-Uname
Undefines name.

DESCRIPTION
m4 is a macro processor intended as a front end for C and other languages.
Each of the argument files is processed in order. The processed text is
written on the standard output.

To be effective, the options must appear before any filenames and before
any -D or -U options.