€. Apples A/UX. Programming
Languages and Tools,
Volume 2

Copyright

This material contains trade secrets and
confidential and proprietary information of
Apple Computer, Inc., and UniSoft Corpora-
tion. Use of this copyright notice is precau-
tionary only and does not imply publication.
Copyright © 1985, 1986, 1987, Apple Com-
puter, Inc., and UniSoft Corporation. All
rights reserved. Portions of this document
have been previously copyrighted by AT&T
Information Systems and the Regents of the
University of California and are reproduced
with permission. Under the copyright laws,
this manual or the software may not be
copied, in whole or part, without written con-
sent of Apple or UniSoft, except in the normal
use of the software or to make a backup copy
of the software. The same proprietary and
copyright notices must be affixed to any per-
mitted copies as were affixed to the original.
This exception does not allow copies to be
made for others, whether or not sold, but all
of the material purchased (with all backup
copies) may be sold, given, or loaned to
another person. Under the law, copying
includes translating into another language or
format. You may use the software on any
computer owned by you, but extra copies can-
not be made for this purpose.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, ImageWriter, Laser-
Writer, and Macintosh are registered trade-
marks of Apple Computer, Inc.

A/UX is a trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T
Information Systems.

Limited Warranty on Media and
Replacement

If you discover physical defects in the manu-
als distributed with an Apple product or in the
media on which a software product is distri-
buted, Apple will replace the media or manu-
als at no charge to you, provided you return
the item to be replaced with proof of purchase
to Apple or an authorized Apple dealer during
the 90-day period after you purchased the
software. In addition, Apple will replace dam-
aged software media and manuals for as long
as the software product is included in Apple’s
Media Exchange Program. While not an
upgrade or update method, this program
offers additional protection for up to two
years or more from the date of your original
purchase. See your authorized Apple dealer
for program coverage and details. In some
countries the replacement period may be dif-
ferent; check with your authorized Apple
dealer.

ALL IMPLIED WARRANTIES ON THE
MEDIA AND MANUALS, INCLUDING
IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIM-
ITED IN DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE ORI-
GINAL RETAIL PURCHASE OF THIS
PRODUCT.

Even though Apple has tested the software
and reviewed the documentation, APPLE
AND ITS SOFTWARE SUPPLIER MAKE
NO WARRANTIES OR REPRESENTA-
TIONS, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFOR-
MANCE, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PUR-
POSE. AS A RESULT, THIS SOFTWARE

IS SOLD AS IS, AND YOU THE PUR-
CHASER ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND PER-
FORMANCE.

IN NO EVENT WILL APPLE OR ITS
SOFTWARE SUPPLIER BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the
possibility of such damages. In particular,
Apple and its software supplier shall have no
liability for any programs or data stored in or
used with Apple products, including the costs
of recovering such programs or data.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is author-
ized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or lim-
itation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply
to you. This warranty gives you specific legal
rights, and you may also have other rights
which vary from state to state.

A/UX Programming Languages and Tools

Volume 2

Contents

Preface
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Appendix A

make Reference
SCCS Reference
awk Reference
lex Reference
yacc Reference
be Reference

dc Reference

m4 Reference
curses Reference
Other Programming Tools
Additional Reading

Preface

Conventions Used in This Manual

Throughout the A/UX manuals, words that must be typed exactly as
shown or that would actually appear on the screen are in Courier
type. Words that you must replace with actual values appear in italics
(for example, user-name might have an actual value of joe). Key
names appear in CAPS (for example, RETURN). Special terms are in
bold type when they are introduced; many of these terms are also
defined in the glossary in the A/UX System Overview.

Syntax notation
All A/UX manuals use the following conventions to represent
command syntax. A typical A/UX command has the form

command [flag-option] [argument]. ..
where:
command Command name (the name of an executable file).
flag-option One or more flag options. Historically, flag options
have the form
~[opt...]

where opt is a letter representing an option. The
form of flag options varies from program to
program. Note that with respect to flag options, the
notation

[-al[-b][-c]

means you can select one or more letters from the
list enclosed in brackets. If you select more than one
letter you use only one hyphen, for example, —ab.

argument Represents an argument to the command, in this
context usually a filename or symbols representing
one or more filenames.

(1

Courier type

italics

Surround an optional item.

Follows an argument that may be repeated any
number of times.

anywhere in the syntax diagram indicates that
characters must be typed literally as shown.

for an argument name indicates that a value must be
supplied for that argument.

Other conventions used in this manual are:

<CR>

A

X

cmd(sect)

indicates that the RETURN key must be pressed.

An abbreviation for CONTROL-x, where x may be
any key.

A cross-reference to an A/UX reference manual.
cmd is the name of a command, program, or other
facility, and sect is the section number where the
entry resides. For example, cat(1).

Chapter 16
make Reference

Contents

1. make: a file production tool

2. Using make . .
2.1 Writinga makeﬁle
2.2 make command syntax

2.2.1 Flag options
2.2.2 Using make on 1nd1v1dual ﬁles

3. The description file

3.1

Makefile entries

3.1.1 Targets vs. rules

3.1.2 Fake targets

3.1.3 Dependency statements
3.1.4 Commands .

3.2 Comments

33
34

3.5

include lines

Macro definitions .

3.4.1 Internal macros

3.4.2 Dynamic dependency parameters

Options .

3.5.1 Suppressing pnntmg of commands .

3.5.2 Ignoring errors .

3.5.3 Combining commands

3.5.4 Default commands

3.5.5 Saving files . .
3.5.6 Use of selected flag opuons .

4. Suffixes and rules

4.1
42

Suffixes . .
Transformation rules . .
4.2.1 The default macro settings

O OOI~ITAANA NN HARDND = =

4.3 Changing default suffixes and rules
4.3.1 The default suffix list .
4.3.2 The default rules

5. Operation

5.1 Environment vanables

5.2 Precedence .

5.3 Archive libraries

5.4 SCCS files
5.4.1 SCCS filename preﬁxes
54.2 SCCS filename suffixes
5.4.3 SCCS transformation rules
5.4.4 SCCS makefiles

6. Advanced topics . .
6.1 Walking the directory trcc
6.2 The make predecessor tree .
6.3 The makefile as shell script .
6.3.1 Unintended targets
6.3.2 Mnemonic targets .
6.3.3 Macro translation .
6.4 A warning for system admmlstrators

Figures

Figure 16-1. A simple makefile

Figure 16-2. A makefile with multiple objects and defs.h
file

Figure 16-3. Sample listing of default rules file
Figure 16-4. Replacing a default rule

Tables

Table 16-1. Default suffix list
Table 16-2. Macro names and default compilers .

25
25
25

26
26
27
29
32
32
32
32
33

33
33
35
36
36
36
37
38

21

26

19
24

Chapter 16

make Reference

1. make: a file production tool

The make program automates the production of related sets of files. It
simplifies the task of administering libraries, functions, related source
and object files, and so on, that must reflect a change when you update
one file in the set. Although make is normally used to maintain
program code, it can also be used for other batch data processing
activities (for example, make is often used to produce technical
manuals with t ro£ £).

make keeps track of program file dependencies; when you change one
part of a program, make recompiles related files with a minimum
amount of effort. The required information is maintained by the make
program itself (which has built-in ‘‘rules’’ for recompilation), by using
certain system information such as the timestamp on the files, and by
the description of operations kept in a file called the “‘description file’’
or ‘‘makefile.”” Once you have set up a makefile for a large project,
make keeps track of your files for you and frees you to concentrate on
programming or other tasks.

2. Using make
The simplest use of make is

make filel

where a file named £ilel . c resides in the current directory.
filel.c can #include other files. This command causes make to
find £ilel. c in the local directory and issue the proper command to
compile itinto filel.

Note: If £ilel.c has the same filename prefix (the same
filename without the . c suffix) as another file, make may
compile that file instead. If, for example, there is a more recent
filel.1 file, it is compiled instead, and filel.c is

make Reference 16-1

overwritten in the process. If these files are not different
incarnations of the same program, losing the . c file could be
quite dangerous.

As long as only one file is involved and only a standard compilation is
required, you do not need to create a makefile to make your files.

If, however, your program is spread over multiple files, you do need to
create a makefile, which is a control file containing the filenames, a
description of their interrelations, and actions to be performed on them.
When it does not have enough to go on, make looks in the current
directory for a file named makefile (or Makefile) that contains
the necessary administrative information. In general, you must put an
entry in the makefile for any file that has a nonstandard compilation
procedure.

2.1 Writing a makefile

To write a makefile, you must determine the following:
o the target filename (see below)
« filenames of related compilation units (files)
« file dependencies (see below)
o related libraries

o the command that will produce the target (including options for
the programs to be run)

Targets are filenames, or placeholders for them, that are meant to be
compiled.

To the make program, the specific meaning of dependency is as
follows: filel depends on file2 only if filel needs to be recompiled
whenever file2 is changed. For example, if file x . ¢ contains the line

#include "defs.h"

the object file x . o depends on defs .h. If defs.h is changed, the
x . o file must be remade by compiling x . c. Note that the x.c
(source) file does not depend on defs . h, because it does not need to
be recreated when defs . h changes.

16-2 A/UX Programming Languages and Tools, Volume 2

For example, you have a file named zeke, which depends on
zeke . o, and which uses library functions from 1ibc.a. To relink
zeke, you would type

cc -1lc zeke.o -o zeke
The two flag options, —1c and -o, are both passed to 1d by cc.
-1c causes library 1ibc. a to be searched;

-o renames the compiled binary file ‘zeke’ (instead of the default
‘a.out’).

The following makefile is required:
Figure 16-1. A simple makefile
zeke: zeke.o
I cc -1lc zeke.o -o zeke

The first line states the dependency (that zeke depends on zeke. o).
The second line is the command line describing the action that must
take place whenever zeke . o changes. The command line must begin
with a tab (represented by " I in the figures).

In a more complicated example, a file named xavier depends on
three files named yancy .o, quincy.o,and wally. o, all of which
depend on defs . h and use the library 1ibc.a. The command to
link xavieris

cc -o xavier -1lc yancy.o quincy.o wally.o
The makefile for xavier follows:
Figure 16-2. A makefile with multiple objects and defs .h file
xavier: yancy.o quincy.o wally.o
°I cc -lc yancy.o quincy.o wally.o -o xavier
yvancy.o quincy.o wally.o: defs.h

‘When makefiles become more complicated, you can use macros and
other features described in the sections that follow.

make Reference 16-3

‘When you have included the interfile dependencies and command
sequences in a makefile, the command

make

updates the appropriate files, regardless of how many files you have
edited since the last make. make uses the date and time that a file was
last modified to find files that are out of date with respect to their
targets.

2.2 make command syntax
make uses the following command syntax:

make [option...J[macro=def..][-£ filenamel[target...]
These arguments are interpreted in the following order:

1. First the macro definition arguments (arguments with embedded
equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files. See ‘‘Macro Definitions’’ below for
more information.

2. Next, the flag options are examined. See ‘‘Flag Options’’ below
for details.

3. Finally, the remaining arguments are assumed to be the names of
targets to be made, and these are made in left-to-right order. If
there are no remaining arguments, the first target in the
description file is made.

Note: make finds the first target by scanning the
description file for a target that does not represent an
internal file transformation rule (see ‘‘Transformation
Rules’’ below). Since these ‘built-in’’ rules are of the
form

.n[{.m]:

where n and m are suffixes, any rule begins with a period
and contains no slashes (as a full pathname might). Thus,
the first target will be the first name in the description file
that does not begin with a period or begins with a period
but contains a slash.

16-4 A/UX Programming Languages and Tools, Volume 2

2.2.1 Flag options
make accepts the following flag options:

-i Ignore error codes (nonzero exit status) returned by invoked
commands. This mode is entered automatically if the fake target
name . IGNORE appears in the description file. See ‘‘Fake
Targets’’ below.

-s Silent mode. Do not print command lines before executing. This
mode is entered automatically if the fake target name . SILENT
appears in the description file.

-r Rule-out mode. Do not use the built-in rules.

-n No-execute mode. Print commands, but do not execute them.
Even lines beginning with an @ sign are printed.

-t Touch the target files (causing them to be up to date) rather than
issuing the usual commands.

-q Question. The make command returns a zero or nonzero status
code, depending on whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target

descriptions.

-d Debug mode. Print out detailed information on files and times
examined.

~£ filename

Use a different description file. filename is the name of a
description file. A filename of — denotes the standard input. If
there are no - £ arguments, make reads the file named
makefile or Makefile in the current directory in the order
stated. Failing these, s .makefile or s.Makefile is sought
in the SCCS directory, if such a directory exists. If a description
file is present, its contents override the default rules.

-k Abandon work on the current entry, but continue work on other
branches that do not depend upon that entry. (Entries are
described under ‘‘Makefile Entries,”” and branches are discussed
in *‘The make Predecessor Tree.’”)

make Reference 16-5

-e Cause environment variables to override assignments within
makefiles.

-b Compatibility mode for old makefiles.

2.2,2 Using make on individual files

Individual files mentioned in the makefile can also be used as
arguments on the command line, if you want to compile only a single
file. For example, with the makefile in Figure 16-2 and the command
line

make yancy.o

make remakes only yancy . o, including defs . h in the process. To
make both yancy.oand wally. o, you type

make yancy.o wally.o
and both files are remade properly.
3. The description file

The description file (often called the makefile) defines the target file
and its dependencies.

A description file can contain the following:

« makefile entries, consisting of dependency statements, and
commands or command sequences

e CcOomments
e include lines

o macro definitions

Note: If you do not supply a description file, make uses its
default rules to produce the file named on the command line.
See ‘“The Default Rules.”’ If you name your description file
something other than makefile or Makefile, you must use
the —f flag option on the make command line. See ‘‘Flag
Options’’ for details.

3.1 Makefile entries
A makefile entry defines the relationship between a target and its
dependent(s) and (usually) stipulates the command as well.

16-6 A/UX Programming Languages and Tools, Volume 2

Multiple entries within one description file are permissible and
usual.

The general form of a makefile entry is

targetl [target2 ...] :[:][dependentl ...][; commands][#comment]
[* I commands](#...]
[* I commands][#...]

where " I represents a tab character. Shell metacharacters such as
* and ? are expanded in the command sequence only.

For example,

zeke: zeke.o
°I cc -lc zeke.o -0 zeke

3.1.1 Targets vs. rules

Within a description file, user-defined rules may replace make’s
built-in rules. User-defined rules can appear in the makefile entry
anywhere a target name can be given.

Some aspects of rule syntax are similar to target syntax. A target
can be differentiated from a rule by the following criteria:

o A target name either does not begin with a period or does
begin with a period and contains slashes.

¢ A rule begins with a period and does not contain slashes (see
‘“Transformation Rules’’ for more information).

3.1.2 Fake targets

Not all targets correspond to files to be made. make has defined
certain fake targets (targets to which no files correspond) to pass it
certain options permanently. Examples of fake targets include

.SILENT

. IGNORE
.DEFAULT
.PRECIOUS
.SUFFIXES

For more information on . SUFFIXES, see the ‘‘Suffixes’’ section.
For the others, see ‘‘Options.”’

make Reference 16-7

3.1.3 Dependency statements
A dependency statement in a makefile asserts the logical relation

between a target and its dependent(s). The syntax for a dependency
statement is

targetl [targer2 ...] :[:][dependentl..][; commands][#comment]
A sample dependency statement would be
dancing: music.o

A more complex dependency statement with an associated
command sequence would be

vancy.o wally.o: defs.h ;
I echo "defs.h has been changed"

A dependency statement can contain either a single or a double
colon.

Note: A target name may appear in more than one
dependency statement, but each of those statements must be
of the same (single-colon or double-colon) type.

For the usual single-colon case, a command sequence may be
associated with, at most, one dependency line; that is, a target
cannot appear in more than one dependency line if there is a
command sequence associated with more than one of them. For
example, the fragment

yancy.o wally.o: defs.h

yancy.o quincy.o: menus.h

is correct because there is no command sequence associated with
the dependencies in which yancy . o appears.

The following is also correct, because there is only one command
sequence associated with the dependencies in which yancy.o
appears:

16-8 A/UX Programming Languages and Tools, Volume 2

yancy.o wally.o: defs.h
I echo "defs.h has been changed™
yancy.o quincy.o: menus.h

If the target is out of date with respect to any of the dependents on
any of the lines, and a command sequence is specified (even a null
one following a semicolon or tab), that command sequence is
executed. Otherwise (if a command sequence is not specified)
default rules may be invoked.

The following fragment is incorrect, because a target appears in
two dependency lines, each of which is associated with a command,
and single colons are used:

vancy.o wally.o: defs.h

I echo "defs.h has been changed"
yancy.o quincy.o: menus.h
I echo "menus.h has been changed®

In the double-colon case, a command sequence can be associated
with each dependency line. For example:

vancy.o wally.o:: defs.h

I echo "defs.h has been changed”
vancy.o quincy.o:: menus.h
I echo "menus.h has been changed"

If the target is out of date with respect to any of the files on a
particular line, the associated commands are executed, possibly in
addition to default rules. If a target must be created, the entire
sequence of commands is executed. This detailed form is of
particular value in updating archive-type files.

3.1.4 Commands

A command is usually the command line required for producing
the target(s) from the dependent(s). Syntactically, a command is
any string of characters, not including a number sign (#) (except
when the # is in quotes) and not including a newline.

Note: When a command appears on a line separate from a

dependency statement, it must be preceded by a tab. If not
preceded by a tab, the command usually results in the

make Reference 16-9

message ‘‘Make: must be a separator on
rules line x.Stop.”

3.2 Comments

Comments are lines beginning with a number sign (#) and ending
with a newline. These lines are ignored by make. (Blank lines are
also ignored.)

3.3 include lines
The C syntax for include lines,

#include include_file

cannot be used in description files, because comments begin with a
number sign. Therefore, the following policy was adopted for
include lines in make description files.

If the string include appears as the first seven letters of a line in
a makefile and is followed by a blank or a tab, the string following
is assumed to be a filename to be read by the current invocation of
make. Thus, a makefile might contain the following:

include macro_defs #reads in file macro_defs

lunch: supplies # (entries follow)

In this example, macro_defs would be a file containing make
macro definitions. No more than 16 levels of nested includes are
supported.

3.4 Macro definitions

Macros are defined in make command line arguments or in the
makefile. In the makefile, a macro definition is a line containing an
equal sign, and the line must not begin with a colon or a tab. For
example,

OBJECTS = xXx.0 y.0 z.0
The syntax for macro substitution is
$ (name)

The name of the macro is either a single character after the dollar
sign or a name inside parentheses or braces. Macro names longer

16-10 A/UX Programming Languages and Tools, Volume 2

than one character must be put inside parentheses or braces. For
example, the following are valid macro invocations:

$ (CFLAGS)
$2

${xy}

$2

$(2)

The last two invocations listed are functionally identical. Note that
two dollar signs ($$) may also be used to denote a dollar sign. The
following fragment illustrates the assignment and use of some
macros:

OBJECTS = x.0 y.0 Z.0

LIBES = —1m
prog: $ (OBJECTS)
1 cc $(OBJECTS) $(LIBES) -—o prog

In this example, make loads the three object files with the math
library. The command line

make YLIBES = —-11 —1lm"

would load them with both the 1ex (—11) and the math (—1m)
libraries.

Macro definitions on the command line override definitions in the
description file, which, in turn, override the default macros.

For example, if you have defined macros in your makefile, you can
redefine the library on the command line for a single run of make,
without changing the meaning of the macros defined in the
makefile. For example, the command

make "LIBES = -1g"
redefines the LIBES macro for this run.

To see a listing of the default macros, you can consult the Macros
part of the listing produced by the command

make -np

make Reference 16-11

3.4.1 Internal macros

The following are internal macros that change values during the
execution of a description file. These internal macros are useful
generic terms for current targets and out-of-date dependents. make
sets these internal macros as follows:

$@ Current target. The $@ macro is set to the full target name of
the current target. This macro is evaluated only for explicitly
named dependencies. For example, in the following
makefile, the current target is zeke, so $@ is translated as
zeke:

zeke: zeke.o
~I cc zeke.o -o $@

$2 Outof date relative to target. The $? macro is set to the
string of names that were found to be younger than the target.
This macro is evaluated when explicit rules from the makefile
are evaluated. For example, the following makefile prints all
files younger than springtime:

springtime: 1lp $?2

$< Related file causing action. If the command was generated
by a default rule, the $< macro expands to the name of the
related dependent that caused the action. For example, the
following makefile establishes an implicit rule to create
targets from ‘. 0"’ files:

.o:
I cc $< -o s$@

$* Shared prefix, current and dependent files. If the command
was generated by a default rule, the $* macro is given the
value of the filename prefix shared by the current and
dependent filenames. For example, the following makefile
sets the prefix $* to zeke and links zeke . o:

zeke: zeke.o
~I cc $*.0 -o $*

In the following additions, the D refers to the directory part of the
single-letter macro, and the F refers to the filename part of the

16-12 A/UX Programming Languages and Tools, Volume 2

single-letter macro. These are useful when building hierarchical
makefiles.

$(@D) Current target directory
$(QF) Current target filename
$(*D) Shared directory prefix

$ (*F) Shared filename prefix

$ (<D) Related dependent directory
$ (<F) Related dependent filename

For example, the following instruction uses the D to gain access to
directory names in order to use the cd command:

cd $(<D); $(MAKE) §$(<F)

3.4.2 Dynamic dependency parameters
The following parameters have meaning only within a dependency
statement in a makefile.

$$@ The current item to the left of the colon. The double dollar
signs denote a metalevel macro, that is, a macro referring to
another macro. Thus, $$@ is a macro variable for whatever
target is current, and $@ is a macro for the current target. If
the target is static, $@ can be used instead of $$@; however,
$s@ allows for use of a dynamic target, a macro defined to
denote many files, each of which is processed in turn. This is
useful for building a large number of executable files, each of
which has only one source file.

For example, the following makefile defines CMDS as the
stipulated subset of single-file programs in the A/UX
software command directory. Each of the programs (or
CMDS) is compiled correctly in turn using this syntax.

CMDS = cat dd echo date cc cmp comm ar 1ld chown

S (CMDS) : $$S@.c
1 $(CC) -0 $? —o $@

make Reference 16-13

(See ‘“The Default Macro Settings’’ for more information on
$(cC).)

The dependency statement for the first item in the list of
CMDS is translated as follows:

1.
2.

$$ (QF)

The target is set to cat.

The dependent is set to cat . c (the current target
plus .c).

The cc command (optimized using —O) runs on the
dependent (cat . c) if it is younger than the target.

The results are linked into the target file (cat).

Note: This syntax cannot be used for multiple-file
programs. To deal with multiple-file programs, a
directory is usually allocated and a separate makefile
written. Then a specific makefile entry is made for
files requiring nonstandard compilation.

Another form of $$@, representing just the filename part of
$$Q@. This parameter is also evaluated at execution time. For
example, the following makefile maintains the
/usr/include directory from a makefile in another
directory:

16-14

INCDIR = /usr/include

INCLUDES = \

~I $ (INCDIR) /stdio.h \
~I $ (INCDIR) /pwd.h \
~I $ (INCDIR) /dir.h \
I $ (INCDIR) /a.out.h

$ (INCLUDES) : $$(QF)

I cp $? $@

I chmod 0444 $@

A/UX Programming Languages and Tools, Volume 2

The $$ (QF) macro represents the filename prefix part of the
current target $@. Because the target is also a macro, its
value will equal each of the four files named in turn. On the
first file’s run,

1. The targetis stdio.h.

2. The macro $$ (@F) is stdio (the target filename
prefix).

3. The next line copies the younger file ($?), if it exists,
into the target file.

4. The last line changes the mode of the new target file
($@) (in this case, stdio.h) toread only.

This pattemn is repeated for the other three files stated.

3.5 Options

3.5.1 Suppressing printing of commands

Normally, when make processes a description file, each command
is printed and then passed to a separate invocation of the shell after
substituting for macros. The printing is suppressed in the silent
mode (make -s), or if the special name . SILENT appears on a
line by itself as a target in the makefile, or if the command line
begins with an @ sign. For example,

@size make /usr/bin/make

If the command line above were in a description file, the printing of
the command line itself would be suppressed by the @ sign, but the
output of the command would be printed.

3.5.2 Ignoring errors

The make program normally stops if any command signals an error
by returning a nonzero exit status. Errors are ignored if any of the
following are used:

e The -i flag on the make command line (where the scope is
global)

o The fake target name . IGNORE in the description file (where
the scope is the description file)

make Reference 16-15

o A hyphen beginning the command string in the description
file (where the scope is the command following the hyphen)

Thus, if the -1 option is used, the targetis file. o, and the
compilation is unsuccessful, make effectively pretends that it
worked. When file. o is found to be a dependent of some other
files, make tries, for instance, to load all the object files together,
and fails with an error message when one (file. o) is found to be
missing. For all subsequent accesses (within this make), file.o
is treated as though it existed and as though it were up to date. You
should beware of this possible consequence of the —i option.

Some commands return with nonzero status even though they have
worked correctly. For example, diff returns 1 to indicate the
presence of differences in the compared files, and rm returns a
nonzero status if the file you remove is already nonexistent. It is
safer to use a leading hyphen for commands that may return a
nonzero exit status without indicating an error, so make can
continue processing.

3.5.3 Combining commands

As stated above, when make processes a description file, each
command or individual command line is printed and then passed to
a separate invocation of the shell after substituting for macros.
Because the shell to which each command line is passed is a
completely new invocation, care must be taken with certain
commands (for example, cd and shell control commands) that have
meaning only within a single shell process. If special means are not
taken, the results of these commands will be lost before the next
line is executed.

One way to avoid this is to combine two or more shell commands
on one line, thus keeping the same shell active on each. This may
be done in one of two ways. If both commands are kept on one
physical line, a semicolon (;) may be inserted between the
commands. If the commands are put on separate physical lines, but
should form one logical line, a semicolon (;) and a backslash (\)
should be appended to the first command. In the latter case, the
semicolon separates the commands, and the backslash escapes the
newline. Examples of these two methods follow:

16-16 A/UX Programming Languages and Tools, Volume 2

cd ..; cc -¢ X.0 y.0 Z.0

with ; both commands can be on the same line

cd ..;\
cc -c X.0 y.0 Z.0

with ; and \ before <CR>, this is read as one line

3.5.4 Default commands

If a file, prog, must be made, but there are no explicit commands
given or relevant rules to apply, make looks for commands
dependent on the target .DEFAULT to use. If there is no
.DEFAULT target, make prints a message,

Don’t know how to make prog. Stop

and stops. Thus, . DEFAULT may be set up by the user to specify
default-case treatments for files not covered by make’s built-in
rules. (For a listing of the types of file compilations covered by
these rules, see the ‘‘Transformation Rules’’ section.)

3.5.5 Saving files

If a file or files are assigned as dependent to . PRECIOUS, those
files will not be removed, regardless of any command to the
contrary. This is especially helpful to avoid the removal of targets
when an interrupt or quit is sent.

3.5.6 Use of selected flag options
-n The -n option is useful to discover what make would do.
make -n

instructs make to print out the commands it would issue,
without actually executing them.

-t The -t (‘“‘touch’”) option updates the modification times on
the affected file, and thereby can avoid a large number of
superfluous recompilations. Be careful when using this
option.

make Reference 16-17

-d The -d (“‘debug’’) flag prints out a detailed description of
what it is doing, including the file times. The output is
verbose and potentially confusing. This is therefore
recommended as a last resort.

4. Suffixes and rules

The make program uses a table of significant suffixes and a set of
transformation rules to supply default dependency information and
implied commands. All of this information is stored in an internal
table (the default rules) that has the form of a description file. (If
the —r flag option is specified, this internal table is not used.)

4.1 Suffixes

The list of suffixes is actually the dependency list for the fake target
. SUFFIXES in the description file. The make program searches
for a file with any of the suffixes on the list. If such a file exists and
there is a transformation rule for that combination, make
transforms a file with one suffix into a file with another suffix.

The order of the suffix list is significant because the list is scanned
from left to right. The first name formed that is associated with
both a file (in the directory) and a rule (in the makefile or default
rules) is made, and no others.

Note: You should know the order of the default suffix list if
you are not specifying a command in the makefile.
Otherwise, you may make an unexpected file.

The default suffix list is as follows:

16-18 A/UX Programming Languages and Tools, Volume 2

Table 16-1. Default suffix list
Suffix | File type
.0 Object file
C source file
EFL source file

c
e
r ratfor source file
.£ Fortran source file
S
y

Assembler (as(1)) source file
yacc-C source grammar

.yr yacc-rat for source grammar
.ye yacc-EFL source grammar
.1 lex source grammar

4.2 Transformation rules

make has an internal table of transformation rules that perform
certain default commands if there is no command specified in the
makefile. Note that the default rules are also known as the
“‘implicit rules.”” There are two types of transformation rules,
““‘double suffix rules’’ and *‘single suffix rules.”” In double suffix
rules, the stage of compilation is discerned from the suffix (for
example, x . c is a source file and x . o is an object file). These
rules are phrased in terms of transformations from one type of
suffix to another. The names of these rules are formed by
concatenating the two filename suffixes; for example, the name of
the rule to transform a . rfiletoa .o fileis .r.o.

Single suffix rules describe the transformation of a file with a given
suffix into one with no suffixes or a null suffix.

If a rule is listed in the internal table and there is no command
sequence given in the description file, the rule is used. Thus,
standard transformations (from one type of file to another; for
example, from a source file to an object file) do not call for a
makefile entry unless nonstandard treatment is required.

If a rule is used (that is, if a default command is generated), the $*
macro is given the value of the filename prefix of the file to be
maintained. Then the $< macro is the name of the dependent that
caused the command.

make Reference 16-19

make has all the required information for compiling programs

written in languages supported by A/UX. For example, after the
command

make x.0

where x . o is a C language object file, make searches for a file
called x . ¢ (a C language source file) in the local directory. If it
finds x . c, make consults its default rules for compilation. make
finds the rule . c. o, which states the default command

cc -0 -¢c x.c
which make then issues to produce x . o.

make uses the default suffix list (see ‘‘Suffixes’’) to decide when
to invoke which rules. This list tells the order in which to search
for certain suffixes.

Within make’s default rules file, the name of the rule to follow
appears in the place of the target filename. Thus, the .c .o rule is
represented by

.c.o:
I cc -0 -c [filename].c

The contents of the current default rules file used by make can be
directed to standard output with the command

make -np

Any error messages produced at the end of this output should be
ignored. The example that follows shows a representative file,
giving one version of the default rules used by make.

16-20 A/UX Programming Languages and Tools, Volume 2

Figure 16-3. Sampile listing of default rules file

LIST OF SUFFIXES

.SUFFIXES: .o .c .c~ .y .y~ .1 .1~
.s .s~ .sh .sh~ .h .h~

PRESET VARIABLES

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=1d
LDFLAGS=
CC=cc
CFLAGS=-0
AS=as
ASFLAGS=
GET=get
GFLAGS=

SINGLE SUFFIX RULES
$(CC) —n -0 $< —o0 $@

$(GET) $(GFLAGS) —p $< > $*.c
$(CC) —n —0 $*.c —o $*
—rm —f $*.c
.sh:
cp $< s@
.sh~:
$(GET) & (GFLAGS) —p $< > .sh
cp $* .sh $%*
—rm —f $* .sh

make Reference 16-21

Figure 16-3. Sample listing of default rules file (continued)

DOUBLE SUFFIX RULES

.C.0:
$(CC) $(CFLAGS) —c $<
.C~.0:
$(GET) $(CFLAGS) —-p $< > $*.c
$(CC) $(CFLAGS) —c $*.c
—rm —f $*.c
.C~.C:
S(GET) $(GFLAGS) —-p $< >$*.c
.S.0:
$(AS) S$(ASFLAGS) —o $@ $<
«S~.0:
$ (GET) $(GFLAGS) —-p $< > $*.s
$(AS) $(ASFLAGS) -0 $*.0 $*.s
—rm —f $*.s
.y.0:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) —-c y.tab.c
rm y.tab.o$@
.y~.0:
$(GET) $(GFLAG) —p $< > S$*.y
$ (YACC) $(YFLAGS) $*.y
$(CC) S$(CFLAG) —-c y.tab.c
rm —f y.tab $*.y
mv y.tab.o $*.0
.1l.0

$(LEX) S$(LFLAGS) S$<

$(CC) $(CFLAGS) —c lex.yy.cC
rm lex.yy.c

mv lex.yy.o $@

16-22 A/UX Programming Languages and Tools, Volume 2

Figure 16-3. Sample listing of default rules file (continued)

.1~.0:
$(GET) $(GFLAGS) —-p $< > $*.1
$(LEX) $(LFLAGS) $*.1

$(CC) $(CFLAGS) -c lex.yy.cC
rm —f lex.yy.c $*.1

mv lex.yy.o $*.0

$ (YACC) $(YFLAGS) $<
mv y.tab.c $@

$(GET) $(GFLAGS) —p $< > $*.y
$ (YACC) $(YFLAGS) $*.y

mv —f $*.c

-rm —f $*.y

$(LEX) $<
mv lex.yy.c$@

$(CC) —c $(FLAGS) $<
ar rv $@ $*.o
rm —f $*.0

.C~.a:
$ (GET) $(GFLAGS) -p $< > $*.c
$(CC) —c $(CFLAGS) $*.c

ar rv $@ $*.o

.S~.a:
$ (GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) —o $*.0 $*.s
ar rv $Q@ $*.o
—rm —f $*,[so]

.h~.h
$(GET) $(GFLAGS) —-p $< > $*.h

make Reference 16-23

If there are two paths in the rules connecting a pair of suffixes, the
longer one is used only if the intermediate file exists or if it is
named in the description file. The following are two examples
illustrating how this works:

1. Ifan x.o file is needed and a file called x. c is found in the
current directory or specified in the description file, the x . o
file is compiled using x . c. If an x. 1 also exists and is out
of date with respect to x. c, that file is processed through
lex before compiling the result. This is a case of the longer
path (x.1to x.c to x. o) being used since the intermediate
file (x . c) exists.

2. Ifthe file x.o isneeded and x . 1 but not x . c is found,
make discards the intermediate C language file (in this case,
x.yy.c) and uses the shorter path (x.1 to x. o).

4.2.1 The default macro settings

You can change the names of some of the compilers used in the
default rules, or the flag arguments with which they are invoked, by
knowing the macro names used. These macro names, the default
compilers they denote, and their associated flags are as follows:

Table 16-2. Macro names and default compilers

Compiler Macro | Flags
make command MAKE MAKEFLAGS
Assembler (as) AS -

C compiler (cc) cc CFLAGS
ratfor compiler RC RFLAGS
EFL compiler EC EFLAGS
yacc-C compiler YACC YFLAGS
yacc-ratfor compiler | YACCR | YFLAGS
yacc-EFL compiler YACCE | YFLAGS
lex compiler LEX LFLAGS
get command GET GFLAGS

These macros can be used as arguments on the command line to
change defaults for one run of make. For example, the command

16-24 A/UX Programming Languages and Tools, Volume 2

make CC=newcc ...

causes the newcc compiler to be used instead of the usual C
language compiler. An example of the use of flags follows:

make "CFLAGS=-0" ...

passes the -0 flag to the C compiler, cc, causing the C language
optimizer to be used.

Sometimes it is possible to use macro redefinition instead of stating
a local version of the default rule. (Of course, this change is
temporary, because it takes place on the command line, and must
be restated, whenever desired, every time the file is remade.) To
change the . c .o rule you can say

make "CFLAGS=-V" thorax.o

and the flag option -V will replace the default setting for CFLAGS
for this one run.

4.3 Changing default suffixes and rules

4.3.1 The default suffix list
You can add suffixes to the end of the default suffix list, change the
order of the list, or change the contents of the list.

If you append new names to the suffix list, an entry can be included
for . SUFFIXES in the description file. The dependents to
. SUFFIXES are then added onto the end of the default list.

To change the order or contents of the list, you must be aware that a
. SUFFIXES line without any dependents deletes the current list of
suffixes. Therefore, you must clear the current list to change the
order of names. Thus, to install a new list, include lines such as

.SUFFIXES : # removes old list
.SUFFIXES : .n .n~ .1 .1~ # installs new list

4.3.2 The default rules

You can modify or replace a default rule in a makefile. For
example, if you define a . c . o rule in a makefile, your definition
overrides the default one. For example, Figure 16-4 defines a new
.c.orule:

make Reference 16-25

Figure 16-4. Replacing a default rule
.c.0: cc =V -c $< #Rule, not target
stomach.c: stomach.l #First target

stomach.l: defs.h

This invokes the -V option of cc every time a . o file is linked,
printing the version of the assembler that was used.

5. Operation

5.1 Environment variables

Environment variables from the shell are read by make and
considered in processing makefiles. These variables include PATH,
HOME, TERM, SHELL, TERMCAP, and LOGNAME (see A/UX User
Interface for more information on environment variables). Thus, a
reference to $ (HOME) , otherwise undefined in a makefile, will be
translated correctly into the full pathname for the user’s home
directory.

Note: The value of the SHELL variable determines which
shell is used to execute commands in the makefile (by
default, your login shell). If you wish to include shell
scripts that require a different shell (for example, a Bourne
shell script when your login shell is the C shell), you must
specify the new shell either on the command line:

make [options] SHELL=/bin/sh

Or you can do it by including the following line at the
beginning of your description file:

SHELL=/bin/sh

To see which environment variables make recognizes in the
present directory (directed to standard output), give the command

make -np | head -50 | more

16-26 A/UX Programming Languages and Tools, Volume 2

The first part of this command’s output prints the environment
variables.

make also maintains an environment variable named MAKEFLAGS.
The value of this variable is all command line flag arguments
(without minus signs). The macro is ‘‘exported’’ and accessible to
further invocations of make. Command line flags and assignments
in the makefile update MAKEFLAGS. MAKEFLAGS is read and set
again when the environment settings are read by make.

The first part of this command’s output prints the environment
variables.

5.2 Precedence

Environment variables are read and added to the macro definitions
each time that make executes. Precedence is a prime consideration
in doing this properly. The following is the default precedence of
assignments:

1. Command line
2. Makefile(s)

3. Environment
4. Default macros

When executed, make assigns macro definitions in the order stated,
by doing the following:

o Reading the MAKEFLAGS environment variable.

Each letter in MAKEFLAGS is processed as an input flag
argument, unless the letter is —£, —p, or —r. These flag
options give directions to make involving overall processing,
as follows:

-f Precedes the makefile filename
-r Leaves out the built-in rules

-p Prints out all macro definitions and target
descriptions

If the MAKEFLAGS variable is null, or is not present,
MAKEFLAGS is set to the null string. This pass establishes if

make Reference 16-27

the debug (-d) flag is set, in time for this to be of use.

e Reading and setting the input flags from the command line.
The command line adds to the previous settings in the
MAKEFLAGS environment variable.

o Reading macro definitions from the command line. Any
macro definitions set from the command line cannot be reset.
Further assignments to these macro names are ignored.

