
•
A/UX Command Reference
Section 1 (A-F)

Release 3.0

LIMITED W ARRAN1Y ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple's Media Exchange
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the date of your original purchase. See your authorized Apple dealer for program
coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON THE MEDIA AND MANUAIS, INCLUDING IMPLIED WARRANTIES
OF MERCHANTABIU'IY AND FITNESS FOR A PARTICUIAR PURPOSE, ARE LIMITED IN
DURATION TO NINE'IY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
TIIIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRAN'IY OR REPRESENTATION, EffilER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABIU1Y, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, TIIIS SOFTWARE IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

THE WARRAN'IY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF All
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

ti Apple Computer, Inc.

© 1992, Apple Computer, Inc., and UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws, this
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original.
Under the law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" Apple logo
(Option-Shift-k) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, ImageWriter, LaserWriter, and Macintosh are trademarks of Apple Computer,
Inc., registered in the United States and other countries.

B-NET is a registered trademark of UniSoft Corporation.

DEC and VT102 are trademarks of Digital Equipment Corporation.

Diablo and Ethernet are registered trademarks of Xerox Corporation.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

Hewlett-Packard 2631 is a trademark of Hewlett-Packard.

IBM is a registered trademark of International Business Machines Corporation.

NFS is a trademark of Sun Microsystems, Inc.

Postscript and Transcripts are trademarks of Adobe Systems Incorporated, registered in the United States.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

A/UX Command Reference

Contents

About This Manual

Section 1 User Commands (A-F)

- v -

About This Manual

This manual is one of three primary manuals in the set of A/UX reference
manuals. AJUX Command Reference, AJUX Programmer's Reference, and
AJUX System Administrator's Reference contain information about most of the
provisions of A/UX, such as its commands, its library routines, its system calls,
and its file formats.

These reference manuals constitute a compact encyclopedia of A/UX
information. As in an encyclopedia, the information is subdivided into
subdocuments, or "manual pages." The information in each manual-page
subdocument adheres to a distinctive presentation format. For example,
information about command syntax is consistently presented under the heading
"Synopsis." (This format is described in detail later in this preface.)

Because most of us need occasional reminders regarding the order and kind of
arguments that can accompany a command, the information in the "Synopsis"
and "Arguments" sections is presented for use by users at all levels. However,
the information in the ''Description'' section is often written for more advanced
users; novices most likely will not be able to learn about the provisions of A/UX
from these reference manuals alone.

Because these reference manuals are not intended to be tutorials or learning
guides, they should not be the first A/UX books you read. If you are new to
A/UX or are unfamiliar with a specific functional area (such as the Macintosh
Finder), you should first read AJUX Essentials and the other A/UX user guides.
After you have worked with A/UX, the reference manuals can help you
understand new features or refresh your memory about features you already
know.

Manual pages: a standard for presenting information
The headings conventionally used in the manual pages have virtually become an
industry standard for reference documents. Furthermore, the way that this large
collection of subdocuments is conventionally organized into sections and books
is also something of a standard.

Despite the standardization, locating specific information within this large body
of documentation can often be difficult. First you must locate the correct
manual page. Once you have the correct manual page, you can usually go

- vii -

directly to the correct subsection.

To help you locate information, you should read the next section, which
explains several means of finding the information you need.

To help you learn to use these books more effectively, other sections in this
preface describe the presentation standards that are being used. Some of these
are organizational standards that apply at the book and section level. Other
conventions and content standards apply within the scope of each manual page,
such as the use of standard subheadings and the conventional use of certain
fonts and text styles.

Note that the most durable standards have been the standards that apply to the
organization and primary headings of each manual page. Of course there are
areas in which the A/UX reference books are exceptional, particularly in their
more regular use of headings. These books also deviate from industry standards
in a few typographic and style areas, which are described later in this preface.
For example, the Courier font is used consistently to represent text that is
displayed in a terminal window or entered as part of a command line. Other
UNIX® books often use boldface type to represent such text.

There has been more instability with respect to how the manual pages are
collected into sections and books. For more detailed information, see ''Previous
Organization of Sections into Books'' later in this preface.

Locating information in the reference manuals
You can locate information in the reference manuals by using one of the
following tools:

• Table of contents. Each reference manual contains one general table of
contents for the entire manual. Located at the beginning of each new
section of manual pages is a detailed table of contents. (If a section must
span from one binder to another, a tailored table of contents is provided for
each of the subdivisions.) The general table of contents lists the sections
covered in the complete manual. The detailed table of contents lists the
manual pages contained within one section (or section subdivision) along
with a brief description of the A/UX provision that is covered in each
manual page.

• Query commands. The man, what is, and apropos commands display
on-screen all the information contained in a manual page or just the
information in the "Name" section of one or more manual pages that

- viii -

satisfy a search criterion. The next sections tells you how to use the on-line
versions of the manual pages.

• A/UX Reference Summary and Index. This separate manual is considered
part of the A/UX set of reference manuals, but it is not a ''standard''
resource like the other reference materials. Its primary purpose is to help
you locate the correct manual page to refer to in other books. From its
summaries, you might also occasionally find all the information you
required. It contains the following subsections:

• "Commands by function." This subsection classifies the A/UX user
and system administrator commands by the general or most important
function each performs. The summary gives you a broader view of the
commands that are available and the context in which each is often
used. Each command is mentioned just once in this listing.

• ''Command synopses.'' This subsection is a compact collection of
syntax descriptions for all of the commands in A/UX Command
Reference and in A/UX System Administrator's Reference. It may
help you find the syntax of commands more quickly when the syntax
is all you need.

• "Index." The index lists key terms associated with A/UX
subroutines and commands. These key terms can help you locate the
manual page you need when you don't know if such a keyword­
related command or subroutine exists.

The index provided in A/UX Reference Summary and Index is designed to be
more compact and easier to use than the more industry-standard permuted
index, which indiscriminately indexes manual pages under each of the words
found in their "Name" sections.

The manual pages listed in the index portion A/UX Reference Summary and
Index are indexed under more than one entry; for example, lorder(l) is
included under "archive files," "sorting," and "cross-references." By using
this type of index, you are more likely to find the reference you are looking for
on the first try.

Using the on-line documentation
In addition to the paper documentation in the reference manuals, A/UX provides
several ways to search and read the contents of each manual page from your
A/UX system. An advantage to the on-line version of the documentation is that
the computer performs the work of filtering out (or skipping) all the manual

- ix -

pages other than the one you specifically queried. The only prerequisite is that
you already know its name (or a proper search string). However, you don't have
to know how manual pages are organized by section numbers and by book titles.

To display a manual page on your screen, enter the man command followed by
the name of the manual page you want to see. For example, to display the
manual page for the cat command, including its description, syntax, options,
and other pertinent information, you would enter

man cat

After the first screen of the text of a manual page appears, you can display
subsequent screens of the text with each press of the SPACE BAR, until you reach
the end of the man page. To display subsequent text one line at a time, press
RETURN instead of the SPACE BAR. By pressing Q, you can quit the man
command before viewing all of the manual page.

To display the descriptive information in the ''Name'' section of any manual
page, enter the what is command followed by the name of the provision you
want described. In the following example, the command prompt is the percent
sign, and the provision that is being queried is the 1 s command:

% whatis ls
ls(l)
% I

- lists the contents of a directory

To display a list of all manual pages whose "Name" sections contain a given
keyword or string, enter the apropos command followed by a search word or
search string enclosed in double quote characters. The names of A/UX
provisions are listed on separate lines along with the descriptive information in
the ''Name'' section of the manual page that describes those provisions.
Sometimes several A/UX provisions are listed on the same line. In those cases,
several A/UX provisions are described on a single manual page. You can tell
which of these names is the formal name for the manual page because it will be
followed by parentheses and an enclosed section number. In the following
example, the command prompt is the percent sign, and the A/UX provisions that
are queried are those which are described in manual pages whose "Name"
section contains the word "tape":

- x -

% apropos tape

mt (1)

frec(lM)

mtio(7)

tc(7)

% I

- magnetic tape manipulating program

- recover files from a backup tape

- interface conventions for magnetic tape devices

- Apple Tape Backup 40SC device driver

These documentation query commands are described more fully in the manual
pages rnan(I), whatis(I), and apropos(!) in NUX Command Reference.

Book- and section-level presentation standards
Customarily, three books are used to house three collections of manual pages
that are of concern to three different audiences:

• NUX Command Reference is intended for users with normal file and
device access privileges.

• NUX System Administrator's Reference is intended for system
administrators or equivalent users with unlimited device and file access
privileges.

• NUX Programmer's Reference is intended for programmers.

These books are further divided into sections, each of which contains a set of
manual pages in alphabetical order. The standard sections and the audiences
they serve are as follows:

• For users with normal access privileges, Section I and Section 6 describe
utility and game commands.

• For users with unlimited access privileges, Section IM and Section 8
describe system maintenance commands.

• For programmers, Section 2 describes system calls, Section 3 describes
library routines, Section 4 describes file formats, Section 5 describes
miscellaneous A/UX provisions, and Section 7 describes drivers and
interfaces for devices.

While most of the manual pages describe an A/UX provision of some sort, there
is one important exception per section: The first manual page in Sections I, IM,
2, 3, 4, 5, 6, 7 and 8 has the same name, intro. The intro manual pages do
not describe a command or other provision of A/UX. Instead, they serve as an
introduction to the rest of the manual pages in the section, providing section-

- xi -

specific information and conventions. (These section-introduction manual pages
are also exceptions in terms of the normal alphabetical arrangement of manual
pages inside sections.)

For example, the manual page intro(2) introduces you to return values and
provides an exhaustive list of error code values and their associated error
strings. In the rest of the Section 2 manual pages, the error codes are mentioned
briefly or merely listed, without detailed explanations.

More advanced readers will probably have occasion to use more than one of the
reference manuals. For example, manual pages in the A/UX Programmer's
Reference frequently make references to manual pages in sections contained in
the other two primary reference manuals.

More information about the organization of the reference books is given later in
this preface in ''Current Organization of Sections into Books.''

How manual-page information is presented
The name of the manual page normally appears in both upper comers of each
physical page. Some manual pages describe several routines or commands. For
example, chown and chgrp are both described in a manual page with the
primary name chown(l) at the upper comers. If you tum to the page
chgrp(l), you find a reference to chown(l). (These cross-reference pages are
included only in A/UX Command Reference and A/UX System Administrator's
Reference.) However, if you enter the command man chgrp, the extended­
coverage chown(l) manual page is displayed automatically.

All of the manual pages have a common format that uses the following
subheadings. For the most part, the same kind of information appears under each
of these subheadings. However, for manual pages that describe different kinds
of A/UX provisions, the information under the same heading may differ. So, for
example, the heading "Synopsis" contains syntax illustrations for Sections 1,
IM, and 8, but contains C declaration statements for Sections 2 and 3.

NAME
This section lists the names of the commands, programming routines, or other
A/UX provisions that are described in the manual page. A succinct statement of
their purpose is also provided.

SYNOPSIS
This section provides the syntax of a command or the data-type declarations
associated with a programming routine.

- xii -

ARGUMENTS
This section lists and describes the command options and arguments that can
follow the command name on the command line.

DESCRIPTION
This section describes in detail the usage of a particular command or
programming provision.

EXAMPLES
This section offers representative command lines that illustrate various uses of a
command.

STATUS MESSAGES AND VALUES
This section describes possible error outcomes and, when applicable, possible
success outcomes. For commands, exit values are not usually described if the
command produces the customary zero exit value for success and a nonzero exit
value for failure. For programming routines, the return value from a function is
often an indication of completion status. In such cases, the return value is
normally discussed in the "Description" section as well as in this section.

WARNINGS
This section describes possible usage scenarios that can damage the file system
or file integrity or that produce results you would not normally anticipate.

LIMITATIONS
This section describes how the performance of a command or routine could
become unreliable, or areas of functionality that an A/UX provision does not
address.

NOTES
This section provides miscellaneous information regarding a command or
routine, such as author or copyright information.

FILES
This section lists any files needed by the command, along with a brief
description that identifies it as a file, directory, or link.

SEE ALSO
This section provides a list of references to related information.

Visual conventions for the A/UX reference manuals
A/UX books follow specific styling conventions. For example, words that
require special emphasis appear in specific fonts or styles. This section describes

- xiii -

the conventions used in all the A/UX reference books.

Keys and key combinations
Certain keys on the keyboard have special names. These modifier and character
keys, often used in combination with other keys, perform various functions. In
this book, the names of these keys appear in the format of an initial capital letter
followed by small capital letters.

Here is a list of the most common key names:

CAPS LOCK
COMMAND
CONTROL
DELETE

ENTER
ESCAPE
OPTION
RETURN

SHIFT

SPACE BAR
TAB

Sometimes two or more key names are joined by hyphens. The hyphens indicate
that you press these keys simultaneously to perform a specific function. For
example,

Press CONTROL-K

means ''While holding down the CONTROL key, press the K key.''

Terminology
In A/UX manuals, a certain term can represent a specific set of actions. For
example, the word ''enter'' indicates that you type a series of characters, then
press the RETURN key. The instruction

Enter whoami.

means "Type whoami, then press the RETURN key." (If you entered this text
at a command prompt, the system would respond by displaying your current
account name.)

Here is a list of common terms and their corresponding actions.

- xiv -

Term

Click

Choose

Drag

Enter

Press

Select

Type

The Courier font

Action

Press and then immediately release the mouse button.

Activate a command that appears in a menu. To
choose a command from a pull-down menu, position
the pointer on the menu title and, while holding down
the mouse button, slide the mouse toward you until
the command is highlighted. Then release the mouse
button.

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse so that the
icon moves to the desired position, and then release
the mouse button.

Type the series of characters indicated, then press the
RETURN key.

Press one key only. (Do not press the RETURN key
afterward.)

To select an icon, position the mouse pointer on the
item, then click (see "Click," above). To select text,
use a drag-style operation (see "Drag," above).
When selecting a range of text, the drag operation
highlights the text from the starting point over and
across lines to the final position of the pointer when
the mouse button was released.

Type the series of characters indicated, without
pressing the RETURN key afterward.

Throughout the A/UX reference manuals, words that appear on the screen or
that you must type exactly as shown are in the Courier font.

- xv -

Here's an example:

Type date on the command line and press RETURN.

This instruction means that you should type the word "date" exactly as shown,
then press the RETURN key.

After you press RETURN, text such as this will appear on the screen:

Fri Nov 1 11:15:43 PST 1991

In this case, the Courier font is used to represent exactly what appears on the
screen.

All A/UX manual page names are shown in the Courier font. For example,
1 s (1) indicates that 1 s is the name of a manual page that occurs in Section 1.
More information about the use of the Courier font in manual pages is given in
"Styling of A/UX Command Elements" and in "Styling of Cross-References to
Manual Pages'' later in this preface.

Font styles
Italics are used to indicate that a word or set of words is a placeholder for part of
a command line. Here is a sample command syntax illustration:

cat file

The italicized term file is a placeholder for the name of a file. If you wanted to
display the contents of a file named E 1 vis, you would type the filename
E 1 vis in place of file. In other words, you would enter

cat Elvis

Styling of A/UX command elements
A/UX commands are entered in accordance with their command syntax. A
typical A/UX command line includes the command name first, followed by
options and arguments. For example, here is an illustration of the syntax for the
we command:

we [-1] [-w] file ...

In this syntax illustration, we is the command, -1 and -ware options, and file

is an argument.

A "command option" modifies the action of a command, often by changing its
mode of operation (such as read mode or write mode).

- xvi -

An "argument" is any element that follows the command name. Command
arguments other than command options typically specify the objects upon which
the command should act. You often supply the names of files that you want a
command to process, so file is frequently the last element in syntax illustrations.

Brackets and ellipsis characters in a syntax illustration should be considered part
of a syntax notation. This is represented by the use of body font instead of
Courier for these characters. Their font treatment tells you that you are not
supposed to type these characters as part of the command line. Their meaning as
a syntax notation is described next.

The brackets enclose an optional item or a group of optional items. If an
optional item has constituent parts that are also optional, these parts are
themselves enclosed in brackets, as in this syntax illustration:

lpr [- i [numcols]]

This syntax illustration shows that the indent (-i) command option can be
followed by the number of columns to indent the printed page. It also shows that
you can omit the number of columns; if you do, the lpr command uses the
default indent value.

An ellipsis(...) follows an argument that can be repeated any number of times
on a command line. If the ellipsis follows a bracketed group of items, the group
of items can be repeated any number of times on the command line.

When command options are mutually exclusive, they cannot both be specified at
the same time. In such cases, more than one syntax illustration is usually
provided:

pax -r[other-option-for-archive-reading] .. .
pax -w[other-option-for-archive-writing] .. .

Outside of syntax illustrations, command options are shown with a leading
hyphen also in the Courier font. When you supply multiple command options in
an actual command line, only one leading hyphen is normally required. For
example the following command line contains two options, - r and - f:

pax -rf /dev/rfloppyO

In the example, the - f option (pronounced ''minus f' ') is entered without its
own hyphen, even though when mentioned in running text it appears with a
leading hyphen.

- xvii -

Styling of cross-references to manual pages
The manual pages are organized primarily in terms of sections, and secondarily
in terms of books for different audiences. The standard A/UX cross-reference
notation leaves out the book title, but refers to the section designation:

item(section)

where item is the name of the command, subroutine, or other A/UX provision,
and section is the section where the manual page resides.

For example,

cat(l)

refers to the command cat, which is described in Section 1, which is inA/UX
Command Reference.

As a guide to the location of sections, you can refer to the general table of
contents of each of the primary reference manuals, or to ''Current Organization
of Sections into Books" later in this preface. (The binder spines are also labeled
with the section numbers, and occasionally section subdivisions, that are in each
binder.)

Note also that there are a number of subcategory designations that can follow
the digit reference in (1), (2), (3), (4), and (5), such as (IN). Detailed
explanations of these subcategory designations are provided later in this preface.

Previous organization of sections into books
You may be curious about the logic behind the numbering of sections. The
derivation of this numbering is much clearer when you realize that originally
there was only one reference manual, the UNIX User Manual. In fact the
manual pages were once considered the primary UNIX documentation, and the
other books were originally considered supplements.

In the early days, all the manual pages easily fit into one book, in sections
numbered 1 through 8. Section 8 originally contained the manual pages that are
now located in Section IM.

With the expansion of the original sections as UNIX grew, it became necessary
to split the original book into several books, and this was done according to the
audience they served. However, the original section numbering was preserved
after the split because by then each number had come to have a particular
meaning to UNIX users.

- xviii -

Because the original section numbers were preserved and then sections were
recollated in accordance with the audience they served, the resulting books do
not, for the most part, contain sequentially numbered sections.

The next section explains in detail how the sections are currently mapped into
books.

There was another factor that led to the need to preserve the original section
numbers. Some routines, system calls, and commands have the same names. To
allow you to distinguish one from another, the section number is often included
along with the name. While new section numbers could have helped distinguish
these entities, the old numbers were much more familiar to UNIX users.

Besides distinguishing amongst identically named A/UX provisions, the section
number helps identify each manual page as one that describes a command, a
system call, a library routine, and so forth. Regular UNIX users sooner or later
memorize what category is identified by each section number. After doing so,
you can deduce how the sections must be split up into books-since each book
serves a particular audience and each section category also goes along with a
particular audience, the match-ups become fairly easy for you to make. The
memorization part of this task is more or less considered an initiation rite for
those who wish to learn to use UNIX effectively.

Until the 3.0 release of A/UX, the organization of sections into books was static.
With the 3.0 release however, Section 7 has been moved out of AIUX System
Administrator's Reference and into A/UX Programmer's Reference. This means
that command provisions are now the exclusive focus of both A/UX Command
Reference and AIUX System Administrator's Reference.

Current organization of sections into books
All manual pages are grouped by section. The sections are grouped by general
function and are numbered according to standard conventions as follows:

1 User Commands

IM System Maintenance Commands

2 System Calls

3 Subroutines

4 File Formats

- xix -

5 Miscellaneous Facilities

6 Games

7 Drivers and Interfaces for Devices

8 A/UX Startup Shell Commands

Each group or section of manual pages is located in one of the reference books.
Each reference book may comprise more than one binder. This section explains
where these sections are currently located with respect to the three primary
reference books. It also describes any subcategories that may be present in a
given section.

A/UX Command Reference contains Sections 1 and 6.

• Section I-User Commands
This section describes commands that require no special access privileges.
The commands in Section 1 may also belong to a special category, such as
networking commands. Where applicable, these categories are indicated by
a letter designation that follows the section number. For example, the "N"
in ypcat(IN) indicates that this manual page describes a networking
command. Here is an explanation of each subcategory:

lC Communications commands, such as cu and tip.

lG Graphics commands, such as graph and tplot.

lN Networking commands, such as those that help support various
networking subsystems, including the Network File System
(NFS), Remote Process Control (RPC) subsystem, and Internet
subsystem.

• Section 6-Games
This section contains all of the games provided with A/UX, such as
cribbage and worms.

- xx -

AIUX Programmer's Reference contains Sections 2 through 5 and Section 7.

• Section 2-System Calls
This section describes the services provided by the A/UX system kernel,
including the C language interface. It includes two special categories.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the "N" in connect(2N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary versions of
these subroutines are in the system libraries in the I 1 i b and I us r I 1 i b
directories. The section includes seven special categories. Where
applicable, these categories are indicated by the letter designation that
follows the section number. For example, the "N" in mount(3N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

3C C and assembly-language library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard 1/0 library routines

3X Miscellaneous routines

• Section 4-File Formats
This section describes the structure of some files, but does not include files
that are used by only one command (such as the assembler's intermediate
files). The C language struct declarations corresponding to these
formats are in the /usr I include and /usr I include/ sys
directories. There is one special category in this section, indicated by the
letter designation ''N'' following the section number:

- xxi -

4N Networking formats

• Section 5-Miscellaneous Facilities
This section describes various character sets, macro packages, and other
miscellaneous facilities. There are two special categories in this section.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the "P" in tcp(lP)
indicates a protocol. Here is an explanation of each subcategory:

5F Protocol families

5P Protocol descriptions

• Section 7-Drivers and Interfaces for Devices
This section describes the drivers and interfaces through which devices are
normally accessed. Access to one or more disk devices is fairly transparent
when you are working with them in terms of files. When you want to use
A/UX commands to communicate with devices more directly, at a level
beyond the moderation of file systems, device files serve your needs. Such
a level of communication permits you to request more explicit operating
modes that may be supported by a disk (such as accessing disk partition
maps), or that may be supported by other types of devices, such as tape
drives and modems. For example, you can access a tape device in
automatic-rewind mode as described in tc(7).

A/UX System Administrator's Reference contains Sections lM and 8.

• Section IM-System Maintenance Commands
This section describes system maintenance programs such as f s ck and
mkfs.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from within the
A/UX Startup shell. This section includes detailed descriptions of the
commands that contribute to the boot process and those that help with the
maintenance of inactive file systems.

For more information
To find out where you need to go for more information about how to use A/UX,
see Road Map to A/UX. This guide contains descriptions of each A/UX guide
and ordering information for all the guides in the A/UX documentation suite.

- xxii -

Table of Contents

Section 1: User Commands (A-F)

adb(l) .. debugs executable programs
addbib(l) .. creates or extends a bibliographic database
admin(l) .. creates and administers secs files
a pp 1y(1) . passes its arguments in batches to a command that is run once per every batch
apropos(l) ... locates commands by keyword
ar(l) ... maintains a library of files in an archive
as(l) assembles files by translating assembler mnemonics to object code
asa(l) .. interprets ASA carriage control characters
at (1) .. run commands at a later time
atlookup(l) looks up network-visible entities (NVEs) registered on

the AppleTalk network system
atprint(l) transfers data to a printer by using AppleTalk protocols
atstatus(l) displays status information from an AppleTalk device
at_cho_prn(l) allows you to choose a default printer on the AppleTalk internet
awk(l) _.scans a file for lines that match a specific pattern
banner(l) .. generates a poster
banner7(1) ... generates a large banner
basename(l) .. _ .. get part of a pathname
batch(l) .. see at(l)
bc(l) processes an arbitrary-precision arithmetic language
bdiff(l)......... . . compares the difference between two large files that are too

big for di ff to handle
bf s(l) edits big files
bif f(l) enables and disables notification of mail by corns at
bs(l) ... compiles and interprets bs programs
cal(l) .. displays a calendar
calendar(l) ... provides a reminder service
cancel(l) cancels print requests spooled through the lp command
cat (1) .. catenates and displays the contents of files
cb(l) improves spacing and indentation of C source files
cc(l) ... invokes the C compiler
ccat(l) ... see compact(l)
cdc(l) changes the delta commentary of an SCCS delta
c fl ow(1) _ generates a C flowgraph
changesi ze(l) changes or displays the fields of the 'SIZE' resource of a file
checkcw(l) .. see cw(l)
checkeq(l) ... see eqn(l)
checkinstall(l) .. checks the installation of boards
checkmm(l) check documents formatted with the mm macros

Section 1

checkmml(l). . see checkmm(l)
checknr(l) checks nroff/troff files
chfn(l) changes the real-name field of your password file entry for use by finger
chgrp(l). see chown(l)
chmod(l) ... changes the permissions of a file
chown(l) change the owner or group of a file
chsh(l) . . changes the default login shell
ci(l). . .. checks in RCS revisions
clear(l) clears the terminal screen
cmdo(l) builds command lines interactively
cmp(l) compares two files
co(l) checks out RCS revisions
col(l) filters text containing printer control sequences for use at a display device
colcrt(l) filters nroff output for terminal previewing
colrm(l) removes columns from a file
comb(!) combines SCCS deltas
comm(l). selects or rejects lines common to two sorted files
CommandShell(l). manages command-interpretation windows and

compact(l).
compress(!).

compressdir(l)
conv(l).
cp(l)
cpio(l).
cpp(l) .
crontab(l) ..
crypt(!)
csh(l) .
csplit(l).
ct(lC) .
ctags(l)
ctrace(l).
cu(lC) .
cut(l) .
cw(l)
cxref(l)
daps(l) ..
date(l) .
dbx(l)
dc(l) .
dd(l)
del ta(l)

ii

moderates access to the NUX console window
............... compress and uncompress files

. . compress files and directories as well as expand them;
support concatenation, browsing, and file-comparing
operations upon compressed files

.. see compress(!)
. swaps bytes in COFF files

. ... copies files
. copies files to or from a cpio archive

. invokes the C language preprocessor
. aids in the use of the cron process scheduling program

. encodes and decodes passwords
... runs the C shell, a command interpreter with C-like syntax

. splits files into sections
. runs login on a dial-up line

. maintains a tags file for a C program
... debugs a C program

. .. establishes an interactive connection with another system
. cuts out selected fields of each line of a file
. prepare constant-width text for otroff

.. generates a C program cross-reference
.. invokes the Autologic APS-5 phototypesetter troff post-processor

. .. displays and sets the date
. debugs and executes programs

..... desk calculator
. converts and copies a file

. makes a delta (change) to an SCCS file

User Commands (A-F)

derez(l) .. decompiles a resource file
deroff(l) removes nroff/troff, tbl, and eqn constructs
df(l) reports the used and unused storage capacity for a file system
diction(!) .. locate wordy sentences in a document
diff(l) compares two files or directories for any differences
di ff 3 (1) .. compares three versions of a file
diffmk(l) .. marks the differences between two files
dircmp(l) ... compares the contents of two directories
dirname(l) .. see basename(l)
dis(l) produces an assembly language listing for a specified file
disable(!) ... see enable(l)
domainname(l) sets or displays the name of the Network

Information Service (NIS) domain
du(l) ... summarizes disk usage
dump(l) .. stores (saves) selected parts of an object file
e(l) ... see ex(l)
echo(l) .. echoes its arguments
ed(1) ... edit text
edi t(l) .. see ex(l)
efl(l) ... invokes the Extended Fortran Language
egrep(l) ... see grep(l)
ej ect(l) ... ejects a diskette from the drive
enable(l) enable or disable LP printers
enscript(l) converts text files to format for printing
env(l) ... sets the environment for command execution
eqn(l) ... format mathematical text for troff
ex(1) ... edit text
expand(l) ... expand tabs to spaces, and vice versa
explain(I) ... see diction(!)
expr(l) ... evaluates arguments as an expression
f77(1) ... invokes the Fortran 77 compiler
factor(l) .. prints the prime factor of a given number
false(l) see true(l)
fcnvt(l) converts a file in one storage format to a different storage format
fgrep(l) .. see grep(l)
f i 1e(1) .. determines the type of a file
find(1) ... finds files
finger(l) displays information about the users on a system
fmt(l) .. invokes a simple text formatter
fold(l) ... folds long lines for finite-width output device
fpr(l) filters the output of Fortran programs for line printing
freq(l) ... reports character frequencies in a file
from(l) .. displays the mail header lines in your mailbox
fspli t(l) .. splits f77 or efl files
fstyp(l) ... reports the file-system type

Section 1 iii

ftp(lN) transfers files by using the DARPA Internet File Transfer Protocol (FTP)

iv User Commands (A-F)

intro(l) intro(l)

NAME
intro - introduces the command and application programs

DESCRIPTION
This section describes, in alphabetical order, generally available
commands. Certain distinctions of purpose are made using parenthetical
designations in the guide words at the top of each page:

IC Specifies commands for communication with other systems.

IG Specifies commands used primarily for graphics and computer-aided
design.

1 N Specifies network commands.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
"normal" termination) one supplied by the program (see wai t(2) and
exi t(2)). The former byte is 0 for normal termination; the latter is
customarily 0 for successful execution and nonzero to indicate troubles
such as erroneous parameters, bad or inaccessible data, or other inability to
cope with the task at hand. It is called variously "exit code," "exit
status," or "return code," and is described only where unusual
conventions are involved. If present, this information is offered within the
section entitled "Status Messages and Values."

WARNINGS
Some commands produce unexpected results when processing files
containing null characters. These commands often treat text input lines as
strings and therefore become confused upon encountering a null character
(the string terminator) within a line.

November 1991 1

300(1) 300(1)

NAME
3 0 0, 3 0 0 s - filter text containing printer control sequences for a DASI
terminal

SYNOPSIS
3 0 0 [+12] [-half-line-units] [-dtab-delay, line-delay, char-delay]

3 0 Os [+12] [-half-line-units] [-dtab-delay, line-delay, char-delay]

ARGUMENTS

1

+12
Permits use of 12-pitch, 6-lines-per-inch text. DASI 300 terminals
normally allow only two combinations: 10-pitch, 6 lines per inch or
12-pitch, 8 lines per inch. To obtain the 12-pitch, 6-lines-per-inch
combination, you should turn the PITCH switch to 12 and use the + 12
option.

-dtab-delay, line-delay, char-delay
Specifies delay values for tabs (tab-delay), long line length (line­
delay), and long strings of nonblank, nonidentical characters (char­
delay). DASI 300 and 300s terminals sometimes produce peculiar
output when faced with too many tab characters, very long lines, or
long strings of nonblank, nonidentical characters. The 3 O O and 3 0 0 s
commands use delay values to adjust the timing of the output in these
cases. Because terminal behavior varies according to the specific
characters printed and the load on a system, you may need to override
the default delay values, which are 3, 90, and 30, to get a satisfactory
result. You can omit a value for line-delay and char-delay, or for just
char-delay, to use their default delay values.

The commands insert one null (delay) character in a line for every set
of tabs specified by tab-delay and for every contiguous string of
nonblank, nontab characters specified by line-delay. If a line is longer
than the number of bytes specified by line-delay, the commands
perform the following calculation to determine the number of nulls to
insert at the end of that line:

nulls = 1 + (total-line-length) I 2 0

If tab-delay or char-delay has a value of 0, the commands use two null
bytes per tab or character, respectively. An option of -dO, 1 may be
appropriate for printing a C program that has many levels of
indentation, and an option of - d3 , 3 0 , 5 may be appropriate for
printing files such as /etc/passwd.

Note that the values supplied with the -d option interact with the
prevailing carriage return and line-feed delays. The stty(l) modes
nlO and cr2 or nlO and cr3 are recommended for most uses.

November 1991

300(1) 3 00(1)

-half-line-units
Specifies the size of half-line spaces, thus allowing for individual taste
in the appearance of subscripts and superscripts. A half-line is, by
default, equal to 4 vertical plot increments. Because each increment
equals 1/48 of an inch, a 10-pitch line feed requires 8 increments,
while a 12-pitch line feed requires only 6. For example, you can make
nroff half-lines to act as quarter-lines by using -2. You can also
obtain appropriate half-lines for the 12-pitch, 8-lines-per-inch
combination by setting the PITCH switch to 12 and by using the
option - 3 alone.

DESCRIPTION
3 0 0 supports special functions and optimizes the use of the DASI 300
(GSI 300 or DTC 300) terminal; 3 0 0 s performs the same functions for the
DASI 300s (GSI 300s or DTC 300s) terminal. The 3 0 0 and 3 0 0 s
commands convert half-line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. The commands also draw Greek
letters and other special symbols and permit convenient use of 12-pitch
text. The commands reduce printing time up to 70 percent and can be used
to print equations neatly as in the following sequence:

neqn file ... I nroff I 300

The neqn names of, and resulting output for, the Greek and special
characters supported by these commands are shown in greek(S).

You can use these commands with the nroff - s option or . rd requests
to halt printing temporarily so that you can insert paper manually or change
fonts in the middle of a document. Instead of pressing the RETURN key in
these cases, press the line-feed key to continue printing.

In many (but not all) cases, the following two command lines are
equivalent:

nroff -T300 files
nroff files I 300

Similarly, in many (but not all) cases, the following two command lines are
equivalent:

nroff -T300 -12 fiks
nroff fiks I 300 +12

Thus, you can often avoid using 3 0 0 and 3 0 0 s unless special delays or
options are required; in a few cases, however, the additional movement
optimization of these commands may produce better-aligned output.

November 1991 2

300(1) 300(1)

WARNINGS
If your terminal has a PLOT switch, set it to the "on" position before
using 300.

LIMITATIONS
Some special characters cannot be correctly printed in column 1 because
the print head cannot be moved to the left from there.

If your output contains Greek or reverse line feeds, use a friction-feed
platen instead of a forms tractor. Although the forms tractor is good
enough for drafts, it has a tendency to slip when reversing direction. This
slippage causes distortion of Greek characters and misalignment of the first
line of text after one or more reverse line feeds.

FILES
/usr /bin/3 0 0

Executable file /usr /bin/3 0 Os Executable file

SEE ALSO

3

450(1), eqn(l), mesg(l), nroff(!), stty(l), tabs(l), tbl(l),
tplot(IG)

greek(5) inA/UX Programmer's Reference

November 1991

300s(l) 300s(l)

See 300(1)

November 1991

4014(1) 4014(1)

NAME
4014 - filters text containing printer control sequences a page at a time

SYNOPSIS
4014 [-ccolumns] [-n] [-plines[i] [l [-t] [file]

ARGUMENTS
-ccolumns

Specifies the number of columns to display and waits after displaying
the last column.

-n Starts printing at the current cursor position and never erases the
screen.

-plines[i] [l]
Specifies the page length in terms of its length in inches or lines. You
can follow lines with an i for inches or with an 1 for lines, which is
the default.

-t Omits pauses between pages. This option is useful for directing
output to a file.

DESCRIPTION
4014 is intended for use with a Tektronix 4014 terminal. The 4014
command arranges for 66 lines to fit on the screen, divides the screen into
columns, and contributes an 8-space page offset in the single-column case,
which is the default. Tabs, spaces, and backspaces are collected and
plotted when necessary. Teletype Model 37 half- and reverse-line
sequences are interpreted and plotted. At the end of each page, 4 0 14
waits for a new line (empty line) from the keyboard before continuing to
the next page. In this wait state, the command ! cmd sends cmd to the
shell.

FILES
/usr/bin/4014

Executable file

SEE ALSO
pr(l), tc(l), troff(l)

November 1991

450(1) 450(1)

NAME
450
terminal

filters text containing printer control sequences for the DASI

SYNOPSIS
450

DESCRIPTION
4 5 0 supports special functions of, and optimizes the use of, the DASI 450
terminal or any terminal that is functionally identical, such as the Diablo
1620 or Xerox 1700. The 4 5 0 command converts half-line forward, half­
line reverse, and full-line reverse motions to the correct vertical motions
and draws Greek letters and other special symbols in the same manner as
3 0 0(1). You can use 4 5 0 to print equations neatly, as in this sequence:

neqn file . . . I nroff I 450

The neqn names of, and resulting output for, the Greek and special
characters supported by 4 5 0 are shown in greek(5).

You can use 450 with the nroff -s option or . rd requests to halt
printing temporarily so that you can insert paper manually or change fonts
in the middle of a document. Instead of pressing the RETURN key in these
cases, press the line-feed key to continue printing.

In many (but not all) cases, the use of 4 5 0 can be eliminated in favor of
one of the following commands:

nroff -T450file ...

nroff -T450 -l2file ...

Thus, you can often avoid using 4 5 0 unless special delays or options are
required; in a few cases, however, the additional movement optimization of
4 5 0 may produce better-aligned output.

WARNINGS
Make sure that the PLOT switch on your terminal is set to "on" before
you use 4 5 0. You should set the SP ACING switch to IO-pitch or 12-pitch.
In either case, vertical spacing is 6 lines per inch unless you dynamically
change the vertical spacing to 8 lines per inch by an appropriate escape
sequence.

LIMITATIONS
Some special characters cannot be correctly printed in column 1 because
the print head cannot be moved to the left from there. If your output
contains Greek or reverse line feeds, use a friction-feed platen instead of a
forms tractor. Although the forms tractor is good enough for drafts, it has a
tendency to slip when reversing direction. This slippage causes distortion
of Greek characters and misalignment of the first line of text after one or

November 1991

450(1)

more reverse line feeds.

FILES
/usr/bin/450

Executable file

SEE ALSO
300(1), eqn(l), mesg(l), nroff(l), stty(l), tabs(l), tbl(l),
tplot(lG)

greek(5) inAJUX Programmer's Reference

450(1)

2 November 1991

adb(l) adb(l)

NAME
adb - debugs executable programs

SYNOPSIS
adb [-k] [-w] [object-file [core-file]]

ARGUMENTS
core-file

Specifies the name of a core image file that was produced when a core
dump occurred while the object file specified by object-file was
executing. The default value of core-file is core.

- k Causes adb to skip execution of a system call to gather relocation
addresses. This option is useful when you are running adb on a
stand-alone program, such as the kernel, (/unix), that does not have
relocated addresses.

object-file
Specifies the name of an executable program, preferably containing a
symbol table. If the symbol table is not available, the symbolic
features of adb cannot be used, although you can still use adb to
examine the file. The default value of object-file is a . out.

-w Causes adb to open the object and core files for writing as well as
reading. If the object file does not exist, adb creates it. You should
use this option if you want to use adb to modify the object or core
files. If you do not specify this option, adb opens the files for reading
only.

DESCRIPTION
adb is a general-purpose debugger. You can use adb to examine core files
and to debug object files in a controlled environment.

In general, requests to adb are of the form

[address]
[,count]
[command]
[i]

where address and count are expressions. If address is present, the current
address, which is represented by a period (.) and is called "dot," is set to
address. Initially, dot is set to 0. For most commands, count specifies how
many times the command is to be executed. The default value of count is
1.

The interpretation of an address depends on the context in which it is used.
If a subprocess is being debugged, addresses are interpreted in the usual
way in the address space of the subprocess. If the operating system is
being debugged either post-mortem or by use of the special file

November 1991

adb(l) adb(l)

I dev /kmem to examine interactively or to modify memory, the maps are
set to map the kernel virtual addresses. For further details of address
mapping, see "Addresses" later in the "Description" section.

To quit adb, use the $q or the $Q command; see "Commands" later in
the "Description" section. You can also press CONTROL-D.

The adb command ignores SIGQUIT, and SIG INT causes adb to return
to the next adb command.

Expressions

2

You can form an expression from the following elements:

The last address typed.

'cccc
The ASCII value of up to four characters. You can use a backslash (\
) to escape a single quote n.

(exp)
The value of the expression exp.

+ The value of dot, incremented by the current increment.

The value of dot.

<name
The value of name, which is either a variable name or a register name.
The adb command maintains a number of variables (see "Variables"
later in the "Description " section) named by single letters or digits.
If name is a register name, the value of the register is obtained from
the system header in core-file. The register names are those printed by
the $ r command.

The value of dot, decremented by the current increment.

_symbol
In C, the actual name of an external symbol begins with an
underscore. You may have to use the actual name to distinguish it
from internal or hidden variables of a program.

integer
A number. The prefix 0 (zero) forces interpretation in octal radix; the
prefixes Od and OD force interpretation in decimal radix; the prefixes
Ox and OX force interpretation in hexadecimal radix. Thus
0 2 O=Odl 6=0xl 0=16. If a prefix is not present, adb uses the
default radix (see "Commands" later in the "Description" section
for information on the $d command). The default radix is initially
hexadecimal. The hexadecimal digits are
0123456789abcdefABCDEF. Note that a hexadecimal number whose
most significant digit would otherwise be an alphabetical character

November 1991

adb(l) adb(l)

must have a Ox (or OX) prefix (or a leading 0, if the default radix is
hexadecimal).

integer .fraction
A 32-bit floating-point number.

symbol
Sequence of uppercase or lowercase letters, underscores, or digits, not
starting with a digit. You can use a backslash (\) to escape other
characters. The value of symbol is taken from the symbol table in the
object file. An initial underscore (_)or tilde C) is prefixed to symbol,
if needed.

Monadic Operators
You can use these monadic operators with an expression:

#exp
Logical negation.

*exp
The contents of the location addressed by exp in core-file.

-exp
Integer negation.

@expThe contents of the location addressed by exp in object-file.

-exp
Bitwise complement.

Dyadic Operators
You can use these dyadic operators with two expressions. Dyadic
operators are left-associative and are less binding than monadic operators.

el+e2
Integer addition.

el-e2
Integer subtraction.

el*e2
Integer multiplication.

e1%e2
Integer division.

el&e2
Bitwise conjunction.

el le2
Bitwise disjunction.

November 1991 3

adb(l) adb(l)

el#e2
el. rounded up to the next multiple of e2.

Commands

4

Most commands consist of a verb followed by a modifier or list of
modifiers. The question mark(?) and slash(/) commands may be
followed by an asterisk(*). See "Addresses" later in the "Description"
section for further details. The following verbs are available:

newline
Repeats the previous command with a count value of 1 where newline
is the ASCII character Oa. By default, pressing the RETURN key
produces a newline character.

Calls a shell to read the rest of the line following ! .

>name
Assigns dot to the variable or register named. This command is often
used in the form constant>name. This form of the command can be
used to enter 96-bit IEEE extended-precision numbers into the
floating-point data registers fp0-fp7. For example, the following
command puts the value 1.0 info fpO:

Ox3FFF00008000000000000000 > fpO

When this form of the command is used, only the first 32 bits of the
constant are stored in dot. See MC68881 Floating Point Coprocessor
User's Manual (available from Motorola Literature Distribution
Center, part number MC68881 UM/ AD), section 2.4, ''Extended
Real,'' p. 211, for a description of IEEE extended-precision format.

[? /]l value mask
Masks words starting at dot with mask and compares them with value
until a match is found. If L is used, the match is for 4 bytes at a time
instead of 2. If no match is found, dot is unchanged; otherwise, dot is
set to the matched location. If mask is omitted, -1 is used.

[? /]rn bl el fl[? I]
Records new values for bl, el ,fl. If fewer than three expressions are
given, the remaining map parameters are left unchanged. If more than
three expressions are given, the values of (b2, e2,j2), (b3, e3,f3) and
so on, are changed. If the question mark (?) or slash (/) is followed
by an asterisk(*), the first segment (bl, el,fl) of the mapping is
skipped, and the second and subsequent segments are changed instead.
(There are as many (bn, en,fn) triples as you have sections in your
program.) If the list is terminated by ? or I, object-file or core-file,
respectively, is used for subsequent requests. For example, /rn?
causes I to refer to the object file.

November 1991

adb(1) adb(l)

[? /]w value ...
Writes the 2-byte value value into the addressed location. If the
command is w, adb writes 4 bytes. Odd addresses are not allowed
when you are writing to the subprocess address space.

You can place a format request after the I, =, and ? commands to specify
a style of printing:

!format
Prints locations starting at address in core-file according to format,
and dot is incremented as for the question mark.

=format
Prints the value of address itself in the styles indicated by format.
(For i format, a question mark is printed for the parts of the
instruction that reference subsequent words.)

?format
Prints the locations starting at address in object-file according to
format. Dot is incremented by the sum of the increments for each
format letter.

A format consists of one or more characters. Each format character may be
preceded by a decimal integer that is a repeat count for the format
character. As the format is stepped through, dot is incremented by the
amount given for each format letter. If no format is given, the last format
is used. These format letters are available:

II••• II 0
Prints the enclosed string.

+ Increments dot by 1. Nothing is printed.

Decrements dot by 1. Nothing is printed.

Decrements dot by the current increment. Nothing is printed.

a 0
Prints the value of dot in symbolic form. Symbols are checked to
ensure that they have an appropriate type, where I is a global data
symbol, ? is a global text symbol, and = is a global absolute symbol.

b 1
Prints the addressed byte in octal.

c 1
Prints the addressed character according to the standard escape
convention, where control characters are printed as AX and the delete
character is printed as A ? .

c 1
Prints the addressed character.

November 1991 5

adb(l) adb(l)

6

D 4
Prints as a long decimal number.

d 2
Prints as a decimal number.

F 8
Prints as a double floating-point number.

f 4
Prints the 32-bit value as a floating-point number.

i n
Disassembles the addressed instruction.

n 0
Prints a new line.

0 4
Prints 4 bytes as an octal number.

0 2
Prints 2 bytes in hexadecimal. All octal numbers output by adb are
preceded by 0.

p 4
Prints the addressed value in symbolic form, using the same rules for
symbol lookup as a.

Q 4
Prints as a long signed octal number.

q 2
Prints as a signed octal number.

r 0
Prints a space.

s n
Prints a string using the AX escape convention (see c earlier in this
·list); n is the length of the string, including its 0 terminator.

s n
Prints the addressed characters until a 0 character is reached.

t 0
Tabs to the next appropriate tab stop when preceded by an integer.
For example, 8 t causes a move to the next 8-space tab stop.

u 4
Prints as a long unsigned decimal number.

November 1991

adb(1) adb(l)

u 2
Prints as an unsigned decimal number.

y 4
Prints 4 bytes in data format (see ctime(3)).

x 4
Prints 4 bytes as a hexadecimal number.

x 2
Prints 2 bytes as a hexadecimal number.

$modifier
These are miscellaneous commands. These modifiers are available:

<file
Reads commands fromfile. If this command is executed in a file,
further commands in the file are not seen. If file is omitted, the
current input stream is terminated. If the value of count is 0, the
command is ignored. The value of the count is placed in variable
9 before the first command infile is executed.

<<file

>file

Reads commands fromfile. This command is similar to< except
it can be used in a file of commands without causing the file to be
closed. Variable 9 is saved during the execution of this
command and restored when the command completes. There is a
(small) finite limit to the number of<< files that can be open at
once.

Appends output to file, which is created if it does not exist. If file
is omitted, output is returned to the terminal.

? Prints process ID, the signal that caused stoppage or termination,
as well as the registers in the same way as the $ r command.
This option is the default if modifier is omitted.

b Prints all breakpoints and their associated counts and commands.

c Performs a C stack backtrace. If address is given, it is taken as
the address of the current frame (instead of a 7). If c is used, the
names and (16-bit) values of all automatic and static variables are
printed for each active function. If count is given, only the first
count frames are printed.

d Sets the default radix to address and reports the new value. Note
that address is interpreted in the (old) current radix. Thus 10$d
never changes the default radix. To make the default radix
decimal, use Otl 0$d.

November 1991 7

adb(l) adb(l)

d Resets integer input as described in "Expressions" earlier in the
"Description" section.

e Prints the names and values of external variables.

f Prints the floating-point data registersfp0-fp7 in IEEE extended
precision (see >name, earlier in the "Commands" section for a
definition), and exponential notation, along with the floating­
point control registers fpcr, fpsr, and fpiar.

m Prints the address map.

o Regards all integers subsequently input as octal.

Q Exits from adb.

q Exits from adb.

r Prints the general registers and the instruction addressed by pc.
Dot is set to pc.

s Sets the limit for symbol matches to address. The default is 255.

v Prints all nonzero variables in hexadecimal.

w Sets the page width for output to address. The default is 80.

: modifier
The colon (:) command and a modifier are used to manage a
subprocess. These modifiers are available:

be Sets breakpoint at address. The breakpoint is executed count - 1
times before causing a stop. Each time the breakpoint is
encountered, the command c is executed. If this command is
omitted or sets dot to 0, the breakpoint causes a stop.

cs Continues the subprocess with signal scs (see signal(3)). If
address is given, the subprocess is continued at this address. If
no signal is specified, the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as for the : r
command.

d Deletes breakpoint at address.

k Terminates the current subprocess, if any.

r Runs object-file as a subprocess. If address is given explicitly,
the program is entered at this point; otherwise, the program is
entered at its standard entry point. The value of count specifies
how many breakpoints are to be ignored before stopping.
Arguments to the subprocess can be supplied on the same line as
the command. An argument starting with < or > causes the
standard input or output to be established for the command. All
signals are turned on upon entry to the subprocess.

8 November 1991

adb(l) adb(l)

Variables

ss Continues the subprocess as described for c, earlier in this list,
except that the subprocess is single-stepped the number of times
specified by count. If there is no current subprocess, the object
file is run as a subprocess in the same way as for the : r
command. In this case, no signal can be sent; the remainder of
the line is treated as arguments to the subprocess.

The adb command provides a number of variables. Named variables are
set initially by adb but are not used subsequently. These numbered
variables are reserved for communication:

0 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

9 The count on the last $ < or $ < < command.

On entry, the following variables are set from the system header in
core-file. If core-file does not appear to be a core file, these values are set
from object-file:

b The base address of the data segment.

d The data segment size.

e The entry point.

m The magic number (0407, 0410, 0413).

s The stack segment size.

t The text segment size.

Addresses
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by n triples
(bl ,el ,fl), (b2,e2,f2), ... (bn,en,fn), corresponding to the number of
sections in your object file. The file address corresponding to a written
address is calculated as follows:

bl~address<el
::>

file-address=address+fl -b 1

otherwise,

b2~address<e2

::>

file-address=address+j2-b2

and so on.

November 1991 9

adb(l) adb(l)

Otherwise, the requested address is not legal. In some cases (such as for
programs with separated instruction and data space), the two segments for
a file can overlap. If a question mark (?) or slash (I) is followed by an
asterisk (*), the first triple is not used.

The initial setting of both mappings is suitable for normal a. out and
core files. If either file is not of the kind expected, for that file bl is set to
0, el is set to the maximum file size, and fl is set to O; in this way the
whole file can be examined with no address translation.

So that adb can be used on large files, all appropriate values are kept as
signed 32-bit integers.

EXAMPLES
This command starts adb on the executable file called obj 1:

adb objl

When adb responds with a ready message, you can type this request:

main,lO?ia

The request causes 16 (10 hexadecimal) instructions to be printed in
assembly language, starting from main.

STATUS MESSAGES AND VALUES
The adb command echoes adb when there is no current command or
format.

The adb command produces comments about, for example, inaccessible
files, syntax errors, and abnormal termination of commands.

The exit status of adb is 0 unless the last command failed or returned a
nonzero status.

LIMITATIONS
Use of the number sign (#) for the unary logical negation operator is
peculiar.

There doesn't seem to be any way to clear all breakpoints.

In certain cases, disassembled code cannot be used directly as input to
as(l). This is because adb gives more useful information than as
accepts. For example, explicit register names are given in the disassembly
of movm and fmovm instructions.

FILES

10

/bin/adb
Executable file

a.out
Default object file

November 1991

adb(l) adb(l)

core
Default core file

SEE ALSO
sdb(l)

a. out(4), core(4) inA/UX Programmer's Reference

November 1991 11

addbib(l) addbib(l)

NAME
addbib - creates or extends a bibliographic database

SYNOPSIS
addbib [-a] [-p prompt-file] database

ARGUMENTS
- a Suppresses the default prompting for an abstract.

database
Specifies the name of a file to be used to store the output of addbib.
If the file specified by database does not exist, addbib creates it. If
the file already exists, addbib appends to it any entries you made.

-p prompt-file
Causes addbib to use prompts that are defined in prompt-file. This
file should contain lines that consist of a prompt string, a tab, a percent
sign (%), and the option, in that order.

DESCRIPTION
addbib creates or extends a bibliographic database. The structure of the
database allows formatting to be imposed as a separate step after the data is
entered. Database entries consist of options and relevant fields. Once you
have entered the data, you can use sortbib(l) and roffbib(l) to print
the database in a standard bibliographic format. You can also embed
keywords from the database in footnotes in nroff(!) or troff(l)
documents and use refer(I) to extract the complete reference from the
database in proper footnote format and print it in your document.

When started, addbib displays the Instructions? prompt. Entering
y causes addbib to print a summary of how to enter data. You can enter
n or press RETURN to skip the summary.

Next, addbib prompts for various bibliographic fields and reads the
response from the terminal. The addbib command does not actually
write the fields to the database until all the fields for one record have been
prompted. If you have no data for a particular field, press RETURN to go on
to the next prompt.

To enter data, type the information and press RETURN. The only exception
to this practice occurs when you enter data in response to the Abstract:
prompt. In this case, type the data, press RETURN, and then press
CONTROL-D. If you wish to enter no data in response to the Abstract:
prompt, press CONTROL-D. To continue any field on the next line, enter a
backslash(\). In response, addbib places a> prompt on the next line,
where you can enter more data. When the field is written to the database,
the second and any additional continuation lines are separated by the
newline character.

November 1991

addbib(l) addbib(l)

You can enter a minus sign (-) to go back to a previous prompt and add a
second field of a particular type. For example, you can use this feature to
enter the name of each author of a multiple-author book. You cannot use
this feature to overwrite a previously entered field.

When addbib displays the Continue? prompt, which appears after you
have entered one complete record, you can enter y or press RETURN to
continue or enter n to stop running addbib. You can also enter the name
of a text editor (vi, ex, edit, or ed) to edit the database.

The addbib command insulates you from the options by displaying an
equivalent "English" prompt for each option. By default, addbib
displays prompts for the A, T, J, v, P, I, c, D, 0, K, and X options. Here
are the common options and their meanings:

%A Author's name.

%B Book containing article referenced.

%C City (place of publication).

% D Date of publication.

% E Editor of book containing article referenced.

%F Footnote number or label (supplied by refer).

%G Government order number.

%H Header commentary, printed before reference.

%I Issuer (publisher).

%J Journal containing article.

%K Keywords to use in locating reference.

%L Label field used by -k option of refer.

%N Number within volume.

%0 Other commentary, printed at end of reference.

%P Page number(s).

%Q Corporate or foreign author (unreversed).

%R Report, paper, or thesis (unpublished).

% s Series title.

%T Title of article or book.

%V Volume number.

%X Abstract; used by roffbib, not by refer.

November 1991 2

addbib(l) addbib(l)

%Y Ignored by refer.

%Z Ignored by refer.

Except for A, each field should be given just once.

EXAMPLES
Here is a record of the data entry for one bibliographic reference using the
default prompts:

Instructions? n

Author: R. Pike
Title:

Author:
Title:

Journal:
Volume:

Pages:
Publisher:

City:
Date:

Other:
Keywords:
Abstract:

Continue? n

B. W. Kernighan
Program Design in the UNIX System Environment
Technical Journal
63 No. 8 Part 2
1595-1605
AT&T Bell Laboratories
Short Hills, NJ
October 1984

Programming UNIX
(ctrl-d to end)

Here is what the database contains:

%A R. Pike
%A B. W. Kernighan
%T Program Design in the UNIX System Environment
%J Technical Journal
%V 63 No. 8 Part 2
%P 1595-1605
%I AT&T Bell Laboratories
%C Short Hills, NJ
%D October 1984
%K Programming UNIX

LIMIT A TIO NS

3

Because addbib displays only the first 20 characters, the prompt strings
in a user-defined prompt file should be less than or equal to 20 characters.
If the prompt string is longer than 20 characters, addbib appends the
option from the prompt file to the end of the truncated prompt string.

November 1991

addbib(l)

FILES
/usr/ucb/addbib

Executable file

SEE ALSO
indxbib(l), lookbib(l), refer(l), roffbib(l),
sortbib(l)

November 1991

addbib(l)

4

admin(l) admin(l)

NAME
admin - creates and administers SCCS files

SYNOPSIS
admin [-aname-or-gid] [-doption[value]] [-ename-or-gid]
[-foption[value]] [-h] [-i[name]] [-m[mrlist]] [-n] [-rrelease[.level]]
[-t[descriptive-text]] [-y[comment]] [-z]file ...

ARGUMENTS
-aname-or-gid

Specifies a login name or a numeric group ID to be added to the list of
users who are allowed to modify the Source Code Control System
(SCCS) file. The list of users is stored in the control information of
the SCCS file. Specifying a group ID is the same as specifying all the
login names common to that group ID. You can use more than one
-a option on a single admin command line, and you can accumulate
as many login names and numeric group IDs as you wish. If the
control information does not include a list of users, which is the
default, anyone who can read and write the file can check out the file
for editing. If you precede name-or-gid with an exclamation mark
(!), the specified login name or members of the specified group ID
will not be allowed to check out the file for editing. To remove a login
name or group ID from the list of users, see the - e option.

-doption [list]
Causes the specified option, previously added by the - f option, to be
removed from the SCCS file. You can specify the -d option on
existing SCCS files only, and you can combine several -d options on
a single admin command line. If you specify the 1 option and a list
of releases, admin ''unlocks'' the releases. See the - f option for the
other possible options.

- ename-or-gid
Specifies a login name or numeric group ID to be removed from the
list of users who are allowed to make changes to the file. The list of
users is stored in the control information of the SCCS file. Specifying
a group ID is the same as specifying all login names common to that
group ID. You can use several - e options on a single admin
command line. This option undoes the work of the - a option.

file Specifies the file that admin is to create or update. When a file is
placed under SCCS for the first time, file is the name of a file that
admin is to create. The number of file arguments depends on the
option, that you use to create the file. (These options are described
later in this list. For compatibility with the SCCS commands, the
name of a file controlled by SCCS must begin with an s and a period
(.). The name that you provide can consist of up to 255 characters,

November 1991

admin(l) admin(l)

including the required s . prefix. When creating a new file, admin
initializes control information according to the options provided on the
command line and assigns default values for any required options that
are not specified.

When changing control information, you can provide one or more file
arguments, which is the name of a file previously created by the
admin command. The admin command changes only the specified
control information and leaves the remainder alone. If file is a
directory, admin behaves as though each file in the directory were
specified on the command line. If file is a hyphen(-), admin reads
the standard input and interprets each line as the name of an SCCS file
to be processed. In either case, files that do not begin with s . and
unreadable files are silently ignored.

- foptions [list]
Specifies an option to be placed in the control information of an SCCS
file. Some options require or accept value, which further defines the
action of option. You can use more than one - f option on a single
admin command line. You can use the -d option to remove an
option from an SCCS file. Here are the allowable values of option and
their meanings:

b Allows the use of the -b option on any future get command to
create branch deltas.

cceiling
Specifies the highest release number that get can assign to this
file. The value of ceiling must be less than 10,000. The default
value of ceiling is 9999. See the -r option for an explanation of
release numbers.

ddeltanum
Specifies the default delta number (SID) to be used by any future
get command.

fjl.oor
Specifies the lowest release number that get can assign to this
file. The value of floor must be greater than 0 but less than 9999.
The default value of floor is 1. See the - r option for an
explanation of release numbers.

November 1991 2

admin(l) admin(l)

3

i[string]
Protects the presence of keywords, which you add manually to
the text of a file before you run adrnin on it. If a future get or
delta of a protected file results in the No id keywords
(ge 6) message, the message is treated as a fatal error. You must

restore the keywords to the file before proceeding. If you do not
use this option, get and delta treat this message as a warning.

If you do not specify string, all keywords are protected. If you
specify string, the secs file must contain a string of keywords
that exactly matches string. Embedded newlines are not allowed
in string. To specify multiple keywords separated by a space,
quote them, as in

-fi 11 %M %I %D"

See get(l) for a list of valid identification keywords.

j Allows concurrent get commands for editing the same SID of
an SCCS file. This option allows multiple concurrent updates to
the same version of the SCCS file.

llist
Specifies a list of releases to which deltas may no longer be
made. Any future attempts to use the get command on one of
these ''locked'' releases for editing will fail. The list has the
following syntax:

<list> : : = <range> I <list> , <range>
<range> - : : = release-number I a

Using the character a in list is equivalent to specifying all
releases for the named SCCS file.

mmodule-name
Uses module-name to specify a string that get will substitute for
all occurrences of the %M% keyword in the SCCS file when the
text is retrieved. If you do not use the rn option, get substitutes
the name of the SCCS file, with the prefix s . removed, for all
occurrences of the %M% keyword.

n Causes future invocations of delta to create a null delta for any
skipped releases when a delta is made in a new release. For
example, if you make delta 5 .1 after delta 2. 7, releases 3 and 4
are skipped. The null deltas serve as anchor points so that you
can create branch deltas later. If you do not use this option, you
will be unable to create branch deltas for the skipped releases in
the future.

