g

[¢
A/UX Command Reference

Section 1(A-F)

Release 3.0

LiviTeED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple’s Media Exchange
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the date of your original purchase. See your authorized Apple dealer for program

coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUALS, INCLUDING IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN

DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD “AS IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no

liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

& Apple Computer, Inc.

© 1992, Apple Computer, Inc., and UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws, this
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original.
Under the law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-k) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, ImageWriter, LaserWriter, and Macintosh are trademarks of Apple Computer,
Inc., registered in the United States and other countries.

B-NET is a registered trademark of UniSoft Corporation.

DEC and VT102 are trademarks of Digital Equipment Corporation.

Diablo and Ethernet are registered trademarks of Xerox Corporation.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

Hewlett-Packard 2631 is a trademark of Hewlett-Packard.

IBM is a registered trademark of International Business Machines Corporation.

NEFS is a trademark of Sun Microsystems, Inc.

PostScript and TranScripts are trademarks of Adobe Systems Incorporated, registered in the United States.
UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

A/UX Command Reference

Contents

About This Manual

Section 1 User Commands (A-F)

About This Manual

This manual is one of three primary manuals in the set of A/UX reference
manuals. A/UX Command Reference, A/lUX Programmer’s Reference, and
A/UX System Administrator’s Reference contain information about most of the
provisions of A/UX, such as its commands, its library routines, its system calls,
and its file formats.

These reference manuals constitute a compact encyclopedia of A/UX
information. As in an encyclopedia, the information is subdivided into
subdocuments, or ‘‘manual pages.”” The information in each manual-page
subdocument adheres to a distinctive presentation format. For example,
information about command syntax is consistently presented under the heading
““‘Synopsis.”” (This format is described in detail later in this preface.)

Because most of us need occasional reminders regarding the order and kind of
arguments that can accompany a command, the information in the ‘‘Synopsis’’
and ‘‘Arguments’’ sections is presented for use by users at all levels. However,
the information in the ‘‘Description’” section is often written for more advanced
users; novices most likely will not be able to learn about the provisions of A/UX
from these reference manuals alone.

Because these reference manuals are not intended to be tutorials or learning
guides, they should not be the first A/UX books you read. If you are new to
A/UX or are unfamiliar with a specific functional area (such as the Macintosh
Finder), you should first read A/UX Essentials and the other A/UX user guides.
After you have worked with A/UX, the reference manuals can help you
understand new features or refresh your memory about features you already
know.

Manual pages: a standard for presenting information

The headings conventionally used in the manual pages have virtually become an
industry standard for reference documents. Furthermore, the way that this large
collection of subdocuments is conventionally organized into sections and books

is also something of a standard.

Despite the standardization, locating specific information within this large body
of documentation can often be difficult. First you must locate the correct
manual page. Once you have the correct manual page, you can usually go

- Vii -

directly to the correct subsection.

To help you locate information, you should read the next section, which
explains several means of finding the information you need.

To help you learn to use these books more effectively, other sections in this
preface describe the presentation standards that are being used. Some of these
are organizational standards that apply at the book and section level. Other
conventions and content standards apply within the scope of each manual page,
such as the use of standard subheadings and the conventional use of certain
fonts and text styles.

Note that the most durable standards have been the standards that apply to the
organization and primary headings of each manual page. Of course there are
areas in which the A/UX reference books are exceptional, particularly in their
more regular use of headings. These books also deviate from industry standards
in a few typographic and style areas, which are described later in this preface.
For example, the Courier font is used consistently to represent text that is
displayed in a terminal window or entered as part of a command line. Other
UNIX® books often use boldface type to represent such text.

There has been more instability with respect to how the manual pages are
collected into sections and books. For more detailed information, see ‘‘Previous
Organization of Sections into Books’’ later in this preface.

Locating information in the reference manuals
You can locate information in the reference manuals by using one of the
following tools:

o Table of contents. Each reference manual contains one general table of
contents for the entire manual. Located at the beginning of each new
section of manual pages is a detailed table of contents. (If a section must
span from one binder to another, a tailored table of contents is provided for
each of the subdivisions.) The general table of contents lists the sections
covered in the complete manual. The detailed table of contents lists the
manual pages contained within one section (or section subdivision) along
with a brief description of the A/UX provision that is covered in each
manual page.

e Query commands. The man, whatis, and apropos commands display
on-screen all the information contained in a manual page or just the
information in the ‘‘Name’’ section of one or more manual pages that

- viii -

satisfy a search criterion. The next sections tells you how to use the on-line
versions of the manual pages.

o A/UX Reference Summary and Index. This separate manual is considered
part of the A/UX set of reference manuals, but it is not a ‘‘standard”’
resource like the other reference materials. Its primary purpose is to help
you locate the correct manual page to refer to in other books. From its
summaries, you might also occasionally find all the information you
required. It contains the following subsections:

¢ “‘Commands by function.”” This subsection classifies the A/UX user
and system administrator commands by the general or most important
function each performs. The summary gives you a broader view of the
commands that are available and the context in which each is often
used. Each command is mentioned just once in this listing.
e “‘Command synopses.”” This subsection is a compact collection of
syntax descriptions for all of the commands in A/UX Command
Reference and in A/UX System Administrator’s Reference. It may
help you find the syntax of commands more quickly when the syntax
is all you need.
““Index.”” The index lists key terms associated with A/UX
subroutines and commands. These key terms can help you locate the
manual page you need when you don’t know if such a keyword-
related command or subroutine exists.

The index provided in A/UX Reference Summary and Index is designed to be
more compact and easier to use than the more industry-standard permuted
index, which indiscriminately indexes manual pages under each of the words
found in their ‘“‘Name’’ sections.

The manual pages listed in the index portion A/UX Reference Summary and
Index are indexed under more than one entry; for example, 1lorder(1) is
included under ‘‘archive files,”” ‘‘sorting,”’ and ‘‘cross-references.”” By using
this type of index, you are more likely to find the reference you are looking for
on the first try.

Using the on-line documentation

In addition to the paper documentation in the reference manuals, A/UX provides
several ways to search and read the contents of each manual page from your
A/UX system. An advantage to the on-line version of the documentation is that
the computer performs the work of filtering out (or skipping) all the manual

- X -

pages other than the one you specifically queried. The only prerequisite is that
you already know its name (or a proper search string). However, you don’t have
to know how manual pages are organized by section numbers and by book titles.

To display a manual page on your screen, enter the man command followed by
the name of the manual page you want to see. For example, to display the
manual page for the cat command, including its description, syntax, options,
and other pertinent information, you would enter

man cat

After the first screen of the text of a manual page appears, you can display
subsequent screens of the text with each press of the SPACE BAR, until you reach
the end of the man page. To display subsequent text one line at a time, press
RETURN instead of the SPACE BAR. By pressing Q, you can quit the man
command before viewing all of the manual page.

To display the descriptive information in the ‘‘Name’’ section of any manual
page, enter the what is command followed by the name of the provision you
want described. In the following example, the command prompt is the percent
sign, and the provision that is being queried is the 1s command:

% whatis 1s
1s (1) - lists the contents of a directory
s 1

To display a list of all manual pages whose ‘‘Name’’ sections contain a given
keyword or string, enter the apropos command followed by a search word or
search string enclosed in double quote characters. The names of A/UX

provisions are listed on separate lines along with the descriptive information in

the ‘‘Name’’ section of the manual page that describes those provisions.
Sometimes several A/UX provisions are listed on the same line. In those cases,
several A/UX provisions are described on a single manual page. You can tell
which of these names is the formal name for the manual page because it will be
followed by parentheses and an enclosed section number. In the following
example, the command prompt is the percent sign, and the A/UX provisions that
are queried are those which are described in manual pages whose ‘‘Name’’

section contains the word ‘‘tape’’:

% apropos tape

mt (1) - magnetic tape manipulating program

frec (1M) - recover files from a backup tape

mtio(7) - interface conventions for magnetic tape devices
tc(7) - Apple Tape Backup 40SC device driver

£l |

These documentation query commands are described more fully in the manual
pages man(l), whatis(l), and apropos(l) in A/UX Command Reference.

Book- and section-level presentation standards
Customarily, three books are used to house three collections of manual pages
that are of concern to three different audiences:

o A/UX Command Reference is intended for users with normal file and
device access privileges.

o A/UX System Administrator’s Reference is intended for system
administrators or equivalent users with unlimited device and file access
privileges.

o A/UX Programmer’s Reference is intended for programmers.

These books are further divided into sections, each of which contains a set of
manual pages in alphabetical order. The standard sections and the audiences
they serve are as follows:

o For users with normal access privileges, Section 1 and Section 6 describe
utility and game commands.

o For users with unlimited access privileges, Section 1M and Section 8
describe system maintenance commands.

o For programmers, Section 2 describes system calls, Section 3 describes
library routines, Section 4 describes file formats, Section 5 describes
miscellaneous A/UX provisions, and Section 7 describes drivers and
interfaces for devices.

While most of the manual pages describe an A/UX provision of some sort, there
is one important exception per section: The first manual page in Sections 1, 1M,
2,3,4,5,6,7and 8 has the same name, intro. The intro manual pages do
not describe a command or other provision of A/UX. Instead, they serve as an
introduction to the rest of the manual pages in the section, providing section-

-Xi -

specific information and conventions. (These section-introduction manual pages
are also exceptions in terms of the normal alphabetical arrangement of manual
pages inside sections.)

For example, the manual page intro(2) introduces you to return values and
provides an exhaustive list of error code values and their associated error
strings. In the rest of the Section 2 manual pages, the error codes are mentioned
briefly or merely listed, without detailed explanations.

More advanced readers will probably have occasion to use more than one of the
reference manuals. For example, manual pages in the A/UX Programmer’s
Reference frequently make references to manual pages in sections contained in
the other two primary reference manuals.

More information about the organization of the reference books is given later in
this preface in ‘‘Current Organization of Sections into Books.”’

How manual-page information is presented

The name of the manual page normally appears in both upper corners of each
physical page. Some manual pages describe several routines or commands. For
example, chown and chgrp are both described in a manual page with the
primary name chown(1) at the upper corners. If you turn to the page
chgrp(l), you find a reference to chown(1). (These cross-reference pages are
included only in A/UX Command Reference and A/UX System Administrator’s
Reference.) However, if you enter the command man chgrp, the extended-
coverage chown(1) manual page is displayed automatically.

All of the manual pages have a common format that uses the following
subheadings. For the most part, the same kind of information appears under each
of these subheadings. However, for manual pages that describe different kinds
of A/UX provisions, the information under the same heading may differ. So, for
example, the heading ‘‘Synopsis’’ contains syntax illustrations for Sections 1,
1M, and 8, but contains C declaration statements for Sections 2 and 3.

NAME

This section lists the names of the commands, programming routines, or other
A/UX provisions that are described in the manual page. A succinct statement of
their purpose is also provided.

SYNOPSIS
This section provides the syntax of a command or the data-type declarations
associated with a programming routine.

- Xii -

ARGUMENTS
This section lists and describes the command options and arguments that can
follow the command name on the command line.

DESCRIPTION
This section describes in detail the usage of a particular command or
programming provision.

EXAMPLES

This section offers representative command lines that illustrate various uses of a
command.

STATUS MESSAGES AND VALUES

This section describes possible error outcomes and, when applicable, possible
success outcomes. For commands, exit values are not usually described if the
command produces the customary zero exit value for success and a nonzero exit
value for failure. For programming routines, the return value from a function is
often an indication of completion status. In such cases, the return value is
normally discussed in the ‘‘Description’” section as well as in this section.

WARNINGS
This section describes possible usage scenarios that can damage the file system
or file integrity or that produce results you would not normally anticipate.

LIMITATIONS
This section describes how the performance of a command or routine could

become unreliable, or areas of functionality that an A/UX provision does not
address.

NOTES
This section provides miscellaneous information regarding a command or
routine, such as author or copyright information.

FILES
This section lists any files needed by the command, along with a brief
description that identifies it as a file, directory, or link.

SEE ALSO
This section provides a list of references to related information.

Visual conventions for the A/UX reference manuals
A/UX books follow specific styling conventions. For example, words that
require special emphasis appear in specific fonts or styles. This section describes

- Xiii -

the conventions used in all the A/UX reference books.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character
keys, often used in combination with other keys, perform various functions. In
this book, the names of these keys appear in the format of an initial capital letter
followed by small capital letters.

Here is a list of the most common key names:

CaApSs LoCK ENTER SHIFT
COMMAND ESCAPE SPACE BAR
CONTROL OPTION TAB
DELETE RETURN

Sometimes two or more key names are joined by hyphens. The hyphens indicate
that you press these keys simultaneously to perform a specific function. For
example,

Press CONTROL-K
means ‘‘While holding down the CONTROL key, press the K key.”’

Terminology

In A/UX manuals, a certain term can represent a specific set of actions. For
example, the word ‘‘enter’’ indicates that you type a series of characters, then
press the RETURN key. The instruction

Enter whoami.

means ‘ ‘Type whoami, then press the RETURN key.”” (If you entered this text
at a command prompt, the system would respond by displaying your current
account name.)

Here is a list of common terms and their corresponding actions.

- Xiv -

Term

Action

Click

Choose

Drag

Enter

Press

Select

Type

The Courier font

Press and then immediately release the mouse button.

Activate a command that appears in a menu. To
choose a command from a pull-down menu, position
the pointer on the menu title and, while holding down
the mouse button, slide the mouse toward you until
the command is highlighted. Then release the mouse
button.

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse so that the
icon moves to the desired position, and then release
the mouse button.

Type the series of characters indicated, then press the
RETURN key.

Press one key only. (Do not press the RETURN key
afterward.)

To select an icon, position the mouse pointer on the
item, then click (see ‘‘Click,”’ above). To select text,
use a drag-style operation (see ‘‘Drag,”” above).
When selecting a range of text, the drag operation
highlights the text from the starting point over and
across lines to the final position of the pointer when
the mouse button was released.

Type the series of characters indicated, without
pressing the RETURN key afterward.

Throughout the A/UX reference manuals, words that appear on the screen or
that you must type exactly as shown are in the Courier font.

_Xv-

Here’s an example:
Type date on the command line and press RETURN.

This instruction means that you should type the word ‘‘date’” exactly as shown,
then press the RETURN key.

After you press RETURN, text such as this will appear on the screen:
Fri Nov 1 11:15:43 PST 1991

In this case, the Courier font is used to represent exactly what appears on the
screen.

All A/UX manual page names are shown in the Courier font. For example,
1s(1) indicates that 1s is the name of a manual page that occurs in Section 1.
More information about the use of the Courier font in manual pages is given in
“‘Styling of A/UX Command Elements’’ and in ‘‘Styling of Cross-References to
Manual Pages’’ later in this preface.

Font styles
Italics are used to indicate that a word or set of words is a placeholder for part of
a command line. Here is a sample command syntax illustration:

cat file

The italicized term file is a placeholder for the name of a file. If you wanted to
display the contents of a file named E1vis, you would type the filename
Elvis in place of file. In other words, you would enter

cat Elvis

Styling of A/UX command elements

A/UX commands are entered in accordance with their command syntax. A
typical A/UX command line includes the command name first, followed by
options and arguments. For example, here is an illustration of the syntax for the
wc command:

we [-1] [-w] file...

In this syntax illustration, wc is the command, -1 and -w are options, and file
is an argument.

A “‘command option”’ modifies the action of a command, often by changing its
mode of operation (such as read mode or write mode).

- XVi -

An ‘‘argument’’ is any element that follows the command name. Command
arguments other than command options typically specify the objects upon which
the command should act. You often supply the names of files that you want a
command to process, so file is frequently the last element in syntax illustrations.

Brackets and ellipsis characters in a syntax illustration should be considered part
of a syntax notation. This is represented by the use of body font instead of
Courier for these characters. Their font treatment tells you that you are not
supposed to type these characters as part of the command line. Their meaning as
a syntax notation is described next.

The brackets enclose an optional item or a group of optional items. If an
optional item has constituent parts that are also optional, these parts are
themselves enclosed in brackets, as in this syntax illustration:

lpr [-1 [numcols]]

This syntax illustration shows that the indent (-1) command option can be
followed by the number of columns to indent the printed page. It also shows that
you can omit the number of columns; if you do, the 1pr command uses the
default indent value.

An ellipsis (...) follows an argument that can be repeated any number of times
on a command line. If the ellipsis follows a bracketed group of items, the group
of items can be repeated any number of times on the command line.

When command options are mutually exclusive, they cannot both be specified at
the same time. In such cases, more than one syntax illustration is usually
provided:

pax -rlother-option-for-archive-reading]...
pax -wlother-option-for-archive-writing]...

Outside of syntax illustrations, command options are shown with a leading
hyphen also in the Courier font. When you supply multiple command options in
an actual command line, only one leading hyphen is normally required. For
example the following command line contains two options, ~r and - f:

pax -rf /dev/rfloppy0

In the example, the - £ option (pronounced ‘‘minus *’) is entered without its
own hyphen, even though when mentioned in running text it appears with a
leading hyphen.

- Xvii -

Styling of cross-references to manual pages

The manual pages are organized primarily in terms of sections, and secondarily
in terms of books for different audiences. The standard A/UX cross-reference
notation leaves out the book title, but refers to the section designation:

item(section)

where ifem is the name of the command, subroutine, or other A/UX provision,
and section is the section where the manual page resides.

For example,
cat(l)

refers to the command cat, which is described in Section 1, which is in A/UX
Command Reference.

As a guide to the location of sections, you can refer to the general table of
contents of each of the primary reference manuals, or to ‘‘Current Organization
of Sections into Books’’ later in this preface. (The binder spines are also labeled
with the section numbers, and occasionally section subdivisions, that are in each
binder.)

Note also that there are a number of subcategory designations that can follow
the digit reference in (1), (2), (3), (4), and (5), such as (1N). Detailed
explanations of these subcategory designations are provided later in this preface.

Previous organization of sections into books

You may be curious about the logic behind the numbering of sections. The
derivation of this numbering is much clearer when you realize that originally
there was only one reference manual, the UNIX User Manual. In fact the
manual pages were once considered the primary UNIX documentation, and the
other books were originally considered supplements.

