
ti® Apple® A/UXTM Programming
Languages and Tools,
Volume 1

Copyright
This material contains trade secrets and
confidential and proprietary information of
Apple Computer, Inc., and UniSoft Corpora­
tion. Use of this copyright notice is precau­
tionary only and does not imply publication.
Copyright© 1985, 1986, 1987, Apple Com­
puter, Inc., and UniSoft Corporation. All
rights reserved. Portions of this document
have been previously copyrighted by AT&T
Information Systems, the Regents of the
University of California, and Motorola, Inc.,
and are reproduced with permission. Under
the copyright laws, this manual or the
software may not be copied, in whole or part,
without written consent of Apple or UniSoft,
except in the normal use of the software or to
make a backup copy of the software. The
same proprietary and copyright notices must
be affixed to any permitted copies as were
affixed to the original. This exception does
not allow copies to be made for others,
whether or not sold, but all of the material
purchased (with all backup copies) may be
sold, given, or loaned to another person.
Under the law, copying includes translating
into another language or format. You may
use the software on any computer owned by
you, but extra copies cannot be made for this
purpose.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, lmageWriter, Laser­
Writer, and Macintosh are registered trade­
marks of Apple Computer, Inc.

A/UX is a trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T
Information Systems.

VAX is a trademark of Digital Equipment
Corporation.

3B20 is a trademark of AT&T Informati011
Systems.

Limited Warranty on Media an
Replacement
If you discover physical defects in the mar
als distributed with an Apple product or in
media on which a software product is distr
buted, Apple will replace the media or Irull

als at no charge to you, provided you retur
the item to be replaced with proof of purcb
to Apple or an authorized Apple dealer dw
the 90-day period after you purchased the
software. In addition, Apple will replace d,
aged software media and manuals for as lo
as the software product is included in Appl
Media Exchange Program. While not an
upgrade or update method, this program
offers additional protection for up to two
years or more from the date of your origin:
purchase. See your authorized Apple deale
for program coverage and details. In some
countries the replacement period may be d
ferent; check with your authorized Apple
dealer.

ALL IMPLffiD WARRANTIES ON Tll
MEDIA AND MANUALS, INCLUDINC
IMPLmD WARRANTms OF MER­
CHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE, ARE LIM­
ITED IN DURATION TO NINETY (90:
DAYS FROM THEDATE OF mE OB
GINAL RETAIL PURCHASE OF Tffil
PRODUCT.

Even though Apple has tested the software
and reviewed the documentation, APPLE
AND ITS SOFTWARE SUPPLIER MA
NO WARRANTms OR

REPRESENTATIONS, EITHER
EXPRESS OR IMPLffiD, WITH
RESPECT TO SOFTWARE, ITS QUAL·
ITY, PERFORMANCE, MERCHANTA­
BILITY, OR FITNESS FOR A PARTICU­
LAR PURPOSE. AS A RESULT, THIS
SOFTWARE IS SOLD AS IS, AND YOU
THE PURCHASER ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUAL·
ITY AND PERFORMANCE.

IN NO EVENT WILL APPLE OR ITS
SOFTWARE SUPPLIER BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the
possibility of such damages. In particular,
Apple and its software supplier shall have no
liability for any programs or data stored in or
used with Apple products, including the costs
of recovering such programs or data.

THEW ARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LmU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is author­
ized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or lim­
itation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply
to you. This warranty gives you specific legal
rights, and you may also have other rights
which vary from state to state.

A/UX Programming Languages and Tools, Volume 1

Contents

Preface

Chapter 1 Overview of the A/UX Programming
Environment

Chapter2 cc Command Syntax

Chapter3 C Language Reference

Chapter4 C Implementation Notes

Chapter 5 The Standard C Library {libc)

Chapter6 The C Math Library

Chapter7 The C Object Library

Chapters lint Reference

Chapters sdb Reference

Chapter 10 £77 Command Syntax

Chapter 11 Fortran Language Reference

Chapter 12 EFL Reference

Chapter 13 as Reference

Chapter 14 ld Reference

Chapter 15 COFF Reference

Appendix A Additional Reading

Preface

Conventions Used in This Manual
Throughout the A!UX manuals, words that must be typed exactly as
shown or that would actually appear on the screen are in Courier
type. Words that you must replace with actual values appear in italics
(for example, user-name might have an actual value of j oe). Key
names appear in CAPS (for example, RETURN). Special terms are in
bold type when they are introduced; many of these terms are also
defined in the glossary in the A!UX System Overview.

Syntax notation
All A!UX manuals use the following conventions to represent
command syntax. A typical A!UX command has the form

command [flag-option] [argument] ...

where:

command

flag-option

argument

[]

Command name (the name of an executable file).

One or more flag options. Historically, flag options
have the form

-[opt ...]

where opt is a letter representing an option. The
form of flag options varies from program to
program. Note that with respect to flag options, the
notation

[-a][-b][-c]

means you can select one or more letters from the
list enclosed in brackets. If you select more than one
letter you use only one hyphen, for example, -ab.

Represents an argument to the command, in this
context usually a :filename or symbols representing
one or more :filenames.

Surround an optional item.

Follows an argument that may be repeated any
number of times.

Courier type anywhere in the syntax diagram indicates that
characters must be typed literally as shown.

italics for an argument name indicates that a value must be
supplied for that argument.

Other conventions used in this manual are:

<CR>

cmd(sect)

indicates that the RETURN key must be pressed.

An abbreviation for CoNTROL-x, where x may be
any key.

A cross-reference to an A/UX reference manual.
cmd is the name of a command, program, or other
facility, and sect is the section number where the
entry resides. For example, cat(l).

Chapter 1
Overview of the A/UX Programming Environment

Contents

1. Introduction

2. Programming languages and compilers •

3. Libraries and archives • • •

4. The A/UX file system • • • •
4.1 Structure of the file system
4.2 File descriptors
4.3 Creating and deleting files
4.4 Retrieving and changing attributes of files
4.5 Special files • • • •

5. Performing input and output
5.1 Formatted I/0 •
5.2 Buffered 1/0
5 .3 File 1/0 • •
5.4 Pipes and fifos
5.5 Device control •
5.6 Asynchronous 1/0

6. Process control • • •
6.1 Process creation and termination
6.2 Signals • • • • • • • • • • • •
6.3 Interprocess communication • • • •
6.4 Program pause and wakeup
6.5 Other process attributes • • •

7. Memory management • • • • •
7.1 Dynamic memory allocation
7 .2 Shared memory • • • •

8. The environment

- i -

1

1

3

4
4
5
5
5
5

6
6
6
7
7
8
8

10
10
11
12
13
13

14
14
14

15

9. Using shell commands

10. Error handling

11. A/UX toolbox

12. Other C language functions

13. Other programming tools •

Tables

Table 1-1. Buffer vs. Disk Access with Asynchronous

15

16

17

18

18

110 • • • • • • • • • • • • • 10

- ii -

Chapter 1

Overview of the A/UX Programming Environment

1. Introduction
This manual describes some of the program development tools
provided with the A!UX operating system. The A/UX programming
environment is one of the most powerful application program
development environments currently available. Languages and tools
that originated on UNIX have gradually migrated to numerous other
operating systems, so even if you are new to the A!UX operating
system, you may well have already used many of these tools.

There are four main kinds of tools that you will use to develop
application programs under A/UX:

• language compilers, assemblers, and link editors

• function libraries and archives

• program debugging tools

• other development tools

This manual provides detailed information on the first three categories.
A summary of other important development tools (such as SCCS and
make) may be found in the last section of this chapter; for a complete
discussion of these tools, see AIUX Programming Languages and
Tools. Volume 2. We assume that the reader is conversant with the C
programming language and with the general process of coding,
compiling, testing, debugging, and so forth.

2. Programming languages and compilers
The A/UX programming environment includes compilers for several
programming languages.

cc The standard C compiler.

f77 The standard Fortran compiler.

Overview of the A/UX Programming Environment 1-1

ef 1 An Extended Fortran Language (EFL) compiler.

In very many instances, the C programming language will be your
preferred language for writing applications programs. The C language
was developed primarily to provide a portable way of implementing the
UNIX operating system and its numerous utility programs. Hence, the
connections between the language and the operating system are very
deep. Many AIUX utility programs, indeed, are simply slightly
repackaged system calls or subroutines. For example, the shell
command sleep does nothing more than validate its command line
arguments and then call the sleep subroutine. Because of this tight
connection, it is often a simple matter to translate a shell script into a
functionally equivalent (but much faster) C program.

Various aspects of the C language are covered in detail in the next six
chapters. The Fortran language, in its various NUX incarnations, is
discussed in Chapters 10 through 12.

The following programs for checking and debugging are supported in
the AIUX programming environment:

lint The lint program checks C programs for syntax errors,
type rule violations, inefficient constructions, potential
bugs, inconsistencies, and portability problems. You can
specify command line options to instruct lint to check
only what is necessary for your program. lint is
discussed in detail in Chapter 8.

sdb The sdb program can be used on both C programs and
Fortran (f77) programs to debug core images or source
language after you have compiled your program using the
-g option. sdb is discussed in detail in Chapter 9.

The linker and assembler used automatically by the compilers are

ld The link editor

as The AIUX assembler for the Motorola 68020

Chapter 13 provides a complete reference manual for as. For a
technical discussion of ld, see Chapter 14.

1-2 A/UX Programming Languages and Tools, Volume 1

3. Libraries and archives
A library is a collection of functions and declarations. A library
archive is a precompiled library whose routines can be linked to other
program modules to produce an executable program. It is the job of the
link editor (ld) to select from a library archive the routines that are
necessary to resolve external references in a set of object files.

Typically, a library archive is indicated by attaching the suffix . a to
the name of the library. Library archives are usually stored in the
system directories I lib and /usr I lib.

The four main C language libraries in the A/UX programming
environment are

libc This is the standard library for C language programs.
The C library is made up of functions and
declarations used for system calls, file access, string
testing and manipulation, character testing and
manipulation, memory allocation, and other functions.
It is covered in detail in Chapter 5.

1 ibm This is the mathematical library for C language
programs. This library provides exponential, Bessel
functions, logarithmic, hyperbolic, and trigonometric
functions. It is covered in detail in Chapter 6.

libld This library provides functions for the access and
manipulation of common object files. It is covered in
detail in Chapter 7.

libcurses This library provides functions for writing to, reading
from, and updating terminal screens. It is covered in
detail in AIUX Programming Languages and Tools,
Volume 2.

There are also several libraries available for use with the f77
compiler. The most important are

libF77 This is the standard Fortran library. It includes
various mathematical routines, string functions, and
data conversion routines.

Overview of the A/UX Programming Environment 1-3

libI77 This is the Fortran input/output library.

In addition, it is also possible to gain access to routines contained in the
standard C library, libc, from within a Fortran program. All of these
libraries are provided in precompiled form only.

4. The A/UX file system

4.1 Structure of the file system
In the A/UX operating system, a file is a linear stream of bytes
terminated by an end-of-file indicator. No other structure is imposed
by the system on a file. This fact makes it extremely straightforward to
write programs that do simple file manipulation. Programs can process
data streams a character at a time; there is no need to read or write files
according to a fixed-length record format (as in some other operating
environments). In addition, because of this simplicity, the system can
treat virtually every object it handles (such as input/output data
streams) as a file. Even terminal screens and peripherals are dealt with
as files.

Files may be attached anywhere (possibly in multiple locations) on a
hierarchy of directories. A directory is simply a file that you cannot
write. It contains the names of the files in that directory and an
indication of where to find the files on the disk.

In A/UX, a file system is a logical device containing the data structures
that implement all or part of the directory hierarchy. The directory
hierarchy is the collection of all files on the currently mounted
(accessible) file systems.

A file system breaks the logical device into four self-identifying
regions:

1. The first block (address 0) is unused by the file system. It is left
aside for booting procedures.

2. The second block (address 1) contains the so-called super-block.
This block contains, among other things, the size of the disk and
the boundaries of the other regions.

3. Following the super-block is the Hist, a list of file definitions.
Each file definition is a 64-byte structure, called an inode. The
offset of a particular inode within the ilist is called its inumber.

1-4 A/UX Programming Languages and Tools, Volume 1

The combination of device name (major and minor numbers) and
inumbers uniquely names a particular file.

4. After the ilist, and at the end of the disk, are free storage blocks
available for the contents of files. The free space on a disk is
maintained by a linked list of available disk blocks.

A logical directory hierarchy is added to this flat physical structure
simply by adding a new type of file, the directory. A directory is used
exactly as an ordinary file. It contains 16-byte entries consisting of a
14-byte name and an inumber.

4.2 Fiie descriptors
To gain access to a file resident in the file system, a process must first
open that file. A typical way to open a file is to use the open system
call. When successful, this call returns a file descriptor, an integer
which may be used in other system calls and subroutines to refer to the
file.

Three files are opened automatically for each user process running
under the A/UX operating system: stdin, stdout, and stderr.
These are the standard input, the standard output, and the standard error
files, and are associated, respectively, with the file descriptors 0, 1, and
2.

4.3 Creating and deleting files
The close system call closes an open file. To create a new file, you
can use the creat system call. To remove a file from the file system,
you can use the unlink system call. To create and remove
directories, use mkdir and rmdir.

4.4 Retrieving and changing attributes of files
There are a number of other system calls that allow the programmer to
ascertain the status and modify the attributes of files. Among these are
stat, chown, chmod, chdir, ulimit, and umask.

4.5 Special files
There is a further kind of file in the A/UX operating system, called a
special file. Special files are contained in the system directory I dev.
Each file in I dev contains the description of a device and is used to
associate a device name with a physical device. There are three classes
of special files: block, character, and fifo, each of which requires its

Overview of the A/UX Programming Environment 1-5

own input and output system. All three types of special files, however,
are created with the system call mknod.

A block device is a collection of random access memory blocks. It is
accessed through a layer of software that caches these blocks in an
array of system buffers. When a request occurs to read a block of some
device, the buffers are searched to see if one of them contains the
requested data; if so, the device does not need to be physically
accessed, because the contents of the buffer can be supplied instead.
Writes are performed in an analogous manner: a buffer is filled with
the modified data, and the actual block device is not updated until the
operating system flushes its buffers. Some reads and most writes are
thus asynchronous (see "Asynchronous 1/0").

A character device performs 1/0 one byte at a time. Input and output
for character devices are considerably easier than for block devices;
1/0 requests from the user are sent to the device driver virtually
untouched, bypassing the complicated buffer caching of block input
and output. Characters generated by a user program are placed into a
character queue until some limit is reached; then the physical 1/0 is
performed.

A fifo is a special file that is also referred to as a ''named pipe.'' Fifos
are discussed, along with pipes, in "Pipes and Fifos."

5. Performing input and output
The C language contains numerous facilities for obtaining data from an
input stream and for sending data into an output stream.

5.1 Formatted 1/0
It is possible to read and write files according to a fixed format, when it
is necessary or useful to do this. The subroutine scanf, for instance,
reads data from the standard input file in a format specified by its first
argument. Similarly, the routine printf puts data on the standard
output file in a format specified by its first argument. In either case, it
is also possible to read or write files other than the standard input or
output. See scanf(3S) and printf(3S) for details.

5.2 Buffered 1/0
It is not necessary to perform either input or output in fixed-length
records; primitives exist for reading characters (bytes), or words (32-bit

1-6 A/UX Programming Languages and Tools, Volume 1

integers) from the input and for writing characters or words on the
output See getc(3S) and putc(3S) for details.

5.3 File 1/0
The A/UX system includes a number of system calls and subroutines
for performing low-level input and output. We have already mentioned
the open and close system calls, which, respectively, open and close
files accessible to programs. Associated with the file descriptor
returned by a successful open call is a pointer into the file called a file
pointer. This indicates the point at which subsequent reading or
writing is to occur. If the open call is invoked with the a_ APPEND
flag, for instance, the file pointer is positioned at the end of the file;
otherwise it is placed at the beginning.

The two most fundamental file 1/0 primitives are read and write.
The read call moves a specified number of bytes from the current
read position in the file (as indicated by the file pointer) into a buffer.
Conversely, the write call moves a specified number of bytes from a
buffer to the current write position in the file (as indicated by the file
pointer).

The file pointer is moved automatically whenever a read or write is
performed; it may also be moved explicitly, without performing any
actual input or output, with the system call lseek. The position in the
file to which the file pointer is to be moved may be specified as an
offset relative to the beginning of the file, the end of the file, or the
current position of the file pointer in the file. In all cases, however, the
return value of the lseek call is the offset in bytes from the beginning
of the file.

Once a file is opened, its status and permissions may be controlled with
the fcntl system call. For example, parts of the file may be locked to
prevent either reading and/or writing those parts of the file. The
fcntl call may also be used to duplicate file descriptors.

5.4 Pipes and fifos
The A/UX operating system supports yet a further type of file, called
the pipe. A pipe is a data stream that must be read in order, that is,
there is no random access. Because it is a type of file, a pipe is
assigned an inode when it is created; an unnamed pipe, however, in
contrast to a named pipe, does not reside in a directory or take up space

Overview of the A/UX Programming Environment 1-7

in the file system. It is a temporary file created by the operating system
to pass data between related processes.

Pipes are created by invoking the system call pipe. Once created, a
pipe may be read or written with the read and write functions
mentioned earlier. There must be a process at each end of the pipe, one
writing data and the other reading data. The data passing through a
pipe cannot be reread. At most, a single character of data can be put
back into the pipe using the subroutine ungetc. Unlike named pipes,
unnamed pipes are unidirectional: data may flow in only one direction
through them. See pipe(2) for details.

A fifo special file is also called a named pipe, as it allows the same sort
of exchange of data among processes typified by "unnamed" pipes.
Because a named pipe is a special file it resides in the file system. It is
created, like the other special files, with the mknod system call. A
named pipe is opened with the open system call and is read from or
written to with the read and write routines discussed in the next
section. Like a pipe, a fifo requires data to be read in the order in
which they were written to the file, unlike normal files. Unlike
unnamed pipes, a named pipe allows data to pass in both directions.
More importantly, the processes writing to or reading from the named
pipe do not have to be related in any way.

5.5 Device control
Output to character special devices can make use of an additional
system call, ioctl, which is used to perform a variety of device
control functions. A computer that contained a built-in speaker, for
example, could use ioctl to adjust the parameters affecting speaker
output, such as volume, pitch, or duration. Similarly, a program could
use ioctl to eject a floppy disk from the computer. The common
element here is that ioctl is used to control the device, not to read or
write data. See ioctl(2) and section 7 of A!UX System
Administrator's Reference for control commands for a particular
device.

5.6 Asynchronous 1/0
Asynchronous I/O happens most of the time when the I/0 is both
buffered and block.

1-8 A/UX Programming Languages and Tools, Volume 1

When it happens, reads may precede a request, while writes lag
behind. Historically, the need for anticipatory reading (for faster
response to reads) led to buffering, while the need to minimize disk
access led to blocking.

When block caching was defined earlier (see the paragraph in "Special
Files" on block devices), mention was made of the array of system
buffers in which a block device caches blocks of some file. In fact,
there are parallel arrays of buffers maintained, consisting of input
buffers and output buffers. The input buffers receive the results of
reads, while the output buffers hold intended writes.

When a read is requested, the results are shown immediately,
synchronously with the request. Thus reads do not appear
asynchronous, but may be so. If the data sought already have been
cached into an input buffer, there is no need to read the data from disk,
as they already were read into the input buffer previously.

The AJUX operating system buffers write calls until they are
absolutely necessary because actual disk access is relatively slow.
When you ask for a write (for instance, while editing a file), the
operating system responds with the character count and filename, as if
it were writing the file to disk. However, it is actually writing to the
output buffer.

writes to disk are forced when:

• all memory buffers are full

• sync(2) has been sent, requesting an update of the superblock

• the system is about to crash, and files must be written to disk to
avoid losing them

Thus the following relation holds:

Overview of the A/UX Programming Environment 1-9

Table 1·1. Buffer vs. Disk Access with Asynchronous 1/0

Process Buffer Disk
Access

read Synchronous
write Synchronous

6. Process control

Access

Asynchronous
Asynchronous

6.1 Process creation and termination
Processes are created by the system primitive fork. The newly
created process (child) is a copy of the original process (parent).
There is no detectable sharing of primary memory between the two
processes (though of course, if the parent process is executing from a
read-only text segment, the child shares the text segment). Copies of
all writable data segments are made for the child process. Files that
were open before the fork are shared after the fork. The processes
are informed of their parts in the relationship, allowing them to select
their own (usually nonidentical) destiny. The parent may wait for the
termination of any of its children. This is accomplished through the
wait system call.

A process may exec a file through use of the exec system calls. This
consists of exchanging the current text and data segments of the
process for new text and data segments specified in the file. The old
segments are lost. An exec does not change processes; the process
that did the exec persists, but after the exec it is executing a different
program. Files that were open before the exec remain open after it.

If an executing program (for example, the first pass of a compiler)
wishes to overlay itself with another program (for example, the second
pass) then the executing program simply execs the second program.
In this sense, an exec is analogous to a goto statement in the
executing program.

If, however, the executing program needs to regain control of
execution after it execs a second program, it should first fork a child
process, have the child exec the second program, and have the parent
wait for the child. This is analogous to a subroutine call in the
executing program.

1-10 A/UX Programming Languages and Tools, Volume 1

A process may tenninate by overlaying itself with a new process, as
described above in connection with the exec routines. A more
standard way to tenninate a process is by invoking the exit system
call. Invoking exit closes all open file descriptors, notifies all parents
of the tennination of the process, unlocks all process, text, or data locks
currently active, and returns an exit status to the parent process.

6.2 Signals
The execution of a process can be controlled externally to the process
by the use of signals. A signal is a software interrupt that usually
indicates some exceptional or error condition. The signal SIGSYS, for
instance, indicates that a bad argument to a system call was detected by
the system. See signal(3) for a list of signals.

Signals may be sent by the operating system, by the user from the shell,
or from another user program; this is accomplished using either the
shell command kill or the system call kill. The program to which
the signal is sent may choose one of three ways to respond. The
program receiving the signal may ignore the signal, it may tenninate
upon receipt of the signal, or it can call a function in response to the
signal. These options are selected using the signal system call.
Some signals, however, cannot be caught or ignored. In particular, the
signal SIGKILL cannot be ignored by the receiving process.

A typical signal-handling scenario is as follows: A process indicates
that it will catch designated signals via the signal system call. A call
to signal simply associates the address of a process' signal-catching
routine with the corresponding signals for later use by the system.
When such a signal is delivered, the kernel interrupts user-level
execution and transfers control to the signal-catching routine. The
signal catcher notifies the user process that a signal has occurred (for
example, through a global flag) and returns to the kernel. The user­
level execution resumes where it left off before the signal arrived.
Nonnally the user process would check the global flag at intervals and,
finding that a signal had arrived, would perform the appropriate
processing.

User programs that need to process signals should have a separate
signal-catching subroutine which simply sets a global flag of some type
and exits. While it is possible to do more in a signal catcher, it is not
usually wise to do so, especially in cases where the actions of a signal

Overview of the A/UX Programming Environment 1-11

catcher could interfere with the completion of atomic operations.

The AIUX implementation of signals allows a process to determine
which of two different methods it will use to process signals. A
process can interpret signals in accordance with the System V Interface
Definition (SVID) or in accordance with the conventions of the
Berkeley Software Distribution, Release 4.2 (4.2 BSD). The primary
difference between the two implementations of signal handling is that
Berkeley signals are said to be reliable, whereas SVID signals are not.
A program's signal handling is reliable if a signal sent to it is
guaranteed to be processed. This means that if a signal is already being
handled, any new incoming signals will be caught and queued until
they can be processed. Using SVID-compatible signals, this is not
always the case; in certain circumstances, a program will lose signals,
possibly resulting in the premature termination of the program. For
more details, see set42sig(3) and setcompat(2).

6.3 Interprocess communication
The type of interaction between independent processes provided by
signals is of a rather limited kind. In order to allow greater flexibility
in the interactions between processes, three further types of
interprocess communication have been developed: semaphores,
message queues, and sockets.

A semaphore is simply a positive integer. What allows it to function
as a means of interprocess communication is that it is stored in a
memory location that is accessible to various programs through certain
system calls. By reading the values of semaphores and, possibly, by
altering those values, a program can inspect and control the operation
of another process or group of processes. Programs can, for example,
suspend operation until a particular semaphore attains some value.

A semaphore is created with the semget system call and can be
incremented or decremented (by any process that has such permissions)
through the semop system call. Finally, semaphores may be removed
and the memory associated with them freed by use of the semctl
system call. The semctl operation is also used to read and set values
of semaphores.

A message is a discrete portion of data stored in a buffer that is
accessible to a number of independent processes. Any number of

1-12 A/UX Programming Languages and Tools, Volume 1

messages can be available at one time, so they are stored in a structure
called a message queue. A process can send a message to such a
queue, read messages from it, and alter its process of execution
according to messages it receives.

A message queue is created with the msgget system call. Messages
are sent and received with the calls msgsnd and msgrcv, and
message queues are removed with the msgctl system call.

The third type of interprocess communication facility, the socket, is
especially suited for setting up communications networks among
different computers, and underlies the B-Net networking software. A
socket is an endpoint for communication; different processes, and
indeed different computers, can exchange data and messages through
sockets. For full details on the implementation of sockets and
programming with them, see AIUX Network Applications
Programming.

6.4 Program pause and wakeup
There are several ways to suspend execution of a program until some
external event occurs. As noted, the implementations of both
semaphores and message queues allow a process to wait until a
particular semaphore or message is received from some other process.
A program may also be made to pause until it receives a signal with the
pause system call. The signal must, of course, be one that has not
been set to be ignored by the calling process.

Once a process has been suspended with the pa use system call, it is
typically awakened with the signal s IGALRM. A process can arrange
to send this signal to itself after a specified amount of time by invoking
the alarm system call. A call of the form alarm (n) will instruct the
calling process's alarm clock to send the signal SIGALRM to the
calling process after n seconds. This call does not itself suspend
execution of the calling process.

6.5 Other process attributes
There are several system calls that allow a process to determine its own
process ID, the process ID of its parent process, and its process group
ID. See getpid(2) for details.

Overview of the A/UX Programming Environment 1-13

7. Memory management
7.1 Dynamic memory allocation
Managing the available core memory is an important task for an
operating system {like A!UX) which allows multiple simultaneous
processes and multiple users. The system must ensure that each
process has access to whatever memory it needs, that other processes
do not try to gain access to that memory illegally, and that memory is
reclaimed when a process exits. The system may also need to allocate
additional memory to an executing process. The A/UX environment
provides a number of system calls and library routines for managing a
program's use of memory storage.

The primary memory allocation request is malloc. A successful call
of the form malloc (n) will return a pointer ton bytes of free
memory. Memory may be returned to the operating system by calling
the routine free. Other available memory allocation routines are
realloc, callee, and cfree. For an explanation of these
routines, see malloc(3C) and Chapter 5, "The Standard C Library
(libc)."

These standard memory allocation routines are designed to be space­
efficient, sacrificing speed for smaller data space and code size. There
is an alternate set of memory allocation routines that is designed to run
considerably faster than the standard set of routines, though at the cost
of increased code size and increased memory usage. You can use these
time-efficient versions ofmalloc, free, and so forth, by using the
-lmalloc option to the compiler. See cc(l) and malloc(3X).

7.2 Shared memory
There is another form of interprocess communication available under
the A/UX operating system called shared memory. Using this facility,
a process can arrange to share a core memory data segment with other
processes, thereby allowing a very fast means for two or more
independent processes to share data. This can be useful for
applications like data base management or multiplayer games where
several independent processes need to inspect (or modify) a common
data segment.

A shared data segment of memory is created using the system call
shmget. Other processes may then gain access to this segment of

1-14 A/UX Programming Languages and Tools, Volume 1

memory, provided that they possess permissions specified at the time
the segment was created. A process may attach itself to a shared
segment of memory by invoking the system call shma t and detach
itself from that segment by invoking the system call shmdt. A shared
memory segment is removed by using the system call shmctl; this
call may also be used to alter the permissions associated with the
memory segment and to perform other operations on the segment (such
as locking it into core memory). For further details on shared memory,
see shmget(2), shmctl(2), and shmop(2).

8. The environment
Whenever a program begins running, the operating system makes
available to it the set of all data inherited from the parent process. This
set of data is called the environment, and includes an array of strings
as well as information from the parent process such as the UID, GID,
current directory, and so on. The program may read the strings it finds
in the environment, and modify its subsequent actions according to the
results it receives. A program may also change the strings or add
further strings to the environment.

By convention, the strings in the environment are of the form

name=value

The environment that each process inherits includes the names HOME,
PATH, SHELL, TERM, and others. A program may read the
environment by executing a call of the form getenv (name). It may
alter the environment it receives from the shell by executing a call of
the form putenv (string), where string is of the form listed above.

It is a general characteristic of the A/UX operating system that a
process can change only its own environment (and the environment of
any subprocesses it creates), but not that of its parent process. So, a
call to putenv affects only the environment of the process that calls it
and of all processes that that process may create. Changes made to the
environment do not persist after that process has exited. For further
information, refer to putenv(3C) and environ(5).

9. Using shell commands
It is possible to execute an arbitrary shell command from within a C
program by using the system subroutine. A call of the form

Overview of the A/UX Programming Environment 1-15

system (string) will result in the program passing string to an
instance of /bin/ sh for execution, exactly as if string had been typed
to the shell during an interactive login session. For instance, if a
program detects that a certain file needs to be time-stamped, it can
accomplish this by calling the function

system ("touch /usr/tmp/dungeons")

The system subroutine makes no provisions for capturing any output
produced by the executing command. It is possible to send output to a
file by including standard shell redirection metacharacters in the
argument string, but the file thereby created must then be opened and
read if the data stored there are to be accessible to the original program.

A better way to get access to the output of a shell command is to use
the popen subroutine. The form of the popen function is

popen (string, mode)

where string is exactly like the single argument to system and mode
is either r or w, indicating that the calling program is to read from or
write to the specified command. A successful call to popen returns a
pointer to a file stream that may be used in subsequent reads or writes.
See popen(3S) for further details.

It is also possible to process command line arguments from within a C
program by using the get opt subroutine. See getopt(3C) for
details and an example.

10. Error handling
The C language interface to the A/UX operating system provides a
general facility for detecting and reporting error conditions which may
arise from invoking many of the system calls and subroutines discussed
above. When a system call returns, it typically returns an integer value
to its calling process. A successful function call usually returns a value
of 0. Some calls, however, return a nonzero, positive value; for
instance, a successful open call will return a non-negative integer
which is the file descriptor of the opened file.

An unsuccessful system call returns a value of-1. In order to provide
the calling program with a general and automatic way of further
specifying the cause of the error, the system maintains a global

1-16 A/UX Programming Languages and Tools, Volume 1

variable, errno, which is automatically set to a nonzero positive value
indicating the cause of the error. Thus, every unsuccessful system call
results in the following two actions:

1. a return value of -1 is returned to the calling program; and

2. the global variable errno is set to some positive integer.

When the program detects an unsuccessful call by inspecting its return
value, it can further inspect the value of errno to determine the
precise cause of failure. Note that errno is not reset by successful
system calls, so it is important to inspect its value only after an
unsuccessful system call.

A program may report the occurrence of an error by using the perror
subroutine. perror prints a message on the standard error output file
that describes the last error received by a system call. The message
printed consists of two parts: first, the argument (if any) provided to
the call to perror is printed, followed by a colon, a space, and an
indication of the precise nature of the error. perror determines the
nature of the error by inspecting the variable errno.

It is the responsibility of the calling program to detect and react to error
conditions indicated by unsuccessful function calls. In addition to the
variable errno and the subroutine perror, the A/UX system also
provides an array, sys_errlist, containing the message strings
output by perror. See perror(3C) and intro(2) for further
details.

11. A/UX toolbox
The A/UX Toolbox is a set of routines and utilities that make the
Macintosh ROM code directly available to a program running under
A/UX. It lets you write applications in A/UX that take advantage of
the standard Macintosh user interface tools built into the ROMs. For a
description of the ROM code, see Inside Macintosh, Volumes 1
through 5.

The A/UX Toolbox bridges the Macintosh and A/UX environments,
giving you two kinds of code compatibility:

• You can write common source code that can be separately built
(compiled and linked) into executable code for both
environments.

Overview of the A/UX Programming Environment 1-17

• You can execute Macintosh binary files under A/UX, within the
limitations of the AIUX Toolbox.

For details on the AIUX Toolbox, please see A/UX Toolbox: Macintosh
ROM Interface.

12. Other C language functions
There are numerous other C language functions available under the
AIUX operating system designed to handle a variety of tasks. For
instance, a very rich set of string functions is available, allowing the
programmer to concatenate strings, search for characters within strings,
find substrings of strings, determine the length of strings, and so forth.
See string(3C) for a complete list of the available string functions.

Associated with the string functions are numerous character testing
routines. For instance, the function isascii returns a nonzero value
if its argument is an ASCII character; otherwise it returns zero. There
are also several character conversion functions; the function
tolower, for example, converts its argument to lowercase. For
details on these functions, see ctype(3C) and conv(3C).

The standard C library also contains functions to accomplish time and
date manipulation, numeric conversion, group file access, password file
access, parameter access, hash table management, random number
generation, and so on. A quick browse through Section 3 of AIUX
Programmer's Reference will provide an overview of these various
packages.

13. Other programming tools
In addition to the compilers, language tools, and debuggers already
discussed, the A/UX programming environment includes many other
useful software development tools. These tools include

make

1-18

The make program is a program maintenance tool that
keeps track of (and updates) groups of related files. All
information about special libraries, special treatments, or
options necessary for compiling multiple files is contained
in a make description file. Using it ensures that all program
modules in your compilations will reflect your latest
changes.

NUX Programming Languages and Tools, Volume 1

SCCS

awk

lex

yacc

be

de

The source code control system (SCCS) is a version
management tool for source code or text files. In group
projects, SCCS prevents multiple inconsistent versions of
files from accumulating in several places. For a single user,
multiple versions of a file may be stored without using a lot
of disk space, previous versions may be reconstructed
easily, and versions can be kept track of with a simple,
consistent numbering scheme.

The awk programming language is a file-processing
language designed to make common information retrieval
and manipulation tasks easy to state and to perform. The
aw k language can be used to generate reports, match
patterns, validate data, or filter data for transmission.

lex is a lexical analyzer generator that processes character
input streams and recognizes regular expressions. It
accepts high-level, problem-oriented specifications for
character string matching.

The yacc program is a parser-generator used to impose
structure on program input After you create a specification
of the input process, yacc generates a parser function,
which calls the user-supplied low-level input routine (the
lexical analyzer) to pick up the basic items, called
''tokens,'' from the input stream. Tokens are organized
according to the input structure rules, called ''grammar
rules.'' When one of these rules has been recognized, the
user code (the "action") supplied for this rule is invoked.
Actions have the ability to return values and make use of
the values of other actions.

be is a specialized language and compiler for handling
arbitrary precision arithmetic using the de calculator
program.

de is an interactive desk calculator program for handling
arbitrary-precision integer arithmetic. It has provisions for
manipulating scaled fixed-point numbers and for input and
output in bases other than decimal.

Overview of the A/UX Programming Environment 1-19

m4 m4 is a general-purpose macro processor. The primary
function of m4 is to allow the replacement of some text by
some (other) text. See also the standard C preprocessor
(cpp).

curses The curses and terminfo packages provide a complete
set of utility routines for writing screen-oriented programs.

For information about these tools and how to use them, please refer to
A!UX Programming Languages and Tools, Volume 2. In addition, the
NUX stream editor sed (which operates on a byte-stream rather than
an open file) is documented in AIUX Text Editing Tools, and all A/UX
programs have entries in A!UX Command Reference, A!UX
Programmer's Reference, or A!UX System Administrator's Reference.

In closing this overview, we should mention that the NUX shells are
themselves fully programmable interpreted languages. Shell scripts,
therefore, can sometimes provide very rapid prototyping of
programming tasks. As was mentioned earlier, it is often a trivial task
to translate a shell script into a functionally equivalent C program. So
you can begin generating an application program by using the shell's
tools: pipes, input/output redirection, variables, quotation, and
filename substitution. In very many instances, indeed, these shell
scripts can serve as final versions of your program. The shell
programming facilities are fully documented in A!UX User Interface.

1-20 NUX Programming Languages and Tools, Volume 1

Chapter 2

cc Command Syntax

Contents

1. Using cc • • • •
1.1 Command syntax
1.2 Default behavior

2. Options • • • • •
2.1 Recognized and executed by cc
2.2 Recognized by cc and passed to ld
2.3 Recognized by cc and passed to cpp

- i -

1
1
1

2
2
5
6

Chapter 2

cc Command Syntax

1. Using cc
The cc command is a front-end program that invokes the preprocessor,
compiler, assembler, and linkage editor, as appropriate. (The default is
to invoke each one in turn.)

This chapter describes the command syntax for cc (also see cc(l) in
AIUX Command Reference).

1.1 Command syntax
The syntax for cc is

cc rJlagopt .. .] file ...

wherejlagopt is zero or more flag options (see "Options") and file is
one or more filenames.

cc recognizes filenames of the form

file .x

The two-character extension . x identifies the contents of the file, as
follows:

Extension Contents Example

.c C source code program.c

.i preprocessor output program.i

.s assembler source program.a

.o assembler output program.o

.a library archive libc.a

A filename with no extension is assumed to be a library archive.

1.2 Default behavior
Running cc with no flag options on a file named file. c invokes the C
preprocessor, the C compiler, the assembler, and the linkage editor in

cc Command Syntax 2-1

turn. This process produces an executable file in the current directiory;
by default this executable file is named a. out.

cc has a large number of flag options that can be used to control the
compilation process. In addition, other flag options can be passed to
the preprocessor, compiler, assembler, and linkage editor. The sections
that follow describe these flag options.

2. Options
All options recognized by the cc command are listed below.

2.1 Recognized and executed by cc

Option Argument

-c none

-F none

-fm68881 none

-g none

-n none

Description

Suppress the link-editing phase of
compilation and force a relocatable
object file to be produced even if
only one file is compiled.

Do not generate inline code for
MC68881 floating-point
coprocessor. To link a program
that does not have floating-point
code, the libraries-lcno881 and
- lmno 8 81 must be included on
the command line.

Generate inline code for MC68881
floating point coprocessor. This is
the default.

Produce symbolic debugging
information.

Arrange for the loader to produce
an executable which is linked in
such a manner that the text can be
made read-only and shared
(nonvirtual) or paged (virtual).

2-2 A/UX Programming Languages and Tools, Volume 1

-p none Reserved for invoking a profiler.

-s none Compile the named C programs,
and leave the assembler-language
output within corresponding files
suffixed . s .

-t [p012al] Find only the designated
preprocessor (p), compiler (o and
1), optimizer (2), assembler (a)
and link editor (l) passes whose
names are constructed with the
string argument to the - B option.
In the absence of a -B option and
its argument, string is taken to be
I lib In. The value of -t "" is
equivalentto -tp012.

-B string Construct pathnames for substitute
preprocessor, compiler, and link
editor passes by concatenating
string with the suffixes cpp, cO (or
ccomor comp), cl, c2 (or
optim), as and ld. If string is
empty it is taken to be I lib/ o.

-E none Same as the - P option except
output is directed to the standard
output

-0 none Invoke an object code optimizer.

-P none Suppress compilation and loading;
that is, invoke only the
preprocessor and leave the output
on corresponding files with the
extension . i.

cc Command Syntax 2-3

-R none

-T none

-v none

-w c, argl[,arg2 .. .]

-x none

-z flags

Have assembler remove its input
file when done.

Truncate symbol names to 8
significant characters.

Print the command line for each
subprocess executed.

Pass the argument(s) argl to c,
where c is one of [p012al],
indicating preprocessor (p),
compiler first pass (O), compiler
second pass (1), optimizer (2),
assembler (a) or link editor (1),
respectively.

Ignored by A!UX for 68020.

Special flags to override the default
behavior (see cc(l)). Currently
recognized flags are:

c suppress returning pointers in
both aO and dO

n emit no code for stack growth

m use Motorola SGS compatible
stack growth code

p use ts t . b stack probes

E ignore all environment
variables

I emit inline code for MC68881
floating point coprocessor

l suppress selection of a loader
command file

2-4 A/UX Programming Languages and Tools, Volume 1

-# none

t do not delete temporary files

F flip byte order of multicharacter
character constants

Special debug option which,
without actually starting the
program, echoes the names and
arguments of subprocesses which
would have started.

2.2 Recognized by cc and passed to 1d

Option Argument

-1 name

-o outfile

-s none

-L dir

cc Command Syntax

Description

Same as -1 in ld(l). Search a
library libx. a, where xis up to
seven characters. A library is
searched when its name is
encountered, so the placement of a
-1 is significant. By default,
libraries are located in LIBDIR. If
you plan to use the - L option, that
option must precede -1 on the
command line.

Same as -o in ld(l). Produce an
output object file, outfile. The
default name of the object file is
a.out.

Same as -s in ld(l). Strip line
number entries and symbol table
information from the output of
object file.

Same as-Lin ld(l). Search for
libname . a in the named dir
before looking in LIBDIR. This

2-5

-v none

option is effective only if it
precedes the -1 option on the
command line.

Print the version of the loader that
is invoked.

2.3 Recognized by cc and passed to cpp

Option Argument

-c none

-D symbol[=defJ

-I dir

Description

Same as -c in cpp(l). All
comments, except those found on
cpp directive lines, are passed
along. The default strips out all
comments.

Same as -D in cpp(l). Define the
external symbol and give it the
value def (if specified). If no def is
given, symbol is defined as 1.

Search for 4!:include files that do
not begin with I in the named dir
before looking in the directories on
the standard list. Thus, 4!:include
files whose names are enclosed in
" "(for example, 4!:include
"this file") are first searched
for in the directory of the file being
compiled, then in directories named
by the - I options, and last in
directories on the standard list. For
4!:include files whose names are
enclosed in <> (for example,
Hnclude <thisfile>), the
directory of the file being compiled
is not searched.

2-6 A/UX Programming Languages and Tools, Volume 1

-u symbol Remove any initial definition of
symbol ("undefine" symbol),
where symbol is a reserved name
that is predefined by the particular
preprocessor.

By using appropriate options, you can terminate compilation early to
produce one of several intermediate translations. For example,

-c This option produces relocatable object files.

It is often desirable to use this option to save relocatable files so
that changes to one file do not then require that the other files be
recompiled. A separate call to cc, with the relocatable files but
without the -c option, creates the linked executable a. out file.
A relocatable object file created under the -c option has the
same root as the relocatable object file, but the extension is . o
instead of . c.

-s This option produces assembly source expansions for C code.

-P This option produces the output of the preprocessor. When you
use this option, the compilation process stops after
preprocessing. Output from the preprocessor is left in an output
file with the extension . i (for example, filel. i). These
output files can be subsequently processed by cc, but only if
their file name is changed to one with the extension . c. Except
for those produced by the preprocessor, any intermediate files
may be saved and resubmitted to the cc command, with other
files or libraries included as necessary.

-w This option lets you specify options for each step that is
normally invoked from the cc command line, that is, (1)
preprocessing, (2) the first pass of the compiler, (3) the second
pass of the compiler, (4) optimization, (5) assembly, and (6) link
editing.

At this time, only assembler and link editor options can be used
with the -w option. The most common example of the -w
option is

cc Command Syntax 2-7

-Wl,-VS,n

which passes the -vsn option to the link editor (ld(l)). In the
following example,

-wa, -option

the compiler will pass the -option to the assembler.

-o This option decreases the size and increases the execution speed
of programs by moving, merging, and deleting code. When the
optimizer is used, line numbers used for symbolic debugging
may be transposed.

-g This option produces information for a symbolic debugger. (For
more information see Chapter 9, '' sdb Reference.'')

For more information on any of the options which cc(l) passes to
either the preprocessor cpp(l) or the link editor ld(l), see the
appropriate manual page in A/UX Command Reference.

2-8 A/UX Programming Languages and Tools, Volume 1

Chapter 3
C Language Reference

Contents

1. Notation conventions

2. Lexical conventions
2.1 Comments
2.2 Identifiers (names) • • • •
2.3 Keywords • . . •
2.4 Constants . . • •

2.4.1 Integer constants
2.4.2 Explicit long constants
2.4.3 Character constants
2.4.4 Floating constants • • •
2.4.5 Enumeration constants

2.5 Strings . • • . . .
2.6 Hardware characteristics

3. Names . . . •
3.1 Storage class •
3.2 Type

4. Objects and lvalues

5. Conversions • • •
5.1 Characters and integers •
5.2 Float and double • .
5.3 Floating and integral
5.4 Pointers and integers
5.5 Unsigned • • • • •
5.6 Arithmetic conversions

6. Expressions . • • • •
6.1 Primary expressions
6.2 Unary operators • • • • •

- i -

1

1
2
2
2
2
3
3
3
4
4
4
5

5
5
6

7

8
8
8
8
9
9
9

IO
11
13

6.3 Multiplicative operators
6.4 Additive operators • • • •
6.5 Shift operators • • • •
6.6 Relational operators •
6.7 Equality operators
6.8 Bitwise AND operator
6.9 Bitwise exclusive OR operator
6.10 Bitwise inclusive OR operator •
6.11 Logical AND operator
6.12 Logical OR operator
6.13 Conditional operator
6.14 Assignment operators
6.15 Comma operator • • •

7. Declarations • • • • •
7 .1 Storage class specifiers •
7 .2 Type specifiers
7.3 Declarators • • • •

7 .3 .1 Meaning of declarators
7.4 Structure and union declarations •
7.5
7.6
7.7
7.8

Enumeration declarations
Initialization • •
Type names
Typedef

8. Statements
8.1 Expression statement
8.2 Compound statement or block •
8.3 Conditional statement • • • • • •
8.4 whi1e statement
8.5 do statement • •
8.6 for statement
8.7 switch statement •
8.8 break statement
8.9 continue statement
8.10 return statement
8.11 goto statement • •
8.12 Labeled statement • • • •
8.13 Null statement

- ii -

16
16
17
17
18
18
18
19
19
19
19
20
21

21
21
22
23
24
27
30
31
34
35

35
36
36
36
37
37
37
38
38
39
40
40
40
40

9. External definitions • • • • •
9 .1 External function definitions
9 .2 External data definitions

10. Scope rules • • • • •
10.1 Lexical scope
10.2 Scope of externals

11. Compiler control lines • • • • •
11.1 Token replacement •
11.2 File inclusion • •
11.3 Conditional compilation
11.4 Line control •

12. Implicit declarations

13. Types revisited • •
13.1 Structures and unions
13.2 Functions • • • •
13.3 Arrays, pointers, and subscripting
13.4 Explicit pointer conversions • • • •

14. Constant expressions

15. Portability considerations •

16. Syntax summary
16.1 Expressions
16.2 Declarations •
16.3 Statements
16.4 External definitions
16.5 Preprocessor

Tables

Table 3-1. Character constants and escape
sequences • • • • • • •

Table 3-2. 68020 hardware characteristics •

Table 3-3. Categorization of fundamental types

- iii -

40
41
42

42
43
44

45
45
46
47
48

48

49
49
50
51
52

53

54

55
55
57
59
60
61

4

5

7

Chapter 3

C Language Reference

This chapter describes the C programming language. The manner of
presentation of C syntax is meant to help you gain understanding of the
language structure. It should not be taken as a formal definition of the
language.