November 1991

adrnin(l) adrnin(l)

qstring
Specifies a string that get will substitute for all occurrences of
the %Q% keyword in the SCCS file when the text is retrieved.

tmodule-type
Uses module-type to specify a string that get will substitute for
all occurrences of the %Y% keyword in the SCCS file when it
retrieves the text.

v[program]
Uses program to specify the name of a user-supplied
Modification Request (MR) validity-checking program. The
value of program can be an absolute pathname or a program that
resides in a directory listed in $PATH. If you set this option
when you are creating an SCCS file, you must also use the -m
option.

The v option causes future invocations of delta on the text of
the SCCS file to prompt for MR numbers as the reason for
making a delta and to invoke the validity-checking program to
verify that the MR number is valid.

- h Causes admin to check the structure of the SCCS file (see
sccsfile(4)) and to compare a newly computed checksum with the
checksum stored in the first line of the SCCS file. (The checksum is
the sum of all the characters in the SCCS file except those in the first
line.) The admin command displays an error diagnostic if the
comparison of the checksums fails.

Because this option inhibits writing to the file argument, you cannot
use this option in conjunction with any other option. As a result, this
option is useful only when an existing file is processed.

-i[name]
Creates a new SCCS file whose text is the content of the file specified
by name. If you use this option and omit name, admin obtains the
text by reading the standard input until it encounters an end-of-file.
You can specify only one file argument when you use this option. If
you do not use this option, you must explicitly specify the -n option.

-m[mrlist]
Specifies a list of alphanumeric MR numbers to be associated with the
initial version of an SCCS file. This option can be used only with the
- i or -n option and must be used in conjunction with the v option.

If the list has more than one MR number, enclose the list in quotation
marks and separate the numbers by a space or a tab. This list can have
up to 61 MR numbers.

November 1991 4

admin(l) admin(l)

The admin command executes the user-supplied MR validity­
checking program specified by the v option to verify mrlist. The
ad.min command displays error diagnostics if the v option is not set
or if MR validity checking fails. If validity-checking is successful, the
admin command inserts mrlist in a manner identical to that of
delta.

-n Creates a new SCCS file that contains only control information. Use
this option when you do not have an existing file to place under SCCS.
You can supply more than one file argument when you use this option.

-rrelease[.level]
Specifies an integer value for the release and level into which the
initial delta is to be inserted. If you do not use this option, 1 . 1 is the
default initial delta. You can use this option only if you also use the
-i option.

-t [descriptive-text]
Causes descriptive text, from the file specified by descriptive-text, to
be incorporated in the control information of the SCCS file.
Descriptive text is any text that, for your own purposes, you want to
associate with the actual text of the file.

If you use this option with the - i or -n option to create an SCCS file,
descriptive-text is required. If you use this option with an existing
SCCS file and do not provide descriptive-text, admin removes any
existing descriptive text from the SCCS file. If you provide
descriptive-text, admin replaces any existing descriptive text with the
contents of the file specified by descriptive-text.

-y[comment]
Specifies text to be inserted as a comment in the SCCS file when it is
created. If comment contains spaces, enclose the entire comment in
double quotation marks. You can use this option only in conjunction
with the - i and -n options. The admin command inserts the
comment in a manner identical to that of delta. If you do not
specify this option, admin inserts a default comment of the form:

date and time created YY/MM/DD HH:MM:SS by login-id

- z Causes admin to recompute the checksum and store it in the first line
of the SCCS file. Note that use of this option on a corrupted file
prevents future detection of the corruption.

DESCRIPTION

5

admin creates new SCCS files and changes the control information of
existing SCCS files. A file created by admin contains, in addition to the
actual text, control information used by the SCCS commands to manage

November 1991

admin(l) admin(l)

the text. The control information consists of an option followed by the
associated information.

In general, you place a file under SCCS by using the - i or -n option, and
you tailor the control information through the other options. Many of the
options for tailoring the control information manage the outcome of future
get and delta commands. Any particular version of an SCCS file is
commonly called a "delta"; the cycle of running get and delta on a file
is commonly called "checking a file out and in." Making a change to an
SCCS file is commonly called ''making a delta.''

Security and Permission Bits
For the highest level of security, the permission bits of directories that
contain SCCS files should be 755, and the permission bits of SCCS files
themselves should be read-only (444). These settings allow only the owner
of an SCCS file to modify it by using SCCS commands only.

To create a new SCCS file, you must have write permission in the pertinent
directory. The adrnin command sets the permission bits on a newly
created secs file to 444. When updating an existing secs file, adrnin
retains the file's original permission bits. The adrnin command writes to a
temporary file called x .filename. This file is created with read-only
permission bits, if a new SCCS file is being created; if an existing file is
being changed, this file is created with the same permission bits as the
existing SCCS file. After successfully creating or updating x .filename,
adrnin removes the SCCS file (if it exists) and renames x .filename with
the name of the SCCS file. This strategy ensures that changes are made to
the SCCS file only if no errors occurred.

The adrnin command also uses a temporary lock file, z .filename, to
prevent simultaneous updates to an SCCS file by two or more users. See
get(l) for further information.

Handling a Corrupted File
If you, as the owner, need to correct an SCCS file by using a non-SCCS
command, you can change the permission bits to 644 and use an editor to
make the correction. You should always run adrnin - h on the edited file
to check for corruption and then run adrnin - z to generate a valid
checksum. You should then run adrnin - h again to ensure that the SCCS
file is valid.

The Validity-Checking Program
If you want to take advantage of the v option, which causes de 1 ta to
prompt for MR numbers, you must write a program to check the numbers.
The admin and delta commands call execvp (see exec(2) for details)
to execute the validity-checking program. The first element of the argv
array contains the name of the validity-checking program, as specified by

November 1991 6

admin(l) admin(l)

the v option, and the second element contains the filename, with its s .
prefix removed, of the SCCS file being processed. The validity-checking
program should return zero to indicate that the MR number is valid, or
nonzero to indicate failure.

EXAMPLES
This command uses a file named tempest. c to create a new file in SCCS
format named s. tempest:

admin -itempest.c s.tempest.c

STATUS MESSAGES AND VALUES
The bdiff command produces messages that the help command can
interpret. You may, for example, see this message:

ERROR [s.file]: MRs required (delO)

To see an explanation of this message, enter

help delO

FILES
/usr/bin/admin

Executable file
filename

Existing file to be placed under SCCS control
s .filename

SCCS file created or changed by admin
x.filename

Temporary file
z .filename

Lock file that prevents simultaneous updates to s .filename
SEE ALSO

7

delta(l), ed(l), get(l), help(l), prs(l), what(l)

sccsfile(4) inA/UX Programmer's Reference

"SCCS Reference" in AIUX Programming Languages and Tools, Volume
2

November 1991

apply(l) apply(l)

NAME
apply - passes its arguments in batches to a command that is run once
per every batch

SYNOPSIS
apply [-aesc-char] [-args-per-batch] command argument ...

ARGUMENTS
-aesc-char

Specifies the escape character that can change the interpretation of
argument. The default is the percent sign(%). See the "Description"
section for information about how the argument selector works.

argument
Specifies an argument to be passed to command. You should specify
a multiple of the number of arguments that are needed to run
command successfully once.

command
Specifies the command that apply is to run.

-args-per-batch
Specifies the number of arguments to pass from the apply command
line to command each time apply runs the command. If you do not
use this option, apply passes one argument at a time. If the value of
args-per-batch is 0, apply runs command once for each arg but does
not pass arg to command.

DESCRIPTION
apply runs a command enough times to use up the arguments specified on
the apply command line.

An argument-selector is part of a command and has the form %d, where d
is a digit from 1 to 9. The apply command replaces the argument­
selector with the next digit argument and runs the command. If an
argument-selector is present in command, apply ignores the
-args-per-batch option, if provided. To avoid an error message when the
arguments are exhausted, you need to make the number of arguments on
the apply command line a multiple of d. See the third example in the
next section for a way to use an argument-selector.

EXAMPLES
The first example of the apply command uses cmp to compare the a files
to the b files. The -2 option causes apply to take arguments in sets of
two from the apply command line and use them to run cmp until the
arguments are exhausted.

apply -2 cmp al bl a2 b2

The second example shows what happens when the -n option is set to 0.

November 1991 1

apply(l) apply(!)

Five arguments appear after the who command, so apply runs the who
command five times, but it does not pass the arguments to who because n is
0.

apply -0 who a 2 c 4 e

The third example shows the use of an argument-selector. This command
creates a link in the directory /usr /rncfong between each file in the
current directory:

apply 'ln %1 /usr/rncfong' *
If the argument-selector were %3, the apply command would run ln for
every third filename expanded by the shell. If the total number of
expanded filenames were not a multiple of 3, apply would run ln for
every third filename and display an error message when it could not get the
next argument that is a multiple of 3.

LIMITATIONS
Shell metacharacters in command may have bizarre effects. You should
enclose complicated commands in single quotation marks (').

You cannot pass a literal % 2 if % is the argument-selector character.

FILES
/usr/ucb/apply

Executable file

SEE ALSO
csh(l), ksh(l), sh(l), xargs(l)

2 November 1991

apropos(l) apropos(l)

NAME
apropos - locates commands by keyword

SYNOPSIS
apropos search-string ...

ARGUMENTS
search-string

Specifies a string for which apropos is to search.

DESCRIPTION
apropos examines a database of manual page "Name" sections for the
occurrence of the specified strings. If a match is found, apropos displays
the command name and its corresponding "Name" section. You can use
apropos to help you find a command that does the task you want done.
The apropos command separately considers each search-string, ignoring
case. A string that is part of another word is a match; thus, a search string
of compile matches compiler.

EXAMPLES
This command searches for the string calendar:

apropos calendar

The command displays this output:

cal(l) - generate a calendar for the specified year
calendar(l) - reminder service

The first column contains the names of commands whose "Name" section
contains calendar, followed by the section number, in the form
name (section). The second column contains the actual "Name" section.

To see the on-line documentation for a particular command, enter a
command of this form:

man [section] name

For instance, enter this command:

man 1 cal

FILES
/usr/ucb/apropos

Executable file
/usr/lib/whatis

Database that apropos searches

SEE ALSO
man(l), whatis(l)

November 1991 1

ar(l)

NAME
ar - maintains a library of files in an archive

SYNOPSIS
ar -dp [l] [v] archive file ...

ar -mp [1) [v] [position archivefile] archive file ...

ar -qp [c] [l] [v] archive file ...

ar -rp [c] [l] [u] [v] [position archivefile] archive file ...

ar -tp [s] [v] archive file ...

ar -xp [l] [s] [v] archive file ...

ARGUMENTS
archive

ar(l)

Specifies the name of the archive to be created or maintained.

-c Causes ar to create an archive without displaying a message. This
option is useful only when used in combination with the-rand -q
options.

-d Deletes the named files from the archive.

file Specifies the name of a file that is to be added to the archive or that is
already in the archive.

-1 Causes ar to place its temporary files in the current directory rather
than in the default I tmp. This option is useful only when used in
combination with the -d, -m, -q, -r, and -x options.

-m Moves the named files to the end of the archive by default. You can
combine this option with a position specifier to move the file before or
after a file that is already in the archive.

-p Prints the contents of files that are in the archive as specified by file.

position archivefile
Specifies the position specifiers, where archivefile is the name of a file
in the archive. Replace position with one of these options:

- a Moves the named files after archivefile.

- b Moves the named files before archive file.

- i Inserts the named files before archivefile. This action is identical
to the action of the - b position specifier.

-q Appends the named files to the end of the archive. If the archive does
not exist, ar creates it and displays the message ar: creating
archive. You cannot use a position specifier, as described for the
-m option, with this option. The -q option does not check whether
the named file is already in the archive and therefore can add

November 1991

ar(l) ar(l)

duplicates. This option is used to avoid quadratic behavior when
creating a large archive on a file-by-file basis. For an alternative to the
- q option, see the - r option.

- r Replaces the named file in the archive. If the named file is not already
in the archive, ar adds the file to end of the archive unless you also
use a position specifier, as described for the -m option. If the archive
does not exist, ar creates it and displays the message ar :
creating archive.

-s Causes ar to regenerate the archive's symbol table. The -d, -m, -q,
-r, and -u options cause ar to regenerate the symbol table
automatically. The other options do not. You can use this option in
conjunction with the -p, -t, and -x options to restore the symbol
table, when, for example, strip has been used on the archive.

- t Prints the name of each named file in the archive. If you do not
specify any names, ar prints the names of all files in the archive.
Typically, you use this option with the -v option.

-u Changes the behavior of the - r option by causing ar to replace only
those files whose modification dates are more recent than the
modification date of the archive.

-v Causes ar to give a file-by-file description as it works. When used
with the -t option, ar prints a listing similar to the output of the
ls(l) command for each file in the archive.

- x Extracts a copy of the named file. If you do not specify a name, a r
extracts all files in the named archive. In either case, this option does
not alter the archive.

DESCRIPTION
ar maintains files in a single file that is called an "archive." Typically, an
archive is a library of object files that is used by the link editor, ld, to
resolve references so that it can produce an executable file. You can also
use ar to create and maintain libraries of other file types.

When ar creates an archive, headers are created in a format that is portable
across all machines. The portable archive format and structure are
described in detail in ar(4). The archive symbol table (described in ar(4))
is used by the link editor (ld) to do multiple passes over libraries of object
files efficiently. Whenever you use ar to create or update an archive, ar
rebuilds the symbol table. You also can use the - s option to rebuild the
symbol table.

November 1991 2

ar(l) ar(l)

EXAMPLES
The first example replaces the file foo. o in the archive libfoo. a with a
new copy of f oo . o:

ar -re libfoo.a foo.o

If 1 ibf oo. a does not exist, ar creates it. The -c option prevents ar
from issuing a message that it has created the archive. Because the
command does not use a position specifier, ar places foo. oat the end of
the archive if foo. o is not already in the archive.

The second example uses the -u option to cause ar to update the archive
using only those files in the current directory that have a . o suffix and that
are newer than the modification date of the archive itself:

ar -ru libfoo.a *.o

The third example inserts the file new. o into the archive libfoo. a
before foo. o, which is already in the archive:

ar -rvb foo.o libfoo.a new.a

The -v option causes ar to print a message as it adds new. o.

LIMIT A TIO NS
If you specify the same file more than once in an argument list, ar puts the
file in the archive once for each mention.

FILES
/bin/ar

Executable file
/tmp/ar*

Temporary files

SEE ALSO
ld(l), lorder(l), strip(l), tar(l)

a. out(4), ar(4) inA/UX Programmer's Reference

3 November 1991

as(l) as(l)

NAME
as - assembles files by translating assembler mnemonics to object code

SYNOPSIS
as [-A factor] [-m l [-n l [-o object-file] [-R l [-V l
[-68030 l [-68040 l [-68851 l file

ARGUMENTS
-A factor

Specifies the expansion factor to be used to increase the size of the
default symbol table.

file Specifies the name of the file to be assembled. By convention,
assembly-language filenames have the . s suffix. If you specify more
than one file argument, as assembles only the last-named file.

-m Causes as to run the m4 macro preprocessor onfile and assemble the
output of m4.

-n Turns off address optimization. By default, as optimizes addresses
by replacing, where possible, a reference to a long address with a
reference to a short relative address.

- o object-file
Causes as to put its output in object-file. If you do not use this option,
as puts its output in a file whose name is formed by removal of the
. s suffix, if there is one, from file and substitution of the . o suffix.

- R Causes as to remove file when assembly is completed. By default,
this option is off.

-V Causes as to write its version number on the standard error.

-68030
Assemble for the MC68030 processor and MC68030 MMU. This
option give you access to an enhanced feature set as compared to the
default MC68020 assembly, but the code does not run on the original
Macintosh II computer.

-68040
Assemble for the MC68040 processor and MC68040 MMU. This
option give you access to an enhanced feature set as compared to the
default MC68020 assembly, but the code does not run on the original
Macintosh II computer.

-68851
Assemble for the MC68851 Memory Management Unit (MMU). This
command is on by default.

November 1991

as(l) as(l)

DESCRIPTION
as assembles assembly-language files. The C and Fortran compilers
produce assembly-language files and automatically call as to assemble
them.

WARNINGS
If you use the -m option, file cannot use the names of m 4 built-in macros as
names for variables, functions, or labels. This is because m4 cannot
distinguish between the use of the built-in macro names as macros and as
assembler symbols (see m4(1)).

LIMITATIONS
The as command cannot process arithmetic expressions that have more
than one forward-referenced symbol per expression.

FILES
/bin/as

Executable file
/usr/tmp/as[l-6]*

Temporary storage files

SEE ALSO
adb(l), ld(l), m4(1), nm(l), strip(l)

a. out(4) inA/UX Programmer's Reference

"as Reference" inA/UX Programming Languages and Tools, Volume 1

2 November 1991

asa(l) asa(l)

NAME
asa - interprets ASA carriage control characters

SYNOPSIS
asa [file] ...

ARGUMENTS
file Specifies the output of a Fortran program that uses ASA carriage

control characters. If you do not specify file, asa reads the standard
input.

DESCRIPTION
asa interprets the output of Fortran programs that use American National
Standards Institute (ANSI) carriage control characters to print on a line
printer.

The asa command assumes that the first character of each line infile is a
control character and transforms the control character into a printer control
character. Here are the control characters and the actions that asa takes:

space
Inserts a single newline character before the line, where space is the
ASCII character 0 2 0.

0 Inserts two newline characters before the line.

1 Inserts a character that causes an advance to a new page before the
line.

+ Inserts a character that causes the previous line to be overprinted.

The asa command causes the first line of each input file to be printed on a
new page. If any line does not begin with a control character, asa passes
on the second and subsequent characters of the line and writes asa: 1
invalid input lines infile on the standard error.

EXAMPLES
This command line uses asa as a filter on the output of a Fortran program
called a. out and prints the output of asa by using the lp command,
whose default printer is a line printer:

a.out I asa I lp

This command lets you see the output of a Fortran program that has been
sent to a file:

asa file

FILES
/bin/asa

Executable file

November 1991 1

asa(l) asa(l)

SEE ALSO
efl(l), £77(1), fpr(l), fsplit(l)

2 November 1991

at(l) at(l)

NAME
at, batch-run commands at a later time

SYNOPSIS
at time [day][+ increment]

at -1 fjob-number]. ..

at - r job-number ...

batch

ARGUMENTS
+ increment

Specifies an optional increment that further specifies the time at which
to run your job. The increment is a number suffixed by one of the
following times: minutes, hours, days, weeks, months, or
years. An example of an increment is+ 1 month as in at
0815pm + 1 month. The at command also accepts the singular
form of each increment.

day Specifies an optional day on which the command is to be run. The day
can be a month name followed by a day number (for example Jan
2 9); a month name followed by a day number, a comma, and a year
number (for example, Jan 2 9, 19 91); or a day of the week,
spelled out or abbreviated to three characters (for example, Tuesday
or Tue). If you specify a month that is less than the current month
and you do not specify a year, at assumes the next year. Two special
days, today and tomorrow, are recognized. If you do not specify a
date, at uses today if the specified hour is greater than the current
hour or tomorrow if it is less.

-1 fjob-number]. ..
Reports by job number the at and bat ch jobs that you currently
have scheduled.

- r job-number

time

Removes the specified job-number, which was previously scheduled
by means of at or bat ch. You can remove only your own jobs
unless you are logged in as root.

Specifies the time at which to run your job. You must specify a time
argument, which can be one, two, or four digits. The at command
interprets a time of one or two digits as specifying an hour of the day
and interprets a time of four digits as specifying the hour and the
minute. You can also specify the time as two numbers separated by a
colon, meaning hour:minute. You can append am or pm to time.
Otherwise, at uses a 24-hour clock. You can also append zulu to

November 1991 1

at(l) at(l)

indicate Greenwich mean time. The at command also recognizes a
special time of noon, midnight, now, or next.

DESCRIPTION
at and bat ch read commands from the standard input and place them on
a queue to be run at a later time by the at run command, which uses the
Bourne shell (/bin/ sh) to run the job. The at command allows you to
specify when the commands are to be run, while jobs queued with batch
are run when system load level permits. When the commands are run,
at run mails to you the standard output and standard error output of the
job unless you redirected the output elsewhere.

You can use at and bat ch if your name appears in the file
/usr I lib/ cron/ at. allow. If that file does not exist, at checks the
file /usr/lib/cron/at. deny to determine if you should be denied
access. If neither file exists, only a user who is logged in as root can
submit a job. These files consist of one login ID per line.

The at and batch commands read the standard input to get the command
to run. To terminate the entry of commands, press CONTROL-D. To
indicate success, at and batch write the job number and scheduled time
on standard error.

When the job is run, it inherits the shell environment variables, current
directory, file-creation mask, and file-size limit that were in effect when
you entered the at or bat ch command. The job does not inherit your
open file descriptors, traps, or priority.

If the system is not running at the scheduled time and is started later,
at run does not run the job.

EXAMPLES

2

Here are some valid at commands:

at 0815pm Jan 24
at 8:15pm Jan 24
at now + 1 day
at 5 pm Friday

Use this sequence at a terminal to redirect standard output:

batch
nroff filename > outfile

The following sequence, which demonstrates how to redirect standard error
to a pipe, is useful in a shell script. The order of output redirection
specifications is significant.

batch <<!
nroff filename 2>&1 > outfile I mail login-id

November 1991

at(l) at(l)

To have a job reschedule itself, invoke at from within a shell script by
including code similar to the following line within the script:

echo "sh script" I at 1900 thursday next week

STATUS MESSAGES AND VALUES
at: you are not authorized to use at. Sorry.

Indicates that your name is not in /usr I lib/ cron/ at. allow or
that your name is in /usr /lib/cron/at. deny.

at: bad date specification
Indicates that the day or time argument is incorrect.

warning: commands will be executed using /bin/sh
Indicates that the command was successful.

FILES
/usr/bin/at

Executable file
/usr/bin/batch

Executable file
/usr/lib/atrun

Executable file, invoked by cron, that runs the jobs in the at and
bat ch queues

/usr/lib/cron/at.allow
File containing a list of allowed users

/usr/lib/cron/at.deny
File containing a list of denied users

/usr/lib/cron/queuedefs
File containing scheduling information

/usr/spool/cron/atjobs
Directory containing the job queue

SEE ALSO
crontab(l), kill(l), mail(l), nice(l), ps(l), sh(l)

cron(lM) in AJUX System Administrator's Reference

November 1991 3

atlookup(l) atlookup(l)

NAME
atlookup - looks up network-visible entities (NVEs) registered on the
AppleTalk network system

SYNOPSIS
atlookup [-d] [-r nn] [-s ss] [-x] [object[:type[@wne]]]

atlookup -z [-C]

ARGUMENTS
- C Prints zones in multiple columns.

-d Prints the network address in decimal numbers.

object
Specifies the name of the object to be looked up.

-r nn
If the lookup is unsuccessful, the system tries again the number of
times specified by nn. The default is to try the lookup eight times.

-s nn
Instructs at lookup to wait a certain number (ss) of seconds between
consecutive attempts to complete a lookup successfully. The default is
to space retries one second apart.

type Specifies the type of the object to be looked up.

-x Prints the 8-bit ASCII characters on output as hexadecimal numbers of
the form (where Xis a hexadecimal digit). This option is useful when
you are using a terminal other than the A/UX system console.

- z Lists all zones in the network.

zone
Specifies the zone in which the lookup is to be performed. You can
use an asterisk instead of a zone name to indicate the current zone
name. If you don't specify a zone name, the current zone is the
default.

The object and type arguments can contain wildcard characters. The equal
sign (=) indicates a wildcard lookup. For wildcard lookups to work
correctly with all nodes, the only character specified in the string must be
the wildcard character. However, AppleTalk Phase 2 nodes also honor a
single embedded wildcard character, '='. Under this scheme, one wildcard
character can appear anywhere in the string and can match zero or more
characters. Note, however, that although an embedded '=' is acceptable in
object and type arguments of at 1 ookup, only the nodes implementing
AppleTalk Phase 2 protocols respond to such a query. For this reason, the
resulting list of NVEs may be incomplete.

November 1991

atlookup(l) atlookup(l)

DESCRIPTION
at lookup uses the Name Binding Protocol (NBP) to look up names and
addresses of the specified NVEs.

The default is to look up all the entities (of all types) in the current zone.
Specifying the object, type, or zone on the command line changes the scope
of lookup.

Information about the NVEs is displayed in a table format, one line per
NYE. Each line gives the names of the object, type, and zone and the
numbers of the network, node, and socket.

EXAMPLES
This command looks up all NVEs registered in the local AppleTalk zone:

at lookup

In response, the system displays output similar to this:

Found 5 entries in zone My-Zone
6b5b.c3.ea 3-Eyed Monster:LaserWriter
6b5b.80.fd 3-Eyed Monster Spooler:LaserWriter
6bl4.84.ea Incognito :LaserWriter
6bl9.a3.fd Light of Day:AFPServer
6b51.27.fd Nets-R-Us Spooler:Laserwriter

In an extended Apple Talk network, this command displays all NVEs (of
any type) in the current zone whose names start with L and end in y:

atlookup L=y:=

The output might be similar to this:

Found 1 entries in zone My-Zone
6bl9.a3.fd Light of Day:AFPServer

FILES
/usr/bin/atlookup

Executable file

SEE ALSO
at_cho_prn(l), atprint(l), atstatus(l)

Inside AppleTalk

November 1991 2

atprint(l) atprint(l)

NAME
atprint - transfers data to a printer by using AppleTalk protocols

SYNOPSIS
at print [printer-name[: printer-type[@zane]]]

ARGUMENTS
printer-name

Specifies the name of the printer you want to use.

printer-type

zone

Specifies the type of printer, such as LaserWriter or
ImageWriter. Use this option when you want to allow the network
to select the printer, but only a printer of a given type. If you omit this
option, LaserWri ter is the printer type used by default.

For example, when the printer name is specified with wildcards. (See
at lookup(l) for an explanation of wildcards.) The print device
used is the one chosen by the network. By supplying LaserWri ter
as the printer type in a case such as this, you can restrict the network
to choosing a printer that can handle PostScript instructions.

The full range of possible replacement values for printer-type depends
on the configuration of your network. Each different type of print
device broadcasts its printer-type and printer-name identification when
it registers itself with the network. You can use at lookup to obtain
a report showing this information for all the AppleTalk devices on
your network (see atlookup(l)).

Specifies the AppleTalk zone in which the printer resides. If you omit
this argument or specify it as *, the local zone is used.

DESCRIPTION
atprint uses a printing protocol to establish a connection to an
AppleTalk device, where it sends data received on its standard input until it
reaches an end-of-file character. When it detects an end-of-file character,
atprint closes the AppleTalk session with the device, enabling other
users to gain access to the printer.

You can select the destination AppleTalk device through the command-line
arguments as described in the ''Arguments'' section earlier in this manual
page. If you do not specify any of these arguments, a tpr int uses the
printer that was last selected either with the Chooser or with at_cho_prn
(see at_cho_prn(l)).

Often the printer you access by way of an AppleTalk connection is a
LaserWriter. Many LaserWriter models are PostScript printers. If you are
using such a LaserWriter, the data that you send it must already be

November 1991

atprint(l) atprint(l)

translated into the PostScript page-description language. For example, the
psdi t command translates the output from troff (invoked with the
-Tpsc option) into PostScript:

troff -Tpsc -mm file I psdit I atprint

The atprint command displays one or more messages indicating the
AppleTalk device with which it is communicating and possibly many
device status messages (such as when another print job is occupying the
printer for a period of time). In the preceding example, the default printer
is used. (See the "Arguments" section earlier in this manual page.)

(Note that the atprint command does not honor requests from a
Laser Writer regarding the downloading of fonts. Likewise, it does not
prepend a PostScript header to the data stream in the same manner as the
printer drivers in the Macintosh Operating System. In the preceding
example, a PostScript header is still provided because psdi t prepends its
own header as part of the PostScript conversion process.)

In AppleTalk programming terms, the arguments make up a network­
visible entity (NYE), where

printer-name[: printer-type[@zane]]

corresponds to the AppleTalk object, type, and zone:

object: type@zane

EXAMPLES
This command line maps a plain text file into PostScript and then submits it
to j oe' sprinter:

enscript -p- fik I atprint "joe's printer"

WARNINGS
The atprint command does not process the input files as does lpr. To
print ASCII files properly on a PostScript printer with atprint, you must
preprocess the files with pstext or enscript. Likewise, you must
preprocess files produced by troff with psdi t(l).

FILES
/usr/bin/atprint

Executable file

SEE ALSO
at_cho_prn(l), atlookup(l), atstatus(l),
enscript(l), lpr(l), psdit(l), pstext(l)

''Apple Talk Programming Guide'' in NUX Network Applications
Programming

November 1991 2

atprint(l) atprint(l)

3

''Administering Apple Talk'' in A/UX Network System Administration

Inside AppleTalk

November 1991

atstatus(l) atstatus(l)

NAME
atstatus - displays status information from an AppleTalk device

SYNOPSIS
at status [object [:type [@zone]]]

ARGUMENTS
object

Specifies the name of the Apple Talk device. Wildcard characters are
not permitted. If you don't specify the AppleTalk device, atstatus
uses the system default. If the name contains spaces, put quotation
marks around the name. Here is an example:

atstatus "Sharon's Print Shop"

type Specifies the type of server. If you don't specify the type argument,
the default is LaserWri ter. If you supply a zone argument, you
must also supply a type argument.

zone
Specifies the zone in which the AppleTalk device resides. If you
don't specify the zone, the system defaults to *,your local zone.

DESCRIPTION
atstatus gets the status string from an AppleTalk device, such as a
Laser Writer.

FILES
/usr/bin/atstatus

Executable file

SEE ALSO
at_cho_prn(l), atlookup(l), atprint(l)

Inside AppleTalk

November 1991 1

at_cho_prn(l) at_cho_prn(l)

NAME
at_cho_prn - allows you to choose a default printer on the AppleTalk
internet

SYNOPSIS
at_cho_prn [type[@zane]]

ARGUMENTS
type[@zane]

Specifies the type of printer to be used, and the area (zane) in which it
resides. If you don't use the type argument on the command line,
at_cho_prn displays all entities of the types LaserWri ter and
ImageWri ter. The system prompts you to select a printer by
entering the appropriate number from the printer list display. If you
don't enter the zane part of the argument on the command line,
at_cho_prn lists all the zones in the internet and prompts you to
choose the zone in which you'd like to select your default printer.

DESCRIPTION
The at_cho_prn command displays a list of printer selections and saves
the name of the printer that you select. The at_cho_prn command
checks the network to determine which printers are registered on that
network.

After you specify the zone, at_cho_prn lists the printers (of type type)
available in that zone.

EXAMPLES
The command

at_cho_prn 'LaserWriter@*'

produces output similar to this:

ITEM NET-ADDR OBJECT : TYPE
1: 56bf .af .fc AnnLW:LaserWriter
2: 56bf.ac.cc TimLW:LaserWriter

ITEM number (0 to make no selection)?

where NET-ADDR is the AppleTalk internet address (printed in
hexadecimal) of the printer's listener socket, and OBJECT: TYPE is the
name of the registered printer and its type.

FILES
/usr/bin/at_cho_prn

Executable file

1 November 1991

at_cho_prn(l) a t_cho_prn(1)

SEE ALSO
atlookup(l), atprint(l), atstatus(l)

Inside AppleTalk

''Administering Apple Talk,'' in AIUX Network System Administration

''Apple Talk Programming Guide,'' in AIUX Network Applications
Programming

November 1991 2

awk(l) awk(l)

NAME
awk - scans a file for lines that match a specific pattern

SYNOPSIS
awk [- Ffield-separator] 'pattern-action ... ' [[-v] variable= value]. ..
[file] ...

awk [- f awk-source-file] [- Ffield-separator] [[-v] variable=value] ...
[file]. ..

ARGUMENTS
- f awk-source-file

Specifies the file containing the instruction that awk should interpret.

- Ffield-separator
Specifies the character to be treated as the field separator when awk
parses a record into fields.

file Specifies the file or files containing text data to be processed by awk.

pattern-action
Specifies an awk instruction, which is provided in the form of a
pattern followed by an action enclosed in braces:

pattern {action}

[-v] variable=value
Specifies the value of an awk variable that is established for use in the
main sections of an awk program, which consists of any number of
pattern-action arguments. If the -v option is present, the variable is
also available in the BEGIN (initialization) section of an awk
program.

DESCRIPTION
awk effectively handles most programs containing text-parsing, report
generation, and record validation tasks. These programs typically contain a
brief list of instructions that specify text-scanning and text-manipulation
functions.

The standard operation of awk is to scan each input file once, looking for
matches between each input record and any of a set of patterns that you
supply. These pattern instructions are accompanied by action instructions.
Sometimes the action instructions merely establish settings that affect text
processing that is undertaken by awk as part of its standard operation, such
as the parsing of records into fields.

So that text patterns can be sought in specific positions in an input record,
awk splits the input record into fields at every occurrence of a
field-separator character. After an input record is split into fields, each field
is assigned to a field variable, such as $1, $ 2, $ 3, and so forth. These

November 1991

awk(l) awk(1)

variables can be used to reference input fields either in the pattern or the
action portion of a pattern-action argument.

You can obtain a measure of control over the field-parsing function by
specifying your own field separator for parsing purposes. The default field
separator is white space (tabs or spaces). You can change this separator by
making a different assignment to the variable FS, or through the command
line by specifying afield-separator character along with the -F option. To
ensure that your own field separator takes effect before any input records
are parsed into fields, use the - F construct or place the assignment in an
action associated with the BEGIN pattern. (See the example at the end of
"Patterns," later in the "Description" section.)

(A regular expression can also be assigned to the FS variable, in which
case the field delimiter can be any one of the possible values that match the
regular expression.)

Although it looks like a field reference, $ 0 refers to the entire input record,
with field delimiters unstripped.

For the purposes of documenting syntax, a pattern and its associated
actions are considered one pattern-action. As shown in the first syntax
description in the ''Synopsis'' section, pattern-action arguments can be
supplied directly on the command line. Alternately, you can specify the - f
option so that pattern-action arguments can be placed inside of an awk
program file, as shown in the second syntax description (see SYNOPSIS).
In the latter case, replace awk-source-file with the name of the program file
with the awk instructions you want to use.

Any time an input record contains a substring that is sought as specified by
pattern, awk performs the associated action. The text of an input record
that is matched by a pattern can be accessed easily through references to
the variables $ 0, $1, $ 2, and so forth.

Input records can be acted upon immediately or handled less directly. An
example of an immediate action is the printing of the contents of a
matching input record as soon as it is encountered. An example of a less
immediate action is storing a record in a variable when it is first
encountered, then printing it later if later conditions warrant it, such as
when the contents of subsequent records invalidate it and an error message
is desired.

A stored value persists until it is changed by another portion of the same
pattern-action or by an entirely different pattern-action. Such assignments
permit actions to be gated not only by the text of the input record being
scanned but also through the stored text drawn from previous input records.

November 1991 2

awk(l) awk(l)

Command-Line Options
Either pattern-action arguments are specified inside the awk command
lines as shown in the first syntax description line, or they are supplied in a
file through specification of file arguments along with the -- f option, as
shown in the second syntax description line. When pattern-action
arguments all appear in the command line, they should be formed into one
string enclosed in single quotation marks ('). The quotation marks protect
them from being interpreted by the shell. Refer to the awk chapter in AIUX
Programming Languages and Tools, Volume 2 for more information about
shell and awk cooperation.

The level of escapement afforded by the single quotation marks causes any
references to shell variables to remain unsubstituted by the shell. To enable
their substitution requires the use of awk variables that assign values inside
the command line.

Variables that are initialized on the command line provide a means of
passing parameter values between the shell and awk. The most common
use for passed parameters is to access the values of positional variables
available from within shell scripts ($1, $2, and so forth). The format of
these assignments is similar to that of variable assignments, except that an
unescaped space cannot be used on either side of the equal sign, as follows:

awk -f awkfile datafile variablel=x variable2=$1

If the parameter assignment is preceded by a -v option, the value so
assigned is made available even in the BEG IN (initialization) section of the
awk program. Otherwise, the value is not assigned to the variable until
after the BEG IN section has been evaluated.

Like input files, the passed parameters are also evaluated in the order in
which they appear: Passed parameters that are specified after an input file
will not be available while the system is processing that input file. Passed
parameters that are specified before any number of input files will be
available when processing those input files.

If no input file is specified, the standard input is read until exhausted.
When several input files are specified, they are read in the order in which
they are specified. If the shorthand notation for standard input (-) is
specified as one of several file arguments, the standard input is also read in
the order in which it is specified.

Patterns

3

The pattern portion of a pattern-action argument often involves the
scanning of text for occurrences of a particular text pattern. These patterns
are specified through a pattern-seeking template, better known as a regular
expression. For a more detailed explanation of regular expressions, refer to
ed(l).

November 1991

awk(l) awk(l)

Regular expressions must be surrounded by slashes. The format for a
regular expression is

I character-coll ... character-colN I

where character-coll through character-colN represent the first through
last characters to seek before a substring is considered ''matched.''

Besides supplying a normal character to replace character-coll and other
character positions, you can use a special or wildcard character, such as the
period, which matches any character at that position. An asterisk matches
any number of any characters from that position onward. Other special
characters are the caret C) and dollar sign ($), which "match" the
beginning of a line and the end of a line, respectively. The only sensible
place to insert the caret is at the beginning of pattern. Likewise, the only
sensible place to insert the dollar sign is at the very end of pattern.

Besides supplying a single character to replace character-coll and other
character positions, you can supply a character range or a character list
enclosed in brackets. Thus,

r [A-Z] [aeiou] I

evaluates as true for all input records that start with an uppercase character
followed by a vowel.

The pattern portion of the pattern-action argument can be any expression,
including ones that do not involve pattern-seeking. For example,

$1 > 0 { print }

is a valid pattern-action argument that prints all input records with a first
field that is greater than 0.

Pattern expressions often test for the presence of certain text patterns,
either within the entire input record or within one or more fields in an input
record. Field-scoped searches require one of the ''pattern-seeking''
operators and a regular expression, as follows:

$0 - /Employee/ { action ... }
$3 - /Employee/ { action ... }

If you search the entire input record for matching strings, you do not have
to supply the $ O - portion of the line, since this portion will be assumed
when a regular expression is supplied by itself as the pattern. This
convention makes the following patterns equivalent:

$0 - /Employee/
/Employee/

November 1991 4

awk(l) awk(l)

To seek a contiguous set of input records starting from a record that
matches pattern} and ending with a record that matches pattern2, specify
two regular expressions separated by a comma, as follows:

I pattern} I , I pattern2 I { action... }

The action is performed for all input records between an occurrence of the
first pattern and the next occurrence of the second pattern.

The special patterns BEG IN and END can be used to establish actions to be
taken before the first input record is read and after the input stream is
exhausted. For example, a tab can be made the field separator
(exclusively) with

BEGIN { FS = "\t" }

Actions

5

A pattern-action argument has the form

pattern { action }

A missing {action} argument triggers the printing of matching input
records; a missing pattern argument causes the associated action to be
performed for every input record (as if every input record matched the
missing pattern). An action argument is a sequence of statements. A
statement can be one of the following code fragments:

i f (conditional) statement [e 1 s e statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement l . . . }
variable = expression
next
exit

Statements are terminated by semicolons, newline characters, or right
braces. Expressions take on string or numeric values as appropriate and are
built with the operators +, -, *, I, %, and "concatenation" (indicated by a
blank). The C operators++,--,+=,-=,*=,/=, and%= are also available
in expressions. Variables can be scalars, array elements (denoted x [i]), or
fields. Variables are initialized to the null string. Array subscripts can be
any string, including strings generated automatically when numeric
expressions are used as subscripts. String constants are enclosed in double
quotation marks (").

November 1991

awk(1) awk(l)

The next and exit functions affect control flow. Use exit to terminate
processing without any further actions. Use next to terminate any
remaining actions that would have been gated for the current input record,
skipping to the beginning of the current awk-source-file so that processing
can continue with the next input record.

Output Functions
The output functions include the following statements:

print [expression][[,] expression] .. .
print f (format-string, expr [, expr] ...)

Both of these statements can print to files as well as the standard output, as
described by the more general syntax

print-command [>file]

Use the print statement to print the results of expression arguments
followed by the output record separator character given by the variable
ORS. If print is specified without any accompanying arguments, the
entire input record is printed. If several expressions are supplied, separated
by commas, the result of each expression is printed, separated by the output
field separator given by the variable OFS. See "Built-in Variables" later
in the "Description" section for more built-in variables.

Use the print f statement to format and print the result of expr arguments
in accordance with format-string (see pr int f(3S)). Another way to place
data on the awk output stream is to use the system function

system (expression)

In this case, expression must compute to a valid shell command so that it
can be executed outside the context of awk. Any output resulting from the
execution of the command is inserted into the output of awk. This function
returns the exit status for the command so that you can test for successful
execution by testing for a 0 exit value. (This is the case for most, but not
all, commands.)

Input Functions
Besides being supplied as command-line arguments, multiple input files are
supported through the get line function. This record-reading function
can be one of the actions associated with a BEG IN or an END pattern, as
well as any other patterns. A typical use is to associate this action with the
BEGIN pattern to initialize the contents of an array from static data stored
in an external file. Since the return value is l as long as the input file is not
exhausted, you can use the following code fragment to establish the file
table:

BEGIN {

November 1991 6

awk(l) awk(l)

while (getline array[count] <"table" > 0)

{ count = count + 1 }

This command can be specified in any of four different forms:

get line
get 1 ine variable
get 1 ine <file
get 1 ine variable <file

The first form reads the next input record. Unlike the next statement,
with this form control remains at the place where get 1 ine occurs within
the current pattern-action argument and proceeds to any pattern-action
arguments that follow, until the end-of-file character is reached.

The second form behaves in the same way except that certain variables
($ 0, $1, and so forth) are not reset and the content of the input record is
assigned to variable unstripped of field separators.

The third and fourth forms are the same as the first and second forms
except that the input record is read fromfile. If file is an explicit reference
to a file, enclose it in quotation marks to make it a string constant.
(Otherwise it is likely to be interpreted as a variable that is dynamically
initialized to an empty string.) To switch between many different input
files, use the c 1 o s e (file) function before opening any new files for
reading.

Other String Functions

7

Here are the built-in functions for strings:

index (string], string2)
Returns the index at which string2 first occurs inside string I or 0 if
there is no match.

length (string)
Returns the length of its argument taken as a string, or of the whole
input record if no argument is supplied.

match (string ,pattern)
Returns the index at which the regular expression pattern first occurs
inside string while setting the variables RSTART and RLENGTH.
Returns 0 if there is no match.

s p 1 it (string , array, separator)
Splits string into fields that are assigned to elements in array with
subscripts 1, 2, and so on. A new field is created at each occurrence

November 1991

awk(1) awk(l)

of separator within string. It returns the number of fields that were
parsed.

subs tr (string, position, length)
Returns the length-character substring of string that begins at position
position.

sprint f (format-string, expr[, expr]. ..)
Formats expressions in accordance withformat-string (described in
print f(3S)), returning the resulting string.

sub (pattern, replacement[, variable])
gsub (pattern, replacement[, variable])

Performs text substitution (search-and-replace) functions either for the
first matched substring (sub) or globally for every matched substring
(gsub).

Number Functions
Here are the built-in functions for numbers:

atan2 (y,x)
Returns the arctangent of y/x in radians in the range -7t to n.

cos (radians)
Returns the cosine of the angle measure.

exp (power)
Returns e raised to the power power.

int (real)
Truncates real, returning an integer.

log (x)

Returns the natural logarithm of x.

rand()
Returns a pseudo-random number between 0 and 1.

srand ([seed])
Sets the seed for the random number generator to seed or to the time
of day if seed is missing.

sin (radians)
Returns the cosine of the angle measure.

sqrt (x)
Returns the square root of x.

User-Defined Functions
User functions can be called just as built-in functions are, once they are
declared with

function name (arg ...) { body }

November 1991 8

awk(1) awk(l)

Within body, the function return (expression) can be used to cause the
user function to return the value of the supplied expression.

Expressions
This discussion of expressions applies within action statements and within
patterns. Only certain action statements can include expressions; refer to
"Actions," earlier in the "Description" section for more information.
Parentheses can be used to establish operation precedence for expressions
containing several operators.

Expressions can be string or number constants, variables, or field
references as well as combinations of these joined by equal (= =), not equal
(! =), greater-than (>), less-than (<), greater-than-equal(>=), and less­
than-equal (<=). Because they produce Boolean results (true or false), two
or more of the preceding comparison operations can be related by means of
Boolean operators: logical AND(&&), logical OR (I I), and NOT (!).

To test for the existence of various substrings in a string, specify the string
followed by one of the pattern-seeking operators (- and ! -) followed by a
regular expression. Use - to test whether the string contains a substring
that is sought by the regular expression supplied. Use ! - to test whether
the string does not contain a substring that is sought by the regular
expression supplied.

The following example uses all of these types of operations:

{ if (NR > 1 && $0 - /+/) print }

In the next line of code, which is equivalent to the one just given, the
operations have been moved into the pattern area:

$0 - /+/ && NR > 1 { print }

No operation exists specifically to request conversions between numbers
and strings, or between strings and numbers. To force an expression to be
treated as a number, add 0 to it; to force it to be treated as a string,
concatenate the null string (" ") to it.

Built-in variables

9

Other variable names with special meanings include

NF the number of fields in the current record

NR the ordinal number of the current record

FNR
the ordinal number of the current record relative to the beginning of
the current input file

FILENAME
the name of the current input file

November 1991

awk(l)

OFS
the output field separator (blank by default)

ORS
the output record separator (the newline character by default)

OFMT
the output format for numbers(%. 6g by default)

ARGC

awk(l)

a variable that is set to the total number of command-line arguments
that were offered on the awk command line

ARGV[]

a built-in array that is set to the command name (awk) at index O, the
first command-line argument at index 1, and so on up to the last
command-line argument at index n

Overview of awk Processing and Preprocessing
For each input record, awk performs the ''matched'' pattern-action
operations. Thus, the actions that awk performs usually vary with each
input record. The effect is similar to that of creating a number of different
programs, where each one is a particular accumulation of lines from a
master collection. Each of the accumulated subprograms is run whenever
its triggering records show up in the input stream, possibly many times
over. Through careful selection of patterns, these subprograms can be
closely tailored to the kind of data that is present in the input record.

When the input data is not already partitioned nicely into fields and
records, the use of preprocessing can be useful to transform the data into
more regular units from which meaning is more easily extracted. For text
data that already contains field separators, the field values that indicate
variant records are easily detected when they can be expected at a fixed
field location references within patterns. (See ''Patterns,'' earlier in the
"Description" section.) For data that is not already subdivided or
regularized, preprocessing with sed or awk is often desirable so that units
of data that affect the meaning of other units of data can be incorporated
into the same record, or so that independently meaningful units of data are
separated into new records.

When you are combining spans of data into the same record, it is often
desirable to place context-establishing data at the beginning so that certain
patterns can be sought in certain positions by using the corresponding
features ofregular expressions, such as the caret C).
In cases involving irregular data, the preprocessing concern of greatest
import is the generation of appropriate record and field boundaries within
the data. For instance, each pass of preprocessing can be designed so that a
particular output field (or a particular record within a set of records) will be

November 1991 10

awk(l) awk(l)

set to an appropriate value for identifying the context of a certain amount
of data. For example, the nesting of procedures inside braces is more
easily unraveled if the beginning and ending braces always occupy the first
field of an input record, or a dedicated input line.

EXAMPLES
The following command prints lines from the file data that are longer 72
characters:

awk "length > 72" data

The following command prints the first two fields of each line in reverse
order:

awk '{print $2, $1 }' filea

prints the first two fields of each line in reverse order.

awk '{ s += $1 }
END {print "sum is", s,

"average is", s/NR }' filea

adds up the first column and prints the sum and average.

awk '{ for (i =NF; i > O; --i)
print $i }' filea

prints all the fields of each line in reverse order. The fields are printed one
per line in this example.

awk "/start/, /stop/" filea

prints all records between start/stop-pattern pairs for every such pair in the
file.

awk '
$1 > max { max = $1 }
END {print "Max field 1 value=" max}'

prints the maximum value that appears in field 1 of each input record.

FILES
/bin/awk

Executable file

SEE ALSO

11

grep(l), lex(l), sed(l)

"awk Reference," inA/UX Programming Languages and Tools, Volume 2

The awk Programming Language by A.V. Aho, B.W. Kernighan, and P.J.
Weinberger (Reading, MA: Addison-Wesley, 1988)

November 1991

banner(l) banner(l)

NAME
banner - generates a poster

SYNOPSIS
banner string ...

ARGUMENTS
string

Specifies a string of no more than ten characters. The banner
command truncates any additional characters. If you use quotation
marks to enclose words separated by a space, banner generates its
output on one line. Otherwise, banner interprets multiple words as
separate arguments and puts each word on its own line.

DESCRIPTION
banner reproduces its arguments in large letters, using the number sign
(#), on the standard output.

EXAMPLES
This command causes the characters H, A, P, P, and Y to be printed in large
letters:

banner HAPPY I lp

FILES
/usr/bin/banner

Executable file

SEE ALSO
banner7(1), echo(l)

November 1991

banner7(1) banner7(1)

NAME
banner7 - generates a large banner

SYNOPSIS
banner7 [-w [width]] [text]

ARGUMENTS
text Specifies the text of the banner. If you omit text, banner7 displays a

Message: prompt and reads its standard input until you press
RETURN. If you type more than 255 characters, banner7 truncates
the 256th and remaining characters.

-w[width]
Specifies the width of the output. If you omit width, banner7 uses 80
columns. If you do not specify this option, banner7 uses a default
of 132 columns.

DESCRIPTION
banner7 generates a large banner, using the number sign (#) to form the
characters, on the standard output. Typically, you pipe the output of
banner7 to the lp command for printing. The output of banner7 is
designed to be printed on a line printer.

LIMITATIONS
The banner7 command cannot handle these ASCII characters:

<>[]\A_{}l-

Also, banner7 substitutes an alternative representation for a quotation
mark () , an apostrophe ('),and an ampersand(&) that is funny looking
but still useful.

The -w option is implemented by skipping some rows and columns. As
you narrow the column width, the output becomes grainy and letters
occasionally run together.

STATUS MESSAGES AND VALUES
The message:

The character 'c' is not in my character set

is produced to indicate a character that banner7 cannot handle.

FILES
/usr/bin/banner7

Executable file

SEE ALSO
banner(l), echo(l)

1 November 1991

basename(l) basename(1)

NAME
basename, dirname - get part of a pathname

SYNOPSIS
basename string [suffix]

dirname string

ARGUMENTS
string

Specifies an absolute or a relative pathname.

suffix
Specifies an optional suffix that, if present in string, basename is to
remove.

DESCRIPTION
bas ename examines string for the last slash (I) and returns the characters
that follow the slash. For example, basename /usr /bin/vi yields
vi.

di rname examines string for the last slash and returns the characters that
precede the slash. For example, dirname /usr /bin/vi yields
/usr/bin.

Both basename and dirname write on the standard output. Neither
command verifies that string is a valid pathname on the current system.

EXAMPLES
The basename and dirname commands are most commonly used in
shell scripts where the commands are enclosed within back quotes (').
Enclosure within backquotes causes the command to be executed and the
result substituted as an argument to another command. For example, if $1
is /users/tom/prog /mine. c, this sequence compiles
/users/tom/prog/mine. c and moves the output to a file named
mine in the current directory:

cc $1
mv a.out 'basename $1 '.c''

This sequence sets the Bourne shell variable NAME to
/users/tom/prog:

NAME='dirname /users/tom/prog/mine.c'

STATUS MESSAGES AND VALUES
If string is only a slash, an error results and basename displays this
message:

expr: syntax error
0

November 1991 1

basename(l)

FILES
/bin/basenarne

Executable file
/bin/dirnarne

Executable file

SEE ALSO
sh(l)

2

basename(l)

November 1991

batch(l) batch(l)

See at(l)

November 1991 1

be(1) bc(l)

NAME
be - processes an arbitrary-precision arithmetic language

SYNOPSIS
be [-c] [-1] [file] ...

ARGUMENTS
-c Causes be not to invoke de. If you specify this option, be output that

is normally sent as input to de is sent to the standard output instead.

file Specifies a file that contains statements that be can interpret. You can
use a file argument to set built-in names, such as scale.

-1 Causes be to use an arbitrary-precision math library.

DESCRIPTION
be is an interactive processor for a language that resembles C but provides
unlimited-precision arithmetic. Actually, be is a preprocessor for the de
command, which it invokes automatically.

The be command reads the standard input, but you can put be commands
in a file that be reads when it starts up.

The section that follow describe the syntax of the be language, where
name is a variable or function name, expression is an expression, and
statement is a statement.

Comments
Comments begin with a slash and an asterisk (I *) and end with an asterisk
and a slash(*/).

Names
You can construct variable names with the letters a through z. Uppercase
letters are not allowed. You can reference array elements by using square
brackets, as in name [expression]. You can also use these built-in names:

ibase
Sets the input number radix.

abase
Sets the output number radix.

scale
Sets the number of digits that are retained to the right of the
decimal point after an arithmetic operation.

auto
Defines variables that are pushed down during function calls.

You can use the same name for an array, a function, and a simple variable
simultaneously.

November 1991

bc(l) bc(l)

All variables are global to the program. When using arrays as function
arguments or defining them as automatic variables, you must put empty
square brackets after the array name.

Other Operands
Other operands are constructed from arbitrarily long numbers with an
optional sign or an optional decimal point. Here are some examples:

(expression)
Evaluates the value of expression.

sqrt (expression)
Returns the square root of expression.

length (expression)
Returns the number of significant decimal digits in expression.

scale (expression)
Returns the current value of scale.

abc (expression , ... , expression)
Calls the function abc with the specified arguments.

Operators
Here are the available operators:

+ * I % ~

++

<= >= != < >

=+ =* =I =%

The percent sign(%) is the modulo operator, and the caret C) is the
exponentiation operator. You can use a double plus sign (+ +) and a double
minus sign (- -) as prefix and postfix operators on names.

Statements
Here are the forms that a statement can take:

expression

{statement ; . . . ; statement}

if (expression) statement

while (expression) statement

for (expression; expression; expression) statement

break

quit

November 1991 2

bc(l) bc(l)

The value of a statement that is an expression is printed unless the main
operator is an assignment.

You can separate statements by using a semicolon or a newline character.
Two newline characters cannot follow a left brace ({).

Function Definitions
Here is the form of a function definition:

define name (name, ... , name)
auto name, ... , name
statement; . . . statement
return (expression)

The be command passes all function arguments by value.

Math Library
These functions make up the math library that becomes available when you
use the -1 option:

s (x) sine
c (x) cosine
e (x) exponential
1 (x) log
a (x) arctangent
j (n, x) Bessel function

EXAMPLES

3

This sequence defines a function that computes an approximate value for
the exponential function:

scale = 20
define e(x) {

auto a, b, C, i, s
a 1
b = 1
s = 1
for(i=l; l==l; i++) {

a a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

This sequence calculates approximate values of the exponential function of
the integers 1-10:

November 1991

bc(l) bc(l)

for(i=l; i<=lO; i++) e(i)

LIMITATIONS
The be command supports neither the logical AND operator(&&) nor the
logical OR operator (I I).

The for statement must have all three expressions.

The quit statement is interpreted when it is read rather than when it is
executed.

FILES
/usr/lib/be

Executable file
/usr/bin/dc

Executable file that be calls
/usr/lib/lib.b

Mathematical library file invoked by the -1 option

SEE ALSO
de(l)

"be Reference" in A/UX Programming Languages and Tools, Volume 2

November 1991 4

bdiff(l) bdiff(l)

NAME
bdi ff - compares the difference between two large files that are too big
for di ff to handle

SYNOPSIS
bdi ff file I file2 [lines-per-segment] [- s]

ARGUMENTS
file I

file2

Specifies the file that will be compared withfile2. If this file is a
hyphen (-), bdi ff reads the standard input. In this case, file2 cannot
be a hyphen.

Specifies the file that will be compared with file I. If this file is a
hyphen, bdiff reads the standard input. In this case,filel cannot be a
hyphen.

lines-per-segment
Specifies an optional integer value that bdi ff uses as the number of
lines into which it divides each segment. If you do not use the
lines-per-segment argument, bdi ff uses a default of 3500. This
argument is useful for those cases in which segments of the default
size are too large and cause di ff to fail. If you use this argument, it
must appear after the file arguments. If you also use the - s option, the
lines-per-segment argument must appear before -s.

- s Suppresses bdi ff diagnostic messages. This option does not
suppress di ff status messages. If you use this option, it must appear
after the file arguments. If you also use the lines-per-segment
argument, the - s option must appear after the lines-per-segment
argument.

DESCRIPTION

1

bdi ff finds the differences between files that are too large for di ff by
dividing the files into segments and by then running diff on the
corresponding segments.

The output of bdi ff is exactly that of di ff, with line numbers adjusted
to make it appear as though the files were processed as a whole. Note that
because bdi ff divides the files into segments, it does not necessarily find
a smallest sufficient set of file differences.

The output consists of line number information and changed lines in a
format that can be used by ed to change.file] intofile2. A less than symbol
(<) at the beginning of a line indicates that a difference has been found in
file 1. A greater than symbol (>) at the beginning of a line indicates a
difference infile2. See diff(l) for a complete explanation of the output.

November 1991

bdiff(l) bdiff(l)

EXAMPLES
Here are the contents of two files named Harold and Maude:

Harold:
The first line.
The second line.
The third line.

Maude:
The first line.
The second line.
The THIRD line.

This command line produces the differences between the files:

bdiff Harold Maude

Here is the output:

3c3
< The third line.

> The THIRD line.

STATUS MESSAGES AND VALUES
The bdiff command produces messages that the help command can
interpret. You may, for example, see this message:

bdiff: can not write to temporary file (bd7)

To see an explanation of this message, enter

help bd7

The bdi ff command can also produce these messages:

ERROR: arg count (bdl)
ERROR: both files standard input (bd2)
ERROR: cannot fork, try again (bd3)
ERROR: non-numeric limit (bd4)
ERROR: cannot execute diff (bd5)

FILES
/usr/bin/bdiff

Executable file
/usr/bin/diff

Executable file that bdi ff calls

SEE ALSO
diff(l), diff3(1), ed(l), help(l), sdiff(l)

November 1991 2

bfs(l) bfs(l)

NAME
bf s - edits big files

SYNOPSIS
bfs [-] file

ARGUMENTS
Suppresses the display of the size of the file when bf s starts and
when you use the w command.

file Specifies the name of the file to edit. This argument is required.

DESCRIPTION
bf s is a read-only editor that can process much larger files than standard
editors. Files can contain up to 1 million bytes, with up to 32,000 lines. A
line can contain up to 512 characters, including a terminating newline
character. If bf s encounters a line that is too long, it displays the message
line too long and exits.

The bf s command is similar to ed but more efficient because it does not
copy the file to a buffer. You can use bfs to identify and split sections of
a large file into small files that can be modified later by a text editor such as
vi, or you can use the information gained from using bf s to run cs p 1 it
on the file.

Prompting
If you type the letter P and press RETURN, bf s displays an asterisk (*) as a
prompt, as in ed. You can tum the prompt off by typing P and pressing
RETURN again.

Compatibilities with ed

1

The bfs command supports all address expressions described in ed(l). In
addition to the slash(/) and the question mark(?) provided by ed, you can
surround regular expressions with the greater-than symbol(>), which
indicates downward search without wrap-around, and the lesser-than
symbol(<), which indicates upward search without wrap-around. There is
a slight difference from ed with regard to mark names: bf s supports only
the letters a through z and remembers all 26 marks.

Thee, g, v, k, P, p, q, w, =, ! , and null commands operate as described in
ed(l). Thew command works independently from the bfs-specific xo,
xt, and xc commands. The bfs command accepts such complex
commands as---,+++-,+++=, -12, and +4p. Note that both l, lOp
and 1 , 1 0 cause the display of the first ten lines of the file.

The bfs anded commands both have an f command, but when you are
using bfs, the f command only displays the name of the file currently
being read; you cannot use it to edit a new file.

November 1991

bfs(l) bfs(l)

bfs-specific Commands
Once you have started bfs on a file, you can use these bfs commands:

: label
Creates a label in a command file. If you use optional white-space
characters to separate the colon (:) and the label, bf s ignores them.
Because bf s does not require that labels be referenced, you can use
this command to insert comments in a command file.

