
•
A/UX: Toolbox: Macintosh ROM Interface
Release 3.0

LIMITED W ARRANlY ON MEDIA AND REPIACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple's Media Exchange
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the date of your original purchase. See your authorized Apple dealer for program
coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON THE MEDIA AND MANUALS, INCLUDING IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICUIAR PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICUIAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

THEW ARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF All
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

ti Apple Computer, Inc.

This manual and the software described in it are copyrighted, with all rights reserved. Under the copyright
laws, this manual or the software may not be copied, in whole or part, without written consent of Apple,
except in the normal use of the software or to make a backup copy of the software. The same proprietary
and copyright notices must be affixed to any permitted copies as were affixed to the original. This
exception does not allow copies to be made for others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given, or loaned to another person. Under the law,
copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the ··keyboard" Apple logo
(Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

©Apple Computer, Inc., 1992
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

APDA, Apple, the Apple logo, AppleLink, AppleShare, AppleTalk, A/UX, EtherTalk, LaserWriter,
LocalTalk, Macintosh, MacTCP, MPW, MultiFinder, ProDOS, and SANE are trademarks of Apple
Computer, Inc., registered in the United States and other countries.

Finder, MacroMaker, MacX, QuickDraw, ResEdit, and TrueType are trademarks of Apple Computer, Inc.

Adobe, Adobe Illustrator, and Postscript are trademarks of Adobe Systems Incorporated, registered in the
United States.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

ITC Garamond and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation.

Motorola is a registered trademark of Motorola Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

NFS is a trademark of Sun Microsystems, Inc.

NuBus is a trademark of Texas Instruments.

QuarkXPress is a registered trademark of Quark, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

VMS is a trademark of Digital Equipment Corporation.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor
a recommendation. Apple assumes no responsibility with regard to the performance or use of these products.

Contents

Figures and Tables I xiii

About This Guide I xv

What's in this manual I xvi
Conventions used in this guide I xvii

Keys and key combinations I xvii
Terminology I xvii
The Courier font I xviii
Font styles I xix
A/UX command syntax I xix
Manual page reference notation I xx
For more information I xxi

1 About the A/UX Toolbox I 1-1

Overview I l -2
New features in A/UX Release 3.0 I l-3

A/UX Finder user interface I 1-3
Increased manager support I 1-4
Connectivity support I 1-5

Compatibility requirements I l -6
Debugging under A/UX I l -6
Contents of the A/UX Toolbox I l-7

How the A/UX Toolbox works I l-8

2 Using the A/UX Toolbox I 2-1

Application development environments I 2-2
Your application in the A/UX Finder environment I 2-4

Using the ui_setselect call I 2-5

Developing an A/UX Toolbox application I 2-6
Developing the source code I 2-7
Developing the resource file I 2-9

Building and running the sample programs I 2-10

3 A/UX Toolbox Utilities and Extensions I 3-1

Using the A/UX Toolbox utilities I 3-2
A/UX Toolbox variables I 3-3
Additional trap and routine I 3-4

AUXDispatch trap I 3-4
Using select to monitor A/UX 1/0 activity and Macintosh events I 3-6

A/UX Toolbox environment variables I 3-6
Making A/UX system calls I 3-7
The MacsBug debugger under A/UX I 3-l l
The dbx debugger under A/UX I 3-13

4 Compatibility Guidelines I 4-1

vi Contents

Introduction I 4-2
Differences in execution environments I 4-2

32-bit address violations I 4-3
Privileged microprocessor instructions I 4-4
Direct hardware access I 4-6
Newline characters I 4-7
File Manager I 4-9
Memory Manager I 4-9
International character support I 4-9

Differences in C compilers I 4-10
Differences in language conventions I 4-11

5 A/UX and Macintosh User Interface Toolbox Differences I 5-1

About the Macintosh interface library I 5-2
32-Bit QuickDraw with Color QuickDraw I 5-4
Alias Manager I 5-5
Apple Desktop Bus I 5-5
Apple Event Manager I 5-5
AppleTalk Manager I 5-5
Binary-Decimal Conversion Package I 5-6
Color Manager I 5-6
Color Picker Package I 5-6
Control Manager I 5-6
Data Access Manager I 5-7
Deferred Task Manager I 5-7
Desk (Accessory) Manager I 5-7
Desktop Manager I 5-7
Device Manager I 5-7
Dialog Manager I 5-8
Disk Driver I 5-9
Disk Initialization Package I 5-9
Edition Manager I 5-9
Event Manager, Operating System I 5-9
Event Manager, Toolbox I 5-10
File Manager I 5-11
Floating-Point Arithmetic and Transcendental Functions Packages I 5-11
Font Manager I 5-12
Gestalt Manager I 5-12
Graphics Devices Manager I 5-13
Help Manager I 5-14
International Utilities Package I 5-14
List Manager Package I 5-14
Memory Manager I 5-14
Menu Manager I 5-15
Notification Manager I 5-15
Package Manager I 5-15
Palette Manager I 5-15
Picture Utilities Package I 5-16
Power Manager I 5-16
PPCToolbox I 5-16
Printing Manager I 5-16
Process Manager I 5-16

Contents vii

Resource Manager I 5-17
Scrap Manager I 5-18
Script Manager I 5-18
SCSI Manager I 5-18
Segment Loader I 5-19

Finder information I 5-19
Segment Loader routines I 5-20
The jump table I 5-20
Alternate buffer support I 5-20

Serial Driver I 5-20
Shutdown Manager I 5-22
Slot Manager I 5-22
Sound Manager I 5-23

Support details I 5-24
The Raw Sound Driver I 5-25

Standard File Package I 5-27
System Error Handler I 5-27
TextEdit I 5-27
Time Manager I 5-28
Utilities, Operating System I 5-28

Date and time operations I 5-29
Miscellaneous utilities I 5-29

Utilities, Toolbox I 5-29
Vertical Retrace Manager I 5-29
Window Manager I 5-30

Calls patched under A/UX I 5-31
Calls not supported under A/UX I 5-34

6 File Systems and File Formats I 6-1

viii Contents

File systems I 6-2
Overall file organization I 6-2
Pathnames and filenames I 6-3
File permissions I 6-4
Extended file attributes I 6-6
Text files I 6-6
Mounting and unmounting floppy disks I 6-7

Storing files in the Macintosh OS and in the A/UX operating system I 6-8
Automatic conversion I 6-14

AppleSingle and AppleDouble format internals I 6-16
AppleSingle format I 6-16
AppleDouble format I 6-l 9

Filename conventions I 6-20

Appendix A Additional Reading I A-l

Information sources I A-2
Required references I A-4
Supplementary references I A-5

Appendix B Toolbox Contents I B-l

Appendix C Implementation Notes I C-l

The A/UX Finder and Toolbox applications I C-2
Running an A/UX Toolbox application I C-2

User interface device driver I C-3
Initialization routine I C-3
A-line traps I C-4
"Not in ROM" routines I C-6
Macintosh global variables I C-6
File type and creator I C-6

Converting between C and Pascal conventions I C-7
Storing strings I C-8
Ordering and storing parameters I C-8
Passing small structures I C-9
Returning function results I C-9
Register conventions I C- l 0

Appendix D Low-Memory Global Variables I D-l

Appendix E Resource Compiler and Decompiler I E-l

About the resource compiler and decompiler I E-2
Standard type declaration files I E-3
Using rez and dernz I E-4

Contents ix

Structure of a resource description file I E-5
Sample resource description file I E-6

Resource description statements I E-7
Syntax notation I E-7

Special terms I E-8
change-change a resource's vital information I E-9
data-specify raw data I E-10
delete-delete a resource I E-11
include-include resources from another file I E-12
read-read data as a resource I E-15
resource-specify resource data I E-16
type-declare resource type I E-20
Labels I E-32

Preprocessor directives I E-39
Variable definitions I E-40
include directives I E-40
If-then-else processing I E-4 l
Print directive I E-42

Resource description syntax I E-43
Numbers and literals I E-43
Expressions I E-44
Variables and functions I E-46

String values I E-46
Numeric values I E-47

Strings I E-49
Escape characters I E-50

Appendix F C Interface Library I F-1

Interface library files I F-2
Structures and calls by library I F-5

x Contents

32-Bit QuickDraw with Color QuickDraw I F-5
Color Picker I F-l 4
Common type definitions I F-15
Control Manager I F-15
Deferred Task Manager I F-l 7
Definitions for AUXDispatch I F-l 7
Definitions for ROM I F-l 7
Desk Manager I F-18
Device Manager I F-18

Dialog Manager I F-19
Disk Driver I F-21
Disk Initialization Package I F-21
Event Manager, Operating System I F-22
Event Manager, Toolbox I F-22
File Manager I F-23
Font Manager I F-28
Gestalt Manager I F-29
List Manager Package I F-29
List of Macintosh traps I F-30
Low-memory equates I F-30
Memory Manager I F-31
Menu Manager I F-34
Notification Manager I F-36
Package Manager I F-36
Palette Manager I F-38
Printing Manager I F-39
Print traps I F-40
Process Manager I F-41
Resource Manager I F-42
Scrap Manager I F-45
Script Manager I F-46
Segment Loader I F-48
Serial Driver I F-49
Shutdown Manager I F-49
Slot Manager I F-50
Sound Manager I F-52
String conversion between Pascal and C I F-54
System Error Handler I F-54
TextEdit I F-54
Time Manager I F-56
Utilities, Operating System I F-57
Utilities, Toolbox I F-58
Vertical Retrace Manager I F-60
Video Driver I F-60
Window Manager I F-61

Calls in alphabetical order I F-63

Index I In-1

Contents xi

Figures and Tables

Chapter 1 About the A/UX Toolbox I 1-1

Figure 1-1 Interactions among an application, the A/UX Toolbox, and the ROM
code I l-9

Chapter 2 Using the A/UX Toolbox I 2-1

Figure 2-1 Application development and execution environments I 2-2
Figure 2-2 Incorporating the A/UX Toolbox into development code I 2-8
Figure 2-3 Developing a resource file by using rez I 2-9

Chapter 4 Compatibility Guidelines I 4-1

Table 4-1 Privileged microprocessor instructions within the AIUX Toolbox I 4-5

Chapter 5 A/UX and Macintosh User Interface Toolbox Differences I 5-1

Table 5-1

Table 5-2
Table 5-3

Status of User Interface Toolbox and Macintosh OS libraries in the
A/UX Toolbox I 5-2
ROM calls patched under the A/UX Toolbox I 5-31
ROM calls not supported under the A/UX Toolbox I 5-34

Chapter 6 File Systems and File Formats I 6-1

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5

Table 6-1
Table 6-2
Table 6-3

Elements of a file in the native Macintosh OS environment I 6-9
Typical contents of an AppleSingle file I 6-11
Typical contents of a pair of AppleDouble files I 6-12
Elements of Macintosh data and resource files in simple A/UX format I 6-13
Formats for "file info" field entries I 6-19

A/UX permissions mapped to AppleShare privileges I 6-5
Automatic conversion of Macintosh files I 6-15
AppleSingle file header I 6-16

Appendix C Implementation Notes I C-1

Figure C-1 A-line trap handling in A/UX I C-5

Appendix D Low-Memory Global Variables I D-1

Table D-1
Table D-2
Table D-3
Table D-4

General global variables I D-2
Window Manager globals I D-6
TextEdit globals I D-6
Resource Manager globals I D-7

Appendix E Resource Compiler and Decompiler I E-1

Figure E-1
Figure E-2
Figure E-3
Figure E-4

Table E-1
Table E-2
Table E-3
Table E-4

rez and derez I E-2
Creating a resource file I E-4
Padding of literals I E-44
Internal representation of a Pascal string I E-49

Numeric constants I E-43
Resource-description expression operators I E-45
Resource compiler escape sequences I E-50
Numeric escape sequences I E-51

Appendix F C Interface Library I F-1

Table F-1 Interface library files I F-3

xiv Figures and Tables

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat .fllename

tells you that filename is a placeholder for the name of a file you wish to view. If you
want to view the contents of a file named E 1 vis, type the word E 1 vis in place of
jllename. In other words, enter

cat Elvis

New terms appear in boldface where they are defined. Boldface is also used for
steps in a series of instructions.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the
syntax for the wc command:

wc [-1 J [-wJ [directory ...]

In this example, wc is the command, -1 and -w are options, direct01y is an
argument, and the ellipses(...) indicate that more than one argument can be used. Note
that each command element is separated by a space.

The following list gives more information about the elements of an A/UX command.

Element

command

option

argument

[]

Description

The command name.

A character or group of characters that modifies the command. Most
options have the form - option) where option is a letter representing an
option. Most commands have one or more options.

A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

Brackets used to enclose an optional item-that is, an item that is not
essential for execution of the command.

Ellipses used to indicate that more than one argument may be entered.

Conventions used in this guide xix

For example, the wc command is used to count lines, words, and characters in a
file. Thus, you can enter

wc -w Priscilla

In this command line, -w is the option that instructs the command to count all of the
words in the file, and the argument Priscilla is the file to be searched.

Manual page reference notation

A/UY Command Reference, A/UY Programmer's Reference, A/UY System Administrator's
Reference, Xl 1 Command Reference for AIUX, and Xl 1 Programmer's Reference for
A/UY contain descriptions of commands, subroutines, and other related information.
Such descriptions are known as manual pages (often shortened to man pages). Manual
pages are organized within these references by section numbers. The standard A/UX

cross-reference notation is

command(section)

where command is the name of the command, file, or other facility; section is the
number of the section in which the item resides.

• Items followed by section numbers (lM) and (8) are described in A/UY System
Administrator's Reference.

• Items followed by section numbers (1) and (6) are described in A/UY Command
Reference.

• Items followed by section numbers (2), (3), (4), and (5) are described in A/UY
Programmer's Reference.

• Items followed by section number (lX) are described in Xl 1 Command Reference
for AIUX.

• Items followed by section numbers (3X) and (3Xt) are described in Xl 1

Programmer's Reference for A/UY.

For example,

cat(l)

refers to the command cat, which is described in Section 1 of A/UY Command
Reference.

xx About This Guide

You can display manual pages on the screen by using the man command. For
example, enter the command

man cat

to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit, press the SPACE BAR until you see a
command prompt, or type q at any time to return immediately to your command
prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to A/UX". This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

Conventions used in this guide xxi

About This Guide

This manual describes the A/UX Toolbox, which gives you access from within A/UX to
the Macintosh User Interface Toolbox. The User Interface Toolbox is software in the
Macintosh ROM that facilitates implementation of the standard Macintosh interface in
applications. This manual also provides compatibility guidelines for programs intended
to run under both the A/UX operating system and the standard Macintosh Operating
System (OS).

This manual is intended for developers who are porting a Macintosh application to
A/UX or developing a Macintosh-like application under A/UX. This guide assumes that

• You are an experienced C programmer.

• You are familiar with the standard Macintosh User Interface Toolbox and Operating
System.

• You are familiar with the A/UX development environment.

If you need information on any of these subjects, please refer to the resources listed
in Appendix A. For a detailed description of the User Interface Toolbox, see Inside
Macintosh1 Volumes I, IV, V, and VI. For a detailed description of the Macintosh OS, see
Inside Macintosh Volumes II, IV, V, and VI.

xv

What's in this manual

Here is a description of the contents of this manual:

• Chapter 1, "About the A/UX Toolbox," gives an overview of the A/UX Toolbox. The
chapter discusses A/UX features, standards compliance, and the new features in
Release 3.0.

• Chapter 2, "Using the A/UX Toolbox," explains the role of the A/UX Toolbox in
program development and execution and describes the sample programs provided
with the A/UX Toolbox.

• Chapter 3, "A/UX Toolbox Utilities and Extensions," describes the utilities and special
features in the A/UX Toolbox that support program development.

• Chapter 4, "Compatibility Guidelines," summarizes the compatibility guidelines you
must be aware of to write code that runs under both the Macintosh OS and A/UX.

• Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences," describes in
detail the differences between the facilities available in the User Interface Toolbox
and Macintosh OS and those provided with the A/UX Toolbox.

• Chapter 6, "File Systems and File Formats," describes the differences between the file
systems in A/UX and those in the Macintosh Operating System, and how file-system
functions are mapped between the two systems. In addition, the chapter describes
the formats used for storing Macintosh files in A/UX, and the results of automatic
conversion of files transferred between the two systems.

• Appendix A, "Additional Reading," lists books and other information sources that are
helpful.

• Appendix B, "Toolbox Contents," lists directories and files that are part of the A/UX
Toolbox or that are of special interest in application development.

• Appendix C, "Implementation Notes," provides background information about
implementation and compatibility issues.

• Appendix D, "Low-Memory Global Variables," lists the Macintosh low-memory
global variables that are supported in A/UX.

• Appendix E, "Resource Compiler and Decompiler," describes the resource
development tools that have been ported to the A/UX Toolbox from the Macintosh
Programmer's Workshop (MPW).

xvi About This Guide

• Appendix F, "C Interface Library," lists the functions, types, and parameters used by
the A/UX Toolbox libraries.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK DOWN ARROW (J.) OPTION SPACE BAR

ENTER RETURN TAB COMMAND(~)

CONTROL

DELETE

ESCAPE RIGHT ARROW (~) UP ARROW (i)

LEFT ARROW (f--) SHIFT

Sometimes you will see two or more names joined by hyphens. The hyphens indicate
that you use two or more keys together to perform a specific function. For example,

Press COMMAND-K

means "Hold down the COMMAND key and press the K key."

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the RETURN key. The instruction

Enter ls

means "Type ls and press the RETURN key."

Conventions used in this guide xvii

Here is a list of common terms and the corresponding actions you take.

Term

Click

Drag

Choose

Select

Type

Enter

Action

Press and then immediately release the mouse button.

Position the mouse pointer, press and hold down the mouse button
while moving the mouse, and then release the mouse button.

Activate a command in a menu. To choose a command from a pull­
down menu, click once on the menu title and, while holding down the
mouse button, drag down until the command is highlighted. Then
release the mouse button.

Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type an entry without pressing the RETURN key.

Type the series of characters indicated and press the RETURN key.

The Courier font

Throughout A/UX guides, words that you see on the screen or that you must type
exactly as shown are in the Courier font. For example, suppose you see this
instruction:

Type date on the command line and press Return.

The word date is in the Courier font to indicate that you must type it. Suppose
you then read this explanation:

Once you press RETURN, you'll see something like this:

Tues Oct 17 17:04:00 PDT 1989

In this case, courier is used to represent exactly what appears on the screen.
All A/UX manual page names are also shown in the courier font. For example,

the entry 1 s(l) indicates that 1 s is the name of a manual page in an A/UX reference
manual. See "Manual Page Reference Notation" below for more information on A/UX
command reference manuals.

xviii About This Guide

1 About the A/UX Toolbox

Overview I 1-2

New features in A/UX Release 3.0 I 1-3

Compatibility requirements I 1-6

Debugging under A/UX I 1-6

Contents of the A/UX Toolbox I 1-7

How the A/UX Toolbox works I 1-8

This chapter gives a general overview of the functions of the A/UX Toolbox and specific

information about the A/UX Toolbox in A/UX Release 3.0.

Overview

The A/UX:Toolbox is a process environment that allows programs running under A/UX
to make calls to the Macintosh User Interface Toolbox routines and to native Macintosh
Operating System (OS) routines. With the A/UX Toolbox, you can run standard
Macintosh applications unmodified as well as UNIX® programs that take advantage of
the Macintosh interface. The A/UX Toolbox is included with the A/UX operating system.
To use the A/UX Toolbox, you need only the standard A/UX distribution.

The A/UX Toolbox bridges the Macintosh and UNIX environments and gives you
two kinds of code compatibility:

• You can execute Macintosh binary code (applications compiled in the Macintosh
environment) under A/UX, within the current limitations of the A/UX Toolbox. (As
the section "New Features in A/UX Release 3.0," later in this chapter, makes clear, the
new capabilities of the A/UX Toolbox remove many prior limitations.)

• Using the Macintosh Programmer's Workshop (MPW), you can write common source
code that can be separately built (compiled and linked) into executable code for
both environments.

Both the User Interface Toolbox and the Macintosh OS are built into read-only
memory (ROM) as well as into code modules in the System files. Because of differences
between the UNIX operating system and the Macintosh OS, not all Macintosh ROM
routines are available through the A/UX Toolbox. Release 3.0 has increased support for
Macintosh ROM routines. Programs that are intended to run in both environments can
use only the system routines common to both. Any Macintosh application that runs
under Macintosh System 7 and does not access hardware directly or call routines not
supported by the A/UX Toolbox can run under A/UX Release 3.0. Chapter 5, "A/UX and
Macintosh User Interface Toolbox Differences," gives details about all Macintosh
managers and their support under the A/UX Toolbox; Table 5-1 in that chapter
summarizes manager support. A/UX Release 3.0 also includes support for AppleTalk
Phase II communications software running on both LocalTalk and Ethernet hardware.

The A/UX Toolbox supports some Macintosh device drivers, but not those that
manipulate hardware directly.

1-2 Chapter 1 About the A/UX Toolbox

New features in A/UX Release 3.0
A/UX Release 3.0 is a major enhancement that combines a standard UNIX operating
system and programming environment with Macintosh System 7 capabilities, including
the standard Macintosh Finder user interface. Macintosh applications with extensive
multimedia capabilities, for example, can now run in a full UNIX environment.
Macintosh applications can run together in the A/UX Toolbox environment, and users
can transfer information between applications by using the Clipboard, the Scrapbook,
editions, and AppleEvents, as in the Macintosh OS. For example, a user can run a
graphics application to publish illustrations that can be subscribed to by a word­
processing application. A user can run a computer-aided design (CAD) application and a
spreadsheet application, and copy numbers developed for the design into the
spreadsheet for use in cost calculations.

The complete features of A/UX Release 3.0 are listed in the general A/UX manuals.
This section presents the major items of interest from a Toolbox developer viewpoint.

A/UX Finder user interface

A/UX Release 3.0 provides the user interface of Macintosh System 7, displaying both
Macintosh and UNIX applications and directories as icons. The UNIX file permissions are
shown in the icon display of files and folders. Icons are highlighted or dimmed
according to the file permissions accorded the user who logged in. Macintosh floppy
disks are accessible from the A/UX Finder. UNIX permissions can be modified from pull­
down menus.

Users can open applications of both kinds by double-clicking, and can move files by
dragging. Text files moved between the UNIX and Macintosh environments are
automatically translated as needed. Chapter 6, "File Systems and File Formats," discusses
the results of automatic conversion.

New features in A/UX Release 3.0 1-3

Increased manager support
The level of support for managers in Release 3.0 of the A/UX Toolbox has been
generally extended to match the support provided by System 7. Several managers that
were not supported or were partially supported are now fully supported, and several
new managers have been added.

• Alias Manager The ~lias Manager is fully supported. The Alias Manager allows you
to create and use aliases in the Macintosh environment, which are similar to symbolic
links in the UNIX environment.

• Apple Event Manager The Apple Event Manager is fully supported. The Apple Event
Manager provides mechanisms for sending and receiving events between applications.

• Data Access Manager The Data Access Manager is fully supported. The Data Access
Manager makes it easy for your application to communicate with data sources, such
as databases.

• Edition Manager The Edition Manager is fully supported. The Edition Manager gives
your application the ability to dynamically share data with other applications.

• File Manager The File Manager supports A/UX Toolbox access to the various UNIX
file systems (Berkeley UNIX file system [UFS], System V file system [SVFS], and
Network File System [NFS]) as well as those of the Macintosh OS (hierarchical file
system [HFS], Macintosh file system [MFS], and AppleShare). The File Manager now
implements file IDs and file specification (FSSpec) records. Multiple HFS partitions
on a single disk are now supported.

• Help Manager The Help Manager is fully supported. The Help Manager lets you
easily incorporate on-line assistance into your application.

• Memory Manager The Memory Manager is fully supported. The Memory Manager
now allows you to use a portion of your hard disk as though it were chip-based RAM.

• PPC Toolbox The PPC Toolbox is fully supported. The PPC Toolbox allows your
application to communicate directly with other applications.

• Process Manager The Process Manager is fully supported. The Process Manager
allows your application to launch other applications.

• Sound Manager The Sound Manager is mostly supported. The Sound Manager now
provides for sound input, in addition to the continuous sampled sound output and
note and wavetable synthesizing available previously.

1-4 Chapter 1 About the A/UX Toolbox

Connectivity support
A/UX Release 3.0 supports the following features:

• AppleTalk 2.0 Phase II Access by LocalTalk or EtherTalk is fully supported.

• FileShare Peer-to-peer networking through FileShare is fully supported.

• NFS 4.0 enhancement A/UX 3.0 implements NFS 4.0 with 4.1 enhancements. New
features include automounting and directory export.

• MacTCP Macintosh network applications written to the Macintosh Transmission
Control Protocol (MacTCP) programmer interface are supported.

• APP seroer (FileShare) The AppleTalk Filing Protocol (AFP) built into Release 3.0
allows networked users access to shared volumes on the A/UX Finder desktop. The
AFP server implements the facility known as FileShare of Macintosh System 7.

• Macintosh Communications Toolbox The Communications Toolbox is fully supported.

• CD-ROM The Apple CD-SC peripheral is partially supported. CD-ROM discs with
either High Sierra or ISO 9660 formats can be used. Additionally, Macintosh HFS and
UNIX file systems are supported. Audio CDs are not supported.

Two implementations of the X Window System are shipped with Release 3.0.
Developers of X applications will find a favorable development environment in A/UX
Release 3.0.

• Xl 1 for A/UX is a standard implementation of the X Window System developed at
the Massachusetts Institute of Technology, which utilizes Release 4 ofX Window
System Version 11. Xll provides a complete development environment. Users can
switch between the Xl 1 environment and the A/UX Finder environment. Xl 1 is
described in Xl 1 User's Guide for AIUX.

• MacX, Apple's implementation of the X Window System, provides a Finder-like
environment for Xl 1, with such features as pull-down menus, dialog boxes, and
windows in which users can run X applications. MacX also implements Release 4 of
X. Users have a range of installation choices for the user environment displayed by
MacX. At one end of the range, MacX allows the user to switch between either the
standard Xl 1 look or a Finder-like environment; at the other end, only a Finder-like
environment is displayed; and in the middle are a variety of tradeoffs, in which
portions of both interfaces can be used. Whatever kind of MacX display the user
chooses, the user can switch between the MacX environment and the A/UX Finder
environment. Xl 1 is described in MacX User's Guide.

New features in A/UX Release 3.0 1-5

Compatibility requirements
For a Macintosh application binary to run in the A/UX Release 3.0 environment, it must
meet certain requirements, which are briefly summarized here. Generally, any
application, INIT, or CDEV that runs under System 7 will run under A/UX. For more
information, see "Your Application in the A/UX Finder Environment" in Chapter 2.

• 32-bit clean Macintosh applications must be 32-bit clean to run in the standard
A/UX Toolbox environment (as they must be to run under 32-bit mode in System 7).
A special 24-bit environment is also furnished that provides a 24-bit test environment
for developers who are making their applications 32-bit clean. This environment
supports the running of older applications that have not been converted and orphan
applications that never will be. The 24-bit environment is accessed by a special login.
For information on this special login, see A!UX Essentials.

• Compatible with System 7 A Macintosh binary that does not run in a Macintosh OS
multitasking environment (either System 7 or MultiFinder) will not run under A/UX
Release 3.0.

• No calls on unsupported traps or system calls An application cannot make calls that
are not supported under the A/UX Toolbox. See Chapter 5, "A/UX and Macintosh
User Interface Toolbox Differences," for detailed information on call support.

• No direct access to hardware An application cannot issue instructions for direct
control of hardware (although video memory is directly accessible).

Debugging under A/UX

The dbx, adb, and sdb debuggers, used frequently in UNIX development
environments, are delivered with A/UX 3.0. These debuggers require use of an
additional terminal that can communicate with your computer over either a serial line or
a network.

The MacsBug debugger provides a familiar Macintosh software debugging tool for
use with A/UX. MacsBug (version 6.2 required) is available from the Apple Programmers
and Developers Association (APDA).

1-6 Chapter 1 About the A/UX Toolbox

Several new and enhanced application development tools are included in the A/UX
Developer's Tools product, also available from APDA. A new, ANSI-compliant C
compiler (c 8 9) is included, as is a complete library of A/UX system calls that can be
used from the MPW environment to assist in the development of hybrid applications.

Hybrid applications are programs that employ facilities from both the UNIX and
Macintosh application models. There are two basic types of hybrid applications. The
first type is a UNIX application that uses the A/UX Toolbox to provide an interface that
has the Macintosh look and feel. Hybrid applications of this type are called UNIX
hybrid applications. The A/UX CommandShell application is an example of a UNIX
hybrid application. The second type of hybrid application is a Macintosh application
that makes UNIX system calls. Hybrid applications of this type are called Macintosh
hybrid applications.

Contents of the A/UX Toolbox
This section summarizes the types of files that are included in the A/UX Toolbox, the
locations of these files, and where you can find more information about some of them.

The /mac directory contains Macintosh-specific material:

/mac I sys This directory contains the System Folders used for startup, login, and
users without a personal System Folder. (For more information on
personal System Folders, see A/UX Essentials and
systemfolder(lM).) The System file provided with Release 3.0 of
A/UX is almost identical in functionality to the System file provided
with Macintosh System 7.

/mac/bin

/mac/src

This directory contains various executables, including a few utilities
for use in developing and running applications with the A/UX
Toolbox. See Chapter 3, "A/UX Toolbox Utilities and Extensions," for
descriptions of fcnvt, set file, rez, and derez.

This directory contains source code for sample applications, including
sample, qdsamp, and the Sound Manager demo, sndDemo. The
source material includes associated makefiles, which demonstrate
how to compile and link an application; it also includes Macintosh
system resource files for use with the sample programs. For additional
information, see Chapter 2, "Using the A/UX Toolbox."

Contents of the A/UX Toolbox 1-7

/mac/lib This directoty contains libraries in three subdirectories. The
rincludes directoty contains resource file material. The
sessiontypes directoty contains session-type information used at
login. The cmdo directory contains dialog scripts used to implement
the Commando functions for UNIX commands.

Outside the /mac directory are certain other files that should be mentioned:

I 1 i b This directory contains libraty routines used in the
implementation of the A/UX Toolbox and in UNIX program
development. An example of the first kind is the file
maccrt o. o, and examples of the second kind are the files
libs. a, libposix. a, and termcap. a.

/usr I include/mac This directoty contains the C interface files that define the
constants, types, and functions used by the A/UX Toolbox
libraries. For additional information, see Appendix F, "C
Interface Libraty."

I shl ib This directory contains the shared libraries 1 ibc_s and
libmac_s. Shared libraries are discussed in A!UX
Programming Languages and Tools, Volume 1.

Appendix B, "Toolbox Contents," lists the full pathnames of all files pertaining to the
A/UX Toolbox and briefly describes the function of each file.

How the A/UX Toolbox works
The primaty function of the A/UX Toolbox is to allow applications developed for the
Macintosh to be used within a UNIX environment. Most of the support code consists of
routines built into the Macintosh ROM, supplemented by other routines loaded into
memoty as necessary.

When an A/UX Toolbox application issues a call to one of the ROM-based routines,
the A/UX Toolbox intercepts the call and, as necessary, passes the call either to the ROM
routine or to an alternate A/UX Toolbox support routine.

Figure 1-1 illustrates how the two elements of the A/UX Toolbox libraty interact with
the application and the ROM code. For a more detailed description of how the A/UX
Toolbox works, see Appendix C, "Implementation Notes."

1-8 Chapter 1 About the A/UX Toolbox

Standard
A/UX libraries

Application running under A/UX

Macintosh

I

I

OS emulation 1

Macintosh
User Interface

Toolbox

D D
Macintosh

A-line traps

A/UX Toolbox
interface routines

Macintosh system software
(ROM and extensions)

Figure 1-1 Interactions among an application, the NUX Toolbox, and the
ROM code

How the NUX Toolbox works 1-9

2 Using the A/UX Toolbox

Application development environments I 2-2

Your application in the A/UX Finder environment I 2-4

Developing an A/UX Toolbox application I 2-6

Building and running the sample programs I 2-10

This chapter describes A/UX Toolbox development environments and some tools for

porting applications to A/UX, outlines the procedures for developing A/UX Toolbox

applications, and describes the sample programs included with the A/UX Toolbox.

Application development environments
You can develop applications under either the Macintosh OS or A/UX. The A/UX
Toolbox lets you run applications and tools under one environment that were developed
under the other. Figure 2-1 summarizes the four possible application development and
execution paths.

Execution environment

Macintosh A/UX

Develop, debug, and run Develop and debug program
program with Macintosh tools with Macintosh tools

Transfer source code to A/UX
environment

Compile and link to run in A/UX
environment

Develop and debug program with Develop, debug, and run
A/UX tools or (optional) program with A/UX tools or
Macintosh tools (optional) Macintosh tools

Transfer source code to
Macintosh environment

Compile and link to run in native
Macintosh environment

Figure 2-1 Application development and execution environments

You can use whichever development environment best meets your needs. Generally
speaking, a Macintosh application is usually developed on the Macintosh side and (if it is
a well-behaved Macintosh application) can be executed under the A/UX Finder with few
or no changes. A typical case for development on the A/UX side might be that of
providing a Finder interface to an existing UNIX application, creating a hybrid
application to run on both the A/UX side and the Macintosh side. Although such an
application could be developed in either environment, as convenient, an experienced
UNIX programmer might prefer to use the A/UX environment.

2-2 Chapter 2 Using the NUX Toolbox

A/UX Release 3.0 supports two key phases of application development:

• Porting an application from the Macintosh OS to the AIU\'" operating system and
running it under AIU\'" The section "Making A/UX System Calls," in Chapter 3,
outlines a strategy for using A/UX system calls in applications that will run optimally
in both Macintosh and A/UX environments. Chapter 4, "Compatibility Guidelines,"
and Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences," provide
additional information to assist you in optimizing your applications.

• Developing a UNIX application under AIU\'" that exploits the Macintosh user
interface tools The section "Developing an A/UX Toolbox Application," later in this
chapter, outlines the procedures for developing an A/UX Toolbox program. The
section "Building and Running the Sample Programs," later in this chapter, describes
the sample programs and makefiles provided as examples. Chapter 3 describes the
utilities that support these procedures.

Both Macintosh binary files ported to A/UX and A/UX Toolbox programs developed
under A/UX must meet the A/UX Toolbox compatibility requirements. With Release 3.0,
these requirements are likely to be met by most applications that meet the standards for
current Macintosh OS applications. For details, see Chapter 4, "Compatibility
Guidelines."

Through the A/UX Finder environment, a user can access files in either the UNIX or
the Macintosh file systems, and so can an application. You can transfer files between file
systems either from within an application or by dragging icons on the desktop. Files
transferred between the two file systems undergo certain changes that are generally
transparent to users, but of interest to programmers. In addition, because of design
differences pertaining to file handling in the two file systems (UNIX file permissions,
Macintosh file structure, and so on), transferring a file results in automatic changes in
information relating to that file in its new environment. These changes are described in
Chapter 6, "File Systems and File Formats."

Application development environments 2-3

Your application in the A/UX Finder
environment

Applications must generally be 32-bit clean and must be compatible with System 7 to run
in the A/UX Finder environment. (A special 24-bit login environment is provided for
backward compatibility.) This section tells you how to ensure that an application is
A/UX Finder-friendly. The information in this section extends the information in Inside
Macintosh, Volume VI, which provides detailed information on System 7 compatibility.

Certain applications cannot run under A/UX because they violate A/UX
requirements-for example, by doing direct hardware manipulations or by relying on
Macintosh traps or functions that are not supported under A/UX. Information on these
matters is given elsewhere in this manual, particularly in Chapters 4 and 5. This section is
not concerned with these special requirements, but with how, in general, an application
can function better in the A/UX Finder environment. The following strategies will help
make your application more compatible with the A/UX Finder:

• Use the Wai tNextEvent routine rather than the GetNextEvent routine.

The GetNextEvent routine is very unfriendly to the A/UX kernel scheduler. Use
Wai tNextEvent, with timeouts and mouse regions, if at all possible. This routine
allows the kernel scheduler to put processes to sleep, improving the efficiency of CPU
usage. Wai tNextEvent also improves responsiveness to the user, because processes
are penalized for accumulated CPU time.

• Perform blocking operations only if unavoidable.

The ui_setselect call is helpful in avoiding blocking. See the next section, "Using
the ui_setselect Call," for more information.

• Set the ·SIZE· resource higher than you would for System 7. See Inside
Macintosh, Volume VI, for information on the ·SIZE· resource.

When setting the ·SIZE· resource, allow slightly more memory than would be
needed for running under System 7. Running Macintosh OS memory management under
A/UX requires some additional overhead.

2-4 Chapter 2 Using the NUX Toolbox

Using the ui set select call

If you are porting an application, such as a terminal emulator, that normally blocks on
I/0 by using select(2) for events, you can use the ui_setselect function to
block in Wai tNextEvent. This technique gives you a means to break out of
Wai tNextEvent before its timeout. (Use of Wai tNextEvent allows other
applications access to the CPU while you wait.) Effectively, the ui_setselect
function gives you a way to post a UNIX event. Usage of ui_setselect is similar to
that of select(2N):

ui_setselect (nfds, readmask, writemask, exceptmask)
int nfds, readmask, writemask, exceptmask

The call is used before and after Wai tNextEvent, as follows:

ui_setselect (nfds, readmask, writemask, exceptmask) I *set masks* I

WaitNextEvent (...) ;

ui_setselect (0, 0, 0, 0); /*clear select masks*/

select (nfds, readfds, writefds, execptjds, o) I *check I/O* I

The ui_setselect call causes Wai tNextEvent to return a null event
whenever a select(2N) call would succeed, that is, when a file descriptor becomes
active. An example of when a select call would succeed is the point at which data
becomes available to a read file descriptor. The method used with A/UX Release 1.1,
which first called select and then called GetNextEvent, will not work properly
with Release 3.0.

Whenever Wai tNextEvent returns, you must call select with a timeout
value of 0 to see if I/0 is pending on any file descriptors. Using this mechanism you
cannot tell why Wai tNextEvent returned, so you need to call select to test if
the reason is the driven by Macintosh or UNIX requests.

Calling ui_setselect to set the masks effectively adds another event type to the
event mask for the Wai tNextEvent call. Thus, calling this routine a second time to
clear the masks prevents a potential problem. If, without the select masks cleared, the
application enters a different event loop that does not handle select (by calling
ModalDialog, for example) the event mask will still request an event. In such a case, a
null event may be returned to indicate that select would return. For the
ModalDialog example, this means that the update event for the dialog box would
not be returned, because it has a lower precedence than the select physical event,
and the contents of the dialog box would not be drawn.

Your application in the A/UX Finder environment 2-5

The ui_setselect call is similar in function to select(2N), as documented in
A/UY Programmer's Reference, with the following exceptions:

• The ui_setselect call has no timeout argument.

• The masks for ui_setselect are integers; for select, they are pointers to
integers.

• The ui_setselect call does not return the number of active file descriptors.

• Active file descriptors are not passed back in the descriptor masks.

• You can only use the first 32 file descriptors.

Developing an A/UX Toolbox application
This section summarizes the procedures for developing an A/UX Toolbox application
under A/UX.

You must be familiar with the general Macintosh program development procedures
before you can write a Macintosh-like application under A/UX. If you have never written
a Macintosh application, see Appendix A, "Additional Reading," for suggested references.

Development of an application that uses the Macintosh interface follows two parallel
paths: development of source code and development of resources. This section briefly
describes the tools provided for developing the two elements. Chapter 3 contains details
on the special tools provided with the A/UX Toolbox for support of program development.

The sample programs provided with the A/UX Toolbox illustrate the procedures for
compiling and building an A/UX Toolbox application, starting with separate files
containing the source code and the uncompiled resources. See the directory
/mac I 1 ib/ examples for the sample programs and the section "Building and
Running the Sample Programs," later in this chapter, for more information.

6 Important Shared libraries are implemented in A/UX Release 3.0. Using shared library
code for routines subject to change and development provides a convenient method of
supporting future enhancements. You can update and ship the library code, and
applications that call upon the shared library will automatically use the current code in
the library without having to be recompiled. See A/UY Programming Languages and
Tools, Volume 1, for more information.

2-6 Chapter 2 Using the A/UX Toolbox

Developing the source code

You can use the standard A/UX C development environment for developing and
debugging an A/UX Toolbox application. Additional enhanced development tools are
included in the A/UX Developer's Tools product, available from APDA. (For information
on the standard environment, see A!UX Programming Languages and Tools, Volumes 1
and 2. For information on the enhanced environment, see A!UX Development Tools and
A!UX c89 C.)

Use the standard C libraries (shared or nonshared) as usual, and incorporate the
special A/UX Toolbox components at each step:

• Writing source code

Include the header file for each Macintosh library you use. (See Appendix F, "C Interface
Library," for a list of the available header files.) Check each library's entry in Chapter 5
for any warnings about the A/UX implementation of that library.

Follow the general A/UX compatibility guidelines in Chapter 4 and the general
Macintosh programming guidelines in Inside Macintosh.

• Building the application

Adapt the sample makefiles in /mac I src I examples to compile and link your
application as required by the A/UX Toolbox. The build procedure for an A/UX Toolbox
application differs from that for a typical UNIX C program in that you must call in
additional libraries and make provisions for Macintosh memory-use conventions. Your
build procedure should include these additional steps:

specifying the pathnames for the include files

linking to the files that contain the A/UX Toolbox routines, the symbols for
Macintosh global variables, and the initialization routine

As demonstrated in the sample makefiles, you can also define a constant to allow for
selective compiling of common source code for different execution environments.

For more information on how an application is built and executed, see Appendix C,
"Implementation Notes."

Developing an NUX Toolbox application 2-7

Figure 2-2 illustrates how to incorporate the A/UX Toolbox into an application.
appnarne. c represents your source file. Use the standard makefile to compile it, using
cc(l), and link it, using ld(l). The output is an executable Common Object File Format
(COFF) object file.

C source code

#include <types.h> /* include header files */

InitGraf (&qd.thePort) ;/* calls to toolbox */

cc---

A/UXC
compiler

D
ld

A/UXC
link editor

appname ___ ~

COFF executable
file

/usr/include/mac/*--------,
Header files declare functions and data types.

/usr/lib/libmac s.a or
/usr/lib!libmac. a----------....
Library contains entry points for all functions
and variables.

/usr/lib/low.ld --------~
Script reserves space for global variables.

/usr/lib/low.o---------~

File contains symbols for global variables.

/usr/lib/maccrtO.o--------,

--- Initialization routine communicates with kernel. ---

Figure 2-2 Incorporating the A/UX Toolbox into development code

2-8 Chapter 2 Using the A/UX Toolbox

Developing the resource file

The resource editor ResEdit, which allows you to manipulate resources graphically and
to copy resources between applications, now runs under A/UX. (Version 2.1 ofResEdit
is the preferred version as of this writing.) Using ResEdit is by far the most efficient way
to create or manipulate resources on Macintosh systems, including those running A/UX.

Additional tools and utilities for development of resources under the Macintosh OS
are available from third-party developers. MPW offers several tools, described in
Macintosh Programmer's Workshop 3.2 Reference. If you develop your resources in the
Macintosh OS, you can transfer the compiled resources into a file of appropriate format
for A/UX.

For developers who want to do things the hard way, the A/UX Toolbox includes
A/UX versions of the rez(l) and derez(l) tools, ported from MPW, for compiling
and decompiling resources. Figure 2-3 illustrates this resource development path. You
will probably want to save a source version of your resource files. You can build
resources with ResEdit, then use derez on the file to obtain a source file. Should you
ever need to, you can then use rez on your source file to re-create the resource file.

appname.r

rez source
code

D
rez

Resource
compiler

D
appname.res

Resource file

/mac/lib/rincludes/* -----~

Resource library defines resource tools.

Figure 2-3 Developing a resource file by using rez

Developing an A/UX Toolbox application 2-9

Appendix E, "Resource Compiler and Decompiler," documents rez and derez

in detail. The directory /mac/lib/rincludes contains the resource type definition
files used by rez and derez.

Building and running the sample programs
Source code for two sample programs is in the directory I mac I s r c I ex amp 1 e

(provided that you have performed the complete A/UX installation). The directory
contains a makefile, a C source file, and a resource file for each of these applications.
(See Inside Macintosh, Volume I, for a detailed description of resource files and
Macintosh application development procedures.)

• The first example is a program that demonstrates basic QuickDraw graphic
operations. The relevant files are qdsamp. c, a C source file, and qdsamp. r, a
resource file.

• The second example is a generic application that displays a fixed-sized window in
which the user can enter and edit text. The relevant files are s amp 1 e . c, a C source
file, and sample. r, a resource file.

To build executable code, copy the source files and makefile to the directory you are
working in, then enter the make(l) command with the name of the demonstration
program as an argument. The executable code is put into an executable file, and the
resources and header information are put into a resource file. You must explicitly build
both files. To build sample, for example, enter this command:

make sample %sample

In this example, the executable file is s amp 1 e and the resource information is in the
file %sample.