1. Notation conventions
In the syntax notation used in this chapter, syntactic categories are
indicated by italic type, and literal words and characters in courier
type. Alternative categories are listed on separate lines. An optional
terminal or nonterminal symbol is indicated by the subscript "opt," so
that

[expression]
opt

indicates an optional expression enclosed in braces. The syntax is
summarized in "Syntax Summary."

2. Lexical conventions
There are six classes of tokens:

1. Identifiers

2. Keywords

3. Constants

4. Strings

5. Operators

6. Other separators

Blanks, tabs, newlines, and comments {collectively called "white
space") are ignored except as they serve to separate tokens. Some
white space is required to separate otherwise adjacent identifiers,
keywords, and constants.

C Language Reference 3-1

If the input stream has been parsed into tokens up to a given character,
the next token is taken to include the longest string of characters that
could possibly constitute a token.

2.1 Comments
The characters I * introduce a comment, which terminates with the
characters * I.

/* Comments/* do not*/ nest*/

Note: The above comment would terminate after the* I
following not, leaving nest* I to be read as code.

2.2 Identifiers (names)
An identifier is a sequence of letters and digits. The first character
must be a letter. The underscore U counts as a letter. Uppercase and
lowercase letters are read differently and are not interchangeable.
Although there is no length limit for names, only the initial 256
characters of the name are significant. This implementation will accept
identifiers up to 1024 characters long. Other implementations truncate
identifiers to 7 or 8 characters, so long identifier names are not
recommended.

2.3 Keywords
The following identifiers are reserved for use as keywords and cannot
be used otherwise:

asm default float long struct

auto do for register switch
break double fort ran return typedef
case else goto short union

char en um if sizeof unsigned
continue external int static while

2.4 Constants
There are several kinds of constants, each of which has a type. The
introduction to types is given in the "Names" section. Hardware
characteristics that affect sizes are summarized in the subsection
"Hardware Characteristics" under the general heading "Lexical
Conventions.'' See also Chapter 4, ''C Implementation Notes.''

3-2 A/UX Programming Languages and Tools, Volume 1

2.4.1 Integer constants
An integer constant consisting of a sequence of digits is taken to be
octal if it begins with a zero. An octal constant consists of the digits 0
through 7 only. A sequence of digits preceded by Ox or ox is taken to
be a hexadecimal integer. The hexadecimal digits include a through f
(or A through F) with corresponding decimal values 10 through 15.
Otherwise, the integer constant is taken to be decimal. A decimal
constant whose value exceeds the largest signed machine integer is
taken to be long. An octal or hex constant that exceeds the largest
unsigned machine integer is likewise taken to be long. Otherwise,
integer constants are int.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately
followed by the letter 1 or Lis a long constant As discussed below,
on the Macintosh II integer and long values are considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in 'x'.
The value of a character constant is the numeric value of the character
in the machine's character set

Multicharacter character constants are permitted on the 68020.
Multicharacter character constants can be told from strings by the
following criterion: strings are enclosed in double quotes(" "),while
multicharacter character constants are enclosed in single quotes (' ').
Characters are assigned to a word backward. The -ZF flag option
reverses the order of character assignment within the word. For
example, when you compile a program including the line

i ='abed';

i is assigned the value 0 x 6 4 6 3 6 2 61, corresponding to ' deba ' . If
you compile the same program with the -ZF flag option, i is assigned
the value Ox6162 6364, corresponding to' abed'.

Two nongraphic characters, the single quote(') and the backslash{\),
are used in escape sequences. To use these characters literally, they
must be "escaped" as shown below.

C Language Reference 3-3

Table 3·1. Character constants and escape sequences

Character ASCII Escape sequence
Null NUL \0
Newline NL(LF) \n
Horizontal tab HT \t
Vertical tab VT \v
Backspace BS \b
Carriage return CR \r
Fonnfeed FF \f
Backslash \ \\
Single quote I \'
Bit pattern A\onum \onum

The escape \onum consists of the backslash followed by 1, 2, or 3 octal
digits (0 through 7), which are taken to specify the value of the desired
character. If the character following a backslash is not one of those
specified, the behavior is undefined. A newline character is illegal in a
character constant The type of a character constant is int.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a
fraction part, an e or E, and an optionally signed integer exponent. The
integer and fraction parts both consist of a sequence of digits. Either
the integer part or the fraction part may be missing, but not both.
Either the decimal point or the e and exponent may be missing, but not
both. Every floating constant has type double.

2.4.5 Enumeration constants
Names declared as enumerators have type int. For more infonnation
see the sections "Structure and Union Declarations" and
"Enumeration Declarations."

2.5 Strings
A string is a sequence of characters surrounded by double quotes, as in
"string". A string has type array of char and storage class
static and is initialized with the given characters. The compiler
places a null byte(\ O) at the end of each string so that programs
scanning the string can find its end. In a string, the double-quote
character (") must be preceded by a backslash (\). In addition, the

3-4 A/UX Programming Languages and Tools, Volume 1

same escapes as described for character constants may be used.

A backslash{\) and the newline immediately following are ignored.
All strings, even when formally identical, are distinct.

2.6 Hardware characteristics
The following table summarizes certain hardware properties for the
68020. Note that the ranges for float and double are approximate.

Table 3·2. 68020 hardware characteristics

~e
char
int
short
long
float
double
float range
double range

Re__Q_resentation
8 bits
32
16
32
32
64
±lof38
±lof307

For more information on 68020 data representation, see Chapter 4, ''C
Implementation Notes.''

3. Names
The C language bases the interpretation of an identifier upon two
attributes of the identifier:

storage class determines the location and lifetime of the storage
associated with an identifier.

type determines the meaning of the values found in the
identifier's storage.

3.1 Storage class
There are four declarable storage classes:

• Automatic variables are local to each invocation of a block and
are discarded upon exit from the block.

• Static variables are local to a block but retain their values upon
reentry to a block even after control has left the block.

C Language Reference 3-5

• External variables exist and retain their values throughout the
execution of the entire program. They may be used for
communication among functions, even separately compiled
functions.

• Register variables are stored in the fast registers of the machine
until these registers run out The remainder are treated as
automatic variables. Like automatic variables, they are local to
each block and disappear on exit from the block.

3.2 Type
The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of
the implementation's character set. If a genuine character from that
character set is stored in a char variable, its value is equivalent to the
integer code for that character. Other quantities may be stored into
character variables, but the implementation is machine dependent. In
particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long
int, are available. Longer integers do not provide less storage than
shorter ones, but the implementation may make short integers or long
integers, or both, equivalent to plain integers. ''Plain'' integers have
the natural size suggested by the host machine architecture. The other
sizes are provided to meet special needs. (See ''Hardware
Characteristics" for the sizes of types on the 68020.)

enum types have the same size as an int or long. The properties of
en um types are identical to those of some integer types, with the
exceptions that some conversions to or from them are not allowed (for
example, with float), and that they can be compared only for
equality.

Unsigned integers, declared unsigned, obey the laws of arithmetic
modulo 2n, where n is the number of bits in the representation.

Because objects of these types can usefully be interpreted as numbers,
they are referred to as arithmetic types. char, int of all sizes
whether unsigned or not, and en um are collectively called integral
types. The float and double types are collectively called floating
types.

3-6 A/UX Programming Languages and Tools, Volume 1

The following table summarizes the categorization of fundamental
types:

Table 3-3. Categorization of fundamental types

~e Cate_g_o_!Y
arithmetic integral floating

char x x
double x x
en um x
float x x
int x x
long x x
short x x

Besides the fundamental arithmetic types, there is a conceptually
infinite class of derived types, constructed from the fundamental types
in the following ways:

• Arrays of objects of most types

• Functions that return objects of a given type

• Pointers to objects of a given type

• Structures containing a sequence of objects of various types

• Unions capable of containing any one of several objects of
various types

In general, these methods of constructing objects can be applied
recursively.

4. Objects and lvalues
An object is a manipulatable region of storage. An lvalue is an
expression referring to an object; for example, an identifier. There are
operators that yield !values. For example, if E is an expression of
pointer type, then *E is an !value expression referring to the object to
which E points. The name "!value" comes from the assignment
expression El= E2 in which the left operand El must be an lvalue
expression. The discussion of each operator below indicates whether it
expects !value operands and whether it yields an I value.

C Language Reference 3-7

5. Conversions
A number of operators may, depending on their operands, cause
conversion of the value of an operand from one type to another. This
section explains the result you can expect from such conversions. The
conversions demanded by most ordinary operators are summarized
later in this chapter in ''Arithmetic Conversions.''

5.1 Characters and Integers
A char or a short may be used wherever an int is allowed. In all
cases the value is converted to an integer. Conversion of a shorter
integer to a longer one preserves sign. Whether or not sign extension
occurs for characters is machine dependent, but it is guaranteed that a
member of the standard character set is non-negative.

On machines that treat characters as signed, the characters of the
ASCII set are all non-negative. A character constant specified with an
octal escape, however, suffers sign extension and may appear negative;
for example, '\ 3 7 7' has the value -1.

When a longer integer is converted to a shorter integer or to a char, it
is truncated on the left. Excess bits are simply discarded.

5.2 Float and double
All floating arithmetic in C is carried out in double precision.
Whenever a float appears in an expression, it is lengthened to
double by right-padding its fraction with zeros. When a double
must be converted to float, for example by an assignment, the
double is rounded before truncation to float length. This result is
undefined if it cannot be represented as a float.

5.3 Floating and Integral
Conversions of floating values to integral type are rather machine
dependent. In particular, the direction of truncation of negative
numbers varies. On the 68020, negative floating values are rounded
toward zero. The result is undefined if it will not fit in the space
provided.

Conversions of integral values to floating type are well behaved. Some
loss of accuracy occurs if the destination lacks sufficient bits.

3-8 A/UX Programming Languages and Tools, Volume 1

5.4 Pointers and Integers
An expression of integral type may be added to or subtracted from a
pointer (thus, pointer arithmetic is allowed). In such a case, the first
is converted as specified in the discussion of the addition operator
(below). Two pointers to objects of the same type may be subtracted.
In this case, the result is converted to an integer, as specified in the
discussion of the subtraction operator (below).

5.5 Unsigned
Whenever an unsigned integer and a signed integer are combined, the
signed integer is converted to unsigned and the result is unsigned. In a
2's-complement representation, this conversion is conceptual, and there
is no actual change in the bit pattern. The value of the converted
integer is the least unsigned integer congruent to the signed integer
(modulo 2wordsize).

When an unsigned short integer is converted to long, the value of the
result is the same numerically as that of the unsigned integer. Thus, the
conversion amounts to padding with zeros on the left.

5.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a
similar way. From here on in this document, this pattern is called the
"usual arithmetic conversions." These rules are applied in the order in
which they appear, if applicable.

Note: In this implementation, int and long have the same
size, and do not require conversions to or from each other. In
the following table, therefore, long is used in place of int.

Conversions are performed only if necessary, depending on the
operation. If a char is added to a char, the result stays a char. If
an int is the result of adding two cha rs, the conversion is done
before the addition.

• First, char or short is converted to long, and unsigned
char or unsigned short is converted to unsigned
long. float is converted to double.

• Next, if either operand is double, the other one converts to
double and the result is double.

C Language Reference 3-9

• Next, if either operand is unsigned long, the other one
converts to unsigned long and is the result is unsigned
long.

• Next, if either operand is long, the other one converts to long
and the result is long.

• Next, if either operand is unsigned, the other one converts to
unsigned and the result is unsigned.

• Finally, if both operands are long, that is the type of the result.

6. Expressions
The precedence of expression operators is the same as the order of the
major subsections of this section, highest precedence first. For
example, the expressions referred to as the operands of + are those
expressions defined in ''Primary Expressions,'' ''Unary Operators,''
and ''Multiplicative Operators.'' Within each subpart, the operators
have the same precedence. Left or right associativity is specified in
each subsection for the operators discussed therein. The precedence
and associativity of all the expression operators are summarized in the
grammar in "Syntax Summary."

Otherwise, the order of evaluation of expressions is undefined. In
particular, the compiler considers itself free to compute subexpressions
in the order it believes most efficient, even if the subexpressions
involve side effects. The order in which subexpression evaluation
takes place is unspecified. Expressions involving a commutative and
associative operator (*, +, & , I , ~) may be rearranged arbitrarily, even
in the presence of parentheses; to force a particular order of evaluation,
your program must use an explicit temporary.

The handling of overflow and divide check in expression evaluation is
undefined. This implementation, like most that exist, ignores integer
overflows. The integer division by 0 exception is enabled by default.
The result of an integer division by 0 can be detected using adb on the
assembler file-it is designated Inf (infinity) or NaN (not a number).
All other floating-point exceptions are disabled. For more information
on the floating-point exception, see the Motorola MC68881 Floating
Point Coprocessor User's Manual, Motorola part number
M68KMASM.

3-10 A/UX Programming Languages and Tools, Volume 1

6.1 Primary expressions
Primary expressions involving . , ->,subscripting, and function calls
group left to right

primary-expression:
identifier
constant
string
(expression)

primary-expression
primary-expression
primary-expression
primary-expression

expression-list:
expression

[expression]
(expression-list 1)

"d ;J; op . i enuJ.er
-> identifier

expression-list, expression

An identifier is a primary expression, provided it has been suitably
declared as discussed below. Its declaration specifies its type. If the
identifier's type is

array of some-type

the value of the identifier expression is a pointer to the first object in
the array, and the type of the expression is

pointer to some-type

Moreover, an array identifier is not an lvalue expression. Likewise, an
identifier that is declared

function returning some-type

when used, except in the function-name position of a call, is converted
to

pointer to function returning some-type

A constant is a primary expression. Its type may be int, long, or
double, depending on its form. Character constants have type int
and floating constants have type double.

A string is a primary expression. Its type is originally array of char,
but following the same rule given above for identifiers, this is modified

C Language Reference 3-11

to pointer to char. The result is a pointer to the first character in the
string (there is an exception in certain initializers; see "Initialization"
under "Declarations").

A parenthetical expression is a primary expression whose type and
value are identical to those of the unadorned expression. The presence
of parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in brackets is a
primary expression. The intuitive meaning is that of a subscript
Usually, the primary expression has type

pointer to some-type

The subscript expression is int, and the type of the result is

some-type

The expression E 1 [E2] is identical (by definition) to
* ((E 1) + (E2)) . All the clues needed to understand this notation are
contained in this subsection together with the discussions in ''Unary
Operators" and "Additive Operators" on identifiers* and+,
respectively. The implications are summarized under "Arrays,
Pointers, and Subscripting" under "Types Revisited."

A function call is a primary expression followed by parentheses
containing a possibly empty, comma-separated list of expressions that
constitute the actual arguments to the function. The primary expression
must be of type

June/ion returning some-type

and the result of the function call is of type

some-type

As indicated below, a hitherto unseen identifier followed immediately
by a left parenthesis is contextually declared to represent a function
returning an integer. Therefore, in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before
the call. Any of type char or short are converted to int. Array
names are converted to pointers. No other conversions are performed
automatically; in particular, the compiler does not compare the types of

3-12 NUX Programming Languages and Tools, Volume 1

actual arguments with those of fonnal arguments. If conversion is
needed, use a cast. For further infonnation, see "Unary Operators"
and "Type Names" under "Declarations."

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A
function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. It is possible
to pass a pointer on the understanding that the function may change the
value of the object to which the pointer points. An array name is a
pointer expression; therefore, in effect, array arguments are passed by
reference. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ. Recursive calls to
any function are pennitted.

A primary expression followed by a dot, followed by an identifier, is an
expression. The primary expression must be a structure or a union, and
the identifier must name a member of the structure or union. The value
is that named member of the structure or union, and it is an lvalue if the
first expression is an !value.

A primary expression followed by an arrow (built from - and>),
followed by an identifier, is an expression. The first expression must
be a pointer to a structure or a union and the identifier must name a
member of that structure or union. The result is an lvalue that refers to
the named member of the structure or union to which the pointer
expression points. Thus the expression El->MOS is the same as
(*El) . MOS. Structures and unions are discussed in greater detail in
"Structure and Union Declarations" and "Enumeration Declarations"
under ''Declarations.''

6.2 Unary operators
Expressions with unary operators group right to left

C Language Reference 3-13

unary-expression:
* expression
& lvalue
- expression

expression
- expression
++ lvalue
-- lvalue
lvalue ++
lvalue --
(type-name expression
sizeof expression
sizeof (type-name)

The unary operator(*) means "indirection"; the expression must be a
pointer, and the result is an lvalue referring to the object to which the
expression points. If the type of the expression is

pointer to some-type

the type of the result is

some-type

The result of the unary & operator is a pointer to the object referred to
by the lvalue. If the type of the lvalue is

some-type

the type of the result is

pointer to some-type

The result of the unary - operator is the negative of its operand. The
usual arithmetic conversions are performed. The negative of an
unsigned quantity is computed by subtracting its value from 2n, where
n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one (1) if the value of
its operand is zero (0), and zero if the value of its operand is nonzero.
The type of the result is int. It is applicable to any arithmetic type or
to pointers.

3-14 A/UX Programming Languages and Tools, Volume 1

The - operator yields the 1 's-complement of its operand. The usual
arithmetic conversions are performed. The operand must be of the
integral type.

The object referred to by the lvalue operand of prefix ++ is
incremented. The value is the new value of the operand but is not an
lvalue. The expression ++x is equivalent to x = x + 1. See
''Additive Operators'' and ''Assignment Operators'' for information
on conversions.

The lvalue operand of prefix -- is decremented analogously to the
prefix++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the
object to which the lvalue refers. After the result is noted, the object is
incremented in the way the prefix ++ operator was implemented. The
type of the result is the same as the type of the lvalue expression.

When postfix -- is applied to an lvalue, the result is the value of the
object to which the lvalue refers. After the result is noted, the object is
decremented in the same manner as the prefix -- operator. The type of
the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type
causes the expression value to convert to the named type. This
construction is called a cast. Type names are described in ''Type
Names" under "Declarations."

The sizeof operator yields its operand's size in bytes (a byte is
undefined by the language except in tenns of the value of s i zeo f. In
this implementation, as in all existing ones, however, a byte is the
space required to hold a char). When applied to an array, the result is
the total number of bytes in the array. The size is determined from the
declarations of the objects in the expression. This expression is
semantically an unsigned constant and can be used anywhere a
constant is required. Its major use is in communication with routines
like storage allocators and I/O systems.

The sizeof operator also can be applied to a type name enclosed in
parentheses. In that case it yields the size, in bytes, of an object of the
indicated type.

C Language Reference 3-15

The construction sizeof (type) is taken to be a unit, so the
expression sizeof (type) -2 is the same as (sizeof (type)) -2.

6.3 Multlpllcatlve operators
The multiplicative operators *, I, and % group left to right. The usual
arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression I expression
expression % expression

The binary * operator indicates multiplication. The * operator is
associative, and expressions with several multiplications at the same
level can be rearranged by the compiler. The binary I operator
indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0. The
remainder has the same sign as the dividend. It is always true that
(a/b) *b + a %bis equal to a (if bis not 0).

6.4 Additive operators
The additive operators + and - group left to right The usual arithmetic
conversions are performed. There are some additional type
possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The
latter is in all cases converted to an address offset by multiplying it by
the length of the object to which the pointer points. The result is a
pointer of the same type as the original pointer, which points to another
object in the same array, appropriately offset from the original object
Thus if Pis a pointer to an object in an array, the expression P+l is a
pointer to the next object in the array. No further type combinations
are allowed for pointers.

3-16 A/UX Programming Languages and Tools, Volume 1

The + operator is associative, and expressions with several additions at
the same level can be rearranged by the compiler.

The result of the - operator is the difference of the operands. The
usual arithmetic conversions are performed. Additionally, a value of
any integral type may be subtracted from a pointer, and then the same
conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is
converted (through division by the length of the object) to an int
representing the number of objects separating the objects pointed to.
This conversion in general gives unexpected results unless the pointers
point to objects in the same array, because pointers, even to objects of
the same type, do not necessarily differ by a multiple of the object
length.

6.5 Shift operators
The shift operators < < and > > group left to right. Both perform the
usual arithmetic conversions on their operands, each of which must be
integral. Then the right operand is converted to int; the type of the
result is that of the left operand. The result is undefined if the right
operand is negative, or greater than or equal to, the length of the object
in bits.

shift-expression:
expression << expression
expression >> expression

The value of El<<E2 is El (interpreted as a bit pattern) left-shifted E2
bits. Vacated bits are 0 filled. The value of El>>E2 is El
right-shifted E2 bit positions. The right shift is guaranteed to be logical
(0 fill) if E 1 is unsigned; otherwise, it may be arithmetic.

6.6 Relational operators
The relational operators group left to right

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

C Language Reference 3-17

The operators< (less than),> (greater than),<= (less than or equal to),
and>= (greater than or equal to) all yield 0 if the specified relation is
false, and 1 if it is true. The type of the result is int. The usual
arithmetic conversions are performed. You can compare two pointers;
the result depends on the relative locations in the address space of the
objects pointed to. Pointer comparison is portable only when the
pointers point to objects in the same array.

6.7 Equality operators

equality-expression:
expression == expression
expression ! = expression

The== (equal to) and the ! =(not equal to) operators are exactly
analogous to the relational operators, except they have lower
precedence (thus a<b == c<d is 1 whenever a<b and c<d have the
same truth value).

You can compare a pointer to an integer only if the integer is the
constant 0. A pointer to which 0 has been assigned is guaranteed not to
point to any object and will appear to be equal to 0. In conventional
usage, such a pointer is considered to be ''null.''

6.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative; expressions involving & can be
rearranged. The usual arithmetic conversions are performed. The
result is the bitwise AND function of the operands. The operator
applies only to integral operands.

6.9 Bitwise exclusive OR operator

exclusive-or-expression:
expression A expression

The A operator is associative; expressions involving A can be
rearranged. The usual arithmetic conversions are performed; the result
is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands.

3-18 NUX Programming Languages and Tools, Volume 1

6.1 O Bitwise Inclusive OR operator

inclusive-or-expression:
expression I expression

The I operator is associative; expressions involving I can be
rearranged. The usual arithmetic conversions are performed; the result
is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

6.11 Logical AND operator

logical-and-expression:
expression & & expression

The & & operator groups left to right. It returns 1 if both its operands
evaluate to nonzero; otherwise it returns 0. Unlike & , & & guarantees
left-to-right evaluation. Moreover, the second operand is not evaluated
if the first operand is 0.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always int.

6.12 Logical OR operator

logical-or-expression:
expression I I expression

The I I operator groups left to right. It returns 1 if either of its
operands evaluates to nonzero; otherwise it returns 0. Unlike I , I I
guarantees left-to-right evaluation. Moreover, the second operand is
not evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always int.

6.13 Conditional operator

conditional-expression:
expression ? expression expression

Conditional expressions group right to left. The first expression is
evaluated. If it is nonzero, the result is the value of the second
expression; otherwise, that of the third expression. If possible, the
usual arithmetic conversions are performed to bring the second and

C Language Reference 3-19

third expressions to a common type. If both are structures or unions of
the same type, the result has that type as well. If both pointers are of
the same type, the result has the common type. Otherwise, one must be
a pointer and the other the constant 0, and the result has the type of the
pointer. Only one of the second and third expressions is evaluated.

6.14 Assignment operators
There are a number of assignment operators, all of which group right to
left. All require an lvalue as their left operand. The type of an
assignment expression is that of its left operand. The value is the value
stored in the left operand after the assignment has taken place. The two
parts of a compound assignment operator are separate tokens.

assignment-expression:
/value = expression
/value += expression
/value -= expression
/value *= expression
/value I= expression
/value %= expression
/value > >= expression
/value <<= expression
/value &= expression
/value ~ = expression
/value I = expression

In the simple assignment with =, the value of the expression replaces
that of the object to which the lvalue refers. If both operands have
arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment If both operands are structures or
unions, they must be of the same type. If the left operand is a pointer,
the right operand must in general be a pointer of the same type. The
constant 0 may be assigned to a pointer, however; it is guaranteed that
this value will produce a null pointer that is distinguishable from a
pointer to any object.

You can understand the behavior of an expression of the form E 1 op
E2 by taking it as equivalent to El = El op (E2); however, El is
evaluated only once. In += and -=, the left operand may be a pointer,
in which case the (integral) right operand is converted as explained in
''Additive Operators.'' All right operands and all nonpointer left

3-20 A/UX Programming Languages and Tools, Volume 1

operands must have arithmetic type.

6.15 Comma operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right.
The value of the left expression is discarded. The type and value of the
result are the type and value of the right operand. This operator groups
left to right. It is useful in situations where you wish to combine
operations on one line and do not care about seeing the first result, just
about using it in the second operation. In contexts where a comma is
given a special meaning, for example, in lists of actual arguments to
functions (see "Primary Expressions") and lists of initializers (see
"Initialization" under "Declarations"), the comma operator as
described in this subpart can appear only in parentheses. For example,

f (a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

7. Declarations
Declarations are used to specify the interpretation that C gives to each
identifier. They don't necessarily reserve storage associated with the
identifier. Declarations have the form

declaration:
decl-specifters declarator-list ;

opt

The declarators in the declarator-list contain the identifiers being
declared. The decl-specifters consist of a sequence of type and storage
class specifiers.

de cl-specifiers:
type-specifier decl-specifters
SC-Specifier decl-specifters opt

opt

The list must be self-consistent, as described below.

7.1 Storage class specifiers
The storage class specifiers are

C Language Reference 3-21

auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a
"storage class specifier" only for syntactic convenience (see
''Typedef'' for more information). The meanings of the various
storage classes are discussed in ''Names.''

The auto, static, and register declarations also serve as
definitions because they cause an appropriate amount of storage to be
reserved. In the extern case, there must be an external definition
(see "External Definitions") for the given identifiers, somewhere
outside the function in which they are declared.

A register declaration is best thought of as an auto declaration
that hints to the compiler that the variables declared will be heavily
used. Only the first few such declarations in each function are
effective. Moreover, only variables of certain types will be stored in
registers. One other restriction applies to register variables: The
address-of operator & cannot be applied to them. Smaller, faster
programs can be expected if register declarations are used
appropriately.

At most. one storage class specifier can be given in a declaration. If the
storage class specifier is missing from a declaration, it is taken to be
auto inside a function, extern outside.

Note: The exception is that functions are never automatic.

7.2 Type specifiers
The type specifiers are

3-22 NUX Programming Languages and Tools, Volume 1

type-specifier:
struct-or-union-specifier
basic-type-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifier

basic-type:
char
short
int
long
unsigned
float
double

long or short may be specified in conjunction with int; the
meaning is the same as if int were not mentioned. The word long
may be specified in conjunction with float; the meaning is the same
as double. unsigned may be specified alone or in conjunction with
int or any of its short or long varieties, or with char.

Except for the combinations just described, only a single type specifier
may be given in a declaration. In particular, using long, short, or
unsigned as an adjective is not permitted with typedef names. If
the type specifier is missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in
"Structure and Union Declarations" and "Enumeration
Declarations.'' Declarations with typedef names are discussed in
''Typedef.''

7.3 Declarators
The declarator-list appearing in a declaration is a comma-separated
sequence of declarators, each of which may have an initializer.

declarator-list:
init-declarator
init-declarator, declarator-list

opt

C Language Reference 3-23

init-declarator:
declarator initializer

opt

Initializers are discussed in ''Initialization.'' The specifiers in the
declaration indicate the type and storage class of the objects to which
the declarators refer. Declarators have the syntax

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression]

opt

The grouping is the same as in expressions.

7.3.1 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of
the same form as the declarator appears in an expression, it yields an
object of the indicated type and storage class.

Each declarator contains exactly one identifier: This is what is being
declared. If an unadorned identifier appears as a declarator, it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but
the binding of complex declarators may be altered by parentheses (see
the examples below).

Now imagine a declaration:

TDJ

where Tis a type specifier (for example, int) and D 1 is a declarator.
Suppose this declaration declares the identifier to be of type

[modifier]T

where the [modifier] is empty if D 1 is just a plain identifier (so that the
type of x in int xis just int). Then if DJ has the form

*D

the type of the contained identifier is

3-24 A/UX Programming Languages and Tools, Volume 1

[modifier]pointer to T

If D 1 has the form

DO

the contained identifier has the type

[modifier]function returning T

If D 1 has the form

D [constant-expression]

or

D []

the contained identifier has type

[modifier]array of T

In the first case, the constant expression is an expression whose value
can be determined at compile time, whose type is int, and whose
value is positive (constant expressions are defined precisely in
"Constant Expressions"). When several array of specifications are
adjacent, a multidimensional array is created. The constant expressions
that specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is
external and the actual definition, which allocates storage, is given
elsewhere. The first constant expression may also be omitted when the
declarator is followed by initialization. In this case, the size is
calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a
pointer, a structure or union, or from another array (to generate a
multidimensional array).

Not all the possibilities of the above syntax are actually permitted. The
restrictions are as follows: Functions may not return arrays or
functions although they may return pointers; there are no arrays of
functions although there may be arrays of pointers to functions;
likewise, a structure or union may not contain a function, but it may
contain a pointer to a function.

C Language Reference 3-25

As an example, the declaration

int i, *ip, f (), *fip (), (*pfi) ();

declares

i
*ip
f ()
*fip ()
(*pfi) ()

an integer
a pointer to an integer
a function returning an integer
a function returning a pointer to an integer
a pointer to a function that returns an integer

It is especially useful to compare the last two.

* f i p () The binding of * f i p () is * (fi p ()) . If this declaration
were part of an expression in the code, it would call the
function fip. fip returns a pointer. Using indirection
through this pointer yields an integer.

(*pf i) () In the declarator (*pf i) () , or such a construct in an
expression, the parentheses must enclose *pf i to show
that the whole thing yields a function (via indirection
through a pointer). When this function is called, it returns
an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to
float numbers.

Finally,

static int x3d[3] [5] [7];

declares a static three-dimensional array of integers, with rank 3x5x7.
In complete detail, x3d is an array of three items. Each item is an
array of five arrays. Each of the arrays is an array of seven integers.

Any of the expressions

3-26 A/UX Programming Languages and Tools, Volume 1,

x3d
x3d[i]
x3d [i] [j]
x3d[i] [j] [k]

may reasonably appear in an expression. The first three have type
array and the last has type int.

7.4 Structure and union declarations
A structure is an object made up of a sequence of named members.
Each member may have any type. A union is an object that can, at a
given time, contain any one of several members. Structure and union
specifiers have the same form:

struct-or-union-specifier:
struct-or-union { struct-decl-list}
struct-or-union identifier { struct-decl-list}
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member
of a structure or union. A structure member may also consist of a
specified number of bits. Such a member is also called a "field"; its
length, a non-negative constant expression, is set off from the field
name by a colon.

C Language Reference 3-27

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses that increase as
the declarations are read left to right Each nonfield member of a
structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field
that does not fit into the space remaining in a word is put into the next
word. No field may be wider than a word.

A struct-declarator with no declarator, only a colon and a width,
indicates an unnamed field useful for padding to conform to externally
imposed layouts. As a special case, a field with a width of 0 specifies
alignment of the next field on an implementation-dependent boundary.

The language does not restrict the types of things that are declared as
fields, but implementations are not required to support any but integer
fields. Moreover, even int fields can be considered to be unsigned.

It is strongly recommended that fields be declared as unsigned. In all
implementations, there are no arrays of fields, and the address-of
operator & cannot be applied to them, so that there are no pointers to
fields.

A union can be thought of as a structure, all of whose members begin
at offset 0 and whose size is sufficient to contain any of its members.
At most, one of the members can be stored in a union at any time.

A structure or union specifier of the second form,

struct identifier {struct-decl-list}
union identifier { struct-decl-list}

declares the identifier to be the "structure tag" (or union tag) of the
structure specified by the list A subsequent declaration may then use
the third form of specifier,

struct identifier
union identifier

3-28 A/UX Programming Languages and Tools, Volume 1

Structure tags allow definition of self-referencing structures. They also
permit the long part of the declaration to be given once and used
several times. It is illegal to declare a structure or union that contains
an instance of the structure or union itself, but it may contain a pointer
to an instance of itself.

You may use the third form of a structure or union specifier before a
declaration that gives the specifier's complete specification in situations
in which its size is unnecessary. The size is unnecessary in two
situations: (1) when a pointer to a structure or union is being declared,
and (2) when a typedef name is declared to be a synonym for a
structure or union. This, for example, allows the declaration of a pair
of structures that contain pointers to each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the
same structure, but the same name may be used in several different
structures in the same scope.

A simple but important example of a structure declaration is the binary
tree structure

struct tnode

} ;

char tword[20];
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers
to similar structures. Once this declaration has been given, the
declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

C Language Reference 3-29

s.left

refers to the left subtree pointer of the structures; and

s.right->tword[O]

refers to the first character of the two rd member of the right subtree
ofs.

7.5 Enumeration declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum {enum-list}
en um identifier { enum-list}
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator.
identifier
identifier constant-expression

The identifiers in an enum-list are declared as constants and may
appear wherever constants are required. If no enumerators with =

appear, the values of the corresponding constants begin at 0 and
increase by 1 as the declaration is read from left to right. An
enumerator with = gives the associated identifier the value indicated;
subsequent identifiers continue the progression from the assigned
value.

The names of enumerators in the same scope must all be distinct from
each other and from those of ordinary variables.

The role of the identifier in the enum-specifter is entirely analogous to
that of the structure tag in a struct-specifier; it names a particular
enumeration. For example,

3-30 A/UX Programming Languages and Tools, Volume 1

enum color {mauve,burgundy,claret=20,wine};

enum color *cp, col;

col = claret;
cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors,
and then declares cp as a pointer to an object of that type, and co 1 as
an object of that type. The possible values are drawn from the set { o ,
1, 20, 21}.

7.6 lnltlallzatlon
A declarator may specify an initial value for the identifier being
declared. The initializer is preceded by = and consists of an expression
or a list of values nested in braces.

initializer:
expression
{ initializer-list}
{initializer-list, }

initializer-list:
expression
initializer-list , initializer-list

{ initializer-list}
{ initializer-list, }

All the expressions in an initializer for a static or external variable must
be constant expressions (see "Constant Expressions") or expressions
that reduce to the address of a previously declared variable, possibly
offset by a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and previously
declared variables and functions.

Static and external variables that are not initialized are guaranteed to
start off as zero. Automatic and register variables that are not
initialized are undefined.

C Language Reference 3-31

When an initializer applies to a scalar (a pointer or object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial
value of the object is taken from the expression; it is converted in the
same way it would be in an assignment.

When the declared variable is an aggregate (a structure or array), the
initializer consists of a brace-enclosed, comma-separated list of
initializers for the members of the aggregate, written in increasing
subscript or member order. If the aggregate contains subaggregates,
this rule applies recursively to the members of the aggregate. If there
are fewer initializers in the list than there are members of the
aggregate, the aggregate is padded with zeros. You may not initialize
unions or automatic aggregates.

You may, in some cases, omit braces. If the initializer begins with a
left brace, the succeeding comma-separated list of initializers initializes
the members of the aggregate; the compiler will report an error if there
are more initializers than members. If, however, the initializer does not
begin with a left brace, only enough elements to account for the
members of the aggregate are taken from the list; any remaining
members are left to initialize the next aggregate member.

A final abbreviation allows a char array to be initialized by a string.
In this case, successive characters of the string initialize the members
of the array.

The syntax of char array initialization can be derived from that of
numerical array initialization. For example, the construct

int x [] = { 1, 3, 5 } ;

declares and initializes x as a one-dimensional array that has three
members, as no size was specified and there are three initializers.

Now consider an example of two-dimensional array initialization. The
construct

3-32 A/UX Programming Languages and Tools, Volume 1

float y[4] [3] =
{

{ 1, 3, 5 } ,
{ 2, 4, 6 } ,
{ 3, 5, 7 } ,

} ;

gives a completely bracketed initialization: 1, 3, and 5 initialize the
first row of the array y [o], namely,

y[O] [0]

y[O] [l]

y[O] [2]

Likewise, the next two lines initialize y [1] and y [2] . The initializer
ends early and therefore y [3] is initialized with 0. Precisely the same
effect could have been achieved with

float y [4] [3]
{

1, 3, 5, 2, 4, 6, 3, 5, 7
} ;

The initializer for y begins with a left brace but the one for y [o] does
not; therefore, three elements from the list are used. Likewise, the next
three are taken successively for y [1] and y [2] . Also,

float y [4] [3]
{

{l}, {2}, {3}, {4}

} ;

initializes the first column of y (regarded as a two-dimensional array)
and leaves the rest 0.

A further leap allows for the syntax of character array initialization.
Because commas are common elements within strings, it would be
handier not to have to separate elements with them. It is preferable in
this situation to presuppose a variable-length one-dimensional array,
the successive elements of which become array members. The array
ends when the string is exhausted, as in the two-dimensional array
example, and no commas are needed, as the initialization happens all at
once. Thus, the construct

C Language Reference 3-33

static char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.
Note the lack of size specification, as in the one-dimensional array
example.

7.7 Type names
In two contexts (to specify type conversions explicitly by means of a
cast and as an argument of s i zeof), you should supply the name of a
data type. Your program can do this by using a type name, which in
essence is a declaration for an object of the type that omits the name of
the object

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
*abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression]

opt

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this
restriction, your program can identify uniquely the location in the
abstract-declarator where the identifier would appear if the
construction were a declarator in a declaration. The named type is then
the same as the type of the hypothetical identifier. For example,

int

int *
int *[3]

int (*) [3]

int * ()
int (*) ()

is type integer

is type pointer to integer

is type array of three pointers to integers

is type pointer to an array of three integers

is type function returning pointer to integer

is type pointer to function returning an integer

3-34 A/UX Programming Languages and Tools, Volume 1

int (* [3]) () is type array of three pointers to functions
returning an integer

7.8 Typedef
Declarations whose storage class is typedef do not define storage,
but instead define identifiers. Your program can later use these
identifiers as if they were type keywords naming fundamental or
derived types.

typedef-name:
identifier

Within a declaration that involves typedef, each identifier that is part
of a declarator is syntactically equivalent to the type keyword that
names the identifier type as described in ''Meaning of Declarators.''
For example, after

typedef int MILES, *KLICKSP;
typedef struct {double re, im;} complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the following types apply:

• distance is int

• metricp is a pointer to int

• z is the specified structure complex

• zp is a pointer to such a structure

The typedef does not introduce brand new types, only synonyms for
types that could be specified in another way. Thus in the example
above, distance is considered to have exactly the same type as any
other int object.

8. Statements
Except as indicated, statements are executed in sequence.

C Language Reference 3-35

8.1 Expression statement
Most statements are expression statements, which have the fonn

expression;

Usually expression statements are assignments or function calls.

8.2 Compound statement or block
The compound statement lets your program use several statements
where only one is expected:

compound-statement:
{declaration-list statement-list }

opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were declared previously,
the outer declaration is pushed down for the duration of the block, after
which it resumes its force.

Any initializations of auto or register variables are performed
each time the block is entered at the top. Although it is bad practice,
your program can transfer into a block;. in that case the initializations
are not performed. Initializations of static variables are performed
only once, when the program begins execution. Inside a block,
extern declarations do not reserve storage, so initialization is not
permitted.

8.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated. If it is nonzero, the first
substatement is executed. If the expression is 0, the second
substatement is executed. The "else" ambiguity is resolved by
connecting an else with the last encountered else-less if.

3-36 A/UX Programming Languages and Tools, Volume 1

8.4 while statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly as long as the value of the
expression remains nonzero. The test t.alces place before each
execution of the statement.

8.5 do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the
expression is 0. The test t.alces place after each execution of the
statement.

8.6 for statement
The for statement has the form

for (exp-1 ; exp-2 ; exp-3) statement
opt opt opt

This statement is equivalent to

exp-I
opt

while (exp-2)
opt

statement
exp-3 ;

opt

except in the case where a continue appears before or in exp-3. In
this case, (all of) exp-3 will not be read or implemented (see
"continue Statement").

The first expression specifies initialization for the loop; the second
specifies a test made before each iteration such that the loop is exited
when the expression becomes 0. The third expression often specifies
an incrementation that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes
the implied while clause equivalent to while (1) . Other missing
expressions are simply dropped from the expansion above.

C Language Reference 3-37

8.7 switch statement
The switch statement causes control to be transferred to one of
several statements, depending on the value of an expression. It has the
form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the
result must be int. The statement is typically compound. Any
statement within the statement may be labeled with one or more case
prefixes, as in

case constant-expression:

where the constant expression must be int. No two case constants
in the same switch can have the same value. Constant expressions
are precisely defined in ''Constant Expressions.''

There also can be no more than one statement prefix of the form

default:

When the switch statement is executed, its expression is evaluated
and compared with each case constant. If one of the case constants is
equal to the expression's value, control is passed to the statement
following the matched case prefix. If no case constant matches the
expression, control passes to the statement with the def au 1 t prefix.
If no case matches and there is no default, none of the statements in
the switch are executed.

The prefixes case and default do not alter the flow of control; it
continues unimpeded across such prefixes. To learn about exiting from
a switch, see "Break Statement"

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but
initializations of automatic or register variables are ineffective.

8.8 break statement
The statement

break;

causes termination of the smallest enclosing while, do, for, or
switch statement Control passes to the statement following the

3-38 A/UX Programming Languages and Tools, Volume 1

terminated statement.

8.9 continue statement
The statement

continue;

causes control to pass to the loop-continuation portion of the smallest
enclosing while, do, or for statement; that is, to the end of the loop.
More precisely, in each of the statements

Statement 1:

while (exp-1)
exp-2

contin:;

Statement 2:

do {
exp-1

contin:;
} while (exp-2) ;

Statement 3:

for (exp-1)
exp-2

contin:;

a continue is equivalent to goto cont in (following the
cont in: is a null statement; see "Null Statement").

C Language Reference 3-39

8.10 return statement
A function returns to its caller by means of the return statement,
which has one of the two forms

return;
return expression;

In the first case, the returned value is undefined. In the second case, the
value of the expression is returned to the caller of the function. If
required, the expression is converted, as if by assignment, to the type of
function in which it appears. Flowing off the end of a function is
equivalent to a return with no returned value. The expression may
be enclosed in parentheses.

8.11 goto statement
Control may be transferred unconditionally by means of the statement

goto identifier;

The identifier must be a label (see "Labeled Statement") located in the
current function.

8.12 Labeled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label
is as a target of a goto. The scope of a label is the current function,
excluding any subblocks in which the same identifier has been
redeclared (see "Scope Rules").

8.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the ending brace
of a compound statement or to supply a null body to a looping
statement such as while.

9. External definitions
A C program consists of a sequence of external definitions. An
external definition declares an identifier to have storage class extern

3-40 A/UX Programming Languages and Tools, Volume 1

(by default) or perhaps static, and a specified type. The type
specifier (see "Type Specifiers" in "Declarations") may also be
empty, in which case the type is taken to be int. The scope of
external definitions persists to the end of the file in which they are
declared, just as the effect of declarations persists to the end of a block.
The syntax of external definitions is the same as for all declarations,
except that only at this level can the code for functions be given.

9.1 External function definitions
Function definitions have the form

function-definition:
decl-specifiers function-declarator function-body

opt

The only storage class specifiers allowed among the declaration
specifiers are extern or static (see "Scope of Externals" in
"Scope Rules" for the distinction between them). A function
declarator is similar to a declarator for a

function returning some-type

except that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-list)

opt

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, can be
declared in the declaration list. Any identifier whose type is not given
is taken to be int. The only storage class that can be specified is
register; if it is specified, the corresponding actual parameter will
be copied, if possible, into a register at the outset of the function.

A simple example of a complete function definition is

C Language Reference 3-41

int max(a, b, c)
int a, b, c;

int m;

m = (a > b) ? a : b;
return ((m > c) ? m : c) ;

Here, int is the type-specifier; max (a, b, c) is the
function-declarator; int a, b, c; is the declaration-list for the
fonnal parameters, and { . . . J is the block giving the code for the
statement.

The C compiler converts all float actual parameters to double, so
fonnal parameters declared float have their declaration adjusted to
read double.

All char and short fonnal parameter declarations are similarly
adjusted to read int. Also, because a reference to an array in any
context (in particular as an actual parameter) is taken to mean a pointer
to the first element of the array, declarations of formal parameters
declared

array of some-type

are adjusted to read

pointer to some-type

9.2 External data definitions
An external data definition has the fonn

data-definition:
declaration

The storage class of such data may be extern (the default) or
static, but not auto or register.

1 O. Scope rules
AC program doesn't have to be compiled all at the same time. The
source text of the program can be kept in several files and precompiled
routines can be loaded from libraries. Communication among the

3-42 A/UX Programming Languages and Tools, Volume 1

functions of a program may be carried out through both explicit calls
and manipulation of external data.

Therefore, there are two kinds of scope to consider: (1) lexical scope,
which is essentially the region of a program within which your program
can use some identifier without drawing ''undefined identifier''
diagnostics, and (2) scope of externals, which is the scope associated
with external identifiers; it is characterized by the rule that states that
references to the same external identifier are references to the same
object.

10.1 Lexical scope
The lexical scope of identifiers that are declared in external definitions
persists from the definition through the end of the source file in which
they appear.

The lexical scope of identifiers that are formal parameters persists
through the function with which they are associated.

The lexical scope of identifiers that are declared at the head of a block
persists until the end of the block.

The lexical scope of labels is the whole of the function in which they
appear.

In all cases, however, if an identifier is explicitly declared at the head
of a block, including the block constituting a function, any declaration
of that identifier outside the block is suspended until the end of the
block.

Remember also that tags, identifiers associated with ordinary variables,
and identities associated with structure and union members form three
disjoint classes that do not conflict (see "Structure and Union
Declarations" and "Enumeration Declarations" in "Declarations").
Members and tags follow the same scope rules as other identifiers.

The en um constants are in the same class as ordinary variables and
follow the same scope rules.

The typedef names are in the same class as ordinary identifiers.
They may be redeclared in inner blocks, but an explicit type must be
given in the inner declaration.

C Language Reference 3-43

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it will be taken
as a declaration with no declarators and with type distance.

10.2 Scope of externals
If a function refers to an identifier that's declared to be extern,
somewhere among the files or libraries that constitute the complete
program there must be at least one external definition for that identifier.
All functions in a given program that refer to the same external
identifier are referring to the same object, so you must take care that the
type and size you specify in the definition are compatible with those
specified by each function that references the data.

It is illegal to initialize any external identifier explicitly more than once
in the set of files and libraries that make up a multifile program. Your
program can have more than one data definition for any external
nonfunction identifier, however; explicit use of extern does not
change the meaning of an external declaration.

With a more restrictive compiler, the use of the extern storage class
takes on an additional meaning. With such a compiler, the explicit
appearance of the extern keyword in the external data declarations
of identities without initialization indicates that the identifiers' storage
is allocated elsewhere, either in that file or in another file. Your
program must have exactly one definition of each external identifier
(without extern) in the set of files and libraries composing a multifile
program.

The A/UX C compiler accepts multiply-defined externals. For future
portability of code, however, you might find it easier to observe the
above restrictions in any case. To help you do this, you can use the -M

flag option to ld, which causes the link editor to check for multiply­
defined externals. (fhe flag option should be entered on the cc
command line, and will be passed on to ld by cc.) ld prints a
warning message if any multiple definitions are found.

3-44 A/UX Programming Languages and Tools, Volume 1

In addition, in NUX. ld warns you by default if the size of these
multiple externs differs among the files in which it is found. This will
catch such errors as a variable defined as char in one file and as int
in another. You can use the-t flag option told to disable this check.
To invoke this option on the cc command line, you must pass it
explicitly to ld via the -w option to cc, as

cc -Wl-t

where -w passes an argument to the link editor (1), and -t is the
argument passed to ld. This form must be used, as the -t option to
cc is already defined to mean something else.