(. , .)xblregular-expressionllabel
Jumps upward or downward to label if the command succeeds. The
xb command is valid only if read from someplace other than a
terminal. If the command is read from a pipe, only a downward jump
is possible. The command fails under any of these conditions:

• Either address is not between 1 and $.

• The second address is less than the first.

• The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, a period (.) is set to the matched line and a jump is made
to label. This command is the only command that does not issue an
error message on bad addresses, so you can use it to test whether
addresses are bad before executing other commands. This xb
command is an unconditional jump:

xbr I label

xc [switch]
Converts sequences of tabs and spaces to a single space and
suppresses blank lines in the output from the p and null commands if
the value of switch is 1. If the value of switch is 0, the action of xc is
turned off. If you do not supply switch, the action of xc is toggled.
When you first start bf s, the action of xc is turned off.

xbz label
xbn label

Test the exit code of the most recently executed shell command
(!command) for a zero or a nonzero value, respectively, and go to the
specified label if the test succeeds. These two examples search for the
next five lines containing the string size:

xv55
: here
/size/
xv5!expr %5 - 1
!if [%5 != 0]; then exit 2; fi

November 1991 2

bfs(l) bfs(l)

3

xbn here

xv45
: there
/size/
xv4!expr %4 - 1
!if [%4 OJ; then exit 2; fi
xbz there

xf command-file
Specifies a command file from which further bf s commands are
taken. When bf s reaches the end of the file or receives an interrupt
signal, or if an error occurs, reading resumes with the file containing
the xf command. You can nest xf commands to a depth of 10.

xn Lists the marks currently in use. See the k command in ed(l) for
information about setting marks.

XO r.file]
Diverts further output from the p and null commands to file, which, if
necessary, is created with permission bits of 666. If the file already
exists, it is truncated. If you do not specify file, bf s diverts the output
to the standard output.

xt number
Truncates output from the p and null commands to most number
characters. The default is 255.

xv Assigns value to the variable specified by digit. For example,
xv 510 0 or xv 5 10 0 both assign the value 10 0 to the variable 5.
The command xv6 l, 10 Op assigns the value 1, 10 Op to the variable
6. To reference a variable, put a percent sign (%) in front of the
variable name. For example, using the assignments just given for
variables 5 and 6, these commands cause bf s to display the first 100
lines of the file:

l,%5p
1,%5
%6

Using the assignment just given for variable 5, this command searches
the file for the character string 1 0 0 and displays each line that
contains a match:

g/%5/p

To escape the special meaning of%, a backslash(\) must precede %.
For example, this command displays the lines that contain print f
conversion formats for characters, decimal integers, and strings:

November 1991

bfs(l) bfs(l)

g/".*\%[cds]/p

You can also use the xv command to store into a variable the first line
of output from a command run by the shell. The only requirement is
that the first character of value be an exclamation mark (!). For
example, this sequence stores the first line of the output of date into
variable 7 and displays its contents:

xv7!date
!echo %7

This sequence writes the current line to a file called j unk, stores the
contents of junk in variable 5, removes junk, and displays the
contents of variable 5:

.w junk
xv5!cat junk
!rm junk
!echo "%5"

To escape the special meaning of ! as the first character of value,
precede it with a backslash (\).

EXAMPLES
This command runs bfs on a file named text:

bfs text

STATUS MESSAGES AND VALUES
If the * prompt is turned on, the bf s command displays a question mark
(?) for errors in commands and displays self-explanatory error messages.

FILES
/bin/bfs

Executable file

SEE ALSO
csplit(l), ed(l)

regcmp(3X) inA/UX Programmer's Reference

November 1991 4

biff(l) biff(l)

NAME
bi ff - enables and disables notification of mail by c oms at

SYNOPSIS
biff [switch]

ARGUMENTS
switch

Sets the state of bi ff. If switch is y, mail notification is enabled. If
switch is n, mail notification is disabled. If you do not use a switch
argument, bi ff displays:

is y

for enabled, and:

is n

for disabled.

DESCRIPTION
bi ff changes the permission bits of your terminal device to enable or
disable mail notification by the comsat server. When the execution bit is
set for the owner of the terminal device, mail notification is enabled. When
the execution bit is not set, c oms at does not notify you when new mail
arrives.

The best place to include a command to enable bi ff is in your . login
file so that the command is executed each time you log in.

When mail arrives, comsat displays the From:, Subject:, To:, and
Date : lines from the mail header and the first few lines of the message on
your screen.

For other mail notification methods, see the mail-related environment
variables supported by sh, csh, and ksh.

FILES
/usr/ucb/biff

Executable file

SEE ALSO
csh(l), ksh(l), mail(l), sh(l)

comsat(lM) inA/UX System Administrator's Reference

1 November 1991

bs(l) bs(l)

NAME
bs - compiles and interprets bs programs

SYNOPSIS
bs r.file [argument] ...]

ARGUMENTS
argument

Specifies an optional argument that bs passes to the program when it
executes.

file Specifies the name of a source file that bs uses as input before reading
from the console. By default, bs compiles statements read fromfile
for later execution and immediately executes statements entered from
the console. See the compile and execute statements for details.

DESCRIPTION
bs compiles and interprets programs that are written in a language that is a
remote descendant of BASIC, SNOBOL4, and C. The language is designed
for programming tasks where program development time is as important as
the resulting speed of execution. The language minimizes the formalities
of data declaration and file manipulation. Line-at-a-time debugging, the
trace and dump keywords, and useful run-time error messages simplify
program testing. Furthermore, you can debug incomplete programs, test
inner functions before outer functions have been written, and test outer
functions before inner functions have been written.

Syntax
The bs command accepts programs that are made up of input lines. If the
last character on a line is a backslash(\), bs interprets the next line as a
continuation of the previous line. Lines can be of this form:

statement
label statement

A label is a name followed by a colon (:). (For a definition of name, see
"Expression Syntax" later in this section.) A label and a variable can have
the same name.

Statement syntax. Abs statement is either an expression or a keyword
followed by zero or more expressions. An expression assigns a value or
makes a function call. For details, see "Expression Syntax" later in this
section. The keywords clear, compile, ! , execute, include,
ibase, abase, and run are always executed as they are compiled. Here
are the possible keywords:

shell-command
Causes an immediate escape to the shell to execute shell-command.

November 1991 1

bs(l) bs(l)

2

#string
Specifies a comment, which bs ignores.

break
Exits from the innermost for or while loop.

clear
Clears the symbol table and compiled statements immediately.

compile[expression]
Executes a clear and compiles succeeding statements immediately
(overriding the immediate execution default). The bs command
evaluates the optional expression and uses the result as a filename for
further input.

continue
Transfers to the loop-continuation of the current for or while loop.

dump[name]
Causes bs to display the name and current value of every nonlocal
variable. If you provide an optional name, bs displays only the
specified variable. After an error or interrupt, bs displays the number
of the last statement and the user-function trace if turned on.

execute
Changes bs to immediate-execution mode. An interrupt has the same
effect. This keyword does not cause internally stored statements to
execute. See run for a keyword that does.

exi t[expression]
Exits bs. If you provide an optional expression, bs evaluates
expression and uses the result as the exit code.

for name=expression expression statement
for name=expression expression

next
for expression, expression, expression statement
for expression, expression, expression

next
Executes repetitively a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes
on the value of the first expression, then is incremented by 1 on each
loop, not to exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas. The first
expression is the initialization, the second is the test (TRUE to
continue), and the third is the loop-continuation action, which is
commonly an increment.

November 1991

bs(l) bs(l)

fret urn
Signals the failure of a user-written function. For details, see the
interrogation operator(?) in "Expression Syntax" later in this
section. If interrogation is not active, fret urn merely returns 0. If
interrogation is active, fret urn transfers execution to that
expression, which may bypass intermediate function returns.

fun name ([arguments , ... }) [variables , ...]

nuf
Defines a function name, arguments, and local variables for a user­
written function. Up to ten arguments and local variables are allowed.
Such names cannot be arrays, nor can they be associated with I/O.
You cannot nest function definitions.

goto name
Passes control to the internally stored statement with the matching
label specified by name.

ibase N
Sets the input base to N. The supported values for N are 8, 10 (the
default), and 16. You can enter the hexadecimal values for 10-15 as
a- f. To enter a number such as f 0 a, use a leading 0, as in Of O a.
The bs command executes ibase immediately.

if expression statement
if expression ...
[else
...]
f i Executes if the expression evaluates to a nonzero value. The strings O

and 11 11 (null) evaluate to 0. In the second form, an optional else
allows for a group of statements to be executed when the first group is
not. The only keyword permitted on the same line with else is if;
the only keywords permitted on the same line with f i are other f i
keywords. The bs command also supports el if. Only a single fi
is required to close an if ... eli f ... [else ...] sequence.

include expression
Includes the file specified by expression. The file must contain bs
source statements. Such statements become part of the program being
compiled. You cannot nest include keywords.

abase N
Sets the output base to N. The supported values for N are 8, 1 0 (the
default), and 16. You can enter the hexadecimal values for 10-15 as
a-f. To enter a number such as fOa, use a leading 0, as in OfOa.
The bs command executes abase immediately.

November 1991 3

bs(l) bs(l)

4

onintr label
onintr

Provides program control of interrupts. In the first form, control
passes to the specified label, just as if a goto had been executed at
the time onintr executed. The effect of onintr is cleared after
each interrupt. In the second form, an interrupt causes bs to
terminate.

return [expression]

run

Returns from a function call. If present, the optional expression is
evaluated and the result is passed back as the value of a function call.
If no expression is given, the function call returns 0.

Resets the random-number generator. Control is passed to the first
internally stored statement. If run is in a file, it should be the last
statement in the file.

stop
Stops execution of internally stored statements and causes bs to revert
to immediate mode.

trace [expression]
Controls function tracing. If the optional expression is null or
evaluates to 0, tracing is turned off. Otherwise, bs displays a record
of user-function calls and returns. Each return decrements the
value of expression.

while expression statement
while expression

next
Executes repetitively a group of statements. The while keyword is
similar to for except that only the conditional expression for loop­
continuation is given.

Expression syntax. Unless the final operation is an assignment, bs
displays the result of an immediate expression statement. Here is the
syntax for expressions:

? expression
Tests for the success of the expression, rather than its value. The
interrogation operator is useful for testing for end-of-file condition (as
shown in the "Examples" section later in this manual page), checking
the result of the eval built-in function, and checking the return from
user-written functions (as described in the discussion of the fret urn
keyword earlier in this section). Execution of an interrogation trap
causes an immediate transfer to the most recent interrogation, possibly

November 1991

bs(l) bs(l)

skipping assignment statements or intervening function levels.

- expression
Results in the negation of the expression.

--name
Decrements the value of name, which is a variable name or an array
reference.

++name
Increments the value of name, which is a variable name or an array
reference.

expression
Results in the logical negation of the expression.

name
Specifies a variable. A name begins with a lowercase or uppercase
letter, optionally followed by letters and digits. Only the first six
characters of a name are significant. Except for names declared in
fun statements, all names are global to the program. Names can take
on numeric (double-float) values or string values, or can be associated
with input and output. For details, see the open function in "File­
handling Functions'' later in this section.

name([expression[,expression] ...])
Calls a function. Except for built-in functions, which are listed later in
this section, name must be defined with a fun statement. The bs
command passes arguments to functions by value.

name [expression[,expression] ...]
References arrays or tables. See "Built-in Table Functions" later in
this section for details. For arrays, each expression is truncated to an
integer and used as a specifier for the name. The resulting array
reference is syntactically identical to a name; a [1, 2 J is the same as
a [1] [2] . The truncated expressions are restricted to values between
0 and 32767.

number
Represents a constant value. A number is written in Fortran style and
contains digits, an optional decimal point, and possibly a scale factor
consisting of an e followed by an optionally signed exponent.

string
Specifies a character string that is delimited by a double quotation
mark () . The backslash(\) is an escape character that allows the
double quotation mark(\"), newline (\n), carriage return (\r),
backspace (\b), and tab (\ t) characters to appear in a string.
Otherwise, the backslash stands for itself.

November 1991 5

bs(l) bs(l)

6

(expression)
Alters the normal order of evaluation. See "Binary Operators" later
in this section for the normal order of evaluation.

(expression, expression[, expression . ..]) [expression]
Selects, using a bracketed expression as a subscript, a comma­
separated expression from the parenthesized list. List elements are
numbered from the left, starting at 0. The expression has the value
TRUE if a equals b:

(FALSE,TRUE) [a == b]

expression operator expression
Abbreviates the common functions of two arguments by separating
the two arguments with an operator denoting the function. Except for
the assignment, concatenation, and relational operators, both operands
are converted to numeric form before the function is applied.

Binary operators. The binary operators are listed in order of increasing
precedence, as follows:

Makes assignments. The left operand must be a name or an array
element. The result is the right operand. Assignment binds right to
left, whereas all other operators bind left to right.

Concatenates. The operator is the underscore character (_).

& Perform logical operations. The result of the logical AND character
(&) is 0 if either of its arguments is 0. The result is 1 if both of its
arguments are nonzero. The result of the logical OR character (I) is 0
if both of its arguments are 0. The result is 1 if either of its arguments
is nonzero. Both operators treat a null string as 0.

< <= > >= !=

+ -

Perform relational operations. The relational operators are < (less
than),<= (less than or equal), >(greater than), >=(greater than or
equal),== (equal), and ! =(not equal). They return 1 iftheir
arguments are in the specified relation. Otherwise, they return 0. The
comparison a>b>c is the same as the comparison a>b&b>c. If both
operands are strings, bs makes a string comparison.

Perform addition and subtraction.

* I %
Perform multiplication, division, and remaindering.

Performs exponentiation.

November 1991

bs(l) bs(l)

Built-in Functions
The bs command provides the following built-in functions.

Dealing with arguments. These built-in functions manipulate arguments:

arg (i)
Specifies the value of the ith actual parameter on the current level of
function call. At level 0, arg returns the ith command-line argument.
For example, arg (0) returns bs.

narg()
Returns the number of arguments passed. At level 0, bs returns the
number of command-line arguments.

Mathematical functions. The bs command provides these built-it
mathematical functions:

abs (x)

Returns the absolute value of x.

a tan (x)

Returns the arctangent of x. Its value is between -rr12 and rr12.

ceil (x)

Returns the smallest integer not less than x.

cos (x)

Returns in radians the cosine of x.

exp(x)
Returns the exponential function of x.

floor (x)
Returns the largest integer not greater than x.

log(x)
Returns the natural logarithm of x.

rand()
Returns a uniformly distributed random number between 0 and 1.

sin(x)
Returns in radians the sine of x.

sqrt (x)
Returns the square root of x.

String functions. The bs command provides these built-in string
functions:

format (j, a)
Returns the formatted value of a, where f is a format specification in
the style ofprintf. The value of/ can be f, e, ors only.

November 1991 7

bs(l) bs(l)

index (x, y)
Returns the number of the first position in x that any of the characters
from y matches. If no match is found, bs returns 0.

match (string, pattern)
mstring (n)

Match strings. The pattern is similar to the regular expression syntax
of ed. The characters . , [,] , *,and$ are special. The mstring
function returns the nth (l <= n <= l 0) substring of the subject that
occurred between pairs of the pattern symbols \ (and \) for the most
recent call to match. To succeed, patterns must match the beginning
of the string, as if all patterns begin with *. The function returns the
number of characters matched. Here is an example:

match("a123ab123", ".*\([a-z]\)") == 6
mstring(l) == "b"

size (s)
Returns the size (length in bytes) of s.

substr (s, start, width)
Returns the substring of s defined by the start position and width.

trans (s, f, t)

Translates characters of the sources from matching characters inf to a
character in the same position in t. Source characters that do not
appear inf are copied to the result. If the stringfis longer than t,
source characters that match in the excess portion off do not appear in
the result.

File-handling functions. The bs command provides these built-in file
handling functions:

open (name, file, function)
close (name)

Perform open and close operations. The name argument must be abs
variable name passed as a string. For open, the file argument can be
either (1) a 0 (zero), 1, or 2, representing standard input, output, or
error output, respectively; (2) a string representing a filename; or (3) a
string beginning with an exclamation point (!) representing a
command to be executed by means of sh -c. The.function argument
must be either r (read), w (write), w (write without newline), or a
(append). After a close command, bs treats name as an ordinary
variable. The bs command makes these calls on startup:

open ("get" , 0, "r")
open("put", 1, "w")
open ("puterr", 2, "w")

8 November 1991

bs(l) bs(l)

See the "Examples" section later in this manual page, for sample
code.

access (s, m)
Executes an access(2) system call.

ftype (s)

Returns a single character that indicates the file type: f for regular
file, p for FIFO (that is, named pipe), d for directory, b for block
special, or c for character special.

Table-handling functions. The bs command provides these built-in table
handling functions:

table (name, size)
Defines a table that is an associatively accessed, single-dimension
array. Subscripts (called "keys") are strings. Numbers are converted.
The name argument must be abs variable name, passed as a string.
The size argument sets the minimum number of elements to be
allocated. If a table overflow occurs, bs displays an error message
and stops.

i tern (name, i)
key()

Access table elements. The it em function accesses table elements
sequentially. (In normal use, there is no orderly progression of key
values.) Where the it em function accesses values, the key function
accesses the subscript of the previous i tern call. The name argument
should not be quoted. Because exact table sizes are not defined, the
interrogation operator should be used to detect end-of-table. Here is
an example:

table("t", 100)

#If word contains the string "party",
the following expression adds one
to the count of that word:
++t[word]

To print out the key/value pairs:
for i = 0, ?(s =item (t , i)), ++i
if key() put= key()_:_s

iskey (name, word)
Tests whether the key word exists in the table name and returns 1 for
TRUE and 0 for FALSE.

November 1991 9

bs(l) bs(l)

10

Miscellaneous functions. The bs command provides these miscellaneous
built-in functions:

eval (s)
Evaluates the string argument as an expression. The eval function is
handy for converting numeric strings to numeric internal form. You
can also use eval as a crude form of indirection, as in this example,
which increments the variable xy z:

name = "xyz"
eval("++"_ name)

In addition, eval preceded by the interrogation operator permits the
user to control bs error conditions. Here is an example that returns 0
if XXX does not exist, instead of halting:

?eval("open(\"X\", \"XXX\", \"r\") ")

This example executes a goto to the label L:

label="L"
if ! (?eval("goto "_label)) puterr = "no label"

last ()
Returns the most recently computed value when in immediate mode.

plot (request, args)
Produces output on devices recognized by tplot(lG). The value of
request can be from 0 to 12. Calls to the plot function use these
formats:

plot (0, term)
Causes further plot output to be piped into tplot(lG) with an
argument of -Tterm.

plot (1)

Erases the plotter.

plot(2, string)
Labels the current point with string.

plot (3 ,xl ,yl ,x2 ,y2)
Draws the line between (xl,yl) and (x2,y2).

plot(4,x,y,r)
Draws a circle with center (x,y) and radius r.

plot(5,xl,yl,x2,y2,x3,y3)
Draws an arc (counterclockwise) with center (xl ,yl) and
endpoints (x2,y2) and (x3,y3).

plot(6)
Not implemented.

November 1991

bs(l) bs(l)

plot (7 ,x,y)
Makes the current point (x,y).

plot (8,x,y)
Draws a li~ from the current point to (x,y).

plot (9 ,x,y)
Draws a point at (x,y).

plot (10, strin[g)
Sets the lin¢ mode to string.

plot (ll,xl ,yl ,x2,y2)
Makes (xl ,yl) the lower-left comer of the plotting area and
(x2 ,y2) the µpper right comer of the plotting area.

plot (12,xl ,yl ,x2,y2)
Causes sub$equent x(y) coordinates to be multiplied by xl (yl)
and then added to x2 (y2) before they are plotted. The initial
scaling is
plot (12 I 1. 0 I 1. 0 I 0 o 0 I 0 • 0) o

Some requests do.not apply to all plotters. All requests except O and
12 are implementied by the piping of characters to tplot(lG). See
plot(4) for more details.

EXAMPLES
This example uses bs as a calculator:

$ bs
Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12 I le9
11.78496

Compound interest
(6% for 5 years on $1,000).
int .06 I 4
bal 1000
for i = 1 5*4 bal bal + bal*int
bal - 1000
346.855007

exit

This example is the outline of a typical bs program:

initialize things:
varl = 1
open("read", "infile", "r")

November 1991 11

bs(l) bs(1)

compute:
while ? (str

next
clean up:
close ("read")

read)

last statement executed (exit or stop):
exit
last input line:
run

This example demonstrates 1/0:

#Copy "oldfile" to "newfile".
open("read", "oldfile", "r")
open ("write", "newfile", "w")

while ?(write= read)

#close "read" and "write":
close ("read")
close ("write")

Pipe between commands.
open ("ls",
open ("pr",
while ? (pr

II! ls *II I llrll)

"!pr -2 -h 'List'",
ls) ...

"w")

be sure to close (wait for) these:
close ("ls")
close ("pr")

This command line shows a way of running bs:

bs program 1 2 3

The example compiles and executes the file named program as well as
any statements typed from standard input. The arguments 1, 2, and 3 are
passed as arguments to the program when it executes.

FILES

12

/bin/bs
Executable file

November 1991

bs(l) bs(l)

SEE ALSO
ed(l), ksh(l), sh(l), tplot(lG)

access(2), intro(3), printf(3S), plot(4) inA/UX Programmer's
Reference

November 1991 13

cal (1) cal (1)

NAME
cal - displays a calendar

SYNOPSIS
cal [[month] year]

ARGUMENTS
month

Specifies the month for which cal is to display a calendar. The value
of month is a number between 1 and 12.

year
Specifies the year for which cal is to display a calendar. The value of
year can be between 1 and 9999. The cal command adjusts its
output to reflect the calendar (Julian or Gregorian) that was in effect
for the specified year.

DESCRIPTION
cal displays a calendar. If you do not specify any arguments, cal
displays a calendar for the current month.

EXAMPLES
The following command displays a calendar for September 1752, which
represents a period of time when the calendar was different than what we
currently use:

cal 9 1752

This command displays a calendar for the year 92 A.D., not the year 1992:

cal 92

FILES
/usr/bin/cal

Executable file

November 1991

calendar(l) calendar(I)

NAME
calendar - provides a reminder service

SYNOPSIS
calendar[-]

ARGUMENTS
Causes calendar to examine the calendar file in the login
directory of each user on the system and send the output of
calendar as a mail message. The system administrator can also put
the

calendar -

command in the /usr I spool I crontabs file so that cron can run
it automatically.

DESCRIPTION
calendar examines the file calendar in the current directory and
displays the lines that contain today's or tomorrow's date anywhere in the
line. On a Friday, calendar extends "tomorrow" through Monday. An
easy way to use calendar is to keep your calendar file in your login
directory and to run calendar from your . login file.

The calendar command understands dates such as Mar. 7, march 7,
and 3 I 7, but it does not understand 7 March.

EXAMPLES
Suppose that your calendar file contains the lines

5/3 Bruce's birthday
Monday, September 6 Labor Day Holiday
Mar 14 Status report due.

and the date is March 13 or 14. The command:

calendar

displays this reminder:

Mar 14 Status report due.

LIMITATIONS
The calendar command does not take holidays into account when
determining what ''tomorrow'' is.

NOTES
The calendar command requires, at minimum, two steps: (1) that you
use a text editor to enter information in your calendar file and (2) that
you remember to run the calendar command. You may want to use the
at command because it provides a reminder service that combines the
entry of reminder information (including a specific time to be reminded)

November 1991

calendar(!) calendar(1)

with the execution of a single command.

Another reminder service is provided by the leave command, which
persistently reminds you when you need to log out.

FILES
./calendar

File that contains reminders
/etc/passwd

File that calendar examines to get login directories
/tmp/cal*

Temporary files
/usr/bin/calendar

Executable file
/usr/lib/calprog

Executable file that produces a temporary file containing today's and
tomorrow's date in a format suitable for processing by calendar

SEE ALSO
at(l), crontab(l), leave(l), mail(l)

cron(lM) inA/UX System Administrator's Reference

2 November 1991

cancel(!) cancel(!)

NAME
cancel - cancels print requests spooled through the lp command

SYNOPSIS
cancel [printer]

cancel [id] ...

ARGUMENTS
id Specifies the request identification number that you want to delete.

The id is part of the message returned by lp when you spool a print
job, such as laser-1233.

printer
Specifies a particular printer that is currently printing the job you want
to stop. To display a complete list of printers, use lps ta t(l).

DESCRIPTION
cancel deletes jobs from the print queue. Jobs are placed in the print
queue by means of lp (see lp(l)).

When you cancel a request that is currently printing, you free the printer to
print its next available request.

FILES
/usr/bin/cancel

Executable file

SEE ALSO
enable(l), lp(l), lpq(l), lpr(l), lprm(l), lpstat(l)

accept(lM), lpadmin(lM), lpsched(lM), rej ect(lM) in AJUX
System Administrator's Reference

AJUX Local System Administration

November 1991 1

cat(l) cat(l)

NAME
cat - catenates and displays the contents of files

SYNOPSIS
cat[-] [-e] [-s] [-t] [-u] [-v[file]. ..

ARGUMENTS
Causes cat to read from the standard input.

-e Causes cat to display a dollar sign($) before the newline character
at the end of each line. This option must be used in conjunction with
the -v option; if it is not, cat ignores this option.

file Specifies a file for cat to read. If you do not use any file arguments,
cat reads from the standard input.

- s Causes cat to be silent if a specified file does not exist.

- t Causes the tab character to be displayed as A I and the form feed
character to be displayed as AL. This option must be used in
conjunction with the -v option; if it is not, cat ignores this option.

-u Causes cat to not buffer the output.

-v Causes cat to display nonprinting characters (with the exception of
the form feed, newline, and tab characters) in a special way. If you use
this option, cat displays control characters as Ax (CONTROL-X) and
the delete character (octal 0177) as A?. Non-ASCII characters
(characters whose high-order bit is set) are displayed as M-x, where x
is the character specified by the seven low-order bits.

DESCRIPTION
cat reads one or more files and writes the contents of each file to the
standard output.

EXAMPLES
This command displays the file named rose:

cat rose

This command catenates the contents of rose and wisteria and places
the result in flowers:

cat rose wisteria > flowers

WARNINGS

1

This command causes the data in f i 1e1 to be lost:

cat filel file2 > filel

Therefore, take care when using shell metacharacters to perform I/O
redirection.

November 1991

cat(l)

FILES
/bin/cat

Executable file

SEE ALSO
cp(l), head(l), more(l), pg(l), pr(l), tail(l)

November 1991

cat(l)

2

cb(l) cb(l)

NAME
cb - improves spacing and indentation of C source files

SYNOPSIS
cb [- j] [-1 line-length] [file] ...

cb [- j] [- s] [file]. ..

ARGUMENTS
file Specifies the name of a C source file. If you do not specify a file

argument, cb reads from the standard input.

- j Causes split lines, such as those split by the -1 option, to be put back
together.

-1 line-length
Causes cb to attempt to split lines that are longer than the value
specified by line-length. Not all lines are split:; for example, cb does
not split comments or lines that contain long stretches of characters
surrounded by quotation marks. If you do not use this option, cb
preserves the position of newline characters in the C source file.

- s Causes cb to produce an output that is in the canonical style defined
by Kernighan and Ritchie in The C Programming Language.

DESCRIPTION
cb reads C files and writes them to the standard output with spacing and
indentation that displays the structure of the code.

A more recent program called indent performs the same function as this
command. For details, refer to the indent(l) manual page.

EXAMPLES
A sample C source file contains these lines:

#define COMING 1
#define GOING 0

main ()
{

/* This is a test of the C Beautifier */
if (COMING)
printf ("Hello, world\n");
else
printf ("Good bye, world\n");
}

Running the cb command on the sample C source file produces this output:

#define COMING 1
#define GOING 0

November 1991

cb(l) cb(l)

main ()

/* This is a test of the C Beautifier */
if (COMING)

printf ("Hello, world\n");
else

printf ("Goodbye, world\n");

LIMITATIONS
Punctuation in preprocessor statements causes indentation errors.

FILES
/usr/bin/cb

Executable file

SEE ALSO
cc(l), indent(l)

The C Programming Language by B. W. Kernighan and D. M. Ritchie
(New Jersey: Prentice-Hall, Inc., 1978)

November 1991 2

cc(l) cc(l)

NAME
cc - invokes the C compiler

SYNOPSIS
cc [-A factor] [-a] [-B string] [-c] [-C] [-Dsymbol[=dej]] [-E]
[-fm68881] [-F] [-g] [-Idir] [-lx] [-L dir] [-n] [-o out.file] [-0]
[-p] [-P] [-R] [-s] [-S] [-t [p012al]] [-T] [-Usymbol] [-v]
[-W c,argl[,arg2]. .. [-X] [-y] [-Zfiags] [-68030] [-68040]
[-68851] [-#]. .. file ...

ARGUMENTS

1

- # Echoes the names and arguments of subprocesses that would have
started, without actually starting the program. This is a special debug
option.

-A factor
Expands the default symbol table allocations for the compiler,
assembler, and link editor. The default allocation is multiplied by the
factor given.

-a Includes source code as comments in the assembly file generated with
the - s option.

-B string
Constructs pathnames for substitute preprocessor, compiler,
assembler, and link-editor passes by concatenating string with the
suffixes cpp, comp, opt im, as, and ld. If string is empty, it is
taken to be /lib/. For example, versions of the C compiler,
assembler, and link editor can be found in the directory
/usr I 1 ib/big. These tools operate just like their standard
counterparts, except that their symbol tables are very large. If you
receive an overflow error message when you compile your program
with the standard versions, you may wish to switch to the alternate
versions using

cc -B "/usr/lib/big/" -o filename filename.c

You should have 4 MB or more of main memory in order to use the
big versions of these programs safely.

-c Suppresses the link-editing phase of the compilation and forces an
object file to be produced even if only one program is compiled.

-c Passes along all comments except those found on cpp(l) directive
lines. The default strips out all comments.

- Dsymbol[=def]
Defines the external symbol to the preprocessor and gives it the value
def (if specified). If no def is given, symbol is defined as 1. This
mechanism is useful for conditional compilation using preprocessor

November 1991

cc(l) cc(l)

control lines.

- E Runs only cpp(l) on the named C programs and sends the result to
the standard output.

file Specifies the file that is to be compiled.

-fm68881
Generates inline code for the MC68881 floating-point coprocessor.
This is the default.

- F Does not generate inline code for the MC68881 floating-point
coprocessor.

-g Generates additional information needed for the use of sdb(l).

-Idir
Searches for #include files (whose names do not begin with/) in
dir before looking in the directories on the standard list. Thus,
#include files whose names are enclosed in ' ' ' ' (double
quotes) are initially searched for in the directory of the . c file
currently being compiled, then in directories named in - I options, and
finally in directories on a standard list. For #include files whose
names are enclosed in<>, the directory of the . c file is not searched.

- lx Searches the library 1 ibx. a, where xis up to 7 characters long. A
library is searched when its name is encountered, so the placement of
-1 is significant. By default, libraries are located in LIBDIR. If you
plan to use the - L option, that option must precede -1 on the
command line. Same as -1 in ld(l).

-L dir
Changes the algorithm of searching for 1 i bx . a to look in dir before
looking in LIBDIR. This option is effective only if it precedes the -1
option on the command line. Same as -Lin ld(l).

-n Arranges for the loader to produce an executable which is linked in
such a manner that the text can be made read-only and shared
(nonvirtual) or paged (virtual).

-o out.file
Produces an output object file, out.file. The default name of the object
file is a. out. Same as -o in ld(l).

-0 Invokes an object-code optimizer. The optimizer moves, merges, and
deletes code, so symbolic debugging with line numbers could be
confusing when the optimizer is used. For this reason, use of the -g
option disables the -0 option. This option may not work properly on
code containing asm directives.

November 1991 2

cc(l) cc(l)

3

-p Arranges for the compiler to produce code that counts the number of
times each routine is called. Also, if link-editing takes place, replace
the standard startoff routine by one that automatically calls
moni tor(3C) at the start and arranges to write out a mon. out file at
normal termination of execution of the object program.

- P Runs only cpp(l) on the named C programs and leaves the result on
corresponding files suffixed . i.

- R Causes the assembler to remove its input file when finished.

- s Strips the line-number entries and symbol-table information from the
output of the object file. Same as -sin ld(l).

- S Compiles, but does not assemble, the named C programs and leaves
the assembly-language output on corresponding files suffixed . s.

-t [p012al]
Finds only the designated preprocessor passes whose names are
constructed with the string argument of the - B option; that is, (p),
compiler (0 and 1), optimizer (2), assembler (a), and link editor (1).
In the absence of a - B option and its argument, string is taken to be
/lib/n. Using the -t option with no argument is equivalent to
-tp012.

-T Truncates symbol names to 8 significant characters. Many modem C
compilers, as well as the proposed ANSI standard for C, allow
arbitrary-length variable names. cc follows this convention. The -T
option is provided for compatibility with earlier systems.

-Usymbol
Undefines symbol to the preprocessor.

-v Prints the command line for each subprocess executed.

-W c, argl[, arg2]
Hands off the argument(s) argi (where i = 1,2, ... , n) to pass c, where
c is one of [p012al] indicating preprocessor, compiler first pass,
compiler second pass, optimizer, assembler, or link editor,
respectively. For example:

-Wa, -m

invokes the m4 macro preprocessor on the input to the assembler.
(The -m option to as causes it to go through m4.) This must be done
for a source file that contains assembler escapes.

- X Ignored by A/UX® for the Motorola 68020 and 68030 host
processors.

-y Suppresses searching of /usr I include for header files and instead
searches only in directories specified by the - I option.

November 1991

cc(l) cc(l)

-Zftags
Specifies special flags to override the default behavior (see NOTES in
this section). Currently recognized flags are:

c Return pointers in aO without copying to dO.

n Emits no code for stack-growth. This is the default.

rn Uses Motorola SGS-compatible stack growth code.

p Uses ts t . b stack probes.

E Ignores all environment variables.

I Emits inline code for the MC68881 floating-point coprocessor.
This is the default.

1 Suppresses selection of a loader command file.

t Does not delete temporary files.

S Compiles to be SVID-compatible. Links the program with a
library module that calls setcornpat(2) with the
COMPAT_SVID flag set. Defines only the SYSV_SOURCE
feature test macro.

P Compiles for the POSIX environment. Links the program with a
library module that calls setcornpat(2) with the
COMPAT_POSIX flag set. Defines only the POSIX_SOURCE

feature test macro.

B Compiles to be BSD-compatible. Links the program with a
library module that calls setcornpat(2) with the COMPAT_BSD
flag set. Defines only the BSD_SOURCE feature test macro.

-68030
Directs the assembler to recognize the memory management unit
(MMU) instructions for a Motorola 68030 processor.

-68040
Directs the assembler to recognize the instructions for a Motorola
68040 processor.

-68851
Directs the assembler to recognize the coprocessor instructions for a
Motorola 68851 PMMU. This is the default.

DESCRIPTION
cc is a front-end program that invokes the preprocessor, compiler,
assembler, and link editor, as appropriate. The default is to invoke each
one in tum.

November 1991 4

cc(l) cc(l)

Arguments whose names end with . c are taken to be C source programs.
They are compiled, and each object program is left in a file in the current
directory, whose name is that of the source, with . o substituted for . c. In
the same way, arguments whose names end with . s are taken to be
assembly source programs and are assembled to produce a . o file. By
default, the named files are loaded to produce an output file named a . out.
If a single C program is compiled and loaded all at once, the . o file is
deleted.

Other arguments are taken to be link-editor flag-option arguments, C­
compatible object programs (typically produced by an earlier run of cc), or
libraries of C-compatible routines. These programs, together with the
results of any compilations specified, are link edited (in the order given) to
produce an executable program with the name a . out unless the - o option
of the link editor is used.

WARNINGS
By default, the return value from a C program is completely random. The
only two guaranteed ways to return a specific value are to call exit
explicitly (see exi t(2)) or to leave the function main () with a
return (expression) statement.

STATUS MESSAGES AND VALUES
The status messages produced by the C compiler are sometimes cryptic.
Occasional messages may be produced by the assembler or link editor.

NOTES
This version of cc is based on the cc released with the Motorola SGS and
has been changed in the following ways:

• The - z option has been added to explicitly control generation of
stack-growth code for cross-development environments or
generation of stand-alone code. The Motorola SGS looks for an
environment variable called M 6 8 0 0 0 and generates stack-growth
code if the variable is set to STACKCHECK. This cc defaults to
no stack-growth code on the Macintosh II® 68020 and 68030
processors.

• The default is to produce shared text programs. To produce
nonshared text programs, you must run ld with the -N option.

• When cc is used with the -g option, the arguments
-u _dbargs -lg are inserted in the command line for the
link phase. This causes the contents of 1 ibg. a to be linked in.
Note that the Motorola SGS only generates the loader argument
-1 g, which is not sufficient to cause loading of the library's
contents.

5 November 1991

cc(l) cc(l)

FILES

• The -v (verbose) option has been added to print the command
line for each subprocess executed. This helps to isolate problems
to a specific phase of the compilation process by showing exactly
what cc is doing, so that each phase can be run by hand, if
necessary.

• The Motorola SGS compiler expects functions that return
pointers or structures to return their values in aO and expects
other functions to return their values in dO/dl. Because of the
large body of existing code that has inconsistent type
declarations, this version of the compiler emits code to return
pointers in both aO and dO by copying aO to dO just prior to
returning. This copy operation can be suppressed with the - Zc
option, thus generating slightly smaller code.

/usr/bin/cc
Executable file

file. c
Input file

file. o
Object file

file. s
Assembly language file

a.out
Link-edited output file

/usr/tmp/mc68?
Temporary file

/lib/cpp
Preprocessor file

/lib/comp
Compiler file

/lib/optim
Optimizer file

/bin/as
File containing the assembler

/bin/ld
File containing the link editor

/lib/ libc. a
Standard library file

/lib/libposix.a
POSIX library file

/lib/libbsd. a
BSD library file

November 1991 6

cc(l) cc(l)

/lib/libsvid. a
SVID library file

/usr/lib/shared.ld
Loader command file for shared text or paged programs

/usr/lib/shlib.ld
Loader command file for shared text or paged programs using shared
libraries

/usr/lib/unshared.ld
Loader command file for unshared text programs

/usr/lib/unshlib.ld
Loader command file for unshared text programs using shared
libraries

/lib/crtO .o
Run-time startoff file

/lib/crtl.o
Run-time startoff file with shared library support

/lib/crt2 .o
Run-time startoff file used with crt 1. o for shared library support

/lib/crtn.o
Run-time startoff file used with crtl. o and crt2. o for shared
library support

/lib/mcrtO.o
Run-time startoff file for profiling

SEE ALSO

7

as(l), di s(l), ld(l)

setcompat(2) inAJUX Programmer's Reference

The C Programming Language by B. W. Kernighan and D. M. Ritchie,
(New Jersey, Prentice-Hall: 1978)

"cc Command Syntax," in AIUX Programming Languages and Tools,
Volume 1

''A/UX POSIX Environment,'' inAJUX Programming Languages and
Tools, Volume 1

November 1991

ccat(l) ccat(l)

See compact(l)

November 1991 1

cdc(l) cdc (1)

NAME
cdc - changes the delta commentary of an SCCS delta

SYNOPSIS
cdc [-m[mrlist]] -r SID [-y[comment]] file ...

ARGUMENTS
file Specifies the file to be changed. If a name of - is given, the standard

input is read (see WARNINGS); each line of the standard input is
taken to be the name of an SCCS file to be processed.

-m[mrlist]
Allows you to supply a list of MR numbers to be added and/or deleted
in the delta commentary of the SID specified by the - r option, if the
SCCS file has the v option set (see admin(l)). A null MR list has no
effect.

MR entries are added to the list of MRs in the same manner as that of
del ta(l). In order to delete an MR, precede the MR number with
the character ! (see EXAMPLES). If the MR to be deleted is
currently in the list of MRs, it is removed and changed into a
comment line. A list of all deleted MRs is placed in the comment
section of the delta commentary and preceded by a comment line
stating that they were deleted.

If the -m option is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the standard
input is read; if the standard input is not a terminal, no prompt is
issued. The MRs? prompt always precedes the comments? prompt
(see the -y option).

MRs in a list are separated by blanks and/or tab characters. An
unescaped newline character terminates the MR list.

Note that if the v option has a value (see admin(l)), it is taken to be
the name of a program (or shell procedure) that validates the
correctness of the MR numbers. If a nonzero exit status is returned
from the MR number validation program, cdc terminates and the
delta commentary remains unchanged.

-r SID
Specifies the SCCS Identification (SID) string of a delta for which the
delta commentary is to be changed.

-y[comment]
Specifies arbitrary text used to replace the comment(s) already existing
for the delta specified by the - r option. The previous comments are
kept and preceded by a comment line stating that they were changed.
A null comment has no effect.

November 1991

cdc(l) cdc(l)

If the -y option is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. An unescaped newline character terminates the
comment text.

DESCRIPTION
cdc changes the ''delta commentary'', for the SID specified by the - r
option, of each named SCCS file.

A "delta commentary" is defined to be the Modification Request (MR)
and comment information normally specified via the de 1ta(1) command
(-m and -y options).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the pathname does not begin with s .) and unreadable files are silently
ignored.

The exact permissions necessary to modify the SCCS file are documented
in the "SCCS Reference" in A/UX Programming Languages and Tools,
Volume 2. Simply stated, they are either (1) if you made the delta, you may
change its de 1 ta commentary; or (2) if you own the file and directory,
you may modify the delta commentary.

EXAMPLES
The command:

cdc -rl.6 -m"bl78-12345 !bl77-54321 bl79-00001" -ytrouble s.file

adds bl 7 8-123 45 and bl 7 9-0 0 0 01 to the MR list, removes
bl 77-543 21 from the MR list, and adds the comment trouble to delta
1.6 of s. file.

The command:

cdc -rl.6 s.file
MRs?
!bl77-54321 bl78-12345 bl79-00001
comments?
trouble

does the same thing.

STATUS MESSAGES AND VALUES
Use help for explanations.

WARNINGS
If SCCS filenames are supplied to the cdc command via the standard input
(- on the command line), then the -m and -y options must also be used.

November 1991 2

cdc(1)

FILES
/usr/bin/cdc

Executable file

SEE ALSO
adrnin(l), del ta(l), get(l), help(l), prs(l)

sccsfile(4) inA/UX Programmer's Reference

cdc(l)

"SCCS Reference" in A/UX Programming Languages and Tools, Volume
2

3 November 1991

cflow(l) cflow(l)

NAME
cf 1 ow - generates a C flow graph

SYNOPSIS
c flow [-dnum] [- i_] [- ix] [-r]file ...

ARGUMENTS
-dnum

Specifies the depth (num) at which the flowgraph is cut off. By
default this is a very large number. Any attempts to set the cutoff
depth to a nonpositive integer will be met with contempt.

file Specifies the file to be analyzed.

-l

-ix

Includes names that begin with an underscore. The default is to
exclude these functions (and data if - ix is used).

Includes external and static data symbols. The default is to include
only functions in the flowgraph.

-r Reverses the caller: callee relationship producing an inverted
listing showing the callers of each function. The listing is also sorted
in lexicographical order by callee.

DESCRIPTION
cf low analyzes a collection of C, yacc, lex, assembler, and object files
and attempts to build a graph charting the external references. Files
suffixed in . y, .1, . c, and . i are yacc'd, lex'd, and C-preprocessed
(bypassed for . i files) as appropriate and then run through the first pass of
1 int(l). (The - I, -D, and -u options of the C-preprocessor are also
understood.) Files suffixed with . s are assembled and information is
extracted (as in . o files) from the symbol table. The output is collected
and turned into a graph of external references, which is displayed upon the
standard output.

Each line of output begins with a reference (i.e., line) number, followed by
a suitable number of tabs indicating the level. Then the name of the global
(normally only a function not defined as an external or beginning with an
underscore; see below for the - i inclusion option), a colon, and its
definition. For information extracted from C source, the definition consists
of an abstract type declaration (e.g., char *),and, delimited by angle
brackets, the name of the source file and the line number where the
definition was found. Definitions extracted from object files indicate the
filename and location counter under which the symbol appeared (e.g., text).
Leading underscores in C-style external names are deleted.

November 1991 1

cflow(l) cflow(l)

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only < > is printed.

When the nesting level becomes too deep, the -e option of pr(I) can be
used to compress the tab expansion to something less than every eight
spaces.

EXAMPLES
Given the following in file. c:

int i;

main()
{

f ()
{

f ();
g ();
f () ;

i h ();

the command:

cflow -ix file.c

produces the output:

1 main:
2
3
4
5

int(), <file.c 4>
f: int(), <file.c 11>

h: <>
i:int, <file.c 1>

g: <>

STATUS MESSAGES AND VALUES
Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various
programs used (such as the C-preprocessor).

LIMITATIONS

2

Files produced by lex(l) and yacc(l) cause the reordering of line
number declarations, which can confuse cf low. To get proper results,
feed cf low the yacc or lex input.

November 1991

cflow(l)

FILES
/usr /bin/ c flow

Executable file
/usr /lib/lpfx

File that filters line(l) output into dag input
/usr/lib/nmf

File that converts nm output into dag input
/usr/lib/dag

File containing a graph maker
/usr/lib/flip

File containing a reverser

SEE ALSO

cflow(l)

as(l), cc(l), cpp(l), lex(l), lint(l), nm(l), pr(l), yacc(l)

November 1991 3

changesize(l) changesize(l)

NAME
changesize - changes or displays the fields of the 'SIZE' resource of a
file

SYNOPSIS
changesize [±option] [-mminsize] [-pprefsize] [-v]file

ARGUMENTS

1

+option
-option

Sets or clears the MultiFinder flag specified by option. +option sets the
MultiFinder flag; -option clears the flag. You can specify multiple
options at the same time on the command line. Here are the
MultiFinder flags that can be modified:

file Specifies the Macintosh file that you want to change or query. If
the resource file is a separate file (prefixed with a percent sign),
as in the case of a file in Apple Double format, you should
specify the data fork file without the prefix, allowing
changesize to locate the resource file itself.

-mminsize
Specifies the minimum RAM required by an application.

32BitCompatible
If set, indicates that your application is 32-bit clean.

CanBackground
If set, indicates that NULL events can be set while in the
background.

ChildDiedEvents
If set, indicates that debuggers can set
ChildDiedEvents to 1. Normally set to 0.

GetFrontClicks
Sets this flag if you want to receive the mouse-down and
mouse-up events. These events bring your application to the
foreground when the user clicks in one of the windows of
your application while it is suspended.

MultiFinderAware
Responsibile for activating and deactivating any windows in
response to a suspend/resume event, if set.

OnlyBackground
Sets this flag if your application does not have a user
interface and will not run in the foreground.

November 1991

changesize(l) changesize(l)

OptionSwitch
Sets Switcher compatibility. Normally set to 1.

SaveScreen
Sets Switcher compatibility. Normally set to 0.

SuspendResume
Signifies that the application knows how to process
suspend/resume events, if set.

-pprefsize
Specifies an amount of memory in which the application will run
effectively and that MultiFinder attempts to secure upon launch
of the application. This value is expressed in units of kilobytes
(KB).

-v Prints the values of fields in the 'SIZE' resource and then exits
without changing anything.

DESCRIPTION
changesi ze is based on an MPW tool that prints the fields of the 'SIZE'
resource of an application and allows the user to modify any of the fields of
the 'SIZE' resource. The 'SIZE' resource contains MultiFinder flags
followed by the preferred size and minimum size of the application.

EXAMPLES
To print the fields of the 'SIZE' resource in a file named Spi f fWri ter,
you could enter the following command:

/mac/bin/changesize -v SpiffWriter

To set the 32Bi tCompatible flag, clear the CanBackground flag,
and set the preferred memory size to 500 KB for the same file, you could
enter the following command:

/mac/bin/changesize +32BitCompatible \
-CanBackground -p500 SpiffWriter

LIMITATIONS
The changesize command is not supported in 24-bit mode. You must
run it from the command line while logged in with a 32-bit Macintosh
session type. (See Login(!) for more information regarding session
types.)

FILES
/mac/bin/changesize

Executable file

November 1991 2

changesize(l) changesize(l)

SEE ALSO
Login(l), setfile(l).

3 November 1991

checkcw(l) checkcw(l)

See cw(l)

November 1991 1

checkeq(l) checkeq(l)

See eqn(l)

1 November 1991

checkins tall (1) checkinstall(l)

NAME
check ins tal 1 - checks the installation of boards

SYNOPSIS
checkinstall ethertalk

ARGUMENTS
ethertalk

Indicates that the Apple EtherTalk board should be checked.

DESCRIPTION
checkinstall performs a quick test to see if the named board has been
installed or not. The only board type currently supported is the Apple
EtherTalk board.

FILES
/etc/checkinstall

Executable file

SEE ALSO
etheraddr(lM) inA/UX Programmer's Reference

November 1991 1

checkmrn(1) checkmrn(1)

NAME
checkmrn, checkmml - check documents formatted with the mm
macros

SYNOPSIS
checkmrn file ...

ARGUMENTS
file Specifies the file to be checked.

DESCRIPTION
checkmrn stands for "check memorandum macros." Use checkmrn to
check for syntax errors in files that have been prepared for the mm(l) or
mmt(l) command. For example, checkmm checks that you have a . DE
(display end macro) corresponding to every . DS (display start macro).

The output for checkmrn is the number of lines checked, and a list of
macros that are unfinished because of missing macros. If you do not
include a filename on the command line, checkmrn takes input from
standard input.

STATUS MESSAGES AND VALUES
checkmrn Cannot open file

The file is unreadable. The remaining output of the program is
diagnostic of the source file.

FILES
/usr/bin/checkmrn

Executable file
/usr/bin/checkmml

Executable file

SEE ALSO
eqn(l), mm(l), mmt(l), mvt(l), neqn(l), tbl(l)

mm(5) inA/UX Programmer's Reference

"Other Text Processing Tools" inA/UX Text Processing Tools

''mm Reference'' in AIUX Text Processing Tools

1 November 1991

checkmml (1) checkmml(l)

See checkmm(l)

November 1991 1

checknr(l) checknr(l)

NAME
checknr -checks nroff/troff files

SYNOPSIS
checknr [-a .xl .yl .x2 .y2 xn .yn] [-c .xl .x2 .x3 xn] [-f]
[- s] [file]. ..

ARGUMENTS
[-a .xl .yl .x2 .y2 xn .yn]

Allows additional pairs of macros to be added to the list. This must be
followed by groups of six characters, each group defining a pair of
macros. The six characters are a period, the first macro name, another
period, and the second macro name. For example, to define a pair
. BS and . ES, use:

checknr -a.BS.ES

[-c .xl .x2 .x3 xn]

[-f]

[-s]

Causes commands (macros) to be considered "defined" that would
otherwise be complained about as undefined. For instance, user­
defined macros are not part of the ms macro package, and thus would
be considered undefined. Any macros to be defined for checknr
follow the -c with no spaces. For example, to define the macros . XX
and . YY, use:

checknr -c.XX.YY

Requests checknr to ignore \ f font changes.

Requests checknr to ignore \ s size changes.

DESCRIPTION

1

checknr checks a list of nroff(l) or troff(l) input files for certain
kinds of errors involving mismatched opening and closing delimiters and
unknown commands. If no files are specified, checknr checks the
standard input. Delimiters checked are:

(1) Font changes using \ fx ... \ f P

(2) Size changes using \ sx ... \ s 0

(3) Macros that come in open ... close forms, for example, the . TS and
• TE macros, which must always come in pairs.

checknr operates on the ms(5) macro package only.

The checknr command is intended to be used on documents that are
prepared with checknr in mind, much the same as lint(l). It expects a
certain document writing style for \ f and \ s commands, in that each \ fx
must be terminated with \ f P and each \ sx must be terminated with \ s 0.

November 1991

checknr(l) checknr(l)

While it will work to go directly into the next font or to specify the original
font or point size explicitly, and many existing documents actually do this,
such a practice will produce complaints from checknr. Since it is
probably better to use the \ f P and \ s O forms anyway, you should think of
this as a contribution to your document preparation style.

STATUS MESSAGES AND VALUES
Complains about unmatched delimiters.

Complains about unrecognized commands.

Various complaints about the syntax of commands.

LIMITATIONS
There is no way to define a I -character macro name using the - a option.

This command does not recognize certain reasonable constructs correctly,
such as conditionals.

FILES
/usr/ucb/checknr

Executable file

SEE ALSO
nroff(l), troff(l)

ms(5) inA/UX Programmer's Reference

"Other Text Processing Tools" in A/UX Text Processing Tools

''ms Reference'' in A/UX Text Processing Tools

November 1991 2

chfn(l) chfn(l)

NAME
chfn - changes the real-name field of your password file entry for use by
finger

SYNOPSIS
chfn [login-name]

ARGUMENTS
login-name

Specifies the login name of the user whose entry in the
I etc/passwd file is to be changed. Only the system administrator
can specify the login name of another user.

DESCRIPTION
chfn changes the real-name field of your entry in the I etc/passwd file.
The new information, which consists of your real name, office address,
office phone number, and home phone number, is used by finger and
other commands. For example, lp prints this information on the banner
page.

The ch f n command asks you for information by using a prompt that ends
with a colon (:). The prompt encloses in brackets the current value, if any.
To accept the current value, press RETURN. To enter a blank for a current
value, type the word none. You can enter phone numbers with or without
hyphens.

When prompted for your office address, you may want to enter your mail
stop because the finger command uses the heading Mail Stop to
report the office address information.

EXAMPLES
In this example, the user accepts the current value of his name, adds his
office address and phone number, and makes blank the value of his home
phone number:

Name [Biff Studsworth II]:
Office Address (Exs: Grey 222 or MS 32C) []: 521E
Office Phone (Ex: 845-9934 or x-378) []: 1863
Home Phone (Ex: 9875432) [5441546]: none

After you run chfn, you should run finger to make sure your entry is
the way you want it.

STATUS MESSAGES AND VALUES

1

Because two users may try to write to /etc/passwd at the same time,
commands that modify I etc/passwd make a copy of /etc/passwd
and call it I etc/ptmp. If I etc/ptmp already exists because another
user is running a command (such as adduser, chsh, passwd,
yppasswd, or vipw) that also creates I etc /ptmp, chfn displays this
message:

November 1991

chfn(l)

Temporary file busy -- try again

In this case, try running chfn again in a few seconds.

FILES
/usr/ucb/chfn

Executable file
/etc/passwd

File that is modified by chfn
/etc/ptmp

File containing a temporary copy of I etc /pas swd

SEE ALSO
finger(l)

passwd(4) inA/UX Programmer's Reference

November 1991

chfn(l)

2

chgrp(l) chgrp(l)

See chown(l)

1 November 1991

chmod(l) chmod(l)

NAME
chrnod- changes the permissions of a file

SYNOPSIS
chmod mode file ...

ARGUMENTS
file Specifies the files that will have its permissions changed.

mode
Specifies the mode to which the file will be changed. The modes are:

4000
Sets user ID on execution.

2000
Sets group ID on execution.

1000
Sets the sticky bit, see chrnod(2).

0400
Allows read access by owner.

0200
Allows write access by owner.

0100
Allows execution (search in directory) by owner.

0070
Allows read, write, and execution by group.

0007
Allows read, write, and execution by others.

DESCRIPTION
The permissions of the namedfiles are changed according to mode, which
may be absolute or symbolic. An absolute mode is an octal number
constructed from the R of the modes shown above.

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), g
(group) and o (other). The letter a stands for ugo, the default if who is
omitted.

The op option can be+ to add permission to the file's mode, - to take away
permission, or = to assign permission absolutely (all other bits will be
reset).

November 1991 1

chmod(l) chmod(l)

The permission option is any combination of the letters r (read), w (write),
x (execute), s (set owner or group ID) and t (save text, or sticky); u, g, or
o indicate that permission is to be taken from the current mode. Omitting
permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations
are performed in the order specified. The letter s is only useful with u or g
and t only works with u.

Only the owner of a file (or the superuser) may change its mode. Only the
superuser may set the sticky bit. In order to set the group ID, the group of
the file must correspond to your current group ID.

EXAMPLES
The command:

chmod 7 5 5 filename

changes the mode of filename to: read, write, execute (400+200+100)
by owner; read, execute (40+10) for group; read, execute (4+1) for
others. An ls -1 of filename shows [-rwxr-xr-xfilename] that the
requested mode is in effect.

The command:

chmod = filename

will take away all permissions from.filename, including yours. The
command:

chmod o-w file

denies write permission to others. The command:

chmod + x file

makes a file executable.

FILES
/bin/chmod

Executable file

SEE ALSO

2

ls(l), chown(l), csh(l), ksh(l), sh(l)

chmod(2) inA/UX Programmer's Reference

AIUX Essentials

AIUX Local System Administration

November 1991

chown(l) chown(l)

NAME
chown, chgrp - change the owner or group of a file

SYNOPSIS
chown owner file .. .

chgrp group file .. .

ARGUMENTS
file Specifies the file to be changed.

group
Specifies the group from which.file can be accessed.

owner
Specifies the owner of the file.

DESCRIPTION
ch own changes the owner of the files to owner. The owner may be either
a decimal user ID or a login name found in the password file.

chgrp changes the group ID of the files to group. The group may be
either a decimal group ID or a group name found in the group file.

If either command is invoked by other than the superuser, and the files
specified are either local or remoted mounted from another System V
system, the set-user ID and set-group ID bits of the file mode, 04000 and
02000 respectively, will be cleared.

EXAMPLES
The command:

chown doc filea f ileb f ilec

would make doc the owner of the three files.

FILES
/bin/chown

Executable file
/bin/chgrp

Executable file
/etc/group

File containing group IDs
/etc/passwd

File containing user IDs

November 1991

chown(l)

SEE ALSO
chmod(l)

chown(l)

chown(2), group(4), passwd(4) inA/UX Programmer's Reference

2 November 1991

chsh(l) chsh(l)

NAME
chsh - changes the default login shell

SYNOPSIS
chsh name [shell]

ARGUMENTS
name

Specifies the name of the user.

shell
Specifies the login shell to be changed to. If no shell is specified then
the shell reverts to the default login shell /bin/ sh. Otherwise only
/bin/ csh or /bin/ksh can be specified as the shell unless you are
the superuser, or the shell named is listed in I etc/ shells.

DESCRIPTION
chsh is a command similar to passwd(l) except that it is used to change
the login shell field of the password file rather than the password entry.

EXAMPLES
An example of this command is:

chsh rusty /bin/csh

FILES
/usr/ucb/chsh

Executable file

SEE ALSO
csh(l), passwd(l)

passwd(4), shells(4) inA/UX Programmer's Reference

November 1991 1

ci(l) ci(l)

NAME
c i - checks in RCS revisions

SYNOPSIS
ci [-f[rev]] [-k[rev]] [-l[rev]] [-q[rev]] [-r[rev]] [-u[rev]] [-mmsg]
[-nname] [-Nname] [-sstate] [-t[txifile]]files

ARGUMENTS

1

-f[rev]
Forces a deposit; the new revision is deposited even though it is the
same as the preceding one.

files Specifies the RCS files to be checked in.

-k[rev]
Searches the working file for keyword values to determine its revision
number, creation date, author, and state (see co(l)), and assigns these
values to the deposited revision, rather than computing them locally.
A revision number given by a command option overrides the number
in the working file. This option is useful for software distribution. A
revision that is sent to several sites should be checked in with the - k
option at these sites to preserve its original number, date, author, and
state.

-l[rev]
Works like the - r option, except it performs an additional co -1 for
the deposited revision. Thus, the deposited revision is immediately
checked out again and locked. This is useful for saving a revision
although one wants to continue editing it after the checkin.

-mmsg
Uses the string msg as the log message for all revisions checked in.

-nname
Assigns the symbolic name name to the number of the checked-in
revision. The c i command prints an error message if name is already
assigned to another number.

-Nname
Works like the -n, option except that it overrides a previous
assignment of name.

-q[rev]
Specifies quiet mode; diagnostic output is not printed. A revision that
is the same as the preceding one is not deposited, unless the - f option
is given.

-r[rev]
Assigns the revision number rev to the checked-in revision, releases
the corresponding lock, and deletes the working file. This is also the

November 1991

ci(l) ci(l)

default.

If rev is omitted, ci derives the new revision number from the caller's
last lock. If the caller has locked the tip revision of a branch, the new
revision is appended to that branch. The new revision number is
obtained by incrementing the tip revision number. If the caller locked
a non-tip revision, a new branch is started at that revision by
incrementing the highest branch number at that revision. The default
initial branch and level numbers are 1. If the caller holds no lock but
is the owner of the file, and locking is not set to strict, then the
revision is appended to the trunk.

If a revision number is indicated by rev, it must be higher than the
latest one on the branch to which rev belongs, or rev must start a new
branch.

If rev indicates a branch instead of a revision, the new revision is
appended to that branch. The level number is obtained by
incrementing the tip revision number of that branch. If rev indicates a
non-existing branch, that branch is created with the initial revision
numbered rev. I.