To run one of the sample programs, enter the name of the executable file (s amp 1 e,

in this case) on a command line as you would for any other A/UX program, or double­
click the program's icon. The A/UX Toolbox automatically looks for the associated
resource file, and uses the two files together so long as they are in the same directory.

2-10 Chapter 2 Using the A/UX Toolbox

The makefile provided with the sample programs illustrates the steps necessary to
compile and link a Macintosh application under A/UX. Examine make f i 1 e in the
/mac/ lib/ examples directory. When you are ready to build your own application,
you can copy this makefile and adapt it for your program.

Another sample program resides in the /mac I src I sndDemo directory. The
directory contains a makefile, C source file, resource file, C header file, and sound demo
resource. When compiled, the program checks for sampled sound resources in its resource
fork and in the System file. It places these resources under a "SampledSynth" menu.

Building and running the sample programs 2-11

3 A/UX Toolbox Utilities
and Extensions

Using the A/UX Toolbox utilities I 3-2

A/UX Toolbox variables I 3-3

Additional trap and routine I 3-4

A/UX Toolbox environment variables I 3-6

Making A/UX system calls I 3-7

The MacsBug debugger under A/UX I 3-11

The dbx debugger under A/UX I 3-13

This chapter discusses some special features of the A/UX Toolbox that support program

development in A/UX. The features fall into five broad categories:

• utility programs for controlling the execution environment, converting file formats

and attributes, and compiling and decompiling Macintosh resource files

• variables defined in the A/UX Toolbox interface library that let you change how an

application is executed

• an additional trap and routine for use in A/UX Toolbox applications

• environment variables for use during debugging

• debuggers that assist in finding problems with applications

Using the A/UX Toolbox utilities

The A/UX Toolbox utilities discussed in this chapter are all in the directory /mac /bin,

which also contains many other useful utilities and programs. All of the A/UX Toolbox
utilities have Commando interfaces that present the choices available when you are
using the utilities. Descriptions of the files in the /mac /bin directory can be found in
/FILES. Several of the facilities available in /mac /bin are particularly useful in a
development environment:

startmac These two utilities handle the transition between the standard
startmac2 4 A/UX environment and an A/UX Toolbox application

environment. The startmac utility provides the standard
32-bit A/UX Toolbox environment, while startmac2 4
provides a 24-bit A/UX Toolbox environment. The

launch

set file

s tartmac and s tartmac2 4 utilities are described in
Section 1 of AIU\'" Command Reference

The 24-bit environment is isolated from the rest of the
system; it is provided for testing when you are converting 24-
bit applications and for running obsolete 24-bit utilities and
tools, such as orphaned compilers. Information on accessing
the 24-bit environment is available in AIU\'" Essentials.

This utility is available for launching a Macintosh binary from
the command line of CommandShell. It provides special
options and capabilities for a Macintosh binary launched
within the A/UX Finder. This utility is not necessary for
ordinary launching; you can launch applications by double­
clicking their icons, by dragging a document onto their icons,
or by opening an executable Macintosh binary. The utility is
provided for convenience in launching from CommandShell
and for use in application development. The launch
utility functions only in the 32-bit environment. The
launch utility is described in AIU\'" Programmer's
Reference.

This utility sets file creator and type, and other attributes. The
setf ile utility is described in Section 1 of AIU\'"
Command Reference.

3-2 Chapter 3 A/UX Toolbox Utilities and Extensions

changesize

f cnvt

rez
derez

This utility changes the value of the file's ·SIZE· attribute.
The ·SIZE· attribute is described in Inside Macintosh,
Volume VI.

This utility converts files from and to six formats. The f cnvt
utility is described in detail in Section 1 of A/UX Command
Reference. For information on file formats, see Chapter 6,
"File Systems and File Formats," in this manual.

These two utilities are available for compiling (re z) and
decompiling (derez) resources. Detailed information is in
Appendix E, "Resource Compiler and Decompiler." These
utilities are also described in Section 1 of A/UX Command
Reference.

Further information on utilities is available from many sources, including on-line and
printed manual pages and Commando dialog boxes.

A/UX Toolbox variables
The A/UX Toolbox interface library, in the file /usr I lib/ libmac. a, defines two
variables:

dontForeground

no CD

This variable specifies whether or not the program runs only
in the background. If it is set to 1, the program runs only in
the background.

To set dontForeground to 1, include this line in your
program:
int dontForeground = 1;

This variable sets the current directory. If it is set to 1 in a
program, the current directory is the directory from which the
user ran the program. Otherwise, the current directory is the
directory in which the program resides.

To set noCD to 1, include this line in your program:
int noCD = l;

A/UX Toolbox variables 3-3

Additional trap and routine

The A/UX Toolbox interface library includes one additional trap and one additional
routine for use in A/UX Toolbox applications: the AUXDi spat ch trap and the
select routine. These are described in the sections that follow.

AUXDispatch trap

The AUXDispatch trap is a multipurpose call that supports some A/UX-specific
extensions to the A/UX Toolbox. You should invoke this call only after using the Gestalt
function to determine that the application is running under A/UX. Information on the
Gestalt facility is available in Inside Macintosh, Volume VI.

The definitions for the AUXDispatch trap are in the header file aux. h, found in
/usr I include/mac. (See "Definitions for AUXDispatch" in Appendix F.) The
header file provides a syntax compatible with MPW C version 3.2. AUXDispatch

uses this syntax:

AUXDispatch (selector,p)
short selector;

char *P;
The function of AUXDispatch depends on the placeholder selector, which can be

one of these values:

AUX_HIGHEST

AUX_GET_ERRNO

Returns the highest available selector (for support of future
releases, which may provide more selectors).

With this selector, the pointer pis not used.

Gets a pointer to errno, which is linked to your program
through the standard C library.

AUXDi spa tch puts the address of errno in the address
that you specify with the pointer p.

3-4 Chapter 3 A/UX Toolbox Utilities and Extensions

AUX_GET_PRINTF

AUX_GET SIGNAL

AUX_GET_TIMEOUT

Gets a pointer to the print f(3S) routine, which is linked to
your program through the standard C library.

AUXDispatch puts the address of printf in the
address that you specify with the pointer p.
Gets a pointer to the s ignal(3) routine, which is linked to
your program through the standard C library.

AUXDispatch puts the address of signal in the
address that you specify with the pointer p.
Returns a time period, in clock ticks, indicating when the
next Macintosh device driver will need to obtain processor
time through the Wai tNextEvent routine. See Inside
Macintosh, Volume VI, for a description of
Wai tNextEvent.

With this selector, the pointer pis not used.

AUX_SET_SELRECT Defines a rectangle that the user interface device driver will
use to monitor mouse movements for the select(2N)
system call. For an explanation of the select call, see
"Using select to Monitor A/UX I/0 Activity and
Macintosh Events," later in this chapter.

With this selector, the pointer p points to the specified
rectangle.

AUX_CHECK_KIDS Checks for the existence of child processes, returning 1 if
child processes exist for the specified process and 0 if not.

With this selector, you specify the process to be checked for
child processes by passing the pointer p to the process ID.

AUX_POST_MODIFIED Posts an event, with modifiers. With this selector, you pass
the pointer p to the event record.

AUX_FIND_EVENT Searches the event queue for an event. With this selector, you
pass the pointer pto a FindEvent structure (mask and
pointer to an event record).

Additional trap and routine 3-5

Using select to monitor A/UX 1/0 activity and
Macintosh events

If you are writing an A/UX Toolbox application that will run only under A/UX, you can
use the select(2N) system call to monitor not only standard A/UX I/0 activity but
also Macintosh events.

The select call examines a set of file descriptors that you specify through bit
masks. The A/UX Toolbox provides a user interface device driver, I dev /uinterO, to
handle communications between the A/UX Toolbox library and the kernel. The file
descriptor udevfd is opened to I dev /uinterO. To include Macintosh events in the
list of I/0 activity to be monitored, include udevfd in the masks you pass to select.

You can use a combination of the select system call and the AUXDispatch

call to expand the definition of a Macintosh event to include movement of the mouse
outside a specified rectangle. (Ordinarily, mouse motion without the pressing or release
of the mouse button is not an event.) First, issue the AUXDispatch call, using the
AUX_SET_SELRECT selector and passing a pointer to the rectangle. AUXDispatch

passes the rectangle to the user interface device driver. In subsequent select calls,
include the udevf d descriptor in your masks. select will then wake up your
program if there is a Macintosh event or other specified event pending, if the mouse
moves out of the specified rectangle, or if the timer expires. Once s e 1 e ct reports
activity through the user interface device driver, you must call GetNextEvent to
retrieve the event.

This sequence (AUXDispatch followed by select) is an alternative for A/UX
Toolbox programs that cannot use the Wai tNextEvent trap (described in the
section "Event Manager, Toolbox" in Chapter 5).

A/UX Toolbox environment variables

The A/UX Toolbox uses a number of environment variables to modify its actions under
certain circumstances. Most of these variables are useful only during program
development and debugging.

3-6 Chapter 3 A/UX Toolbox Utilities and Extensions

A/UX Toolbox environment variables are set and read like other environment
variables. (For information on environment variables, see environ(S) in AIU¥
Programmer's Reference.) This section lists the environment variables used by the A/UX
Toolbox and their functions.

TBCORE

TB RAM

TBSYSTEM

TB TRAP

TB WARN

If this variable is set to a nonzero value, the A/UX Toolbox causes a
core dump if a fatal error occurs. If this variable is not set, the A/UX
Toolbox displays a message and exits when a fatal error occurs. One
example of the cause of a fatal error during development of A/UX
Toolbox applications is attempting to execute an unimplemented A­
line trap.

If this variable is set to a nonzero value, the ROM code is copied into a
memory segment when a program is run. This variable lets you set a
breakpoint in the ROM code for debugging.

This variable contains the A/UX pathname of the directory that
contains Macintosh system files. The default setting is
/mac/lib/SystemFiles.

If this variable is set to a nonzero value, the system writes debugging
information to standard error every time an A-line trap is executed.

If this variable is set to a nonzero value, the system writes a warning
message to standard error when certain error conditions are detected.
These messages generally report that something unusual but not fatal
has happened. Developers may want to set TBWARN in . login or
.profile.

Making A/UX system calls

This section describes a strategy for building an application under the Macintosh OS by
using A/UX system calls, resulting in an application that can be executed in both A/UX
and Macintosh environments.

+ Note The A/UX Developer's Tools product, available from APDA, already contains
all of the A/UX system calls in MPW format. If you are using this product, you will not
need to perform the first two steps of the following procedure. •

Making A/UX system calls 3-7

The strategy described in this section is intended for applications that need to
perform functions available through the Macintosh OS or the User Interface Toolbox but
not available under A/UX. You can write an application that uses the required
function(s) when running under the Macintosh OS but uses alternative code, including
A/UX system calls, when running under A/UX. Use Gestalt to determine under which
system the application is running.

The basic procedure is to translate the A/UX system calls into assembly-language
routines and to make those routines available to the compiler under the Macintosh OS.
Specifically, you can use A/UX system calls in an application that will run under both
environments by following these steps:

1 Determine the assembly-language sequence that is generated by the A/UX
compiler when it encounters the system call you want to use.

a. Write a program that uses the call. If you want to use open(2), for example, you
could start with this program:
main()

int fd;

fd = open ("f red", 2) ;

b. Compile the program in the A/UX environment.

c. Use the debugger adb(l) to disassemble the program. The open call, for
example, results in this disassembled code:
open:

mov.l

trap

bcc.b

jmp

noerror:

rts

cerror%:

mov.l

mov.l

mov.l

rts

&Ox5,&d0

&OxO

noerror

cerror%

%d0,errno

&-1,%d0

%d0,%a0

3-8 Chapter 3 A/UX Toolbox Utilities and Extensions

2 In your Macintosh development environment, create an assembly-language
routine that performs the same functions.

Give this routine a unique name. (The Macintosh OS equivalent to the open call, for
example, might be auxopen.)

3 Insert the call conditionally into your application.

Use Gestalt to determine if A/UX is running; the following code segment shows you
how. Gestalt will return the version of A/UX if it is currently running. (The result is
placed into the lower word of the response parameter.) If A/UX is not running, Gestalt
returns gestal tUnknownErr. If Gestalt is not running, the glue code returns an
error. If you get an error, check the HWCfgFlags low-memory global, as shown in
the following code segment.

+ Note Checking that Gestalt is running is required only if you want your application
to be backward-compatible with Macintosh systems running a Macintosh OS version
prior to System 7. All systems running A/UX Release 2.0 or later releases implement the
Gestalt facility. •

The following MPW code segment returns the version of A/UX currently running, or 0 if
it is not running. This code relies on Gestalt glue code available in MPW version 3.2 and
later versions.

/*

*

*
*

*

*

*

*

*
*/

getAUXVersion.c

Copyright © 1990 Apple Computer, Inc.

This file contains routines to test if an application

is running on A/UX. If the Gestalt trap is available,

it uses that; otherwise it falls back to HWCfgFlags,

which will work on all A/UX systems.

(continued~

Making A/UX system calls 3-9

#include <Types.h>

#include <GestaltEqu.h>

#define HWCfgFlags OxB22

is running */

/* Global used to check if A/UX

/*

*

*

*

*

*

*
*/

getAUXVersion -- Checks for the presence of A/UX by

whatever means is appropriate. Returns the major

version number of A/UX (i.e., 0 if A/UX is not present,

1 for any l.x.x version 2 for any 2.x version, etc.

This code should work for all past, present and future

A/UX systems.

short getAUXVersion ()

long

short

short

/*

*

*

*

*
*/

auxversion;

err;

*flagptr;

This code assumes the Gestalt glue checks for the

presence of the _Gestalt trap and does something

intelligent if the trap is unavailable, i.e.

return unknown selector.

auxversion = O;

err = Gestalt (gestaltAUXVersion, &auxversion);

/*

*

*

*

*
*
*!

If gestaltUnknownErr or gestaltUndefSelectorErr

was returned, then either we weren't running on

A/UX, or the _Gestalt trap is unavailable so use

HWCfgFlags instead.All other errors are ignored

(implies A/UX not present).

3-10 Chapter 3 A/UX Toolbox Utilities and Extensions

if (err == gestaltUnknownErr I I err ==

gestaltUndefSelectorErr) {flagptr = (short *)

/*

*

*
*/

HWCfgFlags; /* Use HWCfgFlags */

if (*flagptr & (1 << 9))

auxversion = OxlOO; /* Do Have A/UX; assume

version l.x.x */

Now right shift auxversion by 8 bits to get major

version number

auxversion >>= 8;

return ((short) auxversion);

Once you have the A/UX version, it is a simple matter to use the optimal call for the
execution environment. For example:

#include </:usr:include:sys:uio.h>

if auxversion >= 2

then auxread(4, *tempbuff, 512)

else FSread(4, 512, tempbuff,)

The MacsBug debugger under A/UX

The MacsBug debugger is available from APDA for use within the A/UX Toolbox
environment. (Version 6.2 or a later version of MacsBug is required.) MacsBug comes
with a reference manual. For APDA contact information, see "Information Sources" in
Appendix A.

The MacsBug debugger under A/UX 3-11

When used with the A/UX Toolbox, MacsBug does not underlie the entire system, as
it does when used with the Macintosh OS. Pressing the hardware programmer switch
when A/UX is running places you into the UNIX kernel debugger (if present).

To install MacsBug, place it in your System Folder. (By default, the System Folder is
the directory /mac I sys I System Folder.) Placing MacsBug in this directory is the
equivalent of placing it in the System Folder under the Macintosh OS. MacsBug will
automatically install itself the next time you log in to A/UX.

MacsBug is invoked when the system encounters an exception error. You can force
entry into MacsBug at any time by pressing COMMAND-CONTROL-I.

Once in MacsBug, you can use MacsBug commands to examine values, step through
code, attempt recovery, and so forth, as with any debugger.

The combination keypress CoMMAND-CONTROL-E exits the A/UX Toolbox and logs you
out. This command can be useful for getting out of a hung system. It does a general
tidying up of the system (closing open files, and so forth) before logging you out. If you
press this key combination when MacsBug is not installed, a similar logout takes place,
but it is not so tidy. (Open files may become corrupted, for example.)

When you are in MacsBug, many commands are available. Here are several:

Command

g

rs

rb

es

drn curapname

help

il

SC

Result

Go; continues from current location.

Restart; actually logs you out.

Reboot; actually logs you out.

Exit to shell; exits current application.

This is not a good way to exit. Low-memory globals are left
in an indeterminate state, and after a while strange things
start to happen to your other applications.

Displays current application name.

The current application may not be what you think it is; it is
worth trying this command before you exit the current
application.

Lists the commands available.

Disassembles from the current instruction pointer.

Stack crawl; shows a backtrace of calls to help discover what
broke the current application.

3-12 Chapter 3 A/UX Toolbox Utilities and Extensions

Additional information on MacsBug can be found in MacsBug 6.2 Reference and
Debugging Guide and in Debugging Macintosh Software with MacsBug. (See Appendix
A for bibliographic information.)

The dbx debugger under A/UX

The dbx debugger is included for use within the A/UX Toolbox environment. This
debugger, in conjunction with MacsBug, allows you to efficiently debug applications that
make A/UX system calls.

Here are a few of the commands available with dbx:

trace

stop

status

delete

cont

step

next

Prints tracing information when the program is executed. A number is
associated with the command. You can use this number with the
delete command to turn the tracing off.

Stops execution when the given line is reached, procedure or function
is called, variable is changed, or condition becomes true. Execution
can be resumed with the cont command.

Prints the currently active trace and stop commands.

Removes the traces or stops corresponding to the given numbers. The
numbers associated with traces and stops are printed by the status
command.

Continues execution from where the process stopped. If a signal is
specified, the process continues as though it had received the signal.
Otherwise, the process continues as though it had not been stopped.

Executes one source line.

Executes up to the next source line. The difference between next
and step is that if the next line contains a call to a procedure or
function, the step command stops at the beginning of that block,
whereas the next command does not.

Additional information on dbx can be found in A/UX Programming Languages
and Tools! Volume 1.

The dbx debugger under A/UX 3-13

4 Compatibility Guidelines

Introduction I 4-2

Differences in execution environments I 4-2

Differences in C compilers I 4-10

Differences in language conventions I 4-11

This chapter discusses various requirements for compatibility between application code

that uses the Macintosh User Interface Toolbox and code that uses the A/UX Toolbox.

This information, combined with the information available in Inside Macintosh, tells you

what you need to consider when porting Macintosh applications to take full advantage

of the A/UX environment.

Introduction
To run the same code in both the Macintosh OS and UNIX environments, you must
make provisions for a number of compatibility issues:

• differences between the Macintosh OS and UNIX execution environments

• differences between the C compilers used in A/UX and those used in other
Macintosh OS development environments

• differences between the C language typically used in A/UX and the Pascal language
used by the Macintosh ROM routines

For details about the A/UX implementation of the Macintosh ROM code, see
Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences," and Appendix C,
"Implementation Notes."

Differences in execution environments
The Macintosh OS was designed as a single-user system. Individual applications and the
various libraries that support the Macintosh user interface can have much more control
over the system than individual processes are allowed in UNIX.

In UNIX, the kernel arbitrates all access to hardware, including memory allocation.
Only the kernel can use the hardware instructions of the MC680x0 microprocessor.

Like the current Macintosh OS in System 7, A/UX uses virtual memory. A/UX 3.0
allows control of virtual memory through the Memory control panel. While the A/UX
virtual memory implementation is completely different than that used in System 7, this is
transparent to the user and programmer.

This section lists the compatibility issues that result from the differences between the
Macintosh OS and UNIX execution environments. This section augments the Macintosh
programming guidelines provided in Inside Macintosh. To ensure that your code runs
under both the Macintosh OS and A/UX, follow both the rules outlined here and the
compatibility guidelines in Inside Macintosh, Volume VI.

4-2 Chapter 4 Compatibility Guidelines

Sometimes a program must perform differently depending on whether it is running
on an MC68020-based Macintosh or an MC68030-based Macintosh and whether it is
running under the native Macintosh OS or under A/UX. Use the Gestalt facility to
determine which operating system is currently running. See the section "Making A/UX
System Calls," in Chapter 3, for an example using Gestalt.

32-bit address violations

A/UX uses all 32 bits of an address, but the Macintosh OS prior to System 7 used only the
low-order 24 bits of an address. Historically, both the User Interface Toolbox and a
number of application programs used the high-order 8 address bits for storing additional
information. Present and future Macintosh OS applications must now be 32-bit clean in
order to fully use the system capabilities. In the A/UX system, a Macintosh application
must be 32-bit clean to run under the A/UX Finder. (A 24-bit environment is provided by
means of a special login so that programmers making an application 32-bit clean can test
in both environments. For information on how to log in to A/UX in 24-bit mode, see
A!UX Essentials.)

To create 32-bit clean applications, use the Memory Manager in a safe manner.
Adhering to the following guidelines will help you avoid many common problems as
well as ensuring that your applications are 32-bit clean:

• Use Memory Manager operations for Memory Manager functions. Make no
assumptions about the contents of Memory Manager structures. Do not set bits
directly in these structures or manipulate them directly.

• In particular, never make your own handles; use NewHandle.

• Check every returned handle or pointer to ensure that it is not NIL. A NIL handle
may indicate that a memory allocation failed or that a requested resource could not
be found.

• Before using a handle marked purgeable, make sure that the handle is not empty.

Differences in execution environments 4-3

As an aid to upgrading old applications, here is a list of (deplorable) practices once
common in Macintosh applications that violate 32-bit address requirements:

• Creating or using fake handles A fake handle is one that was made not by the
Memory Manager (the NewHandle function), but by the program (a pointer to a
pointer). The Memory Manager has its own style of making handles, and a fake
handle can cause trouble.

• Use of direct access to the flag bits on relocatable blocks The Macintosh OS used to
store the flag bits, Lock, Purge, and Resource, in the high-order bits of a
block's master pointer. The A/UX Toolbox stores these flags elsewhere. Setting high­
order bits in the master pointer invalidates the address. If your application uses a
bset instruction or moves bytes to change these flags, change your code to use the
appropriate Memory Manager routines instead. See "The Memory Manager" in Inside
Macintosh, Volumes II, IV, and VI.

• Use of application-specific flags Some applications use the high-order bits of
addresses to store their own flags. This practice invalidates the address in A/UX (and
in System 7).

• Use of direct access to window and control variant codes The Macintosh OS
formerly stored the variant code for a window or control in the high-order bits of the
handle to the definition procedure, which is located in the window or control record.
Applications rarely access these codes, but custom definition procedures sometimes
do. In A/UX, the variant codes are stored elsewhere. You can read them with the
Getwvariant and Getcvariant calls. (For more information on these calls,
see Inside Macintosh, Volume VI.)

Privileged microprocessor instructions

The A/UX Toolbox is run by an A/UX process in MC680x0 user mode. Therefore,
privileged processor instructions are not available within an A/UX Toolbox application.
However, commonly used privileged instructions are emulated by the A/UX kernel. This
emulation provides approximately the same functionality for the A/UX environment,
though the emulator executes far more slowly. Table 4-1 lists the status of all MC68020
and MC68030 privileged instructions.

4-4 Chapter 4 Compatibility Guidelines

Table 4-1 Privileged microprocessor instructions within the A/UX Toolbox

Instruction

ANDI to SR

EORI to SR

FRESTORE

FSAVE

MOVE from SR

Register and addressing modes supported

All

All

(An)+
(An)
(d16,An)

-(An)
(An)
Cd16,An)

Dn
(An)
(An)+

-(An)
Cd16,An)

xxx.16
xxx.32

Only null and idle frames are supported.

Only null and idle frames are supported.

MOVE to SR Dn

MOVE USP

MOVEC

MOVES

ORI to SR

RESET

RTE

STOP

TAS

(An)
(An)+

-(An)

Cd16,An)

xxx.16
xxx.32

None

CACr supported on a per process basis; other control registers may be accessed, but
no action is taken.

None

All

None

Only type 0 and type 2 fault frames are supported.

None

None

Differences in execution environments 4-5

As shown in Table 4-1, the instructions that manipulate the status register are
supported. A special exception handler in the kernel emulates these instructions so that
they manipulate a virtual status register established for each process instead of the
processor status register. The exception handler can accommodate all status-register
instructions that are generated by calls to standard A/UX Toolbox routines. If you are
writing assembly code, you can use the ANDI, EORI, and ORI instructions and the
simple addressing modes of the MOVE from SR and MOVE to SR instructions.
Table 4-1 lists the supported addressing modes.

You can use assembly-language routines to change any of the bits in the virtual status
register, including the priority bits. When the priority is any value higher than 0, all A/UX
signals are blocked.

Hardware processor instructions are available to device drivers and other software in
the kernel.

Direct hardware access

In A/UX, only the kernel is allowed direct access to the hardware. Therefore,
applications cannot bypass the A/UX Toolbox routines and manipulate hardware
directly to perform custom functions or save execution time. This limitation has these
implications:

• Serial port access You cannot access the serial port through the Serial
Communications Controller (SCC) registers.

• Disk drive access Copy-protection schemes that use direct access to the disk drive
controller chip do not work under A/UX.

• Hardware exception vectors The low-memory CPU exception vectors are not
accessible from within an A/UX user process.

• Macintosh global variables Not all of the Macintosh low-memory global variables are
valid in A/UX. In general, variables related to hardware are not supported. QuickDraw
and Window Manager globals are accessible, because they are not hardware-specific.
The screen is directly accessible by an application. Appendix D, "Low-Memory Global
Variables," lists the low-memory global variables supported in A/UX.

4-6 Chapter 4 Compatibility Guidelines

Because all input/output and processor-allocation functions are performed through
the A/UX kernel, the A/UX Toolbox libraries themselves do not have as much control
over the system as do their counterparts in the Macintosh environment.

The standard Macintosh environment provides the Vertical Retrace Manager to
handle the scheduling and execution of tasks during the vertical retrace interrupt, and
the Time Manager to schedule routines that require precise timing. (These managers are
described in Inside Macintosh, Volume VI.) The A/UX Toolbox implementation of these
managers is built on the A/UX signal mechanism. Depending on the activities of other
processes, routines scheduled to be run by either of these managers might be delayed.
Even if no other processes are active, the A/UX Time Manager provides coarser
granularity than its Macintosh counterpart. For more information, see "Vertical Retrace
Manager" and "Time Manager" in Chapter 5.

An application that demands more precise timing probably requires a custom A/UX
device driver. See Building A!UX Device Drivers in the A/UX Device Drivers Kit,
available through APDA, for information on writing device drivers.

You can use standard A/UX device drivers to manage external devices, but programs
that use A/UX device drivers are not portable to the Macintosh OS. For a strategy to
include A/UX system calls in applications that are intended to run under both the
Macintosh OS and the A/UX operating system, see "Making A/UX System Calls" in
Chapter 3.

Newline characters

The A/UX Toolbox supports the transfer of files between the Macintosh and A/UX
environments. When a user or an application transfers an unformatted ASCII text file
between the two environments, certain changes occur automatically. One change may
mask a simple, but important, difference in conventions: how the newline character is
defined.

In the Macintosh environment, lines are terminated with a return character,
represented by the ASCII value OxOD. In A/UX, lines are terminated with a line-feed
character, represented by the ASCII value OxOA.

Differences in execution environments 4-7

This difference is often masked by automatic conversion, which changes newline
characters when a file is moved between the environments. A text editor working with a
text file in its own environment will find the appropriate newline character in the file,
even if the file originated in the other environment. An A/UX utility processing a text file
that originated on the Macintosh side of the system and that is now on the A/UX side will
find the expected newline characters.

Automatic newline conversion is performed for Macintosh files identified as text files
and for A/UX files that are determined to be text or shell script files. See "Text Files" and
"Automatic Conversion," in Chapter 6, for more detailed information on these topics.

This difference is also masked from the programmer by the C language's newline
character (\ n), which is translated differently in the two environments.

When sending multiple-line strings to the Dialog Manager or any of the A/UX
Toolbox managers that receive strings, remember that these managers require the
Macintosh newline termination. As with the other cases described here, if the file is on
the Macintosh side of the system, then the correct termination character will be present.

You should be aware of this issue, as you may encounter subtle difficulties involving
the two newline conventions. Automatic conversion of newline characters occurs only
for files known to be text files. A file that is actually a text file may be transferred
between environments without being identified as a text file. A file that is not a text file,
but which contains text, will not have newlines converted. For example, a resource file
contains text and nontext matter. No conversion is done for resource files. A binary file
transferred between the two environments has its original newline convention when
running in the new environment, which may affect both the output of text and the
processing of input text. An application intended for execution in both environments
may need to determine its execution environment and select the desired newline
character accordingly.

4-8 Chapter 4 Compatibility Guidelines

File Manager

The A/UX File Manager is fully supported for all volumes except "/". The "/" volume is
almost fully supported. For details, see "File Manager" in Chapter 5. Chapter 6, "File
Systems and File Formats," provides details on what happens when files are transferred
between the Macintosh and A/UX environments.

Memory Manager

The A/UX Memory Manager supports all access routines in the same way as does the
Macintosh OS Memory Manager. The A/UX Memory Manager supports these routines
within a virtual memory environment. Virtual memory has practical limits and
performance limits. On a practical level, the amount of Macintosh virtual memory
(specified by means of the Memory control panel) should be set no higher than twice the
size of physical memory. In general, performance degrades to an unacceptable level
unless all of the memory that is actively being used fits into physical memory.

International character support

The Script Manager is supported in its entirety; however, a caution applies to use of
international character sets within the A/UX environment. In brief, if you have a
Macintosh application that supports international character sets, the application should
run appropriately under A/UX. However, if you attempt to process international character
sets within the A/UX environment by using UNIX utilities, you are likely to encounter
difficulties. The kernel itself is 8-bit clean, but this is not necessarily true for the hundreds
of utilities and shell scripts furnished as part of A/UX (or any UNIX system), which were
developed over the years by many different people. Such utilities and scripts may process
characters as though implemented in 7 bits and, when processing text, may make
assumptions that do not hold true for international character sets.

Differences in execution environments 4-9

Differences in C compilers
This section lists the known differences between the A/UX C compilers and the MPW C
Compiler. These differences affect you if you are writing source code that you plan to
compile separately in the two environments. If you are using a different C compiler for
Macintosh program development, consult your software vendor.

• Zero-length-array warnings The A/UX C compilers cc and c 8 9 generate
warnings when they encounter zero-length arrays, which appear frequently in the
A/UX Toolbox header files. The c 8 9 compiler is an ANSI-compliant C compiler
contained in the A/UX Developer's Tools product, available from APDA.

• Newline characters The newline character is the return character (ASCII value OxOD)
in MPW C and the line-feed character (ASCII value OxOA) in A/UX C.

• Pascal/unction types MPW Chas an extern pascal function type that can be
used for calling most of the ROM routines. To use these functions, an A/UX C
program must use intermediate assembly-language "glue," that is, routines that
rework the C call into a form understandable by the ROM.

The A/UX Toolbox provides assembly-language transformation routines (glue
routines) for most ROM calls in the files /usr I lib/ libmac. a and
/usr I 1ib/1 ibmac_s. a. The second file, 1 ibmac_s. a, is a shared-library
version of the first, and can be used on the compile or link-edit command line in
exactly the same fashion as 1 ibmac . a. The shared-library version saves some
space in an application binary, and has the advantage of always referring to the latest
version of the file. Shared libraries are discussed in Chapter 7 of A/UX Programming
Languages and Tools, Volume 1. See A/UX Development Tools for an explanation of
how to call functions by using the Macintosh Toolbox library.

However, if you want to create your own definition functions or filter functions, you
must generate your own assembly-language glue. The A/UX Developer's Tools
product, available from APDA, provides most of the glue routines you may need.

See Appendix C, "Implementation Notes," for details about the requirements of the
Pascal routines. See A/UX Programming Languages and Tools, Volume 1, for
information on the A/UX assembler as.

4-10 Chapter 4 Compatibility Guidelines

• Enumerated types In MPW C, enumerated types can be 8, 16, or 32 bits long,
depending on the range of possible values. In A/UX C, enumerated types are 32 bits
long, unless packed in structures using bitfields. A/UX C does not treat an
enumerated type as an integer in all cases; MPW C does.

• Functions returning pointers MPW C places the return value in register DO; A/UX C
places the value in both AO and DO.

Differences in language conventions
Most of the Macintosh ROM routines follow Pascal conventions for storing strings,
passing structures, pushing parameters on the stack, and returning function results.
These conventions differ from standard C conventions. (See Appendix C,
''Implementation Notes," for details about the differences between Pascal and C
conventions.)

The A/UX Toolbox interface to the ROM routines includes conversion code that takes
care of most of these incompatibilities. Since Release 1.1, A/UX has provided two
versions of all routines that take parameters of type string or type point or that return
values of type string. One version, spelled as the routine appears in Inside Macintosh,
always uses Pascal-format strings and Pascal point-passing conventions. The second
version, spelled in all lowercase letters, uses C-format strings and points. The lowercase
version converts input parameters from C format to Pascal format before passing them to
the ROM, and converts string return values back to C format.

An alphabetical list of all calls in the C interface libraries, "Calls in Alphabetical
Order," is provided in Appendix F. You can consult this list to determine whether an
alternative version of a call is available, because lowercase and mixed-case versions of a
call name sort together.

Differences in language conventions 4-11

5 A/UX and Macintosh User
Interface Toolbox Differences

About the Macintosh interface library I 5-2

Calls patched under A/UX I 5-31

Calls not supported under A/UX I 5-34

This chapter describes the differences between the A/UX Toolbox software libraries and

those of the standard Macintosh User Interface Toolbox and Operating System. For each

chapter in Inside Macintosh that describes a software library (typically called a

"manager" of the feature it supports), this chapter contains a section describing the A/UX

implementation of that library. The sections in this chapter appear in alphabetical order,

not Inside Macintosh order. This chapter also contains an alphabetical listing of calls not

supported under A/UX.

For a general description of how each library works, see the corresponding chapter in

Inside Macintosh. For a detailed list of the constants, types, and functions used by each

library, see Appendix F, "C Interface Library."

About the Macintosh interface library

Most of the Macintosh User Interface Toolbox libraries, such as the Menu Manager and
the Window Manager, work the same way in the A/UX Toolbox as they work in the
standard Macintosh User Interface Toolbox. Some A/UX Toolbox libraries are different
from their Macintosh OS counterparts because they replace parts of the Macintosh OS.
This chapter provides detailed discussions of the differences between the two
implementations. Appendix C, "Implementation Notes," describes some additional
implementation details.

Some of the standard Macintosh OS libraries, such as the SCSI Driver, are not
implemented in the A/UX Toolbox. Refer to the A/UX Device Drivers Kit, available from
APDA, for documentation and examples of source code for all A/UX device drivers.

Table 5-1 summarizes the status of the various ROM libraries at the time A/UX
Release 3.0 was distributed.

Table 5-1 Status of User Interface Toolbox and Macintosh OS libraries
in the A/UX Toolbox

ROM library Supported?

32-Bit QuickDraw with Color QuickDraw Yes

Alias Manager Yes

Apple Desktop Bus No

Apple Event Manager Yes

AppleTalk Manager Yes

Binary-Decimal Conversion Package Yes

Color Manager Yes

Color Picker Package Yes

Control Manager Yes

Data Access Manager Yes

Deferred Task Manager Yes

Desk Manager Not needed

Desktop Manager Yes

Device Manager Yes

Dialog Manager Yes

5-2 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

(continued~

Table 5-1 Status of User Interface Toolbox and Macintosh OS libraries
in the A/UX Toolbox (continued)

ROM library Supported?

Disk Driver Yes

Disk Initialization Package Yes

Edition Manager Yes

Event Manager, Operating System Partially

Event Manager, Toolbox Yes *

File Manager Mostly

Floating-Point Arithmetic and
Transcendental Functions Packages Yes *

Font Manager Yes

Gestalt Manager Yes

Graphics Devices Manager Yes

Help Manager Yes

International Utilities Package Yes

List Manager Package Yes

Memory Manager Yes

Menu Manager Yes

Notification Manager Yes

Package Manager Yes

Palette Manager Yes

Picture Utilities Package Yes

Power Manager Not needed

PPC Toolbox Yes

Printing Manager Yes

Process Manager Yes

Resource Manager Yes

Scrap Manager Yes

Script Manager Yes

SCSI Manager No

Segment Loader Partially

(continued~

About the Macintosh interface library 5-3

Table 5-1 Status of User Interface Toolbox and Macintosh OS libraries
in the NUX Toolbox (continued)

ROM library Supported?

Serial Driver Yes

Shutdown Manager Yes

Slot Manager Partially

Sound Manager Mostly

Standard File Package Yes

Startup Manager Not needed

System Error Handler Yes *

TextEdit Yes

Time Manager Yes*

Utilities, Operating System Partially

Utilities, Toolbox Yes

Vertical Retrace Manager Partially

Window Manager Yes

* All calls are implemented in the A/UX Toolbox, but functionality is not identical to that in the

Macintosh User Interface Toolbox. See the discussions later in this chapter for details.

The C interfaces to the standard Macintosh libraries are defined in a set of header files
shipped in the directory /usr I include/mac. Include the header file for each library
you use in your C program to declare the definitions, types, and functions provided by
the library. Appendix F, "C Interface Library," contains a list of calls available through the
libraries, including the header to include for each call. Table F-1 lists the header
filenames together with their library titles.

32-Bit QuickDraw with Color QuickDraw

The A/UX Toolbox 32-Bit QuickDraw is identical to the Macintosh OS 32-Bit QuickDraw.
Color QuickDraw is included in 32-Bit QuickDraw.

See Inside Macintosh, Volumes I, V, and VI, for a description of QuickDraw and Color
QuickDraw, supplemented by the APDA document on 32-Bit QuickDraw. See "32-Bit
QuickDraw With Color QuickDraw" in Appendix F for the A/UX C interface.

5-4 Chapter 5 NUX and Macintosh User Interface Toolbox Differences

Alias Manager

The A/UX Alias Manager is identical to the Macintosh OS Alias Manager. See Inside
Macintosh1 Volume VI, for a description of the Alias Manager.

Apple Desktop Bus

The A/UX Toolbox does not support the Macintosh OS Apple Desktop Bus. Source code
for the UNIX ADB device driver can be found in the A/UX Device Drivers Kit, available
from APDA.

Apple Event Manager

The A/UX Apple Event Manager is identical to the Macintosh OS Apple Event Manager.
See Inside Macintosh1 Volume VI, for a description of the Apple Event Manager.

AppleTalk Manager

All AppleTalk calls and protocols are supported under A/UX 3.0.
AppleTalk printing operations are available either through direct AppleTalk calls in

Macintosh binaiy programs or through calls to the Printing Manager under A/UX. See
"Printing Manager" or "Print Traps" in Appendix F for the A/UX C interface.

Other AppleTalk calls are available (at the program level) as UNIX system calls and
Macintosh binaiy calls. The equivalent A/UX C header files are in the libraiy
/usr I include/ at.

See Inside Macintosh1 Volumes II, IV, V, and VI, for a description of the Macintosh
OS AppleTalk Manager. See A!UX Network Applications Programming for a description
of the A/UX AppleTalk Manager.

About the Macintosh interface libra1y 5-5

Binary-Decimal Conversion Package

The A/UX Toolbox Binary-Decimal Conversion Package is identical to the Macintosh OS
Binary-Decimal Conversion Package.

See Inside Macintosh1 Volumes I and IV, for a description of the package. See
"Package Manager" in Appendix F for the A/UX C interface to the Binary-Decimal
Conversion Package.

Color Manager

The A/UX Color Manager is identical to the Macintosh OS Color Manager. See Inside
Macintosh1 Volume V, for a description of the Color Manager. See "32-Bit QuickDraw
With Color QuickDraw" in Appendix F for the A/UX C interface to the Color Manager.

Color Picker Package

The A/UX Color Picker Package is identical to the Macintosh OS Color Picker Package.
See Inside Macintosh1 Volume VI, for a description of the Color Picker Package. See
"Color Picker" in Appendix F for the A/UX C interface.

Control Manager

The A/UX Toolbox Control Manager is almost identical to the Macintosh OS Control
Manager. The difference is that in A/UX a control's variant code is not stored in the
contrlDef Proc field of the control record. To retrieve the variant code, use the
Control Manager call Getcvariant, described in Inside Macintosh1 Volume V.

See Inside Macintosh, Volumes I, IV, and V, for a description of the Control Manager.
See "Control Manager" in Appendix F for the A/UX C interface.

5-6 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Data Access Manager

The A/UX Data Access Manager is identical to the Macintosh OS Data Access Manager.
See Inside Macintosh, Volume VI, for a description of the Data Access Manager.

Deferred Task Manager

The Deferred Task Manager is identical to the Macintosh OS Deferred Task Manager. See
Inside Macintosh, Volume VI, for a description of the Deferred Task Manager. See
"Deferred Task Manager" in Appendix F for the A/UX C interface.

Desk (Accessory) Manager

The Desk Manager is identical to the Macintosh OS Desk Manager. Usually, though not
always, when a desk accessory is opened, the Process Manager launches the desk
accessory in its own partition, and otherwise treats it as a small application.

See Inside Macintosh, Volume VI, for a description of the Process Manager. See
"Desk Manager" in Appendix F for the A/UX C interface.

Desktop Manager

The A/UX Desktop Manager is identical to the Macintosh OS Desktop Manager. See
Inside Macintosh, Volume VI, for a description of the Desktop Manager.

Device Manager

The A/UX Device Manager is identical to the Macintosh OS Device Manager, but A/UX
places the same restrictions on device drivers as on applications. Device drivers outside
the kernel cannot manipulate hardware directly. Therefore, desk accessories are
supported, but most custom NuBusrM card drivers are not. A/UX currently supports
custom video drivers, the AppleTalk drivers, and AppleTalk-based printer drivers.

About the Macintosh interface library 5-7

If your application needs to control hardware directly, you must use an A/UX device
driver. (For information on writing an A/UX device driver, see Building AIU\'" Device
Drivers.) You can then write a Macintosh device driver that uses A/UX system calls, such
as open(2) and ioct1(2), to access the A/UX device driver that you have installed in
the kernel. A program that uses an A/UX device driver is not portable to the
Macintosh OS. See Chapter 3, "A/UX Toolbox Utilities and Extensions," for a strategy for
including A/UX system calls in applications that are intended to run under both the
Macintosh OS and the A/UX operating system.

See Inside Macintosh) Volumes II, IV, and V, for a description of the Device Manager.
See "Device Manager" in Appendix F for the A/UX C interface. For an example of driver
calls, see "Disk Driver" in Appendix F.

Dialog Manager

The A/UX Dialog Manager is identical to the Macintosh OS Dialog Manager.
Because the System Error Handler cannot resume processing after an error, it ignores

the resumeProc variable passed to it by the Ini tDialogs routine.
When using the Dialog Manager under A/UX, remember to make provisions for

these common compatibility problems:

• Newline character Individual lines in a multiple-line message passed to the Dialog
Manager must be separated by return characters (\ r) when using the cc (or c 8 9) C
compiler, though not with the MPW C compiler.

• ProcPtr parameters Any procedure passed as a parameter to a Dialog Manager
routine must use Pascal calling conventions. See Appendix C, "Implementation
Notes," for a description of the Pascal conventions.

See Inside Macintosh) Volumes I, IV, V, and VI, for a description of the Dialog
Manager and the facilities it offers. See "Dialog Manager" in Appendix F for the A/UX C
interface.

5-8 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Disk Driver

The Disk Driver is supported. See Inside Macintosh, Volumes II, IV, and V, for a
description of the Disk Driver. See "Disk Driver" in Appendix F for the A/UX C interface.

Disk Initialization Package

The Disk Initialization Package is supported. See Inside Macintosh, Volumes II and IV,
for a description of the Disk Initialization Package. The Disk Initialization Package is
accessed through the Package Manager. See "Package Manager" in Appendix F for the
A/UX C interface.

Edition Manager

The A/UX Edition Manager is identical to the Macintosh OS Edition Manager. See Inside
Macintosh! Volume VI, for a description of the Edition Manager.

Event Manager, Operating System

The A/UX Toolbox supports most of the standard Macintosh OS Event Manager routines.
Because the A/UX kernel maintains the event queue, the A/UX Toolbox version of the
manager performs differently than the Macintosh OS version. See Inside Macintosh,
Volumes II and IV, for a description of the Macintosh OS Event Manager. See "Event
Manager, Operating System" in Appendix F for the A/UX C interface. Also, see
"AUXDispatch Trap," in Chapter 3, for related information.

The global variable EventQueue always contains the header of an empty queue.
Therefore, an application cannot look directly at the actual queue and must depend on
Event Manager routines for manipulating the queue. You can use the AUXDispatch

call AUX_FIND_EVENT to search the event queue for an event.