Together, the -M and-t flag options to ld allow for simulation of the
more restrictive environment required by other machines. Using these
options, you will find it easier to write code that ports to more
restrictive compilers with fewer, if any, changes.

Identifiers declared static at the top level in external definitions are
not visible in other files. Functions may be declared static. This
provides a way of hiding globals, and hence should be used with
caution.

11. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning
with # communicate with this preprocessor. There may be any number
of blanks and horizontal tabs between the # and the directive. These
lines have syntax independent of the rest of the language; they may
appear anywhere. Their effect lasts (independent of scope) until the
end of the source program file.

11.1 Token replacement
A compiler-control line of the form

#define identifier token-string

causes the preprocessor to replace subsequent instances of the identifier
with the given string of tokens. Semicolons in or at the end of the
token string are taken as part of that string. A line of the form

#define identifier (identifier, . . .) token-string

C Language Reference 3-45

where there is no space between the first identifier and the (is a macro
definition with arguments. It may have zero or more formal
parameters. Subsequent instances of the first identifier, followed by a
(, a sequence of tokens delimited by commas, and a) are replaced by

the token string in the definition. Each occurrence of an identifier
mentioned in the formal parameter list of the definition is replaced by
the corresponding token string from the call.

The actual arguments in the call are token strings separated by
commas; however, commas in quoted strings or commas protected by
parentheses do not separate arguments. The number of formal and
actual parameters must be the same. Strings and character constants in
the token-string are scanned for formal parameters, but strings and
character constants in the rest of the program are not scanned for
defined identifiers for replacement

In both forms the replacement string is rescanned for more defined
identifiers. In both forms a long definition may be continued on
another line by preceding the newline with a backslash{\}.

This facility is most valuable for definition of "manifest constants," as
in

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

fundef identifier

causes the identifier's preprocessor definition (if any) to be dropped.

If a fdef ined identifier is the subject of a subsequent #define with
no intervening tundef, the two token strings are compared textually.
If the two token strings are not identical (all white space is considered
equivalent), the identifier is considered to be redefined.

11.2 Fiie Inclusion
A compiler control line of the form

#include "filename"

3-46 A/UX Programming Languages and Tools, Volume 1

causes that line to be replaced by the entire contents of the file
filename. The named file is first searched for in the directory of the file
containing the =It inc 1 ude, and then in a sequence of specified or
standard places. Alternatively, a control line of the form

#include <.filename>

searches only the specified or standard places and not the directory of
the =It inc 1 ude (how the places are specified is not part of the
language). :fl:includes may be nested.

11.3 Condltlonal compllatlon
A compiler control line of the form

:ltif restricted-constant expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in "Constant Expressions." Here,
the restricted-constant expression cannot contain sizeof casts or an
enumeration constant.)

A restricted-constant expression may also contain the additional unary
expression

defined identifier

or

defined (identifier>

each of which evaluates to one if the identifier is currently defined in
the preprocessor, and to zero if it is not.

All currently defined identifiers in restricted-constant expressions are
replaced by their token strings (except those identifiers modified by
defined), just as in normal text. The restricted-constant expression
is evaluated only after all expressions have finished. During this
evaluation, all identifiers undefined to the procedure evaluate to zero.

A control line of the form

=It if def identifier

checks whether the identifier is currently defined in the preprocessor;
that is, whether it has been the subject of a #define control line. It is
equivalent to :It if def (identifier).

C Language Reference 3-47

A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
It is equivalent to #if! defined (identifier).

All three forms are followed by an arbitrary number of lines that may
include the control line

#else

followed by the control line

#endif

If the checked condition is true, any lines between #else and
#endif are ignored. If the checked condition is false, any lines
between the test and *else or, lacking *else, *endif, are ignored.

These constructions may be nested.

11.4 Line control
For the benefit of other preprocessors that generate C programs, a line
of the form

#line constant filename

causes the compiler to believe, for purposes of error diagnostics, that
the line number of the next source line is given by the constant and the
current input file is named by filename. If filename is absent, the
remembered filename does not change.

12. Implicit declarations
When you are writing a program, you don't always have to specify
both the storage class and type of identifiers in a declaration. The
storage class is supplied by the context in external definitions,
declarations of formal parameters, and structure members. In a
declaration inside a function, if you specify a storage class, but no type,
the identifier is assumed to be int. If you specify a type, but no
storage class, the identifier is assumed to be auto. An exception to the
latter rule is made for functions, because auto functions do not exist.
If the type of an identifier is

3-48 A/UX Programming Languages and Tools, Volume 1

function returning some-type

it is implicitly declared to be extern.

In an expression, an undeclared identifier followed by (is contextually
declared to be function returning int.

13. Types revisited
This section summarizes the operations that can be performed on
objects of certain types.

13.1 Structures and unions
Structures and unions may be assigned, passed as arguments to
functions, and returned by functions. Other plausible operators, such
as equality comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of
the -> or . must specify a member of the aggregate that is named or
pointed to by the expression on the left. In general, a member of a
union may not be inspected unless that member had a value assigned
more recently than any other member which overlaps the same space.
One special guarantee is made by the language, however, in order to
simplify the use of unions: If a union contains several structures that
share a common initial sequence and the union currently contains one
of these structures, you can inspect the common part of any member in
which it occurs. For example, the following is a legal fragment

C Language Reference 3-49

union

struct
{

int
n;

struct

int
int

ni;
struct
{

int
float

} nf;
} u;

u.nf.type =FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)

type;

type;
intnode;

type;
floatnode;

... sin(u.nf.floatnode)

13.2 Functions
A program can do only two things with a function: call it or talce its
address. If the name of a function appears in an expression, not in the
function-name position of a call, a pointer to the function is generated.
Thus, to pass one function to another, your program could include

int f ();

g (f);

3-50 A/UX Programming Languages and Tools, Volume 1

The definition of g might read

g(funcp)
int (*funcp) ();

(*funcp) ();

Notice that f must be declared explicitly in the calling routine because
its appearance in g (f) was not followed by (.

13.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is
converted into a pointer to the first mem her of the array. Because of
this conversion, arrays are not lvalues. By definition, the subscript
operator [] is interpreted in such a way that El [E2] is identical to
* ((El)+ (E2)) . Because of the conversion rules that ap&ly to+, if
El is an array and E2 an integer, El [E2] refers to the E2 member
of El. Therefore, despite its asymmetric appearance, subscripting is a
commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If
Eis an n-dimensional array of rank ixjx ... xk, then E appearing in an
expression is converted to a pointer to an (n-1)-dimensional array with
rankjx .. . xk. If the* operator is applied to this pointer, either
explicitly or implicitly as a result of subscripting, the result is the
pointed-to (n-1)-dimensional array, which itself is immediately
converted into a pointer.

For example, consider

int x (3) (5);

Here x is a 3 x 5 array of integers. When x appears in an expression, it
is converted to a pointer to (the first of three) five-membered arrays of
integers. In the expression x [i] , which is equivalent to * (x+ i) , x is
first converted to a pointer as described; then i is converted to the type
of x, which involves multiplying i by the length of the object to which
the pointer points, namely, five-integer objects.

C Language Reference 3-51

The results are added and indirection applied to yield an array (of five
integers), which, in tum, is converted to a pointer to the first of the
integers. If there is another subscript, the same argument applies again;
this time the result is an integer.

Arrays in Care stored by rows (last subscript varies most quickly).
The first subscript in the declaration helps determine the aniount of
storage consumed by an array, but plays no other part in subscript
calculations.

13.4 Explicit pointer conversions
Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by means of
an explicit type-conversion operator; see "Unary Operators" under
"Expressions" and "Type Names" under "Declarations."

A pointer may be converted to any of the integral types large enough to
hold it. Whether an int or long is required is machine dependent.
The mapping function is also machine dependent, but is intended to be
unsurprising to those who know the addressing structure of the
machine. Details for this machine are given below.

An object of integral type may be converted explicitly to a pointer.
The mapping always carries an integer converted from a pointer back
to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type.
The resulting pointer may cause addressing exceptions upon use if the
subject pointer does not refer to an object suitably aligned in storage. It
is guaranteed that a pointer to an object of a given size may be
converted to a pointer to an object of a smaller size and back again
without change.

For example, a storage-allocation routine might accept a size (in bytes)
of an object to allocate, and return a char pointer,

extern char *alloc();
double *dp;

dp = (double*) alloc(sizeof(double));
*dp = 22.0 I 7.0;

3-52 A/UX Programming Languages and Tools, Volume 1

The alloc must ensure (in a machine-dependent way) that its return
value is suitable for conversion to a pointer to double; then the use of
the function is portable.

In A/UX, pointers are 32 bits long and measure bytes. This is the same
size as an int or long. The chars have no alignment requirements;
everything else must have an even address.

14. Constant expressions
In several places C requires expressions that evaluate to a constant:

•after case

• as array bounds

• in initializers

In the first two cases, the expression can involve only integer constants,
character constants, casts to integral types, enumeration constants, and
sizeof expressions, possibly connected by the binary operators

+ - * I % & I ~

<< >> == != < > <= >= && I I

or by the unary operators

or by the ternary operator

? :

Parentheses can be used for grouping, but not for function calls.

When writing your program, you have more latitude with initializers.
Besides constant expressions as discussed above, you can also use
floating constants and arbitrary casts. You can also apply the unary &

operator to external or static objects and to external or static arrays
subscripted with a constant expression. You can apply the unary &

implicitly by appearance of unsubscripted arrays and functions. The
basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus
a constant.

C Language Reference 3-53

15. Portability considerations
Certain parts of C are inherently machine dependent. The following
list of potential trouble spots is not meant to be complete, but to point
out the main ones.

Purely hardware issues like word size and the properties of
floating-point arithmetic and integer division have proved not to be a
problem. Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension
(converting a negative character into a negative integer) and the order
in which bytes are placed in a word, are nuisances that must be
carefully watched. Most others are only minor problems.

The number of register variables that can actually be placed in
registers varies from machine to machine, as does the set of valid types.
Nonetheless, the compilers all do things properly for their own
machines; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It
is exceedingly unwise to write programs that depend on any of these
properties.

The order of evaluation of function arguments is not specified by the
language. The order in which side effects take place is also
unspecified.

Because character constants are really objects of type int,
multicharacter character constants may be permitted. The specific
implementation is machine dependent, because the order in which
characters are assigned to a word varies from one machine to another.
(See "Character Constants" for the treatment of multicharacter
character constants on the 68020.)

Fields are assigned to words, and characters to integers, from right to
left on some machines and from left to right on other machines. (Bit
fields run from left to right in this implementation.) These differences
are invisible to isolated programs that do not indulge in type punning
(that is, by converting an int pointer to a char pointer and inspecting
the storage pointed to), but must be accounted for when conforming to
externally imposed storage layouts.

3-54 A/UX Programming Languages and Tools, Volume 1

16. Syntax summary
This summary of C syntax is intended more for aiding comprehension
than as an exact statement of the language.

16.1 Expressions
The basic expressions are

expression:
primary

primary:

* expression
& lvalue
- expression

expression
- expression
++ lvalue
-- lvalue
lvalue ++
lvalue --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression, expression

identifier
constant
string
(expression)

primary (expression-list)
. . opt

primary [expression]
lvalue . identifier
primary - > identifier

C Language Reference 3-55

/value:
identifier
primary [expression]
/value . identifier
primary - > identifier
* expression
(/value)

The primary-expression operators

() [] ->

have highest priority and group left to right. The unary operators

* & - ! ++ -- sizeof (type-name)

have priority below the primary operators but above any binary
operator and group right to left. Binary operators group left to right;
they have decreasing priority, as shown here:

binop:
* I %
+
>> <<
< > <= >=

!=
&

&&
II

The conditional operator groups right to left. Assignment operators all
have the same priority and all group right to left.

asgnop:
+= *= /= %=

>>= <<= &= I=

The comma operator has the lowest priority and groups left to right.

3-56 A/UX Programming Languages and Tools, Volume 1

16.2 Declarations

declaration:
decl-specifiers init-declarator-list ;

opt

de cl-specifiers:
type-specifier decl-specifiers

;+,,, d l ;+, opt

sc-specifier:

sc-speczJK-r ec -speczpers

auto
static
extern
register
typedef

type-specifier:
basic-type-specifier
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type

opt

basic-type basic-type-specifiers
basic-type:

char
short
int
long
unsigned
float
double

enum-specifier:
enum {enum-list}
en um identifier { enum-list}
enum identifier

C Language Reference 3-57

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

init-dec larator-list:
init-declarator
init-declarator, init-declarator-list

init-dec larator:

declarator:

declarator initializer
opt

identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression]

opt

struct-or-union-specifier:
st ruct { struct-decl-list}
struct identifier { struct-decl-list}
struct identifier
union { struct-decl-list}
union identifier { struct-decl-list}
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-/ist

3-58 A/UX Programming Languages and Tools, Volume 1

struct-declarator:
declarator

initializer:

declarator: constant-expression
constant-expression

expression
{initializer-list}

= {initializer-list, }

initializer-list:
expression
initializer-list, initializer-list
{ initializer-list}
{initializer-list, }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression]

opt

typedef-name:
identifier

16.3 Statements

compound-statement:
{declaration-list statement-list }

opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

C Language Reference 3-59

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp ; exp ; exp) statement

opt opt opt
switch (expression) statement
case constant-expression: statement
default: statement
break;
continue;
return;
return expression;
goto identifier;
identifier: statement

16.4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifier function-declarator function-body

opt

function-declarator:
declarator (parameter-list ,> op

parameter-list:
identifier
identifier, parameter-list

3-60 A/UX Programming Languages and Tools, Volume 1

function-body:
{ declaration-list compound-statement} opt

data-definition:
extern declaration;

optdel. static c aratzon;
opt

16.5 Preprocessor

#define identifier token-string
#define identifier (identifier, ...) token-string
#undef identifier
#include "filename"
:#:include <.filename>
#if restricted-constant-expression
*ifdef identifier
#ifndef identifier
*else
*endif
#line constant "filename"

C Language Reference 3-61

Chapter 4
C Implementation Notes

Contents

1. Introduction

2. Data representations

3. Parameter passing in C •

4. Setting up the stack • •

5. Allocation of local variables and registers

6. Returning from a function or subroutine •

7. System calls • • • •

8. Optimizations • • • •

9. Use of register variables

10. Miscellaneous notes • •

Figures

Figure 4·1. Stack contents after evaluation of function

1

1

4

5

6

8

8

8

9

9

call • • • • • • • • • • • • • 4

Figure 4-2. Stack contents after entry to the function
call • • • • • • • • • • • • 5

Figure 4-3. Stack contents after execution of prolog
code 7

- i -

Chapter4

C Implementation Notes

1. Introduction
This chapter describes the A/UX 68020 C programming language,
including how data are represented, how data are passed between
functions, the environment of a function, and the calling mechanism for
a function. The information in this chapter is intended for
programmers who must have detailed knowledge of the interface
mechanisms in order to match C code with the assembler. It is also
intended for those who wish to write new system or mathematical
functions.

When a C program is compiled and assembled, the program is split into
three parts:

. text The executable code of the program. The compiler/assembler
combination produces this .

. data The initialized data area. This contains literal constants,
character strings, and so on. The compiler/assembler
combination produces this .

. bss The uninitialized data areas. The loader generates and clears
this area to zero at load time. This is a feature of the system
and can be relied upon.

During execution of a program, the stack area contains indeterminate
data. In other words, its previous contents (if any) cannot be relied
upon.

2. Data representations
In general, all data elements of whatever size are stored such that their
least significant bit is in the highest addressed byte and their most
significant bit is in the lowest addressed byte. The list below describes
the representation of data:

C Implementation Notes 4-1

char
Values of type char occupy 8 bits. Such values can be aligned
on any byte boundary.

short

long

Values of type short occupy 16 bits. Values of type short are
aligned on word (16-bit) address boundaries.

Values of type long occupy 32 bits. A long value is the same
as an int value in 68020 C. Values of this type are aligned on
word (16-bit) boundaries.

float
Values of type float occupy 32 bits. All float values are
automatically converted to type double for computation
purposes, except when testing for zero or nonzero. V aloes of
this type are aligned on word (16-bit) boundaries. A float
value consists of a sign bit, followed by an 8-bit biased exponent,
followed by a 23-bit mantissa (24 bits including the hidden bit).
Values of type float are stored in IEEE Floating Point
Standard P754 representation.

double
Values of type double occupy 64 bits. Values of this type are
aligned on word (16-bit) boundaries. A double value consists
of a sign bit, followed by an 11-bit biased exponent, followed by
a 52-bit mantissa (53 bits including the hidden bit). Values of
type double are stored in IEEE representation.

pointer

a"ay

All pointers are represented as long (32-bit) values. Pointers are
aligned on word (16-bit) boundaries.

The base address of an array value is always aligned on a word
(16-bit) address boundary. Elements of an array are stored
contiguously, one after the other. Elements of multidimensional
arrays are stored in row-major order. That is, the last dimension
of an array varies the most quickly. When a multidimensional
array is declared, it is possible to omit the size specification for
the last dimension. In such a case, what is allocated is actually

4-2 A/UX Programming Languages and Tools, Volume 1

an array of pointers to the elements of the last dimension.

struct and union
Within structures and unions, it is possible to obtain unfilled
holes of size char. This is because the compiler rounds
addresses up to 16-bit boundaries to accommodate word-aligned
elements.

This situation can best be demonstrated by an example. Consider
the following structure:

struct
int
char
short

} ;

x;
y;
z;

/*
/*
I*

This is a 32-bit element */
Takes up a single byte */
Aligned on 16-bit boundary */

The total number of bytes declared above is seven: four for the
int, one for the char, and two for the short.

In reality, the z field, which is a short, is aligned on a 16-bit
boundary by the C compiler. In this case, the compiler inserts a
hole after the char element y, to align the short element z.
The net effect of these machinations is a structure that behaves
like this:

struct
int x; I* This is a 32-bit element */

char y; /* Takes up a single byte */
char dummy; /* Fills the structure */
short z; /* Aligned to a 16-bit boundary */

} ;

The C compiler never reorders any parts of a structure. Similar
considerations apply to arrays of structures or unions. Each
element of an array (other than an array of char) begins on a
16-bit boundary.

For a detailed treatment of data storage, consult The C Programming
Language by Kernighan and Ritchie.

C Implementation Notes 4-3

3. Parameter passing in C
The C programming language is unique, in that it really has only
functions. The effect of a subroutine is achieved simply by having a
function that does not return a value. The type of such a function
should be void.

Another unique feature of C is that parameters to functions are always
passed by value. The C programming language has no concept of
declaring parameters to be passed by reference, as in languages such as
Pascal. To pass a parameter by reference in a C program, the
programmer must pass the address of the parameter explicitly. The
called function must be aware that it is receiving an address instead of
a value, and the appropriate code must be present to handle that case.

When a function is called, its parameters (if any) are evaluated and are
then pushed onto the stack in reverse order. All parameters are pushed
onto the stack as 32-bit longs, except for floats and doubles,
which are pushed as 64-bit doubles. If a parameter is shorter than 32
bits, it is expanded to a 32-bit value with sign extension, if necessary.
The calling procedure is responsible for popping the parameters off the
stack.

Consider a C function call such as

ferry (charon, 7, &styx, 1<<10);

After parameter evaluation, but just before the call, the stack looks like
this:

Figure 4-1. Stack contents after evaluation of function call

%sp ~ Value of variable charon

7

Address of variable st yx

1024

... Previous stack contents ...

Functions are called by issuing either a bs r instruction or a j s r
instruction, depending upon whether the callee is within a 16-bit

4-4 A/UX Programming Languages and Tools, Volume 1

addressing range or not, and whether the C optimizer was used. The
bs r or j s r instruction pushes the return address upon the stack and
then branches to the indicated function. After the call, on entry to the
function, the stack looks like this:

Figure 4-2. Stack contents after entry to the function call

%sp ~ Return address

Value of variable charon

7

Address of variable st yx

1024

... Previous stack contents ...

In each function, register % a 6 is used as a stack frame base. The stack
location referenced by % a 6 contains the return address.

4. Setting up the stack
Upon entry into the function, the prolog code is executed. The prolog
code allocates enough space on the stack for the local variables, plus
enough space to save any registers that this function uses. The prolog
code looks like this:

link.l %fp,&F%1
movm.l &M%1, (4,%sp)

The F % 1 constant is the size of the stack frame for the local variables,
plus 4 bytes for each ordinary register variable and 12 bytes for each
float or double register variable.

The M% 1 constant is a mask to determine which registers need to be
saved on the stack for this particular function. This is dependent on the
register variables that the programmer declared for that particular
routine. If the function has floating-point register variables, the
movm. l instruction is followed by

fmovm &FPM%1, (FP0%1, %sp)

which saves the floating-point registers used by the routine for register

C Implementation Notes 4-5

variables of types float and double. FPO% 1 is the offset of the
floating register save area, and FPM% 1 is a mask to tell the fmovm
instruction which registers to save.

5. Allocation of local variables and registers
A total of ten registers are available for register variables. Six of these
are the 68020 data (%d) registers, and four are the 68020 address (%a)
registers. The available %a registers are %a2 through %a5. The
available %d registers are %d2 through %d7. There are also six
floating-point registers on the 68881 (%fp2 through %fp7) available
forregister variables of type float and double.

The location of a function's return value depends on the type of the
function. Functions thatreturn integral types (char, short, int,
long, or the unsigned versions of any of these) return their results
in %d0. Functions returning pointers return their results in %a0, while
float and double functions use %fp0. Structure-valued and
union-valued functions return their results in %d0 if the entire st ruct
or union will fit in 32 bits; otherwise, the return value is stored in a
special temporary area inside the function, a pointer to this temporary
area is returned in % a O, and, if the return value is used, code is
generated to copy the returned struct or union into the appropriate
place.

Remember that undeclared functions are assumed to be of type int. It
follows that functions must be declared if they return values of type
float, double, pointer, struct, or union, or else the
generated code will be wrong. Use the lint program to find places
where functions have not been declared (see Chapter 8, "lint
Reference").

pointer register variables are assigned only to address registers,
float and double register variables only to floating-point registers.
Other register variables are assigned only to data registers. Register
declarations are ignored for variables of type st ruct or union.

Register variables are allocated to registers in the order in which they
are declared in the C source program, starting at the low end (%a2,
%d2 or %fp2) of the appropriate type of register.

4-6 A/UX Programming Languages and Tools, Volume 1

If there are more register variables of either kind than there are
registers to accommodate them, the remaining variables are allocated
on the stack as local variables, just as if the register attribute had never
been given in the declaration.

When the prolog code has completed, the stack looks like this:

Figure 4·3. Stack contents after execution of prolog code

%sp ~ Next argument list starts here

...
Register save area

...

...
Floating register save area

...

...
Local variables

...

%a6 ~ old %a6

Return address

Value of variable charon

7

Address of variable styx

1024
... Previous stack contents ...

C Implementation Notes 4-7

6. Returning from a function or subroutine
Upon reaching a return statement, either explicit or implicit, the
function executes the epilog code. If the function has a return value, it
is generated from the line

return (expression);

The value of expression (converted, if necessary, to match the type of
the function) is placed in register %d0, %a0, or %fp0, as appropriate,
and the epilog code is executed to effect a return from the function.
The epilog code looks like this:

movm.l
unlk
rts

(4,%sp), &M%1
%fp

The movm. l instruction restores any registers which were saved
during the prolog. If there were floating-point register variables, the
movm. l instruction is followed by

fmovm (FP0%1, %sp), &FPM%1

which restores the floating-point registers that were saved. The stack
frame base pointer in %fp is then put back to the point where %fp
once again points to the return address, and the function is exited via
the rt s instruction, which pops the stack to the state it was in prior to
the original call and returns to the function that called it.

7. System calls
The C compiler generates code for system calls by calling library
routines that place the system call number in register %d0 and execute
a TRAP & O instruction.

Parameters are passed on the user stack in the C calling convention.
On return from the system call, errors are signaled by the carry flag
being set. The C interface to the system calls typically returns a -1 on
error, as the carry flag cannot be tested from C.

8. Optimizations
The C compiler may be run to optimize the code it generates, making
that code both compact and fast. The command line

4-8 A/UX Programming Languages and Tools, Volume 1

cc -o file

generates optimized code.

9. Use of register variables
The decision to declare a variable in a register should depend on the
number of times that variable is referenced during the execution of a
function. If a variable is used more than twice in a function, it may be
declared as a register variable. If a variable is used less than twice in a
function, it is not useful to declare it as a register variable, because the
amount of time spent saving and restoring that register is more than the
time saved in using a register instead of a location on the stack.

1 O. Miscellaneous notes
The object files created by the assembler and linker use the common
object file format (see Chapter 15, "COFF Reference").

The C compiler will accept multiply-defined external variables, as long
as no more than one of the definitions includes an initialization.

The C compiler supports floating and double variables by using the
68881. Floating-point data values are represented in IEEE standard
floating-point format.

C Implementation Notes 4-9

Chapter 5

The Standard C Library (libc)

Contents

1. Introduction

2. Including functions •

3. Including declarations

4. Input/output control •
4.1 File access functions
4.2 File status functions
4.3 Input functions
4.4 Output functions • •
4.5 Miscellaneous functions

5. String manipulation functions • • •

6. Character manipulation • • • • •
6.1 Character testing functions • •
6.2 Character translation functions

7. Time functions

8. Miscellaneous functions
8.1 Numeric conversion • •
8.2 DES algorithm access
8.3 Group file access • • • •
8.4 Password file access
8.5 Parameter access • • • •
8.6 Hash table management
8.7 Binary tree management
8.8 Table management • •
8.9 Memory allocation • •
8.10 Pseudorandom number generation
8.11 Signal handling functions • • •

- i -

1

1

2

2
2
3
4
4
5

5

6
7
8

8

9
9

10
10
11
11
12
12
13
13
14
15

8.12 Miscellaneous 16

- ii -

Chapter 5

The Standard C Library (libc)

1. Introduction
This chapter describes the A/UX C library. A library is a collection of
related functions and/or declarations. Using a library simplifies
programming effort by linking what is needed, allowing use of locally
produced functions, and so on. All the functions described in this
chapter are also described in Section 3 of All!X Programmer's
Ref ere nee. Most of the declarations described in this chapter are also
described in Section 5 of All!X Programmer's Reference.

This C library is the basic library for C language programs. The C
library is made up of functions and declarations used for file access,
string testing and manipulation, character testing and manipulation,
memory allocation, and other functions. This library is described in
greater detail further on in this chapter.

2. Including functions
The C library is made up of several types of functions. When a
program is being compiled, the compiler automatically searches the C
language library to locate and include functions that are used in the
program. All C library functions are loaded automatically by the
compiler, although you must sometimes include the proper header file
with its various declarations in your program for the functions to work
properly. C hbrary functions are divided into the following types:

• Input/output control

• String manipulation

• Character manipulation

• Time functions

• Miscellaneous functions

The Standard C Library (1ibc) . 5-1

3. Including declarations
Some functions need a set of declarations to operate properly. A set of
declarations is stored in a file called a header file (with a . h
extension). Header files for the C library are stored in the
/usr/ include directory. To include a certain header file in your
program, you must specify the following near the top of the file
containing the program:

Hnclude <file. h>

where file • h is the name of the header file. Because the header files
define the type of functions and various preprocessor constants, you
must include them before invoking the functions they declare.

4. Input/output control
C library functions are automatically included as needed during the
compiling of a C language program. No command line request is
needed.

You need to include the header file required by the input/output
functions near the beginning of each file that references an input or
output function:

iinclude <stdio.h>

The input/output functions are grouped into the following categories:

• File access

• File status

•Input

•Output

• Miscellaneous

4.1 File access functions

Function
fclose

fdopen

Reference
fclose(3S)

fopen(3S)

Brief description
Close an open stream.

Associate stream with an
open(2)ed file.

5-2 A/UX Programming Languages and Tools, Volume 1

filena ferrar(3S) File descriptor associated with
an open stream.

fapen fopen(3S) Open a file with specified
permissions and return a
pointer to a stream that is used
in subsequent references to the
file.

freapen fopen(3S) Substitute named file in place
of open stream.

fseek fseek(3S) Reposition the file pointer.

pc lase papen(3S) Close a stream opened by
papen.

papen papen(3S) Create pipe as a stream
between calling process and
command.

rewind fseek(3S) Reposition file pointer at
beginning of file.

setbuf setbuf(3S) Assign buffering to stream.

vsetbuf setbuf{3S) Similar to setbuf, but
allowing finer control.

4.2 Fiie status functions

Function Reference Brief description
clearerr ferrar(3S) Watch for side effects. Reset

error condition on stream.

feaf ferrar{3S) Watch for side effects. Test
for end-of-file (EOF) on
stream.

ferrar ferrar(3S) Watch for side effects. Test
for error condition on stream.

ftell fseek(3S) Return current position in the
file.

The Standard C Library (1ibc) 5-3

4.3 Input functions

Function Reference Brief description
fgetc getc(3S) True function for getc(3S).

fgets gets(3S) Read string from stream.

fread fread(3S) General buffered read from
stream.

fscanf scanf(3S) Formatted read from stream.

getc getc(3S) Watch for side effects. Read
character from stream.

get char getc(3S) Watch for side effects. Read
character from standard input.

gets gets(3S) Read string from standard
input.

getw getc(3S) Read word from stream.

scanf scanf(3S) Read using format from
standard input.

sscanf scanf(3S) Formatted read from a string.

ungetc ungetc(3S) Put back one character on
stream.

4.4 Output functions

Function Reference Brief description

ff lush fclose(3S) Write all currently buffered
characters from stream.

fprintf printf(3S) Formatted write to stream.

fputc putc(3S) True function for putc (3S).

fputs puts(3S) Write string to stream.

fwrite fread(3S) General buffered write to
stream.

printf printf(3S) Print using format to standard
output

5-4 A/UX Programming Languages and Tools, Volume 1

putc putc(3S) Watch for side effects. Write
character to standard output.

put char putc(3S) Watch for side effects. Write
character to standard output.

puts puts(3S) Write string to standard output.

putw putc(3S) Write word to stream.

sprintf printf(3S) Formatted write to string.

vfprintf vprint(3C) Print using format to stream by
varargs(5) argument list.

vprintf vprint(3C) Print using format to standard
output by varargs(5)
argument list

vsprintf vprintf(3C) Print using format to stream
string by varargs(5)
argument list.

4.5 Miscellaneous functions

Function Reference Brief description
ctermid ctermid(3S) Return filename for controlling

terminal.

cuserid cuserid(3S) Return login name for owner
of current process.

system system(3S) Execute shell command.

tempnam tmpnam(3S) Create temporary filename
using directory and prefix.

tmpnam tmpnam(3S) Create temporary filename.

tmpfile tmpfile(3S) Create temporary file.

5. String manipulation functions
These functions are used to locate characters within a string or to copy,
concatenate, or compare strings. These functions are automatically
located and loaded during the compiling of a C language program. No
command line request is needed because these functions are part of the
C library. The string manipulation functions are declared in a header

The Standard C Library (libc) 5-5

file that you should include near the beginning of each file that uses any
of these functions:

finclude <string.h>

Function Reference Brief description
strcat string(3C) Concatenate two strings.

strchr string(3C) Search string for character.

strcmp string(3C) Compares two strings.

strcpy string(3C) Copy string.

strcspn string(3C) Length of initial string not
containing set of characters.

strlen string(3C) Length of string.

strncat string(3C) Concatenate two strings with a
maximum length.

strncmp string(3C) Compare two strings with a
maximum length.

strncpy string(3C) Copy string over string with a
maximum length.

strpbrk string(3C) Search string for any set of
characters.

strrchr string(3C) Search string backward for
character.

strspn string(3C) Length of initial string
containing set of characters.

strtok string(3C) Search string for token
separated by any of a set of
characters.

6. Character manipulation
The following functions and declarations are used for testing and
translating ASCII characters. These functions are located and loaded
automatically during the compiling of a C language program. No
command line request is needed because these functions are part of the
c library.

5-6 A/UX Programming Languages and Tools, Volume 1

You should include the declarations associated with these functions
near the beginning of the file being compiled:

*include <ctype.h>

6.1 Character testing functions
These functions can be used to identify characters as uppercase or
lowercase letters, digits, punctuation, and so on.

Function Reference Brief description
isalnum ctype(3C) Return true if character is

alphanumeric.

isalpha ctype(3C) Return true if character is
alphabetic.

isascii ctype(3C) Return true if integer is an
ASCII character.

iscntrl ctype(3C) Return true if character is a
control character.

isdigit ctype(3C) Return true if character is a
digit

isgraph ctype(3C) Return true if character is a
printable character.

is lower ctype(3C) Return true if character is a
lowercase letter.

isprint ctype(3C) Return true if character is a
printing character including
space.

ispunct ctype(3C) Return true if character is a
punctuation character.

is space ctype(3C) Return true if character is a
white space character.

is upper ctype(3C) Return true if character is an
uppercase letter.

isxdigit ctype(3C) Return true if character is a
hex digit

The Standard C Library (1ibc) 5-7

6.2 Character translation functions
These functions provide translation of uppercase to lowercase,
lowercase to uppercase, and integer to ASCII.

Function Reference Brief description
toascii conv(3C) Convert integer to ASCII

character.

to lower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

7. Time functions
These functions are used for gaining access to and reformatting the
system's idea of the current date and time. These functions are located
and loaded automatically during the compiling of a C language
program. No command line request is needed because these functions
are part of the C library.

You should include the header file associated with these functions near
the beginning of any file using the time functions:

finclude <time.h>

These functions (except tzset) convert a time such as returned by
time(2).

Function
asctime

ctime

gmtime

local time

tzset

Reference
ctime(3C)

ctime(3C)

ctime(3C)

ctime(3C)

ctime(3C)

Brief description
Return string representation of
date and time.

Return string representation of
date and time, given integer
form.

Return Greenwich mean time.

Return local time.

Set time-zone field from
environment variable.

5-8 NUX Programming Languages and Tools, Volume 1

8. Miscellaneous functions
These functions support a wide variety of operations:

• Numeric conversion

• DES algorithm access

• Group file access

• Password file access

• Parameter access

• Hash table management

• Binary tree management

• Table management

• Memory allocation

• Pseudorandom number generation

These functions are automatically located and included in a program
being compiled. No command line request is needed because these
functions are part of the C library.

Some of these functions require declarations to be included. These are
described following the descriptions of the functions.

8.1 Numeric conversion
The following functions perform numeric conversion.

Function Reference Brief description
a641 a641(3C) Convert string to base 64

ASCII.

at of atof(3C) Convert string to floating.

atoi atof(3C) Convert string to integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into mantissa and
exponent.

13tol 13tol{3C) Convert 3-byte integer to long.

The Standard C Library {libc) 5-9

ltol3 13tol(3C) Convert long to 3-byte integer.

ldexp frexp(3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII to
string.

modf frexp(3C) Split mantissa into integer and
fraction.

8.2 DES algorithm access
The following functions allow access to the Data Encryption Standard
(DES) algorithm used on the NUX operating system. (Not present in
international distributions.) The DES algorithm is implemented with
variations to frustrate use of hardware implementations of the DES for
key search.

Function Reference Brief description
crypt crypt(3C) Encode string.

encrypt crypt(3C) Encode/decode string of O's
and l's.

set key crypt(3C) Initialize for subsequent use of
encrypt.

8.3 Group file access
The following functions are used to obtain entries from the group file
(stored in I etc I group). You must include declarations for these
functions in the program being compiled with the line

:If: include <grp.h>

Function Reference Brief description
endgrent getgrent(3C) Close group file being

processed.

getgrent getgrent(3C) Get next group file entry.

getgrgid getgrent(3C) Return next group with
matching group ID.

5-10 A/UX Programming Languages and Tools, Volume 1

getgrnam getgrent(3C)

setgrent getgrent(3C)

fgetgrent getgrent(3C)

8.4 Password file access

Return next group with
matching name.

Rewind group file being
processed.

Get next group file entry from
a specified file.

These functions are used to search for and gain access to information
stored in the password file (/etc/passwd). Some functions require
declarations that you can include in the program being compiled by
adding the line

#include <pwd.h>

Function Reference Brief description

endpwent getpwent(3C) Close password file being
processed.

getpw getpw(3C) Search password file for user
ID.

getpwent getpwent(3C) Get next password file entry.

getpwnam getpwent(3C) Return next entry with
matching name.

getpwuid getpwent(3C) Return next entry with
matching user ID.

putpwent putpwent(3C) Write entry on stream.

setpwent getpwent(3C) Rewind password file being
examined.

fgetpwent getpwent(3C) Get next password file entry
from a specified file.

8.5 Parameter access
The following functions provide access to several different types of

The Standard C library (1ibc) 5-11

parameters. None require any declarations.

Function Reference Brief description
get opt getopt(3C) Get next option from option

list.

getcwd getcwd(3C) Return string representation of
current working directory.

getenv getenv(3C) Return string value associated
with environment variable.

get pass getpass(3C) Read string from terminal
without echoing.

putenv putenv(3C) Change or add value of an
environment variable.

8.6 Hash table management
The following functions are used to manage hash search tables. You
should include the header file associated with these functions in the
program being compiled. You can do so by including the line

#include <search.h>

near the beginning of any file using the search functions.

Function
hcreate

hdestroy

hsearch

Reference
hsearch(3C)

hsearch(3C)

hsearch(3C)

8.7 Binary tree management

Brief description
Create hash table.

Destroy hash table.

Search hash table for entry.

These functions are used to manage a binary tree. You should include
the header file associated with these functions near the beginning of
any file using the search functions:

#include <search.h>

Function
tdelete

Reference
tsearch(3C)

Brief description
Delete nodes from binary tree.

5-12 A/UX Programming Languages and Tools, Volume 1

tfind

tsearch

twalk

tsearch(3C)

tsearch(3C)

tsearch{3C)

8.8 Table management

Find element in binary tree.

Look for and add element to
binary tree.

Walk binary tree.

These functions are used to manage a table. Because none of these
functions allocate storage, sufficient memory must be allocated before
using these functions. You should include the header file associated
with these functions near the beginning of any file using the search
functions:

'it include <search.h>

Function Reference Brief description
bsearch bsearch(3C) Search table using binary

search.

lsearch lsearch(3C) Look for and add element in
table (linear search).

lf ind lsearch(3C) Find element in table (linear
search).

qsort qsort{3C) Sort table using quick-sort
algorithm.

8.9 Memory allocation
To use these routines, either include the following line in your
program:

include <malloc.h>

or compile your program with the command:

cc [option ...] [file ...] -lmalloc

or both.

The following functions provide a means by which memory can be

The Standard C Library (1ibc) 5-13

dynamically allocated or freed:

Function Reference Brief description
calloc malloc(3C) Allocate zeroed storage.

free malloc(3C) Free previously allocated
storage.

malloc malloc(3C) Allocate storage.

realloc malloc(3C) Change size of allocated
storage.

The following is another set of memory allocation functions available.
They are faster than the (3C) versions, but require more memory.

Function Reference Brief description
calloc malloc(3X) Allocate zeroed storage.

free malloc(3X) Free previously allocated
storage.

malloc malloc(3X) Allocate storage.

mallopt malloc(3X) Control allocation algorithm.

mallinf o malloc(3X) Space usage.

realloc malloc(3X) Change size of allocated
storage.

8.1 o Pseudorandom number generation
The following functions are used to generate pseudorandom numbers.
The function names that end with 48 are a family of interfaces to a
pseudorandom number generator based upon the linear congruent
algorithm and 48-bit integer arithmetic. The rand and srand
functions provide an interface to a multiplicative congruential random
number generator with period of 232.

Note: For intervals, the notation [a to b] means that a and bare
included in the range, whereas the notation (a to b) means that a
and b are not included, but all points in between are in the
range. Therefore, the notation [a to b) means that a is included,
as is everything from a to b, and b is not included.

5-14 A/UX Programming Languages and Tools, Volume 1

Function

drand48

lcong48

lrand48

mrand48

rand

seed48

srand

srand48

Reference

drand48(3C)

drand48(3C)

drand48(3C)

drand48(3C)

rand(3C)

drand48(3C)

rand(3C)
drand48(3C)

8.11 Signal handling functions

Brief description

Random double over the
interval [0 to 1).

Set parameters for drand4 8,
lrand48, and mrand48.

Random long over the
interval [0 to 231).

Random long over the
interval [-231 to231).

Random integer over the
interval [0 to 32767).

Seed the generator for
drand48,lrand48,and
mrand48.

Seed the generator for rand.
Seed the generator for
drand48, lrand48, and
mranb48 using a long.

The functions gsignal and ssignal implement a software facility
similar to signal(3) in A!UX Command Reference. This facility lets
you indicate the disposition of error conditions and allows you to
handle signals for your own purposes. The declarations associated
with these functions should be included near the beginning of any file
using the signal handling functions.

tinclude <signal.h>

These declarations define ASCII names for the 15 software signals.

Function
gsignal

ssignal

Reference
ssignal(3C)

ssignal(3C)

The Standard C Library (1ibc)

Brief description
Send a software signal.

Arrange for handling of
software signals.

5-15

8.12 Miscellaneous
These functions do not fall into any previously described category.

Function
abort

abs

ecvt

fcvt

gcvt

isatty

mktemp

monitor

swab

ttyname

Reference
abort(3C)

abs(3C)

ecvt(3C)

ecvt(3C)

ecvt(3C)

ttyname(3C)

mktemp(3C)

monitor(3C)

swab(3C)

ttyname(3C)

Brief description
Cause an IOT signal to be sent
to the process.

Return the absolute integer
value.

Convert double to string.

Convert double to string
using Fortran format.

Convert double to string
using Fortran F or E format.

Test whether integer file
descriptor is associated with a
terminal.

Create filename using
template.

Cause process to record a
histogram of program counter
location.

Swap and copy bytes.

Return pathname of terminal
associated with integer file
descriptor.

5-16 A/UX Programming Languages and Tools, Volume 1

Chapter 6

The C Math Library

Contents

1. Introduction

2. The math library functions
2.1 Trigonometric functions
2.2 Bessel functions
2.3 Hyperbolic functions
2.4 Miscellaneous functions

- i -

1

1
1
2
2
3

Chapter 6

The C Math Library

1. Introduction
This chapter describes the AIUX math library. A library is a
collection of related functions and/or declarations. All the functions
descnbed here are also described in Section 3 of A!UX Programmer's
Ref ere nee. Most of the declarations described in this chapter can be
found in ma th(5) in AIUX Programmer's Reference.

The math library is made up of functions and a header file. The
functions may be located and loaded during compile time if you make
this request on the command line:

ccfile.c -lm

This causes the link editor to search the math library. In addition to the
request to load the functions, you should include the header file of the
math library near the beginning of the first file being compiled.

#include <math.h>

2. The math library functions
The math library functions are grouped into the following categories:

• Trigonometric functions

• Bessel functions

• Hyperbolic functions

• Miscellaneous functions

2.1 Trigonometric functions
These functions are used to compute angles (in radian measure), sines,
cosines, and tangents. All of these values are expressed in double
precision.

The C Math Library 6-1

Function Reference Brief description

a cos trig(3M) Return arc cosine.

a sin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of a ratio.

cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

2.2 Bessel functions
These functions calculate Bessel functions of the first and second kinds
of several orders for real values. j O, j 1, and j n are Bessel functions
of x of the first kind, while yO, yl, and yn are Bessel functions of x of
the second kind. The value of x must be positive.

Function Reference Brief description

jO bessel(3M) Give result of order 0.

jl bessel(3M) Give result of order 1.

jn bessel(3M) Give result of order n.

yO bessel(3M) Give result of order 0.

yl bessel(3M) Give result of order 1.

yn bessel(3M) Give result of order n.

2.3 Hyperbolic functions
These functions are used to compute the hyperbolic sine, cosine, and
tangent for real values.

Function Reference Brief description

co sh sinh(3M) Return hyperbolic cosine.

sinh sinh(3M) Return hyperbolic sine.

tanh sinh(3M) Return hyperbolic tangent.

6-2 A/UX Programming Languages and Tools, Volume 1

2.4 Miscellaneous functions
These functions cover a wide variety of operations, such as natural
logarithm, exponential, and absolute value. In addition, several are
provided to truncate the integer portion of double-precision numbers.

Function

ceil

exp

fabs

floor

fmod

gamma

hypot

log

loglO

matherr

pow

Reference

floor(3M)

exp(3M)

floor(3M)

floor(3M)

floor(3M)

gamma(3M)

hypot(3M)

exp(3M)

exp(3M)

matherr(3M)

exp(3M)

The C Math Library

Brief description

Return the smallest integer not
less than a given value.

Return the exponential
function of a given value.

Return the absolute value of a
given value.

Return the largest integer not
greater than a given value.

Return the remainder produced
by the division of two given
values.

Return the natural log of the
absolute value of the result of
applying the gamma function
to a given value.

Return the square root of the
sum of the squares of two
numbers.

Return the natural logarithm of
a given value.

Return the logarithm base ten
of a given value.

Error-handling function.

Return the result of a given
value raised to another given
value.

6-3

sqrt exp{3M) Return the square root of a
given value.

6-4 A/UX Programming Languages and Tools, Volume 1

Chapter 7

The C Object Library

Contents

1. Introduction

2. The object library functions

3. Common object file interface macros (ldfcn. h)

- i -

1

2

4

Chapter 7

The C Object Library

1. Introduction
This chapter describes the A/UX object library. A library is a
collection of related functions and/or declarations. All the functions
described in this chapter are also described in Section 3 of AIUX
Programmer's Reference. Most of the declarations described in this
chapter can be found in Section 5 of A/UX Programmer's Reference.

The object file library provides functions for the access and
manipulation of object files. Some of these functions locate portions of
an object file such as the symbol table, the file header, sections, and
line number entries associated with a function. Other functions read
these types of entries into memory. For a description of object file
format, see Chapter 15, "COFF Reference" in this manual.

These functions are usually used only by compilers, link editors,
cross-reference generators, and so on. Most applications programmers
will not need to use them.

The object file library functions reside in /usr I lib/ libld. a and
may be located and loaded at compile time if you give the following
command line request:

cc file -lld

This command causes the link editor to search the object file library.
The argument -1 ld must appear after all files that reference functions
in libld.a.

In addition, you must include various header files:

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

The C Object Library 7-1

2. The object library functions
Function Reference Brief description

ldaclose ldclose(3X) Close object file being
processed.

ldahread ldahread(3X) Read archive header.

ldaopen ldopen(3X) Open object file for reading.

ldclose ldclose(3X) Close object file being
processed.

ldfhread ldfhread(3X) Read file header of object file
being processed.

ldgetname ldgetname(3X) Retrieve the name of an object
file symbol table entry.

ldlinit ldlread(3X) Prepare object file for reading
line number entries via
ldlitem.

ldlitem ldlread(3X) Read line number entry from
object file after ldlinit.

ldlread ldlread(3X) Read line number entry from
object file.

ldlseek ldlseek(3X) Seek to the line number entries
of the object file being
processed.

ldnlseek ldlseek(3X) Seek to the line number entries
of the object file being
processed given the name of a
section.

ldnrseek ldrseek(3X) Seek to the relocation entries
of the object file being
processed given the name of a
section.