In the early days, all the manual pages easily fit into one book, in sections
numbered 1 through 8. Section 8 originally contained the manual pages that are
now located in Section 1M.

With the expansion of the original sections as UNIX grew, it became necessary
to split the original book into several books, and this was done according to the
audience they served. However, the original section numbering was preserved
after the split because by then each number had come to have a particular
meaning to UNIX users.

- Xviii -

Because the original section numbers were preserved and then sections were
recollated in accordance with the audience they served, the resulting books do
not, for the most part, contain sequentially numbered sections.

The next section explains in detail how the sections are currently mapped into
books.

There was another factor that led to the need to preserve the original section
numbers. Some routines, system calls, and commands have the same names. To
allow you to distinguish one from another, the section number is often included
along with the name. While new section numbers could have helped distinguish
these entities, the old numbers were much more familiar to UNIX users.

Besides distinguishing amongst identically named A/UX provisions, the section
number helps identify each manual page as one that describes a command, a
system call, a library routine, and so forth. Regular UNIX users sooner or later
memorize what category is identified by each section number. After doing so,
you can deduce how the sections must be split up into books—since each book
serves a particular audience and each section category also goes along with a
particular audience, the match-ups become fairly easy for you to make. The
memorization part of this task is more or less considered an initiation rite for
those who wish to learn to use UNIX effectively.

Until the 3.0 release of A/UX, the organization of sections into books was static.
With the 3.0 release however, Section 7 has been moved out of A/UX System
Administrator’s Reference and into A/UX Programmer’s Reference. This means
that command provisions are now the exclusive focus of both A/UX Command
Reference and A/UX System Administrator’s Reference.

Current organization of sections into books

All manual pages are grouped by section. The sections are grouped by general
function and are numbered according to standard conventions as follows:

1 User Commands

IM System Maintenance Commands
2 System Calls

3 Subroutines

4 File Formats

- XiX -

5
6
7
8

Miscellaneous Facilities
Games
Drivers and Interfaces for Devices

A/UX Startup Shell Commands

Each group or section of manual pages is located in one of the reference books.
Each reference book may comprise more than one binder. This section explains
where these sections are currently located with respect to the three primary
reference books. It also describes any subcategories that may be present in a
given section.

A/UX Command Reference contains Sections 1 and 6.

o Section 1—User Commands
This section describes commands that require no special access privileges.
The commands in Section 1 may also belong to a special category, such as
networking commands. Where applicable, these categories are indicated by
a letter designation that follows the section number. For example, the ‘N’
in ypcat(1N) indicates that this manual page describes a networking
command. Here is an explanation of each subcategory:

1C Communications commands, such as cu and tip.
1G Graphics commands, such as graph and tplot.

IN Networking commands, such as those that help support various
networking subsystems, including the Network File System
(NFS), Remote Process Control (RPC) subsystem, and Internet
subsystem.

o Section 6—Games
This section contains all of the games provided with A/UX, such as
cribbage and worms.

-XX-

A/UX Programmer’s Reference contains Sections 2 through 5 and Section 7.

Section 2—System Calls

This section describes the services provided by the A/UX system kernel,
including the C language interface. It includes two special categories.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the ‘‘N’’ in connect(2N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

2N Networking system calls
2P POSIX system calls

Section 3—Subroutines

This section describes the available subroutines. The binary versions of
these subroutines are in the system libraries in the /1ib and /usr/1ib
directories. The section includes seven special categories. Where
applicable, these categories are indicated by the letter designation that
follows the section number. For example, the ‘‘N’’ in mount (3N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

3C C and assembly-language library routines
3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

Section 4—File Formats

This section describes the structure of some files, but does not include files
that are used by only one command (such as the assembler’s intermediate
files). The C language struct declarations corresponding to these
formats are in the /usr/include and /usr/include/sys
directories. There is one special category in this section, indicated by the
letter designation ‘‘N’’ following the section number:

- XXi -

4N Networking formats

e Section 5—Miscellaneous Facilities
This section describes various character sets, macro packages, and other
miscellaneous facilities. There are two special categories in this section.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the ‘‘P’’ in t cp(1P)
indicates a protocol. Here is an explanation of each subcategory:

5F Protocol families
5P Protocol descriptions

o Section 7—Drivers and Interfaces for Devices
This section describes the drivers and interfaces through which devices are
normally accessed. Access to one or more disk devices is fairly transparent
when you are working with them in terms of files. When you want to use
A/UX commands to communicate with devices more directly, at a level
beyond the moderation of file systems, device files serve your needs. Such
a level of communication permits you to request more explicit operating
modes that may be supported by a disk (such as accessing disk partition
maps), or that may be supported by other types of devices, such as tape
drives and modems. For example, you can access a tape device in
automatic-rewind mode as described in t c(7).

A/UX System Administrator’s Reference contains Sections 1M and 8.

o Section IM—System Maintenance Commands
This section describes system maintenance programs such as £sck and
mkfs.

o Section 8—A/UX Startup Shell Commands
This section describes the commands that are available from within the
A/UX Startup shell. This section includes detailed descriptions of the
commands that contribute to the boot process and those that help with the
maintenance of inactive file systems.

For more information

To find out where you need to go for more information about how to use A/UX,
see Road Map to A/UX. This guide contains descriptions of each A/UX guide
and ordering information for all the guides in the A/UX documentation suite.

- XXii -

Table of Contents

Section 1: User Commands (A-F)

adb(l) oo debugs executable programs
addbib(l) ... creates or extends a bibliographic database
admin(l) ... creates and administers SCCS files
apply(l).passes its arguments in batches to a command that is run once per every batch
apropos(l) ... locates commands by keyword
ar(l) .. maintains a library of files in an archive
as(l) ... assembles files by translating assembler mnemonics to object code
asa(l) ..o interprets ASA carriage control characters
at(l) o run commands at a later time
atlookup(l)...................... looks up network-visible entities (NVEs) registered on
the AppleTalk network system
atprint(l) ... transfers data to a printer by using AppleTalk protocols
atstatus(l) ... displays status information from an AppleTalk device
at_cho_prn(l) allows you to choose a default printer on the AppleTalk internet
awk(l) ..o scans a file for lines that match a specific pattern
banner(l) ... generates a poster
banner (1) . ..o generates a large banner
basename(l)o get part of a pathname
batch(l) oo see at(l)
bo(l) oo processes an arbitrary-precision arithmetic language
bdiff(l) ... compares the difference between two large files that are too
big for diff to handle
DS (L) edits big files
DIEE(l) enables and disables notification of mail by comsat
DS(L) compiles and interprets bs programs
CaL(l) oo displays a calendar
calendar(l)o provides a reminder service
cancel(l) ... cancels print requests spooled through the 1p command
cat(l) ... catenates and displays the contents of files
co(l) ... improves spacing and indentation of C source files
() o invokes the C compiler
Ceatl(l) o see compact(l)
cde(l) oo changes the delta commentary of an SCCS delta
CELOW(L) ©oo generates a C flowgraph
changesize(l)............ changes or displays the fields of the “SIZE’ resource of a file
CheckeW(l) Lo see cw(1)
checked(l) ..o see eqn(l)
checkinstall(l) ... checks the installation of boards
checkmm(l) ... check documents formatted with the mm macros

Section 1 i

checkmml (L) ... see checkmm(1)
checknr(l) ... checks nroff/troff files
chfn(l)..... changes the real-name field of your password file entry for use by finger
Chgrp() o see chown(1)
chmod(1) ..o changes the permissions of a file
chown(l) ... change the owner or group of a file
chsh(l) ..o changes the default login shell
Ca(l) checks in RCS revisions
clear(l) .o clears the terminal screen
cmdo(l) ... builds command lines interactively
(L) compares two files
CO() o checks out RCS revisions
col(l)......... filters text containing printer control sequences for use at a display device
colert(l) ..o filters nrof £ output for terminal previewing
colrm(l) ..o removes columns from a file
comb(l) ..o combines SCCS deltas
comm(1l) ... selects or rejects lines common to two sorted files
CommandShell(l)...................... manages command-interpretation windows and
moderates access to the A/UX console window
compact(l) compress and uncompress files
compress(l)...................... compress files and directories as well as expand them;
support concatenation, browsing, and file-comparing
operations upon compressed files
compressdir(l) ... see compress(l)
ConV(L) o swaps bytes in COFF files
CO(L) copies files
cpio(l) . copies files to or from a cpio archive
CPP(L) o invokes the C language preprocessor
crontab(l) aids in the use of the cron process scheduling program
crypt(l) .o encodes and decodes passwords
csh(l) runs the C shell, a command interpreter with C-like syntax
CoPlat(l) splits files into sections
(IO o runs 1ogin on a dial-up line
ctags(l) ..o maintains a tags file for a C program
ctrace(l) oo debugs a C program
cu(1C) ... establishes an interactive connection with another system
cut(l) ..o cuts out selected fields of each line of a file
ewW(l) o prepare constant-width text for otrof £
exref(l) ... generates a C program cross-reference
daps(l) invokes the Autologic APS-5 phototypesetter t rof £ post-processor
Aate(l) oo displays and sets the date
ADR(L) e debugs and executes programs
AC(]) desk calculator
AA) converts and copies a file
deltal(l) ..o makes a delta (change) to an SCCS file

i User Commands (A-F)

derez(l) ... decompiles a resource file

deroff(l) ... removes nrof f/troff, tbl, and egn constructs
Af(l) .o reports the used and unused storage capacity for a file system

diction(l) ... locate wordy sentences in a document
diff(l) ... compares two files or directories for any differences
AIFE3(L) oo compares three versions of a file
Aiffmk(l) ... marks the differences between two files
dircmp(l) ... compares the contents of two directories
dirname(l) see basename(l)
dis(l) ..o produces an assembly language listing for a specified file
disable(l) .o see enable(l)
domainname(l) sets or displays the name of the Network

Information Service (NIS) domain

AU(L) o summarizes disk usage
Aump(l) .o stores (saves) selected parts of an object file
() see ex(1)
echo(l) ..o echoes its arguments
(D) o edit text
At o see ex(1)
efI(l) .. invokes the Extended Fortran Language
egrep(l) oo see grep(l)
eject(l) o ejects a diskette from the drive
enable(l) ... enable or disable LP printers
enscript(l) converts text files to format for printing
env(l) ... sets the environment for command execution
ean(l) ... format mathematical text for trof £
() edit text
expand(l) ... expand tabs to spaces, and vice versa
explain(l) .o see diction(l)
expr(l) evaluates arguments as an expression
BT (L) invokes the Fortran 77 compiler
factor(l) ..o prints the prime factor of a given number
False(l) .o see true(l)
fenvte(l) .o converts a file in one storage format to a different storage format
e Bty ol () see grep(l)
Fale(l) oo determines the type of a file
EAnA(l) finds files
finger(l) ... displays information about the users on a system
() oo invokes a simple text formatter
Fold(l) ..o folds long lines for finite-width output device
for(l) .o filters the output of Fortran programs for line printing
frea(l) ... reports character frequencies in a file
from(1) ... displays the mail header lines in your mailbox
Eeplit(l) oo splits £77 or ef1 files
EstyD(l) o reports the file-system type

Section 1 iii

ftp(IN) transfers files by using the DARPA Internet File Transfer Protocol (FTP)

v User Commands (A-F)

intro(l) intro(1)

NAME
intro — introduces the command and application programs

DESCRIPTION
This section describes, in alphabetical order, generally available
commands. Certain distinctions of purpose are made using parenthetical
designations in the guide words at the top of each page:

1C Specifies commands for communication with other systems.

1G Specifies commands used primarily for graphics and computer-aided
design.

IN Specifies network commands.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
“‘normal’’ termination) one supplied by the program (see wait(2) and
ex1t(2)). The former byte is O for normal termination; the latter is
customarily O for successful execution and nonzero to indicate troubles
such as erroneous parameters, bad or inaccessible data, or other inability to
cope with the task at hand. It is called variously ‘‘exit code,”” *‘exit
status,”” or ‘‘return code,”’ and is described only where unusual
conventions are involved. If present, this information is offered within the
section entitled ‘‘Status Messages and Values.”’

WARNINGS
Some commands produce unexpected results when processing files
containing null characters. These commands often treat text input lines as
strings and therefore become confused upon encountering a null character
(the string terminator) within a line.

November 1991 1

300(1) 300(1)

NAME

300, 300s — filter text containing printer control sequences for a DASI
terminal

SYNOPSIS
300 [+12] [-half-line-units] [-dtab-delay , line-delay , char-delay]

300s [+12] [-half-line-units] [-dtab-delay, line-delay , char-delay)

ARGUMENTS
+12
Permits use of 12-pitch, 6-lines-per-inch text. DASI 300 terminals
normally allow only two combinations: 10-pitch, 6 lines per inch or
12-pitch, 8 lines per inch. To obtain the 12-pitch, 6-lines-per-inch
combination, you should turn the PITCH switch to 12 and use the +12
option.

-dtab-delay, line-delay , char-delay
Specifies delay values for tabs (tab-delay), long line length (line-
delay), and long strings of nonblank, nonidentical characters (char-
delay). DASI 300 and 300s terminals sometimes produce peculiar
output when faced with too many tab characters, very long lines, or
long strings of nonblank, nonidentical characters. The 300 and 300s
commands use delay values to adjust the timing of the output in these
cases. Because terminal behavior varies according to the specific
characters printed and the load on a system, you may need to override
the default delay values, which are 3, 90, and 30, to get a satisfactory
result. You can omit a value for line-delay and char-delay, or for just
char-delay, to use their default delay values.

The commands insert one null (delay) character in a line for every set
of tabs specified by tab-delay and for every contiguous string of
nonblank, nontab characters specified by line-delay. If a line is longer
than the number of bytes specified by line-delay, the commands
perform the following calculation to determine the number of nulls to
insert at the end of that line:

nulls = 1+ (total-line-length) /20

If tab-delay or char-delay has a value of 0, the commands use two null
bytes per tab or character, respectively. An option of -d0, 1 may be
appropriate for printing a C program that has many levels of
indentation, and an option of -d3, 30, 5 may be appropriate for
printing files such as /etc/passwd.

Note that the values supplied with the -d option interact with the
prevailing carriage return and line-feed delays. The stty(1) modes
nl0and cr2 ornl0 and cr3 are recommended for most uses.

1 November 1991

300(1) 300(1)

-half-line-units
Specifies the size of half-line spaces, thus allowing for individual taste
in the appearance of subscripts and superscripts. A half-line is, by
default, equal to 4 vertical plot increments. Because each increment
equals 1/48 of an inch, a 10-pitch line feed requires 8 increments,
while a 12-pitch line feed requires only 6. For example, you can make
nroff half-lines to act as quarter-lines by using -2. You can also
obtain appropriate half-lines for the 12-pitch, 8-lines-per-inch
combination by setting the PITCH switch to 12 and by using the
option -3 alone.

DESCRIPTION
300 supports special functions and optimizes the use of the DASI 300
(GSI 300 or DTC 300) terminal; 300s performs the same functions for the
DASI 300s (GSI 300s or DTC 300s) terminal. The 300 and 300s
commands convert half-line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. The commands also draw Greek
letters and other special symbols and permit convenient use of 12-pitch
text. The commands reduce printing time up to 70 percent and can be used
to print equations neatly as in the following sequence:

neqn file... | nroff | 300

The neqgn names of, and resulting output for, the Greek and special
characters supported by these commands are shown in greek(5).

You can use these commands with the nroff -s option or . rd requests
to halt printing temporarily so that you can insert paper manually or change
fonts in the middle of a document. Instead of pressing the RETURN key in
these cases, press the line-feed key to continue printing.

In many (but not all) cases, the following two command lines are
equivalent:

nroff -T300 files
nroff files | 300

Similarly, in many (but not all) cases, the following two command lines are
equivalent:

nroff -T300 -12 files

nroff files | 300 +12
Thus, you can often avoid using 300 and 300s unless special delays or

options are required; in a few cases, however, the additional movement
optimization of these commands may produce better-aligned output.

November 1991 2

300(1) 300(1)

WARNINGS
If your terminal has a PLOT switch, set it to the ‘‘on’’ position before
using 300.

LIMITATIONS

Some special characters cannot be correctly printed in column 1 because
the print head cannot be moved to the left from there.

If your output contains Greek or reverse line feeds, use a friction-feed
platen instead of a forms tractor. Although the forms tractor is good
enough for drafts, it has a tendency to slip when reversing direction. This
slippage causes distortion of Greek characters and misalignment of the first
line of text after one or more reverse line feeds.

FILES
/usr/bin/300
Executable file /usr/bin/300s Executable file

SEE ALSO

450(1), egn(l), mesg(l), nrof £(1), stty(l), tabs(l), tbl(l),
tplot(1G)

greek(5) in A/UX Programmer’s Reference

3 November 1991

300s(1) 300s(1)

See 300(1)

November 1991 1

4014(1) 4014(1)

NAME
4014 — filters text containing printer control sequences a page at a time

SYNOPSIS
4014 [-ccolumns] [-n] [-plines[1] [1 [-t] [file]

ARGUMENTS
-ccolumns

Specifies the number of columns to display and waits after displaying
the last column.

-n Starts printing at the current cursor position and never erases the
screen.

-plines[i] [1]
Specifies the page length in terms of its length in inches or lines. You

can follow lines with an 1 for inches or with an 1 for lines, which is
the default.

-t Omits pauses between pages. This option is useful for directing
output to a file.

DESCRIPTION
4014 is intended for use with a Tektronix 4014 terminal. The 4014
command arranges for 66 lines to fit on the screen, divides the screen into
columns, and contributes an 8-space page offset in the single-column case,
which is the default. Tabs, spaces, and backspaces are collected and
plotted when necessary. Teletype Model 37 half- and reverse-line
sequences are interpreted and plotted. At the end of each page, 4014
waits for a new line (empty line) from the keyboard before continuing to

the next page. In this wait state, the command ! cmd sends cmd to the
shell.