About the Macintosh interface library 5-9

In the Macintosh OS, all events are put into the queue through the PostEvent

routine. In A/UX, mouse and keyboard events are processed through the kernel, and the
system never calls PostEvent; the PPostEvent trap is not supported. An
application cannot depend on a patch to PostEvent to alert it to mouse and
keyboard events. The AUXDispatch call AUX_POST_MODIFIED is the equivalent
A/UX call.

Event Manager, Toolbox

The A/UX Toolbox supports all of the routines in the Macintosh OS Toolbox Event
Manager, but some of the functions perform differently under the A/UX operating system
than under the Macintosh OS. See Inside Macintosh, Volumes VI, I, IV, and V, for a
description of the Toolbox Event Manager. See "Event Manager, Toolbox" in Appendix F
for the A/UX C interface.

The A/UX Toolbox supports the Wai tNextEvent call, which allows the system
to run more efficiently in the multitasking environment of the A/UX Finder. Use the
Wai tNextEvent call instead of the GetNextEvent call. For more information on
the Wai tNextEvent call, see Inside Macintosh, Volume VI, and "Using the
ui_setselect Call" in Chapter 2.

When using the Toolbox Event Manager, make provisions for these differences
between the A/UX operating system and the Macintosh OS:

• Because the global variables KeyThresh and KeyRepThresh are ignored, an
application cannot change key-repeat characteristics.

• Journaling is not supported, because events are handled differently by each
operating system. However, journals recorded under the Macintosh Operating
System (for example, macros made with MacroMaker) can be played under the A/UX
operating system.

5-10 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

File Manager

The A/UX Toolbox File Manager supports access to Macintosh OS volumes and UNIX
file systems. UNIX file systems are supported as external file systems in much the same
way that AppleShare file systems are supported. UNIX external file systems support
almost all File Manager calls, including file IDs, file specification (FSSpec) records, and
foreign privilege buffers. In addition, A/UX supports the _GetForeignPri vs and
_SetForeignPri vs traps, returning the ioForeignPri vBuf fer to store
information on UNIX permissions, so this information can be backed up and restored by
Macintosh backup utilities.

Files can be accessed across the boundary between the Macintosh ftle environment and the
A/UX ftle environment. Chapter 6, "File Systems and File Format5," provides information on how ftle
structure and contents change when ftles move across the boundary. Such changes include ftle
permissions, ftle formats, and line-termination codes.

The underlying support for the File Manager is provided by the Berkeley UNIX file
system (UFS), an implementation of the file system used by the BSD (Berkeley Software
Distribution) 4.2 operating system. In addition to being faster than the System V file system
(which is still available), the new file system allows filenames of up to 255 characters. The
maximum length of an HFS name is 32 characters; longer names brought into the
Macintosh OS environment are truncated.

For information on the Macintosh OS File Manager, see Inside Macintosh, Volumes IV,
V, and VI. See "File Manager'' in Appendix F for the A/UX C interface.

Floating-Point Arithmetic and Transcendental
Functions Packages

C programmers rarely, if ever, explicitly call the routines in the Floating-Point Arithmetic
and Transcendental Functions Packages. These packages support the Standard Apple
Numeric Environment (SANE).

Most Macintosh C compilers use SANE. Mathematical functions in the standard C
library are routed through the SANE packages. When a Macintosh binary file that uses
SANE is ported to A/UX, the SANE routines are already in place in the code.

About the Macintosh interface library 5-11

The A/UX C compiler cc uses the standard A/UX floating-point routines. The SANE
packages are not available to programs compiled under A/UX.

See Inside Macintosh, Volumes II and V, for a description of the Floating-Point
Arithmetic and Transcendental Functions Packages. See "Package Manager" in
Appendix F for the A/UX C interface to these packages.

Font Manager

The A/UX Toolbox Font Manager in Release 3.0 supports TrueType fonts. See Inside
Macintosh, Volumes I, IV, V, and VI, for a description of the Font Manager. See "Font
Manager" in Appendix F for the A/UX C interface.

Gestalt Manager

The A/UX Toolbox Gestalt Manager provides full support for the Macintosh OS Gestalt
facility. The following environmental selector is available; it can be used to determine if
your application is running under A/UX and, if so, which version:

gestaltAUXVersion = 'a/ux'

Calling Gestalt with this selector returns the version number, with implied decimal
points. If you are not running under A/UX, Gestalt returns a result code of
gestal tUnknownErr, value -5550.

To determine if Gestalt itself is available, use the TrapAvailable function. The
Gestalt trap address is $A1AD. For example, use the following routine:

/* determine if Gestalt Manager is available by calling

TrapAvailable */

unsigned char GestaltAvailable(void

return(TrapAvailable(_Gestalt)) ;

5-12 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Here is a typical implementation of TrapAvailable:

Boolean TrapAvailable(tNumber,tType)

short

TrapType

tNumber;

tType;

if (tType == ToolTrap) &&

gMac.machineType > envMachUnknown) &&

gMac.machineType < envMacII)) { /*it's a 512KE, */

tNumber = tnumber & Ox03FF;

if (tNumber > OxOlFF)

tNumber = _Unimplemented;

/* Plus, or SE */

/* which means the */

/* tool traps only */

!* go to OxOlFF */

return NGetTrapAddress(tNumber, tType) !=

GetTrapAddress(_Unimplemented);

+ Note Checking that Gestalt is available is required only if you want your application
to be backward-compatible with Macintosh systems running a Macintosh OS version
prior to System 7. All systems running A/UX Release 2.0 or later releases implement the
Gestalt facility. •

See Inside Macintosh, Volume VI, for a description of the Gestalt Manager.

Graphics Devices Manager

The A/UX Graphics Devices Manager is identical to the Macintosh OS Graphics Devices
Manager. See Inside Macintosh, Volume VI, for a description of the Graphics Devices
Manager.

About the Macintosh interface library 5-13

Help Manager

The A/UX Help Manager is identical to the Macintosh OS Help Manager. See Inside
Macintosh, Volume VI, for a description of the Help Manager.

International Utilities Package

The A/UX Toolbox fully supports the Macintosh OS International Utilities Package. See
Inside Macintosh) Volumes I, V, and VI, for a description of the International Utilities
Package. See "Package Manager" in Appendix F for the A/UX C interface to the
International Utilities Package.

List Manager Package

The A/UX Toolbox fully supports the Macintosh OS List Manager Package. See Inside
Macintosh) Volume IV, for a description of the List Manager Package. See "List Manager
Package" in Appendix F for the A/UX C interface.

Memory Manager

The A/UX Toolbox fully supports the Macintosh OS Memory Manager, including virtual
memory. While the implementation of virtual memory differs between the Macintosh OS
and A/UX operating system, this is transparent to both the user and the programmer.

The Memory Manager is 32-bit clean and expects to serve applications that are 32-bit
clean. A/UX Release 3.0 offers a special 24-bit environment in which older applications
can be run. The special environment takes care of memory addressing. From within the
24-bit environment, there is limited access to the standard 32-bit environment.

See "The Memory Manager" in Inside Macintosh) Volume II, which is intended to be
read in conjunction with related chapters in Volumes IV and VI. See "Memory Manager"
in Appendix F for the A/UX C interface.

5-14 Chapter 5 NUX and Macintosh User Interface Toolbox Differences

Menu Manager

The A/UX Toolbox Menu Manager is identical to the Macintosh OS Menu Manager.
If your application uses custom menu definition functions, you must provide

assembly-language routines to transform the parameters into Pascal format for
compatibility with the ROM. (For information on transforming parameters into Pascal
format, see Chapter 4 and Appendix C.)

See Inside Macintosh, Volumes I, IV, and V, for a description of the Menu Manager.
See "Menu Manager" in Appendix F for the A/UX C interface.

Notification Manager

The A/UX Toolbox Notification Manager is identical to the Macintosh OS Notification
Manager. See Inside Macintosh, Volume VI, for a description of the Notification
Manager. See "Notification Manager" in Appendix F for the A/UX C interface.

Package Manager

The A/UX Toolbox supports both Macintosh OS Package Manager routines. The A/UX
Package Manager supports interfaces to the Standard File, Floating-Point Arithmetic,
Transcendental Functions, International Utilities, Disk Initialization, and Binary-Decimal
Conversion Packages. The List Manager Package, available directly as a separate library,
is also available through the Package Manager for historical reasons.

See Inside Macintosh, Volumes I and IV, for a description of the Package Manager. See
"Package Manager" and "List Manager Package" in Appendix F for the A/UX C interface.

Palette Manager

The A/UX Toolbox Palette Manager is identical to the Macintosh OS Palette Manager. See
Inside Macintosh, Volume VI, for a description of the Palette Manager. See "Palette
Manager" in Appendix F for the A/UX C interface.

About the Macintosh interface library 5-15

Picture Utilities Package

The A/UX Picture Utilities Package is identical to the Macintosh OS Picture Utilities Package.
See Inside Macintosh1 Volume VI, for a description of the Picture Utilities Package.

Power Manager

The Power Manager is not implemented in A/UX Release 3.0. Macintosh portable
computers are the only systems that use this manager, and as of this writing A/UX is not
supported on portable computers.

PPC Toolbox

The A/UX Program-to-Program Communications (PPC) Toolbox is identical to the
Macintosh OS PPC Toolbox. See Inside Macintosh, Volume VI, for a description of the
PPC Toolbox.

Printing Manager

The A/UX Toolbox Printing Manager is identical to the Macintosh OS Printing Manager.
A/UX Release 3.0 supports AppleTalk-based printer drivers (for LocalTalk or Ethernet)
and serial printer drivers.

See Inside Macintosh1 Volumes II and V, for a description of the Printing Manager.
See "Printing Manager" and "Print Traps" in Appendix F for the A/UX C interface.

Process Manager

The A/UX Process Manager is identical to the Macintosh OS Process Manager. See Inside
Macintosh1 Volume VI, for a description of the Process Manager. See "Process Manager"
in Appendix F for the A/UX C interface.

5-16 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Resource Manager

The A/UX Toolbox Resource Manager is almost identical to the standard Macintosh OS
Resource Manager. The differences between the two result primarily from differences
between file systems. All Resource Manager calls documented in Inside Macintosh are
implemented in the A/UX Toolbox.

See Inside Macintosh, Volumes I, IV, V, and VI, for a description of the Resource
Manager. See "Resource Manager" in Appendix F for the A/UX C interface. See ResEdit
R~ference (for version 2.1) for information on editing resources. Additional information
on the resource compiler, rez, and resource decompiler, derez, is given in Chapter 3
and in Appendix E.

When using the Resource Manager, you must make provisions for these differences
between the environments:

• Resource files A/UX files in AppleDouble format (described in Chapter 6) have their
resources and data stored in separate files. Be careful to keep both files together
when copying, renaming, or otherwise manipulating AppleDouble files with UNIX
commands such as mv. See Chapter 2 and Chapter 6 for descriptions of Macintosh
file formats in A/UX.

• Write permission Your application might not have write permission in the directory
containing the System Folder (typically I mac I 1 i b I System Fi 1 es) or the
application.

• Case-sensitive.filenames Unlike the Macintosh OS, A/UX differentiates between
uppercase and lowercase characters in filenames. Be careful with the filenames in
OpenResFile and CreateResFile.

• Search paths The System 7 Macintosh OS File Manager uses FSSpec records to
unambiguously establish the location of files. When creating resource files, you are
encouraged to use the FSpCreateResFile procedure whenever possible.

The previous version of the Macintosh OS File Manager checks a number of search
paths if it cannot find a file in the specified directory. Because of this feature, the
createResFile routine can introduce some subtle inconsistencies in search
paths when creating resource files. Searching of alternative paths is not supported
under A/UX. Programs that are intended to run in both environments should follow
the strategies recommended in Macintosh Technical Note#101, even though those
strategies are not needed in A/UX. Technical notes are available through APDA.

About the Macintosh interface library 5-17

+ Note Checking search paths is an issue only if you want your application to be
backward-compatible with Macintosh systems nmning a Macintosh OS version prior
to System 7. •

In the absence of the default search paths, an application must explicitly set the
default directory when opening a resource file in the "blessed" folder, usually the
System Folder. An application must first determine the working-directory reference
number of the desired directory, and then set the default directory with the File
Manager function set Vol. See Macintosh Technical Notes #67and #77and Inside
Macintosh, Volumes IV and VI.

Scrap Manager

The A/UX Toolbox Scrap Manager is almost identical to the Macintosh OS Scrap Manager.
The only difference between the two Scrap Managers is the way in which they store

material cut to the Clipboard. The A/UX Toolbox Scrap Manager maintains a
. c 1 ipboard file in your home directory when you execute an A/UX Toolbox
application. The contents of the scrap are written into this file when an application exits,
allowing you to cut and paste between applications.

See Inside Macintosh, Volumes I and IV, for a description of the Scrap Manager. See
"Scrap Manager" in Appendix F for the A/UX C interface.

Script Manager

The A/UX Toolbox Script Manager is identical to the Macintosh OS Script Manager. See
Inside Macintosh, Volumes V and VI, for a description of the Script Manager. See "Script
Manager" in Appendix F for the A/UX C interface.

SCSI Manager

The A/UX Toolbox does not currently support the Macintosh OS SCSI Manager functions.
A call to a SCSI Manager routine returns an unimplemented trap message.

5-18 Chapter 5 NUX and Macintosh User Interface Toolbox Differences

For an application that is intended to run only under A/UX, you can write an A/UX
device driver. For more information, see Building A/la Device Drivers in the A/UX
Device Drivers Kit, available from APDA. A program that uses an A/UX device driver is
not directly portable to the Macintosh OS. However, by using the Gestalt facility, you can
create binary-compatible code that runs in both environments.

Segment Loader

Applications in the standard Macintosh development environment are written in
segments, which are loaded individually as needed so that memory is used efficiently.
Segments are not used in the A/UX environment, but the Segment Loader has been
implemented to support Macintosh binary applications launched under A/UX.

See Inside Macintosh, Volumes II, IV, and VI, for a description of the Segment
Loader. See "Segment Loader" in Appendix F for the A/UX C interface.

An application may or may not contain Segment Loader calls, depending on its
format and intended running environment:

• Standard Macintosh binary files launched under A/UX are loaded by the Segment
Loader in the normal fashion.

• Applications ported to A/UX from Macintosh sources or written to run in both
environments can include calls to Segment Loader routines.

• Applications written to run exclusively under A/UX need not use Segment Loader
calls.

Finder information

The format of the file information passed to an application by the A/UX Finder follows
Macintosh OS conventions.

When an application is started under A/UX, the application's Finder information is in
one of these states:

• An application developed for A/UX shows no documents selected.

• An application developed for A/UX shows one or several documents selected.

• A Macintosh application has a Finder document list based on the parameters in the
launch(l) command line.

About the Macintosh interface library 5-19

Segment Loader routines

This section lists the Segment Loader routines that are different in the A/UX Toolbox than
in the User Interface Toolbox. The Segment Loader routines not listed here are
implemented as described in Inside Macintosh.

UnloadSeg

Chain

LoadSeg

The jump table

Performs normally for Macintosh binary applications that are launched;
stubbed out for native A/UX applications.

Not used in multitasking environments; Launch is used instead.

Performs normally for Macintosh binary applications that are launched;
stubbed out for native A/UX applications.

The jump table works as described in Inside Macintosh for Macintosh applications that
are launched under A/UX; it is not implemented for native A/UX and UNIX applications.

Alternate buffer support

curPageOption is always set to 0, meaning that there is no alternate screen or sound
buffer.

Serial Driver

The A/UX Toolbox partially supports the Macintosh OS Serial Driver. The five exceptions
to full support are as follows:

• ASYNC calls are not supported.

• Three baud rates are not supported: 3600, 7200, and 57600. These rates are mapped
to 2400, 4800, and 19200, respectively. This constraint affects control calls 8
(serReset) and 13 (baudRate). The baud rate 38400 is supported.

• Control call 9 (serSetBuf) has no effect. When called, it just returns.

• Event-message posting is not supported. This limitation affects control calls 10 and
14 (serHShake). If the evts field in the SerShk record is nonzero, an error
is returned.

• Status call 8 (Ser Status) will always return 0 in the rdPend and wrPend fields.

5-20 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Eight ioctl calls have been added to the A/UX Serial Driver to support the Serial
Driver running under A/UX:

ioctl (fa, TCRESET, o) ;

This ioctl causes a reset of the serial line denoted by the file descriptor, f d.

ioctl (fa, TCGETSTAT, &serstat) ;

This ioctl returns status information for the serial line denoted by f d into the structure
serstat. The variables ser_frame, ser_ovrun, and ser_pari ty represent
the error counts that have been tallied since the last call to TCGETSTAT. (These fields
are set to 0 when the call completes.) The variable ser_cts indicates the current
status of the CTS (Clear to Send) signal; TRUE indicates CTS ON (high). The variable
ser_inflow is TRUE if input is currently blocked because of flow control. The
variable ser_outflow is TRUE if output is blocked because offlow control. Here
is the data structure:

struct sererr

unsigned long ser_frame; /* framing errors */

unsigned long ser _ovrun; /* overrun errors */

unsigned long ser_parity; /* parity errors */

unsigned long ser_cts; /* cts signal */

unsigned long ser_inf low; /* input flow control */

unsigned long ser_outflow; /* output flow control */

ioctl(/d,TCSETDTR,0);

This ioctl turns on the DTR (Data Terminal Ready) line (drives it high) for the serial line
denoted by f d.

ioctl(fa,TCCLRDTR,0);

This ioctl turns off the DTR line (drives it low) for the serial line denoted by f d.

ioctl (fd, TCSBRKM, 0) ;

This ioctl sets break mode (starts a line-break signal) for the serial line denoted by f d.

ioctl (fd, TCCBRKM, 0) ;

This ioctl clears break mode (terminates a line-break signal) for the serial line denoted by fd.

About the Macintosh interface library 5-21

ioctl(jd,TCSETSTP,&chr);

This ioctl sets the stop character for flow control for the serial line denoted by fd. chr

points to a byte containing the new stop character.

ioctl(jd,TCSETSTA,&chr);

This ioctl sets the start character for flow control for the serial line denoted by f d. chr

points to a byte containing the new start character.

The developer of a driver for a serial card must support these eight calls in the driver's
ioctl routine if the A/UX Serial Driver is to work properly. See Building A!UX Device
Drivers for additional details. See "Serial Driver" in Appendix F for the A/UX C interface.

Shutdown Manager

The A/UX Toolbox supports all Macintosh OS Shutdown Manager routines. The
shutdown queue is traversed and executed at logout.

See Inside Macintosh, Volume V, for a description of the Shutdown Manager. See
"Shutdown Manager" in Appendix F for the A/UX C interface.

Slot Manager

The A/UX Toolbox Slot Manager partially supports the Macintosh OS Slot Manager.
Details follow, keyed to the summary in "Slot Manager" in Inside Macintosh, Volume V.

• All principal routines are supported.

• Specialized routines are supported except for one routine:

SDeleteSRTRec

• Advanced routines are supported except for the following routines:

InitSDeclMgr

SPrimaryinit

SExec

InitsRsrcTable

5-22 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

InitPRAMRecs

SGetDriver

SFindsinf oRecPtr

• Assembly-language routine selectors are supported except for the following routines:

sDisposePtr

InitSDeclMgr

sPrimaryinit

sExec

InitPRAMRecs

InitsRsrcTable

sGetDriver

sFindsinf oRecPtr

sDeleteSRTRec

See Inside Macintosh, Volumes V and VI, for a description of the Slot Manager. See
"Slot Manager" in Appendix F for the A/UX C interface.

Sound Manager

The A/UX Toolbox partially supports the Macintosh OS Sound Manager. Operating with
the virtual memory environment of A/UX, the Sound Manager can process files of any
desired length. A raw sound driver is also available for use outside the A/UX Toolbox­
for example, in shell scripts.

The exceptions to full support for the Sound Manager are as follows:

• The A/UX Toolbox supports only one sampled channel, instead of two.
• Some commands are currently available only on computers equipped with the Apple

Sound Chip (ASC). The following A/DX-capable systems use the ASC: the
Macintosh SE/30 and the Macintosh II family of computers, including the
Macintosh II, IIx, Ilcx, IIci, Ilsi, and IIfx.

About the Macintosh interface library 5-23

• For the _SndAddModif ier trap, no addMod command is supported for
synthesizer modules, because synthesizer modules must go in the kernel. Current
synthesizers are supported for noteSynth, waveSynth, and sampledSynth.

Modules for new synthesizers would need to be ported to the kernel.

The ability to call user routines at interrupt level has been emulated by means of a
circular buffering scheme, avoiding the anticipated problems with security, page faults,
and context switching.

If the system has too heavy a load of other activities, sound production is affected.
The process slows, and the sound begins to have gaps or sputtering. This situation can
occur under either the Macintosh Operating System or the A/UX operating system.

The folder I mac Is re I sndDemo contains demonstration and sample programs
that use the Sound Manager.

See Inside Macintosh, Volume VI, for a description of the Sound Manager. See
"Sound Manager" in Appendix F for the A/UX C interface.

Support details

Here are the details on differences in trap support:

• Sound channel commands are supported with one exception:

SndAddModi f ier not supported for synthesizer modules

• Sound recording commands are supported with two exceptions:

SPBSigninDevice not supported

SPBSignOutDevice not supported

• Commands sent normally only by the Sound Manager are partially supported:

reinitCmd

timbreCmd

waveTableCmd

supported for note, wave, and sampled synthesizers

supported for systems that have the ASC

supported for systems that have the ASC

5-24 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

• Initialization options for sndNewChannel, sampled synthesizer only, are partially
supported:

initChanLeft

initChanRight

initStereo

ignored; defaults to mono

ignored

not supported; defaults to mono

• Synthesizer resource IDs with SndNewChannel are partially supported:

squarewaveSynth supported for systems that have the ASC

waveTableSynth supported for systems that have the ASC

• Initialization options for SndNewChannel, wave-table synthesizer only, are
supported:

initChanO

initChanl

initChan2

initChan3

The Raw Sound Driver

supported for wave-table synthesizers only

supported for wave-table synthesizers only

supported for wave-table synthesizers only

supported for wave-table synthesizers only

You can use the Raw Sound Driver under A/UX (for use in shell scripts and so forth)
without calling upon the Sound Manager. The Raw Sound Driver is available as

/dev/snd/raw

To use the Raw Sound Driver, prepare a file of sampled sound resources and send it
(by means of cat, for instance) to the device. For example, to send a file called
sndFile, use the following command line:

cat sndFile > /dev/snd/raw

Sending a character to I dev I snd/ reset resets the synthesizer driver in the
kernel, resetting both the Sound Manager and the Raw Sound Driver. Here is a reset
example that uses the echo command:

'x' > /dev/snd/reset

About the Macintosh interface library 5-25

The sampling rate of the Raw Sound Driver is 22 KHz by default. To change the rate,
use an ioctl to send a structure to the Raw Sound Driver. (See the example later in this
section.) The structure, named rawsndctl, contains a field called sarnpleRate,

which contains a 4-byte value interpreted as a fixed-point binary number with an implied
binary point between the upper and lower words. The value is a multiplier used to
reduce the 22KHz maximum rate. The value of $00010000, meaning $1.0000, preserves
the default rate. Here is an example that sets the rate to 7KHz. Calculate the multiplier:

7K/22K = .318 (decimal value)

Multiply by $00001.0000 to adjust for the binary point and convert to hexadecimal
($00001.0000 = 65536):

65536 * .318 = 20852 = $0000.5222

In practice, the value need not be calculated so precisely.
Here is an example C routine that places $00005222 in the rawsndctl

structure and sets the driver with an ioct 1(2) call:

#include <rnac/srn.h>

#include <sys/types.h>

#include <sys/ssioctl.h>

#include <sys/sys/srn_aux.h>

#include <sys/file.h>

#define SAMPLERATE Ox5222 /* (7k/22k) * 65536 */

main ()

int snd_fd;

struct rawSndCtl rawSndinfo;

if ((snd_fd = open("/dev/snd/raw",O_WRONLY)) < 0) {

printf ("open failed\n");

exit (1) ;

rawSndinfo.sarnpleRate

rawSndinfo.flags = O;

SAMPLERATE;

if (ioctl(snd_fd, SND_RAW_CTL, &rawSndinfo) < 0)

printf ("ioctl failed\n");

close (snd_fd) ;

5-26 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Standard File Package

The A/UX Toolbox Standard File Package is identical to the Macintosh OS Standard File
Package. See Inside Macintosh, Volumes I, IV, and VI, for a description of the package. See
"Package Manager" in Appendix F for the A/UX C interface to the Standard File Package.

System Error Handler

The A/UX Toolbox supports the single Macintosh OS System Error Handler routine,
Sys Error.

When the system issues the Sys Error call, and MacsBug is not installed, the
System Error Handler writes a brief error message to the program's stderr file and
terminates the program, with an exit status of 1. The error message contains the error
number and the location from which SysError was called.

See Inside Macintosh, Volumes II, IV, and V, for a description of the System Error
Handler. See "System Error Handler" in Appendix F for the A/UX C interface.

TextEdit

The A/UX Toolbox TextEdit facility is identical to the Macintosh OS TextEdit facility. You
can set up low-level routines to perform tasks such as customized word-breaking, but
you must provide assembly-language routines to handle the interface between TextEdit
and your custom routines. The TextEdit interface is based on registers. This interface
follows neither Pascal nor C conventions, and it varies from call to call.

See Inside Macintosh, Volumes I, IV, V, and VI, for a description of TextEdit. See
"TextEdit" in Appendix F for the A/UX C interface.

About the Macintosh interface library 5-27

Time Manager

The A/UX Toolbox provides a less accurate implementation of the standard Macintosh
Time Manager. The A/UX Toolbox Time Manager uses the A/UX set it imer(2)
system call. Because of the A/UX kernel's processor-allocation strategies, response from
the Time Manager may be delayed an arbitrary amount of time, depending on other
system activity. Even when it is operating without interference, the A/UX Time Manager
provides accuracy to only one-sixtieth of a second.

When you use the Time Manager in an application, you must observe these limitations:

• You must not make calls to the A/UX C library routines alarm(2),
setitimer(2), and sleep(2).

• You must not use s i gna 1 (2) to change the status of the s r GAL RM signal.

See A!UX Programmer's Reference for more information on set it imer(2). See
Inside Macintosh, Volume VI, for a description of the Time Manager. See "Time
Manager" in Appendix F for the A/UX C interface.

Utilities, Operating System

The A/UX Toolbox contains some of the Operating System utilities:

• Routines that manipulate pointers and handles and compare strings are fully
functional.

• Routines that read the date and time behave differently. (See the next section, "Date
and Time Operations.")

• Routines that manipulate parameter RAM are fully functional.

• The queueing and trap vector routines are fully functional.

• The miscellaneous utility Delay is fully functional.

• The former Operating System utility SysBeep is now a Sound Manager routine.

• The StripAddress routine always returns the pointer unchanged in the 32-bit
environment; the routine functions in the 24-bit environment.

See Inside Macintosh, Volumes II, IV, and V, for a description of the Operating
System Utilities. See "Utilities, Operating System" in Appendix F for the A/UX C interface.

5-28 Chapter 5 NUX and Macintosh User Interface Toolbox Differences

Date and time operations

To find out the correct date and time, use the ReadDa t eT ime utility. The global
variable Time is set when a program starts running, and it is not updated. Therefore,
GetDateTime always returns the time at which the program started running.

Because you must be logged in to A/UX as root to set the system clock through
either the date(l) command or the stime(2) command, you cannot change the
clock setting by using A/UX Toolbox calls. The SetDateTime utility returns the error
clkWrEr.

Miscellaneous utilities

Because the Restart routine results in a privileged 680x0 instruction not available to
programs running at the user level, it is not supported in A/UX. Instead, use the
Shutdown Manager routines. (See "Shutdown Manager," earlier in this chapter.)

De 1 ay is fully functional.
SetUpA5 and RestoreA5 are dummy routines that return with no action.
The StripAddress routine always returns the pointer unchanged in the 32-bit

environment; the routine functions in the 24-bit environment.

Utilities, Toolbox

All Macintosh OS Toolbox Utilities routines are implemented in the A/UX Toolbox. See
Inside Macintosh, Volumes I and IV, for a description of the Toolbox Utilities. See
"Utilities, Toolbox" in Appendix F for the A/UX C interface.

Vertical Retrace Manager

All of the Vertical Retrace Manager routines described in Inside Macintosh, Volumes II and
V, are implemented in A/UX, with the exception of DoVBLTask. You are encouraged to
use the Time Manager instead of the Vertical Retrace Manager in your applications.

About the Macintosh interface lihra1y 5-29

The A/UX Vertical Retrace Manager routines are implemented by means of the A/UX
set it imer(2) system call. Because of changes in the Macintosh II ROM that allow for
multiple video options, tasks scheduled by the Vertical Retrace Manager are not
necessarily run during the vertical retrace. Like Time Manager routines, Vertical Retrace
Manager routines under A/UX may be delayed an arbitrary length of time, depending on
other system activity.

When you use the Vertical Retrace Manager, you must observe these limitations:

• You cannot make calls to the A/UX C library routines alarm(2), set it imer(2),

and sleep(2).

• You cannot use s i gna 1 (2) to change the status of the s I GAL RM signal.

• You cannot use the DoVBLTask function.

See NUX Programmer's Reference for more information on the A/UX calls used by
the Vertical Retrace Manager. See "Vertical Retrace Manager" in Appendix F for the A/UX
C interface.

Window Manager

The A/UX Toolbox Window Manager is almost identical to the Macintosh OS Window
Manager. The difference is that in A/UX the window's variant code is not stored in the
windowDe f Proc field of the window record. To get the variant code, use the
Window Manager call Getwvariant, described in Inside Macintosh, Volume V.

See Inside Macintosh, Volumes I, IV, V, and VI, for a description of the Window
Manager. See "Window Manager" in Appendix F for the A/UX C interface.

5-30 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Calls patched under A/UX

Table 5-2 lists alphabetically the calls that are patched under A/UX. Implementation
notes or cross-references are provided where available.

Table 5-2 ROM calls patched under the A/UX Toolbox

ROM call

AttachVBL

Button

CompactMem

Debugger

DebugStr

Delay

DTinstall

EmptyHandle

EnQueue

FlushEvents

FreeMem

GetHandleSize

Get Keys

GetOSEvent

GetPtrSize

Get Zone

HGetState

HLock

1-INoPurge

HPurge

HSetRBit

HSetState

HUnlock

InitApplZone

InitUtil

Notes

(continued,.

Calls patched under A/UX 5-31

Table 5-2 ROM calls patched under the A/UX Toolbox (continued)

ROM call

InitZone

Ins Time

InsXTime

LoadSeg

MaxApplZone

MaxBlock

MaxMem

MoreMasters

Pack12

Post Event

PowerOff

PrimeTime

PtrZone

PurgeMem

Purge Space

ReadDateTime

ReadXPRam

RmvTime

ScriptUtil

ScrnBitMap

SCSIDispatch

SerHShake

SerReset

SerSetBuf

SerStatus

Notes

Performs normally for Macintosh binary applications that are
launched; stubbed out for native A/UX applications.

Applications cannot depend on patches to PostEvent to
alert it to mouse and keyboard events. The AUXDispatch
call AUX_POST_MODIFIED is the equivalent A/UX call to
PPostEvent.

No calls are supported except for the scsiStat selector of
_SCSIDi spa tch.

Event-message posting is not supported. If the evts field in
the SerShk record is nonzero, an error is returned.

3600, 7200, and 57600 baud rates are not supported.

Has no effect. When called, it just returns.

Always returns 0 in the rdPend and wrPend fields.

(continued~

5-32 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Table 5-2 ROM calls patched under the A/UX Toolbox (continued)

ROM call

SetAplLimit

SetDateTime

SetHandleSize

SetPtrSize

Set Zone

Shut Down

SlotManager

SlotVInstall

SlotVRemove

SndAddModifier

SndControl

SndDisposeChannel

SndDoCommand

SndDoimmediate

SndNewChannel

SndPlay

StripAddress

SwapMMUMode

Sys Beep

UnloadSeg

VInstall

VRemove

WriteParam

WriteXPRam

Notes

Not supported for synthesizer modules.

Always returns the pointer unchanged in the 32-bit
environment; the routine functions in the 24-bit environment.

Performs normally for Macintosh binary applications that are
launched; stubbed out for native A/UX applications.

Calls patched under A/UX 5-33

Calls not supported under A/UX

Table 5-3 lists alphabetically the calls that are not supported under A/UX.

Table 5-3 ROM calls not supported under the A/UX Toolbox

ADBOp IdleState SetOSDefault

ADBReinit IdleUpdate Sintinstall

AddReference PacklO SintRemove

Chain PMgrOP Sleep

CountADBs PPostEvent SlpQinstall

DoVBLTask RmveReference SlpQRemove

FinitQueue SCSIDispatch SPBSigninDevice

GetADBinfo Serial Po SPBSignOutDevice

GetindADB SetADBinf

5-34 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

6 File Systems and File Formats

File systems I 6-2

Storing files in the Macintosh OS and in the A/UX operating system I 6-8

AppleSingle and AppleDouble format internals I 6-16

Filename conventions I 6-20

This chapter describes how the file systems in the A/UX operating system and the file

systems in the Macintosh environment differ. Users and applications can access files

either from the A/UX environment or from the A/UX Toolbox, as convenient, and can

transfer files between the two environments without any special requirements. This

chapter also describes the formats used for storing Macintosh files in the A/UX

environment, and the automatic conversion that occurs when files are transferred

between the two environments.

File systems
The design of file systems in the A/UX operating system differs from that of file systems
in the Macintosh OS, but file-system functions are mapped between the two
environments so that files can be transferred between them or accessed from either
environment by A/UX Toolbox programs.

The term file system1 as used in this chapter, refers to general design and
implementation. In the context of the UNIX operating system, the term file system is used
for a subset of the general file-handling design. When the UNIX definition is meant, that
is specifically stated.

These general file systems offer high-level functionality. For A/UX, each file system
mounted under the root hierarchy provides high-level UNIX operations such as open,
create, and delete, regardless of the underlying physical implementation (System V file
system [SVFS], Berkeley UNIX file system [UFS], Network File System [NFS], and so on).
The Macintosh OS file system provides equivalent functionality for files in volumes
under its control. The discussion in this chapter is concerned with the high-level view,
except for description of the format of Macintosh files and the consequences of that
structure for file operations.

Overall file organization

The A/UX kernel (or any UNIX kernel) represents external storage to applications as a
single, hierarchical volume having the root level designated by "slash"(;), the root
directory. The one volume can contain multiple file systems. A file system, in this
technical sense, is a combination of routines for manipulating files together with
associated data structures; it provides support for high-level calls dealing with files (open,
create, delete, and so on) that are under the domain of the file system. An A/UX file (or
any UNIX file) is seen by the A/UX system as a stream of bytes. Any further structure
within a file is created and maintained by applications that need to have such a structure.

In the UNIX design, subordinate file systems can be added to or removed from the
one volume only by means of formal mount and unmount operations.

6-2 Chapter 6 File Systems and File Formats

The Macintosh File Manager represents external storage to applications as a
collection of volumes, each having an associated file system and driver. Each volume is
associated with a physical device. The file system interprets high-level operations into
low-level driver calls; the driver handles device-dependent requirements. Each volume
contains an independent file-system hierarchy, the root of which is represented by the
volume name. Applications call on the File Manager by means of A-line traps to
manipulate the volumes and the files within them. Each file within the volume has a
defined structure, consisting of two "forks," a data fork and a resource fork, and a third
element (a quasi-fork) containing the Finder information. In the Macintosh design,
volumes are independent. The user can add or remove volumes (floppy disks, for
instance) as desired. The system keeps track, in a general way, of these volumes.

Both designs organize files in a tree structure. Files are grouped into directories (in
the A/UX environment) or folders (in the Macintosh environment). Directories and
folders are functionally equivalent. A directory or folder can hold other directories or
folders as well as files.

Pathnames and filenames

In both file-system designs, the location of any file within the complete file tree can be
specified by a pathname. The pathname lists the sequence of directories or folders in
hierarchical order and ends with the name of the file. (The pathname for a directory or
folder ends with the name of the directory or folder.) In the A/UX environment, the full
pathname starts with the root volume (I); in the Macintosh environment, the full
pathname starts with a volume name.

Pathnames require a special character as a delimiter between directory or folder
names and the filename. The A/UX pathname uses the slash (I) as a delimiter and the
Macintosh pathname uses the colon (:).Here is an example of each type:

A/UX: /users/fred/memos/tripmems

Macintosh: fred's stuff :memos:trip memos

The restrictions for an A/UX filename depend on the type of file system in use on the
physical volume where the file resides. The file system may be UFS, SVFS, or NFS; all are
supported under the A/UX operating system.

File systems 6-3

A Macintosh filename consists of any sequence of 1 to 32 eight-bit characters,
excluding colons (the pathname delimiter).

In System V, a filename consists of 1 to 14 seven-bit characters, excluding slashes
(the pathname delimiter). With UFS, which is now the default file system created by the
A/UX Installer, A/UX filenames can consist of 1 to 255 eight-bit characters (slashes
excluded).

When comparing filenames, the A/UX file system distinguishes between the
uppercase and lowercase versions of a character; the Macintosh file system does not
distinguish between uppercase and lowercase characters. This fact poses a problem for
programs, such as development tools and utilities, that assume a case-insensitive file­
system environment. Although a space character can be used in an A/UX filename,
practical considerations suggest that a space should not be used. For example, suppose
that a user saves a text file under the name my report and attempts to access it
under A/UX by using the vi editor. When the user enters

vi my report

the editor will not locate the file. The editor will create two new files, called my and
report, or will access a file of either name, if present. To access my report under
A/UX, the user must quote the filename or the space, as follows:

vi "my report"

or

vi my\ report

Because the space character is used as a practical delimiter between filenames by the
shell programs that provide user interface throughout the A/UX (or any UNIX) system,
blanks should not be used in filenames. However, Macintosh filenames routinely use
spaces.

File permissions

Because UNIX is a multi-user system, every A/UX file has an associated set of file
permissions. There are three categories of user: owner, group, and other. For each
category, there are three types of permissions: read, write, and execute.

6-4 Chapter 6 File Systems and File Formats

The Macintosh file system has no set of file permissions for user files; privileges are set
for folders and volumes. (System files have restrictions on access.) The AppleShare access
privilege structure was developed for use of files in a multi-user environment. AppleShare
privileges are in three categories: "See Folders," "See Files," and "Make Changes."
AppleShare privileges apply only to folders (directories) and not to individual files.

Both these permission structures are present and independently settable for folders on
the "/" volume. The UNIX permissions are the controlling permissions; the AppleShare
privileges provide a secondary constraint on what may be done with a folder.

When A/UX files are viewed through A/UX Toolbox traps designed specifically for
AppleShare (such as _GetDirAccess) folders will appear to have access privileges
set. In brief, UNIX (A/UX) permissions and AppleShare privileges are mapped as shown
in Table 6-1. Effectively, write permission equates to Make Changes, while the
combination of read and execute permissions equate to the combination of See Files and
See Folders.

+ Note When AppleShare access privileges are set within a file system, the UNIX file
permissions are not affected. Nor, when UNIX permissions are set, are the AppleShare
access privileges affected. Table 6-1 shows only how the privileges and permissions
appear when files are viewed between file systems. +

Table 6-1 A/UX permissions mapped to AppleShare privileges

A/UX Permissions AppleShare Privileges

See Folders Make
Read Write Execute and See Files Changes

No No No No No

No No Yes No No

No Yes No No Yes

No Yes Yes No Yes

Yes No No No No

Yes No Yes Yes No

Yes Yes No No Yes

Yes Yes Yes Yes Yes

File systems 6-5

Extended file attributes

In the A/UX file system, a file has associated with it a general type-regular, directory,
character or block special, or FIFO (First In, First Out)-but no special repository of
information about the file. The Macintosh OS file system provides each file with a set of
extended attributes used by the Finder and other system tools. These attributes include
the file type, which among other things tells whether or not the file is executable; the file
creator name; the screen location and icon ID, which the Finder uses to display the file
icon; and the comment field, which contains text displayed when the user requests file
information.

In order to accommodate the Macintosh environment's needs for such attributes,
A/UX uses special file formats when storing a file of Macintosh OS origin. These formats
preserve the extended file attributes.

The details of these file formats are given later in this chapter. The options available
are as follows:

• Place all of the attribute information at various specified locations within the one new
file, which also contains the file's data. (AppleSingle format.)

• Create two files, one containing the attribute information in specified locations,
together with other information. The second file contains the data. (AppleDouble
format.)

• Use additional special-purpose formats, one of which (the "triple" file) creates a
special file to hold the attribute information.

The advantages of each of these formats are discussed in the section "Storing Files in
the Macintosh OS and in the A/UX Operating System," later in this chapter.

Text files

A text file created by a Macintosh application running under the A/UX Toolbox has these
attributes:

• Each line is terminated by a return character (ASCII value OxOD).

• The file's data is accompanied by a set of Finder information that includes the file's
type and creator. The file type is 'TEXT' and the creator varies with the application.

6-6 Chapter 6 File Systems and File Formats

A text file created by an A/UX program, such as vi(l), has these attributes:

• Each line is terminated by a line-feed character (ASCII value OxOA).

• The text file has no stored type or creator information Cit is not in AppleDouble
format). When such a file enters the A/UX Finder environment, it receives a file type
and creator based on the rules described in the section "Automatic Conversion," later
in this chapter. A/UX text files are assigned file type 'TEXT' and creator 'tefi'.

Line-termination characters are translated on the fly when a file is moved between
the two environments. Macintosh text-file return characters become line feeds, and A/UX
text-file line feeds become return characters. Text editors and other programs that handle
text find the expected line-termination character, depending on the environment in
which the file is read and not on the actual termination character used in the file. When
an application running under the A/UX Toolbox reads a text file, the lines will be
terminated by return characters. When that application stores the file, the line­
termination character used depends on the environment in which the file is placed. If the
file goes into the A/UX environment, the termination characters will be line feeds. This
behavior is essentially transparent to the user.

Mounting and unmounting floppy disks

Under A/UX (or any UNIX system), the file system can recognize a UNIX file structure on
a floppy disk and grant appropriate access only if the disk is mounted. The mounting
process provides, among other things, a specific location in the file tree for the files on
the disk. To remove that file structure, the disk is unmounted. Mounting and unmounting
are system operations, separate from physically inserting and removing the floppy disk.
Mounted file structures do not appear as separate icons on the desktop.

Under the Macintosh file system, users are accustomed to inserting and removing
floppy disks as needed. To the file system, each physical device (such as a floppy disk) is
a separate volume and can be dealt with as an independent volume. If a disk has a
recognizable file structure, then it is accessible without a formal mount operation, and
removing the floppy disk does not require an unmount operation. (The floppy disk is
implicitly unmounted when it is ejected.) Macintosh volumes appear as icons on the
desktop.

File systems 6-7

A Macintosh OS file system cannot be mounted under the A/UX file tree. A Macintosh
application cannot use the A/UX Toolbox file system to mount (or unmount) a
Macintosh file volume (such as a floppy disk) as part of the A/UX file tree. As described
in "Automatic Conversion," later in this chapter, an individual Macintosh file can be
placed under A/UX, after which the file becomes some variety of A/UX file.

An application may, by means of the appropriate A/UX system calls, mount, access,
and unmount floppy disks under the A/UX file system by using A/UX file-handling
methods. More typically, an application running under the A/UX Toolbox may deal with
any number of floppy disks as Macintosh volumes in the usual way.

In short, when an application is running under the A/UX Toolbox, all floppy disk
files that it "sees" (can access) are on Macintosh volumes. It does not ''see" any A/UX
files on floppy disks except by access through the A/UX file system, that is, unless those
files have been mounted.

Storing files in the Macintosh OS and in the
A/UX operating system

Under the Macintosh OS, a file consists of two forks: a data fork and a resource fork. In
general, the data fork contains user data, such as the text in a word-processing
document, and the resource fork contains resources used by the application. Resources
include commonly used structures such as dialog boxes and icons, as well as the body of
an application's code. (See Inside Macintosh, Volume I, for a description of resources.)

Although a file can contain two forks, one of the two forks may be empty. A file that
holds a document created by an application, for example, often contains only a data
fork with an empty resource fork. Similarly, a file that holds an executable application
may contain only resources, with an empty data fork. Figure 6-1 illustrates the elements
of a file under the Macintosh OS. Text in brackets in the figure represents elements that
may be absent from the file.

6-8 Chapter 6 File Systems and File Formats

Data fork

[Application­
specific data]

Resource fork

Resources,
including
'CODE'

resources

Macintosh application under
the Macintosh OS

Data fork Resource fork

User data [Document-
specific

resources]

Document created by Macintosh
application under the Macintosh OS

Figure 6-1 Elements of a file in the native Macintosh OS environment

The Macintosh OS file system also stores extended-file-attribute information in a
separate record in the directory. See Inside Macintosh) Volume IV, for a description of
the hierarchical file system (HFS) file-directory information. For a description of the
obsolete Macintosh flat file system (MFS) and its file-directory information, see Inside
Macintosh) Volume II.