» Reading the internal list of macro definitions. make reads its
default rules file, which contains the internal list of macro
definitions. For example, if the command

make -r ...

is given, and a makefile already includes all of the rules
that are found in make’s default rules file (for instance, by
means of an include line; see ‘“‘include lines’’), the —r
option would not have the stated effect of ‘‘ruling out’’ the
rules. It would do the right thing, namely, not go to its
default rules itself, but it is not bright enough to undo an
include line in a makefile. In fact, the effect would be
identical to that occurring if both the - r option and the
include line in the makefile were excluded, since they
cancel each other out.

» Reading the environment settings in the shell. The
environment variables are treated as macro definitions and
marked as exported.

Note: Because MAKEFLAGS is not a variable in
make’s default rules file, this step has the effect of
doing the same assignment twice. (The exception to
this is when MAKEFLAGS is assigned on the
command line.)

The MAKEFLAGS variable is read and set again.

« Reading the makefile(s). Assignments in the makefile(s)
override the environment unless the —e flag is used. The
command line option —e instructs make to override the

16-28 A/UX Programming Languages and Tools, Volume 2

makefile assignments with the environment settings.

If assigned, the MAKEFLAGS variable overrides the
environment. This is useful for further invocations of make
from the current makefile. There is no way to override
command line assignments. For example, if the command

make —-e ...

is given, the variables in the environment override the
definitions in the makefile and reset the precedence of
assignments to the following:

1. Command line
2. Environment
3. Makefile(s)

4. Default macros

This has the effect of giving the environment priority over
the makefile, as opposed to the reverse in the default case.

5.3 Archive libraries

A . a suffix rule builds libraries. (There is no actual . a suffix
appended to the filename, however; see below for how to recognize
candidates for this rule.) For example, the . c. a rule is the rule for
all of the following:

« Compiling a C language source file
» Adding a C language source file to the library
» Removing the . o cadaver of the C language source file

The .y .a rule is the rule for performing the same functions on a
yacc file; the . s . a rule, for an assembler file; and the . 1. a rule,
for a lex file.

The current archive rules defined internally are .c.a, .c~.a,and
.s~.a. (See the section on ‘‘SCCS Filename Prefixes’’ for an
explanation of the tilde (~) syntax.)

Programmers may choose to define additional rules in the
makefile(s).

make Reference 16-29

A library is then maintained with the following makefile:

1ib: lib(ctime.o)
~I @echo lib up-to-date

Note: The first parenthesis in the filename identifies the
target suffix rule, not an explicit . a suffix.

For example, the actual rule . c . a is defined as follows:

.a:
- $(CC) -c $(CFLAGS) $<
ar rv $Q@ $*.o

rm —-f $*.0

-~

HHHOQ

-~

In the .c.arule:

se This macro is the . a target. (Using the library
example, this macro would be defined as 1ib.)

3< and $* These macros are set to the out-of-date C language
file, and the filename without the suffix, respectively.
Using the previous example, these macros would be
defined as ct ime . c and ct ime. Using this
example, the $< macro could have been changed to
$*.c.

When make sees the 1ib (ctime.o) instruction in the makefile
(assuming the object in the library is out of date with respect to
ctime.c, and there is no ct ime . o file), it translates that
construct into the following sequence of operations:

1. make lib.

2. Tomake 1ib, make each dependent of 1ib.
3. make lib(ctime.o).
4

Tomake lib(ctime. o), make each dependent of
lib(ctime.o). (There are none in this example.)

To allow ct ime . o to have dependencies, the following
syntax is required:

16-30 A/UX Programming Languages and Tools, Volume 2

lib(ctime.o): $(INCDIR)/stdio.h

Thus, explicit references to . o files are unnecessary.

Note: There is also a macro for referencing the
archive member name when this form is used. The
$% macro is evaluated each time $@ is evaluated. If
there is no current archive member, $% is null. If an
archive member exists, then $% evaluates to the
expression between the parentheses.

5. Use default rules to try to build 1ib(ct ime . o). (There is
no explicit rule.)

Note: It is the first parenthesis in the name
lib(ctime . o) which identifies the (. a) target
suffix. This is the key. There is no explicit . a at the
end of the 1ib library name. The parenthesis forces
the . a suffix. In this sense, the suffix is hard-wired
into make.

6. Break the name 1ib(ctime.o) upinto 1ib and ctime.o.
Define two macros, $@ (=1ib) and $* (=ctime).

7. Look forarule .X.a and a file $* .X. The first . X (in the
.SUFFIXES list in the default rules file) that fulfills these
conditions is . c, so the rule is . c . a and the file is
ctime.c.

8. Set $<to ctime.c and execute the rule.

In fact, make must then make ct ime . c. The search of the
current directory yields no other candidates, however, and the
search ends.

9. The library has been updated. Perform the next instruction
associated with the 1ib: dependency. Therefore, make will
echo

1ib up-to-date

make Reference 16-31

5.4 SCCS files

make can be used on SCCS files and knows to run get on them, if
required, before otherwise processing them. Those unfamiliar with
SCCS (Source Code Control System) should refer to Chapter 17,
““*SCCS Reference.”’

5.4.1 SCCS filename prefixes
make syntax does not allow for direct prefix references. SCCS
files constitute the one important exception to this rule.

SCCS filenames are preceded by a s . prefix. make uses a tilde (~)
appended to the suffix to identify SCCS files. The expression

. c~. o refers to the rule that transforms an SCCS C language
source file into an object file.

The following example shows a transformation from an SCCS
filename to a name with a suffix already fixed for make: the SCCS
filename s . filel.c into the non-SCCS, make-ready filename
filel.c~. This file is then assembled using the command

.C~.0:

I $(GET) $(GFLAGS) —-p $< > $*.c
I $(CC) $(CFLAGS) —c $*.c

I -rm —f $*.cC

The tilde appended to any suffix transforms the file search into an
SCCS filename search with the actual suffix named by the dot and
all characters up to (but not including) the tilde (~).

5.4.2 SCCS filename suffixes
The following SCCS suffixes are internally defined:

.C~ .y~ .S~ .sh~ .h~

5.4.3 SCCS transformation rules

The following rules involving SCCS transformations are internally
defined:

.C~: .1~.0: .sh~: .y~.c: .C~.0:

.c~.a: .8~.0: .8~.a: .y~.0: .h~.h:

These rules transform SCCS files into non-SCCS format and
perform the compilations indicated by the letter combinations in the

16-32 A/UX Programming Languages and Tools, Volume 2

rule names. (See ‘‘Transformation Rules’’ for how to translate
rules names into the rules they designate.)

Other rules and suffixes that may prove useful can be defined using
the tilde as a handle on the SCCS filename format.

5.4.4 SCCS makefiles
SCCS makefiles are ‘‘invisible’’ to make, in that, if you give the
command

make

and only a makefile named s .makefile resides in the current
directory, make will get, read, and remove the file. get creates a
file called makefile which remains in the directory (in addition
to the p-file, p .makefile). If the —f option is used, make will
get, read, and remove the specified makefile (as well as include
files), creating a non-SCCS makefile named the same as the old
SCCS version, except that the s . prefix is removed.

6. Advanced topics

6.1 Walking the directory tree

It is possible to get make to walk the directory tree, either by
guiding it explicitly or by including a shell script that will discover,
implicitly, what directories are there, so that it can visit them.
While make is in each directory, it can make the files specified in
the directory’s makefile. This allows you to bring whole systems
up to date without yourself changing directories by having make
follow directions in one local (meta-)makefile.

The explicit route is by far the easiest. If you know the structure of
your tree and the names of all the directories you intend to visit,
you can include commands in a makefile in the directory at the top
of your tree. If, below your current directory, you have directories
named io, os, and others, you can include lines like the following
in your makefile

all:
I cd io; make -f io.mk; \
I cd ../o0s; make -f os.mk;

make Reference 16-33

Note: The backslash (\) at the end of command lines is
necessary if you want to keep the same invocation of the
shell active for a group of commands. If a different shell is
invoked, the knowledge of being in a new directory is lost.

If, for example, no backslash terminated the first command line,
and so a different shell was invoked on the second line, the second
cd would be executed from the parent directory for io and os
instead of from the io directory. In this case, to keep the same
effect, the line should read

°I cd os; make -f os.mk;

As this shows, it is possible to write a script that does invoke a new
shell with each line and still travels the directory tree. This just
changes the mode of travel: With the one-shell-per-journey
method, you state explicit directions for going to each directory
from where you are relative to that directory and for going back to
the originating directory afterward. With the one-shell-per-
command method, you state explicit directions (that is, a full
pathname) for going to the directory, and the return trip is done for
you when the shell you are using quits.

To travel a tree of unknown structure but with fairly standard
makefile names (like dirname . mk, where dirname stands for the
name of the directory where the file is located), you could use a
fragment like the following in your makefile:

subdirs:

I for i in ‘find /pathname -type d -print‘; \
I do \

~I if test —-f $5i/$$i.mk; \

I then \

~I cd $$i; \

~I $(MAKE) -f Si.mk; \

~I £fi \

I done

Note: The above is a Bourne shell script, and it will work
only if your login shell is /bin/sh or your SHELL

16-34 A/UX Programming Languages and Tools, Volume 2

environment variable is setto /bin/sh. See
‘““‘Environment Variables’’ for more information on using
different shells to execute a makefile.

6.2 The make predecessor tree

The $! macro represents the current predecessor tree. A make
predecessor tree contains the series of files linked through the
dependency relation for one run of make. For example, using the
makefile

all: cat

~I @echo cat up-to-date
cat: cat.c

I echo $!

when the command echo $'! is executed, the variable $!
evaluates to

cat.c cat all

which is the current predecessor tree of this run of make, read from
left to right (leaf to root, respectively). The connection constituting
branches is the ‘‘is depended on by’ relation: The leftmost file is
depended on by the next file to the right, and so on. Thus, the
nodes are dependents of their right neighbors and are targets of
their left neighbors (except for the leaf). The predecessor tree can
be useful as a debugging tool for make itself, if what it has done
does not make sense. Examination of the tree can reveal why
certain files were updated, or which files were touched in this run of
make.

Another means of debugging must be found if make prints the
following message:

$! nulled, predecessor circle

If the predecessors of a file are circular, they cannot form a tree,
and one will not be printed. The actual evaluation of the $! macro
is terminated, and the macro’s value is set to null.

make Reference 16-35

6.3 The makefile as shell script

If a target cannot be found in the local or specified directory, make
attempts to create it. This feature of make’s processing may be
exploited by the advanced user. When make discovers the absence
of the file corresponding to target, it considers target to be out of
date and so executes the specified command sequence. If the
results do not include creating the target, this leaves the directory in
question in the same state, ready for the same scenario to take place
whenever the make command is invoked.

This allows a makefile to function more like a shell script, with
each absent target causing make to try to create it, using the
command sequence specified.

6.3.1 Unintended targets

make considers missing files to be out of date and processes them.
Conversely, existing files may be deemed up to date wrongfully
(due to user error) and skipped for processing by make. This
might happen in the situation described in *‘The Makefile as a Shell
Script”’ if one of the targets was

print:
I lp foo bazz fizz

Here the command sequence creates no file called print, so the
same description file can be used over and over for maintenance,
each time executing this line. If, however, you inadvertently name
a program in that directory print, this latter file’s modification
information will be checked to determine if print needs to be
remade, probably finding it to be up to date, and telling you so on
the screen. Failure to note this might cause a bug that is hard to
trace in the working of the ‘‘shell script’’ description file, even
though the entry for print is correct.

6.3.2 Mnemonic targets

A useful method is to include targets with mnemonic names and
commands that do not actually produce a file with the same name
as the label in the shell script. These entries can take advantage of
make’s ability to generate files and substitute macros. For
example, save might be included to copy a certain set of files, or
an entry cleanup might be used to throw away unneeded

16-36 A/UX Programming Languages and Tools, Volume 2

intermediate files. It is also possible to maintain a zero-length file
purely to keep track of the time at which certain commands were
performed. For example,

print: $(FILES)
I pr $? | 1lp
I touch print

The print entry prints only the files changed since the last make
print command. A zero-length file print is maintained to keep
track of the time of the printing, the time since the file print was
last touched. The $? macro in the command sequence then picks
up only the names of those files changed since print was
touched. The touch command creates this zero-length file if no
file called print exists in this directory.

6.3.3 Macro translation

To supplement macro definition and substitution, make also
provides a macro translation facility. As a macro is evaluated, the
translation takes place within the set of names of items to which the
macro refers. (Such item names are probably filenames; in any
case, they are considered as strings, where a string is delimited by
blanks or tabs.) Thus, the macro translation facility allows for more
refined and narrow macro definitions and for more concise code in
description file command sequences.

The format for macro translation follows:
$ (macro-name : stringl=string2)

This tells make to substitute string2 for stringl everywhere among
the item names produced on evaluation of macro-name. (make
assumes that these substitution strings are suffixes.) Thus,

[process] $(2:.0=.cC)

results in processing of all files younger than target, except that, in
this list of files, wherever there was a . o file, a . c file will be
processed instead.

To illustrate the usefulness of this facility, consider the following
example situation: To maintain an archive library, the out-of-date
members must be accumulated and a shell script must be written to

make Reference 16-37

handle all the C programs. The following fragment will optimize
the executions of make for archive libraries:

.SUFFIXES: .C .a

.c.a:;

$(LIB): $(LIB) (a.0) $(LIB) (b.o) $(LIB) (c.o0)
$(CC) —c $(CFLAGS) $(2?:.0=.c)
ar rv $(LIB) $?
rm $?

The translation ($ (2 : .o=.c)) tells make to compile from the
.c file, every time it finds a . o file younger than the target library.
(This would act as an added check to ensure that all changes were
incorporated, as the . ¢ files might have been altered without being
subsequently recompiled.) This results in the rule desired (. c . a),
rather than a nonstandard .o . a rule.

6.4 A warning for system administrators

If the system’s setting for date is wrong (especially if it is very far
behind the actual date), make can get very confused. Since make
works by comparing previous dates with the current one, it is
important to make sure that what it is given as the current date is
accurate. Therefore, to ensure proper functioning of make, the
accuracy of date should be checked frequently.

16-38 A/UX Programming Languages and Tools, Volume 2

Chapter 17
SCCS Reference

Contents

[u—y

. Introduction

N

. SCCS for beginners .
2.1 Creating an SCCS ﬁle . .
2.2 Retrieving a file and storing a new version
2.3 Retrieving versions
24 On-line information .

3. SCCS files . .

3.1 Standard A/UX protectlon .

3.2 SCCS protection mechanisms .

3.3 Administering SCCS .
3.3.1 Group project administration

34 SCCS file formats

3.5 SCCS file auditing

3.6 Delta numbering .
3.6.1 Branch deltas

4. SCCS command conventions
4.1 SCCS command arguments
42 Flags
4.3 Diagnostics
44 Temporary files
4.5 SCCS ID keywords .

5. SCCS command summary .
5.1 Create SCCS files: adm:.n
5.1.1 SCCS flags . .
5.1.2 Comments and MR numbcrs
5.1.3 Descriptive text
5.2 Change comments in an SCCS ﬁle cdc
5.3 Combine deltas to save space: comb

OO NN NVLWwWwNN =

54 Store anew SCCS file version: delta .
5.4.1 Required temporary files .
5.4.2 Comments and MR numbers
543 Keywords
5.4.4 Removal of temporary files

5.5 Retrieve an SCCS file version: get .
5.5.1 Retrieving different versions
5.5.2 Retrieving a file to create a new delta
5.5.3 Concurrent edits of different versions
5.5.4 Concurrent edits of same SID
5.5.5 Keyletters that affect output .

5.6 Restore a version unchanged: unget

5.7 On-line explanations: help

5.8 Print part(s) of an SCCS file: prs

5.9 Remove a specific delta: rmdel -r

5.10 Account for open SCCS files: sact

5.11 Compare two SCCS files: scesdiff

5.12 Check an SCCS file’s characteristics: val .

5.13 Find identifying information: what .

Figures

Figure 17-1. Sample interface program for group
projects e e e e

Figure 17-2. A linear progression of versions .
Figure 17-3. A branching SCCS tree
Figure 17-4. A complicated branch structure .

Figure 17-5. Relationships among temporary
files . e e

Figure 17-6. Determination of new SID .
Figure 17-7. Removing a delta

Tables

28
28
28
30
31
31
32
33
35
38
39
41
42
42
44
45
46
46
47

10
14
15
16

18
37
45

Table 17-1. SCCS ID Keywords

21

Chapter 17
SCCS Reference

1. Introduction

The source code control system (SCCS) is a collection of A/UX
commands that controls and reports on changes to files of text. SCCS
is a valuable tool for version management of program source code or
ordinary text files. In large group projects, SCCS prevents multiple,
inconsistent versions of files from accumulating in several places. For
a single user, multiple versions of a file can be stored without using a
lot of disk space, previous versions can be easily reconstructed, and
versions can be kept track of with a simple, consistent numbering
scheme.

SCCS provides facilities for
» Efficient storage of multiple versions of files
o Retrieving earlier versions of files
« Controlling update privileges to files
» Identifying the version of a retrieved file

« Recording when, where, why, and by whom each change was
made to a file

SCCS stores the original file on disk. Whenever changes are made to
the file, SCCS stores only the changes. Each set of changes is called a
delta. When you retrieve a particular version of the file (the default is
the most recent version), SCCS applies the appropriate deltas to the
original file to reconstruct that version.

This chapter provides an introduction and a general reference guide to
SCCS. The following topics are covered here:

o SCCS for beginners: A step-by-step guide to creating SCCS
files, updating them, and retrieving a version of a file.

SCCS Reference 17-1

o SCCS files: A description of the protection mechanisms, format,
auditing, and delta numbering of SCCS files. The differences
between individual SCCS use and group or project SCCS use are
discussed, and the role of the SCCS administrator in a group
project is introduced.

e SCCS command conventions: A description of the conventions
that generally apply to SCCS commands and the temporary files
created by SCCS commands.

o SCCS command summary: A summary of SCCS commands and
their arguments.

In addition to the programs described in this chapter, the sccs
command provides a front end to SCCS functionality. Basically, the
sccs front end runs the SCCS commands documented in the ‘‘SCCS
Command Summary’’ as well as several commands that are equivalent
but easier to use than the most frequently used SCCS commands. See
sccs(l) in A/lUX Command Reference for more information on the
sccs front end.

2. SCCS for beginners

2.1 Creating an SCCS file
Using a text editor, create an ordinary text file named lang that
contains a list of some programming languages:

Cc

PL/I
FORTRAN
COBOL
ALGOL

To bring the tools of SCCS into play, you need to create a (different)
file that various SCCS commands will read and modify. You can do
this with the admin command, as follows:

admin -ilang s.lang

The admin command with the -1 keyletter (and its value, lang)
creates a new SCCS file and initializes it with the contents of the file
named lang. An initial SCCS delta is created by applying a set of
changes (the contents of 1ang) to a new (null) SCCS file (s . 1ang).

17-2 A/UX Programming Languages and Tools, Volume 2

All SCCS files must have names that begin with ‘s .’’, This
effectively limits SCCS filenames to 12 characters.

Each delta is assigned a name called the SCCS Identification string, or
SID. The SID is normally composed of two components (the release
number and the level number) separated by a period. For example, the
initial version of a file is delta 1.1 (that is, release 1, level 1). SCCS
keeps track of subsequent versions of a file by incrementing the level
number whenever you create a new delta. The release number can also
be changed (allowing, for example, deltas 2.1, 3.1, and so on) to
indicate a major change to the file.

The admin command returns a warning message (which may also be
issued by other SCCS commands):

No id keywords (cm7)

The absence of keywords is not a fatal error under most conditions, and
this warning message does not affect the SCCS file you have just
created. In the following examples, this warning message is not shown
although it may actually be issued by the commands.

You should now remove the 1ang file from your directory:
rm lang

2.2 Retrleving a file and storing a hew version
To reconstruct the 1ang file you just deleted, use the SCCS get
command:

get s.lang

This retrieves the most recent version of file s . 1ang and prints the
messages

1.1
S5 lines

(the SID of the version retrieved, and the length of the retrieved text).
The retrieved text is placed in another file called the g-file. The name
of the g-file is formed by deleting the s . prefix from the name of the
SCCS file. Hence, the file 1ang is reconstructed.

When you use the get command with no keyletters (in the format
above) the lang file is created with read only mode (mode 440), and

SCCS Reference 17-3

no information about the SCCS file is retained. If you want to be able
to change an SCCS file and create a new version, use the -e (edit)
keyletter on the get command line:

get -e s.lang

The ~e keyletter causes get to create lang with read-write
permission and places certain information about the SCCS file in
another file called the p-file, which will be read by the delta
command when the time comes to create a new delta.

The same messages are displayed, as well as the SID of the next delta
(to be created). For example,

get -e s.lang
produces

1.1
new delta 1.2
5 lines

After this command, you can edit the 1ang file and make changes.
For example, suppose that you use vi to create the following new
version of the file:

c

PL/I
FORTRAN
COBOL
ALGOL
ADA
PASCAL

The command
delta s.lang

records the changes you made to the 1ang file within the SCCS file.
SCCS prints the message

comments?

Your response should be a description of why the changes were made.
For example,

17-4 A/UX Programming Languages and Tools, Volume 2

comments? added more languages

The delta command then reads the p-file and determines what
changes were made to the file 1ang. When this process is complete,
the changes to 1ang are stored in s. lang, and delta displays

1.2

2 inserted
0 deleted

5 unchanged

The number 1.2 is the SID of the new delta, and the next three lines
refer to the changes recorded in the s . 1ang file.

2.3 Retrieving versions

The -r keyletter allows you to retrieve a particular delta by specifying
its SID on the get command line. For the previous example, the
following commands are all equivalent:

get s.lang
get -rl s.lang
get -rl.2 s.lang

The numbers following the —r keyletter are SIDs.

The first command retrieves the most recent version of the SCCS file,
because no SID is specified. When you omit the level number of the
SID (as in the second command), SCCS retrieves the most recent level
number in that release (in the previous example, the latest version in
release 1, namely 1.2). The third command explicitly requests the
retrieval of a particular version (in this case, also 1.2).

Whenever a major change is made to a file, the significance of that
change is usually indicated by changing the release number (the first
component of the SID) of the delta being made. Because normal
automatic numbering of deltas proceeds by incrementing the level
number (the second component of the SID), you must explicitly change
the release number as follows:

get -e -r2 s.lang

Because release 2 does not yet exist, get retrieves the latest version
before release 2 and changes the release number of the next delta to 2,
naming it 2.1 rather than 1.3. This information is stored in the p-file so

SCCS Reference 17-5

the next execution of the delta command will produce a delta with
the new release number. The get command then produces

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the
version delta will create. Subsequent versions of the file will be
created in release 2 (deltas 2.2, 2.3, and so on).

2.4 On-line information

The help command is useful whenever there is any doubt about the
meaning of an SCCS message. Detailed explanations of almost all
SCCS messages can be found using the he1p command and the code
printed in parentheses after the message.

If you give the command
get abc
SCCS prints the message
ERROR [abc]l: not an SCCS file (col)

The string co1l is a code that can be used to obtain a fuller explanation
of that message using the he1lp command. The command

help col
produces

col:

"not an SCCS file"™

A file that you think is an SCCS file
does not begin with the characters "s.".

3. SCCSfiles

This section discusses the protection mechanisms used by SCCS, the
format of SCCS files, recommended procedures for auditing SCCS
files, and how deltas are numbered.

3.1 Standard A/UX protection
In addition to the special SCCS flags and keyletters described in
*“‘SCCS Protection Mechanisms,”” SCCS uses standard A/UX

17-6 A/UX Programming Languages and Tools, Volume 2

protection mechanisms to prevent you from making changes to SCCS
files using non-SCCS commands. The following precautions are
automatically taken by SCCS:

« When you create an SCCS file (using admin), it is automatically
given mode 444 (read only) if your umask is less than or equal
to 333. If your umask is 334 the SCCS file will be created with
mode 440 (no read permission for others). If your umask is 344
the SCCS file will be created with mode 400 (read permission for
the owner only). If your umask is 444 or higher, the SCCS file
will be created with no permissions across the board, and a lock
file, also called a z-file, will be created. The preferred mode for
an SCCS file is 444; this protects against modifying SCCS files
using non-SCCS commands and should not be changed.

 If you make a hard link from an SCCS file to another file, SCCS
commands will not process the SCCS file. SCCS commands
produce an error message rather than process a file that has been
linked. The reason for this is the same: Protection is provided
against using non-SCCS commands to modify SCCS files.

3.2 SCCS protection mechanisms

SCCS provides the following protection features directly: three SCCS
file flags (release ceiling, release floor, and release lock) and a user list
for SCCS files.

The SCCS file flags are set using the -f keyletter with the admin
command. This keyletter specifies a flag and possibly a value for the
flag, to be placed in the SCCS file. Several -f keyletters may be
supplied on a single admin command line (see ‘‘SCCS Flags’’ under
““Create SCCS Files: admin’’).

The flags used for file protection are

c ceiling The highest release (‘‘ceiling’’) that can be retrieved by a
get command for editing. ceiling is a number less than or
equal to 9999. If this flag is not used, the default value for
ceiling is 9999, which allows all releases up to and
including 9999 to be retrieved for editing.

£ floor The lowest release (‘‘floor’”) that can be retrieved by a
get command for editing. floor is a number less than

SCCS Reference 17-7

9999 and greater than 0. If this flag is not used, the default
value for floor is 1, which allows the first release to be
retrieved for editing.

1 list A list of ““locked’’ releases to which deltas can no longer
be made. (See admin(l) in A/UX Command Reference
for the complete syntax of this list.) The get -e
command fails if you attempt to retrieve one of these
locked releases for editing. The character a in list can be
specified to protect all releases for the named SCCS file.

SCCS files may also contain a user list of login names and/or group IDs
of users who are or who are not allowed to create deltas of that file.
This list is empty by default, which means that anyone may create
deltas. To add names to the list (either to allow permission or to deny
it) the —a keyletter is used with the admin command. The argument
to the —a keyletter can be

login-name A login name or numerical group ID may be specified;
a group ID is equivalent to specifying all login names
common to that ID.

'login-name 1If a login or group ID is preceded by an exclamation
character (!), these ID’s are denied permission to make
deltas.

These features are described in more detail under the admin
command.

3.3 Administering SCCS

If you are using SCCS to manage personal files, the protection
mechanisms described above should be used to keep certain releases
from being modified, or to prevent you from accidentally modifying
your files without using SCCS.

Aside from these protections, you can simply use SCCS directly. See
“‘Delta Numbering’’ for information on storing and retrieving different
releases.

3.3.1 Group project administration

If you are using SCCS to manage and protect files in a large project
with several users having access to the same files, a single user should
own the SCCS files and directories. This single user will be the only

17-8 A/UX Programming Languages and Tools, Volume 2

one to administer the SCCS files.
The following precautions are recommended:

» Directories containing SCCS files should be mode 755. This
allows only the owner of the directory to modify its contents.

» SCCS files should be kept in directories that contain only SCCS
files (and any temporary files created by SCCS commands). This
simplifies protection and auditing of SCCS files. The contents of
directories should correspond to convenient logical groupings,
for example, subsystems of a large project.

o No SCCS users other than the SCCS administrator should be able
to use those commands that require write permission in the
directory containing the SCCS files. Instead, a project-dependent
program should be written to provide an interface to certain
SCCS commands, usually the get, delta, and, if desired,
rmdel and cdc commands.

This last precaution requires that you write an interface program
(usually specific to the project) that invokes the desired SCCS
command and gives other users (who are not the owners of the SCCS
files) the permissions they need to modify specific SCCS files, using
only those commands that are linked to the interface program.

Note: If you are not using the sccs front end (see sccs(1) in
A/UX Command Reference), you may need to write an interface
program such as the sample program shown in Figure 17-1 to
handle special file permissions for a particular project.

The sample program in Figure 17-1 causes the invoked command to
inherit the privileges of the interface program for the duration of that
command’s execution. Users whose login names or group IDs are in
the user list for that file (but who are not the owner), and who have the
path to the executable interface program in their PATH variable, are
given the necessary permissions only for the duration of the execution
of the interface program. They can modify the SCCS files only through
the use of those commands that are linked to the interface program.

SCCS Reference 17-9

Figure 17-1. Sample interface program for group projects

main (argc, argv)
int argc;
char *argv(];
{
register int i;
char cmdstr [BUFSIZ];

/* Process file arguments
(those that don’t begin with "-’) */
for (1 = 1; 1 < argc; i ++)
if (argv [1i][0] != ’-7)
argv[i] = filearg (argv([i]):

/* Get ‘simple name’ of name

used to invoke program

(strip off directory prefix, if any) */
argv([0] = sname (argv([0]):;

/* Invoke actual SCCS command,

passing arguments */
sprintf (cmdstr, "/usr/bin/%s", argv[0]);
execv (cmdstr,argv) ;

This sample interface program is an example only; the functions
sname and filearg are not standard functions. You should write
these and any other functions required by your project.

Such an interface program must be owned by the SCCS administrator,
must be executable by the new owner, and must have the setuid (set
user ID on execution) bit on (see setuid(2)).

Links can then be created between the executable interface program
and the command names. For example, if the path to the file is

/sccs/interface.c

17-10 A/UX Programming Languages and Tools, Volume 2

then the commands

cd /sccs
cc interface.c -o inter

compile the program into the executable module inter. At this point,
the command

chmod 4755 inter

sets the proper mode and setuid bit. You can then create links from
any directory with the commands

1In /sccs/inter get
1ln /sccs/inter delta
1n /sccs/inter rmdel
1n /sccs/inter cdc

The full pathname of the directory containing the links must then be
included prior to the /usr/bin directory in the PATH variable (in the
.profileor .login files of all SCCS users who need to use the
desired SCCS commands). For example,

PATH=(.:/usr/new:/bin:/sccs:/usr/bin)

Depending on the type of interface program you have written, the
names of the links can be arbitrary (if the program can determine from
them the names of the commands to be invoked), the pathname to your
project can be supplied, and so on. If the pathname to your project is
supplied in the interface program, the user can use the syntax

get -e s.abc

regardless of where the user is currently located in the file system.

3.4 SCCS file formats
SCCS files are composed of ASCII text arranged in six parts, as.
follows:

checksum This part of the file contains the sum of the ASCII
values of all characters in the file (not including the
checksum itself). The SCCS checksum is described
in ‘‘SCCS File Auditing.”

SCCS Reference 17-11

delta table

user list

flags

descriptive text

body

This part contains information about each delta, such
as type, SID, date and time of creation, and
commentary.

This is a list of login names and/or group IDs of
users who are allowed to modify the file by adding
or removing deltas. The user list is described under
““‘SCCS Protection Mechanisms.”’

This part contains indicators that control certain
actions of SCCS commands. Flags are discussed
under ‘‘Create SCCS Files: admin.”

This is arbitrary text provided by the user, usually
comments that provide a summary of the contents
and purpose of the file. Descriptive text is discussed
under ‘‘Create SCCS Files: admin.”

This is the actual text of the ASCII file being
administered by SCCS, intermixed with internal
SCCS control lines.

For information regarding the physical layout of SCCS files, see
sccsfile(4) in A/lUX Command Reference.

Note: Because SCCS files are ASCII files, they can be
processed by other A/UX commands such as vi, grep, and
cat. This can be convenient when an SCCS file must be
modified manually or when you simply want to look at the file.
However, it is extremely important to be careful about
introducing changes that will affect future deltas. It is wise to
make a backup copy first.

3.5 SCCS file auditing

On rare occasions (such as a system crash) an SCCS file may be
destroyed or corrupted (that is, one or more blocks of it may be
destroyed). If the entire SCCS file has been trashed, the SCCS
commands issue an error message when you attempt to process that
file. In this case, you need to restore the file from your most recent

backup copy.

17-12 A/UX Programming Languages and Tools, Volume 2

If one or more blocks of an SCCS file have been trashed by a system
crash, the SCCS commands will recognize this through an inconsistent
checksum. In this case, the only SCCS command that will process the
file is the admin command with the -h or -z keyletter:

admin -h s.filel s.file2...

It is a good idea to use these commands routinely to audit your SCCS
files to detect any inconsistent checksums (indicating file corruptions).
If the new checksum of any file is not equal to the checksum in the first
line of that file, SCCS prints the message

corrupted file (co6)

This process continues until all the files have been examined. The
admin -h command can also be applied to directories:

admin -h directoryl directory? ...

This prints an error message for any corrupted files, but does not
automatically report missing SCCS files. To determine whether any of
your SCCS files are missing, list the contents of each directory (1s).

If you have an SCCS file that has been extensively corrupted, the best
solution is to restore the file from your most recent backup copy. If
there is only minor damage, you may be able to repair it using a text
editor. In this case, after you have repaired the file, use the command

admin -z s.file
This recomputes the file’s checksum so that it agrees with the file

contents. After you use admin -z, any corruption that existed in the
file will no longer be detectable by the admin -h command.

3.6 Delta numbering
SCCS deltas are changes applied to an original (null) file to produce
different versions and releases of your file.

SCCS names deltas with an SCCS Identification string (a SID). SIDs
have exactly two components (the release number and the level
number) separated by a period:

release . level

SCCS Reference 17-13

SCCS names the initial delta 1.1. This is considered a set of changes
applied to the null file. Subsequent deltas are named by incrementing
the level number (1.2, 1.3, and so on) when the delta is created. If you
make a major change to the file, you may want to specify a new release
number when you create the new delta. In this case, SCCS assigns a
new release number (2.1) and subsequent deltas are incremented as in
release 1. This is shown in Figure 17-2.

Figure 17-2. A linear progression of versions

O () () ()
—/ / -/
1.1 1.2 13 14

s O

Release 1 Release 2

In this simplest case the deltas progress linearly; that is, any delta is
dependent on all preceding deltas. When SCCS reconstructs a
particular version of your SCCS file, it applies all deltas up to and
including the number you specify. In most cases, this is all you will
need to know about SCCS delta numbering.

3.6.1 Branch deltas

The linear progression of file versions shown above is sometimes
called the ‘‘trunk’’ of the SCCS tree for that file. Under special
conditions, you may need to use a ‘‘branch’’ in the tree: an
independent progression of deltas that does not depend on all previous
deltas for that file.

For example, suppose you have a program at version 1.3 that is being
used in a production environment. You are developing a new release
(release 2) of the program, and already have several deltas of that
release. This situation uses the simple linear organization shown
above.

Now suppose that a user reports a problem in version 1.3 which
requires changes only to version 1.3 but does not affect subsequent
deltas. This requires a branch from the previous linear ordering. The

17-14 A/UX Programming Languages and Tools, Volume 2

new (branch) delta’s name consists of exactly four components:
release and level numbers (as in the trunk delta) plus a branch number
and sequence number, all separated by periods:

release .level . branch . sequence
Thus, a branch delta can always be identified as such from its name.

Once you have created a branch delta, SCCS increments subsequent
deltas on that branch by incrementing the sequence number. This is
shown in Figure 17-3.

Figure 17-3. A branching SCCS tree

While SCCS increments the sequence number on each branch, it
increments the branch number according to when you create the
branch. If you need to complicate your SCCS branch structure,
consider this carefully. While the trunk delta (the initial linear
progression) can always be identified by the branch delta’s name (by
the release and level numbers), it is not possible to determine the entire
path leading from the trunk delta to the particular branch delta you may
have retrieved.

For example, if delta 1.3 has one branch, all deltas on that branch will

be named 1.3.1.n. If a delta on this branch (for example, delta 1.3.1.1)
has a branch, all deltas on the new branch will be named 1.3.2.n. This
is shown in Figure 17-4.

SCCS Reference 17-15

Figure 17-4. A complicated branch structure

O—O—COO0—0—0

1.2 1.4 21 2.2

1321 1322

13.1.2

If you retrieve version 1.3.2.2, you know that (chronologically) it is the
second delta on the second branch from delta 1.3. You are not able to
deduce how many deltas there are between version 1.3.2.2 and version
1.3. Thus, although the branching capability has been provided for
managing files under certain special conditions, it is much easier to
manage your files if you keep the SCCS organization as linear and
simple as possible.

4. SCCS command conventions

This section discusses the conventions and rules that apply to SCCS
commands. Except where noted otherwise, these conventions apply to
all SCCS commands. A list of the temporary files generated by various
commands (and referred to in the ‘‘SCCS Command Summary’’) is
also provided.

4.1 SCCS command arguments
SCCS commands accept two types of arguments: keyletters and file
arguments.

Keyletters consist of a minus sign followed by a lowercase character,
which may be followed by a value. For example, -a is a keyletter.
Keyletters control the execution of the command to which they are
supplied. All keyletters specified for a given command apply to all file
arguments of that command. Keyletters are processed before any file
arguments, with the result that the placement of keyletters is arbitrary
(that is, keyletters may be interspersed with file arguments). Somewhat

17-16 A/UX Programming Languages and Tools, Volume 2

different argument conventions apply to the help, what, sccsdiff,
and val commands.

Note: Keyletters are command-line options equivalent to A/UX
flag options. Do not confuse keyletters with SCCS flags,
discussed in ‘‘SCCS Flags.”

File arguments (names of files and/or directories) specify the file(s) to
be processed by the given SCCS command. Naming a directory is
equivalent to naming all the SCCS files within the directory. Non-
SCCS files in the named directories are silently ignored. In general,
file arguments may not begin with a minus sign, but if the name - (a
single minus sign) is specified as an argument to a command, the
command reads the standard input (until end-of-file) and takes each
line as the name of an SCCS file to be processed. This feature is often
used in pipelines. File arguments are processed left to right.

4.2 Flags
Certain actions of SCCS commands can be controlled by flags, which
appear in SCCS files. These flags are discussed in ‘‘SCCS Flags.”’

4.3 Diagnostics
SCCS commands produce diagnostics (on the standard error output)
that use this format:

ERROR [filename] : message text (code)

The code in parentheses may be used as an argument to the help
command to obtain a further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the
SCCS command to stop processing that file and to proceed with the
next file, in order, if more than one file has been named.

Certain SCCS commands check both the real and effective user IDs
(see passwd(l) in A/lUX Command Reference). If you are using
SCCS to manage your personal files, these two IDs are the same; if you
are working in a group project, see ‘‘SCCS Protection Mechanisms.”’

4.4 Temporary files
Several SCCS commands generate temporary files and file copies
during the process of creating, retrieving, and updating SCCS files.

SCCS Reference 1717

The temporary files are normally named by stripping off the s . prefix
of the SCCS filename and replacing it with another single alphabetic
character.

The g-file is named by simply deleting the s . prefix. Thus, if the
SCCS file is named s . abc the g-file will be named abc. The p-file
will be named p . abc.

Figure 17-5. Relationships among temporary files

i-file:
table
of deltas

1
1
1
1
I
I
[}
1
1
]
1
1
1
g-file: :
text file :
)

1

1

I

1

1

1

1

I

1

1

I

1

1

]

x-file:
buffer file
for s.abc

q-file:
buffer file
for p-file

p-file:
data on
user, etc.