FILES
/usr/bin/4014
Executable file

SEE ALSO
pr(l), tc(l), trof£(1)

1 November 1991

450(1) 450(1)

NAME
450 — filters text containing printer control sequences for the DASI
terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450
terminal or any terminal that is functionally identical, such as the Diablo
1620 or Xerox 1700. The 450 command converts half-line forward, half-
line reverse, and full-line reverse motions to the correct vertical motions
and draws Greek letters and other special symbols in the same manner as
300(1). You can use 450 to print equations neatly, as in this sequence:

neqgn file ... | nroff | 450

The negn names of, and resulting output for, the Greek and special
characters supported by 450 are shown in greek(5).

You can use 450 with the nroff -s option or . rd requests to halt
printing temporarily so that you can insert paper manually or change fonts
in the middle of a document. Instead of pressing the RETURN key in these
cases, press the line-feed key to continue printing.

In many (but not all) cases, the use of 450 can be eliminated in favor of
one of the following commands:

nroff -T450file...

nroff -T450 -12file...

Thus, you can often avoid using 450 unless special delays or options are
required; in a few cases, however, the additional movement optimization of
450 may produce better-aligned output.

WARNINGS
Make sure that the PLOT switch on your terminal is set to “‘on’’ before
you use 450. You should set the SPACING switch to 10-pitch or 12-pitch.
In either case, vertical spacing is 6 lines per inch unless you dynamically
change the vertical spacing to 8 lines per inch by an appropriate escape
sequence.

LIMITATIONS
Some special characters cannot be correctly printed in column 1 because
the print head cannot be moved to the left from there. If your output
contains Greek or reverse line feeds, use a friction-feed platen instead of a
forms tractor. Although the forms tractor is good enough for drafts, it has a
tendency to slip when reversing direction. This slippage causes distortion
of Greek characters and misalignment of the first line of text after one or

November 1991 1

450(1) 450(1)

more reverse line feeds.

FILES
/usr/bin/450
Executable file

SEE ALSO
300(1), egn(l), mesg(l), nrof £(1), stty(l), tabs(l), tbl(1),
tplot(1G)

greek(5) in A/UX Programmer’s Reference

2 November 1991

adb(1) adb(1)

NAME
adb — debugs executable programs

SYNOPSIS
adb [-Kk] [-w] [object-file [core-file]]

ARGUMENTS
core-file
Specifies the name of a core image file that was produced when a core
dump occurred while the object file specified by object-file was
executing. The default value of core-file is core.

-k Causes adb to skip execution of a system call to gather relocation
addresses. This option is useful when you are running adb on a
stand-alone program, such as the kernel, (/unix), that does not have
relocated addresses.

object-file
Specifies the name of an executable program, preferably containing a
symbol table. If the symbol table is not available, the symbolic
features of adb cannot be used, although you can still use adb to
examine the file. The default value of object-file is a . out.

-w Causes adb to open the object and core files for writing as well as
reading. If the object file does not exist, adb creates it. You should
use this option if you want to use adb to modify the object or core
files. If you do not specify this option, adb opens the files for reading
only.

DESCRIPTION
adb is a general-purpose debugger. You can use adb to examine core files
and to debug object files in a controlled environment.

In general, requests to adb are of the form

[address]

[, count]

[command)]

[;]
where address and count are expressions. If address is present, the current
address, which is represented by a period (.) and is called ‘‘dot,”’ is set to
address. Initially, dot is set to 0. For most commands, count specifies how

many times the command is to be executed. The default value of count is
1.

The interpretation of an address depends on the context in which it is used.
If a subprocess is being debugged, addresses are interpreted in the usual
way in the address space of the subprocess. If the operating system is
being debugged either post-mortem or by use of the special file

November 1991 1

adb(1) adb(1)

/dev/kmem to examine interactively or to modify memory, the maps are
set to map the kernel virtual addresses. For further details of address
mapping, see ‘‘Addresses’’ later in the ‘‘Description’” section.

To quit adb, use the $q or the $Q command; see ‘‘Commands’’ later in
the “‘Description’’ section. You can also press CONTROL-D.

The adb command ignores SIGQUIT, and SIGINT causes adb to return
to the next adb command.

Expressions
You can form an expression from the following elements:

The last address typed.

‘ccee”’
The ASCII value of up to four characters. You can use a backslash (\
) to escape a single quote ().

(exp)
The value of the expression exp.

+ The value of dot, incremented by the current increment.
The value of dot.

<name
The value of name, which is either a variable name or a register name.
The adb command maintains a number of variables (see ‘“Variables’’
later in the ‘‘Description *’ section) named by single letters or digits.
If name is a register name, the value of the register is obtained from
the system header in core-file. The register names are those printed by
the $r command.

The value of dot, decremented by the current increment.

_ symbol
In C, the actual name of an external symbol begins with an
underscore. You may have to use the actual name to distinguish it
from internal or hidden variables of a program.

integer
A number. The prefix 0 (zero) forces interpretation in octal radix; the
prefixes 0d and 0D force interpretation in decimal radix; the prefixes
Ox and 0X force interpretation in hexadecimal radix. Thus
020=0d16=0x10=16. If a prefix is not present, adb uses the
default radix (see ‘‘Commands’’ later in the ‘‘Description’’ section
for information on the $d command). The default radix is initially
hexadecimal. The hexadecimal digits are
0123456789abcdefABCDEF. Note that a hexadecimal number whose
most significant digit would otherwise be an alphabetical character

2 November 1991

adb(1) adb(1)

must have a 0x (or 0X) prefix (or a leading 0, if the default radix is
hexadecimal).

integer . fraction
A 32-bit floating-point number.

symbol
Sequence of uppercase or lowercase letters, underscores, or digits, not
starting with a digit. You can use a backslash (\) to escape other
characters. The value of symbol is taken from the symbol table in the
object file. An initial underscore (_) or tilde (™) is prefixed to symbol,
if needed.

Monadic Operators

You can use these monadic operators with an expression:

#exp
Logical negation.

*exp
The contents of the location addressed by exp in core-file.

-exp
Integer negation.

@expThe contents of the location addressed by exp in object-file.
“exp
Bitwise complement.
Dyadic Operators

You can use these dyadic operators with two expressions. Dyadic
operators are left-associative and are less binding than monadic operators.

el+e2
Integer addition.

el-e2

Integer subtraction.
el*e2

Integer multiplication.
el%e2

Integer division.
el&e2

Bitwise conjunction.

elle2
Bitwise disjunction.

November 1991 3

adb(1) adb(1)

el#e2
el. rounded up to the next multiple of e2.

Commands
Most commands consist of a verb followed by a modifier or list of
modifiers. The question mark (?) and slash (/) commands may be
followed by an asterisk (*). See ‘‘Addresses’’ later in the ‘‘Description’’
section for further details. The following verbs are available:

newline
Repeats the previous command with a count value of 1 where newline

is the ASCII character Oa. By default, pressing the RETURN key
produces a newline character.

I Calls a shell to read the rest of the line following !.

> name
Assigns dot to the variable or register named. This command is often
used in the form constant>name. This form of the command can be
used to enter 96-bit IEEE extended-precision numbers into the
floating-point data registers £p0-fp7. For example, the following
command puts the value 1.0 info fp0:

0x3FFF00008000000000000000 > fp0

When this form of the command is used, only the first 32 bits of the
constant are stored in dot. See MC68881 Floating Point Coprocessor
User’s Manual (available from Motorola Literature Distribution
Center, part number MC68881UM/AD), section 2.4, ‘ ‘Extended
Real,”” p. 211, for a description of IEEE extended-precision format.

[? /11 value mask
Masks words starting at dot with mask and compares them with value
until a match is found. If L is used, the match is for 4 bytes at a time
instead of 2. If no match is found, dot is unchanged; otherwise, dot is
set to the matched location. If mask is omitted, -1 is used.

[2/Im bl el fI[?/]
Records new values for b1, el, fI. If fewer than three expressions are
given, the remaining map parameters are left unchanged. If more than
three expressions are given, the values of (b2, e2, f2), (b3, 3, f3) and
so on, are changed. If the question mark (?) or slash (/) is followed
by an asterisk (*), the first segment (b1, el, fI) of the mapping is
skipped, and the second and subsequent segments are changed instead.
(There are as many (bn, en, fn) triples as you have sections in your
program.) If the list is terminated by ? or /, object-file or core-file,
respectively, is used for subsequent requests. For example, /m?
causes / to refer to the object file.

4 November 1991

adb(1) adb(1)

[?/]w value ...
Writes the 2-byte value value into the addressed location. If the
command is W, adb writes 4 bytes. Odd addresses are not allowed
when you are writing to the subprocess address space.

You can place a format request after the /, =, and ? commands to specify
a style of printing:
/format
Prints locations starting at address in core-file according to format,
and dot is incremented as for the question mark.

=format
Prints the value of address itself in the styles indicated by format.
(For i format, a question mark is printed for the parts of the
instruction that reference subsequent words.)

?format
Prints the locations starting at address in object-file according to
format. Dot is incremented by the sum of the increments for each
format letter.

A format consists of one or more characters. Each format character may be
preceded by a decimal integer that is a repeat count for the format
character. As the format is stepped through, dot is incremented by the
amount given for each format letter. If no format is given, the last format
is used. These format letters are available:

Prints the enclosed string.

+ Increments dot by 1. Nothing is printed.
- Decrements dot by 1. Nothing is printed.
Decrements dot by the current increment. Nothing is printed.

a 0
Prints the value of dot in symbolic form. Symbols are checked to
ensure that they have an appropriate type, where / is a global data
symbol, ? is a global text symbol, and = is a global absolute symbol.

b 1
Prints the addressed byte in octal.

C 1
Prints the addressed character according to the standard escape
convention, where control characters are printed as "X and the delete
character is printed as " 2.

c 1
Prints the addressed character.

November 1991 5

adb(1)

adb(1)

4
Prints as a long decimal number.

2
Prints as a decimal number.

8
Prints as a double floating-point number.

4
Prints the 32-bit value as a floating-point number.

n
Disassembles the addressed instruction.

0
Prints a new line.

4
Prints 4 bytes as an octal number.

2
Prints 2 bytes in hexadecimal. All octal numbers output by adb are
preceded by 0.

4
Prints the addressed value in symbolic form, using the same rules for
symbol lookup as a.

4
Prints as a long signed octal number.

2
Prints as a signed octal number.

0
Prints a space.

n
Prints a string using the "X escape convention (see C earlier in this

list); n is the length of the string, including its O terminator.

n
Prints the addressed characters until a O character is reached.

0
Tabs to the next appropriate tab stop when preceded by an integer.
For example, 8t causes a move to the next 8-space tab stop.

4
Prints as a long unsigned decimal number.

November 1991

adb(1) adb(1)

u 2
Prints as an unsigned decimal number.
Y 4
Prints 4 bytes in data format (see ct ime(3)).
X 4
Prints 4 bytes as a hexadecimal number.
x 2
Prints 2 bytes as a hexadecimal number.
$modifier
These are miscellaneous commands. These modifiers are available:
< file

Reads commands from file. If this command is executed in a file,
further commands in the file are not seen. If file is omitted, the
current input stream is terminated. If the value of count is 0, the
command is ignored. The value of the count is placed in variable
9 before the first command in file is executed.

<< file
Reads commands from file. This command is similar to < except
it can be used in a file of commands without causing the file to be
closed. Variable 9 is saved during the execution of this
command and restored when the command completes. There is a
(small) finite limit to the number of << files that can be open at
once.

> file
Appends output to file, which is created if it does not exist. If file
is omitted, output is returned to the terminal.

? Prints process ID, the signal that caused stoppage or termination,
as well as the registers in the same way as the Sr command.
This option is the default if modifier is omitted.

b Prints all breakpoints and their associated counts and commands.

¢ Performs a C stack backtrace. If address is given, it is taken as
the address of the current frame (instead of a7). If C is used, the
names and (16-bit) values of all automatic and static variables are
printed for each active function. If count is given, only the first
count frames are printed.

d Sets the default radix to address and reports the new value. Note
that address is interpreted in the (old) current radix. Thus /108d
never changes the default radix. To make the default radix
decimal, use 0t10%d.

November 1991 7

adb(1)

Hh

B Q O o0 B

v

W

: modifier

adb(1)

Resets integer input as described in ‘‘Expressions’’ earlier in the
““Description’’ section.

Prints the names and values of external variables.

Prints the floating-point data registers fpO-fp7 in IEEE extended
precision (see >name, earlier in the ‘‘Commands’’ section for a
definition), and exponential notation, along with the floating-
point control registers fpcr, fpsr, and fpiar.

Prints the address map.

Regards all integers subsequently input as octal.
Exits from adb.

Exits from adb.

Prints the general registers and the instruction addressed by pc.
Dot is set to pc.

Sets the limit for symbol matches to address. The default is 255.
Prints all nonzero variables in hexadecimal.

Sets the page width for output to address. The default is 80.

The colon (:) command and a modifier are used to manage a
subprocess. These modifiers are available:

bc

Ccs

Sets breakpoint at address. The breakpoint is executed count - 1
times before causing a stop. Each time the breakpoint is
encountered, the command c is executed. If this command is
omitted or sets dot to 0, the breakpoint causes a stop.

Continues the subprocess with signal scs (see signal(3)). If
address is given, the subprocess is continued at this address. If
no signal is specified, the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as for the : r
command.

Deletes breakpoint at address.
Terminates the current subprocess, if any.

Runs object-file as a subprocess. If address is given explicitly,
the program is entered at this point; otherwise, the program is
entered at its standard entry point. The value of count specifies
how many breakpoints are to be ignored before stopping.
Arguments to the subprocess can be supplied on the same line as
the command. An argument starting with < or > causes the
standard input or output to be established for the command. All
signals are turned on upon entry to the subprocess.

November 1991

adb(l) adb(1)

ss Continues the subprocess as described for c, earlier in this list,
except that the subprocess is single-stepped the number of times
specified by count. If there is no current subprocess, the object
file is run as a subprocess in the same way as for the : r
command. In this case, no signal can be sent; the remainder of
the line is treated as arguments to the subprocess.

Variables
The adb command provides a number of variables. Named variables are
set initially by adb but are not used subsequently. These numbered
variables are reserved for communication:

0 The last value printed.

1 The last offset part of an instruction source.
2 The previous value of variable 1.

9 The count on the last S<or $<< command.

On entry, the following variables are set from the system header in
core-file. If core-file does not appear to be a core file, these values are set
from object-file:

b The base address of the data segment.
d The data segment size.

e The entry point.

m The magic number (0407, 0410, 0413).
s The stack segment size.

t The text segment size.

Addresses
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by # triples
(bl,el f1), (b2,e2,f2), ... (bn,en,fn), corresponding to the number of
sections in your object file. The file address corresponding to a written
address is calculated as follows:

bl<address<el

=

file-address=address+f1-bl
otherwise,

b2<address<e2
=

file-address=address+f2-b2
and so on.

November 1991 9

adb(1) adb(1)

Otherwise, the requested address is not legal. In some cases (such as for
programs with separated instruction and data space), the two segments for
a file can overlap. If a question mark (?) or slash (/) is followed by an
asterisk (*), the first triple is not used.

The initial setting of both mappings is suitable for normal a . out and
core files. If either file is not of the kind expected, for that file b/ is set to
0, el is set to the maximum file size, and f7 is set to O; in this way the
whole file can be examined with no address translation.

So that adb can be used on large files, all appropriate values are kept as
signed 32-bit integers.

EXAMPLES
This command starts adb on the executable file called obj1:

adb objl
When adb responds with a ready message, you can type this request:
main,10?ia

The request causes 16 (10 hexadecimal) instructions to be printed in
assembly language, starting from main.

STATUS MESSAGES AND VALUES
The adb command echoes adb when there is no current command or
format.

The adb command produces comments about, for example, inaccessible
files, syntax errors, and abnormal termination of commands.

The exit status of adb is 0 unless the last command failed or returned a
nonzero status.

LIMITATIONS
Use of the number sign (#) for the unary logical negation operator is
peculiar.

There doesn’t seem to be any way to clear all breakpoints.

In certain cases, disassembled code cannot be used directly as input to
as(1). This is because adb gives more useful information than as
accepts. For example, explicit register names are given in the disassembly
of movm and fmovm instructions.

FILES
/bin/adb
Executable file
a.out
Default object file

10 November 1991

adb(1)

core
Default core file

SEE ALSO
sdb(1)

a.out(4), core(4) in A/UX Programmer’s Reference

November 1991

adb(1)

11

addbib(1) addbib(1)

NAME

addbib — creates or extends a bibliographic database
SYNOPSIS

addbib [-a] [-p prompt-file] database
ARGUMENTS

-a Suppresses the default prompting for an abstract.

database
Specifies the name of a file to be used to store the output of addbib.
If the file specified by database does not exist, addbib creates it. If
the file already exists, addbib appends to it any entries you made.

-p prompt-file
Causes addbib to use prompts that are defined in prompt-file. This
file should contain lines that consist of a prompt string, a tab, a percent
sign (%), and the option, in that order.

DESCRIPTION
addbib creates or extends a bibliographic database. The structure of the
database allows formatting to be imposed as a separate step after the data is
entered. Database entries consist of options and relevant fields. Once you
have entered the data, you can use sortbib(l) and rof fbib(1) to print
the database in a standard bibliographic format. You can also embed
keywords from the database in footnotes in nrof £(1) or trof £(1)
documents and use refer(1) to extract the complete reference from the
database in proper footnote format and print it in your document.

When started, addbib displays the Instructions? prompt. Entering
y causes addbib to print a summary of how to enter data. You can enter
n or press RETURN to skip the summary.

Next, addbib prompts for various bibliographic fields and reads the
response from the terminal. The addbib command does not actually
write the fields to the database until all the fields for one record have been
prompted. If you have no data for a particular field, press RETURN to go on
to the next prompt.

To enter data, type the information and press RETURN. The only exception
to this practice occurs when you enter data in response to the Abstract:
prompt. In this case, type the data, press RETURN, and then press
CONTROL-D. If you wish to enter no data in response to the Abstract:
prompt, press CONTROL-D. To continue any field on the next line, enter a
backslash (\). In response, addbib places a > prompt on the next line,
where you can enter more data. When the field is written to the database,
the second and any additional continuation lines are separated by the
newline character.