The A/UX file structure makes no distinction between data and resources, and the
A/UX directory structure makes no provision for the Macintosh file-attribute information.
Apple has developed two standard file formats that you can use to store Macintosh-style
files in A/UX:

• AppleSingle format All contents and file information are kept in a single file.

• AppleDouble format The contents of the data fork are stored in one file, known as
the data file; resources and file-attribute information are stored in a separate file,
known as the header file. The header file has the same name as the data file, except
that the header file is prefixed with a percent sign(%).

The AppleDouble format is a good choice for text data and data to be shared with
UNIX utilities, because the data fork is available as an isolated file. When moving an
AppleDouble file pair with UNIX utilities, remember to move both files.

The internal formats of AppleSingle and AppleDouble files are discussed in the
section "AppleSingle and AppleDouble Format Internals," later in this chapter.

Storing files in the Macintosh OS and in the A/UX operating system 6-9

+ Note From the point of view of an application or a user, the distinctions between the
two file formats discussed here are not important. The A/UX Toolbox File Manager
insulates applications from having to consider these details. +

An A/UX file, standing alone, remains a Plain file but is recognized as an
AppleDouble data file. (This convention allows A/UX Toolbox applications to access
files created by conventional UNIX utilities, such as text editors.) An A/UX Toolbox
application processing a Plain file may cause the creation of a header file for that data file
in certain circumstances, resulting in an actual AppleDouble file. The four cases in which
the file remains a Plain file are shown in the section "Automatic Conversion," later in this
chapter. If the combination of file type and creator is changed to anything other than a
file type of 'COFF', 'SHEL', 'XAPP', or 'BIN', with a matching creator of 'A/UX', then
resource information is generated and written to a header file with the same name as the
data file, except that the header-file name is prefixed with a percent sign(%).

Like a Macintosh OS file, an A/UX AppleSingle file may contain both data and resources,
data and no resources, or resources and no data. An AppleSingle file always contains file­
information entries, although the entries for a newly created file might be undefined.

An AppleDouble data file is accompanied by a header file containing the file­
attribute information. The header file can-but need not-contain resources. An
AppleDouble header file can exist without an associated data file. Figures 6-2 and 6-3
illustrate the typical contents of AppleSingle and AppleDouble files in A/UX. Text in
brackets in the figures represents elements that may be absent from the file.

6-10 Chapter 6 File Systems and File Formats

docname

Header Finder info Resource fork Data fork

[Document-specific User data
resources]

AppleSingle document file

a pp name

Header Finder info Resource fork [Data fork]

Resources, [Application-specific data]
including
'CODE'
resources

Macintosh binary application transferred to an A/UX AppleSingle file

Figure 6-2 Typical contents of an AppleSingle file

Storing files in the Macintosh OS and in the A/UX operating system 6-11

Document
files

User data

Datafile Headerf'de

AppleDouble document file

Data fork

[Application­
specific data]

[Oata file]

Header

Header file

Finder info

Finder info

Resource fork

[Document­
specific

resources]

Resource fork

Resources,
including
'CODE'
resources

Application
files

Macintosh binary application transferred to a pair of AppleDouble files

COFF
executable

file

[Header] [Finder info] [Resource fork]

A/UX-linked
code

Data file IHeadet file!

A/UX Toolbox application built in A/UX

Figure 6-3 Typical contents of a pair of AppleDouble files

6-12 Chapter 6 File Systems and File Formats

[Resources,
including
'CODE'
resources]

doc name

Data file

User data

When you compile and link an application under A/UX, the result is a standard
executable COFF file. The Macintosh OS will consider the COFF file to be an
AppleDouble file. As mentioned earlier, so long as the type remains 1COFF' and the
creator 1A/UX1

, no unnecessary header file is created.
If you have used a general-purpose utility to transfer files from the Macintosh OS to

the A/UX operating system, you might also have Macintosh files stored in a simple A/UX
format. The kermi t(lC) utility, for example, transfers the two forks of a Macintosh file
separately into a pair of A/UX files that follow neither AppleSingle nor AppleDouble
format. The data fork is placed in one file, and the resource fork is placed in a file with
the same name plus the extension res. (See A/UX" Command Reference for a
description of kermi t .) For compatibility with other tools, the A/UX Toolbox file­
conversion utility, f cnvt(l), recognizes this structure.

Figure 6-4 illustrates the possible contents of Macintosh files in simple A/UX format.
Text in brackets in the figure represents elements that may be absent from the file.

docname.:res

[Resource file]

Document­
specific

resources

appname

[Data file]

[Application­
specific data]

appname.res

Resource file

[Resources,
including

'CODE'
resources]

Document file either created by an A/UX
Toolbox application and converted to simple
A/UX format, or created in Macintosh OS and
transferred to a simple A/UX file

Macintosh binary application transferred to
a simple A/UX file

Figure 6-4 Elements of Macintosh data and resource files in simple A/UX format

Storing files in the Macintosh OS and in the A/UX operating system 6-13

When you create a Macintosh-compatible file under A/UX, the A/UX Toolbox uses
these formatting strategies:

• In almost all circumstances, the A/UX File Manager creates AppleSingle files.
Therefore, when an A/UX Toolbox application creates a file through File Manager
calls, it creates an AppleSingle file.

• When the File Manager receives a request to open an AppleDouble data file, it
automatically looks for the associated header file. The application does not specify
the format of the file when issuing the call; the File Manager itself checks the format
of the file.

• The A/UX implementation of the resource compiler, rez(l), creates only an
AppleSingle file. See Chapter 3, "A/UX Toolbox Utilities and Extensions," and
Appendix E, "Resource Compiler and Decompiler," for a description of re z.

The A/UX Toolbox provides the following utilities for converting files and
manipulating their formats:

• The f cnvt(l) utility converts files among AppleSingle format, AppleDouble format,
and four other formats.

• The set f i 1 e(l) utility adds or changes the file type and creator of an AppleSingle
file or an AppleDouble header file.

See Chapter 3, "A/UX Toolbox Utilities and Extensions," for more details.

Automatic conversion

When a file is transferred from one file system to the other, for example by having its
icon dragged on the desktop, the file is automatically converted. When a Macintosh file
is placed in the A/UX file system, it goes into one of three formats: AppleDouble,
AppleSingle, or Plain. In brief, the AppleDouble format produces two files, one
containing data and the other containing resource and Finder information; the
AppleSingle file contains everything in one file; and the Plain file contains data only and
corresponds to the data file of an AppleDouble pair. Which format is used depends on
information kept in three fields of the extended-attribute portion of the file: the type, the
creator, and the flag setting. The process is summarized in Table 6-2.

6-14 Chapter 6 File Systems and File Formats

Table 6-2 Automatic conversion of Macintosh files

Attributes

Type Creator Flag setting Resulting format

'APPL' [any] No INITs=l AppleDouhle

'TEXT' [any] NIA AppleDouble (or Plain)

'AIUX' [any] NIA AppleDouble

'COFF' 'A/UX' NIA Plain

'SHEL' 'A/UX' NIA Plain
1XAPP1 'A/UX' NIA Plain

'BIN' 'A/UX' NIA Plain

All others AppleSingle

As Table 6-2 shows, there are three ways to ensure conversion to AppleDouble format:

• Set the type to 'APPL' and set the flag as shown. (The No INITs flag is bit 7 of
Info. f dFlags.)

• Set the type to 'TEXT'.

• Set the type to 'A/UX'.

The first way allows programs (such as CommandShell) to have their own icon while
ensuring conversion to the AppleDouble format. The second and third ways allow files
that may have system extensions to be converted to AppleDouble format. In the second
instance, the entry shows a special exception that occurs when there is no resource fork.
When a Macintosh OS application processes an A/UX text file, the file remains a Plain
file unless the application creates resource information for that file, in which case the file
system makes a second file to hold that information. The two files constitute an
AppleDouble pair.

An A/UX file transferred into the Macintosh file system simply becomes a standard
Macintosh file. File permissions are lost unless they have been explicitly saved as foreign
privileges. Text files and shell files have their line-termination characters automatically
translated from line-feed to return characters, as described in "Text Files," earlier in this
chapter.

Storing files in the Macintosh OS and in the A/UX operating system 6-15

AppleSingle and AppleDouble
format internals

AppleSingle format stores the data, resources, and attributes of a Macintosh file in a
single A/UX file. AppleDouble format stores a file's data in one file and stores its
resources and attributes in another file.

This section uses these terms:

• Home file system is the file system for which the file's contents were created, not
necessarily the file system in which the file was created. The Macintosh file system is
the home file system for all A/UX Toolbox applications and all documents created
with A/UX Toolbox applications.

• Foreign file system is the other file system that will store or process the file. The
UNIX file systems are the foreign file systems for all A/UX Toolbox applications and
all documents created with A/UX Toolbox applications.

AppleSingle format

In AppleSingle format, all of a file's contents and attributes are stored in a single file in
the foreign file system.

An AppleSingle file consists of a header followed by one or more data entries. The
header consists of several fixed fields and a list of entry descriptors, each pointing to an
entry. Table 6-3 describes the contents of an AppleSingle file header.

Table 6-3 AppleSingle file header

Field

Magic number

Version number

Home file system

Number of entries

Entry descriptor for each entry:
Entry ID
Offset
Length

6-16 Chapter 6 File Systems and File Formats

Length

4 bytes

4 bytes

16 bytes, ASCII encoded

2 bytes

4 hytes
4 bytes
4 bytes

Byte ordering in the file-header fields follows MC68000, MC68020, and MC68030
conventions. Here is a description of each field:

• Magic number This field, modeled after the A/UX magic-number feature, specifies
the file's format. Apple has defined the magic number for AppleSingle format as
OxOOOS 1600.

• Version number This field allows for the evolution of AppleSingle format. This
section describes version OxOOOlOOOO.

• Home file system This field defines the home file system. It contains a 16-byte ASCII
string, which is not preceded by a length byte but which can be padded with spaces.
Apple Computer has defined these strings:

Macintosh 'Macintosh' or Ox4D616369 Ox6E746F73 Ox68202020 ...

Pro DOS 'ProDOS' or Ox50726F44 Ox4F532020 Ox20202020 ...

MS-DOS 'MS-DOS' or Ox4D532D44 Ox4F532020 Ox20202020 ...

UNIX 'Unix' or Ox556E6978 Ox20202020 Ox20202020 ...

VMS™ 'VAX VMS' or Ox56415820 Ox564D5320 Ox20202020 ...

All A/UX Toolbox applications work with files whose home file system is Macintosh.

• Number of entries This field reports how many different entries are included in the
file. Its value is an unsigned 16-bit number. If the number of entries is any number
other than 0, then that number of entry descriptors immediately follows.

• Entry ID This field defines what the entry is. The field holds an unsigned, 32-bit
number. Apple Computer has defined a set of entry IDs and their values:

Data fork 1 standard Macintosh data fork
Resource fork 2 standard Macintosh resource fork
Real name 3 file's name in its home file system
Comment 4 standard Macintosh comments
Icon, B&W 5 standard Macintosh black-and-white icon
Icon, color 6 Macintosh color icon
file info 7 file information: attributes and so on
Finder info 9 standard Macintosh Finder information

Apple reserves the range of entry IDs from 0 to Ox7FFFFFFF. The rest of the range is
available for other definitions. Apple does not arbitrate the use of the rest of the
range.

AppleSingle and AppleDouble format internals 6-17

Icon entries do not appear in most files because they are typically stored as a bundle
in the resource fork of the application file.

The structure of the "file info" entry is different for each home file system. For
Macintosh HFS files, the entry is 16 bytes long and consists of three long-integer
dates (create date, last modification date, and last backup date) and a long integer
containing 32 Boolean flags. Where 0 is the least-significant bit and 31 is the most­
significant bit, bit 0 of the Macintosh "file info" entry is the Locked bit, and bit 1 is the
Protected bit. Figure 6-5 illustrates the formats for Macintosh HFS, A/UX, MS-DOS,
and ProDOS "file info" entries.

The "Finder info" entry consists of 16 bytes of Finder information followed by 16
bytes of extended Finder information (the fields ioFlFndrinfo followed by
ioFlXFndrinfo, as returned by the PBGetcatinfo call). These fields contain
extended-file-attribute information. See Inside Macintosh, Volume VI, for a
description of the subfields in these fields. Newly created files contain zeros in all
"Finder info" fields. When you are creating a file whose home file system is
Macintosh, you can use 0 in any subfield whose value is unknown, except that you
should set the fdType and f dCreator subfields. Values should be set by
means of standard File Manager calls such as setFinfo and PBSetCatinfo.

• Offset This field contains an unsigned 32-bit number that shows the offset of the
beginning of the entry's data from the beginning of the file.

• Length This field contains an unsigned 32-bit number that shows the length of the
data in bytes. The length can be 0.

The entry data follows all of the entry descriptors. The data in each entry must be in a
single, contiguous block. You can leave holes in the file for later expansion of data. For
example, even if a file's comment field is only 10 bytes long, you can place the offset of
the next field 200 bytes beyond the offset of the comment field, to leave room for the
comment to grow to its maximum length of 200 bytes.

The entries can appear in any order, but you can maximize the efficiency of file
access by following these recommendations:

• Put the data fork entry at the end of the file. The data fork is the most commonly
extended entry, and it is easier to increase its length if it is the last thing in the file.

• Put the entries that are most often read, such as "Finder info," as close as possible to
the header, to increase the probability that a read of the first block or two will
retrieve these entries.

6-18 Chapter 6 File Systems and File Formats

Macintosh "file info" entry

Create date

Modification date

Last backup date

Attributes

MS-DOS "file info" entry

t- Modification date -
-

t- Attributes

0
0
0
0

0 0
0 0
0 0
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0

Protected I I

Locked

Figure 6-5 Formats for "file info" field entries

AppleDouble format

A/UX "file info" entry

Create date & time

Last use date & time

Last modification
date & time

ProDOS "file info" entry

I- -
I- Create date & time -
~ -

I- Modification -
I-

date& time
-

~ -

I- Access -

~ File type -
t- -
I- A/UX type -
I- -

In AppleDouble format, the file's data fork is stored in a file called the AppleDouble data
file, and the file's attributes and resources are stored in a separate file called the
AppleDouble header file.

The AppleDouble data file contains the data fork, in exactly the form in which it
appears in a Macintosh file, with no extra header.

The AppleDouble header file has the same format as an AppleSingle file, except that
it contains no data fork entry. The magic number for an AppleDouble header file is
Ox00051607. The entries in the header file can appear in any order. It is usually more
efficient to put the resource fork at the end of the file because the resource fork is the
entry most likely to expand.

AppleSingle and AppleDouble format internals 6-19

Filename conventions

This section describes the conventions for naming Macintosh files in the A/UX
environment. The filename needs are slightly different for the AppleSingle and
AppleDouble formats. These considerations apply to both:

• Embedded spaces in filenames transfer between the Macintosh and UNIX environments.
Filenames with embedded spaces are legal but cause problems in UNIX because UNIX
commands consider that spaces delimit a filename. Changing the embedded spaces to
less problematic characters may be preferable to leaving the spaces.

• Filenames containing characters with ASCII values greater than 127 may not be
recognized by some UNIX implementations. Use character substitution to replace any
illegal character with an underscore (_).

• Because different UNIX file systems impose different length restrictions, do not explicitly
truncate the name to a specified length; allow the truncation to be done by the file­
handling functions such as creat(2) and open(2). Remember that A/UX supports
three file systems, one of which (UFS) allows filenames to contain up to 255 characters.

AppleSingle format does not specify an algorithm for deriving an AppleSingle
filename from the file's "real" name as stored on a native Macintosh volume. File systems
(and your applications) can exercise some discretion in choosing filenames because the
file's original name can be stored as data in the file and retrieved as necessary.

The general strategy for AppleDouble-format filenames is to derive the data-file
name from the file's original Macintosh name and then to derive the header-file name
from the data-file name. The most important connection is between the two
AppleDouble filenames, which must often be treated as a single unit and therefore must
be clearly connected.

• For an AppleDouble data-file name, the general considerations apply.

• For an AppleDouble header-file name, prefix a single percent sign(%) to the
AppleDouble data-file name. If necessary, truncate the last character to keep the
filename within the legal length range. The result is that the two files are kept
together in a single subdirectory.

6-20 Chapter 6 File Systems and File Formats

Appendix A: Additional Reading

Information sources I A-2

Required references I A-4

Supplementary references I A-5

This appendix tells you where to get more information about the A/UX Toolbox and lists

required and supplementary documentation.

Information sources

APDA is Apple's source for a wide selection of Apple and third-party development tools
and information.

APDA offers convenient worldwide access to more than 300 development tools,
resources, training products, and information for anyone interested in developing
applications on Apple platforms. Customers receive the APDA Tools Catalog featuring
Apple and third-party development products. Ordering is easy; there are no membership
fees, and signed agreements are not required to order most products. APDA offers
convenient payment and shipping options, including site licensing. Anyone can receive
the APDA Tools Catalog by contacting APDA. To order products or get additional
information, contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, MIS 33-G
Cupertino, California 95014-6299 U.S.A.
800-282-2732 (U.S.)
800-637-0029 (Canada)
408-562-3910 (International)
408-562-3971 (Fax)
171-576 (TELEX)
AppleLink: APDA

A-2 Appendix A Additional Reading

Apple offers two developer programs: Associates and Partners.

• Associates Program A mainstream program for commercial developers;
convenient access to essential technical and marketing information.

The Associates Program, Apple's mainstream program for developers of commercial
products, is a convenient and cost-effective way to access essential technical and
marketing information. The Associates Program offers self-help technical support,
keeps you up-to-date with the latest products and technical documentation, and
facilitates access to the Apple developer community through Applelink. Associates
also receive discounts on hardware, lowering the cost of getting started on a
development project.

Who Should Apply? This program is designed for developers who are working on a
standardized, commercial product which is sold publicly. Associates must deliver a
product within two years of joining the program.

• Partners Program A program for Apple-selected strategic commercial developers

The Partners program is open to Apple-selected commercial developers. In addition
to receiving the same program benefits as Associates, Partners receive direct
technical support via electronic mail.

Who Should Apply? Apple limits membership in the Partners Program to developers
of commercial, standardized products who contribute to Apple's long-term product
strategies and business objectives. Partners are expected to focus their resources on
the development of Apple-compatible products. Partners must deliver a product
within two years of joining the program.

For further information, write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, M/S 51-W
Cupertino, California 95014-6299 U.S.A.

Apple also offers courses at Apple Developer University. You do not need to be in a
developer program to attend. For information, write to

Developer University Registrar
Apple Computer, Inc.
20525 Mariani Avenue, MIS 51-M
Cupertino, California 95014-6299 U.S.A.

Information sources A-3

Required references
This section lists books that you will need for developing software under the A/UX
system or creating hardware interfaces to Macintosh computers running the A/UX
system. The guide Road Map to A!UX, listed in this section, provides a detailed
description of each A/UX book published by Apple Computer.

A!UX Command Reference. Apple Computer, Inc., 1992. A collection of reference pages, also
known as manual pages, for A/UX user commands and games. This document corresponds
to Sections 1 and 6 of the traditional UNIX user manual. The information in A!UX Command
Reference is provided on-line with A/UX Release 3.0. This document is available as part of
the A/UX Administration Manuals product.

A!UX Essentials. Apple Computer, Inc., 1992. A user's introduction to A/UX Release 3.0.

A!UX Programmer's Reference. Apple Computer, Inc., 1992. A collection of reference pages, also
known as manual pages, in two volumes for A/UX system calls, subroutines, file formats,
and miscellaneous facilities. This document corresponds to Sections 2 through 5 of the
traditional UNIX user manual. The information in A!UX Programmer's Reference is provided
on-line with A/UX Release 3.0. This document is available as part of the A/UX Programming
Manuals product.

A!UX Programming Languages and Tools, Volumes 1and2. Apple Computer, Inc., 1987, 1990,
and 1992. A description of the A/UX C and Fortran languages and the libraries and tools used
for program development and maintenance. These documents are available as part of the
A/UX Programming Manuals product.

Inside Macintosh, Volumes I through III. Addison-Wesley, 1985. A complete description of the
architecture and operation of the 128K and 512K Macintosh computers, including the ROM
routines.

Inside Macintosh, Volume IV. Addison-Wesley, 1986. An update to the original volumes,
covering the Macintosh 512K enhanced and Macintosh Plus computers.

Inside Macintosh, Volume V. Addison-Wesley, 1987. An update to Volumes I through IV,
covering the Macintosh SE and Macintosh II computers.

Inside Macintosh, Volume VI. Addison-Wesley, 1991. An update to Volumes I through V,
covering Macintosh System 7. An on-line version is available from APDA.

Inside the Macintosh Communications Toolbox. Addison-Wesley, 1990. A guide to the
Communications Toolbox, which is Apple's communications development platform and is
an integral part of System 7.

Road Map to A!UX. Apple Computer, Inc., 1992. A guide to the features of A/UX and to the A/UX
documentation.

A-4 Appendix A Additional Reading

Supplementary references
This section lists useful books available for developing software under, or creating
hardware interfaces to, the A/UX system. The list is not exhaustive. Many other excellent
books are available on various aspects of developing under System V UNIX, developing
with shell languages, and making use of BSD features. Useful books are also available on
developing under the Macintosh User Interface Toolbox and Macintosh OS. The
Macintosh Programmer's Workshop (MPW) references document a UNIX-like
development environment that runs under the Macintosh OS.

The Motorola manuals listed are a selection of documentation provided by Motorola
Corporation, useful to hardware developers and software developers working close to
the hardware.

AIUX c 8 9 C. APDA, 1991. Describes the implementation of Apple's ANSI-compliant C
compiler. This document is available as part of the A/UX Developer's Tools product.

A/UX Development Tools. APDA, 1991. Describes the suite of enhanced development tools
available for A/UX, including the assembler, linker, Commando interface, and other
important tools. This document is available as part of the A/UX Developer's Tools product.

Building A!UX Device Drivers. APDA, 1992. A reference for developing device drivers for A/UX
systems. Included is the source code for drivers used in A/UX. This document is available as
part of the A/UX Device Drivers Kit product.

Chernicoff, Stephen. Macintosh Revealed, Volumes I through III. Hayden Book Company, 1985,
1987. A guide to writing programs that use the Macintosh User Interface Toolbox and
Macintosh OS. Later editions have tracked developments of the Macintosh OS.

Designing Cards and Drivers for the Macintosh Family. Second Edition. Addison-Wesley, 1990.
A general reference for developing expansion cards and device drivers for the Macintosh
family of computers.

Harbison, Samuel P., and Guy L. Steele, Jr. C: A Reference Manual. Third Edition. Prentice-Hall,
Inc., 1991. A standard reference book for the C language with the AT&T extensions used in
most UNIX operating-system environments. The third edition covers both "traditional" and
ANSI C.

Inside Macintosh X-Ref Revised Edition. Addison-Wesley, 1991. A key to eleven of the Addison­
Wesley books that document the Macintosh: Inside Macintosh, Volumes I through VI,
Programmer's Introduction to the Macintosh Family, Technical Introduction to the
Macintosh Family, Inside the Macintosh Communications Toolbox, Guide to Macintosh
Family Hardware, and Designing Cards and Drivers for the Macintosh Fami~y. Provides a
general index to these volumes, a list of routines that move or purge memory, a list of system
traps, a list of global variables, and a glossary.

Supplementary references A-5

Kernighan, Brian W., and Rob Pike. The UNIX Programming Environment. Prentice-Hall, Inc.,
1984. A guide with valuable information, including chapters on shell programming, lex,

yacc, and text formatting.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Second Edition.
Prentice-Hall, Inc., 1988. An update of the original, official C manual, with tutorial
information. This edition covers ANSI C, in addition to updating the first edition.

Knaster, Scott. How to Write Macintosh Software. Hayden Book Company, 1986. A guide to the
oddities of programming the Macintosh (non-A/UX), with full discussion of memory, stack,
and pointer concepts.

Knaster, Scott. Macintosh Programming Secrets. Hayden Book Company, 1986. A guide to the
concepts and ideas of (non-A/UX) Macintosh programming, use of color, and sending
Postscript commands to a Postscript laser printer.

Macintosh Programmer's Workshop 3.0 Assembler Reference. APDA, 1988. A reference on the
MPW Assembler and its tools. This document is available as part of the MPW product.

Macintosh Programmer's Workshop 3.0 C Reference. APDA, 1988. A description of the MPW C
Compiler and tools that let you write C programs that use the Pascal routines in the
Macintosh ROM. The C language for MPW 3.0 and that for A/UX are closely linked. This
document is available as part of the MPW product.

Macintosh Programmer's Workshop 3.1 Pascal Reference. APDA, 1988. A description of the
Pascal Compiler and tools. This document is available as part of the MPW product.

Macintosh Programmer's Workshop 3.1 Reference. APDA, 1988. A full description of how to use
the MPW program preparation tools. This document is available as part of the MPW product.

Macintosh Technical Notes. Apple Computer, Inc., 1984-1990. A set of technical bulletins
distributed at no charge by Apple Computer to all affiliated developers. Available through
APDA.

MacsBug 6.2 Reference and Debugging Guide. APDA, 1991. A complete description of the
MacsBug debugger.

Manis, Rod, and Marc H. Meyer. The UNIX Shell Programming Language. Howard W. Sams &
Co., 1986. A clear exposition of shell programming, as of System V, Release 2.

MC68020 32-Bit Microprocessor User's Manual. Motorola Corporation, 1985. A detailed
description of the MC68020 CPU for hardware and software engineers.

MC68030 32-Bit Microprocessor User's Manual. Motorola Corporation, 1987. A detailed
description of the MC68030 CPU for hardware and software engineers.

MC68851 Paged Memory Management Unit User's Manual. Motorola Corporation, 1985. A
detailed description of the Paged Memory Management Unit (PMMU) for hardware and
software engineers.

A-6 Appendix A Additional Reading

MC68881 Floating-Point Coprocessor User's Manual. Motorola Corporation, 1985. A description
of the instruction set and addressing conventions used by the MC68881 floating-point
coprocessor, which is used in the Macintosh II.

Othmer, Konstantin, and Jim Strauss. Debugging Macintosh Software with MacsBug. Addison­
Wesley, 1991. A lucid description of techniques and tricks for using MacsBug.

Programmer's Guide to MultiFinder. APDA, 1988. A guide to writing applications compatible
with MultiFinder; applicable to the A/UX Finder.

Programmer's Introduction to the Macintosh FamiZy. Addison-Wesley, 1987. A programmer's
technical overview of the Macintosh system (non-A/UX), introducing the most important
features of the Macintosh User Interface Toolbox and Macintosh OS.

ResEdit v. 2.1. APDA, 1991. Describes the ResEdit resource editor.

Technical Introduction to the Macintosh Family. Addison-Wesley, 1987. An introduction to the
hardware and software design of the Macintosh family of computers.

Supplementary references A-7

Appendix B: Toolbox Contents

This appendix lists directories and files that are part of the A/UX Toolbox or that are of

special interest in application development.

The large text file /FILES contains an annotated list of files in A/UX Release 3.0. You can
explore this file to get further information about the contents of the directories listed here.

The list of files given in this appendix is not exhaustive, but is meant to give a
general view of directories and files of interest. To obtain further information, check the
/FILES list, use the Commando facility associated with the utilities, and consult the on­
line and printed manual pages.

/mac

The major directories relating to the A/UX Toolbox.

/mac/bin

The executables and associated resource files needed by the A/UX Toolbox and A/UX
Finder, which include files for logging in with the CommandShell and 24-bit
CommandShell applications, files for executing the Commando function, and several
utilities, some of which are discussed in Chapter 3.

changesize A utility that changes the 'SIZE' attribute.

rez Resource compiler. (See Appendix E.)

derez Resource decompiler. (See Appendix E.)

f cnvt A utility that performs file conversion.

launch A utility that launches a Macintosh binary application.

set file A utility that sets the file creator and type for a file.

startmac A program that provides the A/UX environment.

st artmac 2 4 A program that provides the 24-bit A/UX environment.

Text Edi tor Macintosh-style text editor.

/mac/lib

Specialized Macintosh files.

/mac/lib/SystemFiles

Equivalent to the Macintosh System Folder, with A/UX Finder equivalents of the system
files.

/mac/lib/cmdo/*

Directories of Commando dialog boxes.

B-2 Appendix B Toolbox Contents

/mac/lib/rincludes

Contains resource header files. (See Chapter 3 and Appendix E.)

scripttypes.r

systypes.r

Resource header file for Script Managers.

Resource header file.

types.r Resource header file, generic.

/mac/lib/sessiontypes

Session-type description files. (See Login documentation.)

/mac/src

Sample Macintosh application sources.

examples Example application sources, resource, and makefile. (See Chapter 2.)

sndDemo

/mac/sys/*

Sound demonstration example application sources, resource, sound
file, and makefile. (See Chapter 2.)

Macintosh system files and directories relating to the A/UX Toolbox and A/UX Finder.

/usr/lib

Libraries for programmer use, some relating to the A/UX Toolbox.

1 ibmac. a Code for accessing toolbox, nonshared archive.

1 ibmac s. a Code for accessing toolbox, shared version (host).

libc. a Standard C library, nonshared archive.

1 ibc s. a Standard C library, shared version (host).

/shlib

Contains shared-library executables.

1 ibmac s Executable shared code (target) for accessing toolbox, linked by
libmac s. a.

libc s

/dev/uinterO

Executable shared code (target) for standard C library, linked by
libc s. a.

Special file for user interface device used internally by the A/UX Toolbox.

Toolbox Contents B-3

/usr/include/mac

Library of header files that define the constants, types, and functions used by the A/UX
Toolbox C implementation of the Macintosh ROM routines.

asd.h

aux.h

aux_rsrc.h

controls.h

desk.h

devices.h

dialogs.h

dtask.h

errors.h

events.h

files.h

fonts.h

gestalt.h

lists.h

memory.h

menus.h

notify.h

osevents.h

osutils.h

packages.h

palettes.h

picker.h

printing.h

B-4 Appendix B Toolbox Contents

Calls to Macintosh resource material in
/usr/lib/libmr.a.

Definitions for AUXDispatch.

UNIX calls for Macintosh resource material in
/usr/lib/libmr.a.

Control Manager.

Desk Manager.

Device Manager.

Dialog Manager.

Deferred Task Manager.

System Error Handler.

Toolbox Event Manager.

File Manager.

Font Manager.

Gestalt Manager.

List Manager.

Memory Manager.

Menu Manager.

Notification Manager.

Operating System Event Manager.

Operating System Utilities.

Package Manager, including Binary-Decimal Conversion
Package, Disk Initialization Package, International Utilities
Package, Standard File Package.

Palette Manager.

Color Picker.

Printing Manager.

print traps. h Print traps.

processes. h Process Manager.

quickdraw. h 32-Bit QuickDraw with Color QuickDraw.

resources. h Resource Manager.

retrace. h Vertical Retrace Manager.

romde f s . h Definitions for RO Ms.

scrap. h Scrap Manager.

script. h Script Manager.

segload. h Segment Loader.

serial. h Serial Driver.

shutdown. h Shutdown Manager.

s 1 o ts . h Slot Manager.

sm. h Sound Manager.

soundinput. h Sound Manager input.

soundinputpri v. h Sound Manager input privileges.

strings. h String conversion routines.

sysequ. h Low-memory equates.

textedi t. h TextEdit.

timer. h Time Manager.

toolutils. h Toolbox Utilities.

traps. h List of Macintosh traps.

types. h Type definitions.

video. h Video Driver.

vmc a 11 s . h Memory Manager virtual memory.

windows. h Window Manager.

/usr/lib/libmr.a

Declarations and routines for reading Macintosh resources.

Toolbox Contents B-5

Appendix C:
Implementation Notes

The A/UX Finder and Toolbox applications I C-2

Running an A/UX Toolbox application I C-2

Converting between C and Pascal conventions I C-7

This appendix describes how the A/UX Toolbox simulates the Macintosh environment.

You can use the A/UX Toolbox without the information in this appendix, but you will

need this information if you are writing an application that contains assembly-language

routines or deviates from recommended Macintosh programming practices.

This appendix covers two main topics: running A/UX Toolbox applications, and

converting between the Pascal-language conventions used by the Macintosh ROM and

the C-language conventions typically used in A/UX.

The A/UX Finder and Toolbox applications
The A/UX Finder must be running to support execution of A/UX Toolbox applications.
A/UX Toolbox applications cannot be launched without support of the A/UX Finder.

System 7-compatible applications will execute under A/UX 3.0; however,
System 7-friendly applications can take advantage of the advanced features of A/UX 3.0.
Developers should aim at the latter standard. Requirements for applications are listed in
Chapter 4, "Compatibility Guidelines."

Running an A/UX Toolbox application
The A/UX kernel contains a special user-interface device driver, I dev /uinterO, that
handles communications between A/UX Toolbox applications and the kernel. The driver
provides ioct 1(2) functions. (The section "Serial Driver" in Chapter 5 describes some
ioct 1 functions.) The A/UX Toolbox library routines make calls to this device driver to
provide special control for the Macintosh environment.

An A/UX Toolbox application uses a special initialization routine that opens the user
interface device driver and issues a series of setup instructions before starting the
program itself. The initialization routine is in /usr I 1 ib/rnaccrt o. o. Each A/UX
Toolbox application, including launch(l), is linked with this file rather than with
I 1 ib/ crt o. o, which is used by non-Toolbox A/UX applications.

Once an A/UX Toolbox application is running, most A/UX Toolbox functions are
called through an MC680x0 exception, known as an A-line trap, the same way that ROM
code is called in the Macintosh environment. In the A/UX environment, however, trap
handling must be routed through the kernel.

C-2 Appendix C Implementation Notes

User interface device driver

The user interface device driver, /dev/uinterO, performs these functions:

• Memory mapping When an application is started, the device driver establishes
memory mapping for the screen buffer and ROM code, and memory for the
Macintosh environment.

• Event-queue handling The driver contains its own event-queue handler, similar to
the Macintosh OS Event Manager. The driver's event-queue handler supports the
queue-access routines of the Macintosh OS Event Manager. The driver posts mouse
and keyboard events.

• Cursor tracking The device driver enables vertical retrace interrupts and tracks the
cursor at each interrupt. The cursor data is shared by the kernel and the application.

• A-line trap dispatching During startup, the driver installs in shared memory a
pointer to the A-line trap handler. When the kernel identifies an exception as a
Macintosh ROM call, it copies the return address from the kernel stack to the user
stack and invokes the trap handler. For more information on trap dispatching, see
"A-Line Traps" later in this appendix.

Initialization routine

The A/UX Toolbox initialization routine in /usr I lib/maccrtO. o performs these
steps:

1. Calls set42sig(3), which invokes BSD 4.2 signaling conventions.

2. Attaches to the shared data segment.

3. Opens the device driver and invokes the initialization steps described in the
preceding section, "User Interface Device Driver."

4. Initializes the dispatch tables and the Macintosh global variables.

5. Initializes various A/UX Toolbox modules.

6. Calls the application's main routine.

Running an A/UX Toolbox application C-3

A-line traps

The primary function of the A/UX Toolbox is to make available to programs running
under A/UX the Macintosh support code described in Inside Macintosh. Most of the
support code represents routines built into the Macintosh ROM and available as A-line
traps, that is, MC680x0 opcodes in the range OxAOOO to OxAFFF.

Under the standard Macintosh OS, A-line traps are routed by the CPU to an exception
handler. The exception handler uses a pair of dispatch tables (one for User Interface
Toolbox routines and one for Macintosh OS routines) to route the A-line traps either to
the ROM or to a ROM patch. A ROM patch is a change or bug fix to the Macintosh ROM.

In the standard Macintosh OS, the patches are stored in the System file. During
startup, the patches are loaded into memory, and the dispatch tables are updated as
necessary to point to patch routines rather than to ROM code. See Inside Macintosh1

Volumes I, II, IV, and V, for descriptions of the dispatch tables.
Because all exceptions put the CPU into supervisor mode, an A-line trap in A/UX

must be handled by the kernel. When the kernel recognizes an exception as a Macintosh
A-line trap, it invokes a trap handler that resides in user process memory, leaving the
processor in user mode.

The ROM dispatch tables in A/UX use two sets of ROM patches, the standard set and
the A/UX set. The standard set incorporates the standard Macintosh ROM changes and
the A/UX set accesses native ROM calls directly or provides A/UX alternatives, as
appropriate. As each application is started, startup files build dispatch tables from data in
the A/UX Toolbox libraries and the System file. No action by the application is
necessary. An application can install its own patches to the tables.

+ Note A-line traps cannot be called by UNIX device drivers. •

Figure C-1 illustrates the A-line trap-handling sequence in A/UX. The A/UX trap­
dispatch code uses the application's trap-dispatch tables to route an A-line trap to one of
two places:

• ROM If the trap has no A/UX alternative, the table points to the ROM code.

• User RAM If the trap has an A/UX alternative, the table points to the alternative
routine in user RAM.

C-4 Appendix C Implementation Notes

A-line instruction triggers exception.

D
CPU switches to supervisor mode and

reads low-memory vector location to find
address of trap handler (in kernel).

D
Kernel verifies that trap comes from an

A/UX Toolbox process, adjusts the user stack,
and jumps to trap-dispatch code

(in user address space).

CPU returns to user mode.

D
Trap-dispatch routine looks in program's

dispatch table to route call.

D
ROM

(unpatched UI
Toolbox trap or

OS trap)

D
User RAM

(patched UI
Toolbox trap or

OS trap)

Figure C-1 A-line trap handling in A/UX

Drawstring ("Hi");

D
~ D Ad1ust stack

Trap handler

Kernel

D
Trap-dispatch

code

D
AOOO xxxxxxxx

A884 xxxxxxxx

Trap-dispatch table

RAM

Low memory

Running an A/UX Toolbox application C-5

"Not in ROM" routines

The A/UX Toolbox also supports the "not in ROM" calls described in the Inside
Macintosh volumes. ("Not in ROM" is explained at the end of the Preface in each volume
of Inside Macintosh.) There are two versions of code for these glue routines, both in
/usr I lib. The nonshared archive is libmac. a, and the shared version is
1 i bma c _s . a. The two are functionally equivalent. You can use either version by
naming it on the command line for compiling or link editing, as with any archive file.
The shared version saves some space in applications that use it and has the advantage of
always providing the most current routines to applications that call on it. Shared libraries
are discussed in A/UX Programming Languages and Tools, Volume 1. An A/UX Toolbox
application compiled and linked according to the instructions in Chapter 2, "Using the
A/UX Toolbox," will access one of these archives. Applications compiled in the
Macintosh environment must link to the appropriate libraries to use these calls.

Macintosh global variables

The standard Macintosh environment includes a set of global variables used by different
parts of the system and stored in low memory. (These global variables are described in
Inside Macintosh, Volumes III, IV, V, and VI.) To make room for these global variables,
an A/UX Toolbox application compiled under A/UX is linked at virtual memory address
OxlOOOOOOO. The launch(l) program for executing Macintosh applications from the
shell, itself an A/UX Toolbox application, is linked at this address.

Not all of the global variables listed in Inside Macintosh are supported by A/UX. In
general, variables related to hardware are not supported. Appendix D, "Low-Memory
Global Variables," lists the supported Macintosh global variables.

File type and creator

A set of file information called the Finder information, which includes a file's type and
creator, is stored in a special entry in both AppleSingle-format and AppleDouble-format
files in A/UX.

C-6 Appendix C Implementation Notes

The Macintosh Standard File Package, which is supported by A/UX, uses a file's type
and creator to filter the documents presented when the user opens a file from within an
application. When an A/UX file goes into the Macintosh OS environment, if no creator is
found, then 'A/UX' is assigned as creator. File types are assigned, if feasible. Files known
to be text files receive the 'TEXT' type; known shell scripts receive 'SHEL'. Chapter 6,
"File Systems and File Formats," provides general information on file handling across the
boundary between the two environments.

Converting between C
and Pascal conventions

Most of the Macintosh ROM routines use Pascal language conventions, which differ from
the conventions used by the A/UX C compilers.

The C and Pascal conventions differ in six primary ways: how strings are stored, how
a parameter list is evaluated, how the parameter types are stored, how QuickDraw point
small structures are passed, how function results are returned, and how registers are
used. This section describes the differences.

When necessary, the A/UX Toolbox interface routines convert C program calls to a
form usable by the ROM and then convert the ROM's output to a form usable by the C
program. The A/UX Toolbox routines that perform this conversion have three parts: the
entry conversion code, the A-line trap, and the exit conversion code.

The libraries in Release 3.0 of the A/UX Toolbox include two versions of all routines
that take strings or small structures (such as QuickDraw point values), or that return
strings. One version, spelled as the routine appears in Inside Macintosh, uses Pascal
string format and point-passing conventions. The second version, spelled in all
lowercase letters, uses C string format and point-passing conventions. The lowercase
version converts input parameters from C format to Pascal format before passing them to
the ROM and converts return values back to C format. Both versions use interface
routines to adjust for other differences in parameter-passing and return-value
conventions.

If you are writing procedures that will be called from the ROM code, you must write
assembly-language code to rework the parameters when your procedure is called.

Converting between C and Pascal conventions C-7

Storing strings

In C, a string is normally stored as an array of characters, of any length, terminated by the
null byte (\ o). In Pascal, a string starts with a byte that specifies the length of the string,
followed by a maximum of 255 characters. Because the length is specified explicitly, a
Pascal string is not terminated by a null byte.

Because both conventions contain an extra byte of information (the null byte at the
end of a C string and the count at the beginning of a Pascal string), it is possible to
transform a string in place between the two formats. The A/UX Toolbox includes the
routines c2pstr and p2cstr to perform these conversions. (See "String
Conversion Between Pascal and C" in Appendix F.)

The lowercase versions of all ROM routines that take or return strings perform these
conversions automatically. Use the lowercase version when you are passing a string
directly to a routine. The mixed-case versions perform no conversion. Use the mixed­
case version when you are using a string that is a field of a structure maintained by a
ROM routine.

The routine and parameter descriptions in Appendix F, "C Interface Library," follow
these conventions:

• A pointer to a char data type (printed char *)represents a pointer to a
C-format string.

• A parameter of type str2 5 5 represents a Pascal-format string.

Ordering and storing parameters

Parameters in Pascal functions are evaluated from left to right and are pushed onto the
stack in the order in which they are evaluated. For example, with the function
foo (a, b) , a is pushed first, and then b.

Parameters in C functions are evaluated from right to left (by the Macintosh C
compilers) and are pushed onto the stack in the order in which they are evaluated. With
the function f oo (a, b) , b is pushed first, and then a.

When necessary, the A/UX Toolbox routines reorder the parameters passed to a
function before calling the ROM.

C-8 Appendix C Implementation Notes

Characters and enumerated types whose literal values fall in the range of type char

or unsigned char are pushed as bytes. (Pushing a byte on the stack requires a 16-
bit word on the stack. The value is in the high-order 8 bits; the low-order 8 bits are
unused.) short values and enumerated types whose literal values fall in the range of
type short or unsigned short are passed as 16-bit values. int and long

values and the remaining enumerated types are passed as 32-bit values. Pointers and
arrays are passed as 32-bit addresses. SANE types float, double, comp, and
ext ended are passed as extended 80-bit values.

Structures are also passed by value on the stack. Their size is rounded up to a
multiple of 16 bits (2 bytes). If rounding occurs, the unused storage has the highest
memory address. The function being called removes the parameters from the stack.

Passing small structures

The Pascal language always passes small structures (less than or equal to four bytes),
such as QuickDraw point values, by value rather than by pointer, unless the structure is
declared as a VAR. (This convention is a general rule for Pascal, which passes by value
unless VAR is declared.) A/UX library calls with mixed-case names follow the Pascal
convention.

The calls with lowercase names that pass small structures put the address of the
structure on the stack.

Returning function results

A/UX C functions return pointer values in registers AO and DO and nonpointer values in
register DO. MPW C functions return all values in DO.

A Pascal function places its result on the stack. The caller reserves stack space for the
function result before pushing any parameters. Characters and enumerated types whose
literal values fall in the range of type char or unsigned char are returned as
bytes. (These values returned as bytes require a 16-bit word on the stack. The value is in
the high-order 8 bits; the low-order 8 bits are unused.) All short values and
enumerated types whose literal values fall in the range of type short or unsigned

short are returned as 16-bit values. All int and long values and the remaining

Converting between C and Pascal conventions C-9

enumerated types are returned as 32-bit values. Pointers are returned as 32-bit addresses.
Arrays cannot be returned as function results. Results of type f 1 oat are returned as
32-bit values. For types double, comp, and extended, the caller pushes the
address for a double, comp, or extended result, respectively, in the function­
result location on the stack. The procedure being called stores the result at this address.
The caller removes the function results from the stack.