Created by get

These temporary files are as follows:

g-file This is the text file created by a get command. It contains a
particular version of an SCCS file, and its name is formed by
stripping off the s . prefix from the SCCS file.

17-18 A/UX Programming Languages and Tools, Volume 2

d-file

p-file

q-file

x-file

The g-file is created in the current directory and is owned by the
real user. The mode assigned to the g-file depends on how the
get command is invoked. The version it contains also depends
on how the get command is invoked. The default version is
the most recent trunk delta (that is, excluding branches).

‘When you invoke a get command, SCCS creates its own
temporary copy of the g-file by performing an internal get at
the SID specified in the p-file entry. This temporary copy is
called the d-file.

‘When you record your changes in a new version, the delta
command compares the d-file to to the g-file (using the diff
command). The differences between the g-file and the d-file are
the changes that constitute the delta.

When the get -e command creates a g-file with read-write
permission (so you can edit it), it places certain information
about the SCCS file (that is, the SID of the retrieved version,
the SID to be given to the new delta when it is created, and the
login name of the user executing get) in another new file
called the p-file.

‘When you record your changes in a new version, the delta
command reads the p-file for the SID and the login name of the
user creating the new delta.

When the new delta has been made, the p-file is updated by
removing the relevant entry. If there is only a single entry in
the p-file, then the p-file itself is removed.

Updates to the p-file are made to a temporary copy, the g-file,
whose use is similar to the use of the x-file.

All SCCS commands that modify an SCCS file do so by writing
a temporary copy, called the x-file (to ensure that the SCCS file
is not damaged if processing terminates abnormally). When
processing is complete, the old SCCS file is removed and the
x-file is renamed (with the s . prefix) to be the SCCS file.

The x-file is created in the directory containing the SCCS file,
given the same mode as the SCCS file, and owned by the

SCCS Reference 17-19

effective user.

2-file To prevent simultaneous updates to an SCCS file, commands
that modify SCCS files create a “‘lock file’’ called the z-file.
This file exists only for the duration of the execution of the
command that creates it. The z-file contains the process
number of the command that creates it. While the z-file exists,
it indicates to other commands that the SCCS file is being
updated. SCCS commands that modify SCCS files will not
process a file if the corresponding z-file exists.

The z-file is created with read-only mode (mode 444, possibly
modified by the user’s umask) in the directory containing the
SCCS file. It is owned by the effective user.

l-file The get -1 command creates an /-file containing a table
showing the deltas used in constructing a particular version of
the SCCS file. This file is created in the current directory with
mode 444 (read only) and is owned by the real user.

In general, users can ignore most of these temporary files, although
they can be useful in the event of system crashes or similar situations.

4.5 SCCS ID keywords

‘When you retrieve an SCCS file to compile it, it is useful to record the
date and time of creation, the version retrieved, the module’s name, and
so forth, within the g-file. This information appears in a load module
when one is eventually created.

SCCS uses ID keywords for recording such information about deltas
automatically. ID keywords can appear anywhere in the generated file
and will be replaced by appropriate values.

The format of an ID keyword is an uppercase letter enclosed by percent
signs (%). When these appear in the generated SCCS file they are
replaced by the values defined for that keyword. For example,

3I%
is replaced by the SID of the retrieved version of a file. Similarly,
THS

is replaced by the current date (in the form mm/dd/yy).

17-20 A/UX Programming Languages and Tools, Volume 2

‘When no ID keywords are substituted by get, the following message

is issued:

No id keywords (cm7)

This message is no

ly treated as a warning by get, unless the i

flag is present in the SCCS file (see ‘“SCCS Flags’’).

Here is a complete list of the ID keywords:

Table 17-1. SCCS ID Keywords

Keyword Value

M3

3F%
3P%
%0%

SCCS Re

Module name: either the value of the m flag in the
file (see admin(1)), or the name of the SCCS file
with the leading s . removed.

SCCS identification (SID) (3R% .%L% .%B%.%5%)
of the retrieved text.

Release.

Level.

Branch.

Sequence.

Current date (yy/mm/dd).

Current date (mm/dd/yy).

Current time (hh:mm:ss).

Date newest applied delta was created (yy/mm/dd).
Date newest applied delta was created (mmi/dd/yy).
Time newest applied delta was created (hh:mm.:ss).
Module type: the value of the t flag in the SCCS
file (see admin(1)).

SCCS file name.

Fultr qualified SCCS filename.

Value of the g flag in the file (see admin(1)).

ference 17-21

%C%

%A%

Current line number. This keyword is intended for
identifying messages sent by the program. It is not
intended to be used on every line to provide
sequence numbers.

Four-character string @ (#) recognizable by
what.

Shorthand notation for constructing what strings
for A/UX system program files. 3W% =

$Z%%M% " I%I% (where "I is the tab character).
Another shorthand notation for constructing what
strings for non-A/UX system program files. $A% =
BZFFYSTIMISIBI2%

5. SCCS command summary
This section describes the features of all the SCCS commands. The
SCCS commands are as follows:

admin

cdc

comb

delta

get

unget

help
prs

rmdel

sact

17-22

Creates SCCS files and applies changes to
characteristics of SCCS files.

Changes the commentary associated with a delta.

Combines two or more consecutive deltas of an SCCS
file into a single delta; often reduces the size of the
SCCS file.

Applies changes (deltas) to the text of SCCS files, that
is, creates new versions.

Retrieves versions of SCCS files.

““Undoes’ a get -e command if invoked before the
new delta is created.

Prints explanations of diagnostic messages.
Prints portions of an SCCS file in user-specified format.

Removes a delta from an SCCS file; allows the removal
of deltas that were created by mistake.

Accounts for SCCS files in the process of being
changed.

A/UX Programming Languages and Tools, Volume 2

sccsdiff Shows the differences between any two versions of an

SCCS file.
val Validates an SCCS file.
what Searches any A/UX system file(s) for all occurrences of

a special pattern and prints out what follows it; what is
useful in finding identifying information inserted by the
get command.

5.1 Create SCCS files: admin
admin creates new SCCS files or changes characteristics of existing
ones. You can create an SCCS file with the command

admin -ifilename s .filename
where filename is a file from which the text of the initial delta of the
SCCS file s . filename is to be taken.

Note: There is no space between the -1 keyletter and the
filename argument.

SCCS files are created in read-only mode (444) and are owned by the
effective user (see passwd(l) in A/UX Command Reference). Only a
user with write permission in a directory containing SCCS files can use
the admin command on a file in that directory.

If you omit the value of the -1 keyletter, admin reads the standard
input for the text of the initial delta. Thus, the command

admin -is.filename < filename

is also valid. Only one SCCS file can be created at a time using the —i
keyletter.

If the text of the initial delta does not contain ID keywords, the
message

No id keywords (cm7)

is issued as a warning. See ‘‘SCCS ID Keywords’’ for more
information.

SCCS Reference ‘ 17-23

If you set the i flag in the SCCS file (using the - £ keyletter with the
admin command; see ‘‘SCCS Flags’’), the above message is treated as
a fatal error and the SCCS file is not created.

The first delta of an SCCS file is normally 1.1. The -r keyletter to the
admin command is used to specify a different release number for the
initial delta. Because it is only meaningful in creating the first delta
(with admin), its use is permitted only with the -1 keyletter. The
command

admin -ifilename -x3 s.filename
specifies that the first delta should be named 3.1 rather than 1.1.

5.1.1 SCCS flags
SCCS file flags are used to direct certain actions of SCCS commands.

The flags of an SCCS file are initialized or changed using the - £
keyletter, and deleted using the -d keyletter. When you create an
SCCS file, flags are either initialized by the - £ keyletter on the
command line or assigned default values.

For example, the following command sets the i flag and the m (module
name) flag:

admin -ifilename -fi -frumodname s .filename

The i flag specifies that a warning message stating that there are no ID
keywords contained in the SCCS file should be treated as a fatal error.

The value modname specified for the m flag is the value that the get
command will use to replace the sccs ID keyword. (In the absence of
the m flag, the name of the g-file is used as the replacement for the
sccs ID keyword.)

Note that several - £ keyletters may be supplied on the admin
command line and that - £ keyletters may be supplied whether the
command is creating a new SCCS file or processing an existing one.

The -d keyletter is used to delete a flag from an SCCS file and may be
specified only when processing an existing file. For example, the
following command removes the m flag from the SCCS file:

admin -dm s.filename

17-24 A/UX Programming Languages and Tools, Volume 2

Several -d keyletters may be supplied on a single invocation of
admin and may be intermixed with - £ keyletters.

A user list of login names and/or group IDs of users who are allowed to
create deltas of that file is checked by several SCCS commands to
ensure that the delta is authorized. This list is empty by default, which
means that anyone may create deltas. The -a keyletter is used to
specify users who are given permission or denied permission to create
deltas. You can use the —a keyletter whether admin is creating a new
SCCS file or processing an existing one, and it can appear several times
on a command line.

For example, the command
admin -avz -aram -al234 s.filename

gives permission to create deltas to the login names vz and ram and
the group ID 1234. The command

admin -a'vz s.filename

denies permission to create deltas to the login name vz. Similarly, the
-e keyletter is used to remove (erase) login names or group IDs from
the list. For example,

admin -evz s.filename
removes the login name vz from the user list of s . filename.

5.1.2 Comments and MR nhumbers

When an SCCS file is created, you may insert comments stating your
reasons for creating the file. In a controlled environment, it is expected
that deltas are created only as a result of some trouble report, change
request, trouble ticket, and so forth, all of which are collectively called
MRs (for ‘‘modification request’’).

The creation of an SCCS file may sometimes be the direct result of an
MR. MRs can be recorded by number in a delta via the —m keyletter,
which can be supplied on the admin (or delta) command line.

The -y keyletter can also be used to supply comments on the command
line rather than through the standard input.

If comments (-y keyletter) are omitted, a comment line of the form

SCCS Reference 17-25

date and time created YY/MM/DD hh:mm:ss by logname
is automatically generated.

If you want to supply an MR number (using the -m keyletter), the v
flag must also be set (using the - £ keyletter described below), as in the
command

admin -ifilename -mmrlist -fv s.filename

The v flag causes the de1ta command to prompt for MR numbers as
the reason for creating a delta. (See sccsfile(d)in A/UX
Programmer’s Reference.) Note that the -y and -m keyletters are
effective only if a new SCCS file is being created.

5.1.3 Descriptive text

The portion of the SCCS file reserved for descriptive text can be
initialized or changed using the -t keyletter. Descriptive text is
intended as a summary of the contents and purpose of the SCCS file.

To insert descriptive text in a file you are creating, the -t keyletter is

followed by the name of a file from which the descriptive text is to be

taken. For example, when a new SCCS file is being created, the

following command takes descriptive text from description-file:
admin -ifilename -tdescription-file s.filename

When processing an existing SCCS file, the -t keyletter specifies that
text found in description-file should overwrite current descriptive text
(if any). If you omit the file name after the -t keyletter, as in

admin -t s.filename
the descriptive text currently in the SCCS file is removed.

5.2 Change comments in an SCCS file: cdc
cdc changes the comments or MR numbers that were supplied when a
delta was created. It is invoked as follows:

cdc -r3.4 s.filename

This specifies that you want to change the comments of delta 3.4 of
s .filename. You can also use cdc to delete selected MR numbers by
preceding the selected MR numbers by the exclamation character (!).

17-26 A/UX Programming Languages and Tools, Volume 2

cdc prompts for MR numbers and new comments:

cdc -r3.4 s.filename

MRs? mrlist! mrlist
comments? deleted wrong MR number and inserted\
correct MR number

The new MR number(s) in the first mr1ist are inserted, and the old
MR number(s) (preceded by the exclamation character) are deleted.
The old comments are kept and preceded by a line, indicating that they
have been changed. The inserted comment line records the login name
of the user executing cdc and the time of its execution.

5.3 Combine deltas to save space: comb

The comb command generates a shell script (see sh(l) in A/UX
Command Reference) that is written to standard output. When
executed, the script attempts to save space by discarding deltas that are
no longer useful and combining other specified deltas.

Note: comb should be used only a few times in the life of an
SCCS file. Before any actual reconstructions, comb should be
run with the -s keyletter (in addition to any other keyletters
desired).

In the absence of any keyletters, comb preserves only the most recent
deltas and the minimum number of ‘‘ancestor’’ deltas necessary to
preserve the SCCS file tree. The effect of this is to eliminate middle
deltas on the trunk and on all branches of the tree.

Some of comb’s keyletters are as follows:

-p Specifies the oldest delta that is to be preserved in the
reconstruction. All older deltas are discarded.

-c Specifies a list of deltas to be preserved (see get (1) in A/UX
Command Reference for the syntax of this list). All other deltas
are discarded.

-s Causes the generation of a shell script that, when run, produces
only a report summarizing the percentage space (if any) to be
saved by reconstructing each named SCCS file. You should run

SCCS Reference 17-27

comb with this keyletter (in addition to any others desired)
before any actual reconstructions.

Note that the shell script generated by comb is not guaranteed to save
space. In fact, it is possible for the reconstructed file to be larger than
the original. Note, too, that the shape of the SCCS file tree may be
altered by the reconstruction process.

5.4 Store a new SCCS file version: delta

delta creates a new delta by recording the changes made to a g-file.
The differences between the g-file and the d-file are the changes that
constitute the delta. These changes are normally stored as a delta; they
may also be printed on the standard output by using the -p keyletter.
The format of this output is similar to that produced by diff.

5.4.1 Required temporary files

All temporary files used by the delta command are described in
‘“Temporary Files.”” There must be a p-file and a d-file for delta to
work.

delta looks in the p-file for the user’s login name and a valid SID for
the next delta. There should be just one entry for the user (created
when the user does a get -e) and it should be the same user who is
trying to create a delta. Otherwise, delta will print an error message
and stop. If the user’s login name appears in more than one entry in the
p-file, the same user has executed more than one get -e on the SCCS
file. In this case the -r keyletter must then be used with delta to
specify the SID that uniquely identifies the p-file entry. This entry is
the one used to obtain the SID of the delta to be created.

The delta command also performs the same permission checks
performed by get -e. If all checks are successful, de1ta performs
a diff on the g-file and the d-file and records the changes as a new
delta.

5.4.2 Comments and MR numbers
In practice, the most common use of delta is

delta s.filename

which prompts

17-28 A/UX Programming Languages and Tools, Volume 2

comments?

on the screen. Your response can be up to 512 characters long if you
escape all newlines with a backslash (\). The response is terminated
by a newline character.

In a controlled environment, deltas are usually created only as a result
of some trouble report, change request, trouble ticket, and the like.
These are collectively called MRs (modification requests) and can be
recorded in each delta. If the SCCS file has a v flag set, delta first
prompts with

MRs?

on the screen. The standard input is then read for MR numbers,
separated by blanks and/or tabs. Your response can be up to 512
characters long if you escape all newlines with a backslash (\). The
response is terminated by a newline character.

The -y and/or —m keyletters on the delta command line can also be
used to supply comments and MR numbers, respectively, instead of
supplying these through the standard input. The format of the delta
command is then

delta -ydescriptive comment —mmrlist s .filename

The -mkeyletter is allowed only if the SCCS file has a v flag. These
keyletters are useful when delta is executed from within a shell
script (see sh(l) in A/UX Command Reference).

The -s keyletter suppresses all output that is normally directed to the
standard output except for the prompts comment s? and MRs?. Use
of the —s keyletter together with the —y keyletter (and possibly the -m
keyletter) causes delta to neither read standard input nor write to
standard output.

The comments and/or MR numbers are recorded as part of the entry for
the delta being created and apply to all SCCS files processed by the
same invocation of delta. If delta is invoked with more than one
file argument and the first file named has a v flag, all files named must
have the v flag. Similarly, if the first file named does not have this flag,
then none of the files named may have it. Any file that does not
conform to these rules is not processed.

SCCS Reference 17-29

‘When processing is complete, the SID of the created delta (obtained
from the p-file entry) and the counts of lines inserted, deleted, and left
unchanged by the delta are written to the standard output.

Thus, a typical output might be

1.4

14 inserted

7 deleted

345 unchanged

Note: The counts of lines reported as inserted, deleted, or
unchanged by de1ta may not agree with your perception of
the changes applied to the g-file. There are usually several

ways to describe a set of changes, especially if lines are moved
around in the g-file, and delta is likely to find a description
that differs from your perception. However, the total number of
lines of the new delta (the number inserted plus the number left
unchanged) should agree with the number of lines in the edited

g-file.

5.4.3 Keywords
If delta finds no ID keywords in the edited g-file, it prints the
message

No id keywords (cm7)

after it prompts for comments, but before any other output. This
indicates that any ID keywords that may have existed in the SCCS file
have been replaced by their values or deleted during the editing
process. This could be caused by

o Creating a delta from a g-file that was created by a get
command without the —e keyletter (ID keywords are replaced by
get in that case)

o Accidentally deleting or changing the ID keywords while you are
editing the g-file

e The file’s having no ID keywords to begin with

17-30 A/UX Programming Languages and Tools, Volume 2

In any case, it is left up to the user to determine what to do about it.
The delta is created whether or not ID keywords are present, unless
there is an i flag in the SCCS file indicating that this should be treated
as a fatal error. In this last case, the delta is not created until the ID
keywords are inserted in the g-file and the delta command is
executed again.

See ‘“SCCS ID Keywords’’ for more information.

5.4.4 Removal of temporary files

When processing of an SCCS file is complete, the corresponding p-file
entry is removed from the p-file. All updates to the p-file are made to a
temporary copy called the g-file. If there is only one entry in the p-file,
then the p-file itself is removed.

When processing of the corresponding SCCS file is complete, delta
also removes the edited g-file unless the —n keyletter is specified. The
command

delta -n s.filename
keeps the g-file upon completion of processing.

5.5 Retrieve an SCCS file version: get

get creates a text file containing a particular version of an SCCS file.
The get command applies deltas to the initial version of the file to
obtain the version you specify or the most recent version (excluding
branch versions, which must be retrieved specifically).

The resulting text file is called the g-file (see ‘“Temporary Files’’). The
mode of the g-file depends on how the get command is invoked.

For example, the command
get s.filename
produces

1.3
67 lines
No id keywords (cm7)

on the standard output. This indicates that version 1.3 (the most recent
delta) was retrieved, that there are 67 lines of text in this version, and
that no ID keywords were substituted in the file.

SCCS Reference 17-31

The generated g-file is assigned mode 444 (read only), which does not
allow you to modify the file, although you can read the file or compile
it, and so on. The file is not intended for editing (that is, for making
deltas).

If you specify several file arguments (or directory-name arguments) on
the get command line, similar information is displayed for each file
processed, preceded by the SCCS filename. For example, the
command

get s.abc s.def
produces

s.abc:

1.3

67 lines

No id keywords (cm7)

s.def:

1.7

85 lines

No id keywords (cm7)

See ‘SCCS ID Keywords.”’

5.5.1 Retrieving different versions

By default the get command retrieves the most recent delta of the
highest-numbered release on the basic trunk of the SCCS file tree
(exclusive of branches). To change this default, you can

o Set the d flag in the SCCS file. Then the SID specified as the
value of this flag is used as a default.

o Use the —r keyletter on the get command line to specify which
SID you want to retrieve. (If the version you specify does not
exist, an error message results.) For example,

get -rl.3 s.filename

In this case, the d flag (if any) is ignored. A branch delta can be
retrieved similarly:

17-32 A/UX Programming Languages and Tools, Volume 2

get -rl.5.2.3 s.filename
If you omit the level number
get -r3 s.filename

the highest level number (most recent delta) within the given
release will be retrieved. If the given release does not exist, get
retrieves the most recent trunk delta (not in a branch) with the
highest level number within the highest-numbered existing
release that is lower than the release you specify.

« Use the -t keyletter to retrieve the most recent (top) version in a
particular release (when no -r keyletter is supplied or when its
value is simply a release number). Most recent is independent of
location in the SCCS tree (see ‘‘Delta Numbering’”). For
example, if the most recent delta in release 3 is 3.5,

get -r3 -t s.filename
might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created
after delta 3.5), the same command might produce

3.2.1.5
46 lines

5.5.2 Retrieving a file to create a new delta

‘When you specify the —e keyletter to get, the retrieved file has read-
write permission and can be edited to make a new delta. For example,
the command

get -e s.filename
produces

1.3
new delta 1.4
67 lines

on the standard output. The use of get -e is restricted (because a
new delta can be created), causing a check of the SCCS protection

SCCS Reference 17-33

mechanisms (user list and protection flags; see ‘‘SCCS Protection
Mechanisms’’). SCCS also checks for permission to make concurrent
edits (specified by the j flag in the SCCS file; see ‘‘Concurrent Edits of
Same SID’’).

If the permission checks succeed, get -e creates a g-file with mode
644 (readable by everyone, writable only by the owner) in the current
directory. This mode may be modified by the user’s umask.

If a writable g-file already exists, get -e terminates with an error.
This is to prevent inadvertent destruction of a g-file that already exists
and is being edited for the purpose of making a delta.

ID keywords appearing in the g-file are not substituted by get -e
because the generated g-file is subsequently used to create another
delta. Replacement of ID keywords causes them to be permanently
changed within the SCCS file.

The following keyletters may be used with get -e:

-

17-34

Used to specify a particular version to be retrieved for editing.
If the number specified to —r does not exist, it will be assigned
to the new delta.

Specifies that the most recent version in a given release be
retrieved for editing.

Used to specify a list of deltas to be included by get.
Including a delta means forcing the changes that constitute the
particular delta to be included in the retrieved version. This is
useful if you want to apply the same changes to more than one
version of the SCCS file. When a delta is included, get
checks for possible interference between those deltas and deltas
that are normally used in retrieving the particular version of the
SCCS file. Two deltas can interfere, for example, when each
one changes the same line of the retrieved g-file. Any
interference is indicated by a warning that shows the range of
lines within the retrieved g-file in which the problem may exist.
The user is expected to examine the g-file to determine whether
a problem actually exists and to do whatever is necessary (for
example, edit the file). The -i keyletter should be used with
extreme care.

A/UX Programming Languages and Tools, Volume 2

-x Used to specify a list of deltas to be excluded by get.
Excluding a delta means forcing it not to be applied. This may
be used to undo (in the version of the SCCS file to be created)
the effects of a previous delta. Whenever deltas are excluded,
get checks for possible interference between those deltas and
deltas that are normally used in retrieving the particular version
of the SCCS file. (See the explanation under -i.) The -x
keyletter should be used with extreme care.

-k Facilitates regeneration of a g-file that may have been
accidentally removed or ruined after a get -e command, or
the simple generation of a g-file in which the replacement of ID
keywords has been suppressed. A g-file generated by the -k
keyletter is identical to one produced by get -e except that
no processing related to the p-file takes place (see ‘“Temporary
Files’’).

5.5.3 Concurrent edits of different versions

There is a possibility (in a group project) that several get -e
commands may be executed at the same time on the same file.
However, unless concurrent edits are explicitly allowed (see
““‘Concurrent Edits of Same SID’’), no two get -e executions can
retrieve the same version of an SCCS file. This protection uses
information from the p-file (see ‘‘Temporary Files’’).

The first execution of get -e causes the creation of the p-file for the
corresponding SCCS file. Subsequent executions only update the p-file
with a line containing the above information. Before updating,
however, get checks to ensure that no entry (already in the p-file)
specifies that the SID (of the version to be retrieved) is already
retrieved, unless multiple concurrent edits are allowed. (See
““Concurrent Edits of Same SID.”’)

If both checks succeed, the user is informed that other deltas are in
progress and processing continues. If either check fails, an error
message results. It is important to note that the various executions of
get should be carried out from different directories. Otherwise, only
the first execution succeeds because subsequent executions would
attempt to overwrite a writable g-file, which is an SCCS error
condition. In practice, such multiple executions are performed by
different users so that this problem does not arise (each user normally

SCCS Reference 17-35

has a different working directory). (See the section ‘‘SCCS Protection
Mechanisms”’ for a discussion about how different users are permitted
to use SCCS commands on the same files.)

Figure 17-6 shows a sample SCCS file retrieved by get -e and the
SID of the version that will subsequently be created by delta,asa
function of the SID specified to get.

In Figure 17-6,R, L, B, and S are release, level, branch, and sequence
components of the SID. m means ‘‘maximum.”’ Thus, for example,
R.mL means ‘‘the maximum level number within release R’’;
R.L.(mB+1).1 means ‘the first sequence number on the (maximum
branch number plus 1) of level L within release R.”’

Also note that if the SID specified is of the form R.L, R.L.B, or
R.L.B.S, each of the specified components must exist.

The -b keyletter is effective only if the b flag is present in the file (see
admin(1)). In this state, an entry of —i means ‘‘irrelevant.’’

The cases marked * apply if the d (default SID) flag is not present in
the file. If the d flag is present in the file, the SID obtained from the d
flag is interrupted as if it had been specified on the command line.
Thus, one of the other cases in this figure applies.

The case marked with a t is used to force the creation of the first delta
in the new release.

hR is the highest existing release that is lower than the specified,
nonexisting, release R.

17-36 A/UX Programming Languages and Tools, Volume 2

Figure 17-6. Determination of new SID

SID -b Other SID SID of delta
specified | keyletter | conditions | retrieved | to be created
used
none* no R default mR.mL mR.(mL+1)
to mR
none* yes R default mR.mL mR.mL.(mB+1)
to mR
R no R>mR mR.mL R.1t
R no ==mR mR.mL mR.(mL+1)
R yes R>mR mR.mL mR.mL.(mB+1).1
R yes R==mR mR.mL mR.mL.(mB+1).1
R - R<mR hR.mL hR.mL.(mB+1).1
and does
not exist
R - Trunk R.mL R.mL.(mB+1).1
successor
in release >R
and R exists

SCCS Reference

17-37

Figure 17-6. Determination of new SID (continued)

SID -b Other SID SID of delta
specified | keyletter | conditions | retrieved | to be created
used
R.L. no No trunk RL R.(L+1)
successor
R.L. yes No trunk R.L R.L.(mB+1).1
successor
RL - Trunk RL R.L.mB+1).1
in release
>=R
R.LB no No branch | R.L.B.mS R.L.B.(mS+1)
successor
R.L.B yes Nobranch | RLB.mS | R.L(mB+1).1
successor
R.LB.S no Nobranch | R.LB.S R.LB.(S+1)
successor
RLB.S no No branch | RLB.S R.L.(mB+1).1
successor
R.LB.S - Branch R.LB.S R.L.(mB+1).1
successor

5.5.4 Concurrent edits of same SID

Unless the j flag is set in the SCCS file (see ‘‘SCCS Flags™’), get -e
commands are not permitted to occur concurrently on the same SID.
That is, de1ta must be executed before another get -e is executed

17-38 A/UX Programming Languages and Tools, Volume 2

on the same SID. If the 5 flag is set in the SCCS file, two or more
successive executions of get -e on the same SID are allowed. The
command

admin -f3j s.filename

sets the j flag. Then, the command
get -e s.filename

may produce

1.1
new delta 1.2
5 lines

which may be immediately followed by the commands

mv filename new-filename
get -e s.filename

The second edit request without an intervening execution of delta
causes a warning to be generated:

1.1

WARNING: being edited: ’1.1 1.2 username date-stamp’ (gel8)
new delta 1.1.1.1

5 lines

In this case, a de1ta command corresponding to the first get
produces delta 1.2 (assuming 1.1 is the latest (most recent) delta), and
the delta command corresponding to the second get produces delta
1.1.1.1.

5.5.5 Keyletters that affect output
The following keyletters affect output:

-p The retrieved text is written on standard output rather than on a
g-file. In this case, all output normally directed to the standard
output (such as the SID of the version retrieved and the number
of lines retrieved) is directed instead to the standard error output.
The -p keyletter is used, for example, to create g-files with
arbitrary names:

get -p s.filename > filename

SCCS Reference 17-39

-9

-m

17-40

Suppresses all output that is normally directed to the standard
output (the SID of the retrieved version, the number of lines
retrieved, and so forth, are not written). This does not affect
messages to the standard error output. This keyletter is used to
prevent nondiagnostic messages from appearing on the user’s
terminal, and is often used in conjunction with the -p keyletter
to pipe the output of get. For example,

get -p -s s.filename | nroff

Suppresses the actual retrieval of the text of a version of the
SCCS file. This can be used in a number of ways, for example,
to verify the existence of a particular SID in an SCCS file:

get -g -r4.3 s.filename

This prints the given SID if it exists in the SCCS file or
generates an error message if it does not exist. The -g keyletter
is also used to regenerate a p-file that has been accidentally
destroyed. For example,

get -e -g s.filename

Creates an /-file named by replacing the s . of the SCCS file
name with 1 .. See ‘‘Temporary Files.”” For example, the
command

get -r2.3 -1 s.filename

generates an [-file that shows the deltas applied to retrieve
version 2.3 of the SCCS file. Specifying a value of p with the
-1 keyletter

get -lp -r2.3 s.filename

causes the generated output to be written to the standard output
rather than to the /-file. You can use the —g keyletter with the
-1 keyletter to suppress the actual retrieval of the text.

Identifies the changes applied to an SCCS file, line by line.
When you specify this keyletter to the get command, each line
of the generated g-file is preceded by the SID of the delta that
caused that line to be inserted. The SID is separated from the
text of the line by a tab character.

A/UX Programming Languages and Tools, Volume 2

-n

Causes each line of the generated g-file to be preceded by the
value of the $M% ID keyword (the module name) and a tab
character. The -n keyletter is most often used in a pipeline with
the grep command. For example,

get -p -n -s directory | grep pattern

searches the latest version of each SCCS file in a directory for
all lines that match a given pattern. If both the -m and -n
keyletters are specified, each line of the generated g-file is
preceded by the value of the sccs ID keyword and a tab
(caused by the -n keyletter) and shown in the format produced
by the -m keyletter.

Because the contents of the g-file are modified when you use the
-m and/or —-n keyletters, this g-file cannot be used for creating a
delta, and neither -m nor -n can be used with the —e keyletter.

5.6 Restore a version unchanged: unget
If invoked before a delta, unget undoes a get -e command. The
following keyletters can be used with unget:

-rSID Uniquely identifies the delta that is no longer intended (the

-n

SID for the new delta is included in the p-file). This is
necessary only if two or more get -e commands of the
same SCCS file are in progress.

Suppresses the display of the intended SID of the delta on
standard output.

Retains the g-file in the current directory instead of
removing it.

For example, the command

get -e s.filename

followed by

unget s.filename

causes the last version to be unchanged.

SCCS Reference 17-41

5.7 On-line explanations: help

The help command prints explanations of SCCS commands and the
messages printed by some of these commands. If you use help
without an argument, it prompts for one. Valid arguments are names of
SCCS commands or the code numbers that appear in parentheses after
SCCS messages. Keyletter arguments or file arguments are not valid
arguments to help.

Explanatory information related to a command is a synopsis of the
command. For example, the command

help ge5 rmdel
produces

ge5:

‘nonexistent sid’

The specified sid does not exist in the
given file.

Check for typos.

rmdel:
rmdel -rSID name

This is printed on standard output by default. If no information is
found, help prints an error message. Note that he 1p processes each
argument independently, and an error resulting from one argument will
not terminate the processing of the other arguments on the command
line.

5.8 Print part(s) of an SCCS file: prs

The prs command is used to print on the standard output all or part(s)
of an SCCS file in a format you specify. The format is called the
output ‘‘data specification.”’ It is a string consisting of SCCS file data
keywords (not to be confused with get ID keywords), supplied using
the ~d keyletter on the prs command line. These keywords can
(optionally) be interspersed with text.

Data keywords specify which parts of an SCCS file are to be retrieved
and produced. All parts of an SCCS file (see sccsfile(4)) have an
associated data keyword. Data keywords are an uppercase character,
two uppercase characters, or an uppercase and a lowercase character,

17-42 A/UX Programming Languages and Tools, Volume 2

enclosed by colons. For example,
:I:

is the keyword replaced by the SID of a specified delta. Similarly,
H

is the keyword replaced by the SCCS filename currently being
processed, and

:C:

is replaced by the comment line associated with a specified delta. For a
complete list of the data keywords, see prs(1) in A/UX Command
Reference.

There is no limit to the number of times a data keyword can appear in a
data specification. For example, the command

prs —d":I: this is the top delta for :F: :I:" s.filename
may produce on the standard output (for example)
2.1 this is the top delta for s.filename 2.1

Information can be obtained from a single delta by specifying the SID
of that delta using the - r keyletter. For example,

prs -d":F:: :I: comment line is: :C:" -rl.4 s.filename
may produce the following output:
s.filename: 1.4 comment line is: THIS IS A COMMENT

If the - r keyletter is not specified, the value of the SID defaults to the
most recently created delta.

Information may be obtained from a range of deltas by specifying the
-e or -1 keyletters.

The -e keyletter substitutes data keywords for the SID designated by
the —r keyletter and all earlier deltas.

prs -d :I: -rl.4 -e s.filename

may produce

SCCS Reference 17-43

Nl
oD WS
-

H

The -1 keyletter substitutes data keywords for the SID designated by
the —r keyletter and all later deltas.

prs -d :I: -rl.4 -1 s.filename

may produce
3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the SCCS file may be
obtained by specifying both the —e and -1 keyletters.

5.9 Remove a specific delta: rmdel -z
rmdel removes a delta from an SCCS file. Normally, you should use
it only if incorrect global changes were incorporated in a delta.

The -r keyletter is required to specify the complete SID of the delta to
be removed.

The delta to be removed must be the most recent delta on its branch or
on the trunk of the SCCS file tree. In Figure 17-7, only deltas 1.3.1.2,
1.3.2.2, and 2.2 can be removed; once they are removed, then deltas
1.3.2.1 and 2.1 can be removed.

17-44 AJUX Programming Languages and Tools, Volume 2

Figure 17-7. Removing a delta

The command
rmdel -r2.2 s.filename

specifies that delta 2.2 of the SCCS file should be removed. Before
removing it, rmde1 checks that the release number (R) of the given
SID satisfies the relation

floor <= R <= ceiling

and that the SID specified is not a version that is being changed (for
which a get -e has been executed and whose associated delta has
not yet been made).

The A/UX and SCCS protection mechanisms are also checked (see
appropriate sections above). If the checks are not successful,
processing is terminated and the delta is not removed.

If the checks are successful, the delta is removed and its type indicator
in the delta table of the SCCS file is changed from D (‘‘delta’’) to R
(“‘removed’’).

5.10 Account for open SCCS files: sact

The sact command reports any impending deltas to an SCCS file. An
impending delta is a change that has not yet been incorporated into the
SCCS file with the delta command. This would occur if a get -e
has been executed but an associated delta has not yet been made.

SCCS Reference 17-45

sact reports five fields for each named file:
field 1 The SID of the existing SCCS file being changed
field 2 The SID of the new delta to be created

field 3 The login name of the user who executed the get -e
command

field 4 The date the get -e command was executed
field 5 The time the get -e command was executed
The command

sact s.filename
produces a display such as

1.2 1.3 john 85/06/20 16:15:15

5.11 Compare two SCCS files: sccsdiff

sccsdif £ compares two specified versions of one or more SCCS
files and prints the differences on standard output. The versions to be
compared are specified using the —r keyletter in the same format used
for the get command. For example,

sccsdiff -r3.4 -r5.6 s.filename

The two versions must be specified as the first two arguments to this
command in the order in which they were created (the older version is
specified first). Any following keyletters are interpreted as arguments
to the pr command (which prints the differences on standard output in
diff format) and must appear before any filenames.

The SCCS files to be processed are named last. Directory names and a
name of a single minus sign (-) are not acceptable to sccsdiff.

5.12 Check an SCCS file’s characteristics: val

val is used to determine if a file is an SCCS file meeting the
characteristics specified by an optional list of keyletter arguments. Any
characteristics not met are considered errors.

The val command checks for the existence of a particular delta when
the SID for that delta is explicitly specified via the - r keyletter. The
string following the -y or —m keyletter is used to check the value set by

17-46 A/UX Programming Languages and Tools, Volume 2

the t or m flag, respectively (see admin(1) in A/UX Command
Reference for a description of the flags).

The val command treats the special argument - differently than other
SCCS commands. This argument allows val to read the argument list
from the standard input as opposed to obtaining it from the command
line. The standard input is read until an end-of-file.

This capability allows for one invocation of val with different values
for the keyletter and file arguments. For example,

val -
-yc -mabc s.filename
-mxyz -ypll s.xyz
(EOF)

first checks if the s . filename file has a value c for its type flag and
value filename for the module name flag. Once processing of the first
file is completed, val then processes the remaining files, in this case,
s .xyz, to determine if they meet the characteristics specified by the
keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates the
occurrence of a specific error (see val(l) for a description of possible
errors and the codes). The appropriate diagnostic is also printed unless
suppressed by the -s keyletter. A return code of 0 indicates all named
files met the characteristics specified.

5.13 Find identifying information: what

what is used to find identifying information within any A/UX system
file whose name is given as an argument to what. Directory names
and a name of - (a single minus sign) are not treated specially as they
are by other SCCS commands, and no keyletters are accepted by the
command.

The what command searches the given file(s) for all occurrences of
the string @ (#) (which is the replacement for the @ (#) ID keyword)
and prints (on the standard output) the balance following that string
until the first double quote (™), greater than (>), backslash (\), newline,
or (nonprinting) null character. For example, if the SCCS file

s .prog.c (a C language program) contains the following line:

SCCS Reference 17-47

char id[] = "@(#)3%2%%M%:%I%";
The command
get -r3.4 s.prog.c

is executed, and the resulting g-file is compiled to produce prog.o
and a.out. Then the command

what prog.c prog.o a.out
produces

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what does not need to be inserted in the
SCCS file via an ID keyword of get; it can be inserted in any
convenient way.

17-48 A/UX Programming Languages and Tools, Volume 2

Chapter 18
awk Reference

Contents

N L A WL

. awk: a programming language
. Program structure
. Invoking awk

. Input: records and fields

Input from the command line .

. Output: printing . .

6.1 print

62 NRand NF
63 printf .
64 OFSand ORS

. Output to different files

8. Output to pipes

11.

. Comments
10.

Patterns

10.1 BEGINand END

10.2 Relational expressions

10.3 Regular expressions

104 Combinations of patterns .
10.5 Pattern ranges

Actions

11.1 Variables, expressions, and assignments

11.2 Initialization of variables .

11.3 Field variables

114 String concatenation .
11.5 Special variables

12.
13.
14.
15.
16.

17.

18.

19.

11.6 Type . .
11.7 Arrays .

Built-in functions
Flow of control .

Report generation

Cooperation with the shell

Lexical conventions
16.1
16.2
16.3

.

.

Numeric constants .
String constants
Predefined variables, reserved keywords and

reserved function names

164
16.5
16.6
16.7

Identifiers

Operators

Separators

.

Record and field tokens

16.7.1 Record separators
16.7.2 Field separators

16.8 Multiline records

.

.

.

.

16.9 Output record and field separators
16.10 Separators and braces .

Primary expressions

17.1 Numeric constants
17.2 String constants

17.3 Variables
17.4 Functions

Terms « «
18.1 Binary terms
18.2 Unary terms

18.3 Incremented variables
18.4 Parenthesized terms

Expressions . .