1 November 1991

addbib(1) addbib(1)

You can enter a minus sign (-) to go back to a previous prompt and add a
second field of a particular type. For example, you can use this feature to
enter the name of each author of a multiple-author book. You cannot use
this feature to overwrite a previously entered field.

When addbib displays the Cont inue? prompt, which appears after you
have entered one complete record, you can enter y or press RETURN to
continue or enter n to stop running addbib. You can also enter the name
of a text editor (vi, ex, edit, or ed) to edit the database.

The addbib command insulates you from the options by displaying an
equivalent ‘‘English’’ prompt for each option. By default, addbib
displays prompts for the A, T, J, V, P, I, C, D, O, K, and X options. Here
are the common options and their meanings:

%A Author’s name.

$B Book containing article referenced.

%$C City (place of publication).

%D Date of publication.

%E Editor of book containing article referenced.
%F Footnote number or label (supplied by refer).
%G Government order number.

%H Header commentary, printed before reference.
%I Issuer (publisher).

%$J Journal containing article.

%K Keywords to use in locating reference.

$L Label field used by -k option of refer.

%N Number within volume.

%0 Other commentary, printed at end of reference.
%P Page number(s).

%Q Corporate or foreign author (unreversed).

%R Report, paper, or thesis (unpublished).

%S Series title.

%T Title of article or book.

%V Volume number.

%X Abstract; used by rof fbib, not by refer.

November 1991 2

addbib(1)

addbib(1)

%Y Ignored by refer.

%Z Ignored by refer.

Except for A, each field should be given just once.

EXAMPLES

Here is a record of the data entry for one bibliographic reference using the

default prompts:

Instructions? n

Author:
Title:
Author:
Title:
Journal:
Volume:
Pages:
Publisher:
City:
Date:
Other:
Keywords:
Abstract:

Continue? n

R. Pike

B. W. Kernighan

Program Design in the UNIX System Environment
Technical Journal

63 No. 8 Part 2

1595-1605

AT&T Bell Laboratories

Short Hills, NJ

October 1984

Programming UNIX
(ctrl-d to end)

Here is what the database contains:

63 No.

ROUOQHPD G 3PP

00 o0 P O° o P o oP o° o°

LIMITATIONS

R. Pike

B. W. Kernighan

Program Design in the UNIX System Environment
Technical Journal

8 Part 2

1595-1605

AT&T Bell Laboratories

Short Hills, NJ

October 1984

Programming UNIX

Because addbib displays only the first 20 characters, the prompt strings
in a user-defined prompt file should be less than or equal to 20 characters.
If the prompt string is longer than 20 characters, addbib appends the
option from the prompt file to the end of the truncated prompt string.

November 1991

addbib(1) addbib(1)

FILES
/usr/ucb/addbib
Executable file

SEE ALSO
indxbib(l), lookbib(l), refer(l), rof fbib(l),
sortbib(l)

November 1991 4

admin(1) admin(1)

NAME

admin — creates and administers SCCS files

SYNOPSIS
admin [-aname-or-gid] [-doption[value]] [-ename-or-gid]
[-foption[valuel] [-h] [-i[name]] [-m[mrlist]] [-n] [-rrelease|.level]]
[-tldescriptive-text]] [-y[comment]] [-z] file...

ARGUMENTS
-aname-or-gid

Specifies a login name or a numeric group ID to be added to the list of
users who are allowed to modify the Source Code Control System
(SCCS) file. The list of users is stored in the control information of
the SCCS file. Specifying a group ID is the same as specifying all the
login names common to that group ID. You can use more than one
—a option on a single admin command line, and you can accumulate
as many login names and numeric group IDs as you wish. If the
control information does not include a list of users, which is the
default, anyone who can read and write the file can check out the file
for editing. If you precede name-or-gid with an exclamation mark
(1), the specified login name or members of the specified group ID
will not be allowed to check out the file for editing. To remove a login
name or group ID from the list of users, see the -e option.

-doption [list]

Causes the specified option, previously added by the - f option, to be
removed from the SCCS file. You can specify the -d option on
existing SCCS files only, and you can combine several -d options on
a single admin command line. If you specify the 1 option and a list
of releases, admin ‘‘unlocks’’ the releases. See the - £ option for the
other possible options.

-ename-or-gid

file

Specifies a login name or numeric group ID to be removed from the
list of users who are allowed to make changes to the file. The list of
users is stored in the control information of the SCCS file. Specifying
a group ID is the same as specifying all login names common to that
group ID. You can use several -e options on a single admin
command line. This option undoes the work of the -a option.

Specifies the file that admin is to create or update. When a file is
placed under SCCS for the first time, file is the name of a file that
admin is to create. The number of file arguments depends on the
option, that you use to create the file. (These options are described
later in this list. For compatibility with the SCCS commands, the
name of a file controlled by SCCS must begin with an s and a period
(.). The name that you provide can consist of up to 255 characters,

November 1991

admin(1) admin(1)

including the required s . prefix. When creating a new file, admin
initializes control information according to the options provided on the
command line and assigns default values for any required options that
are not specified.

When changing control information, you can provide one or more file
arguments, which is the name of a file previously created by the
admin command. The admin command changes only the specified
control information and leaves the remainder alone. If file is a
directory, admin behaves as though each file in the directory were
specified on the command line. If file is a hyphen (-), admin reads
the standard input and interprets each line as the name of an SCCS file
to be processed. In either case, files that do not begin with s. and
unreadable files are silently ignored.

- foptions [list]
Specifies an option to be placed in the control information of an SCCS
file. Some options require or accept value, which further defines the
action of option. You can use more than one - f option on a single
admin command line. You can use the -d option to remove an
option from an SCCS file. Here are the allowable values of option and
their meanings:

b Allows the use of the -b option on any future get command to
create branch deltas.

cceiling
Specifies the highest release number that get can assign to this
file. The value of ceiling must be less than 10,000. The default
value of ceiling is 9999. See the - option for an explanation of
release numbers.

ddeltanum
Specifies the default delta number (SID) to be used by any future
get command.

ffloor
Specifies the lowest release number that get can assign to this
file. The value of floor must be greater than 0 but less than 9999.
The default value of floor is 1. See the - option for an
explanation of release numbers.

November 1991 2

admin(1) admin(1)

i[string]
Protects the presence of keywords, which you add manually to
the text of a file before you run admin on it. If a future get or
delta of a protected file results in the No id keywords
(ge6) message, the message is treated as a fatal error. You must
restore the keywords to the file before proceeding. If you do not
use this option, get and delta treat this message as a warning.

If you do not specify string, all keywords are protected. If you
specify string, the SCCS file must contain a string of keywords
that exactly matches string. Embedded newlines are not allowed
in string. To specify multiple keywords separated by a space,
quote them, as in

~£1"%M %I D"

See get(l) for a list of valid identification keywords.

j Allows concurrent get commands for editing the same SID of
an SCCS file. This option allows multiple concurrent updates to
the same version of the SCCS file.

1list
Specifies a list of releases to which deltas may no longer be
made. Any future attempts to use the get command on one of
these ‘‘locked’’ releases for editing will fail. The list has the
following syntax:

<list> ::= <range> | <list> , <range>
<range>": := release-number | a

Using the character a in list is equivalent to specifying all
releases for the named SCCS file.

mmodule-name
Uses module-name to specify a string that get will substitute for
all occurrences of the $M% keyword in the SCCS file when the
text is retrieved. If you do not use the m option, get substitutes
the name of the SCCS file, with the prefix s . removed, for all
occurrences of the $M% keyword.

n Causes future invocations of delta to create a null delta for any
skipped releases when a delta is made in a new release. For
example, if you make delta 5.1 after delta 2.7, releases 3 and 4
are skipped. The null deltas serve as anchor points so that you
can create branch deltas later. If you do not use this option, you
will be unable to create branch deltas for the skipped releases in
the future.

3 November 1991

admin(1) admin(1)

astring
Specifies a string that get will substitute for all occurrences of
the $Q% keyword in the SCCS file when the text is retrieved.

tmodule-type
Uses module-type to specify a string that get will substitute for
all occurrences of the $Y% keyword in the SCCS file when it
retrieves the text.

v[program]
Uses program to specify the name of a user-supplied
Modification Request (MR) validity-checking program. The
value of program can be an absolute pathname or a program that
resides in a directory listed in SPATH. If you set this option
when you are creating an SCCS file, you must also use the -m
option.

The v option causes future invocations of delta on the text of
the SCCS file to prompt for MR numbers as the reason for
making a delta and to invoke the validity-checking program to
verify that the MR number is valid.

-h Causes admin to check the structure of the SCCS file (see
sccsfile(4)) and to compare a newly computed checksum with the
checksum stored in the first line of the SCCS file. (The checksum is
the sum of all the characters in the SCCS file except those in the first
line.) The admin command displays an error diagnostic if the
comparison of the checksums fails.

Because this option inhibits writing to the file argument, you cannot
use this option in conjunction with any other option. As a result, this
option is useful only when an existing file is processed.

-1[name]
Creates a new SCCS file whose text is the content of the file specified
by name. If you use this option and omit name, admin obtains the
text by reading the standard input until it encounters an end-of-file.
You can specify only one file argument when you use this option. If
you do not use this option, you must explicitly specify the -n option.

—m[mrlist]
Specifies a list of alphanumeric MR numbers to be associated with the
initial version of an SCCS file. This option can be used only with the
-1 or -n option and must be used in conjunction with the v option.

If the list has more than one MR number, enclose the list in quotation
marks and separate the numbers by a space or a tab. This list can have
up to 61 MR numbers.

November 1991 4

admin(1) admin(l)

The admin command executes the user-supplied MR validity-
checking program specified by the v option to verify mrlist. The
admin command displays error diagnostics if the v option is not set
or if MR validity checking fails. If validity-checking is successful, the
admin command inserts mrlist in a manner identical to that of
delta.

-n Creates a new SCCS file that contains only control information. Use
this option when you do not have an existing file to place under SCCS.
You can supply more than one file argument when you use this option.

-rrelease|.level]
Specifies an integer value for the release and level into which the
initial delta is to be inserted. If you do not use this option, 1.1 is the
default initial delta. You can use this option only if you also use the
-1 option.

-t [descriptive-text]
Causes descriptive text, from the file specified by descriptive-text, to
be incorporated in the control information of the SCCS file.
Descriptive text is any text that, for your own purposes, you want to
associate with the actual text of the file.

If you use this option with the -1 or -n option to create an SCCS file,
descriptive-text is required. If you use this option with an existing
SCCS file and do not provide descriptive-text, admin removes any
existing descriptive text from the SCCS file. If you provide
descriptive-text, admin replaces any existing descriptive text with the
contents of the file specified by descriptive-text.

-y [comment]
Specifies text to be inserted as a comment in the SCCS file when it is
created. If comment contains spaces, enclose the entire comment in
double quotation marks. You can use this option only in conjunction
with the -1 and -n options. The admin command inserts the
comment in a manner identical to that of delta. If you do not
specify this option, admin inserts a default comment of the form:

date and time created YY/MM/DD HH:MM:SS by login-id

-z Causes admin to recompute the checksum and store it in the first line
of the SCCS file. Note that use of this option on a corrupted file
prevents future detection of the corruption.

DESCRIPTION
admin creates new SCCS files and changes the control information of
existing SCCS files. A file created by admin contains, in addition to the
actual text, control information used by the SCCS commands to manage

5 November 1991

admin(1) admin(1)

the text. The control information consists of an option followed by the
associated information.

In general, you place a file under SCCS by using the -1 or -n option, and
you tailor the control information through the other options. Many of the
options for tailoring the control information manage the outcome of future
get and delta commands. Any particular version of an SCCS file is
commonly called a ‘‘delta’’; the cycle of running get and delta on a file
is commonly called ‘‘checking a file out and in.”” Making a change to an
SCCS file is commonly called ‘‘making a delta.”

Security and Permission Bits

For the highest level of security, the permission bits of directories that
contain SCCS files should be 755, and the permission bits of SCCS files
themselves should be read-only (444). These settings allow only the owner
of an SCCS file to modity it by using SCCS commands only.

To create a new SCCS file, you must have write permission in the pertinent
directory. The admin command sets the permission bits on a newly
created SCCS file to 444. When updating an existing SCCS file, admin
retains the file’s original permission bits. The admin command writes to a
temporary file called x . filename. This file is created with read-only
permission bits, if a new SCCS file is being created; if an existing file is
being changed, this file is created with the same permission bits as the
existing SCCS file. After successfully creating or updating x . filename,
admin removes the SCCS file (if it exists) and renames x . filename with
the name of the SCCS file. This strategy ensures that changes are made to
the SCCS file only if no errors occurred.

The admin command also uses a temporary lock file, z . filename, to
prevent simultaneous updates to an SCCS file by two or more users. See
get(1) for further information.

Handling a Corrupted File

The

November 1991

If you, as the owner, need to correct an SCCS file by using a non-SCCS
command, you can change the permission bits to 644 and use an editor to
make the correction. You should always run admin -h on the edited file
to check for corruption and then run admin -z to generate a valid
checksum. You should then run admin -h again to ensure that the SCCS
file is valid.

Validity-Checking Program

If you want to take advantage of the v option, which causes delta to
prompt for MR numbers, you must write a program to check the numbers.
The admin and delta commands call execvp (see exec(2) for details)
to execute the validity-checking program. The first element of the argv
array contains the name of the validity-checking program, as specified by

admin(1) admin(l)

the v option, and the second element contains the filename, with its s .
prefix removed, of the SCCS file being processed. The validity-checking

program should return zero to indicate that the MR number is valid, or
nonzero to indicate failure.

EXAMPLES
This command uses a file named tempest . ¢ to create a new file in SCCS
format named s . tempest:
admin -itempest.c s.tempest.c

STATUS MESSAGES AND VALUES
The bdi f £ command produces messages that the help command can
interpret. You may, for example, see this message:
ERROR [s.file] : MRs required (del0)
To see an explanation of this message, enter
help delO

FILES
/usr/bin/admin
Executable file
filename

Existing file to be placed under SCCS control
s . filename

SCCS file created or changed by admin
x . filename

Temporary file
z . filename

Lock file that prevents simultaneous updates to s . filename
SEE ALSO

delta(l), ed(1), get(l), help(l), prs(l), what(l)
sccsfile(4) in A/UX Programmer’s Reference

““SCCS Reference’’ in A/UX Programming Languages and Tools, Volume
2

November 1991

apply(1) apply (1)

NAME
apply — passes its arguments in batches to a command that is run once
per every batch

SYNOPSIS
apply [-aesc-char] [-args-per-batch] command argument...

ARGUMENTS
-aesc-char
Specifies the escape character that can change the interpretation of
argument. The default is the percent sign (%). See the ‘‘Description”’
section for information about how the argument selector works.

argument
Specifies an argument to be passed to command. You should specify
a multiple of the number of arguments that are needed to run
command successfully once.

command
Specifies the command that apply is to run.

-args-per-batch
Specifies the number of arguments to pass from the apply command
line to command each time apply runs the command. If you do not
use this option, apply passes one argument at a time. If the value of
args-per-batch is 0, apply runs command once for each arg but does
not pass arg to command.

DESCRIPTION
apply runs a command enough times to use up the arguments specified on
the apply command line.

An argument-selector is part of a command and has the form %d, where d
is a digit from 1 to 9. The apply command replaces the argument-
selector with the next digit argument and runs the command. If an
argument-selector is present in command, apply ignores the
—args-per-batch option, if provided. To avoid an error message when the
arguments are exhausted, you need to make the number of arguments on
the apply command line a multiple of d. See the third example in the
next section for a way to use an argument-selector.

EXAMPLES
The first example of the apply command uses cmp to compare the a files
to the b files. The -2 option causes apply to take arguments in sets of
two from the apply command line and use them to run cmp until the
arguments are exhausted.

apply -2 cmp al bl a2 b2

The second example shows what happens when the -n option is set to 0.

November 1991 1

apply(1) apply(1)

Five arguments appear after the who command, so apply runs the who

command five times, but it does not pass the arguments to who because 7 is
0.

apply -0 who a 2 c 4 e

The third example shows the use of an argument-selector. This command
creates a link in the directory /usr/mcfong between each file in the
current directory:

apply ‘1In %1 /usr/mcfong’ *

If the argument-selector were %3, the apply command would run 1n for
every third filename expanded by the shell. If the total number of
expanded filenames were not a multiple of 3, apply would run 1n for
every third filename and display an error message when it could not get the
next argument that is a multiple of 3.

LIMITATIONS
Shell metacharacters in command may have bizarre effects. You should
enclose complicated commands in single quotation marks ().

You cannot pass a literal %2 if % is the argument-selector character.

FILES
/usr/ucb/apply
Executable file

SEE ALSO
csh(l), ksh(1), sh(l), xargs(1)

2 November 1991

apropos(1) apropos(1)

NAME

apropos — locates commands by keyword
SYNOPSIS

apropos search-string...
ARGUMENTS

search-string
Specifies a string for which apropos is to search.

DESCRIPTION
apropos examines a database of manual page ‘‘Name’’ sections for the
occurrence of the specified strings. If a match is found, apropos displays
the command name and its corresponding ‘‘Name’’ section. You can use
apropos to help you find a command that does the task you want done.
The apropos command separately considers each search-string, ignoring
case. A string that is part of another word is a match; thus, a search string
of compile matches compiler.

EXAMPLES
This command searches for the string calendar:

apropos calendar
The command displays this output:

cal (1) - generate a calendar for the specified year
calendar(l) - reminder service

The first column contains the names of commands whose ‘‘Name’’ section
contains calendar, followed by the section number, in the form
name (section). The second column contains the actual ‘‘Name’’ section.