For structure results, if the Pascal function returns a structure of more than 4 bytes,
the caller pushes a pointer to a result space before pushing any parameters. If the
structure is 4 bytes or fewer, the caller reserves 4 or 2 bytes on the stack for it.

The A/UX Toolbox routines move the results returned by a Pascal-like ROM call to
the location appropriate for a C call.

Register conventions

Pascal treats registers DO, Dl, D2, AO, and Al as scratch registers. All other registers are
preserved. Register AS is the global frame pointer, register A6 is the local frame pointer,
and register A7 is the stack pointer. A/UX C treats only registers DO, Dl, AO, and Al as
scratch registers. A6 is the frame pointer, A7 the stack pointer.

An A/UX Toolbox routine automatically saves and restores register D2 when using
ROM code.

C-10 Appendix C Implementation Notes

Appendix D:
Low-Memory Global Variables

This appendix lists the low-memory global variables that are supported in the A/UX

Toolbox. For the function and memory location of each variable, see the appendixes

titled ''Global Variables" in Inside Macintosh, Volumes III, IV, V, and VI.

Generally, your software will have maximum portability if you don't rely on the low­

memory global variables, but instead use available routines that return the desired

information. For example, the Tickcount function returns the same value that is

contained in the low-memory global variable Ticks.

The low-memory global variables are listed by the name used in the C include file

sysequ. h, available in /lib/ include/mac. The name of each variable is followed

by its low-memory address, which is provided only for identification and reference to

Macintosh documentation and should never be used as an address.

The general list is followed by three brief lists of associated global variables for the

Window Manager, TextEdit, and the Resource Manager.

Table D-1 General global variables

Name Reference Description

ABusVars Ox2D8 Pointer to AppleTalk local variables

ApplLimit Ox130 Application limit [pointer]

Appl Zone Ox2AA Application heap zone [pointer]

BootDrive Ox210 Drive number of boot drive [word]

Buf Ptr OxlOC Top of application memory [pointer]

BufTgDate Ox304 Time stamp [word]

BufTgFBkNum Ox302 Logical block number [word]

BufTgFFlg Ox300 Flags [word]

BufTgFNum Ox2FC File number [long]

Caret Time Ox2F4 Caret blink ticks [long]

CPUFlag Ox12F $00=68000, $01 =68010, $02=68020 (old ROM inits
to $00)

CurApName Ox910 Name of application [STRING[31]]

CurApRefNum Ox900 refNum of application's resFile [word]

CurDirStore Ox398 Save directory across calls to Standard File [long]

CurJTOff set Ox934 Current jump table offset [word]

CurPageOption Ox936 Current page 2 configuration [word]

CurPitch Ox280 Current pitch value [word]

CurrentA5 Ox904 Current value of AS [pointer]

CurStackBase Ox908 Current stack base [pointer]

DefltStack Ox322 Default size of stack [long]

DeviceList Ox8A8 List of display devices [long]

DoubleTime Ox2FO Double-click ticks [long]

DrvQHdr Ox308 Queue header of drives in system [10 bytes]

DSAlertRect Ox3F8 Rectangle for disk-switch alert [8 bytes]

DSAlertTab Ox2BA System error alerts [pointer]

DSErrCode OxAFO Last system error alert ID

DTQueue Ox0D92 Deferred task queue header [10 bytes]

Event Queue Ox14A Event queue header [10 bytes]

ExtStsDT Ox2BE sec external status interrupt vector table [16 bytes]

(continuedY.

D-2 Appendix D Low-Memory Global Variables

Table D-1 General global variables (continued)

Name

GZRootHnd

Heap End

HiliteMode

HiliteRGB

Intl Spec

JDTinstall

JFetch

JIODone

JournalRef

JStash

JVBLTask

KbdLast

KbdType

KeyRepThresh

KeyThresh

Lo3Bytes

Lvl2DT

MainDevice

MemErr

MemTop

MinStack

MinusOne

MMU32bit

OneOne

PortBUse

QDColors

RAMBase

Reference

Ox328

Oxl14

Ox938

OxODAO

OxBAO

Ox0D9C

Ox8F4

Ox8FC

Ox8E8

Ox8F8

OxOD28

Ox218

Ox21E

Ox190

Ox18E

Ox31A

Ox1B2

Ox8A4

Ox220

Ox108

Ox31E

OxA06

OxOCB2

OxA02

Ox291

Ox8BO

Ox2B2

Description

Root handle for GrowZone [handle]

End of heap [pointer]

Used for color highlighting

6 bytes: RG B of highlight color

International software installed if not equal to -1
[long]

Pointer to deferred task install routine [long]

Fetch a byte routine for drivers [pointer]

IODone entty location [pointer]

Journaling driver's refNum [word]

Stash a hyte routine for drivers [pointer]

Vector to slot VBL task interrupt handler

Same as KbdVars + 2

Keyboard model number [byte]

Key repeat speed [word]

Threshold for key repeat [word]

Constant $00FFFFFF [long]

Interrupt level-2 dispatch table [32 bytes]

The main screen device [long]

Last Memory Manager error [word]

Top of memory [pointer]

Minimum stack size used in InitApplZone

[long]

Constant $FFFFFFFF [long]

Boolean value reflecting current machine MMU
mode [byte]

Constant $00010001 [long]

Port Buse, same format as PortAUse

Handle to default colors [long]

RAM base address [pointer]

(continued.,.._

Low-Memory Global Variables D-3

Table D-1 General global variables (continued)

Name Reference Description

ResumeProc OxA8C Address of resume procedure from
Ini tDialogs [pointer]

RndSeed Oxl56 Random seed/number Uong]

ROM85 Ox28E Actually high bit - 0 for ROM version $75 (sic) and
later [word]

ROMBase Ox2AE ROM base address [pointer]

SCCRd Oxl08 sec base read address [pointer]

SCCWr OxlDC sec base write address [pointer]

ScrapCount Ox968 Validation byte [word]

ScrapHandle Ox964 Memory scrap [handle]

ScrapName Ox96C Pointer to scrap name [pointer]

ScrapSize Ox960 Scrap length Uong]

ScrapState Ox96A Scrap state [word]

Scratch8 Ox9FA Scratch [8 bytes]

Scratch20 OxlE4 Scratch [20 bytes]

ScrDmpEnb Ox2F8 Screen dump enabled? [byte]

ScrHRes Oxl04 Screen horizontal dots/inch [word]

ScrnBase Ox824 Screen base [pointer]

ScrVRes Oxl02 Screen vertical dots/inch [word]

SdVolume Ox260 Global volume (sound) control [byte]

SEvtEnb Oxl5C Enable SysEvent calls from GNE [byte]

SFSaveDisk Ox214 Last vRefNum seen by standard file [word]

SoundBase Ox266 Base address for sound buffer [pointer]

SoundLevel Ox27F Current level in buffer [byte]

SoundPtr Ox262 4VE sound definition table [pointer]

SPAlarm Ox200 Alarm time Uong]

SPATalkA OxlF9 AppleTalk node number hint for port A

SPATalkB OxlFA AppleTalk node number hint for port B

SPClikCaret Ox209 Double click/caret time in 4/60ths [4 bits]

SPConf ig OxlFB Serial port config bits: 4-7 port A, 0-3 port B

(continued~

D-4 Appendix D Low-Memory Global Variables

Table D-1 General global variables (continued)

Name Reference Description

SPFont Ox204 Default application font number minus 1 [word]

SPKbd Ox206 Keyboard repeat threshold in 4/60ths [4 bits]
(ignored under A/UX)

SPMisc2 Ox20B Miscellaneous [1 byte]

SPPortA OxlFC SCC port A configuration [word]

SPPortB OxlFE SCC port B configuration [word]

SPPrint Ox207 Print stuff [byte]

SPValid OxlFS Validation field ($A7) [byte]

SPVolCtl Ox208 Volume control [byte]

SysEvtMask Ox144 System event mask [word]

Sys Par am Ox1F8 System parameter memo1y [20 bytes]

Sys Zone Ox2A6 System heap zone [pointer]

TheGDevice OxOCC8 The current graphics device [long]

The Zone Ox118 Current heap zone [pointer]

Ticks Oxl6A Tick-count, time since hoot [long]

Time Ox20C Clock time (extrapolated) [long)

TimeDBRA OxODOO Number of iterations of DBRA per millisecond
[word]

TimeSCCDB OxOD02 Number of iterations of SCC access and DBRA
[word)

TimeSCSIDB OxODA6 Number of iterations of SCSI access and DBRA
[word]

UTableBase OxllC Unit 1/0 table [pointer)

VBLQueue Ox160 VBL queue header [10 bytes]

VIA Ox1D4 VIA base address [pointer]

Low-Memory Global Variables D-5

Table D-2 Window Manager globals

Name Reference

CurActivate OxA64

CurDeactive OxA68

DeskHook OxA6C

DeskPattern OxA3C

DragHook Ox9F6

Ghost Window OxA84

GrayRgn Ox9EE

PaintWhite Ox9DC

WindowList Ox9D6

WMgrPort Ox9DE

Table D-3 TextEdit globals

Name Reference

TEDoText OxA70

TERecal OxA74

TEScrpHandle OxAB4

TEScrpLength OxABO

TESysJust OxBAC

WordRedraw Ox BAS

D-6 Appendix D Low-Memory Global Variables

Description

Window slated for activate event [pointer]

Window slated for deactivate event [pointer]

Hook for painting the desk [pointer]

Desk pattern [8 bytes]

User hook during dragging [pointer]

Window hidden from FrontWindow [pointer]

Rounded gray desk region [handle]

Erase newly drawn windows? [word]

Z-ordered linked list of windows [pointer]

Window Manager's grafport [pointer]

Description

TextEdit doText procedure hook [pointer]

TextEdit rec al Text procedure hook [pointer]

TextEdit scrap [handle]

TextEdit scrap length [word)

System justification (international TextEdit) [word)

Used by TextEdit RecalDraw [byte]

Table D-4 Resource Manager globals

Name Reference Description

Cur Map Ox.ASA Reference number of current map [word]

Res Err OxA60 Resource error code [word]

ResErrProc OxAF2 Resource error procedure [pointer]

Res Load Ox.ASE Auto-load feature [word]

RomMapinsert OxB9E Determines if we should link in map [byte]

SysMap Ox.ASS Reference number of system map [word]

SysMapHndl OxAS4 System map [handle]

SysResName Ox.ADS Name of system resource file [STRING[19ll

TmpResLoad OxB9F Second byte is temporary ResLoad value

TopMapHndl OxASO Topmost map in list [handle]

Low-Memory Global Variables D-7

Appendix E: Resource Compiler
and Decompiler

About the resource compiler and decompiler I E-2

Resource description statements I E-7

Preprocessor directives I E-39

Resource description syntax I E-43

This appendix explains how to build resources with the resource compiler, re z, and

how to use the resource decompiler, derez. See Inside Macintosh, Volume I, for a

description of resources.

About the resource compiler and decompiler
The resource compiler, rez, compiles one or more text files, called resource
descriptionfiles1 and produces a resource file. The resource decompiler, derez,

decompiles a resource file, producing a new resource description file that can be
understood by re z. Figure E-1 illustrates the complementary relationship between
rez and derez.

Resource
file

D

Resource
decompiler

-----derez

rez----
Resource
compiler

Resource
description

file

Figure E-1 rez and derez

In A/UX, rez always creates an AppleDouble header file. derez always creates
a standard A/UX text file.

rez can combine resources or resource descriptions from a number of files into a
single resource file. rez can also delete resources or change resource attributes. rez

supports preprocessor directives that allow you to substitute macros, include other files,
and use if-then-else constructs. (These directives are described in "Preprocessor
Directives," later in this appendix.)

E-2 Appendix E Resource Compiler and Decompiler

de re z creates a text representation of a resource file based on resource type
declarations identical to those used by re z. (If you don't specify any type declarations,
the output of de re z is in the form of raw data statements.) The output of de re z is a
resource description file that can be used as input to rez. You can edit this file to add
comments, translate resource data into a foreign language, or specify conditional
resource compilation by using the if-then-else structures of the preprocessor. You can
also use the A/UX di f f(l) command to compare resource description files.

Standard type declaration files

Four text files-types. r, sys types. r, script types. r, and pi ct. r­
contain resource declarations for standard resource types. These files are located in the
directory /mac I 1 ib/ r includes. They contain definitions for the following types:

types.r

systypes.r

scripttypes.r

pict.r

type declarations for the most common Macintosh resource
types (· ALRT ·, • DITL ·, ·MENU·, and so on)

type declarations for · DRVR • , • FOND ' , ' FONT ' ,

'FWID', 'INTL', and · NFMT' resources and many
others

type declarations for resource descriptions specific to the
Script Manager

type declarations for debugging ' Pr CT ' resources

About the resource compiler and decompiler E-3

Using rez and aerez

rez and derez are primarily used to create and modify resource files. Figure E-2
illustrates the process of creating a resource file.

Text editor
or

derez

D
filename.r

Resource
description

'TEXT'

u u
rez

Resource
compiler

D
%filename

Resource
file

ResEdit

D
Other

resource
files

<

Figure E-2 Creating a resource file

E-4 Appendix E Resource Compiler and Decompiler

r

Structure of a resource description file

The resource description file consists of resource type declarations (which can be
included from another file) followed by resource data for the declared types. The
resource compiler and resource decompiler have no built-in resource types. You must
either define your own types or include the appropriate type declaration (. r) files.

A resource description file contains any number of the seven resource statements:

change Changes the type, ID, name, or attributes of existing resources.

data Specifies raw data.

delete

include

read

resource

type

Deletes existing resources.

Includes resources from another file.

Reads data file and includes it as a resource.

Specifies data for a resource type declared in a previous type
statement.

Declares resource type descriptions for subsequent resource
statements.

The section "Resource Description Statements," later in this appendix, describes each
of these statements.

A type declaration provides the pattern for any associated resource data
specifications by indicating data types, alignment, size and placement of strings, and so
on. You can intersperse type declarations and data in the resource description file as
long as the declaration for a given resource precedes any resource statements that
refer to it. An error is returned if data (that is, a resource statement) is given for a
type that has not been previously defined. Whether a type was declared in a resource
description file or in an include file, you can redeclare it by providing a new declaration
later in a resource description file.

About the resource compiler and decompiler E-5

A resource description file can also include comments and preprocessor directives:

• Comments can be included anywhere that white space is allowed in a resource
description file, within the comment delimiters I * and *I. Comments do not nest.
For example, this is one comment:

I* Hello I* there *I

rez also supports C++ style comments:

type 'tost' { II the rest of this line is ignored

• Preprocessor directives substitute macro definitions and include files and provide if­
then-else processing before other re z processing takes place. The syntax of the
preprocessor is similar to that of the C-language preprocessor. For details, see
"Preprocessor Directives," later in this appendix.

Sample resource description file

An easy way to learn about the resource description format is to decompile some
existing resources. For example, the following command decompiles only the ·WIND •

resources in the sample application, according to the type declaration in types. r,

in the lmac/liblrincludes directory:

derez sample -only WIND types.r > derez.out

After this command is run, derez. out contains this text:

resource

} ;

'WIND' (128, "Sample Window") {

{64, 60, 314, 460},

documentProc,

visible,

noGoAway,

OxO,

"Sample Window"

E-6 Appendix E Resource Compiler and Decompiler

Note that this statement is identical to the resource description in the file
sample. r, which was originally used to build the resource. This resource data
corresponds to the following type declaration, contained in types. r:

type 'WIND'

rect;

integer

byte

fill byte;

byte

fill byte;

/* boundsRect */

documentProc, dBoxProc, plainDBox, /* procID */

altDBoxProc, noGrowDocProc,

zoomProc=8, rDocProc=l6;

invisible, visible; /* visible */

noGoAway, goAway; /* goAway */

unsigned hex longint; /* refCon */

/* title */ pstring Untitled = 11 Unti tled 11
;

} ;

type and resource statements are explained in detail in the next section,
"Resource Description Statements."

Resource description statements

This section describes the syntax and use of the seven resource description statements:
change, data, delete, include, read, resource, and type.

Syntax notation

The syntax notation in this appendix follows the conventions given in the Preface, with
these additions:

• Words that are part of the resource description language are shown in Courier to
distinguish them from other text. re z is not sensitive to the case of these words.

• Punctuation characters such as commas (,), semicolons (;), and quotation marks (·
and 11

) are to be written as shown.

Resource description statements E-7

• If one of the syntax notation characters (for example, [or]) must be written as a
literal, it is shown enclosed by "curly" single quotation marks, like this:

bitstring ' ['length']'

In this case, the brackets are typed literally. The brackets do not mean that the
enclosed element is optional.

• Spaces between syntax elements, constants, and punctuation are optional. They are
used only to make reading code easier.

• Hexadecimal numbers are flagged with a leading dollar sign. Tokens in resource
description statements can be separated by spaces, tabs, newlines, or comments.
Note that braces ({ and }) are to be written as shown.

Special terms

The following terms represent a minimal subset of the nonterminal symbols used to
describe the syntax of commands in the resource description language.

Term Definition

resource-type long-expression

resource-name string

resource-ID word-expression

ID-range ID [: JD]

+ Note The placeholder expression is defined in "Expressions," later in this
appendix. •

For more information on syntax, see "Resource Description Syntax," later in this
appendix.

E-8 Appendix E Resource Compiler and Decompiler

change-change a resource's vital information

~yntax

Description

The change statement changes a resource's vital information. Vital information
includes the resource type, ID, name, attributes, or any combination of these.

change resource-typel [' ('resource-namel I !DJ[: ID2]') ']
to resource-type2 ' ('ID[, resource-name2] [, attributes .. .]') ';

Changes the resource of type resource-typel in the output file with the specified
identifier resource-namel, ID, or range of ID numbers to a resource of type resource­
type2 with the specified ID. You can optionally specify resource-name2 and attributes
for the new resource. If neither resource-name2 nor the attributes are specified, the
name and attributes are not changed.

For example, here is a shell command (echo) that calls on rez to set the protected
bit on for all 'CODE' resources in the file TestDA:

echo "change 'CODE' to $$type ($$Id,$$Attributes I 8) ;"a
I rez -a -o TestDA

The continuation character ca, obtained by pressing OPTION-D) at the end of the first
line of this example has the effect of continuing the command onto the next line. The
continuation character is used to escape the character that follows from performing its
usual action. In this case, the subsequent character is a newline, and the line-termination
function is escaped.

+ Note The change statement is valid only when the -a (append) option is
specified in the command line. It makes no sense to change resources when you're
creating a new resource file from scratch. +

change-change a resource's vital information E-9

data-specify raw data

Syntax

Description

data statements specify raw data as a sequence of bits, without any formatting.

data • resource-type· ' (' ID [, " resource-name"] [, attributes ...] ') ' {
"data-string"

} i

Reads the data found in the string data-string and writes it as a resource with the type
resource-type and the resource ID ID. You can optionally specify a resource name,
resource attributes, or both.

For example, the following statement reads the data string shown and writes it as a
·PICT· resource with resource ID 128:

data 'PICT' (128) {

$"4F35FF8790000000"

$"FF234F35FF790000"

} i

+ Note When derez generates a resource description, it uses the data statement
to represent any resource type that doesn't have a corresponding type declaration or that
cannot be disassembled for some other reason. •

E-10 Appendix E Resource Compiler and Decompiler

delete-delete a resource

~yntax

Description

The delete statement deletes a resource. This statement can be useful, for example,
in the process of translating menu and dialog box text in system disks or applications
intended for use in non-English-speaking countries. The delete statement and the
change statement (described earlier in this appendix) allow you to delete and change
resources without switching to ResEdit.

delete ·resource-type·[· (·resource-name I ID1[:1D2]') •];

Deletes the resource of type resource-type from the output file with the specified
identifier resource-name, ID, or range of ID numbers. If both the resource name and the
ID are omitted, all resources of type resource-type are deleted.

+ Note The delete statement is valid only when the -a (append) option is
specified in the command line. It makes no sense to delete resources when you're
creating a new resource file from scratch. •

You can delete resources that have their protected bit set only if you use the - ov

option.
Here is an example of a shell command (echo) that calls on rez to delete all

resources of type 'ckid' from the file SomeTextFile:

echo 11 delete 'ckid'; 11 I rez -a -o SomeTextFile

delete-delete a resource E-11

inc 1 ude-include resources from another file

Syntax

Description

The inc 1 ude statement reads resources from an existing file and includes all or some
of them.

include "filename" [·resource-type·['(' "resource-name" I 1Dl[:ID2]')']];

Reads the resource of type resource-type with the specified resource name, ID number,
or range of ID numbers in the file filename. If both the resource name and the resource
ID are omitted, include reads all resources of the type resource-type in the file
.filename. If resource-type is omitted, inc 1 ude reads all the resources in the file
filename. These three possibilities are illustrated in the following examples:

include "otherfile" 'CODE' (128); /*read only CODE resource 128 */

include "otherfile" 'CODE'; /* read only the CODE resources */

include "otherfile"; /* read all resources from the file */

include "filename" not 'resource-type·;
Read all resources not of the type resource-type in the file .filename.

include "filename" 'resource-typel' as 'resource-type2·;
Read all resources of type resource-typel and include them as resources of type
resource-type2.

include ".filename" ·resource-typel• '(' "resource-name]" I 1Dl[:ID2]')'
as · resource-type2 · ' (' ID [, " resource-name2"] [, attribute .. .]

') ';

Read the resource of type resource-typel with the specified resource name, ID number, or
range of ID numbers in the file .filename1 and include it as a resource of type resource­
type2 with the specified ID. You can optionally specify resource-name2and new resource
attribute. Resource attributes are defined in "Resource Attributes," later in this section.

E-12 Appendix E Resource Compiler and Decompiler

Resource
attributes

The following string variables can be used in the inc 1 ude as resource
description statement to modify the resource information:

$$Type type of resource from include file

$$ID

$$Name

$$Attributes

ID of resource from include file

name of resource from include file

attributes of resource from include file

For example, to include all ' DRVR ' resources from one file and keep the same
information, but also set the SYSHEAP attribute, you would use a statement like this:

include "file" 'DRVR' (0:40) as

'DRVR' ($$ID, $$Name, $$Attributes I 64);

The $$Type, $$ID, $$Name, and $$Attributes variables are also set and
legal within a normal resource statement. At any other time the values of these
variables are undefined.

You can specify attributes by using a numeric expression (as described in the Resource
Manager chapters of Inside Macintosh, Volumes I, IV, and V), or you can set them
individually by specifying one of the keywords from any of the following pairs.

Def a ult Alternative Meaning

appheap sysheap Specifies whether the resource is to be loaded into
the application heap (appheap) or the system
heap (sysheap). This attribute is meaningless if
the resource is used only in A/UX.

nonpurgeable purgeable Specifies whether purgeable resources can be
automatically purged by the Memory Manager
(purgeable), or not (nonpurgeable).

unlocked locked Specifies whether locked resources can be moved
by the Memory Manager (unlocked), or not
(locked).

unprotected protected Specifies whether protected resources can be
modified by the Resource Manager
(unprotected), or not (protected).

include-include resources from another file E-13

nonpreload pre load

unchanged changed

Specifies whether preloaded resources are placed in
the heap as soon as the Resource Manager opens
the resource file (nonpreload), or not
(pre load).

Tells the Resource Manager whether a resource has
been changed (changed) or not (unchanged).
rez does not allow you to set this bit, but derez
displays it if it is set.

Bits 0 and 7 of the resource attributes are reserved for use by the Resource Manager
and cannot be set by rez, but are displayed by derez.

You can list more than one attribute by separating the keywords with a comma (,).An

example of attribute use is given in the next section, "read-Read Data as a Resource."

E-14 Appendix E Resource Compiler and Decompiler

read-read data as a resource

~yntax

Description

The read statement reads a data file or the data entry in a file as a resource.

read· resource-type· '('JD[," resource-name"][, attributes ...]')'
".filename" ;

Reads the file filename and writes it as a resource with the type resource-type and the

resource ID JD, with the optional resource name resource-name and optional resource

attributes attributes (as defined in the section "inc 1 ude-Include Resources From

Another File"). For example, the statement

read 'STR' (-789,"Test String",sysheap,preload) "Test8";

reads Tests and writes it as a 'STR ' resource with the resource ID-789, the

resource name Test string, and the resource attributes sysheap and

pre load.

read-read data as a resource E-15

resource-specify resource data

~yntax

Description

The resource statement specifies an actual resource, based on previous type

declarations.

resource ' resource-type' ' ('JD[, resource-name J [,attributes]·)· {
[data-statement I[, data-statement2]. ..]

} ;

Specifies the data for a resource of type resource-type and ID ID. The latest type
declaration declared for resource-zype is used to parse the data specification. The data­
statement parameter specifies the actual data; the data-statement term appropriate to
each resource type is defined in "Data Statements," later in this section.

The resource definition causes an actual resource to be generated. A
resource statement can appear anywhere in the resource description file, or in a
separate file specified on the command line, or as an include file, as long as it comes
after the relevant type declaration.

Data statements The body of the data specification contains one data statement for each declaration in
the corresponding type declaration. The base type must match the declaration.

Base type

string

bitstring

re ct

point

Instance types

string, cstring, pstring, wstring char

boolean, byte, integer, longint, bi tstring

re ct

point

Switch data Switch data statements are specified in the following format:

switch-name case-body

For example, the following statement could be specified for the · DITL' type
declaration example given in "Switch Type" in the description of the type declaration,
later in this appendix. The switch-name example is checkBox.

CheckBox { enabled, "Check here" } ,

E-16 Appendix E Resource Compiler and Decompiler

Sample resource
de.fznition

The boolean and pstring values defined in the case-body section of the
CheckBox case are set to enabled and to "Check here"; the key

bi tstring term was already set to a constant in the definition. Now data items are
provided for all terms of the case-body section.

Array data Array data statements have the following format:

{[array-element [, array-element] ...] }

An array-element parameter consists of any number of data statements, separated by
commas.

For example, the following data might be given for the · STR # · type declaration
example in "Array Type" in the description of the type declaration, later in this appendix.

resource 'STR#' (280) {

"this",

II is II I

"a" I

"test"

} ;

The example given here describes a sample resource description file for a window.
(See the Window Manager chapter in Inside Macintosh1 Volume I, for information about
resources for windows.)

Here is the type declaration given later in this appendix in "Sample type

Statement":

type 'WIND' {

rect; /* boundsRect */

integer documentProc, dBoxProc, plainDBox, /* procID */

altDBoxProc, noGrowDocProc,

zoomProc=8, rDocProc=l6;

byte invisible, visible; /* visible */

fill byte;

(continued~

resource-specify resource data E-17

byte noGoAway, goAway; /* has close box*/

fill byte;

unsigned hex longint; /* refCon */

pstring Untitled = "Untitled"; /* title */

} ;

Here is a typical example of the window data corresponding to this declaration:

resource 'WIND' (128, "My window", appheap, preload)

{/*status report window*/

/*status report window*/

{40,80,120,300}, /*bounding rectangle*/

documentProc, /*documentProc etc.*/

Visible, /*Visible or Invisible*/

goAway, /*GoAway or NoGoAway*/

0, /*reference value RefCon*/

"Status Report" /*title*/

} ;

This data definition declares a resource of type · WIND ' , using whatever type
declaration was previously specified for ' WIND ' . The resource ID is 128; the resource
name is My window. Because the resource name is represented by the Resource
Manager as a pstring string, it should not contain more than 255 characters. The
resource name can contain any character, including the null character ($00). The
resource is placed in the application heap when loaded, and it is loaded when the
resource file is opened.

E-18 Appendix E Resource Compiler and Decompiler

The first statement in the window type declaration declares a bounding rectangle for
the window and corresponds to

rect;

in the type declaration. The rectangle is described by two points: the upper-left corner
and the lower-right corner. The coordinates for these two points of a rectangle are
separated by commas:

{ top, left, bottom, right}

Thus, the following values correspond to the coordinates top, left, bottom, and right:

{40,80,120,300}

Symbolic names Symbolic names can be associated with particular values of a numeric
type. A symbolic name is given for the data in the second, third, and fourth fields of the
window declaration. For example:

integer documentProc=O, dBoxProc=l, plainDBox=2,

altDBoxProc=3, noGrowDocProc=4,

zoomProc=8, rDocProc=l6; /*windowType*/

This statement specifies a signed 16-bit integer field with symbolic names associated
with the values 0 through 4 and 16. The values 0 through 4 need not be indicated in this
case; if no values are given, symbolic names are automatically given values starting at 0,
as explained earlier.

The sample window declaration assigns the values TRUE (1) and FALSE (0) to two
different byte variables. For clarity, the window's resource data uses the symbolic names

visible,

goAway,

instead of their equivalents

TRUE,

TRUE,

or

1,

1,

resource-specify resource data E-19

type-declare resource type

~yntax

Description

The type declaration provides a template that defines the structure of the resource
data for a single resource type or for individual resources. If more than one type

declaration is given for a resource type, the last one read before the data definition is the
one that's used. Therefore, you can override declarations from include files or previous
resource description files.

type ·resource-type· [' (' ID1[:1D2] ') ']
zype-~pecijkation ...

} ;

Causes any subsequent resource statement for the type resource-type to use the
declaration { rype-specification ... } . The optional ID 1[: ID2] specification causes the
declaration to apply only to a given resource ID or range of IDs. The first 12 type
specifications in the following list are data types.

type-specification can be any one of these options:

bitstring[n]
byte
integer
long int
boolean
char
string
pstring
wstring
cstring
point
re ct
fill

align
switch
array

zero fill
zero fill to nibble, byte, word, or long word boundary
control construct (case statement)
array data specification-zero or more instances of data types

E-20 Appendix E Resource Compiler and Decompiler

Data-type
specifications

These types can be used singly or together in a type statement. Each of these type
specifiers is described later in this section.

+ Note Several of these types require additional fields. The exact syntax is given later
in this section. •

You can also declare a resource type that uses another resource's type

declaration, by using the following variant of the type statement:

type • resource-typel' [' (' !Dl[: ID2] ') '] as 'resource-type2· [' ('ID') '];

A data-type statement declares a field of the given data type. It can also associate
symbolic names or constant values with the data type. Data-type specifications can take
three forms, as shown in this example:

type 'XAMP'

byte;

I* declare a resource of type 'XAMP' */

byte off=O, on=l;

byte = 2;

} i

• The first byte statement declares a byte field; the actual data is supplied in a
subsequent resource statement.

• The second byte statement is identical to the first, except that the two symbolic
names off and on are associated with the values 0 and 1. These symbolic names
could be used in the resource data.

• The third byte statement declares a byte field whose value is always 2. In this
case, no corresponding statement appears in the resource data.

+ Note Numeric expressions and strings can appear in type statements; they are
defined in "Expressions," later in this appendix. •

type-declare resource type E-21

Numeric types The numeric types (bi tstring, byte, integer, and longint)

are fully specified as follows:

[unsigned] [radix] numeric-type [=expr I symbol-dejznition .. .] ;

Explanations of these fields follow. Information on the optional expr and symbol­
definition fields is given with the explanations of various numeric-type designations.

• The unsigned prefix signals derez that the number should be displayed
without a sign-that the high-order bit may be used for data and the value of the
integer cannot be negative. The unsigned prefix is ignored by rez but is
needed by derez to correctly represent a decompiled number. rez uses a sign
if it is specified in the data. Precede a signed negative constant with a minus sign (-);
$FFFFFF85 and-$7B are equivalent in value.

• radix is one of the following string constants:

hex

decimal

octal

binary

Data is supplied as hexadecimal.

Data is supplied as decimal.

Data is supplied as octal.

Data is supplied as binary.

literal Data is taken as literal input.

• numeric-type is one of the following types:

bits tr i ng ' [' length' J ' Bitstring of length bits (maximum 32).

byte Byte (8-bit) field. This type is the same as
bitstring [8].

integer

long int

Integer (16-bit) field. This type is the same as
bitstring[16].

Long integer (32-bit) field. This type is the same as
bitstring [32 J.

rez uses integer arithmetic and stores numeric values as integer numbers. rez

translates boolean, byte, integer, and long int values to bi tstring

equivalents. All computations are done in 32 bits and truncated.
An error is generated if a value won't fit in the number of bits defined for the type.

The byte, integer, and long int constants are valid in the ranges shown in the
list that follows.

E-22 Appendix E Resource Compiler and Decompiler

Type

byte

integer

long int

Maximum

255
65535
4294967295

Minimum

-128
-32768
-2147483648

Boolean type A Boolean type is a single bit with two possible states: 0 (or FALSE)

and 1 (or TRUE). (TRUE and FALSE are global predefined identifiers.) Boolean
values are declared as follows:

boolean [= constant I symbolic-value ...];

For example, the following Boolean type declaration declares a value of FALSE:

type I DONE I {

boolean = false;

} ;

Type boo 1 ean declares a 1-bit field equivalent to

unsigned bitstring[l]

Note that this type is not the same as a Boolean variable as defined by Pascal.

Character type Characters are declared as follows:

char [=string I symbolic-value .. .];

For example:

type 'SYMB'

char dollar "$",percent II ~II•
0 I

};

resource 'SYMB' (12 8)

dollar

} ;

Type char declares an 8-bit field equivalent to

string[l]

type-declare resource type E-23

String type String data types are specified as follows:

string-~ype [' [' length' J '][=string I symbol-value ...];

string-type is one of the following types:

[hex] string

Plain string (contains no length indicator or termination character). The optional hex

prefix tells derez to display the string as a hex string. The expression string [nJ
contains n characters and is n bytes long. Type char is shorthand for string [1 J.

pstring

Pascal string. (A leading byte contains the length information.) The expression
pstring [nJ contains n characters and is n + 1 bytes long. pstring has a built-in
maximum length of 255 characters, the highest value the length byte can hold. If the
string is too long to fit the field, re z issues a warning and truncates the string.

wstring

Very large Pascal string. (Two leading bytes contain the length information.) A string of
this type can contain up to 65,535 characters. The expression wstring [nJ contains n

characters and is n + 2 bytes long.

cstring

C string. (A trailing null byte marks the end of the string.) The expression cs tr i ng [n J

contains n - 1 characters and is n bytes long. A C string of length 1 can be assigned only
the value 11 11

, because cs tr i ng [1 J has room only for the terminating null.

Each string type can be followed by an optional length indicator in brackets ([nJ).
length is an expression indicating the string length in bytes. length is a positive number
in the range 1~length~2147483647 for string and cstring, in the range 1 ~
length~ 255 for pstring, and in the range l ,'.S length .'.S 65535 for wstring.

+ Note You cannot assign the value of literals to string data types. •

E-24 Appendix E Resource Compiler and Decompiler

Fill and
align types

If no length indicator is given, pstring, wstring, or cstring stores the
number of characters in the corresponding data definition. If a length indicator is given,
the data can be truncated on the right or padded on the right. The padding characters for
all string types are nulls. If the data contains more characters than the length indicator
provides for, re z issues a warning message and truncates the string .

.A. Warning A null byte within a C string is a termination indicator and may confuse
derez and C programs. However, the full string, including the explicit null and any
text that follows it, is stored by rez as input. .A.

Point and rectangle types Because points and rectangles appear so frequently in
resource files, they have their own simplified syntax:

point [=point-constant I symbolic-value ...];

rect [= rect-constant I symbolic-value ...];

where

point-constant= { x-integer-expr, y-integer-expr }

and

rect-constant = { integer-expr, integer-expr, integer-expr, integer-expr}

These type statements use integer expressions to declare a point (two 16-bit signed
integers) or a rectangle (four 16-bit signed integers). The integers in a rectangle
definition specify the rectangle's upper-left and lower-right points, respectively.

The resource created by a resource definition has no implicit alignment. It's treated
as a bit stream, and integers and strings can start at any bit. The f i 11 and a 1 i gn

type specifiers allow you to pad fields so that they begin on a boundary that corresponds
to the field type. align is automatic, and fill is explicit. Both fill and
a 1 i gn generate zero-filled fields.

type-declare resource type E-25

Fill specification The f i 11 statement causes re z to add the specified number of
bits to the data stream. The fill is always 0. The form of the statement is

f i 11 fill-size [' ['length' J '] ;

where fill-size is one of the following strings:

bit

nibble

byte

word

long

These strings declare a fill of 1, 4, 8, 16, or 32 bits (optionally multiplied by length).
length is an expression whose value is less than or equal to 2147483647.

The following f i 11 statements are equivalent:

fill word[2];

fill long;

fill bit [32 J;

The full form of a type statement specifying a fill might be as follows:

type 'XRES' {type-specification; f i 11 bit [2 J ; } ;

+ Note rez supplies zeros as specified by fill and align statements.
derez does not supply any values for fill or align statements; it just skips the
specified number of bits, or skips bits until data is aligned as specified. •

E-26 Appendix E Resource Compiler and Decompiler

Array ~ype

Align specification Alignment causes re z to add fill bits of zero value until the data
is aligned at the specified boundary. An alignment statement takes the following form:

align align-size ;

where align-size is one of the following strings:

nibble

byte

word

long

Alignment pads with zeros until data is aligned on a 4-bit, 8-bit, 16-bit, or 32-bit
boundary. This alignment affects all data from the point where it is specified to the
beginning of the next a 1 i gn statement.

An array is declared as follows:

[wide] array [array-name I ' ['length' J '] { array-list } ;

The array-list argument1 a list of type specifications, is repeated zero or more times. The
wide option generates the array data in a wide display format (in derez)-the
elements that make up the array list are separated by a comma and space instead of a
comma, newline, and tab. Either array-name or [length] can be specified. array-name

is an identifier.
If the array is named, then a preceding statement must refer to that array in a constant

expression with the $ $Countof(array-name) function; otherwise, derez is unable
to decompile resources of this type. For example, in the following declaration, the
$ $Countof function returns the number of array elements (in this case, the number of
strings) from the resource data.

type 'STR#'

} ;

/*define a string list resource*/

integer = $$Countof (StringArray);

array StringArray

pstring;

} ;

If [length] is specified, there must be exactly length elements.

type-declare resource type E-27

Array elements are generated by commas. Commas are element separators.
Semicolons (;) are element terminators. However, semicolons can be used as element
separators, as in this example:

type 'xyzy'

array Increment

integer = $$Arrayindex(Increment);

} ;

} ;

resource 'xyzy' (1) {

/* zero elements */

} ;

resource 'xyzy' (3) {

/* two elements */

};

/* The only way to specify one element in an array that has

all constant elements is to use a semicolon terminator.

/*

resource 'xyzy' (4) {

/* one element */

} ;

E-28 Appendix E Resource Compiler and Decompiler

Switch ~ype The switch statement specifies a number of case statements for a given field or fields
in the resource. The format is as follows:

switch {case-statement. .. };

where case-statement has the following form:

case case-name : [case-body;] ...

The case-name argument is an identifier. The case-body argument can contain any
number of type specifications and must include a single constant declaration per case, in
the following form:

key data-~ype = constant

Which case applies is based on the key value, as illustrated in this example:

type 'DITL' {/* dialog item list declaration from types.r */

};

~ype specifications ...

switch { /* one of the following */

case Button:

boolean enabled, disabled;

key bitstring[7] = 4; /* key value */

pstring;

case CheckBox:

boolean enabled, disabled;

key bitstring[7] = 5;

pstring;

... and so on.
};

/* key value */

type-declare resource type E-29

Sample type The following sample type statement is the standard declaration for a ·WIND·

statement resource, taken from the types. r file.

type 'WIND ' {

rect; /* boundsRect */

integer documentProc, dBoxProc, plainDBox, /* procID */

altDBoxProc, noGrowDocProc,

zoomProc=8, rDocProc=l6;

byte invisible, visible; /* visible */

fill byte;

byte noGoAway, goAway; /* has close box*/

fill byte;

unsigned hex longint; /* refCon */

pstring Untitled = "Untitled"; /* title */

} ;

The type declaration consists of header information followed by a series of
statements, each terminated by a semicolon (;).The header of the sample window
declaration is

type 'WIND'

The header begins with the type keyword followed by the name of the resource
type being declared-in this case, a window. You can specify a standard Macintosh
resource type, as listed in the Resource Manager chapters of Inside Macintosh, Volumes
I, IV, and V, or you can declare a resource type specific to your application.

The left brace ({) introduces the body of the declaration. The declaration continues
for as many lines as necessary and is terminated by a matching right brace (}). You can
write more than one statement on a line, and a statement can be on more than one line
(like the integer statement in the example). Each statement represents a field in the
resource data. Comments can appear anywhere that white space can appear in the
resource description file; comments begin with I* and end with *I as in C.

E-30 Appendix E Resource Compiler and Decompiler

~ymbol

definitions
Symbolic names for data-type fields simplify the reading and writing of resource
definitions. Symbol definitions have the form

name = value [, name = value] .. .

For numeric data, the = value part of the statement can be omitted. If a sequence of
values consists of consecutive numbers, the explicit assignment can be left out, and if
value is omitted, it's assumed to be one greater than the previous value. (The value is
assumed to be 0 if it's the first value in the list.) This implicit assignment is true for
bitstrings (and their derivatives, byte, integer, and long int). For example, in
the following statement, the symbolic names docurnentProc, dBoxProc,

plainDBox, al tDBoxProc, and noGrowDocProc are automatically assigned the
numeric values 0, 1, 2, 3, and 4.

integer docurnentProc, dBoxProc, plainDBox,

altDBoxProc, noGrowDocProc,

zoornProc=8, rDocProc=16;

Memory is the only limit to the number of symbolic values that can be declared for a
single field. There is also no limit other than memory to the number of names you can
assign to a given value; for example, this statement is valid:

integer documentProc=O, dBoxProc=l, plainDBox=2, altDBoxProc=3,

rDocProc=l6,

Document=O, Dialog=l, DialogNoShadow=2, ModelessDialog=3,

Desk.Accessory=16;

type-declare resource type E-31

Labels

~yntax

Description

Labels are needed to support some of the more complicated resources such as ' NFNT '

and Color QuickDraw resources. Use labels within a resource type declaration to
calculate offsets and permit accessing of data at the labels.

label-7 character!alphanum) * ':'
character -7 '_' I A I B I C ...
number -7 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
alphanum -7 character I number

Labeled statements are valid only within a resource type declaration. Labels are local to
each type declaration. A single label can appear on any statement.

In expressions, only the identifier portion of the label (that is, everything up to, but
excluding, the colon) can be used. See "Declaring Labels Within Arrays," later in this
section.

The value of a label is always the offset-in bits-between the beginning of the
resource and the position at which the label occurs when mapped to the resource data.
In the following label definition example, the label is defined as a cstring string
followed by an integer containing the bit count of the particular label:

type 'strb' {

cstring;

endOfString:

integer = endOfString;

};

Here is an example of this label:

resource 'strb' (8) {

"Hello"

The label cs tr ing is "He 11 o", followed by an integer containing the value 48.
The value is calculated as follows, based on the definition of cstring (string with an
added null byte) and the bit value of 8 provided for resource 'strb':

(1 en (" He 11 o ") [5] + nu 11 byte [1]) * 8 [bits per byte] = 4 8

E-32 Appendix E Resource Compiler and Decompiler

Built-in In some cases, it is desirable to access the actual resource data that a label points to.
functions that Several built-in functions allow access to that data:
access resource
data $$BitField (label, startingPosition, numberQfBits)

Return value of the bitstring of length numberQfBits (maximum 32) found at
startingPosition bits from label.

$$Byte (label)
Return the byte found at label.

$$Word (label)
Return the word found at label.

$$Long (label)
Return the long word found at label.

For example, you could redefine the resource type ' STR ' without using a
pstring string. Here is the definition of 'STR ' from types. r:

type 'STR '

pstring;

Here is a redefinition of ' STR ' using labels:

type 'STR '

len: byte = (stop - len) I 8 - 1;

string[$$Byte(len)];

stop:

} ;

Labels E-33

Declaring labels Labels declared within arrays can have many values. Each element in the array
within arrays corresponds to a value for each label defined within the array. Array subscripts provide

access to the individual values of these labels. Subscript values range from 1 to n, where
n is the number of elements in the array. Labels within arrays that are nested in other
arrays require multidimensional subscripts. Each level of nesting adds another subscript.
The rightmost subscript varies most quickly. Here is a label definition example:

type 'test'

foo:

} ;

integer = $$Count0f (arrayl);

array arrayl {

} ;

integer = $$Count0f (array2);

array array2 {

integer;

} ;

Here is an example of 'test ' in use:

resource 'test' (12 8) {

} ;

{1,2,3},

{ 4 / 5}

In the example just given, the label f oo would take on these values:

foo [1, 1] 32 $$Word (foo [1, 1]) 1

foo [1, 2 J 48 $$Word (foo [1, 2 J) 2

foo[l,3] 64 $$Word (foo [1, 3]) 3

foo [2 / 1 J 96 $$Word(foo[2,l]) 4

foo [2 / 2 J 112 $$Word(foo[2,2]) 5

A new built-in function may be helpful in using labels within arrays:

$ $Arrayindex (array-name)

This function returns the current array index of the array array-name. An error occurs if
this function is used anywhere outside the scope of the array array-name.