.

.

.

.

.

19.1 Concatenation of terms
19.2 Assignment expressions

.

.

24
25

27
29
33
35

36
36
37

37
38
38
40
41
41
41
41
42
42

42
42
43
44
45

45
46
46
46
47

47
47
48

Tables

Table 18-1.
Table 18-2.
Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.

Table 18-7.
Table 18-8.

Reserved Strings
Assignment operators
Arithmetic operators .
Relational operators
Logical operators . .

Regular expression pattern-matching
operators

Values for sample numeric constants
Values for sample string constants

38

39
39
40
40

40
43
44

Chapter 18

awk Reference

1. awk: a programming language

The awk programming language is a file-processing language designed
to make many common information retrieval and manipulation tasks
easy to state and perform. The awk language can be used to

» Generate reports
« Match patterns
o Validate data

« Filter data for transmission

2. Program structure
An awk program is a sequence of statements of the form

BEGIN { action }
pattern { action }

END { action }

The awk program is run on a set of input files. The basic operation of
awk is to scan a set of input lines, in order, one at a time. In each line,
awk searches for the pattern described; if that pattern is found in the
input line, the corresponding action is performed. An action is a
sequence of action statements separated by newlines or semicolons. A
pattern in front of an action acts as a selector that determines whether
the action executes. When all the patterns are tested, the next input line
is fetched and the awk program is once again executed from the
beginning.

In an awk program, either the pattern or the action may be omitted, but
not both. If there is no action for a pattern, the matching line is simply

awk Reference 18-1

printed. If there is no pattern for an action, then the action is performed
for every input line. (The null awk program does nothing.) Because
both patterns and actions are optional, actions are enclosed in braces to
distinguish them from patterns. For example, the awk program

/x/ { print }
prints every input line that has the letter x in it, as will
/x/

The patterns recognized by awk, such as the /x/ just above, include
regular expressions recognized by other A/UX utilities such as egrep
or vi. There are also two special patterns, BEGIN and END. The
BEGIN section is run before any input lines are read, and the END
section is run after all the data files are processed.

The action may be quite simple or very complex: awk provides
conditional execution of statements and full flow-control constructions.
Variables may be created and assigned values in any of the three
sections of an awk program; values may also be assigned from the awk
command line, although the BEGIN section is run before these
assignments are made.

3. Invoking awk
There are three ways in which to present an awk program to awk for
processing:

1. If the program is short (a line or two), it is often easiest to make
the program the first argument on the command line:

awk ’program’ files

where files is an optional list of input files and program is your
awk program. Note that there are single quotes around the
program name to make the shell accept the entire string
(program) as the first argument to awk. For example, you may
write the following to the shell:

awk ‘/x/’ chap.1l

to run the awk program /x/ on the input file chap.1. If no
input files are specified, awk takes input from the standard input
stdin. You can also specify that input comes from stdin by

18-2 A/UX Programming Languages and Tools, Volume 2

using the hyphen (-) as one of the files. The command
awk ’program’ files —
looks for input first from files and then from stdin.

2. Alternatively, if your awk program is long, it is more convenient
to put the program into a separate file, say awkprog, and then to
tell awk to fetch it from there. This is done by using the —f
option with the awk command, as follows:

awk -f awkprog files

where files is an optional list of input files that may include
stdin as indicated by a hyphen (-). For example, suppose that
you put the following text into a file called awkprog:

BEGIN {
print "hello, world"
exit
}
Then you may give the command
awk —f awkprog
to the shell. This yields
hello, world

on the standard output. Recall that the word BEGIN is a special
pattern indicating that the action following in braces is run before
any dataisread. print and exit are both discussed in later
sections, but their effects here are obvious.

3. Finally, the awk program may be put into a file together with the
awk invocation for use as a shell script. This is most useful if
the input to awk needs to be processed first by other A/UX
utilities such as sort or m4; but a single awk statement will also
work:

awk Reference 18-3

awk ’ BEGIN {
print "hello, world”
exit
} 4
If this text is put into a file, for example greet, and made

executable, then typing greet to the shell has the same output
as the previous example.

This method also allows passing command line arguments to
awk. If the following is put instead in the file called greet,

awk ’ BEGIN {
print "hello, ’$1’ "
exit
} 14
you can invoke it from the shell with the command line
greet Jim
and the output will be

hello, Jim

4. Input: records and fields

awk reads its input one ‘‘record’’ at a time, unless you tell it otherwise.
A record is a sequence of characters from the input ending with a
newline character or with an end-of-file. Thus, a record is a line of
input. awk reads in characters until it encounters a newline or an end-
of-file. The string of characters, thus read, is assigned to the variable
$0. You can change the character that indicates the end of a record by
assigning a new character to the special variable RS (the record
separator). Assignment of values to variables and special variables
such as RS is discussed later.

Once awk has read in a record, it then splits the record into ‘‘fields.”’
A field is a string of characters separated by blanks or tabs, unless you
specify otherwise. You may change field separators from blanks or
tabs to whatever characters you choose in the same way that record
separators are changed. That is, the special variable F'S is assigned a
different value.

18-4 A/UX Programming Languages and Tools, Volume 2

As an example, suppose that the file count ries contains the area in
thousands of square miles, the population in millions, and the continent
for the ten largest countries in the world. (Figures are from 1978;
Russia is placed in Asia.) The sample input file countries looks
like this:

Russia 8650 262 Asia

Canada 3852 24 N. America

China 3692 866 Asia

USA 3615 219 N. America

Brazil 3286 116 S. America
Australia 2968 14 Australia
India 1269 637 Asia

Argentina 1072 26 S. America
Sudan 968 19 Africa

Algeria 920 18 Africa

The wide spaces are tabs in the original input, while a single blank
separates N. and S. from America. This sample file will be used as
the input for many of the awk programs in this guide because it is
typical of the kind of material that awk is best at processing (a mixture
of words and numbers separated into fields or columns separated by
blanks and tabs).

Each of the lines in the sample file has either four or five fields if
blanks and/or tabs separate the fields. This is what awk assumes unless
told otherwise. In the above example, the first record is

Russia 8650 262 Asia

When this record is read by awk, it is stored in the variable $0. If you
want to refer to this entire record, you do so through the variable $0.
For example, the following action

{ print $0 }

prints the entire record. Fields within a record are stored in the
variables $1, $2, $3, and so forth; that is, the first field of the present
record is referred to as $1 by the awk program. The second field of
the present record is referred to as $2 by the awk program. The ith
field of the present record is referred to as $i by the awk program.
Thus, in the above example of the file countries, in the first record,

awk Reference 18-5

$1 is equal to the string Russia, $2 is equal to the integer 8650, and
SO on.

To print the continent, followed by the name of the country, followed
by its population, use the following awk program:

{ print $4, $5, $1, $3 }

Using $4 and $5 allows for those countries whose names consist of
two fields (N. America, for example). Note that awk does not require
type declarations.

5. Input from the command line

It is possible to assign values to variables from within an awk program.
Because you do not declare types of variables, a variable is created
simply by referring to it. An example of assigning a value to a variable
is

x=5

This statement in an awk program assigns the value 5 to the variable x.
It is also possible to assign values to variables from the command line.
This provides another way to supply input values to awk programs.
For example,

awk ’{ print x }’ x=5 -

will print the value 5 on the standard output once for each input line. It
will terminate only when an end-of-file is received. If input from the
keyboard must be given, the minus sign at the end of this command is
necessary to indicate that input is coming from standard input.
Similarly, if the input comes from a file named chap . 1, the command
is

awk ’{ print x }’ x=5 chap.l

It is not possible to assign values to variables used in the BEGIN
section in this way.

If it is necessary to change the record separator or the field separator, it
is useful to do so from the command line, as in the following example:

awk -f awk.program RS=":" chap.l

18-6 A/UX Programming Languages and Tools, Volume 2

Here, the record separator is changed to the colon (:). This causes
your program in the file awk . program to run with records separated
by the colon instead of the newline character. Also, its input comes
from the file chap. 1.

It is similarly useful to change the field separator from the command
line. This operation is 5o common that there is another way to do it.
There is a separate option —Fc that is placed directly after the
command awk. This changes the field separator from blank or tab to
the character c. For example,

awk -F: -f awk.program chap.1l

changes the field separator F'S to the colon. Note that if the field
separator is specifically set to a tab (that is, with the —F option or by
making a direct assignment to FS) then blanks are not recognized as
separating fields. However, even if the field separator is specifically set
to a blank, tabs are still recognized as separating fields. Certain
characters must be quoted to protect them from interpretation by the
shell (for example, blank, tab, asterisk, and so forth).

As an exercise, using the input file count ries described earlier,
write an awk program that prints the name of a country followed by the
continent that it is on. Do this in such a way that continent names
composed of two words (for example, N. America) are processed as
only one field and not two.

6. Output: printing

6.1 print
An action may have no pattern; in this case, the action is executed for
all lines as in the simple printing program. Consider the awk program

{ print }

This is one of the simplest actions performed by awk. It prints each
line of the input to the output. Generally, it is more useful to print one
or more fields from each line. For instance, using the file
countries, the command line

awk ’{ print $1, $3 }’ countries

awk Reference 18-7

prints the name of the country and the population:

Russia 262
Canada 24
China 866
Usa 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

If you want to specify two awk actions for the same pattern, a
semicolon must separate each action. For example, if you want the
number 5 printed, you might give the following program:

{ x=5; print x }
or even
{ print 5 }

Note that the use of a semicolon after the final action statement in an
awk program line is optional. awk accepts

{ print %1 }
and
{ print $1; }

equally and takes them to mean the same thing. Parentheses are also
optional with the print statement.

print $3, $2
is the same as
print ($3, $2)

Items separated by a comma in a print statement are separated by the
current output field separator (normally a space, even when the input is
separated by tabs) when printed. The output field separator (OFS) is
another special variable that you can change. These special variables
are summarized in a later section.

18-8 A/UX Programming Languages and Tools, Volume 2

As an exercise, using the input file count ries, print the continent
followed by the country, followed by the population for each input
record. Then pipe the output to the A/UX command sort so that all
countries from a given continent are printed together.

print also prints strings directly from your programs. Recall the awk
program

{ print "hello, world" }
from an earlier section.

As an exercise, print a header to the output of the previous exercise that
says ‘‘Population of Largest Countries’’ followed by a header to each
column that follows describing what is in that column; for example,
““Country’’ or ‘‘Population’’ (see ‘‘BEGIN and END’’ for more
information).

6.2 NR and NF

As you have already seen, awk makes available a number of special
variables with useful values, for example, F'S and RS. Two more
special variables are introduced in the next example. NR and NF are
both integers that contain the number of the present record and the
number of fields in the present record, respectively. Thus,

{ print NR, NF, $0 }

prints each record number and the number of fields in each record
followed by the record itself. Using this program on the file
countries yields

1 4 Russia 8650 262 Asia

2 5 Canada 3852 24 N. America
3 4 China 3692 866 Asia

4 5 USA 3615 219 N. America

5 5 Brazil 3286 116 S. America
6 4 Australia 2986 14 Australia
7 4 India 1269 637 Asia

8 5 Argentina 1072 26 S. America
9 4 Sudan 968 19 Africa

10 4 Algeria 920 18 Africa

awk Reference 18-9

And the program
{ print NR, $1 }
yields

Russia
Canada
China
USA
Brazil
Australia
India
Argentina
Sudan

10 Algeria

W oo JoLd WK

This is an easy way to supply sequence numbers to a list. By itself,
print prints the entire input record. Use

p rint "
to print an empty line.

6.3 printf

awk also provides the statement print £ so that you can format output
as desired. (print uses the default format % . 6g for each variable
printed.)

printf format, expr, expr,

formats the expressions in the list according to the specification in the
string format, and prints them. The format specifier is exactly like that
used with print £ in the C library (with the following exceptions: the
format specifiers *, u, X, E, and G are not supported in awk). For
example,

{ printf "%10s %6d %6d\n", $1, $2, $3 }

prints $1 as a string of ten characters (right justified). The second and
third fields (six-digit numbers) make a neatly columned table:

18-10 A/UX Programming Languages and Tools, Volume 2

Russia 8650 262
Canada 3852 244
China 3692 866

USA 3615 219
Brazil 3286 116
Australia 2968 14
India 1269 637
Argentina 1072 26
Sudan 968 19
Algeria 920 18

With print £, no output separators or newlines are produced
automatically. You must add them, as in this example. As in the C
library version of print £, the escape characters \n (newline) and \t
(tab) are valid with the awk print£.

6.4 OFs and ORS

There are two special variables that go with printing, OF S and ORS.
OF'S is the output field separator, and ORS is the output record
separator. These are by default set to blank and the newline character,
respectively. The variable OFS is printed on the standard output when
acomma occurs in a print statement such as

{ x="hello"; y="world"; print x, y }
which prints

hello world
However, without the comma in the print statement, as in

{ x="hello"; y="world"; print x y }
you get

helloworld

White space is the awk concatenation operator, so print recognizes
only one argument here.

To get a comma on the output, you can either insert it in the print
statement, as in this case:

{ x="hello"; y="world" ; print x "," y }

awk Reference 18-11

or you can change OF S in a BEGIN section as in

BEGIN { OFs=", "}
{ x="hello"; y="world" ; print x, y }

Both of these last two programs yield
hello, world

Wherever a comma appears in a print statement, it is replaced by the
output field separator. If you have not defined the output field
separator, the default (a space) is used. If there are no commas, as in

{ print $0 $1}
no output field separator is used. However, in
{ print $0, $0 }
the output field separator is used between the two $0s.

7. Output to different files

The A/UX shell programs allow you to redirect the standard output to a
file. awk also lets you direct output to many different files from within
your awk program. For example, with the input file countries, you
might want to print all the data from countries of Asia in a file called
ASTIA, all the data from countries in Africa in a file called AFRICA,
and so forth. This is done with the following awk program:

{

if ($4 == "Asia") print > "ASIA"

else if ($4 == "Europe") print > "EUROPE"

else if ($4 == "North") print > "N_AMERICA"
else if ($4 == "South") print > "S_AMERICA"
else if ($4 == "Australia") print > "AUSTRALIA"
else if ($4 == "Africa") print > "AFRICA"

}
The flow-of-control statements (for example, if) are discussed later.

In general, you may direct output into a file after a print ora
print £ statement by using a statement of the form

print > "file"

18-12 A/UX Programming Languages and Tools, Volume 2

where file is the name of the file receiving the data, and the print
statement may have any legal arguments to it.

Notice that the filenames are quoted strings or variables containing
strings. Without quotes, the filenames are treated as uninitialized
variables and all output then goes to the same file. Also, if the
redirection symbol > is replaced by >>, output is appended to the file
rather than overwriting it.

Note also that there is an upper limit to the number of files that are
written in this way. At present itis ten.

8. Output to pipes

It is also possible to direct printing into a pipe instead of a file. For
example,

{ if ($2 == "XX") print | "mail harry”™ }

(where harry is someone’s login name), any record with the second
field equal to XX is sent to the user harry as mail. But instead of
passing each such record across the pipe to mail individually, awk
waits until the entire print input is processed before passing its
outputon tomail. Also,

{ print $1 | "sort" }

takes the first field of each input record, accumulates them until the
input to print is exhausted, and then passes the entire list to sort,
which then generates the sorted list. The command in double quotes
may be any A/UX command.

As an exercise, write an awk program that uses the input file
countriesto

o Print the name of the countries
o Print the population of each country

« Sort the data so that countries with the largest population appear
first

o Mail the resulting list to yourself

Here is another example of using a pipe for output, which guarantees
that its output always goes to your terminal:

awk Reference 18-13

{ print ... | "cat —u > /dev/tty" }

cat -u allows output to be displayed as soon as it is produced (that
is, it is unbuffered). Otherwise, you have to wait for a bufferful of data
before you see anything.

Only one output statement to a pipe is permitted in an awk program. In
all output statements involving redirection of output, the files or pipes
are identified by their names, but they are created and opened only
once in the entire run.

9. Comments
Comments may be placed in awk programs; they begin with the
character # and end with the end of the line, as in

print x, y # this is a comment

10. Patterns

A pattern in front of an action acts as a selector that determines
whether the action is to be executed. A variety of expressions are used
as patterns:

o The special patterns BEGIN and END
o Regular expressions

o Arithmetic relational expressions

e String-valued expressions

e Combinations of these

10.1 BEGIN and END

The action corresponding to the special pattern BEGIN is executed
before the input is read. The action corresponding to the special
pattern END is executed after all the input has been processed. BEGIN
and END thus provide a way to gain control before processing for
initialization and after processing for wrapping up.

You can use BEGIN to put column headings on the output. For
example, if you put the following awk program in the file awkprog,

18-14 A/UX Programming Languages and Tools, Volume 2

BEGIN { print "Country", \
llArea" ' \
"Population", \
"Continent" }
{ print }

and invoked awk with the command line
awk -f awkprog countries

awk would produce

Country Area Population Continent

Russia 8650 262 Asia

Canada 3852 24 N. America

China 3692 866 Asia

USA 3615 219 N. America

Brazil 3286 116 S. America
Australia 2986 14 Australia
India 1269 637 Asia

Angentina 1072 26 South Africa
Sudan 968 19 Africa

Algeria 920 18 Africa

Formatting is obviously not very good here; print £ would do a better
job and is usually mandatory if you really care about appearance (see
print £(3S) in A/UX Programmer’s Reference).

Recall also that the BEGIN section is a good place to change special
variables such as F'S or RS. For example,

BEGIN { FS = "\t"
print "Country”, \
"Area", \
"Population”, \
"Continent”
}
{ print }
END { print "The number of records is", NR }

In this program, F'S is set to a tab in the BEGIN section; as a result all
records (in the file count ries) have exactly four fields.

awk Reference 18-15

If BEGIN is present, it must be the first pattern; END must be the last if
itis used.

10.2 Relational expressions

Any expression involving comparisons between strings of characters or
numbers can be an awk pattern. For example, if you want to print only
countries with more than 100 million population, use

$3 > 100

This tiny awk program is a pattern without an action, so it prints each
line whose third field is greater than 100, as follows:

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 N. America
Brazil 3286 116 S. America
India 1269 637 Asia

To print the names of the countries that are in Asia, type
$4 == "Asia" {print $1}
which produces

Russia
China
India

The conditions tested are <, <=, ==, !=, >=, and >. In such relational
tests, if both operands are numeric, a numeric comparison is made.
Otherwise, the operands are compared as strings. Thus,

$1 >= ngn
selects lines that begin with S, T, U, and so forth, which in this case is

USA 3615 219 N. America
Sudan 968 19 Africa

In the absence of other information, fields are treated as strings, so the
program

18-16 A/UX Programming Languages and Tools, Volume 2

compares the first and fourth fields as strings of characters and prints
the single line

Australia 2968 14 Australia

If fields appear as numbers, the comparisons are done numerically.

10.3 Regular expressions

awk provides more powerful capabilities for searching for character
strings than were illustrated in the previous section. These additional
search capabilities make use of regular expressions. The simplest
regular expression is a literal string of characters enclosed in slashes.

/Asia/

This is a complete awk program that prints all lines which contain any
occurrence of the string Asia. If a line contains Asia as partof a
larger word like Asiatic, itis also printed (but there are no such
words in the countries file).

awk regular expressions include regular expression forms like those
found in the text editor ed and the pattern finder egrep, in which
certain characters have special meanings. For example, you could print
all lines that begin with A using

/"A/

or all lines that begin with A, B, or C using
/" [ABC]/

or all lines that end with ia using
/ia$/

The circumflex (*) means ‘‘match the beginning of a line.”” The dollar
sign ($) means ‘‘match the end of the line,”’ and enclosing characters
in brackets ([and 1) means ‘‘match any of the characters enclosed.”’
In addition, awk allows parentheses for grouping, the vertical bar (|)
for alternatives, the plus sign (+) for ‘‘one or more’’ occurrences, and
the question mark (?) for ‘‘zero or one’’ occurrences. For example,

/xly/ { print }
prints all records that contain either an x or ay. And

awk Reference 18-17

/ax+b/ { print }

prints all records that contain an a followed by one or more x’s
followed by a b. For example: axb, Paxxxxxxxb, QaxxbR.

/ax?b/ {print}

prints all records that contain an a followed by zero or one x followed
by ab. For example: ab, axb, yaxbPPP, CabD.

The two characters . and * have the same meaning as they have in ed
or grep: namely, . matches any character and * matches zero or
more occurrences of the character preceding it. For example,

/a.b/

matches any record that contains an a followed by any character
followed by a b. That is, the record must contain an a and ab
separated by exactly one character. For example, /a .b/ matches
axb, aPb, and xxxxaXbxx, but not ab, axxb.

/ab*c/

matches a record that contains an a followed by zero or more b’s
followed by a c. For example, it matches ac, abc, and
pgrabbbbbbbbbbc901.

It is possible to turn off the special meaning of metacharacters such as
~ and * by preceding these characters with a backslash. An example
of this is the pattern

IN/.*\//
which matches any string of characters enclosed in slashes.

You can also specify that any field or variable must match a regular
expression, or must not match it, by using the operators ~ or !~,
respectively. For example, with the input file countries as before,
the program

$1 ~ /ia$/ {print $1}

prints all countries whose names end in ia:

18-18 A/UX Programming Languages and Tools, Volume 2

Russia
Australia
India
Algeria

10.4 Combinations of patterns
A pattern is made up of similar patterns combined with the operators
| | (OR), && (AND), ! (NOT), and parentheses. For example,

$2 >= 3000 && $3 >= 100

selects lines where both area and population are large:

Russia 8650 262 Asia

China 3692 866 Asia

USA 3615 219 N. America

Brazil 3286 116 S. America
The program

$4 == "Asia" || $4 == "Africa"”

selects lines with Asia or Africa as the fourth field. An alternate
way to write this last expression is with a regular expression:

$4 ~ /(Asia|Africa)/

The operators && and | | guarantee that their operands are evaluated
from left to right; evaluation stops as soon as truth or falsehood is
determined.

10.5 Pattern ranges
The pattern that selects an action may also consist of two patterns
separated by a comma, as in

patternl, pattern2 { action }

In this case, the action is performed for each line between an
occurrence of patternl and the next occurrence of pattern2 (inclusive).
As an example with no action,

/Canada/, /Brazil/

prints all lines between the one containing Canada and the one
containing Brazil. For example,

awk Reference 18-19

Canada 3852 24 N. America

China 3692 866 Asia

USA 3615 219 N. America

Brazil 3286 116 S. America
while

NR == 2, NR == 5 { action }

does the action for lines 2 through 5 of the input. Different types of
patterns may be mixed, as in

/Canada/, $4 == "Africa”

which prints all lines from the first line containing Canada up to and
including the next record whose fourth field is Africa.

Note that patterns in this form occur outside the action parts of the awk
programs (outside the braces that define awk actions). If you need to
check patterns inside an awk action (inside the braces), use a flow-of-
control statement such as an if statement or a while statement.
Flow-of-control statements are discussed in the section ‘‘Built-in
Functions.”’

11. Actions

An awk action is a sequence of action statements separated by
newlines or semicolons. These action statements do a variety of
bookkeeping, arithmetic, and string-manipulation tasks.

11.1 Variables, expressions, and assignments

awk provides the ability to do arithmetic and to store the results in
variables for later use in the program. As an example, consider
printing the population density for each country in the file
countries.

{ print $1, (1000000 * $3)/($2 * 1000) }

(Recall that in this file the population is in millions and the area is in
thousands of square miles.) The result is population density in people
per square mile.

18-20 A/UX Programming Languages and Tools, Volume 2

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is pretty bad; using print £ instead gives the program

{printf "%10s %6.1f\n", $1, \
(1000000 * $3)/($2 * 1000) }

and the output
Russia 30.3
Canada 6.2
China 234.6
USA 60.6
Brazil 35.3
Australia 4.7
India 502.0
Argentina 24.3
Sudan 19.6
Algeria 19.6

Here the output format is much more readable.

Arithmetic is done internally in floating point. The arithmetic operators
are +, —, *, /, and % (mod or remainder).

To compute the total population and number of countries from Asia,
you could write

/Asia/ { pop =pop + $3; n=n + 1 } \
END { print "total population of", n, \
"Asian countries is", pop }

which produces

awk Reference 18-21

total population of 3 Asian countries is 1765
Actually, no experienced C programmer would write
{ pop =pop + $3; n=n + 1}

because both assignments can be written more concisely. A better way
is

{ pop += $3; ++n }

Indeed, the operators ++, ——, —=, /=, *=, +=, and %= are available in
awk as they are in C. The statement

X +t=y
has the same effect as
X=x+y

but += is shorter and runs slightly faster. The same is true of the ++
operator; it adds one to the value of a variable. The increment and
decrement operators ++ and —— (as in C) may be used as prefix or as
postfix operators. These operators are also used in expressions.

11.2 Initialization of variables

In the previous example, neither pop nor n was initialized, yet
everything worked properly. This is because (by default) variables are
initialized to the null string, which has a numeric value of 0. This
eliminates the need for most initialization of variables in BEGIN
sections. You can use default initialization to advantage in the
following program, which finds the country with the largest population:

maxpop < $3 {
maxpop = $3
country = $1

}
END { print country, maxpop }

which produces
China 866

11.3 Field variables
Fields in awk share essentially all the properties of variables. They are
used in arithmetic and string operations and may be assigned to and

18-22 A/UX Programming Languages and Tools, Volume 2

initialized to the null string. Thus, you can divide the second field by
1000 to convert the area to millions of square miles by

{ $2 /= 1000; print }
or process two fields into a third with

BEGIN { F§ = " ")
{ $4 = 1000 * $3 / $2; print }

or assign strings to a field, as in
/USA/ { $1 = "United States"™ ; print }

which replaces USA by United States and prints the affected line:
United States 3615 219 N. America

Fields are accessed by expressions; thus, SNF is the last field and
$ (NF-1) is the second to the last. Note that the parentheses are
needed since $NF-1 is 1 less than the value in the last field.

11.4 String concatenation

Variables can also store strings of characters. You cannot do
arithmetic on character strings, but you can join them. Strings are
concatenated by writing them one after the other, as in the following
example:

{
x = "hello"
X =x ", world"
print x

}
This prints the usual:
hello, world
With input from the file count ries, the program

/*A/ { s =8 81" "}
END { print s }

prints

Australia Argentina Algeria

awk Reference 18-23

Variables, string expressions, and numeric expressions may appear in
concatenations; the numeric expressions are treated as strings in this
case.

11.5 Special variables
Some variables in awk have special meanings. These are

NR Number of the current record.

NF Number of fields in the current record.

FS Input field separator; by default it is set to a blank or a
tab.

RS Input record separator; by default it is set to the newline
character.

Si The ith input field of the current record.

$0 The entire current input record.

OFS Output field separator; by default it is set to a blank.

ORS Output record separator; by default it is set to the

newline character.

OFMT The format for printing numbers; with the print
statement, by defaultitis % . 6g.

FILENAME The name of the input file currently being read. This is
useful because awk commands often read multiple files,

as in
awk —f program filel file2 file3 ...
11.6 Type

Variables (and fields) take on numeric or string values according to
context. For example, in

pop += $3
pop is presumably a number, while in
country = $1

country is a string. In

18-24 AJUX Programming Languages and Tools, Volume 2

maxpop < $3

the type of maxpop depends on the data found in $3. It is determined
when the program is run.

In general, each variable and field is potentially a string or a number or
both at any time. When a variable is set by the assignment

var = expr
its type is set to that of expr. (Assignment also includes +=, ++, —=,
and so forth.) An arithmetic expression is of the type number; a

concatenation of strings is of the type string. If the assignment is a
simple copy, as in

vl = v2
then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to strings if necessary
and the comparison is made on strings.

The type of any expression may be coerced to numeric by maneuvers
such as

expr + 0
and to string by
exp’- nn

This last expression is a string concatenated with the null string. If a
string cannot be converted to a number without errors, awk converts it
to zero.

11.7 Arrays
awk provides one-dimensional arrays as well as ordinary variables. A
name may not be both a variable and an array, however.

Array elements are not declared; they spring into existence by being
mentioned. Subscripts may have any non-null value, including non-
numeric strings. As an example of a conventional numeric subscript,
the statement

awk Reference 18-25

X [NR] = $0

assigns the current input line to the NRth element of the array x. In
fact, it is possible in principle (though perhaps slow) to process the
entire input in arbitrary order with the following awk program:

{ x[NR] = $0 }
END { action }

The first line of this program reads each input line into the array x.
When run on the file count ries, the program
{ x[NR] = $1 }

produces an array of elements with

x[1] = "Russia"
x[2] = "Canada"”
x[3] = "China"

and so forth. Arrays may also be indexed by non-numeric values, thus
giving awk a capability rather like the associative memory of Snobol
tables. For example, you can write

/Asia/ { pop["Asia™] += $3 }
/Africa/ { pop["Africa"] += $3 }
END { print "Asia=" pop["Asia"],

"Africa=" pop["Africa"] }
which produces
Asia=1765 Africa=37

Notice the concatenation. Also, any expression can be used as a
subscript in an array reference. Thus

area[$1l] = $2
uses the first field of a line (as a string) to index the array area.

You can simulate the effect of multidimensional arrays by creating
your own subscripts. For example,

18-26 A/UX Programming Languages and Tools, Volume 2

for (i =1; i <= 10; it++)
for (j =1; j <= 10; j++)
mult[i "," 3] = ...

creates an array whose subscripts have the form i, j (thatis, 1, 1;
1, 2; and so forth) and thus simulates a two-dimensional array.

12. Built-in functions

awk’s length function computes the length of a string of characters.
If you don’t include an argument, length returns the length of the
current input record. The following program prints each record
preceded by its length:

{ print length, $0 }

In this case (the variable) length is equivalent to length ($0), the
length of the present input record. In general, length (x) will return
the length of x as a string. For example, with input taken from the file
countries, the following awk program prints the longest country
name:

length($1) > max { max=length($1l); name=$1 }
END { print name }

The function
split (s, array)

assigns the fields of the string s to successive elements of the array
array. For example,

split ("Now is the time", w)

assigns the value Nowtow[1], istow([2],thetow[3], and time
tow([4]. All other elements of the array w, if any, are set to the null
string. It is possible to have a character other than a blank as the
separator for the elements of w. For this, use split with three
elements:

split (s, array, sep)

This splits the string s into array([1], ..., array[n]. The number of
elements found is returned as the value of split. Thus, you may
write

awk Reference 18-27

var = split (s, array, sep)
if you need to know how many elements the string was split into.

When the sep argument is present, it must be a string enclosed by
double quotes. but only its first character is used as the field separator.
When there is no sep argument present, F'S is used. Specifying a sep is
especially useful if in the middle of an awk program it is necessary to
change the record separator for one or more records. For instance, if
you use the following three lines,

{split ("Now is+the time", w, "+")}
{split ("This\tis\tnot\tthe\tend"”, x , "\t")}
{print w[1],x[3], w[2] }

(\t is the tab character) the output will be
Now is not the time
awk also provides the following mathematical functions:

sqrt

log

exp

int
They provide the square root function, the base e logarithm function,
and exponential and integer conversion (that is, floating point to
integer) functions. The int function returns the greatest integer less
than or equal to its argument. These functions are the same as those of
the C library (except that int corresponds to the C library floor
function) and return the same errors as those in 1ibc. (See ‘““C Math
Library’’ in A/UX Programming Languages and Tools, Volume 1.)

The substring function
substrx (s, m,n)

produces the substring of s that begins at position m and is at most »
characters long. If the third argument (» in this case) is omitted, the
substring goes to the end of s. For example, you could abbreviate the
country names in the file count ries by running the awk program

{ $1 = substr($1l, 1, 3); print }

18-28 A/UX Programming Languages and Tools, Volume 2

which produces

Rus 8650 262 Asia

Can 3852 24 N. America
Chi 3692 866 Asia

USA 3615 219 N. America
Bra 3286 116 S. America
Aus 2968 14 Australia
Ind 1269 637 Asia

Arg 1072 26 S. America
Sud 968 19 Africa

Alg 920 18 Africa

If s is a number, subst r uses its printed image; for example,
substr (123456789, 3, 4) is 3456.

The function
index (sl, s2)

returns the leftmost position where the string s2 occurs in s1, or zero if
52 does not occur in si.

The function
sprintf

formats expressions as the print £ statement does (X, E, G, * and u
do not apply), but will assign the resulting expression to a variable
instead of sending the results to stdout. For example,

X = sprintf("%10s %6d ", $1, $2)

sets x to the string produced by formatting the values of $1 and $2.
The x may then be used in subsequent computations.

The function get 1ine immediately reads the next input record.
Fields $NR and $0 are all set, but control is left at exactly the same
spot in the awk program. getline returns O for the end-of-file and 1
for a normal record.

13. Flow of control
The awk language provides the basic flow-of-control statements:

awk Reference 18-29

o if-else
e while
o for
with statement grouping as in the C language.
The if statement is used as follows:
if (condition) statementl [else statement2]

The condition is evaluated; and if it is true, statementl is executed;
otherwise, statement2 is executed. The else part is optional. Several
statements enclosed in braces ({ }) are treated as a single statement.
Rewriting the maximum population computation from the pattern
section with an if statement results in

{
if (maxpop < $3)
{
maxpop = $3
country = $1
}
}

END { print country, maxpop }
There is also a while statement in awk:
while (condition) statement

The condition is evaluated; if it is true, the statement is executed. The
condition is evaluated again, and if true, the statement is executed. The
cycle repeats as long as the condition is true. For example, the
following action prints all input fields one per line:
{i=1
while (i <= NF)
{
print $i
++i

18-30 AJUX Programming Languages and Tools, Volume 2

Another example is the Euclidean algorithm for finding the greatest
common divisor of $1 and $2:

{ printf "the greatest common divisor”
printf "of %s and %s is \n", $1, $2"
while ($1 != $2)

{
if (81 > $2) $1 $1 - $2
else $2 = $2 - $1

}
printf "%d\n", $1
}

The for statement is like that of C.
for (expressionl ; condition ; expression2) statement
has the same effect as

expressionl
while (condition)
{
statement
expression2

}
so that the action
{ for (i=1 ; i <= NF; i++) print $i }

is another awk program that prints all input fields one per line. Note
that multiple initializations are not permitted, as in
for (i=1,3=2; ...; ...)

There is an alternate form of the for statement in awk that is suited
for accessing the elements of an associative array:

for (var in array) statement

executes statement with the variable var set in turn to each subscript of
array. The subscripts are each accessed once but in no predictable
order. Chaos ensues if the variable var is altered or if any new
elements are created within the loop. You could use the for statement
to print each record preceded by its record number (NR) after the input

awk Reference 18-31

part of the program is executed:

{ x[NR] = $0 }
END { for(i in x) { print i, x[i] } }

A more practical example is the following use of strings to index arrays
to add the populations of countries by continents:

BEGIN { FS="\t" }
{ population[$4] += $3 }
END { for (i in population)
print i, population[i] }

In this program, the body of the for loop is executed for i equal to the
string Asia, then for i equal to the string N. America, and so forth
until all the possible values of i are exhausted; that is, the program is
repeated until all the strings of names of continents are used. Note,
however, that the order in which the loops are executed is not specified.
If the iteration associated with N. America is executed before the
iteration associated with the string Asia, such a program might
produce

S. America 142
Africa 37

N. America 243
Asia 1765
Australia 14

The expression in the condition part of an i f, while, or for
statement can include relational operators (see ‘‘Operators’’).

The condition can also include regular expressions that are used with
the pattern-matching operators and the logical operators (see
‘‘Operators’’). Finally, it can include parentheses for grouping.

The break statement (when it occurs within a while or for loop)
causes an immediate exit from the while or for loop.

The cont inue statement (when it occurs within a while or for
loop) causes the next iteration of the loop to begin.

The next statement in an awk program causes awk to skip
immediately to the next record and begin scanning patterns from the
top of the program. (Note the difference between get 1ine and

18-32 A/UX Programming Languages and Tools, Volume 2

next. getline does not skip to the top of the awk program.)

If an exit statement occurs in the BEGIN section of an awk program,
the program stops executing and the END section (if there is one) is not
executed.

An exit that occurs in the main body of the awk program causes
execution of the main body of the awk program to stop. No more
records are read, and the END section is executed.

An exit in the END section causes execution to terminate at that
point.

14. Report generation

The flow-of-control statements in the last section are especially useful
when awk is used as a report generator. awk is useful for tabulating,
summarizing, and formatting information. You have seen an example
of awk tabulating in the last section with the tabulation of populations.
Here is another example of this. Suppose you have a file
prog.usage that contains lines of three fields: name, program, and
usage. For example,

Smith draw 3
Brown eqgn 1
Jones nroff 4
Smith nroff 1
Jones spell 5
-Brown spell 9
Smith draw 6

The first line indicates that Smith used the draw program three times.
If you want to create a program that has the names in alphabetical order
and then shows the total usage, use the following program, called
list.a:

{ use[$1 "\t" $2] += $3 }
END { for (np in use) \
print np "\t" usel[np] \
| "sort +0 +2nr"

awk Reference 18-33

This program produces the following output when used on the input file
prog.usage:

Brown eqn 1
Brown spell 9
Jones nroff 4
Jones spell 5
Smith draw 9
Smith nroff 1

If you would like to format the previous output so that each name is
printed only once, pipe the output of the previous awk program into the
following program, called format . a:

{ if ($1 != prev)
{
print $1 ":"
prev = $1
}
print "\t" $2 "\t" $3
}

The variable prev prints the unique values of the first field. The
command

awk —f list.a prog.usage | awk —f format.a

gives the output
Brown:
eqn 1
spell 9
Jones:
nroff 4
spell 5
Smith:
draw 9
nroff 1

It is often useful to combine different awk scripts and other shell
commands such as sort, as was done in the 1ist . a script on the
preceding page.

18-34 A/UX Programming Languages and Tools, Volume 2

15. Cooperation with the shell
Normally, an awk program is either contained in a file (as a shell
script) or enclosed within single quotes, as in

awk ’{print $1}’ chap.l

Because awk uses many of the same characters that the shell does
(such as $ and the double quote), it may take some work to get
parameters passed from the shell to awk.

If an awk program is invoked from the command line, surrounding the
program by single quotes ensures that the $1 is not interpreted by the
shell. The shell passes the awk program to awk intact.

Passing parameters to an awk program contained in a script is slightly
more complicated. Suppose you wanted to write an awk program to
print the nth field of each input record, where » is a parameter
determined when the program is run. That is, you want a program
called field such that

field 5 chap.l
runs the awk program
awk ’{print $5}’ chap.l

How does the value of 5 get from the command line into the awk
program? There are several ways to do this. One is to define field
as a shell script, as follows:

field: print the nth field of each record
awk ’{print $’$1’}’ $2

(This file begins with a colon (:) so that it is interpreted as a Bourne
shell script.) When the shell parses this script, it does not interpret
anything contained within the first pair of single quotes ({print $),
but passes it as input to awk. The shell does recognize the $1, and
substitutes its value, the first argument given on the command line.