7-2 A/UX Programming Languages and Tools, Volume 1

ldnshread ldshread(3X) Read section header of the
named section of the object file
being processed.

ldnsseek ldsseek(3X) Seek to the section of the
object file being processed
given the name of a section.

ldohseek ldohseek(3X) Seek to the optional file header
of the object file being
processed.

ldopen ldopen(3X) Open object file for reading.

ldrseek ldrseek(3X) Seek to the relocation entries
of the object file being
processed.

ldshread ldshread(3X) Read section header of an
object file being processed

ldsseek ldsseek(3X) Seek to the section of the
object file being processed

ldtbindex ldtbindex(3X) Return the long index of the
symbol table entry at the
current position of the object
file being processed.

ldtbread ldtbread(3X) Read a specific symbol table
entry of the object file being
processed.

ldtbseek ldtbseek(3X) Seek to the symbol table of the
object file being processed

sgetl sputl(3X) Access long integer data in a
machine-independent format

sputl sputl(3X) Translate a long integer into a
machine-independent format

The C Object Library 7-3

3. Common object file interface macros
(ldfcn .h)

The interface between the calling program and the object file access
routines is based on the defined type ldfile, which is defined in the
header file ldfcn. h (see ldf cn(3X)). The primary purpose of this
structure is to provide uniform access both to simple object files and to
object files that are members of an archive file.

The function ldopen allocates and initializes the ldfile structure
and returns a pointer to that structure to the calling program. You can
gain access to the fields of the ldf ile structure individually through
the following macros:

Macro Reference Brief description

type ldfcn(3X)

IOPTR ldfcn(3X)

OFFSET ldfcn(3X)

HEADER ldfcn(3X)

Return the magic number of
the file, which is used to
distinguish between archive
files and simple object files.

Return the file pointer that was
opened by ldopen, and is
used by the input/output
functions of the C library.

Return the file address of the
beginning of the object file.
This value is nonzero only if
the object file is a member of
the archive file.

Access the file header structure
of the object file.

Additional macros are provided to access an object file. These macros
parallel the input/output functions in the C library; each macro
translates a reference to an ldfile structure into a reference to its file
descriptor field. The available macros are described in ldf cn(3X) in
AIUX Programmer's Reference.

7-4 A/UX Programming Languages and Tools, Volume 1

Chapter 8

lint Reference

Contents

1. lint: A C program checker

2. Using lint
2.1 Options

3. Message categories •
3.1 Unused variables and functions
3.2 Set/used information
3.3 Flow of control • • • • •
3.4 Function values
3.5 Type checking
3.6 Type casts
3.7 Nonportable character use
3.8 Assignments of lonqs to ints
3.9 Strange constructions
3.10 Old syntax • • • • • •
3.11 Pointer alignment
3.12 Multiple uses and side effects •

- i -

1

1
1

4
4
5
6
6
7
8
9

10
10
11
12
13

Chapter 8

lint Reference

1. lint: AC program checker
The lint program can be used to detect bugs, obscurities,
inconsistencies, and portability problems in C programs. It is generally
more restrictive than the C compiler. Constructions that the C compiler
will accept without complaint, lint considers wasteful or error prone.
The lint program is also more rigid than the C compiler with regard
to the C language type rules. Also, lint accepts multiple files and
library specifications and checks them for consistency.

You can suppress some or all of lint's checking mechanisms if they
aren't necessary for a given application.

2. Using lint
The lint command has the form

lint [option ...]file ... library-descriptor ...

where options are optional flags that control lint checking and
messages, files are the files to be checked by lint (files containing C
language programs must have a • c extension; this is mandatory for
both lint and the C compiler), and library-descriptors are the names
of the libraries to be used in checking the program.

The lint library files are processed almost exactly like ordinary
source files. The only difference is that functions which are defined in
a library file, but aren't used in a source file, do not result in messages.

The lint program does not simulate a full library search algorithm
and will print messages if the source files contain a redefinition of a
library routine.

2.1 Options
When you use more than one option, you should combine them into a
single argument, such as -ab or -xha.

1int Reference 8-1

The options that are currently supported by the lint program are

-a Use this option to suppress messages concerning the
assignment of long values to variables that are not
long. This option is often useful because there are a
number of legitimate reasons for assigning long values
to type int.

-b Use this option to suppress messages concerning break
statements that are unreachable. For example, programs
generated by yacc and lex (seeA/UX Programming
Languages and Tools, Volume 2, for information on
these programs) may have hundreds of unreachable
break statements. If the C compiler optimizer were
used, these unreachable statements would be of little
importance, but the resulting messages would clutter up
the lint output. The -b option takes care of this
problem.

-c Use this option to treat casts as though they were
assignments subject to warning messages. (The default
is to pass all legal casts without comment, no matter
how bizarre the type mixing might seem.)

-h Use this option only to suppress the use of heuristics.
By default, heuristics are used to check for wasteful or
error-prone constructions and to detect bugs. For
example, by default, lint prints messages about
variables declared in inner blocks whose names conflict
with the names of variables declared in outer blocks.
Though this construction is considered legal, it is bad
programming style, and frequently a bug.

- ly Use this option to specify libraries you wish to include
and have checked by lint. The source code is tested
for compatibility with these libraries. This is done by
getting access to library description files whose names
are constructed from the library arguments. These files
must all begin with the comment

/* LINTLIBRARY * /

8-2 A/UX Programming Languages and Tools, Volume 1

-n

-p

-u

-v

-x

-o name

This comment must then be followed by a series of
dummy function definitions. The critical parts of these
definitions are

• the declaration of the function return type

• whether the dummy function returns a value

• the number and types of arguments to the function

The VARARGS and ARGSUSED comments can be used
to specify features of the library functions.

Use this option to suppress checking for compatibility
with either the standard or the portable lint library. In
effect. this option suppresses all library checking.

Use this option to check a program's portability to other
dialects of C language. This option checks a file
containing descriptions of standard library routines that
are expected to be portable.

Use this option to suppress messages concerning
function and external variables that are either used and
not defined or defined and not used. For more
information. please refer to ''Unused Variables and
Functions•• later in this chapter.

Use this option to suppress messages concerning unused
function arguments. For more information. please refer
to "Unused Variables and Functions" later in this
chapter.

This option suppresses messages about variables
referenced by external declarations but never used.

Use this option to create a lint library from input files
named llib-lname. ln.

The -o. -u, and -I ftag options of cpp(l) are also recognized as
separate arguments. By default. lint checks the programs you give it
against a standard library file that contains descriptions of programs
normally loaded when a C language program is run. When the -p
option is used. another file is checked that contains descriptions of the

1int Reference 8-3

standard library routines expected to be portable across various
machines. You can use the -n option to suppress all library checking.

3. Message categories
The following subsections describe the major categories of messages
printed by lint.

3.1 Unused variables and functions
As sets of programs evolve and develop, variables and function
arguments that were used previously may fall into disuse. It's not
uncommon for external variables or even entire functions to become
unnecessary and yet not be removed from the source. Although these
types of errors rarely cause working programs to fail, they are a source
of inefficiency and make programs harder to understand and to change.
Also, information about such unused variables and functions
occasionally can serve to help discover bugs.

The lint program prints messages about variables and functions that
are defined but not otherwise mentioned.

You can suppress messages regarding variables that are declared
through explicit extern statements but are never referenced. The
statement

extern double sin();

will evoke no comment if sin is never used, providing the -x option
is used.

Note: This agrees with the semantics of the C compiler.

If these unused external declarations are of interest, you can use lint
without the -x option.

In some programming styles, many functions are written with similar
interfaces. Frequently, some of the arguments are unused in many of
the calls. The -v option is available to suppress the printing of
messages about unused arguments, including those arguments that are
unused and declared as register arguments. This can prevent a waste of
the register resources of the machine.

8-4 A/UX Programming Languages and Tools, Volume 1

To suppress such messages for one function only add the comment

/* ARGSUSED */

to the program before the function. Also, you can use the comment

/* VARARGS */

to suppress messages about variable number of arguments in calls to a
function. If you wish to check the first several arguments and leave the
later ones unchecked, include a digit giving the number of arguments
that should be checked. For example,

/* VARARGS2 */

causes only the first two arguments to be checked.

One case in which information about unused or undefined variables is
more distracting than helpful is when lint is applied to some but not
all files out of a collection that is to be loaded at one time.

In this case, many of the functions and variables defined may not be
used. Conversely, many functions and variables defined elsewhere
may be used. The -u option may be used to suppress the spurious
messages that might otherwise appear.

3.2 Set/used Information
The lint program attempts to detect cases where a variable is used
before it is seL The lint program detects local variables (automatic
and register storage classes) whose first use appears earlier than the
first assignment to the variable. It assumes that talcing the address of a
variable constitutes a ''use,'' as the actual use may occm at any later
time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes
the algorithm very simple and quick to implement because the true flow
of control need not be discovered. It does mean that lint can print
messages about some programs that are legal, but these programs
would probably be considered bad on stylistic grounds. Because static
and external variables are initialized to zero, no meaningful
information can be discovered about their uses. The lint program
does deal with initialized automatic variables.

1int Reference 8-5

The set/used information also pennits recognition of those local
variables that are set and never used. These are a frequent source of
inefficiency and may also be symptomatic of bugs.

3.3 Flow of control
The lint program tries to detect unreachable portions of the programs
that it processes. It will print messages about unlabeled statements
immediately following goto, break, continue, or return
statements. An attempt is made to detect loops that can never be left at
the bottom and to recognize the special cases while (1) and
for (; ;) as infinite loops.

The lint program also prints messages about loops that cannot be
entered at the top. Some valid programs may have such loops but they
are considered to be bad style at best and bugs at worst.

The lint program has no way of detecting functions that are called
and never returned. Thus, a call to exit may cause unreachable code
that lint does not detect This can seriously affect the detennination
ofreturned function values (see "Function Values"). If a particular
place in the program cannot be reached but this is not apparent to
lint, you can add the comment

/* NOTREACHED */

at the appropriate place. This will inform lint that a portion of the
program cannot be reached.

If you give the -b option, lint will not print a message about
unreachable break statements. Programs generated by yacc and
especially lex may have hundreds of unreachable break statements.
The -o option in the C compiler often eliminates the resulting object
code inefficiency. These unreachable statements are of little
importance. There is usually nothing you can do about them, and the
resulting messages would clutter up the lint output. If you wish to
get these messages, you can invoke lint without the -b option.

3.4 Function values
Sometimes functions return values that are never used. Sometimes
programs incorrectly use function "values" that have never been
returned. The lint program addresses these problems in a number of
ways.

8-6 A/UX Programming Languages and Tools, Volume 1

Locally, within a function definition, the appearance of both

return (expr);

and

return;

is cause for alann. The lint program will give you the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return
is implied by the control flow of a program reaching the end of the
function. For example,

f (a) {

if (a) return (3);
g ();

In this example, if the result of a is false, f will call g and return with
no defined return value. This will trigger a message from lint. If g,
like exit, never returns, the message still will be produced when in
fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by
using this feature.

On a global scale, lint detects cases where a function returns a value
that is seldom or never used. When the value is never used, it may
constitute an inefficiency in the function definition. When the value is
seldom used, it may represent bad style (for example, not testing for
error conditions).

The serious problem of using a function value when the function does
not return one is also detected.

3.5 Type checking
The lint program enforces the C language type-checking rules more
strictly than the compilers do. The additional checking is in four major
areas:

• Across certain binary operators and implied assignments

1int Reference 8-7

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations

There are several operators that have an implied balance between
operand types. The assignment, conditional (? :), and relational
operators have this property. The argument of a return statement
and expressions used in initialization suffer similar conversions. In
these operations, char, short, int, long, unsigned, float,
and double types can be freely mixed.

The types of pointers must agree exactly except that arrays of x' s can,
of course, be intermixed with pointers to x' s.

The type-checking rules also require that in structure references the left
operand of the - > must be a pointer to structure; the left operand of the
. must be a structure; and the right operand of both operators must be a
member of the structure implied by the left operand. Similar checking
is done for references to unions.

Strict rules apply to function argument and return value matching. The
types float and double can be freely matched, as can the types
char, short, int, and unsigned. Also, pointers can be matched
with the associated arrays. Aside from this, all actual arguments must
agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and that
the only operations applied are=, initialization,==, ! =,function
arguments, and return values.

If you want to turn off strict type checking for an expression, you
should add the comment

/* NOSTRICT */

to the program immediately before the expression. This comment will
prevent strict type checking for the next lirie in the program only.

3.6 Type casts
The type cast feature in the C language was introduced largely as an
aid to producing more portable programs. Consider the assignment

8-8 A/UX Programming Languages and Tools, Volume 1

p = l;

where p is a character pointer. The lint program prints a message as
a result of detecting this. Consider the assignment

p = (char *)l;

in which a cast has been used to convert the integer to a character
pointer. The programmer's intentions are clearly signaled. It seems
harsh for lint to continue to print messages about this. On the other
hand, if this code is moved to another machine, such code should be
looked at carefully. The -c flag controls the printing of comments
about casts. When -c is in effect, casts are treated as though they were
assignments subject to messages. Otherwise, all legal casts are passed
without comment, no matter how strange the type mixing seems to be.

3.7 Nonportable character use
On some systems, characters are signed quantities with a range from
-128 to 127. On other C language implementations, characters take on
only positive values. Thus, lint will print messages about certain
comparisons and assignments being illegal or nonportable. For
example,

char c;

if ((c = getchar()) < 0) ...

will work on one machine but will fail on machines whose characters
always take on positive values. The real solution is to declare c an
integer because get char is actually returning integer values. In any
case, lint prints the message

nonportable character comparison

A similar issue arises with bit fields. When constant values are
assigned to bit fields, the field may be too small to hold the value. This
is true especially because on some machines bit fields are considered
signed quantities. While it may seem logical to consider that a two-bit
field declared of type int cannot hold the value 3, the problem
disappears if the bit field is declared to have type unsigned.

1int Reference 8-9

3.8 Assignments of 1ongs to ints
Bugs may arise from the assignment of long to an int, which may
truncate the contents. (Truncation happens only when longs hold a
longer quantity than in ts. In the current implementation, longs are
the same length as ints.) This may happen in programs that have
been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program may stop working.
This is because some intermediate results may be assigned to in ts,
which are truncated. Because there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is
disabled by the -a option. If lint is using the -p option to detect
possible portability problems, however, it may print the message

warning: conversion from long may lose accuracy

even if you're using the -a option.

3.9 Strange constructions
Several perfectly legal but somewhat strange constructions are detected
by lint. The messages hopefully encourage better code quality and
clearer style, and can even point out bugs. The -h option is used to
suppress the majority of these checks.

For example, in

*p++;

the * does nothing. This provokes the message

null effect

from lint. For another example,

unsigned x;
if(x< 0) •••

results in a test that will never succeed. For a third example,

unsigned x;
if (x > 0)

is equivalent to

if(x != 0)

8-10 A/UX Programming Languages and Tools, Volume 1

which may not be the intended action. The lint program will print
themessage

degenerate unsigned comparison

in these latter two cases.

If a program contains something similar to

if(l!=O) ...

lint will print the message

constant in conditional context

because the comparison of 1 to 0 gives a constant result.

Another construction detected by lint involves operator precedence.
Bugs that arise from misunderstandings about operator precedence can
be exacerbated by spacing and fonnatting, making such bugs extremely
hard to find For example,

if (x&077 == 0) ...

or

x << 2 + 40

probably do not do what was intended. The best solution is enclose
such expressions in parentheses; lint encourages this with an
appropriate message.

When the -h option has not been used, lint prints messages about
variables that are redeclared in inner blocks in a way that conflicts with
their use in outer blocks. Although this is considered legal, it remains
bad style, usually unnecessary, and frequently a bug.

3.1 O Old syntax
Several fonns of older syntax are now illegal. These fall into two
classes: (1) assignment operators and (2) initialization.

The older fonns of assignment operators (for example,=+,=-, and so
on) could cause ambiguous expressions. For example,

a =-1;

lint Reference 8-11

could be taken as either

a =- 1;

or

a = -1;

The situation is especially perplexing if this kind of ambiguity arises as
the result of a macro substitution. The newer and preferred operators
(for example,+= and-=) have no such ambiguities. To encourage the
abandonment of the older forms, lint prints messages about these
old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1;

to initialize x to 1. This also caused syntactic difficulties. For
example,

int x (-1);

looks somewhat like the beginning of a function definition

int x (y) { •••

The compiler must read past x to determine the correct meaning.
Again, the problem is even more perplexing when the initializer
involves a macro. The current syntax places an equals sign between
the variable and the initializer. For example,

int x = -1;

This is free of any possible syntactic ambiguity.

3.11 Pointer alignment
Certain pointer assignments may be reasonable on some machines and
illegal on others, due entirely to alignment restrictions. The lint
program tries to detect cases where such alignment problems might
arise by finding pointers that are assigned to other pointers. The
message

possible pointer alignment problem

will appear.

8-12 A/UX Programming Languages and Tools, Volume 1

3.12 Multlple uses and side effects
In complicated expressions, the best order in which to evaluate
subexpressions may depend on the machine being used. For example,
on machines (like the PDP-11) in which the stack runs backward,
function arguments are probably best evaluated from right to left On
machines with a stack running forward, left to right seems most
attractive. Function calls embedded as arguments of other functions
may or may not be treated in a similar manner to ordinary arguments.
The same uncertainty arises with other operators that have side effects,
such as the assignment operators and the increment and decrement
operators.

To avoid compromising the efficiency of the C language on a particular
machine, the C language leaves the order of evaluation of complicated
expressions up to the local compiler. In fact, the various C compilers
differ considerably in the order in which they will evaluate complicated
expressions. In particular, if any variable changed by a side effect is
also used elsewhere in the same expression, the result is explicitly
undefined.

The lint program checks for the important special case where a
simple scalar variable is affected. For example,

a[i] = b[i++];

causes lint to print the message

warning: i evaluation order undefined

to call attention to this condition.

1int Reference 8-13

Chapter 9

sdb Reference

Contents

1. sdb: A symbolic debugger •

2. Using sdb
2.1 Arguments • • • • • • •
2.2 Example
2.3 Printing a stack trace •
2.4 Examining variables

3. Display and manipulation
3.1 Displaying the source file
3.2 Displaying another source file or function
3.3 Changing the current line display

4. A controlled testing environment • •
4.1 Setting and deleting breakpoints
4.2 Running the program •
4.3 Calling functions • • • • •

5. Machine language debugging • • •
5.1 Displaying machine language statements
5.2 Manipulating registers
5.3 Other commands • • • • • • •

Figures

Figure 9-1. Sample sdb input file

Figure 9-2. Sample sdb session.

- i -

1

1
2
3
5
5

8
8
9
9

10
10
11
12

13
13
14
14

3

4

Chapters

sdb Reference

1. sdb: A symbolic debugger
This chapter describes the symbolic debugger sdb(l) as implemented
for the C language and Fortran 77 compilers (cc and f 7 7) on the
NUX operating system. The sdb program is useful both for
examining core images of aborted programs and for providing an
environment in which you can monitor and control the execution of a
program.

The sdb program allows you to interact with a debugged program at
the source language level. When debugging a core image from an
aborted program, sdb reports which line in the source program caused
the error and allows symbolic access to all variables, displayed in the
proper format.

You may place breakpoints at selected statements or single step the
program line by line. To facilitate specification of lines in the program
without a source listing, sdb provides a mechanism for examining the
source text You may call procedures directly from the debugger. 'Lhis
feature is useful both for testing individual procedures and for calling
user-provided routines that provide formatted printout of structured
data.

2. Using sdb
To use sdb to its full capabilities, you need to compile the source
program with the -g option. This causes the compiler to generate
additional information about the variables and statements of the
compiled program. When the -g option has been specified, you can
use sdb to obtain a trace of the called functions at the time of the abort
and to display the values of variables interactively.

A typical sequence of shell commands for debugging a core image is

sdb Reference 9-1

cc -g prgm.c -o prgm
prgm

Bus error - core dumped

sdb prgm

main:25:

*
x [i] 0;

The program prgm was compiled with the -g option and then
executed. An error caused a core dump. The sdb program was then
invoked to examine the core dump to determine the cause of the error.
It reports that the bus error occurred in function ma in at line 2 5 (line
numbers are always relative to the beginning of the file) and displays
the source text of the offending line. sdb then prompts you with an *,
indicating that it awaits a command.

It is useful to know that sdb has a notion of current function and
current line. In this example, they are initially set to main and 25,
respectively.

2.1 Arguments
In the above example, sdb was called with one argument, prgm. In
general, sdb takes three arguments on the command line:

1. The name of the executable file to be debugged, which defaults
to a . out when not specified. Even with the new COFF format,
the executable file will be named a . out. sdb, however, will
not work on old a. out format files. Only COFF files may be
used with sdb.

2. The name of the core file, defaulting to core.

3. The name of the directory containing the source of the program
being debugged.

The sdb program currently requires all source to reside in a single
directory. The default is the working directory. In the example, the
second and third arguments defaulted to the correct values, so only the
first was specified.

It is possible that the error occurred in a function that was not compiled
with the -g option. In this case, sdb prints the function name and the

9-2· A/UX Programming Languages and Tools, Volume 1

address at which the error occurred. The current line and function are
set to the first executable line in main. The sdb program will print an
error message if ma in was not compiled with the -g option, but
debugging can continue for those routines compiled with the -g
option.

2.2 Example
The following is a typical example of sdb use. The first example,
Figure 9-1, is the source file used to create the output file shown in
Figure 9-2, an illustration of a session with sdb.

Figure 9-1. Sample sdb input file

cat testdiv2.c
main(argc, argv, envp)
int argc;
char **argv, **envp;

int i;
i = div2(-l);
printf("-1/2 %d\n", i);

div2 (i)
int i; {

int j;
j = i>>l;
return(j);

cc -g testdiv2.c
a.out

-1/2 = -1

sdb Reference 9-3

Figure 9-2. Sample sdb session.

Session
sdb

No core image
*rdiv2
7: div2 (i)

*z
7: div2 (i)
8: int j;
9: j = i>>l;
10: return(j);
11: }

*div2:b
div2:9 b

*r
a.out
Breakpoint at
div2:9: j = i>>l;

Annotations

Warning message from sdb
Search for function 'div2'
It starts on line 7

Print the next few lines

Place breakpoint at start of 'div2'
sdb echoes proc name and line number

Run the program
sdb echoes command line executed
Execution stops just before line 9

*t Print trace of subroutine calls
div2(i=-l) [testdiv2.c:9]
main (argc=l, •..

*i/
-1

*s
div2:10: return(j);

*j/
-1

*9d

*div2(1)/
0

*div2(-2)/
-1

*div2(-3)/
-2

*q

Print i

Single step
Execution stops before line 10

Printj

Delete the breakpoint

Run 'div2' with other arguments

9-4 A/UX Programming Languages and Tools, Volume 1

2.3 Printing a stack trace
It's often useful to obtain a listing of the function calls that led to the
error. You can do so with the t command. For example,

*t
sub(x=2,y=3)
inter(i=16012)

[prgm. c: 25]
[prgm.c:96]

main(argc=l,argv=Ox7fffff54,
envp=Ox7fffff5c) [prgm.c:15]

This indicates that the error occurred within the function sub at line
25 in file prgm. c. The sub function was called with the arguments
x=2 and y=3 from inter at line 9 6. The inter function was called
from main at line 15. The main function is always called by the shell
with three arguments often referred to as argc, argv, and envp.
Note that argv and envp are pointers, so their values are printed in
hexadecimal.

2.4 Examining variables
You can use the sdb program to display variables in the stopped
program. To do so, type each name followed by a slash. For example,

*errflag/

causes sdb to display the value of variable errflag. Unless
otherwise specified, variables are assumed to be local to or accessible
from the current function. To specify a different function, use the form

*sub:i/

to display variable i in function sub. f77 users can specify a
common block variable in the same manner.

The sdb program supports a limited form of pattern matching for
variable and function names. The symbol * is used to match any
sequence of characters of a variable name and ? to match any single
character. Consider the following commands:

x/
*sub:y?/
**/

The first prints the values of all variables beginning with x, the second
prints the values of all two-letter variables in function sub beginning

sdb Reference 9-5

with y, and the last prints all variables. In the first and last examples,
only variables accessible from the current function are printed. The
command

**:*/

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format
determined by its type as declared in the source program. If you want
to request a different format, place a specifier after the slash. The
specifier consists of an optional length specification followed by the
format. The length specifiers are

b one byte

h two bytes (half word)

l four bytes (long word)

The lengths are effective with the formats d, o, x, and u only. If you
don't specify a length, the word length of the host machine is used. A
numeric length specifier may be used for the s or a commands. These
commands normally print characters until either a null is reached or
128 characters are printed. The number specifies how many characters
should be printed

There are a number of format specifiers available:

a Print characters, starting at the variable's address, until a null is
reached.

c Character.

d Decimal.

f 32-bit single-precision floating point

g 64-bit double-precision floating point

i Interpret as a machine-language instruction.

0 Octal.

p Pointer to function.

9-6 NUX Programming Languages and Tools, Volume 1

s Assume variable is a string pointer and print characters starting
at the address pointed to by variable until a null is reached.

u Decimal unsigned.

x Hexadecimal.

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and pointers so
that all of the following commands work:

*array [2] [3] I
*sym.id/
*psym->usage/
*xsym[20] .p->usage/

The only restriction is that array subscripts must be numbers.
Depending on your machine, gaining access to arrays may be limited to
one-dimensional arrays. Note that as a special case

*psym->/d

displays the location pointed to by psym in decimal.

You can also display core locations by specifying their absolute
addresses. The command

*1024/

displays location 1024 in decimal. As in the C language, numbers may
also be specified in octal or hexadecimal so the above command is
equivalent to both

*02000/

and

*Ox400/

It is possible to mix numbers and variables so that

*1000.x/

sdb Reference 9-7

refers to an element of a structure starting at address 1000, and

*1000->x/

refers to an element of a structure whose address is at 1000. For
commands of the type *1000 .x/ and *1000->x/, the sdb program
uses the structure template of the last structure referenced.

The address of a variable is printed with the=, so

*i=

displays the address of i. Another feature whose usefulness will
become apparent later is the command

*./

which redisplays the last variable typed.

3. Display and manipulation
The sdb program has been designed to make it easy for you to debug a
program without constantly referring to a current source listing.
Facilities are provided that perform context searches within the source
files of the program you 're debugging and display selected portions of
the source files. The commands are similar to those of the A!UX
system text editor ed(l). Like the editor, sdb has a notion of current
file and current line within the file.

The sdb program also knows how the lines of a file are partitioned into
functions, so it has a notion of current function. As noted elsewhere,
the current function is used by a number of sdb commands.

3.1 Displaying the source file
There are four commands for displaying lines in the source file. They
are useful for perusing the source program and for determining the
context of the current line. The commands are

p Prints the current line.

w Prints a window of ten lines around the current line.

z Prints ten lines starting at the current line. Advances the
current line by ten.

9-8 A/UX Programming Languages and Tools, Volume 1

CONTROL-d Scrolls; prints the next ten lines and advances the
current line by ten. This command is used to display
long segments of the program cleanly.

When a line from a file is printed, it is preceded by its line number.
This not only gives an indication of its relative position in the file but
also is used as input by some sdb commands.

3.2 Displaying another source flle or function
The e command is used to display a different source file. Either of the
forms

*e function
*e file.c

may be used. The first makes the file containing the named function
the current file. The current line becomes the first line of the function.
The other form causes the named file to become current. In this case,
the current line becomes the first line of the named file. Finally, an e
command with no argument causes the current function and filename to
be printed.

3.3 Changing the current llne display
The z and CONTROL-d commands have a side effect of malting a new
line the current line in the source file. The following paragraphs
describe other commands that change the display.

There are two commands for searching for instances of regular
expressions in source files. They are

*/regular expression/
*?regular expression?

The first command searches forward through the file for a line
containing a string that matches the regular expression. The second
command searches backward through the file for the same thing. The
trailing slash character(/) and question mark(?) may be omitted from
these commands. Regular expression matching is identical to that of
ed{l).

The + and - commands may be used to move the current line forward
or backward by a specified number of lines. Typing a newline
advances the current line by one, and typing a number causes that line

sdb Reference 9-9

to become the current line in the file. These commands may be
combined with the display commands so that

*+15z

advances the current line by 15 and then prints 10 lines.

4. A controlled testing environment
One very useful feature of sdb is breakpoint debugging. After
entering sdb, certain lines in the source program may be specified to
be breakpoints. The program is then started with the sdb command.
The program is executed as normal until it's about to execute one of
the breakpoints. The program stops and sdb reports the breakpoint
where the program stopped. At this point, sdb commands can be used
to display the trace of function calls and the values of variables. If
you're satisfied the program is working correctly up to the breakpoint,
you can delete some breakpoints and set others; then program
execution can continue from the point at which it stopped.

A useful alternative to setting breakpoints is single stepping. You can
request the sdb program to execute the next line of the program and
then stop. This feature is especially useful for testing new programs, so
they can be verified statement by statement

If an attempt is made to single step through a function that has not been
compiled with the -g option, execution will proceed until a statement
in a function compiled with the -g option is reached.

You can also have the program execute one machine level instruction
at a time. This is particularly useful when the program has not been
compiled with the -g option.

4.1 Setting and deleting breakpoints
You can set breakpoints at any line in a function that contains
executable code. The command format is

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. Line
numbering starts at the beginning of the file as printed by the source file

9-10 A/UX Programming Languages and Tools, Volume 1

display commands. The second form sets a breakpoint at line 12 of
function proc, and the third sets a breakpoint at the first line of proc.
The last sets a breakpoint at the current line.

You can delete breakpoints with the commands

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are
deleted interactively. Each breakpoint location is printed, and a line is
read from the user. If the line begins with a y or d, the breakpoint is
deleted.

A list of the current breakpoints is printed in response to a B command,
and the D command deletes all breakpoints. It is sometimes desirable
to have sdb automatically perform a sequence of commands at a
breakpoint and then have execution continue. You can do this with
another form of the b command:

*12b t;x/

This causes both a trace back and the printing of value x each time
execution gets to line 12. The a command is a variation of the above
command. There are two forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is
called, and the second prints the source line each time it is about to be
executed. For both forms of the a command, execution continues after
the function name or source line is printed.

4.2 Running the program
The r command is used to begin program execution. It restarts the
program as if it were invoked from the shell. The command

*r args

runs the program with the given arguments as if it had been typed on
the shell command line. If no arguments are specified, the arguments
from the last execution of the program are used. To run a program

sdb Reference 9-11

with no arguments, use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as interrupt or quit occurs, or the program
terminates. In all cases, after an appropriate message is printed, control
returns to sdb.

You can use the c command to continue execution of a stopped
program. A line number may be specified, as in

*proc:12c

This places a temporary breakpoint at the named line. The breakpoint
is deleted when the c command finishes. There is also a c command
that continues but passes the signal that stopped the program back to
the program. This is useful for testing user-written signal handlers.
Execution can be continued at a specified line with the g command.
For example,

*17 g

continues at line 17 of the current function. This command is useful if
you want to avoid executing a section of code that is known to be bad.
You should not attempt to continue execution in a function other than
the one in which the breakpoint is located

The s command is used to run the program for a single line. It is
useful for slowly executing the program to examine its behavior in
detail. An important alternative is the s command. This command is
like the s command, but does not stop within called functions. It is
often used when you're confident that the called function works
correctly but you're interested in testing the calling routine.

The i command is used to run the program one machine level
instruction at a time while ignoring the signal that stopped the program.
Its uses are similar to those of the s command. There is also an I

command, which causes the program to execute one machine level
instruction at a time, but passes the signal that stopped the program
back to the program.

4.3 Calling functions
You can call any of the program functions from sdb. This is useful
both for testing individual functions with different arguments and for

9-12 A/UX Programming Languages and Tools, Volume 1

calling a function that prints structured data in a nice way. There are
two ways to call a function:

*proc (argl, arg2, ...)
*proc (argl, arg2, ...) /m

The first simply executes the function. The second is intended for
calling functions; it executes the function and prints the value that it
returns. The value is printed in decimal format unless some other
format is specified by m. Arguments to functions may be integer,
character, or string constants, or values of variables that are accessible
from the current function.

If a function is called when the program isn't stopped at a breakpoint
(such as when a core image is being debugged), all variables are
initialized before the function is started. This makes it impossible to
use a function that formats data from a dump.

5. Machine language debugging
The sdb program has facilities for examining programs at the
machine-language level. You can print the machine-language
statements associated with a line in the source and you can place
breakpoints at arbitrary addresses. You can also use the sdb program
to display or modify the contents of the machine registers.

5.1 Displaying machine language statements
To display the machine-language statements associated with line 2 5 in
function main, use the command

*main:25?

The ? command is identical to the I command except that it displays
from text space. The default format for printing text space is the i
format, which interprets the machine-language instruction. You can
press CONTROL-d to print the next ten instructions.

You can specify absolute addresses instead of line numbers by
appending a colon (:) to them. For example,

*Ox1024:?

displays the contents ofaddress Ox1024 in text space. Note that the
command

sdb Reference 9-13

*Ox1024?

displays the instruction corresponding to line Ox102 4 in the current
function. You also can set or delete a breakpoint by specifying its
absolute address. For example,

*Ox1024:b

sets a breakpoint at address Oxl 02 4.

5.2 Manipulating registers
The x command prints the values of all the registers. Also, you can
name individual registers instead of variables by appending a % to their
names. For example,

*r3%

displays the value of register r 3.

5.3 Other commands
Use the q command to exit sd.b.

The exclamation mark (!) command in sd.b is identical to the same
command in ed(l). It takes you to the shell, where you can execute a
command.

You can change the values of variables when the program is stopped at
a breakpoint. You can do this with the command

*variable ! value

which sets the variable to the value you enter. The value may be a
number, character constant, register, or the name of another variable.
If the variable is of type float or double, it can also be a floating­
point constant.

9-14 A/UX Programming Languages and Tools, Volume 1

Contents

1. Using £77

2. Related utilities

Chapter 10

£77 Command Syntax

- i -

1

3

Chapter 10

£77 Command Syntax

1. Using f77
This chapter describes how to invoke and use the A!UX Fortran 77
compiler.

The f7 7 command compiles and loads Fortran and Fortran-related
files into an executable module.

IfEFL (compiler) source files are given as arguments to the f77
command, they will be translated into Fortran before being presented to
this Fortran compiler (see "efl Reference" in this volume).

The f 7 7 command invokes the C compiler to translate C source files
and the assembler to translate assembler source files.

Object files will be link edited unless the -c option is used.

Note: The f77 and cc commands have slightly different link
editing sequences. Fortran programs need two extra libraries,
libI77. a and libF77. a, and an additional startup routine.

The command to run the A!UX Fortran compiler is

f77 [option ...] [file]

The following options have the same meaning in the Fortran compiler
as in cc(l) (see ld(l) for load-time options).

-c Suppress loading and produce . o files for each source file.

-g Have the compiler produce additional symbol table
information for sdb(l). Also pass the -lg flag to ld(l).

-w Suppress all warning messages. If the option is -w6 6,
only Fortran 66 compatibility warnings are suppressed.

£77 Command Syntax 10-1

-p Prepare object files for profiling (see prof(l)).

-o Invoke an object-code optimizer.

-s Compile the named programs, and leave the assembler
language output on corresponding files with a . s suffix
(no . o is created).

-o output Name the final output file output instead of a . out
(default).

The following options are specific to f7 7:

-onetrip Compile do loops that are performed at least once if
reached (Fortran 77 do loops are not performed at all if
the upper limit is smaller than the lower limit).

-u Make the default type of a variable undefined rather
than using the default Fortran rules.

-c Compile code to check that subscripts are within declared
array bounds.

-F Apply EFL preprocessor to relevant files. Put the result in
the file with the extension changed to . f, but do not
compile.

-m Apply the M4 preprocessor to each . e file before
transforming it with the EFL preprocessor.

-E x Use the string x as an EFL option in processing . e files.

Other arguments are taken to be loader option arguments, f77-
compatible object programs (typically produced by an earlier run), or
libraries of f77-compatible routines. These programs, together with
the results of any specified compilations, are loaded (in the order given)
to produce an executable program with name a. out (default).

The file argument to f 7 7 may have one of the following suffixes:

. f Fortran source file

. e EFL source file

. c C language source file

10-2 A/UX Programming Languages and Tools, Volume 1

. s Assembler source file

. o Object file

Arguments are processed as follows:

• Arguments whose names end with . f are taken to be Fortran 77
source programs. When compiled, a source program produces
an object file with the same root name, but with a . o substituted
for the . f extension.

• Arguments whose names end with . e are taken to be EFL source
programs.

• Arguments whose names end with . c or . s are taken to be C or
assembly source programs, respectively, and are compiled or
assembled, producing a . o file.

2. Related utllitles
These utilities are useful adjuncts to f 7 7. Their special characteristics
are described in the following table:

ef 1 Compiles a program written in Extended Fortran
Language (EFL) into Fortran 77. See "efl Reference"
in this volume for information on how to use this
command.

asa Interprets the output of Fortran programs that use ASA
carriage control characters. See asa(l} for information
on how to use this command.

£split Splits the named file(s) into separate files, with one
procedure per file. See fsplit(l} for information on
how to use this command

£77 Command Syntax 10-3

Chapter 11
Fortran Language Reference

Contents

1. Fortran standards •

2. Languageextensions
2.1 double complex data type
2.2 Internal files • • • • • •
2.3 Implicit undefined statement
2.4 Recursion • • • • • • •
2.5 Automatic storage • • • •
2.6 Variable length input lines
2.7 Uppercase/lowercase
2.8 include statement
2.9 Binary initiali7.ation constants •
2.10 Character strings • • •
2.11 Hollerith • • • • •
2.12 Equivalence statements •
2.13 One-trip do loops • • • • • • • • •
2.14 Commas in formatted input • • • • • •
2.15 Short integers • • • • •
2.16 Additional intrinsic function library •

3. Violations of the standard • • • •
3.1 Double-precision alignment • • • • • •
3.2 Dummy procedure arguments • • • • • •
3.3 t and tl formats • • • •

4. Interprocedure interface • • • •
4.1 Procedure names • • • •
4.2 Data representations
4.3 Return values
4.4 Argument lists • • • • •

5. File formats

- i -

1

1
1
1
2
2
2
2
3
3
3
4
4
5
5
5
5
6

9
9

10
10

11
11
11
12
13

14

5 .1 File structure • • • • • • • •
5 .2 Preconnected files and file positions •

- ii -

14
15

Chapter 11

Fortran Language Reference

This chapter describes the Fortran 77 run-time system and language as
implemented on the AIUX system. Also described are the interfaces
between procedures and the file formats assumed by the I/O system.

Please note that this chapter only describes the differences between the
AIUX Fortran 77 and the ANSI Standard Fortran 77, and is not
intended to be a complete language reference.

1. Fortran standards
Fortran 77 and Fortran 66 are names for two standardized versions of
the language.

Fortran 77 includes almost all of Fortran 66. The most important
additions are a character string data type, file-oriented input/output
statements, and random access 1/0.

The f 7 7 language described in this chapter is an extended version of a
Fortran 77 standard language, as specified in ANSI Standard X3.9-1978
Fortran.

Most of the extensions included in f 7 7 are useful additions; however,
some are necessary to facilitate communication with C language
functions, allowing easier compilation of old (Fortran 66) programs.

2. Language extensions
2.1 doub1e comp1ex data type
In the double complex data type, each datum is represented by a
pair of double-precision real variables. A double complex version of
every complex built-in function is provided.

2.2 Internal flles
The Fortran 77 American National Standard introduces internal files
(memory arrays) but restricts their use to formatted sequential
l/O statements. The AIUX l/O system also permits internal files to be
used in direct and unformatted reads and writes.

Fortran Language Reference 11-1

2.3 lmpllclt undefined statement
Fortran has a rule that the variable type that does not appear in a type
statement is integer ifitsfirstletteris i, j, k, l,m,orn.
Otherwise, it is real. Fortran 77 has an implicit statement for
overriding this rule. An additional type statement, undefined, is
permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism. The compiler will
issue a diagnostic for each variable that is used but does not appear in a
type statement. Specifying the -u compiler option is equivalent to
beginning each procedure with this statement

2.4 Recursion
Procedures may call themselves directly or through a chain of other
procedures. This differs from ANSI Standard Fortran 77, which does
not allow any form of recursion.

2.5 Automatic storage
static and automatic are recognized keywords in this
implementation, but not in ANSI Standard Fortran 77. These keywords
may appear in implicit statements or as types in type statements.
Local variables are static by default; there is exactly one copy of the
datum, and its value is retained between calls. There is one copy of
each variable declared automatic for each invocation of the procedure.
Automatic variables may not appear in equivalence, data, or
save statements.

2.6 Variable length Input llnes
The Fortran 77 American National Standard expects input to the
compiler to be in a 72-column format (except in comment lines):

• The first five characters are the statement number.

• The next character is the continuation character.

• The next 66 are the body of the line.

• If there are fewer than 72 characters on a line, the compiler pads
it with blanks.

• Characters after the first 72 are ignored.

11-2 A/UX Programming Languages and Tools, Volume 1

To make it easier for you to type in Fortran programs, this compiler
also accepts input in variable length lines:

• An ampersand (&) in the first position of a line indicates a
continuation line; the remaining characters form the body of the
line.

• A tab character in one of the first six positions of a line signals
the end of the statement number and continuation part of the line;
the remaining characters form the body of the line.

• A tab anywhere except in one of the first six positions on the line
is treated as another kind of blank by the compiler.

2. 7 Uppercase/lowercase
In the Fortran 77 Standanl, there are only 26 letters because Fortran is a
one-case language. This compiler expects lowercase input.

By default, the compiler converts all uppercase characters to lowercase
except those inside character constants. If you specify the -u compiler
option, uppercase letters are not transformed. In this mode, you can
specify external names that have uppercase letters and you can have
distinct variables differing in case only.

If the -u option is set, keywords will be recognized only if they appear
in lowercase.

2.8 inc1ude statement
The statement

include 'stuff'

is replaced by the contents of the file stuff. include statements
may be nested to a reasonable depth, currently ten.

2.9 Binary lnltlallzatlon constants
A logical, real, or integer variable may be initialized in a
data statement by a binary constant, which is denoted by a letter,
followed by a quoted string. If the letter is b, the string is binary, and
only zeros and ones (0 and 1) are permitted. If the letter is o, the string
is octal, with digits zero through seven (0 - 7). If the letter is z or x,
the string is hexadecimal, with digits uro through nine (0 - 9), a
through f. Thus, the statements

Fortran Language Reference 11-3

integer a (3)

data a/b'1010',o'12',z'a'/

initialize all three elements of a to 10.

2.1 O Character strings
To be compatible with the C language, this compiler recognizes the
following backslash escapes:

\n newline

\t tab

\b backspace

\f form feed

\0 null

\' apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)

\\ \(backslash)

\x the character (in general)

Fortran 77 has only one quoting character: the apostrophe ('). This
compiler and l/O system recognize both the apostrophe and the double
quote ("). If a string begins with one variety of quote mark, you may
embed the other within it without using the repeated quote or backslash
escapes.

Every unequivalenced scalar local character variable and every
character string constant is aligned on an integer word boundary.
Each character string constant appearing outside a data statement is
followed by a null character to ease communication with C language
routines.

2.11 Hollerith
Fortran 77 does not have the old Hollerith (nh) notation, although the
new Standard recommends implementing it to improve compatibility
with old programs. In this compiler, Hollerith data may be used in
place of character string constants and may also be used to initialize
noncharacter variables in data statements.

11-4 A/UX Programming Languages and Tools, Volume 1

2.12 Equlvalence statements
This compiler permits single subscripts in equivalence statements
under the interpretation that all missing subscripts are equal to 1. A
warning message is printed for each such incomplete subscript

2.13 One-trip do loops
The Fortran 77 American National Standard requires that the range of a
do loop not be performed if the initial value is already past the limit
value. For example,

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was
undefined, but it was common practice that the range of a do loop
would be performed at least once.

To accommodate old programs, although they are in violation of the
1977 Standard, this compiler offers the-onetrip compiler option,
which causes loops whose initial value is greater than or equal to the
limit value to be performed exactly once.

2.14 Commas In formatted Input
The 1/0 system attempts to be more lenient than the Fortran 77
American National Standard when it seems worthwhile. When you
request a formatted read of noncharacter variables, commas may be
used as value separators in the input record, overriding the field lengths
given in the format statement Thus, if you have the format

(ilO, f20 .10, i4)

the record

-345,.0Se-3,12

will be read correctly.

2.15 Short Integers
This compiler accepts declarations of type integer*2. (Ordinary
integers follow the Forttan rules about occupying the same space as a
real variable; they are assumed to be of C language type long
int; half word integers are of C language type short int.) An
expression involving only objects of type integer*2 is also of that
type. Generic functions return short or long integers, depending on the
actual types of their arguments. If a procedure is compiled using the

Fortran Language Reference 11-5

-I2 flag, all small integer constants will be of type integer*2. If
the precision of an integer-valued intrinsic function cannot be
determined by the generic function rules, the compiler will choose one
thatreturns the prevailing length (integer*2 when the-I2
command flag is in effect). When the - r 2 option is in effect, all
quantities of type logical will be deemed short. Note that these
short integer and logical quantities do not obey the standard
rules for storage association.

2.16 Addltlonal Intrinsic function llbrary
This compiler supports all the intrinsic functions specified in the
Fortran 77 Standard. In addition, there are functions for performing
bitwise Boolean operations (or, and, xor, and not) and for
accessing command arguments (getarg and iargc).