E-34 Appendix E Resource Compiler and Decompiler

Label limitations The derez decompiler is basically a one-pass decompiler. In order for derez to
decompile a given type, no expression within that type can contain more than one
undefined label. Any label that occurs lexically after the expression is undefined. The
use of a label within an expression defines the label.

The decompiler can keep track of one unknown value at a time, pending definition of
the value. This example demonstrates an expression with more than one undefined label:

type 'test'

/* In the expression below, start is defined, next is

undefined. */

start: integer = next - start;

/* In the expression below, next is defined because it

was used in a previous expression, but final is

undefined. */

middle: integer = final - next;

next: integer;

final: /* final is now defined */

} ;

In the example, if the expression defining middle (middle: integer =

final - next;) had not been encountered while the value for next remained
unresolved, then the decompiler could have correctly processed the other statements.
Alternatively, if start had been defined in terms of middle (start: integer

middle - start;), then the entire expression could have been correctly processed.
The re z compiler can compile types that have expressions containing more than

one undefined label, but derez is not able to decompile those resources and simply
generates data resource statements.

+Note Thelabelspecifiedin $$BitField(label), $$Byte(label),
$$Word (label), or $$Long (label) must occur lexically before the expression;
otherwise, an error is generated. +

Labels E-35

Two examples The first example shows the modified · ppa t · declaration using the new re z labels.

+ Note Boldface text in the examples indicates the differences between the prior and
current versions of the type definition of ' ppa t ' , that is, where using labels has
changed the definitions. •

Without using labels, the whole end section of the resource (everything after the
PixelData label) would have to be combined into a single hex string. Using labels,
you can express the complete 'ppat' definition in rez language.

type 'ppat' {

PixMa.p:

/* PixPat record */

integer oldPattern, /* pattern type

newPattern,

ditherPattern;

unsigned longint

unsigned longint

PixMa.p I 8;

PixelData I 8;

fill long;

fill word;

fill long;

hex string [8];

fill long;

unsigned bitstring[l]

unsigned bitstring[2]

/* old-style pattern

/* PixMap record

1;

O;

/*

/*

/*

/*

/*

*/

*/

/*

/*

/*

*/

offset to pixmap */

offset to data */

expanded pixel image */

pattern valid flag */

expanded pattern */

base address */

new PixMap flag */

must be 0 */

/* offset to next row unsigned bitstring[13]; */

rect; /* bitmap bounds */

/* PixMap vers number integer; */

integer unpacked; /* packing format */

unsigned long int; I* size of pixel data *I

unsigned hex longint;

unsigned hex longint;

/* h. resolution (ppi) (fixed)

/* v. resolution (ppi) (fixed)

*/

*/

E-36 Appendix E Resource Compiler and Decompiler

integerchunky, chunkyPlanar, planar; !* pixel storage format */

integer; /* # bits in pixel */

integer; /* # components in pixel */

integer; /* # bits per field */

unsigned longint; /* offset to next plane */

unsigned longint ColorTable I 8; /* offset to color table */

fill long; /* reserved */

PixelData:

hex string [(ColorTable - PixelData} I 8];

ColorTable:

};

unsigned hex longint; /* ctSeed */

integer; /* transindex *I

integer= $$Countof(ColorSpec} - l;/* ctSize *I

wide

};

array ColorSpec

integer; /* value *I

unsigned integer; I* RGB: red */

unsigned integer; I* green */

unsigned integer; /* blue *I

Here is another example of a new resource definition. In this example, the
$ $Bit Fie 1 d () function is used to access information stored in the resource in order
to calculate the size of the various data areas added at the end of the resource. Without
labels, all of the data would have to be combined into one hex string. As in the
preceding example, boldface text indicates changes for the current (label) version.

type 'cicn' {

/* IconPMap (pixMap) record */

fill long;

unsigned bitstring[l]

unsigned bitstring[2]

1;

O;

pMapRowBytes: unsigned bitstring[13];

/* base address

/* new pixMap flag

/* must be 0

/* offset to next row

*/

*/

*!

*!

(continued~

Labels E-37

Bounds:rect;

integer;

integer unpacked;

unsigned longint;

unsigned hex longint;

unsigned hex longint;

integer chunky, chunkyPlanar, planar;

integer;

integer;

integer;

unsigned longint;

unsigned longint;

fill long;

/* IconMask (bitMap) record */

fill long;

ma.skRowBytes: integer;

rect;

/* IconBMap (bitMap) record */

fill long;

iconBMapRowBytes: integer;

rect;

E-38

fill long;

/* Mask data */

hex string [$$Word(maskRowBytes) *

($$BitField(Bounds, 32, 16)

- $$BitField(Bounds, 0, 16

/* BitMap data */

hex string [$$Word(iconBMapRowBytes) *

($$BitField(Bounds, 32, 16)

- $$BitField(Bounds, 0, 16)

Appendix E Resource Compiler and Decompiler

/* bitmap bounds */

/* PixMap vers number */

/* Packing format */

/* size of pixel data */

/* h. resolution (ppi) (fixed)* I

/* v. resolution (ppi) (fixed)*/

/* pixel storage format */

/* # bits in pixel */

/* # components in pixel */

/* # bits per field */

/* offset to next plane */

/* offset to color table */

/* reserved */

/* base address */

/* rrow bytes */

/* bitmap bounds */

/* base address */

/* Row bytes */

!* Bitmap bounds */

/* Handle placeholder */

/*bottom*/

/*top*/)];

/*bottom*/

/*top*/)];

/* Color Table */

unsigned hex longint; /* ctSeed */

integer; I* trans Index *I

integer = $$Countof(ColorSpec) 1; /* ctSize */

wide array ColorSpec

integer; /* value */

unsigned integer; /* RGB: red */

unsigned integer; /* green */

unsigned integer; /* blue* I

} ;

/* PixelMap data */

hex string [$$BitField(pMapRowBytes, 0, 13) *

($$BitField(Bounds, 32, 16) /* bottom */

- $$BitField(Bounds, 0, 16) /*top*/)];

} ;

Preprocessor directives

Preprocessor directives substitute macro definitions and include files and provide if-then­
else processing before other rez processing takes place.

The syntax of the re z preprocessor is similar to that of the C-language
preprocessor. Preprocessor directives must observe these rules and restrictions:

• Each preprocessor statement must be expressed on a single line and placed at the
beginning of the line.

• The number sign (#) must be the first character on the line of the preprocessor
statement (except for spaces and tabs).

• The placeholder identffier (used in macro names) can consist of letters (A-z, a - z),

digits (0-9), or the underscore character (_). Identifiers cannot start with a digit, are
not case sensitive, and can be of any length.

Preprocessor directives E-39

Variable definitions

The #define and #unde f directives let you assign values to identifiers:

#define macro data
#undef macro

The #define directive causes any occurrence of the identifier macro to be
replaced with the text data. You can extend a macro over several lines by ending the
line with the backslash character(\), which functions as the rez escape character.
Quotation marks within strings must also be escaped, as shown here:

#define poem "I wander \

thru\' each\

charter\'d street"

#undef removes the previously defined identifier macro. Macro definitions can
also be removed with the -undef option on the rez command line.

The following macros are predefined:

Variable

TRUE

FALSE

rez

derez

Value

1

0

1 if rez is running; 0 if derez is running

1 if derez is running; 0 if rez is running

inc 1 ude directives

The #include directive reads a text file by using this syntax:

#inc 1 ude jllename

This directive includes the text file filename. The maximum directory nesting is to 10 levels.
Here is an example of an inc 1 ude directive:

#include /rnac/lib/rincludes/rnytypes.r

Note that the #inc 1 ude preprocessor directive, which includes a file, is different from
the inc 1 ude statement, described earlier in this appendix, which copies resources
from another file.

E-40 Appendix E Resource Compiler and Decompiler

If-then-else processing

The following directives provide conditional processing:

i f expression
e 1 if expression J

[#else

#endif

+ Note The placeholder expression is defined in the section "Expressions,'' later in this
appendix. With the #if and # e 1 if directives, expression can also include the
following expression:

defined identijzer or defined · (' ident~fzer ·) · +

The following directives can be used in place of #if:

#ifdef macro
#ifndef macro

Here is an example of if-then-else processing:

#define Thai

Resource 'STR ' (199) {

#ifdef English

"Hello"

#elif defined (French)

"Bonjour"

#elif defined (Thai)

"Sawati"

#el if defined (Japanese)

"Konnichiwa"

#endif

} ;

Preprocessor directives E-41

Print directive

The #printf directive is provided to aid in debugging resource description files:

#printf (format-string, arguments ...)

The format of the #print f statement is exactly the same as that of the print f

statement in the C language, with one exception: There can be no more than 20
arguments. (The same restriction applies to the $ $Forrna t function.) The #printf

directive writes its output to standard error. Note that the #printf directive does not
end with a semicolon.

Here is an example of the use of the print directive:

#define Tuesday 3

#ifdef Monday

#printf("The day is Monday, day #%d\n", Monday)

#elif defined(Tuesday)

#printf("The day is Tuesday, day #%d\n", Tuesday)

#elif defined(Wednesday)

#printf ("The day is Wednesday, day #%d\n", Wednesday)

#elif defined(Thursday)

#printf("The day is Thursday, day #%d\n", Thursday)

#else

#printf ("DON'T KNOW WHAT DAY IT IS!\n")

#endif

The file just listed generates the following text:

The day is Tuesday, day #3

E-42 Appendix E Resource Compiler and Decompiler

Resource description syntax
This section describes the details of the resource description syntax. It includes numbers,
literals, expressions, variables, functions, and strings.

Numbers and literals

All arithmetic is performed as 32-bit signed arithmetic. The syntax uses the basic
constants described in Table E-1.

Table E-1 Numeric constants

Numeric type Form

decimal mm ...

hex OXhhh

$/zhh

octal Ooou ..

binary OBhhh ..

literal 'aaaa'

Meaning

Signed decimal constant between 4294967295 and
-2147483648.

Signed hexadecimal constant between OX7FFFFFFF and
OX80000000.

Alttrnate form for hexadecimal constants.

Signed octal constant httwten 017777777777 and
020000000000.

Signed binary constant between
OBlllllllllllllllllllllllllllllll and
OB 1000000000000000000000000000000.

A literal with one to four characters. Characters are printable
ASCII characters or escape characters (defined later in this
section). If there are fewer than four characters in the literal,
then the characters to the left (high bits) arc assumed to be
$00. Characters that are not in the printable character set and
are not the characters \ ' or \ \ (which have special
meanings) can be escaped according to the character escape
rules. (See "Strings,'' later in this appendix.)

Resource description syntax E-43

Literals and numbers are treated in the same way by the resource compiler. A literal
is a value within single quotation marks; for instance, 'A' is a number with the value
65, whereas 11 A 11 is the character A expressed as a string. Both are represented in
memory by the bitstring 01000001. (Note, however, that 11 A 11 is not a valid number and
'A· is not a valid string.) The following numeric expressions are equivalent:

'B'

66

I A' +1

Literals are padded with nulls on the left side so that the literal ' ABC ' is stored as
shown in Figure E-3.

'ABC' =I $00 I A B

Figure E-3 Padding of literals

Expressions

An expression can consist of simply a number or a literal. Expressions can also include
numeric variables and the system functions.

Table E-2 lists the operators in order of precedence, with highest precedence first.
Groupings indicate equal precedence. Evaluation is always from left to right when the
priority is the same. Variables are defined after the table.

E-44 Appendix E Resource Compiler and Decompiler

Table E-2 Resource-description expression operators

Operator Meaning

1. (expr) Parentheses can be used in the normal manner to force
precedence in expression calculation.

2. -expr Arithmetic (two's complement) negation of expr.
~expr Bitwise (one's complement) negation of expr.
! expr Logical negation of expr.

3. exprl * expr2 Multiplication.
exprl I expr2 Division.
exprl % expr2 Remainder from dividing exprl by expr2.

4. exprl + expr2 Addition.
exprl - expr2 Subtraction.

5. exprl << expr2 Shift left-shift exprl left by expr2 bits.
exprl >> expr2 Shift right-shift exprl right by expr2bits.

6. exprl > expr2 Greater than.
exprl >= expr2 Greater than or equal to.
exprl < expr2 Less than.
exprl <= expr2 Less than or equal to.

7. exprl -- expr2 Equal to.
exprl != expr2 Not equal to.

8. exprl & expr2 Bitwise AND.

9. exprl A expr2 Bitwise XOR.

10. exprl expr2 Bitwise OR.

11. exprl && expr2 Logical AND.

12. exprl I I expr2 Logical OR.

Note: The logical operators ! , >, >=, <, <=, ==, ! =, &&, and I I evaluate to 1
(TRUE) or 0 (FALSE).

Resource description syntax E-45

Variables and functions

Some resource compiler variables contain commonly used values. All resource compiler
variables start with $ $ followed by an alphanumeric identifier.

String values

The following variables and functions have string values. (Typical values are given in
parentheses.)

$$Date
Current date function, which is useful for putting time-stamps into the resource file. The
format is generated through the ROM call IUDateString. (An example of this format
is "Thursday, June 21, 1990".)

$$Format ("format-string", arguments)
Format function, which works just like the #print f directive except that
$$Format returns a string rather than printing to standard output. (For a description of
print directives, see "Print Directive," earlier in this appendix.)

$$Name
Name of the current resource. The current resource is the resource being generated by a
resource statement, being included with an inc 1 ude statement, being deleted by
a delete statement, or being changed by a change statement. In addition to the
$$Name string variable, three numeric variables($ $Type, $$ID, and
$$Attributes) refer to the current resource. They are described in the next section,
"Numeric Values."

Here is example showing the use of three of these four variables in an include
statement that includes all ' DRVR ' resources from one file and keeps the same
information, while also setting the SYSHEAP attribute:

include "file" 'DRVR' (0: 40) as 'DRVR' ($$ID,

$$Name, $$Attributes I 64) ;

The $$Type, $$ID, $$Name, and $$Attributes variables are undefined
outside a resource, include, delete, or change statement.

E-46 Appendix E Resource Compiler and Decompiler

$$Resource ("filename", '~ype·, ID I "resource-name")
Resource read function, which reads the resource type with the ID ID or the name
resource-name from the resource file filename and returns a string.

$$Time

Current time function, which is useful for time-stamping the resource file. The format is
generated through the ROM call IUTimeString. (An example of this format is
"7:50:54 AM".)

$$Version

Version number of the resource compiler. (An example of this format is "V3.0".)

Numeric values

The following variables and functions have numeric values.

$$Attributes

Attributes of the current resource. See the description of the $$Name string variable in
the preceding section.

$$Bi tField (label, startingPosition, numherO.fBits)
Return value of the bitstring of length numberO.fBits (maximum 32) found at
startingPosition bits from label.

$$Byte (label)
Return value of the byte found at label.

$$Day

Current day, range 1-31.

$$Hour

Current hour, range 0-23.

Resource description syntax E-47

$$ID

ID of resource from the current resource. See the description of the $$Name string
variable in the preceding section.

$$Long (label)
Return value of the long word found at label.

$$Minute

Current minute, range 0-59.

$$Month

Current month, range 1-12.

$$PackedSize (Sta11, RowBytes, RowCount)
Reference to the current resource. (See the description of the $$Name string variable
in the preceding section.) Provided with an offset, Start, into the current resource and
two integers, RowBytes and RowCount, this function calls the A/UX Toolbox utility
routine Unpac kB its, the number of times specified by RowCount, and returns the
unpacked size of the data found at start. Use $$PackedSize () only for
decompiling resource files. For an example that uses this function, see
/mac/lib/rincludes/pict.r.

$$ResourceSize

Current size of resource in bytes. When you are decompiling, $$ResourceSize is
the actual size of the resource being decompiled. When you are compiling,
$$Resources i ze returns the number of bytes that have been compiled so far for the
current resource. For an example that uses this function, see the 'KCHR' resource in
/mac/lib/rincludes/systypes.r.

$$Second

Current second, range 0-59.

$$Type

Type of resource from the current resource. See the description of the $$Name

string variable in the preceding section.

E-48 Appendix E Resource Compiler and Decompiler

$$Weekday

Current day of the week, range 1-7 (that is, Sunday-Saturday).

$$Word (label)
The word found at label.

$$Year

Current year.

Strings

There are two basic types of strings:

• Text string "a ... "

A text string can contain any printable character except the double quotation mark
(") and the backslash (\). These and other characters can be created through escape
sequences. (See Table E-3.) The string " " is a valid string of length 0.

• Hex string $ "hh ... "

Spaces and tabs inside a hexadecimal string are ignored. There must be an even
number of hexadecimal digits. The string $ " " is a valid hexadecimal string of
length 0.

Any two strings (hexadecimal or text) are concatenated if they are placed next to
each other with only white space between them. (In this case, newlines and comments
are considered white space.)

Figure E-4 shows a Pascal string declared as

pstring [10];

whose data definition is

"Hello"

$05 H o 1 $00 $00 $00 $00 $00 1
Figure E-4 Internal representation of a Pascal string

Resource description syntax E-49

In the input file, string data is surrounded by quotation marks (").You can continue
a string on the next line. A separating token (for example, a comma) or brace signifies
the end of the string data. A side effect of string continuation is that a sequence of two
quotation marks (" ") is simply ignored. For example,

"Hello ""out "

"there."

is the same string as

"Hello out there."

To place a quotation mark in a string, precede the quotation mark with a backslash (\ ").

Escape characters

The backslash character(\) is provided as an escape character to allow you to insert
nonprintable characters in a string. For example, to include a return character in a string,
you use the escape sequence \ r. Table E-3 lists the valid escape sequences.

Table E-3 Resource compiler escape sequences

Escape Hex Printable
sequence Name value equivalent

\t Tab $09 None

\b Backspace $08 None

\r Return $OD None

\n Newline $0A None

\f Form feed $0C None

\v Vertical tab $OB None

\? Rubout $7F None

\\ Backslash $SC

\' Single quotation mark $3A

\II Double quotation mark $22

Note: Under the Macintosh OS, \n is treated as a return character ($0D). Under the A/UX

operating system, \n is treated as a line feed ($0AJ. rez always follows the Macintosh

convention.

E-50 Appendix E Resource Compiler and Decompiler

You can also use octal, hexadecimal, decimal, and binary escape sequences to
specify characters that do not have predefined escape equivalents. The forms are shown
in Table E-4.

Table E-4 Numeric escape sequences

Number
Base Form of digits Example

2 \ 0 B hhhhhhhh 8 \0B01000001

8 \ooo 3 \101

10 \ ODddd 3 \0D065

16 \OXhh 2 \OX41

16 \ $/zh 2 \$41

Here are some examples of numeric escape sequences:

\077

\OxFF

\$Fl\$F2\$F3

\Od099

/* 3 octal digits */

/* 'Ox' plus 2 hex digits */

/* '$' plus 2 hex digits */

/* 'Od' plus 3 decimal digits */

+ Note An octal escape code consists of exactly three digits. For instance, to place an
octal escape code with a value of 7 in the middle of an alphabetic string, write
AB\ 007CD, not AB\ 7CD .•

You can use the derez command-line option -e to print characters that would
othe1wise be escaped (characters preceded by a backslash, for example). Normally,
characters with values between $20 and $D8 are printed as Macintosh characters. With
this option, however, all characters (except null, newline, tab, backspace, form feed,
vertical tab, and rubout) are printed as characters, not as escape sequences.

Resource description syntax E-51

Appendix F: C Interface Library

Interface library files I F-2

Structures and calls by library I F-5

Calls in alphabetical order I F-63

The Macintosh C interface library, documented in this appendix, contains the C definitions

of the constants, types, and functions defined in Inside Macintosh and used in the A/UX

Toolbox. The information given here is the C equivalent of the Pascal definitions in the

summary section at the end of each chapter of Inside Macintosh. For complete

documentation of each of the constants, types, and functions defined here, see the

corresponding section of Inside Macintosh. For a description of the functional differences

between the standard Macintosh libraries as described in Inside Macintosh and the A/UX C

versions, see Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences."

Libraries in this section appear in alphabetical order by library name, not in Inside

Macintosh order.

Interface library files
The A/UX C definitions of the Macintosh libraries are provided in the header files in the
directoty /usr I inc 1 ude /mac. Include the header file for each software libraty
(typically called a manager in the Macintosh environment) that you use in your program.

The material in this appendix is accurate as this manual goes to press, but the header
files provided with your system may contain different information that reflects the most
recent changes.

Many of the routines in the A/UX Toolbox call code that is in the Macintosh ROM.
Most of these ROM routines use Pascal calling conventions, which differ from the C
conventions used by A/UX. Ordinarily, the A/UX Toolbox handles the interface between
the two. If you are writing your own definition functions or filter functions, or if you are
making direct use of data in structures, you must take the differences into account. For
more information, see "Converting Between C and Pascal Conventions'' in Appendix C.
(For a description of definition functions and filter functions, see Inside Macintosh,
Volume I.)

The routine and parameter descriptions in the C interface libraries follow these
conventions:

• A pointer to type char (printed char *)represents a pointer to a C-format string.

• A parameter of type str2 5 5 represents a Pascal-format string.

Table F-1 lists the libraries described in this section and the name of the header file
for each libraty. Libraries appear in alphabetical order by libraty name. For a list of all
libraries described in Inside Macintosh and their status in the A/UX Toolbox, see Chapter
5, ''A/UX and Macintosh User Interface Toolbox Differences."

The sections "Structures and Calls by Libraty" and "Calls in Alphabetical Order," later
in this appendix, provide information selected from the header files listed in Table F-1.

F-2 Appendix F C Interface Library

Table F-1 Interface library files

Library

32-Bit QuickDraw with Color QuickDraw

Color Picker

Common type definitions

Control Manager

Deferred Task Manager

Definitions for AUXDispatch

Definitions for ROM

Desk Manager

Device Manager

Dialog Manager

Disk Driver

Disk Initialization Package

Event Manager, Operating System

Event Manager, Toolbox

File Manager

Font Manager

Gestalt Manager

List Manager Package

List of Macintosh traps

Low-memo1y equates

Memory Manager

Menu Manager

Notification Manager

Package Manager
Bina1y-Decimal Conversion Package
Floating-Point Arithmetic and
Transcendental Functions Packages
International Utilities Package
Standard File Package

Palette Manager

Printing Manager

Header file

quickdraw.h

picker.h

types.h

controls.h

dtask.h

aux.h

romdefs.h

desk.h

devices.h

dialogs.h

disks.h

diskinit.h

osevents.h

events.h

files.h

fonts.h

gestalt.h

lists.h

traps.h

sysequ.h

memory.h

menus.h

notify.h

packages.h

palettes.h

printing.h

(continued,.

Interface lihra1y files F-3

Table F-1 Interface library files (continued)

Library

Print traps

Process Manager

Resource Manager

Scrap Manager

Script Manager

Segment Loader

Serial Driver

Shutdown Manager

Slot Manager

Sound Manager

String conversion between Pascal and C

System Error Handler

TextEdit

Time Manager

Utilities. Operating System

Utilities. Toolbox

Vertical Retrace Manager

Video Driver

Window Manager

Header file

printtraps.h

processes.h

resources.h
asd.h
aux_rsrc.h

scrap.h

script.h

segload.h

serial.h

shutdown.h

slots.h

sm.h
soundinput.h
soundinputpriv.h

strings.h

errors.h

textedit.h

timer.h

osutils.h

toolutils.h

retrace.h

video.h

windows.h

Most of these files contain data structures and calls; some contain only definitions or
equates. These header files can be displayed, searched, and printed.

The next section, "Structures and Calls by Library," lists the structures and calls in the
header files listed in Table F-1. The subsequent section, "Calls in Alphabetical Order,"
lists all calls in alphabetical order by name.

F-4 Appendix F C Interface Library

Structures and calls by library
This section lists the names of the structures and calls that are available in the header
files in Table F-1. The structures and calls are arranged under the library name given in
the table. For instance, the structures and calls available in picker.hare under ''Color
Picker." See the header file itself for additional information.

Structure names are in alphabetical order. Calls are in alphabetical order by name,
followed by the name of the return type for the call.

Chapter 5 contains additional information about those libraries that support
Macintosh managers and provide other Macintosh support services. Where available,
information will be found under the same library name in that chapter; for instance,
information on the serial driver is under "Serial Driver." Where information is available
elsewhere, as with "Low-Memory Equates," this appendix gives that reference.

32-Bit QuickDraw with Color QuickDraw

The following structures and calls are available in quickdraw. h:

Structure name

BitMap Font Info PixMap

CCrsr GamrnaTbl PixPat

CGraf Port GDevice Polygon

CI con Graf Port QDProcs

Color Spec GrafVars qdvar

ColorTable I Tab Region

CProcRec MatchRec ReqListRec

CQDProcs PenState RGBColor

Cursor Picture SProcRec

Structures and calls by library F-5

Call Return type

AddComp (); void

addpt(); void

AddPt(); void

AddSearch(); void

AllocCursor(); void

BackColor(); void

BackPat(); void

BackPixPat(); void

CalcCMask(); void

CalcMask(); void

CharExtra(); void

CharWidth(); short

ClipRect(); void

CloseCPort(); void

ClosePicture(); void

ClosePoly(); void

ClosePort(); void

CloseRgn(); void

Color2Index(); long

ColorBit(); void

CopyBits(); void

CopyMask(); void

CopyPixMap(); void

CopyPixPat(); void

CopyRgn(); void

DelComp(); void

DelSearch(); void

DiffRgn(); void

F-6 Appendix F C Interface Library

Call Return (vpe

DisposCCursor(); void

DisposCicon(); void

DisposCTable(); void

DisposeRgn(); void

DisposGDevice(); void

DisposPixMap(); void

DisposPixPat(); void

DrawChar(); void

DrawPicture(); void

drawstring(); void

Drawstring(); void

DrawText(); void

EmptyRect(); Boolean

EmptyRgn(); Boolean

equalpt(); Boolean

EqualPt(); Boolean

EqualRect(); Boolean

EqualRgn(); Boolean

EraseArc(); void

EraseOval(); void

ErasePoly(); void

EraseRect(); void

EraseRgn(); void

EraseRoundRect(); void

FillArc(); void

FillCArc () ; void

FillCOval(); void

FillCPoly () ; void

Structures and calls by library F-7

Call Return type

FillCRect () ; void

FillCRgn () ; void

FillCRoundRect(); void

FillOval (); void

FillPoly () ; void

FillRect (); void

FillRgn (); void

FillRoundRect(); void

ForeColor(); void

FrameArc(); void

FrameOval(); void

FramePoly(); void

FrameRect(); void

FrameRgn(); void

FrameRoundRect(); void

GetBackColor(); void

GetCCursor(); CCrsrHandle

GetCicon(); CiconHandle

GetClip(); void

GetCPixel(); void

GetCTable(); CTabHandle

GetCTSeed(); long

GetDeviceList(); GDHandle

GetFontinfo(); void

GetForeColor(); void

GetGDevice(); GDHandle

GetMainDevice(); GDHandle

GetMaskTable(); Ptr

F-8 Appendix F C Interface Library

Call

GetMaxDevice();

GetNextDevice();

Get Pen ();

GetPenState();

GetPixel();

GetPixPat();

GetPort();

GetSubTable();

GlobalToLocal();

GrafDevice();

HideCursor();

HidePen();

HiliteColor();

Index2Color();

InitCPort();

InitCursor();

InitGDevice();

InitGraf ();

InitPort();

InsetRect();

InsetRgn();

InvertArc();

InvertColor();

InvertOval();

InvertPoly();

InvertRect();

InvertRgn();

InvertRoundRect();

Return type

GDHandle

GDHandle

void

void

Boolean

PixPatHandle

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

Structures and calls by library F-9

Call Return type

KillPicture(); void

Kill Poly () ; void

Line(); void

LineTo(); void

LocalToGlobal(); void

MakeITable(); void

MakeRGBPat() i void

MapPoly (); void

MapPt (); void

MapRect(); void

MapRgn (); void

MeasureText(); void

Move(); void

MovePortTo(); void

MoveTo(); void

NewGDevice(); GDHandle

NewPixMap(); PixMapHandle

NewPixPat(); PixPatHandle

NewRgn (); RgnHandle

ObscureCursor(); void

Off set Poly () ; void

OffsetRect(); void

OffsetRgn(); void

OpColor(); void

OpenCPort(); void

OpenPicture(); PicHandle

OpenPoly(); PolyHandle

OpenPort(); void

F-10 Appendix F C Interface Library

Call Return ~ype

OpenRgn(); void

PaintArc(); void

PaintOval(); void

PaintPoly(); void

PaintRect(); void

PaintRgn(); void

PaintRoundRect(); void

PenMode(); void

PenNorrnal(); void

PenPat(); void

PenPixPat(); void

PenSize(); void

PicCornrnent(); void

PlotCicon(); void

PortSize(); void

ProtectEntry(); void

pt2rect(); void

Pt2Rect(); void

ptinrect(); Boolean

PtinRect(); Boolean

ptinrgn(); Boolean

PtinRgn(); Boolean

pttoangle(); void

PtToAngle(); void

QDError(); short

Random () ; short

RealColor(); Boolean

RectinRgn(); Boolean

Structures and calls by library F-11

Call

RectRgn();

ReserveEntry();

RestoreEntries();

RGBBackColor();

RGBForeColor();

SaveEntries();

ScalePt();

ScrollRect();

SectRect();

SectRgn();

SeedCFill () ;

SeedFill () ;

SetCCursor();

SetClientID();

SetClip();

SetCPixel();

SetCursor();

SetDeviceAttribute();

SetEmptyRgn();

SetEntries();

SetGDevice();

SetOrigin();

SetPenState();

SetPort();

SetPortBits();

SetPortPix();

SetPt();

SetRect();

F-12 Appendix F C Interface Library

Return ~ype

void

void

void

void

void

void

void

void

Boolean

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

Call

SetRectRgn();

SetStdCProcs();

SetStdProcs();

ShowCursor();

ShowPen();

SpaceExtra();

StdArc();

StdBits();

StdComment();

StdGetPic();

stdline();

StdLine();

StdOval();

StdPoly ();

StdPutPic();

StdRect();

StdRgn ();

StdRRect();

stdtext();

StdText();

StdTxMeas();

stringwidth();

StringWidth();

stuf fhex () ;

Stuf fHex () ;

subpt();

SubPt();

TestDeviceAttribute();

Return ~ype

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

short

short

short

void

void

void

void

Boolean

Structures and calls by libra1y F-13

Call Return type

TextFace(); void

TextFont(); void

TextMode(); void

TextSize(); void

TextWidth(); short

UnionRect(); void

UnionRgn(); void

XorRgn (); void

Color Picker

The following structures and calls are available in picker. h:

Structure name

CMYColor

HSLColor

HSVColor

Call

CMY2RGB();

Fix2Smal1Fract();

GetColor();

HSL2RGB();

HSV2RGB();

RGB2CMY();

RGB2HSL();

RGB2HSV();

Smal1Fract2Fix();

F-14 Appendix F C Interface Library

Return type

void

SmallFract

Boolean

void

void

void

void

void

Fixed

Common type definitions

The following structures and calls are available in types. h:

Structure name

comp

Re ct

Point

Call

Debugger();

debugstr();

DebugStr();

Control Manager

Return type

void

void

void

The following structures and calls are available in controls. h:

Structure name

AuxCtlRec

ControlRecord

CtlCTab

Call

DisposeControl();

dragcontrol();

DragControl();

DrawlControl();

DrawControls();

findcontrol();

FindControl();

GetAuxCtl();

GetCRefCon();

Return type

void

void

void

void

void

short

short

Boolean

long

Structures and calls by library F-15

Call Return type

getctitle(); void

GetCTi tle () ; void

GetCtlAction(); ProcPtr

GetCtlMax(); short

GetCtlMin(); short

GetCtlValue(); short

GetCVariant(); short

GetNewControl(); ControlHandle

HideControl(); void

HiliteControl(); void

KillControls(); void

MoveControl(); void

newcontrol(); ControlHandle

NewControl(); ControlHandle

SetCRefCon(); void

setctitle(); void

SetCTitle(); void

SetCtlAction(); void

SetCtlColor(); void

SetCtlMax(); void

SetCtlMin(); void

SetCtlValue(); void

ShowControl(); void

SizeControl(); void

testcontrol(); short

TestControl(); short

trackcontrol(); short

TrackControl(); short

UpdtControl(); void

F-16 Appendix F C Interface Library

Deferred Task Manager

The following structure and calls are available in dtask. h:

Structure name

Def erredTask New in this release.

Call Return type

DTinstall(); OS Err New in this release.

Definitions for AUXDispatch

The following structures and calls are available in aux. h. The section "AUXDispatch

Trap" in Chapter 3 contains additional information, including the selector codes used
with this trap.

Structure name

AuxSigio

ForkExecRec

GetAnyEventRec

IDToPathRec

TBLaunchRec

Call

AUXCOFFLaunch();

AUXDispatch();

Definitions for ROM

Return type

pascal short New in this release.

pascal long

No structures or calls are available in romde f s . h, which provides slot declaration
values for ROMs.

Structures and calls by library F-17

Desk Manager

The following calls are available in desk. h, which has no structures:

Call Return type

CloseDeskAcc(); void

opendeskacc(); short

OpenDeskAcc(); short

SystemClick(); void

SystemEdit(); Boolean

SystemEvent(); Boolean

SystemMenu(); void

SystemTask () ; void

Device Manager

The following structures and calls are available in devices. h:

Structure name

AuxDCE

DCtlEntry

Call Return type

CloseDriver(); OS Err

Control(); OS Err

GetDCtlEntry(); DCtlHandle

Kill IO (); OSErr

opendriver(); OS Err

OpenDriver(); OS Err

PBControl(); OS Err

PBKillIO (); OS Err

F-18 Appendix F C Interface Library

Call

PBStatus();

SetChooserAlert();

Status();

Dialog Manager

Return type

OS Err

Boolean

OS Err

The following structures and calls are available in dialogs. h:

Structure name

Alert Template

DialogRecord

DialogTemplate

Call Return type

Alert(); short

CautionAlert(); short

CloseDialog(); void

CouldAlert(); void

CouldDialog(); void

DialogSelect(); Boolean

DisposDialog(); void

DlgCopy(); void

DlgCut(); void

DlgDelete(); void

DlgPaste(); void

DrawDialog(); void

ErrorSound(); void

findditem(); short

FindDitem(); short

FreeAlert(); void

Structures and calls by library F-19

Call Return type

FreeDialog(); void

GetAlrtStage(); short

GetDitern () ; void

getitext(); void

GetIText(); void

GetNewDialog(); DialogPtr

HideDitern(); void

InitDialogs(); void

IsDialogEvent(); Boolean

ModalDialog(); void

newcdialog(); DialogPtr

NewCDialog(); DialogPtr

newdialog(); DialogPtr

NewDialog(); DialogPtr

NoteAlert(); short

pararntext(); void

PararnText(); void

ResetAlrtStage(); void

SelI'l'ext () ; void

SetDAFont(); void

SetDitern () ; void

setitext(); void

SetIText(); void

ShowDitern () ; void

StopAlert(); short

UpdtDialog(); void

F-20 Appendix F C Interface Library

Disk Driver

The following structures and calls are available in disks. h:

Structure name

DrvSts

DrvSts2

Call

DiskEject();

SetTagBuffer();

DriveStatus();

Disk Initialization Package

Return ~ype

OS Err

OS Err

OS Err

The following structure and calls are available in di skini t. h:

Structure name

HFSDefaults

Call

DILoad();

DIUnload();

dibadrnount();

DIBadMount();

DIForrnat();

DIVerify();

DIZero();

dizero();

Return type

void

void

OS Err

short

OS Err

OSErr

OS Err

OS Err

Structures and calls by library F-21

Event Manager, Operating System

The following structure and calls are available in osevents. h:

Structure name

EvQEl

Call Return type

FlushEvents(); void

GetEvQHdr(); QHdrPtr

GetOSEvent(); Boolean

OSEventAvail(); Boolean

PostEvent(); OS Err

PPostEvent(); OS Err

SetEventMask(); void

Event Manager, Toolbox

The following structure and calls are available in events . h:

Structure name

EventRecord

Call Return type

Button (); Boolean

EventAvail(); Boolean

GetCaretTime(); unsigned long

GetDblTime(); unsigned long

GetKeys (); void

GetMouse(); void

GetNextEvent(); Boolean

StillDown(); Boolean

F-22 Appendix F C Interface Library

Call

TickCount();

WaitMouseUp();

WaitNextEvent();

File Manager

Return type

unsigned long

Boolean

Boolean

The following structures and calls are available in f i 1 es . h:

Structure name

AFPVolMountBlock

AFPVolMountinfo

CatPositionRec

CinfoPBRec

CMovePBRec

CntrlPararn

CopyPararn

CSPararn

Dinf o

Dirinf o

DrvQEl

DTPBRec

DXInf o

Call

AddDrive();

Allocate();

AllocContig();

CatMove();

CloseWD();

FCBPBRec

FIDPararn

FilePararn

Finf o

ForeignPrivPararn

FSSpec

FXInf o

GetVolParrnsinf oBuf fer

HFileinf o

HFilePararn

HIOPararn

HPararnBlockRec

Return type

void

OS Err

OS Err

OS Err

OS Err

HVolurnePararn

IO Par am

MultiDevPararn

NurnVersion

ObjPararn

PararnBlockRec

SlotDevPararn

VCB

VersRec

VolurnePararn

WDPararn

WDPBRec

Structures and calls by library F-23

Call Return type

create(); OS Err

Create(); OS Err

DirCreate(); OS Err

eject(); OS Err

Eject () ; OS Err

FinitQueue(); void

flushvol(); OSErr

FlushVol(); OS Err

FSClose(); OS Err

fsdelete(); OS Err

FSDelete(); OS Err

fsopen(); OS Err

FSOpen (); OS Err

FSRead(); OS Err

fsrename(); OS Err

FSWrite(); OS Err

GetDrvQHdr(); QHdrPtr

GetEOF(); OS Err

getfinfo(); OS Err

GetFinfo(); OS Err

GetFPos(); OS Err

GetFSQHdr(); QHdrPtr

GetVCBQHdr(); QHdrPtr

getvinfo(); OS Err

GetVInfo(); OS Err

getvol(); OS Err

GetVol(); OS Err

GetVRefNum(); OSErr

F-24 Appendix F C Interface Library

Call Return type

GetWDinfo(); OS Err

HCreate(); OS Err

HDelete(); OS Err

HGetFinfo(); OS Err

HGetVol(); OS Err

HOpen(); OSErr

HOpenRF(); OS Err

HRename(); OS Err

HRstFLock(); OS Err

HSetFinfo(); OS Err

HSetFLock(); OS Err

HSetVol(); OS Err

openrf () ; OS Err

OpenRF(); OS Err

OpenWD(); OS Err

PBAllocate(); OS Err

PBAllocContig(); OS Err

PBCatMove(); OS Err

PBClose(); OS Err

PBCloseWD(); OS Err

PBCreate(); OS Err

PBDelete(); OS Err

PBDirCreate(); OS Err

PBEject(); OS Err

PBFlushFile(); OS Err

PBFlushVol(); OS Err

PBGetCatinfo(); OS Err

PBGetEOF(); OS Err

Structures and calls by library F-25

Call Return type

PBGetFCBinfo(); OS Err

PBGetFinfo(); OS Err

PBGetFPos(); OS Err

PBGetVInfo(); OS Err

PBGetVol(); OS Err

PBGetWDinfo(); OS Err

PBHCopyFile(); OS Err

PBHCreate(); OS Err

PBHDelete(); OS Err

PBHGetDirAccess(); OS Err

PBHGetFinfo(); OS Err

PBHGetLogininfo(); OS Err

PBHGetVInfo(); OS Err

PBHGetVol(); OS Err

PBHGetVolParms(); OS Err

PBHMapID(); OS Err

PBHMapName(); OS Err

PBHMoveRename(); OS Err

PBHOpen(); OS Err

PBHOpenDeny(); OS Err

PBHOpenRF(); OS Err

PBHOpenRFDeny(); OS Err

PBHRename(); OS Err

PBHRstFLock(); OS Err

PBHSetDirAccess(); OSErr

PBHSetFinfo(); OS Err

PBHSetFLock(); OS Err

PBHSetVol(); OS Err

F-26 Appendix F C Interface Library

Call Return type

PBLockRange(); OS Err

PBMountVol(); OS Err

PBOffLine(); OS Err

PBOpen(); OS Err

PBOpenRF(); OS Err

PBOpenWD(); OS Err

PBRead(); OS Err

PBRename(); OS Err

PBRstFLock(); OS Err

PBSetCatinfo(); OS Err

PBSetEOF(); OS Err

PBSetFinfo(); OS Err

PBSetFLock(); OS Err

PBSetFPos(); OS Err

PBSetFVers(); OS Err

PBSetVInfo(); OS Err

PBSetVol(); OS Err

PBUnlockRange(); OS Err

PBUnmountVol(); OS Err

PBWrite(); OS Err

Rename(); OS Err

rstfLock(); OS Err

RstFLock(); OS Err

SetEOF(); OS Err

setfinfo(); OS Err

SetFinfo(); OS Err

setflock(); OS Err

SetFLock(); OS Err

Structures and calls by library F-27

Call Return type

SetFPos(); OS Err

setvol(); OS Err

SetVol(); OSErr

unmountvol(); OS Err

UnmountVol(); OS Err

Font Manager

The following structures and calls are available in fonts . h:

Structure name

AsscEntry

FamRec

FMetricRec

FMinput

FMOutput

FontAssoc

Font Rec

KernEntry

KernPair

KernTable

Call

FMSwapFont();

FontMetrics();

getfnum ();

GetFNum ();

getfontname();

GetFontName();

InitFonts();

RealFont();

SetFontLock();

SetFractEnable();

SetFScaleDisable();

F-28 Appendix F C Interface Library

NameTable

StyleTable

WidEntry

WidTable

WidthTable

Return type

FMOutPtr

void

void

void

void

void

void

Boolean

void

void

void

Gestalt Manager

No structures or calls are available in gestalt. h:

List Manager Package

The following structure and calls are available in 1 is ts . h:

Structure name

ListRec

Call

LActivate();

LAddColurnn();

LAddRow();

LAddToCell () ;

LAutoScroll();

lcellsize();

LCellSize();

lclick () ;

LClick();

LClrCell () ;

LDelColurnn();

LDelRow ();

LDispose();

LDoDraw();

ldraw();

LDraw();

LFind () ;

LGetCell();

LGetSelect();

Return type

void

short

short

void

void

void

void

Boolean

Boolean

void

void

void

void

void

void

void

void

void

Boolean

Structures and calls by library F-29

Call Return type

LLastClick(); Cell

lnew(); ListHandle

LNew(); ListHandle

LNextCell(); Boolean

LRect(); void

LScroll(); void

LSearch(); Boolean

LSetCell () ; void

LSetSelect(); void

LSize(); void

LUpdate(); void

List of Macintosh traps

No structures or calls are available in traps. h, which provides a list of definitions for
A-line traps accessible through C code.

Low-memory equates

No structures or calls are available in sysequ. h, which provides definitions for low­
memory global variables. See Appendix D for further information.

F-30 Appendix F C Interface Library

Memory Manager

The Memory Manager uses definitions provided in the files memory. h and
vmc a 11 s . h. The following structure and calls are available in the file memory . h:

Structure name

Zone

Call Return type

ApplicZone(); THz

BlockMove(); void

CompactMem(); Size

DisposHandle(); void

DisposPtr(); void

EmptyHandle(); void

FreeMem (); long

GetApplLimit(); Ptr

GetHandleSize(); Size

GetPtrSize(); Size

GetZone(); THz

GZSaveHnd(); Handle

HandleZone(); THz

HClrRBit(); void

HGetState(); short

HLock(); void

HNoPurge(); void

HPurge(); void

HSetRBit(); void

HSetState(); void

Structures and calls by library F-31

Call Return type

HUnlock(); void

InitApplZone(); void

InitZone(); void

MaxApplZone(); void

MaxBlock(); long

MaxMem(); Size

MemError(); OS Err

MFFreeMem () ; long

MFMaxMem () ; Size

MFTempDisposHandle(); void

MFTempHLock(); void

MFTempHUnlock(); void

MFTempNewHandle(); Handle

MFTopMem () ; Ptr

MoreMasters(); void

MoveHHi (); void

NewEmptyHandle(); Handle

NewHandle(); Handle

NewPtr(); Ptr

PtrZone(); THz

PurgeMem () ; void

PurgeSpace(); void

ReallocHandle(); void

RecoverHandle(); Handle

ResrvMem () ; void

F-32 Appendix F C Interface Library

Call Return type

SetApplBase(); void

SetApplLimit(); void

SetGrowZone(); void

SetHandleSize(); void

SetPtrSize(); void

SetZone(); void

StackSpace(); long

StripAddress(); Ptr

SystemZone(); THz

TopMem(); Ptr

The following structures and calls are available in vmcal 1 s. h:

Structure name

LogicalToPhysicalTable

MemoryBlock

Call

DeferUserFn ()

Get Physical ()

HoldMemory ()

LockMemory ()

LockMemoryContiguous()

UnholdMemory ()

UnlockMemory ()

New in this release.