Exception: On the trunk, revisions can be appended to the end but not
inserted.

-sstate
Sets the state of the checked-in revision to the identifier state. The
default is Exp.

- t [txifile]
Writes descriptive text into the RCS file (deletes the existing text). If
txifile is omitted, c i prompts the user for text supplied from the
standard input, terminated with a line containing a single . or
CONTROL-D. Otherwise, the descriptive text is copied from the file
txifile. During initialization, descriptive text is requested even if the
- t option is not given. The prompt is suppressed if standard input is
not a terminal.

-u[rev]
Works like the -1 option, except that the deposited revision is not
locked. This is useful if one wants to process (that is, compile) the
revision immediately after checkin.

DESCRIPTION
c i stores new revisions into RCS files. Each filename ending in , v is
taken to be an RCS file and all others are assumed to be working files
containing new revisions. c i deposits the contents of each working file
into the corresponding RCS file.

November 1991 2

ci(l) ci(l)

3

Pairs of RCS files and working files may be specified in three ways (see
also the example section of co(l)).

(1) Both the RCS file and the working file are given. The RCS filename is
of the form path] I workfile, v and the working filename is of the form
path2 I workfile, where path] and path2 are (possibly different or
empty) paths and workfile is a filename.

(2) Only the RCS file is given. Then the working file is assumed to be in
the current directory and its name is derived from the name of the
RCS file by removing pathl I and the suffix , v.

(3) Only the working file is given. Then the name of the RCS file is
derived from the name of the working file by removing path2 I and
appending the suffix , v.

If the RCS file is omitted or specified without a path, then c i looks for the
RCS file, first in the directory . /RCS and then in the current directory.

For c i to work, the caller's login must be on the access list, unless the
access list is empty or the caller is the superuser or the owner of the file.
To append a new revision to an existing branch, the tip revision on that
branch must be locked by the caller. Otherwise, only a new branch can be
created. This restriction is not enforced for the owner of the file, unless
locking is set to strict (see rcs(l)). A lock held by someone else may
be broken with the res command.

Normally, ci checks whether the revision to be deposited is different from
the preceding one. If it is not different, c i either cancels the deposit (if the
-q option is given) or asks whether to cancel (if the -q option is omitted).
A deposit can be forced with the - f option.

For each revision deposited, c i prompts for a log message. The log
message should summarize the change and must be terminated with a line
containing a single . or a CONTROL-D. If several files are checked in, ci
asks whether to reuse the previous log message. If the standard input is not
a terminal, c i suppresses the prompt and uses the same log message for all
files. Also see the -m option.

The number of the deposited revision can be given by any of the -r, - f,
-k, -1, -u, or -q options (see the -r option).

If the RCS file does not exist, c i creates it and deposits the contents of the
working file as the initial revision (default number: 1.1). The access list is
initialized to empty. Instead of the log message, ci requests descriptive
text (see the -t option).

An RCS file created by c i inherits the read and execute permissions from
the working file. If the RCS file already exists, c i preserves its read and
execute permissions. c i always turns off all write permissions of RCS

November 1991

ci(l) ci(l)

files.

The caller of the command must have read/write permission for the
directories containing the RCS file and the working file, and read
permission for the RCS file itself. A number of temporary files are created.
A semaphore file is created in the directory containing the RCS file. c i
always creates a new RCS file and unlinks the old one. This strategy
makes links to RCS files useless.

STATUS MESSAGES AND VALUES
For each revision, c i prints the RCS file, the working file, and the number
of both the deposited and the preceding revision. The exit status always
refers to the last file checked in, and is 0 if the operation was successful, 1
if otherwise.

NOTES
Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907.
Copyright© 1982 by Walter F. Tichy.

FILES
/bin/ci

Executable file

SEE ALSO
co(l), ident(l), rcs(l), rcsdiff(l), rcsintro(l), rcsmerge(l),
rlog(l)

sccstorcs(lM) inA/UX System Administrator's Reference

rcsfile(4) inA/UX Programmer's Reference

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, September 1982

November 1991 4

clear(l)

NAME
clear - clears the terminal screen

SYNOPSIS
clear

DESCRIPTION

clear(l)

clear clears your screen if this is possible. It looks in the environment
for the terminal type (TERM) and capabilities string (TERMCAP). If
'.J:'ERMCAP is not found in the environment, it looks in I etc/termcap to
figure out how to clear the screen.

EXAMPLES
The command:

clear

clears the screen.

FILES
/bin/clear

Executable file
/etc/termcap

Terminal capabilities file

SEE ALSO
tput(l)

termcap(4), environ(5) inAIUX Programmer's Reference

1 November 1991

crndo(l) cmdo(l)

NAME
cmdo - builds command lines interactively

SYNOPSIS
cmdo command
cmdo -o resfile [-n] [-s] command

ARGUMENTS
command

Specifies the command for which you want help with the construction
of a command line. If the - o option was given, this argument specifies
the name of the command for which you wish to compile a
Commando dialog.

-n Specifies that the command not be executed.

-o Compiles the command into the resource file specified by resfile. See
"Compiling Resources" later in the "Description" section for
additional information.

resfile
Specifies the filename of the compiled resource file.

- s Runs the command silently (the dialog box is not displayed).

DESCRIPTION
cmdo helps you build A/UX command lines using specialized Macintosh
dialog boxes. The dialog boxes make it easy to select options, choose files,
and access help information, as well as build compound command lines.
To build commands with many options and parameters, you may employ
several nested dialog boxes.

The contents of dialog boxes are specified in dialog scripts, written in the
Commando Script Language. This language is detailed in AIUX
Development Tools.

The first form of the syntax, the more common of the two, invokes
Commando on the specified command. The second form compiles a
resource file to speed execution. Commando resource files are fully
documented in MPW Programmer's Workshop.

Using cmdo
You can run cm do in two ways. The first is to enter a complete cmdo
command line, as follows:

cmdo command

The second is to type a partial command line containing only the name of
the command within a CommandShell window, then select Commando
from the Edit menu. The Command-key equivalent for selecting
Commando from the menu is COMMAND-K. This action invokes cmdo on

November 1991

cmdo(l) cmdo(l)

the last word of the command line.

The first method of invoking cmdo executes the command. The second
method pastes the command line arguments onto the command line,
allowing you to create the desired command line by adding more
commands, command options, and arguments. You can then execute the
compound command by pressing the RETURN key. Using this method, you
can create a command line of many commands piped together, also known
as a compound command line.

Search Paths
Commando searches in the following order:

1. Commando searches for resources, then dialog scripts, in the path
specified by $CMDODIR.

2. Commando searches for resources, then dialog scripts, in the directory
within /mac I lib/ cmdo having the same first letter as the command
you are invoking.

3. Commando searches for resources in the path specified by $PATH.

Compiling Resources
Commando creates Macintosh dialog boxes from which you select
command options and arguments. You can customize the appearance of
these dialog boxes by compiling them and modifying them with cmdo' s
built-in resource editor. For more information, see MPW Programmer's
Workshop.

EXAMPLES
To display the 1 s Commando dialog box, use this command line:

cmdo ls

To compile a resource file for an application named statpack, use the
command line

cmdo -o /usr/bin/statpack -r -s statpack

The preceding command compiles a resource file and puts it in
/usr/bin.

LIMITATIONS

2

When using compiled Commando scripts, make sure the names of the
command, dialog script, and resource (prefaced by a %, of course) are all
be the same.

24-bit login sessions do not support command-line invocation of
Commando.

November 1991

cmdo(l) cmdo(l)

NOTES
CommandShell invokes cmdo when you double-click an A/UX command
icon for which a dialog script has been written (assuming the script is in the
search path). If you execute the command using this method, it executes in
a subshell.

24-bit login sessions do support this method of invoking Commando.

FILES
/mac/bin/cmdo

The cmdo command
/mac/lib/cmdo/*

Directories containing source files
SEE ALSO

CommandShell(l)

"Commando" in AIUX Development Tools

''Creating a Commando Interface for Tools'' in AIUX Programming
Languages and Tools, Volume 2

November 1991 3

cmp(l) cmp(l)

NAME
cmp - compares two files

SYNOPSIS
cmp [-1] [-s] file I file2

ARGUMENTS
file]

file2

Specifies the file to be compared withfile2. If this argument is - , the
standard input is used.

Specifies the file to be compared with.file].

-1 Prints the byte number (decimal) and the differing bytes (octal) for
each difference.

-s Prints nothing for differing files; return codes only.

DESCRIPTION
The two files are compared. Under default options, cmp makes no
comment if the files are the same; if they differ, it announces the byte and
line number at which the difference occurred. If one file is a subset of the
other, that fact is noted.

EXAMPLES
The command:

cmp alpha beta

will report if the files are different and at what point they differ, such as:

alpha beta differ: char 33, line 2

STATUS MESSAGES AND VALUES
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

FILES
/bin/cmp

Executable file

SEE ALSO
bdiff(l), comm(l), diff(l), diff3(1), diffmk(l)

1 November 1991

co(l) co(l)

NAME
co - checks out RCS revisions

SYNOPSIS
co [-ddate] [- jjoinlist] [-1 [rev)] [-p[rev]] [-q[rev]] [- r[rev)] [- sstate]
[-w[login]] files

ARGUMENTS
-ddate

Retrieves the latest revision on the selected branch whose checkin
date/time is less than or equal to date. The date and time may be
given in free format and are converted to local time. Examples of
acceptable formats for date are:

22-April-1985, 17:20-CDT
2:25 AM, Dec. 29, 1987
Tue-PDT, 1986, 4pm Jul 21
Fri Apr 16 15:52:25 EST 1988

The last example illustrates the format produced by ct ime(3) and
date(l). Most fields in the date and time may be defaulted. co
determines the defaults in this order: year, month, day, hour, minute,
and second (that is, from most to least significant). At least one of
these fields must be provided. For omitted fields that are of higher
significance than the highest provided field, the current values are
assumed. For all other omitted fields, the lowest possible values are
assumed. For example, the date 2 0 , 10 : 3 0 defaults to 10:30:00 of
the 20th of the current month and current year. The date specified on
the command line must be in quotation marks if it contains spaces.

files Specifies the RCS files to be checked out.

-jjoinlist
Generates a new revision that is the join of the revisions onjoinlist.
The joinlist is a colllllla-separated list of pairs of the form rev2 : rev3,
where rev2 and rev3 are (symbolic or numeric) revision numbers. For
the initial pair, revl denotes the revision selected by the options
-1, ... ,-w. For all other pairs, rev] denotes the revision generated by
the previous pair. (Thus, the output of one join becomes the input to
the next.)

For each pair, co joins revisions rev] and rev3 with respect to rev2.
This means that all changes that transform rev2 into rev] are applied
to a copy of rev3. This is particularly useful if rev] and rev3 are the
ends of two branches that have rev2 as a collllllon ancestor. If rev I <
rev2 < rev3 are on the same branch, joining generates a new revision,
which is like rev3, but with all changes that lead from revl to rev2
undone. If changes from rev2 to rev] overlap with changes from rev2

November 1991 1

co(l) co(l)

to rev3, co prints a warning and includes the overlapping sections,
delimited by the lines<<<<<<< revl, =======,and>>>>>>>
rev3.

For the initial pair, rev2 may be omitted. The default is the common
ancestor. If any of the arguments indicate branches, the latest
revisions on those branches are assumed. If the -1 option is present,
the initial rev 1 is locked.

-l[rev]
Locks the checked-out revision for the caller. If omitted, the
checked-out revision is not locked. See the - r option for handling of
the revision number rev.

-p[rev]
Prints the retrieved revision on the standard output rather than storing
it in the working file. This option is useful when co is part of a pipe.

-q[rev]
Specifies quiet mode; error messages are not printed.

-r[rev]
Retrieves the latest revision whose number is less than or equal to rev.
If rev indicates a branch rather than a revision, the latest revision on
that branch is retrieved. rev is composed of one or more numeric or
symbolic fields separated by a period, (.). The numeric equivalent of
a symbolic field is specified with the -n option of the commands c i
and res.

-sstate
Retrieves the latest revision on the selected branch whose state is set
to state.

-w[login]
Retrieves the latest revision on the selected branch that was checked
in by the user with login name login. If the argument login is omitted,
the caller's login name is assumed.

DESCRIPTION

2

co retrieves revisions from RCS files. Each filename ending in , vis taken
to be an RCS file. All other files are assumed to be working files. co
retrieves a revision from each RCS file and stores it in the corresponding
working file.

Pairs of RCS files and working files may be specified in three ways (see the
EXAMPLES section later in this entry).

(1) Both the RCS file and the working file are given. The RCS filename is
of the form path I I work.file, v and the working filename is of the form
path2 I workfile, where path I and path2 are (possibly different or

November 1991

co(l) co(l)

empty) paths and workfile is a filename.

(2) Only the RCS file is given. Then the working file is created in the
current directory and its name is derived from the name of the RCS
file by removing pathl I and the suffix , v.

(3) Only the working file is given. Then the name of the RCS file is
derived from the name of the working file by removing path2 I and
appending the suffix , v.

If the RCS file is omitted or specified without a path, then co looks for the
RCS file, first in the directory . /RCS and then in the current directory.

Revisions of an RCS file may be checked-out locked or unlocked. Locking
a revision prevents overlapping updates. A revision checked out for
reading or processing (for example, compiling) need not be locked. A
revision checked out for editing and later check-in must normally be
locked. Locking a revision currently locked by another user fails. (A lock
may be broken with the rcs(l) command.) co with locking requires the
caller to be on the access list of the RCS file, unless he is the owner of the
file or the superuser, or the access list is empty. co without locking is not
subject to access-list restrictions.

A revision is selected by number, check-in date/time, author, or state. If
none of these options is specified, the latest revision on the trunk is
retrieved. When the options are applied in combination, the latest revision
that satisfies all of them is retrieved. The options for date/time, author, and
state retrieve a revision on the selected branch. The selected branch is
either derived from the revision number (if given) or is the highest branch
on the trunk. A revision number may be attached to one of the options -1,
-p, -q, or -r.

A co command applied to an RCS file with no revisions creates a zero­
length file. The co command always performs keyword substitution, as
follows.

The caller of the command must have write permission in the working
directory, read permission for the RCS file, and either read permission (for
reading) or read/write permission (for locking) in the directory that
contains the RCS file.

A number of temporary files are created. A semaphore file is created in the
directory of the RCS file to prevent simultaneous updates.

Keyword Substitution
Strings of the form $keyword$ and $keyword: ... $ embedded in the text
are replaced with strings of the form $keyword: value $,where keyword
and value are pairs as listed. Keywords may be embedded in literal strings
or comments to identify a revision.

November 1991 3

co(l) co(l)

Initially, the user enters strings of the form $keyword$. On checkout, co
replaces these strings with strings that are of the form $keyword: value $.
If a revision containing strings of the latter form is checked back in, the
value fields will be replaced during the next checkout. Thus, the keyword
values are automatically updated on checkout.

Keywords and their corresponding values are as follows:

$Author$
The login name of the user who checked in the revision.

$Date$
The date and time the revision was checked in.

$Header$
A standard header containing the RCS filename, the revision number,
the date, the author, and the state.

$Locker$
The login name of the user who locked the revision (empty if not
locked).

Log
The log message supplied during checkin, preceded by a header
containing the RCS filename, the revision number, the author, and the
date. Existing log messages are not replaced. Instead, the new log
message is inserted after $Log : .. . $. This is useful for accumulating
a complete change log in a source file.

$Revision$
The revision number assigned to the revision.

$Source$
The full pathname of the RCS file.

$State$
The state assigned to the revision with res - s or c i - s.

File Modes

4

The working file inherits the read and execute permissions from the RCS
file. In addition, the owner-write permission is turned on unless the file is
checked out unlocked and locking is set to strict (see rcs(l)).

If a file with the name of the working file already exists and has write
permission, co cancels the checkout if the -q option is given, or asks
whether to cancel if the -q option is not given. If the existing working file
is not writable, it is deleted before the checkout.

November 1991

co(l) co(l)

EXAMPLES
Suppose the current directory contains a subdirectory RCS with an RCS file
i o. c, v. Then all of the following commands retrieve the latest revision
from RCS/ io. c, v and store it into io. c.

co io.c
co RCS/io.c,v
co io.c,v
co io.c RCS/io.c,v
co io.c io.c,v
co RCS/io.c,v io.c
co io.c,v io.c

STATUS MESSAGES AND VALUES
The RCS filename, the working filename, and the revision number
retrieved are written to the diagnostic output. The exit status always refers
to the last file checked out, and is 0 if the operation was successful, 1 if
otherwise.

LIMITATIONS
The -d option gets confused in some circumstances and accepts no date
before 1970.

There is no way to suppress the expansion of keywords, except by writing
them differently. In nroff and troff, this is done by embedding the
null-character \ & into the keyword.

The - j option does not work for files that contain lines with a single ..

NOTES
Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907.
Copyright© 1982 by Walter F. Tichy.

FILES
/bin/co

Executable file

SEE ALSO
ci(l), ident(l), rcs(l), rcsdiff(l), rcsintro(l), rcsmerge(l),
rlog(l)

sccstorcs(lM) in AIUX System Administrator's Reference

rcsfile(4) inA/UX Programmer's Reference

Walter F. Tichy, ''Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982

November 1991 5

col (1) col(l)

NAME
col - filters text containing printer control sequences for use at a display
device

SYNOPSIS
col [-b] [-f] [-p] [-x]

ARGUMENTS
- b Causes col to assume that the output device in use is not capable of

backspacing. In this case, if two or more characters are to appear in
the same place, only the last one read will be output.

-f Suppresses the movement of text. Although col accepts half-line
motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next
lower full-line boundary. When this option is used, the output from
col may contain forward half-linefeeds (ESCAPE-9), but will still
never contain either kind of reverse line motion.

-p Causes col to generate unknown escape sequences as regular
characters, subject to overprinting from reverse line motions. The use
of this option is highly discouraged unless the user is fully aware of
the textual position of the escape sequences. Normally, col will
ignore any unknown escape sequences found in its input.

-x Does not convert white space to tabs on output wherever possible to
shorten printing time.

DESCRIPTION
col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse linefeeds (ASCII code
ESCAPE-7), and by forward and reverse half-linefeeds (ESCAPE-9 and
(ESCAPE-8). The col command is particularly useful for filtering
multicolumn output made with the . rt command of nroff and output
resulting from use of the tbl(l) preprocessor.

The ASCII control characters SO (\016) and SI (\017) are assumed by col
to start and end text in an alternate character set. The character set to
which each input character belongs is remembered, and on output SI and
SO characters are generated as appropriate to ensure that each character is
printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, SI, SO, T (\013), and escape followed by 7, 8, or 9. The VT
character is an alternate form of full reverse linefeed, included for
compatibility with some earlier programs of this type. All other
nonprinting characters are ignored.

November 1991

col(l) col(l)

EXAMPLES
The command:

nroff -mm f ilea I col

pipes multicolumn nroff output through the co 1 filter to enable proper
creation of columns.

LIMITATIONS
Cannot back up more than 128 lines.

Allows at most 800 characters, including backspaces, on a line.

Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any
superscripts.

NOTES
The input format accepted by col matches the output produced by nroff
with either the -T3 7 or -Tlp options. Use -T3 7 (and the -f option of
co 1) if the ultimate disposition of the output of co 1 will be a device that
can interpret half-line motions, and -Tlp otherwise.

FILES
/usr/bin/col

Executable file

SEE ALSO
colcrt(l), nroff(l), tbl(l)

November 1991 2

colcrt(l) colcrt(l)

NAME
colcrt - filters nroff output for terminal previewing

SYNOPSIS
colcrt [-] [-2] [file]

ARGUMENTS
Suppresses all underlining. It is especially useful for previewing
allboxed tables from tbl(l).

-2 Causes all half-lines to be printed, effectively double spacing the
output. Normally, a minimal space output format is used that will
suppress empty lines. The program never suppresses two consecutive
empty lines, however. This option is useful for sending output to the
line printer when the output contains superscripts and subscripts that
would otherwise be invisible.

file Specifies the file to be passed through the filter.

DESCRIPTION
colcrt provides virtual half-line and reverse line feed sequences for
terminals without such capability, and on which overstriking is destructive.
Half-line characters and underlining (changed to dashing "-")are placed
on newlines in between the normal output lines.

EXAMPLES
A typical use of colcrt would be:

tbl exurn2.n I nroff -mm I colcrt I more

LIMITATIONS
Should fold underlines onto blanks even with the - option so that a true
underline character would show; if we did this, however, colcrt
wouldn't get rid of cu'd underlining completely.

Can't back up more than 102 lines.

General overstriking is lost; as a special case "I" overstruck with"-" or
underline becomes "+".

Lines are trimmed to 132 characters.

Some provision should be made for processing superscripts and subscripts
in documents that are already double-spaced.

FILES
/usr/ucb/colcrt

Executable file

November 1991

colcrt(l) colcrt(l)

SEE ALSO
col(l), more(l), nroff(l), troff(l), ul(l)

November 1991 2

colrrn(l) colrrn(l)

NAME
col rm-removes columns from a file

SYNOPSIS
colrrn startcol [endcol]

ARGUMENTS
endcol

Specifies the last column to be removed.

startcol
Specifies the first column to be removed.

DESCRIPTION
col rm removes selected columns from a file. Input is taken from standard
input. Output is sent to standard output.

If col rm is called with one parameter, the columns of each line are
removed starting with the specified column. If col rm is called with two
parameters, the columns from the first column to the last column are
removed.

Column numbering starts with column I.

FILES
/usr/ucb/colrm

Executable file

SEE ALSO
awk(l), cut(l), expand(l), sed(l)

November 1991

comb(l)

NAME
comb - combines SCCS deltas

SYNOPSIS
comb [-clist] [-o] [-psid] [-s]file ...

ARGUMENTS
-clist

comb(l)

Specifies a list (see get(l) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

file Specifies the SCCS file that will be reconstructed. If a name of - is
given, the standard input is read; each line of the input is taken to be
the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored.

- o Causes the reconstructed file to be accessed at the release of the delta
to be created for each get -e generated; otherwise, the
reconstructed file would be accessed at the most recent ancestor (see
"SCCS Reference" inA/UX Programming Languages and Tools,
Volume 2). Use of this option may decrease the size of the
reconstructed SCCS file. It may also alter the shape of the delta tree
of the original file.

-psid
Specifies the SCCS Identification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-s Causes comb to generate a shell script that, when run, will produce a
report giving, for each file: the filename, size (in blocks) after
combining, original size (also in blocks), and percentage change
computed by:

10 0 * (original - combined) I original

It is recommended that before any SCCS files are actually combined,
one should use this option to determine exactly how much space is
saved by the combining process.

DESCRIPTION
comb generates a shell script (see sh(l)) that, when run, will reconstruct
the given SCCS files by combining some series of changes. Then the
reconstructed files will, hopefully, be smaller than the original files. The
arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, comb behaves as though
each file in the directory were specified as a named file, except that non­
SCCS files (last component of the pathname does not begin with s .) and
unreadable files are silently ignored.

November 1991

comb(l) comb(l)

The generated shell procedure is written on the standard output.

If no arguments are specified, comb will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

EXAMPLES
The command:

comb s.filel > tmpl

produces a shell script saved in tmpl that will remove from the SCCS­
format file, s. file 1, all deltas previous to the last set of changes, i.e.,
removes the capability to return to earlier versions.

STATUS MESSAGES AND VALUES
Use help for explanations.

LIMITATIONS
The comb command may rearrange the shape of the tree of deltas. It may
not save any space; in fact, it is possible for the reconstructed file actually
to be larger than the original.

FILES
/usr/bin/comb

Executable file
s.COMB

Reconstructed SCCS file
comb???

Temporary file

SEE ALSO
adrnin(l), delta(l), get(l), help(l), prs(l), sh(l)

sccsfile(4) inA/UX Programmer's Reference

"SCCS Reference" inA/UX Programming Languages and Tools, Volume
2

2 November 1991

comm(l) comm(l)

NAME
comm - selects or rejects lines common to two sorted files

SYNOPSIS
comm [- [1] [2] [3]]filel file2

ARGUMENTS
Specifies the standard input.

1 Suppresses printing of the first column.

2 Suppresses printing of the second column.

3 Suppresses printing of the third column.

file]
Specifies the first sorted file.

file2
Specifies the second sorted file.

DESCRIPTION
comm reads file I andfile2 which should be ordered in ASCII collating
sequence (see sort(l)), and produces a three-column output: lines only in
file I, lines only infile2, and lines in both files.

EXAMPLES
The command:

comm -12 filea fileb

prints only the lines common to f i 1 ea and f i 1 eb. The command:

comm -23 filea fileb

prints only lines in the first file but not in the second. The command:

comm -123 filea fileb

is not an option, as it suppresses all output. The command:

comm -3 filea fileb

prints only the lines that differ in the two files.

FILES
/usr/bin/cornm

Executable file

SEE ALSO
bdiff(l), cmp(l), diff(l), diff3(1), diffmk(l), sort(l), uniq(l)

November 1991

C omrnandShe 11 (1) ComrnandShell (1)

NAME
CormnandShell - manages command-interpretation windows and
moderates access to the A/UX console window

SYNOPSIS
CormnandShell [-b macsysinit-pid] [-q] [-u]

ARGUMENTS
- b macsysinit-pid

Starts CommandShell in a background layer, without any windows, at
system startup. With this option, CommandShell displays the A/UX
console window but does not accept any other window-management
commands. To display the console window, choose CommandShell
from the Application menu (or Apple menu if it is not already open)
and then choose A/UX System Console from the Window menu. No
command-interpretation windows can be displayed. For further
information on kernel errors or requests for input, see ''The A/UX
Console Window" in the "Description" section. Replace
macsysinit-pid with the process ID ofmacsysini t (see brc(lM))
as an argument. After taking control of the system console,
CommandShell sends this process a message telling it to exit. This
message signals the continuation of all the remaining startup
processes. Alert boxes are displayed as necessary to notify users of
the need for input.

-q Supresses the Quit menu item in the File menu; brings CommandShell
into the foreground.

-u Specifies that a user has logged in and started CommandShell in a
background layer. When CommandShell is made the active
application, the user's preferred (or the default) CommandShell
window layout is established. The default task is to open a single
CommandShell window. When you start CommandShell this way,
you can choose Save Preferences from the File menu to save your
preferences.

DESCRIPTION

1

CormnandShell provides a Macintosh user interface to A/UX users. The
available CommandShell menus are described in "Menu Items" later in
the "Description" section. Within CommandShell windows, you can enter
AIUX command lines for processing by one of the available shells.

You can use the Macintosh copy and paste operations to enter A/UX
commands in a CommandShell window. You can copy text from any
previously entered command lines in the same window as well as any text
available in other windows (including other Macintosh application
windows). Because the CommandShell windows are scrollable, you can

November 1991

CommandShell (1) CommandShe 11 (1)

make previous commands or their output available for copying.

You can also build an A/UX command line semiautomatically by using the
Commando dialog boxes. Enter the command on the CommandShell
command line; then choose Commando from CommandShell's Edit menu
or press COMMAND-K. You can also use the cmdo command (see
cmdo(l)).

CommandShell Windows
When you start CommandShell, one window is displayed by default unless
you have saved a previous window layout that specifies more than one
window. The default window is titled "CommandShell l." You can create
more windows by choosing New from the File menu or by pressing
COMMAND-N. Each time you perform one of these actions, a new window
appears in front of the existing window or windows. The title bar of each
new window is numbered in sequence according to the order of its creation.
Normally you can create up to 15 windows.

When you create a new window, it appears in front of, and slightly to the
right of and below, the last current window. You can use the titling
commands to view the contents of all the windows. For information on
specific titling commands, see ''Window Menu'' later in the
"Description" section.

The A/UX Console Window
Besides managing command-interpretation windows, CommandShell
moderates access to the A/UX console window. This window is one of the
places where the A/UX environment and the Macintosh desktop
environment meet. Kernel error messages are routed to this window so as
not to disturb the bitmapped display of Macintosh applications.

The Macintosh user interface is an integral part of the A/UX boot process,
supported in part by the A/UX console window of CommandShell. This
special window is the place where all boot messages appear and where you
enter responses in the event that one of the boot processes requires your
input.

System-startup messages. During the boot process, CommandShell
disables many of the functions in its menus. The status messages that are
normally directed to the system console during startup (many of which are
useful only to the system administrator) are directed to the A/UX console
window. To inspect the boot messages generated during the last system
startup, choose A/UX System Console from the Window menu of
CommandShell.

November 1991 2

CommandShel 1 (1) CommandShell (1)

3

To view the NUX console window, perform these steps:

1. If CommandShell is not active, choose it from the Application menu
(or Apple menu if it is not open).

2. Choose NUX System Console from the Window menu.

3. Use the scroll bar as needed to view the contents of the window.

Notification of messages. Processes that run as part of a startup script,
such as I etc/ sysini trc, or as another part of the booting process may
occasionally require user input. For example, suppose you add an Ethernet
card to your system. Then suppose that, while rebooting, the system needs
to request address information about the new card. NUX does not display
a prompt asking for this information. Instead, an alert box, telling you that
an NUX process requires input, appears in front of the NUX boot
progress bar. Click OK in the alert box to cause the NUX console window
to appear and the alert box to disappear. The NUX console window
contains messages prompting you for input. You can now enter
information in the window. At all other times, the window is for reading
purposes only.

This alerting process is called a ''notification system.'' A similar
notification system has been created for the handling of NUX kernel
messages. The system displays alert boxes that encourage you to inspect
the text of the NUX error messages in the normally hidden NUX console
window.

Here is what you should do in response to this form of notification:

1. After reading the alert box, click OK.

2. Make CommandShell the selected application if it is not already in
control of the active window.

3. Choose NUX System Console from the Window menu of
CommandShell. The normally hidden NUX console window is
displayed; it contains all of the error messages generated since the
system was last booted. If you scroll upward in the window, you can
see the old messages. CommandShell also lets you respond to any
prompts for input.

If the error listed in the NUX console window concerns system or network
performance (such as a number of retries before successful transmission of
a network packet), then no further corrective action is required.
Sometimes, however, the error message may indicate a serious error
condition, such as one of the following:

file system full
file system corrupt

November 1991

CornmandShell (1) CornmandShel 1 (1)

fork failed: too many processes

In these cases, you may lose data if the error condition persists.

Changing Notification Preferences. You can change the way the system
notifies you that the A/UX console window has a message for you when
CommandShell is not the active application. To set notification
preferences, make CommandShell active and choose Notification Levels
from the Preferences menu. In response, the system displays a dialog box
in which you can select to be notified by an alert box, a blinking icon in the
menu bar, or both. User preferences are normally stored in the
. cmdshellprefs files located in your home directory. (See
"Managing CommandShell Preferences" later in the "Description"
section.) The default notification is an alert box because console messages
may indicate a fundamental system problem that you should know about
immediately.

Leaving CommandShell
It is not advisable to quit CommandShell because you will lose the ability
to inspect the console window and enter responses to any prompts for
information sent there.

The next best thing to a Quit function is the option to choose Hide
CommandShell Windows in the Applications menu.

Terminal Attributes
The hardware used as the means for accessing a UNIX system is often a
keyboard and a character-oriented display. Such display devices are often
called ttys or terminals. When you have a CommandShell window open,
your terminal is used to emulate a conventional terminal device, including
various display features and modes.

For example, most terminal devices will respond to certain sequences of
text as commands requesting the use of a special display mode, such as the
display of underlined text. However, the command sequence required
varies slightly from one terminal (or manufacturer) to another.

For the default type of terminal that CommandShell emulates, VT102,
additional command sequences exist to allow the selection of cursor type,
tab stops, cursor position, line height, number of display lines, number of
display columns, and so on. See vt 10 2 (7) for a summary of this
information. (You could also look at one of the commercial books that
more fully describe the escape and control sequences for VT102-style
terminals.)

Furthermore, the particular VT102 emulation that CommandShell provides
offers support beyond the standard control and escape sequences to permit
you to control CommandShell windows, such as resizing or retitling them
based upon a control sequence. For these special features that exceed

November 1991 4

CommandShell(l) CommandShell(l)

VT102 specifications, see "Window Control Sequences" later in the
"Description" section.

Note that only an A/UX process (usually a shell) running in the active
window (the window with horizontal lines in the title bar) receives key
sequences generated through the keyboard inputs. Other CommandShell
windows must first be activated before keyboard input can be read by them.

To allow you to run a UNIX program that expects to send command
sequences for a particular type of terminal device, CommandShell can be
set to emulate such third-party devices in open CommandShell windows.
To help identify the terminal type, conventional UNIX systems require you
to place special values inside the TERM shell variable (see termcap(4)
and terminfo(4)). With A/UX, you need to inform CommandShell and
the shell of the desired setting by setting the TERM variable.

The interface supported by character-display terminals may seem, at first
impression, to be inferior to a graphic display simply because it is old­
fashioned.

However, consider the ways in which you can perform file-manipulation
operations such as "delete file." The desktop metaphor helps depict the
action of file deletion graphically because you drag the file icon to the
Trash icon. Using the old-fashioned approach, you open a CommandShell
window to run the command rm. The old-fashioned way is harder to learn
and less intuitive in the simple case. However, the graphic interface can be
tedious and laborious when you need to perform a more sophisticated
deletion. Consider the task of removing from the current directory only
those files named a particular way. For example, say that you want to
delete files only if their names end with ".tmp." In this case, the easier
way to delete them is to use a command line, such as this one:

rm *. tmp

Menu Items

5

CommandShell displays menus titled File, Edit, Window, Fonts,
Commands, Keys, and Preferences in the menu bar at the top of the screen,
plus the Apple menu at the left end of the menu bar. To choose a menu
item, position the pointer on the menu title, press and hold down the mouse
button, and move the pointer to the menu. Release the mouse button when
the pointer highlights the desired item.

You can choose many menu items from the keyboard by holding down the
COMMAND key (not the CONTROL key) and typing a character. This
COMMAND-key equivalent is shown beside the menu item. You can enter
the COMMAND-key equivalents as lowercase letters; you don't need to hold
down SHIFT as well.

November 1991

ComrnandShell (1) ComrnandShel 1 (1)

The sections that follow describe the actions performed by the
CornrnandShell menu items.

Apple Menu. At the left end of the menu bar, the Apple symbol is the title
of a menu that contains some general Macintosh desk accessories and some
menu items specifically related to CommandShell. These menu items are
related to CommandShell:

About CommandShell
Displays a dialog box that gives version information.

CornrnandShell
Makes CommandShell the active application and makes the
CommandShell window that was most recently active the active
window once again.

File Menu. The menu items in the File menu allow you to create and close
windows, to select printing options, and so on. The File menu contains the
following items:

New
Creates a new window. The windows are numbered sequentially
according to the order of their creation. The COMMAND-key
equivalent for the New menu item is COMMAND-N.

Open
Launches a UNIX command or launches an editor if the
highlighted file is a text file. The COMMAND-key equivalent for
the Open menu item is COMMAND-0.

Close
Closes the active window. Before you close a window, make
sure that you write the contents of the window to a disk if you
want to save your work. The COMMAND-key equivalent for the
Close menu item is COMMAND-W.

Save Selection
Saves the contents of a CornrnandShell window in an A/UX file.
The text you want to save must be selected (highlighted).

Page Setup
Displays a dialog box that lets you set the paper size, orientation,
and reduction or enlargement for subsequent printing opertions.

Print Selection
Prints selected text from the active window. Use the Chooser
desk accessory, available in the Apple menu, to specify which
printer to use. Use the Page Setup menu item just described to
specify paper size, orientation, and scale.

November 1991 6

CommandShe 11 (1) CommandShell(l)

7

Close All Windows

Quit

Closes all open windows at once. Before you close the windows,
make sure that you write the contents of each window to a disk if
you want to save your work. If you don't write the contents to a
disk, they are lost.

Quits CommandShell, closing any windows that are open.

Edit Menu. The menu items in the Edit menu let you move text around
and perform certain global formatting actions. The Edit menu contains
these items:

Undo
Reverses the most recent text change. If you choose Undo a
second time, the change is reinstated. The COMMAND-key
equivalent for the Undo menu item is COMMAND-Z.

Cut Copies the currently selected text in the active window to the
Clipboard and then deletes it from the window. This menu item
is used with desk accessories only; unless a desk accessory is
active, it is disabled. The COMMAND-key equivalent for the Cut
menu item is COMMAND-X.

Copy
Copies the currently selected text in the active window to the
Clipboard without deleting it from the window. The COMMAND­
key equivalent for the Copy menu item is COMMAND-C.

Paste
Inserts the contents of the Clipboard at the current cursor
location. The COMMAND-key equivalent for the Paste menu item
is COMMAND-V.

Clear
Deletes the currently selected text from the active window. This
menu item is used with desk accessories only; unless a desk
accessory is active, it is disabled. The keyboard equivalent for
the Clear menu item is DELETE.

Select All
Selects the entire document shown in the active window. The
COMMAND-key equivalent for the Select All menu item is
COMMAND-A.

Commando
Builds commands semiautomatically. Choose this menu item
after entering the command name at the beginning of a line. A
dialog box appears, depicting all the features of the command so

November 1991

ComrnandShell (1) ComrnandShell (1)

that you can select the ones you want to use. When you close the
dialog box, the command line that you started to specify before
choosing Commando is changed to include all of the command
options and arguments that you generated with the help of the
Commando dialog box. The COMMAND-key equivalent for the
Commando menu item is COMMAND-K.

Window Menu. The menu items in the Window menu help you arrange
and display CommandShell windows. The menu is divided into three parts.
The upper part of the menu contains menu items that help you arrange
windows in various formats. The middle part contains menu items that
help you size and order the windows. The lower part contains a list of all
windows currently available in CommandShell. When you choose one of
the window names in the lower part of the menu, CommandShell makes the
corresponding window active. The names of currently available windows
are listed in the order in which they were opened.

The menu items in the top part of the menu do the following tasks:

Tile Positions windows in a right-to-left, then top-to-bottom sequence.
You must have more than one window open on the desktop to use this
menu option. The COMMAND-key equivalent for the Tile menu item is
COMMAND-T.

Tile Horizontal
Positions windows from top to bottom on the screen in the order in
which they were opened. The windows are enlarged to the width of
the screen. The height of each window is adjusted to accommodate
the number of windows.

Tile Vertical
Positions windows from left to right on the screen in the order in
which they were opened. The windows are enlarged to the height of
the screen. The width of each window is adjusted to accommodate the
number of windows.

Standard Positions
Repositions the windows in the original stacked order, from front to
back.

The items in the middle part of the menu do the following tasks:

Standard Size
Resizes a window to its original dimensions. The COMMAND-key
equivalent for the Standard Size menu item is COMMAND-S.

Full Height
Enlarges a window to the full height of the screen. The COMMAND­
key equivalent for the Full Height menu item is COMMAND-F.

November 1991 8

ComrnandShell (1) ComrnandShell (1)

9

Zoom Window
Enlarges the window to the full height and width of the screen. You
can return a window to its previous size by choosing the Zoom
Window menu item again. The COMMAND-key equivalent for the
Zoom Window menu item is COMMAND-backslash.

Hide window-name
Makes the specified window (window-name) temporarily disappear.
The window is no longer visible, but it is still available. To display a
window that has been hidden, choose this command from the Window
menu again. The window reappears, as the active window. The
COMMAND-key equivalent for the Hide window-name menu item is
COMMAND-H.

Show All Windows
Displays all windows that have been hidden.

Last Window
Makes the previously active window the active window once again,
making it visible if it was hidden. Choosing the command again
returns the windows to their original states. The COMMAND-key
equivalent for the Last Window menu item is COMMAND-L.

Rotate Window
Matches the window that is at the back of the window stack to the
active window. The COMMAND-key equivalent for the Rotate
Window menu item is COMMAND-R.

The menu items in the lower part of this menu are the names of all
currently available CommandShell windows. When you choose a name,
the corresponding window becomes active and moves to the front. The
A/UX console window is always included in this list.

A/UX System Console
Makes the A/UX console window the active window. This window
displays console messages. The COMMAND-key equivalent for the
A/UX System Console menu item is COMMAND-0 (zero).

Fonts Menu. The Fonts menu lets you choose the font and the point size
of text entered or displayed in the active CommandShell window.

The last item in the Fonts menu, Other, displays a dialog box that allows
you to enter the exact point size you desire.

Commands Menu. You use the menu items in the Commands menu to
choose default settings for recording information and to clean up the
screen.

Don't Record Lines Off Top/Record Lines Off Top
Toggles between recording a preset number of lines that have scrolled

November 1991

CormnandShell (1) CommandShel 1 (1)

off of the screen or deleting these lines. When you start
CommandShell, it is set to record a preset number of lines as they
scroll out of view. If you do not want to store the lines for possible
review later, you can stop the recording of lines for the active
CommandShell window by choosing Don't Record Lines Off Top. To
begin recording lines again, choose Record Lines Off Top. The lines
are again recorded as they scroll out of view at the top of the window.

Clear Lines Off Top
Erases recorded lines and makes them no longer available for review
within the active window. The scroll bar disappears from the active
CommandShell window.

Redraw Screen
Cleans up the screen if text output affects the bitmapped display.

Preferences Menu. You use the menu items in the Preferences menu to
specify how you want to be notified of system messages, to choose your
default window settings, and to set your preferred window configuration.
For more complete descriptions of the dialog boxes that are associated with
these menu items, refer to the CommandShell chapter in AIUX Essentials
about CommandShell.

Notification Levels
Sets the notification level for console messages. A dialog box appears
in which you specify how you want to be notified of console
messages. The choices are an alert box, a blinking icon in the menu
bar, or both.

New Window Settings ...
Specifies the default title prefix, point of origin of the window
cascade, window size, font name, font size, and number of lines saved
off the top of the window. A dialog box appears in which you set
these specifications. The Set Emulation button leads to a set of
control-panel dialog boxes for setting terminal emulation parameters.

Active Window Settings ...
Specifies the settings for the active window. A dialog box appears
allowing you to specify the title, size, and position of the window; a
setting that determines whether to record lines that scroll out of view;
and an initial command to run in the window when it opens. The Set
Emulation button leads to a set of control-panel dialog boxes for
setting terminal emulation parameters.

Save Preferences
Saves all window settings, layout information, and notification-level
settings.

November 1991 10

CornmandShell (1) CornmandShe 11 (1)

Restore From Preferences
Restores window settings and layout to the ones specified in the
preferences file. This command also activates any saved windows that
have been closed and runs an initial command in windows that do not
already have a command running.

Keys Menu. This menu contains two items that display submenus that are
not formed of the usual list of commands, but rather are graphic palettes
that represent key buttons.

Key pad
Displays a keypad of numeric keys, in which clicking a ''key'' is
equivalent to pressing the corresponding number key on the numeric
keypad of a keyboard. The corresponding value is entered on the
command line at the current cursor position.

Cursor Keys
Displays a keypad of the arrow keys, in which clicking a ''key'' is the
equivalent of pressing the corresponding arrow key on a keyboard.
Each selection from this palette alters the position of the cursor in the
currently active CommandShell window.

Managing CommandShell Preferences
Preferences are normally saved in the . cmdshellprefs file located in
the home directory. To maintain more than one set of preferences, you can
establish a different filename for the file in which preferences are stored.
For example, to save one set of preferences (window sizes and so forth) for
use with a large display device and another set of preferences for use with a
smaller display device, you can reset the CommandShell variable that
controls the file in which these settings are maintained. The name of this
variable is CMDSHELLPREFS. You can set this variable to something
other than . cmdshellprefs. When you reset the variable, you should
assign it a filename relative to your home directory.

Window Control Sequences

11

When the emulation mode has been set to VT102, you can provide
additional control sequences besides those that are standard features of
VT102 devices.

These additional sequences allow you to control CommandShell windows
through a means other than its interactive menus and dialog boxes. Here is
a list of these control sequence formats. \ E is used to represent the ASCII
code (27) for the Esc key.

\E [lt
Makes the window associated with the process that sends this
sequence the active window (displaying it if it was hidden).

November 1991

CommandShell (1) ComrnandShell (1)

\ E [4 ; height; widtht
Resizes the window associated with the process that sends this
sequence in terms of the pixel amounts given in place of height and
width.

\E[5t
Moves the window associated with the process that sends this
sequence to the front, without affecting the status of CommandShell as
the selected application.

\E[6t
Moves the window associated with the process that sends this
sequence to the back of any other CommandShell windows, without
affecting the status of CommandShell as the selected application.

\E[6t
Refreshes the window associated with the process that sends this
sequence, without affecting the status of CommandShell as the
selected application.

\E] ltitle\E\
\E] Ltitle\E\

Retitles the window associated with the process that sends this
sequence, causing it to be named title.

Some control sequences you can send are not used to directly control a
CommandShell window, but instead request information about the window.
Here is a list of these sequence formats for querying windows. (\ E is
used to represent the ASCII code (27) for the Esc key.

\Ellt
Causes CommandShell to generate a text string on the standard input
of the process that sent the string. The generated string indicates
whether the window originally associated with a process is still open.
The sequences that CommandShell can generate in response are as
follows:

\E [lt
The CommandShell window is still open.

\E[2t
The CornrnandShell window is closed.

\El3t
Causes CornrnandShell to generate a text string on the standard input
of the process that sent the string. The generated string indicates the
current location of the window originally associated with the process,
in the following format:

\ E [3 ; topmost-pixel; leftmost-pixelt

November 1991 12

CornrnandShell (1) CornrnandShell (1)

\El4t
Causes CommandShell to generate a text string on the standard input
of the process that sent the string. The generated string indicates the
current size of the window originally associated with the process, in
the following format:

\ E [4 ; height-in-pixels; width-in-pixelst

\E18t
Causes CommandShell to generate a text string on the standard input
of the process that sent the string. The generated string indicates the
current size of the window originally associated with the process, in
the following format:

\ E [8 ; character-rows; character-columnst

\E21t
Causes CommandShell to generate a text string on the standard input
of the process that sent the string. The generated string indicates the
current title of the window originally associated with the process, in
the following format:

\E[ltitle\

FILES
/mac/bin/CommandShell

Executable file
/mac/bin/%CommandShell

Resource fork file
$HOME/.cmdshellprefs

Default preferences file
$HOME/System Folder/Extensions/VT102

Link file
/mac/lib/SystemFiles/shared/Extensions/VT102

Communications Toolbox binary file
/mac/sys/System Folder/Extensions/VT102

Link file

SEE ALSO
cmdo(l)

13

termcap(4) inNUX Programmer's Reference

brc(lM), startmac(lM), startmsg(lM), StartMonitor(lM) in
A/UX System Administrator's Reference

vt102(7) inNUX Programmer's Reference

November 1991

CorrunandShel 1 (I) CorrunandShell (I)

A/UX Essentials

November 1991 14

compact(l) compact(l)

NAME
compact, uncompact, ccat - compress and uncompress files

SYNOPSIS
compact [name]. ..

uncompact [name] ...

ccat [file] ...

ARGUMENTS
file Specifies the file to be displayed. If this argument is not given, the

standard input is compacted or uncompacted to the standard output.

name
Specifies the files to be compacted or uncompacted.

DESCRIPTION

1

compact compresses the named files using an adaptive Huffman code. If
no filenames are given, the standard input is compacted to the standard
output. compact operates as an on-line algorithm. Each time a byte is
read, it is encoded immediately according to the current prefix code. This
code is an optimal Huffman code for the set of frequencies seen so far. It is
unnecessary to prefix a decoding tree to the compressed file since the
encoder and the decoder start in the same state and stay synchronized.
Furthermore, compact and uncompact can operate as filters. In
particular, the command sequence

I compact I uncompact I

operates as a (very slow) no-op.

When an argument name is given, it is compacted and the resulting file is
placed in file. c. file is unlinked. The first two bytes of the compacted file
code the fact that the file is compacted. This code is used to prohibit
recompaction.

The amount of compression to be expected depends on the type of file
being compressed. Typical values of compression are: Text (38%), Pascal
Source (43%), C Source (36%) and Binary (19%). These values are the
percentages of file bytes reduced.

uncompact restores the original file from a file compressed by
compact.

ccat cats the original file from a file compressed by compact, without
uncompressing the file.

November 1991

compact(!) compact(!)

LIMITATIONS
The last segment of the filename must contain fewer than thirteen
characters to allow space for the appended . C.

FILES
/usr/ucb/compact

Executable file
/usr/ucb/uncompact

Executable file
/usr/ucb/ccat

Executable file
*.C

Compacted files

SEE ALSO
pack(l)

Gallager, Robert G., Variations on a Theme of Huffman, I.E.E.E.
Transactions on Information Theory, vol. IT-24, no. 6, November 1978, pp.
668-674

November 1991 2

compress(!) compress(!)

NAME
compress, compressdir, uncompress, uncompressdir,
zcat, zcmp, zdiff, zmore - compress files and directories as well
as expand them; support concatenation, browsing, and file-comparing
operations upon compressed files

SYNOPSIS
compress [-b maxbits] [-c] [-f] [-v] [-V] [file] ...

compressdir [compress-flag] ... [directory]. ..

uncompressdir [uncompress~fiag]. .. [directory]. ..

uncompress [-c] [-f] [-v] [-V] [file] ...

zcat [-V] [file] ...

z cmp [cmp-option]. .. file 1 [file2]

zdi ff [diff-option] ... file] [file2]

zmore [file]. ..

ARGUMENTS
-b maxbits

Uses maxbits as the maximum number of bits to use in codes when
compressing file. The compress command uses a modified
Lempel-Ziv algorithm according to which common substrings in the
file are first replaced by 9-bit codes 257 and up. When code 512 is
reached, the algorithm switches to I 0-bit codes and continues to use
more bits until the limit, specified by the - b option, is reached (default
16). The maxbits specification must be between 9 and 16. (The
default can be changed in the source to allow compress to be run on
a smaller machine.) After the maxbits limit is attained, compress
periodically checks the compression ratio. If it is increasing,
compress continues to use the existing code dictionary. However, if
the compression ratio decreases, compress discards the table of
substrings and rebuilds it from scratch. This allows the algorithm to
adapt to the next ''block'' of the file.

-c Makes compress or uncompress write to the standard output; no
files are changed. The nondestructive behavior of zcat is identical to
that of uncompress -c.

cmp-option
Specifies one of the command options for the cmp command as
described in cmp(l).

compress-flag
Specifies one of the command options available for compress.

November 1991

compress(l) compress(l)

diff-option
Specifies one of the command options for the di ff command as
described in diff(l).

directory
Specifies the starting directory within which all files are compressed
or uncompressed, including those in nested directories.

-f Forces compression of file. This is useful for compressing an entire
directory, even if some of the files do not actually shrink. If this
option is not given and compress is running in the foreground, the
user is prompted as to whether an existing file should be overwritten.

file Specifies the file to be affected by a compression or uncompression
operation.

file I
Specifies one of the pair of files to be compared by z cmp or z di ff.

file2
Specifies one of the pair of files to be compared by zcmp or zdiff.

uncompress-flag
Specifies one of the command options available for uncompress.

-v Prints a message yielding the percentage of reduction for each file
compressed.

- V Prints the current version and compile options on the standard output.

DESCRIPTION
compress and compressdir reduce the size of the named files, or the
files residing under the named directories, using adaptive Lempel-Ziv
coding. Whenever possible, each file is replaced by one with the extension
. z, while keeping the same ownership modes, access, and modification
times. If no files are specified along with compress, the standard input is
compressed to the standard output. If no directories are specified along
with compressdir, the compression is applied to all files starting with
the current directory.

Compressed files can be restored to their original form using
uncompress and uncompressdir along with appropriate arguments.
Compressed files can be converted to an uncompressed data stream for
viewing onscreen (or output redirection) by zcat (see cat(l)) and
zmore (described in greater detail later in a subsequent subsection).
Compressed files can be compared with one another and reports of
differences can be produced by zcmp and zdiff (described later).

November 1991 2

compress(!) compress(!)

Note that the -b option is omitted for uncompress, since the maxbits
parameter specified during compression is encoded within the output, along
with a magic number to ensure that neither decompression of random data
nor recompression of compressed data is attempted.

The amount of compression obtained depends on the size of the input, the
maximum number of bits per code, and the distribution of common
substrings. Typically, text such as source code or English is reduced by 50
to 60 percent. Compression is generally much better than that achieved by
Huffman coding (as used in pack) or adaptive Huffman coding
(compact), and takes less time to compute.

Exit status is normally O; if the last file is larger after (attempted)
compression, the status is 2; if an error occurs, exit status is 1.

zmore Filter

3

zmore is a filter which allows examination of compressed text files one
group of lines at a time. It pauses after the first screenful of text and
displays --More-- at the bottom of the screen. With each press of the
RETURN key, one more line is displayed. With each press of the SPACE
BAR, another screenful of text is displayed.

The zmore program looks in the file /etc/termcap to determine
terminal characteristics, and to determine the default window size. For a
terminal capable of displaying 24 lines, the default window size is 22 lines
for zmore.

Besides entering spaces and return characters to control operation, you can
enter other keys and key combinations. You can consider the - -More- -
message to be the command prompt for zmore. If for some reason you do
not see this message (possibly after command interruption), you can type
the erase character (normally by pressing DELETE) to cause the prompt to
be redisplayed.

It can be somewhat difficult to cancel a zmore command sequence under
construction. First, the zmore command doesn't display the command
entry under construction. (The exceptions are the string seek commands
and the escape-to-shell command. These commands cause your command
entry to be displayed.) Second, zmore automatically recognizes when a
command has been fully formed and immediately runs it (without your
pressing RETURN at its end). To cancel a partially entered command
sequence, you can blindly type the line kill character (normally by pressing
CONTROL-U).

The following list describes the effect of each of the zmore commands
sequences. If an optional argument (enclosed in brackets) is not given, it
normally defaults to 1.

November 1991

compress (1) compress(l)

[numlines]SPACE BAR
Displays the specified number of lines from the input file that occur
after the last one that had been displayed previously (or another
screenful if the optional argument is omitted).

[numlines]CONTROL-D
[numlines]d

Display 11 more lines (a "scroll"). If numlines is given, then the
scroll size is the specified amount.

[numlines]z
Displays the specified number of lines from the input file that occur
after the last one that had been previously displayed (same as a space
command), except that if numlines is present, it becomes the new
window size. Note that the window size reverts back to the default at
the end of the current file.

[numlines]s
Skips the specified number of lines, then displays the next screenful of
lines

[numscreens] f

q
:q
Q

:Q

Skips the specified number of text screens, then displays a screenful of
lines

Cause zmore to quit displaying the current file, skipping to the next
file (if any).

e Causes zmore to quit rather than continue to the next input file
whenever the prompt

--More--(Next file: fik)

appears.

Displays the current line number.

[nth-occurrence] I regular-expr
Searches for the nth occurrence of the regular expression specified. If
the pattern is not found, zmore goes on to the next file (if any).
Otherwise, text is displayed starting two lines before the place where
the target string was found. The erase and kill characters may be used
to edit the regular expression. Erasing backwards past the first column
cancels the search command.

November 1991 4

compress (1) compress(l)

[nth-occurrence] In
Searches for the nth occurrence of the previously entered regular
expression (see preceding item).

!command
Invokes a shell to run the specified command. Any exclamation mark
character (!) inside the specified command is replaced with the
previous shell command specified. To allow a literally interpreted
exclamation mark to be entered as part of the command line, the
sequence \ ! is replaced by ! .

(period character) Repeats the previous command.

To interrupt a display action at any time, you can type the quit character
(normally by pressing CONlROL-1). This causes zmore to stop sending
output, but it still displays the usual prompt afterwards prompting you for
one of the commands listed preceding. Note that some text is often lost
when a display operation is interrupted.

The terminal is set to noecho mode by this program so that the output can
be continuous. As a result, the characters you type do not normally appear
on your display screen (so you type commands blindly).

If the standard output for zmore is redirected to a place other than the
terminal, then zmore functions like zcat, except that a header is printed
before each file.

zcmp and zdiff File Comparers
z cmp and z di ff are used to report about the differences between two
files without requiring you to uncompress them first. These commands
operate the same way that the corresponding commands cmp and di ff
operate. The command options are passed along to the cmp and di ff
programs, which are appropriately called by zcmp and zdiff.

If only one file is specified, the files that it attempts to compare are the
named one (jilel) and another by the same name but with . Z added.

If two files are specified, then they are temporarily uncompressed (as
necessary) and submitted to the appropriate command (cmp or di ff).
The exit status is the exit status from cmp or di ff.

STATUS MESSAGES AND VALUES

5

Messages from the cmp or di ff programs refer to temporary filenames
instead of those specified.

The following error messages may appear for the compress,
compressdir, uncompress, or uncompressdir commands:

Usage: compress [-dfvcV] [-b maxbits] [file ...]
Invalid options were specified on the command line.

November 1991

compress(!) compress(!)

Missing maxbits
maxbits must follow - b.

file: not in compressed format
The file specified to uncompress has not been compressed.

file: already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try
again.

file: filename too long to tack on .z
The file cannot be compressed because its name is longer than 12
characters. Rename and try again.

file already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

The following general error messages may appear regarding the
compression or uncompression process:

file: compressed with xx bits, can only handle yy bits
file was compressed by a program that could deal with more bits than
the compress code on this machine. Recompress the file with smaller
maxbits.

uncompress: corrupt input
A SIGSEGV violation was detected, which usually means that the
input file has been corrupted.

Compression: xx .xx%
Percentage of the input saved by compression. (Relevant only for
-v.)

not a regular file: unchanged
When the input file is not a regular file (for example, a directory), it is
left unaltered.

- -has xx other links: unchanged
The input file has links; it is left unchanged. See ln(l) for more
information.

file unchanged
No savings is achieved by compression. The input remains virgin.

LIMITATIONS
Although compressed files are compatible between machines with large
memory, - b 12 should be used for file transfer to architectures with a
small process data space (64K or less, as exhibited by the DEC PDP series,
the Intel 80286, etc.).

November 1991 6

compress(l)

FILES
/etc/termcap

Terminal data base file
/usr/ucb/compress

Executable file
/usr/ucb/uncompress

Executable file
/usr/ucb/zcat

Executable file

SEE ALSO

compress(l)

cat(l), cmp(l), compact(l), diff(l), more(l), pack(l)

7

Terry A. Welch, ''A Technique for High Performance Data Compression,''
IEEE Computer, Vol. 17, No. 6 (June 1984), pages 8-19

November 1991

compressdir(1) compressdir(l)

See compress(!)

November 1991 1

conv(l) conv(l)

NAME
conv - swaps bytes in COFF files

SYNOPSIS
conv [-][-a] [-o] [-p] [-s] -ttarget file ...

ARGUMENTS
Reads files from standard input.

-a Produces the output file in the old archive format, if the input file is an
archive.

file Specifies the converted file.

-o Produces the output file in the UNIX 6.0 (Version 6) portable archive
format, if the input file is an archive.

-p Specifies the UNIX V.O random access archive format. This is the
default.

- s Byte-swaps all bytes in object file. This is useful only for 3B20 object
files which are to be swab-dumped from a DEC machine to a
3B20.

-ttarget
Converts the object file to the byte ordering of the machine (target) to
which the object file is being shipped. This may be another host or a
target machine. Legal values for target are: pdp, vax, ibm, i86,
x86, b16, n3b, m32, andm68k.

DESCRIPTION
conv converts object files from their current format to the format of the
target machine. The converted file is written to file . v.

The conv command can be used to convert all object files in common
object file format. It can be used on either the source (sending) or target
(receiving) machine.

The conv command is meant to ease the problems created by a multihost
cross-compilation development environment. The conv command is best
used within a procedure for shipping object files from one machine to
another.

The conv command will recognize and produce archive files in three
formats: the UNIX pre-V.O format, the V.O random access format, and the
6.0 portable ASCII.

EXAMPLES
The following shows how this command is used:

echo *.out I conv - -t m68k

1 November 1991

conv(l) conv(l)

STATUS MESSAGES AND VALUES
All messages for the conv command are intended to be self-explanatory.
Fatal messages on the command lines cause termination. Fatal messages
on an input file cause the program to continue to the next input file.

WARNINGS
The conv command does not convert archives from one format to another
if both the source and target machines have the same byte ordering.

FILES
/bin/conv

Executable file

November 1991 2

cp(l)

NAME
cp - copies files

SYNOPSIS
cp [-i] [-r]filel file2

cp [-i] [-r]file ... directory

ARGUMENTS
directory

Specifies the directory into whichfile will be placed.

file Specifies the file that will be copied into directory.

file I
Specifies the file to be copied onto file2.

file2
Specifies the file into whichfilel will be copied.

cp(l)

- i Prompts the user with the name of the file whenever the copy will
cause an old file to be overwritten. An answer of y will cause cp to
continue. Any other answer will prevent it from overwriting the file.

-r Copies each subtree rooted at that name (if any of the source files are
directories). The destination must be a directory.

DESCRIPTION
cp copies file] onto file2. The mode and owner of file2 are preserved if it
already existed; otherwise, the mode of the source file is used (all bits set in
the current umask value are cleared).