To see the on-line documentation for a particular command, enter a
command of this form:

man [section] name
For instance, enter this command:

man 1 cal

FILES
/usr/ucb/apropos
Executable file
/usr/lib/whatis
Database that apropos searches

SEE ALSO
man(1), whatis(l)

November 1991 1

ar(1)

NAME

ar(1)

ar — maintains a library of files in an archive
SYNOPSIS

ar -

ar -

ar -

ar -

ar -

ar -

dp [1] [v] archive file...

mp [1] [v] [position archivefile] archive file...

agp [c] [1] [v] archive file...

rp [c] [1] [u] [v] [position archivefile] archive file...
tp [s] [v] archive file...

xp [1] [s] [v] archive file...

ARGUMENTS
archive

-p

Specifies the name of the archive to be created or maintained.

Causes ar to create an archive without displaying a message. This
option is useful only when used in combination with the -r and -g
options.

Deletes the named files from the archive.

Specifies the name of a file that is to be added to the archive or that is
already in the archive.

Causes ar to place its temporary files in the current directory rather
than in the default /tmp. This option is useful only when used in
combination with the -d, -m, -g, -r, and -x options.

Moves the named files to the end of the archive by default. You can
combine this option with a position specifier to move the file before or
after a file that is already in the archive.

Prints the contents of files that are in the archive as specified by file.

position archivefile

Specifies the position specifiers, where archivefile is the name of a file
in the archive. Replace position with one of these options:

-a Moves the named files after archivefile.
-b Moves the named files before archivefile.

-1 Inserts the named files before archivefile. This action is identical
to the action of the -b position specifier.

Appends the named files to the end of the archive. If the archive does
not exist, ar creates it and displays the message ar: creating
archive. You cannot use a position specifier, as described for the
-m option, with this option. The -q option does not check whether
the named file is already in the archive and therefore can add

November 1991

ar(1l) ar(l)

duplicates. This option is used to avoid quadratic behavior when
creating a large archive on a file-by-file basis. For an alternative to the
- option, see the -r option.

-r Replaces the named file in the archive. If the named file is not already
in the archive, ar adds the file to end of the archive unless you also
use a position specifier, as described for the -m option. If the archive
does not exist, ar creates it and displays the message ar:
creating archive.

-s Causes ar to regenerate the archive’s symbol table. The -d, -m, -q,
-1, and -u options cause ar to regenerate the symbol table
automatically. The other options do not. You can use this option in
conjunction with the -p, -t, and -x options to restore the symbol
table, when, for example, st rip has been used on the archive.

-t Prints the name of each named file in the archive. If you do not
specify any names, ar prints the names of all files in the archive.
Typically, you use this option with the -v option.

-u Changes the behavior of the -r option by causing ar to replace only
those files whose modification dates are more recent than the
modification date of the archive.

-v Causes ar to give a file-by-file description as it works. When used
with the -t option, ar prints a listing similar to the output of the
1s(1) command for each file in the archive.

-x Extracts a copy of the named file. If you do not specify a name, ar
extracts all files in the named archive. In either case, this option does
not alter the archive.

DESCRIPTION
ar maintains files in a single file that is called an ‘‘archive.”’” Typically, an
archive is a library of object files that is used by the link editor, 1d, to
resolve references so that it can produce an executable file. You can also
use ar to create and maintain libraries of other file types.

When ar creates an archive, headers are created in a format that is portable
across all machines. The portable archive format and structure are
described in detail in ar(4). The archive symbol table (described in ar(4))
is used by the link editor (1d) to do multiple passes over libraries of object
files efficiently. Whenever you use ar to create or update an archive, ar
rebuilds the symbol table. You also can use the -s option to rebuild the
symbol table.

November 1991 2

ar(l) ar(l)

EXAMPLES
The first example replaces the file foo. o in the archive 1ibfoo.a witha
new copy of foo.o:

ar -rc libfoo.a foo.o

If 1ibfoo.a does not exist, ar creates it. The -c option prevents ar
from issuing a message that it has created the archive. Because the
command does not use a position specifier, ar places foo. o at the end of
the archive if fo0o. o is not already in the archive.

The second example uses the -u option to cause ar to update the archive
using only those files in the current directory that have a . o suffix and that
are newer than the modification date of the archive itself:

ar -ru libfoo.a *.o
The third example inserts the file new. o into the archive 1ibfoo.a
before foo. o, which is already in the archive:

ar -rvb foo.o 1libfoo.a new.o
The -v option causes ar to print a message as it adds new. o.

LIMITATIONS
If you specify the same file more than once in an argument list, ar puts the
file in the archive once for each mention.

FILES
/bin/ar
Executable file
/tmp/ar*
Temporary files
SEE ALSO
1d(l), lorder(l), strip(l), tar(l)

a.out(4), ar(4) in A/UX Programmer’s Reference

3 November 1991

as(1)

as(1)

NAME

as — assembles files by translating assembler mnemonics to object code
SYNOPSIS

as[-A factor] [-m 1 [-n]1[-0 object-file] [-R 1 [-V]

[-68030] [-68040] [-68851] file
ARGUMENTS

-A factor

file

-R

-V

Specifies the expansion factor to be used to increase the size of the
default symbol table.

Specifies the name of the file to be assembled. By convention,
assembly-language filenames have the . s suffix. If you specify more
than one file argument, a s assembles only the last-named file.

Causes as to run the m4 macro preprocessor on file and assemble the
output of m4.

Turns off address optimization. By default, as optimizes addresses
by replacing, where possible, a reference to a long address with a
reference to a short relative address.

object-file
Causes as to put its output in object-file. If you do not use this option,

as puts its output in a file whose name is formed by removal of the
. s suffix, if there is one, from file and substitution of the . o suffix.

Causes as to remove file when assembly is completed. By default,
this option is off.

Causes as to write its version number on the standard error.

-68030

Assemble for the MC68030 processor and MC68030 MMU. This
option give you access to an enhanced feature set as compared to the
default MC68020 assembly, but the code does not run on the original
Macintosh II computer.

-68040

Assemble for the MC68040 processor and MC68040 MMU. This
option give you access to an enhanced feature set as compared to the
default MC68020 assembly, but the code does not run on the original
Macintosh II computer.

-68851

Assemble for the MC68851 Memory Management Unit (MMU). This
command is on by default.

November 1991 1

as(1) as(l)

DESCRIPTION
as assembles assembly-language files. The C and Fortran compilers
produce assembly-language files and automatically call as to assemble
them.

WARNINGS
If you use the -m option, file cannot use the names of m4 built-in macros as
names for variables, functions, or labels. This is because m4 cannot
distinguish between the use of the built-in macro names as macros and as
assembler symbols (see m4(1)).

LIMITATIONS
The as command cannot process arithmetic expressions that have more
than one forward-referenced symbol per expression.

FILES
/bin/as
Executable file
/usr/tmp/as[1-6]%*
Temporary storage files
SEE ALSO
adb(1), 1d(1), m4(1), nm(1), strip(l)

a.out(4) in A/UX Programmer’s Reference

“‘as Reference’’ in A/UX Programming Languages and Tools, Volume 1

2 November 1991

asa(l) asa(l)

NAME
asa — interprets ASA carriage control characters

SYNOPSIS
asa [file]...

ARGUMENTS
file Specifies the output of a Fortran program that uses ASA carriage
control characters. If you do not specify file, asa reads the standard
input.
DESCRIPTION
asa interprets the output of Fortran programs that use American National

Standards Institute (ANSI) carriage control characters to print on a line
printer.

The asa command assumes that the first character of each line in file is a
control character and transforms the control character into a printer control
character. Here are the control characters and the actions that asa takes:

space
Inserts a single newline character before the line, where space is the
ASCII character 020.
Inserts two newline characters before the line.

Inserts a character that causes an advance to a new page before the
line.

+ Inserts a character that causes the previous line to be overprinted.

The asa command causes the first line of each input file to be printed on a
new page. If any line does not begin with a control character, asa passes
on the second and subsequent characters of the line and writes asa: 1
invalid input lines in file on the standard error.

EXAMPLES
This command line uses asa as a filter on the output of a Fortran program
called a . out and prints the output of asa by using the 1p command,
whose default printer is a line printer:

a.out | asa | 1lp

This command lets you see the output of a Fortran program that has been
sent to a file:

asa file

FILES
/bin/asa
Executable file

November 1991 1

asa(l) asal(l)

SEE ALSO
efl(l), £77(1), fpr(l), fsplit(l)

2 November 1991

at(l)

NAME
at,

at(l)

batch — run commands at a later time

SYNOPSIS
at time [day] [+ increment]

at -

at -

1 [job-number]...

r job-number...

batch

ARGUMENTS
+ increment

day

Specifies an optional increment that further specifies the time at which
to run your job. The increment is a number suffixed by one of the
following times: minutes, hours, days, weeks, months, or
years. Anexample of an incrementis + 1 monthasinat
0815pm + 1 month. The at command also accepts the singular
form of each increment.

Specifies an optional day on which the command is to be run. The day
can be a month name followed by a day number (for example Jan
29); a month name followed by a day number, a comma, and a year
number (for example, Jan 29, 1991); or a day of the week,
spelled out or abbreviated to three characters (for example, Tuesday
or Tue). If you specify a month that is less than the current month
and you do not specify a year, at assumes the next year. Two special
days, today and tomorrow, are recognized. If you do not specify a
date, at uses today if the specified hour is greater than the current
hour or tomorrow if itis less.

-1 [job-number]...

Reports by job number the at and batch jobs that you currently
have scheduled.

-r job-number

time

Removes the specified job-number, which was previously scheduled
by means of at or batch. You can remove only your own jobs
unless you are logged in as root.

Specifies the time at which to run your job. You must specify a time
argument, which can be one, two, or four digits. The at command
interprets a time of one or two digits as specifying an hour of the day
and interprets a time of four digits as specifying the hour and the
minute. You can also specify the time as two numbers separated by a
colon, meaning hour:minute. You can append am or pm to time.
Otherwise, at uses a 24-hour clock. You can also append zulu to

November 1991 1

at(l) at(l)

indicate Greenwich mean time. The at command also recognizes a
special time of noon, midnight, now, or next.

DESCRIPTION
at and batch read commands from the standard input and place them on
a queue to be run at a later time by the at run command, which uses the
Bourne shell (/bin/sh) to run the job. The at command allows you to
specify when the commands are to be run, while jobs queued with batch
are run when system load level permits. When the commands are run,
atrun mails to you the standard output and standard error output of the
job unless you redirected the output elsewhere.

You can use at and batch if your name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, at checks the
file /usr/1lib/cron/at .deny to determine if you should be denied
access. If neither file exists, only a user who is logged in as root can
submit a job. These files consist of one login ID per line.

The at and batch commands read the standard input to get the command
to run. To terminate the entry of commands, press CONTROL-D. To
indicate success, at and batch write the job number and scheduled time
on standard error.

When the job is run, it inherits the shell environment variables, current
directory, file-creation mask, and file-size limit that were in effect when
you entered the at or batch command. The job does not inherit your
open file descriptors, traps, or priority.

If the system is not running at the scheduled time and is started later,
atrun does not run the job.

EXAMPLES
Here are some valid at commands:

at 081l5pm Jan 24
at 8:15pm Jan 24
at now + 1 day
at 5 pm Friday

Use this sequence at a terminal to redirect standard output:

batch
nroff filename > outfile

The following sequence, which demonstrates how to redirect standard error
to a pipe, is useful in a shell script. The order of output redirection
specifications is significant.

_batch <<!
nroff filename 2>&1 > outfile | mail login-id

2 November 1991

at(1l) at(1)

To have a job reschedule itself, invoke at from within a shell script by
including code similar to the following line within the script:

echo "sh script" | at 1900 thursday next week

STATUS MESSAGES AND VALUES
at: you are not authorized to use at. Sorry.
Indicates that your name is notin /usr/lib/cron/at.allow or
that your name is in /usr/lib/cron/at.deny.

at: bad date specification
Indicates that the day or time argument is incorrect.

warning: commands will be executed using /bin/sh
Indicates that the command was successful.

FILES
/usr/bin/at
Executable file
/usr/bin/batch
Executable file
/usr/lib/atrun
Executable file, invoked by cron, that runs the jobs in the at and
batch queues
/usr/lib/cron/at.allow
File containing a list of allowed users
/usr/lib/cron/at.deny
File containing a list of denied users
/usr/lib/cron/queuedefs
File containing scheduling information
/usr/spool/cron/atjobs
Directory containing the job queue

SEE ALSO
crontab(l), kill(l),mail(l), nice(l), ps(1), sh(l)

cron(1M) in A/UX System Administrator’s Reference

November 1991

atlookup(1) atlookup(l)

NAME

atlookup — looks up network-visible entities (NVEs) registered on the
AppleTalk network system

SYNOPSIS
atlookup [-d] [-x nn][-s ss][-x] [object] : type[@zone]]]

atlookup -z [-C]

ARGUMENTS
~-C Prints zones in multiple columns.

-d Prints the network address in decimal numbers.

object
Specifies the name of the object to be looked up.

-r nn
If the lookup is unsuccessful, the system tries again the number of
times specified by nn. The default is to try the lookup eight times.

-s nn
Instructs at 1ookup to wait a certain number (ss) of seconds between
consecutive attempts to complete a lookup successfully. The default is
to space retries one second apart.

type Specifies the type of the object to be looked up.

-x Prints the 8-bit ASCII characters on output as hexadecimal numbers of
the form (where X is a hexadecimal digit). This option is useful when
you are using a terminal other than the A/UX system console.

-z Lists all zones in the network.

zone
Specifies the zone in which the lookup is to be performed. You can
use an asterisk instead of a zone name to indicate the current zone
name. If you don’t specify a zone name, the current zone is the
default.

The object and type arguments can contain wildcard characters. The equal
sign (=) indicates a wildcard lookup. For wildcard lookups to work
correctly with all nodes, the only character specified in the string must be
the wildcard character. However, AppleTalk Phase 2 nodes also honor a
single embedded wildcard character, ‘=". Under this scheme, one wildcard
character can appear anywhere in the string and can match zero or more
characters. Note, however, that although an embedded ‘=" is acceptable in
object and type arguments of at 1ookup, only the nodes implementing
AppleTalk Phase 2 protocols respond to such a query. For this reason, the
resulting list of NVEs may be incomplete.

1 November 1991

atlookup(l) atlookup(l)

DESCRIPTION
at lookup uses the Name Binding Protocol (NBP) to look up names and
addresses of the specified NVEs.

The default is to look up all the entities (of all types) in the current zone.
Specifying the object, type, or zone on the command line changes the scope
of lookup.

Information about the NVEs is displayed in a table format, one line per
NVE. Each line gives the names of the object, type, and zone and the
numbers of the network, node, and socket.

EXAMPLES
This command looks up all NVEs registered in the local AppleTalk zone:

atlookup
In response, the system displays output similar to this:

Found 5 entries in zone My-Zone

6b5b.c3.ea 3-Eyed Monster:LaserWriter
6b5b.80.fd 3-Eyed Monster Spooler:LaserWriter
6bl4 .84 .ea Incognito :LaserWriter

6b19.a3.fd Light of Day:AFPServer

6b51.27.fd Nets-R-Us Spooler:LaserWriter

In an extended AppleTalk network, this command displays all NVEs (of
any type) in the current zone whose names start with L and end in y:

atlookup L=y:=

The output might be similar to this:
Found 1 entries in zone My-Zone
6b19.a3.fd Light of Day:AFPServer

FILES
/usr/bin/atlookup
Executable file

SEE ALSO
at_cho_prn(l), atprint(l), atstatus(l)

Inside AppleTalk

November 1991 2

atprint(1) atprint(1)

NAME
atprint — transfers data to a printer by using AppleTalk protocols

SYNOPSIS
atprint [printer-name| : printer-type[@zone]]]

ARGUMENTS
printer-name
Specifies the name of the printer you want to use.

printer-type
Specifies the type of printer, such as LaserWriter or
ImageWriter. Use this option when you want to allow the network
to select the printer, but only a printer of a given type. If you omit this
option, LaserWriter is the printer type used by default.

For example, when the printer name is specified with wildcards. (See
atlookup(l) for an explanation of wildcards.) The print device
used is the one chosen by the network. By supplying LaserWriter
as the printer type in a case such as this, you can restrict the network
to choosing a printer that can handle PostScript instructions.

The full range of possible replacement values for printer-type depends
on the configuration of your network. Each different type of print
device broadcasts its printer-type and printer-name identification when
it registers itself with the network. You can use at 1ookup to obtain
a report showing this information for all the AppleTalk devices on
your network (see at 1ookup(1)).

zone
Specifies the AppleTalk zone in which the printer resides. If you omit
this argument or specify it as *, the local zone is used.

DESCRIPTION
atprint uses a printing protocol to establish a connection to an
AppleTalk device, where it sends data received on its standard input until it
reaches an end-of-file character. When it detects an end-of-file character,
atprint closes the AppleTalk session with the device, enabling other
users to gain access to the printer.

You can select the destination AppleTalk device through the command-line
arguments as described in the ‘‘Arguments’’ section earlier in this manual
page. If you do not specify any of these arguments, atprint uses the
printer that was last selected either with the Chooser or with at_cho_prn
(see at_cho_prn(l)).

Often the printer you access by way of an AppleTalk connection is a
LaserWriter. Many LaserWriter models are PostScript printers. If you are
using such a LaserWriter, the data that you send it must already be

1 November 1991

atprint(1l) atprint(1)

translated into the PostScript page-description language. For example, the
psdit command translates the output from trof £ (invoked with the
-Tpsc option) into PostScript:

troff -Tpsc -mm file | psdit |atprint

The atprint command displays one or more messages indicating the
AppleTalk device with which it is communicating and possibly many
device status messages (such as when another print job is occupying the
printer for a period of time). In the preceding example, the default printer
is used. (See the ‘‘Arguments’’ section earlier in this manual page.)

(Note that the atprint command does not honor requests from a
LaserWriter regarding the downloading of fonts. Likewise, it does not
prepend a PostScript header to the data stream in the same manner as the
printer drivers in the Macintosh Operating System. In the preceding
example, a PostScript header is still provided because psdit prepends its
own header as part of the PostScript conversion process.)