The shell then passes the brace within the second set of single quotes to
awk. When awk encounters the end of its first argument, it recognizes
that the awk program specification has ended and that the next
argument is the file in which the input is found.

awk Reference 18-35

Another way to write £ield relies on the fact that the shell substitutes
for $ parameters within double quotes. So you could rewrite the script
above as

field: print the nth field of each record
awk "{print \S1}" $2

Here the trick is to protect the first $ with a \; the $1 is again replaced
by the appropriate number from the command line when field is
invoked.

This kind of trickery can be extended in remarkable ways, but it may

be hard to understand quickly. Experimentation and a playful spirit are
encouraged.

16. Lexical conventions

All awk programs are made up of lexical units called ‘‘tokens.”’ In
awk, there are eight token types:

e numeric constants

e string constants

« keywords and built-in variables

o identifiers

» operators

» record and field tokens

« comments (discussed previously)

» separators
Precise specifications of each of these tokens are given in the following
sections.

16.1 Numeric constants

A numeric constant is either a decimal constant or a floating constant.
A decimal constant is a non-null sequence of digits containing at most
one decimal point, as in

18-36 A/UX Programming Languages and Tools, Volume 2

12

12.
1.2
.12

A floating constant is a decimal constant followed by e or E followed
by an optional + or - sign followed by a non-null sequence of digits, as
in

12e3

1.2e3

1.2e-3

1.2E+3

16.2 String constants
A string constant is a sequence of zero or more characters surrounded
by double quotes, as in

"armadillo"™
lla”

"ab"

” 12"

A double quote may be put into a string by preceding it with the
backslash (\), as in

"He said, \"sSit!\""

A newline is put in a string by using \n in its place. No other
characters need to be escaped except \ itself. Strings can be (almost)
any length.

16.3 Predefined variables, reserved keywords, and
reserved function names

Table 18-1 lists certain character strings which have special meaning to

awk. There are three types of these character strings:

1. Predefined variables are variables defined by awk which have
special meanings. The meaning of these variables is explained in
‘‘Special Variables.”’ ’

2. Reserved keywords are a special set of character strings used in
awk statements. Reserved keywords cannot be used as
variables.

awk Reference 18-37

3. Reserved function names are a special set of character strings
used to invoke built-in awk functions. These functions are
discussed in ‘‘Built-in Functions.”’

Table 18-1. Reserved Strings

Predefined Reserved Reserved
Variables Keywords Function Names
BEGIN break exp
END close getline
FILENAME continue index
FsS exit int
NF for length
NR if log
OFS in split
ORS next sprintf
OFMT number sgrt
RS print substr
$0 printf
$i string

while

16.4 Identifiers

Identifiers in awk serve to denote variables and arrays. An identifier is
a sequence of letters, digits, and underscores, beginning with a letter or
an underscore. Uppercase and lowercase letters are different.

16.5 Operators

The awk language has assignment, arithmetic, relational, and logical
operators similar to those in the C programming language, and regular
expression pattern matching operators similar to those in the programs
egrep and lex.

18-38 A/UX Programming Languages and Tools, Volume 2

Table 18-2. Assignment operators

Symbol Usage Description
= Assignment Assign right side value to
left side
+= Plus-equals Increment left side by
value of right side
-= Minus-equals Decrement left side by
value of right side
*= Times-equals Multiply left side by
value of right side
/= Divide-equals Divide left side by
value of right side
%= Mod-equals Take modulus of left side by
value of right side
++ Prefix/postfix ~ Increment operand by one
increment before/after taking current value
- Prefix/postfix =~ Decrement operand by one
decrement before/after taking current value

Table 18-3. Arithmetic operators

Symbol Description

Unary and binary plus
Unary and binary minus
Multiplication
Division
Modulus

.) Grouping

~ N * | +

awk Reference 18-39

Table 18-4. Relational operators

Symbol Description

< Less than

<= Less than or equal
== Equal

'= Not equal

>= Greater than or equal
> Greater than

Table 18-5. Logical operators

Symbol Description
Il OR

&& AND

! NOT

Table 18-6. Regular expression pattern-matching operators

Symbol

Description

1~
H

Matches
Does not match

16.6 Record and field tokens

$0 is a special variable whose value is the current input record. $1,
$2, and so forth are special variables whose values are the first field,
the second field, and so on, respectively, of the current input record.

The keyword NF (number of fields) is a special variable whose value is
the number of fields in the current input record. Thus $NF has, as its
value, the value of the last field of the current input record. Notice that

the first field of each record is numbered 1 and that the number of fields

can vary from record to record. None of these variables is defined in
the action associated with a BEGIN or END pattern, where there is no
current input record.

18-40 A/UX Programming Languages and Tools, Volume 2

The keyword NR (number of records) is a variable whose value is the
number of input records read so far. The first input record read is 1. At
END it contains the total number of input lines.

16.7 Separators

16.7.1 Record separators

The keyword RS (record separator) is a variable whose value is the
current record separator. The value of RS is initially set to newline,
indicating that adjacent input records are separated by a newline.
Keyword RS is changed to any character ¢ by including the assignment
statement

RS = "¢
in an action.

16.7.2 Field separators

The keyword F'S (field separator) is a variable indicating the current
field separator. Initially, the value of F'S is a blank, indicating that
fields are separated by white space, that is, any sequence of blanks and
tabs. Keyword F'S may be changed to any single character ¢ by
including the assignment statement

FS = "¢c"

in an action or by using the flag option ~Fc. Two values of ¢, space
and \t, have special meaning. The assignment statement

F§S =" »

makes white space (blank spaces or tabs) the field separator; and on the
command line, —~F \ t makes a tab the field separator.

If the field separator is not a blank, then there is a field in the record on
each side of the separator. For instance, if the field separator is 1, the
record 1XXX1 has three fields. The first and last are null, and the value
of the second is XXX. If the field separator is blank, then fields are
separated by white space, and none of the NF fields is null, that is,
record 1XXX1 has one field, not three as above.

16.8 Multiline records
The assignment

awk Reference 18-41

Rs = mnn

as part of the action associated with a BEGIN pattern makes an empty
line the record separator. It also makes a sequence of blanks, tabs, and
possibly a newline, the field separator. With this setting, none of the
first fields of any record is null, as discussed above.

16.9 Output record and field separators

The value of OF S (output field separator) is the character or string
separating output fields. It is put between fields by print. The value
of ORS (output record separator) is put after each record by print.
Initially, ORS is set to a newline and OF S to a space. These values may
be changed to any string by assignments such as the following two:

ORS = "abc"
OFS = "xyz"

16.10 Separators and braces

Tokens in awk are usually separated by non-null sequences of blanks,
tabs, and newlines, or by other punctuation symbols such as commas
and semicolons. Braces ({ }) surround actions, slashes (/ /)
surround regular expression patterns, and double quotes (" ")
surround strings. Braces may also be used to group statements within
actions.

17. Primary expressions
In awk, patterns and actions are made up of expressions. The basic
building blocks of expressions are the primary expressions:

e numeric constants
e string constants

e variables

» functions

Each expression has both a numeric and a string value, and will default
to one or the other, depending on context. The rules for determining
the default value of an expression are explained below.

17.1 Numeric constants
A numeric constant is simply a number. The format of a numeric
constant was previously defined in the section ‘‘Lexical Conventions.’’

18-42 A/UX Programming Languages and Tools, Volume 2

The value of a numeric constant is always its numeric value in decimal
unless it is coerced to type string. Table 18-7 shows the result of
coercing various numeric constants to type string. Coercion of a
numeric constant may occur explicitly as defined in ‘‘Type’’ or
implicitly within the context of an expression.

Table 18-7. Values for sample numeric constants

Numeric Numeric| String
Constant || Value Value
0 0 0
1 1 1
.5 0.5 .5

.5e2 50 50

17.2 String constants
A string constant is simply a series of characters enclosed in double

quotes. The format of a string constant was defined in ‘‘Lexical
Conventions.”’

The value of a string constant is the contents of the string itself unless it
has been coerced to type numeric. The numeric value of a string
coerced to type numeric depends on the contents of the string: If the
string is composed entirely of numbers (either decimal or floating point
format), its numeric value is the number contained in the string. If the
string does not contain a recognizable decimal or floating point
number, its numeric value is zero. Table 18-8 shows the result of
coercing various string constants to type numeric. Coercion of a string
constant may occur explicitly as defined in ‘“Type’’ or implicitly
within the context of an expression.

awk Reference 18-43

Table 18-8. Values for sample string constants

String Numeric String
constant value value

ne 0 null string
” ” 0 space
lla" 0 a

"XYZ" 0 XYZ

"o" 0 0

b 1 1

", 5" 0.5 .5
".5e2" 50 .5e2

17.3 Variables

A variable or var is in one of the following forms:
identifier
identifier| expression]
Sterm

The numeric value of any uninitialized variable is 0, and the string
value is the empty string. An identifier by itself is a simple variable. A
variable of the form

identifier[expression]
represents an element of an associative array named by identifier.

The string value of expression is used as the index into the array. The
default value of identifier or identifier [expression] is determined by
context.

The variable $0 refers to the current input record. Its string and
numeric values are those of the current input record. If the current
input record represents a number, then the numeric value of $0 is the
number and the string value is the literal string. The default value of
$0 is string unless the current input record is a number. $0 cannot be
changed by assignment.

The variables $1 and $2 refer to fields 1 and 2 of the current input
record. The string and numeric values of $i for 1<=i<=NF are those of
the ith field of the current input record. As with $0, if the ith field

18-44 A/UX Programming Languages and Tools, Volume 2

represents a number, then the numeric value of $i is the number and
the string value is the literal string. The default value of $i is string
unless the ith field is a number. The $i may be changed by assignment.
The value of $0 is then changed accordingly, but the results may not
be apparent unless NF is changed to at least i.

In general, $term refers to the input record if term has the numeric
value O and to field i if the greatest integer in the numeric value of term
isi. Ifi<0 or if i>=100, then accessing $i causes awk to produce an
error diagnostic. If NF<i<=100, then $i behaves like an uninitialized
variable. Accessing $i for i > NF does not change the value of NF.

17.4 Functions

The awk language has a number of built-in functions that perform
common arithmetic and string operations.

exp [(expression)]
int [(expression)]
log [(expression)]
sqrt [(expression)]

These functions (exp, int, log, and sqrt) compute the exponential,
integer part, natural logarithm, and square root, respectively, of the
numeric value of expression. The (expression) may be omitted; then
the function is applied to $0. The default value of an arithmetic
function is numeric.

getline

index (expressionl, expression2)

length [(expression)]

split (expression, identifier [, “separator™])
sprintf [("format", expressionl [,expression2 ...])]
substr (expressionl, expression2 [, expression3])

These functions (getline, index, length, split, sprintf,
and substr) perform spring operations. See ‘‘Built-in Functions’
for more details.

18. Terms

Various arithmetic operators are applied to primary expressions to
produce larger syntactic units called ‘‘terms.’’ All arithmetic is done in
floating point. A term has one of the following forms:

awk Reference 18-45

primary expression
terml binop term2
unop term
incremented var
(term)

18.1 Binary terms
In a term of the form

terml binop term2

binop can be one of the five binary arithmetic operators + (addition),

- (subtraction), * (multiplication), / (division), or % (modulus). The
binary operator is applied to the numeric value of the operands terml
and ferm2, and the result is the usual numeric value. This numeric
value is the default value, but it can be interpreted as a string value (see
‘‘Numeric Constants’’). The operators *, /, and % have higher
precedence than + and —. All operators are left associative.

18.2 Unary terms
In a term of the form

unop term

unop can be unary + or —. The unary operator is applied to the numeric
value of term, and the resulting numeric value is the default value.
However, it can be interpreted as a string value. Unary + and - have
higher precedence than *, /, and %.

18.3 Incremented variables
An incremented variable has one of the following forms:

++var
~-=var
var++
var--

That is, it can be either pre- or post-incremented.
The form ++var has the effect of the assignment
var = var + 1

and so has the value var+1 before it is further evaluated or assigned.

18-46 A/UX Programming Languages and Tools, Volume 2

Similarly, the form —-var has the effect of the assignment
var = var - 1
and so has the value var-1 before it is further evaluated or assigned.

The form var++ has the same value as var before it is evaluated or
assigned, and after that it has the effect of the assignment

var = var + 1

Similarly, the form var—- has the same value as var before it is
evaluated or assigned, and after that it has the effect of the assignment

var = var - 1

The default value of an incremented var is numeric. You shouldn’t use
the ++ or —- operators where the incremented variable is used more
than once (such as a = b++ * b), since the results are
indeterminate.

18.4 Parenthesized terms
Parentheses are used to group terms in the usual manner.

19. Expressions
An awk expression is one of the following:

term
terml term2 ...
var asgnop expression

19.1 Concatenation of terms

In an expression of the form terml term2 the string values of the terms
are concatenated. If the terms are numeric expressions they are first
evaluated and then also treated as strings; that is, the default value of
the resulting expression is a string value that can be interpreted as a
numeric value. Concatenation of terms has lower precedence than
binary + and —. For example, the expression

1+2 3+4

has the string (and numeric) value 37.

awk Reference 18-47

19.2 Assignment expressions
An assignment expression is one of the form

var asgnop expression

where asgnop is one of the six assignment operators (=, +=, —=, *=,
/=, %=, ++, ——) (see ‘‘Operators’’).

The default value of var is the same as that of expression.
In an expression of the form
var = expression
the numeric and string values of var become those of expression.
An expression of the form
var op = expression
is equivalent to
var = var op expression
where op is one of the arithmetic operators (see ‘‘Operators’’).

The asgnops are right associative and have the lowest precedence of
any operator. Thus, the assignment

a +t=b *=c¢c - 2
is interpreted as
a+= (b *= (c -2))
which is equivalent to the sequence of assignments

b=Db* (¢c - 2)
a=a+b

18-48 A/UX Programming Languages and Tools, Volume 2

Chapter 19
lex Reference

Contents

.kn.l:-ml\)u

. lex: alexical analyzer .
. Overview of lex usage
. lexand yacc .

. Programsyntax

Character set

5.1 Character classes

5.2 Arbitrary characters
5.3 Operators

. Definitions .

6.1 Repetitions and definitions

. Rules .

7.1 Regular expressions
7.2 Optional expressions .
7.3 Repeated expressions .

7.4 Alternation and grouping

7.5 Context sensitivity

7.5.1 Left context sensitivity

7.5.2 Flags .
7.5.3 Start conditions
7.6 Ambiguous rules

. Actions

8.1 The null statement

8.2 The repetition character
8.3 printf and ECHO
84 yyleng
8.5 yymore and yyless

.

.

N AW N =

11
11
12
12
12
13
14
15
16
17

18
19
19
19
20
21

8.6 lex input and output routines . .

87 yywrap« . .

8.8 REJECT e o e o
9. Compilation
10. Examples

11. Summary

Figures

Figure 19-1. Overview of lex
Figure 19-2. lex with yace .

Tables

Table 19-1. Regular expression operators .

22
23

26
26
28

30

Chapter 19

lex Reference

1. lex: alexical analyzer

lex is a program generator that produces a program in a general-
purpose language that recognizes regular expressions. It is designed
for lexical processing of character input streams. It accepts high-level,
problem-oriented specifications for character string matching.

Input to 1lex is a table of regular expressions and corresponding
program fragments. The table is translated to a program that reads an
input stream, copies the input stream to an output stream, and partitions
the input into strings that match the given expressions. As each such
string is recognized, the corresponding program fragment is executed.

The recognition of the regular expressions is performed by a
deterministic finite automaton generated by lex. The program
fragments are executed in the order in which the corresponding regular
expressions occur in the input stream.

The code written by lex is not itself a complete language, but rather a
generator representing a new language feature that can be added to
different programming languages, called *‘host languages.”” For
example, one high-level language may be used for recognizing
patterns, while a more general-purpose language is used for action
statements.

The lex program generator can be used alone for simple
transformations or for analysis and statistics gathering on a lexical
level. The lex generator can also be used with a parser generator (for
example, yacc) to perform the lexical analysis phase.

Just as general-purpose languages can produce code to run on different
computer hardware, 1ex can write code in different host languages.
The host language is used for the output code generated by lex and
the program fragments that comprise the 1ex source program.

lex Reference 19-1

Compatible run-time libraries for the different host languages are
provided, making lex adaptable to many environments and users.

However, at present, the only supported host language is the C
language.

2. Overview of lex usage

The program generated by lex is called yylex. The yylex program
recognizes expressions in an input stream and performs the specified
actions for each expression as it is detected. See Figure 19-1.

Figure 19-1. Overview of 1lex

Source — | lex | - yylex()
Input — — Output

For example,

%%
[\t]1+$

This sample lex source program is all that is required to generate a
program to delete all blanks or tabs at the ends of the input lines. The
%% delimiter is a 1ex convention to mark the beginning of the rules,
the pattern-matching expressions. The rule itself,

[\t1+$

matches one or more instances of the characters blank and tab. The
brackets enclose the character class consisting of blank and tab; the +
indicates ‘‘one or more instance of the previous character(s) or
character class’’ and the $ indicates end-of-line. No action is specified,
so the yylex () program (generated by lex) ignores these characters.
Everything else is copied.

Consider this next example:

19-2 A/UX Programming Languages and Tools, Volume 2

%%
[\t]l+$ H
[\t]+ printf(" ");

The coded instructions in yylex scan for both rules at once. Once a
string of blanks or tabs is recognized, yylex determines whether the
string is followed by a newline character. If itis, then the first rule has
been matched so that the corresponding action is performed; yylex
does not copy the string to output. The second rule matches strings of
one or more blanks and tabs not already satisfying the first rule, and
causes yylex to replace a string of one or more blanks and tabs with a
single space.

In yylex, the program generated by lex, the actions to be performed
as each regular expression is found are gathered as cases of a switch.
The automaton interpreter directs the control flow. It is possible to
insert either declarations or additional statements in the routine
containing the actions and to add subroutines outside this action
routine, should you need to do so.

The lex program generator is not limited to one-character look-ahead.
For example, if there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdefh, lex recognizes ab and
leaves the input pointer just before cdefh.

3. lexand yacc

It is particularly easy to use lex and yacc together. The lex
program recognizes only regular expressions; yacc writes parsers that
accept a large class of context-free grammars but requires a lower level
analyzer to recognize input tokens. Thus, a combination of 1ex and
yacc is often appropriate. When used as a preprocessor for a later
parser generator, lex is used to partition the input stream; and the
parser generator assigns structure to the resulting pieces. The flow of
control in such a case is shown in Figure 19-2. Additional programs,
written by other generators or by hand, can be added easily to programs
written by 1lex. The name ‘‘yylex’’ is what yacc expects its lexical
analyzer to be named. If lex uses this name, it simplifies interfacing.

lex Reference 19-3

Figure 19-2. lex with yace

Lexical Grammar
rules rules
l d

[7 lex 4] L yacc |
\ \

Input —» | yylex | - | yyparsew — Parsed output

To use lex with yacc, observe that 1ex writes a function named
yylex, which is the name required by yacc for its analyzer.
Normally, the default main program on the lex library calls the
yylex routine, but if yacc is loaded and its main program is used,
yvacc calls yylex. In this case, each lex rule ends with

return (token) ;
where the appropriate token value is returned. An easy way to gain

access to yacc'’s names for tokens is to compile the 1ex output file as
part of the yacc output file by placing the line

#include "lex.yy.c"
in the last section of the yacc input. If the grammar is to be named

good and the lexical rules are to be named better, the command
sequence could be

yacc good
lex better
cc y.tab.c -1y -11

The yacc library (-1y) should be loaded before the 1ex library to
obtain a main program that invokes the yacc parser. The generations
of lex and yacc programs can be done in either order.

4. Program syntax
The general format of lex input is

19-4 A/UX Programming Languages and Tools, Volume 2

{ definitions }

%%

{ rules }

%%

{ user subroutines }

where the definitions and the user subroutines are often omitted. The
first %% is required to mark the beginning of the rules, but the second
%% is optional. The absolute minimum lex program is

%%

This 1ex source would generate a program that copies the input to
output unchanged.

In the 1lex program format shown above, the rules consist of two parts:
o A left column with regular expressions

o A right column with actions and program fragments to be
executed when the expressions in the left column are recognized

For example,
integer printf("found keyword INT");

The sample rule above gives the instructions to look for the string
integer, and, when found, it produces the statement

found keyword INT

In this example, because the host procedural language is C, the C
language library function print f is used to print the string.

The end of the expression is indicated by the first blank or tab
character. If the action is a single C language expression, it can just be
given in the right column, as illustrated in the example. If the action is
compound or requires more than one line, it should be enclosed in
braces.

Consider the following example:

colour printf ("colox");
mechanise printf ("mechanize”);
petrol printf ("gas"):;

lex Reference 19-5

This 1ex source segment could be used to generate a program to
change a number of words from British to American spelling. It should
be noted, however, that these rules would have to be changed
somewhat to be really useful. For example, if the word petroleum

appeared in the input stream, the program generated by this segment
would change it to gaseum.

5. Character set

Internally, a character is represented as a small integer. If the standard
library is used, a character’s value is equal to the integer value of the
bit pattern representing the character on the host computer. For
example, the character A has the value \101 (octal) in ASCII.

Of course, you need not use the integer value of a character to access
the value. The character a is represented in the same form as the
character constant * a’ . If this interpretation is changed by providing
I/O routines that translate the characters, 1ex must be given a
translation table that is in the definitions section of the source, and this
translation table must be bracketed by lines containing only $T. The
translation table, then, contains lines of the form

3T

{ integer } { character string }
$T

which indicate the value associated with each character.

5.1 Character classes

Classes of characters can be specified using the operator pair [and].
For example, the construction [abc] matches a single character,
which may be a, b, or c.

Within brackets, most operator meanings are ignored. Only three
characters are special:

-~

\

The - character indicates a range. For example,
[a-z0-9<>_]

19-6 A/UX Programming Languages and Tools, Volume 2

specifies the character class containing all the lowercase letters (a to
z), digits (0 through 9), angle brackets (< and >), and the underline
character ().

Using - between any pair of characters that are not both uppercase
letters, both lowercase letters, or both digits is sometimes acceptable to
lex, but this is implementation dependent (it works on A/UX, but it
may not be portable to other systems.) Therefore, if such a range is
declared, lex issues a warning message. One reason for this is that
[0-z] matches many more characters in ASCII than in EBCDIC.

If it is necessary to include the character - in a character class, it
should either be first or last within the brackets. For example,

[-+0-9]
matches all digits (0 through 9) and the two symbols - and +.

The \ character acts as an escape character within class brackets. For
example,

[a-z*]
matches all lowercase letters (a to z) and the character *,
If the ~ operator appears as the first character after the left bracket,
lex ignores the characters within the brackets, therefore matching all
characters except those within the designated character class range. If
an operation is to be performed on recognition of a string expressed

using this construction, it will be done on strings other than those
within the brackets. For example,

[“abc]

matches all characters except a, b, or c, including all special and
control characters. Also,

["a=-2A-2Z]

matches any character that is not a letter (neither in the range a through
z nor in the range A through 2).

5.2 Arbitrary characters
There are several other ways to specify characters to 1lex. The period
operator (.) instructs lex to match any character except a newline.

lex Reference 19-7

The meaning of the period does not change within brackets.

Also, all characters and ranges can be designated using the octal
representations of those characters. This method, however, is difficult

to read and most likely not portable. Nonetheless, the character class
range

[\40-\176]

can be used to match all printable ASCII characters from octal 40
(blank) to octal 176 (tilde: ~).

5.3 Operators
The operator characters are

"NI] =2 0%+ () S/ {1} %<>

If these are to be used as text characters, an appropriate ‘‘escape’’
should be used. For example, to get the character \, you must escape
its significance as an operator. You can do so easily with another
backslash: \\. For more information on escaping, refer to A/UX User
Interface.

The quotation mark operator (") indicates that whatever characters
follow, up to a second ™ character, are to be taken as text characters
without any ‘‘magic’’ meaning or operator significance. The quotation
mark, then, is another way to escape the special meaning of a character.
For example,

xyz"++"

matches the string xyz++ wherever it appears. Of course, it is
unnecessary, though harmless, to quote an ordinary text character.
Consequently, the expression

"xyz++"

is equivalent to the one that quoted only the ++. However, by quoting
every character being used as a text character, you can avoid
remembering the list of current operator characters, and avoid
problems should further extensions to lex lengthen the list.

Another use of the quoting mechanism is for forcing a blank into an
expression. Normally, as explained above, blanks or tabs end a rule.
Any blank character not contained within brackets must be quoted.

19-8 A/UX Programming Languages and Tools, Volume 2

There is also a third way to match the literal value of these operators,
using the \ escape character. You could specify the string discussed
above as

xyz\+\+
Several C language escapes using \ are recognized:

C language escapes
\n Newline

\t Tab
\b Backspace
\\ Backslash

Since newline is illegal in an expression, \n must be used.

6. Definitions
Recall that the basic format of a Lex source is

{ definitions }

%%

{ rules }

%%

{ user subroutines }

In addition to the rules (discussed below), 1ex includes options to
define variables. Variables can occur either in the definitions section or
in the rules section.

Remember, lex is generating the rules into a program, and any source
not intercepted by lex is copied into the generated program. Also,

o Any line not part of a 1ex rule or action and that begins with a
blank or tab is copied into the 1ex generated program.

o Any line not part of a 1ex rule or action that begins with a blank
or tab and is found prior to the first $% delimiter is ‘‘external’’ to
any function in the code.

» Any line not part of a 1ex rule or action that begins with a blank
or tab and is found immediately after the first $% appears in an
appropriate place for declarations in the function written by lex
that contains the actions. This material must look like program

lex Reference 199

fragments and should precede the first 1ex rule.

» Lines that begin with a blank or tab, and that contain a comment,
are passed through to the generated program. This can be used
to include comments in either the 1ex source or the generated
code. The comments should follow the host language
convention.

o Anything included between lines containing only % { and %} is
copied to output. The delimiters are discarded. This format
permits entering text-like preprocessor statements that must

begin in column 1, or copying lines that do not look like
programs.

o Anything after the third $% delimiter, regardless of formats, and
S0 on, is copied to output after the lex output.

Definitions intended for 1ex are given before the first $% delimiter.
Any line in this section not contained between % { and %} and
beginning in column 1 is assumed to define 1ex substitution strings.
The format of such lines is

name translation

This facility enables the string given as translation to be associated
with the name. The name and translation must be separated by at least
one blank or tab, and the name must begin with a letter. The
translation can be called by the {name} syntax in a rule. Using {D}
for the digits and {E} for an exponent field, you might have

D [0-9]

E [DEde] [-+]2{D}+

%

{D}+ printf ("integer");

{D}+"."{D}*({E})? |
{D}*"."{D}+({E})? |
{D}+{E} printf ("real");

This example abbreviates rules to recognize numbers. The first two
rules for real numbers both require a decimal point and contain an
optional exponent field. The first requires at least one digit before the
decimal point ({D}+"."{D}* ({E}) ?), and the second requires at
least one digit after the decimal point ({D}*"."{D}+({E}) ?). To

19-10 A/UX Programming Languages and Tools, Volume 2

correctly handle the the Fortran expression 35 .EQ. I, which does not
contain a real number, a context-sensitive rule such as

[0-9]1+/"."EQ printf("integer");
could be used, in addition to the normal rule for integers (see ‘‘Context
Sensitivity’’).
The definitions section may also contain other commands, including the
selection of a host language, a character set table, a list of start

conditions or adjustments to the default size of arrays within lex itself
for larger source programs.

6.1 Repetitions and definitions
The operators { and } specify either

o repetitions (if they enclose numbers)
« definition expansion (if they enclose a name)
For example,
{digit}
looks for a predefined string named digit and inserts it at that point

in the expression. The definitions are given in the first part of the lex
input, before the rules. On the other hand, the expression

a{l,5}
looks for one to five occurrences of a.

An initial % is not an ordinary character, but has a special meaning to
lex as the the separator for source program segments.

7. Rules

7.1 Regular expressions

The regular expressions in 1ex function just as do those in the A/UX
text editors (vi, ed, and so on). A regular expression specifies a set of
strings to be matched. It contains ‘‘text characters’’ (which match
characters in the input stream) and *‘operator characters’’ (which,
together with those ‘‘text characters,”’ express a string that is to be
recognized before the action in the right column takes place).

lex Reference 19-11

Letters of the alphabet and digits are always text characters. For
example,

integer

matches the string integer wherever it appears, and the expression
a57D

looks for the string a57D.

7.2 Optional expressions
The question mark operator (?) indicates that what immediately
precedes it is an optional element of an expression. Thus,

ab?c
matches either ac or abc.

7.3 Repeated expressions

Repetitions of classes are indicated by the operators * and +. The
expression

ax

matches zero or more consecutive a characters. The expression
a+

matches one or more instances of a characters. The expression
[a-2z]+

matches all strings of lowercase letters. The expression
[A-Za-2z] [A-Za-20-9]*

matches all alphanumeric strings that have a leading alphabetic
character. This is a typical expression for recognizing identifiers in
computer languages.

7.4 Alternation and grouping
The operator | indicates alternation. For example,

(ablcd)

matches either ab or cd. The parentheses are used here for grouping
only. They are not required in such a simple and clear-cut example,

19-12 A/UX Programming Languages and Tools, Volume 2

but are often used for clarity or to force correct interpretation of more
complex expressions. For example,

(ab|cd+) 2 (ef) *
matches such strings as

abefef
efefef
cdef
cddd

but not

abc
abcd
abcdef

7.5 Context sensitivity
The lex program recognizes a small amount of surrounding context.
The two simplest operators for this are ~ and $.

As in the A/UX text editors, if the first character of an expression is *,
the expression is matched only if found at the beginning of a line,
either after a newline character or at the beginning of the input stream.
Do not confuse this with the use of the * operator within brackets,
which instructs 1ex to match any character except those in the
designated character class range. If you want to use lex to find
occurrences of a particular range of characters, but only if they occur
as the first character on a line, you must use the * operator on the
outside of the brackets. For example, the expression

" [0-9]

matches lines whose first character is a digit, 0 through 9. The
expression

~[*0-9]
matches lines whose first character is not a digit 0 through 9.

The operator $ is matched only at the end of a line, immediately
followed by newline. This operator is a special case of the / operator
character, which indicates “‘trailing context.”” The expression

lex Reference 19-13

ab/cd

matches the string ab only if followed by cd. Therefore, the
expression

ab$
could also be expressed
ab/\n

That is, the use of the $ operator could be interpreted as an instruction
to match the character(s) only when followed by a newline.

Left context is handled in 1ex by “‘start conditions.’”” If a rule is only
to be executed when the 1ex automaton interpreter is in ‘‘start
condition’’ x, the rule should be enclosed within the angle-bracket
operator characters:

<x>

If ““being at the beginning of a line’’ was considered to be start
condition ONE, then the ~ operator would be equivalent to

<ONE>

See the sections entitled ‘‘Left Context Sensitivity,”” ‘“Examples,’’ and
““‘Summary’’ for further explanation and illustration of start conditions.

7.5.1 Left context sensitivity

Sometimes it is desirable to have several sets of lexical rules applied at
different times in the input. For example, a compiler preprocessor
might distinguish preprocessor statements and analyze them differently
from ordinary statements. This requires ‘‘sensitivity’’ to prior context.
There are several ways of handling such occurrences. For example, the
~ operator is a ‘‘prior context operator’’ because it must recognize the
immediately preceding left context in order to discern if a character
appears at the beginning of a line, just as the $ operator must recognize
the immediately following right context in order to discern if a
character appears at the end of a line.

Adjacent left context could be extended to produce a facility similar to
that for adjacent right context. This is likely to be less useful, however,
since often the relevant left context, such as the beginning of a line,
appeared some time earlier.

19-14 A/UX Programming Languages and Tools, Volume 2

There are three basic ways of dealing with different environments so as
to achieve a lexical analysis with a greater degree of context sensitivity.

o A use of flags. This is most useful when only a few rules change
from one environment to another.

o A use of “‘start conditions’’ on rules.

» The possibility of making multiple lexical analyzers all run
together. If the sets of rules for the different environments are
very dissimilar, clarity may best be achieved by writing several
distinct lexical analyzers and switching from one to another as
necessary.

In each case, there are rules that recognize the need to change the
environment in which the following input text is analyzed and a
parameter is set to reflect the change. The remainder of this section
describes in greater detail the first two ways of dealing with different
environments.

7.5.2 Flags

The simplest way of changing the environment in which input is
analyzed is by use of a ‘‘flag’’ explicitly tested by the user’s action
code. If done in this way, lex is not involved at all.

To illustrate, consider the following program requirements:
« Copy the input to the output

o Change the word magic to £irst on every line that begins
with the letter a

o Change magic to second on every line that begins with the
letter b

o Change magic to third on every line that begins with the
letter ¢

All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a
flag. For example,

lex Reference 19-15

int flag.

$%

“a {flag = ’a’; ECHO;}
“b {flag = "b’; ECHO;}
“c {flag = 'c’; ECHO;}
\n {flag = 0 ; ECHO;}
magic {

switch (flag)

{
case ’a’: printf("first"); break;
case ’'b’: printf("second"); break;
case ’'c’: printf("third"); break;
default: ECHO; break;

}

7.5.3 Start conditions

It may be more convenient to have lex ‘‘remember’’ the flags as
‘“start conditions’’ on the rules. Any rule may be associated with a
start condition. That rule, then, would be recognized only when lex is
in that start condition. The current start condition may be changed at
any time. To handle the same problem using start conditions, begin by
introducing each start condition to 1ex in the definitions section with a
line reading

$Start namel name2 ...

where the conditions (ramel, name2, and so on), may be named in any
order. The word Start may be abbreviated to s or S.

Then, to reference the conditions use angle brackets:
<namel> expression

The rule illustrated above will be recognized only when lex is in the
“‘start condition’’ namel. To enter that start condition, execute the
following action statement:

BEGIN namel ;

The action statement

19-16 A/UX Programming Languages and Tools, Volume 2

BEGIN 0;
resets the initial condition of the 1ex automaton interpreter.
A rule may be active in several start conditions.
<namel , name2 , name3> expression
is a legal expression.
Any rule not beginning with the < prefix operator is always active.
The following example illustrates the use of start conditions:

%START AA BB CC

$%

“a {ECHO; BEGIN AA;}
“b {ECHO; BEGIN BB;}
e {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}

<AA>magic printf ("first");
<BB>magic printf ("second"):;
<CC>magic printf ("third"):;

Obviously, the above is a rewrite of the previous example; the
problem-solving logic is exactly the same. However, in this case, lex
has been instructed to do the work instead of the host language code.

7.6 Ambiguous rules

The lex program can handle ambiguous specifications. When more
than one expression can match the current input, the longest match is
preferred, and among rules that matched the same number of
characters, the rule given first is preferred.

For example, using the rules

integer keyword-action ;
[a-z]+ identifier-action ;

(if the input was integers), 1ex would interpret the input as an
identifier because [a-z]+ matches all eight characters (including the
final s), while integer matches only seven characters.

If the input were integer, both rules would match the seven
characters. In that case, 1lex would select the keyword rule because it

lex Reference 19-17

was given first. If the input were anything shorter (for example, int),
the input would not match the expression integer. It would,

however, match the [a-z] + expression, so the identifier interpretation
would be used.

The principle of preferring the longest match makes rules containing
expressions like . * dangerous. For example,

4 .*I

appears to instruct 1ex to find a match for a string in single quotes.
However, it is an instruction for the program to read far ahead looking
for a distant single quote. For example, if the above expression were
given the following input:

"first’ quoted string here, ’‘second’ here
the expression would match almost the entire input line:
"first’ quoted string here, ’‘second’

which is most likely not the desired result. A better rule for matching
strings within single quotes might be

4 [“I \n] x7
which, given the same input, will match * first’.

The consequences of errors like this are greatly lessened by the fact
that the period (.) operator does not match newline. Expressions like
. * stop on the current line.

Note: Do not try to defeat the protection of . not matching the
newline character with expressions such as [.\n]+ or an
equivalent, because the program generated by 1lex will then try
to read the entire input file, causing internal buffer overflows.

8. Actions

When an expression written as above is matched, yylex executes the
corresponding action. The default action for yylex is to copy input to
output, and is performed on all strings not otherwise matched.
Therefore, a rule that merely copies can be omitted. If you want to
absorb the entire input without producing any output, you must provide

19-18 A/UX Programming Languages and Tools, Volume 2

rules to match everything. (When yylex is being used with yacc,
this is the normal situation.) In other words, by default, a character
combination in input that was omitted from the rules will be printed on
the output.

8.1 The null statement

One of the simplest things that can be done is to ignore the input. To
accomplish this, use a semicolon (;) as the action (a semicolon is the C
language ‘‘null statement’’).

The rule
[\t\n] ;

causes the spacing characters (that is, blank, tab and newline) to be
ignored because it gives the null statement as its associated action.

8.2 The repetition character
The vertical bar character (|) represents the instruction to use the
action designated for the next rule for the current rule as well. For
example,

” ” '

"\t" I

” \ n ”

This example instructs yylex to ignore the spacing characters, as did
the previous example. The first line gives the rule ‘‘match blank
characters’’ and instructs the program to perform the action indicated
for the next rule. Then, the second line gives the rule ‘“‘match \t
characters’’ and instructs the program to perform the action indicated
for the next rule. Finally, the third line gives the rule ‘“‘match \n
characters,’’ and gives the action ;, the null statement. Therefore, the
action for all three rules is the null statement.

8.3 printf and ECHO

In more complex actions, you may often want to know the actual text
that matched a regular expression. The yylex program leaves this
text in an external character array, named yytext. Consider the
following example:

[a=z]+ printf("%s", yytext):;

lex Reference 19-19

This example illustrates a way of accessing the characters matching a
regular expression. Using this example, the rule given is to find the
strings matching the regular expression [a—z]+ and the action is to

print those strings in the character array yytext using the C language
function print£.

The print £ function accepts a format argument and data to be
printed. Still using this example, the format is $s (print string). The %
character indicates data conversion, and s indicates data type string, in
this case the character array, yytext. This places the matched string
on the output.

The action of printing the strings matching the regular expressions is so
common that it may be written simply as ECHO. For example,

[a=2z]+ ECHO;

This example accomplishes the same action as the previous one using
the print £ statement.

Even though the default action is to copy input to output, the ECHO
facility is included explicitly to provide a more discriminating copy
function. For example, a rule that matches read will normally match
all instances of read, even those contained in other words (bread,
treadmill, and so on). To avoid this, a rule of the form [a-z]+is
needed. This is explained further below.

8.4 yyleng

Sometimes it is necessary to know what is at the end of a matched
pattern. To facilitate this, 1ex provides a count of the number of
characters matched, yyleng. To count both the number of words in
the input and the number of characters in those words, you might write

[a-zA-Z]+ {words++; chars += yyleng;}

This instruction takes the strings that match the regular expression
[a-zA-2Z]+ and accumulates the number of characters in these strings
in chars. Then, the action instruction

yytext [yyleng-1]

could be used to access the last character in the string matched.