New in this release.

Return type

OS Err New in this release.

OS Err New in this release.

OS Err New in this release.

OS Err New in this release.

OS Err New in this release.

OS Err New in this release.

OS Err New in this release.

Structures and calls by library F-33

Menu Manager

The following structures and calls are available in menus. h:

Structure name

MC Entry

Menuinf o

Call Return type

AddResMenu(); void

appendrnenu(); void

AppendMenu(); void

CalcMenuSize(); void

Checkitern(); void

ClearMenuBar(); void

CountMiterns(); short

DeleteMenu(); void

DelMCEntries(); void

DelMenuitern(); void

Disableitern(); void

DispMCinfo(); void

DisposeMenu(); void

DrawMenuBar(); void

Enableitern () ; void

FlashMenuBar(); void

getitern(); void

Get Item () ; void

GetiternCrnd(); void

Getiternicon(); void

GetiternMark(); void

GetiternStyle(); void

GetMCEntry () ; MCEntryPtr

F-34 Appendix F C Interface Library

Call

GetMCinfo();

GetMenu();

GetMenuBar();

GetMHandle();

GetNewMBar();

HiliteMenu();

InitMenus();

InitProcMenu();

InsertMenu();

InsertResMenu();

insmenuitem();

InsMenuitem();

MenuChoice();

MenuKey ();

menuselect();

MenuSelect();

newmenu();

NewMenu();

PopUpMenuSelect();

set item ();

Set Item () ;

SetitemCmd();

Setitemicon();

SetitemMark();

SetitemStyle();

SetMCEntries();

SetMCinfo();

SetMenuBar();

SetMenuFlash();

Return ~ype

MCTableHandle

MenuHandle

Handle

MenuHandle

Handle

void

void

void

void

void

void

void

long

long

long

long

MenuHandle

MenuHandle

long

void

void

void

void

void

void

void

void

void

void

Structures and calls hy lihra1y F-35

Notification Manager

The following structure and calls are available in notify. h:

Structure name

NMRec

Call

NMinstall();

NMrernove();

Package Manager

Return type

OS Err

OS Err

The following structures and calls are available in packages. h:

Structure name

IntlORec

IntllRec

SFReply

Call

InitAllPacks();

InitPack();

iucornpstring();

IUCornpString();

iudatepstring();

IUDatePString();

iudatestring();

IUDateString();

iuequalstring();

F-36 Appendix F C Interface Library

Return type

void

void

short

short

void

void

void

void

short

Call Return type

IUEqualString(); short

IUGetintl(); Handle

IUMagIDString(); short

IUMagString(); short

IUMetric(); Boolean

IUSetintl(); void

iutimepstring(); void

IUTimePString(); void

iutimestring(); void

IUTimeString(); void

numtostring(); void

NumToString(); void

sfgetfile(); void

SFGetFile(); void

sfpgetfile(); void

SFPGetFile(); void

sfpputfile(); void

SFPPutFile(); void

sfputfile(); void

SFPutFile(); void

stringtonum(); void

StringToNum(); void

Structures and calls by library F-37

Palette Manager

The following structures and calls are available in palettes. h:

Structure name

Colorinf o

Palette

Call

ActivatePalette();

AnimateEntry();

AnimatePalette();

CopyPalette();

CTab2Palette();

DisposePalette();

GetEntryColor();

GetEntryUsage();

GetNewPalette();

GetPalette();

InitPalettes();

NewPalette();

NSetPalette();

Palette2CTab();

PmBackColor();

PmForeColor();

SetEntryColor();

SetEntryUsage();

SetPalette();

F-38 Appendix F C Interface Library

Return type

void

void

void

void

void

void

void

void

PaletteHandle

PaletteHandle

void

PaletteHandle

void

void

void

void

void

void

void

Printing Manager

The following structures and calls are available in printing. h:

Structure name

TDftBitsBlk

TGetRotnBlk

TGetRslBlk

TGnlData

TPf PgDir

TPrDlg

Call

PrClose();

PrCloseDoc();

PrClosePage();

PrCt lCall () ;

PrDlgMain();

PrDrvrClose();

PrDrvrDCE();

PrDrvrOpen();

PrDrvrVers();

PrError();

PrGeneral();

PrintDefault();

PrJobDialog();

PrJobinit();

PrJobMerge();

PrNoPurge();

PrOpen ();

PrOpenDoc();

TPrinf o

TPrint

TPrJob

TPrPort

TPrStatus

Return type

void

void

void

void

Boolean

void

Handle

void

short

short

void

void

Boolean

TPPrDlg

void

void

void

TPPrPort

TPrStl

TPrXInf o

TRslRec

TRslRg

TSetRslBlk

Structures and calls by library F-39

Call Return type

PrOpenPage(); void

PrPicFile(); void

PrPurge(); void

PrSetError(); void

PrStlDialog(); Boolean

PrStlini t () ; TPPrDlg

PrValidate(); Boolean

Print traps

The following structures and calls are available in print traps. h:

Structure name

TDftBitsBlk

TGetRotnBlk

TGetRslBlk

TGnlData

TPf PgDir

TPrDlg

Call

PrClose();

PrCloseDoc();

PrClosePage();

PrCtlCall();

PrDlgMain();

PrDrvrClose();

PrDrvrDCE();

PrDrvrOpen();

F-40 Appendix F C Interface Library

TPrinf o

TPrint

TPrJob

TPrPort

TPrStatus

Return type

void

void

void

void

Boolean

void

Handle

void

TPrStl

TPrXInf o

TRslRec

TRslRg

TSetRslBlk

Call Return type

PrDrvrVers(); short

PrError(); short

PrGeneral(); void

PrintDefault(); void

PrJobDialog(); Boolean

PrJobinit(); TPPrDlg

PrJobMerge(); void

PrNoPurge(); void

PrOpen(); void

PrOpenDoc(); TPPrPort

PrOpenPage(); void

PrPicFile(); void

PrPurge(); void

PrSetError(); void

PrStlDialog(); Boolean

PrStlinit (); TPPrDlg

PrValidate(); Boolean

Process Manager

The following structures and calls are available in processes. h:

Structure name

AppParameters

LaunchParamBlockRec

ProcessinfoRec

ProcessSerialNumber

New in this release.

New in this release.

New in this release.

New in this release.

Structures and calls by library F-41

Call Return type

GetCurrentProcess OSErr -New in this release.

GetFrontProcess OS Err New in this release.

GetNextProcess OS Err New in this release.

GetProcessinformation OS Err New in this release.

LaunchApplication OS Err New in this release.

LaunchDeskAccessory OS Err New in this release.

SameProcess OS Err New in this release.

SetFrontProcess OS Err New in this release.

WakeUpProcess OSErr New in this release.

Resource Manager

Three header files support working with Macintosh resources: resources. h,

asd. h, and aux_rsrc. h. The first two header files provide Macintosh OS structures
and calls. The aux_rsrc. h header file provides UNIX calls. The following calls are
available in resources. h, which has no structures:

Call Return type

addresource(); void

AddResource(); void

ChangedResource(); void

CloseResFile(); void

CountlResources(); short

CountlTypes(); short

CountResources(); short

CountTypes(); short

createresfile(); void

CreateResFile(); void

CurResFile(); short

F-42 Appendix F C Interface Library

Call Return type

DetachResource(); void

GetlindResource(); Handle

GetlindType(); void

getlnamedresource(); Handle

GetlNamedResource(); Handle

GetlResource(); Handle

GetindResource(); Handle

GetindType(); void

getnamedresource(); Handle

GetNamedResource(); Handle

GetResAttrs(); short

GetResFileAttrs(); short

getresinfo(); void

GetResinfo(); void

GetResource(); Handle

HCreateResFile(); void

HomeResFile(); short

HOpenResFile(); short

InitResources(); short

LoadResource(); void

MaxSizeRsrc(); long

openresfile(); short

OpenResFile(); short

openrfperm(); short

OpenRFPerm(); short

ReleaseResource(); void

ResError(); short

RGetResource(); Handle

Structures and calls by library F-43

Call Return type

RrnveResource(); void

RsrcMapEntry(); long

RsrcZoneinit(); void

SetResAttrs(); void

SetResFileAttrs(); void

setresinfo(); void

SetResinfo(); void

SetResLoad(); void

SetResPurge(); void

SizeResource(); long

UniquelID(); short

UniqueID(); short

UpdateResFile(); void

UseResFile(); void

WriteResource(); void

The following structures and calls are available in asd. h:

Structure name

FileHeader HFile

Fileinfo VFile

Finderinfo

Call

CloseASD();

OpenASD();

ReadASD() i

SeekASD();

WriteASD();

F-44 Appendix F C Interface Library

Return (ype

int

FileHandle

long

long

long

The following structures and calls are available in aux_rsrc. h:

Structure name

Res Data New in this release.

ResFile New in this release.

ResHdr New in this release.

ResMap New in this release.

ResRef erence New in this release.

TypeEntry New in this release.

TypeList New in this release.

Call Return ~ype

rnrattr (); short

rnrclose(); int

rnrget () ; Resource

rnrgetnarned(); Resource

rnrinfo(); int

rnropen () ; ResHandle

rnrrel () ; void

Scrap Manager

The following structures and calls are available in scrap. h:

Structure name

ScrapStuf f

Call

GetScrap();

InfoScrap();

LoadScrap();

PutScrap();

Return ~ype

long

PScrapStuf f

long

long

Structures and calls by library F-45

Call

UnloadScrap();

ZeroScrap();

Script Manager

Return type

long

long

The following structures and calls are available in script. h:

Structure name

BreakTable

DateCacheRecord

FindBlockStatus

ForrnatString

Itl4Rec

ItlbRecord

Call

Char2Pixel();

CharByte();

CharType();

DrawJust();

FindBlock();

FindWord();

Font2Script();

FontScript();

Forrn2Str();

ForrnStr2X();

ForrnX2Str();

GetAppFont();

GetDefFontSize();

F-46 Appendix F C Interface Library

ItlcRecord

Location

NurnberParts

Start Length

TokenBlock

TDftBitsBlk

Return type

short

short

short

void

Toggle PB

Token

TPrJob

UntokenTable

WideCharArr

struct FindBlockStatus

void

short

short

ForrnatStatus

ForrnatStatus

Format Status

short

short

Call

GetEnvirons();

GetForrnatOrder();

GetMBarHeight();

GetScript();

GetSysFont();

GetSysJust();

HiliteText();

InitDateCache();

IntlScript();

IULDateString();

IULTirneString();

KeyScript();

LineBreak();

LongDate2Secs();

LongSecs2Date();

LwrText();

MeasureJust();

ParseTable();

Pixel2Char();

PortionText();

ReadLocation();

SetEnvirons();

SetScript();

SetSysJust();

Str2Forrn () ;

String2Date();

String2Tirne();

ToggleDate();

Return type

long

void

short

long

short

short

void

OS Err

short

void

void

void

LineBreakCode

void

void

void

void

Boolean

short

Fixed

void

OS Err

OS Err

void

Format Status

String2DateStatus

String2DateStatus

ToggleResults

Structures and calls by library F-47

Call

Tokenize();

Transliterate();

UprText();

ValidDate();

VisibleLength();

WriteLocation();

Segment Loader

Return type

TokenResult

OS Err

void

short

long

void

The following structure and calls are available in segload. h:

Structure name

AppFile

Call Return type

ClrAppFiles(); void

CountAppFiles(); void

ExitToShell(); void

GetAppFiles(); void

getappparrns(); void

GetAppParrns(); void

UnloadSeg(); void

F-48 Appendix F C Interface Library

Serial Driver

The following structures and calls are available in s er i a 1 . h:

Structure name

SerShk

SerStaRec

Call Return (ype

RamSDClose(); void

RamSDOpen(); OS Err

SerClrBrk(); OS Err

SerGetBuf (); OS Err

SerHShake(); OS Err

SerReset(); OS Err

SerSetBrk(); OS Err

SerSetBuf (); OS Err

SerStatus(); OS Err

Shutdown Manager

The following calls are available in shutdown. h, which has no structures:

Call

ShutDwninstall();

ShutDwnRemove();

Return (ype

void

void

New in this release.

New in this release.

Structures and calls by library F-49

Slot Manager

The following structures and calls are available in slots. h:

Structure name

FHeaderRec Sinf oRecord

SDMRecord SlotintQElement

SEBlock SpBlock

Call Return type

InitSDeclMgr(); OS Err

OpenSlot(); OS Err

SCalcSPointer(); OS Err

SCalcStep(); OS Err

SCardChanged(); OS Err

SCkCardStat(); OS Err

SDeleteSRTRec(); OS Err

SExec(); OS Err

SFindBigDevBase(); OS Err

SFindDevBase(); OS Err

SFindSinfoRecPtr(); OS Err

SFindSRsrcPtr(); OS Err

SFindStruct(); OS Err

SGetBlock(); OS Err

SGetCString(); OS Err

SGetDriver(); OS Err

SGetsRsrc(); OSErr

SGetsRsrcinfo(); OS Err

SGetTypesRsrc(); OS Err

SinitPRAMRecs() i OS Err

SinitSRsrcTable(); OS Err

F-50 Appendix F C Interface Library

Call Return type

SinsertSRTRec(); OS Err

Sintinstall(); OS Err

SintRemove(); OS Err

SNextSRsrc(); OS Err

SNextTypeSRsrc(); OS Err

SOffsetData(); OS Err

SPrimaryinit(); OS Err

SPtrToSlot(); OS Err

SPutPRAMRec(); OS Err

SReadByte(); OS Err

SReadDrvrName(); OS Err

SReadFHeader(); OS Err

SReadinfo(); OS Err

SReadLong(); OS Err

SReadPBSize(); OSErr

SReadPRAMRec(); OS Err

SReadStruct(); OS Err

SReadWord(); OS Err

SRsrcinfo(); OS Err

SSearchSRT(); OS Err

SSetsRsrcState(); OS Err

SUpdateSRT(); OS Err

SVersion () ; OS Err

Structures and calls by library F-51

Sound Manager

Three header files support working with Macintosh resources: sm. h,

soundinput. h, and soundinputpri v. h. The first header file provides Macintosh
OS structures and calls. The last two provide the calls that allow sound input under
UNIX. The following structures and calls are available in sm. h:

Structure name

CmpSoundHeader

ExtSoundHeader

Lef tOverBlock

Modif ierStub

SndChannel

SndCommand

Call

aSndDisposeChannel();

aSndAddModifier();

aSndDoCommand();

aSndDoimmediate();

aSndPlay () ;

aSndControl();

aSndNewChannel();

SndDoubleBuf fer

SndDoubleBuf f erHeader

SndListResource

SoundHeader

StateBlock

Return type

short

short

short

short

short

short

short

The following structure and calls are available in soundinput. h:

Structure name

SPB

Call

SetupAIFFHeader

SetupSndHeader

SndRecord

SndRecordToFile

F-52 Appendix F C Interface Library

New in this release.

Return ~ype

OS Err

OS Err

OS Err

OS Err

New in this release.

New in this release.

New in this release.

New in this release.

Call Return ~ype

SPBBytesToMilliseconds OS Err New in this release.

SPBCloseDevice OS Err New in this release.

SPBGetDeviceinf o OS Err New in this release.

SPBGetindexedDevice OS Err New in this release.

SPBGetRecordingStatus OS Err New in this release.

SPBMillisecondsToBytes OS Err New in this release.

SPBOpenDevice OS Err New in this release.

SPBPauseRecording OS Err New in this release.

SPBRecord OS Err New in this release.

SPBRecordToFile OS Err New in this release.

SPBResumeRecording OS Err New in this release.

SPBSetDeviceinf o OSErr New in this release.

SPBSigninDevice OS Err New in this release.

SPBSignOutDevice OS Err New in this release.

SPBStopRecording OS Err New in this release.

The following structures and calls are available in soundinputpri v. h:

Structure name

AppRefRec

DrvrParamBlockRec

SndinGlobals

Call

SoundinDevice

SPBGetDefaultDevice

SPBSetDefaultDevice

New in this release.

New in this release.

New in this release.

Return type

OS Err

OS Err

New in this release.

New in this release.

New in this release.

Structures and calls by library F-53

String conversion between Pascal and C

The following calls are available in strings. h, which has no structures:

Call

*p2cstr();

c2pstr ();

System Error Handler

Return type

char

StringPtr

The following calls are available in errors. h, which has no structures:

Call

SysError();

TextEdit

Return type

void

The following structures and calls are available in text edit . h:

Structure name

LHElement StyleRun

NullStRec TERec

ScrpSTElement TEStyleRec

STElement Text Style

StScrpRec

Call Return type

GetStylHandle(); TEStyleHandle

GetStylScrap(); StScrpHandle

SetClikLoop(); void

SetStylHandle(); void

SetStylScrap(); void

F-54 Appendix F C Interface Library

Call Return type

SetWordBreak(); void

TEActivate(); void

TEAutoView () ; void

TECalText(); void

teclick(); void

TEClick (); void

TEContinuousStyle(); Boolean

TECopy (); void

TECustomHook(); void

TECut(); void

TEDeactivate(); void

TEDelete(); void

TEDispose(); void

TEFromScrap(); OS Err

TEGetHeight(); long

TEGetOffset(); short

TEGetPoint(); struct Point

TEGetScrapLen(); long

TEGetStyle(); void

TEGetText(); CharsHandle

TEidle(); void

TEinit(); void

TEinsert(); void

TEKey (); void

TENew(); TEHandle

TENumStyles(); long

TEPaste(); void

TEPinScroll(); void

Structures and calls by library F-55

Call Return type

TEReplaceStyle(); void

TEScrapHandle(); Handle

TEScroll(); void

TESel View () ; void

TESetJust(); void

TESetScrapLen(); void

TESetSelect(); void

TESetStyle(); void

TESetText(); void

TEStylinsert(); void

TEStylNew () ; TEHandle

TEStylPaste(); void

TEToScrap(); OS Err

TEUpdate() i void

TextBox(); void

Time Manager

The following stmcture and calls are available in timer. h:

Structure name

TMTask

Call

InsTime();

PrimeTime();

RmvTime();

F-56 Appendix F C Interface Library

Return ~ype

void

void

void

Utilities, Operating System

The following structures and calls are available in o s u ti 1 s . h:

Structure name

DateTimeRec SysEnvRec

QElem SysParmType

QHdr

Call Return type

Date2Secs(); void

Delay (); void

Dequeue(); OS Err

DTinstall(); OS Err

Enqueue(); void

Environs(); void

equalstring(); Boolean

EqualString(); Boolean

GetDateTime(); void

GetMMUMode(); char

GetSysPPtr(); SysPPtr New in this release.

GetTime(); void

GetTrapAddress(); long

HandAndHand(); OS Err

HandToHand(); OS Err

InitUtil(); OS Err

KeyTrans () ; long

NGetTrapAddress(); long

NSetTrapAddress(); void

PtrAndHand(); OS Err

PtrToHand(); OS Err

Structures and calls by library F-57

Call Return type

PtrToXHand(); OSErr

ReadDateTime(); OS Err

relstring(); short

RelString(); short

Restart(); void

Secs2Date(); void

SetAS(); long

SetCurrentAS(); long

SetDateTime(); OS Err

SetTime(); void

SetTrapAddress(); void

SwapMMUMode(); void

SysBeep(); void

SysEnvirons(); OS Err

UprString(); void

uprstring(); void

WriteParam(); OS Err

Utilities, Toolbox

The following structure and calls are available in toolutils. h:

Structure name

Int64Bit

Call

AngleFromSlope();

BitAnd();

BitClr();

BitNot();

F-58 Appendix F C Interface Library

Return type

short

long

void

long

Call Return type

BitOr(); long

BitSet(); void

BitShift(); long

BitTst(); Boolean

BitXor(); long

deltapoint(); long

DeltaPoint(); long

FixMul(); Fixed

FixRatio(); Fixed

FixRound () ; short

GetCursor(); CursHandle

Geticon(); Handle

GetindPattern(); void

getindstring(); void

GetindString(); void

GetPattern(); PatHandle

GetPicture(); PicHandle

GetString(); StringHandle

Hi Word (); short

LongMul(); void

LoWord(); short

Munger(); long

newstring(); StringHandle

NewString(); StringHandle

PackBits(); void

Ploticon(); void

ScreenRes(); void

setstring(); void

Structures and calls by library F-59

Call

SetString();

shieldcursor();

ShieldCursor();

SlopeFromAngle();

UnpackBits();

Vertical Retrace Manager

Return type

void

void

void

Fixed

void

The following structure and calls are available in retrace. h:

Structure name

VBLTask

Call

AttachVBL();

DoVBLTask();

GetVBLQHdr();

SlotVInstall();

SlotVRemove();

VInstall();

VRemove();

Video Driver

Return ~ype

OS Err

OSErr

QHdrPtr

OS Err

OS Err

OS Err

OS Err

The following structures are available in video. h, which has no calls:

Structure name

CSVidMsg

VDEntryRecord

VDGrayRecord

VDPageinf o

F-60 Appendix F C Interface Library

VDSetEntryRecord

VDSettings

VDSizeinfo

VPBlock

Window Manager

The following structures and calls are available in windows. h:

Structure name

AuxWinRec

CWindowRecord

WinCTab

Call

BeginUpdate();

BringToFront();

CalcVis();

CalcVisBehind();

CheckUpdate();

ClipAbove();

CloseWindow();

DisposeWindow();

draggrayrgn();

DragGrayRgn();

dragwindow();

DragWindow();

DrawGrowicon();

DrawNew();

EndUpdate();

f indwindow () ;

FindWindow();

FrontWindow();

GetAuxWin();

GetCWMgrPort();

GetGrayRgn();

WindowRecord

WStateData

Return ~ype

void

void

void

void

Boolean

void

void

void

long

long

void

void

void

void

void

short

short

WindowPtr

Boolean

void

RgnHandle

Structures and calls by library F-61

Call Return type

GetNewCWindow(); WindowPtr

GetNewWindow(); WindowPtr

GetWindowPic(); PicHandle

GetWMgrPort(); void

GetWRefCon(); long

getwtitle(); void

GetWTi tle () ; void

GetWVariant(); short

growwindow(); long

GrowWindow(); long

HideWindow(); void

HiliteWindow(); void

InitWindows(); void

InvalRect(); void

InvalRgn(); void

MoveWindow(); void

newcwindow(); WindowPtr

NewCWindow(); WindowPtr

newwindow(); WindowPtr

NewWindow () ; WindowPtr

PaintBehind(); void

PaintOne(); void

pinrect(); long

PinRect(); long

SaveOld(); void

SelectWindow(); void

SendBehind(); void

SetDeskCPat(); void

F-62 Appendix F C Interface Library

Call Return type

SetWinColor(); void

SetWindowPic(); void

SetWRefCon(); void

setwtitle(); void

SetWTitle(); void

ShowHide(); void

ShowWindow(); void

SizeWindow(); void

trackbox(); Boolean

TrackBox(); Boolean

trackgoaway(); Boolean

TrackGoAway(); Boolean

ValidRect(); void

ValidRgn(); void

ZoornWindow(); void

Calls in alphabetical order
All calls in the preceding section are listed here in alphabetical order by name. This
section also gives the return type and the name of the header file containing each call. A
few calls are available in more than one header file. The major duplication is in
printing.hand printtraps.h.

The names of two calls may differ only in case, one spelled as the name appears in
Inside Macintosh (mixed case) and the other spelled in lowercase only. A call named in
mixed case accepts Pascal-format strings and Pascal point-passing conventions. A call
named in lowercase accepts input parameters in C format and converts them before
passing them to the ROM routines, and converts string return values back to C format.
For additional information on these differences, see the section "Differences in Language
Conventions" in Chapter 4.

Calls in alphabetical order F-63

Call Return type Header file

*p2cstr(); char strings.h

ActivatePalette(); void palettes.h

AddComp (); void quickdraw.h

AddDrive(); void files.h

addpt (); void quickdraw.h

AddPt(); void quickdraw.h

AddResMenu(); void menus.h

addresource(); void resources.h

AddResource(); void resources.h

AddSearch(); void quickdraw.h

Alert(); short dialogs.h

Allocate(); OS Err files.h

AllocContig(); OS Err files.h

AllocCursor(); void quickdraw.h

AngleFromSlope(); short toolutils.h

AnimateEntry(); void palettes.h

AnimatePalette(); void palettes.h

appendmenu(); void menus.h

AppendMenu(); void menus.h

ApplicZone(); THz memory.h

aSndAddModifier(); short sm.h

aSndControl(); short sm.h

aSndDisposeChannel(); short sm.h

aSndDoCommand(); short sm.h

aSndDolmmediate(); short sm.h

aSndNewChannel(); short sm.h

aSndPlay(); short sm.h

AttachVBL(); OS Err retrace.h

F-64 Appendix F C Interface Library

Call Return type Header file

AUXCOFFLaunch(); pascal short aux.h

AUXDispatch(); pascal long aux.h

BackColor(); void quickdraw.h

BackPat(); void quickdraw.h

BackPixPat(); void quickdraw.h

BeginUpdate(); void windows.h

BitAnd (); long toolutils.h

BitClr(); void toolutils.h

BitNot(); long toolutils.h

BitOr(); long toolutils.h

BitSet(); void toolutils.h

BitShift(); long toolutils.h

BitTst(); Boolean toolutils.h

BitXor(); long toolutils.h

BlockMove(); void memory.h

BringToFront(); void windows.h

Button(); Boolean events.h

c2pstr(); StringPtr strings.h

CalcCMask(); void quickdraw.h

CalcMask(); void quickdraw.h

CalcMenuSize(); void menus.h

CalcVis(); void windows.h

CalcVisBehind(); void windows.h

CatMove(); OS Err files.h

CautionAlert(); short dialogs.h

ChangedResource(); void resources.h

Char2Pixel(); short script.h

CharByte(); short script.h

Calls in alphabetical order F-65

Call Return type Header file

CharExtra(); void quickdraw.h

CharType(); short script.h

CharWidth(); short quickdraw.h

Checkitern(); void rnenus.h

CheckUpdate(); Boolean windows.h

ClearMenuBar(); void rnenus.h

ClipAbove(); void windows.h

ClipRect(); void quickdraw.h

CloseASD(); int asd.h

CloseCPort(); void quickdraw.h

CloseDeskAcc(); void desk.h

CloseDialog(); void dialogs.h

CloseDriver(); OS Err devices.h

ClosePicture(); void quickdraw.h

ClosePoly(); void quickdraw.h

ClosePort(); void quickdraw.h

CloseResFile(); void resources.h

CloseRgn(); void quickdraw.h

CloseWD(); OS Err files.h

CloseWindow(); void windows.h

ClrAppFiles(); void segload.h

CMY2RGB(); void picker.h

Color2Index(); long quickdraw.h

ColorBit(); void quickdraw.h

CornpactMern(); Size rnernory.h

Control(); OS Err devices.h

CopyBits(); void quickdraw.h

CopyMask(); void quickdraw.h

F-66 Appendix F C Interface Library

Call Return type Header file

CopyPalette(); void palettes.h

CopyPixMap(); void quickdraw.h

CopyPixPat(); void quickdraw.h

CopyRgn (); void quickdraw.h

CouldAlert(); void dialogs.h

CouldDialog(); void dialogs.h

CountlResources(); short resources.h

CountlTypes(); short resources.h

CountAppFiles(); void segload.h

CountMiterns(); short rnenus.h

CountResources(); short resources.h

CountTypes(); short resources.h

create(); OS Err files.h

Create(); OS Err files.h

createresfile(); void resources.h

CreateResFile(); void resources.h

CTab2Palette(); void palettes.h

CurResFile(); short resources.h

Date2Secs(); void osutils.h

Debugger(); void types.h

debugstr(); void types.h

DebugStr(); void types.h

DeferUserFn(); OSErr vrncalls.h

Delay (); void osutils.h

DelCornp(); void quickdraw.h

DeleteMenu(); void rnenus.h

DelMCEntries(); void rnenus.h

DelMenuitern(); void rnenus.h

Calls in alphabetical order F-67

Call Return type Header file

DelSearch(); void quickdraw.h

deltapoint(); long toolutils.h

DeltaPoint(); long toolutils.h

Dequeue(); OS Err osutils.h

DetachResource(); void resources.h

DialogSelect(); Boolean dialogs.h

dibadrnount(); OS Err diskinit.h

DIBadMount(); short diskinit.h

DiffRgn(); void quickdraw.h

DIForrnat(); OS Err diskinit.h

DILoad(); void diskinit.h

DirCreate(); OS Err files.h

Disableitern(); void rnenus.h

DiskEject(); OS Err disks.h

DispMCinfo(); void rnenus.h

DisposCCursor(); void quickdraw.h

DisposCicon(); void quickdraw.h

DisposCTable(); void quickdraw.h

DisposDialog(); void dialogs.h

DisposeControl(); void controls.h

DisposeMenu(); void rnenus.h

DisposePalette(); void palettes.h

DisposeRgn(); void quickdraw.h

DisposeWindow(); void windows.h

DisposGDevice(); void quickdraw.h

DisposHandle(); void rnernory.h

DisposPixMap(); void quickdraw.h

DisposPixPat(); void quickdraw.h

F-68 Appendix F C Interface Library

Call Return type Header file

DisposPtr(); void memory.h

DIUnload(); void diskinit.h

DIVeri fy () ; OS Err diskinit.h

dizero(); OS Err diskinit.h

DIZero(); OS Err diskinit.h

DlgCopy (); void dialogs.h

DlgCut(); void dialogs.h

DlgDelete(); void dialogs.h

DlgPaste(); void dialogs.h

DoVBLTask(); OS Err retrace.h

dragcontrol(); void controls.h

DragControl(); void controls.h

draggrayrgn(); long windows.h

DragGrayRgn(); long windows.h

dragwindow(); void windows.h

DragWindow () ; void windows.h

DrawlControl(); void controls.h

DrawChar(); void quickdraw.h

DrawControls(); void controls.h

DrawDialog(); void dialogs.h

DrawGrowicon(); void windows.h

DrawJust(); void script.h

DrawMenuBar(); void menus.h

DrawNew(); void windows.h

DrawPicture(); void quickdraw.h

drawstring(); void quickdraw.h

Drawstring(); void quickdraw.h

DrawText(); void quickdraw.h

Calls in alphabetical order F-69

Call Return type Header file

DriveStatus(); OS Err disks.h

DTinstall(); OS Err dtask.h

DTinstall(); OS Err osutils.h

eject () ; OSErr files.h

Eject(); OS Err files.h

EmptyHandle(); void memory.h

EmptyRect(); Boolean quickdraw.h

EmptyRgn(); Boolean quickdraw.h

Enableitem(); void menus.h

EndUpdate(); void windows.h

Enqueue(); void osutils.h

Environs(); void osutils.h

equalpt(); Boolean quickdraw.h

EqualPt(); Boolean quickdraw.h

EqualRect(); Boolean quickdraw.h

EqualRgn(); Boolean quickdraw.h

equalstring(); Boolean osutils.h

EqualString(); Boolean osutils.h

EraseArc(); void quickdraw.h

EraseOval(); void quickdraw.h

ErasePoly(); void quickdraw.h

EraseRect(); void quickdraw.h

EraseRgn(); void quickdraw.h

EraseRoundRect(); void quickdraw.h

ErrorSound(); void dialogs.h

EventAvail(); Boolean events.h

ExitToShell(); void segload.h

FillArc () ; void quickdraw.h

F-70 Appendix F C Interface Library

Call Return type Header file

FillCArc () ; void quickdraw.h

FillCOval () ; void quickdraw.h

FillCPoly () ; void quickdraw.h

FillCRect () ; void quickdraw.h

FillCRgn () ; void quickdraw.h

FillCRoundRect(); void quickdraw.h

Fill Oval (); void quickdraw.h

FillPoly () ; void quickdraw.h

FillRect () ; void quickdraw.h

FillRgn (); void quickdraw.h

FillRoundRect(); void quickdraw.h

FindBlock(); struct FindBlockStatus script.h

findcontrol(); short controls.h

FindControl(); short controls.h

findditem(); short dialogs.h

FindDitem(); short dialogs.h

f indwindow () ; short windows.h

FindWindow(); short windows.h

FindWord(); void script.h

FinitQueue(); void files.h

Fix2Smal1Fract(); SmallFract picker.h

FixMul(); Fixed toolutils.h

FixRatio(); Fixed toolutils.h

FixRound(); short toolutils.h

FlashMenuBar(); void menus.h

FlushEvents(); void osevents.h

flushvol(); OS Err files.h

FlushVol(); OS Err files.h

Calls in alphabetical order F-71

Call Return type Header file

FMSwapFont(); FMOutPtr fonts.h

Font2Script(); short script.h

FontMetrics(); void fonts.h

FontScript(); short script.h

ForeColor(); void quickdraw.h

Form2Str(); FormatStatus script.h

FormStr2X(); FormatStatus script.h

FormX2Str(); Format Status script.h

FrameArc(); void quickdraw.h

FrameOval(); void quickdraw.h

FramePoly(); void quickdraw.h

FrameRect(); void quickdraw.h

FrameRgn(); void quickdraw.h

FrameRoundRect(); void quickdraw.h

FreeAlert(); void dialogs.h

FreeDialog(); void dialogs.h

FreeMem(); long memory.h

Front Window () ; WindowPtr windows.h

FSClose(); OS Err files.h

fsdelete(); OS Err files.h

FSDelete(); OS Err files.h

fsopen(); OS Err files.h

FSOpen (); OS Err files.h

FSRead(); OS Err files.h

fsrename(); OS Err files.h

FSWrite(); OS Err files.h

GetlindResource(); Handle resources.h

GetlindType(); void resources.h

F-72 Appendix F C Interface Library

Call Return type Header file

getlnamedresource(); Handle resources.h

GetlNamedResource(); Handle resources.h

GetlResource(); Handle resources.h

GetAlrtStage(); short dialogs.h

GetAppFiles(); void segload.h

GetAppFont(); short script.h

GetApplLimit(); Ptr memory.h

getappparms(); void segload.h

GetAppParms(); void segload.h

GetAuxCtl(); Boolean controls.h

GetAuxWin(); Boolean windows.h

GetBackColor(); void quickdraw.h

GetCaretTime(); unsigned long events.h

GetCCursor(); CCrsrHandle quickdraw.h

GetCicon(); CiconHandle quickdraw.h

GetClip(); void quickdraw.h

GetColor(); Boolean picker.h

GetCPixel(); void quickdraw.h

GetCRefCon(); long controls.h

GetCTable(); CTabHandle quickdraw.h

getctitle(); void controls.h

GetCTitle(); void controls.h

GetCtlAction(); ProcPtr controls.h

Get Ct lMax () ; short controls.h

GetCtlMin(); short controls.h

GetCtlValue(); short controls.h

GetCTSeed(); long quickdraw.h

GetCurrentProcess(); OS Err processes.h

Calls in alphabetical order F-73

Call Return type Header file

GetCursor(); CursHandle toolutils.h

GetCVariant(); short controls.h

GetCWMgrPort(); void windows.h

GetDateTime(); void osutils.h

GetDblTime(); unsigned long events.h

GetDCtlEntry(); DCtlHandle devices.h

GetDefFontSize(); short script.h

GetDeviceList(); GDHandle quickdraw.h

GetDitem(); void dialogs.h

GetDrvQHdr(); QHdrPtr files.h

GetEntryColor(); void palettes.h

GetEntryUsage(); void palettes.h

GetEnvirons(); long script.h

GetEOF(); OS Err files.h

GetEvQHdr(); QHdrPtr osevents.h

getfinfo(); OSErr files.h

GetFinfo(); OS Err files.h

getfnum(); void fonts.h

GetFNum (); void fonts.h

GetFontinfo(); void quickdraw.h

getfontname(); void fonts.h

GetFontName(); void fonts.h

GetForeColor(); void quickdraw.h

GetFormatOrder(); void script.h

GetFPos(); OS Err files.h

GetFrontProcess OS Err processes.h

GetFSQHdr(); QHdrPtr files.h

GetGDevice(); GDHandle quickdraw.h

F-74 Appendix F C Interface Library

Call Return type Header file

GetGrayRgn(); RgnHandle windows.h

GetHandleSize(); Size memory.h

Geticon(); Handle toolutils.h

GetindPattern(); void toolutils.h

GetindResource(); Handle resources.h

getindstring(); void toolutils.h

GetindString(); void toolutils.h

GetindType(); void resources.h

get item (); void menus.h

Get Item () ; void menus.h

GetitemCmd(); void menus.h

Getitemicon(); void menus.h

GetitemMark(); void menus.h

GetitemStyle(); void menus.h

getitext(); void dialogs.h

GetIText(); void dialogs.h

GetKeys(); void events.h

GetMainDevice(); GDHandle quickdraw.h

GetMaskTable(); Ptr quickdraw.h

GetMaxDevice(); GDHandle quickdraw.h

GetMBarHeight(); short script.h

GetMCEntry(); MCEntryPtr menus.h

GetMCinfo(); MCTableHandle menus.h

GetMenu(); MenuHandle menus.h

GetMenuBar(); Handle menus.h

GetMHandle(); MenuHandle menus.h

GetMMUMode(); char osutils.h

GetMouse(); void events.h

Calls in alphabetical order F-75

Call Return type Header file

getnarnedresource(); Handle resources.h

GetNarnedResource(); Handle resources.h

GetNewControl(); ControlHandle controls.h

GetNewCWindow(); WindowPtr windows.h

GetNewDialog(); DialogPtr dialogs.h

GetNewMBar(); Handle rnenus.h

GetNewPalette(); PaletteHandle palettes.h

GetNewWindow(); WindowPtr windows.h

GetNextDevice(); GDHandle quickdraw.h

GetNextEvent(); Boolean events.h

GetNextProcess OS Err processes.h

GetOSEvent(); Boolean osevents.h

GetPalette(); PaletteHandle palettes.h

GetPattern(); PatHandle toolutils.h

GetPen(); void quickdraw.h

GetPenState(); void quickdraw.h

Get Physical () OS Err vrncalls.h

GetPicture(); PicHandle toolutils.h

GetPixel(); Boolean quickdraw.h

GetPixPat(); PixPatHandle quickdraw.h

GetPort(); void quickdraw.h

GetProcessinforrnation(); OS Err processes.h

GetPtrSize(); Size rnernory.h

GetResAttrs(); short resources.h

GetResFileAttrs(); short resources.h

getresinfo(); void resources.h

GetResinfo(); void resources.h

GetResource(); Handle resources.h

F-76 Appendix F C Interface Library

Call Return type Header file

GetScrap(); long scrap.h

GetScript(); long script.h

GetString(); StringHandle toolutils.h

GetStylHandle(); TEStyleHandle textedit.h

GetStylScrap () ; StScrpHandle textedit.h

GetSubTable(); void quickdraw.h

GetSysFont(); short script.h

GetSysJust(); short script.h

GetSysPPtr(); SysPPtr osutils.h

GetTime(); void osutils.h

GetTrapAddress(); long osutils.h

GetVBLQHdr(); QHdrPtr retrace.h

GetVCBQHdr(); QHdrPtr files.h

getvinfo(); OS Err files.h

GetVInfo(); OS Err files.h

get vol (); OS Err files.h

GetVol(); OS Err files.h

GetVRefNum(); OS Err files.h

GetWDinfo(); OS Err files.h

GetWindowPic(); PicHandle windows.h

GetWMgrPort(); void windows.h

GetWRefCon(); long windows.h

getwtitle(); void windows.h

GetWTitle(); void windows.h

GetWVariant(); short windows.h

GetZone(); THz memory.h

GlobalToLocal(); void quickdraw.h

GrafDevice(); void quickdraw.h

Calls in alphabetical order F-77

Call Return type Header file

growwindow(); long windows.h

GrowWindow () ; long windows.h

GZSaveHnd(); Handle rnernory.h

HandAndHand(); OS Err osutils.h

HandleZone(); THz rnernory.h

HandToHand(); OS Err osutils.h

HClrRBit(); void rnernory.h

HCreate(); OS Err files.h

HCreateResFile(); void resources.h

HDelete(); OS Err files.h

HGetFinfo(); OS Err files.h

HGetState(); short rnernory.h

HGetVol (); OS Err files.h

HideControl(); void controls.h

HideCursor(); void quickdraw.h

HideDitern(); void dialogs.h

HidePen(); void quickdraw.h

HideWindow () ; void windows.h

HiliteColor(); void quickdraw.h

HiliteControl(); void controls.h

HiliteMenu(); void rnenus.h

HiliteText(); void script.h

HiliteWindow(); void windows.h

HiWord(); short toolutils.h

HLock (); void rnernory.h

HNoPurge(); void rnernory.h

HoldMernory () OSErr vrncalls.h

HorneResFile(); short resources.h

F-78 Appendix F C Interface Library

Call Return type Header file

HOpen (); OS Err files.h

HOpenResFile(); short resources.h

HOpenRF(); OS Err files.h

HPurge(); void memory.h

HRename(); OS Err files.h

HRstFLock(); OS Err files.h

HSetFinfo(); OS Err files.h

HSetFLock(); OS Err files.h

HSetRBit(); void memory.h

HSetState(); void memory.h

HSetVol(); OS Err files.h

HSL2RGB(); void picker.h

HSV2RGB(); void picker.h

Hunlock(); void memory.h

Index2Color(); void quickdraw.h

InfoScrap(); PScrapStuf f scrap.h

InitAllPacks(); void packages.h

InitApplZone(); void memory.h

InitCPort(); void quickdraw.h

InitCursor(); void quickdraw.h

InitDateCache(); OS Err script.h

InitDialogs(); void dialogs.h

InitFonts(); void fonts.h

InitGDevice(); void quickdraw.h

InitGraf (); void quickdraw.h

InitMenus(); void menus.h

InitPack(); void packages.h

InitPalettes(); void palettes.h

Calls in alphabetical order F-79

Call Return type Header file

InitPort(); void quickdraw.h

InitProcMenu(); void menus.h

InitResources(); short resources.h

InitSDeclMgr(); OS Err slots.h

InitUtil(); OS Err osutils.h

InitWindows(); void windows.h

InitZone(); void memory.h

InsertMenu(); void menus.h

InsertResMenu(); void menus.h

InsetRect(); void quickdraw.h

InsetRgn(); void quickdraw.h

insmenuitem(); void menus.h

InsMenuitem(); void menus.h

InsTime(); void timer.h

IntlScript(); short script.h

InvalRect(); void windows.h

InvalRgn(); void windows.h

InvertArc(); void quickdraw.h

InvertColor(); void quickdraw.h

InvertOval(); void quickdraw.h

InvertPoly(); void quickdraw.h

InvertRect(); void quickdraw.h

InvertRgn(); void quickdraw.h

InvertRoundRect(); void quickdraw.h

IsDialogEvent(); Boolean dialogs.h

iucompstring(); short packages.h

IUCompString(); short packages.h

iudatepstring(); void packages.h

F-80 Appendix F C Interface Library

Call Return type Header file

IUDatePString(); void packages.h

iudatestring(); void packages.h

IUDateString(); void packages.h

iuequalstring(); short packages.h

IUEqualString(); short packages.h

IUGetintl(); Handle packages.h

IULDateString(); void script.h

IULTimeString(); void script.h

IUMagIDString(); short packages.h

IUMagString(); short packages.h

IUMetric(); Boolean packages.h

IUSetintl(); void packages.h

iutimepstring(); void packages.h

IUTimePString(); void packages.h

iutimestring(); void packages.h

IUTimeString(); void packages.h

Key Script () ; void script.h

KeyTrans () ; long osutils.h

KillControls(); void controls.h

Kill IO (); OS Err devices.h

KillPicture(); void quickdraw.h

Kill Poly (); void quickdraw.h

LActivate(); void lists.h

LAddColumn(); short lists.h

LAddRow(); short lists.h

LAddToCell () ; void lists.h

LaunchApplication OS Err processes.h

LaunchDeskAccessory OS Err processes.h

Calls in alphabetical order F-81

Call Return type Header file

LAutoScroll(); void lists.h

lcellsize(); void lists.h

LCellSize () ; void lists.h

lclick () ; Boolean lists.h

LClick(); Boolean lists.h

LClrCell () ; void lists.h

LDelColumn(); void lists.h

LDelRow(); void lists.h

LDispose(); void lists.h

LDoDraw(); void lists.h

ldraw(); void lists.h

LDraw(); void lists.h

LFind(); void lists.h

LGetCell () ; void lists. h

LGetSelect(); Boolean lists.h

Line(); void quickdraw.h

LineBreak(); LineBreakCode script.h

LineTo(); void quickdraw.h

LLastClick(); Cell lists.h

lnew (); ListHandle lists.h

LNew(); ListHandle lists.h

LNextCell(); Boolean lists.h

LoadResource(); void resources.h

LoadScrap(); long scrap.h

LocalToGlobal(); void quickdraw.h

LockMemory(); OS Err vmcalls.h

LockMemoryContiguous(); OSErr vmcalls.h

LongDate2Secs(); void script.h

F-82 Appendix F C Interface Library

Call Return ~vpe Header file

LongMul(); void toolutils.h

LongSecs2Date(); void script.h

LoWord (); short toolutils.h

LRect(); void lists.h

LScroll(); void lists.h

LSearch(); Boolean lists.h

LSetCell () ; void lists.h

LSetSelect(); void lists.h

LSize(); void lists.h

LUpdate(); void lists.h

LwrText(); void script.h

MakeITable(); void quickdraw.h

MakeRGBPat(); void quickdraw.h

MapPoly (); void quickdraw.h

MapPt(); void quickdraw.h

MapRect(); void quickdraw.h

MapRgn(); void quickdraw.h

MaxApplZone(); void memory.h

MaxBlock(); long memory.h

MaxMem(); Size memory.h

MaxSizeRsrc(); long resources.h

MeasureJust(); void script.h

MeasureText(); void quickdraw.h

MemError(); OS Err memory.h

MenuChoice(); long menus.h

MenuKey(); long menus.h

menuselect(); long menus.h

MenuSelect(); long menus.h

Calls in alphabetical order F-83

Call Return type Header file

MFFreeMem () ; long memory.h

MFMaxMem(); Size memory.h

MFTempDisposHandle(); void memory.h

MFTempHLock(); void memory.h

MFTempHUnlock(); void memory.h

MFTempNewHandle(); Handle memory.h

MFTopMem () ; Ptr memory.h

ModalDialog(); void dialogs.h

MoreMasters(); void memory.h

Move(); void quickdraw.h

MoveControl(); void controls.h

MoveHHi (); void memory.h

MovePortTo(); void quickdraw.h

MoveTo(); void quickdraw.h

MoveWindow () ; void windows.h

mrattr(); short aux - rsrc.h

mrclose(); int aux - rsrc.h

mrget(); Resource aux - rsrc.h

mrgetnamed(); Resource aux rsrc.h

mrinfo(); int aux - rsrc.h

mropen(); ResHandle aux - rsrc.h

mrrel(); void aux - rsrc.h

Munger(); long toolutils.h

newcdialog(); DialogPtr dialogs.h

NewCDialog(); DialogPtr dialogs.h

newcontrol(); ControlHandle controls.h

NewControl(); ControlHandle controls.h

newcwindow(); WindowPtr windows.h

F-84 Appendix F C Interface Library

Call Return type Header file

NewCWindow(); WindowPtr windows.h

newdialog(); DialogPtr dialogs.h

NewDialog(); DialogPtr dialogs.h

NewEmptyHandle(); Handle memory.h

NewGDevice(); GDHandle quickdraw.h

NewHandle(); Handle memory.h

newmenu(); MenuHandle menus.h

NewMenu(); MenuHandle menus.h

NewPalette(); PaletteHandle palettes.h

NewPixMap(); PixMapHandle quickdraw.h

NewPixPat(); PixPatHandle quickdraw.h

NewPtr (); Ptr memory.h

NewRgn (); RgnHandle quickdraw.h

newstring(); StringHandle toolutils.h

NewString(); StringHandle toolutils.h

newwindow () ; WindowPtr windows.h

NewWindow () ; WindowPtr windows.h

NGetTrapAddress(); long osutils.h

NMinstall () ; OS Err notify.h.