The following is the Fortran intrinsic function library plus some
additional functions. These functions are automatically available to the
Fortran programmer and require no special invocation of the compiler.
The dagger (t) beside some of the commands indicates that they are
not part of ANSI standard F77. In parentheses beside each function
description is the location for the command in A!UX Programmer's
Reference. These functions are as follows:

tabort
abs
a cos
aimag

aint
a log
alog7
amaxO
amaxl
amino
aminl
amod
tand
anint
as in
atan

11-6

Terminate program (abort(3F))
Absolute value (max(3F))
Arccosine (acos(3F))
Imaginary part of complex argument
(aimag(3F))
Integer part (aint(3F))
Natural logarithm (log(3F))
Common logarithm (alog10(3F))
Maximum value (max(3F))
Maximum value (max(3F))
Minimum value (min(3F))
Minimum value (min(3F))
(mod(3F))
Bitwise Boolean (bool(3F))
Nearest integer (round(3F))
Arcsine (asin(3F))
Arctangent (atan(3F))

A/UX Programming Languages and Tools, Volume 1

atan2 Arctangent (atan2{3F))
cabs Complex absolute value (abs(3F))
ccos Complex cosine (cos(3F))
cexp Complex exponential (exp(3F))
char Explicit type conversion (ftype(3F))
clog Complex natural logarithm (log(3F))
cmplx Explicit type conversion (ftype(3F))
con jg Complex conjugate (conjg(3F))
cos Cosine (cos(3F))
co sh Hyperbolic cosine (cosh(3F))
cs in Complex sine (sin(3F))
csqrt Complex square root (sqrt(3F))
dabs Absolute value (abs(3F))
dacos Arccosine (acos(3F))
dasin Arcsine (asin(3F))
datan Arctangent (atan(3F))
datan2 Double-precision arctangent

(atan2(3F))
db le Explicit type conversion (ftype(3F))
tdcmplx Explicit type conversion (ftype(3F))
tdconjg Complex conjugate (conjg(3F))
dcos Cosine (dcos(3F))
dcosh Hyperbolic cosine (cosh(3F))
ddim Positive difference (dim(3F))
dexp Exponential (exp{3F))
dim Positive difference (dim(3F))
tdimag Imaginary part of complex argument

(aimag(3F))
dint Integer part (aint(3F))
dlog Natural logarithm (log(3F))
dloglO Common logarithm (log10(3F))
dmaxl Maximum value {max(3F))
dminl Minimum value (min(3F))
dmod Remaindering (dmod(3F))
dnint Nearest integer {round(3F))
dprod Double-precision product (dprod(3F))
dsign Transfer of sign (sign(3F))
dsin Sine (sin(3F))
dsinh Hyperbolic sine (sinh(3F))

Fortran Language Reference 11-7

dsqrt Square root (sqrt(3F))
dtan Tangent (tan(3F))
dtanh Hyperbolic tangent (tanh(3F))
exp Exponential (exp(3F))
float Explicit type conversion (ftype(3F))
tgetarg Return command-line argument

(getarg(3F))
tgetenv Return environment variable

(getenv(3F))
iabs Absolute value (abs(3F))
iargc Return number of arguments

(iargc(3F))
ichar Explicit type conversion (ftype(3F))
idim Positive difference (dim(3F))
idint Explicit type conversion (ftype(3F))
idnint Nearest integer (round(3F))
if ix Explicit type conversion (ftype(3F))
index Return location of substring

(index(3F))
int Explicit type conversion (ftype(3F))
tirand Random number generator
isign Transfer of sign (sign(3F))
len Return length of string (len(3F))
lge String comparison (strcmp(3F))
lgt String comparison (strcmp(3F))
Ile String comparison (strcmp(3F))
llt String comparison (strcmp(3F))
log Natural logarithm (log(3F))
loglO Common logarithm (logl0(3F))
tlshift Bitwise Boolean (bool(3F))
max Maximum value (max(3F))
maxO Maximum value (max(3F))
maxl Maximum value (max(3F))
tmclock Return Fortran time accounting

(mclock(3F))
min Minimum value (min(3F))
minO Minimum value (min(3F))
minl Minimum value (min(3F))
mod Remaindering (mod(3F))

11-8 A/UX Programming Languages and Tools, Volume 1

nint
tnot
tor
trand
real
trshift
sign
tsignal

sin
sinh
sngl
sqrt
ts rand
tsystem
tan
tanh
txor
tzabs

Nearest integer (bool(3F))
Bitwise Boolean (bool(3F))
Bitwise Boolean (bool(3F))
Random number generator (rand(3F))
Explicit type conversion (ftype(3F))
Bitwise Boolean (bool(3F))
Transfer of sign (sign(3F))
Specify action on receipt of system
signal (signal(3F))
Sine (sine(3F))
Hyperbolic sine (sinh{3F))
Explicit type conversion (ftype(3F))
Square root (sqrt{3F))
Random number generator (rand(3F))
Issue a shell command (system(3F))
Tangent (tan(3F))
Hyperbolic tangent (tanh(3F))
Bitwise Boolean (bool(3F))
Complex absolute value {abs(3F)).

For more information on the f7 7 intrinsic function commands, see
AIUX Command Reference.

3. Violations of the standard
The following sections describe the three known ways in which the
NUX system implementation of Fortran 77 violates the new American
National Standard. These exceptions to the standard involve the
following:

1. Double-precision alignment

2. Dummy procedure arguments

3. t and tl formats

3.1 Double-precision allgnment
The Fortran 77 American National Standard permits common or
equivalence statements to force a double-precision quantity onto
an odd word boundary.

Fortran Language Reference 11-9

For example,

real a (4)
double precision b,c
equivalence (a(l),b), (a(4),c)

Some machines require that double-precision quantities be on double
word boundaries; other machines run less efficiently if this alignment
rule is not observed. It is possible to tell which equivalenced and
common variables suffer from a forced odd alignment, but every
double-precision argument must be assumed on a bad boundary.

To load a double-precision quantity on some machines, you must use
two separate operations:

I. Move the upper and lower halves into the halves of an aligned
temporary.

2. Load that double-precision temporary.

To store such a result, you must reverse the order of the above two
operations.

All double-precision real and complex quantities must fall on even
word boundaries on machines with corresponding hardware
requirements or if the source code issues a diagnostic whenever there is
a violation of the odd-boundary rule.

3.2 Dummy procedure arguments
If any argument of a procedure is of type character, all dummy
procedure arguments of that procedure must be declared in an
external statemenL For an example illustrating this, see
"Argument Lists" later in this chapter.

This requirement arises as a subtle coronary of the way Fortran
represents character string arguments. A warning is printed if a
dummy procedure is not declared external. The same code is
correct (in this regard), however, if there are no character
arguments.

3.3 t and ti formats
The t (absolute tab) and tl (leftward tab) fonnat codes allow you to
reread or rewrite part of a record that has already been processed.

11-10 A/UX Programming Languages and Tools, Volume 1

This compiler's implementation uses .. seeks." Therefore, if the
standard output unit is not one that allows seeks, such as a terminal, the
program is in error.

Benefits of the implementation chosen include the following:

• There is no upper limit on the length of a record.

• You do not have to predeclare any record lengths, except where
specifically required by Fortran or by the operating system.

4. lnterprocedure interface
The following sections provide information necessary for writing C
language procedures that call or are called by Fortran procedures.
Specifically, you should understand the conventions regarding the
following:

1. Procedure names

2. Data representation

3. Return values

4. Argument lists

4.1 Procedure names
On A/UX systems, the compiler appends an underscore to the name of
a common block for a Fortran procedure to distinguish it from a C
language procedure or an external variable with the same user-assigned
name.

Fortran library procedure names have embedded underscores, to avoid
clashes with user-assigned subroutine names.

4.2 Data representations
The following is a table of corresponding Fortran and C language
declarations:

Fortran Language Reference 11-11

Fortran Clanguage

integer*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct {float r, i;} x;
double complex x struct {double dr, di;} x;
character*6 x char x[6];

By the rules of Fortran, integer, logical, and real data occupy
the same-sized areas in memory.

4.3 Return values
A function of type integer, logical, real, or double
precision, declared as a C language function, returns the
corresponding type.

A complex or double complex function is equivalent to a C
language routine with an additional initial argument that points to the
place where the return value is to be stored Thus

complex function f (arg ...)

is equivalent to

struct {float r, i;} temp;
f_(&temp, arg ...)

A character-valued function is equivalent to a C language routine
with two extra initial arguments:

• a data address

• alength

Thus,

character*lS function g (arg •• .)

is equivalent to

11-12 A/UX Programming Languages and Tools, Volume 1

char result[];
long int length;
g_(result, length, arg ...)

and could be invoked in the C language by

char chars[lS];

g_ (chars, lSL, arg •.•);

Subroutines are invoked as if they were integer-valued functions whose
value specifies which alternate return to use. Alternate return
arguments, or statement labels, are not passed to the function, but are
used to do an indexed branch in the calling procedure. If the
subroutine has no entry points with alternate return arguments, the
returned value is undefined.

Thus, the statement

call nret(*l, *2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

4.4 Argument lists
All Fortran arguments are passed by address.

For every argument that is of type character or a dummy
procedure, an argument giving the length of the value is passed The
string lengths are long int quantities passed by value.

The order of arguments is then:

1. Extra arguments for complex and character functions

2. Address for each datum or function

3. A long int for each character or procedure argument

Thus, the call in

Fortran Language Reference 11-13

external f
character*? s
integer b (3)

call sam(f, b(2), s)

is equivalent to that in

int f ();
char s[7];
long int b[3];

sam_(f, &b[l], s, OL, 7L);

• Note that the first element of a C language array always has
subscript 0, but Fortran arrays begin at 1 by default For
example, in C the above array of 3 elements would be
subscripted 0, 1, 2; in f77 they are subscripted 1, 2, 3.

• Fortran arrays are stored in column-major order. C language
arrays are stored in row-major order. The stored order for each
language is given by the numbers in the sample two-dimensional
arrays that follow:

f77:

c:

1 3
2 4

1 2
3 4

5. File formats
5.1 Fiie structure
Fortran requires four kinds of external files:

1. Sequential fonnatted

2. Sequential unformatted

3. Direct fonnatted

11-14 A/UX Programming Languages and Tools, Volume 1

4. Direct unformatted

On A/UX systems, these are all implemented as ordinary files that are
assumed to have the proper internal structure.

Fortran 1/0 is based on records. When a direct file is opened in a
Fortran program, the record length of the records must be given. This
is used by the Fortran l/O system to make the file look as if it is made
up of records of the given length. In the special case that the record
length is given as 1, the files are not considered to be divided into
records but are treated as ordinary files on the A/UX system (byte­
addressable byte strings). A read or write request on such a file
keeps consuming bytes until satisfied, rather than being restricted to a
single record.

The peculiar requirements on sequential unformatted files
make it unlikely that they will ever be read or written by any means
except Fortran 1/0 statements. Each record is preceded and followed
by an integer containing the record's length in bytes.

The Fortran l/O system breaks sequential formatted files into
records while reading by using each newline as a record separator. The
result of reading off the end of a record is undefined, according to the
Fortran 77 American National Standard. The 1/0 system is permissive
and treats the record as being extended by blanks. On output, the 1/0
system will write a newline at the end of each record. It is also
possible for programs to write newlines for themselves. This is an
error, but the only effect will be that the single record you thought was
written will be treated as more than one record when being read or
backspaced over.

5.2 Preconnected files and file positions
Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is
connected to the standard input, unit 6 is connected to the standard
output, and unit 0 is connected to the standard error unit. All are
connected for sequential formatted l/O.

All the other units are also preconnected when execution begins. Unit
n is connected to a file named fort . n. These files need not exist and
will not be created unless their units are used without first executing an
open. The default connection is for sequential formatted
l/O.

Fortran Language Reference 11-15

The Fortran 77 Standard does not specify where a file that has been
opened explicitly for sequential I/O is positioned initially. In fact,
the 1/0 system attempts to position the file at the end A write will
append to the file and a read will result in an end-of-file indication.
To position a file at its beginning, use a rewind statement. The
preconnected units 0, 5, and 6 are positioned as they come from the
parent process.

11-16 A/UX Programming Languages and Tools, Volume 1

Chapter 12

EFL Reference

Contents

1. EFL: An extended Fortran language
1.1 efl command syntax

2. Lexical fonn
2.1 Character set
2.2 Tokens
2.3 Lines • • •
2.4 Multiple statements on a line •
2.5 Comments
2.6 include files • • • • •
2.7 Identifiers • •
2.8 Strings • • •
2.9 Integer constants •
2.10 Floating-point constants
2.11 Punctuation • • • • • •
2.12 Operators • • • • •
2.13 Macros

3: Program fonn
3.1 Files
3.2 Procedures
3.3 Block scope •
3.4 Statements
3.5 Labels • • •

4. Data types and variables
4.1 Basic types
4.2 Constants
4.3 Variables
4.4 Arrays •
4.5 Structures

- i -

1
2

3
3
3
3
4
4
4
5
5
6
6
6
7
8

8
8
8
8

10
10

10
11
11
12
13
13

5. Expressions • • . • • • • • • • • • • • •
5.1 Primaries • • • • • • • • • • • •

5.1.1 Constants • • • • • • • • • •
5.1.2 Variables • • • • •
5.1.3 Array elements
5.1.4 Structure members
5.1.5 Procedure invocations
5.1.6 Input/output expressions
5.1.7 Coercions
5.1.8 Sizes

5.2 Parentheses • • • • • •
5.3 Unary operators •

5.3.l Arithmetic
5.3.2 Logical

5.4 Binary operators • •
5.4.1 Arithmetic
5.4.2 Logical • • • • •

5.5 Relational operators •
5.6 Assignment operators
5.7 Dynamic structures •
5.8 Repetition operator •
5.9 Constant expressions

6. Declarations • • •
6.1 Syntax • • • • • • • • • • •
6.2 Attributes • • • • • • •

6.2.1 Arrays •
6.2.2 Structures •
6.2.3 Precision
6.2.4 Common • • • •
6.2.5 External • • • • •

6.3 Variable list • • • • • • • • •
6.4 The initial statement • • • •

7. Executable statements • • •
7 .1 Expression statements
7.2 Blocks • • • • •
7 .3 Test statements • • • • • •

7.3.1 if statement • • • • •
7.3.2 if-else

- ii -

14
16
16
16
16
16
16
17
18
18
19
19
19
19
19
19
21
21
22
23
23
23

23
23
24
24
25
26
26
26
27
27

27
27
28
28
29
29

7.3.3 se1ect statement
7.4 Loops • • • • • • •

7.4.1 whi1e statement
7.4.2 for statement • • • •
7.4.3 repeat statement
7.4.4 repeat-until statement
7.4.5 do loop

7.5 Branch statements
7.5.1 goto statement •
7.5.2 break statement
7 .5.3 next statement •
7.5.4 return statement

7 .6 Input/output statements
7 .6.1 I/O units
7.6.2 Binary I/O
7 .6.3 Formatted I/O
7 .6.4 Iolists • • •
7 .6.5 Formats
7 .6.6 Manipulation statements

8. Procedures • • • • • •
8.1 procedure statement •
8.2 end statement
8.3 Argument association
8.4 Execution and return values
8.5 Known functions • • • • •

8.5.1 Minimum and maximum functions
8.5.2 Absolute value
8.5.3 Elementary functions
8.5.4 Other generic functions •

9. Atavisms • • • • •
9.1 Escape lines • • •
9.2 ca11 statement • •
9 .3 Obsolete keywords • • • • •
9.4 Numeric labels
9.5 Implicit declarations
9.6 Computedgoto •
9.7 goto statement •
9 .8 Dot names • • • •

- iii -

30
31
31
31
32
32
33
33
33
34
35
35
35
36
36
36
37
37
38

39
39
39
39
40
40
40
41
41
41

42
42
42
42
42
42
43
43
43

9.9 Complex constants
9.10 Function values • •
9.11 Equivalence • • • • • •
9.12 Minimum and maximum functions

10. Compiler options • • • •
10.1 Default options • • • • •
10.2 Input language options • • •
10.3 Input/output error handling
10.4 Continuation conventions
10.5 Default formats • • •
10.6 Alignments and sizes • • • •
10.7 Default input/output units • • • • •
10.8 Miscellaneous output control options

11. Examples • • • • • •
11.1 File copying • • •
11.2 Matrix multiplication
11.3 Searching a linked list
11.4 Walking a tree

44
44
44
45

45
46
46
46
46
46
47
47
48

48
48
48
49
50

12. Portability • • • • 54
12.1 Primitives • • • • • • • 54

12.1.1 Character string copying 54
12.1.2 Character string comparisons 54

13. Compiler • • • • • • • • 54
13 .1 Current version • • • • • • • • • • 54
13.2 Diagnostics • • • • • • 55
13.3 Quality of Fortran produced • • • • 55

14. Constraints on EFL • •
14.1 External names
14.2 Procedure interface
14.3 Pointers
14.4 Recursion • • •
14.5 Storage allocation

Figures

- iv -

57
57
58
58
58
58

Figure 12-1. Legal characters in EFL • • • • 3

Figure 12-2. Reserved words in EFL • • • • • 5

Figure 12-3. Forms for floating-point constants in
EFL • • • • • • • • • • 6

Figure 12-4. Characters for grouping or separating in
EFL 6

Figure 12-5. EFL operators • • • • • •

Figure 12-6. Procedure illustrating block level
scope

Figure 12-7. Example of a label • • • •

Figure 12-8. Examples of EFL declarations •

Figure 12-9. Basic EFL types

7

9

10

24

24

Figure 12-10. Examples of legal array attributes • • • 25

Figure 12-11. Examples of valid structure
attributes • • • • 26

Figure 12-12. Example of a block 28

Figure 12-13. Nested if-else • • 29

Figure 12-14. Sequential if-else • 30

Figure 12-15. select statement with case and
default • • • • • • • • • 31

Figure 12-16. Use of gotos with case labels in a
se1ect • • • • • • • • • 34

Figure 12-17. Permissible format specifiers in
EFL • • • • • 38

Figure 12-18. File-copying example • • • • 48

Figure 12-19. Matrix multiplication example • 49

Figure 12-20. Example of searching a linked list • • 50

Figure 12-21. Pseudocode for a tree walk • • • 51

-v-

Figure 12·22. Example of walking a tree (page 1 of
2) • • • • • • • • • • • • 52

Figure 12·22. Example of walking a tree (page 2 of
2) • • • • • • • • • • • • 54

Figure 12·23. Fortran code produced from matrix
multiplication example • • • • • 55

Figure 12·24. Fortran code produced from tree-walk
example (page 1 of 2) • • • • • 56

Figure 12·24. Fortran code produced from tree-walk
example (page 2 of 2) • • • • • 57

Tables

Table 12·1. Precedence of operators in EFL 15

Table 12·2. Type of result of binary operation A op
B • • • • • • • • • • • 20

Table 12·3. Truth tables for and and or 21

Table 12·4. Relational operators in EFL 22

Table 12·5. Generic functions

Table 12·6. Recognized keyword synonyms

Table 12·7. Regular and dots=on forms of

41

42

operators • • • • • • • • • 44

Table 12-8. Nongeneric functions • • • • 45

Table 12·9. Options for changing default read/write
formats • • • • • • • • • • • • 47

Table 12·1 O. Alignment and size options for Fortran data
types • • • • • • • • • • • • • 47

-vi -

Chapter 12

EFL Reference

1. EFL: An extended Fortran language
This chapter is a reference for the EFL programming language. It
describes the features and use of the language, and, although
supplemented by the chapters on Fortran, can stand alone as an arbiter
of the EFL language. To use this chapter, you should have some
familiarity with a procedural language.

EFL is a clean, general-purpose computer language intended to
encourage portable programming. It has a uniform and readable syntax
and good data and control flow structuring.

EFL programs can be translated into efficient Fortran code. This
means that you can take advantage of the Fortran libraries and benefit
from the portability that comes with the use of a standardized language.
Even though EFL originally stood for ''Extended Fortran Language,''
the EFL compiler is much more than a simple preprocessor.

The EFL compiler attempts to diagnose all syntax errors, provide
readable Fortran output, and avoid a number of Fortran restrictions.
For example, while EFL allows variable white space in its input,
standard Fortran requires placement of comment indicators and data in
standard, specified columns, and will not compile properly if these
columns are not used. In addition, EFL is a structured language, while
standard Fortran uses gotos and continue statements. These and
other Fortran restrictions are mentioned in sections such as
"Continuation Conventions" and "Miscellaneous Output Control
Options.''

EFL is especially useful for numeric programs, and lets you express
complicated ideas in a comprehensible way, while giving you access to
the power of the Fortran environment

In this chapter's examples and syntax specifications, a construct
surrounded by double brackets represents a list of one or more of those

EFL Reference 12-1

items, separated by commas. Thus, the notation

[[item]]

could refer to any of the following:

item
item, item
item, item, item

To increase the legibility of EFL programs, you may break some of the
statement forms without an explicit continuation. A square (0) in the
syntax represents a point where an end-of-line will be ignored.

1.1 e£1 command syntax
The A/UX efl command has the following syntax:

efl [-w] [-f] [-C] rftlename .. .]

The flag options for efl are:

-w Suppresses warning messages

-#- Suppresses comments in the generated program and the flag
option

-c (on by default) Causes comments to be included in the generated
program

An argument with an embedded = (equals sign) sets an ef l flag option
as if it had appeared in an opt ion statement at the start of the
program. Many options are described in the section ''Compiler
Options.'' A set of defaults for a particular target machine may be
selected by one of the choices: system=unix, system=gcos, or
system=cray. The default setting of the system option is the same
as the machine on which the compiler is running. Other specific
options determine the style of input/output, error handling, continuation
conventions, the number of characters packed per word, and default
formats.

12-2 A/UX Programming Languages and Tools, Volume 1

2. Lexical form
2.1 Character set
The following characters are legal in an EFL program:

Letters a b c d e f g h i j k 1 m
n o p q r s t u v w x y z

Digits 0 1 2 3 4 5 6 7 8 9
White space blank tab
Quotes "
Number sign * Continuation
Braces { }

Parentheses ()

Other + * I
< > & $

Figure 12-1. Legal characters in EFL

Even though all the examples are printed in lowercase, case is ignored,
except within strings (for example, a and A are treated as the same
character). An exclamation mark (!) may be used in place of a tilde
(-)as the logical unary operator "complement." Square brackets ([
and J) may be used in place of braces ({ and J) for punctuation.

Outside a character string or comment, a sequence of one or more
spaces or tab characters acts as a single space and terminates a token.

2.2 Tokens
A program is made up of a sequence of tokens. Each token is a
sequence of characters. A blank terminates any token except a quoted
string. An end-of-line also terminates a token unless you signal
explicit continuation by an underscore.

2.3 Lines
EFL is a line-oriented language. Except in special cases where
continuation is made explicit by use of an underscore (_), the end of a
line marks the end of a token and the end of a statement.

You may use the trailing portion of a line for a comment. Diagnostic
messages are labeled with the line number of the file in which they are
detected.

EFL Reference 12-3

You may continue lines explicitly by using the underscore (_)
character. If the last character of a line (after comments and trailing
white space have been stripped) is an underscore, the end of the line
and the initial blanks on the next line are ignored. Underscores are
ignored in other contexts, except inside quoted strings. Thus,

1_000_000_
000

equals 109.

There are also rules for continuing lines automatically: The end-of-line
is ignored whenever it's obvious that the statement is not complete. A
statement is continued if the last token on a line is an operator, comma,
left brace, or left parenthesis, but a statement is not continued if
unbalanced braces or parentheses exisL Some compound statements
also are continued automatically; these points are noted in the sections
on executable statements.

2.4 Multiple statements on a llne
A semicolon terminates the current statement Therefore, you can
write more than one statement on a line. A line consisting only of a
semicolon, or a semicolon following a semicolon, forms a null
statement.

2.5 Comments
You can place a comment at the end of any line. It is introduced by a
number sign (#), and continues to the end of the line. The number sign
and succeeding characters on the line are discarded. A blank line is
also considered a comment. Comments have no effect on execution.

Note: A number sign inside a quoted string does not mark a
comment.

2.6 inc1ude files
You can insert the contents of a file j oe at a certain point in the source
text by referencing it in the line

include joe

No statement or comment may follow an include on a line. In
effect, the include line is replaced by the lines in the named file, but

12-4 A/UX Programming Languages and Tools, Volume 1

diagnostics refer to the line number in the included file. includes
may be nested at least ten deep.

2. 7 ldentlf lers
An identifier is a name used in an EFL program consisting of a letter
or a letter followed by letters or digits. Figure 12-2 shows a list of the
reserved words that have special meaning in EFL, and therefore should
not be used as identifiers.

array exit precision
automatic external procedure
break false read
call field re a db in
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double length of until
doubleprecision logical value
else long while
end next write
equivalence option writebin

Figure 12·2. Reserved words in EFL

You should use these words only for the pwposes described in this
chapter.

2.8 Strings
A character string is a sequence of characters swrounded by
quotation marks. If the string is bounded by single-quote marks ('), it
may contain double-quote marks ("), and vice versa. You may not
break a quoted string across a line boundary. Legal character strings
include

EFL Reference 12-5

'hello there'
"ain't misbehavin'"

2.9 Integer constants
An integer constant is a sequence of one or more digits.

0
57
123456

2.1 O Floating-point constants
A Boating-point constant contains a dot, an exponent field, or both.
An exponent field is the letter d or e followed by an optionally signed
integer constant. If I and J are integer constants and E is an exponent
field, then a floating constant has one of the following forms:

.I
I.
I.J
IE
I.E
.IE
I.JE

Figure 12·3. Forms for floating-point constants in EFL

2.11 Punctuation
You may use certain characters to group or to separate objects in the
language, as follows:

Parentheses

Braces
Comma

Semicolon
Colon

End-of-line <CR>

Figure 12-4. Characters for grouping or separating in EFL

The end-of-line is a token (statement separator) if the line is nonblank
or noncontinued.

12-6 A/UX Programming Languages and Tools, Volume 1

2.12 Operators
The EFL operators are written as sequences of one or more
nonalphanumeric characters, as shown in Figure 12-5.

Operator Meaning
+ unary plus (no effect)
+ binary plus (a + b)
++ prefix plus (a= a+ 1)

prefix minus (a= a - 1
binary minus (a - b)

* times (ax b)
I divided by (a+ b)
** exponentiation (a"}
< is less than (a< b)
<- is less than or equals (a S b)
> is greater than (a > b)
>= is greater than or equals (a<!: b)

equals (a::b)
does not equal (a:#: b)

$ repetition (2$a = aa)
fp decimal point (a.exp ftel<i)

&& logical and (a A b)

11 logical or (av b)
& and (a and b)
I or(aorb)

assign equals (a "gets" b)
+- assign plus (a= a+ b)

assign minus (a= a- b)
I= assign divide (a= a+ b)
*= assign times (a= ax b)
**= assign exp (a= a"}
&&- assign logical and (a= a Ab)
11= assign logical or (a= av b) , .. assign and (a= a and b)
I= assign or (a= a orb)
-> leftside = structure 11.CUfU!

Figure 12-5. EFL operators

where "fp" stands for "floating point."

A dot (.) is an operator if it qualifies a structure element name, but not
if it acts as a decimal point in a numeric constant. There is a special

EFL Reference 12-7

mode (see ''Atavisms'') in which some of the operators may be
represented by a string consisting of a dot, an identifier, and another dot
(for example, . 1 t .).

2.13 Macros
EFL has a simple macro substitution facility. You may define an
identifier to be equal to a string of tokens; whenever that name appears
as a token in the program, the string replaces it. A macro name is
given a value in a define statement such as

define count n += 1

Any time the name count appears in the program, it is replaced by the
statement

n += 1

A define statement must appear alone on a line; the format is

define name definition-string

Trailing comments are part of the definition-string.

3. Program form

3.1 Flies
A file is a sequence of lines and is compiled as a single unit It may
contain one or more procedures. Declarations and options that appear
outside a procedure affect the succeeding procedures on that file.

3.2 Procedures
Procedures are the largest grouping of statements in EFL. Each
procedure has a name by which it is invoked (the first procedure
invoked during execution, known as the main procedure, has a null
name).

3.3 Block scope
You may form statements into groups inside a procedure. Then, their
influence on the rest of the program is determined by their location in
the program, the resulting scope of their effect, or both.

The beginning of a program file is at "nesting level" zero. Any
options, macro definitions, or variable declarations you enter are also at
level zero.

12-8 A/UX Programming Languages and Tools, Volume 1

After the declarations, if you enter a left brace, this marks the
beginning of a new block and increases the nesting level by one; a right
brace decreases the nesting level by one. Braces that are inside
declarations do not mark blocks (see "Blocks" under "Executable
Statements" for further information on blocks).

You may then enter a procedure statement for level 1. The text
immediately following the procedure statement is also at level 1.
An end statement marks the end of the procedure and level l, and
returns you to level 0 within the program.

If you define a name (variable or macro) at level 0, it remains defined
throughout that block and in all deeper (higher numbered: for example,
1, 2, 3) nesting levels, unless that name is redefined or redeclared. If,
for example, you define a variable in level 0 (for example, a = 7), a
will be 7 throughout the program. If you want to include a subroutine
at a deeper level and that subroutine needs a to equal 3, you may
redefine a for that subroutine. a will equal 3 in that subroutine only,
however, because, as soon as the program leaves the subroutine, the
definition set forth in level 0 will prevail.

A procedure illustrating block level scope might look like the code
shown in Figure 12-6.

t block O
procedure george
real x
x = 2

if(x > 2)
t new block

integer x t a different variable
do x = 1,7

write(, x)

t end of block
end t end of procedure, return to block 0

Figure 12·6. Procedure illustrating block level scope

EFL Reference 12-9

3.4 Statements
Statements are of the following types:

option
include
define

procedure
end

declarative
executable

The option statement is described in ''Compiler Options.'' The
include, define, and end statements have been described
previously; you may not follow them with another statement on a line.
Each procedure begins with a procedure statement and finishes with
an end statement Declarations or declarative statements
describe types and values of variables and procedures. executable
statements cause specific actions to occur. A block is an example of an
executable statement; it is made up of declarative and executable
statements.

3.5 Labels
An executable statement may have a label, which may be used in a
branch statement A label is an identifier followed by a colon,
appearing at the margin to the left of some statement, such as error:
in Figure 12-7.

read(, x)
if(x < 3) goto error

error: fatal("bad input")

Figure 12·7. Example of a label

4. Data types and variables
EFL supports a small number of basic (scalar) types. You may define
objects made up of variables of basic type (that is, aggregates) and
then define other aggregates in terms of previously defined aggregates.

12-10 A/UX Programming Languages and Tools, Volume 1

4.1 Basic types
The basic types are

logical

integer

field(m :n)

real

complex

long real

A logical quantity may take on the two values
true and false.

An integer may take on any whole number
value in a machine-dependent range.

A field quantity is an integer restricted to a
particular closed interval ([m:n]).

A real quantity is a floating-point approximation
to a real or rational number. Real quantities are
represented as single-precision floating-point
numbers.

A complex quantity is an approximation to a
complex number, and is represented as a pair of
reals.

A long real is a more precise approximation to
a rational. long reals are double-precision
floating-point numbers.

long complex A long complex quantity is an approximation
to a complex number, and is represented as a pair
of long reals.

character (n) A character quantity is a fixed-length string of
n characters.

4.2 Constants
There is a notation for a constant of each basic type.

A logical may take on the two values:

true
false

An integer or field constant is a fixed-point constant, optionally
preceded by a plus or minus sign, as in

EFL Reference 12-11

17
-94
+6
0

A long real "double-precision" constant is a floating-point
constant containing an exponent field that begins with the letter d. A
real "single-precision" constant is any other floating-point constant
A real or long real constant may be preceded by a plus or minus
sign. The following are valid real constants:

17.3
-.4
7.9e-6
14e9

< = 7. 9 x l0-6>
(= 1.4 X lQlO)

The following are valid long real constants:

7. 9d-6 (= 7. 9 x lQ-6)
5d3

A character constant is a quoted string. Consider, for example, the
following:

"bad input"
"I'm real, not integer"

4.3 Variables
A variable is a quantity with a name and a location; at any particular
time the variable may also have a value. A variable is said to be
"undefined" before it is initialized or assigned its first value.

Each variable has certain attributes:

• storage class

•scope

•precision

A variable's storage class is the association of its name and its
location. A storage class may be either transitory or permanent.

• Transitory association is achieved when arguments are passed
to procedures.

12-12 A/UX Programming Languages and Tools, Volume 1

• Other associations are considered permanent or static
associations.

The scope of a variable may be either global or local.

1. The names of common areas are global. Global variables may
be used anywhere in the program, as they are known throughout
the program.

2. All other names are considered local to the block in which they
are declared.

(For further information about scope, refer to "Block Scope.")

Floating-point variables are either of normal or long precision.
Normal precision is 32 bits; long precision is 64 bits. You may state
this attribute independently of the basic type.

4.4 Arrays
You may declare rectangular arrays (of any dimension) of values of the
same type. The index set is always a cross-product of intervals of
integers. The lower and upper bounds of the intervals must be
constants for arrays that are local or common. A formal argument
array may have intervals that are of length equal to that of one of the
other formal arguments. An element of an array is denoted by the
array name, followed by a parenthesized, comma-separated list of
integer values, each of which must lie within the corresponding
interval. The intervals may include negative numbers. Entire arrays
may be passed as procedure arguments or in input/output lists, or they
may be initialized; all other array references must be to individual
elements.

For example, the declared integer array

array (2, 10) chance

might have the elements

chance (3)
chance (2, 8)

4.5 Structures
You may define new types that are made up of elements of other types.
This compound object is known as a structure; its constituents are

EFL Reference 12-13

called members of the structure.

You may name the structure. This name then acts as a type name in the
remaining statements within the scope of its declaration. The elements
of a structure may be of any type (including previously defined
structures), or they may be arrays of such objects. You may pass entire
structures to procedures or use them in input/output lists; you may also
reference individual elements of structures.

The following structure might represent a symbol table:

struct tableentry
{

character(8) name
integer hashvalue
integer numberofelements
field(O:l) initialized, used, set
field(O:lO) type

5. Expressions
Expressions are syntactic forms that yield a value. An expression may
have any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

The precedence of EFL operators, pictured from highest to lowest, is
shown in the following table. Lines separate the precedence levels.
The meanings of these operators are described in ''Unary Operators''
and ''Binary Operators.''

12-14 A/UX Programming Languages and Tools, Volume 1

Table 12-1. Precedence of operators in EFL

Operator Meaning Priority

-> leftside = structure name Highest
. fp decimal point (a.exp field)
** exponentiation (ab)

* times (axb)
I divided by (a+ b)
+ unary plus (no effect)
- unary minus (negation)
++ prefix plus (a= a+ 1)
-- prefix minus (a= a- 1)

+ binary plus (a+ b)
- binary minus (a - b)

< is less than (a< b)
<= is less than or equals (as b)
> is greater than (a> b)
>= is greater than or equals (a~ b)
=== equals (a= b)
-= does not equal (a ::J:. b)
& and (a and b)
&& logical and (a" b)

I or (a orb)
11 logical or (av b)
$ repetition (2$a = aa)
= assignment (a "gets" b) Lowest
+= assign plus (a= a+ b)
-= assign minus (a= a - b)
*= assign times (a= ax b)
/= assign divide (a= a+ b)
**= assign exp (a = a~
&= assign and (a= a and b)
I= assign or (a= a orb)
&&= assign logical and (a= a" b)
11= assign logical or (a= av b)

EFL Reference 12-15

The following are examples of expressions:

a<b && b<c
-(a + sin (x)) I (5+cos (x)) **2

5.1 Primaries
Primaries are the basic elements of expressions. They include
constants, variables, array elements, structure members, procedure
invocations, input/output expressions, coercions, and sizes.

5.1.1 Constants
Constants are described in "Constants" under "Data Types and
Variables.''

5.1.2 Variables
Scalar variable names are primaries. They may appear on the left or
right side of an assignment Unqualified names of aggregates
(structures or arrays) may appear only as procedure arguments and in
input/output lists.

5.1.3 Array elements
You may denote an element of an array with the array name, followed
by a parenthesized list of subscripts, with one integer value for each
declared dimension

a (5)

b(6, -3, 4)

5.1.4 Structure members
A structure name, followed by a dot, followed by the name of a
member of that structure constitutes a reference to that element If that
element is itself a structure, the reference may be further qualified.

a.b
x(3) .y(4) .z(5)

5.1.5 Procedure Invocations
You may invoke a procedure by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-], ... , expression-n>

12-16 A/UX Programming Languages and Tools, Volume 1

The procedure name is either the name of a variable declared
external (see "Attributes" under "Declarations"), the name of a
function known to the EFL compiler (see "Known Functions" under
"Procedures"), or the actual name of a procedure as it appears in a
procedure statement If a procedurename is declared external and
is an argument of the current procedure, it is associated with the
procedure name passed as actual argument; otherwise, it is the actual
name of a procedure. Each expression in the above is called an ''actual
argument''

The following are examples of procedure invocations:

f (x)

work()
g (x, y+3, 'xx')

When one of these procedure invocations is going to be performed,
each of the actual argument expressions is evaluated first. The types,
precisions, and bounds of actual and formal arguments should agree.

If an actual argument is a variable name, array element, or structure
member, the called procedure may use the corresponding formal
argument as the left side of an assignment or in an input list; otherwise,
it may use only the value.

After the formal and actual arguments are associated, control is passed
to the first executable statement of the procedure. When a return
statement is executed in that procedure, or when control reaches the
end statement of that procedure, the function value is made available
as the value of the procedure invocation. The type of the value is
determined by the attributes of the procedurename that are declared or
implied in the calling procedure. These must agree with the attributes
declared for the function in its procedure. In the special case of a
generic function, the type of the result is also affected by the type of
the argument (see "Procedures").

5.1.6 Input/output expressions
The EFL input/ou1put syntactic forms may be used as integer primaries
that have a nonzero value if an error occurs during the input or output.

EFL Reference 12-17

5.1.7 Coercions
You may coerce or convert an expression of one precision or type to
another by an expression with the form

attributes (expression)

At present, the only attributes permitted are precision and basic types.
Attributes are separated by white space.

An arithmetic value of one type may be coerced to any other arithmetic
type. A character expression of one length may be coerced to a
character expression of another length. Logical expressions may not be
coerced to a nonlogical type.

As a special case, a quantity of complex or long complex type
may be constructed from two integer or real quantities by passing two
expressions (separated by a comma) in the coercion. Examples and
equivalent values are

integer(5.3)
long real (5)
complex (5, 3)

5
5.0dO
5+3i

Most conversions are done implicitly, as most binary operators permit
operands of different arithmetic types. Explicit coercions are most
useful when you need to convert the type of an actual argument to
match that of the corresponding formal parameter in a procedure call.

5.1.8 Sizes
The notation that yields the amount of memory required to store a
datum or an item of specified type is

sizeof (leftside)
sizeof (attributes)

In the first case, leftside may denote a variable, array, array element, or
structure member. In the second case, attributes may denote an item of
a specified type. The value of sizeof is an integer, which gives the
size in arbitrary units. If the size is needed in terms of the size of some
specific unit, this may be computed by division,

sizeof(x) I sizeof(integer)

12-18 A/UX Programming Languages and Tools, Volume 1

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal
sizeof because certain data types require final padding on some
machines. The lengthof operator gives this larger value, again in
arbitrary units. The syntax is as follows:

lengthof (/eftside)
lengthof (attributes)

5.2 Parentheses
An expression surrounded by parentheses is itself an expression. A
parenthesized expression will be evaluated before any larger
expression of which it is a part is evaluated.

5.3 Unary operators
All the unary operators in EFL are prefix operators. The result of a
unary operator has the same type as its operand.

5.3.1 Arithmetic
Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator++ adds one to its operand. The prefix operator -­
subtracts one from its operand. The value of either expression is the
result of the addition or subtraction. For these two operators, the
operand must be a scalar, array element, or structure member of
arithmetic type. As a side effect, the operand value is changed.

5.3.2 Logical
The only logical unary operator is complement(-). This operator is
defined by the equations

- true = false
- false = true

5.4 Binary operators
Most EFL operators have two operands separated by the operator.
Because the character set is limited, some of the operators are denoted
by strings of two or three special characters. All binary operators
except exponentiation are left associative.

5.4.1 Arithmetic
The binary arithmetic operators are

EFL Reference 12-19

+ addition
subtraction

* multiplication
I division
** exponentiation

Exponentiation is right associative:

a**b**c = a** (b**c) = a (bcl

The operations have the conventional meanings:

8 + 2 = 10
8 - 2 = 6
8* 2 = 16
8/2 = 4
8 ** 2 = 92 = 64

The type of the result of a binary operation A op B is determined by
the types of its operands; as shown in Table 12-2.

Table 12-2. Type of result of binary operation A op B

Type ofB

Type of A i r lr c le
i i r lr c le
r r r lr c le
Ir Ir Ir Ir le le
c c c le c le
le le le le le le

where i = integer, r = real, c = complex, lr = long real,
le = long complex.

If the type of an operand differs from the type of the result, the
calculation is done as if the operand were first coerced to the type of
the result. If both operands are integers, the result is of type integer,
and is computed exactly (quotients are truncated toward zero, so 8/3 =
2).

12-20 A/UX Programming Languages and Tools, Volume 1

5.4.2 Loglcal
The two binary logical operations in EFL, and and or, are defined by
the truth tables shown in Table 12-3.

Table 12·3. Truth tables for and and or

A B AandB AorB

false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of
evaluation is specified. The expression

a && b

is evaluat.ed by first evaluating a; if it is false, the expression is false
and b is not evaluated; otherwise, the expression has the value of b.
The expression

a 11 b

is evaluat.ed by first evaluating a; if it is true then the expression is true
and b is not evaluated; otherwise, the expression has the value of b.
The other forms of the operators (&for and, and I for or) do not
imply an order of evaluation. With the latter operators, the compiler
may evaluate the operands in any order, thus speeding up the code.

5.5 Relatlonal operators
There are six relations between arithmetic quantities. These operators
are not associative.

EFL Reference 12-21

Table 12-4. Relational operators in EFL

EFL Operator Meaning

< < Less than
<= :s; Less than or equal to
== = Equal to
-= ::;:. Not equal to
> > Greater than
>= ~ Greater than or equal

Because the complex numbers are not ordered, the only relational
operators that may take complex operands are== and-=. The
character collating sequence is not defined.

5.6 Assignment operators
All the assignment operators are right associative. The simple form of
assignment is

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure
member of basic type. This statement computes the expression on the
right side and stores that value (possibly after coercing the value to the
type of the left side) in the location named by the left side. The value
of the assignment expression is the value assigned to the left side after
coercion.

Corresponding to each binary operator there is an assignment operator.
For each binary operator, the assignment operator is formed by
concatenating an equal sign (=) to the operator with no space between
them. For the case of binary+, the assignment operator becomes+=,
and the assignment

a += b

is translated as

a = a + b

Thus, the assignment

n += 2

adds 2 to n. The basic-left-side is evaluated only once.

12-22 A/UX Programming Languages and Tools, Volume 1

5.7 Dynamic structures
EFL does not have an address (pointer, reference) type. There is a
notation, however, for dynamic structures:

leftside -> structurename

This expression is a structure with the shape implied by structurename
but starting at the location of leftside. In effect, this overlays the
structure template on the specified location. The leftside must be a
variable, array, array element, or structure member. The type of the
leftside must be one of the types in the structure declaration. An
element of such a structure is denoted in the usual way, using the dot
operator. Thus,

place(i) -> st.nth

refers to the nth member of the st structure starting at the ith
element of the array place.

5.8 Repetition operator
Inside a list, an element of the form

integer-constant-expression $ constant-expression

is equivalent to the appearance of the expression a number of times
equal to the first expression. Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, 5)

5.9 Constant expressions
If you build an expression out of operators (other than functions) and
constants, the value of the expression is a constant, and may be used
anywhere a constant is required.

6. Declarations
Declarations statements describe the meaning, shape, and size of
named objects in the EFL language.

6.1 Syntax
A declaration statement is made up of attributes and variables.
Declaration statements are of two forms:

EFL Reference 12-23

attributes variable-list
attributes {declarations}

In the first case, each name in the variable-list has the specified
attributes. In the second, each name in the declarations also has the
specified attributes. A variable name may appear in more than one
variable list, as long as the attributes are not contradictory. Each name
of a nonargument variable may be accompanied by an initial value
specification. The declarations inside the braces are one or more
declaration statements. Examples of declarations are shown in Figure
12-8.

integer k=2

long real b(7,3)

common(cname)
{

integer i
long real array(S,0:3) x, y
character(?) ch
}

Figure 12·8. Examples of EFL declarations

6.2 Attributes
The following are basic types in declarations:

logical
integer
field(m:n)
character (k)
real
complex

Figure 12·9. Basic EFL types

In the above list, the quantities k, m, and n denote integer constant
expressions with the properties k > 0 and n > m.

6.2.1 Arrays
The dimensionality can be declared by an array attribute:

12-24 A/UX Programming Languages and Tools, Volume 1

array (bb ••. ,bn)

Each of the bi may be a single integer expression or a pair of integer
expressions separated by a colon. The pair of expressions form a lower
and an upper bound; the single expression is an upper bound with an
implied lower bound of 1. The number of dimensions is equal to n, the
number of bounds.

Each of the integer expressions must be a constant. An exception is
permitted only if each of the variables associated with an array
declarator is a formal argument of the procedure. In this case, each
bound must have the property that upper - lower + 1 is equal to a
formal argument of the procedure. (The compiler has limited ability to
simplify expressions, but it will recognize important cases such as
(0 : n-1) .) The upper bound for the last dimension (bn) may be
marked by an asterisk (*) if the size of the array is unknown.

The following are legal array attributes:

array (5)
array(5, 1:5, -3:0)
array(5, *)
array(O:m-1, m)

Figure 12·10. Examples of legal array attributes

6.2.2 Structures
A structure declaration is of the form

struct [structname] {declarations}

If the optional structname is present, it takes the place of a type name
within the rest of its scope. Each name that appears inside a
declaration is a member of the structure, and has a special meaning
when used to qualify any variable declared with the structure type. The
declarations inside the braces are one or more declaration statements.

A name may appear as a member of any number of structures. It may
also be the name of an ordinary variable, as a structure member name
is used only in contexts where the parent type is known.

Figure 12-11 shows valid structure attributes.

EFL Reference 12-25

struct xx

integer a, b
real x (5)

}

struct {xx z (3); character (5) y}

Figure 12·11. Examples of valid structure attributes

The last line defines a structure that contains an array of three xxs and
a character string.

6.2.3 Precision
Variables of floating-point (real or complex) type may be declared
to be long to ensure that they have higher precision than ordinary
floating-point variables. The default precision is short.

6.2.4 Common
Certain objects called "common areas" have external scope, and may
be referenced by any procedure that has a declaration for the name
using a

common (common-area-name)

attribute. All the variables declared with a particular common attribute
are in the same block. The order in which they are declared is
significant; declarations for the same block in different procedures
must have the variables in the same order and with the same types,
precision, and shapes, although not necessarily with the same names.

6.2.5 External
If a name is used as the procedure name in a procedure invocation, it is
implicitly declared to have the external attribute. If a procedure
name is to be passed as an argument, you must declare it in a statement
with the form

external [[name]]

If a name has the external attribute and is a formal argument of the
procedure, it is associated with a procedure identifier passed as an
actual argument at each call. If the name is not a formal argument, it is
the actual name of a procedure as it appears in the corresponding
procedure statement.

12-26 A/UX Programming Languages and Tools, Volume 1

6.3 Variable llst
The variable list in a declaration consists of a name, an optional
dimension specification, and an optional initial value specification. The
name follows the usual rules.

The dimension specification has the same form and meaning as the list
enclosed in parentheses in an array attribute.

The initial value specification has an equal sign (=) followed by a
constant expression. If the name is an array, the right side of the equal
sign may be a list of constant expressions or repeated elements or lists
enclosed in parentheses; the total number of elements in the list must
not exceed the number of elements in the array. Array elements are
filled in column-major order.

6.4 The Initial statement
An initial value may also be specified for a simple variable, array, array
element, or member of a structure using a statement with the form

initial [[var = val]]

where var may be a variable name, array element specification, or
member of structure, and val is the initial value specified.

The right side follows the same rules as for an initial value
specification in other declaration statements.

7. Executable statements
Every useful EFL program must contain executable statements;
otherwise it cannot do anything. Executable statements are frequently
made up of other statements. While blocks are the most obvious
example of this, many other forms are made up of statements as well.

To increase the legibility of EFL programs, you may break some of the
statement forms without an explicit continuation. A square (D) in the
syntax represents a point where an end-of-line will be ignored.

7.1 Expression statements
A procedure invocation that returns no value is known as a subroutine
call. Such an invocation is a statement. Examples are

EFL Reference 12-27

work(in, out)
run ()

Input/output statements (see "Input/Output Statements" in this
section) resemble procedure invocations but do not yield a value. If an
error occurs here, the program stops.

An expression that is a simple assignment (=) or a compound
assignment (+=, -=, and so on) is a statement, such as

a = b
a= sin(x)/6
x *= y

7.2 Blocks
A block is a compound statement that acts as a single statement A
block uses the following syntax:

{ [[declaration]] [[executable-statement]] }

A block may be used anywhere a statement is permitted. A block is not
an expression and does not have a value. Figure 12-12 shows a sample
block.

integer i f this variable is unknown
f outside the braces of this block

big = 0
do i = 1,n

if (big < a (i))
big = a (i)

Figure 12·12. Example of a block

7.3 Test statements
A test statement permits execution of another statement or group of
statements based on the outcome of a conditional expression.