19-20 A/UX Programming Languages and Tools, Volume 2

8.5 yymore and yyless

Occasionally, a 1ex action may decide that a rule has not recognized
the correct span of characters. Two routines are provided to aid with
this situation:

yymore () This routine instructs yylex to tack the next input
expression recognized on to the end of this input.
Normally, the next input string would overwrite the
current entry in yytext.

yyless (n) This routine instructs yylex to retain in yytext only
n (a number) of those characters resulting from the
current expression. Further characters previously
matched are returned to the input. This provides the
same sort of look-ahead offered by the / operator,
though in a very different form.

Consider a language that defines a string as a set of characters between

quotation marks ("), and requires that the " character be preceded by a
\ to be included in a string. The regular expression which matches that
is somewhat confusing, so it might be preferable to write the following:

A"
if (yytext[yyleng-1] == "\\’)
yymore () ;
else
...normal user processing

}
The above lex segment will, when it finds the string
"abc\"def"

first match the five characters "abc\ and then call the yymore
routine, which will cause the next part of the string, "def, to be tacked
on the end of the input. Note that the final quote terminating the string
should be picked up in the code labeled normal user processing.

The function yyless might be used to reprocess text in various
circumstances. Consider, for example, the problem of disambiguating
a C language statement such as

lex Reference 19-21

s=-a
One way to parse this statement treats the — as part of the operator:

=-[a-2A-2] {
printf ("Operator (=-) ambiguous\n");
yyless (yyleng-1);
action for =-
}

This lex segment will print a message, treat the operator as =—, and
return the letter found after the operator to the input stream. However,
you might want to treat this syntax as = —a. In that case
=-[a-2zA-Z] {
printf ("Operator (=-) ambiguous\n");
yyless (yyleng-2);
action for =
}

will print a message, treat the operator as =, and return —a to the input
stream.

It is possible to avoid the misinterpretation of operators by rewriting
the regular expression. To indicate that the operator is =-, using the
same example, use the following rule:

==/ [A-Za-z]
To indicate that the operator is =, use the following rule:
=/-[A-Za-2]
No backup is required in the rule action. It is not necessary to
recognize the whole identifier to observe the ambiguity. However, the
possibility of =-3 makes
=-/[" \t\n]
a still better rule.
8.6 lex input and output routines
The programs generated by lex handle character I/O only through the

routines input, output, and unput. The character representation
provided in these routines is accepted by 1ex and used to return values

19-22 A/UX Programming Languages and Tools, Volume 2

in yytext. These are provided as 1ex macro definitions:
input () Returns the next input character
output (¢) Writes the character ¢ on the output

unput (¢) Pushes the character ¢ back onto the input stream to be
read later by input

(As shown previously, you can use print £ to generate error
messages.) These routines are provided by default, but you can
override them by providing your own versions. To redefine or override
a lex routine, include your own version in the user subroutines
section. These routines must be standard C and be named according to
the lex routine you want to replace. However, because these routines
define the relationship between external files and internal characters,
they must all be retained and/or modified consistently.

These routines may be redefined to cause input or output to be
transmitted to or from other programs or internal memory. The
character set used must be consistent in all routines and a value of O
returned by input must mean end-of-file.

The relationship between unput and input must be retained or the
lex look-ahead will not work. The lex program does not look ahead
at all if it does not have to; rules ending in +, *, 2, or $, or those
containing a /, however, will force look-ahead. Look-ahead is
necessary to match an expression that is a prefix of another expression.
The standard 1ex library imposes a 100-character limit on backup.

8.7 yywrap

Another lex library routine that you may sometimes want to redefine
is yywrap. To redefine or override a 1ex routine, include your own
version in the user subroutines section. These routines must be
standard C and be named according to the 1ex routine you want to
replace. This routine is called whenever lex reaches an end-of-file. If
yywrap returns a 1, which it does by default, 1lex continues with the
normal wrapup on end of input.

It is sometimes convenient to arrange for input to continue from a new
source. In this case, yywrap could be redefined to arrange for new
input and return 0. This would then instruct 1ex to continue
processing.

lex Reference 19-23

This routine provides a convenient way to print tables, summaries, and
so on, at the end of a program. It is not possible to write a normal rule
that recognizes end-of-file. The only access to this condition is through
yywrap. In fact, unless a private version of input is supplied, a file
containing nulls cannot be handled because a value of 0 returned by
input is taken to be end-of-file by yywrap.

8.8 REJECT

Note that 1ex is normally partitioning the input stream, not searching
for all possible matches of each expression. This means that each
character is accounted for once and only once. Consider the following
example:

she s++;
he h++;
\n I
The first rule matches all occurrences of the string she and the action
increments s for each one found. The second matches all occurrences
of the string he and its action increments h for each one found. The
last two rules match newline and everything else and take the action of
ignoring them. Normally, 1ex would not recognize the instances of
he included in she, because once it has passed a she those characters
are gone. To override this default, the action REJECT could be used to
instruct 1ex to go do the next alternative. REJECT causes the rule
after the current rule to be executed. The position of the input pointer
is adjusted accordingly.

Suppose you want to count the instances of he included in she. To do
that, use the following rules:

she {s++; REJECT;}
he {h++; REJECT;}
\n I
In this example, after counting each expression, the expression is
‘“‘rejected’’ (whenever appropriate), and the other expression is
evaluated. In this example, because he does not include she the
REJECT action on he could be eliminated. In other cases, it is not
possible to state which input characters are in both classes.

19-24 A/UX Programming Languages and Tools, Volume 2

Consider the following two rules:

al[bcl+ { ... ; REJECT;}
alcdl+ { ... ; REJECT;}

o If the input to the rules above were ab, only the first rule would
match.

o If the input to these same rules were ad, only the second would
match.

o If the input were accb, the first rule would match four
characters, and the second rule would match three characters.

« If the input were accd, however, the second rule would match
four characters, and the first rule would match three characters.

In general, REJECT is useful whenever the purpose of 1lex is to detect
all examples of some items in the input for which the instances of these
items may overlap or include one another, instead of lex’s usual
purpose of partitioning the input stream.

Suppose you want a digram of some input. Normally, the digrams
overlap, that is, the word the is considered to contain both th and he.
Assuming a two-dimensional array named digram[] to be
incremented, an appropriate lex procedure would be

%%
[a-z] [a-2z] {digram[yytext[O0]] [yytext[1l]]++; REJECT;}
. [

\n ;
In this example, REJECT is used to pick up a letter pair beginning at
every character, rather than at every other character.

The action REJECT does not rescan the input. Instead, it
‘‘remembers’’ the results of the previous scan. Therefore, if yylex is
instructed to find a rule with trailing context and execute REJECT,
unput cannot have been called to change the characters forthcoming
from the input stream. This is the only restriction on the user’s ability
to manipulate the not-yet-processed input.

lex Reference 19-25

9. Compilation
The following steps are involved in compiling a 1ex source file:

1. The lex source must be transformed into a program in the host

general-purpose language. The generated program is put into a
file named lex.yy.c.

2. That program must then be compiled and loaded, usually with a
library of 1lex subroutines. The I/O library is defined in terms of
the C language standard library. On the A/UX operating system,
the library is accessed by the loader flag —11. In this case, an
appropriate set of commands is

lex inputfile
cc lex.yy.c -11

The resulting program is placed in the file a . out for later
execution.

Although the default 1ex I/O routines use the C language standard
library, 1ex routines such as input, output, and unput do not.
Therefore, if your own versions of these routines are given, the library
is avoided.

10. Examples

For the sake of example, consider copying an input file while adding
three to every positive number divisible by 7. A suitable 1lex source
program follows:

%%
int k;
[0-9]1+ {
k = atoi(yytext):;
if (k%7 == 0)
printf ("%d4d", k+3);
else
printf ("%d", k)
}

The rule [0~9] + recognizes strings of digits, 0 through 9; atoi
converts the digits to binary and stores the result in k. The operator %
(remainder) is used to check whether k is divisible by seven; if it is, k

19-26 A/UX Programming Languages and Tools, Volume 2

is incremented by 3 as it is written out. It may be objected that this
program alters such input items as 49 . 63 or X7. Furthermore, it
increments the absolute value of all negative numbers divisible by 7.
To avoid this, add a few more rules after the active one. For example,

%%
int k;
-2[0-9]+ {
k = atoi(yytext):;
printf ("%d", k%7 == 0 ? k+3 : k);
}
-2[0-9.1+ ECHO;

[A-Za-2z] [A-Za-20-9]+ ECHO;

Numeric strings containing a period (.), or preceded by a letter, will be
picked up by one of the last two rules and not changed. The if-else
has been replaced by a C language conditional expression to save
space. The expressiona ? b : cis evaluated as *‘if a then b else ¢.”’

The following is an example using lex for statistics gathering. This
program reports how many words of various lengths there are. (A
word is defined here as a string of letters.)

int lengs[100];
%%
[a=-z]+ lengs[yyleng]++;
. |
\n :
%%
yywrap()
{
int i;
printf ("Length No. words\n");
for(i=0; i<100; i++)
if (lengs[i] > 0)
printf ("$5d4%10d\n", i, lengs[i]):
return(l);

}

In the above example, the data is accumulated, but no output is
generated until, at the end of the input, the table is printed. The final

lex Reference 19-27

statement, return (1) ;, indicates that lex is to perform wrapup. If
yywrap returns 0 (false), it implies that further input is available and
the program is to continue reading and processing. Remember,
providing a yywrap that never returns true causes an infinite loop.

11. Summary
The general form of a 1ex source file is

{ definitions }

%%

{ rules }

%%

{ user subroutines }

The definitions section contains a combination of the following:
o Definitions in the form
name translation
o Included code in the form
code
where a space (or tab) must precede code
o Included code in the form

% {
code
%}

e Start conditions given in the form
%S namel name?2 ...

o Character set tables in the form
T
number character-string
AT

» Changes to internal array sizes in the form

19-28 A/UX Programming Languages and Tools, Volume 2

%X nnn

where nnn is a decimal integer representing an array size and x
selects the parameter as follows:

Letter | Parameter

Positions

States

Tree nodes

Transitions

Packed character classes
Output array size

o~ MmO BT

Lines in the rules section have the form
expression action

where the action may be continued on succeeding lines by using braces
to delimit it.

Regular expressions in 1ex use the following operators:

lex Reference 19-29

Table 19-1. Regular expression operators

Expression | Meaning
X The character x
mx" An x, even if it is an operator
\x An x, even if it is an operator
[2y] The character x or y
[x-2z] The characters x, y, or 2
[*x] Any character but x
Any character but newline
“x An x at the beginning of a line
<y>x An x when lex is in start condition y
x$ An x at the end of a line
X? An optional x
X* 0 or more instances of x
x+ 1 or more instances of x
x|y Anxoray
(x) An x
x/y An x, but only if followed by y
{xx} Expands to xx definition in 1ex definition section
x{m,n} m through n occurrences of x

19-30 A/UX Programming Languages and Tools, Volume 2

Chapter 20
yacc Reference

Contents

N = e e et e e el e ped
S O X N O L AW NN = O

= R T N N T N

yacc: a compiler-writing system

Basic specifications . .

,Actions

Lexical analysis

. Parser operation . . .
. Ambiguity and conflicts .
. Precedence
. Error handling . . .

. The yacc environment .
. Inputstyle
. Leftrecursion
. Lexical considerations . .

. Reservedwords

. Arbitrary value types . .

. Example: a desk calculator

. Backward compatibility .

.

.

.

. Example: yacc input syntax

. Example: an advanced grammar

.

.

. Simulating error and accept in actions

. Accessing values in enclosing rules .

.

10
12
18
23
27
30
31
32
33
34
35
35
36
38
42
45
54

Tables
Table 20-1. C language escapes recognized by

yacc .

Table 20-2. Arithmetic operators .

39

Chapter 20

yacc Reference

1. yacc: a compiler-writing system

The yacc program is a general tool for imposing structure on the input
to a computer program. The first step in using yacc is to create a
specification of the input process, which includes rules describing the
input structure, code to be invoked when these rules are recognized,
and a low-level routine to do the basic input. yacc then generates a
function to control the input process. This function, called a “‘parser,”’
calls the user-supplied low-level input routine (the lexical analyzer) to
pick up the basic items (called ‘‘tokens’’) from the input stream.

Tokens are organized according to the input structure rules, called
‘‘grammar rules.”” When one of these rules has been recognized, the
user code supplied for this rule (that is, an action) is invoked. Actions
have the ability to return values and make use of the values of other
actions.

yacc is written in a portable dialect of the C language, and the actions
and output subroutine are written in the C language as well. Moreover,
many of the syntactic conventions of yacc follow those of the C
language.

The heart of the input specification is a collection of grammar rules.
Each rule describes an allowable structure and gives it a name. For
example, one grammar rule might be

date : month_name day ’,’ year;

where date, month_name, day, and year represent structures of
interest in the input process; presumably, month_name, day, and
vear are defined elsewhere.

The comma (,) is enclosed in single quotes. This implies that the
comma is to appear literally in the input. The colon and semicolon
serve merely as punctuation in the rule and have no significance in
controlling the input.

yacc Reference 20-1

With proper definitions, the following input might be matched by the
rule given above:

July 4, 1776

An important part of the input process is carried out by the lexical
analyzer. This user routine reads the input stream, recognizes the
lower-level structures, and communicates these tokens to the parser.

For historical reasons, a structure recognized by the lexical analyzer is
called a “‘terminal symbol,”’ while the structure recognized by the
parser is called a “‘nonterminal symbol.”” To avoid confusion, terminal
symbols will usually be referred to as ‘tokens.”’

There is considerable leeway in deciding whether to recognize
structures using the lexical analyzer or grammar rules. For example,
the following rules might be used in the above example:

month name : 'J’ ‘a’ ’'n’
month _name : ‘F’ 'e’ 'b’ ;
month name : D’ ’e’ 'c’ ;

The lexical analyzer needs to recognize only individual letters, and
month_name is a nonterminal symbol.

Such low-level rules tend to waste time and space and may complicate
the specification beyond the ability of yacc to deal with it.

Usually, the lexical analyzer recognizes the month names and returns
an indication that amonth_name is seen. In this case, month_name
is a token.

Literal characters (such as the comma above) must also be passed
through the lexical analyzer and are also considered tokens.

Specification files are very flexible. If the rule
date : month '/’ day '/’ year;

were added to the above example, entering 7/4/1776 would then be
equivalent to July 4, 1776 oninput. In most cases, this new rule
could be “‘slipped in’’ to a working system with minimal effort and
little danger of disrupting existing input.

20-2 A/UX Programming Languages and Tools, Volume 2

The input being read may not conform to the specifications. These
input errors are detected as early as is theoretically possible with a
left-to-right scan. Thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the
input specifications, permits the reentry of bad data or the continuation
of the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self-
contradictory, or they may require a more powerful recognition
mechanism than that available to yacc. The former cases represent
design errors; the latter cases can often be corrected by making the
lexical analyzer more powerful or by rewriting some of the grammar
rules.

While yacc cannot handle all possible specifications, its power
compares favorably with similar systems. Moreover, the constructions
that are difficult for yacc to handle are also frequently difficult for
human beings to handle. Some users have reported that the discipline
of formulating valid yacc specifications for their input revealed errors
of conception or design early in the program development.

yacc has been used extensively in numerous practical applications on
the A/UX system, including the syntax checker 1int, the Portable C
Compiler, and a system for typesetting mathematics.

The remainder of this chapter describes:
« Basic process of preparing a yacc specification
o Parser operation
o Handling ambiguities
« Handling operator precedence in arithmetic expressions
» Error detection and recovery

o The operating environment and special features of the parsers
yacc produces

» Suggestions to improve the style and efficiency of the
specifications

yacc Reference 20-3

o Advanced topics
In addition, there are four sections that illustrate the earlier material:

» ‘‘A Desk Calculator’’ contains a brief example of using yacc to
design a simple program.

e ‘‘vacc Input Syntax’’ contains a summary of the yacc input
syntax.

e ‘“‘An Advanced Grammar’’ contains an example using some of
the more advanced features of yacc.

‘“‘Backward Compatibility’’ contains a description of the
mechanisms and syntax that, though no longer actively
supported, are provided for historical continuity with older
versions of yacc.

2. Basic specifications

Names refer to either tokens or nonterminal symbols. yacc requires
token names to be declared as such. In addition, it is often desirable to
include the lexical analyzer as part of the specification file. It may be
useful to include other programs as well.

Every specification file consists of three sections:
o Declarations
o Grammar rules
o Programs

These sections are separated by double percent symbols ($%). The
percent symbol is generally used in yacc specifications as an escape
character.

The following is a syntactic description of a yacc specification file:

declarations
%%

rules

%%
programs

20-4 A/UX Programming Languages and Tools, Volume 2

The declarations section may be empty, and, if the programs section is
omitted, the second $% mark may also be excluded. The smallest legal
yacc specification is therefore

%%
rules

Blanks, tabs, and newlines are ignored, but they may not appear in
names or multicharacter reserved symbols. Comments may appear
wherever a name is legal. They are enclosed in /* and */, as in the C
language.

The rules section is made up of one or more grammar rules. A
grammar rule has the following form:

a : body;

In this example, a represents a nonterminal name, and body represents
a sequence of zero or more names and literals. The colon and the
semicolon are yacc punctuation.

Names may be of arbitrary length and may be made up of letters, dots,
underscores, and noninitial digits. Uppercase and lowercase letters are
distinct. The names used in the body of a grammar rule may represent
tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes (Y 7).

As in the C language, the backslash (\) is an escape character within
literals, and all the C language escapes are recognized.

Table 20-1. C language escapes recognized by yace
Escape Meaning

\n Newline

\r Return

Y Single quote ()
\\ Backslash (\)
\t Tab

\b Backspace

\f Form feed

\xxx xxx in octal

yacc Reference 20-5

For a number of technical reasons, the null character (\ 0 or 0) should
never be used in grammar rules.

If there are several grammar rules with the same left side, the vertical
bar (|) can be used to avoid rewriting the left side. The semicolon at
the end of a rule can be dropped before a vertical bar. Thus the
grammar rules

A : BCD;
A : EF;
A : G;

can be given to yacc using the vertical bar:

A :BCD
| EF
| G;

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input
much easier to read and to change.

If a nonterminal symbol matches the empty string, this can be indicated
by the following:

empty : ;
Names representing tokens must be declared in the declarations
section. For example,

$token namel name2

Every name not defined in the declarations section is assumed to
represent a nonterminal symbol. Nonterminal symbols must appear on
the left side of at least one rule.

The parser is designed to recognize the nonterminal start symbol.
Thus, this symbol represents the largest, most general structure
described by the grammar rules. By default, the start symbol is taken
to be the left side of the first grammar rule in the rules section.

It is possible and desirable to declare the start symbol explicitly in the
declarations section using the $start keyword. For example,

20-6 A/UX Programming Languages and Tools, Volume 2

$start symbol

The end of the input to the parser is signaled by a special token, called
the ‘‘end-marker.’’ If the tokens up to but not including the end-
marker form a structure that matches the start symbol, the parser
function returns to its caller after the end-marker is seen and accepts
the input. If the end-marker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-
marker when appropriate. Usually the end-marker represents some
reasonably obvious I/O status, such as end-of-file or end-of-record.

3. Actions

With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input process. These
actions may return values and may obtain the values returned by
previous actions. Moreover, the lexical analyzer can return values for
tokens if desired.

An action is an arbitrary C language statement and as such can do input
and output, call subprograms, and alter external vectors and variables.
An action is specified by one or more statements enclosed in braces ({
and }). For example,

A:'(IBI)I
{
hello(1, "abc");
}

and the following is an example of grammar rules with actions:

XXX : YYY 2ZZ
{
printf ("a message\n");
flag = 25;
}
To facilitate easy communication between the actions and the parser,
the action statements are altered slightly. The dollar sign symbol ($) is

used as a signal to yacc in this context. To return a value, the action
normally sets the pseudovariable $$ to some value.

yacc Reference 20-7

The following action does nothing except return the value of one:
{ $s =1; }

To obtain the values returned by previous actions and the lexical
analyzer, the action may use the pseudovariables $1, $2, and so on,
which refer to the values returned by the components of the right side
of a rule, reading from left to right. For example, if the rule is

A : BCD;
then $2 has the value returned by C, and $3 the value returned by D.

With the following rule, the value returned is usually the value of the
expr in parentheses:

expr : ' (' expr ")’
{
$8 = 82 ;
}

By default, the value of a rule is the value of the first element in it ($1).

Grammar rules of the following form frequently need not have an
explicit action:

A : B;

In the examples above, all the actions came at the end of rules.
Sometimes, though, it is desirable to get control before a rule is fully
parsed. The yacc program permits an action to be written in the
middle of a rule as well as at the end.

This kind of rule is assumed to return a value accessible through the
usual $ mechanism by the actions to the right of it. In turn, it may
access the values returned by the symbols to the left of the action. For
example, in the following rule x is set to 1 (the value returned by the
action to its left) and y is set to the value returned by C:

20-8 A/UX Programming Languages and Tools, Volume 2

$$=1I
}
C
{
x = $2;
y = $3;

;

This is because every component of the right side of the rule, including
an action, is associated with a positional pseudovariable, so the $1
refers to B, $2 to the value returned by the action associated with B, $3
to C, and so on.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name and a new rule
matching this name to the empty string. The interior action is the
action triggered off by recognizing this added rule.

yacc actually treats the preceding example as if it had been written
like the following ($ACT is an empty action):

SACT : /* empty */
{
$$ = 1;
}
A : B SACT C
{
x = $2;
y = $3;

In many applications, output is not produced directly by the actions. A
data structure, such as a parse tree, is constructed in memory and
transformations are applied to it before output is generated. Parse trees
are particularly easy to construct, given routines to build and maintain
the tree structure desired.

yacc Reference 20-9

In the following example, the C function node creates a node with
label / and descendants n] and n2 and returns the index of the newly
created node:

node(l, nl, n2)

Then a parse tree is built by supplying the actions following in the yacc
specification file:

expr : expr '+’ expr
{
$$ = node('+', $1, $3);
}

The user may define other variables to be used by the actions.

Declarations and definitions can appear in the declarations section
enclosed in the marks % { and %}. These declarations and definitions
have global scope, so they are known to the action statements and the
lexical analyzer. For example,

${ int variable = 0; %}

could be placed in the declarations section, making variable
accessible to all of the actions.

The yacc parser uses only names beginning with yy. The user should
avoid such names. In these examples, all the values are integers. A
discussion of values of other types is found in the section ‘ Arbitrary
Value Types.”’

4. Lexical analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical
analyzer is an integer-valued function called yylex. The function
returns an integer, the ‘‘token number,’’ representing the kind of token
read. If there is a value associated with that token, it should be
assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers
in order for communication between them to take place. The numbers
may be chosen by yacc or by the user. In either case, the #define
mechanism of C language is used to allow the lexical analyzer to return

20-10 A/UX Programming Languages and Tools, Volume 2

these numbers symbolically. For example, suppose that the token
name DIGIT has been defined in the declarations section of the yacc
specification file. The relevant portion of the lexical analyzer might
look like the following:

yylex ()

{
extern int yylval;
int c;

c = getchar();

switch(c)

{

case 0':
case "1’:

case "9':
yylval = c - 70’;
return(DIGIT);

}

The intent is to return a token number of DIGIT and a value equal to
the numeric value of the digit. Provided that the lexical analyzer code
is placed in the programs section of the specification file, the identifier
DIGIT is defined as the token number associated with the token
DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The
only pitfall to avoid is using any token names in the grammar that are
reserved or significant in the C language or the parser. For example,
the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled.

The token name error is reserved for error handling and should not
be used naively.

yacc Reference 20-11

As mentioned above, the token numbers may be chosen by yacc or by
the user. In the default situation, the numbers are chosen by yacc.
The default token number for a literal character is the numeric value of
the character in the local character set. Other names are assigned token
numbers starting at 257.

To assign a token number to a token (including literals), the first
appearance of the token name or literal in the declarations section can
be immediately followed by a non-negative integer. This integer is
taken to be the token number of the name or literal. Names and literals
not defined by this mechanism retain their default definitions. It is
important that all token numbers be distinct.

For historical reasons, the end-marker must have token number O or be
negative. This token number cannot be redefined by the user. Thus, all
lexical analyzers should be prepared to return O or a negative number
as a token upon reaching the end of their input.

The lex program is a very useful tool for constructing lexical
analyzers. These lexical analyzers are designed to work in close
harmony with yacc parsers. The specifications for these lexical
analyzers use regular expressions instead of grammar rules.

lex can easily be used to produce quite complicated lexical analyzers,
but there remain some languages (such as Fortran) that do not fit any
theoretical framework and whose lexical analyzers must be crafted by
hand. See ‘‘lex Reference’’ in this manual for more information on
lex.

5. Parser operation

The yacc program turns the specification file into a C language
program, which parses the input according to the specification given.
The algorithm used to go from the specification to the parser is
complex and will not be discussed here. The parser itself, however, is
relatively simple, and understanding how it works will make treatment
of error recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite-state machine with a
stack. The parser is also capable of reading and remembering the next
input token (called the *‘look-ahead token’’). The current state is
always the one on the top of the stack. The states of the finite-state

20-12 A/UX Programming Languages and Tools, Volume 2

machine are given small integer labels.

Initially, the machine is in state O (the stack contains only state 0) and
no look-ahead token has been read. The machine has only four actions
available:

shift Push current state onto stack, go into specified new state.

reduce Pop some number of states from stack, push new state,
execute user code.

accept End of input has been (successfully) reached.
error Anunparseable situation has been detected.
A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-
ahead token to choose the action to be taken. If it needs one and
does not have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out. This may
cause states to be pushed onto the stack or popped off the stack
and the look-ahead token to be processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a look-ahead token.
In the following example, in state 56, if the look-ahead token is IF, the
current state (56) is pushed down on the stack, and state 34 becomes
the current state (on the top of the stack):

IF shift 34
The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds.
reduce actions are appropriate when the parser has seen the right side
of a grammar rule and is prepared to announce that it has seen an
instance of the rule replacing the right side by the left side.

It may be necessary to consult the look-ahead token to decide whether
to reduce or not (usually it is not necessary). In fact, the default action
(represented by a dot) is often a reduce action.

yacc Reference 20-13

reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, and this leads to
some confusion. For example, in the following display, the action
refers to grammar rule 18:

. reduce 18

While in this example, the action refers to state 34:
IF shift 34

Suppose the following rule is being reduced:
A :xXx Yy z;

The reduce action depends on the left symbol (A in this case) and the
number of symbols on the right side (three in this case). To reduce,
first pop off the top three states from the stack. (In general, the number
of states popped equals the number of symbols on the right side of the
rule.) In effect, these states were the ones put on the stack while
recognizing x, y, and z, and no longer serve any useful purpose.

After popping these states, a state is uncovered that was the state the
parser was in before beginning to process the rule. Using this
uncovered state and the symbol on the left side of the rule, perform
what is in effect a shift of A. A new state is obtained and pushed onto
the stack, and parsing continues.

There are significant differences between the processing of the left
symbol and an ordinary shift of a token, however, so this action is
called a ““goto’’ action. In particular, the look-ahead token is cleared
by a shift but is not affected by a goto. In any case, the uncovered
state contains an entry such as the following, which causes state 20 to
be pushed onto the stack and become the current state:

A goto 20

In effect, the reduce action ‘‘turns back the clock’ in the parse,
popping the states off the stack to go back to the state where the right
side of the rule was first seen. The parser then behaves as if it had seen
the left side at that time. If the right side of the rule is empty, no states
are popped off the stacks. The uncovered state is in fact the current
state.

20-14 A/UX Programming Languages and Tools, Volume 2

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the
rule is executed before the stack is adjusted. In addition to the stack
holding the states, another stack running in parallel with it holds the
values returned from the lexical analyzer and the actions.

‘When a shift takes place, the external variable yylval is copied onto
the value stack. After the return from the user code, the reduction is
carried out. When the got o action is done, the external variable
yyval is copied onto the value stack. The pseudovariables $1, $2,
and so on refer to the value stack.

The other two parser actions are conceptually much simpler. The
accept action indicates that the entire input has been seen and that it
matches the specification. This action appears only when the look-
ahead token is the end-marker and indicates that the parser has
successfully done its job.

The error action, on the other hand, represents a place where the
parser can no longer continue parsing according to the specification.
The input tokens it has seen (together with the look-ahead token)
cannot be followed by anything that would result in a legal input. The
parser reports an error and attempts to recover the situation and resume
parsing. The error recovery (as opposed to the detection of error) will
be discussed later.

Consider the following example as a yacc specification:

%token DING DONG DELL
%%
rhyme : sound place

sound : DING DONG

place : DELL
When yacc is invoked with the -v option, a file called y . output is
produced with a human-readable description of the parser.

The following example is the y . output file corresponding to the
above grammar (with some statistics stripped off the end), where the

yacc Reference 20-15

actions for each state are specified and there is a description of the
parsing rules being processed in each state:

state 0
$accept : _rhyme $end

DING shift 3
error

rhyme goto 1
sound goto 2

state 1
Saccept : rhyme Send

Send accept
error
state 2

rhyme : sound place

DELL shift 5
error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
error

state 4
rhyme : sound place_ (1)

reduce 1

20-16 A/UX Programming Languages and Tools, Volume 2

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

reduce 2

The underscore character _is used to indicate what has been seen and
what is yet to come in each rule.

The following input can be used to track the operations of the parser:
DING DONG DELL

Initially, the current state is state 0. The parser needs to refer to the
input in order to decide between the actions available in state 0, so the
first token (DING) is read and becomes the look-ahead token.

The action in state 0 on DING is shift 3. State 3 is pushed onto the
stack, and the look-ahead token is cleared. State 3 becomes the current
state. The next token (DONG) is read and becomes the look-ahead
token. The action in state 3 on the token DONG is shift 6. State 61is
pushed onto the stack, and the look-ahead is cleared.

The stack now contains 0, 3, and 6. In state 6, without even consulting
the look-ahead, the parser reduces by the following, which is rule 2:

sound : DING DONG

Two states, 6 and 3, are popped off the stack, uncovering state 0.
Consulting the description of state 0 (looking for a goto on sound),
the following is obtained:

sound goto 2

State 2 is pushed onto the stack and becomes the current state. In state
2, the next token (DELL) must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and S on it, and
the look-ahead token is cleared.

yacc Reference 20-17

In state 5, the only action is to reduce by rule 3. This has one symbol
on the right side, so one state (5) is popped off and state 2 is uncovered.
The goto in state 2 on place (the left side of rule 3) is state 4. Now,
the stack contains 0, 2, and 4.

In state 4, the only action is to reduce by rule 1. There are two symbols
on the right, so the top two states are popped off, uncovering state 0
again. In state 0, there is a got o on rhyme causing the parser to enter
state 1. In state 1, the input is read and the end-marker is obtained
indicated by $end in the y.output file. The action in state 1 (when
the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted
with such incorrect strings as DING DONG DONG, DING DONG,
DING DONG DELL DELL, and soon. A few minutes spent studying
this and other simple examples will be repaid when problems arise in
more complicated contexts.

6. Ambiguity and conflicts

A set of grammar rules is ambiguous if there is some input string that
can be structured in two or more different ways. For example, the
following grammar rule is a natural way of expressing the fact that one
way of forming an arithmetic expression is to put two other expressions
together with a minus sign between them:

expr : expr '-' expr

Unfortunately, this grammar rule does not completely specify the way
that all complex inputs should be structured. For example, if the input
is

expr — expr - expr

the rule allows this input to be structured as either
(expr — expr) - expr

or
expr — (expr — expr)

(The first is called *‘left association,’’ the second ‘‘right association.’”)
The yacc program detects such ambiguities when it is attempting to
build the parser.

20-18 A/UX Programming Languages and Tools, Volume 2

Consider the problem that confronts the parser when provided with the
following input:

expr - expr - expr

When the parser has read the second expr, the input seen matches the
right side of the grammar rule above:

expr — expr

The parser could reduce the input by applying this rule. After applying
the rule, the input is reduced to expr (the left side of the rule). The
parser would then read the final part of the input (displayed in the
following example) and again reduce:

- expr
The effect of this is to take the left associative interpretation.
Alternatively, if the parser sees the following:

expr - expr
it could defer the immediate application of the rule and continue
reading the input until it sees the following:

expr — expr - expr
It could then apply the rule to the rightmost three symbols, reducing
them to expr, which results in the following being left:

expr - expr

Now the rule can be reduced once more. The effect is to take the right
associative interpretation. The parser can do one of two legal things, a
shift or a reduction. It has no way of deciding between them. This is
called a “‘shift/reduce conflict.”’

It may also happen that the parser has a choice of two legal reductions.
This is called a ‘‘reduce/reduce conflict.”’ (Note that there are never
any ‘‘shift/shift’’ conflicts.) When there are shift/reduce or
reduce/reduce conflicts, yacc still produces a parser. It does this by
selecting one of the valid steps wherever it has a choice.

A rule describing the choice to make in a given situation is called a
‘‘disambiguating rule.”” The yacc program invokes two
disambiguating rules by default:

yacc Reference 20-19

o In a shift/reduce conflict, the default is to do the shift.

» In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

The first rule implies that reductions are deferred in favor of shifts
when there is a choice. The second rule gives the user rather crude
control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than
yacc can construct. The use of actions within rules can also cause
conflicts if the action must be done before the parser can be sure which
rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect parser.
For this reason, yacc always reports the number of shift/reduce and
reduce/reduce conflicts resolved by rule 1 and rule 2.

In general, whenever it is possible to apply disambiguating rules to
produce a correct parser, it is also possible to rewrite the grammar rules
so that the same inputs are read but there are no conflicts. For this
reason, most previous parser generators have considered conflicts to be
fatal errors. Experience has suggested that this rewriting is somewhat
unnatural and produces slower parsers. Thus, yacc will produce
parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

stat : IF (' cond ')’ stat
| IF (' cond ')’ stat ELSE stat
which is a fragment from a programming language involving an if-
then-else statement.

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat is a nonterminal
symbol describing statements. The first rule will be called the
‘‘simple-if’’ rule and the second the ‘‘if-else’’ rule. These two rules
form an ambiguous construction because input of the following form
can be structured according to these rules in two ways:

20-20 A/UX Programming Languages and Tools, Volume 2

IF (Cl) IF (C2) S1 ELSE S2

The input can be structured as in the following example or as in the
subsequent example, which is the one given in most programming
languages having this construct:

IF (Cl1)
{
IF (C2)
S1
}
ELSE
S2
or:
IF (Cl)
{
IF (C2)
sl
ELSE
s2

}
Each ELSE is associated with the preceding ‘‘un-ELSE’d’’ IF.

In the following example, consider the situation where the parser has
seen the IF-ELSE construct and is looking at the ELSE.

IF (Cl) IF (C2) s1

It can immediately reduce by the simple-if rule to get
IF (Cl1) stat

and then read the remaining input
ELSE S2

and reduce by the if-else rule. This leads to the first of the above
groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the
right portion can be reduced by the if-else rule to get the following,
which can be reduced by the simple-if rule:

yacc Reference 20-21

IF (Cl) stat

This leads to the second of the above groupings of the input, which is
usually desired. Once again, the parser can do two valid things—there
is a shift/reduce conflict. The application of disambiguating rule 1 tells
the parser to shift in this case, which leads to the desired grouping.
This shift/reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as have already been
seen:

IF (C1) IF (C2) s1

In general, there may be many conflicts, and each one will be
associated with an input symbol and a set of previously read inputs.
The previously read inputs are characterized by the ‘“state’’ of the
parser. The conflict messages of yacc are best understood by
examining the verbose (-v) option output file. For example, the output
corresponding to the above conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat
ELSE shift 45

reduce 18

where the first line describes the conflict, giving the “‘state’” and the
input symbol.

The ordinary state description gives the grammar rules active in the
state and the parser actions.

Recall that the underline marks the portion of the grammar rules that
has been seen. Thus, in the example, in state 23 the parser has seen
input corresponding to IF (cond) stat, and the two grammar
rules shown are active at this time.

The parser can do two things:

« If the input symbol is ELSE, it is possible to shift into state 45.
State 45 will have, as part of its description, the following line:

stat : IF (cond) stat ELSE_stat

20-22 A/UX Programming Languages and Tools, Volume 2

because the ELSE will have been shifted in this state. In state
23, the alternative action (describing a dot (.)) is to be done if
the input symbol is not mentioned explicitly in the actions.

o If the input symbol is not ELSE, the parser reduces to
stat : IF (' cond ')’ stat
by grammar rule 18.

Once again, notice that the numbers following shift commands refer
to other states, while the numbers following reduce commands refer
to grammar rule numbers.

In the y . output file, the rule numbers are printed after those rules
which can be reduced. In most states, only one reduce action is
possible, and it will be the default command.

The user who encounters unexpected shift/reduce conflicts will
probably want to look at the verbose output to decide whether the
default actions are appropriate.

7. Precedence

There is one common situation where the rules given above for
resolving conflicts are not sufficient. This is in the parsing of
arithmetic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left or
right associativity.

It turns out that ambiguous grammars with appropriate disambiguating
rules can be used to create parsers that are faster and easier to write
than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the following two forms for all

binary and unary operators desired:
expr : expr OP expr
and
expr : UNARY expr

This creates a very ambiguous grammar with many parsing conflicts.
As disambiguating rules, the user specifies the precedence or binding

yacc Reference 20-23

strength of all the operators and the associativity of the binary
operators. This information is sufficient to allow yacc to resolve the
parsing conflicts in accordance with these rules and construct a parser
that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the
declarations section. This is done by a series of lines beginning with
one of the following yacc keywords: $left, $right,or
%$nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or
binding strength. For example,

sleft r+7 -
$left '*xr 1/

describes the precedence and associativity of the four arithmetic
operators. Plus and minus are left associative and have lower
precedence than star and slash, which are also left associative.

The keyword $right is used to describe right associative operators,
and the keyword $nonassoc is used to describe operators, like the
operator . LT . in Fortran, that may not associate with themselves. For
example, the following is illegal in Fortran and such an operator would
be described with the keyword $nonassoc in yacc:

A .LT. B .LT. C

As an example of the behavior of these declarations, the following
description might be used to structure the subsequent input:

20-24 A/UX Programming Languages and Tools, Volume 2

$right ’='
Sleft 47 -t
Sleft r*r /¢

%%

expr : expr '=' expr

| expr '+’ expr
| expr '-' expr
| expr '*' expr
| expr ' /" expr
| NAME

.
’

The following is the input to be structured by the above description in
order to perform the correct precedence of operators:

a=b=c*d-e-f *g
The result of the structuring is as follows:
a= (b= (((cxd)-e) - (f*g)))

‘When this mechanism is used, unary operators must, in general, be
given a precedence. Sometimes a unary operator and a binary operator
have the same symbolic representation but different precedences. An
example is unary and binary minus (-). Unary minus may be given the
same strength as multiplication, or even higher, while binary minus has
a lower strength than multiplication.