In the second form, one or more files are copied into the directory with
their original filenames.

The cp command refuses to copy a file onto itself.

WARNINGS
The cp command does not copy the description of special files, but
attempts to copy the contents of the special files. This often occurs when
using the -r option for a recursive copy. For example, cp will hang when
trying to copy a named pipe or tty device. When a disk node is being
copied, the contents of the disk partition will be copied. To copy the
description of the special files, use cp i o(1).

FILES
/bin/cp

Executable file

November 1991

cp(l) cp(l)

SEE ALSO
cat(l), pr(l), mv(l), rcp(lC)

November 1991 2

cpio(l) cpio(l)

NAME
cpio - copies files to or from a cpio archive

SYNOPSIS
cpio -o [a] [c] [B] [F] [v]

cpio -i [6] [b] [B] [c] [d] [f] [m] [r] [s] [S] [t] [u] [v] [patterns]

cpio -p [a] [d] [l] [m] [u] [v] directory

ARGUMENTS

1

- 6 Processes an old (that is, UNIX System Sixth Edition format) file.
Useful only with - i option.

- a Resets access times of input files after they have been copied.

- b Swaps both bytes and halfwords. Used only with the - i option.

-B Input/output is to be blocked 5,120 bytes to the record (does not apply
to the -p option; meaningful only with data directed to or from 3.5-
inch disks).

-c Writes header information in ASCII character form for portability.

-d Creates directories as needed.

directory
Specifies the directory to be copied.

- f Copies in all files except those in patterns.

- F Causes each floppy to be formatted after it is inserted into the drive,
when used with the - o and when the output device is a Macintosh II
floppy drive, the - F option. This formatting is for SOOK drives only,
so only SOOK floppy disk should be used.

- i Specifies copy-in; extracts files from the standard input, which is
assumed to be the product of a previous cpio -o. Only files with
names that match patterns are selected. patterns are given in the
name-generating notation of sh(l). In patterns, the meta-characters
? , *,and [...] match the slash I character. Multiple patterns may be
specified but if none are, the default for patterns is * (that is, select all
files). The extracted files are conditionally created and copied into the
current directory tree based on the flag options described later. The
permissions of the files will be those of the previous cp i o - o. The
owner and group assigned to the files will be that of the current user
unless the user is the superuser, which causes cpio to retain the
owner and group assigned to the files from the previous cpio -o.
When cpio - i prints a message .xxx blocks, it indicates how
many blocks were read from the collection.

November 1991

cpio(l) cpio(l)

-1 Links files (whenever possible) rather than copying them. Usable
only with the -p option.

-m Retains previous file-modification time. This option is ineffective on
directories that are being copied.

- o Specifies copy out; reads the standard input to obtain a list of
pathnames and copies those files onto the standard output together
with pathname and status information. The list of pathnames must
contain only one file per line. (Thus, only certain commands, such as
find or ls without the -c option, will work in a pipeline to cpio.)
Output is padded to a 512-byte boundary. When cpio -o prints a
message xxx blocks, it indicates how many blocks were written.

-p Specifies pass; reads the standard input to obtain a list of pathnames of
files that are conditionally created and copied into the destination
directory tree based on the flag options described later. When cpio
-p prints a message xxx blocks, it indicates how many blocks were
written.

patterns
Specifies a list of files that have special treatment.

- r Renames (interactively) files. If the user types a null line, the file is
skipped.

- s Swaps bytes. Used only with the - i option.

-s Swaps halfwords. Used only with the -i option.

-t Prints a table of contents of the input. No files are created.

-u Copies unconditionally (normally, an older file will not replace a
newer file with the same name).

-v Specifies verbose mode; causes a list of filenames to be printed.
When used with the - t option, the table of contents looks like the
output of an ls -1 command (see ls(l)).

DESCRIPTION
cpio copies file and directories to or from a cpio archive. The cpio
command does not follow symbolic links.

EXAMPLES
The pipeline:

ls I cpio -o > /dev/rdsk/cBdOsO

copies the contents of a directory into an archive.

The command:

cd olddir
find . -depth -print I cpio -pdl newdir

November 1991 2

cpio(l)

duplicates a directory hierarchy.

The simple case:

cpio(l)

find . -depth -print cpio -oB > /dev/rdsk/c8d0s0

may be handled more efficiently by:

find . -cpio /dev/rdsk/c8d0s0

LIMITATIONS
Pathnames are restricted to 128 characters.

If there are too many uniquely linked files, the program runs out of the
memory needed to keep track of them and, thereafter, linking information
is lost.

Only the superuser may copy special files.

FILES
/bin/cpio

Executable file

SEE ALSO
ar(l), dd(l), find(l), ls(l), tar(l)

cpio(4) inA/UX Programmer's Reference

3 November 1991

cpp(l) cpp(l)

NAME
cpp - invokes the C language preprocessor

SYNOPSIS
cpp [-C] [-Dname[=dej]] [-Idir] [-P] [-Uname] [-M[prefix]] [-Y]
[ifile [ofile]]

ARGUMENTS
-c Passes along all comments except those found on cpp directive lines.

By default, cpp strips C-style comments.

- Dname[=def]
Defines name as if by a #define directive. Ifno =defis given,
name is defined as 1 .

-Idir
Searches for# include files (whose names do not begin with /)in
dir before looking in the directories on the standard list. When this
option is used, #inc 1 ude files whose names are enclosed in " "
(double quotes) are searched for first in the directory of the ifile
argument, then in directories named in - I options, and last in
directories on a standard list, which, at present, consists of
/usr/include. If the -Y option (see below) is specified, the
standard list is not searched. For #inc 1 ude files whose names are
enclosed in < >, the directory of the ifile argument is not searched,
unless - I . is specified.

- P Turns off the default production of line control information. Line
control information is used by the next pass of the C compiler to
generate useful error messages about the line on which an error
occurred. Line control lines have the form

#lineno file

where lineno is the line number within the file at which cpp found the
line. Line control information is useful because, as cpp reads each
#include file and writes its contents to a.file, synchronization
between the text lines in ifile and the text lines in ofile is lost. For
example, if the following ifile is compiled without line control
information

#include <stdio.h>

main()
{

x =) 2;

the C compiler will generate the following error message:

November 1991

cpp(l) cpp(l)

2

line 157: x undefined
line 157: syntax error

To the C compiler, having included stdio. h in ofile, line 157 is the
true line number at which the error occurred. With line control
information enabled, which is the default, cc can display the correct
line number as shown below:

-Uname

line 5: x undefined
"", line 5: syntax error

Removes any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. The list of
reserved symbols is shown below:

operating system:
unix

hardware:
m68k

UNIX® System variant:
_SYSV _SOURCE
_BSD_SOURCE
_AUX_SOURCE

-M[prefix]
Generates make dependency statements from the #inc 1 ude (see
below) statements contained in ifile. The dependency statements can
later be incorporated into a description file for use by make in
determining the #inc 1 ude files on which ifile depends. The
dependency statements are of the form:

target: includel [include2 ...]

where target is a name created by subsituting the suffix of ifile with
'. o.' For example, if the name of ifile is main. c, target will be
main. o. If prefix is present and the #inc 1 ude file in ifile is found
in the standard list, prefix is applied as shown below:

target: prefix/include] [prefixlinclude2 ...]

For example, if the source file main. c includes <stdio. h> and the
- M option is used, the following dependency statement is generated:

main.a: /usr/include/stdio.h

If - M ' $ (INC) ' is specified, the following dependency statement is
generated:

main.a: $(INC)/stdio.h

November 1991

cpp(l) cpp(l)

Only unique #inc 1 ude files are kept; duplicates are discarded. The
resulting ofile will contain only dependency statements. Error
messages are written on standard error. If cpp is invoked with the -M
option and ifile does not have a suffix, cpp exits with an error
message.

- Y Prevents cpp from searching the standard list, which at present
consists of /usr I include, when processing #include files. This
option is useful when used in conjunction with the - I option. When
cpp cannot find a #inc 1 ude file in the directories specified by one
or more - I options, its normal behavior is to search the standard list.
If the - Y option is used in addition to the - I option and cpp cannot
find a #inc 1 ude file in the directory specified by one or more - I
options, cpp writes an error message on standard error, does not
search the standard list, and continues processing. Thus, use of the - Y

option ensures that cpp does not silently include the wrong
#inc 1 ude file in cases where the - I option is incorrectly specified
or the desired #inc 1 ude file is erroneously missing from the
specified directory.

ifile [ofile]
Specifies the input file to be compiled (ifile) and the output file (ofile)
into which the results will be placed.

DESCRIPTION
cpp is the C language preprocessor that is invoked as the first pass of any
C compilation using the cc(l) command. The output of cpp is acceptable
as input to the next pass of the C compiler. As the C language evolves,
cpp and the rest of the C compilation package will be modified to follow
these changes. Therefore, the use of cpp other than in this framework is
not suggested. The preferred way to invoke cpp is through the cc(l)
command because the functionality of cpp may someday be moved
elsewhere. See m4(1) for a general macro processor.

The cpp command optionally accepts two filenames as arguments. The
input for the preprocessor is ifile, which is also known as the source file,
and the output is ofile. If not supplied, ifile and ofile default to standard
input and standard output, except in the case of the - M option, which
requires ifile to be present and have a suffix.

Two special names are understood by cpp. The name _LINE_ is
defined as the current line number (as a decimal integer) as known by cpp,
and _FILE_ is defined as the current filename (as a C string) as known
by cpp. They can be used anywhere, including in macros, just as any
other defined name.

November 1991 3

cpp(l) cpp(l)

4

All cpp directives start with lines begun by#. The directives are:

#define name token-string
Replaces subsequent instances of name with token-string.

#define name (arg, ... , arg) token-string
Replaces subsequent instances of name followed by a left parenthesis
[(] , a list of comma-separated tokens, and a right parenthesis [)] by
token-string where each occurrence of arg in the token-string is
replaced by the corresponding token in the comma-separated list.
Notice that there can be no space between name and the left
parenthesis [(] .

#undef name
Causes the definition of name, if any, to be undefined.

#include "filename"
#include <filename>

Includes at this point the contents of filename, which will then be run
through cpp. When the <filename> notation is used, filename is only
searched for in the standard places. See the - I option above for more
detail.

1 ine integer-constant ''filename"
Causes cpp to generate line-control information for the next pass of
the C compiler. The line number of the next line is integer-constant,
and filename is the file where it comes from. If "filename" is not
given, the current filename is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #if def, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name
Displays the lines following in the output if and only if name was the
subject of a previous #define without being the subject of an
intervening #unde f.

#ifndef name
Does not display the lines following in the output if and only if name
has been the subject of a previous #define without being the subject
of an intervening #unde f.

#if constant-expression
Displays the lines following in the output if and only if
constant-expression evaluates to nonzero. All binary nonassignment
C operators, the ? : operator, the unary -, ! , and - operators are legal
in constant-expression. The precedence of the operators is the same
as defined by the C language. There is also a unary operator

November 1991

cpp(1) cpp(l)

defined that can be used in constant-expression in these two forms:
defined (name) or defined name. This allows the utility of
#ifdef and #ifndef in an #if directive. Only these operators,
integer constants, and names that are known by cpp should be used in
constant-expression. In particular, the s i z ea f operator is not
available.

e 1 if constant-expression
Displays the lines following the output if and only if
constant-expression is true and the preceding
#if constant-expression with which the subject # e 1 if is paired is
false. The formation of constant-expression is subject to the
restrictions described for #if above.

#else
Reverses the notion of the test directive that matches this directive. If
lines previous to this directive are ignored, the lines following appear
in the output. If lines previous to this directive are not ignored, the
lines following do not appear in the output.

#ident ...
This directive is maintained for historical reasons, but does not cause
cpp to do any special processing nor to generate any output to ofile.

#pragma ...
Lines beginning with this directive are written to ofile without
modification.

The test directives and the possible # e 1 s e directives can be nested.

STATUS MESSAGES AND VALUES
The error and warning messages produced by cpp are self-explanatory and
are written to standard output. The line number and filename where the
error occurred are printed with the message. If ifile is a relative pathname,
cpp also prints the absolute path of ifile in the form:

ifile (absolute path) :message

NOTES
When newline characters were found in argument lists for macros to be
expanded, previous versions of cpp put out the newlines as they were
found and expanded. The current version of cpp replaces these newlines
with blanks to alleviate problems that the previous versions had when this
occurred.

FILES
/lib/cpp

Executable file

November 1991 5

cpp(l)

/usr/include
Executable file

SEE ALSO
cc(l), m4(1), make(I)

cpp(l)

"Other Programming Tools" inA/UX Programming Languages and Tools,
Volume 2

6 November 1991

crontab(l) crontab(l)

NAME
crontab- aids in the use of the cron process scheduling program

SYNOPSIS
crontab [file]

crontab -1

crontab -r

ARGUMENTS
file Specifies the file to be copied.

-1 Lists the crontab file for the invoking user.

-r Removes a user's crontab from the crontab directory.

DESCRIPTION
crontab is a utility that aids in the use of the cron process scheduling
program. A crontab file stipulates the timetable for regular process
scheduling. crontab copies the specified file, or standard input if no file
is specified, into a directory that holds all users' crontabs. If standard
input is used, an EOF (CONTROL-D by default in the A/UX standard
distribution) must be entered to terminate the processes.

You are permitted to use crontab if your name appears in the file
/usr /lib/ cron/ cron. allow. If that file does not exist, the file
/usr I 1 ib/ cron/ cron. deny is checked to determine if you should be
denied access to crontab. If neither file exists, only root is allowed to
submit a job. The al low/deny files consist of one username per line.

A crontab file consists of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that specify
the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values),
or a list of elements separated by commas. An element is either a number,
or two numbers separated by a minus sign (meaning an inclusive range).
Note that the specification of days may be made by two fields (day of the
month and day of the week). If both are specified as a list of elements, both
are adhered to.

For example,

0 0 1,15 * 1

November 1991 1

crontab(l) crontab(l)

would run a command on the first and fifteenth of each month, as well as
on every Monday. To specify days by only one field, the other field should
be set to * (for example,

0 0 * * 1

would run a command only on Mondays). Thus, a secondary meaning of
asterisk is "use the other field."

The sixth field of a line in a crontab file is a string that is executed by the
shell at the specified times. A percent character in this field (unless
escaped by \)is translated to a newline character. Only the first line (up to
a% or end-of-line) of the command field is executed by the shell. The
other strings following the percent character are made available to the
command as standard input. cron reads only one line at a time. For
example,

0 0 * * 1 cat %GO%HOME%EARLY%

would mail the output:

GO
HOME
EARLY

to the user at the requested time.

The shell is invoked from your $HOME directory with an argO of sh.
Users who desire to have their . prof i 1 e executed must do so explicitly
in the crontab file. cron supplies a default environment for every shell,
defining:

HOME
LOG NAME
SHELL(=/bin/sh)
PATH(=:/bin:/usr/bin:/usr/lbin)

Note: Users should remember to redirect the standard output and
standard error of their commands! If this is not done, any generated
output or errors will be mailed to the user (via mail(l)).

FILES

2

/usr/bin/crontab
Executable file

/usr/lib/crontab
Executable file

/usr/lib/cron
Executable file

/usr/spool/cron/crontabs
Executable file

November 1991

crontab(l)

/usr/lib/cron/log
Executable file

/usr/lib/cron/cron.allow
Executable file

/usr/lib/cron/cron.deny
Executable file

SEE ALSO
at(l), sh(l)

c ron(l M) in AIUX System Administrator's Reference

November 1991

crontab(l)

3

crypt(l) crypt(l)

NAME
crypt -encodes and decodes passwords

SYNOPSIS
crypt [password]

ARGUMENTS
password

Specifies the password to be encoded or decoded.

DESCRIPTION

1

crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no
password is given, crypt demands a key from the terminal and turns off
printing while the key is being typed in. The crypt command encrypts
and decrypts with the same key:

crypt key <clear > cypher
crypt key < cypher I pr

will print the clear text file, clear.

Files encrypted by crypt are compatible with those treated by both the
ed and ex editors in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible; sneak paths by which keys or clear text can become visible must
be minimized. The security of this scheme should not be relied on, for
reasons described herein.

The crypt command implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover, the amount
of work required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial fraction of a
second to compute. If keys are restricted to (for example) three lowercase
letters, however, encrypted files may be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially
visible to users executing ps(l) or a derivative. To minimize this
possibility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulnerable
aspect of crypt.

November 1991

crypt(l) crypt(!)

EXAMPLES
The command:

crypt asa < sleeper.c > zzz

will use the string asa as key to the encryption algorithm to encrypt the
contents of sleeper. c, and place the encrypted output in file zzz. The
file z z z at this point will be unreadable. Note that the original file,
sleeper. c, remains in readable form. To obtain a readable printout of
the file zzz, it could be decoded as follows:

crypt < zzz

After the response:

Enter key:

the user types in: asa.

LIMITATIONS
If output is piped to nroff and the encryption key is not given on the
command line, crypt may leave terminal modes in a strange state (see
stty(l)).

If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the
original files will be decrypted correctly.

NOTES
This utility is not provided with international distributions.

FILES
/bin/crypt

Executable file
/dev/tty

Terminal device file

SEE ALSO
ed(l), ex(l), makekey(l), st ty(l), vi(l)

crypt(3C) inA/UX Programmer's Reference

November 1991 2

csh(l) csh(l)

NAME
csh-runs the C shell, a command interpreter with C-like syntax

SYNOPSIS
csh[-c] [-e] [-f] [-i] [-n] [-s] [-t] [-v] [-V] [-x] [-X] [arg]. ..

ARGUMENTS
arg Specifies the program to run through the shell.

-c Reads commands from the (single) following argument, which must
be present. Any remaining arguments are placed in argv.

-e Exits the shell if any invoked command terminates abnormally or
yields a nonzero exit status.

- f Starts the shell faster because it will neither search for nor execute
commands from the file . cshrc in the invoker's home directory.

- i Causes the shell to be interactive and prompts for its top-level input,
even if it appears to not be a terminal. Shells are interactive without
this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This aids in syntactic
checking of shell scripts.

- s Takes the command input from the standard input.

- t Reads a single line of input and executes it. A \ may be used to
escape the newline at the end of this line and continue onto another
line.

-v Causes the verbose variable to be set, with the effect that command
input is echoed after history substitution.

-v Causes the verbose variable to be set even before . cshrc is
executed.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-X Causes the echo variable to be set even before . cshrc is executed.

DESCRIPTION

1

csh is a command language interpreter incorporating a history mechanism
(see "History Substitutions"), job control facilities (see "Jobs"), and a C­
like syntax. In order to use its job control facilities, users of c sh must
enable the generation of suspend characters with st t y(1).

November 1991

csh(l) csh(l)

An instance of csh begins by executing commands from the file . cshrc
in the home directory of the invoker. If this is a login shell, then it also
executes commands from the file . login (also in the home directory). It
is typical for users on CRT's to put the tset(l) command in their
. login file.

In the normal case, the shell will then begin reading commands from the
terminal, prompting with % . Processing of arguments and the use of the
shell to process files containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of words is
placed on the command history list and then parsed. Finally each
command in the current line is executed.

When a login shell terminates, it executes commands from the file
. logout in the user's home directory.

Lexical Structure
The shell splits input lines into words at blanks and tabs, with the following
exceptions. The characters &, I, ; , <, >, (, and) form separate words. If
doubled in&&, I I,<<, or>>, these pairs form single words. These parser
metacharacters may be made part of other words, or prevented their special
meaning, by preceding them with\. A newline preceded by a\ is
equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ' , ' , or " , form
parts of a word; metacharacters in these strings, including blanks and tabs,
do not form separate words. These quotations have semantics to be
described subsequently. Within pairs of ' or " characters, a newline
preceded by a \ gives a true newline character.

When the shell's input is not a terminal, the character# introduces a
comment that continues to the end of the input line. It is prevented this
special meaning when preceded by \ and when using ' , ' , and "
quotation.

Commands
A simple command is a sequence of words, the first of which specifies the
command to be executed. A simple command or a sequence of simple
commands separated by I characters forms a pipeline. The output of each
command in a pipeline is connected to the input of the next. Sequences of
pipelines may be separated by ; , and are then executed sequentially. A
sequence of pipelines may be executed without immediately waiting for it
to terminate by following it with an&.

November 1991 2

csh(l) csh(l)

Jobs

3

Any of the above may be placed in () to form a simple command (which
may be a component of a pipeline, and so forth). It is also possible to
separate pipelines with I I or&&, indicating, as in the C language, that the
second is to be executed only if the first fails or succeeds, respectively (see
"Expressions").

The shell associates a job with each pipeline. It keeps a table of current
jobs, printed by the jobs command, and assigns them small integer
numbers. When a job is started asynchronously with &, the shell prints a
line that looks like

[1] 1234

indicating that the job that was started asynchronously was job number 1
and had one (top-level) process, whose process ID was 1234.

If you are running a job and wish to do something else, you may hit the key
CONTROL-Z, which sends a stop signal to the current job. The shell will
then normally indicate that the job has been Stopped, and print another
prompt. You can then manipulate the state of this job, putting it in the
background with the bg command, or run some other commands and then
eventually bring the job back into the foreground with the foreground
command fg. A CONTROL-Z takes effect immediately and is like an
interrupt in that pending output and unread input are discarded when it is
typed. There is another special key, CONTROL-Y, which does not generate
a stop signal until a program attempts to read(2) it. This can usefully be
typed ahead when you have prepared some commands for a job that you
wish to stop after the program has read them.

A job being run in the background will stop if it tries to read from the
terminal. Background jobs are normally allowed to produce output, but
this can be disabled by giving the command "st ty tostop". If you set
this tty option, then background jobs will stop when they try to produce
output as they do when they try to read input.

There are several ways to refer to jobs in the shell. The character %
introduces a job name. If you wish to refer to job number 1, you can name
it as %1. Just naming a job brings it to the foreground; thus %1 is a
synonym for fg %1, bringing job 1 back into the foreground. Similarly,
saying % 1 & resumes job 1 in the background. Jobs can also be named by
prefixes of the string typed in to start them, if these prefixes are
unambiguous; thus %ex would normally restart a suspended ex(l) job, if
there were only one suspended job whose name began with the string ex.
It is also possible to say % ? string, which specifies a job whose text contains
string, if there is only one such job.

November 1991

csh(l) csh(l)

The shell maintains a notion of the current and previous jobs. In output
pertaining to jobs, the current job is marked with a + and the previous job
with a - . The abbreviation % + refers to the current job and % - refers to the
previous job. For close analogy with the syntax of the history
mechanism (described later), % % is also a synonym for the current job.

Status Reporting
This shell learns immediately whenever a process changes state. It
normally informs you whenever a job becomes blocked so that no further
progress is possible, but only just before it prints a prompt. This is done so
that it does not otherwise disturb your work. If, however, you set the shell
variable notify, the shell will notify you immediately of changes of
status in background jobs. There is also a shell command notify, which
marks a single process so that its status changes will be immediately
reported. By default, notify marks the current process; simply say
notify after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned
that

You have stopped jobs.

You may use the jobs command to see what they are. If you do this or
immediately try to exit again, the shell will not warn you a second time,
and the suspended jobs will be terminated.

Substitutions
In this section, various transformations that the shell performs on the input
are described, in the order in which they occur.

History Substitutions
History substitutions place words from previous command input in portions
of new commands, making it easy to repeat commands, repeat arguments
of a previous command in the current command, or fix spelling mistakes in
the previous command with little typing and a high degree of confidence.
History substitutions begin with the character ! and may begin anywhere in
the input stream (with the proviso that they do not nest). This ! may be
preceded by a \ to prevent its special meaning; for convenience, a ! is
passed unchanged when it is followed by a blank, tab, newline, =, or (.
(History substitutions also occur when an input line begins with A. This
special abbreviation will be described later.) Any input line that contains
history substitution is echoed on the terminal before it is executed as it
could have been typed without history substitution.

Commands input from the terminal that consist of one or more words are
saved on the history list. The history substitutions reintroduce sequences of
words from these saved commands into the input stream. The size of this
list is controlled by the history variable; the previous command is

November 1991 4

csh(l) csh(l)

5

always retained, regardless of its value. Commands are numbered
sequentially from 1.

For definiteness, consider the following output from the history
command

9 write zach
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be made
part of the prompt by placing an ! in the prompt string.

With the current event 13, we can refer to previous events by event number
! 11, relatively as in ! - 2 (referring to the same event), by a prefix of a
command word as in ! d for event 12 or ! wr i for event 9, or by a string
contained in a word in the command as in ! ? zach? also referring to event
9. These forms, without further modification, simply reintroduce the words
of the specified events, each separated by a single blank. As a special case
! ! refers to the previous command; thus ! ! alone is essentially a redo.

To select words from an event, we can follow the event specification by a :
and a designator for the desired words. The words of an input line are
numbered from 0, the first (usually the command) word being 0, the second
word (first argument) being 1, and so forth. The basic word designators are

0 first (command) word

n nth argument

first argument, that is, 1

$ last argument

% word matched by (immediately preceding) ?s? search

x-y range of words

-y abbreviates 0 -y

* abbreviates A - $, or nothing if only 1 word in event

x* abbreviates x- $

x- like x* but omitting word $

The : separating the event specification from the word designator can be
omitted if the argument selector begins with a A, $, *, - , or % • After the
optional word designator can be placed a sequence of modifiers, each
preceded by a : . The following modifiers are defined:

November 1991

csh(l) csh(l)

h Remove a trailing pathname component, leaving the head.

r Remove a trailing . xxx component, leaving the root name.

e Remove all but the extension . xxx part.

s I l Ir I Substitute l for r.

t Remove all leading pathname components, leaving the tail.

& Repeat the previous substitution.

g Apply the change globally, prefixing the above, for example
g&.

p Print the new command but do not execute it.

q Quote the substituted words, preventing further
substitutions.

x Like q, but break into words at blanks, tabs, and newlines.

Unless preceded by a g, the modification is applied only to the first
modifiable word. With substitutions, it is an error for no word to be
applicable.

The left side of substitutions are not regular expressions in the sense of the
editors, but rather strings. Any character may be used as the delimiter in
place of I; a \ quotes the delimiter into the l and r strings. The character &

on the right side is replaced by the text from the left. A \ quotes & also. A
null / uses the previous string either from an l or from a contextual scan
strings in ! ?s?. The trailing delimiter in the substitution may be omitted
if a newline follows immediately, as may the trailing ? in a contextual
scan.

A history reference may be given without an event specification, for
example ! $. In this case the reference is to the previous command unless a
previous history reference occurred on the same line, in which case this
form repeats the previous reference. Thus ! ? f oo? A ! $ gives the first
and last arguments from the command matching ? f oo?.

A special abbreviation of a history reference occurs when the first nonblank
character of an input line is a A. This is equivalent to ! : s A, providing a
convenient shorthand for substitutions on the text of the previous line.
Thus A lb A lib fixes the spelling of lib in the previous command.
Finally, a history substitution may be surrounded with { and } if necessary
to insulate it from the characters that follow. Thus, after 1 s -1 d -pa u 1
wemightdo ! {l}atodols -ld -paula,while !lawouldlookfora
command starting la.

November 1991 6

csh(l) csh(l)

7

Quotations with ' and "
The quotation of strings by ' and " can be used to prevent all or some of
the remaining substitutions. Strings enclosed in ' are prevented any
further interpretation. Strings enclosed in " may be expanded as described
later.

In both cases the resulting text becomes (all or part of) a single word; only
in one special case (see "Command Substitution") does a " quoted string
yield parts of more than one word; ' quoted strings never do.

Alias Substitution
The shell maintains a list of aliases, which can be established, displayed,
and modified by the alias and unalias commands. After a command
line is scanned, it is parsed into distinct commands and the first word of
each command, left-to-right, is checked to see if it has an alias. If it does,
then the text that is the alias for that command is reread with the history
mechanism available, as though that command were the previous input
line. The resulting words replace the command and argument list. If no
reference is made to the history list, then the argument list is left
unchanged.

Thus, if the alias for 1 s is 1 s -1, the command 1 s /usr would map to
1 s -1 I us r, the argument list here being undisturbed. Similarly if the
alias for lookup was grep ! ~ /etc/passwd, then lookup tim
wouldmaptogrep tim /etc/passwd.

If an alias is found, the word transformation of the input text is performed
and the aliasing process begins again on the reformed input line. Looping
is prevented if the first word of the new text is the same as the old by
flagging it to prevent further aliasing. Other loops are detected and cause
an error.

Note that the mechanism allows aliases to introduce parser metasyntax.
Thus, we can say

alias print 'pr \!* I lpr '

to make a command that uses pr to send its arguments to the line printer.

Variable Substitution
The shell maintains a set of variables, each of which has as value a list of
zero or more words. Some of these variables are set by or referred to by
the shell. For instance, the argv variable is an image of the shell's
argument list, and words of this variable's value are referred to in special
ways.

The values of variables may be displayed and changed by using the set
and unset commands. Of the variables referred to by the shell, a number
are toggles; the shell does not care what their value is, only whether they

November 1991

csh(l) csh(l)

are set or not. For instance, the verbose variable is a toggle that causes
command input to be echoed. The setting of this variable results from the
-v option.

Other operations treat variables numerically. The @ command permits
numeric calculations to be performed and the result assigned to a variable.
Variable values are, however, always represented as (zero or more) strings.
For the purposes of numeric operations, the null string is considered to be
zero, and the second and subsequent words of multi word values are
ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed, keyed by $ characters. This
expansion can be prevented by preceding the $ with a \ except within
double quotes where it always occurs, and within single quotes where it
never occurs. Strings quoted by ' are interpreted later (see "Command
Substitution"), so $ substitution does not occur there until later, if at all. A
$is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are
variable expanded separately. Otherwise, the command name and entire
argument list are expanded together. It is thus possible for the first
(command) word at this point to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in " or given the : q modifier, the results of variable
substitution may eventually be command and filename substituted. Within
" , a variable whose value consists of multiple words expands to a (portion
of) a single word, with the words of the variables value separated by
blanks. When the : q modifier is applied to a substitution, the variable will
expand to multiple words with each word separated by a blank and quoted
to prevent later command or filename substitution.

The following metasequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a variable
that is not set.

$name
${name}

Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following characters
that would otherwise be part of it. Shell variables have names
consisting of up to 18 letters and digits starting with a letter. The
underscore character is considered a letter.

If name is not a shell variable, but is set in the environment, then that
value is returned (but : modifiers and the other forms given later are

November 1991 8

csh(l) csh(l)

9

not available in this case).

$name[selector]
$ {name[selector]}

May be used to select only some of the words from the value of name.
The selector is subjected to $ substitution and may consist of a single
number or two numbers separated by a - . The first word of a
variables value is numbered 1. If the first number of a range is
omitted it defaults to 1. If the last member of a range is omitted it
defaults to $#name. The selector * selects all words. It is not an
error for a range to be empty if the second argument is omitted or in
range.

$#name
${#name}

Gives the number of words in the variable name. This is useful for
later use in a [selector].

$ 0 Substitutes the name of the file from which command input is being
read. An error occurs if the name is not known.

$number
${number}

Equivalent to $argv [number].

$ * Equivalent to $ argv [*] .
The modifiers : h, : t, : r, : q, and : x may be applied to the substitutions
above, as may : gh, : gt, and : gr. If braces {} appear in the command
form, then the modifiers must appear within the braces.

Note: The current implementation allows only one : modifier on
each $ expansion.

The following substitutions may not be modified with : modifiers.

$?name
$ {?name}

Substitutes the string 1 if name is set, 0 if it is not.

$?0
Substitutes 1 if the current input filename is known, 0 if it is not.

$ $ Substitutes the (decimal) process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further
interpretation thereafter. It can be used to read from the keyboard in a
shell script.

November 1991

csh(l) csh(l)

Command and Filename Substitution
The remaining substitutions, command and filename substitution, are
applied selectively to the arguments of built-in commands. This means that
portions of expressions that are not evaluated are not subjected to these
expansions. For commands that are not internal to the shell, the command
name is substituted separately from the argument list. This occurs very
late, after input-output redirection is performed, and in a child of the main
shell.

Command Substitution
Command substitution is indicated by a command enclosed in ' . The
output from such a command is normally broken into separate words at
blanks, tabs, and newlines, with null words being discarded; this text then
replacing the original string. Within ", only newlines force new words;
blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that
it is thus possible for a command substitution to yield only part of a word,
even if the command outputs a complete line.

Filename Substitution
If a word contains any of the characters *, ? , [, or { , or begins with the
character - , then that word is a candidate for filename substitution, also
known as globbing. This word is then regarded as a pattern and replaced
with an alphabetically sorted list of filenames that match the pattern. In a
list of words specifying filename substitution, it is an error if no pattern
matches an existing filename, but it is not required that each pattern match.
Only the metacharacters *, ? , and [imply pattern matching, the characters
- and { being more akin to abbreviations.

In matching filenames, the character . at the beginning of a filename or
immediately following a I, as well as the character I, must be matched
explicitly. The character *matches any string of characters, including the
null string. The character ? matches any single character. The sequence
[. . .] matches any one of the characters enclosed. Within [. . .], a pair
of characters separated by - matches any character lexically between the
two.

The character - at the beginning of a filename is used to refer to home
directories. Standing alone, that is, as - , it expands to the invokers home
directory as reflected in the value of the variable home. When followed by
a name consisting of letters, digits and - characters, the shell searches for a
user with that name and substitutes the home directory; thus -paul might
expand to /usr /paul and -paul I chmach to /usr /paul I chmach.
If the character - is followed by a character other than a letter or I appears,
but not at the beginning of a word, it is left undisturbed.

November 1991 10

csh(l) csh(l)

The metanotation a { b, c, d} e is shorthand for abe ace ade. Left to
right order is preserved, with results of matches being sorted separately at a
low level to preserve this order. This construct may be nested. Thus,

-source/sl/{oldls,ls}.c

expands to

/usr/source/sl/oldls.c /usr/source/sl/ls.c

(whether or not these files exist without any chance of error) if the home
directory for source is /usr I source. Similarly,

.. /{memo,*box}

might expand to

.. /memo .. /box .. /mbox

(Note that memo was not sorted with the results of matching *box.) As a
special case {, } , and { } are passed undisturbed.

Input/Output

11

The standard input and standard output of a command may be redirected
with the following syntax:

<name
Open file name (which is first variable, command, and filename
expanded) as the standard input.

<< word
Read the shell input up to a line that is identical to word. word is not
subjected to variable, filename, or command substitution, and each
input line is compared to word before any substitutions are done on
this input line. Unless a quoting \, ", ' , or ' appears in word,
variable and command substitution is performed on the intervening
lines, allowing\ to quote$, \,and '. Commands that are substituted
have all blanks, tabs, and newlines preserved, except for the final
newline that is dropped. The resultant text is placed in an anonymous
temporary file which is given to the command as standard input.

>name
> ! name
>& name
>&! name

The file name is used as standard output. If the file does not exist,
then it is created; if the file exists, it is truncated and its previous
contents are lost. If the variable noc lobber is set, then either the
file must not exist or be a character special file (for example, a
terminal or I dev /nul 1) or an error results. This helps prevent
accidental destruction of files. In this case, the ! forms can be used

November 1991

csh(l) csh(l)

and suppress this check. The forms involving & route the diagnostic
output as well as the standard output into the specified file. name is
expanded in the same way as < input filenames are.

>> name
>>& name
>> ! name
>>& ! name

Uses file name as standard output like>, but places output at the end
of the file. If the variable noc 1 obber is set, th~n it is an error for the
file not to exist unless one of the ! forms is given. Otherwise similar
to>.

A command receives the environment in which the shell was invoked as
modified by the input-output parameters and the presence of the command
in a pipeline. Thus, unlike some previous shells, commands that run from a
file of shell commands have no access to the text of the commands by
default; rather they receive the original standard input of the shell. The<<
mechanism should be used to present inline data. This permits shell
command scripts to function as components of pipelines and allows the
shell to block-read its input. Note that the default standard input for a
command run detached is not modified to be the empty file I dev I nu 11;
rather the standard input remains as the original standard input of the shell.
If this is a terminal and if the process attempts to read from the terminal,
then the process will block and the user will be notified (see "Jobs.")

Diagnostic output may be directed through a pipe with the standard output.
Simply use the form I & rather than just I .

Expressions
A number of the built-in commands (to be described subsequently) take
expressions, in which the operators are similar to those of C, with the same
precedence. These expressions appear in the@, exit, if, and while
commands. The following operators are available:

I I && I A & == ! = =- ! - <=
>= < > << >> + - * I % ! - ()

Here the precedence increases to the right with those on the same line
having equal precedence:

!= =- !­

<= >= < >
<< >>
+ -

* I %

The==, ! =, = - , and ! - operators compare their arguments as strings; all
others operate on numbers. The operators = - and ! - are like = = and ! =

November 1991 12

csh(l) csh(l)

except that the right side is a pattern (containing, for example, *, ? , and
instances of [. . .]) against which the left operand is matched. This
reduces the need for use of the switch statement in shell scripts when all
that is really needed is pattern matching.

Strings that begin with 0 are considered octal numbers. Null or missing
arguments are considered 0. The result of all expressions are strings,
which represent decimal numbers. It is important to note that no two
components of an expression can appear in the same word; except when
adjacent to components of expressions that are syntactically significant to
the parser

& I < > ()

they should be surrounded by spaces.

Also available in expressions as primitive operands are command
executions enclosed in { and } and file enquiries of the form -l name
where l is one of

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command- and filename-expanded and then tested to
see if it has the specified relationship to the real user. If the file does not
exist or is inaccessible, then all enquiries return false, that is 0. Command
executions succeed, returning true, that is 1, if the command exits with
status O; otherwise they fail, returning false, that is 0. If more detailed
status information is required then the command should be executed
outside of an expression and the variable status examined.

Control Flow

13

The shell contains a number of commands that can be used to regulate the
flow of control in command files (shell scripts) and (in limited but useful
ways) from terminal input. These commands all operate by forcing the
shell to reread or skip in its input and, due to the implementation, restrict
the placement of some of the commands.

The foreach, switch, and while statements, as well as the
i f-t hen-e 1 s e form of the if statement require that the major keywords
appear in a single simple command on an input line as shown later.

November 1991

csh(l) csh(l)

If the shell's input is not seekable, the shell buffers up input whenever a
loop is being read and performs seeks in this internal buffer to accomplish
the rereading implied by the loop. (To the extent that this allows,
backward got o's will succeed on nonseekable inputs.)

Built-in Commands
Built-in commands are executed within the shell. If a built-in command
occurs as any component of a pipeline except the last then it is executed in
a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for
name. The final form assigns the specified wordlist as the alias of
name; wordlist is command- and filename-substituted. name is not
allowed to be alias or unalias.

alloc

bg

Shows the amount of dynamic core in use, broken down into used and
free core, and the address of the last location in the heap. alloc
used with an argument shows each used and free block on the internal
dynamic memory chain indicating its address, size, and whether it is
used or free. This is a debugging command and may not work in
production versions of the shell; it requires a modified version of the
system memory allocator.

bg %job ...
Puts the current or specified jobs into the background, continuing them
if they were stopped.

break
Causes execution to resume after the end of the nearest enclosing
f o reach or whi 1 e. The remaining commands on the current line
are executed. Multilevel breaks are thus possible by writing them all
on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed later under switch.

cd
cd name
chdir
chdir name

Changes the shell's working directory to directory name. If no

November 1991 14

csh(l) csh(l)

15

argument is given, then change to the home directory of the user. If
name is not found as a subdirectory of the current directory (and does
not begin with I, . I, or .. I), then each component of the variable
c dpa th is checked to see if it has a subdirectory name. Finally, if all
else fails but name is a shell variable whose value begins with I, then
its value is tried to see if it is a directory.

continue
Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should
come after all case labels.

di rs
Prints the directory stack; the top of the stack is at the left, the first
directory in the stack being the current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shell's standard output,
separated by spaces and terminated with a newline unless the -n
option is specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and while
statements later in this section.

eval arg ...
The arguments are read as input to the shell (as in sh(l)) and the
resulting command(s) is executed in the context of the current shell.
This is usually used to execute commands generated as the result of
command or variable substitution, since parsing occurs before these
substitutions. See tset(l) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit
exit (expr)

fg

The shell exits either with the value of the stat us variable (first
form) or with the value of the specified expr (second form).

November 1991

csh(l) csh(l)

fg %job ...
Brings the current or specified jobs into the foreground, continuing
them if they were stopped.

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and
the sequence of commands between this command and the matching
end are executed. (Both foreach and end must appear singly on
separate lines.)

The built-in command continue may be used to continue the loop
prematurely and the built-in command break to terminate it
prematurely. When this command is read from the terminal, the loop
is read up once prompting with ? before any statements in the loop are
executed. If you make a mistake typing in a loop at the terminal, you
can interrupt it.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited
by null characters in the output. Useful for programs that wish to use
the shell to filename-expand a list of words.

goto word
The specified word is filename- and command-expanded to yield a
string of the form label. The shell rewinds its input as much as
possible and searches for a line of the form label: possibly preceded
by blanks or tabs. Execution continues after the specified line.

hashstat
Prints a statistics line indicating how effective the internal hash table
has been at locating commands (and avoiding any exec). An exec
is attempted for each component of the path where the hash function
indicates a possible hit, and in each component that does not begin
with a I.

history
history n
history -r n
history h n

Displays the history event list; if n is given, only the n most recent
events are printed. The - r option reverses the order of printout to be
most recent first rather than oldest first. The - h option causes the
history list to be printed without leading numbers and is used to
produce files suitable for sourcing using the -h option to source.

November 1991 16

csh(l) csh(l)

17

if (expr) command
If the specified expr evaluates true, then the single command with
arguments is executed. In the interactive shell, the if statement can
only accept one simple command after the expr and in the same line as
expr. Variable substitution on command happens early, at the same
time it does for the rest of the if command. The command must be a
simple command, not a pipeline, a command list, or a parenthesized
command list. Input/output redirection occurs even if expr is false,
when command is not executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true, then the first command is executed. In the
interactive shell, the if then statement can only accept one simple
command after then. This command must be specified on the same
line as then. If the specified expr2 is true, then the command to the
e 1 s e or e 1 s e if are executed, and so forth. Any number of e 1 s e
if pairs are possible; only one endif is needed. The else part is
likewise optional. (The words else and endif must appear at the
beginning of input lines; the if must appear alone on its input line or
after an else.)

jobs
jobs -1

Lists the active jobs; the -1 option lists process ID's in addition to the
normal information.

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill -1

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by
names (as given in /usr I include/ signal. h, stripped of the
prefix SIG). The signal names are listed by kill -1. There is no
default; just saying ki 11 does not send a signal to the current job. A
pid of 0 means the current process (that is, this invocation of the C
shell). Consequently, kill -9 0 terminates the current C shell and
possibly logs you off. If the signal being sent is TERM (terminate) or
HUP (hangup), then the job or process will be sent a CONT (continue)

November 1991

csh(l) csh(l)

signal as well.

login
Terminates a login shell, replacing it with an instance of
/bin/ login. This is one way to log off, included for compatibility
with sh(l).

logout
Terminates a login shell. Especially useful if ignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets
the nice to the given number. The final two forms run command at
priority 4 and number respectively. The superuser may specify
negative niceness by using

nice -number ...

Command is always executed in a subshell, and the restrictions placed
on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes the
specified command to be run with hangups ignored. All processes
detached with & are run effectively without hangups.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of
the current or specified jobs changes; normally notification is
presented before a prompt. This is automatic if the shell variable
notify is set.

onintr
onintr -
onintr label

Controls the action of the shell on interrupts. The first form restores
the default action of the shell on interrupts that are is to terminate shell
scripts or to return to the terminal command input level. The second
form onintr - causes all interrupts to be ignored. The final form
causes the shell to execute a goto label when an interrupt is
received or a child process terminates because it was interrupted.

November 1991 18

csh(l) csh(l)

19

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning and interrupts
continue to be ignored by the shell and all invoked commands.

po pd
popd +n

Pops the directory stack, returning to the new top directory. With the
argument +n, popd discards the nth entry in the stack. The elements
of the directory stack are numbered from 0 starting at the top.

pushd
pushd name
pushd +n

With no arguments, pushd exchanges the top two elements of the
directory stack. Given a name argument, pushd changes to the new
directory (like cd) and pushes the old current working directory (as in
csw) onto the directory stack. With a numeric argument, pushd
rotates the nth argument of the directory stack around to be the top
element and changes into it. The members of the directory stack are
numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the
pa th variable to be recomputed. This is needed if new commands
are added to directories in the path while you are logged in. This
should only be necessary if you add commands to one of your own
directories, or if a systems programmer changes the contents of one of
the system directories.

repeat count command

set

The specified command (which is subject to the same restrictions as
the command in the one line if statement above) is executed count
times. 1/0 redirections occur exactly once, even if count is 0.

set name
set name=word
set name [index] =word
set name= (wordlist)

The first form of the command shows the value of all shell variables.
Variables that have other than a single word as value print as a
parenthesized word list. The second form sets name to the null string.
The third form sets name to the single word. The fourth form sets the
index component of name to word; this component must already exist.
The final form sets name to the list of words in wordlist. In all cases
the value is command- and filename-expanded.

November 1991

csh(l) csh(l)

These arguments may be repeated to set multiple values in a single set
command. Note however, that variable expansion happens for all
arguments before any setting occurs.

setenv name value
Sets the value of the environment variable name to be value, a single
string. The most commonly used environment variables USER, TERM,
and PATH are automatically imported to and exported from the csh
variables user, term, and path; there is no need to use setenv
for these.

shift
shift variable

The members of argv are shifted to the left, discarding argv [1] . It
is an error for argv not to be set or to have less than one word as
value. The second form performs the same function on the specified
variable.

source name
source - h name

The shell reads commands from name. source commands may be
nested; if they are nested too deeply, the shell may run out of file
descriptors. An error in a source at any level terminates all nested
source commands. Normally, input during source commands is
not placed on the history list; the - h option causes the commands to
be placed in the history list without being executed.

stop %job ...
Stops the current or specified job that is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop
signal with CONTROL-Z. This is most often used to stop shells started
by su(l).

switch (string)
case strl:

breaksw

default:

breaksw
endsw

Each case label is successively matched against the specified string,
which is first command- and filename-expanded. The file
metacharacters *, ? , and [. . .] may be used in the case labels, that

November 1991 20

csh(l) csh(l)

21

are variable-expanded. If none of the labels match before a default
label is found, then the execution begins after the default label.
Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to
continue after the endsw; otherwise control may fall through case
labels and default labels as in C. Ifno label matches and there is
no default, execution continues after the endsw.

time
time command

With no argument, a summary of time used by this shell and its
children is printed. If arguments are given, the specified simple
command is timed and a time summary as described under the time
variable is printed. If necessary, an extra shell is created to print the
time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified
value (second form). The mask is given in octal. Common values for
the mask are 002, giving all access to the group and read and execute
access to others, or 022, giving all access except no write access for
users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded.
Thus all aliases are removed by una 1 i as *. It is not an error for
there to be nothing to unalias.

unhash
Use of the internal hash table to speed location of executed programs
is disabled.

unset pattern
All variables whose names match the specified pattern are removed.
Thus all variables are removed by unset *,which has noticeably
distasteful side-effects. It is not an error for nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from
the environment. See also the setenv command and printenv(l).

wait
All background jobs are waited for. If the shell is interactive, then an
interrupt can disrupt the wait, at which time the shell prints names and
job numbers of all jobs known to be outstanding.

while (expr)

November 1991

csh(l)

end

%job

csh(l)

While the specified expression evaluates nonzero, the commands
between the while and the matching end are evaluated. break and
continue may be used to terminate or continue the loop
prematurely. (The while and end must appear alone on their input
lines.) Prompting occurs here, the first time through the loop, as for
the foreach statement if the input is a terminal.

Brings the specified job into the foreground.

%job &

Continues the specified job in the background.

@

@ name=expr
@ name[index]=expr

The first form prints the values of all the shell variables. The second
form sets the specified name to the value of expr. If the expression
contains <, >, &, or I , then at least this part of the expression must be
placed within () . The third form assigns the value of expr to the
index argument of name. Both name and its index component must
already exist.

The operators *=,+=,and so forth, are available as in C. The space
separating the name from the assignment operator is optional. Spaces
are, however, mandatory in separating components of expr that would
otherwise be single words.

Special postfix + + and - - operators increment and decrement name
respectively; for example @ i + +.

Predefined and Environment Variables
The following variables have special meaning to the shell. Of these, argv,
cwd, home, path, prompt, shell, and status are always set by the
shell. Except for cwd and status, this setting occurs only at
initialization; these variables then will not be modified except explicitly by
the user.

This shell copies the environment variable USER into the variable user,
TERM into term, and HOME into home, and copies these back into the
environment whenever the normal shell variables are reset. The
environment variable PATH is likewise handled; it is not necessary to
worry about its setting other than in the file . cshrc, as inferior csh
processes will import the definition of path from the environment and re­
export it if you change it.

November 1991 22

csh(l)

23

argv

cdpath

cwd

echo

hist chars

history

home

ignoreeof

mail

csh(l)

Set to the arguments to the shell, it is from this variable
that positional parameters are substituted; that is, $1 is
replaced by $ argv [l J , and so forth.

Gives a list of alternate directories searched to find
subdirectories in chdir commands.

The full pathname of the current directory.

Set when the -x command line option is given. echo
causes each command and its arguments to be echoed
just before it is executed. For nonbuilt-in commands, all
expansions occur before echoing. Built-in commands
are echoed before command and filename substitution,
since these substitutions are then done selectively.

Can be given a string value to change the characters
used in history substitution. The first character of its
value is used as the history substitution character,
replacing the default character ! . The second character
of its value replaces the character A in quick
substitutions.

Can be given a numeric value to control the size of the
history list. Any command that has been referenced in
this many events will not be discarded. Values of
history that are too large may run the shell out of
memory. The last executed command is always saved
on the history list.

The home directory of the invoker, initialized from the
environment. The filename expansion of - refers to this
variable.

If set, the shell ignores end-of-file from input devices
that are terminals. This prevents shells from
accidentally being killed by CONTROL-D's.

The files where the shell checks for mail. This is done
after each command completion that will result in a
prompt, if a specified interval has elapsed. The shell
says

You have new mail

if the file exists with an access time not greater than its
modification time.

If the first word of the value of mai 1 is numeric, it
specifies a different mail checking interval, in seconds,

November 1991

csh(l)

no clobber

no glob

nonomatch

notify

path

prompt

savehist

November 1991

csh(l)

than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says

New mail in name

when there is mail in the file name.

As described in the section "Input/Output," restrictions
are placed on output redirection to ensure that files are
not accidentally destroyed and that > > redirections refer
to existing files.

If set, filename expansion is inhibited. This is most
useful in shell scripts that are not dealing with filenames,
or after a list of filenames has been obtained and further
expansions are not desirable.

If set, it is not an error if a filename expansion does not
match any existing files; rather the primitive pattern is
returned. It is still an error for the primitive pattern to be
malformed, that is, echo [still gives an error.

If set, the shell notifies asynchronously of job
completions. The default is to present job completions
just before printing a prompt.

Each word of the path variable specifies a directory in
which commands are to be sought for execution. A null
word specifies the current directory. If there is no pa th
variable, then only full pathnames will execute. The
usual search path is . , /bin, and /usr /bin, but this
may vary from system to system. For the superuser, the
default search path is I etc, /bin, and /usr /bin. A
shell that is given neither the - c nor the - t option will
normally hash the contents of the directories in the
path variable after reading . cshrc, and each time the
pa th variable is reset. If new commands are added to
these directories while the shell is active, it may be
necessary to give the rehash or the commands may not
be found.

The string that is printed before each command is read
from an interactive terminal input. If an ! appears in the
string, it will be replaced by the current event number
unless a preceding \ is given. Default is % or # for the
superuser.

a numeric value is given to control the number of entries
of the history list that are saved in - I . history when

24

csh(l)

shell

status

time

verbose

csh(l)

the user logs out. Any command that has been
referenced in that number of events will be saved.
During start up the shell sources - I . history into the
history list, enabling history to be saved across logins.
Values of savehist that are too large will slow down
the shell during start up.

The file in which the shell resides. This is used in
forking shells to interpret files that have execute bits set,
but which are not executable by the system. (See the
description of "Nonbuilt-in Command Execution"
later.) Initialized to the (system-dependent) home of the
shell.

The status returned by the last command. If it
terminated abnormally, then 0200 is added to the status.
Built-in commands that fail return exit status 1; all other
built-in commands set status 0.

Controls automatic timing of commands. If set, then any
command that takes more than this many cpu seconds
will cause a line to be printed when it terminates. This
line shows user, system, and real times and a utilization
percentage that is the ratio of user plus system times to
real time

Set by the -v option. Causes the words of each
command to be printed after history substitution.

Nonbuilt-in Command Execution

25

When a command to be executed is found to not be a built-in command,
the shell attempts to execute the command via execve(2). Each word in
the variable pa th names a directory from which the shell will attempt to
execute the command. If it is given neither a - c nor a - t option, the shell
will hash the names in these directories into an internal table so that it will
only try an exec in a directory if there is a possibility that the command
resides there. This greatly speeds command location when a large number
of directories are present in the search path. If this mechanism has been
turned off (via unhash), or if the shell was given a - c or -t argument
(and in any case for each directory component of pa th that does not begin
with a /),the shell concatenates with the given command name to form a
pathname of a file, which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus,

(cd ; pwd) ; pwd

prints the home directory, leaving you where you were (printing this after
the home directory), while

November 1991

csh(l) csh(l)

cd ; pwd

leaves you in the home directory. Parenthesized commands are most often
used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the
system, then it is assumed to be a file containing shell commands and a new
shell is spawned to read it.

If there is an alias for sh el 1, then the words of the alias will be
prefixed to the argument list to form the shell command. The first word of
the alias should be the full pathname of the shell (for example $shell).
Note that this is a special, late occurring, case of alias substitution, and
only allows words to be prefixed to the argument list without modification.

Argument List Processing
If argument 0 to the shell is - then this is a login shell.

After processing of arguments, if arguments remain but none of the - c,
-i, -s, or -t options were given, the first argument is taken as the name
of a file of commands to be executed. The shell opens this file and saves its
name for possible resubstitution by $ 0. Since many systems use the
standard Bourne shell (/bin/ sh), whose shell scripts are not compatible
with this shell, the shell will execute such a standard shell if the first
character of a script is not a #; that is, if the script does not start with a
comment. Remaining arguments initialize the variable argv.

Signal Handling
The shell normally ignores quit signals. Jobs running detached (either by
& or the bg or% ... & commands) are immune to signals generated from the
keyboard, including hangups. Other signals have the values that the shell
inherited from its parent. The shells handling of interrupts and terminate
signals in shell scripts can be controlled by onintr. Login shells catch
the terminate signal; otherwise this signal is passed on to children from
the state in the shell's parent. In no case are interrupts allowed when a
login shell is reading the file . logout.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument
lists to 10240 characters. The number of arguments to a command that
involves filename expansion is limited to l/6th the number of characters
allowed in an argument list. Command substitutions may substitute no
more characters than are allowed in an argument list. To detect looping,
the shell restricts the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it
started in if this is different from the current directory; this can be
misleading (that is, wrong) as the job may have changed directories
internally.

November 1991 26

csh(l) csh(l)

Shell built-in functions are not stoppable/restartable. Command sequences
of the form

a ; b ; c

are also not handled gracefully when stopping is attempted. If you suspend
b, the shell will then immediately execute c. This is especially noticeable if
this expansion results from an alias. It suffices to place the sequence of
commands in () to force it to a subshell.

(a ; b ; c)

Control over tty output after processes are started is primitive; perhaps this
will inspire someone to work on a good virtual terminal interface. In a
virtual terminal interface, much more interesting things could be done with
output control.

Alias substitution is most often used to simulate shell procedures; shell
procedures should be provided rather than aliases.

Commands within loops, prompted for by ? , are not placed in the
history list. Control structure should be parsed rather than recognized
as built-in commands, allowing control commands to be placed anywhere,
to be combined with I , and to be used with &, and ; metasyntax.

It should be possible to use the : modifiers on the output of command
substitutions. All and more than one : modifier should be allowed on $
substitutions.

Symbolic links fool the shell. In particular, di rs and

cd ..

don't work properly once you've crossed through a symbolic link.

FILES

27

/bin/csh
Executable file

-;.cshrc
File that is read at the beginning of execution by each shell

/etc/cshrc
Global file that is read by the login shell before - I. cshrc

-;.login
File that is read by the login shell after . cshrc at login.

-;.logout
File that is read by the login shell, at logout

/bin/sh
Standard shell file, for shell scripts not starting with a #.

/tmp/sh*
Temporary file for<<.

November 1991

csh(l)

/etc/passwd
Source of home directories for - name.

SEE ALSO
ksh(l), sh(l)

access(2), exec(2), fork(2), pipe(2), sigvec(2), umask(2),
wai t(2), killpg(3N), a. out(4), environ(5), tty(7) inA/UX
Programmer's Reference

"C Shell Reference" in A/UX Shells and Shell Programming

November 1991

csh(l)

28

csplit(l) csplit(l)

NAME
cs pl it - splits files into sections

SYNOPSIS
csplit [-f prefix] [-k] [-s]file argl [... argn]

ARGUMENTS
argl [... argn]

Specifies the sections that the file is split into. Replace arg I with the
first argument, and replace argn with the last argument.

-f prefix
Causes the created files to be named prefixO 0 ... prefixn. The default
is xxOO ... xxn.

file Specifies the file to be split. If the file argument is a - then standard
input is used.

- k Leaves previously created files intact. Normally removes created files
if an error occurs.

- s Suppresses the printing of all character counts. Normally prints the
character counts for each file created.

DESCRIPTION

1

cs p 1 it reads file and separates it into n+ 1 sections, defined by the
arguments arg 1... argn. By default, the sections are placed in files named
xxO 0 ... xxn (n may not be greater than 99). These sections get the
following pieces of file:

00: From the start of file up to (but not including) the line referenced
by argl.

01: From the line referenced by argl up to the line referenced by
arg2.

n+ 1: From the line referenced by argn to the end of file.

November 1991

csplit(l) csplit(l)

The arguments (argl ... argn) to cspli t can be a combination of the
following:

/rexp/
A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some number of
lines (e.g., /Page/-5).

%rexp%

lnno

This argument is the same as /rexp/, except that no file is created
for the section.

A file is to be created from the current line up to (but not
including) lnno. The current line becomes lnno.

{num}
Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument is
applied num more times. If it follows lnno, the file will be split
every lnno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions may
not contain embedded newlines. c sp 1 it does not affect the original file;
it is the user's responsibility to remove it.

EXAMPLES
The command:

csplit -f cabal file '/procedure
division/' /par5./ /parl6./

creates four files, cabal 0 0 . . . cabal 0 3. After editing the split files,
they can be recombined as follows:

cat cobol0[0-3] >file

Note that this example overwrites the original file.

csplit -k file 100 {99}

splits the file at every 100 lines, up to 10,000 lines. The - k option causes
the created files to be retained if there are less than 10,000 lines; however,
an error message would still be printed.

csplit -k prog.c '%main(%' 'r}!+l' {20}

assuming that prog. c follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a file

November 1991 2

csplit(l)

containing each separate C routine (up to 21) in prog. c.

STATUS MESSAGES AND VALUES
Self explanatory except for:

arg - out of range

csplit(l)

which means that the given argument did not reference a line between the
current position and the end of the file.

FILES
/usr/bin/csplit

Executable file

SEE ALSO
ed(l), fsplit(l), sh(l), split(l)

regexp(5) inA/UX Programmer's Reference

3 November 1991

ct(IC) ct(lC)

NAME
ct - runs login on a dial-up line

SYNOPSIS
ct [-cdevice-type] [-h] [-ldevice-name] [-sbaud-rate] [-v]
[-wtime-limit] [-xdebug-level] telephone-number ...

ARGUMENTS
- cdevice-type

Causes ct to use only those entries in the Devices file whose
device-type field matches the specified value. If you use this option,
you must also supply a device name by using the -1 option.

- h Prevents ct from hanging up the current line. If you use this option,
you cannot enter another command until ct is done.

- ldevice-name
Specifies the name of the device to use for establishing the connection.
If you do not use the - s option with the -1 option, ct uses the baud
rate of the first entry in the Devices file whose device-name field
matches the value of device-name. If the baud rate of the selected
entry is Any, the default baud rate, as specified by the
Default_Baudrate keyword in the Config file, is used. If you
use both the -1 and the -s options, ct searches the Devices file to
verify that specified baud rate is available.

- sbaud-rate
Sets the baud rate. The default is 2400.

telephone-number
Specifies the telephone number to dial. You can use numbers from 0
to 9, the minus sign (-), the equal sign (=), the asterisk (*), and the
number sign (#). Use an equal sign to wait for a secondary dial tone
and a minus sign to pause. The maximum length of telephone-number
is 31 characters. If you specify more than one telephone number, ct
tries each number in succession until one answers.