There are several forms of test statements:

• if statements

12-28 A/UX Programming Languages and Tools, Volume 1

• if-else statements

• select statements

7.3.1 if statement
The simplest of the test statements is the if statement. Its form is

if (logical-expression) D statement

where D means the line may be broken at this point.

First, the logical-expression is evaluated; if it is true, the statement is
executed; if it is not, the statement is skipped.

7.3.2 if-else
A more general statement is of the form

if (logical-expression) D statement-] D
else D statement-2

where D means the line may be broken at this point.

Just as with the if statement, the logical-expression is evaluated and if
it's true, statement-1 is executed, if not, statement-2 is executed. Either
of the consequent statements may itself be an if-else statement, so a
completely nested test sequence is possible. For example,

if (x<y)

if (a<b)
k 1

else
k 2

el.se
if(a<b)

m = 1
else

m = 2

Figure 12·13. Nested if-else

An else statement applies to the nearest preceding if that is not
already followed by an else.

A more common use of the if-else test statement is the sequential
test, shown in Figure 12-14.

EFL Reference 12-29

if (x==l)
k = 1

else if(x==3
k 2

else
k 3

x==S)

Figure 12·14. Sequential if-else

You may use any number of else if statements within a single
if-else statement to test for several conditions; if, however, you
need more than two else ifs, you may prefer to use a select
statement instead.

7.3.3 select statement
Much like the switch statement in the C shell or case statements in
many programming languages, a select statement is used to direct
the branching of a program based on the result of a conditional or
arithmetic expression. A select statement has the general form

select (expression) D block

Inside the block, two special types of labels are recognized. A prefix
with the form

case [[constant]]:

marks the statement to which control is passed if the value of the
expression in the select is equal to one of the case constants. If the
expression does not equal any of these constants but there is a label
default inside the select, a branch is taken to that point;
otherwise, the statement following the right brace is executed.

Once execution begins at a case or default label, it continues until
the next case or default is encountered. An example follows:

12-30 A/UX Programming Languages and Tools, Volume 1

select(x)
{

case 1:
k = 1

case 3,5:
k = 2

default:
k = 3

Figure 12·15. select statement with case and default

7.4 Loops
The loop constructs (while, for, repeat, repeat-until and
do) provide an efficient way to repeat an operation or series of
operations. Loop tennination is generally initiated by the failure of a
logical or iterative test statement. Although the while loop is the
simplest construct, and consequently the most frequently used, each
construct has its own strengths to be exploited in a given application.

7.4.1 while statement
This construct has the form

while (logical-expression) D statement

First, the logical-expression is evaluated; if it is true, statement is
executed, and the logical-expression is evaluated again. If it is false,
statement is not executed and program execution continues at the next
statement

7.4.2 for statement
The for statement is a more elaborate looping construct It has the
form

for (initial-statement, D logical-expression,
D iteration-statement) D body-statement

Except for the behavior of the next statement (see "Branch
Statement" under "Executable Statements"), this construct is
equivalent to

EFL Reference 12-31

initial-statement
while (logical-expression)

{

body-statement
iteration-statement
}

This form is useful for general arithmetic iterations and for various
pointer-type operations. The sum of the integers from 1 to 100 may be
computed by the fragment

n = 0
for(i = 1, i <= 100, i += 1)

n += i

Alternatively, the computation could be done by the single statement

for({n=O; i=l}, i<=lOO, {n+=i; ++i})

Note that the body of the for loop is a null statement in this case. An
example of following a linked list will be given later.

7 .4.3 repeat statement
The statement

repeat 0 statement

executes the statement, then does it again, without any termination test.
A test inside the statement is needed to stop the loop.

7.4.4 repeat-until statement
The while loop performs a test before each iteration. The statement

repeat 0 statement 0 until (logical-expression)

executes the statement, then evaluates the logical-expression. If the
logical-expression is true, the loop is complete; otherwise, control
returns to the statement. Thus, the body is always executed at least
once. The until refers to the nearest preceding repeat that has not
been paired with an until. In practice, this appears to be the least
frequently used looping construct.

12-32 A/UX Programming Languages and Tools, Volume 1

7.4.5 do loop
The simple arithmetic progression is a very common one in numeric
applications. EFL has a special loop form for ranging over an
ascending arithmetic sequence:

do variable = expression-], expression-2, expression-3
statement

The variable is first given the value expression-]. The statement is
executed, then expression-3 is added to the variable. The loop is
repeated until the variable exceeds expression-2. If expression-3 and
the preceding comma are omitted, the increment is taken to be 1. The
loop above is equivalent to

t2 = expression-2
t3 = expression-3
for (variable=expression-1, variable<=t2, variable+=t3)

statement

(the compiler translates EFL do statements into Fortran do statements,
which are usually compiled into excellent code). The do variable may
not be changed inside of the loop, and expression-] must not exceed
expression-2. The sum of the first hundred positive integers could be
computed by the following code:

n = 0
do i = 1, 100

n += i

7.5 Branch statements
It is not considered good programming practice to use branch
statements if you could use a loop construct instead. If you must use a
branch statement, however, EFL provides a few for your convenience.

7 .5.1 goto statement
The most general, and most risky, branching statement is the simple,
unconditional

goto label

After this statement, the statement following the given label is
performed. Inside a select, the case labels of that block may be
used as labels, as in Figure 12-16.

EFL Reference 12-33

select(k)
{

case 1:
error(?)

case 2:
k = 2
goto case

case 3:
k = 5
goto case

case 4:

4

4

fixup (k)
goto default

default:
prmsg ("ouch")

Figure 12·16. Use of gotos with case labels in a select

If two select statements are nested, the case labels of the outer
select are not accessible from the inner one.

7.5.2 break statement
A safer statement is one that transfers control to the statement
following the current select or loop form. A statement of this sort
is almost always needed in a repeat loop:

repeat
{

do a computation
if (finished)
break
}

More general forms permit controlling a branch out of more than one
construct. For example,

break 3

12-34 A/UX Programming Languages and Tools, Volume 1

transfers control to the statement following the third loop and/or
select surrounding the statement.

You may specify the type of construct from which control is to be
transferred, for example, for, while, repeat, do, or select. For
example,

break while

breaks out of the first surrounding while statement. Either of the
statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

7 .5.3 ne:x:t statement
The next statement causes the first surrounding loop statement to go
on to the next iteration. The next operation performed is the test of a
while, the iteration-statement ofa for, the body of a repeat, the
test of a repeat ... until, or the increment of a do. Elaborations
similar to those for break are available:

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

7.5.4 return statement
The last statement of a procedure is followed by a return of control to
the caller. If you want to effect such a return from any other point in
the procedure, a return statement should be executed. Inside a
function procedure, the function value is specified as an argument of
the statement

return (expression)

7.6 Input/output statements
EFL has two input statements (read and readbin), two output
statements {write and writebin), and three control statements
(endfile, rewind, and backspace). You may use any of these

EFL Reference 12-35

forms either as a primary with an integer value or as a statement.

If an exception occurs when one of these forms is used as a statement,
the result is undefined but will probably be treated as a fatal error. If
these forms are used in a context where they return a value, they return
zero if no exception occurs. For the input forms, a negative value
indicates end-of-file and a positive value an error. EFL's input/output
statements reflect very strongly the facilities of Fortran.

7.6.1 1/0 units
Each I/O statement refers to a ''unit,'' which is identified by a small
positive integer. Two special units are defined by EFL, the "standard
input unit'' and the ''standard output unit.'' If no unit is specified in an
I/O transmission statement, these units are assumed.

The data on the unit are organized into records. These records may be
read or written in a fixed sequence. Each transmission moves an
integral number of records. Transmission proceeds from the first
record until the end-of-file character is reached.

7.6.2 Binary 1/0
The read.bin and writebin statements transmit data in a
machine-dependent but swift manner. The statements are of the form

writebin (unit, binary-output-list)
read.bin (unit, binary-input-list)

Each statement moves one unformatted record between storage and the
device. unit is an integer expression. A binary-output-list is an iolist
(see below) without any format specifiers. A binary-input-list is an
iolist without format specifiers, in which each of the expressions is a
variable name, array element, or structure member.

7 .6.3 Formatted 110
The read and write statements transmit data in the form of lines of
characters. Each statement moves one or more records (lines).
Numbers are translated into decimal notation. The exact form of the
lines is determined by format specifications, whether provided
explicitly in the statement or implicitly. The syntax of the statements is

write (unit, formatted-output-list)
read (unit, formatted-input-list)

12-36 A/UX Programming Languages and Tools, Volume 1

The lists are of the same form as for binary I/O, except that they may
include format specifications. If unit is omitted, the standard input or
output unit is used.

7.6.4 lollsts
An iolist specifies a set of values to be written or a set of variables into
which values are to be read. An iolist is a list of one or more
ioexpressions with the form

expression
{ iolist}
do-specification { iolist }

For formatted I/O, an ioexpression may also have the forms

ioexpression : f ormat-specijier
: format-specifier

A do-specification looks just like a do statement, and has a similar
effect: the values in the braces are transmitted repeatedly until the do
execution is complete.

7.6.5 Formats
The following are permissible format-specifiers. The quantities w, d,
and k must be integer constant expressions:

EFL Reference 12-37

i (w) Integer with w digits

f (w, d) Floating-point number of w characters, d of them to the
right of the decimal point

e (w, d) Floating-point number of w characters, d of them to the
right of the decimal point, with the exponent field marked
with the letter e

l (w) Logical field of width w characters, the first of which is t
or f (the rest are blank on output, ignored on input),
standing for true and false, respectively

c Character string of width equal to the length of the datum

c (w) Character string of width w

s (k) Skip k lines

x <k> Skip k spaces

Use the characters inside the string as a Fortran format

Figure 12·17. Permissible format specifiers in EFL

If you do not specify a format for an item in a formatted input/output
statement, the EFL compiler chooses a default form.

If an item in a list is an array name, the entire array is transmitted as a
sequence of elements, each with its own format. The elements are
transmitted in column-major order, the same order that is used for array
initializations.

7.6.6 Manlpulatlon statements
The three input/output statements

backspace (unit)
rewind (unit)

endfile (unit)

look like ordinary procedure calls, but you may use them either as
statements or as integer expressions that yield nonzero if an error is
detected.

12-38 A/UX Programming Languages and Tools, Volume 1

backspace causes the specified unit to back up, so that the next
read will reread the previous record, and the next write will over­
write it.

rewind moves the device to its beginning, so that the next input
statement will read the first record.

endf ile causes the file to be marked so that the record most recently
written will be the last record on the file, and any attempt to read past it
will be an error.

8. Procedures
Procedures are the basic unit of an EFL program and provide the means
of segmenting a program into separately compilable and named parts.

8.1 procedure statement
Each procedure begins with a statement with one of the following
forms:

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ([[name]])

The first form specifies the main procedure, where execution begins.
In the other forms, the attributes may specify precision and type or they
may be omitted entirely. You may declare the procedure's precision
and type in an ordinary declaration statement. If you do not declare a
type, the procedure is a subroutine and no value may be returned for it.
Otherwise, the procedure is a function, and a value of the declared type
is returned for each call.

Each name inside the parentheses in the last form above is called a
''formal argument'' of the procedure.

8.2 end statement
Each procedure terminates with the statement

end

8.3 Argument association
When a procedure is invoked, the actual arguments are evaluated. If
the actual argument is one of the following:

EFL Reference 12-39

• the name of a variable

• an array element

• a structure member

that entity becomes associated with the formal argument. The
procedure may reference the values in the entity and assign values to it.
Otherwise, the value of the actual argument is associated with the
formal argument, but the procedure may not change the formal
argument's value.

If the value of one of the arguments is changed in the procedure, the
corresponding actual argument is not permitted to be associated with
another formal argument or with a common element that is referenced
in the procedure.

8.4 Execution and return values
After actual and formal arguments are associated, control passes to the
first executable statement of the procedure. Control returns to the
invoker when the end statement of the procedure is reached or when a
return statement is executed. If the procedure is a function (has a
declared type) and a return (value) is executed, the value is
coerced to the correct type and precision and returned.

8.5 Known functions
A number of functions that are known to EFL need not be declared.
The compiler knows the types of these functions. Some of them are
generic; that is, they name a family of functions that differ in the types
of their arguments and return values. The compiler chooses which
element of the set to invoke, based upon the attributes of the actual
arguments.

8.5.1 Minimum and maximum functions
The generic functions are min and max. The min calls return the
value of their smallest argument; the max calls return the value of their
largest argument. These are the only functions that may take different
numbers of arguments in different calls. If any of the arguments are
long real, then the result is long real. If any of the arguments
are real, the result is real. Otherwise, all arguments and result
must be integer. Sample function calls follow:

12-40 A/UX Programming Languages and Tools, Volume 1

min(S, x, -3.20)
max (i, z)

8.5.2 Absolute value
The abs function is a generic function that returns the magnitude of its
argument For integer and real arguments the type of the result is
identical to the type of the argument; for complex arguments, the type
of the result is the real of the same precision.

8.5.3 Elementary functions
Generic functions take arguments of real, long real, or
complex type and return a result of the same type:

Function
sin
cos
exp
log
loglO
sqrt

Table 12·5. Generic functions
Description
sine function
cosine function
exponential function (eX).
natural (base e) logarithm
common (base IO) logarithm
square root function (-;,r;).

In addition, the following functions accept only real or long real
arguments:

Function Description
at an arctangent function
atan2 arctangent of x/y

8.5.4 Other generic functions
The sign function takes two arguments of identical type: x and y. It
returns positive x or negative x according to the sign of y.

The mod function yields the remainder of its first argument divided by
its second argument

Function
sign (x,y)
mod(x,y)

Description
sign conversion function
remainder function

These functions accept integer and real arguments.

EFL Reference 12-41

9. Atavisms
The following constructs are included to ease the conversion of old
Fortran programs to EFL.

9.1 Escape lines
To make use of nonstandard features of the local Fortran compiler, it is
occasionally necessary to pass a particular line through to the EFL
compiler output Such a line is called an escape line and must begin
with a percent sign(%). Escape lines are copied through to the output
without change, except that the percent sign is removed. Inside a
procedure, each escape line is treated as an executable statement If a
sequence of lines constitutes a continued Fortran statement, you should
enclose it in braces.

9.2 ca11 statement
You may precede a subroutine call with the keyword call, as follows:

call joe
call work(17)

9.3 Obsolete keywords
The following keywords are recognized as synonyms of EFL
keywords:

Table 12·6. Recognized keyword synonyms

Fon ran EFL

double precision long real
function procedure
subroutine procedure (untyped)

9.4 Numeric labels
Standard statement labels are identifiers. A numeric (positive integer
constant) label is also permitted. The colon is optional following a
numeric label.

9.5 Implicit declarations
If a name is used but does not appear in a declaration, the EFL
compiler gives a warning and assumes a declaration for it If it is used
in the context of a procedure invocation, it is assumed to be a

12-42 A/UX Programming Languages and Tools, Volume 1

procedure name; otherwise it is assumed to be a local variable defined
at nesting level 1 in the current procedure. The assumed type is
determined by the first letter of the name. The association of letters
and types may be given in an implicit statement, with syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of letters
separated by a minus sign). If no implicit statement appears, the
following rules are assumed:

implicit (a-h, o-z) real
implicit (i-n) integer

9.6 Computed goto
Fortran contains an indexed multiway branch. You may use this
facility in EFL by the computed goto:

goto ([[label]]) , expression

The expression must be of type integer and positive, but no larger
than the number of labels in the list. Control is passed to the statement
that is marked by the label whose position in the list is equal to the
expression.

9. 7 goto statement
In unconditional and computed goto statements, you may separate the
go and to words, as in

go toxyz

9.8 Dot names
Fortran uses a restricted character set and represents certain operators
(op) by multicharacter sequences. There is an option, dots=on (see
"Compiler Options"), that forces the compiler to recognize the forms
in the second column in Table 12-6:

EFL Reference 12-43

Table 12·7. Regular and dots=on forms of operators

EFL op dots=on form

< .lt.
<= .le.
> .gt.
>= .ge .

. eq .

. ne .
& . and.
I .or .

&& . andand.
11 .oror .

. not.
true .true.
false .false.

In this mode, you may not name any structure element lt, le, and so
on. The basic forms in the left column, however, are always
recognized.

9.9 Complex constants
You may write a complex constant as a list of real quantities enclosed
in parentheses, such as

(1.5, 3.0)

The preferred notation is by type coercion, as follows:

complex(l.5, 3.0)

9.1 O Function values
The preferred way to return a value from a function in EFL is the
return (value) construct. The name of the function acts as a
variable to which values may be assigned, however; an ordinary
return statement returns the last value assigned to that name as the
function value.

9.11 Equivalence
A statement with the form

equivalence v1, v2, ... , vn

12-44 NUX Programming Languages and Tools, Volume 1

declares that each of the vi starts at the same memory location. Each of
the vi may be a variable name, array element name, or structure
member.

9.12 Minimum and maximum functions
There are a number of nongeneric functions in this category that differ
in the types of arguments they require and types of return values. They
may also have variable numbers of arguments, but all the arguments
must have the same type. The nongeneric functions are shown in Table
12-7.

Table 12-8. Nongeneric functions

Function Argument type Result type

amino integer real
aminl real real
minO integer integer
minl real integer
dminl long real long real
amaxO integer real
amaxl real real
maxO integer integer
maxl real integer
dmaxl long real long real

10. Compiler options
You may use a number of options to control the output and tailor it for
various compilers and systems. The chosen defaults are conservative,
but you may sometimes need to change the output to match
peculiarities of the target environment.

Options are set with statements with the form

option [[opt]]

where each opt is of one of the forms

EFL Reference 12-45

optionname
optionname=optionvalue

The optionvalue is either a constant (numeric or string) or a name
associated with that option. The two names yes and no apply to a
number of options.

10.1 Default options
Each option has a default setting. You may change the whole set of
defaults to those appropriate for a particular environment by using the
system option. At present, the only valid values are system=unix
and system=gcos.

10.2 Input language options
The dots option determines whether the compiler recognizes . lt.
and similar forms. The default setting is no.

10.3 Input/output error handling
The ioerror option may be given three values: none, ibm, or
fortran77. none means that none of the J/O statements maybe
used in expressions, as there is no way to detect errors. The
implementation of the ibm form uses ERR= and END= clauses. The
implementation of the fortran77 form uses IOSTAT= clauses.

10.4 Continuation conventions
By default, continued Fortran statements are indicated by a character in
column 6 (Standard Fortran). The option continue=columnl puts
an ampersand (&) in the first column of the continued lines instead.

10.5 Default formats
If you do not specify a format for a datum in an iolist for a read or
write statement, a default is provided. You may change the default
formats by setting certain options:

12-46 A/UX Programming Languages and Tools, Volume 1

Table 12·9. Options for changing default read/write formats

Option Type

iformat integer
rf ormat real
dformat long real
zformat complex
zdformat long complex
!format logical

The associated value must be a Fortran format, such as

option rformat=2.6

10.6 Alignments and sizes
To implement character variables, structures, and the sizeof and
lengthof operators, you need to know how much space various
Fortran data types require and what boundary alignment properties they
demand. The relevant options are shown in Table 12-9.

Table 12·10. Alignment and size options for Fortran data types

Fortran Size Alignment
type option option

integer isize ialign
real rsize ralign
long real dsize dalign
complex zsize zalign
logical !size !align

The sizes are in terms of an arbitrary unit; the alignment is in the same
unit. The option charperint gives the number of characters per
integer variable.

10.7 Default Input/output units
The options ftnin and ftnout are the numbers of the standard input
and output units. The default values are ftnin=S and ftnout=6.

EFL Reference 12-47

10.8 Miscellaneous output control options
Each Fortran procedure the compiler generates will be preceded by the
value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if
hollincall=no is specified.

The Fortran statement numbers normally start at one and increase by
one. You may change the increment value by using the deltastno
option.

11. Examples
The following short examples of EFL programming show some of the
convenience of the language.

11.1 File copying
This short program copies the standard input to the standard output,
provided that the input is a formatted file containing lines no longer
than a hundred characters.

procedure * main program
character(100) line

while(read(, line) 0)
write (, line)

end

Figure 12·18. File-copying example

Because read returns zero until the end-of-file (or a read error), this
program keeps reading and writing until the input is exhausted.

11.2 Matrix multipllcatlon
This procedure multiplies the m x n matrix a by the n x p matrix b to

give them x p matrix c. The calculation obeys the formula

Cjj = :E aik bkj

12-48 A/UX Programming Languages and Tools, Volume 1

procedure matmul(a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

do i 1,m
do j 1,p

{

end

c(i,j) = 0
do k = 1,n

c (i , j) += a (i , k) * b (k, j)

Figure 12-19. Matrix multiplication example

11.3 Searching a llnked llst
If you have a list of number pairs (x, y), that list is stored as a linked
list, sorted in ascending order of x values. The following procedure
searches this list for a particular value of x and returns the
corresponding y value:

EFL Reference 12-49

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct

integer nextindex
integer x, y
} list(*)

integer first, p, arg

for(p =first , p-=LAST && list(p) .x<=x,
p = list(p) .nextindex)
if(list(p) .x == x)

return(list(p) .y

return(NOTFOUND)
end

Figure 12-20. Example of searching a linked list

The search is a single for loop that begins with the head of the list and
examines items until the list is exhausted (p== LAST) or it is known
that the specified value is not on the list (1 is t (p) . x > x). The two
tests in the conjunction must be performed in the specified order to
avoid using an invalid subscript in the list (p) reference. Therefore,
the & & operator is used. The next element in the chain is found by the
iteration statement p=list (p) . next index.

11.4 Walking a tree
An example of a more complicated problem would be if you had an
expression tree stored in a common area and you wanted to print out an
infix form of the tree. Each node is either a leaf (containing a numeric
value) or a binary operator, pointing to a left and right descendent. In
a recursive language, such a tree walk would be implemented by the
following simple pseudocode:

12-50 A/UX Programming Languages and Tools, Volume 1

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

Figure 12·21. Pseudocode for a tree walk

In a nonrecursive language like EFL, you need to maintain an explicit
stack to keep track of the current state of the computation. The
following procedure calls a procedure out ch to print a single
character and a procedure out val to print a value:

EFL Reference 12-51

procedure walk(first) # print an expression tree

integer first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

{

character(!) op
integer leftp, rightp
real val
} tree(100) #array of structures

struct

integer nextstate
integer nodep
} stackframe(100)

define NODE
define STACK

tree(currentnode)
stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

Figure 12-22. Example of walking a tree (page 1 of 2)

12-52 A/UX Programming Languages and Tools, Volume 1

* initialize stack with root mode
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep = first

while(stackdepth > 0)
{

currentnode = STACK.nodep
select(STACK.nextstate)

{

case DOWN:
if(NODE.op == " ")

{

outval(NODE.val)
stackdepth - = 1
}

* a leaf

else {ta binary operator node

end

out ch (" (")
LEFT STACK.nextstate

stackdepth += 1
STACK.nextstate DOWN
STACK.nodep = NODE.leftp
}

case LEFT:

RIGHT
out ch (NODE. op)
STACK.nextstate
stackdepth += 1
STACK.nextstate DOWN
STACK.nodep = NODE.rightp

case RIGHT:
outch (")")
stackdepth - 1

Figure 12-22. Example of walking a tree (page 2 of 2)

EFL Reference 12-53

12. Portability
One of the major goals of the EFL language is to make it easy to write
portable programs. The output of the EFL compiler is intended to be
acceptable to any Standard Fortran compiler (unless the fortran77
option is specified).

12.1 Primitives
Certain EFL operations cannot be implemented in portable Fortran, so
a few machine-dependent procedures must be provided in each
environment.

12.1.1 Character string copying
Call the subroutine eflasc to copy one character string to another. If
the target string is shorter than the source, the final characters are not
copied. If the target string is longer, its end is padded with blanks. The
calling sequence is

subroutine eflasc(a, la, b, lb)
integer a(*), la, b(*), lb

It must copy the first lb characters from b to the first la characters of
a.

12.1.2 Character string comparisons
The function e f lcmc is invoked to determine the order of two
character strings. The declaration is

integer function eflcmc(a, la, b, lb)
integer a(*), la, b(*), lb

The function returns a negative value if string a of length la precedes
string b of length lb. It returns zero if the strings are equal, and a
positive value otherwise. If the strings are of different lengths, the
comparison is carried out as if the end of the shorter string were padded
with blanks.

13. Compiler

13.1 Current version
The current version of the EFL compiler is a two-pass translator
written in portable C. It implements all the features of the language
described above except for long complex numbers.

12-54 A/UX Programming Languages and Tools, Volume 1

13.2 Diagnostics
The EFL compiler diagnoses all syntax errors. It gives the line and file
name (if known) in which the error was detected. Warnings are given
for variables that are used but not explicitly declared.

13.3 Quality of Fortran produced
The Fortran produced by EFL is clean and readable. The variable
names that appear in the EFL program are used in the Fortran code
when possible, and the bodies of loops and test constructs are indented.
Statement numbers are consecutive. Few unneeded goto and
continue statements are used. It is considered a compiler bug if
incorrect Fortran is produced (except for escaped lines). The following
is the Fortran procedure produced by the EFL compiler for the matrix
multiplication example (see "Examples"):

subroutine matmul(a, b, c, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3 i = 1, m

do 2 j = 1, p
c(i, j) 0
do 1 k = 1, n

c(i, j) = c(i, j)+a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

Figure 12·23. Fortran code produced from matrix multiplication
example

The following is the procedure for the tree-walk:

EFL Reference 12-55

subroutine walk(first)
integer first
common /nodes/ tree
integer tree(4, 100)
real tree1(4, 100)
integer staame(2, 100), stapth, curode
integer constl(l)
equivalence (tree(l,1), treel(l,1))
data constl(l)/4h I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth - 1
staame(l, stapth) = 1
staame(2, stapth) = first

1 if (stapth .le. 0) goto 9
curode - staame(2, stapth)
goto 7

2 if (tree(l, curode) .ne. constl(l)) goto 3

c a leaf

3

call outval(tree1(4, curode))

stapth = stapth-1
goto 4
call out ch (lh ()

Figure 12-24. Fortran code produced from tree-walk example
(page 1of2)

12-56 A/UX Programming Languages and Tools, Volume 1

c a binary operator node
staame(l, stapth) 2
stapth = stapth+l
staame(l, stapth) 1
staame(2, stapth) tree(2, curode)

4 goto 8
5 call outch(tree(l, curode))

staame(l, stapth) 3
stapth • stapth+l
staame(l, stapth) = 1
staame(2, stapth) = tree(3, curode)
goto 8

6 call outch (lh))
stapth = stapth-1
goto 8

7 if (staame(l, stapth) .eq. 3) goto 6
if (staame(l, stapth) .eq. 2) goto 5
if (staame(l, stapth) .eq. 1) goto 2

8 continue
goto 1

9 continue
end

Figure 12-24. Fortran code produced from tree-walk example
(page 2 of 2)

14. Constraints on EFL
Although Fortran may be used to simulate any finite computation, there
are realistic limits on the generality of a language that can be translated
into Fortran. Implementation strategy constrained the design of EFL.
Some of the restrictions are minor (for example, six character external
names), but others are sweeping (for example, lack of pointer
variables). The following sections describe the major limitations
imposed by Fortran.

14.1 External names
In Fortran, external names (procedure and common block names)
cannot be longer than six characters. Furthermore, an external name is
global to the entire program. Therefore, EFL can support block

EFL Reference 12-57

structure within a procedure, but it can have only one level of external
name if the EFL procedures are to be compilable separately, as are
Fortran procedures.

14.2 Procedure Interface
The Fortran standards, in effect, permit arguments to be passed
between Fortran procedures, either by reference or by copy-in/copy­
out. This flexibility of specification shows through into EFL. A
program that depends on the method of argument transmission is illegal
in either language.

There are no procedure-valued variables in Fortran. That is, a
procedure name may only be passed as an argument or invoked; it
cannot be stored.

14.3 Pointers
The most difficult problem with Fortran is its lack of a pointer-like data
type. Compiler implementation would have been far easier, and the
language itself simplified considerably, if certain cases could have been
handled by pointers. Although there are several ways of simulating
pointers by using subscripts, this raises problems of external variables
and initialization.

14.4 Recursion
Fortran procedures are not recursive, so it was not practical to permit
EFL procedures to be recursive. As in the case of pointers, recursion
may be simulated in EFL, but not without considerable effort.

14.5 Storage allocation
The definition of Fortran does not specify the lifetime of variables. It
would be possible but cumbersome to implement stack or heap storage
disciplines by using common blocks.

12-58 A/UX Programming Languages and Tools, Volume 1

Contents

1. as: The assembler

Chapter 13
as Reference

2. Warnings • • • •
2.1 Comparison instructions
2.2 Case • • • • • •
2.3 Overloading of opcodes

3. Using as

4. General syntax rules
4.1 Format of assembly language code
4.2 Comments
4.3 Identifiers • • •
4.4 Register identifiers
4.5 Constants • • •

4.5.1 Numeric constants • • • •
4.5.2 Character constants

4.6 Other syntactic details •

5. Segments, location counters, and labels
5.1 Segments . • • • • • •
5.2 Location counters and labels

6. Types • •

7. Expressions •

8. Pseudooperations
8.1 Data initialization operations •
8.2 Symbol definition operations •
8.3 Location counter control operations •
8.4 Symbolic debugging operations

8.4.1 file and ln

- i -

1

2
2
2
3

3

4
4
5
5
6
7
7
8
8

9
9

10

10

10

12
12
13
14
14
14

8.4.2 Symbol attribute operations •
8.5 Switch table operation • •

9. Span-dependent optimization •

10. Address mode syntax • • •

11. Machine instructions
11.1 Instructions for the MC68881 •
11.2 Instructions for the MC68851 •

Tables

Table 13-1. Ordinary and special character
constants • • • • • •

Table 13-2. Assembler span-dependent
optimizations • • • •

Table 13-3. Effective address modes

Table 13-4. Effective address modes (continued)

Table 13-5. Condition code designations

Table 13-6. TRAP on unordered . •

Table 13-7. No TRAP on unordered

Table 13-8. Constants in MC68881 constant
ROM • . • • • • • • •

- ii -

15
17

17

19

23
35
44

8

19

21

22

24

35

36

36

Chapter 13

as Reference

1. as: The assembler
Programmers familiar with the M68000 family of processors should be
able to program in the A/UX resident assembler, as, by referring to
this chapter, but this is not a reference for the processor itself. Details
about the effects of instructions, meanings of status register bits,
handling of interrupts, and many other issues are not dealt with here.
This chapter, therefore, should be used in conjunction with the
following reference manuals:

• M68000 16132-Bit Microprocessor Programmer's Reference
Manual, Fourth Edition; Englewood Cliffs, N. J.: Prentice-Hall,
1984. This manual is also available from the Motorola Literature
Distribution Center, part number M68000UM.

• MC68020 32-Bit Microprocessor User's Manual; Englewood
Cliffs, N. J.: Prentice-Hall, 1984. This manual is also available
from the Motorola Literature Distribution Center, part number
MC68020UM.

• MC68851 Paged Memory Management Unit User's Manual, part
number MC68851 UM/AD.

• MC68881 Floating Point Coprocessor User's Manual, part
number MC68881UM/AD.

• M68000 Family Resident Structured Assembler Reference
Manual, part number M68KMASM.

• AIUX User Interface.

• A!UX Command Reference.

as Reference 13-1

2. Warnings
A few important warnings to the as user should be emphasized at the
outset. Although, for the most part, there is a direct correspondence
between as notation and the notation used in the documents listed in
the preceding section, several exceptions exist that could lead the
unsuspecting user to write incorrect code. In addition to the exceptions
described in the following paragraphs, refer also to the sections
"Address mode syntax" and "Machine instructions" for further
information.

2.1 Comparison Instructions
First, the order of the operands in compare instructions follows one
convention in the M68000 Programmer's Reference Man-ual and the
opposite convention in as. Using the convention of the M68000
Programmer's Reference Man-ual, one might write

CMP .W DS, D3 Is D3 less than DS?
BLE IS_LESS Branch if less.

Using the as convention, one would write

cmp. w %d3, %d5
ble is_less

f Is d3 less than d5 ?
t Branch if less.

This convention makes for straightforward reading of compare and
branch instruction sequences, with this exception: if a compare
instruction is replaced by a subtract instruction, the effect on the
condition codes is entirely different. This may be confusing to
programmers who are used to thinking of a comparison as a subtraction
whose result is not stored. Users of as who become accustomed to the
convention find that both the compare and subtract notations make
sense in their respective contexts.

2.2 Case
In the A/UX implementation, only lowercase instruction and register
names are valid. For example,

mov %dl,%d2 t works

is in an acceptable case, while

13-2 A/UX Programming Languages and Tools, Volume 1

MOV %Dl,%D2 t does not work

is noL This is especially important for those who wish to port existing
code from other machines.

2.3 Overloading of opcodes
Another issue that users must be aware of arises from the M68000
processors' use of several different instructions to do more or less the
same thing. For example, the M68000 Programmer's Reference
Manual lists the instructions SUB, SUBA, SUB!, and SUBQ, which all
have the effect of subtracting their source operand from their
destination operand as replaces the separate suba, subi, and subq
instructions, allowing all these operations to be specified by a single
assembly instruction sub. On the basis of the operands given to the
sub instruction, the as assembler selects the appropriate M68000
operation code. The danger created by this convenience is that it could
give the misleading impression that all forms of the SUB operation are
semantically identical. In fact, they are not. The careful reader of the
M68000 Programmer's Reference Manual will notice that whereas
SUB, SUBI, and SUBQ all affect the condition codes in a consistent
way, SUBA does not affect the condition codes at all. Consequently,
the as user must be aware that when the destination of a sub
instruction is an address register (which causes the sub to be mapped
into the operation code for SUBA), the condition codes will not be
affected.

3. Using as
The A/UX command as invokes the assembler and has the following
syntax:

as [-m] [-n] [-o out.file] [-R] [-v]filename

The following flags may be specified in any order:

-o outfile Put the output of assembly in outjile. By default, the
output filename is formed by removing the . s suffix, if
there is one, from the input filename and appending a . o
suffix.

-n Turn off long/short address optimization. By default,
address optimization talces place.

as Reference 13-3

-m Run the m4 macro pre-processor on the input to the
assembler.

Note: If the -m flag option is used, keywords for
m4 cannot be used as symbols (variables,
functions, labels) in the input file because m4
cannot determine which are assembler symbols
and which are real m4 macros.

-R Remove (unlink) the input file after assembly is
completed. This flag option is off by default.

-v Write the version number of the assembler being run on
the standard error output.

4. General syntax rules
4.1 Format of assembly language code
Typical lines of as assembly code look like these:

f Clear a block of memory at location %a3

text 2
mov.w

loop:
dbf

init2:

&const,%dl
clr .1 (%a3) +
%dl,loop f go back for canst

f repetitions

clr.l count; clr.l credit; clr.l debit;

where the suffix to clr is always the letter l {ell), while %dl indicates
data register 1 (one).

These general points about the example should be noted:

• An identifier occurring at the beginning of a line and followed by
a colon (:) is a label. One or more labels may precede any
assembly language instruction or pseudooperation. Refer to
"Location Counters and Labels" below.

13-4 A/UX Programming Languages and Tools, Volume 1

• A line of assembly code need not include an instruction. It may
consist of a comment alone (introduced by :It), or a label alone
(terminated by :), or it may be entirely blank.

• It is good practice to use tabs to align assembly language
operations and their operands into columns, but this is not a
requirement of the assembler. An opcode may appear at the
beginning of the line, if desired, and spaces may precede a label.
A single blank or tab suffices to separate an opcode from its
operands. Additional blanks and tabs are ignored by the
assembler.

• It is permissible to write several instructions on one line,
separating them by semicolons. The semicolon is syntactically
equivalent to a newline character; however, a semicolon inside a
comment is ignored.

4.2 Comments
Comments are introduced by the character # and continue to the end of
the line. Comments may appear anywhere and are disregarded by the
assembler.

4.3 ldentif le rs
An identifieris a string of characters taken from the set a-z, A-z,

, % , and o - 9. The first character of an identifier must be a
letter (uppercase or lowercase) or an underscore. Uppercase and
lowercase letters are distinguished; for example, con35 and CON35
are two distinct identifiers.

There is no limit on the length of an identifier, except as imposed by
the loader on the system.

The value of an identifier is established by the set pseudooperation
(refer to ''Symbol Definition Operations'') or by using it as a label
(refer to "Location Counters and Labels").

The tilde character(-) has special significance to the assembler. A­
used alone, as an identifier, means ''the current location.'' A - used as
the first character in an identifier becomes a period (.) in the symbol
table, allowing symbols such as . eos and . Ofake to be entered into
the symbol table, as required by the Common Object File Format

as Reference 13-5

(COFF). Information about file formats is provided in Section 4 of
A!UX Programmer's Reference.

4.4 Register identifiers
A register identifier is an identifier preceded by the character % , and
represents one of the MC68000 processor's registers. The predefined
register identifiers are

%d0 %d4 %a0 %a4 %cc %usp
%dl %d5 %al %a5 %pc %fp
%d2 %d6 %a2 %a6 %sp
%d3 %d7 %a3 %a7 %sr

Note: The identifiers %a 7 and %sp represent the same machine
register. Likewise, %a6 and %fp are equivalent Use of both
% a 7 and % sp, or % a 6 and % fp, in the same program may
result in confusion.

The current version of the assembler will correctly assemble
instructions intended for the M68010. The following additions will be
flagged with warnings:

Registers added for the MC68010
Name Description
%sfc,%sfcr Source function code register
%dfc,%dfcr Destination function code register

%vbr Vector base register

• %sfc and %sfcr are equivalent.

• %dfc and %dfcr are equivalent.

The entire register set of the MC68000 and MC68010 is included in the
MC68020 register set The following are new control registers for the
MC68020:

13-6 A/UX Programming Languages and Tools, Volume 1

MC68020 reg lsters
Name Description
%caar Cache address register

%cacr Cache control register

%isp Interrupt stack pointer

%msp Master stack pointer

The following are suppressed registers (zero registers) used in various
MC68020 addressing modes:

MC68020 zero registers
Suppressed Suppressed Suppressed

address registers data registers program counter
%za0 %zd0 %zpc
%zal %zdl
%za2 %zd2
%za3 %zd3
%za4 %zd4
%za5 %zd5
%za6 %zd6
%za7 %zd7

4.5 Constants
as deals only with integer constants. They may be entered in decimal,
octal, or hexadecimal, or they may be entered as character constants.
Internally, as treats all constants as 32-bit binary 2's-complement
quantities.

4.5.1 Numeric constants
A decimal constant is a string of digits beginning with a nonzero digit.
An octal constant is a string of digits beginning with zero. A
hexadecimal constant consists of the characters Ox or ox followed by a
string of characters from the set 0 - 9, a -f, and A-F. In hexadecimal
constants, uppercase and lowercase letters are not distinguished.

as Reference 13-7

Examples:

set
mov.w
set
mov.w

const,35
&035,%dl
const, Ox35
&Oxff,%dl

4.5.2 Character constants

decimal 35
octal 35 (decimal 29)
hex 35 (decimal 53)
hex ff (decimal 255)

An ordinary character constant consists of a single-quote character (')
followed by an arbitrary ASCII character other than the backslash(\).
The value of the constant is equal to the ASCII code for the character.
Special meanings of characters are overridden when used in character
constants; for example, if ' # is used, the # is not treated as introducing
a comment.

A special character constant consists of ' \ followed by another
character. All the special character constants and examples of ordinary
character constants are listed in the following table.

Table 13·1. Ordinary and special character constants

Constant Value Meaning
'\b Ox08 Backspace
'\t Ox09 Horizontal tab
'\n OxOa Newline (line feed)
'\v Ox Ob Vertical tab
'\f OxOc Form feed
'\r OxOd Carriage return
'\\ Ox5c Backslash

' ' Ox27 Single quote
'0 Ox30 Zero
'A Ox41 Uppercase A
'a Ox61 Lowercase a

4.6 Other syntactic details
A discussion of expression syntax appears in ''Expressions''.
Information about the syntax of specific components of as instructions
and pseudooperations is given in "Pseudooperations," "Span­
dependent Optimization," and "Address Mode Syntax," below.

13-8 NUX Programming Languages and Tools, Volume 1

5. Segments, location counters, and labels

5.1 Segments
A program in as assembly language may be broken into segments
known as text, data, and bss segments. The convention regarding
the use of these segments is to place instructions in text segments,
initialized data in data segments, and uninitialized data in bss
segments. The assembler does not enforce this convention, however;
for example, it permits intermixing of instructions and data in a text
segment.

Primarily to simplify compiler code generation, the assembler permits
up to four separate text segments and four separate data segments
named 0, 1, 2, and 3. The assembly language program may switch
freely among them by using assembler pseudooperations (refer to
''Location Counter Control Operations," below). When generating the
object file, the assembler concatenates the text segments to generate
a single text segment, and the data segments to generate a single
data segment. Thus, the object file contains only one text segment
and only one data segment. There is always only one bss segment
and it maps directly into the object file.

Because the assembler keeps together everything from a given segment
when generating the object file, the order in which information appears
in the object file may not be the same as in the assembly language file.
For example, if the data for a program consisted of

data 1 * segment 1
short Oxllll
data 0 * segment 0
long Oxffffffff
data 1 * segment 1
byte Oxff

then equivalent object code would be generated by

data 1
data 0
long Oxffffffff
short Oxllll
byte Oxff

as Reference 13-9

5.2 Location counters and labels
The assembler maintains separate location counters for the bss
segment and for each of the text and data segments. The location
counter for a given segment is incremented by one for each byte
generated in that segment.

The location counters allow values to be assigned to labels. When an
identifier is used as a label in the assembly language input, the value of
the current location counter is assigned to the identifier. The assembler
also keeps track of the segment in which the label appeared. Thus, the
identifier represents a memory location relative to the beginning of a
particular segment. Any label relative to the location counter should be
within the text segment.

6. Types
Identifiers and expressions may have values of different types.

• In the simplest case, an expression or identifier may have an
absolute value, such as 29, -5000, or 262143.

• An expression or identifier may have a value relative to the start
of a particular segment. Such a value is known as a relocatable
value. The memory location represented by such an expression
cannot be known at assembly time, but the relative values of two
such expressions (that is, the difference between them) can be
known if they refer to the same segment.

• Identifiers that appear as labels have relocatable values.

• If an identifier is never assigned a value, it is assumed to be an
undefined external. Such identifiers may be used with the
expectation that their values will be defined in another program,
and therefore known at load time; but the relative values of
undefined externals cannot be known.

7. Expressions
For conciseness, the following abbreviations are useful:

abs absolute expression
rel relocatable expression
ext undefined external

13-10 A/UX Programming Languages and Tools, Volume 1

All constants are absolute expressions. An identifier may be thought of
as an expression having the identifier's type. Expressions may be built
up from lesser expressions using the operators +, - , *, and I, according
to the following type rules:

abs + abs = abs
abs + rel = rel + abs = rel
abs + ext = ext + abs = ext

abs - abs = abs
rel - abs = rel
ext - abs = ext
rel - rel = abs

(provided that the two relocatable expressions
are relative to the same segment)

abs * abs = abs

abs I abs = abs

-abs= abs

rel - rel expressions are permitted only within the context of a switch
statement (refer to "Switch Table Operation" below). Use of a rel­
rel expression is dangerous, particularly when dealing with identifiers
from text segments. The problem is that the assembler will
determine the value of the expression before it has resolved all
questions concerning span-dependent optimizations.

The unary minus operator takes the highest precedence; the next
highest precedence is given to * and I, and lowest precedence is given
to + and binary-. Parentheses may be used to coerce the order of
evaluation.

If the result of a division is a positive noninteger, it will be truncated
toward zero. If the result is a negative noninteger, the direction of
truncation cannot be guaranteed.

as Reference 13-11

8. Pseudooperations

8.1 Data Initialization operations

byteabs,abs, ...
One or more arguments, separated by commas, may be given.
The values of the arguments are computed to produce successive
bytes in the assembly output.

short abs,abs, ...
One or more arguments, separated by commas, may be given.
The values of the arguments are computed to produce successive
16-bit words in the assembly output.

long expr, expr, ...
One or more arguments, separated by commas, may be given.
Each expression may be absolute, relocatable, or undefined
external. A 32-bit quantity is generated for each such argument
(in the case of relocatable or undefined external expressions, the
actual value may not be filled in until load time). Alternatively,
the arguments may be bit-field expressions. A bit-field
expression has the form

n:value

where both n and value denote absolute expressions. The
quantity n represents a field width; the low-order n bits of value
become the contents of the bit field. Successive bit fields fill up
32-bit long quantities, starting with the high-order part. If the
sum of the lengths of the bit fields is less than 32 bits, the
assembler creates a 32-bit long with zeros filling out the low­
order bits. For example,

long 4: -1, 16: Ox7f, 12:0, 5000

and

long 4: -1, 16: Ox7f, 5000

are equivalent to

long Oxf007f000, 5000

13-12 A/UX Programming Languages and Tools, Volume 1

Bit fields may not span pairs of 32-bit longs. Thus,

long 24: Oxa, 24: Oxb, 24:0xc

yields the same thing as

long OxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO

space abs
The value of abs is computed, and the resultant number of bytes
of zero data is generated. For example,

space 6

is equivalent to

byte 0,0,0,0,0,0

8.2 Symbol definition operations

set identifier, expr
The value of identifier is set equal to expr, which may be
absolute or relocatable.

comm identifier, abs
The named identifier is to be assigned to a common area of size
abs bytes. If identifier is not defined by another program, the
loader will allocate space for it.

lcornm identifier, abs
The named identifier is assigned to a local common area of size
abs bytes. This results in allocation of space in the bss
segment. The type of identifier becomes relocatable.

global identifier
This causes identifier to be externally visible. If identifier is
defined in the current program, then declaring it global allows
the loader to resolve references to identifier in other programs. If
identifier is not defined in the current program, the assembler
expects an external resolution; in this case, therefore, identifier is
global by default.

as Reference 13-13

8.3 Location counter control operations

data abs
The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the data segment into which assembly
is to be directed. If no argument is present, assembly is directed
into data segment 0.

text abs
The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the text segment into which assembly
is to be directed. If no argument is present, assembly is directed
into text segment 0. Before the first text or data operation
is encountered, assembly is by default directed into text
segmentO.

orgexpr

even

The current location counter is set to expr. expr must represent a
value in the current segment, and must not be less than the
current location counter.

The current location counter is rounded up to the next even
value.

8.4 Symbolic debugging operations
The assembler allows for symbolic debugging information to be placed
into the object code file with special pseudooperations. The
information typically includes line numbers and information about C
language symbols, such as their type and storage class. The C compiler
(cc(l)) generates symbolic debugging information when the -g flag
option is used. Assembler programmers may also include such
information in source files.

8.4.1 file and ln
The file pseudooperation passes the name of the source file into the
object file symbol table. It has the form

file filename

13-14 A/UX Programming Languages and Tools, Volume 1

where filename consists of 1 to 14 characters enclosed in quotation
marks.

The ln pseudooperation makes a line number table entry in the object
file; that is, it associates a line number with a memory location.
Usually the memory location is the current location in text. The format
is

ln line[, value]

where line is the line number. The optional value is the address in
text, data, or bss to associate with the line number. The default
when value is omitted (which is usually the case) is the current location
in text.