The keyword $prec changes the precedence level associated with a
particular grammar rule. $prec appears immediately after the body of
the grammar rule, before the action or closing semicolon, and is
followed by a token name or literal. The keyword causes the
precedence of the grammar rule to become that of the following token
name or literal. For example, the following rules might be used to give
unary minus the same precedence as multiplication:

yacc Reference 20-25

20-26

$left (47 -t
$left r*xr 1/t

%%

expr : expr '+’ expr

| expr '-' expr
| expr 'x' expr
| expr '/’ expr
I

I

r—r expr %prec

NAME

.
’

r %7

A token declared by $1left, $right, and $nonassoc need not be,
but may be, declared by $token as well.

The precedences and associativities are used by yacc to resolve
parsing conflicts. They give rise to disambiguating rules. Formally,
the rules work as follows:

o The precedences and associativities are recorded for those tokens

and literals that have them.

» A precedence and associativity is associated with each grammar
rule. Itis the precedence and associativity of the last token or
literal in the body of the rule. If the $prec construction is used,
it overrides this default. Some grammar rules may have no
precedence and associativity associated with them.

o When there is a reduce/reduce conflict or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts

are reported.

o If there is a shift/reduce conflict and both the grammar rule and
the input character have precedence and associativity associated
with them, then the conflict is resolved in favor of the action
(shift or reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is used; left
associative implies reduce, right associative implies shift, and

nonassociating implies error.

A/UX Programming Languages and Tools, Volume 2

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. This
means that mistakes in the specification of precedences may disguise
errors in the input grammar. It is a good idea to be sparing with
precedences and use them in an essentially ‘‘cookbook’ fashion until
some experience has been gained. The y.output file is very useful
in deciding whether the parser is actually doing what was intended.

8. Error handling

Error handling is an extremely difficult area, and many of the problems
are semantic ones. When an error is found, for example, it may be
necessary to reclaim parse tree storage, delete or alter symbol table
entries, and, typically, set switches to avoid generating any further
output. It is seldom acceptable to stop all processing when an error is
found. It is more useful to continue scanning the input to find further
syntax errors. This leads to the problem of getting the parser
“‘restarted’’ after an error.

A general class of algorithms to do this involves discarding a number
of tokens from the input string and attempting to adjust the parser so
that input can continue. To allow the user some control over this
process, yacc provides a simple but reasonably general feature. The
token name error is reserved for error handling. This name can be
used in grammar rules. In effect, it suggests places where errors are
expected and recovery might take place.

The parser pops its stack until it enters a state where the token error
is legal. It then behaves as if the token error were the current look-
ahead token and performs the action encountered. The look-ahead
token is then reset to the token that caused the error. If no special error
rules have been specified, the processing halts when an error is
detected.

To prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully
read and shifted. If an error is detected when the parser is already in
error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the following form means that on a syntax
error the parser attempts to skip over the statement in which the error is
seen;

yacc Reference 20-27

stat : error

More precisely, the parser scans ahead, looking for three tokens that
might legally follow a statement, and starts processing at the first of
these. If the beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement and end up
reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions
might attempt to reinitialize tables, reclaim symbol table space, and so
on. Error rules such as the above are very general but difficult to
control. Rules such as the following are somewhat easier. Here, when
there is an error, the parser attempts to skip over the statement but does
so by skipping to the next semicolon:

stat : error ;7

All tokens after the error and before the next semicolon cannot be
shifted and are discarded. When the semicolon is seen, this rule will be
reduced and any ‘‘cleanup’’ action associated with it performed.

Another form of error rule arises in interactive applications where it
may be desirable to permit a line to be reentered after an error. The
following example is one way to do this:

input : error ‘\n’
{
printf ("Reenter last line: ");
}
input

$$ = $4;

There is one potential difficulty with this approach. The parser must
correctly process three input tokens before it admits that it has correctly
resynchronized after the error. If the reentered line contains an error in
the first two tokens, the parser deletes the offending tokens and gives
no message. This is clearly unacceptable. For this reason, there is a
mechanism that can force the parser to believe that error recovery has
been accomplished. The following statement in an action resets the

20-28 A/UX Programming Languages and Tools, Volume 2

parser to its normal mode:
yyerrok ;

The last example can be rewritten, somewhat more usefully, as the
following:

input : error ’\n’
{
yyerrok;
printf ("Reenter last line: ");

}
input
{
$$ = $4;
}

As previously mentioned, the token seen immediately after the error
symbol is the input token at which the error was discovered.
Sometimes this is inappropriate. For example, an error recovery action
might take upon itself the job of finding the correct place to resume

input. In this case, the previous look-ahead token must be cleared. The
following statement in an action will have this effect:

yyclearin ;

For example, suppose the action after error were to call some
sophisticated resynchronization routine (supplied by the user) that
attempted to advance the input to the beginning of the next valid
statement. After this routine is called, the next token returned by
yylex is presumably the first token in a legal statement. The old
illegal token must be discarded and the error state reset. A rule similar
to the one following could perform this:

yacc Reference 20-29

stat : error

resynch () ;

yyerrok ;

yyclearin;
}

.
’

These mechanisms are admittedly crude but do allow for a simple,
fairly effective recovery of the parser from many errors. Also, the user
can get control to deal with the error actions required by other portions
of the program.

9. The yacc environment

When the user enters a specification to yacc, the output is a file of C
language programs, called y . tab. c. The function produced by yacc
is an integer-valued function called yyparse. When it is called, it in
turn repeatedly calls yylex, the lexical analyzer supplied by the user
(see ‘‘Lexical Analysis’’), to obtain input tokens.

Eventually, if an error is detected, yyparse returns the value 1, and
no error recovery is possible, or the lexical analyzer returns the end-
marker token and the parser accepts. In this case, yyparse returns
the value 0.

The user must provide a certain amount of environment for this parser
in order to obtain a working program. For example, as with every C
language program, a program called ma in must be defined that
eventually calls yyparse. Also needed is a routine called yyerroxr
which prints a message when a syntax error is detected. These two
routines (main and yyerror) must be supplied in one form or
another by the user.

To ease the initial effort of using yacc, a library has been provided
with default versions of main and yyerror. Use 1d’s -1y option to
incorporate these routines into your program. The following source
code examples show the simplicity of these routines:

20-30 A/UX Programming Languages and Tools, Volume 2

main ()
{

return (yyparse());
}

and

#include <stdio.h>

yyerror (s)
char *s;
{
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message,
usually the string syntax error. The average application wants to
do better than this. Ordinarily, the program should keep track of the
input line number and print it along with the message when a syntax
error is detected.

The external integer variable yychar contains the look-ahead token
number at the time the error was detected. This may be of some
interest in giving better diagnostics.

Because the main program is probably supplied by the user (to read
arguments, and so on), the yacc library is useful only in small projects
or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set
to a nonzero value, the parser will send as output a verbose description
of its actions, including a discussion of the input symbols read and
what the parser actions are. Depending on the operating environment,
it may be possible to set yydebug by using a debugging system.

10. Input style
It is difficult to provide rules with substantial actions and still have a
readable specification file. The following are a few style hints:

« Use all uppercase letters for token names and all lowercase
letters for nonterminal names.

yacc Reference 20-31

o Put grammar rules and actions on separate lines. This allows
either to be changed without an automatic need to change the
other.

o Put all rules with the same left side together. Put the left side in
only once and let all following rules begin with a vertical bar.

» Put a semicolon only after the last rule with a given left side and
put the semicolon on a separate line. This allows new rules to be
easily added.

« Indent rule bodies by two tab stops and action bodies by three tab
stops.

The example in ‘‘Example: A Desk Calculator’’ is written following
this style (where space permits). You must make up your own mind
about these stylistic questions. The central problem, however, is to
make the rules visible through the morass of action code.

11. Left recursion

The algorithm used by the yacc parser encourages so called “‘left
recursive’’ grammar rules. Rules of the following form match this
algorithm:

name : name rest-of-rule ;

Rules such as the two following frequently arise when writing
specifications of sequences and lists. In each of these cases, the first
rule will be reduced for the first item only; and the second rule will be
reduced for the second and all succeeding items:

list : item
| list ',' item

and

seq : item
[seq item
With right recursive rules, such as the following, the parser is a bit
bigger, and the items are seen and reduced from right to left:

20-32 A/UX Programming Languages and Tools, Volume 2

seq : item
| item seq

.
’

More seriously, an internal stack in the parser is in danger of
overflowing if a very long sequence is read. The user should use left
recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any
meaning; if so, consider writing the sequence specification as in the
following, using an empty rule:

seq : /* empty */
| seq item

.
’

Once again, the first rule would always be reduced exactly once before
the first item was read, and then the second rule would be reduced once
for each item read. Permitting empty sequences often leads to
increased generality. However, conflicts might arise if yacc is asked
to decide which empty sequence it has seen when it hasn’t seen enough
to know.

12. Lexical considerations

Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally but not within quoted
strings, or names might be entered into a symbol table in declarations
but not in expressions.

One way of handling this situation is to create a global flag that is
examined by the lexical analyzer and set by actions. The following
example specifies a program that consists of zero or more declarations
followed by zero or more statements. The flag df 1ag is 0 when
reading statements and 1 when reading declarations, except for the first
token in the first statement. This token must be seen by the parser
before it can tell that the declaration section has ended and the
statements have begun. In many cases, this single token exception does
not affect the lexical scan.

yacc Reference 20-33

int dflag;
%}
... other declarations ...

%%

prog : decls stats

decls : /* empty */
{

dflag = 1;

}
| decls declaration

stats : /* empty */

dflag = 0;
}
| stats statement

’

... other rules ...

This kind of ‘‘back-door’’ approach can be elaborated to an unpleasant
degree. Nevertheless, it represents a way of doing some things that are
difficult if not impossible to do otherwise.

13. Reserved words

Some programming languages permit you to use words (like i f) that
are normally reserved as label or variable names, provided that such
use does not conflict with the legal use of these names in the
programming language. This is extremely hard to do in the framework
of yacc. Itis difficult to pass information to the lexical analyzer
telling it *‘this instance of i £ is a keyword and that instance is a
variable.”” The user can make a stab at it using the mechanism
described in the last section, but it is difficult. A number of ways of

20-34 A/UX Programming Languages and Tools, Volume 2

making this easier are being studied. For the time being, it is better that
the keywords be reserved, that is, forbidden for use as variable names.

14. Simulating error and accept in actions

The parsing actions of error and accept can be simulated in an action
by use of the macros YYACCEPT and YYERROR. The YYACCEPT
macro causes yyparse to return the value 0. YYERROR causes the
parser to behave as if the current input symbol had been a syntax error.
The function yyerror is called, and error recovery takes place.

These mechanisms can be used to simulate parsers with multiple end-
markers or context-sensitive syntax checking.

15. Accessing values in enclosing rules

An action may refer to values returned by actions to the left of the
current rule. The mechanism is the same as with ordinary actions, a
dollar sign followed by a digit.

sent : adj noun verb adj noun

look at the sentence . ..

adj : THE
{
$$ = THE;
}
I YOUNG
{
$$ = YOUNG;
}
noun : DOG
{
$$ = DOG;
}
| CRONE

yacc Reference 20-35

if($0 == YOUNG)
{
printf("what?\n");

$$ = CRONE;

In this case, the digit may be 0 or negative.

In the action following the word CRONE, a check is made that the
preceding token shifted was not YOUNG. Obviously, this is only
possible when a great deal is known about what might precede the
symbol noun in the input.

There is also a distinctly unstructured flavor about this. Nevertheless,
at times this mechanism prevents a great deal of trouble, especially
when a few combinations are to be excluded from an otherwise regular
structure.

16. Arbitrary value types

By default, the values returned by actions and the lexical analyzer are
integers. The yacc program can also support values of other types
including structures. The yacc program keeps track of the types and
inserts appropriate union member names so that the resulting parser is
strictly type checked.

The yacc value stack is declared to be a union of the various types
of values desired. The user declares the union and associates union
member names to each token and nonterminal symbol having a value.
When the value is referenced through a $$ or $n construction, yacc
automatically inserts the appropriate union name so that no unwanted
conversions take place. This makes type-checking commands such as
1lint much quieter.

Three mechanisms are used to provide for this typing:

o First, there is a way of defining the union. This must be done by
the user because other programs, notably the lexical analyzer,
must know about the union member names.

20-36 A/UX Programming Languages and Tools, Volume 2

« Second, there is a way of associating a union member name with
tokens and nonterminal symbols.

o Third, there is a mechanism for describing the type of those few
values where yacc cannot easily determine the type.

To declare the union, the user includes the following in the declaration
section:

%union
{

body of union
}

This declares the yacc value stack and the external variables yylval
and yyval to have type equal to this union. If yacc was invoked
with the -d option, the union declaration is copied onto the y.tab.h
file. Alternatively, the union may be declared in a header file, and a
typedef used to define the variable YYSTYPE to represent this
union. Thus, the header file might have said the following, instead:

typedef union
{

body of union
}
YYSTYPE;

The header file must be included in the declarations section by use of
%{ and %$}. Once YYSTYPE is defined, the union member names must
be associated with the various terminal and nonterminal names.

The following construction is used to indicate a union member name:
<name>

If this follows one of the keywords $token, $1left, $right, or
$nonassoc, the union member name is associated with the tokens
listed. For example, the following causes any reference to values
returned by these two tokens to be tagged with the union member name
optype:

%$left <optype> '+’ -t

yacc Reference 20-37

Another keyword, %t ype, is used to associate union member names
with nonterminals. For example, the following may be used to
associate the union member nodet ype with the nonterminal symbols
expr and stat.

3type <nodetype> expr stat

There remain a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value returned by
this action has no a priori type. Similarly, reference to left context
values (such as $0) leaves yacc with no easy way of knowing the
type. In this case, a type can be imposed on the reference by inserting
a union member name between ‘‘<’’ and ‘‘>’’ immediately after the
first $, as in the following example:

rule : aaa
$<intval>$ = 3;
bbb

fun($<intval>2, $<other>0);
}

.
’

This syntax has little to recommend it, but the situation arises rarely. A
sample specification is given in ‘‘Example: An Advanced Grammar.”’
The facilities in this subsection are not triggered until they are used. In
particular, the use of %t ype will turn on these mechanisms. When
they are used, there is a fairly strict level of checking. For example,
use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is
used to hold int'’s, as was true historically.

17. Example: a desk calculator

This section contains an example that gives the complete yacc
applications for a small desk calculator. The calculator has 26 registers
labeled a through z and accepts arithmetic expressions made up of the
following operators:

20-38 A/UX Programming Languages and Tools, Volume 2

Table 20-2. Arithmetic operators

Symbol | Meaning

+ Addition

- Subtraction
Multiplication
Division
Modulus (Remainder)
Binary AND
Binary OR
Assignment

I |— R |oo || *

If an expression at the top level is an assignment, the value is printed.
Otherwise, the expression is printed. As in the C language, an integer
that begins with 0 (zero) is assumed to be octal. Otherwise, it is
assumed to be decimal.

As an example of a yacc specification, the desk calculator does a
reasonable job of showing how precedence and ambiguities are used
and demonstrates simple recovery. The major oversimplifications are
that the lexical analyzer is much simpler than what is necessary for
most applications, and the output is produced immediately line by line.

Note the way that decimal and octal integers are read in by grammar
rules. This job is probably better done by the lexical analyzer.

%{
#include <stdio.h>
#include <ctype.h>

int regs[26];
int base;

%}

$start list

%$token DIGIT LETTER
$left ' |’

$left &’

$left "+ -’

yacc Reference 20-39

$left "*r /7 %’
%$left UMINUS /* precedence for unary minus */
%% /* beginning of rule section */
list : /* empty */

| list stat ’\n’

| list error ’\n’

yyerror;

stat : expr
printf ("%d\n", $1);
| LETTER "=" expr

regs[$1] = $3

expr : "(' expr ')’
$8 = 82;
| expr '+' expr
$$ = $1 + $3
| expr '—' expr
$6 = $1 - $3
| expr '*' expr
$8 = §1 * §3;
| expr '/’ expr

$$ = $1/83;

20-40 A/UX Programming Languages and Tools, Volume 2

| exp '%' expr
$6 = $1 % $3

| expr '&' expr
$$ = $1 & $3;

I expr ' |’ expr
86 =81 | 83

| '-' expr S%prec UMINUS
$8 = - $2;

| LETTER

$$ = reg($1];

number

number DIGIT

_~—~ s Yo — e

$$ = $1; base = ($1==0) ? 8 : 10;
| number DIGIT

88 = base * $1 + $2
}

%% /* start of program */
/*
lexical analysis routine
return LETTER for lowercase letter
(i.e., yylval = 0 through 25)
returns DIGIT for digit
(i.e., yylval = 0 through 9)
all other characters are returned immediately

* F X ¥ %F *

yacc Reference 20-41

*
*/
yylex()
{
int c;
while (c=getchar()) == ’ ’) /* skip blanks */
if(islower(c))
{
yylval = c - "a’;
return(LETTER);
}
if(isdigit(c))
{
yylval = c - '0’;
return(DIGIT);
}
return(c);

}

18. Example: yacc input syntax

This section contains a description of the yacc input syntax as a yacc
specification. Context dependencies, and so forth, are not considered.
Ironically, the yacc input specification language is most naturally
specified as an LR(2) grammar. The sticky part comes when an
identifier is seen in a rule immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule;
otherwise, it is a continuation of the current rule, which just happens to
have an action embedded in it.

As implemented, the lexical analyzer looks ahead after secing an
identifier and decides whether the next token (skipping blanks,
newlines, comments, and so on) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, itreturns IDENTIFIER. Literals
(quoted strings) are also returned as IDENTIFIERs but never as part
of C_IDENTIFIERS.

/* grammar for the input to yacc */

/* basic entries */

20-42 A/UX Programming Languages and Tools, Volume 2

/* includes identifiers and literals */

$token IDENTIFIER

/* identifier (but not literal) followed by a colon */
%token C_IDENTIFIER

%$token NUMBER /* [0-9]+ */

/* reserved words: */
/* %type -> TYPE, %left -> LEFT, etc. */
%$token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

$token MARK /* the %% mark */
$token LCURL /* the %{ mark */
%$token RCURL /* the %} mark */

/* ASCII character literals stand for themselves */
%token spec

%%
spec : defs MARK rules tail
tail : MARK
{
In this action, eat up the rest of the file
}
| /* empty: the second MARK is optional */
defs : /* empty */
| defs def
defs : START IDENTIFIER
| UNION
{
Copy union definition to output
| LCURL
{
Copy C code to output file
RCURL

yacc Reference 20-43

rword

tag

nlist

/* Note:

nmno

/* rule

rule

rule

rbody

act

20-44

| ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

—_— — — —— se “e

/* empty: union tag is optional */
| <’ IDENTIFIER ’>’

~e

nmno
nlist nmno
nlist ’,’ nmno

Ne — — e

literal illegal with %type */
H IDENTIFIER
| IDENTIFIER NUMBER

section */

C_IDENTIFIER rbody proc
rule rule

C_IDENTIFIER rbody prec
1’ rbody prec

No —— 00 S

: /* empty */
| rbody IDENTIFIER
| rbody act

3 4 { ’
Copy action, translate $$’s etc.

'}I

~

A/UX Programming Languages and Tools, Volume 2

prec : /* empty */
| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec’;’

19. Example: an advanced grammar

This section gives an example of a grammar using some of the
advanced features. It modifies the example from ‘‘Example: A Desk
Calculator”’ to provide a desk calculator that does floating-point
interval arithmetic.

The calculator understands floating-point constants, as well as the
arithmetic operations +, —, *, /, unary —, and the letters a through z.
The calculator also understands intervals written as is the following
example, where X is less than or equal to Y:

(X,Y)

There are 26 interval valued variables A through Z that may also be
used. The usage is similar to that in ‘‘Example: A Desk Calculator.”’
That is, assignments return no value and print nothing while
expressions print the floating or interval value.

Intervals are represented by a structure consisting of the left and right
endpoint values stored as doubles. This structure is given a type name,
INTERVAL, by using typedef. The yacc value stack can also
contain floating-point scalars and integers that are used to index into
the arrays holding the variable values. The entire strategy depends
strongly on being able to assign structures and unions in C language.
In fact, many of the actions call functions that return structures as well.

Note the use of YYERROR to handle error conditions: division by an
interval containing 0 and an interval presented in the wrong order. The
error-recovery mechanism of yacc is used to throw away the rest of
the offending line. In addition to the mixing of types on the value
stack, this grammar also demonstrates an interesting use of syntax to
keep track of the type (for example, scalar or interval) of intermediate
expressions. Scalars can be automatically promoted to an interval if
the context demands an interval value. This causes a large number of
conflicts when the grammar is run through yacc—18 shift/reduce and

yacc Reference 20-45

26 reduce/reduce. The problem can be seen by looking at the
following input lines:

2.5+(3.5-4.)
and
2.5+ (3.5,4)

Notice that the 2. 5 is to be used in an interval-value expression in the
second example, but this fact is not known until the comma is read. By
this time 2. 5 is finished, and the parser cannot go back and change its
mind.

More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval.
This problem is evaded by having two rules for each binary interval
valued operator, one when the left operand is a scalar and one when the
left operand is an interval. In the second case, the right operand must
be an interval, so the conversion is applied automatically.

Despite this evasion, there are still many cases where the conversion
may be applied or not, leading to the above conflicts. They are
resolved by listing the rules that yield scalars first in the specification
file. In this way, the conflict is resolved in the direction of keeping
scalar-valued expressions scalar valued until they are forced to become
intervals. This way of handling multiple types is very instructive, but
not very general. If there were many kinds of expression types instead
of just two, the number of rules needed would increase dramatically
and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming
language environment to keep the type information as part of the value
and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is
the treatment of floating-point constants. The C language library
routine atof is used to do the actual conversion from a character
string to a double-precision value. If the lexical analyzer detects an
error, it responds by returning a token that is illegal in the grammar,
provoking a syntax error in the parser and thence error recovery.

%{

20-46 A/UX Programming Languages and Tools, Volume 2

#include<stdio.h>
#include<ctype.h>

typedef struct interval

{
double lo, hi;
} INTERVAL;

INTERVAL vmul (), vdiv();
double atof ()
double dreg[26];
INTERVAL vreg[26];
%}
%$start line
%$union
{
int ival;

double dval;
INTERVAL vval;

%token <ival> DREG VREG /*indices into dreg, vreg */

%$token <dval> CONST /* floating point constant */
$type <dval> dexp /* expression */
%type <vval> vexp /* interval expression */

/* precedence information about the operators */

$left r+¢ -
%left Tk v /e
%left UMINUS /* precedence for unary minus */

%%
lines : /* empty */

yacc Reference 20-47

| lines line
line : dexp ‘'\n’
printf("%15.8f\n".$1);
| vexp '\n’
printf (" (%$15.8£,%15.8f)\n",$1.10,$1.hi);
| DREG "=’ ’'\n’
dreg[$1] = $3;
| VREG ’'=’' vexp ’'\n’
vreg[$1] = $3;
| error "\n’

yyerrork;

dexp : CONST
| DREG

$$ = dreg[$1]

| dexp '+’ dexp
$8 = $1 + 83

| dexp ’'-' dexp
$$ = $1 - $3

| dexp ’*’ dexp

20-48 A/UX Programming Languages and Tools, Volume 2

$$ = $1 * $3

| dexp "/’ dexp
$$ = 61 / $3

| =’ dexp $prec UMINUS
$$ =— $2

I 7(" dexp ")’

$$ = §2

vexpp : dexp
$$.hi = $$.1o0 = $1;
| " dexp ', dexp ryr
$$.1o = $2;
$$.hi = $4;
if($$.1o > $$.hi)
{

printf ("interval out of order n");
YYERROR;
}
| VREG
$$ = vreg[$1]

| vexp '+’ vexp

$$.hi
$$.1o

$1.hi + $3.hi;
$1.1o + $3.1o

yacc Reference 20-49

| dexp '+’ vexp

$$.hi = $1 + $3.hi;
$$.1o = $1 + $3.1lo

| vexp '=' vexp

$$.hi = $1.hi - $3.lo;
$8.1o = $1.1o - $3.hi

| dvep ‘-’ vdep

$$.hi = $1 - $3.1l0;
$$.1o = $1 - $3.hi

| vexp ’'*’ vexp

$$ = vmul($1.10,$.hi, $3)
| dexp '*’ vexp

$$ = vmul ($1, $1, $3)
| vexp '/’ vexp

if (dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3)

| dexp '/’ vexp

if (dcheck($3)) YYERROR;
$8 = vdiv($1.lo, $1.hi, $3)

| "=’ vexp $prec UMINUS
$$.hi = -$2.10;8$.10 =-$2.hi

| r(: vexp A I

20-50 A/UX Programming Languages and Tools, Volume 2

§$ = §2

~,

%%
/* buffer size for floating point number */
define BSZ 50

/*
*lexical analysis
x/
yylex ()
{
register c;
while ((c=getchar()) == ' ’) /* skip blanks */
if (isupper(c))
{
yylval.ival = ¢ - 'A’
return (VREG) ;
}
if (islower(c))
{
yylval.ival = ¢ - ’'a’,
return (DREG) ;
}
/*
* gobble up digits, points, exponents
*/

if (isdigit(c) || ¢ == ".")

{
char buf[BSZ+1], *cp = buf;
int dot = 0, exp = 0;

for (; (cp - buf) < BSZ ; ++cp,c=getchar())
{
*cp = ¢c;
if (isdigit (c))
continue;
if(c == ".")

yacc Reference 20-51

if (dot++ || exp)
/* causes syntax error */
return(‘.’),
continue;
}
if(c == 'e’)
{
if (expt++)
/* causes syntax error */
return(‘e’);
continue;
}
break; /* end of number */
}
*cp = "\0’;
if((cp - buff) >= BSZ)
printf ("constant too long truncated\n");
else
/* push back last char read */
ungetc (c, stdin);
yylval.dval = atof (buf);
return (CONST) ;
}
return(c);
}
/*
* returns the smallest interval
* between a, b, ¢ and d
*/

INTERVAL hilo(a, b, ¢, d)
double a, b, ¢, d;

{
INTERVAL v;

if(a>b)

{
v.hi = a;
v.lo = b;

20-52 A/UX Programming Languages and Tools, Volume 2

}

else

{

v.hi = b;
v.lo = a;
}
if(c>d)
{
if(c>v.hi)
v.hi = ¢;
if(d<v.lo)
v.lo = d;
}
else
{

if(d&>v.hi)
v.hi = d;
if(c<v.lo)
v.lo = ¢;
}
return(v);
}
INTERVAL vmul(a, b, v)
double a, b;
INTERVAL v;
{

return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));

dcheck(v)
INTERVAL v;
{
if(v.hi >=0.&& v.lo <=0.)
{
printf("divisor internal contains 0.\n");
return(1);
}
return(0);

yacc Reference 20-53

INTERVAL vdiv(a, b, v)
double a, b;
INTERVAL v;
{
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

20. Backward compatibility
This section mentions synonyms and features that are supported for
historical continuity but, for various reasons, are not encouraged.

o Literals may also be delimited by double quotes.

e Literals may be more that one character long. If all the
characters are alphabetic, numeric, or _, the type number of the
literal is defined just as if the literal did not have the quotes
around it.

Otherwise, it is difficult to find the value for such a literal.

The use of multicharacter literals is likely to mislead those
unfamiliar with yacc, because it suggests that yacc is doing a
job that must actually be done by the lexical analyzer.

» Most places where (%) is legal, the backslash (\) may be used.
In particular, \\ is the same as %%, \1left the same as $left,
and so on.

o There are a number of other synonyms:

%< isthesameas %left

%> isthe sameas %right
%binary isthesameas %nonassoc
%2 isthe sameas %nonassoc
%0 isthe same as %token
$term isthe sameas %token

§= isthe same as %prec

20-54

A/UX Programming Languages and Tools, Volume 2

¢ Actions may also have the form
={ ... }

and the braces can be dropped if the action is a single C language
statement.

o C language code between % { and %} used to be permitted at the
head of the rules section as well as in the declaration section.

yacc Reference 20-55

Chapter 21
bec Reference

Contents

1. be: a basic calculator

2.U0sing be o o o . .
2.1 bccommand syntax
2.2 Entering a program at the terminal
23 Programfiles
24 Exiting be

3. Programsyntax
31 Comments
32 Constants
33 Keywords
34 Identifiers
3.5 Defining functions

3.5.1 Function calls and function arguments

3,52 The return statement .
3.6 Automatic variables
3.7 Globalvariables
3.8 Arrays or subscripted variables
39 Statements
3.10 Assignment statements
3.11 Control statements

3.11.1 Relational operators . . .

3.11.2 The if statement . . .

3.11.3 The while statement . .

3.114 The for statement . . .
3.12 Expressions
3.13 Input and output bases: ibase and

obase

3.13.1 ibase e e e e e

3.13.2 obase e e e e e

.

.

.

.

.

.

.

VOO NINAAAANVWUNDEDRBRER,W WWNDNDN -

3.14 scale

Tables

Table 21-1. Assignment statements .
Table 21-2. Relational operators .
Table 21-3. Operators and their precedence

17

10
12
14

Chapter 21

bc Reference

1. bc: a basic calculator

bc is a specialized language and compiler for handling arbitrary-
precision arithmetic. bc calls the dc calculator program to do any
actual computations. In fact, bc was designed specifically to augment
dc routines for manipulating infinitely large numbers, scaled up to 99
decimal places.

Because bc is based on a dynamic storage allocator, overflow does not
occur until all available core storage is exhausted. bc has a complete
control structure, and can be used either in immediate mode (direct
immediate input/output to and from bc) or as an interactive processor
for bc programs. Consequently, complex functions can be defined and
saved in a file for later execution. A small library of predefined
functions is also available, among which are the sine, cosine,
arctangent, logarithmic, exponential, and Bessel functions of integer
order.

be contains scaling provisions that permit the use of decimal-point
notation, as well as input and output in bases other than base 10.
Numbers can be converted from decimal to octal simply by setting the
output base to eight. The limit on the number of digits that can be
manipulated depends only on the amount of core storage available.

While be is not intended as a complete programming language, it can
be used effectively to do a number of specific tasks, most notably the
following:

o Compile large integers
« Compute accurately to many decimal places

o Convert numbers from one base to another base

be Reference 21-1

2. Using bc

In this chapter we use the term ‘‘bc command’” to refer to the
command you type from the shell command line, and the term ‘‘bc
program’” to refer to the set of calculations to be performed by the be
command. These calculations can reside in a bc program file.

2.1 bc command syntax
The bc command has the following syntax:

be [-c] [-1] [file]

The -c compile-only option directs be to output what it would
normally pass as input to dc. The output is instructive but
complicated.

The -1 (library) option calls bec’s own set of math library functions:

Function syntax Operation

s(X) Sine

c(x) Cosine

a(x) Arctangent

1(x) Natural logarithm

e(x) Exponential

j(n,x) Bessel function integer order

The library option initially sets the scale (number of available
decimal places after the decimal point) to 20, but this can be reset using
the scale function call. See the section ‘‘scale.”

The file is an optional bc program file which be can read calculations
from.

2.2 Entering a program at the terminal

For the immediate evaluation of simple arithmetic expressions that do
not involve standard bc library functions or do not require any user-
defined functions, simply enter the bc program at the terminal. For
example, to perform a simple operation, first invoke bc and then enter
the calculation to be done:

21-2 A/UX Programming Languages and Tools, Volume 2

bc
142857 + 285714

be then responds immediately with the result
428571

2.3 Program files

For more complicated calculations, you may find it more efficient to
define the functions or procedures in a program file. You would then
pass the filename as an argument to the bc command:

bc filename

be then reads and executes the contents of the named file before
accepting further commands from the keyboard.

2.4 Exiting bc

To exit from bc, even when using a command file, you must issue a
quit or an end-of-file character (see stty(l) in A/UX Command
Reference for more information). Unless you use the syntax ‘‘bc <
filename,”’ bc will not exit when it reaches the end of the program file.
If no quit statement is given, be simply waits for further instructions,
and your shell prompt is not returned.

To exit, you can either place a quit statement at the end of your file or
enter quit or your end-of-file character directly when bc has
completed the file. Your end-of-file character can still be used as an
interrupt and terminate signal while the file is being processed.

The quit statement is not treated as an executable statement, and so
cannot be used in a function definitionorinan if, for or while
statement.

3. Program syntax

The syntax of a bc program is very similar to that of a C language
program. In general, statements and control structures are identical in
bc and in C. A good example of this similarity is the manner in which
a bc function is defined. The following program defines a function
that computes the approximate value of the exponential function and
prints the result for the first ten integers. The pieces of this example
are discussed in individual sections below.

bec Reference 21-3

scale = 10
define e(x) {
auto a,b,c,i,s

a=1
b 1
s =1
for(i=1; 1==1; i++) {
a = a*x
b = b*i
c = a/b
if (¢ == 0) return(s)
s = s+c

}
for(i=1; i<=10; i++) e(di)

3.1 Comments

The characters / and * introduce a comment that terminates with the
characters * and /. Anything between the asterisks is ignored by the
be compiler.

3.2 Constants

Constants are primitive expressions and consist of arbitrarily long
numbers with an optional decimal point. The hexadecimal digits A
through F are also recognized as digits with values 10 through 15,
respectively.

3.3 Keywords
The following are reserved as bc keywords, and cannot be used other
than for their predefined purposes:

auto for length return while
break ibase obase scale
define if quit sgrt

3.4 Identifiers

In be, an identifier is a character, or sequence of characters, that names
an expression. The identifier is the ‘‘place’’ where the value of that
expression is stored. Therefore, identifiers are legal on the left side of
an assignment statement.

21-4 A/UX Programming Languages and Tools, Volume 2

bc has three kinds of identifiers:
o Simple identifiers
o Function calls
o Array, or subscripted, variables

All three types should be indicated with single lowercase letters.
Identifier names do not conflict; a bc program may have a simple
variable identifier named x, an array named x, and a function named x,
all of which are separate and distinct.

3.5 Defining functions

Functions are specified by a single lowercase letter, followed
immediately by a set of parentheses:

al()

Since function names are permitted to coincide with simple variable
names, the parentheses indicate the difference between a function and a
variable, and provide a means of passing arguments to the function.
Twenty-six different defined functions are permitted in addition to the
26 variable names.

A function is defined in the following manner:

define a(x) {
defining statements
return
}

The word def ine initiates the function definition; a (x) names the
function and indicates that the function requires one argument; the left
brace opens the body of the definition and must occur on the same line
as the define keyword; return retumns control to the calling
function; and the right brace closes the definition. The body of the
definition must contain one or more statements, and must begin and
close with a left and right brace, respectively.

3.5.1 Function calls and function arguments

A function call consists of the function name followed by parentheses,
which in tumn should contain any required arguments to be passed to
the function. Individual arguments should each be separated by

be Reference 21-5

commas. Functions with no arguments are called and defined using
empty parentheses. If a function is called with the wrong number of
arguments, the result is unpredictable.

All function arguments are passed by value, and as a result the values
remain discrete, local to the called function. Therefore, changes made
to the argument values within the called function do not alter the
original parameters outside the function.

3.5.2 The return statement

Return of control from a function occurs when a return statement is
executed, or when the end of the function is reached. The return
statement can take either of the following two forms:

return
return (x)

In the first case, the value returned from the function is O; in the
second, the value returned from the function is the expression in
parentheses.

3.6 Automatic variables

Automatic variables are allocated space and initialized to 0 on entry to
the function, and thrown away on return (exit). The values of any
similarly named variables outside the function are not disturbed.
Functions may be called recursively and the automatic variables at each
level of call are protected.

It should be noted, however, that automatic variables in bc do not work
exactly the same way as they do in the C language. Onentry to a
function, the old values of automatic variables or parameters named
previously are pushed onto a stack. Until return is made from the
function, reference to these names refers only to the new values.

Variables used in a function can be declared as automatic by a
statement of the form

auto x,y,z

There can be only one such auto statement in a function, and it must
be the first statement in the definition.

The following is an example of a function definition that uses an
automatic variable:

21-6 A/UX Programming Languages and Tools, Volume 2

define a(x,y) {
auto z
z = x*y
return(z)

}

When called, the value of this function a is the product of its two
arguments, x and y. Consequently, the input

a(7,3.14)

would send the result, 21.98, to the standard output. Using this same
function, the input

z = a(a(3,4),5)
would send the result, 60, to the standard output.
3.7 Global variables

There are only two storage classes in bc: automatic variables and
global variables. Unlike automatic variables, global variables retain
their values between function calls, and are available to all functions.
However, both types have initial values of 0.

3.8 Arrays or subscripted variables

An array, also referred to as a subscripted variable, is indicated with a
single lowercase letter (the array name) followed by an expression in
brackets (the subscript). For example,

£ [expression]

The names of arrays can coincide with simple variable names or
function names without conflicting. The subscript values must be
greater than or equal to 0 and less than or equal to 2047; any fractional
part of a subscript is discarded before use. Only one-dimensional
arrays are permitted.

Subscripted variables may be used in expressions, function calls, and
return statements. An array name may be used as an argument to a
function or may be declared as automatic in a function definition by the
use of empty brackets. For example,

be Reference 21-7

f(all)
define f(al[])
auto afl]

‘When an array name is declared automatic, the entire contents of the
array are copied for the use of the function and thrown away on exit
from the function. Such array names, used with empty brackets and
referring to whole arrays, cannot be used in any context other than that
shown above.

3.9 Statements

A statement is any direct instruction. Statements can be grouped
together by surrounding them with braces, as in the body of a function
definition:

define a(x) {
statement
Statement; statement
return

}

When statements are grouped, each individual statement must end with
a semicolon or a newline to distinguish it from the next. Except where
altered by control statements (such as a while loop), execution of
grouped statements is sequential.

When a statement is an expression, the value of the expression is
printed, followed by a newline character, unless the main operator is an
assignment operator.

The following is a basic dictionary of bc predefined statements:

" Strin g "
The quote statement prints the string contained within the quotes.

break

The break statement causes termination of a for or while
statement.

auto identifier(, identifier] ...
The auto statement causes the values of one or more identifiers
to be pushed down on the stack. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are specified by

21-8 A/UX Programming Languages and Tools, Volume 2

following the array name with empty brackets. The auto
statement must be the first statement in a function definition.

define function-name ([parameter(, parameter] ...]) {statements}
The def ine statement defines a function. The parameters may
be ordinary identifiers or array names. Array names must be
followed by empty brackets.

return
return (expression)
The return statement causes the following:
» Termination of a function
o Popping of the auto variables on the stack
» Specifies the results of the function

The first form is equivalent to return (0). The result of the
function is the result of the expression in parentheses.

quit
The quit statement stops execution of a bc program and
returns control to the A/UX system software when it is first
encountered. Because it is not treated as an executable
statement, it cannot be used in a function definition or in an i £,
for, or while statement.

sqrt (expression)
The result is the square root of the expression. The result is
truncated in the least significant decimal place. The scale of the
result is the scale of the expression or the value of scale,
whichever is larger.

length (expression)
The result is the total number of significant decimal digits in the
expression. The scale of the result is 0.

scale (expression)
The result is the number of available decimal places after the
decimal point in the expression. The scale of the result is 0.