-v Specifies verbose mode. If you use this option, ct writes a lcog of its
actions on the standard error.

-wtime-limit
Specifies in minutes the time to wait for a free dialer before giving up.
The value of time-limit must be greater than 0.

-xdebug-level
Causes ct to write a detailed account of its actions on the standard
error. The value of debug-level must be a number from 0 to 9. Higher
numbers produce more detailed debugging information.

November 1991

ct(lC) ct(lC)

DESCRIPTION
ct dials a telephone number and runs login on the line if a connection is
established. The connection can be to a terminal or another computer. You
can use cron to run ct at a specified time, in which case, be sure to use
the -h option. If get ty is set up on the remote A/UX system to handle
both dial-in and dial-out connections, you can dial in to that system and run
ct, which drops your dial-in connection and calls you back.

EXAMPLES
Here is an example of using ct when you have used a dial-in connection to
log in to an A/UX system whose get ty is set up to handle both dial-in and
dial-out connections. First, run the tty command to find out the name of
the device that is being used for your current connection. Then run ct.

Here is a command that runs ct on t tyO at 2400 baud:

ct -lttyO -s2400 5551212

The ct command then displays this message:
Allocated ACU dialer device-name [this line] at baud-rate baud
Confirm hangup? (y/n)

If you enter n, ct exits and your prompt is returned. If you enter y, ct
drops the connection and calls you back, using the telephone number you
supplied on the ct command line, and presents the login prompt. When
you are ready to end the connection, log out; ct issues this prompt:

Reconnect?

If you want to reconnect, enter yes. If you want to disconnect, enter no.

FILES
/bin/ct

Executable file
/usr/lib/uucp/Config

File that specifies the value of UUCP configuration parameters
/usr/lib/uucp/Devices

File that describes the devices that can be used
/usr/spool/uucp/.Admin/ctlog

File that logs the use of ct on your system

SEE ALSO
login(l)

2

getty(lM) inA/UX System Administrator's Reference

Chapter 8, "Setting Up the UUCP System," in AJUX Network System
Administration

November 1991

ctags(l) ctags(l)

NAME
ctags - maintains a tags file for a C program

SYNOPSIS
ctags [-a] [-u] [-w] [-x]file ...

ARGUMENTS
- a Causes the output to be appended to the tags file instead of rewriting

it.

file Specifies the C program file to be tagged.

-u Causes the specified files to be updated in tags; that is, all references
to them are replaced by new values. (Beware: this option is
implemented in a way that is rather slow; it is usually faster to simply
rebuild the tags file.)

-w Suppresses warning diagnostics.

-x Produces a list of function names, the line number and file name on
which each is defined, as well as the text of that line and prints this on
the standard output.

DESCRIPTION
ctags makes a tags file for ex(l) and vi(l) from the specified C, Fortran,
and Pascal sources.

A tags file gives the locations of specified objects (in this case functions) in
a group of files. Each line of the tags file contains the function name, the
file in which it is defined, and a scanning pattern used to find the function
definition. These are given in separate fields on the line, separated by
blanks or tabs. Using the tags file, ex can quickly find these function
definitions.

Files whose name ends in . c or . h are assumed to be C source files and
are searched for C routine and macro definitions.

The tag main is treated specially in C programs. The tag formed is created
by prefixing M to the name of the file, with a trailing . c removed, if any,
and leading pathname components also removed. This makes use of
eta gs practical in directories with more than one program.

EXAMPLES
The command:

ctags *.c *.h

puts the tags from all the . c and . h files into the tagsfile tags.

November 1991

ctags(l) ctags(l)

LIMITATIONS
Not all warning diagnostics are suppressed by the -w option.

If ctags(l) is interrupted while executing under the -u option, a
temporary file named OTAGS is left in the current directory.

FILES
/usr/bin/ctags

Executable file
tags

Output tags file

SEE ALSO
ex(l), vi(l)

2 November 1991

ctrace(1) ctrace(l)

NAME
ct race - debugs a C program

SYNOPSIS
ctrace [-b] [-e] [-£functions] [-ln] [-o] [-p 's'] [-P] [-r.f] [-s]
[-tn] [-u] [-vfunctions] [-x] [file]

ARGUMENTS
- b Uses only basic functions in the trace code, that is, those in

ctype(3C), printf(3S), and string(3C). These are usually
available even in cross-compilers for microprocessors. In particular,
this option is needed when the traced program runs under an operating
system thalt does not have signal(3), fflush(3S), longjmp(3C),
or setjmp(3C).

- e Specifies the floating point format.

- £functions

-ln

Traces only these functions.

Checks n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

- o Specifies the octal format.

-p 's'
Changes the trace print function from the default of 'print f (' .
For example, 'fprintf (stderr' would send the trace to the
standard error output.

- P Runs the C preprocessor on the input before tracing it. You can also
use the -D, -I, and -u cc(l) preprocessor options.

- rf Uses file fin place of the runtime . c trace function package. This
lets you change the entire print function, instead of just the name and
leading arguments (see the -p option).

- s Suppresses redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused by
use of the == operator in place of the == operator.

-tn
Traces n variables per statement instead of the default of 10 (the
maximum number is 20). The "Status Messages and Values" section
explains when to use this option.

-u Specifies the unsigned format.

-vfunctions
Traces all but these

November 1991 1

ctrace(l) ctrace(l)

-x Specifies the hexadecimal format.

file Specifies the file to be debugged. If this argument is not given,
ct race will read the file from the standard input.

DESCRIPTION
ct race allows you to follow the execution of a C program, statement by
statement. The effect is similar to executing a shell procedure with the -x
option. The ct race command reads the C program infile (or from
standard input if you do not specify file), inserts statements to print the text
of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. You
must put the output of ct race into a temporary file because the cc(l)
command does not allow the use of a pipe. You then compile and execute
this file.

As each statement in the program executes, it will be listed at the terminal,
followed by the name and value of any variables referenced or modified in
the statement, followed by any output from the statement. Loops in the
trace output are detected and tracing is stopped until the loop is exited or a
different sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help you detect
infinite loops. The trace output goes to the standard output, so that you
may put it into a file for examination with an editor or the bf s (1) or
tail(l) commands.

You may want to print variables in other formats besides the default. Long
and pointer variables are always printed as signed integers. Pointers to
character arrays are also printed as strings if appropriate. char, short,
and int variables are also printed as signed integers and, if appropriate, as
characters. Double variables are printed as floating point numbers in
scientific notation.

EXAMPLES

2

If the file 1 c . c contains this C program:

1 #include <stdio.h>
2 main() /* count lines in input */
3 {
4
5
6
7
8
9

10
11

int C, nl;

nl = O;
while ((c getchar()) != EOF)

if (c = '\n')
++nl;

printf("%d\n", nl);

November 1991

ctrace(l) ctrace(l)

and you enter these commands and test data:

cc lc.c
a.out
1

the program will be compiled and executed. The output of the program
will be the number 2, which is not correct because there is only one line in
the test data. The error in this program is common, but subtle. If you
invoke ct race with these commands:

ctrace lc.c > temp.c
cc temp.c
a.out

the output will be:

2 main ()
6 nl = O;

/* nl == 0 */
7 while ((c = getchar()) != EOF)

The program is now waiting for input. If you enter the same test data as
before, the output will be:

/* c == 49 or 'l' */
8 if (c = '\n')

/* c 10 or '\n' */
9 ++nl;

/* nl == 1 */
7 while ((c = getchar ()) ! = EOF)

/* c == 10 or '\n' */
8 if (c = '\n')

/* c == 10 or '\n' */
9 ++nl;

/* nl == 2 */

7 /* repeating */

If you now enter an end-of-file character (CONTROL-d), the final output will
be:

/* c == -1 */
10 printf("%d\n", nl);

/* nl == 2 */2
/* return */

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ct race at the end of

November 1991 3

ctrace(l) ctrace(l)

the trace output. This shows the implicit return at the terminating brace in
the function.

The trace output shows that variable c is assigned the value "1" in line 7,
but in line 8 it has the value '' \ n''. Once your attention is drawn to this
if statement, you will probably realize that you used the assignment
operator (=) in place of the equal operator (= =). During code reading, it is
easy to miss this error.

Execution-time Trace Control
The default operation for ctrace is to trace the entire program file, unless
you use the - f or -v options to trace specific functions. This does not give
you statement by statement control of the tracing, nor does it let you turn
the tracing off and on when executing the traced program.

You can do both of these by adding ctroff and ctron function calls to
your program to turn the tracing off and on, respectively, at execution time.
Thus, you can code arbitrarily complex criteria for trace control with if
statements, and you can even conditionally include this code because
ct race defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE

#endif

if (c == 'l' && i > 1000)
ctron();

You can also call these functions from sdb(l) if you compile with the -g
option. For example, to trace all but lines 7 to 10 in the main function,
enter:

sdb a.out
main:7b ctroff()
main:llb ctron()
r

You can also turn the trace off and on by setting the static variable
tr_ct_ to 0 and 1, respectively. This is useful if you are using a
debugger that cannot call these functions directly.

STATUS MESSAGES AND VALUES
This section contains messages from both ct race and cc(l), since the
traced code often gets some cc warning messages. You can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Messages

4

Warning: some variables are not traced
Only 10 variables are traced in a statement to prevent the C compiler
"out of tree space; simplify expression" error. Use the -t option to
increase this number.

November 1991

ctrace(l) ctrace(l)

Warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

Cannot handle preprocessor code, use -P
This is usually caused by #if de f/lf endi f preprocessor statements
in the middle of a C statement, or by a semicolon at the end of a
#define preprocessor statement.

''if ... else if'' sequence too
Split the sequence by removing an E" 1 s e from the middle.

Possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate - D, - I, and - U preprocessor options. If you still get the
error message, check the WARNINGS section below.

cc Messages
Warning: floating point not implemented
Warning: illegal combination of pointer and
Warning: statement not reached
Warning: sizeof returns 0

Ignore these messages.

Compiler takes size of function
Seethe ctrace ''possible syntax error'' message
above.

yacc stack overflow
See the '' ctrace 'if ... else if' sequence message,
above.

Out of tree space; simplify expression
Use the - t option to reduce the number of traced variables per
statement from the default of 10. Ignore the ' 'ctrace: too
many variables to trace' ' warnings you will now get.

redeclaration of signal
Either correct this declaration of s i gna 1 (3), or remove it and
#include <signal.h>.

WARNINGS
You will get a ct race syntax error if you omit the semicolon at the end of
the last element declaration in a structure or union, just before the right
brace (}). This is optional in some C compilers.

Defining a function with the same name as a system function may cause a
syntax error if the number of arguments is changed. To fix this, just use a
different name.

November 1991 5

ctrace(l) ctrace(l)

The ctrace command assumes that BADMAG is a preprocessor macro,
and that EOF and NULL are #define d constants. Declaring any of these
to be variables, e.g., int EOF will cause a syntax error.

LIMITATIONS
The ct race command does not know about the components of aggregates
like structures, unions, and arrays. It cannot choose a format to print all the
components of an aggregate when an assignment is made to the entire
aggregate. The ct race command may choose to print the address of an
aggregate or use the wrong format (e.g., %e for a structure with two integer
members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a
multi-file program. This can result in functions called from a loop still
being traced, or the elimination of trace output from one function in a file
until another in the same file is called.

FILES
/usr/bin/ctrace

Executable file
/usr/lib/ctrace

Directory containing source files

SEE ALSO
sdb(l)

ctype(3C), fclose(3S), printf(3S), setjmp(3C), signal(3),
string(3C) inA!UX Programmer's Reference

6 November 1991

cu(IC) cu(IC)

NAME
cu - establishes an interactive connection with another system

SYNOPSIS
cu [-bbits] [-dhint] [-e] [-cdevice-type] [-o] [-sbaud-rate]
[-xdebug-level] - ldevice-name

cu [-bbits] [-dhint] [-e] [-cdevice-type] [-ldevice-name] [-o]
[-sbaud-rate] [-xdebug-level] telephone-number

cu [-bbits] [-dhint] [-e] [-cdevice-type] [-ldevice-name] [-o]
[-sbaud-rate] [-xdebug-level] system

ARGUMENTS
-bbits

Sets the bits per character. The value of bits can be 7 or 8. This option
allows communications between systems with different character
sizes. The default value of bits is the current character size set for
your local terminal. Use st ty -a to see the character-size setting.
This setting will be cs 7 or cs 8. If you set the bits per character to 8,
do not use the - e or - o option.

- cdevice-type
Causes cu to use only those entries in the Devices file whose
device-type field matches the value specified by device-type. If you
use this option, you must also supply a system argument or use the -1
option.

-d Causes a diagnostic trace to be displayed while the connection is open.
This option is equivalent to using -x9.

- e Designates that even parity is to be generated for data sent to the
remote system. If you use this option, the number of bits per character
must be 7.

-h Sets half-duplex mode. This option emulates the local echo
command in order to support calls to other computer systems that
expect terminals to be set to half-duplex mode.

- i Causes cu to ignore modem control signals.

- ldevice-name
Specifies the name of the device to use for establishing the connection.
This option overrides the default method used by cu to determine the
connection medium, as described in "Connection Phase" later in this
manual page. This option is especially useful when a serial cable
directly connects the remote system to your system. In this case, you
do not need to provide a system argument.

November 1991

cu(IC) cu(IC)

2

If you do not use the - s option with the -1 option, cu uses the baud
rate of the first entry in the Devices file whose device-name field
matches the value of device-name. If the baud rate of the selected
entry is Any, the default baud rate, as specified by the
Defaul t_Baudrate keyword in the Config file, is used.

If you use both the -1 and the -s options, cu searches the Devices
file to verify that specified baud rate is available. If the verification
succeeds, the connection is made at the requested baud rate;
otherwise, an error message is printed and the connection is not made.

-n Causes cu to prompt for the telephone-number argument. You should
use this option when you incorporate the cu command in a shell script
if you do not want to incorporate the telephone number in the script
for security reasons.

- o Designates that odd parity is to be generated for data sent to the
remote system. If you use this option, the number of bits per character
must be 7.

- sbaud-rate
Specifies the baud rate; 300, 1200, 2400, 4800, and 9600 are common
values. See termio(7) for a list of valid baud rates. The default
value depends on the order of entries in the Devices file.

- t Causes cu to dial a terminal that has been set to answer automatically.
Appropriate mapping of carriage returns to carriage-return-line-feed
pairs is set.

system
Specifies the name of a system. When you supply a system argument,
cu checks the Systems file for an entry whose first field matches the
value of system and uses the third field of the matching entry to
determine the connection medium. To override this method, use the
- c option. To see a list of systems to which your computer is
configured to connect, use the uuname command.

telephone-number
Specifies the telephone number to dial. The value of
telephone-number can consist of the digits 0 to 9, the asterisk(*), the
number sign (#), the equal sign (=), and the minus sign (-). Use the
equal sign to wait for a secondary dial tone, and the minus sign to
pause for approximately 4 seconds.

-xdebug-level
Writes debugging information on standard output. The value of
debug-level is a number from 0 to 9. Higher numbers produce more
detailed debugging information.

November 1991

cu(lC) cu(lC)

DESCRIPTION
cu establishes an interactive connection with another A/UX system,
another UNIX® system, or a non-UNIX system. Once connected, you can
also use cu to transfer files.

You can think of cu as operating in two phases. The first phase is the
connection phase, in which the connection is established. The second
phase is the interactive phase, which cu enters when the connection is
established.

Connection Phase
The cu command uses the Devices and Systems files, which are also
used by the uucico command, to establish the connection to another
system. The ct command also uses the Devices file. For cu to work,
your system administrator must set up these files in view of the connection
media that are available for your system.

The Devices file specifies the medium by which a connection is made to
the remote system. The medium can be a direct serial connection or an
asynchronous modem and a telephone line.

The Systems file contains information about how to connect to a remote
system.

By default, cu assumes that if a telephone-number argument appears on
the command line, it should examine the Devices file to find the first
entry that begins with the keyword ACU and use the device that is
associated with that entry if available. If the device is not available, cu
searches the remainder of that file, looking for an ACU entry with an
available device. You can override this default search mechanism by using
the -1 option.

By default, cu assumes that if a system argument appears on the command
line, it should examine the Systems file for an entry whose first field
matches the value of system. If cu finds a match, it uses the information in
the entry to determine the medium (direct serial connection or autodialing
modem) to use to make the connection. You can override this default
search mechanism by using the -1 option.

Conversation Phase
Once the connection is made, cu runs as two processes: a ''transmit''
process that reads data from the standard input and, except for lines
beginning with a tilde C), passes the data to the remote system and a
"receive" process that accepts data from the remote system and, except for
lines beginning with - , passes the data to the standard output. By default,
cu uses CONTROL-S and CONTROL-Q to control input from the remote to
prevent buffer overrun.

November 1991 3

cu(lC) cu(lC)

4

The cu transmit process interprets user-initiated lines that begin with - as
special commands. Here are the available commands:

Terminates the connection.

- ! Starts an interactive shell on the local system.

-!cmd ...
Runs the commands specified by cmd on the local system, using sh
-c. Note that - ! cd causes the command to be run by a subshell,
which is probably not what was intended. See the description of -%cd
later in this list, for an alternative.

-$cmd ...
Runs the command specified by cmd on the local system and sends its
output to the remote system.

-%cd directory
Changes your current working directory on the local system.

-%takefrom [to]
Copies the file on the remote system specified by from to the file
specified by to on the local system. If to is omitted, the name of the
file on the remote system is used as the name of the copied file on the
local system.

-%put from [to]
Copies the file on the local system specified by from to the file
specified by to on the remote system. If to is omitted, the name of the
file on the local system is used as the name of the copied file.

- -zine
Sends the line - zine to the remote system.

-%bits number
Changes the number of bits per character to the value specified by
number. The value of number can be 7 or 8.

-%break
Transmits a break character to the remote system. The short name of
this command is - %b.

-%debug
Toggles the -d option on and off. The short name of this command is
""'%d.

-%even
Changes the parity to even parity.

-h Displays a list of the cu special commands.

November 1991

cu(lC) cu(IC)

-%none
Disables parity generation and checking.

-%odd
Changes the parity to odd parity.

-% speedbaud-rate
Changes the baud rate to the value specified by baud-rate, such as, for
example, 4800.

-t Prints the values of the terrnio structure for your terminal. This
option is useful when you are having problems connecting to a certain
computer or using a certain modem.

-1 Prints the values of the t errni o structure for the communication line
that cu is using. This option is useful when you are debugging.

-%ifc
Toggles the input flow-control setting. When this command is
enabled, which is the default, the local system controls input from the
remote system by using the CONTROL-S and CONTROL-Q flow-control
protocol. The flow-control protocol is useful only if the remote system
also uses the protocol. Another name for this command is -%nostop.

-%ofc
Toggles the output flow-control setting. When this command is
enabled, the remote system can control output from the local system
by using the CONTROL-S and CONTROL-Q flow-control protocol. This
option is useful only if the remote system also uses the protocol.
Another name for this command is %noostop.

-%divert
Toggles the setting for allowing or disallowing diversions that are not
specified by the -%take command.

-%old
Toggles the setting for allowing or disallowing old-style syntax for
received diversions.

The ''receive'' process normally copies data from the remote system to the
standard output of the local system. It can also direct the output to local
files.

The -%put command requires the presence of the stty and cat
commands on the remote side, which limits the use of - %put to
connections with other UNIX systems. The - %put command also
requires that the erase and cancel characters on the remote system be
identical to these characters on the local system. See st t y(1) for details.
The - %put command inserts backslashes at appropriate places.

November 1991 5

cu(lC) cu(lC)

The -%take command requires the presence of echo and cat on the
remote system, which limits the use of -%take to connections with other
UNIX systems. To copy files without expanding tabs to spaces, use the
st t y command on the remote system to tum on the tabs mode.

When you use cu on your local system X to connect to system Y and then
use cu on system Y to connect to system z, you can run commands on
system Y by using - - . To remind yourself of which system the command
is being run on, use the uname command. For example, uname can be
run on systems x, Y, and z as follows:

uname

System z replies with z. You then type

-!uname

Your local system, X, replies with X. You then type

--!uname

System Y replies with Y. In general, the absence of a tilde causes the
command to be run on the system that you most recently logged in to. A
single tilde causes the command to be run on your local system. Two or
more tildes cause the command to be run on the next system in the chain.

EXAMPLES

6

This command dials a system whose telephone number is 9 1 2015551234
on a telephone system where a dial tone is expected after the 9, using a
baud rate of 1200:

cu -s1200 9=12015551234

If you do not specify the - s option, cu uses the baud rate specified in the
first entry in the Devices file that begins with ACU.

This command connects to a system by using a serial cable attached to
I dev /ttyO on the local system:

cu -1/dev/ttyO

You can also specify the argument to the -1 option as tty 0.

This command specifies a baud rate and a device:

cu -s1200 -lttyOO

This command connects to a system by using a specific device that is
connected to an autodialing modem:

cu -1/dev/ttyO 9=12015551234

On a Macintosh running A/UX, the argument to the -1 option can also be
I dev /modem or modem.

November 1991

cu(IC) cu(IC)

This command connects to a system named walrus, which, depending on
the walrus entry in the Systems file, can be reached by a direct
connection or an autodialing modem.

cu walrus

STATUS MESSAGES AND VALUES
To indicate a normal termination condition, cu exits with O; to indicate an
error condition, cu exits with 1.

LIMITATIONS
The cu command does not do any integrity checking on the data it
transfers. See uucp(lC) and rcp(lC) for transfer programs that perform
integrity checking.

Data containing special cu characters, such as a tilde, may not transmit
properly.

The -%put and -%take commands do not dependably transmit
nonprinting characters.

A cu connection between some modems does not display the login prompt
immediately upon connection. Pressing RETURN causes the prompt to be
displayed.

The -%put and -%take commands cannot be used over a chain of three
or more systems. You must move the files one system at a time.

During file transmissions using the - %put command, cu artificially slows
transmission to reduce the risk of data loss.

Any file transferred with -%take or -%put must contain a trailing
newline character; otherwise, the transfer is suspended. Pressing
CONTROL-D usually clears the condition.

FILES
/usr/bin/cu

Executable file
/usr/lib/uucp

Directory of uucp commands and configuration files
/usr/lib/uucp/Devices

File containing configuration information for devices
/usr I lib/uucp/file

File used exclusively by cu or uucico, as specified by the
Sys f i 1 es file, containing configuration information for remote
systems

/usr/lib/uucp/Sysfiles
Optional file specifying that cu or uucico is to use a file other than
the default file, Systems, to get configuration information for remote

November 1991 7

cu(lC) cu(lC)

systems
/usr/lib/uucp/Systems

File containing configuration information for remote systems
/usr/spool/locks/*

Directory of lock files, which are used to indicate that a serial device
is in use.

SEE ALSO

8

cat(l), echo(l), stty(l), uname(l), uucp(lC), uuname(lC)

Chapter 8, "Setting Up the UUCP System," in AJUX Network System
Administration

November 1991

cut(l) cut(l)

NAME
cut - cuts out selected fields of each line of a file

SYNOPSIS
cut -clist [-s] [file] ...

cut -flist[-d char] [-s] [file] ...

ARGUMENTS
-clist

Specifies character positions (e.g., - c 1- 7 2 would pass the first 72
characters of each line). list is a comma-separated list of integer field
numbers (in increasing order), with optional - to indicate ranges as in
the -o option of nroff/troff for page ranges; e.g., 1, 4, 7;
1-3, 8; -5, 10 (short for 1-5, 1 O); or 3- (short for third through
last field).

-d char
Specifies the field delimiter. Used with the - f option only. The
default is tab. Space or other characters with special meaning to the
shell must be quoted.

file Specifies the file to be affected. If no files are given, the standard
input is used.

- flist
Specifies a list of fields assumed to be separated in the file by a
delimiter character (see -d); e.g., - fl, 7 copies the first and seventh
fields only. Lines with no field delimiters will be passed through
intact (useful for table subheadings), unless the - s option is specified.
list is a comma-separated list of integer field numbers (in increasing
order), with optional - to indicate ranges as in the -o option of
nroff/troff for page ranges; e.g., 1, 4, 7; 1-3, 8; -5, 10 (short
for 1-5, 1 O); or 3- (short for third through last field).

- s Suppresses lines with no delimiter characters in case of - f option.
Unless specified, lines with no delimiters will be passed through
untouched.

DESCRIPTION
cut cuts out columns from a table or fields from each line of a file; in
database parlance, it implements the projection of a relation. The cut
command may be used as a filter.

The fields as specified by list in the - c and - f options may be fixed length,
i.e., character positions as on a punched card (-c option) or the length may
vary from line to line and be marked with a field delimiter character like
TAB (-f option).

November 1991

cut(l) cut(l)

Use grep(l) to make horizontal cuts (by context) through a file, or
paste(l) to put files together column-wise (i.e., horizontally). To reorder
columns in a table, use cut and paste.

EXAMPLES
Use the command for:

cut -d: -fl,5 /etc/passwd

mapping user IDs to names.

Use the command:

name='who am i I cut -fl -d" "'

to set name to current login name.

STATUS MESSAGES AND VALUES
Line too long

A line can have no more than 1023 characters or fields.

Bad list for c If option
Missing the - c or - f option or incorrectly specified list. No error
occurs if a line has fewer fields than the list calls for.

No fields
The list is empty.

FILES
/usr/bin/cut

Executable file

SEE ALSO
awk(l), colrm(l), grep(l), paste(l), sed(l)

2 November 1991

cw(l) cw(l)

NAME
cw, checkcw-prepare constant-width text for otroff

SYNOPSIS
cw[-d] [-fn] [-lxx] [-rxx] [-t] [+t] [file] ...

checkcw [- lxx] [-rxx] file ...

ARGUMENTS
- d Prints current option settings on file descriptor 2 in the form of

otroff(l) comment lines. This option is meant for debugging.

-fn
The CW font is mounted in font position n; acceptable values for n are
1, 2, and 3 (default is 3, replacing the bold font). This option is only
useful at the beginning of a document.

-lxx
Specifies the one- or two-character string xx to be the left delimiter; if
xx is omitted, the left delimiter becomes undefined, which it is
initially. The left and right delimiters may (but need not) be different.

-rxx
Specifies the one- or two-character string xx to be the right delimiter;
if xx is omitted, the right delimiter becomes undefined, which it is
initially. The left and right delimiters may (but need not) be different.

- t Tums transparent mode off

+ t Tums transparent mode on (this is the initial default).

file Specifies the file to be processed. The cw command reads the
standard input when no files are specified (or when - is specified as
the last argument), so it can be used as a filter.

DESCRIPTION
cw is a preprocessor for otroff(l) input files that contain text to be
typeset in the constant-width (CW) font.

Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs and of
computer output in user manuals, programming texts, etc. (An earlier
version of this font was used in typesetting The C Programming La,nguage
by B. W. Kernighan and D. M. Ritchie.) It has been designed to be quite
distinctive (but not overly obtrusive) when used together with the Times
Roman font.

November 1991

cw(l) cw(l)

2

Because the CW font contains a nonstandard set of characters and because
text typeset with it requires different character and interword spacing than
is used for standard fonts, documents that use the CW font must be
preprocessed by cw.

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
! $ %& () , '* +@. , I: ; =? [J I - - A~"<> {} # \

plus nine non-ASCII characters represented by four-character otroff(l)
names (in some cases attaching these names to nonstandard graphics):

character symbol otroff name
Cents sign ¢ \(ct

EBCDIC not sign ---., \(no
Left arrow f- \(<-

Right arrow ~ \(->
Down arrow -1. \(da

Vertical single quote \(fm
Control-shift indicator t \(dg
Visible space indicator D \(sq

Hyphen \(hy

The hyphen is a synonym for the unadorned minus sign (-). Certain
versions of cw recognize two additional names: \ (ua for an up arrow and
\ (lh for a diagonal left-up (home) arrow.

cw recognizes five request lines, as well as user-defined delimiters. The
request lines look like otroff(l) macro requests, and are copied in their
entirety by cw onto its output; thus, they can be defined ''by the user'' as
otroff(l) macros; in fact, the . CW and . CN macros should be so defined
(see HINTS below). The five requests are:

.cw

. CN

. CD

Start of text to be set in the CW font; . cw causes a break; it can take
precisely the same options, in precisely the same format, as are
available on the cw command line .

End of text to be set in the CW font; . CN causes a break; it can take
the same options as are available on the cw command line .

Change delimiters and/or settings of other options; takes the same
options as are available on the cw command line.

November 1991

cw(l) cw(l)

. CP argl arg2 arg3 ... argn
All the arguments that are delimited like otroff(l) macro arguments
are concatenated, with the odd-numbered arguments set in the CW
font and the even-numbered ones in the prevailing font.

. PC argl arg2 arg3 ... argn
Same as . CP, except that the even-numbered arguments are set in the
CW font and the odd-numbered ones in the prevailing font.

The . CW and . CN requests are meant to bracket text (e.g., a program
fragment) that is to be typeset in the CW font as is. Normally, cw operates
in the ''transparent'' mode. In that mode, except for the . CD request and
the nine special four-character names listed in the table preceding, every
character between . CW and . CN request lines stands for itself. In
particular, cw arranges for periods (.) and apostrophes (') at the beginning
of lines, and backslashes(\) everywhere to be hidden from otroff(l).
The transparent mode can be turned off (see below), in which case normal
otroff(l) rules apply; in particular, lines that begin with . and ' are
passed through untouched (except if they contain delimiters). In either
case, cw hides the effect of the font changes generated by the . cw and
• CN requests; cw also defeats all ligatures (f i, ff, etc.) in the CW font.

The only purpose of the . CD request is to allow the changing of various
options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters perform
the same function as the . CW/. CN requests; they are meant, however, to
enclose CW words or phrases in running text (see example under
LIMITATIONS below). cw treats text between delimiters in the same
manner as text enclosed by . CW/. CN pairs, except that, for aesthetic
reasons, spaces and backspaces inside . CW/. CN pairs have the same width
as other CW characters, while spaces and backspaces between delimiters
are half as wide, so they have the same width as spaces in the prevailing
text (but are not adjustable). Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside . CW/ • CN pairs.

Typical usage for the cw command is:

cw files I otroff ...

checkcw checks that left and right delimiters, as well as the . CW/. CN
pairs, are properly balanced. It prints out all offending lines.

Typical definitions of the . cw and . CN macros meant to be used with the
nun(l) macro package:

.de CW

.DS I

.ps 9

November 1991 3

cw(l) cw(l)

.vs 10.Sp

. ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

. de CN

.ta 0.5i li l.5i 2i 2.5i 3i 3.5i 4i 4.5i Si 5.5i 6i

.vs

.ps

.DE

At the very least, the . CW macro should invoke the otroff(l) no-fill
(. nf) mode.

When set in running text, the CW font is meant to be set in the same point
size as the rest of the text. In displayed matter, on the other hand, it can
often be profitably set one point smaller than the prevailing point size (the
displayed definitions of . cw and . CN above are one point smaller than the
running text on this page). The CW font is sized so that when it is set in 9-
point there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations.
If this is the case, the order of preprocessing should be: cw, tbl, and eqn.
Usually, the tables contained in such documents will not contain any CW
text, although it is entirely possible to have elements of the table set in the
CW font; of course, care must be taken that tbl(l) format information not
be modified by cw. Attempts to set equations in the CW font are not likely
to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces:
letting f- represent a backspace, df-f-t yields cit. Because spaces (and,
therefore backspaces) are half as wide between delimiters as inside
. CW/. CN pairs (see above), two backspaces are required for each
overstrike between delimiters.

EXAMPLES
The command:

cw text I tbl I otroff -mm

processes the text file text, sends the output to tbl(l), and then sends the
output for final formatting to otrof f(l) and mrn(l).

WARNINGS

4

If text preprocessed by cw is to make any sense, it must be set on a
typesetter equipped with the CW font or on a STARE facility; on the latter,
the CW font appears as bold, but with the proper CW spacing.

Do not use periods (.),backslashes (\), or double quotes (") as delimiters, or
as arguments to . CP and . PC.

November 1991

cw(l) cw(l)

Do not use cw with nroff, since nroff already makes everything
constant-width.

LIMITATIONS
Certain CW characters don't concatenate gracefully with certain Roman
characters, for example, a CW ampersand(&) followed by a Roman
comma(,). In such cases, judicious use of otroff(l) half- and quarter­
spaces (\I and \A) is most salutary; for example, one should use_&_\ A
(rather than just plain_&_) to obtain & (assuming that_ is used for both
delimiters).

The output of cw is hard to read. See also LIMITATIONS under
otroff(l).

FILES
/bin/cw

Executable file
/usr/lib/font/ftCW

Font file

SEE ALSO
eqn(l), rnmt(l), tbl(l), troff(l)

rnm(5), mv(5) inA/UX Programmer's Reference

"Other Text Processing Tools" in AIUX Text Processing Tools

November 1991 5

cxref(l) cxref(l)

NAME
cxref - generates a C program cross-reference

SYNOPSIS
cxref [-c] [-o file] [-s] [-t] [-w[num]]file ...

ARGUMENTS
- c Prints a combined cross-reference of all input files.

file Specifies the file from which a cross-reference is to be generated.

-o file
Directs output to named.file.

- s Operates silently; does not print input filenames.

- t Formats listing for 80-column width.

-w[num]
Specifies the width option that formats output no wider than num
(decimal) columns. This option will default to 80 if num is not
specified or is less than 51.

DESCRIPTION
cxref analyzes a collection of C files and attempts to build a cross­
reference table. The cxref command utilizes a special version of cpp to
include information from #define statements in its symbol table. It
produces a separate listing on standard output of all symbols (auto, static,
and global) in each file, or with the -c option, of all symbols in
combination. Each symbol contains an asterisk (*) before the declaring
reference.

The - D, - I, and - u options are identical to the corresponding options in
cc(l).

LIMITATIONS

1

The cxref command considers a formal argument in a #define macro
definition to be a declaration of that symbol. For example, a program that
contains the line

#include <ctype.h>

will contain many declarations of the variable c.

When using the - o option, the space between the - o and the file argument
is critical. If you omit the space, as in

cxref -otest test.c

then the input file test . c will be destroyed.

November 1991

cxref(l) cxref(l)

STATUS MESSAGES AND VALUES
Error messages are unusually cryptic, but usually mean that you can't
compile these files anyway.

FILES
/usr/bin/cxref

Executable file
/usr /lib/xpass

File that parses the input file
/usr /lib/xcpp

File containing a special version of C-preprocessor

SEE ALSO
cc(l)

November 1991 2

daps(l) daps(l)

NAME
daps
processor

invokes the Autologic APS-5 phototypesetter troff post-

SYNOPSIS
daps [-b] [-hstring] [-olist] [-r] [-sn] [-t] [-w] [file]. ..

ARGUMENTS
- b Reports whether the phototypesetter is busy; does not print output.

file Specifies the file to be printed. If you do not specify a file, the
standard input is printed. The specified files that you submit to daps
should be prepared under the -Taps option of troff.

-hstring
Prints string in this job's header. The header appears on a page
preceding the output.

-olist
Prints pages whose numbers are given in the list. The list contains
single numbers n and ranges nl-n2. A missing nl means the lowest
numbered page, a missing n2 means the highest.

-r Reports the number of I I-inch pages generated by this job. The
daps command continues when you push the PROCEED button on
the phototypesetter.

-sn
Stops after every n pages of output.

- t Directs output to the standard output instead of the phototypesetter.

-w Waits for phototypesetter to become free, then prints the output.

DESCRIPTION
daps prints files created by troff(I) on an Autologic APS-5
phototypesetter.

LIMITATIONS
Installations with an Autologic APS-5 phototypesetter should be aware that
getting a good match to their Autologic fonts will almost certainly require
hand-tuning of the distributed font description files (see the "Files"
section).

FILES
/usr/bin/daps

Executable file
/dev/aps

APS-5 phototypesetter device
/usr/lib/font/devaps/*

Description files for APS-5

November 199I

daps(l) daps(l)

SEE ALSO
grap(l), mmt(l), mvt(l), pic(l), tc(l), troff(l)

2 November 1991

date(l) date(l)

NAME
date - displays and sets the date

SYNOPSIS
date [mmddhhmm[yy]] [+format]

ARGUMENTS
+format

Puts the output of date under the control of the user. Replace format
with the date and time as described in the argument below.

mmddhhmm[yy]
Specifies the date and time. Replace the first mm with the month
number, replace dd with the day number in the month, replace hh with
the hour number (24-hour system), replace the second mm with the
minute number, and replace yy with the last 2 digits of the year
number (this is optional). If a number less than 70 is given, the year
that results is 1970. For example,

date 10080045

sets the date to Oct. 8, 12:45 AM. The current year is the default if no
year is mentioned.

DESCRIPTION
date displays the current date and time if no argument is given, or if the
argument begins with +. Otherwise, the current date is set. The operating
system operates in GMT. The date command takes care of the
conversion to and from local standard and daylight time.

All output fields are of fixed size (zero padded if necessary). Each field
descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % % . All other characters
are copied to the output without change. The string is always terminated
with a newline character.

The Field Descriptors follow:

n Inserts a newline character

t Inserts a tab character

rn Month of year-01 to 12

d Day ofmonth-01to31

y Last 2 digits of year-70 to 99

D Date as mm/dd/yy

H Hour-00 to 23

November 1991 1

date(!)

M Minute-00 to 59

s Second-00 to 59

T Time as HH:MM:SS

j Day of year-001 to 366

w Day of week-Sunday = 0

a Abbreviated weekday-Sun to Sat

h Abbreviated month-Jan to Dec

r Time in AM/PM notation

EXAMPLES
The command:

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates the output:

DATE: 08/01/76
TIME: 14:45:05

WARNINGS

date(l)

It is bad practice to change the date while the system is running multiuser.

STATUS MESSAGES AND VALUES
No permission

You are not the superuser and you tried to change the date.

bad conversion
The date that was set is syntactically incorrect.

bad format character
The field descriptor is not recognizable.

FILES
/bin/date

Executable file
/etc/wtmp

File that records time

SEE ALSO

2

gettimeofday(2), stime(2), time(2), printf(3S), utmp(4) in
A!UX Programmer's Reference

November 1991

dbx(l) dbx(l)

NAME
dbx - debugs and executes programs

SYNOPSIS
dbx [-c file] [-D] [-i] [-I dir] ... [-r] [obj.file [coredump]]

ARGUMENTS
-c file

Executes the dbx commands in the specified file before reading from
standard input.

- D Installs Macintosh low-memory globals into the dbx symbol table,
allowing dbx to disassemble A-line traps generated for A/UX
Toolbox routines. This option is useful for debugging applications
that call the A/UX Toolbox.

- i Causes dbx to act as though standard input is a terminal. This option
enables you to manually input dbx commands from the keyboard to
the command line.

-I dir
Adds the specified directory, dir, to the list of directories that are
searched when dbx is looking for a source file. Normally dbx looks
for source files in the current directory and in the directory where
obj.file is located. The directory search path can also be set with the
use command.

objfile [coredump]
Specifies the object file to debug. Such files are produced by a
compiler with the appropriate flag (usually -g), which places symbol
information in the object file.

The object file contains a symbol table that includes the names of all
the source files translated by the compiler to create it. These files are
available for perusal while you are using the debugger.

If a file named core exists in the current directory or if a coredump file
is specified, dbx can be used to examine the state of the program
when it was terminated.

-r Causes dbx to execute obj file before accepting debugging
commands. If obj file runs successfully as indicated by a zero exit
status, dbx exits. Otherwise, dbx reports the reason for termination
and offers you the option of either entering the debugger or letting the
program terminate. When this option is specified and the standard
input is not a terminal, dbx reads from I dev It ty.

Unless this option is specified, dbx waits for an explicit run
command or another debugger command.

November 1991 1

dbx(1) dbx(l)

DESCRIPTION
dbx is a tool for source-level debugging and execution of programs under
UNIX®. The machine-level facilities of dbx can be used on any program.

If the file dbxini t exists in the current directory, the debugger
commands in it are executed. Your home directory will also be checked
for a dbxini t file if one does not exist in the current directory.

When you are debugging A/UX applications that use the A/UX Toolbox, it
is useful to use the -D option and to ignore the IOT, IO, and URG signals.
The ignore command is described in the next section, "Execution and
Tracing Commands."

Execution and Tracing Commands

2

The execution and tracing commands follow.

cal 1 procedure (parameters)
Executes the object code associated with the named procedure or
function.

catch number
catch signal-name
ignore number
ignore signal-name

Start or stop trapping of the signal before it is sent to the program.
This method is useful when a program being debugged handles
interrupt signals. You can specify a signal by number or by a name
(for example, SIG INT). Signal names are case insensitive and the
SIG prefix is optional. By default all signals are trapped except
SIGCONT, SIGCHILD, SIGALRM, and SIGKILL. If you are
debugging A/UX applications that call the A/UX Toolbox, it is
advisable to ignore SIGIOT, SIG IO, and SIGURG because these
signals are used by A/UX Toolbox routines.

cont integer
cont signal-name

Continue execution from the point at which it stopped. If a signal is
specified, the process continues as though it received the signal.
Otherwise, the process continues as though it had not been stopped.

Execution cannot continue if the process called the standard procedure
exit. The dbx program does not allow the process to exit, so you
can examine the program state.

delete command-number ...
Removes the trace or stop corresponding to each given
command-number argument. (You can print the numbers associated
with traces and stops can be printed by using the status command.)

November 1991

dbx(l) dbx(l)

next
Executes up to the next source line. The difference between next
and step is that if the line contains a call to a procedure or function,
the step command will stop at the beginning of that block, whereas
the next command will not.

return [procedure]
Continues until a return to procedure is executed if procedure is
specified. If no procedure is specified, execution continues until the
current procedure returns.

run [args] [<file][>file]
rerun [args] [<file][>file]

Start executing objfile, passing the args arguments as command-line
arguments. The symbols < and > can be used to redirect input or
output in the usual manner. When rerun is used without any
arguments, the previous argument list is passed to the program;
otherwise this command is identical to run. If objfile argument has
been written since the last time the symbolic information was read,
dbx will read the new information.

status > [filename]
Prints the currently active trace and stop commands.

step
Executes one source line.

st op if condition
stop at source-line-number [if condition]
stop in procedure-or-function [if condition]
st op variable [i f condition]

Stop execution when the given line is reached, the given procedure or
function is called, the given variable is changed, or the given
condition is true.

trace [in procedure-or-function] [if condition]
trace source-line-number [if condition]
trace procedure-or-function [in procedure-or-function]

[if condition]
trace expression at source-line-number [if condition]
trace variable in procedure-or-function [if condition]

Print tracing information when the program is executed. A number is
associated with the command that is used to tum the tracing off. (See
the description of de 1 et e command later in this list.)

The first argument describes what is to be traced. If it is a
source-line-number argument, then the line is printed immediately
before it is executed. Numbers for source line in a file other than the

November 1991 3

dbx(l) dbx(l)

current one must be preceded by the name of the file in quotation
marks and a colon, as shown here:

"mumble.p":17

If the argument is a procedure or function name, every time the
procedure or function is called, dbx displays information that tells
you what routine called it, from what source line it was called, and
what parameters were passed to it. In addition, its return is noted and,
if it is a function, the value it returns is also printed.

If the argument is an expression with an at clause, the value of the
expression is printed when the identified source line is reached.

If the argument is a variable, the name and value of the variable are
printed whenever they change. Execution is substantially slower
during this form of tracing.

If no argument is specified, all source lines are printed before they are
executed. Execution is substantially slower during this form of
tracing.

The clause in procedure-orjunction causes tracing information to be
printed only while dbx is being executed inside the given procedure
or function.

The condition argument is a Boolean expression evaluated before the
tracing information is printed. If the value is FALSE, the information
is not printed.

Variables and Expressions

4

The dbx debugger resolves variables first in terms of the static scope of the
current function, then in terms of the dynamic scope if the name is not
defined in the static scope. If static and dynamic searches do not yield a
result, an arbitrary symbol is chosen and the message
'' [using qualified name]'' is printed. You can override the name­
resolution procedure by qualifying an identifier with a block name, for
example, module. variable. For C, source files are treated as modules
named by the filename without the . c extension.

Expressions are specified with an approximately common subset of C and
Pascal syntax. You can denote indirection by using either a prefix asterisk
(*)or a postfix caret C). Array expressions are subscripted by brackets
([J). The field reference dot operator (.) can be used with pointers as
well as records, making the C arrow operator (- >) unnecessary (although it
is supported).

November 1991

dbx(l) dbx(l)

Types of expressions are checked. You can override the type of an
expression by using the type-name(expression) construct. When there is no
corresponding named type, you can use the special constructs &type-name
and $$tag-name to represent a pointer to a named type or C structure tag.

The commands are:

assign variable=expression
Assigns the value of the expression to the variable.

dump fprocedure] > [filename]
Prints the names and values of variables in the given procedure, or the
current one if none is specified. If the replacement value for
procedure is supplied as period (.), then the names and values of all
active variables are printed.

print expression[, expression] ...
Prints the values of the given expressions.

up [count]
down [count]

Move the current function, which is used for resolving names, up or
down the stack count levels. The default for count is 1.

whatis name
Prints the declaration of the given name, which can be qualified with
block names as described earlier.

where
Prints a list of the active procedures and functions.

whereis identifier
Prints the full qualification of all symbols whose names match the
given identifier. The order in which the symbols are printed is not
meaningful.

which identifier
Prints the full qualification of the given identifier, that is, the outer
blocks with which the identifier is associated.

Accessing Source Files vs Navigating through
You can access source files by using these commands instead of navigating
through your source code:

I regular expression[/]
?regular expression[?]

Search forward or backward in the current source file for the given
pattern.

edit [filename]

November 1991 5

dbx(l) dbx(l)

edit procedure-or-function-name
Invoke an editor on the specified file or on the current source file if no
filename argument is specified. If a procedure or function name is
specified, the editor is invoked on the file that contains that procedure
or function. Which editor is invoked by default depends on the
installation. You can override the default by setting the environment
variable EDITOR to the name of the desired editor.

f i 1 e [filename]
Changes the current source filename to the specified filename. If none
is specified, the current source filename is printed.

func [procedure-or-function]
Changes the current function to the one specified. If none is specified,
this command prints the current function. Changing the current
function implicitly changes the current source file to the one that
contains the function; it also changes the current scope used for name
resolution.

1 is t [source-line-numberl [, source-line-number2]]
1 is t procedure-or-function

List the lines in the current source file from the specified
source-line-number 1 to source-line-number2, inclusive. If no lines
are specified, the next $listwindow lines (the default is 10) are
listed. If the name of a procedure or function is given, lines n-k to
n+k are listed, where n is the first statement in the procedure or
function and k is defined by the variable $listwindow.

use directory-list
Sets the list of directories to be searched when looking for source files.
(Also see the description of the - I option in the ''Arguments'' section
earlier in this manual page.) If no directory-list argument is provided
for the use command, the current directory list is displayed.

Command Aliases and Variables

6

The command aliases and variables commands follow.

alias name name
alias name "string"
alias name (parameters) "string"

Check to see if name is an alias for either a command or a string when
commands are processed. If it is an alias, then treats the input as
though the corresponding string (with values substituted for any
parameters) had been entered. For example, the command

alias rr rerun

can be used to define an alias rr for the rerun command.

November 1991

dbx(l)

The command

alias b(x)

dbx(l)

can be used to define an alias b that sets a stop at the passed line
number (x). For example, the command

b(12)

expands to

stop at 12

when bis aliased, as shown earlier.

set name[=expression]
Defines values for debugger variables. The names of these variables
must not conflict with names in the program being debugged, and are
expanded to the corresponding expression within other commands.
The following variables have a special meaning:

$frame
Causes dbx to use the stack frame pointed to by the address
for performing stack traces and accessing local variables
when this variable is set to an address. This facility is of
particular use for kernel debugging.

$hexchars
$hexints
$hexof f sets
$hexstrings

Cause dbx to print out characters, integers, offsets from
registers, or character pointers, respectively, in hexadecimal
when one of these is set.

$listwindow
Specifies a number of lines to be listed by the 1 i st
command. The default value is 10.

$mapaddrs
Causes dbx to start mapping addresses. Unsetting this
variable causes address mapping to stop. As with $frame,
this variable is useful for kernel debugging.

$unsafecall
$unsaf eassign

November 1991

Tum off strict type-checking for arguments to the subroutine
or function calls (for example, in the call statement) when
the $unsafecall variable is set. When the
$unsafeassign variable is set, strict type-checking
between the two sides of an ass i gn statement is turned

7

dbx(l) dbx(l)

off. These variables should be used with great care, because
they severely limit the usefulness of dbx in detecting errors.

unalias name
Removes the alias with the given name.

unset name
Deletes the debugger variable associated with the specified name.

Machine-Level Commands

8

You specify symbolic addresses by preceding the name of a register with
an ampersand(&). Registers are denoted by $rn where n is the number of
the register. Addresses can be expressions made up of other addresses and
the operators +, -, and indirection (unary *).

The machine-level commands as described below:

address, address I [mode]
address/[count] [mode]

Print the contents of memory, starting at the first address and
continuing up to the second address or until count items are printed. If
the address is dot (.), the address following the one printed most
recently is used. The mode argument specifies how memory is to be
printed; if it is omitted, the mode last specified is used. The initial
mode is X, which prints long words in hexadecimal. The following
modes are supported:

stepi
nexti

b Prints a byte in octal.

c Prints a byte as a character.

d Prints a short word in decimal.

D Prints a long word in decimal.

f Prints a single-precision real number.

g Prints a double-precision real number.

i Prints the machine instruction.

o Prints a short word in octal.

O Prints a long word in octal.

s Prints a string of characters terminated by a null byte.

x Prints a short word in hexadecimal.

X Prints a long word in hexadecimal.

Step by a single instruction rather than by a source line. These
variables single-step as the step and next variables do.

November 1991

dbx(l) dbx(l)

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]

Tum on tracing or set a stop, using the machine-instruction address
specified by address.

Miscellaneous Commands
help

Prints out a synopsis of dbx commands.

quit
Exits dbx.

sh command-line
Passes the command line to the shell for execution. The SHELL
environment variable determines which shell is used.

source filename
Reads dbx commands from the specified file.

FILES
.dbxinit

File containing initial commands
/usr/ucb/dbx

Executable file
a.out

Object file
SEE ALSO

c89(1), cc(l)

"dbx Reference" in AIUX Development Tools

November 1991 9

dc(l) dc(l)

NAME
de - desk calculator

SYNOPSIS
de [file]

ARGUMENTS
file Specifies the file from which the input is used.

DESCRIPTION
de is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained. The overall structure of de is
a stacking (reverse Polish) calculator.

The following constructions are recognized:

number
Pushes the value of number on the stack. A number is an unbroken
string of one or more digits in the range 0-9. It may be preceded by an
underscore (_) to indicate a negative number. Numbers may contain
decimal points.

+ - I * % A

Operates on the top two values on the stack. These are added (+),
subtracted(-), multiplied(*), divided(/), remaindered(%), or
exponentiated C). The two entries are popped off the stack; the result
is pushed on the stack in their place. Any fractional part of an
exponent is ignored.

sx Pops the top of the stack and stores it in a register named x, where x
may be any character.

sx Pushes the value on x, which is treated as a stack.

lx Pushes the value in register x on the stack. The register x is not
altered. All registers start with zero value.

Lx Pops the top value of register x, which is treated as a stack, onto the
main stack.

d Duplicates the top value on the stack.

p Prints the top value on the stack. The top value remains unchanged.

P Interprets the top of the stack as an ASCII string, removes it, and
prints it.

f Prints all values on the stack.

q Exits the program. If executing a string, the recursion level is popped
by two. Alternately, CONTROL-d (EOF) will exit from de.

1 November 1991

dc(l) dc(l)

Q Pops the top value on the stack and pops the string execution level by
that value. Alternately, CONTROL-d (EOF) will exit from de.

x Treats the top element of the stack as a character string and executes it
as a string of de commands.

x Replaces the number on the top of the stack with its scale factor.

[string]
Puts the bracketed ASCII string onto the top of the stack.

<X >X =X

Pops the top two elements of the stack and compares them. Register x
is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a system command.

e Pops all values on the stack.

i Pops the top value on the stack and uses it as the number radix for
further input.

I Pushes the input base on the top of the stack.

o Pops the top value on the stack and uses it as the number radix for
further output.

o Pushes the output base on the top of the stack.

k Pops the top of the stack and uses that value as a non-negative scale
factor: prints the appropriate number of places on output, and
maintains them during multiplication, division, and exponentiation.
The interaction of scale factor, input base, and output base will be
reasonable if all are changed together.

z Pushes the stack level onto the stack.

z Replaces the number on the top of the stack with its length.

? Takes a line of input from the input source (usually the terminal) and
executes it.

Allows be to perform array operations.

EXAMPLES
The command:

de
24.2 56.2 + p

November 1991 2

dc(l)

adds the two numbers and prints the result (top value in the stack).

The command:

[lal+dsa*plalO>y]sy
Osal
lyx

prints the first ten values of n!.

STATUS MESSAGES AND VALUES
x is unimplemented

The argument, x, is an octal number.

stack empty
Not enough elements on the stack to do what was asked.

Out of space
The free list is exhausted (too many digits).

Out of headers
Too many numbers being kept around.

Out of pushdown
Too many items on the stack.

Nesting Depth
Too many levels of nested execution.

FILES
/usr/bin/dc

Executable file

SEE ALSO
bc(l)

dc(l)

"de Reference," inA/UX Programming Languages and Tools, Volume 2

3 November 1991

dd(l) dd(l)

NAME
dd - converts and copies a file

SYNOPSIS
dd [bs=n] [cbs=n] [conv=ascii] [conv=ebcdic] [conv=ibrn]
[conv=lcase] [conv=noerror] [conv=swab] [conv=sync]
[conv=type, type] [conv=ucase] [count=n] [ibs=n] [if=file]
[rnulti=in] [multi= in, out] [rnulti=out] [of=file] [obs=n]
[seek=n] [skip=n]

ARGUMENTS
bs=n

Sets both input and output block size, superseding ibs and obs; also,
if no conversion is specified, it is particularly efficient since no incore
copy needs to be generated

cbs=n
Specifies the conversion buffer size. Replaces n with the size of the
buffer.

conv=ascii
Converts EBCDIC text to ASCII text.

conv=ebcdic
Converts ASCII text to EBCDIC text.

conv=ibrn
Specifies a slightly different map of ASCII to EBCDIC.

conv=lcase
Maps alphabetics to lowercase.

conv=noerror
Does not stop processing when an error occurs.

conv=swab
Swaps every pair of bytes.

conv=sync
Pads every input block to ibs.

conv=type, type
Specifies several comma-separated conversions, where type is one of
the conversions listed for conv.

conv=ucase
Maps alphabetics to uppercase.

count=n
Copies only n input blocks.

November 1991

dd(l) dd(l)

ibs=n
Inputs the block size, n bytes (the default 512)

if=file
Inputs the file. The standard input is default.

multi=in
Indicates that the input file is multivolume.

multi=in,out
Indicates that both the input file and the output file are multivolume.

multi=out
Indicates that the output file is multivolume.

of=file
Outputs the file. The standard output is default.

obs=n
Outputs the block size n. The default 512.

seek=n
Seeks n blocks from beginning of output file before copying. The dd
command creates the specified output file (see creat(2)), which
insures that the length of the file will be zero for regular files; seeking
n blocks from the beginning of the output file will fill the skipped area
with zeros (nulls)

skip=n
Skips n input blocks before starting to copy.

DESCRIPTION

2

dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The input
and output block size may be specified to take advantage of raw physical
I/O.

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify multiplication by 1024, 512, or 2,
respectively; a pair of numbers may be separated by x to indicate a
product.

The cbs option is used only if ascii, ebcdic, or ibm conversion is
specified. In the first case, cbs characters are placed into the conversion
buffer, converted to ASCII, and trailing blanks are trimmed and a newline
added before sending the line to the output. In the next two cases, ASCII
characters are read into the conversion buffer, converted to EBCDIC (or
the IBM version of EBCDIC), and blanks are added to make up an output
block of size cbs.

November 1991

dd(l) dd(l)

If multivolume input (output) is specified, a prompt is given at end-of-file
to allow another volume to be mounted.

After completion, dd reports the number of whole and partial input and
output blocks.

EXAMPLES
The command:

dd if=/dev/rrnt/Orn of=x ibs=800 cbs=80 conv=ascii,lcase

will read an EBCDIC tape blocked at ten 80-byte EBCDIC card images per
block into the ASCII file x.

Note the use of raw magnetic tape. dd is especially suited to 1/0 on the
raw physical devices because it allows reading and writing in arbitrary
block sizes.

LIMITATIONS
The ASCII/EBCDIC conversion tables are taken from the 256-character
standard in the CACM, November, 1968. The ibrn conversion, while less
blessed as a standard, corresponds better to certain IBM print-train
conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is done only
on conversion to EBCDIC. These should be separate options.

When using dd to transfer data over an Ethernet connection, you should
specify a block size of I kilobyte.

STATUS MESSAGES AND VALUES
The output:

f+p blocks in(out)

contains numbers of full and partial blocks read (written).

FILES
/bin/dd

Executable file

SEE ALSO
cp(l), cpio(l), tar(l), tr(l)

November 1991 3

delta(l) delta(l)

NAME
delta - makes a delta (change) to an SCCS file

SYNOPSIS
delta [-glist] [-m[mrlist]] [-n] (-p] (-rSJD] [-s] [-y[comment]]file ...

ARGUMENTS

1

file Specifies the file to be changed.

-glist
Specifies a list (see get(l) for the definition of list) of deltas which
are to be ignored when the file is accessed at the change level (SID)
created by this delta.

-m[mrlist]
Requires that a Modification Request (MR) number be supplied as the
reason for creating the new delta, if the SCCS file has the v option set
(see admin(l)).

If the -m option is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the standard
input is read; if the standard input is not a terminal, no prompt is
issued. The MRs? prompt always precedes the comments? prompt
(see -y option).

MRs in a list are separated by blanks and/or tab characters. An
unescaped newline character terminates the MR list.

Note that if the v option has a value (see admin(l)), it is taken to be
the name of a program (or shell procedure) which will validate the
correctness of the MR numbers. If a nonzero exit status is returned
from MR number validation program, delta terminates (it is
assumed that the MR numbers were not all valid).

-n Specifies retention of the edited g-f ile (normally removed at
completion of delta processing).

-p Causes delta to print (on the standard output) the SCCS file
differences before and after the delta is applied in a di ff (1) format.

November 1991

delta(I) delta(!)

-rSID
Identifies (uniquely) which delta is to be made to the SCCS file. The
use of this keyletter is necessary only if two or more outstanding gets
for editing (get -e) on the same secs file were done by the same
person (login name). The SID value specified with the -r keyletter
can be either the SID specified on the get command line or the SID to
be made as reported by the get command (see get(l)). A message
will display if the specified SID is ambiguous or omitted on the
colllllland line.

- s Suppresses the issue on the standard output of the created delta's SID,
as well as the number of lines inserted, deleted, and unchanged in the
SCCS file.

-y[comment]
Specifies arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment. If the comment
includes spaces, you must enclose the entire string in double quotes.

-y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard
input is read; if the standard input ils not a terminal, no prompt is
issued. An unescaped newline character terminates the comment text.

DESCRIPTION
delta is used to permanently introduce into the named SCCS file changes
that were made to the file retrieved by get(l) (called the g- file, or
generated file).

The delta command makes a delta to each named SCCS file. If a
directory is named, delta behaves as lthough each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the pathname does not begin with s .) and unreadable files are silently
ignored. If a hypen (-) is given, the standard input is read (see
WARNINGS); each line of the standard input is taken to be the name of an
secs file to be processed.

The delta command may issue prompts on the standard output depending
upon certain keyletters specified and flags (see admin(l)) that may be
present in the SCCS file (see -m and -y options above).

November 1991 2

delta(l) delta(l)

EXAMPLES
The command:

% delta s.testl.c
comments? second version
1. 2
1 inserted
0 deleted
12 unchanged

does a delta on file test 1. c.