In AppleTalk programming terms, the arguments make up a network-
visible entity (NVE), where

printer-name| : printer-type[@zonel]]
corresponds to the AppleTalk object, type, and zone:
object : type@zone

EXAMPLES
This command line maps a plain text file into PostScript and then submits it
to joe’ sprinter:

enscript -p- file | atprint "joe’s printer"

WARNINGS
The atprint command does not process the input files as does 1pr. To
print ASCII files properly on a PostScript printer with atprint, you must
preprocess the files with pstext or enscript. Likewise, you must
preprocess files produced by troff with psdit(l).

FILES
/usr/bin/atprint
Executable file
SEE ALSO
at_cho_prn(l), atlookup(l), atstatus(l),
enscript(l), 1pr(l), psdit(l), pstext(l)

‘AppleTalk Programming Guide’’ in A/UX Network Applications
Programming

November 1991 2

atprint(1) atprint(1)

““‘Administering AppleTalk’ in A/UX Network System Administration
Inside AppleTalk

3 November 1991

atstatus(l) atstatus(1)

NAME
atstatus — displays status information from an AppleTalk device

SYNOPSIS
atstatus [object [:type [@zonel]]

ARGUMENTS
object
Specifies the name of the AppleTalk device. Wildcard characters are
not permitted. If you don’t specify the AppleTalk device, at status
uses the system default. If the name contains spaces, put quotation
marks around the name. Here is an example:

atstatus "Sharon’s Print Shop"

type Specifies the type of server. If you don’t specify the type argument,
the default is LaserWriter. If you supply a zone argument, you
must also supply a type argument.

Zone
Specifies the zone in which the AppleTalk device resides. If you
don’t specify the zone, the system defaults to *, your local zone.

DESCRIPTION
atstatus gets the status string from an AppleTalk device, such as a
LaserWriter.

FILES
/usr/bin/atstatus
Executable file

SEE ALSO
at_cho_prn(l), atlookup(l), atprint(l)

Inside AppleTalk

November 1991 1

at_cho_prn(1) at_cho_prn(1)

NAME
at_cho_prn — allows you to choose a default printer on the AppleTalk
internet

SYNOPSIS
at_cho_prn [type[@zone]]

ARGUMENTS
type[@zone]

Specifies the type of printer to be used, and the area (zone) in which it
resides. If you don’t use the fype argument on the command line,
at_cho_prn displays all entities of the types LaserWriter and
ImageWriter. The system prompts you to select a printer by
entering the appropriate number from the printer list display. If you
don’t enter the zone part of the argument on the command line,
at_cho_prn lists all the zones in the internet and prompts you to
choose the zone in which you’d like to select your default printer.

DESCRIPTION
The at_cho_prn command displays a list of printer selections and saves
the name of the printer that you select. The at_cho_prn command
checks the network to determine which printers are registered on that
network.

After you specify the zone, at _cho_prn lists the printers (of type type)
available in that zone.

EXAMPLES
The command

at_cho_prn ’'LaserWriter@*’
produces output similar to this:

ITEM NET-ADDR OBJECT : TYPE
1: 56bf.af.fc AnnLW:LaserWriter
2: 56bf.ac.cc TimLW:LaserWriter

ITEM number (0 to make no selection)?

where NET-ADDR is the AppleTalk internet address (printed in
hexadecimal) of the printer’s listener socket, and OBJECT : TYPE is the
name of the registered printer and its type.
FILES
/usr/bin/at_cho_prn
Executable file

1 November 1991

at_cho_prn(l) at_cho_prn(1)

SEE ALSO
atlookup(l), atprint(l), atstatus(l)
Inside AppleTalk
“‘Administering AppleTalk,”” in A/UX Network System Administration

““‘AppleTalk Programming Guide,”’ in A/UX Network Applications
Programming

November 1991

awk(1) awk(1)

NAME
awk — scans a file for lines that match a specific pattern

SYNOPSIS
awk [-Ffield-separator] ' pattern-action...' [[-v] variable=value]...

[file]...

awk [-f awk-source-file] [-Ffield-separator] [[-v] variable=value]...
[file]...
ARGUMENTS

-f awk-source-file
Specifies the file containing the instruction that awk should interpret.

-Ffield-separator
Specifies the character to be treated as the field separator when awk
parses a record into fields.

file Specifies the file or files containing text data to be processed by awk.

pattern-action
Specifies an awk instruction, which is provided in the form of a
pattern followed by an action enclosed in braces:

pattern {action}

[-v] variable=value
Specifies the value of an awk variable that is established for use in the
main sections of an awk program, which consists of any number of
pattern-action arguments. If the —v option is present, the variable is
also available in the BEGIN (initialization) section of an awk
program.

DESCRIPTION
awk effectively handles most programs containing text-parsing, report
generation, and record validation tasks. These programs typically contain a
brief list of instructions that specify text-scanning and text-manipulation
functions.

The standard operation of awk is to scan each input file once, looking for
matches between each input record and any of a set of patterns that you
supply. These pattern instructions are accompanied by action instructions.
Sometimes the action instructions merely establish settings that affect text
processing that is undertaken by awk as part of its standard operation, such
as the parsing of records into fields.

So that text patterns can be sought in specific positions in an input record,
awk splits the input record into fields at every occurrence of a
field-separator character. After an input record is split into fields, each field
is assigned to a field variable, such as $1, $2, $3, and so forth. These

1 November 1991

awk(1) awk(1)

variables can be used to reference input fields either in the pattern or the
action portion of a pattern-action argument.

You can obtain a measure of control over the field-parsing function by
specifying your own field separator for parsing purposes. The default field
separator is white space (tabs or spaces). You can change this separator by
making a different assignment to the variable FS, or through the command
line by specifying a field-separator character along with the -F option. To
ensure that your own field separator takes effect before any input records
are parsed into fields, use the -F construct or place the assignment in an
action associated with the BEGIN pattern. (See the example at the end of
“‘Patterns,’’ later in the ‘‘Description’’ section.)

(A regular expression can also be assigned to the F'S variable, in which
case the field delimiter can be any one of the possible values that match the
regular expression.)

Although it looks like a field reference, $0 refers to the entire input record,
with field delimiters unstripped.

For the purposes of documenting syntax, a pattern and its associated
actions are considered one pattern-action. As shown in the first syntax
description in the ‘‘Synopsis’’ section, pattern-action arguments can be
supplied directly on the command line. Alternately, you can specify the - £
option so that pattern-action arguments can be placed inside of an awk
program file, as shown in the second syntax description (see SYNOPSIS).
In the latter case, replace awk-source-file with the name of the program file
with the awk instructions you want to use.

Any time an input record contains a substring that is sought as specified by
pattern, awk performs the associated action. The text of an input record
that is matched by a pattern can be accessed easily through references to
the variables $0, $1, $2, and so forth.

Input records can be acted upon immediately or handled less directly. An
example of an immediate action is the printing of the contents of a
matching input record as soon as it is encountered. An example of a less
immediate action is storing a record in a variable when it is first
encountered, then printing it later if later conditions warrant it, such as
when the contents of subsequent records invalidate it and an error message
is desired.

A stored value persists until it is changed by another portion of the same
pattern-action or by an entirely different pattern-action. Such assignments
permit actions to be gated not only by the text of the input record being
scanned but also through the stored text drawn from previous input records.

November 1991 2

awk(1) awk (1)

Command-Line Options
Either pattern-action arguments are specified inside the awk command
lines as shown in the first syntax description line, or they are supplied in a
file through specification of file arguments along with the - £ option, as
shown in the second syntax description line. When pattern-action
arguments all appear in the command line, they should be formed into one
string enclosed in single quotation marks (’). The quotation marks protect
them from being interpreted by the shell. Refer to the awk chapter in A/UX
Programming Languages and Tools, Volume 2 for more information about
shell and awk cooperation.

The level of escapement afforded by the single quotation marks causes any
references to shell variables to remain unsubstituted by the shell. To enable
their substitution requires the use of awk variables that assign values inside
the command line.

Variables that are initialized on the command line provide a means of
passing parameter values between the shell and awk. The most common
use for passed parameters is to access the values of positional variables
available from within shell scripts (S1, $2, and so forth). The format of
these assignments is similar to that of variable assignments, except that an
unescaped space cannot be used on either side of the equal sign, as follows:

awk -f awkfile datafile variablel=x variable2=$1

If the parameter assignment is preceded by a -v option, the value so
assigned is made available even in the BEGIN (initialization) section of the
awk program. Otherwise, the value is not assigned to the variable until
after the BEGIN section has been evaluated.

Like input files, the passed parameters are also evaluated in the order in
which they appear: Passed parameters that are specified after an input file
will not be available while the system is processing that input file. Passed
parameters that are specified before any number of input files will be
available when processing those input files.

If no input file is specified, the standard input is read until exhausted.
When several input files are specified, they are read in the order in which
they are specified. If the shorthand notation for standard input (-) is
specified as one of several file arguments, the standard input is also read in
the order in which it is specified.

Patterns
The pattern portion of a pattern-action argument often involves the
scanning of text for occurrences of a particular text pattern. These patterns
are specified through a pattern-seeking template, better known as a regular
expression. For a more detailed explanation of regular expressions, refer to
ed(1).

3 November 1991

awk(1) awk(1)

Regular expressions must be surrounded by slashes. The format for a
regular expression is

/character-coll... character-colN /

where character-coll through character-colN represent the first through
last characters to seek before a substring is considered ‘‘matched.”’

Besides supplying a normal character to replace character-coll and other
character positions, you can use a special or wildcard character, such as the
period, which matches any character at that position. An asterisk matches
any number of any characters from that position onward. Other special
characters are the caret (") and dollar sign ($), which ‘“‘match’’ the
beginning of a line and the end of a line, respectively. The only sensible
place to insert the caret is at the beginning of pattern. Likewise, the only
sensible place to insert the dollar sign is at the very end of pattern.

Besides supplying a single character to replace character-coll and other
character positions, you can supply a character range or a character list
enclosed in brackets. Thus,

/" [A-Z] [aeiou] /

evaluates as true for all input records that start with an uppercase character
followed by a vowel.

The pattern portion of the pattern-action argument can be any expression,
including ones that do not involve pattern-seeking. For example,

$1 > 0 { print }

is a valid pattern-action argument that prints all input records with a first
field that is greater than 0.

Pattern expressions often test for the presence of certain text patterns,
either within the entire input record or within one or more fields in an input
record. Field-scoped searches require one of the ‘‘pattern-seeking’’
operators and a regular expression, as follows:

$0 ~ /Employee/ { action... }
$3 ~ /Employee/ { action... }

If you search the entire input record for matching strings, you do not have
to supply the $O ~ portion of the line, since this portion will be assumed
when a regular expression is supplied by itself as the pattern. This
convention makes the following patterns equivalent:

$0 ~ /Employee/
/Employee/

November 1991 4

awk(1) awk(1)

To seek a contiguous set of input records starting from a record that
matches patternl and ending with a record that matches pattern2, specify
two regular expressions separated by a comma, as follows:

/patternl / , / pattern2/ { action... }

The action is performed for all input records between an occurrence of the
first pattern and the next occurrence of the second pattern.

The special patterns BEGIN and END can be used to establish actions to be
taken before the first input record is read and after the input stream is
exhausted. For example, a tab can be made the field separator
(exclusively) with

BEGIN { FS = "\t" }

Actions
A pattern-action argument has the form

pattern { action }

A missing {action} argument triggers the printing of matching input
records; a missing pattern argument causes the associated action to be
performed for every input record (as if every input record matched the
missing pattern). An action argument is a sequence of statements. A
statement can be one of the following code fragments:

if (conditional) statement [else statement |

while (conditional) statement

for (expression ; conditional ; expression) statement

break

continue

{ [statement]... }

variable = expression

next

exit
Statements are terminated by semicolons, newline characters, or right
braces. Expressions take on string or numeric values as appropriate and are
built with the operators +, -, *, /, %, and ‘‘concatenation’’ (indicated by a
blank). The C operators ++, --, +=, —-=, *=, /=, and %= are also available
in expressions. Variables can be scalars, array elements (denoted x [i]), or
fields. Variables are initialized to the null string. Array subscripts can be
any string, including strings generated automatically when numeric
expressions are used as subscripts. String constants are enclosed in double
quotation marks (").

5 November 1991

awk(1) awk (1)

The next and exit functions affect control flow. Use exit to terminate
processing without any further actions. Use next to terminate any
remaining actions that would have been gated for the current input record,
skipping to the beginning of the current awk-source-file so that processing
can continue with the next input record.

Output Functions
The output functions include the following statements:

print [expression] [[,] expression]...
printf (format-string, expr [, expr]...)

Both of these statements can print to files as well as the standard output, as
described by the more general syntax

print-command [>file]

Use the print statement to print the results of expression arguments
followed by the output record separator character given by the variable
ORS. If print is specified without any accompanying arguments, the
entire input record is printed. If several expressions are supplied, separated
by commas, the result of each expression is printed, separated by the output
field separator given by the variable OFS. See ‘‘Built-in Variables’’ later
in the ‘‘Description’’ section for more built-in variables.

Use the print f statement to format and print the result of expr arguments
in accordance with format-string (see print £(3S)). Another way to place
data on the awk output stream is to use the sy st em function

system (expression)

In this case, expression must compute to a valid shell command so that it
can be executed outside the context of awk. Any output resulting from the
execution of the command is inserted into the output of awk. This function
returns the exit status for the command so that you can test for successful
execution by testing for a 0 exit value. (This is the case for most, but not
all, commands.)

Input Functions
Besides being supplied as command-line arguments, multiple input files are
supported through the get1ine function. This record-reading function
can be one of the actions associated with a BEGIN or an END pattern, as
well as any other patterns. A typical use is to associate this action with the
BEGIN pattern to initialize the contents of an array from static data stored
in an external file. Since the return value is 1 as long as the input file is not
exhausted, you can use the following code fragment to establish the file
table:

BEGIN {

November 1991 6

awk(1) awk(1)

while (getline array[count] <"table" > 0)
{ count = count + 1 }

This command can be specified in any of four different forms:

getline

getline variable
getline <file
getline variable <file

The first form reads the next input record. Unlike the next statement,
with this form control remains at the place where get 1ine occurs within
the current pattern-action argument and proceeds to any pattern-action
arguments that follow, until the end-of-file character is reached.

The second form behaves in the same way except that certain variables
($0, $1, and so forth) are not reset and the content of the input record is
assigned to variable unstripped of field separators.

The third and fourth forms are the same as the first and second forms
except that the input record is read from file. If file is an explicit reference
to a file, enclose it in quotation marks to make it a string constant.
(Otherwise it is likely to be interpreted as a variable that is dynamically
initialized to an empty string.) To switch between many different input
files, use the close (file) function before opening any new files for
reading.

Other String Functions
Here are the built-in functions for strings:

index (stringl , string2)
Returns the index at which string2 first occurs inside stringl or 0 if
there is no match.

length (string)
Returns the length of its argument taken as a string, or of the whole
input record if no argument is supplied.

match (string, pattern)
Returns the index at which the regular expression pattern first occurs
inside string while setting the variables RSTART and RLENGTH.
Returns 0 if there is no match.

split (string, array, separator)
Splits string into fields that are assigned to elements in array with
subscripts 1, 2, and so on. A new field is created at each occurrence

7 November 1991

awk(1) awk(1)

of separator within string. It returns the number of fields that were
parsed.

substr (string, position, length)
Returns the length-character substring of string that begins at position
position.

sprintf (format-string , expr(, expr]...)
Formats expressions in accordance with format-string (described in
print £(3S)), returning the resulting string.

sub (pattern, replacement][, variable])

gsub (pattern, replacement[, variable])
Performs text substitution (search-and-replace) functions either for the
first matched substring (sub) or globally for every matched substring
(gsub).

Number Functions
Here are the built-in functions for numbers:

atan2 (y,x)
Returns the arctangent of y/x in radians in the range -7 to T.
cos (radians)
Returns the cosine of the angle measure.
exp (power)
Returns e raised to the power power.
int (real)
Truncates real, returning an integer.
log (x)
Returns the natural logarithm of x.

rand ()
Returns a pseudo-random number between 0 and 1.

srand ([seed])
Sets the seed for the random number generator to seed or to the time
of day if seed is missing.

sin (radians)
Returns the cosine of the angle measure.

sgrt (x)
Returns the square root of x.

User-Defined Functions

User functions can be called just as built-in functions are, once they are
declared with

function name (arg...) { body }

November 1991 8

awk(1) awk(1)

Within body, the function return (expression) can be used to cause the
user function to return the value of the supplied expression.

Expressions
This discussion of expressions applies within action statements and within
patterns. Only certain action statements can include expressions; refer to
““‘Actions,’’ earlier in the ‘‘Description’’ section for more information.
Parentheses can be used to establish operation precedence for expressions
containing several operators.

Expressions can be string or number constants, variables, or field
references as well as combinations of these joined by equal (==), not equal
(!=), greater-than (>), less-than (<), greater-than-equal (>=), and less-
than-equal (<=). Because they produce Boolean results (true or false), two
or more of the preceding comparison operations can be related by means of
Boolean operators: logical AND (&&), logical OR (| |), and NOT (!).

To test for the existence of various substrings in a string, specify the string
followed by one of the pattern-seeking operators (~ and ! ~) followed by a
regular expression. Use ~ to test whether the string contains a substring
that is sought by the regular expression supplied. Use !~ to test whether
the string does not contain a substring that is sought by the regular
expression supplied.

The following example uses all of these types of operations:
{ if (NR > 1 && $0 ~ /+/) print }

In the next line of code, which is equivalent to the one just given, the
operations have been moved into the pattern area:

S0 ~ /+/ && NR > 1 { print }
No operation exists specifically to request conversions between numbers
and strings, or between strings and numbers. To force an expression to be

treated as a number, add O to it; to force it to be treated as a string,
concatenate the null string (" ") to it.