3.10 Assignment statements

bc assignment statements work in exactly the same manner as they do
in the C programming language. The following table lists the
assignment statement constructs:

be Reference 21-9

Table 21-1. Assignment statements

xX=y=z Isthe same as x=(y=z)
x =+y Isthesameas x = x+y
X ==y Isthesameas x = x-y
x = -y Isthesameas x = -y
x =*y Isthesameas x = x*y
x =/y Isthesameas x = x/y
x =%y Isthesameas x = x%y

x ="y Isthesameas x = x"y

x++ Isthe sameas (x=x+1) -1
X-- Isthe same as (x=x-1)+1
++x Isthe sameas x = x+1
--x Isthesameas x = x-1

Note: In some of these constructs, spaces are significant. There
is an important difference between x=-y and x= -y. The first
replaces x by x-y and the second replaces x by -y.

All assignment operators are interpreted from right to left. The
variables in an assignment statement should have single lowercase
letter names. Ordinary variables are used as internal storage registers
to hold integer values, and have an initial value of 0. The statement

x=x+3

has the effect of increasing by three the value of the contents of register
x. In this case, although the increase in value is performed, that value
is not printed. To print the value of x after the assignment, either
explicitly call x, as in the following:

21-10 A/UX Programming Languages and Tools, Volume 2

x=x+3
x

or surround the assignment with parentheses. The latter instructs bc to
treat the statement as the value of the result of the operation. The
assignment can then be used anywhere an expression can be used. For
example,

(x=x+3)

In this example, the value of x is incremented and the resulting value is
printed.

The value of an assignment statement can be used even when it is not
placed within parentheses. For example,

x=a[i=i+1]

instructs bc to increment i before using it as a subscript and then
assign the resulting value to x.

Since each variable register name must be a unique, single lowercase
letter, there can be only 26.

3.11 Control statements

The if, while, and for control statements are available in bc to
alter the flow within programs or to cause iteration. They can be used
individually as a simple statement or grouped to form a compound
statement. A compound statement consists of a collection of
statements enclosed in braces, as in a function definition.

3.11.1 Relational operators

Unlike all other operators, the bc relational operators are valid only as
the object of an i f or while statement or inside a for statement.
Similarly, all control structures rely at least in part on the evaluation of
a relational statement or expression.

The following table illustrates the six relational operators and their
definitions:

be Reference 21-11

Table 21-2. Relational operators

Operator | Definition

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to

1= Not equal to

Note: Do not use = instead of == as a relational operator.
Unfortunately, both of these are legal, so there will be no
diagnostic message, but = will not do a comparison. The =
operator is an assignment operator.

3.11.2 The if statement

The if statement is a conditional statement that causes execution of its
instruction if and only if the relation is true. Then control passes to the
next statement in sequence. The following is the standard format for
an if statement in bc:

if (relation) statement

3.11.3 The while statement

while causes repeated execution of its instruction as long as the
relation tests as true. The relation is tested before each execution of its
range; if the result is true, the body of the while statement is
executed, and the loop continues. If the relation is false, control passes
to the next statement beyond the range of the while statement. The
following is the standard format for the while statement in bc:

while (relation) {
statement
statement

21-12 A/UX Programming Languages and Tools, Volume 2

3.11.4 The for statement

The typical use of a for statement is for controlled iteration. For
example,

for (expressionl ; relation; expression2) statements

The for statement begins by executing expressionl. Then the relation
is tested. If the relation is true, the statements in the body of the for
are executed. Then expression2 is executed. The relation is then
tested, and so forth until the relational test fails.

The following is an example (in immediate mode) of proper use of the
for statement. In this example, the function returns the factorial of the
integer given as input.

define f(n) {

auto i, x

x=1

for(i=1l; i<=n; i=i+1) x=x*i
return (x)

}

£(5)

120

£(3)

6

3.12 Expressions
The simplest bc expression is a single digit. An expression can consist

of any number of operators and operands provided they represent a
value.

The following are important points to remember when using
expressions in be:

« Any term in an expression may be prefixed by a minus sign to
indicate that it is a negative (the unary minus sign).

» The value of an expression is printed unless the main operator is
an assignment.

» Division by 0 produces an error comment.

The following is a table of the operators that can be used in bc
expressions, in order of precedence:

be Reference 21-13

Table 21-3. Operators and their precedence

Operator | Function

- Exponentiation

* Multiplication

% Remaindering (integer result
truncated toward 0)

/ Division

+ Addition

- Subtraction

= Assignment

In the above table, operators with the same precedence are grouped
together.

Contents of parentheses are evaluated before items outside the
parentheses. Exponentiations are performed from right to left, while
the other operations are performed from left to right.

a“b~cand a” (b~c) are equivalent
a-b*c is the same as a- (b*c)

a/b*c is equivalent to (a/b) *c because the expression
is evaluated from left to right.

Following are brief descriptions of the various types of expressions
recognized by bc:

~expression The result is the negative of the expression.

++expression The expression is incremented by one. The
result is the value of the expression after
incrementing.

—-—expression The expression is decremented by one.
The result is the value of the expression
after decrementing.

expression++ The expression is incremented by one. The

result is the value of the expression before

21-14 A/UX Programming Languages and Tools, Volume 2

expression—-

expression ” expression

expression*expression

expression [expression

expression%expression

expression+expression

expression—expression

be Reference

incrementing.

The expression is decremented by one.
The result is the value of the expression
before decrementing.

The result is the first expression raised to
the power of the second expression. The
second expression must be an integer. If a
is the scale of the left expression and b is
the absolute value of the right expression,
then the scale of the result is

min (a*b,max (scale,a))

The result is the product of the two
expressions. If a and b are the scales of the
two expressions, then the scale of the result
is

min (a+b,max (scale,a,b))

The result is the quotient of the two
expressions. The scale of the result is the
value of scale.

The % (modulus) operator produces the
remainder of the division of the two
expressions. More precisely, a%b has the
same value as a-((a/b)*b).

The scale of the result is the sum of the
scales of the quotient and the divisor.

The additive operators bind left to right.

The result is the sum of the two
expressions. The scale of the result is the
maximum of the scales of the expressions.

The result is the difference of the two
expressions. The scale of the result is the
maximum of the scales of the expressions.

21-15

3.13 Input and output bases: ibase and obase

bc possesses a scaling provision that enables it to work in bases other
than decimal. In addition, input and output can be set to different
bases, for automatic conversion from one base to another. ibase
handles the conversion for input, and obase for output.

ibase and obase have no effect on the course of internal
computation or on the evaluation of expressions. They affect only
input and output conversions, respectively.

3.13.1 ibase

The setting for ibase determines the base used for interpreting input,
and is initially set to 10 (decimal). To set ibase to another base, use
the = assignment operator. For example, the following sets the input
base to base 8:

ibase = 8

Assuming that the output base is set to decimal, with the ibase now
set to octal, the input

11
would automatically produce the following output:
9

If at this point you want to change the input base back to decimal, you
must compensate for the fact that input is now being interpreted as
octal. So, in setting the new base, you must use the correct octal value:

ibase = 12

Because the ibase is still set to octal, it will interpret the 12 as an
octal 10, and reset the base to decimal. Until reset again, ibase will
then interpret all input in decimal.

For handling hexadecimal notation, the characters A through F are
permitted in numbers (regardless of what base is in effect) and are
interpreted as digits having values 10 through 15, respectively. The
statement

ibase = A

changes the base to decimal regardless of the current input base.

21-16 A/UX Programming Languages and Tools, Volume 2

ibase can handle base settings from 1 to 16. If larger or smaller
settings are attempted, ibase disregards them. There is no error
message to this effect, and the last valid setting remains intact.

3.13.2 obase
The setting for obase is used for interpreting the output base, and is
initially set to 10 (decimal). Assuming that ibase is set to 10,

obase = 16
1000

produces the following output:
3E8
thus providing a simple decimal-to-hexadecimal conversion facility.

Very large output bases are permitted and are sometimes useful; for
example, large numbers can be generated in groups of five digits by
setting obase to 100000. Very large numbers are split across lines
with 70 characters per line. To force the continuation of a line, end it
with a backslash (\).

Decimal output conversion is practically instantaneous, but output of
very large numbers (that is, more than 100 digits) with other bases is
rather slow. Nondecimal output conversion of a 100-digit number
takes about 3 seconds.

3.14 scale

The number of digits after the decimal point of a number is referred to
as its scale. bc can handle numbers possessing up to 99 decimal
places. The initial default setting for scale is 0. When the library
option is invoked, however, the default is automatically set to 20. To
set scale to a specific value, use the following statement:

scale = n

where n equals the new value of the scale setting. The contents of
scale must be no greater than 99 and no less than its initial value of
0. However, appropriate scaling can be arranged when more than 99
fraction digits are required.

When two scaled numbers are combined by means of an arithmetic
operation, the scale of the result is determined by the following rules:

be Reference 21-17

Addition and subtraction
The scale of the result is the larger of the scales of the two
operands. In this case, there is never any truncation of the result.

Multiplication
The scale of the result is never less than the maximum of the two
scales of the operands and never more than the sum of the scales
of the operands. Subject to those two restrictions, the scale of
the result is set equal to the contents of the internal quantity
scale.

Division
The scale of a quotient is the contents of the internal quantity
scale. The scale of a remainder is the sum of the scales of the
quotient and the divisor.

Exponentiation
The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an
integer.

Square root
The scale of a square root is set to the maximum of the scale of
the argument and the contents of scale.

All of the internal operations are actually carried out in terms of
integers, with digits being discarded when necessary. In every case
where digits are discarded, truncation (not rounding) is performed.

The value held in scale can be used in expressions just like other
variables. The expression

scale = scale + 1

increases the value of scale by 1, and the statement
scale

causes the current value of scale to be printed.

It should be noted that, regardless of the ibase or obase settings, the
scale setting is always interpreted in decimal base.

21-18 A/UX Programming Languages and Tools, Volume 2

Chapter 22
dc Reference

Contents

1. dc:adeskcalculator

2. Using de
2.1 Command syntax
2.1.1 Operators .
2.1.2 Relational operators
2.2 dc command set

2.2.1 Input/output format and base .

2.2.2 Input conversion and base .

223 Outputcommands

224 Scale
2.2.5 Stackcommands . . .
2.2.6 Subroutine definitions and calls
2.2.7 Internal registers

2.2.8 Pushdown registers and arrays

2.29 Miscellaneous commands .
2.3 dc command quick reference

3. Programming dc .

Tables

Table 22-1. dc operators .

00 NNV A DR RAWLWWWLWNDNDE -

Chapter 22
dc Reference

1. dc: a desk calculator

dc is an interactive desk calculator program for handling arbitrary-
precision integer arithmetic. It has provisions for manipulating scaled
fixed-point numbers and for input and output in bases other than
decimal.

The dc program works like a stacking calculator using reverse Polish
notation. Ordinarily, dc operates on decimal integers; however, the
input base, output base, and scale can be set according to user
specifications. Because dc is based on a dynamic storage allocator,
number size is limited only by available core storage.

dc can also be used in conjunction with be, a high-level language and
compiler designed specifically as a front-end for dc. Complex
functions can be defined and saved in a file for later execution through
bc. When a program is executed, bc compiles the input and
automatically pipes it to the dc interpreter, which produces the final
result. See ‘‘bc Reference’’ in this manual for more information.

2. Using dc
To begin using dc, simply type its name to the shell:
dc

Anything you then enter will be interpreted as dc input, up to an end-
of-file (CONTROL-d). You can also exit dc by using the g command,
discussed later.

For very complex computations, you may find it more efficient to place
the instructions into a file. You can then pass the filename as an
argument to the dc command:

dc filename

dc Reference 22-1

dc will read and execute the contents of the filename argument before
accepting further commands from the keyboard.

dc operates like a stacking calculator using reverse Polish notation.
Initially, the value of a number is pushed onto the stack. The top two
values on the stack may then be added (+), subtracted (-), multiplied
(*), divided (/), remaindered (%), or exponentiated (*), according to
the current operator. The two entries are popped off the stack, and the
result is pushed on the stack in their place.

Similarly, the top value on the stack may be duplicated, removed,
stored in a register, and so forth. For the full list of operations, see
below.

2.1 Command syntax

You can have any number of commands on a line. Blanks and newline
characters are ignored, except when used to delineate numbers and in
places where a register name is expected. Tabs are not allowed.

A number is an unbroken string of digits O through 9 and uppercase
letters A through F (treated as digits with values 10 through 15,
respectively). A negative number can be indicated by preceding a
number with an underscore (_). Numbers may also contain decimal
points.

To perform simple operations, you can use the following format:
24.2 56.2 + p

The p command instructs dc to print the result of the computation (in
this case, an addition). Here is an example of a more complex
problem, using a variety of commands:

[la 1+ d sa * p la 10 >y] sy
0 sa
ly x

This example prints the first ten values of the factorial function (that is,
1! through 10!). To fully understand how it does so, please see
‘‘Programming dc.”’

2.1.1 Operators
Following is a table of the operators that can be used in dc
expressions:

22-2 A/UX Programming Languages and Tools, Volume 2

Table 22-1. dc operators

Operator | Function
- Exponentiation
* Multiplication
% Remaindering modulus
(integer result truncated toward zero)
/ Division
+ Addition
- Subtraction
v Square root

2.1.2 Relational operators

dc allows the following relational operators (also referred to as testing
commands):

<X >xX =x I<x I!>x I!=x

These cause the top two elements of the stack to be popped and
compared. Register x is executed if the top two elements of the stack
satisfy the stated relation. The exclamation point indicates negation.

2.2 dc command set

The following sections describe the dc commands in detail,
categorized by subject. At the end of the categorized sections is a
quick-reference list of all dc commands, with brief descriptions of
each.

2.2.1 Input/output format and base

The input and output bases affect only the interpretation of numbers on
input and output. They have no effect on internal arithmetic
computations.

Large numbers are generated with 70 characters per line; a backslash
(\) indicates a continued line. All choices of input and output bases
work correctly, although not all are useful. A particularly useful output
base is 100000, which has the effect of grouping digits in fives. Bases
of 8 and 16 are used for decimal-octal or decimal-hexadecimal
conversions.

dc Reference 22-3

2.2.2 Input conversion and base

Numbers are converted to their internal representation as they are read
in to de.

_ Negative numbers are indicated by preceding the number with an
underscore ().

i The i command can be used to change the base of the input
numbers. This command pops the stack, truncates the resulting
number to an integer, and uses it as the input base for all further
input. The default for input base (ibase) is 10 (decimal) but
may, for example, be changed to 8 or 16 for octal- or
hexadecimal-to-decimal conversions.

I The I command pushes the value of the input base on the stack.

No mechanism has been provided for the input of arbitrary numbers in
bases less than 1 or greater than 16. The hexadecimal digits A through
F correspond to the numbers 10 through 185, regardless of input base.

2.2.3 Output commands

p The p command causes the top of the stack to be printed. It does
not remove the top of the stack.

f The £ command prints the contents of all of the stack registers.

o The o command is used to change the output base (obase).
This command uses the top of the stack truncated to an integer as
the base for all further output. The default output base is 10
(decimal).

0 The O command pushes the value of the output base on the stack.

2.2.4 Scale
dc can accommodate scales up to 99 decimal places. The default scale
is 0.

k The k command sets the scale to the number on the top of the
stack, truncated to an integer.

K The K command can be used to push the value of scale on the

stack. The value of scale must be greater than or equal to 0
and less than 100.

22-4 A/UX Programming Languages and Tools, Volume 2

The rules governing how the scale of a result is resolved for the
different operations are as follows:

Operator Scale

- The scale of the result is the sum of the scales of the
two operands. If this exceeds the value of scale it
is truncated to that value.

* The scale of the result is the sum of the scales of the
two operands. If this exceeds the value of scale it
is truncated to that value.

% The scale of the remainder is the maximum of the
dividend scale and quotient scale, plus the divisor
scale.

/ The scale of the result is the value of scale. You
must specify a scale value for any scale to occur.
+ The scale of the result is the larger scale of the two
operands.

- The scale of the result is the larger scale of the two
operands.

v The scale of the result is given the scale of the
operand or the value of scale, whichever is larger.

2.2.5 Stack commands
c The ¢ command clears the stack.

The d command pushes a duplicate of the top number onto the
stack.

z The z command pushes the stack size onto the stack.

X The X command replaces the number on the top of the stack with
its scale factor.

Z The Z command replaces the top of the stack with its length.
2.2.6 Subroutine definitions and calls

[1 Enclosing a string in brackets pushes the ASCII string onto the
stack.

dc Reference 22-5

q The g command quits or (when executing a string) pops the
recursion level by two.

2.2.7 Internal registers
Numbers or strings may be stored in internal registers or loaded on the
stack from registers with the commands s and 1:

sx The sx command pops the top of the stack and stores the result
in register x. The x can be any character; even a blank or
newline is considered a valid register name.

1x The 1x command puts the contents of register x on the top of the
stack. The x can be any character; even a blank or newline is
considered a valid register name.

Note: The 1 command has no effect on the contents of register
x. The s command, however, is destructive.

2.2.8 Pushdown registers and arrays

Note: The following commands are intended for use by a
compiler, rather than for direct use by programmers.

dc can be thought of as having individual stacks for each register.
These registers are operated on by the commands S and L:

Sx Sxpushes the top value of the main stack onto the stack for the

register x.

Lx Lx pops the stack for register x and puts the result on the main
stack.

sand 1

The s and 1 commands also work on registers, but not as
pushdown stacks. The 1 command does not affect the top of the
register stack, but s destroys what was there before.

The commands that work on arrays are : and ;.

:x The :xcommand pops the stack and uses this value as an index
into the array x. The next element on the stack is stored at this

index in x. An index must be greater than or equal to 0 and less
than 2048.

22-6 A/UX Programming Languages and Tools, Volume 2

;x The ;x command loads the main stack from the array x. The
value on the top of the stack is the index into the array x of the
value to be loaded.

2.2.9 Miscellaneous commands

! The ! command interprets the rest of the line as an A/UX system
command and passes it to the operating system to execute.

Q The Q command uses the top of the stack as the number of levels
of recursion to skip.

2.3 dc command quick reference
The following is a quick-reference list of dc command characters and
their functions:

[...] Puts the bracketed character string on top of the stack.

! Interprets the rest of the line as an A/UX system command.
Control returns to dc when the command terminates.

? Takes a line of input from the input source (usually the console)
and executes it.

c Pops all values on the stack; the stack becomes empty.
d Duplicates the top value on the stack.
f Prints all values on the stack and in registers.

iand I
Pops the top value on the stack and uses it as the number radix

for further input. The command I pushes the value of the input
base on the stack.

k and K
Pops the top of the stack and uses that value as a scale factor that
determines the maximum number of decimal places which are
maintained during multiplication, division, and exponentiation.
The scale factor must be greater than or equal to zero and less
than 100. The K command can be used to push the value of
scale on the stack.

1x and Lx
The 1 command puts the contents of register x on top of the

dc Reference 22-7

stack. The initial value of a new register is treated as a zero by

the command 1, but treated as an error by the command L. The
Lx command pops the stack for register x and puts the result on
the main stack.

oand O
The top value on the stack is popped and used as the number
radix for further output. The command O pushes the value of the
output base on the stack.

p The top value on the stack is printed. The top value remains
unchanged.

gand Q
Exits the program. If executing a string, the recursion level is
popped by two. If Q is used, the top value on the stack is
popped; and the string execution level is popped by that value.

sx and Sx
The top of the main stack is popped and stored in a register
named x (where x may be any character). The value of register x
is pushed onto the stack. Register x is not altered. Sx pushes the
top value of the main stack onto the stack for the register x.

v Replaces the top element on the stack by its square root. The
square root of an integer is truncated to an integer.

x and X
The x command assumes the top of the stack is a string of dc
commands, removes it from the stack, and executes it. The X
command replaces the number on the top of the stack with its
scale factor.

z and Z
The value of the stack level is pushed onto the stack. The
command Z replaces the top of the stack with its length.

3. Programming dc

By combining a few of the available constructs, such as the load, store,
execute, and print commands (1, s, %, p), the [] construct to store
strings, and the testing commands (relational operators), it is possible to
program dc. For example, the following expressions instruct dc to

22-8 AJUX Programming Languages and Tools, Volume 2

print the numbers 0 through 9:

[1i p 1+ si 1i 10 >a Jsa
0 si
la x

Consider the first expression in this example:
[1i p 1+ si 1i 10 >a]sa

This first instruction makes use of the [] construct for storing strings.
The entire expression is stored as a character string on top of the stack.
Reading from left to right, this character array holds the following
commands:

» Load the contents of register i on top of the stack, and print it.

Note: Using the print command does not remove the top
of the stack.

e Add (+) 1 to the value found on top of the stack, and place the
result on top of the stack.

» Store the value currently found on top of the stack in register i.

« Load the contents of register i on top of the stack, then load the
number 10 onto the stack. Use the testing operator > on these
top two stack elements to see if 10 is greater than the number that
was loaded from register i. If 10 is greater, then execute register
a. This is the ““control element’’ in this example, because it will
stop the processing of the expressions as soon as the value in
register i is equal to 10.

 Store the character array in register a.
The second and third lines of the example contain the expressions

0 si
la x

o The 0 si instruction clears register i by storing O in that
register, thereby clobbering any previous value it may have had.

dc Reference 22-9

e The 1la and x instructions load the contents of register a on top
of the stack and execute it.

Note: The size of numbers in dc is limited only by the size of
available memory.

22-10 A/UX Programming Languages and Tools, Volume 2

Chapter 23
m4 Reference

Contents

1. m4: a macro processor .
2. Invoking m4 . . .

3. Defining macros . .
3.1 define . . .
32 Quoting
33 changequote .
34 undefine . .
35 ifdef
3.6 Arguments . . .
3.7 ifelse .

4. Arithmetic built-ins .

5. /O manipulation . .

.

.

.

.

5.1 include and sinclude
5.2 divert, undivert, and

53dnl

6. String manipulation .
6l1len
62 substr . . .

6.3 indexand translit

7. Printing
7.1 errprint . .
72 dumpdef . . .

.

.

.

.

.

.

.

.

8. Executing system commands .
8.1 syscmd and maketemp

9. Interactive use of m4 .

.

.

BO0Ww 4 dLUULBABLWRND P =

T
W W W W

—
H A

—
NN

—
W

10. Recursive definitions . . .

11. Built-in macro summary

Tables

Table 23-1. Arithmetic operators

15
17

Chapter 23

m4 Reference

1. m4: a macro processor

The m4 macro processor is a general-purpose macro-processing utility.
It can also be considered to be an interpreter for the m4 language. The
#define statement in the C language is an example of the basic
facility provided by any macro processor: the replacement of some
text by some (other) text. For several reasons, m4 is a more powerful
macro processor than the standard C preprocessor, cpp.

The basic operation of m4 is to read every alphanumeric token (string
of letters and digits) in the input and to determine if the token is the
name of a macro. The name of a macro is replaced by its defining text
and the resulting string is pushed back onto the input to be rescanned.

Besides the straightforward replacement of one string of text by
another, the m4 macro processor also provides the following features:

e Arguments to macros

» Arithmetic capabilities

o File manipulation

o Conditional macro expansion
o String and substring functions
¢ Recursive definitions

When a macro is called with arguments, the arguments are collected

and substituted into the right places in the defining text before the
defining text is rescanned.

The m4 macro processor accepts user-defined macros as well as its
“‘built-in’’ macros. Both types of macros work exactly the same way,
except that some of the built-in macros have side effects on the state of
the process.

m4 Reference 23-1

2. Invoking m4
To run m4, give the command

m4 files

Each argument file is processed in order. If there are no arguments, or
if an argument is —, the standard input is read at that point.

The processed text is written on the standard output. The output may
be redirected for subsequent processing, as follows:

m4 files > outputfile

3. Defining macros

3.1 define
The primary built-in function of m4 is define. This function is used
to define new macros. The general form is

define (name,replacement)

All subsequent occurrences of name are replaced by replacement. The
name must be alphanumeric and must begin with a letter (the
underscore (__) counts as a letter). The replacement is any text that
contains balanced parentheses. An escaped RETURN or an embedded
newline character allows a multi-line replacement to be specified.

The following is a typical example of the use of def ine, in which N is
defined to be the string 100 and is then used in a later if statement:

define (N, 100)
if (i > N) echo "number too large”

The left parenthesis must immediately follow the word define to
signal that def ine has arguments. If a user-defined macro or built-in
name is not followed immediately by this character, the macro call is
assumed to have no arguments.

Macro calls have the following general form:
name (argl, arg2, ..., argn)

A macro name is recognized as such only if it appears surrounded by
nonalphanumerics. In the following example, the variable NNN is
absolutely unrelated to the defined macro N, even though the variable

23-2 A/UX Programming Languages and Tools, Volume 2

contains a lot of N’s:

define (N, 100)
if (NNN > 100) echo "number too large"”

Macros may be defined in terms of other macros. For example, the
following defines both M and N to be 100. If N is redefined and
subsequently changes, M retains the value of 100, not N.

define (N, 100)
define (M, N)

The m4 macro processor expands macro names into their defining text
as soon as possible. The string N is immediately replaced by 100. The
string M is then defined to be 100. The overall result is the same as
using the following input in the first place:

define (M, 100)
The order of the definitions can be interchanged, as follows:

define (M, N)
define (N, 100)

Now M is defined to be the string N, so when the value of M is requested
later, the result is the value of N at that time (because the M will be
replaced by N, which will be replaced by 100).

3.2 Quoting

The more general solution to the problem of making sure the correct
strings get substituted is to delay the expansion of the arguments of
define by quoting them. The quoting characters initially recognized
by m4 are the left and right single quotes, * and /. Any text
surrounded by left and right single quotes is not expanded immediately
but has the quotes stripped off. The value of a quoted string is the
string stripped of the quotes. If the input is

define (N, 100)
define (M, ‘N’)

the quotes around the N are stripped off as the argument is being
collected. The result of using quotes is to define M as the string N, not
as 100.

m4 Reference 23-3

The general rule is that m4 always strips off one level of single quotes
whenever it evaluates something. This is true even outside macros.

If the word define itself is to appear in the output, the word must be
quoted in the input as follows:

‘define’ = 1;

Another example of using quotes is to redefine a macro. To redefine N,
the evaluation must be delayed by quoting:

define (N, 100)
define (*N’, 200)

In m4, it is often wise to quote the first argument of a macro. The
following example, for instance, will not redefine N:

define (N, 100)
define (N, 200)

The N in the second definition is replaced by 100. The result is
equivalent to the following statement:

define (100, 200)

This statement is ignored by m4, however, because only names that
begin with an alphanumeric character can be defined.

3.3 changequote
If left and right single quotes are not convenient for some reason, the
quote characters can be changed with the following built-in macro:

changequote ([, 1)

The built-in changequote makes the new quote characters the left
and right brackets. The original characters can be restored by using
changequote without arguments, as follows:

changequote

3.4 undefine
The undef ine macro removes the definition of some macro or built-
in as follows:

undefine ('N’)

23-4 A/UX Programming Languages and Tools, Volume 2

The macro removes the definition of N. Built-ins can be removed with
undefine, as follows:

undefine (‘define’)
Once removed, the definition cannot be reused.

3.5 ifdef

The built-in i fdef provides a way to determine if a macro is currently
defined.

Depending on the system, a definition appropriate for the particular
machine can be made as follows:

ifdef (‘pdpll’, ‘define(wordsize,16)’)
ifdef (*u3b’, ‘define(wordsize,32)’)

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first
argument is defined, the value of ifdef is the second argument. If the
first argument is not defined, the value of i fdef is the third argument.
If there is no third argument, the value of i fdef is null.

If the name is undefined, the value of ifdef is then the third
argument, as in

ifdef (*unix’, on UNIX, not on UNIX)

3.6 Arguments

User-defined macros may also have arguments, so different invocations
can have different results. Within the replacement text for a macro (the
second argument of its define), any occurrence of $n is replaced by
the nth argument when the macro is actually used. Thus, the following
macro, bump, generates code to increment its argument by 1:

define (bump, $1 = $1 + 1)
The statement

bump (x)
is equivalent to

Xx=x+1

m4 Reference 23-5

A macro can have as many arguments as needed, but only the first nine
are accessible ($1 through $9) (see ‘‘Built-In Macro Summary’’ under
shift for more information). The macro name is $0, although that is
less commonly used. Arguments that are not supplied are replaced by
null strings, so a macro can be defined that simply concatenates its
arguments like this:

define(cat, $1$2$3$4$5$6$7$8%9)
Thus,

cat(x, y, z)
is equivalent to

XyZz

Arguments $4 through $9 are null, because no corresponding
arguments were provided. Leading unquoted blanks, tabs, or newlines
that occur during argument collection are discarded. All other white
space is retained. Thus,

define(a, b c¢)
definesatobeb c.

Arguments are separated by commas; however, when commas occur
within parentheses, the argument is neither terminated nor separated.
For example,

define(a, (b,c))

has only two arguments. The first argument is a. The second is
literally (b, c). A bare comma or parenthesis can be inserted by
quoting it.

There are three other constructions that are useful in macro definitions:

S#

$ *

se
During macro replacement, the construction $# is replaced by the
number of arguments. The $* construction is replaced by a list of the

arguments separated by commas. The construction $Q@ is like $*
except that each argument is quoted (using the current quotes). See the

23-6 A/UX Programming Languages and Tools, Volume 2

section ‘‘Recursive Definitions’’ for examples of the first two
constructions.

3.7 ifelse
Arbitrary conditional testing is performed via the built-in macro
ifelse. In the simplest form,

ifelse(a, b, ¢, d)

compares the two strings a and b. If a and b are identical, ifelse
returns the string c. Otherwise, string d is returned. Thus, a macro
called compare can be defined to compare two strings and return yes
or no if they are the same or different, as follows:

define (compare, ‘ifelse($1l, $2, yes, no)’)
Note the quotes, which prevent evaluation of ifelse occurring too
early. If the fourth argument is missing, it is treated as empty. Thus,
ifelse(a, b, c¢)
is ¢ if @ matches b, and null otherwise.

ifelse can actually have any number of arguments and provides a
limited form of multiway decision capability. In the input

ifelse(a, b, ¢, d, e, f, g)

if the string a is the same as the string b, the result is c. Otherwise, if d
is the same as e, the resultis f. Otherwise, the result is g. If the final

argument is omitted and the specified strings don’t match, the result is
null.

4. Arithmetic built-ins
The m4 program provides three built-in functions for doing arithmetic
on integers (only):

incr
decr
eval

The simplest are incr, which increments its numeric argument by 1,
and decr, which decrements by 1. Thus, to handle the common
programming situation where a variable is to be defined as ‘‘one more
than N,’’ use the following:

m4 Reference 23-7

define (N, 100)
define (N1, ‘incr(N)’)

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in function called
eval, which is capable of arbitrary arithmetic on integers. The
operators in decreasing order of precedence are as follows:

Table 23-1. Arithmetic operators

Symbol Meaning

+ - Unary plus and minus

Kk~ Exponentiation

x /% Multiplication and division
+ - Binary plus and minus

== I= < <= > >= Relational operators

! Logical negation (NOT)

& && Logical multiplication (AND)
[N Logical addition (OR)

Parentheses may be used to group operations where needed. All the
operands of an expression given to eval must ultimately be numeric.
The numeric value of a true relation (like 1>0) is 1 and false is 0. The
precision in eval is 32 bits under the A/UX operating system.

As a simple example, define M to be 2==N+1 using eval as follows:

define (N, 3)
define (M, ‘eval(2==N+1)"')

First N is defined as 3; then M is defined as 0, since 2 is not equal to
N+1. If M were defined as

define (M, ‘eval (2==N-1)')

then its defined value would be 1, because the result of the comparison
would be true.

The defining text for a macro should be quoted unless the text is very

simple. Quoting the defining text usually gives the desired result and is
a good habit to get into.

23-8 A/UX Programming Languages and Tools, Volume 2

5. I/O manipulation

5.1 include and sinclude
A new file can be included in the input at any time by the built-in
function include. For example,

include (filename)

inserts the contents of filename in place of the include command.
The contents of the file is often a set of definitions. The value of
include (include’s replacement text) is the contents of the file. If
needed, the contents can be captured in definitions, and so on.

A fatal error occurs if the file named by filename cannot be accessed.
To get some control over this situation, you can use the alternate form,
sinclude, or quote the filename. The built-in sinclude (silent
include) says nothing and continues if the file named cannot be
accessed.

5.2 divert, undivert, and divnum

The output of m4 can be diverted to temporary files during processing,
and the collected material can be generated upon command. The m4
program maintains nine of these diversions, numbered 1 through 9. If
the built-in macro

divert (n)

is used, all subsequent output is put onto the end of a temporary file
referred to as n. Diverting to this file is stopped by the divert or
divert (0) command, which resumes the normal output process.

Diverted text is normally produced all at once at the end of processing
with the diversions produced in ascending numerical order. Diversions
can be brought back at any time by appending the new diversion to the
current diversion. Qutput diverted to a stream other than 0 through 9 is
discarded. The following code, for example, throws away excess
newlines.

m4 Reference 23-9

divert (~-1)
define (N, 100)
define (M, 200)
define (L, 300)
divert

Note: The newline character at the end of each define is
passed to the output, as described in the following section.

_The built-in macro undivert, with no arguments, brings back all
diversions in numerical order. With arguments, undivert brings
back the selected diversions in the order specified by the argument.
undivert discards the diverted text. You can also discard text by
using a diversion number which is not between 0 and 9, inclusive.

The value of undivert is not the diverted text but rather the number
of the diversion to bring back into the text. Furthermore, the diverted
material is not rescanned for macros.

As an example of the interaction between divert, undivert, and
current diversion, consider the following code:

this is current diversion
divert (1)

this is diversion 1

divert (2)

this is diversion 2

divert (3)

this is diversion 3

divert

this is current diversion again
undivert

once again, current diversion

In the above trivial code there are three diversions between the two
lines of current diversion code. The use of divert at the end of
diversion 3 is needed to inform m4 that what follows is not part of
diversion 3. undivert with no arguments will insert at the current
position all previous diversions, with no rescanning of any macros
there may be there. The output of the above code is

23-10 A/UX Programming Languages and Tools, Volume 2

this is current diversion

this is current diversion again
this is diversion 1

this is diversion 2

this is diversion 3

once again, current diversion

Note that the diverted text is not brought back again at the end of the
output by the normal process; the diverted text has been discarded by
the use of undivert. Another example can make this clearer:

this is main diversion
divert (1)

this is diversion 1

divert (2)

this is diversion 2

divert (3)

this is diversion 3

divert

this is main diversion again
undivert (3)

once again, main diversion
undivert (2)

The ouput for the above is

m4 Reference 23-11

this is main diversion

this is main diversion again
this is diversion 3

once again, main diversion

this is diversion 2

this is diversion 1

As you can see, only diversion 1 is brought back by the normal process,
because only diversion 1 has not been undiverted and therefore
discarded. Note also that you can change the order of appearance of
the diverted versions.

The built-in macro divnum returns the number of the currently active
diversion. The current output stream is 0 during normal processing.

5.3 dnl

There is a built-in macro called dn1 that deletes all characters that
follow it, up to and including the next newline. The dnl macro is

useful mainly for throwing away empty lines that otherwise tend to
clutter up m4 output. Using input

define (N, 100)
define (M, 200)
define (L, 300)

results in a newline at the end of each line that is not part of the
definition. The newline is copied into the output so that each define
statement is followed by a blank line. If the built-in macro dnl is
added to each of these lines, the newlines will disappear.

define(N, 100)dnl
define (M, 200)dnl
define(L, 300)dnl

23-12 A/UX Programming Languages and Tools, Volume 2

6. String manipulation

6.1 len
The built-in macro len returns the length of the string (number of
characters) that makes up its argument. Thus,

len (abcdef)
is 6, and
len((a,b))
is 5 (the parentheses and comma are counted along with a and b).

6.2 substr

The built-in macro substr can be used to produce substrings of
strings. The input

substr(s, i, n)

returns the substring of s that starts at the ith position (origin 0) and is »
characters long. If n is omitted, the rest of the string is returned. For
example,

substr(‘now is the time’,1)
returns the following string:

ow is the time.
If i or n is out of range, various actions occur.

6.3 index and translit

The built-in macro index returns the index (position) in one string
where the first character of another given string occurs, or —1 if it does
not occur. If is written as

index (sl, s2)

where s! is the string to be searched and s2 is the string to be searched
for. As with substr, the origin for strings is 0.

The built-in macro translit performs character transliteration and
has the general form

translit(s, f, t)
which modifies s by replacing any character found in f by the

m4 Reference 23-13

corresponding character of ¢. Using
translit (s, aeiou, 12345)

replaces the vowels by the corresponding digits. If ¢ is shorter than f,
characters that do not have an entry in ¢ are deleted. As a limiting case,
if ¢ is not present at all, characters from f are deleted from s. So,

translit (s, aeiou)

would delete vowels from s.

7. Printing

7.1 errprint
The built-in macro errprint writes its arguments out on the standard
error file. An example would be

errprint (‘fatal error’)

7.2 dumpdef

The built-in macro dumpdef is a debugging aid that dumps the current
names and definitions of items named as arguments. If no arguments
are given, then all current names and definitions are printed.
Remember to quote the names.

8. Executing system commands

8.1 syscmd and maketemp
Any program in the local operating system can be run by using the
built-in macro syscmd. For example,

syscmd (date)

on the A/UX system runs the date command. Normally, syscmd
would be used to create a file for a subsequent include.

To facilitate making unique filenames, the built-in macro maketemp
is provided with specifications identical to the system function
mktemp. The maketemp macro fills in a string of XXXXX in the
argument with the process ID of the current process.

23-14 AJUX Programming Languages and Tools, Volume 2

9. Interactive use of m4

The input to m4 may come from a file, the standard input, or both.
Thus, it is possible to use m4 interactively, by telling it to take its input
from the standard input. There are several ways to do this. The
simplest is to invoke m4 as follows:

m4
At this point, m4 will read from the standard input.

If you have an existing set of m4 commands stored in a file, you may
instruct m4 to process those commands first by invoking it as

m4 file -

The minus sign is required here to instruct m4 to read file and then the
standard input. Alternatively, if you invoke m4 using just the m4
command with no arguments, you can tell m4 to fetch the set of
commands from file by typing the following line:

include (file)

The effect is the same in both cases.

10. Recursive definitions

Since m4 rescans any text that arises from the replacement of a macro
by its defining text, it is possible to construct recursive macro
definitions. That is, it is perfectly legal to define a macro in terms of
itself. As with any well-constructed recursive definition, however, you
must take care that the definition has a well-defined stopping point.
Generally, this is easy to do with the i felse command.

For instance, suppose that you need a macro that returns its last
argument and discards the rest. You might write the following
definition:

define(last,
‘ifelse($#,1,%1, ‘last (shift ($*))’)’)

When there are multiple arguments, last drops the first argum