STATUS MESSAGES AND VALUES
Use help for explanations.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be
placed in the SCCS file unless the SOH is escaped. This character has
special meaning to secs (see sccsfile(5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (-) is specified on the de 1 ta command line, the -m
(if necessary) and -y options must also be present. Omission of these
keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

FILES
/usr/bin/delta

Executable file
g-file

3

File that existed before the execution of delta; removed after
completion of de 1 ta

p-file
File that existed before the execution of delta; may exist after
completion of delta

q-file

x-file

File that was created during the execution of de 1 ta; removed after
completion of delta

File that was created during the execution of de 1 ta; renamed to
SCCS file after completion of delta

November 1991

delta(l) delta(l)

z-file
File that was created during the execution of delta; removed during
the execution of de 1 ta

d-file
File that was created during the execution of delta; removed after
completion of delta

/usr/bin/bdiff
File containing the program to compute differences between the
"gotten" file and the g-file

SEE ALSO
admin(l), bdiff(I), cdc(I), get(!), help(l), prs(l), rmdel(l),
sccs(l)

sccsfile(4) inA/UX Programmer's Reference

"SCCS Reference," in A/UX Programming Languages and Tools, Volume
2

November 1991 4

derez(l) derez(l)

NAME
derez - decompiles a resource file

SYNOPSIS
derez [-c] [-dmacro-assignment] ... [-e] [-iinclude-dir] ...
[-mstring-size] [-p] [-rd] [-umacro]. .. resource-file
[resource-description-file]. ..

derez [-c] -oscope [-dmacro-assignment] ... [-e] [-iinclude-dir] ...
[-mstring-size] [-p] [-rd] [-umacro] ... resource-file
[resource-description-file] ...

derez [-c] -somit-scope [-dmacro-assignment] ... [-e]
[-iinclude-dir] ... [-mstring-size] [-p] [-rd] [-umacro]. .. resource-file
[resource-description-file] ...

ARGUMENTS
-c[ompatible]

Generates output that is backward-compatible with rez 1.0.

-d[ef ine]macro-assignment
Declares preprocessor macros in the form name=value that are
equivalent to symbolic constants defined with

#define macro [value]

If no value is assigned, but a symbolic name is given, its value is set to
the empty string (which still qualifies it as a "defined" macro).

-e[scape]
Does not honor escape sequences that are normally honored (such as
\ Oxff); prints these characters as extended Macintosh characters
instead. Not all characters are defined in all fonts.

Normally, characters with values between Ox20 and OxD8 are printed
as Macintosh characters. When you specify the -e option, however,
all characters (except null, newline, tab, backspace, form feed, vertical
tab, and rubout) are printed as characters, not as escape sequences.

- iinclude-dir
Searches the specified directories for any #inc 1 ude instructions
inside the resource description file or files. The paths are searched in
the order of their appearance on the command line.

To decompile an A/UX Toolbox resource file, use this command:

-i /:mac:lib:rincludes

November 1991

derez(l) derez(l)

-rn[axstringsize]string-size
Sets the maximum string size to string-size, which must be in the
range 2-120. Use this option to set the maximum width of strings in
the output.

-o[nly]scope
Decompiles resources that fall within the scope specified only. See
the description of scope later in this list. This option cannot be used if
the - s option is used.

-p Displays progress and version information.

-rd
Suppresses warning messages if a resource type is redeclared.

resource-description-file
Specifies files containing the (source code) type declarations used to
produce the resource file.

resource-file
Specifies the name of the file containing the compiled resource. You
must specify a resource file; derez does not read the standard input.

scope
omit-scope

Declare the scope of resources to be either decompiled or skipped
depending on whether the -o or the -s option is specified. (See the
description of -o and -s earlier in this list.) The scope can be
specified in several ways:

resource-type
Limits the scope to the specified resource type, such as 'CODE'.

" ' resource-type ' (idl) "
Limits the scope to a resource type and resource ID number.

" ' resource-type ' (idl : id2) "
Limits the scope to a resource type and a range of resource ID
numbers.

" ' resource-type ' resource-name"
Limits the scope to a particular resource name of a particular
resource type.

-s[kip]scope
Skips the decompilation of resources that fall within the scope
specified. See the descriptions of scope and omit-scope later in this
list. This option cannot be used if the - o option is used.

For example, you can save execution time by skipping CODE
resources. You can repeat the - s option any number of times.

November 1991 2

derez (1) derez(l)

-u[nde f]macro
Undefines the macro variable macro. You can do the same thing by
writing this at the beginning of the input file:

#undef macro

DESCRIPTION
derez creates a text representation (resource description) of a compiled
resource file according to the resource type declarations in the resource
description files. The resource description is written to standard output. If
the output of derez is used as input to rez along with the same resource
description files, it produces the same resource file that was originally input
to derez.

To help generate resource code, certain basic data-type information is read
from the files you specify as the resource description file or files. The type
declarations in these resource description files should consist of
resource and data statements just like those that can be understood by
the re z program. The dere z command ignores all inc 1 ude (but not
#include), read, data, and resource statements found in the
resource description file. (It still parses these statements for correct
syntax.) Appendix C, "Resource Compiler and Decompiler," inA/UX
Toolbox: Macintosh ROM lnteiface, describes the format of resource type
declarations.

The type declarations for standard Macintosh resources are contained in the
files types.rand sys types. r in the directory
/mac/lib/rincludes.

If you do not specify a resource description file, the output consists of data
statements giving the resource data in hexadecimal form, without any
additional format information.

The derez command is not guaranteed to be able to run a declaration
backward. If derez does not run a declaration backward, the command
produces a data statement instead of the appropriate resource
statement.

EXAMPLES

3

Using the definitions in the file /mac/lib/rincludes/types. r, this
command decompiles the resource file % s amp 1 e and writes the output to
the file sample. r:

derez -i /mac/lib/rincludes sample types.r > sample.r

You do not need to use quotation marks to specify a literal type as long as
that type starts with a letter. Do not use escape characters or other special
characters. This example specifies the type 'MENU':

November 1991

derez (1) derez(l)

derez -only MENU ...

If a resource ID, range of IDs, or resource name is given, the entire option
parameter must appear inside single quotation marks, as in this example:

derez -only 11 'MENU' (1:128) 11

If derez has access to the type definitions, it generates. more meaningful
output. For example, this command displays all of the 'MENU' resources
in %sample, and the type definition for 'MENU' resources is in the file
types. r:

derez -o MENU -i /mac/lib/rincludes sample types.r

STATUS MESSAGES AND VALUES
If no errors or warnings are detected, derez runs silently. Errors and
warnings are written to standard error output. (See intro(3S) inA/UX
Programmer's Reference.)

The derez command returns one of these status values:

0 No errors

1 Error in parameters

2 Syntax error in file

3 1/0 or program error

LIMITATIONS
The derez command is not supported in 24-bit mode; you can use it only
in 32-bit mode. You must run it from the command line while you are
logged in to the Macintosh environment.

FILES
/mac/bin/derez

Executable file
SEE ALSO

rez(l)

intro(3s) inAIUX Programmer's Reference

AIUX Toolbox: Macintosh ROM Inteiface

November 1991 4

deroff(l) deroff(l)

NAME
deroff -removes nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx] [-w] [file]. ..

ARGUMENTS
file Specifies the file containing the constructs that are to be removed. If

this argument is not given, deroff reads the standard input.

-mx Specifies the macro package. Replace x with an m, s, or 1. If you
select the - mm macro package, the macros will be interpreted so that
only running text is output (that is, no text from macro lines). If the
-ml macro package is chosen, the -mm macro package is forced, and
also causes deletion of lists associated with the mm macros.

-w Causes the output to be a word list, one word per line, with all other
characters deleted. Otherwise, the output follows the original, with
the deletions mentioned above. In text, a word is any string that
contains at least two letters and is composed of letters, digits,
ampersands(&), and apostrophes (');in a macro call, however, a
word is a string that begins with at least two letters and contains a total
of at least three letters. Delimiters are any characters other than
letters, digits, apostrophes, and ampersands. Trailing apostrophes and
ampersands are removed from words.

DESCRIPTION
deroff reads each of the files in sequence, removes all troff(l)
requests, macro calls, backslash constructs, eqn(l) constructs (between
• EQ and . EN lines, and between delimiters), and tbl(l) descriptions,
perhaps replacing them with white space (blanks and blank lines), and
writes the remainder of the file on the standard output. The dero ff
command follows chains of included files (. so and . nx troff
commands); if a file has already been included, a . so naming that file is
ignored and a . nx naming that file terminates execution.

EXAMPLES
The command:

deroff textf ile

removes all nroff, troff, and macro definitions from text file.

LIMITATIONS

1

The deroff command is not a complete troff interpreter, so it can be
confused by subtle constructs. Most such errors result in too much rather
than too little output.

November 1991

deroff(l)

The -ml option does not handle nested lists correctly.

FILES
/usr/bin/deroff

Executable file

SEE ALSO
eqn(l), nroff(l), tbl(l), troff(l)

November 1991

deroff(l)

2

df(l)

NAME
df - reports the used and unused storage capacity for a file system

SYNOPSIS
df -t [-f] [-T fs-type] [ts-reference]. ..

df -B [-i] [-T fs-type] [ts-reference] ...

df -p [- i] [-T fs-type] [ts-reference]. ..

ARGUMENTS
- B Lists the free disk blocks in the BSD style of output format.

df(l)

- f Computes the number of blocks in the free list (for SVFS file systems
only).

fs-reference
Specifies the file system to query. The reference can be constructed in
terms of a file or directory that resides on the file system you want to
query or in terms of a device file that corresponds to the file system
you want to query.

- i Lists statistics regarding inodes along with everything else reported.
This option can only be used with the -p and - B options.

-p Lists the free disk blocks in the POSIX style of output format (POSIX
User Portability Extension).

- t Reports the total allocated block and inode figures along with
everything else. This option is not available when the -p or - B
options are used.

-T fs-type
Establishes the type of file system as file-system-type. The accepted
types are: 4 . 2 and 5 . 2. See f st ab(4) for more detailed
information regarding file system types.

DESCRIPTION
df reports the current state of a file system in terms of its data storage
capacities. You may specify the file system reference ifs-reference) in two
ways. File systems may be specified either as device files (for example,
I dev I dsk/ c 0 s OdO) or as filenames (for example, /usr). If
fs-reference is given in the form of a regular file or directory, df reports on
the amount of free space for the file system on which that file resides.
Without any arguments, df displays the amount of free blocks and free
inodes for all of the mounted file systems.

For file systems based upon the Berkeley Software Distribution (BSD)
model, the remaining free space is calculated differently depending on
whether you are using the root account or not. The root account is always
allowed access to all the available disk blocks. Because BSD file systems

November 1991

df(l) df(l)

cannot be used effectively without a residual amount of free disk space,
most users are denied access to a fixed percentage of the disk blocks. The
amount by which free blocks are reduced for normal users is controlled
through a tunefs(lM) parameter. However, you should not reduce this
parameter to less than five percent because of the increased possibility of
fragmentation resulting in impaired performance.

LIMITATIONS
Since inodes are file system dependent, the number of inodes reported on
remotely mounted file systems is always zero.

FILES
/bin/df

Executable file
/dev/dsk/*

Disk partition device files
/etc/mtab

File containing list of currently mounted file systems

SEE ALSO
mount(lM) in AIUX System Administrator's Reference f s(4), f stab(4),
mtab(4) inA/UX Programmer's Reference

November 1991 2

diction(!) diction(!)

NAME
diction, explain - locate wordy sentences in a document

SYNOPSIS
diction [-f pfile] [-ml] [-mm]file ...

diction [-ml] [-mm] [-n]file ...

explain

ARGUMENTS
-f pfile

Allows you to supply your own pattern file to be used in addition to
the default.file. Replace pfile with a list of (wordy) phrases, with one
phrase per line. The defaultpfile is /usr /lib/diet. d.

file Specifies the file to be searched.

-ml
Causes deroff to skip lists. The option should be used ifthe
document contains many lists of nonsentences.

-mm
Specifies the -mm macro package. This option overrides the -ms
macro package, which is the default.

-n Suppresses the default pfile.

DESCRIPTION
diet ion finds all sentences in a document that contain phrases from a
data base of bad or wordy diction. Each phrase is bracketed with [J •
Because diction runs deroff before looking at the text, formatting
header files should be included as part of the input.

explain is an interactive thesaurus for the phrases found by diction.
It prompts you with:

phrase?

to which you should respond by typing the phrase flagged by diet ion
that you need explained. The explanation tells what to use instead of
phrase. To get out of explain, press DELETE.

LIMITATIONS
Use of nonstandard formatting macros may cause incorrect sentence
breaks. In particular, diction does not recognize the -me macro
package.

FILES
/usr/ucb/diction

Executable file

November 1991

diction(!)

/usr/ucb/explain
Executable file

SEE ALSO
deroff(l), style(l), spell(l)

November 1991

diction(l)

2

diff(l) diff(l)

NAME
di ff - compares two files or directories for any differences

SYNOPSIS
diff [-b] [-c] [-e] [-f] [-h] [-1] [-r] [-s] [-Sname] dirl dir2

diff [-b] [-c] [-e] [-f] [-h]filel file2

diff [-b]filel file2

ARGUMENTS
-b Causes trailing blanks (spaces and tabs) to be ignored, and other

strings of blanks to compare equal.

- c Produces a di ff with lines of context. The default is to preset 3 lines
of context that may be changed, for example, to 10, by - c 10. With
the - c option, the output format is modified slightly: the output
beginning with identification of the files involved and their creation
dates and then each change is separated by a line with a dozen *'s.
The lines removed from.file] are marked with"-"; those added to
file2 are marked '' +' '. Lines which are changed from one file to the
other are marked in both files with '' ! ' '.

dirl Specifies the directory to be compared with dir2.

dir2 Specifies the directory to be compared with dirl.

-Dstring
Causes diff to create a merged version offilel andfile2 on the
standard output, with C preprocessor controls included so that a
compilation of the result without defining string is equivalent to
compiling file I, while defining string will yield file2.

-e Produces a script of a, c, and d commands for the editor ed, which
will recreatefile2 fromfilel. In connection with the -e option, the
following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed
scripts ($2,$3, ...) made by diff need be on hand. A "latest
version" appears on the standard output.

(shift; cat$*; echo '1,$p') I ed - $1

Extra commands are added to the output when comparing directories
with the -e, option so that the result is an sh(l) script for converting
text files which are common to the two directories from their state in
dirl to their state in dir2. Since such a shell script is useful only in a
file that you may run on other files, it is best to redirect the output of
this command into a file.

- f Produces a script similar to that of the - e option not useful with ed,
and in the opposite order.

November 1991

diff(l) diff(l)

file I
Specifies the file to be compared withfile2. Iffilel is not a directory,
it can be given a"-", in which case uses the standard input. Iffilel is
a directory, then a file in that directory whose filename is the same as
the filename of file2 is used.

file2
Specifies the file to be compared with file 1. If file2 is not a directory,
it can be given a"-", in which case uses the standard input. Iffile2 is
a directory, then a file in that directory whose filename is the same as
the filename offilel is used.

- h Does a fast, half-hearted job. It works only when changed stretches
are short and well-separated, but does work on files of unlimited
length.

-1 Specifies long output format; each text file di ff is piped through pr
to paginate it, other differences are remembered and summarized after
all text file differences are reported.

- r Causes application of di ff recursively to common subdirectories
encountered.

- s Causes di ff to report files which are the same, which are otherwise
not mentioned.

-Sname
Starts a directory di ff in the middle beginning with file name.

DESCRIPTION
If both arguments are directories, di ff sorts the contents of the directories
by name, and then runs the regular file diff algorithm (described below)
on text files which are different. Binary files which differ, common
subdirectories, and files which appear in only one directory are listed.

When run on regular files, and when comparing text files which differ
during directory comparison, di ff tells what lines must be changed in the
files to bring them into agreement. Except in rare circumstances, di ff
finds a smallest sufficient set of file differences.

There are several options for output format; the default output format
contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convertfilel intofile2. The
numbers after the letters pertain to file2. In fact, by exchanging a for d and
reading backward, one may ascertain equally how to convertfile2 intofilel.

November 1991 2

diff(l) diff(l)

As in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated as a
single number.

Following each of these lines come all the lines that are affected in the first
file flagged by "<", then all the lines that are affected in the second file
flagged by ">".

LIMITATIONS
Editing scripts produced under the -e or - f option are naive about
creating lines consisting of a single ''.''.

When comparing directories with the - b option specified, di ff first
compares the files as with cmp, and then decides to run the di ff
algorithm if they are not equal. This may cause a small amount of spurious
output if the files then tum out to be identical, because the only differences
are insignificant blank string differences.

If an unrecognized option is specified, di ff performs the default operation
anyway.

The di ff command may not work if files contain a very long line, or if
files are very long.

STATUS MESSAGES AND VALUES
Exit status is 0 for no differences, 1 for some, 2 for trouble.

FILES
/usr/bin/diff

Executable file
/tmp/d?????

Temporary file
/usr /lib/diffh

Executable file
/bin/pr

Executable file

SEE ALSO
bdiff(l), cmp(l), comm(l), cpp(l), diff3(1), ed(l)

"Other Tools" inA/UX Programming Languages and Tools, Volume 2

3 November 1991

diff3(1) diff3(1)

NAME
di f f3 - compares three versions of a file

SYNOPSIS
diff3 [-3] [-e] [-x]filel file2 file3

ARGUMENTS
-3 Produces a script to incorporate only changes flagged==== (====3).

The following command will apply the resulting script to file].

(cat script; echo '1, $p') I ed - file]

This option is equivalent to the -x option.

-e Causes diff3 to publish a script for the editor ed which results in all
changes fromfile2 andfile3 being implemented into file 1. that is, the
changes that normally would be flagged==== and ====3.

file I
Specifies the first version of the file.

file2
Specifies the second version of the file.

file3
Specifies the third version of the file.

-x Produces a script to incorporate only changes flagged==== (====3).
The following command will apply the resulting script to file I.

(cat script; echo 'l,$p') I ed -file]

This option is equivalent to the - 3 option.

DESCRIPTION
di ff 3 compares three versions of a file, and publishes disagreeing ranges
of text flagged with these codes:

all three files are different

====1
file I is different

====2
file2
is different

====3
file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

November 1991 1

diff3(1) diff3 (1)

f nl a
Text is to be appended after line number nl in file/, where!= 1, 2, or
3.

f nl , n2 c
Text is to be changed in the range line nl to line n2. If nl = n2, the
range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed.

EXAMPLES

2

If the file f 1 contains the following text:

This is a file.
This is the first of three files.
This is not the last file.

and the file f2 contains:

This is a file.
This is the second of three files.
This is not the last file.

and the file f3 contains:

This is a file.
This is the third of three files.
This is the last file.

then the command:

diff3 fl f2 f3

will return:

1:2,3c
This is the first of three files.
This is not the last file.

2:2,3c
This is the second of three files.
This is not the last file.

3:2,3c
This is the third of three files.
This is the last file

November 1991

diff3(1) diff3(1)

LIMITATIONS
Text lines that consist of a single . will defeat -e.

The di f f3 command won't work on files larger than 64K bytes.

FILES
/tmp/d3*

Temporary files
/usr/bin/diff3

Executable file
/usr/lib/diff3prog

Executable file

SEE ALSO
bdiff(l), cmp(l), diff(l)

November 1991 3

diffmk(l) diffmk(l)

NAME
di f fmk - marks the differences between two files

SYNOPSIS
di f fmk [-] file I file2 file3

ARGUMENTS
Causes diffmk to readfilel from the standard input.

file]
Specifies the older version of a file.

file2
Specifies the newer version of a file.

file3
Specifies the file that is generated by di f fmk, which contains the
lines of file2 plus inserted formatter ''change mark'' requests.

DESCRIPTION
di f fmk compares two versions of a file and creates a third file that
includes "change mark" requests (.me) for nroff or troff.

Whenfile3 is formatted, changed, or inserted, text is shown by a pipe (I) at
the right margin of each line. The position of deleted text is shown by a
single asterisk (*).
If anyone is so inclined, di f fmk can be used to produce listings of C (or
other) programs with changes marked.

EXAMPLES
A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp I lp

where the file macs contains

.pl 1

.11 77

.nf

.eo

.nc

The . 11 request might specify a different line length, depending on the
nature of the program being printed. The . eo and . nc requests are
probably needed only for C programs.

LIMIT A TIO NS
Aesthetic considerations may dictate manual adjustment of some output.

File differences involving only formatting requests may produce
undesirable output. For example, replacing . sp by . sp 2 produces a
"change mark" on the preceding or following line of output.

November 1991

diffmk(l)

FILES
/usr/bin/diffmk

Executable file

SEE ALSO

diffmk(l)

bdiff(l), cmp(l), diff(l), diff3(1), nroff(l), troff(l)

November 1991 2

dircmp(l) dircmp(l)

NAME
dircmp - compares the contents of two directories

SYNOPSIS
dircmp [-d] [-s] [-wn] dirl dir2

ARGUMENTS
-d Compares the contents of files with the same name in both directories

and outputs a list telling what must be changed in the two files to bring
them into agreement. The list format is described in di ff.

dirl Specifies the directory that will be compared with dir2.

dir2 Specifies the directory that will be compared with dir 1.

- s Suppresses messages about identical files.

-wn
Changes the width of the output line to n characters. The default
width is 72.

DESCRIPTION
dircmp examines dirl and dir2 and generates various tabulated
information about the contents of the directories. Listings of files that are
unique to each directory are generated for all of the options. If no option is
entered, a list is output indicating whether the filenames common to both
directories have the same contents.

EXAMPLES
The command:

dircmp dl d2

will show the differences between the directories dl and d2.

FILES
/bin/dircmp

Executable file

SEE ALSO
bdiff(l), cmp(l), diff(l), diff3(1), diffmk(l)

1 November 1991

dirname(l) dirname(l)

See basename(l)

November 1991

dis(l) dis(l)

NAME
dis - produces an assembly language listing for a specified file

SYNOPSIS
dis [- d sec] [- da sec] [- F function] [-1 string] [- L] [- o] [- t sec]
[-V]jile ...

ARGUMENTS
-d sec

Disassembles the named section as . data, printing the offset of the
data from the beginning of the section.

-da sec
Disassembles the named section as . data, printing the actual address
of the data.

file Specifies the file that is to be disassembled.

-F function
Causes only those named functions from each user-supplied filename
to be disassembled.

-1 string
Disassembles the library file specified as string. For example, one
would issue the command

dis -1 x -1 z

to disassemble 1 ibx. a and 1 ibz . a. All libraries are assumed to be
in /lib.

- L Invokes a lookup of C source labels in the symbol table for subsequent
printing.

-o Prints numbers in octal. The default is hexadecimal.

-t sec
Disassembles the named section as . text.

-V Writes the version number of the disassembler to standard error.

DESCRIPTION
dis (disassembler) produces an assembly language listing of each of its
object.file arguments. The listing includes assembly statements and the
binary that produced those statements.

If the -d, -da, or -t options are specified, only those named sections
from each user-supplied filename are disassembled. Otherwise, all sections
containing text are disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as
[5 J , means that dis has reached the point in the assembly code where a C

language line (numbered as stated) begins. If a breakpoint is placed there

November 1991

dis(l) dis(l)

using sdb/adb, the debugger used will stop on a Cline. An expression
such as < 4 0 > in the operand field, following a relative displacement for
control transfer instructions, is the computed address within the section to
which control will be transferred. A C function name will appear in the
first column, followed by () .

STATUS MESSAGES AND VALUES
The self-explanatory messages indicate errors in the command line or
problems encountered with the specified files.

FILES
/bin/dis

Executable file

SEE ALSO
as(l), cc(l), ld(l), strings(!)

November 1991 2

disable(l) disable(I)

See enable(l)

1 November 1991

domainname (1) domainname(l)

NAME
domainname - sets or displays the name of the Network Information
Service (NIS) domain

SYNOPSIS
domainname [domain-name]

ARGUMENTS
domain-name

Specifies the domain name for this system. Only a user who is logged
in as root can specify a domain-name argument. In actual practice,
the domain name is set by the script I etc I sysini trc, which runs
domainname with the value that is stored in the second field of the
file I etc /HOSTNAME as the value of the domain-name argument.

DESCRIPTION
domainname, when run without the domain-name argument, displays the
name of the domain to which this system belongs. The term "domain" is
used to refer to a group of hosts that use the same NIS database to provide
NIS service.

To make a permanent change to the domain name, log in as root, edit the
second field of I etc /HOSTNAME, and restart the system to reinitialize the
NIS daemons. Changing the domain name, especially if the system is a
master or a slave NIS server, should be done with caution.

FILES
/bin/domainname

Executable file
SEE ALSO

ypini t(lM) inA/UX System Administrator's Reference

Chapter 4, "Setting Up the Network Information Service," in A/UX
Network System Administration

November 1991

du(l) du(l)

NAME
du - summarizes disk usage

SYNOPSIS
du [-a[l]] [-r] [-s] [files]

ARGUMENTS
-a Causes an entry to be generated for each file. If this option is not

specified, an entry is generated for each directory only.

files Specifies the files to be summarized. If this argument is not given, a
dot (.) is used.

-1 Causes additional information for symbolic links to be displayed,
indicating the full path to the file that each symbolic link references.
Note that the size shown is the block size for the symbolic link itself,
not that of the file that it references.

- r Causes du to generate messages about directories that cannot be read,
files that cannot be opened, and so on.

- s Causes only the grand total (for each of the specified files) to be
given.

DESCRIPTION
du displays the number of blocks contained in all files (recursively) and
directories within each directory and file specified by the files argument.
The default system size for physical blocks is 512 bytes. The block count
includes the indirect blocks of the file.

The du command is normally silent about directories that cannot be read,
files that cannot be opened, and so on.

A file with two or more links is counted only once.

EXAMPLES
The following command produces a count of the number of (512-byte)
blocks in each of the directories.

du dirl dir2

To see how many blocks are in each file, you must use the -a option.

LIMITATIONS
If you do not use the -a option, nondirectories given as arguments are not
listed.

If there are too many distinct linked files, du will count the excess files
more than once.

Files with holes in them will cause an incorrect block count.

November 1991

du(l)

FILES
/bin/du

Executable file

SEE ALSO
df(l)

November 1991

du(l)

2

dump(l) dump(l)

NAME
dump - stores (saves) selected parts of an object file

SYNOPSIS
dump [[-a] [-c] [-f] [-g] [-h] [-1] [-o] [-r] [-s] [-t] [-z name]]
[[-d number] [+d number] [-n name] [-p] [-t index] [+t index]
[-u] [-z name, number] [+z name]].file ...

dump [[-a] [-c] [-f] [-g] [-h] [-1] [-r] [-t] [-z name]]
[[-d number] [+d number] [-n name] [-p] [-t index] [+t index]
[-u] [-v] [-z name, number] [+z name]].file ...

ARGUMENTS

1

- a Dumps the archive header of each member of each archive file
argument.

- c Dumps the string table.

-d number
Dumps the section number or range of sections starting at number and
ending either at the last section number or number specified by +d.

+d number
Dumps sections in the range either beginning with first section or
beginning with section specified by - d.

- f Dumps each file header.

file Specifies the object file or an archive of object files to be saved.

-g Dumps the global symbols in the symbol table of a version 6.0
archive.

- h Dumps section headers.

-1 Dumps line number information.

-n name
Dumps information pertaining only to the named entity. This modifier
applies to the -h, -s, -r, -1, and -t options.

- o Dumps each optional header.

-p Suppresses the printing of the headers.

- r Dumps relocation information.

- s Dumps section contents.

- t Dumps symbol table entries.

-t index
Dumps only the indexed symbol table entry. When the -t option is
used in conjunction with the + t option, it specifies a range of symbol
table entries.

November 1991

dump(l) dump(l)

+t index
Dumps the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the - t option.

-u Underlines the name of the file for emphasis.

-v Dumps information in symbolic representation rather than numeric
(for example, C_STATIC instead of OX02). This modifier can be
used with all the preceding options except the-sand -o options.

-z name
Dumps line number entries for the named function.

- z name, number
Dumps line number entry or range of line numbers starting at number
for the named function.

+z name
Dumps line numbers starting at either function name or number
specified by the - z option up to number specified by this option.

DESCRIPTION
dump stores (or saves) selected parts of each of its object file arguments.

This command accepts both object files and archives of object files. It
processes each file argument according to one or more of the options.

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the - z option may be
replaced by a blank.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal, or
decimal representation, as appropriate.

FILES
/bin/dump

Executable file

SEE ALSO
as(l), dis(l), od(l), nm(l), strings(l)

a. out(4), ar(4) inA/UX Programmer's Reference

November 1991 2

e(1) e(l)

See ex(l)

1 November 1991

echo(l) echo(l)

NAME
echo - echoes its arguments

SYNOPSIS
echo [arg] ...

ARGUMENTS
arg Specifies the argument entered by the user which will be echoed.

DESCRIPTION
echo writes its arguments separated by blanks and terminated by a
newline on the standard output. It also understands C-like escape
conventions; beware of conflicts with the shell's use of \:

\b backspace

\c print line without newline

\f form-feed

\n newline

\r carriage return

\t tab

\v vertical tab

\ \ backslash

\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal
number n, which must start with a zero.

The echo command is useful for producing messages in command files
and for sending known data into a pipe. A version of echo is built into the
Bourne shell (sh(l)). Similar versions are also built into ksh(l) and
csh(l).

EXAMPLES
The command:

echo curmudgeon

simply responds

curmudgeon

on the standard output.

FILES
/bin/echo

Executable file

November 1991

echo(l) echo(l)

SEE ALSO
csh(l), ksh(l), sh(l)

2 November 1991

ed(l) ed(l)

NAME
ed, red - edit text

SYNOPSIS
ed [-] [-p string] [-x] [file]

red [-] [-p string] [-x] [file]

ARGUMENTS
Suppresses the printing of character counts by e, r, and w commands,
of diagnostics from e and q commands, and of the ! prompt after a
! shell command.

file Causes ed to simulate an e command on the named file; that is to say,
the file is read into ed's buffer so that it can be edited.

-p string
Allows the user to specify a prompt string. The string must be
enclosed in double quotes.

- x Causes an X command to be simulated first to handle an encrypted file.
This option and the editor command X are not implemented in the
international distribution.

DESCRIPTION
ed is the standard text editor. The ed command operates on a copy of the
file it is editing; changes made to the copy have no effect on the file until a
w (write) command is given. The copy of the text being edited resides in a
temporary file called the ''buffer.'' There is only one buffer.

red is a restricted version of ed. It will allow editing of files only in the
current directory. It prohibits executing shell commands via
! shell command. Attempts to bypass these restrictions result in the error
message:

restricted shell

Both ed and red support the fspec(4) formatting capability. After
including a format specification as the first line ofjile and invoking ed with
your terminal in st ty -tabs or st ty tab3 mode (see st ty(l)), the
specified tab stops will be used automatically when scanning file. For
example, if the first line of a file contained:

<:tS,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length
of 72 would be imposed.

Note: While entering text, tab characters, when typed, are
expanded to every eighth column, as is the default.

November 1991

ed(l) ed(l)

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, followed by any
applicable parameters to that command. These addresses specify one or
more lines in the buffer. Every command that requires addresses has
default addresses, so that the addresses very often can be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in "input mode." In this
mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period (.) alone at the beginning of a line.

The ed command supports a limited form of ''regular expression'' (RE)
notation; regular expressions are used in addresses to specify lines and in
some commands (for example, s) to specify portions of a line that are to be
substituted. A regular expression specifies a set of character strings. A
member of this set of strings is said to be ''matched'' by the RE. The REs
allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 next) is a
one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character
RE that matches the special character itself. The special characters
are:

a. . , *, [, and \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special, except when
they appear within square brackets ([] ; see paragraph 1.4).

b. " (circumflex), which is special at the beginning of an entire RE
(see paragraphs 3.1 and 3.2), or when it immediately follows the
left of a pair of square brackets ([J) (see paragraph 1.4).

c. $ (currency symbol), which is special at the end of an entire RE
(see paragraph 3.2).

d. The character used to bound (that is, delimit) an entire RE, which
is special for that RE (for example, see how slash(/) is used in
the g command.)

1.3 A period (.) is a one-character RE that matches any character except
newline.

1.4 A nonempty string of characters enclosed in square brackets ([J) is
a one-character RE that matches "any one" character in that string.
If, however, the first character of the string is a circumflex ("), the
one-character RE matches any character except newline and the

2 November 1991

ed(l) ed(l)

remaining characters in the string. The "' has this special meaning
only if it occurs first in the string. The minus (-) may be used to
indicate a range of consecutive ASCII characters; for example, [0-9]
is equivalent to [0123456789] . The - loses this special meaning if it
occurs first (after an initial "',if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first
character within it (after an initial "',if any); for example, [] a - fl
matches either a right square bracket (]) or one of the letters a
through f, inclusive. The four characters, listed in paragraph 1.2, item
a., stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is an RE that matches whatever the one-character
RE matches.

2.2 A one-character RE followed by an asterisk(*) is a RE that matches
zero or more occurrences of the one-character RE. If there is any
choice, the longest left-most string that permits a match is chosen.

2.3 A one-character RE followed by \ { m \ } , \ { m, \ } , or \ { m,n \ } is an
RE that matches a range of occurrences of the one-character RE. The
values of m and n must be non-negative integers less than 256:

\ { m \ } matches exactly m occurrences;

\ {m, \} matches "at least" m occurrences;

\ { m, n \ } matches "any number" of occurrences between m and n
inclusive.

Whenever a choice exists, the RE matches as many occurrences as
possible.

2.4 The concatenation of REs is a RE that matches the concatenation of
the strings matched by each component of the RE.

2.5 An RE enclosed between the character sequences \ (and \) is an RE
that matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was
matched by an expression enclosed between \ (and \) earlier in the
same RE. Here n is a digit; the sub-expression specified is that
beginning with the nth occurrence of \ (counting from the left. For
example, the expression " \ (. * \) \ 1 $ matches a line consisting of
two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment
or final segment of a line (or both).

3.1 A caret (") at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

November 1991 3

ed(l) ed(l)

4

3.2 A currency symbol($) at the end of an entire RE constrains that RE to
match a final segment of a line.

The construction "entire RE$ constrains the entire RE to match the entire
line.

The null RE (for example, I/) is equivalent to the last RE encountered.
See the paragraph before the "Files" section, at the end of this manual
page.

To understand addressing in ed, it is necessary to know that at any time
there is a "current line." Generally speaking, the current line is the last
line affected by a command; the exact effect on the current line is discussed
under the description of each command. The "addresses" are constructed
as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the nth line of the buffer.

4. 'x addresses the line marked with the mark name character x, which
must be a lowercase letter. Lines are marked with the k command. If
x was not used to mark a line, 'x addresses line 0.

5. An RE enclosed by slashes(/) addresses the first line found by
searching forward from the line following the current line toward the
end of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the
beginning of the buffer and continues up to and includes the current
line, so that the entire buffer is searched. See the paragraph before the
"Files" section at the end of this manual page.

6. An RE enclosed in question marks(?) addresses the first line found by
searching backward from the line preceding the current line toward
the beginning of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the
end of the buffer and continues up to and includes the current line.
See also the last paragraph before the "Files" section at the end of
this manual page.

7. An address followed by a plus sign (+) or a minus sign (-) followed
by a decimal number specifies that address plus (respectively, minus)
the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or - , the addition or subtraction is taken
with respect to the current line; for example, - 5 is understood to mean
. -5.

November 1991

ed(l) ed(l)

9. If an address ends with+ or-, then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule, and of the
preceding rule, the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions of the editor, the
character " in addresses is entirely equivalent to - .) Moreover,
trailing + and - characters have a cumulative effect, so - - refers to
the current line less 2.

10. For convenience, a comma (,)stands for the address pair 1, $,while
a semicolon (;) stands for the pair . , $.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default addresses
when an insufficient number of addresses is given; if more addresses are
given than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by commas (,). They
may also be separated by semicolons (;). In the latter case, the current line
(.) is set to the first address, and only then is the second address calculated.
This feature can be used to determine the starting line for forward and
backward searches (see rules 5. and 6. preceding). The second address of
any two-address sequence must correspond to a line that follows, in the
buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that
the given addresses are the default.

It is generally illegal for more than one command to appear on a line. Any
command (except e, f, r, or w) may be suffixed by 1, nor p, however, in
which case the current line is either listed, numbered or printed,
respectively, as discussed under the l, n and p commands.

(.)a

text
The append command reads the given text and appends it after the
addressed line; . is left at the last inserted line, or, if there were none,
at the addressed line. Address 0 is legal for this command; it causes
the appended text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal is
256 per line (including the newline character).

(.) c
text

The change command deletes the addressed lines, then accepts input
text that replaces these lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

November 1991 5

ed(l) ed(l)

6

(.,.)d

The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

efile
The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last line of
the buffer. If no filename is given, the currently-remembered
filename, if any, is used (see the f command). The number of
characters read is typed; file is remembered for possible use as a
default filename in subsequent e, r, and w commands. If file is
replaced by ! , the rest of the line is taken to be a shell (sh(l))
command whose output is to be read. Such a shell command is not
remembered as the current filename. See also the "Status Message
and Values" section, later in the manual page.

Efile
The E command is like e, except that the editor does not check to see
if any changes have been made to the buffer since the last w
command.

£file
If.file is given, this command changes the currently-remembered
filename to file; otherwise, it prints the currently-remembered
filename.

(1 , $) g I RE I command list
In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given command
list is executed with . initially set to that line. A single command or
the first of a list of commands appears on the same line as the global
command. All lines of a multi-line list except the last line must be
ended with a\; a, i, and c commands and associated input are
permitted. The . terminating input mode may be omitted if it would
be the last line of the command list. An empty command list is
equivalent to the p command.

(l,$)G/RE!
In the interactive global command, the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed~"· is changed to that line, and any one command (other than
one of the a, c, i, g, G, v, and v commands) may be input and is
executed. After the execution of that command, the next marked line
is printed, and so on; a newline acts as a null command; an & causes
the re-execution of the most recent command executed within the

November 1991

ed(l) ed(l)

current invocation of G. Note that the commands input as part of the
execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal
(ASCII DELETE or BREAK). A command that causes an error
terminates the G command.

h The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

H The Help command causes ed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It will also
explain the previous ? if there was one. The H command alternately
turns this mode on and off; it is initially off.

(.) i
text

The insert command inserts the given text before the addressed line;
is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the
placement of the input text. Address 0 is not legal for this command.
The maximum number of characters that may be entered from a
terminal is 256 per line (including the newline character).

(. ' . +1) j
The join command joins contiguous lines by removing the appropriate
newline characters. If exactly one address is given, this command
does nothing.

(.)k.x
The mark command marks the addressed line with name x, which
must be a lowercase letter. The address 'x then addresses this line;
is unchanged.

(. ' .) 1
The list command lists the addressed lines in an unambiguous way: A
few nonprinting characters (for example, tab, backspace) are
represented by mnemonic overstrikes. All other nonprinting
characters are printed in octal, and long lines are folded. An 1
command may be appended to any command other thane, f, r, or w.

(., .)ma
Move addressed line(s) to after the line addressed by a. Address 0 is
legal for a and causes the addressed line(s) to be moved to the
beginning of the file. It is an error if address a falls within the range
of moved lines; . is left at the last line moved.

(.,.)n
The print command prints the addressed lines, preceding each line by
its line number and a tab character; . is left at the last line printed.

November 1991 7

ed(l) ed(l)

8

Then command may be appended to any command other thane, f, r,
orw.

(•I•)p
The print command prints the addressed lines; . is left at the last line
printed. The p command may be appended to any command other
thane, f, r, or w. For example, dp deletes the current line and prints
the new current line.

P The editor will prompt with a * for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

q The q command exits. ed No automatic write of a file is done (but
see the "Status Messages and Values" section later in the manual
page.

Q The Q command exits ed without checking if changes have been
made in the buffer since the last w command.

($) r file
The read command reads in the given file after the addressed line. If
no filename is given, the currently-remembered filename, if any, is
used (see e and f commands). The currently-remembered filename is
not changed unless file is the very first filename mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; . is set to the last line read in. If file is
replaced by ! , the rest of the line is taken to be a shell (sh(l))
command whose output is to be read. For example, $ r ! 1 s appends
the current directory to the end of the file being edited. Such a shell
command is not remembered as the current filename .

.) s!RE!replacementl or
, .) s!RE!replacement/g or
, .) s/RE/replacementln
These commands search each addressed line for an occurrence of the
specified RE. In each line in which a match is found, all
(nonoverlapped) matched strings are replaced by the replacement if
the global replacement indicator g appears after the command. If the
global indicator does not appear, only the first occurrence of the
matched string is replaced. Sometimes substitution of an RE results in
the last (or only) affected line being printed out. This occurs only
when substitution is not global or of an nth occurrence. If a number n
appears after the command, only the nth occurrence of the matched
string on each addressed line is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than
space or newline may be used instead of I to delimit the RE and the

November 1991

ed(l) ed(l)

replacement; . is left at the last line on which a substitution occurred.
See the paragraph before the "Files" section at the end of this manual
page.

An ampersand(&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &
in this context may be suppressed by preceding it with a \. As a more
general feature, the characters \n, where n is a digit, are replaced by
the text matched by the nth regular subexpression of the specified RE
enclosed between \ (and \) . When nested parenthesized
subexpressions are present, n is determined by counting occurrences
of \ (starting from the left. When the character % is the only
character in the replacement, the replacement used in the most recent
substitute command is used as the replacement in the current
substitute command. The % loses its special meaning when it is in a
replacement string of more than one character or is preceded by a \.

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it with a \.
Such substitution cannot be done as part of a g or v command list.

(. , .) ta
This command is similar to the move (m) command, except that a copy
of the addressed lines is placed after address a (which may be O); . is
left at the last line of the copy.

u The u command undoes the most recent command that modified
anything in the buffer, namely the most recent a, c, d, g, i, j, m, r,
s, t, v, G, or v command.

(1 , $) v I RE I command list
This command is the same as the global command g, except that the
command list is executed with . initially set to every line that does not
match the RE.

(1, $)VIRE!
This command is the same as the interactive global command G except
that the lines that are marked during the first step are those that do not
match the RE.

(1 , $) w file
This command writes the addressed lines into the named file. If the
file does not exist, it is created with mode 666 (readable and writable
by everyone), unless your umask setting (see sh(l)) dictates
otherwise. The currently-remembered filename is not changed unless
file is the very first filename mentioned since ed was invoked. If no
filename is given, the currently-remembered filename, if any, is used
(see e and f commands); . is unchanged. If the command is

November 1991 9

ed(l) ed(l)

10

successful, the number of characters written is typed. If file is
replaced by ! , the rest of the line is taken to be a shell (sh(l))
command whose standard input is the addressed lines. Such a shell
command is not remembered as the current filename.

X A key string is demanded from the standard input. Subsequent e, r,
and w commands will encrypt and decrypt the text with this key by the
algorithm of crypt(l). An explicitly empty key turns off encryption.
The encryption scheme used here is not secure.

($) =

The line number of the addressed line is typed; address 0 is legal for
this command. . is unchanged by this command.

! shell command
The remainder of the line after the ! is sent to the system shell (sh(l))
to be interpreted as a command. Within the text of that command, the
unescaped character % is replaced with the remembered filename; if a
! appears as the first character of the shell command, it is replaced
with the text of the previous shell command. Thus, ! ! will repeat the
last shell command. If any expansion is performed, the expanded line
is echoed; . is unchanged .

. + 1) newline
An address alone on a line causes the addressed line to be printed. A
newline alone is equivalent to . +lp; it is useful for stepping forward
through the buffer.

If an interrupt signal (ASCII or CONTROL-c is sent, ed prints a ? and
returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global
command list, 64 characters per filename, and 128K characters in the
buffer. The limit on the number of lines depends on the amount of user
memory; each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters
after the last newline. Files (for example, a. out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of an RE or of a replacement string (for example, !)
would be the last character before a newline, that delimiter may be omitted,
in which case the addressed line is printed. The following pairs of
commands are equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?sl ?sl?

November 1991

ed(l) ed(l)

EXAMPLES
The command:

ed text

invokes the editor with the file named text. For further examples, see
"Using ed" in AIUX Text Editing Tools.

STATUS MESSAGES AND VALUES
? for command errors.

?file
for an inaccessible file.
(use the hand H commands for detailed explanations).

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy
ed's buffer via thee or q commands. It prints ? and allows one to
continue editing. A second e or q command will take effect at any time,
provided no further changes have been made to the file. The - command­
line option inhibits this feature.

NOTES
The ! command and the ! escape from the e, r, and w commands cannot
be used ifthe the editor is invoked from a restricted shell (see sh(l)).

The sequence \n in an RE does not match a newline character.

The 1 command mishandles interrupts.

Files encrypted directly with the crypt(l) command with the null key
cannot be edited.

Characters are masked to 7 bits on input.

If the editor input is coming from a command file (that is, edfile < ed­
cmd-file), the editor will exit at the first failure of a command that is in the
command file.

FILES
/bin/ed

Executable file
/bin red

Executable file
/tmp/e#

Temporary file # is the process number
ed.hup

File containing work when the terminal is hung up

November 1991 11

ed(l) ed(l)

SEE ALSO
crypt(l), ex(l), grep(l), sed(l), sh(l), stty(l), vi(l)

12

fspec(4), regexp(5) inAJUX Programmer's Reference

"Using ed" inAIUXText Editing Tools

November 1991

edit(l) edit(l)

See ex(l)

November 1991

efl(l) efl(l)

NAME
e f 1 - invokes the Extended Fortran Language

SYNOPSIS
efl [-#] [-C] [-w] [file] ...

ARGUMENTS
- # Suppresses comments in the generated program, and the default

option.

- C Causes comments to be included in the generated program.

file Specifies the file to be compiled.

-w Suppresses warning messages.

DESCRIPTION

1

efl compiles a program written in the efl language into clean Fortran on
the standard output. The efl command provides the C-like control
constructs similar to Ratfor:

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as
switch-case);
while, for, Fortran do, repeat, and repeat ... until
loops;
multi-level break and next.

The efl command has C-like data structures, for example:

struct
{
integer flags (3)
character(8) name
long real coords(2)
} table (100)

The language offers generic functions, assignment operators (+=,&=,and
so on.), and sequentially evaluated logical operators (&& and 11). There is
a uniform input/output syntax:

write(6,x,y:f(7,2), do i=l,10 { a(i,j) ,z.b(i) })

The e f 1 command also provides some syntactic "sugar":

free-form input:
multiple statements per line; automatic continuation; statement
label names (not just numbers).

comments:

November 1991

efl(l)

this is a comment.

translation of relational and logical operators:

efl(l)

>, >=, &, and so on, become . GT., . GE., . AND., and so on,

return expression to caller from function:

return (expression)

defines:
define name replacement

includes:
include.file

An argument with an embedded = (equal sign) sets an e fl option as if it
had appeared in an option statement at the start of the program. Many
options are described in the reference manual. A set of defaults for a
particular target machine may be selected by one of the choices:
system=unix, system=gcos, or system=cray. The default setting
of the system option is the same as the machine on which the compiler is
running. Other specific options determine the style of input/output, error
handling, continuation conventions, the number of characters packed per
word, and default formats.

The efl command is best used with f77(1).

EXAMPLES
The command sequence:

efl prog.for > prog.f
f77 prog.f -o prog

will process the program prog. for through efl and then run the f77(1)
compiler on the output from e f 1, generating an executable file named
prog.

FILES
/usr/bin/efl

Executable file

SEE ALSO
cc(l), f77(1)

"EFL Reference," inA/UX Programming Languages and Tools, Volume I

November 1991 2

egrep(l) egrep(l)

See grep(l)

November 1991

eject(l) eject(l)

NAME
eject - ejects a diskette from the drive

SYNOPSIS
eject [O] [1] [/dev/rdsk/name]

ARGUMENTS
0 Specifies the diskette in disk drive zero (0) to be ejected.

1 Specifies the diskette in disk drive one (1) to be ejected.

/dev/rdsk/name
Specifies the full pathname of the character special file for the device.
If the device is not given, the device 0 is assumed.

DESCRIPTION
eject causes a floppy diskette drive (see fd(7)) to eject an inserted
diskette. One of three arguments may be included on the command line.

FILES
/bin/eject

Executable file
/dev/rdsk/c8d?s0

Tape device

SEE ALSO
fd(7) inA/UX Programmer's Reference

November 1991 1

enable(l) enable(l)

NAME
enable, disable - enable or disable LP printers

SYNOPSIS
enable printers

disable [-c] [-r[reason]] printers

ARGUMENTS
-c Cancels any requests that are currently printing on any of the

designated printers.

printers
Specifies the printers to be activated or deactivated.

-r[reason]
Associates a reason with the deactivation of the printers. This reason
applies to all printers mentioned up to the next - r option. If the - r
option is not present or the -r option is given without a reason, then a
default reason will be used. reason is reported by lpstat.

DESCRIPTION
enable activates the named printers, enabling them to print requests
taken by lp(l). Use lps ta t(l) to find the status of printers.

dis ab 1 e deactivates the named printers, disabling them from printing
requests taken by lp(l). By default, any requests that are currently
printing on the designated printers will be reprinted in their entirety either
on the same printer or on another member of the same class. Use
lpstat(l) to find the status of printers.

FILES
/usr/bin/enable

Executable file
/usr/bin/disable

Executable file
/usr/spool/lp/*

Spooler files

SEE ALSO
lp(l), lpstat(l)

AIUX Local System Administration

1 November 1991

enscript(l) enscript(l)

NAME
enscript - converts text files to POSTSCRIPT format for printing

SYNOPSIS
enscript [-1] [-2] [-bheader] [-B] [-fjont] [-FJifont] [-g] [-G] [-h]
[-k] [-K] [-1] [-Llines] [-m] [-o] [-pout] [-q] [-r] [-R] [[-#n]
[-Cclass] [-Jname] [- Pprinter]] [files]

enscript [-1] [-2] [-bheader] [-B] [-fjont] [-Fhfont] [-g] [-G] [-h]
[-k] [-K] [-1] [-Llines] [-m] [-o] [-pout] [-q] [-r] [-R] [[-ddest]
[-nn] [-ttitle] [-w] [files]

ARGUMENTS
-#n

Produces n copies. The default is one.

-1 Sets the text in one column (the default).

- 2 Sets the text in two columns.

-bheader
Sets the string to be used for page headings to header. The default
header is constructed from the filename, its last modification date, and
a page number.

- B Omits page headings.

-Cclass
Sets the job classification for use on the burst page.

-ddest
Sends the output to the named printer or printer class.

-fjont
Sets the font to be used for the body of each page. Defaults to
CourierlO, unless two-column rotated mode is used, in which case
it defaults to Courier7.

files Specifies the text files to be converted.

-Fhfont
Sets the font to be used for page headings. Defaults to
Courier-BoldlO.

-g Enables the printing of files containing nonprinting characters. Any
file with more than a small number of nonprinting characters is
suspected of being garbage and is not printed unless this option is
used.

- G Prints in gaudy mode; causes page headings, dates, page numbers to
be printed in a flashy style, at some slight performance expense.

November 1991

enscript(l) enscript(l)

- h Suppresses printing of a job burst page.

-Jname
Sets the job name for use on the burst page. Otherwise, the name of
the first input file is used.

- k Enables page prefeed (if the printer supports it). This allows simple
documents (for example, program listings in one font) to print
somewhat faster by keeping the printer running between pages.

- K Disables page prefeed (the default).

-1 Simulates a line printer; makes pages 66 lines long and omit headers.

-Llines
Sets the maximum number of lines to output on a page. The
enscript command usually computes how many to put on a page
based on point size, and may put fewer per page than requested by
lines.

-m Sends mail via mai 1(1) after the files have been printed. By default,
no mail is sent upon normal completion of the print request.

-nn
Produces n copies. The default is one.

- o Lists any missing characters whenever characters cannot be found
within a specified font.

-pout
Writes the POSTSCRIPT file to the named file rather than spooling it for
printing. As a special case, -p will send the POSTSCRIPT to the
standard output.

-Pprinter
Sends the output to the named printer.

-q Suppresses the status messages. The enscript command won't
report about pages, destination, omitted characters, and so forth. Fatal
errors are still reported to the standard error output.

-r Rotates the output 90 degrees (landscape mode). This is good for
output that requires a wide page or for program listings when used in
conjunction with the - 2 option.

enscript -2r fiks

is a nice way to get program listings.

- R Does not rotate. This option is also known as portrait mode (the
default).

2 November 1991

enscript(l) enscript(l)

-ttitle
Sets the job title for use on the burst page.

-w Writes a status message to the user's terminal after files have been
printed.

DESCRIPTION
enscript reads plain text files, converts them to POSTSCRIPT format, and
spools them for printing on a POSTSCRIPT printer. Fonts, headings, and
limited formatting and spooling options may be specified. By default, the
print spooler used by enscript is the Berkeley spooler, lpr. The
environment variable SPOOLER may be set to specify the System V
spooler, lp.

For example

enscript -Paleph boring.txt

processes the file called boring. txt for POSTSCRIPT printing, sending
the output to the printer aleph.

enscript -2r boring.c

prints a two-up landscape listing of the file called boring. c on the
default printer.

Font specifications have two parts: A font name that POSTSCRIPT
recognizes (for example, Times-Roman, Times-Roman
Bolditalic , Helvetica, Courier), and a point size (1 point=l/72
inch). So, Courier-Bold8 is 8-point Courier Bold, Hel vetica12 is
12-point Helvetica.

The environment variable ENSCRIPT may be used to specify defaults.
The value of ENS CR I PT is parsed as a string of arguments before the
arguments that appear on the command line. For example:

ENSCRIPT='-fTimes-Roman8'

sets your default body font to 8-point Times Roman.

The -#n, -Cclass, -Jname, and -Pprinter spooler options are passed to
the lpr command.

The -ddest, -nn, -ttitle, and -w spooler options are passed to the lp
command.

Environment Variables
The following environmental variables may be used in conjunction with
enscript:

SPOOLER
The name of the print spooler, lpr or lp, for ens er ipt to use. If
SPOOLER is not set, enscript will spool to lpr.

November 1991 3

enscript(l) enscript(l)

ENSCRIPT
String of options to be used by enscript.

PSLIBDIR
Pathname of a directory to use instead of /us r / 1 i b / p s for
enscript prologue and font metric files.

PSTEMPDIR
Pathname of temporary directory to use instead of XPSTEMDIRX of
spooled temporary files.

PRINTER
The name of a printer (as in the - P option) for lpr to use. If no -P
option is specified, lpr will use this printer. If neither - P nor
PRINTER is set, enscript will spool to a printer named
"Post Ser ipt". This environment variable has no effect on the
spooler lp.

LPDEST
The name of a printer for lp to use. If LPDEST is not set,
enscript will spool to a printer class named Postscript. This
environment variable has no effect on the spooler lpr.

Features
Options and the ENSCRIPT environment string are parsed in getopt(3)
fashion.

LIMITATIONS
Long lines are truncated. Because printer margins vary, line truncation
may be off. There should be a "wrap" option and multiple (truncated or
wrapped) columns.

NOTES
POSTSCRIPT is a trademark of Adobe Systems Incorporated.
Times and Helvetica are registered trademarks of Linotype.

FILES
/usr/bin/enscript

Executable file
/usr/lib/ps/*.afm

Font metrics files
/usr/lib/ps/enscript.pro

Prologue file for enscript files

SEE ALSO
lp(l), lpr(l), lprm(l), lpstat(l), pr(l)

getopt(3C) inA/UX Programmer's Reference

4 November 1991

env(l) env(l)

NAME
env- sets the environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args]

ARGUMENTS
Causes the inherited environment to be ignored completely, so that the
command is executed with exactly the environment specified by the
arguments.

args
Specifies the arguments for the command that is to be executed.

command
Specifies the command to be executed. If no command is specified,
the resulting environment is printed, one name-value pair per line.

name=value
Merges name=value into the inherited environment before the
command is executed.

DESCRIPTION
env obtains the current environment, modifies it according to its
arguments, then executes command with the modified environment.

EXAMPLES
The command:

env XYZ=pdq sh

sets XYZ to the value pdq for the duration of the command, which here is a
new shell, sh.

FILES
/bin/env

Executable file

SEE ALSO
csh(l), ksh(l), sh(l)

exec(2), profile(4), environ(5) inAJUX Programmer's Reference

November 1991

eqn(l) eqn(l)

NAME
eqn, checkeq- format mathematical text for troff

SYNOPSIS
eqn [-dxy] [-fn] [-pn] [-sn] [-Ttty-type] [-][file] ...

checkeq [file] ...

ARGUMENTS
Causes eqn to read the standard input.

-dxy

-fn

Sets delimiters to characters x and y with the command-line argument
-d.xy or (more commonly) with delimxy between . EQ and . EN.
The left and right delimiters may be the same character, the dollar sign
often being used as such a delimiter. Delimiters are turned off by
delim off. All text that is neither between delimiters nor between
. EQ and . EN is passed through untouched.

Specifies the font to be used. Replace n with the desired font.

file Specifies the file to be formatted. If this option is not given, eqn will
read the standard input.

-pn

-sn

Specifies the point size of the equation. Replace n with a point size.
The legal point size numbers are:

6 7 8 9 10 11 12 14
16 18 20 22 24 28 36

Specifies the size the equation.

-Ttty-type
Causes eqn to prepare output for the specified output device, tty-type.
The currently supported devices are -Taps (Autologic APS-5) and
-Tpsc (POSTSCRIPT device). The default is -Tpsc.

DESCRIPTION
eqn is a trof f(l) preprocessor for typesetting mathematical text on a
phototypesetter. Normal usage is

eqn [options]file ... I troff [options] I [typesetter]

A line beginning with . EQ marks the start of an equation; a line beginning
with . EN marks the end of an equation; troff does not alter these lines,
so they may be defined in macro packages to get centering, numbering, and
so forth. You may also name two characters as delimiters; eqn treats
subsequent text between delimiters as input.

November 1991

eqn(l) eqn(l)

checkeq is a related program that reports missing or unbalanced
delimiters and . EQ/. EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double
quotation marks, tildes, and circumflexes. Braces ({ }) are used for
grouping; generally, wherever a single character such as x may be used,
then x enclosed in braces may be used instead. A tilde C) represents a full
space in the output; a circumflex (~) half as much.

For full details, see "eqn Reference" in A/UX Text Processing Tools.

LIMIT A TIO NS
To boldface digits, parentheses, and so forth, it is necessary to enclose
them in quotation marks, as in

bold "12. 3"

When you use eqn with the nun macro package, displayed equations must
appear only inside displays.

See also LIMITATIONS under troff(!).

FILES
/bin/checkeq

Executable file
/bin/eqn

Executable file

SEE ALSO
nun(l), nunt(l), nroff(I), tbl(l), troff(!)

eqnchar(5), nun(5), mv(5) in A/UX Programmer's Reference

'' eqn Reference'' in A/UX Text Processing Tools

November 1991 2

ex(l) ex(l)

NAME
e, ex, edit - edit text

SYNOPSIS
ex[-] [+command] [-r] [-R] [-t tag] [-v] [-x]file .. .

e [-][+command] [-r] [-R] [-t tag] [-v] [-x]file .. .

edit[-] [+command] [-r] [-R] [-t tag] [-v] [-x]file ...

ARGUMENTS
Suppresses all interactive-user feedback, as when processing editor
scripts in command files.

+command
Indicates that the editor should begin by executing the specified
command. If command is omitted, then it defaults to $, positioning
the editor initially at the last line of the first file. Other useful
commands here are scanning patterns of the form I pat or line
numbers, for example, + 10 0 to start at line 100.

file Specifies the file to be edited.

- r Recovers files after an editor or system crash, retrieving the last saved
version of the named file. If no file is specified, a list of saved files
will be reported.

- R Specifies the read-only mode set and prevents accidental overwriting
of the file.

-t tag
Acts the same as an initial tag command, editing the file containing
the tag and positioning the editor at its definition.

-v Uses vi rather than ex.

-x Specifies encryption mode; a key is prompted for allowing creation or
editing of an encrypted file. This encryption scheme is not secure.

DESCRIPTION

1

ex is the root of a family of editors: edit, ex, and vi. The edit
command set is a subset of the ex set, including just the basic commands,
fewer magic characters, and line-based editing only. Display-based editing
is the foc:us of vi.

If you have not used ed, or are a casual user, you will find that the editor
edit is convenient for you. It avoids some of the complexities of ex,
which is used mostly by systems programmers and those very familiar with
ed.

November 1991

ex(l) ex(l)

e is synonymous with ex.

If you have a CRT terminal, you may wish to use a display-based editor; in
this case see vi(l), which is a command that focuses on the display editing
portion of ex.

Modes
Command

Normal and initial state. Input prompted for by : . The kill character
cancels partial command.

Insert
Entered by a, i, and c. Arbitrary text may be entered. Insert is
normally terminated by line having only . on it, or abnormally with
an interrupt.

Visual
Entered by vi, terminates with Q or A\.

Command Names and Abbreviations
abbrev ab next n undo u
append a number nu unmap unm
args ar preserve pre version ve
change c print p visual Vl

copy co put pu write w
delete d quit q xit x
edit e read re yank ya
file f recover rec window z
global g rewind rew escape
insert i set se I shift <
join j shell sh printnext CR
list 1 source so resubst &

map map stop st rs hi ft >
mark ma substitute s scroll AD

move m unabbrev una

where CR=RETURN, and AD=CONTROL-D.

Command Addresses
n linen /pat next with pat

current ?pat previous with pat
$ last x-n n before x
+ next x,y x through y

previous 'x marked with x
+n n forward previous context

November 1991 2

ex(l)

% 1,$

Initializing Options
EXINIT
$HOME/.exrc
./.exrc
set x
set nox
set x=val
set
set all
set x?