Built-in variables
Other variable names with special meanings include

NF the number of fields in the current record
NR the ordinal number of the current record

FNR
the ordinal number of the current record relative to the beginning of
the current input file

FILENAME
the name of the current input file

9 November 1991

awk(1) awk(1)

OFS
the output field separator (blank by default)

ORS
the output record separator (the newline character by default)

OFMT
the output format for numbers (% . 6g by default)

ARGC

a variable that is set to the total number of command-line arguments
that were offered on the awk command line

ARGV []
a built-in array that is set to the command name (awk) at index 0, the
first command-line argument at index 1, and so on up to the last
command-line argument at index n

Overview of awk Processing and Preprocessing
For each input record, awk performs the ‘‘matched’’ pattern-action
operations. Thus, the actions that awk performs usually vary with each
input record. The effect is similar to that of creating a number of different
programs, where each one is a particular accumulation of lines from a
master collection. Each of the accumulated subprograms is run whenever
its triggering records show up in the input stream, possibly many times
over. Through careful selection of patterns, these subprograms can be
closely tailored to the kind of data that is present in the input record.

When the input data is not already partitioned nicely into fields and
records, the use of preprocessing can be useful to transform the data into
more regular units from which meaning is more easily extracted. For text
data that already contains field separators, the field values that indicate
variant records are easily detected when they can be expected at a fixed
field location references within patterns. (See ‘‘Patterns,’” earlier in the
“‘Description’’ section.) For data that is not already subdivided or
regularized, preprocessing with sed or awk is often desirable so that units
of data that affect the meaning of other units of data can be incorporated
into the same record, or so that independently meaningful units of data are
separated into new records.

When you are combining spans of data into the same record, it is often
desirable to place context-establishing data at the beginning so that certain
patterns can be sought in certain positions by using the corresponding
features of regular expressions, such as the caret (™).

In cases involving irregular data, the preprocessing concern of greatest
import is the generation of appropriate record and field boundaries within
the data. For instance, each pass of preprocessing can be designed so that a
particular output field (or a particular record within a set of records) will be

November 1991 10

awk(1) awk(1)

set to an appropriate value for identifying the context of a certain amount
of data. For example, the nesting of procedures inside braces is more
easily unraveled if the beginning and ending braces always occupy the first
field of an input record, or a dedicated input line.

EXAMPLES
The following command prints lines from the file data that are longer 72
characters:

awk "length > 72" data

The following command prints the first two fields of each line in reverse
order:

awk ’{ print $2, $1 }’' filea
prints the first two fields of each line in reverse order.

awk ‘{ s += $1 }
END {print "sum is", s,
"average is", s/NR }' filea

adds up the first column and prints the sum and average.

awk '{ for (i1 = NF; 1 > 0; --1)
print $i }’ filea

prints all the fields of each line in reverse order. The fields are printed one
per line in this example.

awk "/start/, /stop/" filea

prints all records between start/stop-pattern pairs for every such pair in the
file.

awk '
$1 > max { max = $1 }
END { print "Max field 1 value=" max }’
prints the maximum value that appears in field 1 of each input record.
FILES
/bin/awk
Executable file
SEE ALSO

grep(l), lex(1), sed(l)
“‘awk Reference,”’ in A/UX Programming Languages and Tools, Volume 2

The awk Programming Language by A.V. Aho, B.W. Kernighan, and P.J.
Weinberger (Reading, MA: Addison-Wesley, 1988)

11 November 1991

banner(1) banner(1)

NAME
banner — generates a poster

SYNOPSIS
banner string...

ARGUMENTS
string
Specifies a string of no more than ten characters. The banner
command truncates any additional characters. If you use quotation
marks to enclose words separated by a space, banner generates its
output on one line. Otherwise, banner interprets multiple words as
separate arguments and puts each word on its own line.

DESCRIPTION
banner reproduces its arguments in large letters, using the number sign
(#), on the standard output.

EXAMPLES
This command causes the characters H, A, P, P, and Y to be printed in large
letters:

banner HAPPY | 1lp
FILES

/usr/bin/banner
Executable file

SEE ALSO
banner7(1), echo(l)

November 1991 1

banner7(1) banner7(1)

NAME

banner7 — generates a large banner
SYNOPSIS

banner7 [-w [width]] [text]
ARGUMENTS

text Specifies the text of the banner. If you omit fext, banner7 displays a
Message: prompt and reads its standard input until you press
RETURN. If you type more than 255 characters, banner7 truncates
the 256th and remaining characters.

~w[width)]
Specifies the width of the output. If you omit width, banner7 uses 80
columns. If you do not specify this option, banner7 uses a default
of 132 columns.
DESCRIPTION
banner7 generates a large banner, using the number sign (#) to form the
characters, on the standard output. Typically, you pipe the output of
banner?7 to the 1p command for printing. The output of banner7 is
designed to be printed on a line printer.
LIMITATIONS
The banner7 command cannot handle these ASCII characters:

<>[1\N"_{y1-

Also, banner?7 substitutes an alternative representation for a quotation
mark (), an apostrophe ('), and an ampersand (&) that is funny looking
but still useful.

The -w option is implemented by skipping some rows and columns. As
you narrow the column width, the output becomes grainy and letters
occasionally run together.

STATUS MESSAGES AND VALUES
The message:

The character ‘¢’ is not in my character set
is produced to indicate a character that banner7 cannot handle.

FILES
/usr/bin/banner?
Executable file

SEE ALSO
banner(1l), echo(l)

1 November 1991

basename(1) basename(1)

NAME
basename, dirname — get part of a pathname

SYNOPSIS
basename string [suffix]

dirname string

ARGUMENTS
string
Specifies an absolute or a relative pathname.

suffix
Specifies an optional suffix that, if present in string, basename is to
remove.

DESCRIPTION
basename examines string for the last slash (/) and returns the characters
that follow the slash. For example, basename /usr/bin/vi yields
vi.

dirname examines string for the last slash and returns the characters that
precede the slash. For example, dirname /usr/bin/vi yields
/usr/bin.

Both basename and dirname write on the standard output. Neither
command verifies that string is a valid pathname on the current system.

EXAMPLES
The basename and dirname commands are most commonly used in
shell scripts where the commands are enclosed within back quotes ().
Enclosure within backquotes causes the command to be executed and the
result substituted as an argument to another command. For example, if $1
is /users/tom/prog/mine. c, this sequence compiles
/users/tom/prog/mine.c and moves the output to a file named
mine in the current directory:

cc $1
mv a.out ‘basename $1 ’.c’’

This sequence sets the Bourne shell variable NAME to
/users/tom/prog:

NAME=‘dirname /users/tom/prog/mine.c’
STATUS MESSAGES AND VALUES

If string is only a slash, an error results and basename displays this
message:

expr: syntax error
0

November 1991 1

basename(1)

FILES
/bin/basename
Executable file
/bin/dirname
Executable file
SEE ALSO
sh(1)
2

basename(1)

November 1991

batch(1) batch(l)

See at(1)

November 1991 1

be(1) be(1)

NAME
bc — processes an arbitrary-precision arithmetic language

SYNOPSIS
bc [-c] [-1] [file]...
ARGUMENTS

-c Causes bc not to invoke dc. If you specify this option, bc output that
is normally sent as input to dc is sent to the standard output instead.

file Specifies a file that contains statements that bc can interpret. You can
use a file argument to set built-in names, such as scale.

-1 Causes bc to use an arbitrary-precision math library.

DESCRIPTION
bc is an interactive processor for a language that resembles C but provides
unlimited-precision arithmetic. Actually, bc is a preprocessor for the dc
command, which it invokes automatically.

The bc command reads the standard input, but you can put bc commands
in a file that bc reads when it starts up.

The section that follow describe the syntax of the bc language, where
name is a variable or function name, expression is an expression, and
statement is a statement.

Comments
Comments begin with a slash and an asterisk (/ *) and end with an asterisk
and a slash (*/).

Names
You can construct variable names with the letters a through z. Uppercase
letters are not allowed. You can reference array elements by using square
brackets, as in name [expression]. You can also use these built-in names:

ibase
Sets the input number radix.

obase
Sets the output number radix.

scale
Sets the number of digits that are retained to the right of the
decimal point after an arithmetic operation.

auto
Defines variables that are pushed down during function calls.

You can use the same name for an array, a function, and a simple variable
simultaneously.

1 November 1991

be(1) be(1)

All variables are global to the program. When using arrays as function
arguments or defining them as automatic variables, you must put empty
square brackets after the array name.

Other Operands
Other operands are constructed from arbitrarily long numbers with an
optional sign or an optional decimal point. Here are some examples:

(expression)
Evaluates the value of expression.

sqrt (expression)
Returns the square root of expression.

length (expression)
Returns the number of significant decimal digits in expression.

scale (expression)
Returns the current value of scale.

abc (expression, ..., expression)
Calls the function albbc with the specified arguments.

Operators
Here are the available operators:

= =4 = =% :/ =% =

The percent sign (%) is the modulo operator, and the caret (") is the
exponentiation operator. You can use a double plus sign (++) and a double
minus sign (--) as prefix and postfix operators on names.

Statements
Here are the forms that a statement can take:

expression

{statement ; ... ; statement}

if (expression) statement

while (expression) statement

for (expression; expression; expression) statement
break

quit

November 1991 2

be(1) be(1)

The value of a statement that is an expression is printed unless the main
operator is an assignment.

You can separate statements by using a semicolon or a newline character.
Two newline characters cannot follow a left brace ({).

Function Definitions
Here is the form of a function definition:

define name (name, ..., name) {
auto name, ... , name
statement; ... statement
return (expression)
}
The bc command passes all function arguments by value.
Math Library

These functions make up the math library that becomes available when you
use the -1 option:

s (x) sine

c(x) cosine

e(x) exponential

1(x) log

a (x) arctangent

j(n,x) Bessel function
EXAMPLES

This sequence defines a function that computes an approximate value for
the exponential function:
scale = 20
define e(x){
auto a, b, ¢, i, s

a =1
b =1
s =1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
S = s+C
}

}

This sequence calculates approximate values of the exponential function of
the integers 1-10:

3 November 1991

be(1) bc(1)

for(i=1; 1<=10; 1i++) e(1i)

LIMITATIONS
The bc command supports neither the logical AND operator (&&) nor the
logical OR operator (| |).

The for statement must have all three expressions.

The gquit statement is interpreted when it is read rather than when it is
executed.

FILES
/usr/lib/bc
Executable file
/usr/bin/dc
Executable file that bc calls
/usr/1ib/1ib.b
Mathematical library file invoked by the -1 option

SEE ALSO
de(1)

“‘bc Reference’” in A/UX Programming Languages and Tools, Volume 2

November 1991 4

bdiff(1) bdiff(l)

NAME
bdiff — compares the difference between two large files that are too big
for diff to handle

SYNOPSIS
bdiff filel file2 [lines-per-segment] [-s]

ARGUMENTS
filel
Specifies the file that will be compared with file2. If this file is a
hyphen (-), bdi f f reads the standard input. In this case, file2 cannot
be a hyphen.

file2
Specifies the file that will be compared with filel. If this file is a
hyphen, bdi f f reads the standard input. In this case, file/ cannot be a
hyphen.

lines-per-segment
Specifies an optional integer value that bdi f f uses as the number of
lines into which it divides each segment. If you do not use the
lines-per-segment argument, bdif £ uses a default of 3500. This
argument is useful for those cases in which segments of the default
size are too large and cause di ff to fail. If you use this argument, it
must appear after the file arguments. If you also use the -s option, the
lines-per-segment argument must appear before -s.

-s Suppresses bdi f £ diagnostic messages. This option does not
suppress dif f status messages. If you use this option, it must appear
after the file arguments. If you also use the lines-per-segment
argument, the - s option must appear after the lines-per-segment
argument.

DESCRIPTION
bdiff finds the differences between files that are too large for diff by
dividing the files into segments and by then running di f £ on the
corresponding segments.

The output of bdiff is exactly that of dif £, with line numbers adjusted

to make it appear as though the files were processed as a whole. Note that
because bdif £ divides the files into segments, it does not necessarily find
a smallest sufficient set of file differences.

The output consists of line number information and changed lines in a
format that can be used by ed to change file] into file2. A less than symbol
(<) at the beginning of a line indicates that a difference has been found in
filel. A greater than symbol (>) at the beginning of a line indicates a
difference in file2. See diff(1) for a complete explanation of the output.

1 November 1991

bdiff(1) bdiff(1)

EXAMPLES
Here are the contents of two files named Harold and Maude:
Harold: Maude:
The first line. The first line.
The second line. The second line.
The third line. The THIRD line.

This command line produces the differences between the files:
bdiff Harold Maude
Here is the output:

3c3
< The third line.

> The THIRD line.

STATUS MESSAGES AND VALUES
The bdi f £ command produces messages that the help command can
interpret. You may, for example, see this message:

bdiff: can not write to temporary file (bd7)
To see an explanation of this message, enter

help bd7
The bdi f £ command can also produce these messages:

ERROR: arg count (bdl)

ERROR: both files standard input (bd2)
ERROR: cannot fork, try again (bd3)
ERROR: non-numeric limit (bd4)

ERROR: cannot execute diff (bd5)

FILES
/usr/bin/bdiff
Executable file
/usr/bin/diff
Executable file that bdi f f calls

SEE ALSO
diff(l),dif£3(1), ed(1l), help(l), sdiff(l)

November 1991 2

bfs(1) bfs(1)

NAME
bfs — edits big files

SYNOPSIS
bfs [-] file

ARGUMENTS
- Suppresses the display of the size of the file when bfs starts and
when you use the w command.

file Specifies the name of the file to edit. This argument is required.

DESCRIPTION
bfs is a read-only editor that can process much larger files than standard
editors. Files can contain up to 1 million bytes, with up to 32,000 lines. A
line can contain up to 512 characters, including a terminating newline
character. If bfs encounters a line that is too long, it displays the message
line too long and exits.

The bfs command is similar to ed but more efficient because it does not
copy the file to a buffer. You can use bfs to identify and split sections of
a large file into small files that can be modified later by a text editor such as
vi, or you can use the information gained from using bfs torun csplit
on the file.

Prompting
If you type the letter P and press RETURN, bfs displays an asterisk (*) as a
prompt, as in ed. You can turn the prompt off by typing P and pressing
RETURN again.

Compatibilities with ed
The bfs command supports all address expressions described in ed(1). In
addition to the slash (/) and the question mark (?) provided by ed, you can
surround regular expressions with the greater-than symbol (>), which
indicates downward search without wrap-around, and the lesser-than
symbol (<), which indicates upward search without wrap-around. There is
a slight difference from ed with regard to mark names: bfs supports only
the letters a through z and remembers all 26 marks.

The e, g, v, k, P, p, @, W, =, !, and null commands operate as described in
ed(1). The w command works independently from the bf s-specific xo,
xt, and xc commands. The bfs command accepts such complex
commands as --—, +++-, +++=, —12, and +4p. Note that both 1, 10p
and 1, 10 cause the display of the first ten lines of the file.

The bfs and ed commands both have an £ command, but when you are
using bfs, the £ command only displays the name of the file currently
being read; you cannot use it to edit a new file.

1 November 1991

bfs(1) bfs(1)

bfs-specific Commands
Once you have started bfs on a file, you can use these bfs commands:

:label
Creates a label in a command file. If you use optional white-space
characters to separate the colon (:) and the label, bfs ignores them.
Because bfs does not require that labels be referenced, you can use
this command to insert comments in a command file.

(., .)xblregular-expressionl/label
Jumps upward or downward to label if the command succeeds. The
xb command is valid only if read from someplace other than a
terminal. If the command is read from a pipe, only a downward jump
is possible. The command fails under any of these conditions:

e Either address is not between 1 and S.
o The second address is less than the first.

e The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, a period (.) is set to the matched line and a jump is made
to label. This command is the only command that does not issue an
error message on bad addresses, so you can use it to test whether
addresses are bad before executing other commands. This xb
command is an unconditional jump:

xb/"/ label

xc [switch]
Converts sequences of tabs and spaces to a single space and
suppresses blank lines in the output from the p and null commands if
the value of switch is 1. If the value of switch is 0, the action of xc is
turned off. If you do not supply switch, the action of xc is toggled.
When you first start bf s, the action of xc is turned off.

xbz label

xbn label
Test the exit code of the most recently executed shell command
(! command) for a zero or a nonzero value, respectively, and go to the
specified label if the test succeeds. These two examples search for the
next five lines containing the string size:

xv55

: here

/size/

xv5lexpr %5 - 1

11f [%5 != 0]; then exit 2; fi

November 1991 2

bfs(1)

xf

Xn

X0

Xt

XV

bfs(1)

xbn here

xv45
there
/size/
xvidlexpr %4 - 1
'1if [%4 = 0]; then exit 2; fi
xbz there

command-file

Specifies a command file from which further bf s commands are
taken. When bf s reaches the end of the file or receives an interrupt
signal, or if an error occurs, reading resumes with the file containing
the xf command. You can nest xf commands to a depth of 10.

Lists the marks currently in use. See the k command in ed(1) for
information about setting marks.

[file]

Diverts further output from the p and null commands to file, which, if
necessary, is created with permission bits of 666. If the file already
exists, it is truncated. If you do not specify file, bf s diverts the output
to the standard output.

number

Truncates output from the p and null commands to most number
characters. The default is 255.

Assigns value to the variable specified by digit. For example,
xv5100 or xv5 100 both assign the value 100 to the variable 5.
The command xv61, 100p assigns the value 1, 100p to the variable
6. To reference a variable, put a percent sign (%) in front of the
variable name. For example, using the assignments just given for
variables 5 and 6, these commands cause bfs to display the first 100
lines of the file:

1,%5p
1,%
%6
Using the assignment just given for variable 5, this command searches

the file for the character string 100 and displays each line that
contains a match:

g/%5/p

To escape the special meaning of %, a backslash (\) must precede %.
For example, this command displays the lines that contain print £
conversion formats for characters, decimal integers, and strings:

November 1991

bfs(l) bfs(1)

g/".*\%[cds]/p

You can also use the xv command to store into a variable the first line
of output from a command run by the shell. The only requirement is
that the first character of value be an exclamation mark (!). For
example, this sequence stores the first line of the output of date into
variable 7 and displays its contents:

xv7!date
fecho %7
This sequence writes the current line to a file called junk, stores the

contents of junk in variable 5, removes junk, and displays the
contents of variable 5:

.w junk
xvb5lcat junk
'rm junk
lecho "%5*"

To escape the special meaning of ! as the first character of value,
precede it with a backslash (\).