NMremove(); OS Err notify.h.

NoteAlert(); short dialogs.h

NSetPalette(); void palettes.h

NSetTrapAddress(); void osutils.h

numtostring(); void packages.h

NumToString(); void packages.h

ObscureCursor(); void quickdraw.h

OffsetPoly(); void quickdraw.h

OffsetRect(); void quickdraw.h

Calls in alphabetical order F-85

Call Return zype Header file

OffsetRgn(); void quickdraw.h

OpColor(); void quickdraw.h

OpenASD() i FileHandle asd.h

OpenCPort(); void quickdraw.h

opendeskacc(); short desk.h

OpenDeskAcc(); short desk.h

opendriver(); OS Err devices.h

OpenDriver(); OS Err devices.h

OpenPicture(); PicHandle quickdraw.h

OpenPoly () ; PolyHandle quickdraw.h

OpenPort(); void quickdraw.h

openresfile(); short resources.h

OpenResFile(); short resources.h

openrf (); OS Err files.h

OpenRF(); OS Err files.h

openrfperm(); short resources.h

OpenRFPerm(); short resources.h

OpenRgn(); void quickdraw.h

OpenSlot(); OS Err slots.h

OpenWD(); OS Err files.h

OSEventAvail(); Boolean osevents.h

PackBits(); void toolutils.h

PaintArc(); void quickdraw.h

PaintBehind(); void windows.h

PaintOne(); void windows.h

PaintOval(); void quickdraw.h

PaintPoly(); void quickdraw.h

PaintRect(); void quickdraw.h

F-86 Appendix F C Interface Library

Call Return ~ype Header file

PaintRgn(); void quickdraw.h

PaintRoundRect(); void quickdraw.h

Palette2CTab(); void palettes.h

paramtext(); void dialogs.h

ParamText(); void dialogs.h

ParseTable(); Boolean script.h

PBAllocate(); OS Err files.h

PBAllocContig(); OS Err files.h

PBCatMove(); OS Err files.h

PBClose(); OS Err files.h

PBCloseWD(); OS Err files.h

PBControl(); OS Err devices.h

PBCreate(); OS Err files.h

PBDelete(); OS Err files.h

PBDirCreate(); OS Err files.h

PBEject(); OS Err files.h

PBFlushFile(); OS Err files.h

PBFlushVol(); OS Err files.h

PBGetCatinfo(); OS Err files.h

PBGetEOF(); OS Err files.h

PBGetFCBinfo(); OS Err files.h

PBGetFinfo(); OS Err files.h

PBGetFPos(); OS Err files.h

PBGetVInfo(); OS Err files.h

PBGetVol(); OS Err files.h

PBGetWDinfo(); OS Err files.h

PBHCopyFile(); OS Err files.h

PBHCreate(); OS Err files.h

Calls in alphabetical order F-87

Call Return type Header file

PBHDelete(); OS Err files.h

PBHGetDirAccess(); OS Err files.h

PBHGetFinfo(); OS Err files.h

PBHGetLogininfo(); OS Err files.h

PBHGetVInfo(); OS Err files.h

PBHGetVol(); OS Err files.h

PBHGetVolParms(); OS Err files.h

PBHMapID(); OS Err files.h

PBHMapName(); OSErr files.h

PBHMoveRename(); OS Err files.h

PBHOpen (); OS Err files.h

PBHOpenDeny(); OS Err files.h

PBHOpenRF(); OSErr files.h

PBHOpenRFDeny(); OS Err files.h

PBHRename(); OS Err files.h

PBHRstFLock(); OS Err files.h

PBHSetDirAccess(); OSErr files.h

PBHSetFinfo(); OS Err files.h

PBHSetFLock(); OS Err files.h

PBHSetVol(); OS Err files.h

PBKillIO () ; OS Err devices.h

PBLockRange(); OSErr files.h

PBMountVol(); OSErr files.h

PBOffLine(); OS Err files.h

PBOpen (); OS Err files.h

PBOpenRF(); OS Err files.h

PBOpenWD(); OS Err files.h

PBRead(); OS Err files.h

F-88 Appendix F C Interface Library

Call Return type Header file

PBRename(); OS Err files.h

PBRstFLock(); OS Err files.h

PBSetCatinfo(); OS Err files.h

PBSetEOF(); OS Err files.h

PBSetFinfo(); OS Err files.h

PBSetFLock() i OSErr files.h

PBSetFPos(); OS Err files.h

PBSetFVers(); OS Err files.h

PBSetVInfo(); OS Err files.h

PBSetVol() i OS Err files.h

PBStatus(); OS Err devices.h

PBUnlockRange(); OS Err files.h

PBUnmountVol(); OS Err files.h

PBWrite() i OS Err files.h

PenMode(); void quickdraw.h

PenNormal(); void quickdraw.h

PenPat(); void quickdraw.h

PenPixPat(); void quickdraw.h

PenSize(); void quickdraw.h

PicComment(); void quickdraw.h

pinrect(); long windows.h

PinRect(); long windows.h

Pixel2Char(); short script.h

PlotCicon(); void quickdraw.h

Ploticon(); void toolutils.h

PmBackColor(); void palettes.h

PmForeColor(); void palettes.h

PopUpMenuSelect(); long menus.h

Calls in alphabetical order F-89

Call Return type Header file

PortionText(); Fixed script.h

PortSize(); void quickdraw.h

PostEvent(); OS Err osevents.h

PPostEvent(); OS Err osevents.h

PrClose(); void printing.h

PrClose(); void printtraps.h

PrCloseDoc(); void printing.h

PrCloseDoc(); void printtraps.h

PrClosePage(); void printing.h

PrClosePage(); void printtraps.h

PrCt lCall () ; void printing.h

PrCtlCall () ; void printtraps.h

PrDlgMain(); Boolean printing.h

PrDlgMain(); Boolean printtraps.h

PrDrvrClose(); void printing.h

PrDrvrClose(); void printtraps.h

PrDrvrDCE(); Handle printing.h

PrDrvrDCE(); Handle printtraps.h

PrDrvrOpen(); void printing.h

PrDrvrOpen(); void printtraps.h

PrDrvrVers(); short printing.h

PrDrvrVers(); short printtraps.h

PrError(); short printing.h

PrError(); short printtraps.h

PrGeneral(); void printing.h

PrGeneral(); void printtraps.h

Pr irneT irne () ; void tirner.h

PrintDefault(); void printing.h

F-90 Appendix F C Interface Library

Call Return zype Header file

PrintDefault(); void printtraps.h

PrJobDialog(); Boolean printing.h

PrJobDialog(); Boolean printtraps.h

PrJobinit(); TPPrDlg printing.h

PrJobinit(); TPPrDlg printtraps.h

PrJobMerge(); void printing.h

PrJobMerge(); void printtraps.h

PrNoPurge(); void printing.h

PrNoPurge(); void printtraps.h

PrOpen (); void printing.h

PrOpen (); void printtraps.h

PrOpenDoc(); TPPrPort printing.h

PrOpenDoc(); TPPrPort printtraps.h

PrOpenPage(); void printing.h

PrOpenPage(); void printtraps.h

ProtectEntry(); void quickdraw.h

PrPicFile(); void printing.h

PrPicFile(); void printtraps.h

PrPurge(); void printing.h

PrPurge(); void printtraps.h

PrSetError(); void printing.h

PrSetError(); void printtraps.h

PrStlDialog(); Boolean printing.h

PrStlDialog(); Boolean printtraps.h

PrStlinit (); TPPrDlg printing.h

PrStlinit (); TPPrDlg printtraps.h

PrValidate(); Boolean printing.h

PrValidate(); Boolean printtraps.h

Calls in alphabetical order F-91

Call Return type Header file

pt2rect(); void quickdraw.h

Pt2Rect(); void quickdraw.h

ptinrect(); Boolean quickdraw.h

PtinRect(); Boolean quickdraw.h

ptinrgn(); Boolean quickdraw.h

PtinRgn(); Boolean quickdraw.h

PtrAndHand(); OS Err osutils.h

PtrToHand(); OS Err osutils.h

PtrToXHand(); OS Err osutils.h

PtrZone(); THz memory.h

pttoangle(); void quickdraw.h

PtToAngle(); void quickdraw.h

PurgeMem () ; void memory.h

PurgeSpace(); void memory.h

PutScrap(); long scrap.h

QDError(); short quickdraw.h

RamSDClose(); void serial.h

RamSDOpen(); OS Err serial.h

Random (); short quickdraw.h

ReadASD(); long asd.h

ReadDateTime(); OS Err osutils.h

ReadLocation(); void script.h

RealColor(); Boolean quickdraw.h

RealFont(); Boolean fonts.h

ReallocHandle(); void memory.h

RecoverHandle(); Handle memory.h

RectinRgn(); Boolean quickdraw.h

RectRgn(); void quickdraw.h

F-92 Appendix F C Interface Library

Call Return ~ype Header file

ReleaseResource(); void resources.h

relstring(); short osutils.h

RelString(); short osutils.h

Rename (); OS Err files.h

ResError(); short resources.h

ReserveEntry(); void quickdraw.h

ResetAlrtStage(); void dialogs.h

ResrvMem () ; void memory.h

Restart(); void osutils.h

RestoreEntries(); void quickdraw.h

RGB2CMY(); void picker.h

RGB2HSL(); void picker.h

RGB2HSV (); void picker.h

RGBBackColor(); void quickdraw.h

RGBForeColor(); void quickdraw.h

RGetResource(); Handle resources.h

RmveResource(); void resources.h

RmvTime(); void timer.h

RsrcMapEntry(); long resources.h

RsrcZoneinit(); void resources.h

rstfLock(); OS Err files.h

RstFLock(); OS Err files.h

SameProcess OS Err processes.h

SaveEntries(); void quickdraw.h

SaveOld(); void windows.h

SCalcSPointer(); OS Err slots.h

SCalcStep(); OS Err slots.h

ScalePt(); void quickdraw.h

Calls in alphabetical order F-93

Call Return type Header file

SCardChanged(); OS Err slots.h

SCkCardStat(); OS Err slots.h

ScreenRes(); void toolutils.h

ScrollRect(); void quickdraw.h

SDeleteSRTRec() i OS Err slots.h

Secs2Date(); void osutils.h

SectRect(); Boolean quickdraw.h

SectRgn(); void quickdraw.h

SeedCFill () ; void quickdraw.h

SeedFill () ; void quickdraw.h

SeekASD(); long asd.h

SelectWindow(); void windows.h

SelIText(); void dialogs.h

SendBehind(); void windows.h

SerClrBrk(); OS Err serial.h

SerGetBuf (); OS Err serial.h

SerHShake(); OS Err serial.h

SerReset(); OSErr serial.h

SerSetBrk(); OS Err serial.h

SerSetBuf (); OS Err serial.h

SerStatus(); OS Err serial.h

SetA5(); long osutils.h

SetApplBase(); void memory.h

SetApplLimit(); void memory.h

SetCCursor(); void quickdraw.h

SetChooserAlert(); Boolean devices.h

SetClientID(); void quickdraw.h

SetClikLoop(); void textedit.h

F-94 Appendix F C Interface Library

Call Return type Header file

SetClip(); void quickdraw.h

SetCPixel(); void quickdraw.h

SetCRefCon(); void controls.h

setctitle(); void controls.h

SetCTitle(); void controls.h

SetCtlAction(); void controls.h

SetCtlColor(); void controls.h

SetCtlMax(); void controls.h

SetCtlMin(); void controls.h

SetCtlValue(); void controls.h

SetCurrentA5(); long osutils.h

SetCursor(); void quickdraw.h

SetDAFont(); void dialogs.h

SetDateTime(); OS Err osutils.h

SetDeskCPat(); void windows.h

SetDeviceAttribute(); void quickdraw.h

SetDitem () ; void dialogs.h

SetEmptyRgn(); void quickdraw.h

SetEntries(); void quickdraw.h

SetEntryColor(); void palettes.h

SetEntryUsage(); void palettes.h

SetEnvirons(); OS Err script.h

SetEOF(); OS Err files.h

SetEventMask(); void osevents.h

setfinfo(); OS Err files.h

SetFinfo(); OS Err files.h

setflock(); OS Err files.h

SetFLock(); OS Err files.h

Calls in alphabetical order F-95

Call Return type Header file

SetFontLock(); void fonts.h

SetFPos(); OSErr files.h

SetFractEnable(); void fonts.h

SetFrontProcess OS Err processes.h

SetFScaleDisable(); void fonts.h

SetGDevice(); void quickdraw.h

SetGrowZone(); void memory.h

SetHandleSize(); void memory.h

set item (); void menus.h

Setitem(); void menus.h

SetitemCmd(); void menus.h

Setitemicon(); void menus.h

SetitemMark(); void menus.h

SetitemStyle(); void menus.h

setitext(); void dialogs.h

SetIText(); void dialogs.h

SetMCEntries(); void menus.h

SetMCinfo(); void menus.h

SetMenuBar(); void menus.h

SetMenuFlash(); void menus.h

SetOrigin(); void quickdraw.h

SetPalette(); void palettes.h

SetPenState(); void quickdraw.h

SetPort(); void quickdraw.h

SetPortBits(); void quickdraw.h

SetPortPix(); void quickdraw.h

SetPt(); void quickdraw.h

SetPtrSize(); void memory.h

F-96 Appendix F C Interface Library

Call Return type Header file

SetRect(); void quickdraw.h

SetRectRgn(); void quickdraw.h

SetResAttrs(); void resources.h

SetResFileAttrs(); void resources.h

setresinfo(); void resources.h

SetResinfo(); void resources.h

SetResLoad(); void resources.h

SetResPurge(); void resources.h

SetScript(); OS Err script.h

SetStdCProcs(); void quickdraw.h

SetStdProcs(); void quickdraw.h

setstring(); void toolutils.h

SetString(); void toolutils.h

SetStylHandle(); void textedit.h

SetStylScrap(); void textedit.h

SetSysJust(); void script.h

SetTagBuffer(); OS Err disks.h

Set Time () ; void osutils.h

SetTrapAddress(); void osutils.h

SetupAIFFHeader OS Err soundinput.h

SetupSndHeader OS Err soundinput.h

setvol(); OS Err files.h

SetVol(); OS Err files.h

SetWinColor(); void windows.h

SetWindowPic(); void windows.h

SetWordBreak(); void textedit.h

SetWRefCon(); void windows.h

setwtitle(); void windows.h

Calls in alphabetical order F-97

Call Return type Header file

SetWTi tle () ; void windows.h

SetZone(); void rnernory.h

SExec(); OS Err slots.h

sfgetfile(); void packages.h

SFGetFile() i void packages.h

SFindBigDevBase(); OS Err slots.h

SFindDevBase(); OS Err slots.h

SFindSinfoRecPtr(); OS Err slots.h

SFindSRsrcPtr(); OS Err slots.h

SFindStruct(); OS Err slots.h

sfpgetfile(); void packages.h

SFPGetFile(); void packages.h

sfpputfile(); void packages.h

SFPPutFile() i void packages.h

sfputfile(); void packages.h

SFPutFile() i void packages.h

SGetBlock(); OS Err slots.h

SGetCString(); OS Err slots.h

SGetDriver(); OS Err slots.h

SGetsRsrc(); OSErr slots.h

SGetsRsrcinfo(); OS Err slots.h

SGetTypesRsrc(); OS Err slots.h

shieldcursor(); void toolutils.h

ShieldCursor(); void toolutils.h

ShowControl(); void controls.h

ShowCursor(); void quickdraw.h

ShowDitern(); void dialogs.h

ShowHide(); void windows.h

F-98 Appendix F C Interface Library

Call Return type Header file

ShowPen(); void quickdraw.h

ShowWindow(); void windows.h

ShutDwninstall(); void shutdown.h

ShutDwnRemove(); void shutdown.h

SinitPRAMRecs(); OS Err slots.h

SinitSRsrcTable(); OS Err slots.h

SinsertSRTRec(); OS Err slots.h

Sintinstall(); OS Err slots.h

SintRemove(); OS Err slots.h

SizeControl(); void controls.h

SizeResource(); long resources.h

SizeWindow(); void windows.h

SlopeFromAngle(); Fixed toolutils.h

SlotVInstall(); OS Err retrace.h

SlotVRemove(); OS Err retrace.h

Smal1Fract2Fix(); Fixed picker.h

SndRecord OS Err soundinput.h

SndRecordToFile OS Err soundinput.h

SNextSRsrc(); OS Err slots.h

SNextTypeSRsrc(); OS Err slots.h

SOffsetData(); OS Err slots.h

SpaceExtra(); void quickdraw.h

SPBBytesToMilliseconds OS Err soundinput.h

SPBCloseDevice OS Err soundinput.h

SPBGetDefaultDevice OS Err soundinputpriv.h

SPBGetDeviceinf o OS Err soundinput.h

SPBGetindexedDevice OS Err soundinput.h

SPBGetRecordingStatus OS Err soundinput.h

Calls in alphabetical order F-99

Call Return type Header file

SPBMillisecondsToBytes OSErr soundinput.h

SPBOpenDevice OS Err soundinput.h

SPBPauseRecording OS Err soundinput.h

SPBRecord OSErr soundinput.h

SPBRecordToFile OS Err soundinput.h

SPBResurneRecording OS Err soundinput.h

SPBSetDefaultDevice OS Err soundinputpriv.h

SPBSetDeviceinf o OS Err soundinput.h

SPBSigninDevice OS Err soundinput.h

SPBSignOutDevice OS Err soundinput.h

SPBStopRecording OS Err soundinput.h

SPrirnaryinit(); OS Err slots.h

SPtrToSlot(); OS Err slots.h

SPutPRAMRec(); OS Err slots.h

SReadByte(); OS Err slots.h

SReadDrvrNarne(); OS Err slots.h

SReadFHeader(); OS Err slots.h

SReadinfo(); OS Err slots.h

SReadLong(); OS Err slots.h

SReadPBSize(); OS Err slots.h

SReadPRAMRec(); OS Err slots.h

SReadStruct(); OS Err slots.h

SReadWord(); OS Err slots.h

SRsrcinfo(); OS Err slots.h

SSearchSRT(); OS Err slots.h

SSetsRsrcState(); OS Err slots.h

StackSpace(); long rnernory.h

Status(); OS Err devices.h

F-100 Appendix F C Interface Library

Call Return ~ype Header file

StdArc(); void quickdraw.h

StdBits(); void quickdraw.h

StdCorrnnent(); void quickdraw.h

StdGetPic(); void quickdraw.h

stdline(); void quickdraw.h

StdLine(); void quickdraw.h

StdOval(); void quickdraw.h

StdPoly (); void quickdraw.h

StdPutPic(); void quickdraw.h

StdRect(); void quickdraw.h

StdRgn (); void quickdraw.h

StdRRect(); void quickdraw.h

stdtext(); void quickdraw.h

StdText(); void quickdraw.h

StdTxMeas(); short quickdraw.h

StillDown(); Boolean events.h

StopAlert(); short dialogs.h

Str2Form(); FormatStatus script.h

String2Date(); String2DateStatus script.h

String2Time(); String2DateStatus script.h

stringtonum(); void packages.h

StringToNum(); void packages.h

stringwidth(); short quickdraw.h

StringWidth(); short quickdraw.h

StripAddress(); Ptr memory.h

stuf fhex () ; void quickdraw.h

Stuf fHex () ; void quickdraw.h

subpt(); void quickdraw.h

Calls in alphabetical order F-101

Call Return type Header file

SubPt(); void quickdraw.h

SUpdateSRT(); OSErr slots.h

SVersion(); OS Err slots.h

SwapMMUMode(); void osutils.h

SysBeep(); void osutils.h

SysEnvirons(); OSErr osutils.h

SysError(); void errors.h

SystemClick(); void desk.h

SystemEdit(); Boolean desk.h

SystemEvent(); Boolean desk.h

SystemMenu(); void desk.h

SystemTask(); void desk.h

SystemZone(); THz memory.h

TEActivate(); void textedit.h

TEAutoView () ; void textedit.h

TECalText(); void textedit.h

teclick(); void textedit.h

TEClick(); void textedit.h

TEContinuousStyle(); Boolean textedit.h

TECopy (); void textedit.h

TECustomHook(); void textedit.h

TECut(); void textedit.h

TEDeactivate(); void textedit.h

TEDelete(); void textedit.h

TEDispose(); void textedit.h

TEFromScrap(); OSErr textedit.h

TEGetHeight(); long textedit.h

TEGetOffset(); short textedit.h

F-102 Appendix F C Interface Library

Call Return ~ype Header file

TEGetPoint(); struct Point textedit.h

TEGetScrapLen(); long textedit.h

TEGetStyle(); void textedit.h

TEGetText(); CharsHandle textedit.h

TEidle(); void textedit.h

TEinit(); void textedit.h

TEinsert(); void textedit.h

TEKey (); void textedit.h

TENew(); TEHandle textedit.h

TENumStyles(); long textedit.h

TEPaste(); void textedit.h

TEPinScroll(); void textedit.h

TEReplaceStyle(); void textedit.h

TEScrapHandle(); Handle textedit.h

TEScroll(); void textedit.h

TESel View () ; void textedit.h

TESetJust(); void textedit.h

TESetScrapLen(); void textedit.h

TESetSelect(); void textedit.h

TESetStyle(); void textedit.h

TESetText(); void textedit.h

testcontrol(); short controls.h

TestControl(); short controls.h

TestDeviceAttribute(); Boolean quickdraw.h

TEStylinsert(); void textedit.h

TEStylNew () ; TEHandle textedit.h

TEStylPaste() i void textedit.h

TEToScrap(); OS Err textedit.h

Calls in alphabetical order F-103

Call Return type Header file

TEUpdate(); void textedit.h

TextBox(); void textedit.h

TextFace(); void quickdraw.h

TextFont(); void quickdraw.h

TextMode(); void quickdraw.h

TextSize(); void quickdraw.h

TextWidth(); short quickdraw.h

TickCount(); unsigned long events.h

ToggleDate(); ToggleResults script.h

Tokenize(); TokenResult script.h

TopMem(); Ptr memory.h

trackbox(); Boolean windows.h

TrackBox(); Boolean windows.h

trackcontrol(); short controls.h

TrackControl(); short controls.h

trackcontrol(); short controls.h

TrackGoAway(); Boolean windows.h

trackcontrol(); short controls.h

Transliterate(); OS Err script.h

UnholdMemory(); OS Err vmcalls.h

UnionRect(); void quickdraw.h

UnionRgn(); void quickdraw.h

UniquelID(); short resources.h

UniqueID(); short resources.h

UnloadScrap(); long scrap.h

UnloadSeg(); void segload.h

UnlockMemory(); OS Err vmcalls.h

unmountvol(); OS Err files.h

F-104 Appendix F C Interface Library

Call Return type Header file

UnmountVol(); OS Err files.h

UnpackBits(); void toolutils.h

UpdateResFile(); void resources.h

UpdtControl(); void controls.h

UpdtDialog(); void dialogs.h

uprstring(); void osutils.h

UprString(); void osutils.h

UprText(); void script.h

UseResFile(); void resources.h

ValidDate(); short script.h

ValidRect(); void windows.h

ValidRgn(); void windows.h

VInstall(); OS Err retrace.h

VisibleLength(); long script.h

VRemove(); OS Err retrace.h

WaitMouseUp(); Boolean events.h

WaitNextEvent(); Boolean events.h

WakeUpProcess OS Err processes.h

WriteASD(); long asd.h

WriteLocation(); void script.h

Wri teParam () ; OS Err osutils.h

WriteResource(); void resources.h

XorRgn(); void quickdraw.h

ZeroScrap(); long scrap.h

Zoomwindow(); void windows.h

Calls in alphabetical order F-105

Index

32-bit addressing 4-3
32-Bit QuickDraw 5-4

C header file for F-5

A
accessing resource data E-33
access privileges 6-5
alarm routine 5-28, 5-30
Alias Manager 5-5
align type E-25 to E-26
A-line traps

and UNIX device drivers C-4
C header file for F-30
handling C-4

Apple Desktop Bus 5-5
AppleDouble-format files

filename conventions for 6-20
magic number for 6-19
maximizing efficiency of 6-19
overview of 6-9 to 6-10, 6-19

Apple Eve.nt Manager 5-5
AppleSingle-fonnat files 6-16 to 6-18

ent1y ID field 6-17
filename conventions for 6-20
header contents 6-16 to 6-18
home file system field 6-17
length field 6-18
magic number for 6-17

maximizing efficiency of 6-18
number of entries field 6-17
offset field 6-18
overview of 6-9 to 6-10
version number for 6-17

Apple Sound Chip (ASC), systems
containing 5-23

AppleTalk (communications software) 1-2
AppleTalk Manager 5-5
application development

environments 2-2
application portability 4-7
array type E-27
ASC, systems containing 5-23
AUXDispatch trap 3-4

C header file for F-17
A/UX files. See also files

file structure 6-9
simple A/UX format 6-13

A/UX Finder
developing applications for 2-4
entry ID value for "Finder info" field

6-17 to 6-19
file information and Segment

Loader 5-19
A/UX Release 3.0

connectivity support 1-)
Finder user interface 1-3

increased manager support 1-4
new features in 1-3 to 1-5

A/UX system calls 3-8
A/UX Toolbox

B

access to Macintosh ROM routines 1-2
code compatibility provided by 1-2
configuration requirements 1-2
contents 1-7 to 1-8
environment variables 3-6 to 3-7
initialization of C-2 to C-3
overview of functions in 1-8
utilities 3-2 to 3-3
variables 3-3

\ (backslash), escape character in
resource descriptions E-50

Berkeley UNIX file system (UFS) 1-4,
5-11

Binary-Decimal Conversion Package 5-6
C header file for F-36

binary files, transferring to A/UX 6-10
bi tstring type E-22
Boolean type E-23
l l (braces) in type declarations E-31
byte type E-22

In-1

c
C and Pascal language conventions

compared C-7 to C-10
case-sensitive filenames 5-17
C compilers 4-10
Chain routine 5-20
changesize utility 3-3
change statement E-9
character sets 4-9
character type E-23
C header files F-2 to F-4. See also

i11dil'id11a! libraries
'cicn' resource E-37
C interface libraries F-2 to F-4
clkWrEr error 5-29
Color Manager 5-6
Color Picker Package 5-6

C header file for F-14
Color QuickDraw 5-4

C header file for F-5
, (comma), element separator in

arrays E-28
COMMA:\D-CONTROL-E 3-12
COMMA\'D-CONTROL-I 3-12
commands, resource compilation

derez E-3, E-6
echo E-9
escaping in derez E-51
rez E-2 to E-51

comments
ent1y ID value for 6-17
in resource descriptions E-6

compatibility between UNIX and
Macintosh OS 4-2 to 4-11

compilers
c 4-10
rez E-2 to E-51

Control Manager 5-6
C header file for F-15

conversions between C and Pascal 4-11
converting between file types 3-3
cstring type E-24
CurPageOpt ion (Segment

Loader) 5-20

In-2 Index

D
Data Access Manager 5-7
data files, filename conventions for

6-9, 6-20
data fork, entry ID value for 6-17
data statement E-10
data-type statement E-21
date command 5-29
dbx debugger 3-13
debuggers 1-6

dbx 3-13
MacsBug 3-11 to 3-13, 5-27

Deferred Task Manager 5-7
C header file for F-17

define directive E-40
Delay utility 5-28, 5-29
delete statement E-11
derez resource decompiler E-2

to E-51
derez utility 3-3
Desk (Accessory) Manager 5-7

C header file for F-18
Desktop Manager 5-7
developing applications

creating resource files 2-9, E-4
resource files 2-9 to 2-10
summary 2-6 to 2-10
writing source code 2-7 to 2-8

device drivers 4-6, 5-7 to 5-8
and A-line traps C-4

Device Manager 5-7 tn "-R

C header file for F-18
Dialog Manager 5-8

C header file for F-19
Disk Driver 5-9

C header file for F-21
Disk Initialization Package 5-9

C header file for F-21, F-36
$$ (dollar-sign) functions E-33 to E-39,

E-46 to E-49
dontForeground variable 3-3
DoVBLTask function 5-30

E
Edition Manager 5-9
entry ID field (AppleSingle-format

files) 6-17
escape characters in resource descriptions

\ (backslash) E-50
a (OPT10N-D) E-9

Event Manager, Operating System 5-9
to 5-10

C header file for F-22
Event Manager, Toolbox 5-10

C header file for F-22
events, monitoring 3-6
examples of resource code 2-10 to 2-11

numeric escape sequences E-51
resource definition E-17
resource description file E-6
resource type statement E-30
using labels E-36 to E-39

expressions in resource descriptions E-44

F
fcnvt utility 3-3, 6-13
''file info" field

entry ID value for 6-17
structure of entries in 6-18

File Manager 5-11
C header file for F-23

filenames
AppleDouble file conventions 6-20
AppleSingle file conventions 6-20
case-sensitivity of 5-17, 6-4
compatibility problems for blanks

embedded in 6-4
overview of 6-3 to 6-4

file permissions 6-4 to 6-5
files

Apple Double-format 6-9 to 6-10,
6-19, 6-20

AppleSingle-format 6-9 to 6-10, 6-16
to 6-18, 6-20

A/UX 6-9 to 6-10, 6-13

formatting strategies of A/UX
Toolbox 6-14

Macintosh OS file structure 6-8 to 6-9
resource 5-17, E-5
simple A/UX format 6-13
standard type declaration for E-3

file systems
access privileges 6-5
automatic conversion between UNIX

and Macintosh OS files 6-15
defined 6-2
extended file attributes 6-6
file permissions 6-4 to 6-5
foreign file system defined 6-14
home file system defined 6-14
implementation in A/UX and

Macintosh OS 6-2
mounting and unmounting floppy

disks 6-7 to 6-8
overall organization (A/UX) 6-2 to 6-3
text files 6-6 to 6-7

fill type E-25
Finder. See A/UX Finder
Floating-Point Arithmetic Package 5-11

C header file for F-36
floppy disks, mounting 6-15
folders, file permissions for 6-5 to 6-6
Font Manager 5-12

C header file for F-28
foreign file system, defined 6-16
functions in resource descriptions E-46

G
gestaltAUXVersion 3-9
Gestalt Manager 5-12 to 5-13
GetDateTime utility 5-29
GetNextEvent routine 2-4, 5-10
global variables, Macintosh C-6, D-1

to D-7
glue routines C-6
Graphics Devices Manager 5-13

H
hardware access 4-6 to 4-7
header files (AppleDouble-format)

filename conventions for 6-20
magic number in 6-19
overview of 6-9 to 6-10, 6-19

Help Manager 5-14
HFS 1-4
hierarchical file system (HFS) 1-4
home file system

I

defined 6-16
field for 6-17

icons, entry ID value for 6-17

limitations of E-35
language conventions, differences in 4-11
Launch routine 5-20
launch utility 3-2
libraries implemented in A/UX Toolbox

5-2 to 5-4
List Manager Package 5-14

available through Package
Manager 5-15

C header file for F-29
literals in resource descriptions E-43
LoadSeg routine 5-20
logout 5-22
longint type E-22
low-memory global variables C-6, D-1

to D-7
identifiers in preprocessor directives E-39 M
ifdef directive E-41
i fnde f directive E-41
if-then-else directives E-41
include directive E-40
include statement E-12
integer type E-22
international character support 4-9
International Utilities Package 5-14

C header file for F-36

J
journaling 5-10
jump table F-30

K
kermi t utility 6-13
KeyRepThresh global variable,

compatibility problems with 5-1 O
KeyThresh global variable,

compatibility problems with 5-1 O

L
labels E-32 to E-39

in arrays E-34
built-in functions for E-33

Macintosh events, monitoring 3-6
Macintosh file system (MFS) 1-4
Macintosh OS

file structure 6-8 to 6-9
interface with A/UX Toolbox 1-8
utilities implemented in A/UX

Toolbox 5-28 to 5-29
Macintosh traps F-30
/mac/lib/rincludes clirecto1y E-3
MacsBug debugger 3-11 to 3-13, 5-27
magic number

for AppleDouble-format files 6-19
for AppleSingle-format files 6-17

Memory Manager 5-14
C header files for F-31
importance of using 4-3

Menu Manager 5-15
C header file for F-34

MFS 1-4

N
Network File System (NFS) 1-4
newline character 4-7 to 4-8

compatibility problems with 5-8
NFS 1-4
noCD variable 3-3

Index In-3

Notification Manager 5-15
C header file for F-36

"not in ROM" routines C-6
(number sign) in preprocessor

directives E-39
numbers in resource descriptions E-43
numeric escape sequences in resource

descriptions E-51
numeric types E-21

0
Operating System Utilities 5-28 to 5-29

C header file for F-57
operators in resource descriptions E-45

p
Package Manager 5-15

C header file for F-36
Palette Manager 5-15

C header file for F-38
Pascal, passing small structures in C-9
Pascal and C language conventions

compared C-7 to C-10
Pascal function type 4-10
patched Toolbox calls 5-31 to 5-33
pathnames 6-3
permissions, file 6-4 to 6-5
pi ct. r file E-3
Picture Utilities Package 5-16
point type E-25
(pound sign) in preprocessor

directives E-39
Power Manager 5-16
'ppat' resource E-36

PPC Toolbox 5-16
PPostEvent 5-10, 5-32, 5-34
preprocessor directives E-6, E-39 to E-42

for assigning variables E-40
for conditional processing E-41
include E-40
print E-42

print directive E-42

In-4 Index

Printing Manager 5-16
C header file for F-39

print traps F-40
privileged microprocessor instructions

4-4 to 4-6
privileges, access 6-5
privileges, file 6-5
Process Manager 5-16

and desk accessories 5-7
C header file for F-41

ProcPtr parameters 5-8
pstring type E-24

Q
QuickDraw 5-4

R
Raw Sound Driver 5·25 to 5-26
ReadDateTirne utility 5-29
read statement E-15
real name, entry ID value for 6-17
rect type E-25
resource compilation using rez E-51
resource description files E-2 to E-7

comments in E-6
preprocessor directives in E-6, E-39

to E-42
structure of E-5
type declarations in E-5

resource description statements E-7
to E-39

align type E-25
array type E-27
Boolean type E-23
change statement E-9
character type E-23
data statement E-10
data-type statement E-21
delete statement E-11
expressions in E-44
fill type E-25
functions in E-46
include statement E-12

literals in E-43
numbers in E-43
numeric escape sequences in E-51
numeric types E-22
operators in E-44
point type E-25
read statement E-15
rect type E-25
resource statement E-16
separators in arrays E-28
special terms in E-8
string type E-24
switch statement E-29
syntax of E-7 to E-8, E-43 to E-51
terminators in arrays E-28
type statement E-20
variables in E-46

resource fork, entry ID value for 6-17
Resource Manager 5-17 to 5-18

C header files for F-42
differences between

environments 5-17
resource statement E-16
resources (Macintosh) 2-9. See also

examples of resource code
attributes of E-13
data statements in E-16 to E-17
preprocessor directives in E-39 to E-42
symbol definitions in E-31
symbolic names in E-19
type declaration files for E-3
type declarations in E-5

RestoreA5 routine 5-29
rez resource compiler E-2 to E-51. See

also resource description files;
resource description statements

rez utility 3-3
ROM definitions F-17

s
sample programs, Toolbox 2-10 to 2-11
SANE (Standard Apple Numeric

Environment) 5-11

Scrap Manager 5-18
C header file for F-45

Script Manager 5-18
C header file for F-45

scripttypes. r file E-3
SCSI Manager 5-18 to 5-19
search paths, compatibility issues

with ~-17
Segment Loader 5-19 to 5-20

C header file for F-48
CurPageOption setting 5-20
routines different in A/UX 5-20

select system call 3-6
: (semicolon), element terminator in

arrays E-28
separators in arrays E-28
Serial Driver 5-20 to 5-22

C header file for F-49
differences in A/UX 5-20 to 5-21

SetDateTime utility 5-29
setfile utility 3-2
set it ir:ier routine 5-28, 5-30
SetUpA5 routine 5-29
Shutdown Manager 5-22

C header file for F-49
SIGALRM signal 5-28, 5-30
'SIZE' resource 2-4
sleep routine 5-28, 5-30
Slot Manager 5-22 to 5-23

C header file for F-50
declarations F-17

Sound Manager 5-23 to 5-26
C header files for F-52

special terms in resource description
statements E-8

Standard Apple Numeric Environment
(SANE) 5-11

Standard File Package 5-27
C header file for F-36

startmac utility 3-2
startmac24 utility 3-2
stime call 5-29

string type E-24
strings

converting between Pascal and C F-54
in resource descriptions E-49
types of E-23

StripAddress routine 5-28
structures, passing C-9
SVFS 1-4
switch statement E-29
symbolic names E-19

of resource description statements E-7
syntax of resource description statements

E-7toE-8
SysBeep routine 5-28
SysError system call 5-27
system calls 3-8
System Error Handler 5-27

C header file for F-54
System V file system (SVFS) 1-4
sys types. r file E-3

T
TBCORE variable 3-7
TBRAM variable 3-7
TB SYSTEM variable 3-7
TBTRAP variable 3-7
TBWARN variable 3-7
terminators in arrays E-28
TextEdit 5-27

C header file for F-54
32-bit addressing 4-3
32-Bit QuickDraw 5-4

C header file for F-5
Time Manager 5-28

C header file for F-56
time operations 4-7, 5-29
Toolbox Utilities 5-29

C header file for F-58
Transcendental Functions Package 5-11

to 5-12
C header file for F-36

type statement E-20
types. r file E-3

u
UFS 1-4, 5-11
uinterO device driver C-3
ui_setselect call 2-5 to 2-6
undef directive E-40
UnloadSeg routine 5-20
unsupported Toolbox calls 5-34
user-interface device driver C-2
utilities, Macintosh 5-28

Delay 5-28
fcnvt 6-13
kermit 6-13

Utilities, Operating System 5-28 to 5-29
C header file for F-57

Utilities, Toolbox 5-29
C header file for F-58

v
variables, A/UX Toolbox 3-3
variables in resource descriptions E-46
version number, for AppleSingle-format

files 6-17
Vertical Retrace Manager 5-29

C header file for F-60
Video Driver

C header file for F-60
virtual memory, limits 4-9

W,X,Y,Z
Wai tNextEvent routine 2-4 to 2-5

using select after 2-5
Window Manager 5-30

C header file for F-61
'WIND' resource type, example E-18
wstring type E-24

Index In-5

The Apple Publishing System

AIUX Toolbox: Macintosh ROM Inteif ace was written,
edited, and composed on a desktop publishing system
using Apple Macintosh computers, an AppleTalk
network system, Microsoft Word, and QuarkXPress. Line
art was created with Adobe Illustrator. Proof pages were
printed on Apple LaserWriter printers. Final pages were
output directly to 70-mm film on an Electrocomp 2000
Electron Beam Recorder. Postscript, the LaserWriter
page-description language, was developed by Adobe
Systems Incorporated.

Text and display type are Apple's corporate font, a
condensed version of ITC Garamond®. Bullets are ITC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier, a fixed-width font.

Writer: Tom Berry
Developmental Editor: Paul Dreyfus and Silvio Orsino
Design Director: Lisa Mirski
Art Director: Joyce Zavarro
Production Editor: Debbie McDaniel

Special thanks to Winston Hendrickson, Michael
Hinkson, and Kelly King.

Additional thanks to Eric Castle, Tim Dierks, Jim Mullin,
and Kent Sandvik.

	00-01-i
	00-02-ii
	00-03-iii
	00-05-v
	00-06-vi
	00-07-vii
	00-08-viii
	00-09-ix
	00-10-x
	00-11-xi
	00-13-xiii
	00-14-xiv
	00-19-xix
	00-20-xx
	00-21-xxi
	00-25-xv
	00-26-xvi
	00-27-xvii
	00-28-xviii
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-001
	E-002
	E-003
	E-004
	E-005
	E-006
	E-007
	E-008
	E-009
	E-010
	E-011
	E-012
	E-013
	E-014
	E-015
	E-016
	E-017
	E-018
	E-019
	E-020
	E-021
	E-022
	E-023
	E-024
	E-025
	E-026
	E-027
	E-028
	E-029
	E-030
	E-031
	E-032
	E-033
	E-034
	E-035
	E-036
	E-037
	E-038
	E-039
	E-040
	E-041
	E-042
	E-043
	E-044
	E-045
	E-046
	E-047
	E-048
	E-049
	E-050
	E-051
	F-001
	F-002
	F-003
	F-004
	F-005
	F-006
	F-007
	F-008
	F-009
	F-010
	F-011
	F-012
	F-013
	F-014
	F-015
	F-016
	F-017
	F-018
	F-019
	F-020
	F-021
	F-022
	F-023
	F-024
	F-025
	F-026
	F-027
	F-028
	F-029
	F-030
	F-031
	F-032
	F-033
	F-034
	F-035
	F-036
	F-037
	F-038
	F-039
	F-040
	F-041
	F-042
	F-043
	F-044
	F-045
	F-046
	F-047
	F-048
	F-049
	F-050
	F-051
	F-052
	F-053
	F-054
	F-055
	F-056
	F-057
	F-058
	F-059
	F-060
	F-061
	F-062
	F-063
	F-064
	F-065
	F-066
	F-067
	F-068
	F-069
	F-070
	F-071
	F-072
	F-073
	F-074
	F-075
	F-076
	F-077
	F-078
	F-079
	F-080
	F-081
	F-082
	F-083
	F-084
	F-085
	F-086
	F-087
	F-088
	F-089
	F-090
	F-091
	F-092
	F-093
	F-094
	F-095
	F-096
	F-097
	F-098
	F-099
	F-100
	F-101
	F-102
	F-103
	F-104
	F-105
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06