Most Useful Options
autoindent
auto write
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
showmode
slow open
window

place set's here in environment variable
editor initialization file
editor initialization file
enable option
disable option
give value val
show changed options
show all options
show value of option x

ai
aw
lC

lisp
list
magic
nu
para
redraw
scroll
sect
SW

sm
smd
slow
window

supply indent
write before changing files
in scanning
() { } are s-exp's

print CONTROL-I for tab, $ at end
. [* special in patterns
number lines
macro names which start .
simulate smart terminal
command mode lines
macro names
for< >,and input CONTROL-a

to) and } as typed
show insert mode in vi
stop updates during insert
visual mode lines

wrapscan ws around end of buffer?
automatic line splitting wrap margin wm

Scanning Pattern Formation
A beginning of line
$ end of line

\<
\>
[str]
[1' str]
[x-y]

*

any character
beginning of word
end of word
any char in str
... not instr
. . . between x and y
any number of preceding

ex(l)

3 November 1991

ex(l) ex(l)

EXAMPLES
The command:

ex text

would invoke the editor with the file named text.

LIMITATIONS
The undo (u) command causes all marks to be lost on lines changed and
then restored if the marked lines were changed.

The undo command never clears the "buffer modified" condition; that is,
once the editor buffer has been modified, ex tells you that it is
[Modified], even if you undo the only modification.

The z command prints a number of logical rather than physical lines.
More than a screen full of output may result if long lines are present.

File input/output errors don't print a name if the command line - option is
used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used
before exiting the editor.

Null characters are discarded in input files, and cannot appear in resultant
files.

FILES
/usr/bin/e

Executable file
/usr/bin/ex

Executable file
/usr/bin/edit

Executable file
awk(l), ed(l), grep(l), sed(l), vi(l)

curses(3X), term(4), terminfo(4) inA/UX Programmer's Reference

"Using ex " in AIUX Text Editing Tools

"Using vi " in AIUX Text Editing Tools

November 1991 4

expand(l) expand(l)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand -a [-tabstop] [-tabl, tab2, ... , tabn] [file] ...

unexpand [file]. ..

ARGUMENTS
- a Inserts tabs whenever they would compress the resultant file by

replacing two or more characters.

file Specifies the file to be read and expanded.

-tabstop
Sets the tabs at tabstop spaces apart instead of the default of 8, if a
single tabstop is given.

-tabl, tab2, ... , tabn
Sets the tabs at the specified columns.

DESCRIPTION
expand reads the named files (or the standard input, if none are given)
and writes on the the standard output with tabs changed into blanks.
Backspace characters are preserved into the output and decrement the
column count for tab calculations. expand is useful for preprocessing
character files that contain tabs (before sorting, looking at specific columns,
and so forth).

unexpand puts tabs back into the data from the standard input or the
named files and writes the result on the standard output. By default, only
leading blanks and tabs are reconverted to maximal strings of tabs.

FILES

1

/usr/ucb/expand
Executable file

/usr/ucb/unexpand
Executable file

November 1991

explain(l) explain(l)

See diction(!)

November 1991 1

expr(l) expr(l)

NAME
expr - evaluates arguments as an expression

SYNOPSIS
expr arguments

ARGUMENTS
arguments

Specifies the arguments to be evaluated.

DESCRIPTION
expr evaluates its arguments as an expression and writes the result on the
standard output. Terms of the expression must be separated by blanks.
Characters special to the Bourne shell or Korn shell (sh(l) or ksh(l),
respectively) must be escaped. (The expr command is replaced in the C
shell (csh(l)) by@.) Note that 0 is returned to indicate a zero value,
rather than the null string. Strings containing blanks or other special
characters should be enclosed in quotation marks. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2's-complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within { } symbols.

expr \I expr
returns the first expr if it is neither null nor 0; otherwise, returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0; otherwise, returns 0.

expr { =, \>, \>=, \<, \<=, ! =} expr
returns the result of an integer comparison if both arguments are
integers; otherwise, returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { \ *, I, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr : expr
matching operator : compares the first argument with the second
argument which must be a regular expression; regular expression
syntax is the same as that of ed(l), except that all patterns are
anchored (that is, begin with A) and, therefore, A is not a special
character, in that context. Normally, the matching operator returns the
number of characters matched (O on failure). Alternatively, the ·· .)
pattern symbols can be used to return a portion of the first argument.

November 1991

expr(l) expr(1)

EXAMPLES
a=' expr $a + 1'

adds 1 to the shell variable a.

'For $a equal to either "/usr/abc/file"
#or just "file"'
expr $a : ' . *I\ (. * \) ' \ I $a

returns the last segment of a pathname (that is, file). Watch out for / alone
as an argument: expr will take it as the division operator (see the
"Limitations" section later in this manual page).

A better representation of the preceding example:

expr I I $a : ' . *I\ (. * \) '

the addition of the I I characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

expr $VAR ' *'

returns the number of characters in $VAR.

STATUS MESSAGES AND VALUES
syntax error

for operator/operand errors

non-numeric argument
if arithmetic is attempted on such a string

As a side effect of expression evaluation, expr returns the following exit
values:

0 if the expression is neither null nor 0

1 if the expression is null or 0

2 for invalid expressions

LIMITATIONS
After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an=, the
command:

expr $a

looks like:

expr

, _,

as the arguments are passed to expr (and they will all be taken as the=
operator). The following works:

expr X$a X=

November 1991 2

expr(1)

FILES
/bin/expr

Executable file

SEE ALSO
csh(l), ed(l), ksh(l), sh(l)

3

expr(l)

November 1991

f77(1) f77(1)

NAME
f 7 7 - invokes the Fortran 77 compiler

SYNOPSIS
f77 [-1) [-66) [-A factor] [-c] [-C] [-E] [-f] [-F] [-g] [-I[24s]]
[-m] [-Ntableentries] ... [-ooutput] [-0) [-onetrip] [-p] [-R] [-S]
[-u] [-U] [-w] file ...

ARGUMENTS
-1 Acts the same as the -onetrip option.

-66
Compiles as a Fortran 66 program.

-A factor
Expands the default symbol table allocations for the assembler and
link editor. The default allocation is multiplied by the factor given.

- c Suppresses link editing and produces . o files for each source file.

-c Generates code for run-time subscript range-checking.

- E Indicates that the remaining characters in the argument are used as an
EFL flag argument whenever processing a . e file.

-f Uses a version of f77 that handles floating-point constants and links
the object program with the floating-point interpreter, in systems
without floating-point hardware.

file Specifies the file to be processed through the Fortran 77 compiler.

- F Applies EFL preprocessor to relevant files and puts the result in files
whose names have their suffix changed to . of. (No . o files are
created.)

-g Generates additional information needed for the use of sdb(l)

-I[24s]
Changes the default size of integer variables (only valid on machines
where the normal integer size is not equal to the size of a single
precision real). - I2 causes all integers to be 2-byte quantities, -I 4
(default) causes all integers to be 4-byte quantities, and - Is changes
the default size of subscript expressions (only) from the size of an
integer to 2 bytes.

-m Applies the M4 preprocessor to each EFL source file before
transforming with the efl(l) processor.

-Ntableentries
Sets the maximum number of table entries to the number entries.
Replaces table with one of the following letter designations
corresponding to a compiler table:

November 1991 1

f77(1) f77(1)

q Uses the equivalence table.

x Uses the external names table.

s Uses the statement number table.

c Uses the control block table.

n Uses the identifier table.

To allow up to 1000 statement numbers, use -NslOOO as the option
and argument.

-ooutput
Names the final output file output, instead of a. out.

-0 Invokes an object code optimizer.

-onetrip
Performs all DO loops at least once. (Fortran 77 DO loops are not
performed at all if the upper limit is smaller than the lower limit.)

-p Prepares object files for profiling (see prof(l)).

- R Removes the dynamically created assembler input file upon
completion.

-s Compiles the named programs and leaves the assembler language
output in corresponding files whose names are suffixed with . s. (No
. o files are created.)

-u Makes the default type of a variable undefined, rather than using the
default Fortran rules.

-U Does not "fold" cases. By default, the f77 compiler is not case
sensitive. This option causes f 7 7 to treat upper and lower cases
separate! y.

-w Suppresses all warning messages. If the option is -w6 6, only Fortran
66 compatibility warnings are suppressed.

DESCRIPTION

2

f 7 7 is the Fortran 77 compiler; it accepts several types of file arguments:

Arguments whose names end with . f are taken to be Fortran 77 source
programs; they are compiled and each object program is left in the current
directory in a file whose name is that of the source, with . o substituted for
. f. However, if a single Fortran source program is compiled and loaded
all at one time, the . o file is deleted. By default the process produces an
executable file, named a. out, in the current directory.

Arguments whose names end with . r or . e are taken to be EFL source
programs; these are first transformed by the EFL preprocessor, then
compiled by f7 7, producing . o files.

November 1991

f77(1) f77(1)

In the same way, arguments whose names end with . c or . s are taken to
be C or assembly source programs and are compiled or assembled,
producing . o files.

The options have the same meaning as in cc (see ld(l) for link editor
options).

Other arguments are taken to be link editor option arguments,
f77-compatible object programs (typically produced by an earlier run), or
libraries of f 7 7 -compatible routines. These programs, together with the
results of any compilations specified, are linked (in the order given) to
produce an executable program with the default name a . out.

STATUS MESSAGES AND VALUES
The messages produced by f7 7 itself are self-explanatory. The link editor,
ld(l), may occasionally write messages upon the output stream(s).

FILES
/usr/bin/f77

Executable file
file. [fresc]

Input file
file.a

Object file
a.out

Linked output
. I fort [pid]. ?

Temporary file
/usr/lib/f77comp

Compiler file
/lib/c2

Optional optimizer file
/usr/lib/libF77.a

Intrinsic function library file
/usr/lib/libI77.a

Fortran 1/0 library file
/lib!libc. a

C library file

SEE ALSO
asa(l), cc(l), efl(l), fpr(l), fsplit(l), ld(l), m4(1), prof(l),
sdb(l)

"f77 Command Syntax," inNUX Programming Languages and Tools,
Volume 1

November 1991 3

factor(I) factor(I)

NAME
factor -prints the prime factor of a given number

SYNOPSIS
factor [number]

ARGUMENTS
number

Specifies the number from which factor will print its prime factors.

DESCRIPTION
factor prints the prime factors of its argument. When factor is
invoked without an argument, it waits for a number to be typed in. If you
type in a positive number less than pow(2,56), it will factor the number and
print its prime factors; each one is printed the proper number of times.
Then it waits for another number. It exits if it encounters a zero or any
non-numeric character.

If factor is invoked with an argument, it factors the number as above
and then exits.

Maximum time to factor is proportional to ...Jn and occurs when n is prime
or the square of a prime, where n is the number being factored. It takes 1
minute to factor a prime near 1011 on a 68020.

STATUS MESSAGES AND VALUES
The message:

Ouch

is echoed when input is out of range or is garbage.

FILES

1

/bin/factor
Executable file

November 1991

false(l) false(l)

See true(l)

November 1991 1

fcnvt(l) fcnvt(l)

NAME
f cnvt - converts a file in one storage format to a different storage
format

SYNOPSIS
fcnvt [-f] [-v] [-i start-format] -s input-file output-file

fcnvt [-f] [-v] [-i start-format] -d input-file output-file

fcnvt [-f] [-v] [-i start-format] -t input-file output-file

f cnvt [- f] [-v] [- i start-format] -p input-file output-file

fcnvt [-f] [-v] [-i start-format] -b input-file output-file

fcnvt [- f] [-v] [- i start-format] -m input-file output-file

ARGUMENTS

1

- b Converts the input file to BinHex 4.0 format. The input file is encoded
into ASCII characters, permitting ASCII transfer of a binary file.

-d Converts the input file to Apple Double format.

- f Allows f cnvt to overwrite an existing file with the same name as the
new file.

- i start-format
Specifies the current format of the file to be converted. If an input-file
format is not specified in this way, the Apple Single format is
assumed.

input-file
Specifies the file to be converted.

-m Converts the input file to a MacBinary format. This format is
commonly used to transfer Macintosh files by means of a
telecommunications link, using a protocol such as XMODEM,
XMODEM7, Kermit, CompuServe A, or CompuServe B.

output-file
Specifies the name of the file to be created in the desired storage
format.

-p Converts the input file to Plain Pair format. This option is the same as
the -t option except that output-file. info is not created.

- s Converts the input file to Apple Single format. This format is the
default.

startjormat
Specifies the present format of the file to be converted, in terms of one
of the following formats:

single

November 1991

fcnvt(l)

double
triple
pair
bin
hex

fcnvt(l)

These values correspond to the Apple Single, Apple Double, Plain
Triple, Plain Pair, BinHex 4.0, and MacBinary formats as explained in
"File Formats" in the "Description" section.

- t Converts the input file to Plain Triple format. Three files are created;
suffixes are used to distinguish the three derived files. (See ''File
Formats" in the "Description" section.)

-v Specifies verbose mode. In verbose mode, fcvnt displays
information as it processes each file.

DESCRIPTION
fcnvt converts a file in one storage format to a corresponding file in a
different storage format.

The Finder application fully supports only the Apple Double and Apple
Single formats; that is, you can open files in either of these two formats by
double-clicking or by choosing Open from the File menu of the Finder.

The main purpose of f cnvt is to convert Macintosh files received in a
foreign format to one of the native formats of Apple Single or Apple
Double.

File formats other than the genuine Apple Double and Apple Single
formats are needed because the native file formats permit files to contain
data values that make electronic transmission unreliable. Even with the best
communications programs, files containing all the possible binary data
values can cause transmission problems. Therefore, a conversion process
is the only really safe method for transmitting files.

The Macintosh Operating System takes advantage of a twin-file storage
scheme. Whenever applicable, certain types of data are stored in a
resource-fork file as well as a data-fork file. For users, this fact is normally
irrelevant because the Finder represents these twin files with a single icon,
and both files are manipulated simultaneously as if they were one file.

File Formats
Of the file formats that can be obtained, the most desirable ending format is
a Finder-compatible one. The Finder can decipher and open files in Apple
Single and Apple Double file formats only.

With Apple Single (single) format, data and file-attribute information is
kept in a single file. Apple Single format is best used for nontext data and
executable Macintosh object files. Directory listings look much cleaner

November 1991 2

fcnvt(l) fcnvt(l)

because each Macintosh file is mapped to a single A/UX file with no
percent sign (%) prefix. A header at the beginning of the file contains
offsets to the data, resource information, or both, as well as information
corresponding to Macintosh file attributes.

With Apple Double (doub 1 e) format, the contents of the data fork are
stored in one file, known as the data file; resources and file-attribute
information are stored in a separate file, known as the header file. The
header file has the same name as the data file, but the filename is prefixed
with a percent sign. The Apple Double format is best used for text data and
data to be shared with UNIX utilities, because the data fork is available as
an isolated file.

The Plain Triple (triple) format is used by the macget and macput
public-domain file-transfer programs. The files output-file. info,
output-file. data, and output-file. rsrc contain identification information,
the data fork, and the resource fork, respectively.

The Plain Pair (pair) format is similar to the triple format except that
output-file. info is not created.

The BinHex 40 format converts all binary and any other data into an
ASCII-encoded form, permitting an ASCII transfer mode for what were
once binary files.

The MacBinary storage format is commonly used to transfer Macintosh
files over a telecommunications link, using a protocol that supports certain
kinds of binary file transfers, such as XMODEM, XMODEM7, Kermit,
CompuServe A, or CompuServe B.

File Transfers

3

Among UNIX users, files are often distributed electronically, and often
they are compressed as well as converted into easily transmittable formats.
To recover the transmitted file to a form that is usable, the expansion and
conversion steps must be performed in the reverse order in which these
steps were performed before transmission.

To illustrate the simpler case (no file compression before transmission),
you could make the file IF i 1 eMaker I I ready for transmission by
converting it to a MacBinary format with

fcnvt -m /FileMakerII /tmp/filemaker

Once received by the receiving party, the file can be converted back to an
Apple Single format with this command:

fcnvt -i bin filemaker.bin FileMakerII

November 1991

fcnvt(l) fcnvt(l)

A MacBinary format is commonly used to send Macintosh files over a
telecommunications link using a protocol such as XMODEM, XMODEM7,
Kermit, CompuServe A, or CompuServe B.

A file downloaded onto your system through a terminal emulator program
is likely to be in text-only format, BinHex 4.0 format, or MacBinary
format, or it may simply be a copy of the resource fork of the Macintosh
file. The preferred way to discover the format is to receive that information
directly from the sender.

Note that file transfers made through terminal emulators are likely to strip
away the Macintosh type and creator attributes for the file. (Each of these
attributes is one four-character string.) See set f i le(l) for information
on restoring these attributes. If they are missing, the preferred way to
discover these attributes is to receive that information directly from the
sender.

FILES
/mac/bin/fcnvt

Executable file
SEE ALSO

setfile(l), tar(l), uuencode(lC), uusend(lC)

November 1991 4

fgrep(l) fgrep(l)

See grep(l)

1 November 1991

file(I) file(l)

NAME
f i 1 e - determines the type of a file

SYNOPSIS
file [-c] [-f !file] [-m mfile] arg ...

ARGUMENTS
arg Specifies the argument that will be tested by the file command.

- c Causes f i 1 e to check the magic file for format errors. This
validation is not normally carried out for reasons of efficiency. No file
typing is done under the - c option.

- f !file
Specifies the file containing the names of the files to be examined.

-m mfile
Instructs f i 1 e to use an alternate magic file.

DESCRIPTION
f i 1 e performs a series of tests on each file named in its arguments in an
attempt to classify it. If the file appears to be ASCII, f i 1 e examines the
first 512 bytes and tries to guess its language. If a file is an executable
a . out file, f i 1 e will print the version stamp, provided it is greater than 0
(see ld(l)).

The file command uses the file I etc /magic to identify files that have
some sort of "magic number," that is, any file containing a numeric or
string constant that indicates its type. Commentary at the beginning of
I etc /magic explains its format.

EXAMPLES
The command:

f i 1 e text-file program-file directory

reports the filenames and directory name, and whether the files are English
text, nroff input, a C program, or whatever.

FILES
/bin/file

Executable file
/etc/magic

Executable file

November 1991

file(l)

SEE ALSO
ld(l)

magic(4) inAJUX Programmer's Reference

2

file(l)

November 1991

find(l) find(l)

NAME
find - finds files

SYNOPSIS
find pathname... expression

ARGUMENTS
expression

Specifies the Boolean expression that is to be found.

pathname
Specifies the pathname to be searched.

DESCRIPTION
find recursively descends the directory hierarchy for each pathname
specified by a pathname argument, seeking files that match the Boolean
expression expression written in the primaries described in this section.
The find command does not follow symbolic links. In the descriptions of
the primaries, the argument n represents a decimal integer, where +n means
more than n, -n means less than n, and n means exactly n.

-atime n
True if the file has been accessed within the last n days. The access
time of directories in the pathname argument is changed by find
itself.

- cp i o device
Always true; writes the current file on device in cpio(4) format
(512-byte records).

-ctime n
True if the file has been changed within the last n days.

-depth
Always true; causes descent of the directory hierarchy to be done so
that all entries in a directory are acted on before the directory itself.
This argument can be useful when you use find with cpio(l) to
transfer files that are contained in directories for which you do not
have write permission.

-exec cmd
True if the executed command cmd returns a zero value as its exit
status. The end of cmd must be punctuated by an escaped semicolon.
A command argument of the form { } is replaced by the current
pathname.

(expression)
True if the parenthesized expression is true. (Parentheses are special
to the shell and must be escaped.)

November 1991 1

find(l) f ind(l)

2

-fstypetype
True if the file system to which the file belongs is of the type specified
by type. The value of type can be 4. 2 Berkeley Software Distribution
(BSD), 5 . 2 System V File System (SVFS), or nf s Network File
System (NFS).

-group gname
True if the file belongs to the group gname. If gname is numeric and
does not appear in the I etc I group file, it is interpreted as a group
ID.

-inum n
True if the file has the inode number specified by n.

-links n
True if the file has n links.

-mtime n
True if the file has been modified within the last n days.

-name file
True if file matches the current filename. You can use normal shell
argument syntax if it is escaped. (Use the [, ? , and * characters
carefully.)

-newer file
True if the current file has been modified more recently than the
argument file.

-ok cmd
Same as -exec, except that the generated command line is printed
with a question mark as the first character, and is executed only if you
respond by typing y.

-perm onum
True if the file permission flags exactly match the octal number onum
(see chmod(l)). If onum is prefixed by a minus sign, more flag bits
(017777, described in stat(2)) become significant and the flags are
compared:

(flags & onum) == onum

-print
Always true; causes the current pathname to be printed.

-prune
Always true. Has the side effect of pruning the search tree at the file;
that is, if the current pathname is a directory, find does not descend
into that directory.

November 1991

find(l) find(l)

-size n[c]
True if the file is n blocks long (512 bytes per block). If n is followed
by a c, the size is in characters.

-type c
True if the type of the file is c, where c is b, c, d, 1, p, or f for block
special file, character special file, directory, symbolic link, FIFO
(named pipe), or plain file, respectively.

-user uname
True if the file belongs to the user uname. If uname is numeric and
does not appear as a login name in the I etc /passwd file, it is
interpreted as a user ID.

You can combine the primaries by using the following operators (in order
of decreasing precedence):

l. The negation of a primary. The exclamation point(!) is the unary
NOT operator.

2. Concatenation of primaries. The AND operation is implied by the
juxtaposition of two primaries.

3. Alternation of primaries. -o is the OR operator.

EXAMPLES
The following command locates and prints all files in / tmp and its
subdirectories that are named junk.

find /tmp -name junk -print

The following command finds all files, starting with the root directory, on
which the permission levels have been set to 755 (see chmod(l)).

find I -perm 755 -exec ls "{}" ";"

With -exec and a command such as ls, it is often necessary to escape the
curly braces ({ }), that store the current pathname under investigation, by
putting the pathname in double quotation marks. It is always necessary to
escape the semicolon at the end of an -exec sequence.

Note again that it is also necessary to escape parentheses used for grouping
primaries, by means of a backslash, as shown here. The following
command removes all files named a. out or * . o.

find\(-name a.out -o -name '*.o' \) -exec rm{} \;

FILES
/bin/find

Executable file
/etc/passwd

File containing user information

November 1991 3

find(l) find(l)

find /tmp -name junk -print
/etc/group

File containing group information

SEE ALSO

4

chmod(l), cpio(l), csh(l), ksh(l), sh(l), xargs(l)

stat(2), cpio(4), fs(4) inA/UX Programmer's Reference

f f(lM) in A/UX System Administrator's Reference

"Other Programming Tools" inA/UX Programming Languages and Tools,
Volume 2

November 1991

finger(l) finger(l)

NAME
finger - displays information about the users on a system

SYNOPSIS
finger [f] [w] [login-or-real-name] ...

finger -i [f] [w] [login-name] .. .

finger -q [f] [w] [login-name] .. .

finger -1 [b] [h] [m] [p] [login-or-real-name] ...

finger [-1] login-or-real-name@host [login-or-real-name@host] ...

finger [-s] @host [@host] ...

ARGUMENTS
@host

Specifies the name of a remote host. The value of host can be a host
name or an Internet address, as specified in the I etc /hosts file. If
you specify just a remote host, finger ignores any options that you
may have specified and displays the unmodified default format for
each user on the remote host. If you precede host with a login or a
real name, finger ignores any options that you may have specified
and displays the unmodified long format for that user.

-b Suppresses the display of the Directory and Shell fields when
the long format is used.

- f Suppresses the display of column headings.

- h Suppresses the display of the first line of the . project file.

-i Causes finger to show the Login, TTY, When, and Idle columns
for only those users who have idle time. If you specify login-name, it
is the login name of a user, as stored in the first field of
/etc/passwd, because finger searches only that field for a
match.

-1 Causes finger to use the long format. You should use this option
only in conjunction with options that modify the long format.

login-name
Specifies the name of the user for which you want information.

login-or-real-name
Specifies the login name or any of the real names stored in the fifth
field of the user's entry in I etc /pas swd. For example, if Christine
Louise Witt's login name is chris, and Tina Louise Witt is in
the fifth field of her entry in /etc/passwd, finger can display
information about her if you use any of the following names as a value
of the login-or-real-name argument: chris, Tina, Louise, or

November 1991 1

finger(!) finger(l)

Witt. Note that if you specify Christine as the value of the
login-or-real-name argument in this case, finger cannot find a
match and displays this message:

Login name: christine In real life: ???

-m Limits the search for a match to the login name, as stored in the first
field of I etc /passwd.

-p Suppresses the display of any . plan files when the long format is
used.

-q Causes finger to display only the Login, TTY, and When columns.
If you specify login-name, it is the login name of a user, as stored in
the first field of I etc/passwd, because finger searches only that
field for a match.

-s Causes finger to use the default format. You should use this option
only in conjunction with options that modify the default format.

-w Suppresses display of the Name column.

DESCRIPTION
The finger command displays information about the users who are
currently logged in to the system. On A/UX systems, finger displays a
line of information for each user logged in to the system and for each
CommandShell window.

The finger command displays information about the users on a system in
either of two formats: the default format and the long format. The default
format is displayed when you do not specify any options or arguments;
when you specify the - i, -q, or -s option; or when you specify the name
of a remote system. The long format is displayed when you specify the -1
option or when you specify the name of a user on the local system or on a
remote system.

Default Format

2

The default format produces fields of data that have these headings:
Login, Name, TTY, Idle, When, and Office. The Login column is
the user's login name as stored in the first field of the I etc /pas swd file.
The Name column is the real name of the user as stored in the fifth field of
the I etc/passwd file. The TTY column is the user's current terminal
name. The Idle column is the amount of time since the user last pressed a
key on the keyboard. When the value in the TTY column is co, the value
in the When column represents the time the user logged in to the system.
For the lines that correspond to a CommandShell window, the value in the
When column represents the time the user created the window. The
Off ice column reflects extra information, if any, taken from the fifth field
of the user's entry in /etc/passwd. See "Enhancing finger

November 1991

finger(i) finger(l)

Output" later in the "Description" section for details.

Status of permission to write to the user's terminal is indicated by the
presence (denied) or absence (enabled) of an asterisk(*) before the
terminal name. If idle time is a single integer, it represents minutes. If idle
time is two integers separated by a colon (:), they represent hours and
minutes. If idle time is an integer to which a d is appended, it represents
days.

The - f, - i, -1, - q, and -w options modify the default format.

Long Format
When you use the long format, finger displays the same information as
would be displayed in the default format, as well as the user's home
directory and shell, the contents of the user's . p 1 an file, if any, and the
first line of the user's . project file, if any.

The long format displays this information in the following format:

Login name: login-name In real life: real-names
Mails top: mail-stop Home phone: phone-number
Directory: directory Shell: shell
On since date-and-time on ttytime Idle Time
Project: project-infomzation
Plan: plan-infomzation

The -b, -h, @host, -m, login-or-real-name, -p, and -s options
modify the long format.

Enhancing finger Output
You can use the chfn command to store extra information in the fifth field
of your entry in / etc/passwd. The extra information consists of your
office number or mail stop, office phone number, and home phone number.
If this information is available, finger displays the office number or mail
stop and office phone number when the default format is used and displays
the office number or mail stop, office phone number, and home phone
number when the long format is used.

FILES
/usr/ucb/finger

Executable file
/etc/passwd

File that is examined for login names, real names, and other
information

/etc/utmp
File that finger uses to determine who is currently logged in

/usr/adm/lastlog
File that contains the last login time of each user

November 1991 3

finger(l)

-;.plan
File containing the user's plan

-;.project
File describing the projects the user is working on

SEE ALSO
chfn(l), w(l), who(l), whoami(l)

hosts(4), passwd(4) inA/UX Programmer's Reference

finger(!)

in. fingerd(lM) inA/UX System Administrator's Reference

4 November 1991

fmt(l) fmt(l)

NAME
fmt - invokes a simple text formatter

SYNOPSIS
fmt [file]. ..

ARGUMENTS
file Specifies the file to be formatted.

DESCRIPTION
fmt is a simple text formatter which reads the concatenation of input files
(or standard input if none are given) and produces on standard output a
version of its input with lines as close as possible to 72 characters long.
The spacing at the beginning of the input lines is preserved in the output, as
are blank lines and interword spacing.

The fmt command is meant to format mail messages prior to sending, but
may also be useful for other simple tasks. For instance, within visual mode
of the ex editor (e.g. vi) the command:

! } fmt

will reformat a paragraph, evening the lines.

LIMITATIONS
The program was designed to be simple and fast; for more complex
operations, the standard text processors are likely to be more appropriate.

FILES
/usr/ucb/fmt

Executable file

SEE ALSO
nroff(l), mail(l), pr(!), troff(l), vi(l)

November 1991

fold(l) fold(l)

NAME
fold - folds long lines for finite-width output device

SYNOPSIS
fold [-width] [file] ...

ARGUMENTS
file Specifies the file containing the lines that will be folded.

-width
Specifies the maximum width for the lines. The default is 80.

DESCRIPTION
f o 1 d is a filter which will fold the contents of the specified files, or the
standard input if no files are specified, breaking the lines to have maximum
width. The width should be a multiple of 8 if tabs are present, or the tabs
should be expanded using expand before coming to fold.

LIMITATIONS
If underlining is present it may be corrupted by folding.

FILES
/usr/ucb/fold

Executable file

SEE ALSO
expand(l)

November 1991

fpr(l) fpr(l)

NAME
fpr - filters the output of Fortran programs for line printing

SYNOPSIS
fpr

DESCRIPTION
fpr is a filter that transforms files formatted according to Fortran's
carriage control conventions into files formatted according to UNIX line
printer conventions.

The fpr command copies its input onto its output, replacing the carriage
control characters with characters that will produce the intended effects
when printed using lpr(l). The first character of each line determines the
vertical spacing as follows:

Character Vertical S_Qace Before Printin_g_
Blank One line

0 Two lines
1 To first line of next page
+ No advance

A blank line is treated as if its first character is a blank. A ''blank'' that
appears as a carriage control character is deleted. A ''O'' is changed to a
newline. A "1" is changed to a form feed. The effects of a"+" are
simulated using backspaces.

EXAMPLES
The following lines show two ways to use this command:

a.out I fpr I lpr

fpr < f77.output I lpr

LIMIT A TIO NS
Results are undefined for input lines longer than 170 characters.

FILES
/usr/ucb/fpr

Executable file

SEE ALSO
asa(l), f77(1)

November 1991

freq(l) freq(l)

NAME
freq - reports character frequencies in a file

SYNOPSIS
freq [file] ...

ARGUMENTS
file Specifies the file that will be reported on. If no file is specified, the

standard input is read.

DESCRIPTION
freq counts occurrences of characters in the list of files specified on the
command line.

EXAMPLES
The command:

freq f ilea

will list a count of each character that appears in f i 1 ea.

FILES
/bin/freq

Executable file

November 1991

from(l) from(l)

NAME
from - displays the mail header lines in your mailbox

SYNOPSIS
from [-s sender] [user]

ARGUMENTS
-s sender

Prints only the headers for mail that is sent by sender.

user
Causes from to examine the user's mailbox instead of your own.

DESCRIPTION
from prints out the mail header lines in your mailbox file to show you who
your mail is from.

The from command works with mail and mailx.

FILES
/usr/ucb/from

Executable file
/usr/bin/mailx

Executable file
/usr/mail/*

Mail files

SEE ALSO
biff(l), mail(l), mailx(l)

November 1991

fsplit(l) fsplit(l)

NAME
fspli t - splits £77 or efl files

SYNOPSIS
£split [-e] [-f] [-s]file ...

ARGUMENTS
- e Indicates that the input files are EFL.

- f Indicates that the input files are F77.

file Specifies the file to be split.

- s Strips f7 7 input lines to 72 or fewer characters with trailing blanks
removed.

DESCRIPTION
f split splits the named files into separate files, with one procedure per
file. A procedure includes blockdata, function, main, program,
and subroutine program segments. Procedure Xis put in fileX. f,
X. r, or X. e depending on the language flag option chosen, with the
following exceptions: main is put in the file MAIN. [efr] and unnamed
blockdata segments in the files blockdataN. [efr] where N is a
unique integer value for each file.

FILES
/bin/fsplit

Executable file

SEE ALSO
csplit(l), efl(l), £77(1), split(l)

1 November 1991

fstyp(l) fstyp(l)

NAME
f st yp - reports the file-system type

SYNOPSIS
fstyp file

ARGUMENTS
file Specifies the file residing on the file system that will be reported.

DESCRIPTION
f st yp reports the type of the file system on which file resides. If file is a
device file, f st yp attempts to read a file-system superblock from the
device. The file system must be one of the supported types listed in
fstypes.

STATUS MESSAGES AND VALUES
If successful, f s typ prints to the standard output a message that indicates
the file system type.

FILES
/etc/fstyp

Executable file
I etc/ fs/ *I fstyp

Executable file

SEE ALSO
statfs(2), fstyp(3), fs(4), fstypes(4) inAIUX Programmer's
Reference

November 1991

ftp(IN) ftp(lN)

NAME
ftp - transfers files by using the DARPA Internet File Transfer Protocol
(FTP)

SYNOPSIS
ftp [-d] [-g] [-i] [-n] [-v] [remote-system]

ARGUMENTS
-d Enables debugging. By default, debugging is disabled. You can also

enable and disable debugging by running the debug command from
the ftp command interpreter.

-g Disables filename expansion. You can also enable and disable
filename expansion by running the glob command from the ftp
command interpreter.

- i Enables or disables interactive prompting during multiple file
transfers. You can also enable and disable prompting by running the
prompt command from the ftp command interpreter.

-n Disables the automatic login process, called "auto login," that ftp
normally performs upon initial connection. By default, auto login is
enabled. See "The Autologin Process" later in the "Description"
section for details. If you use this option, you can log in after
connecting to the remote system by running the user command from
the ftp command interpreter.

remote-system
Specifies the name of the remote system with which ftp is to
connect. The value of remote-system can be the host name or the
Internet address of a system that is reachable through an Ethernet
connection. If you provide this argument, ftp immediately attempts
to establish a connection to an FTP server on the specified system. If
you do not provide this argument, ftp enters its command interpreter
and waits for your commands.

-v Causes ftp to display all responses from the remote system and
report data-transfer statistics. You can also enable and disable this
display by running the verbose command from the ftp command
interpreter.

DESCRIPTION

1

ftp allows you to transfer files to and from a remote system by using the
DARPA Internet File Transfer Protocol. To use ftp, your system must be
running a kernel that includes the Berkeley networking software. Your
interface to ftp is through its command interpreter.

November 1991

ftp(IN) ftp(lN)

The ftp Command Interpreter
To indicate that it is waiting for you to enter a command, ftp displays this
prompt:

ftp>

This section describes the commands that ftp recognizes. To preserve
embedded spaces in command arguments, you can enclose the command in
double quotation marks("). Many of the ftp commands, such as bell
and prompt, are "toggle switches" in the sense that running the
command enables or disables the command, depending on the command's
previous state. When you run one of these commands, ftp reports the new
command state.

[command [arg ...]]
Runs an interactive shell on the local system. If you specify a
command argument, it is taken to be a command to execute, and any
arg arguments are passed as arguments to command.

$ macro-name [arg ...]
Runs the macro macro-name, as defined by the mac def command,
described later in this list, or as defined in your . net re file,
described in "The . net re File" later in the "Description" section.

Arguments specified by arg arguments are not expanded before being
passed to the macro. The macro processor interprets the dollar sign
($) and backslash (\) as special characters. A $ followed by one or
more numbers is replaced by the corresponding argument on the
macro invocation command line. A $ followed by an i tells the
macro processor that the executing macro is to be looped. On the first
pass, $ i is replaced by the first argument on the macro invocation
command line; on the second pass, it is replaced by the second
argument; and so on. A \ followed by any character is replaced by
that character. Use \ to prevent special treatment of the $.

? [command]
Acts as a synonym for the help command.

account [passwd]
Specifies a supplemental password, which may be required by a
remote system for access to resources once you are successfully
logged in. If you do not provide a passwd argument, ftp prompts for
the account password and disables echoing as you enter the password.

append local-file [remote-file]
Appends a local file to a file on the remote system. If remote-file is
not specified, the local filename is used in naming the remote file, after
being altered by any ntrans or nmap setting. The file transfer is
subject to the current settings for type, form, mode, and struct.

November 1991 2

ftp(lN) ftp(lN)

3

ascii
Sets the file-transfer type to network ASCII, which is the default.

bell
Enables or disables the sounding of a bell when each file transfer
command completes.

binary

bye

Sets the file transfer type to support binary image transfer.

Disconnects from the remote server and exits ftp. Entering the end­
of-file character (usually CONTROL-D) has the same effect.

case
Enables or disables case mapping during mget commands. When
case is enabled, those filenames on the remote system whose letters
are all uppercase are written on the local system with the letters
mapped to lowercase. By default, case is disabled.

cd remote-directory
Changes the working directory on the remote system to the directory
specified by remote-directory.

cdup
Changes the working directory on the remote system to the parent of
the current working directory on the remote system.

close
Disconnects from the remote server and returns to the command
interpreter. Any defined macros are erased.

er Enables or disables the stripping of carriage return characters during
the retrieval of ASCII files. By default, er is disabled.

When the value of type is as c ii, ftp interprets carriage retum­
newline sequences as record delimiters. When er is enabled, ftp
strips carriage returns from this sequence to conform with the UNIX
single-newline record delimiter.

Records on non-UNIX remote systems may contain single newlines.
When the value of type is ascii, ftp can distinguish these
newlines from a record delimiter only when er is disabled.

debug [debug-value]
Enables or disables debugging mode. By default, debug is disabled.

The optional argument debug-value is an integer value that specifies a
debugging level. The default value isl; higher values cause ftp to
display more detailed debugging information. When debugging is on,
ftp displays each command sent to the remote system, preceded by

November 1991

ftp(lN) ftp(lN)

this string:

-->

delete remote-file
Deletes the file specified by remote-file on the remote system.

dir [remote-directory] [local-file]
Displays a list of the contents of the directory specified by
remote-directory. If a local-file argument is specified, the output is
placed in the file specified by local-file. If you do not specify a
remote-directory argument, the contents of the current working
directory on the remote system are displayed. If you do not specify a
local-file argument, or if the value of local-file is a hyphen (-), the
output is displayed on the terminal.

disconnect
Acts as a synonym for the close command.

form.format
Sets the file-transfer form to format. The default format is f i 1 e.

get remote~file [local-file]
Retrieves the remote file specified by remote-file and stores it on the
local system. If you do not specify a local~file argument, the
transferred file is given the same name that it has on the remote
system, subject to alteration by the current case, ntrans, and nmap
settings. The current settings for type, form, mode, and struct
affect the file transfer.

glob
Enables or disables filename expansion for the mdelete, mget, and
mput commands. When glob is disabled, the filename arguments are
taken literally and not expanded. When glob is enabled, filename
expansion for mput is done as in the C shell. For mdelete and
mget, each remote filename is expanded separately on the remote
system and the lists are not merged. Expansion of a directory name is
likely to be different from expansion of the name of an ordinary file
because the exact result depends on the foreign operating system and
the FTP server. You can preview the filename expansion that will
result by running this command:

ml s filename-argument ... -

hash
Enables or disables the display of a number sign (#) for each data
block transferred. The size of a data block is 1024 bytes. By default,
hash is disabled.

November 1991 4

ftp(lN) ftp(lN)

5

help [command]
Prints an informative message about the meaning of the command
specified by command. If you do not specify a command argument,
ftp displays a list of the ftp commands.

led [directory]
Changes the working directory on the local system. If you do not
specify a directory argument, the working directory is changed to your
home directory.

1 s [remote-directory] [local-file]
Displays an abbreviated list of the contents of a directory on the
remote system. If you do not specify a remote-directory argument,
ftp displays the contents of the current working directory. If you do
not specify a local-file argument, or if local-file is a hyphen (-), the
output is displayed on the terminal.

macdef macro-name
Defines a macro and causes ftp to enter macro input mode. Lines
that you subsequently enter are stored as the macro named by
macro-name until you enter a null line to terminate macro input mode.
You can use a total of at most 4096 characters to define at most 16
macros. Macros remain defined until you issue the close command.

mdelete [remote-file ...]
Deletes the files on the remote system specified by one or more
remote-file arguments.

mdir remote-file ... local-file
Displays a list of the contents of the directories specified by one or
more remote-file arguments. This command is similar to the dir
command except that you can specify multiple remote-file arguments.
If the local-file argument is specified, the output is placed in the file
specified by local-file. If prompt is enabled, ftp prompts you to
verify that the last argument is indeed the target local file for receiving
mdi r output. If the value of local-file is a hyphen (-), the output is
displayed on the terminal.

mget remote-file ...
Expands the files on the remote system specified by one or more
remote-file arguments and does a get for each filename thus
produced. See glob for details on filename expansion. Resulting
filenames are then processed according to case, ntrans, and nmap
settings. Files are transferred into the local working directory.

The mget command is not meant to transfer entire directory subtrees
of files. You can transfer a subtree by transferring a tar archive of
the subtree in binary mode.

November 1991

ftp(lN) ftp(lN)

mkdir directory-name
Makes the directory specified by directory-name on the remote
system.

ml s remote-file ... local-file
Lists information about the files specified by one or more remote-file
arguments and places the output in the file specified by local-file. If
local-file is a hyphen (-), the output is displayed on the terminal. If
prompt is enabled and local-file is not a hyphen, ftp prompts you to
verify that the last argument is indeed the target local file for receiving
mls output.

mode [mode-name]
Sets the file-transfer mode to the value specified by mode-name. The
only supported mode is stream mode. .

mpu t local-file ...
Expands the list of local files specified as local-file arguments and
does a put operation for each file in the resulting list. See the
description of g 1 ob earlier in this list, for details of filename
expansion. Resulting filenames are then processed according to
ntrans and nmap settings.

The mpu t command is not meant to transfer entire directory subtrees
of files. You can transfer a subtree by transferring a tar archive of
the subtree in binary mode.

nmap [inpattern outpattern]
Sets or unsets the filename-mapping mechanism. If you do not
specify any arguments, the filename-mapping mechanism is unset. If
you specify arguments, remote filenames are mapped during execution
of mpu t and put commands issued without a specified remote target
filename, and local filenames are mapped during execution of mget
commands and get commands issued without a specified local target
filename.

This command is useful when connecting to a non-UNIX remote
system that has different file-naming conventions or practices. The
mapping follows the pattern set by inpattern and outpattern. The
value of inpattern is a template for incoming filenames, which may
have already been processed according to the ntrans and case
settings. Variable templating is accomplished by including the
sequences $1, $2, ... ,$9 in inpattern. Use\ to prevent this special
treatment of the $ character. All other characters are treated literally
and are used to determine the nmap inpattern variable values.

The outpattern argument determines the resulting mapped filename.
The sequences $1, $2, ... ,$9 are replaced by any value resulting

November 1991 6

ftp(lN) ftp(lN)

7

from the inpattern template. The sequence $ 0 is replaced by the
original filename. Additionally, the sequence [seq!, seq2] is replaced
by seql if seql is not a null string; otherwise, it is replaced by seq2.

For example, given an inpattern argument whose value is $1 . $ 2 and
the transfer of a remote file named myda ta . data, $1 has the value
mydata, and $2 has the value data. Given an outpattern argument
whose value is

[$1,$2]. [$2,file]

the output filename is my f i 1 e . data for input filenames
myfile. data and myfile. data. old; myfile. file for the
input filename my f i 1 e; and my f i 1 e . my f i 1 e for the input
filename . myf ile.

You can include space characters in outpattern, as in this example:

nmap $1 I sed "s/ *$//" > $1

Use the \ character to prevent special treatment of the $, [, J , and
, characters.

ntrans [inchars [outchars]]
Sets or unsets the filename-character-translation mechanism. If you
do not specify any arguments, the filename-character-translation
mechanism is unset. If you specify inchars and outchars arguments,
characters in remote filenames are translated during execution of
mpu t and put commands issued without a specified remote target
filename, and characters in local filenames are translated during
execution of mget and get commands issued without a specified
local target filename.

This command is useful when you are connecting to a non-UNIX
remote system that has different file-naming conventions or practices.
Characters in a filename matching a character in inchars are replaced
with the corresponding character in outchars. If the character's
position in inchars is longer than the length of outchars, the character
is deleted from the filename.

open remote-system [port]
Establishes a connection to the FTP server running on the system
specified by remote-system. If you supply an optional port number,
ftp attempts to contact an FTP server at that port. If you do not
disable auto login by invoking ftp with the -n option, ftp
automatically attempts to log the user in to the FTP server. See ''The
Autologin Process" later in the "Description" section for details.

prompt
Enables or disables interactive prompting. By default, prompt is

November 1991

ftp(lN) ftp(IN)

enabled. Interactive prompting occurs during multiple file-transfer
operations operations to allow you to send or receive files selectively.
If prompting is disabled, any mget or mpu t transfers all files, and
any mdelete deletes all files.

proxy ftp-command
Executes an ftp command on a secondary control connection. This
command allows simultaneous connection to two remote FTP servers
for transferring files between the two servers. The first proxy
command should be an open command to establish the secondary
control connection. Enter the command proxy ? to see other ftp
commands available on the secondary connection. The following
commands behave differently when prefaced by proxy:

open
Does not define new macros during the auto-login process.

close
Does not erase existing macro definitions.

get
mget

Transfer files from the host on the primary control connection to
the host on the secondary control connection.

put
mput
append

Transfer files from the host on the secondary control connection
to the host on the primary control connection. Third-party file
transfers depend upon support of the File Transfer Protocol
P ASV command by the server on the secondary control
connection.

put local-file [remote-file]

pwd

Sends a local file to the remote system. If you do not specify a
remote-file argument, the local filename is used to name the remote
file, after processing according to any ntrans or nmap settings. The
file transfer is subject to the current settings for type, form, mode,
and struct.

Displays the name of the current working directory on the remote
system.

quit
Acts as a synonym for the bye command.

quote arg ...
Sends the arguments, specified by one or more arg arguments, to the

November 1991 8

ftp(lN) ftp(lN)

9

remote FTP server.

recv remote-file [local-file]
Acts as a synonym for the get command.

remotehelp [command-name]
Displays a list of commands for which the remote FTP server can
provide help. If you specify a command-name argument, the server
responds with the help information for the specified command.

rename [current-name] [new-name]
Renames the file specified by current-name on the remote system to
the name specified by new-name.

reset
Clears the reply queue. This command resynchronizes command and
reply sequencing with the remote FTP server. Resynchronization may
be necessary following a violation of the File Transfer Protocol by the
remote server.

rmdir directory-name
Deletes a directory on the remote system.

runique
Enables or disables the use of unique names to store files on the local
system. By default, runique is disabled.

When runique is enabled and a file already exists with a name equal
to the target local filename for a get or mget command, the
characters . 1 are appended to the name. If that name matches another
existing file, the characters . 2 are appended to the original name, and
so on, until ftp generates a unique name, in which case it displays
the name on the terminal. If this process continues through . 9 9, ftp
displays an error message and the transfer does not take place. Note
that runique does not affect local files generated from a shell
command.

send local-file [remote-file]
Acts as a synonym for the put command.

sendport
Enables or disables the use of PORT commands. By default, ftp
attempts to use a PORT command when establishing a connection for
each data transfer. The use of PORT commands can prevent delays
when you are performing multiple file-transfer operations. If the
PORT command fails, ftp uses the default data port. When PORT
commands are disabled, ftp makes no attempt to use PORT
commands for each data transfer. This function is useful for certain
FTP implementations that ignore PORT commands but indicate,

November 1991

ftp(lN) ftp(lN)

incorrectly, that they have been accepted.

status
Shows the current status of the connection, including command
settings.

struct [struct-name]
Sets the file-transfer structure to the value specified by struct-name.
The only supported structure is the "file" structure.

sunique
Enables or disables the use of unique filenames when sending files to a
remote system. By default, sunique is disabled. The remote FfP
server must support the File Transfer Protocol STOU command to
enable this command successfully. See runique for details.

ten ex
Sets the file-transfer type to that needed for TENEX systems.

trace
Enables or disables packet tracing. By default, trace is disabled.

type [type-name]
Sets the file-transfer type to the value specified by type-name. The
value of type-name can be ascii, binary, ebcdic, image, or
tenex. The values binary and image are equivalent.

If you do not specify a type-name argument, ftp displays the current
type. By default, type is ASCII.

user user-name [password] [account]
Logs you in to the remote FTP server. If you do not specify a
password argument and the server requires a password, ftp prompts
for a password after disabling local echo. If you do not specify
account and the FfP server requires an account name, ftp prompts
for it. If you specify an account argument and the remote server does
not require an account argument, ftp relays an ACCT command to
the remote server after the login sequence is completed. Unless you
disable auto login by using the -n option, this process occurs
automatically when the connection to the FTP server is first
established.

verbose
Enables or disables verbose mode. By default, verbose is enabled.
In verbose mode, ftp displays all responses from the FTP server and
displays file-transfer statistics. Note that when verbose is disabled,
ftp does not display any responses from the FfP server, including
the output for such commands as pwd.

November 1991 10

ftp(lN) ftp(lN)

Stopping a File Transfer
To stop sending a file transfer, send an interrupt, which is usually done by
pressing CONTROL-C. Sending transfers are halted immediately. You can
halt receiving transfers by sending a File Transfer Protocol ABOR
command to the remote server and discarding any further data received.
The speed at which this function is accomplished depends upon the remote
server's support for ABOR processing. If the remote server does not
support the ABOR command, an ftp> prompt does not appear until the
remote server has finished sending the requested file.

Interrupts are ignored when ftp has completed any local processing and is
waiting for a reply from the remote server. A long delay while waiting
may result from the ABOR processing just described or from unexpected
behavior by the remote server, including violations of the File Transfer
Protocol. If the delay results from unexpected remote server behavior, you
can stop the local instance of ftp only by running the kill command.

File-Naming Conventions
Files specified as arguments to ftp commands are processed according to
the following rules:

1. If the filename is a hyphen (-), the standard input and standard output
are used for reading and writing, respectively.

2. If the first character of the filename is an exclamation mark (!), ftp
interprets the remainder of the argument as a shell command. To run
the command, ftp forks a shell, passes any specified arguments, and
reads or writes from the standard output or standard input as
necessary. If the shell command includes spaces, the argument must
be quoted. Here is an example:

"!ls -lt"

3. If the filename is not a hyphen and does not begin with an exclamation
mark, and if filename expansion is enabled, local filenames are
expanded according to the rules used in the C shell. See the glob
command for details. If you use an ftp command that expects a
single local file, such as put, only the first filename generated by
filename expansion is used.

4. For mget and get commands with unspecified local filenames, the
local filename is the remote filename, which may be altered by a
case, ntrans, or nmap setting. The resulting filename may then be
altered if runique is enabled.

5. For mput and put commands with unspecified remote filenames, the
remote filename is the local filename, which may be altered by a
ntrans or nmap setting. The resulting filename may then be altered
by the remote server if sunique is enabled.

11 November 1991

ftp(lN) ftp(lN)

File-Transfer Parameters
These parameters affect file transfer: type, mode, form, and struct.
See the description of type in the "Description" section for its possible
settings. This version of ftp supports only the default values for mode,
form, and struct.

The Autologin Process
By default, when you use the remote-system argument on the ftp
command line to specify the name of a remote system to connect to, ftp
automatically prompts you for the login name that you want to use on the
remote system. If, when prompted, you press RETURN, ftp uses your
login name on the local system. Next, ftp prompts for a password. Some
FTP servers also prompt for a second password. This sequence of prompts
and responses is known as the auto-login process.

If you have a . netrc file in your home directory and it contains an entry
for the system specified by remote-system, ftp extends the auto-login
process by using the entry to log you in automatically. See "The . netrc
File" later in the "Description" section for details.

Whether you have a netrc file or not, you can disable the auto-login
process by running ftp with the -n option. In this case, use the open
command to log in to the FTP server.

The . netrc File
The . netrc file contains login and initialization information used by the
auto-login process. The file resides in your home directory and must be
readable only by you. An entry in this file consists of these tokens,
separated by a space, a tab, or a newline character:

account string
Specifies an additional account password. If this token is present, the
auto-login process supplies the specified string if the remote server
requires an additional account password, or the auto-login process
initiates an account command if it does not. Not all FTP servers
support this command.

login login-name
Specifies a login name on the remote system. If this token is present,
the auto-login process initiates a login session using the specified
name.

macdef name
Defines a macro. This token provides the same functionality as the
ftp macdef command and causes the creation of a macro whose
name is name. The macro definition begins with the next line in
. netrc and continues until the auto-login process reads a null line.
If you define a macro named ini t, it is automatically executed as the

November 1991 12

ftp(IN) ftp(IN)

last step in the auto-login process.

machine remote-system
Specifies the name of a remote system. The auto-login process
searches the . netrc file for a machine token that matches the
remote-system argument specified on the ftp command line or as an
argument to the open command. Once a match is made, the system
processes the subsequent . netrc tokens, stopping when another
machine token is encountered or the end of the file is reached.

password string
Specifies a password. If this token is present, the auto-login process
supplies the specified string if the remote server requires a password
as part of the login process. Note that if this token is present in the
. netrc file, ftp stops the auto-login process if the . netrc file is
readable by anyone other than you.

Anonymous FTP
The FTP server prohibits logging in to an account that does not have a
password. To make files available to anyone who can connect to the
system, some system administrators set up the FTP server to allow logging
in as anonymous or ftp, which are special login names for which any
password is acceptable. If you log in anonymously, you are restricted to
the home directory of the user ftp. See ftpd(lM) for details.

EXAMPLES
The first example illustrates a simple ftp connection and file transfer from
the remote system to the local system. Long output lines have been folded
for the sake of readability.

ftp printms
Connected to printms.
220 printms FTP server (Version 4.109 Fri Nov 20

07:43:57 PST 1987) ready.
Name (printms:tim):
331 Password required for tim.
Password:
230 User tim logged in.
ftp> get tmac.an
200 PORT command successful.
150 Opening data connection for tmac.an

(89.0.0.33,1205) (13366 bytes).
226 Transfer complete.
local: tmac.an remote: tmac.an
13922 bytes received in 0.69 seconds (20 Kbytes/s)
ftp> quit
221 Goodbye.

13 November 1991

ftp(lN) ftp(lN)

The second example illustrates an ftp connection and a file transfer from
the local system to the remote system.

ftp printms
Connected to printms.
220 printms FTP server (Version 4.109 Fri Nov 20

07:43:57 PST 1987) ready.
Name (printms:tim):
331 Password required for tim.
Password:
230 User tim logged in.
ftp> put tmac.an
200 PORT command successful.
150 Opening data connection for tmac.an

(89.0.0.33,1209).
226 Transfer complete.
local: tmac.an remote: tmac.an
13922 bytes sent in 0.83 seconds (16 Kbytes/s)
ftp> quit
221 Goodbye.

The third example illustrates changing to a directory in the remote file
system and listing the contents of several directories.

ftp printms
Connected to printms.
220 printms FTP server (Version 4.109 Fri Nov 20

07:43:57 PST 1987) ready.
Name (printms:tim):
331 Password required for tim.
Password:
230 User tim logged in.
ftp> ls
200 PORT command successful.
150 Opening data connection for /bin/ls

(89.0.0.33,1212) (0 bytes).
OUT
cutmks
tmac.ap
tmac.ptx
tmac.syn
tmac.toc
226 Transfer complete.
76 bytes received in 1.2 seconds (0.13 Kbytes/s)
ftp> cd OUT
250 CWD command successful.

November 1991 14

ftp(lN) ftp(lN)

ftp> ls
200 PORT cormnand successful.
150 Opening data connection for /bin/ls

(89.0.0.33,1213) (0 bytes).
junk
226 Transfer complete.
4 bytes received in 0.058 seconds (3.9 Kbytes/s)
ftp> close
221 Goodbye.
ftp> quit

LIMIT A TIO NS
Correct execution of many commands depends upon proper behavior by
the remote server.

An error in the treatment of returns in the 4.2 BSD UNIX ASCII-mode
transfer code has been corrected. This correction may result in incorrect
transfers of binary files to and from 4.2 BSD servers using the ascii type.
You can avoid this problem by using the image or binary type.

When verbose mode is disabled, ftp does not echo responses from the
remote server or any responses to the pwd command.

The FTP server disconnects any login sessions that have had no activity for
a certain amount of time. The default period is 15 minutes.

FILES
/usr/bin/ftp

Executable file
/usr/spool/ftp/*

File hierarchy to which, by convention, anonymous FTP users are
restricted

SEE ALSO

15

csh(l), tar(l)

ft pd(lM) in A/UX System Administrator's Reference

AJUX Networking Essentials

November 1991

A/UX Command Reference was written, edited, and
composed on a desktop publishing system using Apple
Macintosh computers, and troff running on A/UX.
Page proofs were created on Apple LaserWriter printers.
Final pages were output directly to 70 millimeter film on
an Electrocomp 2000 Electron Beam Recorder.
Postscript, the page-description language for the
LaserWriter, was developed by Adobe Systems
Incorporated.

Text type and display type are Times, Garamond, and
Helvetica. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Apple
Courier, a fixed-width font.

Writers: Erik Akin, Mike Elola, Kristi Fredrickson,
Michael Hinkson, Linda Kinnier, Paul Pannish, Cheryl
Salgado, Kathy Wallace, and Laura Wirth

Writing Group Lead: Mike Elola

Developmental Editor: Silvio Orsino

Art Director: Tamara Whiteside

Production Editor: Jeannette Allen

Production Supervisor: Robin Kerns

Special thanks to Anne Szabla and Chris Wozniak

	00-01-i
	00-02-ii
	00-03-iii
	00-05-v
	00-07-vii
	00-08-viii
	00-09-ix
	00-10-x
	00-11-xi
	00-12-xii
	00-13-xiii
	00-14-xiv
	00-15-xv
	00-16-xvi
	00-17-xvii
	00-18-xviii
	00-19-xix
	00-20-xx
	00-21-xxi
	00-22-xxii
	01-001
	01-002
	01-003
	01-004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-001
	02-002
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-046
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061
	02-062
	02-063
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076
	02-077
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-085
	02-086
	02-087
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-097
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-108
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-135
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-142
	02-143
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150
	02-151
	02-152
	02-153
	02-154
	02-155
	02-156
	02-157
	02-158
	02-159
	02-160
	02-161
	02-162
	02-163
	02-164
	02-165
	02-166
	02-167
	02-168
	02-169
	02-170
	02-171
	02-172
	02-173
	02-174
	02-175
	02-176
	02-177
	02-178
	02-179
	02-180
	02-181
	02-182
	02-183
	02-184
	02-185
	02-186
	02-187
	02-188
	02-189
	02-190
	02-191
	02-192
	02-193
	02-194
	02-195
	02-196
	02-197
	02-198
	02-199
	02-200
	02-201
	02-202
	02-203
	02-204
	02-205
	02-206
	02-207
	02-208
	02-209
	02-210
	02-211
	02-212
	02-213
	02-214
	02-215
	02-216
	02-217
	02-218
	02-219
	02-220
	02-221
	02-222
	02-223
	02-224
	02-225
	02-226
	02-227
	02-228
	02-229
	02-230
	02-231
	02-232
	02-233
	02-234
	02-235
	02-236
	02-237
	02-238
	02-239
	02-240
	02-241
	02-242
	02-243
	02-244
	02-245
	03-001
	03-002
	03-003
	03-004
	03-005
	03-006
	03-007
	03-008
	03-009
	03-010
	03-011
	03-012
	03-013
	03-014
	03-015
	03-016
	03-017
	03-018
	03-019
	03-020
	03-021
	03-022
	03-023
	03-024
	03-025
	03-026
	03-027
	03-028
	03-029
	03-030
	03-031
	03-032
	03-033
	03-034
	03-035
	03-036
	03-037
	03-038
	03-039
	03-040
	03-041
	03-042
	03-043
	03-044
	03-045
	03-046
	03-047
	03-048
	03-049
	03-050
	03-051
	03-052
	03-053
	03-054
	03-055
	03-056
	03-057
	03-058
	03-059
	03-060
	03-061
	03-062
	03-063
	03-064
	03-065
	03-066
	03-067
	03-068
	03-069
	03-070
	03-071
	03-072
	03-073
	03-074
	03-075
	03-076
	03-077
	03-078
	03-079
	03-080
	03-081
	03-082
	03-083
	03-084
	03-085
	03-086
	03-087
	03-088
	03-089
	03-090
	03-091
	03-092
	03-093
	03-094
	03-095
	03-096
	03-097
	03-098
	03-099
	03-100
	03-101
	03-102
	03-103
	03-104
	03-105
	03-106
	03-107
	03-108
	03-109
	03-110
	03-111
	03-112
	03-113
	03-114
	03-115
	03-116
	03-117
	03-118
	03-119
	03-120
	03-121
	03-122
	03-123
	03-124
	03-125
	03-126
	03-127
	03-128
	03-129
	03-130
	03-131
	03-132