8.4.2 Symbol attribute operations
The basic symbolic testing pseudooperations are def and en def.
These operations enclose other pseudooperations that assign attributes
to a symbol and must be paired. The basic syntax for using def and
endef is

def name
attrasgn
attrasgn

en def

where attrasgn may be any one of the attribute assigning operations
shown below.

def does not define the symbol, although it does create a symbol table
entry. Because an undefined symbol is treated as external, a symbol
which appears in a def but which never acquires a value will
ultimately result in an error at link edit time.

To allow the assembler to calculate the sizes of functions for other
tools, each def I endef pair that defines a function name must be
matched by a def I endef pair after the function in which a storage
class of -1 is assigned, where -1 is the physical end of a function.

as Reference 13-15

The paragraphs below describe the attribute-assigning operations
(attrasgn in the above syntax diagram). Keep in mind that all these
operations apply to the symbol name that appeared in the opening def
pseudooperation.

v a 1 expr Assigns the value expr to name. The type of the
expression expr determines with which section name is
associated. If value is-, the current location in the
text section is used.

scl expr Declares a storage class for name. The expression expr
must yield an absolute value that corresponds to the C
compiler's internal representation of a storage class.
The special value -1 designates the physical end of a
function.

type expr Declares the C language type of name. The expression
expr must yield an absolute value that corresponds to the
C compiler's internal representation of a basic or
derived type.

tag str Associates name with the structure, enumeration, or
union named str that must have already been declared
with a def/endef pair.

line expr Provides the line number of name, where name is a
block symbol. The expression expr should yield an
absolute value that represents a line number.

size expr Gives a size for name. The expression expr must yield
an absolute value. When name is a structure or an array
with a predetermined extent, expr gives the size in bytes.
For bit fields, the size is in bits.

dim expr 1 , expr2, ...

13-16

Indicates that name is an array. Each of the expressions
must yield an absolute value that provides the
corresponding array dimension.

A/UX Programming Languages and Tools, Volume 1

8.5 Switch table operation
The C compiler generates a compact set of instructions for the C
language switch construct. An example is shown below.

sub.l &l,%d0
cmp.l %d0,&4
bhi L%21
add.w %d0,%d0
mov.w 10(%pc,%d0.w),%d0
jmp 6(%pc,%d0.w)
swbeg &5

L%22:
short L%15-L%22
short L%21-L%22
short L%16-L%22
short L%21-L%22
short L%17-L%22

The special swbeg pseudooperation communicates to the assembler
that the lines following it contain rel - rel subtractions. Remember that
ordinarily such subtractions are risky, because of span-dependent
optimization. In this case, however, the assembler makes special
allowances for the subtraction, because the compiler guarantees that
both symbols will be defined in the current assembler file, and that one
of the symbols is a fixed distance away from the current location.

The swbeg pseudooperation takes an argument that looks like an
immediate operand. The argument is the number of lines that follow
swbeg and that contain switch table entries. swbeg inserts two words
into text. The first is the illegal instruction code. The second is the
number of table entries that follow. The disassembler dis(l) needs
the illegal instruction as a hint that what follows is a switch table.
Otherwise, it gets confused when it tries to decode the table entries,
differences between two symbols, as instructions.

9. Span-dependent optimization
The assembler makes certain choices about the object code it generates
based on the distance between an instruction and its operand(s).
Choosing the smallest, fastest form is called span-dependent

as Reference 13-17

optimization. Span-dependent optimization occurs most obviously in
the choice of object code for branches and jumps. It also occurs when
an operand may be represented by the program counter relative address
mode instead of as an absolute two-word (long) address. The span­
dependent optimization capability is normally enabled; the -n flag
option disables it. When this capability is disabled, the assembler
makes worst case assumptions about the types of object code that must
be generated. Span-dependent optimizations are performed only within
text segment 0. Any reference outside text segment 0 is assumed
to be a worst case.

The C compiler (cc(l)) generates branch instructions without a
specific offset size. When the optimizer is used, it identifies branches
that could be represented by the short form, and it changes the
operation accordingly. The assembler chooses only between long and
very long representations for branches.

Although the largest offset specification allowed is a word, large
programs conceivably could have need for a branch to a location not
reachable by a word displacement. Therefore, equivalent long forms of
these instructions might be needed. When the assembler encounters a
branch instruction without a size specification, it tries to choose
between the long and very long forms of the instruction. If the operand
can be represented in a word, then the word form of the instruction will
be generated. Otherwise, the very long form will be generated. For
unconditional branches (for example, br, bra, and bsr), the very
long form is just the equivalent jump (jmp and j sr) with an absolute
address operand (instead of pc-relative). For conditional branches, the
equivalent very long form is a conditional branch around a jump, where
the conditional test has been reversed.

The following table summarizes span-dependent optimizations. The
assembler chooses only between the long form and the very long form,
while the optimizer chooses between the short and long forms for
branches (but not bsr).

13-18 A/UX Programming Languages and Tools, Volume 1

Table 13·2. Assembler span-dependent optimizations

Instruction Short forn1 Long form Very long form

br, bra, bsr Byte offset Word offset jmp or jsr with
absolute long
address

Conditional branch Byte offset Word offset Short conditional
branch with
reversed condition
around jmp with
absolute long
address

jmp,jsr pc-relative address Absolute long
address

lea, pea pc-relative address Absolute long
address

For the MC68020 processor, branch instructions may have either a
byte, word, or long pc-relative address operand. The assembler still
chooses between word and long representations for branches if no byte
size specification is given; however, the long form is replaced by a
branch long with pc-relative address instead of a jump with absolute
long address.

10. Address mode syntax
The following tables summarize the as syntax for MC68020
addressing modes:

In the tables, the following abbreviations are used:

An/ an Address register, where n is any digit from 0 through 7.

bd 2' s-complement base displacement that is added before
indirection takes place; size may be 16 or 32 bits.

d 2's-complement or sign-extended displacement that is added
as part of effective address calculation; size may be 8 or 16
bits; when omitted, assembler uses value of zero.

as Reference 13-19

Dn/ dn Data register, where n is any digit from 0 through 7.

od Outer displacement that is added as part of effective address
calculation after memory indirection; size may be 16 or 32
bits.

PC/pc Program counter.

Ri/ri Index register i may be any address or data register with an
optional size designation (that is, ri. w for 16 bits or ri .1 for
32 bits); default size is . w.

sci Optional scale factor that may be multiplied times index
register in some modes. Values for sci are 1, 2, 4, or 8;
default is 1.

[J Grouping characters used to enclose an indirect expression;
required characters. Addressing arguments may occur in any
order within the brackets.

() Grouping characters used to enclose an entire effective
address; required characters. Addressing arguments may
occur in any order within the parentheses.

{ } Indicate that a scale factor is optional; not required
characters.

It is important to note that expressions used for the absolute addressing
modes need not be absolute expressions in the sense described in
''Types,'' above. Although the addresses used in those addressing
modes ultimately must be filled in with constants, that can be done later
by the loader. There is no need for the assembler to be able to compute
them. Indeed, the absolute long addressing mode is commonly used for
accessing undefined external addresses.

13-20 A/UX Programming Languages and Tools, Volume 1

Table 13-3. Effective address modes

M680x0 notation
Dn

An

(An)

(An)+

-(An)

d(An)

(An,Ri)

d(An,Ri)

(An, Ri {*sci) l

(bd,An,Ri{*scl))

as notation
%dn

%an

(%an)

(%an)+

-(%an)

d(%an)

(%an, %ri. w)
(%an, %ri .1)

d(%an, %ri.w)
d (%an, %ri .1)

(%an, %ri {*sci))

(bd, %an, %ri {*sci))

Address mode
Data register direct

Address register direct

Address register indirect

Address register indirect
with postincrement

Address register indirect
with predecrement

Address register indirect
with displacement (d
signifies a signed 16-bit
absolute displacement)

Address register indirect
with index

Address register indirect
with index plus displace­
ment (d signifies
a signed 8-bit absolute
displacement)

Address register direct
with index

Address register direct
with index plus base
displacement

([bd,An,Ri{*scl)] ,od) ([bd, %an, %ri{*scl)] ,od) Memory indirect with
preindexing plus base
and outer displacement

([bd, An] ,Ri {*sci), ad) ([bd, %an], %ri{ *sci), od) Memory indirect with
postindexing plus base
and outer displacement

d(PC) d(%pc)

as Reference

Program counter indirect
with displacement (d
signifies 16-bit
displacement)

13-21

Table 13-4. Effective address modes (continued)

M680x0 notation
d(PC,Ri)

(bd, PC,Ri{ *sci))

as notation
d (%pc, %rn.l)

d(%pc, %rn.w)

(bd, %pc, %ri{ *sci))

Address mode
Program pounter direct
with index and displace­
ment (d signifies 8-bit
displacement)

Program counter direct
with index and base
displacement

([bd, PC] , Ri {*sci), od) ([bd, %pc) , %ri {*sci), od) Program counter memoiy
indirect with post­
indexing plus base and
outer displacement

([bd,PC,Ri(*scl)] ,od) ([bd,%pc,%ri{*scl)] ,od) Prograrncountermemoiy
indirect with prein­
dexing plus base and
outer displacement

xxx.W =

xxx.L

#xxx &xxx

Absolute short address
(nx signifies an
expression yielding a
16-bit memory address)

Absolute long address
(nx signifies an
expression yielding a
32-bit memoiy address)

Immediate data
(xx:x signifies
an absolute constant
expression)

In the table above, the index register notation should be understood as
ri. size* scale, where both size and scale are optional. Refer to Chapter
2 of the M68000 Family Resident Structured Assembler Reference
Manual for additional information about effective address modes.
Section 2 of the MC68020 32-Bit Microprocessor User's Manual also
provides information about generating effective addresses and
assembler syntax.

13-22 A/UX Programming Languages and Tools, Volume 1

Note that suppressed address register % z an may be used in place of
% an, suppressed PC register % zpc may be used in place of %pc, and
suppressed data register % zdn may be used in place of %dn, if
suppression is desired.

The new address modes for the MC68020 use two different formats of
extension. The brief format provides fast indexed addressing, while the
full format provides a number of options in size of displacement and
indirection. The assembler will generate the brief format if the
effective address expression is not memory indirect, value of
displacement is within a byte, and no base or index suppression is
specified; otherwise, the assembler will generate the full format.

Some source code variations of the new modes may be redundant with
the MC68000 address register indirect, address register indirect with
displacement, and program counter with displacement modes. The
assembler will select the more efficient mode when redundancy occurs.
For example, when the assembler sees the form (An), it will generate
address register indirect mode (mode 2).

The assembler will generate address register indirect with displacement
(mode 5) when seeing any of the following forms (as long as bd fits in
16 bits or less):

bd(An)
(bd, An)

(An, bd)

11. Machine instructions
The following table shows how MC68020 instructions should be
written in order to be understood correctly by the as assembler.

Several abbreviations are used in the table:

A The letter A, as in add. A, stands for one of the address
operation size attribute letters w or l, representing a word or
long operation, respectively.

CC In the contexts bCC, dbCC, and sCC, the letters CC represent
any of the following condition code designations (except that f
and t may not be used in the bCC instruction):

as Reference 13-23

cc
cs
eq
f

ge
gt
hi
hs
le
lo

d

Table 13·5. Condition code designations

Carry clear ls Low or same
Carry set lt Less than
Equal mi Minus
False ne Not equal
Greater or equal pl Plus
Greater than t True
High vc Overflow clear
High or same (=cc) vs Overflow set
Less or equal
Low (=cs)

2's-complement or sign-extended displacement that is
added as part of effective address calculation; size may
be 8 or 16 bits; when omitted, assembler uses value of
zero.

EA An arbitrary effective address.

(eq) The two forms of machine instruction are equivalent.

I An absolute expression, used as an immediate operand.

L A label reference, or any expression representing a
memory address in the current segment.

offset Either an immediate operand or a data register.

Q An absolute expression evaluating to a number from
one to eight.

S The letter S, as in add. S, stands for one of the
operation size attribute letters b, w, or 1, representing a
byte, word, or long operation, respectively.

width Either an immediate operand or a data register.

Registers are designated using the following components:

13-24 A/UX Programming Languages and Tools, Volume 1

%

a

d

r

x,y,m,n

Register call.

Address register.

Data register.

Either data or address register.

Any digit from 0 through 7, where x "# y, m "# n, and x
#m, andy #n.

These components are combined to form the following register
designations:

%ax, %ay, %an

%dx, %dy, %dn

%re

%rx, %ry, %rn

(eq)

as Reference

Address registers.

Data registers.

Controlregister (%sfc, %dfc, %cacr, %vbr,
%caar, %msp, %isp).

Either data or address registers.

The two forms of machine instruction are
equivalent.

13-25

MC68000 instruction formats
Mnemonic Assembler ~ntax O_e_eration
ABCD abcd.b %dy, %dx Add decimal with extend

abcd.b -(%ay) ,-(%ax)

ADD add.S EA, %dn Add binary
add.S %dn,EA

ADDA add.A EA, %an Add address

ADDI add.S &l,EA Add immediate

ADDQ add.S &Q,EA Add quick

ADDX addx.S %dy, %dx Add extended
addx.S -(%ay) ,-(%ax)

AND and.S EA, %dn AND logical
and.S %dn,EA

ANDI and.S &!,EA AND immediate

ANDI and.b &l, %cc AND immediate
to CCR to condition codes

ANDI and.w &[, %sr AND immediate
to SR to the status register

ASL asl .S %dx, %dy Arithmetic shift (left)
asl.S &Q, %dy

asl.w &1,EA

ASR asr.S %dx, %dy Arithmetic shift (right)
asr.S &Q, %dy

asr.w &1,EA

13-26 A/UX Programming Languages and Tools, Volume 1

MC68000 instruction formats
Mnemonic Assembler s_yntax OJ?_eratlon
Bee bCC L Branch conditionally

(16-bit displacement)

bCC.b L Branch conditionally (short)
(8-bit displacement)

bCC.l L Branch conditionally Qong)
(32-bit displacement)

BCHG bchg %dn,EA Test a bit and change
bchg &!,EA

Note: bchg must be written
with no suffix. If the second
operand is a data register, . 1
is assumed; otherwise, • b is.

BCLR bclr %dn,EA Test a bit and clear
bclr &!,EA

Note: bclr must be written
with no suffix. If the second
operand is a data register, . 1
is assumed; otherwise, . b is.

BF CHG bfchg EA { offset:width} Complement bit field

BFCLR bf clr EA {offset :width} Clear bit field

BFEXTS bfexts EA { offeet:width}, %dn Extract bit field (signed)

BFEXTU bfextu EA{ojfset:width), %dn Extract bit field (unsigned)

BFFFO bfffo EA {ojfset:width), %dn Find first one in bit field

BFINS bf ins %dn, EA{ojfset:width) Insert bit field

as Reference 13-27

MC68000 Instruction formats
Mnemonic Assembler s_y_ntax 0_2.eratlon
BFSET bf set EA {offset: width} Set bit field

BFfST bftst EA { affset: width} Test bit field

BKPf bk pt &I Breakpoint

BRA bra.S L Branch always

br.S L Sameasbra.S

BSET bset %dn,EA Test a bit and set
bset &!,EA

Note: bset must be written
with no suffix. If the second
operand is a data register, • 1
is assumed; otherwise, . b is.

BSR bsr.S L Branch to subroutine

BTST btst %dn,EA Test a bit and set
btst &!,EA

Note: btst must be written with
no suffix. If the second operand
is a data register, • 1 is assumed;
otherwise, . b is.

CAILM callrn &!,EA Call module

CAS cas.S %dx,%dy,EA Compare and swap operands

CAS2 cas2.S %dx: %dy, %dm: %dn, Compare and swap dual
(%rx) : (%ry) operands

13-28 A/UX Programming Languages and Tools, Volume 1

MC68000 Instruction formats
Mnemonic Assembler sy_ntax Operation
CHK chk.A EA,%dn Check register against

bounds

CHK2 chk2.S EA, %rn Check register against
bounds

CLR clr.S EA Clear an operand

CMP cmp.S %dn,EA Compare*

CMPA cmpa.A %an,EA Compare address*t

CMPI cmpi.S EA, &I Compare immediate*t

CMPM cmpm.S (%ax)+, (%ay)+ Compare memory*t

CMP2 cmp2.S %rn,EA Compare register against
boundst

DB cc db CC %dn,L Test condition, decrement,
and branch

dbra %dn,L Decrement and branch
always

dbr %dn,L Same as dbra

DNS divs.w EA, %dx Signed divide
32/16-> 16r:16q

tdivs.l EA, %dx Signed divide (long)
divs.l EA, %dx 32/32->32q

divs.l EA, %dx:%dy Signed divide (long)
32/32 -> 32r:32q:j:

DNSL tdivs.l EA, %dx: %dy Signed divide (long)
64/32 -> 32r:32q

* The order of operands in as is the reverse of that in the M680<JO Programmer's
Reference Manual.

t The cmp .S syntax is also recognized.

:j: Whenever %dx and %dy are the same register, then the fonn is equivalent to the
tdi vs .1 EA, %dx fonn.

as Reference 13-29

MC68000 instruction formats
Mnemonic Assembler s_y_ntax O~eration

DNU divu.w EA, %dn Unsigned divide
32/16-> 16r:16q

tdivu.l EA, %dx Unsigned divide (long)
divu.l EA, %dx 32/32-> 32(eq)

DNUL
divu.l EA, %dx: %dy Unsigned divide (long)

64/32 -> 32r:32q*

tdivu.l EA, %dx:%dy Unsigned divide (long)
32/32 -> 32r:32qt

EOR eor.S %dn,EA Exclusive OR logical

EORI eor.S &/,EA Exclusive OR immediate

EORI eor.b &/,%cc Exclusive OR immediate to
to CCR condition code register

EORI eor.w &/, %sr Exclusive OR immediate
to SR to the status register

EXG exg %r:t, %ry Exchange registers

EXT ext.w %dn Sign-extend low-order
Byte of data to word

ext .1 %dn Sign-extend low-order
Word of data to long

EXTB
extw.l %dn Sarne as ext .1

Sign-extend low-order
extb.l %dn Byte of data to long

ILLEGAL illegal Illegal instruction

JMP jmp EA Jump

JSR jsr EA Jump to subroutine

* Whenever %dx and %dy are the same register, then the form is equivalent to the
divu.l EA,%dxform.

t Whenever %dx and %dy are the same register, then the form is equivalent to the
tdi vu .1 EA, %dx form.

13-30 NUX Programming Languages and Tools, Volume 1

MC6BOOO instruction formats
Mnemonic \Assembler s_y_ntax ~eration
LEA lea EA, %an Load effective Address

LlNK link.A %an,&! Link and allocate

LSL lsl.S %dx, %dy Logical shift (left)
lsl.S &Q, %dy
lsl.S EA

LSR lsr.S %dx, %dy Logical shift (right)
lsr.S &Q, &dy
lsr.S EA

MOVE move.S EA,EA Move data from source to
destination*t

MOVE move.w EA, %cc Move to condition codes*
to CCR

MOVE move.w %cc,EA Move from condition codes*
from CCR

MOVE move.w EA,%sr Move to the status register*
to SR

MOVE move.w %sr,EA Move from the status register*
from SR

MOVE move.l %usp, %an Move user stack pointer*
USP move.l %an,%usp

MO VEA move.A EA,%an Move address*

MOVEC move.l %re, %rn Move from/to control register*
move.l %rn, %re

* Jn all move commands, move may be shortened to mov.

t If the destination is an address register, the instruction generated is MOVEA.

as Reference 13-31

MC68000 instruction formats
Mnemonic Assembler ~tax O_Q_eration
MOVEM movem.A EA, &l Move multiple registers*t

movem.A &!,EA

MOVEP movep.A %dx,d(%ay) Move peripheral data*
movep.A d(%ay),%dx

MOVEQ move.l &[, %dn Move quick*

MOVES moves.S %rn,EA Move to/from address space*
moves.S EA, %rn

MULS muls.w EA, %dx Signed multiply
16*16->32

tmuls.l EA, %dx Signed multiply (long)
muls.l EA, %dx 32*32->32 (eq)

muls.l EA, %dx:%dy Signed multiply (long)
32*32-> 64

MULU mulu.w EA, %dx Unsigned multiply
16*16-> 32

tmulu.l EA, %dx Unsigned multiply (long)
mulu.l EA, %dx 32*32-> 32(eq)

mulu.l EA,%dx:%dy Unsigned multiply (long)
32*32->64

NBCD nbcd EA Negate decimal with extend

NEG neg.S EA Negate

NEGX negx.S EA Negate with extend

NOP nap No operation

NOT not.S EA Logical complement

* In all move commands, move may be shortened to mov.

t The immediate operand is a mask designating which registers are to be moved to
memory or which are to receive memory data. Not all addressing modes are
permitted, and the correspondence between mask bits and register numbers depends
on the addressing mode.

13-32 NUX Programming Languages and Tools, Volume 1

MC68000 instruction formats
Mnemonic Assembler s_y_ntax OJ!eration
OR or.S EA, %dn Inclusive OR logical

or.S %dn,EA

ORI ori.S &!,EA Inclusive OR immediate.
Equivalent to or .S

ORI
to CCR ori.w &I, %cc Inclusive OR immediate

to Condition codes.
Equivalent to or . w

ORI ori.w &I, %sr Inclusive OR immediate
to SR to the status register.

Equivalent to or. w

PACK pack -(%ax) ,-(%ay), &I Pack BCD
pack %dx, %dy, &I

PEA pea EA Push effective address

RESET reset Reset external devices

ROL rol.S %dx, %dy Rotate (without extend)
rol.S &Q, %dy (Left)

rol.w EA

ROR ror.S %dx, %dy Rotate (without extend)
ror.S &Q, %dy (right)

ror.w EA

ROXL roxl .S %dx, %dy Rotate with extend (left)
roxl .S &Q, %dy

roxl.w EA

ROXR roxr.S %dx, %dy Rotate with extend (right)
roxr.S &Q, %dy

roxr.w EA

RTD rtd &I Return and deallocate
parameters

RTE rte Return from exception

RTM rtm %rn Return from module

RTR rtr Return and restore
condition codes

RTS rts Return from subroutine

as Reference 13-33

MC68000 instruction formats
Mnemonic Assembler ~ntax O.e_eration
SBCD sbcd %dy, %dx Subtract decimal with extend

sbcd -(%ay) ,-(%ax)

Sec sCC EA Set according to condition

STOP stop &I Load status register and stop

SUB sub.S EA, %dn Subtract binary
%dn,EA

SUBA sub.A EA,%an Subtract address

SUB! sub.S &!,EA Subtract immediate
(subi also works)

SUBQ sub.S &Q,EA Subtract quick
(subq also works)

SUBX
subx.S %dy, %dx Subtract with extend

-(%ay) ,-(%ax)

SWAP swap %dn Swap register halves

TAS tas EA Test and set an operand

TRAP trap &I Trap

TRAPV trapv Trap on overflow

TRAPcc tCC Trap on condition
trapCC (eq)
tpCC.A &I
trapCC.A &I (eq)

TST tst .S EA Test an operand

UNLK unlk %an Unlink

UNPK unpk -(%ax) ,-(%ay), &I Unpack BCD
unpk %dx, %dy, &I

13-34 A/UX Programming Languages and Tools, Volume 1

11.1 Instructions for the MC68881
The following table shows how the floating-point coprocessor
(MC68881) instructions should be written to be understood by the as
assembler.

In the table, CC represents any of the following floating-point condition
code designations.

Table 13·6. TRAP on unordered

cc Meaning

ge Greater than or equal
gl Greater or less than
gle Greater or less than or equal
gt Greater than
le Less than or equal

lt Less than
ngt Not greater than
nge Not (greater than or equal)

nlt Not less than
ngl Not (greater or less than)
nle Not (less than or equal)
ngle Not (greater or less than or equal)
sneq Signaling not equal
sf Signaling false
seq Signaling equal

st Signaling true

as Reference 13-35

Table 13·7. No TRAP on unordered

CC Meaning

eq Equal
oge Ordered greater than or equal
og l Ordered greater or less than
ogt Ordered greater than
ole Ordered less than or equal
o l t Ordered less than
or Ordered
t True

ule Unordered or less or equal
ult Unordered or less than
uge Unordered or greater than or equal
ueq Unordered or equal
ugt Unordered or greater than
un Unordered
neq Not equal
f False

The designation ccc represents a group of constants in MC68881
constant ROM that have the following values:

Table 13-8. Constants in MC68881 constant ROM

CCC Value CCC Value

OxO pi 3x5 10**4
OxB log10(2) 3x6 10**8
OxC e 3x7 10**16
OxD log2(e) 3x8 10**32
OxE loglO(e) 3x9 10**64
OxF 0.0 3xA 10**128
3x0 ln(2) 3xB 10**256
3xl ln(lO) 3xC 10**512
3x2 10**0 3xD 10**1024
3x3 10**1 3xE 10**2048
3x4 10**2 3xF 10**4096

13-36 A/UX Programming Languages and Tools, Volume 1

Additional abbreviations used in the table are

A

B

EA
I

L

SF

%control

%dn

%fpcr

%fpiar

%fpm, %fpn,%fpq

%fpsr

%iaddr

%status

Source format letters w or 1

Source format letters b, w, l, s, or p

An effective address

An absolute expression, used as an
inunediate operand

A label reference or any expression
representing a memory address in the
current segment

Source format letters:
b byte integer
d double precision
1 long word integer
p packed binary code decimal
s = single precision
w word integer
x extended precision

Floating-point control register

Data register, where 0 Sn S 7.

Floating-point control register

Floating-point instruction address register

Floating-point data registers, where m, n,
and q are digits from 0 through 7.

Floating-point status register

Floating-point instruction address register

Floating-point status register

Note: The source format must be specified if more than one
source format is permitted, or a default source format x is
assumed. Source format need not be specified if only one
format is permitted by the operation.

as Reference 13-37

MC68881 instruction formats
Mnemonic I Assembler syntax I Operation
FABS fabs.SF EA, %fpn Absolute value function

fabs.x %fpm, %fpn
fabs.x %fpn

FACOS facos .SF EA, %fpn Arccosine function
facos.x %fpm, %fpn
facos.x %fpn

FADD fadd.SF EA, %fpn Floating-point add
fadd.x %fpm, %fpn

FASIN fasin.SF EA, %fpn Arcsine function
fasin.x %fpm, %fpn
fasin.x %fpn

FA TAN fatan.SF EA, %fpn Arctangent function
fatan.x %fpm, %fpn
fatan.x %fpn

FA TANH fatanh.SF EA, %fpn Hyperbolic arctangent
fatanh.x %fpm, %fpn function
fatanh.x %fpn

FBcc fbCC.A L Coprocessor branch
conditionally

FCMP fcmp.SF %fpn,EA Floating-point compare*
fcmp.x %fpn,%fpm

FCOS fees.SF EA, %fpn Cosine function
fcos.x %fpm, %fpn
fcos.x %fpn

FCOSH fcosh.SF EA, %fpn Hyperbolic cosine
fcosh.x %fpm, %fpn function
fcosh.x %fpn

* The order of operands in as is the reverse of that in the M68000 Programmer's
Reference Manual.

13-38 A/UX Programming Languages and Tools, Volume 1

MC68881 Instruction formats
Mnemonic I Assembler syntax I Operation
FD Bee fdbCC.w %dn,L Decrement and branch

on condition

FDIV fdiv.SF EA, %fpn Floating-point divide
fdiv.x %fpm, %fpn

FETOX fetox.SF EA, %fpn e**x function
fetox.x %fpm, %fpn
fetox.x %fpn

FETOXMl fetoxml.SF EA,%fpn e**x (x-1) function
fetoxml.x %fpm, %fpn
fetoxml.x %fpn

FGETEXP fgetexp.SF EA, %fpn Get the exponent
fgetexp.x %fpm, %fpn function
fgetexp.x %fpn

FGETMAN fgetman.SF EA,%fpn Get the mantissa
fgetman.x %fpm, %fpn function
fgetman.x %fpn

FINT fint.SF EA, %fpn Integer part function
fint.x %fpm, %fpn
fint.x %fpn

FINfRZ fintrz.SF EA, %fpn Integer part, round-to-zero
fintrz.x %fpm, %fpn function
fintrz.x %fpn

FLOG2 flog2.SF EA, %fpn Binary log function
flog2.x %fpm, %fpn
flog2.x %fpn

FLOGlO floglO.SF EA,%fpn Common log function
floglO .x %fpm,%fpn
floglO.x %fpn

as Reference 13-39

MC68881 Instruction formats
Mnemonic I Assembler syntax I Operation
FLOGN flogn.SF EA,%fpn Natural log function

flogn.x %fpm, %fpn
flogn.x %fpn

FLOGNP1 flognpl.SF EA, %fpn Natural log (x+ 1)
flognpl.x %fpm, %fpn function
flognpl .x %fpn

FMOD fmod.SF EA,%fpn Floating point modulo
fmod.x %fpm, %fpn

FMOVE fmove.SF EA, %fpn Move to floating-point register*
fmove.x %fpm, %fpn

fmove.SF %fpn,EA Move from floating-point
fmove.p %fpn,EA{&l) register to memory*
fmove.p %fpn,EA{%dn)

FMOVE fmove.1 EA, %control Move from memory to
(cont'd.) fmove.l EA, %status special register*

fmove.1 EA, %iaddr

fmove.l %control,EA Move to memory from
fmove.l %status,EA special register*
fmove.l %iaddr,EA

* In all (floating-point) move commands, move may be shortened to mov.

13-40 NUX Programming Languages and Tools, Volume 1

MC68881 Instruction formats
Mnemonic I Assembler syntax I Operation
FMOVECR fmovcr.x &CCC, %fpn Move a ROM-stored to a

floating-point register* tt

FMOVEM fmovem.x EA,&! Move to multiple float-
ing point register*t

fmovem.x &!,EA Move from multiple
registers to memory*t

fmovem.x EA,%dn Move to a data register*

fmovem.x %dn,EA Move a data register
to memory*

fmovem.l %control, EA Move to special registers
fmovem.l o/ostatus,EA (1, 2, or 3 registers,
fmovem.l %iaddr,EA separated by commas)*

fmovem.l EA, %control Move from special registers
fmovem.l EA, %status (1, 2, or 3 registers,
fmovem.l EA, %iaddr separated by commas)*

FMUL fmul.SF EA, %fpn Floating-point multiply
fmul.x %fpm, %fpn

FNEG fneg.SF EA,%fpn Negate function
fneg.x %fpm, %fpn
fneg.x %fpn

* In all (floating-point) move commands, move may be shortened to mov.

t The immediate operand is a mask designating which registers are to be moved to
memory or which registers are to receive memory data. Not all addressing modes are
permitted and the correspondence between mask bits and register numbers depends on
the addressing mo<le used.

; See Table 13-7, Constants in MC68881 constant ROM, in "Instructions for the
MC68881."

as Reference 13-41

MC68881 instruction formats
Mnemonic I Assembler syntax I Operation
FNOP fnop Floating-point no-op

FREM frem.SF EA, %fpn Floating-point remainder
frem.x %fpm, %fpn

FRESTORE frestore EA Restore internal state
of coprocessor

FSAVE fsave EA Coprocessor save

FSCALE fscale.SF EA, %fpn Floating-point scale
fscale.x %fpm, %fpn exponent

FScc fsCC.b EA Set on condition

FSGLDIV fsgldiv.B EA,%fpn Floating-point single
fsgldiv.s %fpm, %fpn precision divide

FSGLMUL fsglmul .B EA, %fpn Floating-point single
fsglmul.s %fpm, %fpn precision multiply

FSIN fsin.SF EA, %fpn Sine function
fsin.x %fpm, %fpn
fsin.x %fpn

FSINCOS fsincos.SF EA,%fpn:%fpq Sine/cosine function
fsincos.x %fpm, %fpn: %fpq

FSINH fsinh.SF EA, %fpn Hyperbolic sine
fsinh.x %fpm,%fpn function
fsinh.x %fpn

FSQRT fsqrt.SF EA, %fpn Square root function
fsqrt.x %fpm, %fpn
fsqrt.x %fpn

FSUB fsub.SF EA, %fpn Square root function
fsub.x %fpm, %fpn

13-42 A/UX Programming Languages and Tools, Volume 1

MC68881 instruction formats
Mnemonic I Assembler syntax I Operation
FrAN ftan.SF EA, %fpn Tangent function

ftan.x %fpm, %fpn
ftan.x %fpn

FrANH ftanh.SF EA, %fpn Hyperbolic tangent
ftanh.x %fpm, %fpn function
ftanh.x %fpn

FfENTOX ftentox.SF EA, %fpn lO**x function
ftentox.x %fpm, %fpn
ftentox.x %fpn

Free ft CC Trap on condition
without a parameter

FfRAPee ftrapCC Trap on condition
without a parameter

FrPee ftpCC.A &[Trap on condition with
a parameter

FfRAPee ftrapCC.A &[Trap on condition with
a parameter

FrST ftest.SF EA Floating-point test an operand
ftest .x %fpm Note: The ft st form
ftst.SF EA (floating-point trap on signal
ftst.x %fpm true) is no longer supported due

to a conflict with the FTST
(floating-point test an operand
instruction).

FrWOTOX ftwotox.SF EA,%fpn 2**x function
ftwotox.x %fpm, %fpn
ftwotox.x %fpn

as Reference 13-43

11.2 Instructions for the MC68851
The following table shows how the paged memory management unit
(PMMU) (MC68851) instructions should be written to be understood
by the as assembler.

In the table, CC represents any of the following condition code
designations:

SET PSR BIT

cc Meaning

bs bus error
ls limit violation
SS supervisor violation
as access level violation
ws write protected
is invalid
gs gate
cs globally shared

CLEAR PSR BIT

cc Meaning

be bus error
le limit violation
SC supervisor violation
ac access level violation
we write protected
ic invalid
gc gate
cc globally shared

Additional abbreviations used in the table are

D

EA

13-44

Represents an absolute expression used as an immediate
operand depth level in the PTESTR/PTESTW instructions,
whereO ~D ~7

Represents an effective address

NUX Programming Languages and Tools, Volume 1

FC Represents one of the following function codes:

I

%dfc

%d.n

%sfc

%sfcr

Represents an absolute expression used as an
immediate operand

Represents the destination function code
register

Represents a data register

Represents the source function code register

Represents the source function code register

I Represents an absolute expression used as an immediate
operand

L A label reference or any expression representing a memory
address in the current segment

M Represents an absolute expression used as an immediate
operand mask in the PFLUSH/PFLUSHS instructions,
whereO::;M::; 15

% an Represents an address register 0 through 7

%dn Represents a data register 0 through 7

%pm Represents one of the following PMMU registers:

%ac

%bac

%bad

%cal

%crp

%drp

%pcsr

as Reference

Represents PMMU access control register

Represents PMMU breakpoint acknowledge
control register 0 through 7

Represents PMMU breakpoint acknowledge
data register 0 through 7

Represents PMMU current access level
register

Represents PMMU CPU root pointer register

Represents PMMU OMA root pointer register

Represents PMMU cache status register

13-45

%psr

%sec

%srp

%tc

%val

Represents PMMU status register

Represents PMMU stack change control
register

Represents PMMU supervisor root pointer
register

Represents PMMU transition control register

Represents PMMU validate access level
register

Note: The source format must be specified if more than one
source format is permitted or a default source format of w is
a5sumed. Source format need not be specified if only one
format is permitted by the operation.

13-46 NUX Programming Languages and Tools, Volume 1

MC68851 Instruction formats
Mnemonic I Assembler syntax I Operation
PB cc pbCCA L Branch on PMMU condition

PD Bee pdbCC.w %dn,L Test, decrement, branch

PFLUSH pf lush FC,&M Invalidate entries in A TC
pf lush FC, &M,EA

PFLUSHA pflusha Invalidate all A TC entries

PFLUSHS pf lushs FC,&M Invalidate entries in A TC
pf lushs FC,&M,EA including shared entries

PFLUSHR pf lushr EA Invalidate A TC and
RPTentries

PLOADR ploadr FC,EA Load an entry into A TC

PLOADW ploadw FC,EA Load an entry into A TC

PMOVE prnove.A %pm, EA Move PMMU register*

prnove.A EA,%pm

PRESTORE pre store EA PMMU restore function

PSAVE psave EA PMMU save function

PS cc psCC EA Set on PMMU condition

* The prnov. syntax is also recognized.

as Reference 13-47

MC68851 instruction formats
Mnemonic I Assembler syntax I Operation
PTES1R ptestr FC,EA, &D Get information about

ptestr FC,EA, &D, %an logical address

PTESTW ptestw FC,EA,&D Get information about
ptestw FC,EA, &D, %an logical address

PTRAPcc pt CC Trap on PMMU condition
ptrapCC
ptCC.A &I
ptrapCC.A &I

PVALID pvalid %val,EA Validate a pointer
pvalid %an,EA

13-48 NUX Programming Languages and Tools, Volume 1

Chapter 14

ld Reference

Contents

1. 1d: The link editor • • • . •
1.1 Some general points • • •

1.1.1 Host and target machine
1.1.2 Memory configuration
1.1.3 Sections •
1.1.4 Addresses
1.1.5 Binding .
1.1.6 Object files

1.2 Options • • •

2. The 1d command language
2.1 Expressions
2.2 Assignment statements
2.3 Specifying a memory configuration
2.4 Region directives • • •
2.5 Section definition directives • • •

2.5.1 File specifications • • • •
2.5.2 Loading a section at a specified address
2.5.3 Aligning an output section • . . •
2.5.4 Creating holes within output sections •
2.5.5 Creating and defining symbols at link-edit

time • • • . • . • • •
2.5.6 Allocating a section into named

memory • • • . . • • •
2.5.7 Initialized section holes or . bss

sections

3. Notes and special considerations . . . •
3.1 Using archive libraries • • • • •
3.2 Dealing with holes in physical memory
3.3 Allocation algorithm • . • • • •

- i -

1
3
3
4
4
5
5
5
6

9
9

10
12
13
13
14
15
16
19

21

22

23

25
25
28
29

3.4 Incremental link editing • • • •
3.5 DSECT, COPY, and NOLOAD sections
3.6 Output file blocking
3.7 Nonrelocatable input files
3.8 The-ild option

4. Error messages
4.1 Corrupt input files
4.2 Errors during output
4.3 Internal errors • •
4.4 Allocation errors •
4.5 Misuse of link editor directives
4.6 Misuse of expressions
4.7 Misuse ofoptions •
4.8 Space constraints • •
4.9 Miscellaneous errors .

5. Syntax diagram for input directives

Tables

Table 14-1. Precedence of operators

- ii -

29
31
32
33
33

33
33
35
35
36
37
38
39
40
40

42

10

Chapter 14

ld Reference

1. ld: The link editor
The link editor ld creates executable object files by combining object
files, performing relocation, and resolving external references. ld also
processes symbolic debugging information. The input to ld is made
up of relocatable object files produced by a compiler, an assembler, or
a previous ld run. The link editor combines these object files to form
either a relocatable or an absolute (executable) object file (see ld(l)).

ld supports a command language that lets you control the linking
process with great flexibility and precision. Although the link edit
process is controlled in detail through use of this language (described
later), most users do not require this degree of flexibility, and the
manual page ld(l) in A!UX Command Reference is sufficient
instruction in the use of this command.

The command language allows the link editor

• to specify the machine's memory configuration

• to combine object file sections in particular fashions

• to cause the files to be bound to specific addresses or within
specific portions of memory

• to define or redefine global symbols at link edit time

To use the link editor, give the following command:

ld [options] filename ...

Files passed to ld must be object files, archive libraries containing
object files, or text source files containing ld directives. ld uses the
file's magic number (the first two bytes of the file) to determine which
type of file it is encountering. If ld does not recognize the magic
number, it assumes the file is a text file containing ld directives and
attempts to parse it

ld Reference 14-1

Input object files and archive libraries of object files are linked together
to form an output object file. If there are no unresolved references, you
may execute this file on the target machine.

Object files have the form name . o throughout the examples in this
chapter. The names of actual input object files need not follow this
convention.

If you merely want to link the object files.ft/el. o andfile2. o, this
command is enough:

ld filel . o file2 . o

No directives to ld are needed. If no errors are encountered during the
link edit, the output is left in the default file a. out.

The input file sections are combined in order. That is, if each of
filel. o andfile2. o contains the standard sections . text, . data, and
. bs s, the output object file also contains these three sections. The
output . text section is a concatenation of . text from.ft/el. o and
file2. o. The . data and . bss sections are formed similarly. The
output . text section is then bound at address OxOOOOOO. The output
. data and .bss sections are link edited together into contiguous
addresses, the particular address depending on the particular processor.

An input file containing link editor directives is referred to as an i-file
in this document. Its usefulness is explained below. An i-file named
default. ld is searched for automatically in the list oflibrary
directories (see the -1 and -L options under "Options"). The default
directory for this search is /usr I lib.

Instead of entering the names of files to be link edited, or entering ld
options on the ld command line, you may place this information in an
i-file and just pass the i-file to ld. For example, if you are frequently
going to link the object files.ft/el. o,file2. o, andfile3. o with the same
options.fl andfl, you might enter the command

ld -fl -j2 ft/el . o file2. o fi/e3. o

each time you have to invoke ld. Alternatively, you could create an
i-file containing the statements

14-2 A/UX Programming Languages and Tools, Volume 1

-fl
-fl
filel. o
file2. o
file3. o

and use the following command:

ld i-file

Note that it is perfectly permissible to specify some of the object files
to be link edited in the i-file and to specify others on the command line,
as well as specifying some options in the i-file and others on the
command line. Input object files are link edited in the order they are
encountered, whether on the command line or in an i-file. As an
example, if a command line were

ld filel . o i-ftle file2 . o

and the i-file contained

file3. o
file4. o

the order of link editing would be

1. filel. o

2. file3. o

3. file4. o

4. file2. o

Note from this example that an i-file is read and processed immediately
upon being encountered in the command line.

1.1 Some general points
There are several concepts and definitions with which you should
become familiar before you proceed further.

1.1.1 Host and target machine
In a cross-compilation system, the host machine is the machine on
which the link editor is running, and the target machine is the machine
on which the output object file will run. For instance, the b16 link
editor will run on the PDP-11no, VAX or 3B20S machines, but the

ld Reference 14-3

object file will run only on the target machine for the b16 - the Intel
8086.

On a native A/UX system, the host and the target are normally the
same. That is, the link editor on a Macintosh II produces an object file
that is executable on that machine.

1.1.2 Memory configuration
The virtual memory of the target machine is, for purposes of allocation,
partitioned into "configured memory" and "unconfigured memory."
Configured memory indicates a range of memory for which the
appropriate chips have been installed and are available for use.
Unconfigured memory denotes a range of memory for which no chips
have been installed, or that is unavailable for use. The default is to
treat all memory as configured. It is common with microprocessor
applications, however, to have different types of memory at different
addresses. For example, an application might have 3K of PROM
(Programmable Read-Only Memory) beginning at address 0, and 8K of
ROM (Read-Only Memory) starting at 20K. Addresses in the range
3K to 20K-1 are then not configured. Unconfigured memory is treated
as reserved and is unusable by ld.

Note: Nothing may ever be linked into unconfigured memory.

Specifying a certain memory range as unconfigured is one way of
marking the addresses in that range as illegal or nonexistent with
respect to the linking process. Memory configurations other than the
default must be specified explicitly.

Unless otherwise specified, all discussion in this document of memory,
addresses, and so on, is about the configured sections of the address
space.

1.1.3 Sections
A section of an object file is the smallest unit of relocation and must be
a contiguous block of memory. You can identify a section with a
starting address and a size. Information describing all the sections in a
file is stored in section headers at the start of the file. Sections from
input files are combined to form output sections that contain executable
text, data, or a mixture of both. Although there may be holes or gaps

14-4 NUX Programming Languages and Tools, Volume 1

between input sections (and between output sections), storage is
allocated contiguously within each output section and may not overlap
a hole in memory.

1.1.4 Addresses
The physical address of a section or symbol is the relative offset from
address zero of the address space. The physical address of an object is
not necessarily the location at which it is placed when the process is
executed. For example, on a system with paging, the address is relative
to address zero of the virtual space, and the system performs another
address translation.

1.1.5 Binding
Often you may need to have a section begin at a specific, predefined
address in the address space. The process of specifying this starting
address is called binding, and the section in question is said to be
"bound to" or "bound at" the required address. While binding is
most commonly relevant to output sections, you may also bind global
symbols with an assignment statement in the ld command language.

1.1.6 Object files
Object files are produced both by the assembler (typically as a result of
calling the compiler) and by ld. ld accepts relocatable object files as
input and produces an output object file that may or may not be
relocatable. Under certain special circumstances, the input object files
given to ld may also be absolute files (see "Nonrelocatable input
files" for details).

Files produced by the compiler or assembler always contain three
sections

. text containing the instruction text (for example, executable
instructions)

. data containing initialized data variables

. b s s containing uninitialized data variables

For example, if a C program contained the following global (not inside
a function) declarations:

ld Reference 14-5

int i = 100;
char abc[200];

and the following assignment:

abc[i] = O;

compiled code from the C assignment would be stored in . text, the
variable i would be located in . data and abc would be located in
.bss.

There is an exception, however, to the rule: both initialized and
uninitialized statics are allocated to the . data section (the value of an
uninitialized static in a . data section is zero).

1.2 Options
You may intersperse options with filenames both on the command line
and in an i-file. The ordering of options is not significant, except for
the l and L options for specifying libraries.

The 1 option is shorthand notation for specifying an archive library,
which is just a collection of object files. Thus, as is the case with any
object file, libraries are searched as they are encountered. The L

specifies an alternative directory for searching for libraries. Therefore,
to be effective, a -L option must appear before any -1 options.

All options for ld must be preceded by a hyphen (-), whether in the i­
file or on the ld command line. Options that have an argument (except
for the -1 and -L options) are separated from the argument by white
space (blanks or tabs). The following options are supported:

-e SS

-f bb

-ild

14-6

Defines the primary entry point of the output file to be the
symbol given by the argument ss.

Sets the default fill value. The argument bb is a 2-byte
constant. This value is used to fill holes formed within
output sections. It is also used to initialize input . bs s
sections when they are combined with other non . bs s
input sections. If you don't use the - f option, the default
fill value is zero for all sections except the . t v section,
whose default fill value is OxFFFF.

Generates the sections reserved for use by the incremental
link editor. This option invokes the-r option.

A/UX Programming Languages and Tools, Volume 1

- lfile Specifies an archive library file as ld input. The argument
file is a character string (less than ten characters)
immediately following the -1 without any intervening
white space. As an example, -le refers to libc. a, -le
to libC. a, and so on. The given archive library must
contain valid object files as its members. The directory
searched defaults to usr I lib, finding
usr I lib/ libc. a, usr I lib/ libC. a, and so on.

-m Produces a map or listing of the input/output sections
(including holes) on the standard output.

-o nn Names the output object file. The argument nn is the name
of the NUX system file to be used as the output file. The
default output object filename is a. out. The option nn
may be a full or partial NUX pathname.

- r Retains relocation entries in the output object file.
Relocation entries must be saved if the output file is to be
used as an input file in a subsequent ld call. If the - r
option is used, unresolved references do not prevent the
creation of an output object file.

-s Strips line number entries and symbol table information
from the output object file. Because relocation entries (- r
option) are meaningless without the symbol table, if you
use -s, you may not use -r. All symbols are stripped,
including global and undefined symbols.