EXAMPLES
This command runs bfs on a file named text:

bfs text

STATUS MESSAGES AND VALUES
If the * prompt is turned on, the bfs command displays a question mark
(?) for errors in commands and displays self-explanatory error messages.

FILES
/bin/bfs
Executable file

SEE ALSO
csplit(l), ed(l)

regcemp(3X) in A/UX Programmer’s Reference

November 1991 4

biff(l) biff(l)

NAME
biff — enables and disables notification of mail by comsat
SYNOPSIS
biff [switch]
ARGUMENTS
switch
Sets the state of biff. If switch is y, mail notification is enabled. If
switch is n, mail notification is disabled. If you do not use a switch
argument, bi £ £ displays:
is y
for enabled, and:
is n
for disabled.
DESCRIPTION

biff changes the permission bits of your terminal device to enable or
disable mail notification by the comsat server. When the execution bit is
set for the owner of the terminal device, mail notification is enabled. When
the execution bit is not set, comsat does not notify you when new mail
arrives.

The best place to include a command to enable biff isin your .login
file so that the command is executed each time you log in.

When mail arrives, comsat displays the From:, Subject:, To:, and
Date: lines from the mail header and the first few lines of the message on
your screen.

For other mail notification methods, see the mail-related environment
variables supported by sh, csh, and ksh.

FILES
/usr/ucb/biff
Executable file

SEE ALSO
csh(l), ksh(1), mail(l), sh(l)

comsat(1M) in A/UX System Administrator’s Reference

1 November 1991

bs(1) bs(1)

NAME
bs — compiles and interprets bs programs

SYNOPSIS
bs [file [argument]...]

ARGUMENTS
argument

Specifies an optional argument that bs passes to the program when it
executes.

file Specifies the name of a source file that bs uses as input before reading
from the console. By default, bs compiles statements read from file
for later execution and immediately executes statements entered from
the console. See the compile and execute statements for details.

DESCRIPTION
bs compiles and interprets programs that are written in a language that is a
remote descendant of BASIC, SNOBOLA4, and C. The language is designed
for programming tasks where program development time is as important as
the resulting speed of execution. The language minimizes the formalities
of data declaration and file manipulation. Line-at-a-time debugging, the
trace and dump keywords, and useful run-time error messages simplify
program testing. Furthermore, you can debug incomplete programs, test
inner functions before outer functions have been written, and test outer
functions before inner functions have been written.

Syntax
The bs command accepts programs that are made up of input lines. If the
last character on a line is a backslash (\), bs interprets the next line as a
continuation of the previous line. Lines can be of this form:

Statement
label statement

A label is a name followed by a colon (:). (For a definition of name, see
“‘Expression Syntax’’ later in this section.) A label and a variable can have
the same name.

Statement syntax. A bs statement is either an expression or a keyword
followed by zero or more expressions. An expression assigns a value or
makes a function call. For details, see ‘‘Expression Syntax’’ later in this
section. The keywords clear, compile, !, execute, include,
ibase, obase, and run are always executed as they are compiled. Here
are the possible keywords:

! shell-command
Causes an immediate escape to the shell to execute shell-command.

November 1991 1

bs(1) bs(1)

#string
Specifies a comment, which bs ignores.

break
Exits from the innermost for or while loop.

clear
Clears the symbol table and compiled statements immediately.

compi le[expression]
Executes a clear and compiles succeeding statements immediately
(overriding the immediate execution default). The bs command
evaluates the optional expression and uses the result as a filename for
further input.

continue
Transfers to the loop-continuation of the current for or while loop.

dump[name]
Causes bs to display the name and current value of every nonlocal
variable. If you provide an optional name, bs displays only the
specified variable. After an error or interrupt, bs displays the number
of the last statement and the user-function trace if turned on.

execute
Changes bs to immediate-execution mode. An interrupt has the same
effect. This keyword does not cause internally stored statements to
execute. See run for a keyword that does.

exit[expression]
Exits bs. If you provide an optional expression, bs evaluates
expression and uses the result as the exit code.

for name=expression expression statement
for name=expression expression

next
for expression, expression, expression statement
for expression, expression, expression

next
Executes repetitively a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes
on the value of the first expression, then is incremented by 1 on each
loop, not to exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas. The first
expression is the initialization, the second is the test (TRUE to
continue), and the third is the loop-continuation action, which is
commonly an increment.

2 November 1991

bs(1) bs(1)

freturn
Signals the failure of a user-written function. For details, see the
interrogation operator (?) in ‘‘Expression Syntax’’ later in this
section. If interrogation is not active, freturn merely returns 0. If
interrogation is active, freturn transfers execution to that
expression, which may bypass intermediate function returns.

fun name ([arguments,...])[variables,...]

nuf
Defines a function name, arguments, and local variables for a user-
written function. Up to ten arguments and local variables are allowed.

Such names cannot be arrays, nor can they be associated with I/O.
You cannot nest function definitions.

goto name
Passes control to the internally stored statement with the matching
label specified by name.

ibase N
Sets the input base to N. The supported values for N are 8, 10 (the
default), and 16. You can enter the hexadecimal values for 10-15 as
a-f. To enter a number such as £0a, use a leading 0, as in 0fOa.
The bs command executes 1base immediately.

if expression statement

if expression...

[else

o]

fi Executes if the expression evaluates to a nonzero value. The strings 0
and "" (null) evaluate to 0. In the second form, an optional else
allows for a group of statements to be executed when the first group is
not. The only keyword permitted on the same line with elseis i f;
the only keywords permitted on the same line with £1 are other f£i
keywords. The bs command also supports e1if. Only a single fi
isrequired to close an if..elif..[else...] sequence.

include expression
Includes the file specified by expression. The file must contain bs
source statements. Such statements become part of the program being
compiled. You cannot nest include keywords.

obase N
Sets the output base to N. The supported values for N are 8, 10 (the
default), and 16. You can enter the hexadecimal values for 10-15 as
a-f. To enter a number such as £0a, use a leading 0, as in 0£0a.
The bs command executes obase immediately.

November 1991 3

bs(1) bs(1)

onintr label

onintr
Provides program control of interrupts. In the first form, control
passes to the specified label, just as if a goto had been executed at
the time onintr executed. The effect of onintr is cleared after
each interrupt. In the second form, an interrupt causes bs to
terminate.

return [expression]
Returns from a function call. If present, the optional expression is
evaluated and the result is passed back as the value of a function call.
If no expression is given, the function call returns 0.

run
Resets the random-number generator. Control is passed to the first
internally stored statement. If run is in a file, it should be the last
statement in the file.

stop
Stops execution of internally stored statements and causes bs to revert
to immediate mode.

trace [expression]
Controls function tracing. If the optional expression is null or
evaluates to 0, tracing is turned off. Otherwise, bs displays a record
of user-function calls and returns. Each return decrements the
value of expression.

while expression statement
while expression
next
Executes repetitively a group of statements. The while keyword is

similar to for except that only the conditional expression for loop-
continuation is given.

Expression syntax. Unless the final operation is an assignment, bs
displays the result of an immediate expression statement. Here is the
syntax for expressions:

? expression
Tests for the success of the expression, rather than its value. The
interrogation operator is useful for testing for end-of-file condition (as
shown in the ‘‘Examples’’ section later in this manual page), checking
the result of the eval built-in function, and checking the return from
user-written functions (as described in the discussion of the freturn
keyword earlier in this section). Execution of an interrogation trap
causes an immediate transfer to the most recent interrogation, possibly

4 November 1991

bs(1) bs(1)

skipping assignment statements or intervening function levels.

- expression
Results in the negation of the expression.

--name
Decrements the value of name, which is a variable name or an array
reference.

++name

Increments the value of name, which is a variable name or an array
reference.

! expression
Results in the logical negation of the expression.

name
Specifies a variable. A name begins with a lowercase or uppercase
letter, optionally followed by letters and digits. Only the first six
characters of a name are significant. Except for names declared in
fun statements, all names are global to the program. Names can take
on numeric (double-float) values or string values, or can be associated
with input and output. For details, see the open function in ‘‘File-
handling Functions’’ later in this section.

name([expression[,expression]...])
Calls a function. Except for built-in functions, which are listed later in
this section, name must be defined with a fun statement. The bs
command passes arguments to functions by value.

name [expression|,expression]...]
References arrays or tables. See ‘‘Built-in Table Functions’’ later in
this section for details. For arrays, each expression is truncated to an
integer and used as a specifier for the name. The resulting array
reference is syntactically identical to a name; a [1, 2] is the same as
a[1][2]. The truncated expressions are restricted to values between
0 and 32767.

number
Represents a constant value. A number is written in Fortran style and
contains digits, an optional decimal point, and possibly a scale factor
consisting of an e followed by an optionally signed exponent.

string
Specifies a character string that is delimited by a double quotation
mark () . The backslash (\) is an escape character that allows the
double quotation mark (\ "), newline (\n), carriage return (\x),
backspace (\b), and tab (\ t) characters to appear in a string.
Otherwise, the backslash stands for itself.

November 1991 5

bs(1) bs(1)

(expression)
Alters the normal order of evaluation. See ‘‘Binary Operators’” later
in this section for the normal order of evaluation.

(expression , expression|, expression . . . 1) [expression]
Selects, using a bracketed expression as a subscript, a comma-
separated expression from the parenthesized list. List elements are
numbered from the left, starting at 0. The expression has the value
TRUE if a equals b:

(FALSE, TRUE) [a == D]

expression operator expression
Abbreviates the common functions of two arguments by separating
the two arguments with an operator denoting the function. Except for
the assignment, concatenation, and relational operators, both operands
are converted to numeric form before the function is applied.

Binary operators. The binary operators are listed in order of increasing
precedence, as follows:

= Makes assignments. The left operand must be a name or an array
element. The result is the right operand. Assignment binds right to
left, whereas all other operators bind left to right.

Concatenates. The operator is the underscore character (_).

& | Perform logical operations. The result of the logical AND character
(&) is O if either of its arguments is 0. The result is 1 if both of its
arguments are nonzero. The result of the logical OR character (|)is 0
if both of its arguments are 0. The result is 1 if either of its arguments
is nonzero. Both operators treat a null string as 0.

< <= > >= == =
Perform relational operations. The relational operators are < (less
than), <= (less than or equal), > (greater than), >= (greater than or
equal), == (equal), and ! = (not equal). They return 1 if their
arguments are in the specified relation. Otherwise, they return 0. The
comparison a>b>c is the same as the comparison a>b&b>c. If both
operands are strings, bs makes a string comparison.

Perform addition and subtraction.
* /%
Perform multiplication, division, and remaindering.

~

Performs exponentiation.

6 November 1991

bs(1) bs(1)

Built-in Functions
The bs command provides the following built-in functions.

Dealing with arguments. These built-in functions manipulate arguments:

arg (i)
Specifies the value of the ith actual parameter on the current level of
function call. At level 0, arg returns the ith command-line argument.
For example, arg (0) returns bs.

narg ()
Returns the number of arguments passed. At level 0, bs returns the
number of command-line arguments.

Mathematical functions. The bs command provides these built-it
mathematical functions:
abs (x)
Returns the absolute value of x.
atan (x)
Returns the arctangent of x. Its value is between -n/2 and 7t/2.
ceil (x)
Returns the smallest integer not less than x.
cos (x)
Returns in radians the cosine of x.
exp (x)
Returns the exponential function of x.

floor (x)
Returns the largest integer not greater than x.

log(x)
Returns the natural logarithm of x.

rand ()

Returns a uniformly distributed random number between 0 and 1.
sin(x)

Returns in radians the sine of x.
sgrt (x)

Returns the square root of x.

String functions. The bs command provides these built-in string
functions:

format (f, a)
Returns the formatted value of a, where fis a format specification in
the style of printf. The value of fcan be £, e, or s only.

November 1991 7

ps(1) bs(1)

index (x, y)
Returns the number of the first position in x that any of the characters
from y matches. If no match is found, bs returns 0.

match (string, pattern)

mstring(n)
Match strings. The pattern is similar to the regular expression syntax
of ed. The characters ., [,], *, and $ are special. The mstring
function returns the nth (1 <= n <= 10) substring of the subject that
occurred between pairs of the pattern symbols \ (and \) for the most
recent call to match. To succeed, patterns must match the beginning
of the string, as if all patterns begin with *. The function returns the
number of characters matched. Here is an example:

match("al23abl23", ".*\([a-z]\)") == 6
mstring(l) == "b"
size(s)

Returns the size (length in bytes) of s.

substr (s, start, width)
Returns the substring of s defined by the start position and width.

trans (s, f, t)
Translates characters of the source s from matching characters in fto a
character in the same position in 7. Source characters that do not
appear in f are copied to the result. If the string f'is longer than ¢,
source characters that match in the excess portion of f do not appear in
the result.

File-handling functions. The bs command provides these built-in file
handling functions:

open (name, file, function)

close (name)
Perform open and close operations. The name argument must be a bs
variable name passed as a string. For open, the file argument can be
either (1) a 0 (zero), 1, or 2, representing standard input, output, or
error output, respectively; (2) a string representing a filename; or (3) a
string beginning with an exclamation point (!) representing a
command to be executed by means of sh -c. The function argument
must be either r (read), w (write), W (write without newline), or a
(append). After a close command, bs treats name as an ordinary
variable. The bs command makes these calls on startup:

Open(|lgetll , 0’ llrll)
Open("pl.lt n , l , uwu)
open ("puterr", 2, "w")

8 November 1991

bs(1) bs(1)

See the ‘‘Examples’” section later in this manual page, for sample
code.

access (s, m)
Executes an access(2) system call.

ftype (s)
Returns a single character that indicates the file type: f for regular
file, p for FIFO (that is, named pipe), d for directory, b for block
special, or c for character special.

Table-handling functions. The bs command provides these built-in table
handling functions:

table (name, size)
Defines a table that is an associatively accessed, single-dimension
array. Subscripts (called ‘‘keys’’) are strings. Numbers are converted.
The name argument must be a bs variable name, passed as a string.
The size argument sets the minimum number of elements to be
allocated. If a table overflow occurs, bs displays an error message
and stops.

item (name, i)

key ()
Access table elements. The item function accesses table elements
sequentially. (In normal use, there is no orderly progression of key
values.) Where the item function accesses values, the key function
accesses the subscript of the previous item call. The name argument
should not be quoted. Because exact table sizes are not defined, the
interrogation operator should be used to detect end-of-table. Here is
an example:

table("t", 100)

If word contains the string "party",
the following expression adds one

to the count of that word:

++t [word]

To print out the key/value pairs:
for i = 0, ?(s = item (t , 1)), ++1i
if key () put = key()_:_s

iskey (name, word)
Tests whether the key word exists in the table name and returns 1 for
TRUE and O for FALSE.

November 1991 9

bs(1) bs(1)

Miscellaneous functions. The bs command provides these miscellaneous
built-in functions:

eval (s)
Evaluates the string argument as an expression. The eval function is
handy for converting numeric strings to numeric internal form. You
can also use eval as a crude form of indirection, as in this example,
which increments the variable xy z:
name = "xyz"
eval ("++"_ name)

In addition, eval preceded by the interrogation operator permits the
user to control bs error conditions. Here is an example that returns 0
if XXX does not exist, instead of halting:

?eval ("open (\"X\", \"XXX\", \"r\")")
This example executes a goto to the label L:
label="L"
if ! (?eval("goto "_ label)) puterr = "no label"
last ()
Returns the most recently computed value when in immediate mode.
plot (request, args)
Produces output on devices recognized by tplot(1G). The value of
request can be from O to 12. Calls to the plot function use these
formats:
plot (0, term)
Causes further plot output to be piped into t plot(1G) with an
argument of -Tterm.

plot (1)
Erases the plotter.

plot (2, string)
Labels the current point with string.
plot(3,xI,yl,x2,y2)
Draws the line between (x1,y/) and (x2,y2).
plot (4,x,y,r)
Draws a circle with center (x,y) and radius r.
plot (5,x1,y1,x2,y2,x3,y3)
Draws an arc (counterclockwise) with center (x/,y/) and
endpoints (x2,y2) and (x3,y3).

plot (6)
Not implemented.

10 November 1991

bs(1) bs(1)

plot (7,x,y)
Makes the current point (x,y).

plot (8,x,y)
Draws a line from the current point to (x,y).

plot(9,x,y)
Draws a point at (x,y).

plot (10, string)
Sets the line mode to string.

plot(11,xI,yl,x2,y2)
Makes (x1,yl) the lower-left corner of the plotting area and
(x2,y2) the upper right corner of the plotting area.

plot(12,xl,yl,x2,y2)
Causes subsequent x(y) coordinates to be multiplied by x7 (yI)
and then added to x2 (y2) before they are plotted. The initial
scaling is
plot (12, 1.0, 1.0, 0.0, 0.0).
Some requests do not apply to all plotters. All requests except 0 and

12 are implemented by the piping of characters to tplot(1G). See
plot(4) for more details.

EXAMPLES
This example uses bs as a calculator:

S bs

Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12 / 1e9

11.78496

Compound interest
(6% for 5 years on $1,000).

int = .06 / 4

bal = 1000

for 1 = 1 5*4 bal = bal + bal*int
bal - 1000

346.855007

exit

This example is the outline of a typical bs program:

initialize things:
varl = 1
open("read", "infile", "r")

November 1991 11

bs(1)

bs(1)

compute:
while ?(str = read)

next
clean up:
close("read")

last statement executed (exit or stop):
exit

last input line:

run

This example demonstrates 1/0:

Copy "oldfile" to "newfile".
open("read", "oldfile", "r")
open("write", "newfile", "w")

while ?(write = read)

close "read" and "write":
close("read")
close("write")

Pipe between commands.

Open("ls", "!lS *u’ uru)

Open(“pr", n!pr -2 -h ’List’", "W")
while ?(pr = 1ls)

be sure to close (wait for) these:
close("1ls")
close("pr")

This command line shows a way of running bs:

bs program 1 2 3

The example compiles and executes the file n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>