-t Disables checking all instances of a multiply-defined
symbol to be sure they are the same size.

-u sym Introduces an unresolved external symbol into the output
file's symbol table. The argument sym is the name of the
symbol. This is useful for linking entirely from a library,
since initially the symbol table is empty and an unresolved
reference is needed to force the linking of an initial routine
from the library.

-x Does not preserve any local (nonglobal) symbols in the
output symbol table; enter external and static symbols
only. This option saves some space in the output file.

ld Reference 14-7

-z

-F

-Ldir

Catches references through null pointers. The z is a
mnemonic for ''Do not place anything in address zero.''
This option is overridden if any section or memory
directives are used.

Performs alignment necessary for demand paging.
Sections will be aligned on stricter boundaries in the
address space. Sections will be blocked in the output file
so that they begin on file system block boundaries. Also,
the magic number 0413 will be stored in the file header.

Changes the algorithm for searching for libraries to look in
dir before looking in the default location. This option is
used for ld libraries as the - I option is for compiler
#include files. The -L option is useful for finding
libraries that are not in the standard library directory. To
be useful, though, this option must appear before the -1
option.

-M Prints a warning message for all external variables that are
multiply-defined.

-N Adjusts the load point of the data section so that it will
immediately follow the text section when loaded and
stores the magic number 0407 in the header. This prevents
the text from being shared (shared text is the default).

-s Requests a silent ld run. All error messages from errors
that do not immediately stop the ld run are suppressed.

-v Prints, on the standard error output, a version id
identifying the version of ld invoked.

-vs num Takes num as a decimal version number identifying the
a. out file that is produced. The version stamp is stored
in the system header. This option is not directly
recognized by the compiler (cc), so you have to use the
-w option to pass the version number to the link editor; for
example,

-Wl,-VS num

where -w is an option to cc allowing arguments to be

14-8 A/UX Programming Languages and Tools, Volume 1

passed, l stands for the link editor, the arguments'
destination, and -vs num are the arguments to ld that set
the version number for the a. out file. Note that the
space between -vs and num is required.

2. The ld command language

2.1 Expressions
Expressions may contain global symbols, constants, and most of the
basic C language operators (see the last section of this chapter,
"Syntax Diagram for Input Directives"). Constants in ld are as in C,
with a number recognized as decimal unless preceded with O for octal
or Ox for hexadecimal.

Note: All numbers are treated as long in ts.

Symbol names may contain upper or lowercase letters, digits, and the
underscore(_). Symbols within an expression have the value of the
address of the symbol only. ld does not do symbol table lookup to
find the contents of a symbol, the dimensionality of an array, structure
elements declared in a C program, and so on.

ld uses a lex-generated input scanner to identify symbols, numbers,
operators, and so forth. The current scanner design makes the
following names reserved and unavailable as symbol or section names:

ALIGN DSECT MEMORY PHY SPARE
ASSIGN GROUP NO LOAD RANGE TV
BLOCK LENGTH ORIGIN SECTIONS

align group length origin spare
assign l 0 phy
block len org range

The operators that are supported are shown in order of precedence in
Table 14-1:

1d Reference 14-9

Table 14-1. Precedence of operators

Symbols and Functions

! - - (unary minus)

* I %

+ - (binary minus)

>> <<

-- != > < <= >=

&

I
&&

I I
= += -= *= /=

These operators have the same meaning as in the C language.
Operators on the same line have the same precedence.

2.2 Assignment statements
External symbols may be defined and assigned addresses via the
assignment statement. The syntax of the assignment statement is

symbol = expression;

or

symbol op= expression;

where op is one of the operators +, - , *, or I.

Note: Assignment statements must terminate with a semicolon.

All assignment statements (with one exception, described in the
following paragraph) are evaluated after allocation has been
performed. This occurs after all input-file-defined symbols are
appropriately relocated, but before the actual relocation of the text and

14-10 NUX Programming Languages and Tools, Volume 1

data itself. Therefore, if an assignment statement expression contains
any symbol name, the address used for that symbol in the evaluation of
the expression reflects the symbol address in the output object file.
References to symbols given a value through an assignment statement
within text and data access this latest-assigned value. Assignment
statements are processed in the same order in which they are input to
ld.

Assignment statements are normally placed outside the scope of any
section-definition directives (see ''Section Definition Directive'' under
"The ld Command Language"). There is a special symbol, "dot"
(.), however, that may occur only within a section-definition directive.
This symbol refers to the current address of ld's location counter.
Thus, assignment expressions involving . are evaluated during the
allocation phase of ld.

Assigning a value to the dot (.) symbol within a section-definition
directive will increment or reset ld's location counter and may create
holes within the section (as described in "Section Definition
Directives").

Assigning the value of the . symbol to a conventional symbol permits
the final allocated address of a particular point within the link edit run
to be saved.

align is provided as a shorthand notation to allow you to align a
symbol to an n-byte boundary within an output section, where n is a
power of 2. For example, the expression

align (n)

is equivalent to

(. + n - 1) & (n - 1)

Link editor expressions can have either an absolute or a relocatable
value, corresponding to a type of absolute or relocatable. When ld
creates a symbol through an assignment statement, the symbol's value
takes on the type of the expression. That type depends on the
following rules:

• An expression with a single relocatable symbol (and zero or
more constants or absolute symbols) is relocatable. The value is

ld Reference 14-11

in relation to the section of the referenced symbol.

• All other expressions have absolute values.

2.3 Specifying a memory configuration
MEMORY directives are used to specify:

• the total size of the virtual space of the target machine

• the configured and unconfigured areas of the virtual space

If you do not supply any directives, ld assumes that all memory is
configured. The size of the default memory is dependent upon the
target machine.

Using MEMORY directives, you may assign an arbitrary name of up to
eight characters to a virtual address range. Output sections then may
be forced to be bound to virtual addresses within specifically-named
memory areas. Memory names may contain upper or lowercase letters,
digits and the special characters $, . or-· Names of memory ranges
are used by ld only and are not carried in the output file symbol table
or headers.

Note: When you use MEMORY directives, all virtual memory
that is not described in a MEMORY directive is considered to be
unconfigured. Unconfigured memory is not used in ld's
allocation process, and hence nothing may be link edited,
bound, or assigned to an address within unconfigured memory.

As an option on the MEMORY directive, you may associate attributes
with a named memory area. This restricts the memory areas (with
specific attributes) to which an output section may be bound. The
attributes you assign to output sections are recorded in the appropriate
section headers in the output file to allow for possible error checking in
the future. For example, putting a text section into writable memory is
one potential error condition. Currently, error checking of this type is
not implemented.

The attributes currently accepted are

R readable memory

14-12 A/UX Programming Languages and Tools, Volume 1

w writable memory

x executable (instructions may reside in this memory)

I initializable (stack areas are typically not initialized)

Other attributes may be added in the future if necessary. If you do not
specify any attributes on a MEMORY directive or if you do not supply
any MEMORY directives, memory areas assume all of the attributes of
w, R, I, andx.

The syntax of the MEMORY directive is

MEMORY

{

name (attr) : origin virt-addr[,] length mem-lgth

The keyword orig in (or o rg or o) must precede the origin of a
memory range, and length (or len or l) must precede the length, as
shown in the preceding prototype. The origin operand refers to the
virtual address of the memory range. Origin and length are entered as
long integer constants in decimal, octal, or hexadecimal (standard C
syntax). Origin and length specifications, as well as individual
MEMORY directives, may be separated by white space or a comma.

By specifying MEMORY directives, you can tell ld that memory is
configured in some manner other than the default. For example, if you
need to prevent anything from being linked to the first OxlOOOO words
of memory, you may do so with a MEMORY directive:

MEMORY

{

valid : org = OxlOOOO, len
}

2.4 Region directives

OxFEOOOO

This implementation does not support region specifications.

2.5 Section definition directives
You may use the SECTIONS directive to describe how input sections
are to be combined, to direct where output sections should be placed
(both in relation to each other and to the entire virtual memory space),

1d Reference 14-13

and to permit the renaming of output sections.

In the default case (where no SECTIONS directives are given), all
input sections of the same name appear in an output section of that
name. For example, if a number of object files from the compiler are
linked, each containing the three sections . text, . data, and . bss,
the output object file will also contain three sections, . text, . data,
and . bss. If two object files are linked, one containing sections sl
and s2, the other containing sections s3 and s4, the output object file
will contain the four sections sl, s2, s3, and s4. The order of these
sections depends on the order in which the link editor sees the input
files.

The basic syntax of the SECTIONS directive is

SECTIONS
{

sec name
{

file-specification ... ,
assignment-statement ...

The various types of section definition directives are discussed in the
remainder of this section.

2.5.1 File specifications
Within a section definition, the files and file sections to be included in
the output section are listed in the order in which they are to appear.
Sections from an input file are specified by

filename (sec name ...)

Sections of an input file are separated by white space or commas, as are
the file specifications themselves.

If a filename appears with no sections listed, then all sections from the
file are linked into the current output section; for example,

14-14 A/UX Programming Languages and Tools, Volume 1

SECTIONS
{

outsecl:
{

ftlel . o (sec])
ftle2. o
ftle3. o (secl , sec2)

The order in which the input sections appear in the output section
outsecl is given by

1. Section secl from file ft/el . o

2. All sections fromftle2. o, in the order they appear in the file

3. Section secl from fileftle3. o, then section sec2 from fileftle3. o

If there any additional input files that contain input sections named
outsecl, these sections are linked following the last section named in
the outsecl definition. If there are any other input sections inftlel. o
orftle3. o, they will be placed in output sections with the same names
as the input sections.

2.5.2 Loading a section at a specified address
You may bond an output section to a specific virtual address, as shown
in the following SECTIONS directive example:

SECTIONS
{

outsec addr :
{

file-spec (secname)

addr is the bonding address, expressed as a C constant. If outsec does
not fit at addr (perhaps because of holes in the memory configuration
or because outsec is too large to fit without overlapping some other
output section), ld issues an appropriate error message.

ld Reference 14-15

As long as output sections do not overlap and there is enough space,
they may be bound anywhere in configured memory. The SECTIONS

directives that define output sections do not have to be given to ld in
any particular order.

ld does not ensure that each section's size consists of an even number
of bytes or that each section starts on an even byte boundary. The
assembler ensures that the size (in bytes) of a section is evenly divisible
by 4. Although it is not recommended, you can use the ld directives to
force a section to start on an odd byte boundary, if unforeseen
circumstances force you into this solution. If a section starts on an odd
byte boundary, the section's contents either are accessed incorrectly or
are not executed properly. If you specify an odd byte boundary, ld
will issue a warning message.

2.5.3 Aligning an output section
You may request that an output section be bound to a virtual address
that falls on an n-byte boundary, where n is a power of 2. The AL I GN
option of the SECT IONS directive performs this function, so that the
option

ALIGN (n)

is equivalent to specifying a bonding address of

(. + n - 1) & (n - 1)

For example,

SECTIONS
{

outsec ALIGN (Ox2 0 0 0 0)

file-spec (secname)

The output section outsec is not bound to any given address, but is
linked to some virtual address that is a multiple of Ox20000 (for
example, at address OxO, Ox20000, Ox40000, Ox60000, and so on).

14-16 NUX Programming Languages and Tools, Volume 1

The default section alignment action for ld on M68000 systems is to
align the code (.text) and data (.data and . bss combined)
separately on 512-byte boundaries. Since MMU requirements vary
from system to system, alignment is not always desirable. The version
of ld for M68020 systems, therefore, provides a mechanism to allow
the specification of different section alignments for each system,
allowing you to align each section separately on n-byte boundaries,
where n is a multiple of 512. The default section alignment action for
ld on MC68020 systems is to align the code (.text) at byte 0 and the
data (.data and . bs s combined) at the 4 megabyte boundary (byte
10487576).

The default allocation algorithm for ld is

1. Link all input . text sections together into one output section.
This output section is called . text and is bound to an address
ofOxO.

2. Link all input . data sections together into one output section.
This output section is called . data and is bound to an address
aligned to a machine-dependent constant

3. Link all input . bss sections together into one output section.
This output section is called . bss and is allocated so as to
follow the output section . data immediately. Note that the
output section . bss is not given any particular address
alignment.

Specifying any SECTIONS directives results in this default allocation
not being performed.

When all input files have been processed (and if no override is
provided), ld will search the list of library directories (as with the -1
flag option) for a file named default. ld. If this file is found, it is
processed as an ld instruction file (or i-file). The default. ld file
should specify the required alignment as outlined below. If it does not
exist, the default ruignment action will be taken.

The default. ld file should appear as in the example below, with
align-value replaced by the alignment requirement in bytes. The
default allocation of ld is equivalent to supplying the following
directive:

ld Reference 14-17

SECTIONS
{

. text : { }
GROUP ALIGN (align-value)
{

.data

.bss

where align-value is a machine-dependent constant.

Note: The current (MC68020) system requires a data rounding
of 2 megabytes. This is subject to change as systems evolve.

The GROUP directive ensures that the two output sections, . data and
. bss, are allocated ("grouped") together. Bonding or alignment
information is supplied only for the group, and not for the output
sections contained within the group. The sections making up the group
are allocated in the order listed in the directive.

If you wish to place . text, . data, and . bss in the same segment,
you should use the following SECTIONS directive:

SECTIONS
{

GROUP
{

.text

.data

.bss

Note that there are still three output sections (.text, . data, and
. bss), but they are now allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting
address or aligned simply by adding a field to the GROUP directive. To
bind to OxCOOOO, use

14-18 NUX Programming Languages and Tools, Volume 1

GROUP OxCO 0 0 0 :

To align to OxlOOOO, use

GROUP ALIGN (OxlO 0 0 0) : {

With this addition, first the output section . text is bound at OxCOOOO
(or is aligned to OxlOOOO); then the remaining members of the group
are allocated in order of their appearance into the next available
memory locations.

When the GROUP directive is not used, each output section is treated as
an independent entity:

SECTIONS
{

. text : { }

.data ALIGN(Ox20000) { }

. bss : { }

The . text section starts at virtual address OxO and the . data section
at a virtual address aligned to Ox20000. The . bss section follows
immediately after the . text section, but only ifthere is enough space.
If there is not, it follows the . data section.

The order in which output sections are defined told cannot be used to
force a certain allocation order in the output file.

2.5.4 Creating holes within output sections
The special symbol dot (.) appears only within section definitions and
assignment statements. When it appears on the left side of an
assignment statement, . causes ld's location counter to be
incremented or reset and a hole is left in the output section.

Holes that are built into output sections in this manner take up physical
space in the output file and are initialized using a fill character (either
the default fill character (OxOO) or a supplied fill character). See the
definition of the-f option in "Options" under" ld: The Link Editor"
and the discussion of filling holes in "Initialized Section Holes or
. bss Sections" below.

Consider the following section definition:

ld Reference 14-19

SECTIONS
{

outsec:
{

. += OxlOOO;
fl . o (. text)
. += OxlOO;

j2 . o (. text)
. = align (4);

f3. o (. text)

The effect of this command is as follows:

1. A OxlOOO byte hole, filled with the default fill character, is left at
the beginning of the section. Input file/I. o (.text) is linked
after this hole.

2. The text of input file j2 . o begins at Ox 100 bytes following the
end of fl . o (. text) .

3. The text of fl. o is linked to start at the next full word boundary
following the text ofj2. o with respect to the beginning of
outsec.

For the purposes of allocating and aligning addresses within an output
section, ld treats the output section as if it began at address zero. As a
result, if, in the above example, outsec ultimately is linked to start at an
odd address, the part of outsec built from fl. o (. text) also starts at
an odd address, even though fl. o (. text) is aligned to a full word
boundary. You may prevent this by specifying an alignment factor for
the entire output section:

outsec ALIGN (4) : {

You should note that the assembler, as, always pads the sections it
generates to a full word length, making explicit alignment
specifications unnecessary. This also holds true for the compiler.

Expressions that decrement . are illegal. For example, subtracting a
value from the location counter is not allowed, since overwrites are not

14-20 A/UX Programming Languages and Tools, Volume 1

allowed. The most common operators in expressions that assign a
value to . are+= and align.

2.5.5 Creating and defining symbols at link-edit time
You may use the assignment instruction of ld to give symbols a value
that is link-edit-dependent. Typically, there are three types of
assignments:

1. Use of . to adjust ld's location counter during allocation

2. Use of . to assign an allocation-dependent value to a symbol

3. Assigning an allocation-independent value to a symbol

The first case has already been discussed in the previous section.

The second case provides a means to assign addresses (known only
after allocation) to symbols; for example,

SECTIONS
{

outscl: {file-spec (secname) }
outsc2:
{

filel . o (sl)
s2 start =
file2. o {s2)
s2 end - 1;

The symbol s2_start is defined to be the address offile2. o {s2),
and s2 _end is the address of the last byte offile2. o (s2) .

Consider the following example:

ld Reference 14-21

SECTIONS
{

outscl:

ft/el .o (.data)
mark = . ;

. += 4;
ft/e2 . o (. data)

In this example, the symbol mark is created and is equal to the address
of the first byte beyond the end of ft/el . o's . data section. Four bytes
are reserved for a future run-time initialization of the symbol mark.
The type of the symbol is a long integer (32 bits).

Assignment instructions involving . must appear within SECTIONS
definitions, since they are evaluated during allocation. Assignment
instructions that do not involve . may appear within SECTIONS

definitions, but typically do not. Such instructions are evaluated after
allocation is complete.

It is risky to reassign a defined symbol to a different address. For
example, if a symbol within . data is defined, initialized, and
referenced within a set of object files being link-edited, the symbol
table entry for that symbol is changed to reflect the new, reassigned
physical address. The associated initialized data are not moved to the
new address. ld issues warning messages for each defined symbol that
is being redefined within an i-file. Assignments of absolute values to
new symbols are safe, however, because there are no references or
initialized data associated with the symbol.

2.5.6 Allocating a section into named memory
You may specify a section to be linked somewhere within a specific,
named memory (as previously specified on a MEMORY directive) (the >
notation is borrowed from the UNIX system concept of ''redirected
output").

For example,

14-22 A/UX Programming Languages and Tools, Volume 1

MEMORY
{

meml:
mem2 (RW):

mem.3 (RW):

meml:

SECTIONS
{

o=OxOOOOOO
o=Ox020000
o=Ox070000
o=Ox120000

outsecl : {fl. o (. data)
outsec2 : { j2 . o (. data)

> meml
> mem.3

l=OxlOOOO
l=Ox40000
l=Ox40000
l=Ox04000

This directs ld to place outsecl anywhere within the memory area
named meml (somewhere within the address range OxO-OxFFFF or
Ox120000-0x123FF). The outsec2 is to be placed somewhere in
the address range Ox70000-0xAFFFF.

2.5.7 Initialized section holes or .bss sections
When holes are created within a section (as in the example in
"Creating Holes Within Output Sections"), ld normally puts out bytes
of zero as fill. By default, . bs s sections are not initialized at all; that
is, no initialized data, not even zeros, are generated for any . bss
section by the assembler, nor are they supplied by the link editor.

You may use initialization options in a SECTIONS directive to set such
holes or to set . bss sections as output to an arbitrary 2-byte pattern.

Note: Such initialization options apply only to .bss sections
or holes.

As an example, in an application you might want an uninitialized data
table to be initialized to a constant value, without recompiling the . o
file or filling a hole in the text area with a transfer to an error routine.

You may specify that either specific areas within an output section or
the entire output be initialized. Because no text is generated for an
uninitialized . bss section, however, if part of such a section is
initialized, the entire section is initialized.

1d Reference 14-23

In other words, if a . bss section is to be combined with a . text or
. data section (both of which are initialized), or if part of an output
. bss section is to be initialized, one of the following will hold:

• Explicit initialization options must be used to initialize all . bss
sections in the output section.

• ld will use the default fill value to initialize all . bs s sections in
the output section.

Consider the following ld i-file:

SECTIONS
{

secl:
{

fl . o (. text)
. += Ox200;

f2. o (.text)
} = OxDFFF
sec2:
{

fl.o (.bss)
f2.o (.bss)

} = Ox1234
sec3:
{

fl.o (.bss)

} = OxFFFF
sec4: {j4.o (.bss) }

In the example above, the Ox2 0 0 byte hole in section secl is filled
with the value OxDFFF. In section sec2,fl. o (. bss) is initialized to
the default fill value of OxOO, andf2. o (.bss) is initialized to
Ox1234. All .bss sections within sec3 as well as all holes are
initialized to OxFFFF. Section sec4 is not initialized; that is, no data
are written to the object file for this section.

14-24 A/UX Programming Languages and Tools, Volume 1

3. Notes and special considerations

3.1 Using archive libraries
Each member of an archive library (for example, libc. a) is a
complete object file, typically consisting of the standard three sections:

• .text

• .data

• .bss

Archive libraries are created through the use of the A/UX system ar
command from object files generated by running cc or as.

An archive library is always processed using selective inclusion: only
those members that resolve existing undefined-symbol references are
taken from the library for link editing.

Libraries may be placed both inside and outside section definitions. In
both cases, a member of a library is included for linking whenever the
following conditions exist:

• A reference to a symbol is defined in that member.

• The reference is found by ld prior to the actual scanning of the
library.

When a library member is included by searching the library inside a
SECTIONS directive, all input sections from the member are included
in the output section being defined.

When a library member is included by searching the library outside a
SECTIONS directive, all input sections from the member are included
in the output section with the same name. That is, the . text section
of the member goes into the output section named . text, the . data
section of the member into . data, the . bss section of the member
into . bss, and so on. If necessary, new output sections are defined to
provide a place to put the input sections. Note, however, that:

• Specific members of a library may not be referenced explicitly in
an i-file.

• The default rules for the placement of members and sections may
not be overridden when they apply to archive library members.

1d Reference 14-25

The -1 option is a shorthand notation for specifying an input file
coming from a predefined set of directories and having a predefined
name. By convention, such files are archive libraries. They do not,
however, have to be. Furthermore, you may specify archive libraries
without using the -1 option, simply by giving the full or relative A/UX
system pathname.

Note: The ordering of archive libraries is important, because,
for a member to be extracted from the library, it must satisfy a
reference that is known to be unresolved at the time the library
is searched.

You may specify archive libraries more than once. They are searched
every time they are encountered. Archive files have a symbol table at
the beginning of the archive. ld will cycle through this symbol table
until it has determined that it cannot resolve any more references from
that library.

ld, running on the Macintosh II, uses a random access library. All
machines running a pre-V .0 UNIX system use an old format library
that must be searched linearly.

The old format library is in use on all machines running a pre-V .0
UNIX system.

The link editor will make one search through a library in the old
format, but will continue to search through a library in the new format
until it has determined that it can resolve no more references from that
library. Because of the different searching algorithms used, programs
that are link edited on machines with different archive formats and are
otherwise the same may include files from libraries in a different order.

Be careful when using archive libraries in a subsystem loading
environment. For a member of an archive (an object file) to be
included in a subsystem final load file, there must be a reference within
the subsystem being linked to a symbol defined in that object file. You
may use the -u option to create unresolved references that will force
the loading of archive members.

Consider the following example:

14-26 NUX Programming Languages and Tools, Volume 1

• The input filesfilel. o andfile2. o each contain a reference to
the external function FCN.

• Inputjilel . o contains a reference to symbol ABC.

• Inputfile2. o contains a reference to symbol XYZ.

• Library liba. a, member 0, contains a definition of XYZ.

• Library libe . a, member 0, contains a definition of ABC.

• Both libraries have a member 1 that defines FCN.

Depending on the order in which files and libraries appear on the
command line, different library members can be included for linking.
If the ld command is entered as

ld filel .o -la file2 .o -le

the FCN references are satisfied by liba. a, member 1, ABC is
obtained from libe. a, member 0, and XYZ remains undefined
(because the library l iba . a is searched before file2 . o is specified).
If the ld command is entered as

ld filel. o file2. o -la -le

the FCN references are satisfied by liba. a, member 1, ABC is
obtained from libe . a, member 0, and XYZ is obtained from
liba. a, member 0. If the ld command is entered as

ld filel. o file2. o -le -la

the FCN references are satisfied by libe. a, member 1, ABC is
obtained from libe . a, member 0, and XYZ is obtained from
liba. a, member 0.

You may use the -u option to force the linking of library members
when the link edit run does not contain an actual external reference to
the members. For example,

ld -u routl -la

creates an undefined symbol called routl in the ld's global symbol
table. If any member of library liba . a defines this symbol, it, and
perhaps other members as well, is extracted. Without the -u option,
there would have been no trigger to cause ld to search the archive

1d Reference 14-27

library.

3.2 Dealing with holes in physical memory
When memory configurations are defined such that unconfigured areas
exist in the virtual memory, each application or user has the
responsibility of forming output sections that will fit into memory. For
example, assume that memory is configured as follows:

MEMORY
{

meml: 0 = OxOOOOO 1 Ox02000
mem2: 0 = Ox40000 1 Ox05000
mem3: 0 = Ox20000 1 OxlOOOO

Let the files/I. o,j2. o, .. .fn. o each contain the standard three
sections .text, .data, and .bss,andletthecombined .text
section be Ox12000 bytes. There is no configured area of memory into
which this section may be placed. Appropriate directives must be
supplied to break up the . text output section so ld may do
allocation. For example,

SECTIONS
{

txtl:
{

fl.o (.text)
j2 .o (.text)
f3 .o (.text)

txt2:
{

f4.o (.text)
f5.o (.text)
f6.o (.text)

14-28 A/UX Programming Languages and Tools, Volume 1

3.3 Allocation algorithm
An output section is formed either as a result of a SECTIONS directive
or by combining input sections of the same name. An output section
may be made up of zero or more input sections. After an output
section's composition is determined, it must be allocated into
configured virtual memory. ld uses an algorithm that attempts to
minimize fragmentation of memory, which increases the possibility
that a link edit run will be able to allocate all output sections within the
specified virtual memory configuration. The algorithm proceeds as
follows:

1. Allocate any output sections for which explicit bonding
addresses were specified.

2. Allocate any output sections to be included in a specific named
memory. In both this and the succeeding step, each output
section is placed into the first available space within the (named)
memory with any alignment taken into consideration.

3. Allocate output sections that are not handled by one of the above
steps.

If all memory is contiguous and configured (the default), and no
SECTIONS directives are given, output sections are allocated in the
ordertheyappeartold,normally .text, .data, .bss. Otherwise,
output sections are allocated, in the order they were defined or made
known to ld, into the first available space they fit

3.4 Incremental link editing
As previously mentioned, the output of ld may be used as an input file
to subsequent ld runs, providing that the relocation information is
retained (-r option). With large applications you may find it desirable
to partition C programs into subsystems, link each subsystem
independently, and then link edit the entire application. For example,

ld Reference 14-29

Step I:
ld -r -o outfilel i-filel

/* i-filel */
SECTIONS
{

ssl:

fl.o
f2.o

fn.o

Step 2:
ld -r -o outf ile2 i-f ile2

/* i-file2 */
SECTIONS
{

ss2:
{

gl.o
g2.o

gn.o

Step 3:
ld -a -m -o final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a form of
incremental link editing, whereby it is necessary to relink only a
portion of the total link edit when a few programs are recompiled.

To apply this technique, there are two simple rules:

1. Intermediate link edits should contain only SECTIONS
declarations and be concerned only with the formation of output

14-30 A/UX Programming Languages and Tools, Volume 1

sections from input files and input sections. You should not do
any binding of output sections in these runs.

2. All allocation and memory directives, as well as any assignment
statements, are included in the final ld call only.

3.5 DSECT, COPY, and NOLOAD sections
You may give sections a type in a section definition, as shown in the
following example:

SECTIONS
{

namel Ox200000 (DSECT)
name2 Ox400000 (COPY)
name3 Ox600000 (NOLOAD)

{jtlel. o }
{file2. o }
{ file3. o }

The DSECT option creates what is called a "dummy section." A
dummy section has the following properties:

1. It does not participate in the memory allocation for output
sections. As a result, it takes up no memory and does not show
up in the memory map (the -m option) generated by ld.

2. It may overlay other output sections and even unconfigured
memory. DSECTs may overlay other DSECTs.

3. The global symbols defined within the dummy section are
relocated normally. That is, they appear in the output file's
symbol table with the same value they would have had if the
DSECT were actually loaded at its virtual address. Other input
sections may reference DSECT-defined symbols. Undefined
external symbols found within a DSECT cause specified archive
libraries to be searched; any members that define such symbols
are link edited normally (not in the DSECT or as a DSECT).

4. None of the section contents, relocation information, or line
number information associated with the section is written to the
output file.

In the above example, none of the sections from filel . o are allocated,
but all symbols are relocated as though the sections were link edited at
the specified address. Other sections could refer to any of the global

ld Reference 14-31

symbols and they are resolved correctly.

Something called a "copy section" is created by the COPY option.
This is similar to a dummy section. The only difference between a
copy section and a dummy section is that the contents of a copy
section, and all associated information, are written to the output file.

A section of the type NOLOAD differs in only one respect from a
normal output section: text and data are not written to the output file.

A noload section is allocated virtual space, appears in the memory
map, and so forth.

3.6 Output file blocking
You may use two options to affect the physical file offsets of the
information written to the output file by ld:

• The BLOCK option permits any output section to be aligned in
the output field at a specified n-byte boundary.

• The -B option causes padding sections to be generated in the
output file.

Both features are provided explicitly for the use of ldp, which
constructs pfiles for DMERT. The output sections of a pfile have
certain requirements in terms of physical file offsets. These
requirements may be met using BLOCK and -B.

You may apply the BLOCK option to any output section or GROUP

directive. It directs ld to align a section at a specified byte offset in
the output file. It has no effect on the address at which the section is
allocated nor on any part of the link edit process. It is used purely to
adjust the physical position of the section in the output file.

SECTIONS
{

. text BLOCK (Ox2 0 0) : { }

.data ALIGN(Ox20000) BLOCK(Ox200): { }

In this SECTIONS directive example, ld assures that each section,
. text and . data, is physically written at a file offset that is a
multiple of Ox200 (for example, at an offset of 0, Ox200, Ox400, ... ,
and so on, in the file).

14-32 NUX Programming Languages and Tools, Volume 1

3.7 Nonrelocatable Input files
If you intend to use a file produced by ld in a subsequent ld run, you
should set the - r option for the first ld run. This preserves relocation
information and permits the sections of the file to be relocated by the
subsequent ld run.

When ld detects an input file that does not have relocation or symbol
table information, it gives a warning message. Such information may
be removed by ld (see the -s option in "Options" under "ld: The
Link Editor") or by the strip(l) program. Note, however, that the
link edit run continues, using the nonrelocatable input file. For such a
link edit to be successful (that is, actually and correctly to link edit all
input files, relocate all symbols, resolve unresolved references, and so
on), two conditions on the nonrelocatable input files must be met:

1. Each input file must have no unresolved external references.

2. Each input file must be bound to the same virtual address as it
was in the ld run that created it.

Note that if these two conditions are not met for all nonrelocatable
input files, no error messages are issued. Because of this, you must
take extreme care when supplying such input files told.

3.8 The -ild option
When the -ild option is used, the link editor creates a pair of dummy
sections, DSECTs, for each unallocated, configured area of memory.
These dummy sections have unique names in the form of . i _ l _ dnn,
where nn is a 2-digit decimal integer in the range from 00 to 99. At
most, 50 pairs of these sections will be created by the link editor.
These sections identify the boundaries of the unused memory space,
and are similar to . bss sections in that they do not contain any text or
initialized data. The link editor also creates a dummy section named
. history. These sections are used later by the incremental link
editor.

4. Error messages

4.1 Corrupt input files
Certain error messages indicate that the input file is corrupt,
nonexistent, or unreadable. If you get any of them, you should check
that the file is in the correct directory with the correct permissions. If

1d Reference 14-33

the object file is corrupt, try recompiling or reassembling it. These
error messages include

Can't read archive header from archive name

Can't read file header of archive name

Can't read 1st word of file name

Can't seek to the beginning of file name

Fail to read file header of name

Fail to read lnno of section sect of file name

Fail to read magic number of file name

Fail to read section headers of file name

Fail to read section headers of library name
member number

Fail to read symbol table of file name

Fail to read symbol table when searching
libraries

Fail to read the aux entry of file name

Fail to read the field to be relocated

Fail to seek to symbol table of file name

Fail to seek to symbol table when searching
libraries

Fail to seek to the end of library name
member number

Fail to skip aux entries when searching
libraries

Fail to skip the mem of struct of name

Illegal relocation type

No reloc entry found for symbol

14-34 NUX Programming Languages and Tools, Volume 1

Reloc entries out of order in section sect of
file name

Seek to name section sect failed

Seek to name section sect lnno failed

Seek to name section sect reloc entries failed

Seek to relocation entries for section uct
in file name failed.

4.2 Errors during output
Certain errors occur because ld cannot write to the output file. This
usually indicates that the file system is out of space. Messages to this
effect include

Cannot complete output file name.
Write error.

Fail to copy the rest of section num of
file name

Fail to copy the bytes that need no reloc
of section num of file

name I/O error on output file name.

4.3 Internal errors
Certain messages indicate that something is wrong with ld internally.
If you get them, there is probably nothing you can do except to get help
from another experienced user of ld. Such messages include

Attempt to free nonallocated memory

Attempt to reinitialize the SDP aux space

Attempt to reinitialize the SDP slot space

Default allocation did not put .data
and .bss into the same region

Failed to close SDP symbol space

Failure dumping an AIDFNxxx data structure

1d Reference 14-35

Failure in closing SDP aux space

Failure to initialize the SDP aux space

Failure to initialize the SDP slot space

Internal error: audit _groups, address
mismatch

Internal error: audit_group, finds a node
failure

Internal error: fail to seek to the member
of name

Internal error: in allocate lists,
list confusion (num num)

Internal error: invalid aux table id

Internal error: invalid symbol table id

Internal error: negative aux table ld

Internal error: negative symbol table id

Internal error: no symtab entry for DOT

Internal error: split_scns, size of sect
exceeds its new displacement.

4.4 Allocation errors
Certain error messages appear during the allocation phase of the link
edit. They generally appear if a section or group does not fit at a
certain address or if the given MEMORY or SECTION directives conflict
in some way. If you are using an i-file and get such messages, check
that MEMORY and SECTION directives allow enough room for the
sections to ensure that nothing overlaps and that nothing is being
placed in unconfigured memory. For more information, see ''The ld
Command Language'' and ''Notes and Special Considerations.''
These messages include

Bond address address for sect is not in
configured memory

14-36 A/UX Programming Languages and Tools, Volume 1

Bond address address for sect overlays
previously allocated section sect
at address

Can't allocate output section sect,
of size num

Can't allocate section sect into owner mem

Default allocation failed: name is too large

GROUP containing section sect is too big

Memory types name] and name2 overlap

Output section sect not allocated into a
region

sect at address overlays previously allocated
section sect at address

sect, bonded at address, won't fit into
configured memory

sect enters unconfigured memory at address

Section sect in file name is too big.

4.5 Misuse of link editor directives
Certain error messages are explanations that occur following the
misuse of an input directive. If you get them, please review the
appropriate section in the manual. These messages include

Adding name (sect) to multiple output sections.
The input section is mentioned twice in the SECTIONS
directive.

Bad attribute value in MEMORY directive: c.
An attribute must be one of R, w, x, or I.

Bad flag value in SECTIONS directive, option.
Only the -1 option is allowed inside of a SECTIONS directive.

Bad fill value.
The fill value must be a 2-byte constant.

1d Reference 14-37

Bonding excludes alignment.
The section will be bound at the given address, regardless of the
alignment of that address.

Cannot align a section within a group
Cannot bond a section within a group
Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group may be
aligned or bound to an address, but the sections making up the
group may not be handled individually.

DSECT sect can't be given an owner
DSECT sect can't be linked to an attribute.

Because dummy sections do not participate in the memory
allocation, it is meaningless for a dummy section to be given an
owner or an attribute.

Regions commands not allowed
The A/UX link editor does not accept the REGION commands.

Section sect not built.
The most likely cause of this is a syntax error in the SECTIONS
directive.

Semicolon required after expression
Statement ignored.

This is caused by a syntax error in an expression.

Usage of unimplemented syntax.
The A/UX ld does not accept all possible commands.

4.6 Misuse of expressions
Certain errors arise from the misuse of an input expression. If you
receive any of the following messages, please review the appropriate
section in the manual.

Absolute symbolname being redefined.
An absolute symbol may not be redefined.

ALIGN illegal in this context.
Alignment of a symbol may only be done within a SECT IONS
directive.

Attempt to decrement DOT

14-38 A/UX Programming Languages and Tools, Volume 1

Illegal assignment of physical address to DOT.
Illegal operator in expression
Misuse of DOT symbol in assignment instruction.

You may not use the dot symbol (.) in assignment statements
that are outside of SECTIONS directives.

Symbolname is undefined.
All symbols referenced in an assignment statement must be
defined.

Symbol name from file name being redefined.
A defined symbol may not be redefined in an assignment
statement.

Undefined symbol in expression.
All symbols used in expressions must be defined.

4. 7 Misuse of options
Certain errors arise from the misuse of options. If you get any of the
following messages, please review the appropriate section of the
manual:
Both -r and -s flags are set.
-s flag turned off.

Further relocation requires a symbol table.

Can't find library libx.a
-L path too long (string)
-o file name too large (>128 char), truncated to

(string)
Too many -L options, seven allowed.

Some options require white space before the argument, some do not;
see "Options." Including extra white space or not including the
required white space is the most likely cause of the following
messages:

option flag does not specify a number

option is an invalid flag

-e flag does not specify a legal symbol name:
name

ld Reference 14-39

-f flag does not specify a two-byte number: num

No directory given with -L

-o flag does not specify a valid file name: string

-1 flag (specifying a default library) is not
supported

-u flag does not specify a legal symbol name:
name.

4.8 Space constraints
Certain error messages may occur if ld attempts to allocate more
space than is available. If you get them, you should attempt to
decrease the amount of space used by ld. You may do this by making
the i-file less complicated or by using the -r option to create
intermediate files. These space-constraint messages include

Fail to allocate num bytes for slotvec table
Internal error: aux table overflow
Internal error: symbol table overflow
Memory allocation failure on num-byte call
Memory allocation failure on realloc call
Run is too large and complex.

4.9 Miscellaneous errors
Errors occur for many reasons. If one occurs that has not been
explained in a previous section, refer to the error message for an
indication of where to look in the manual. Miscellaneous error
messages include

Archive symbol table is empty
in archive name,
execute 'ar ts name'
to restore archive symbol table.

On systems with a random access archive capability, the link editor
requires that all archives have a symbol table. This symbol table may
have been removed by strip.

14-40 A/UX Programming Languages and Tools, Volume 1

Can't create intermediate ld filename
Can't open internal filename

These two messages are possible only when the link editor uses
two processes. This would indicate that the temp directory
(usually I tmp or I us r I tmp) is out of space, or that the link
editor does not have permission to write in it.

Cannot create output file name.
You may not have write permission in the directory where the
output file is to be written.

Filename is of unknown type, magic number =num
Ifile nesting limit exceeded with file name.

!files may be nested 16 deep.

Libraryname, member has no relocation
information.

Multiply defined symbolsym, inname has more
than one size
A multiply-defined symbol may not have been defined in the
same manner in all files.

name(sect) not found
An input section specified in a SECTIONS directive was not
found in the input file.

Section sect starts on an odd byte boundary!
This will happen only if you specifically bind a section at an odd
boundary.

Sections .text, .data or .bss not found;
Optional header may be useless.

The system a. out header uses values found in the . text,
. data, and . bss section headers.

Line nbr entry (num num) found for
nonrelocatable symbol:
Section sect, file name
This is generally caused by an interaction of yacc(l) and cc(l).
See ''Notes and Special Considerations.''

Undefined symbolsym first referenced in file
name. Unless you use the -r option, the ld requires that all

1d Reference 14-41

referenced symbols are defined.

Unexpected EOF (End Of File) .
Syntax error in the i-file.

5. Syntax diagram for input directives
The following tables contain syntax diagrams for input directives. For
flags, wherever there is a space between a flag option and its argument,
one or more blanks, tabs, or newlines may be substituted.

Note: Number suffixes have been added to some metalanguage
terms to illustrate treatment of multiple arguments. These
suffixes should be ignored when seeking the definition of such
terms.

14-42 NUX Programming Languages and Tools, Volume 1

Directive I ~ I Expanded directive

file ~ cmd ...

cmd ~ memory
~ sections
~ assignment
~ filename
~ flags

memory ~ MEMORY { memory-spec
[[,] memory-spec }

memory-spec ~ name [attributes] :
origin-spec [,] length-spec

attributes ~ ([R][W][X](I])

origin-spec ~ origin = long

length-spec ~ length = long

origin ~ ORIGIN
~ o[rigin]
~ o[rg]

length ~ LENGTH
~ l[ength]
~ l[en]

sections ~ SECTIONS {sec-or-group ... }

1d Reference 14-43

Directive I ~ I Expanded directive

sec-or-group ~ section
~ group
~ library

group ~ GROUP group_ options : {
section-list } [mem-spec]

section-list ~ section] [[,] section2] ...

section ~ name sec-options :
statement-list }
[fill] [mem-spec]

group-options ~ [addr] [align-option]

sec-options ~ [addr] [align-option]
[block-option] [type-option]

addr ~ long

align-option ~ align (long)

align ~ ALIGN
~ align

block-option ~ block (long)

block ~ BLOCK
~ block

14-44 NUX Programming Languages and Tools, Volume 1

Directive I ~ I Expanded directive

type-option ~ (DSECT)

~ (NOLOAD)

~ (COPY)

fill ~ =long

mem-spec ~ >name
~ > attributes

statement ~ filename [(name-list)]
[fill] library assignment

statement-list ~ statement] [statement2] ...

name-list ~ name[[,] name] ...

library ~ -lname

assignment ~ lside assign-op expr end

lside ~ name
~

assign-op ~

~ +=
~

~ *=
~ /=

end ~

~

ld Reference 14-45

Directive I ~ I Expanded directive

expr ~ expr binary-op expr
~ term

binary-op ~ *
~ I
~ %

~ +
~ -
~ >>
~ <<

~ --

~ !=
~ >
~ <
~ <=
~ >=

~ &

~ I
~ &&

~ I I

term ~ long
~ name
~ align (term)
~ (expr)
~ unary-op term

unary-op ~ !
~ -

14-46 A/UX Programming Languages and Tools, Volume 1

Directive I ~ I Expanded directive

flags ~ -e name
~ -f long
~ -ild
~ -lname
~ -m
~ -o filename
~ -r

~ -s
~ -t

~ -u name
~ -x
~ -z
~ -F
~ -Lpathname
~ -M
~ -N
~ -s
~ -v
~ -vs long

name ~ Any valid symbol name
long ~ Any valid long integer constant

filename ~ Any valid A/UX operating system
filename. This may include a
full or partial pathname.

pathname ~ Any valid A/UX operating system
pathname (full or partial)

ld Reference 14-47

Chapter 15

COFF Reference

Contents

1. COFF: The Common Object File Format

2. File Header • . .
2.1 Magic numbers
2.2 Flags
2.3 File header declaration

3. Optional header information
3.1 Standard A/UX system a. out header
3 .2 Optional header declaration

4. Section headers • • . • .
4.1 Flags • • • • . .
4.2 Section header declaration
4.3 .bss section header

5. Sections . • . • • • •

6. Relocation information
6.1 Relocation entry declaration

7. Line numbers • • • .
7.1 Line number declaration

8. Symbol table
8.1 Special symbols
8.2 Inner blocks
8.3 Symbols and functions
8.4 Symbol table entries .
8.5 Auxiliary table entries

9. String table •

10. Access routines

- i -

1

3
5
5
7

7
7
9

10
11
12
12

12

13
15

15
16

17
18
19
21
22
38

46

47

Figures

Figure 15·1. Object file format 2

Figure 15·2. File header declaration 7

Figure 15·3. aouthdr declaration • 9

Figure 15-4. Section header declaration 12

Figure 15·5. Relocation entry declaration 15

Figure 15·6. Line number grouping 16

Figure 15-7. Line number entry declaration 16

Figure 15·8. COFF global symbol table 17

Figure 15-9. Special symbols 19

Figure 15-10. Nested blocks • 20

Figure 15·11. Example of the symbol table 21

Figure 15-12. Symbols for functions • . . 21

Figure 15-13. The special symbol . target 22

Figure 15-14. Symbol table entry declaration 38

Figure 15·15. Auxiliary symbol table entry (page 1 of
2) • • • • • • • • • • • • 45

Figure 15·16. Auxiliary symbol table entry (page 2 of
2) . • • • • • • • • • • • 46

Tables

Table 15·1. File header contents

Table 15·2. File header flags

Table 15·3. Optional header contents

Table 15·4. NUX magic numbers •

- ii -

4

6

8

9

Table 15-5. Section header contents

Table 15·6. Section header flags

Table 15·7. Relocation section contents

Table 15·8. VAX and M68000 relocation types

Table 15·9. Special symbols in the symbol table

Table 15·10. Symbol table entry format

Table 15·11. Name field

10

11

13

14

18

23

24

Table 15·12. Storage classes (page 1 of 2) 25

Table 15·13. Storage classes (page 2 of 2) 26

Table 15·14. Storage class by special symbols 28

Table 15·15. Restricted storage classes 28

Table 15·16. Storage class and value (page 1 of
2) • • • • • • • • • • • 29

Table 15·17. Storage class and value (page 2 of
2) • . 30

Table 15·18. Section number • • • • • • • • 30

Table 15-19. Section number and storage class (page 1 of
2) • • • • • • • • • • • • • • 32

Table 15·20. Section number and storage class (page 2 of
2) . • . • • 33

Table 15·21. Fundamental types • • • • • • • 34

Table 15-22. Derived types • • . • • • . • 35

Table 15·23. Type entries by storage class (page 1 of
2) • • • • • • • • • • • • 36

Table 15-24. Type entries by storage class (page 2 of
2) • • • • • • • • • 37

Table 15·25. Auxiliary symbol table entries 39

- iii -

Table 15-26. Format for sections in auxiliary table

Table 15-27. Format for tag names •

Table 15-28. Format for end of structures •

Table 15-29. Format for functions

Table 15-30. Format for arrays

Table 15-31. Format for beginning of block

Table 15-32. Format for end of block

Table 15-33. Format for structures, unions, and
enumerations

Table 15-34. String table

- iv -

40

41

42

42

43

43

44

44

47

Chapter 15

COFF Reference

1. COFF: The Common Object File Format
This chapter describes the Common Object File Format (COFF).
COFF is the output file produced on A/UX systems by the assembler
(as) and the link editor (ld). The term "common" refers to how this
format is used on a number of processors and operating systems,
including A/UX.

COFF is flexible enough to meet the demands of most jobs, yet simple
enough to be easily incorporated into existing projects. Some of
COFF's key features are

• Applications may add system-dependent information to the
object file without causing access utilities to become obsolete.

• Space is provided for symbolic information that debuggers and
other applications use.

• You may make some modifications in the object file construction
at compile time.

The object file supports user-defined sections and contains extensive
information for symbolic software testing. An object file contains:

• A file header

• Optional header information

• A table of section headers

• Data corresponding to the section header

• Relocation information

• Line numbers

• A symbol table

COFF Reference 15-1

• A string table

Figure 15-1 shows the overall structure.

File header

Optional information
(A/UX system a. out header)

...
Section 1 header

...
Section n header

Raw data for section 1

...
Raw data for section n

Relocation info for section 1

...
Relocation info for section n
Line numbers for section 1

...
Line numbers for section n

Symbol table

String table

Figure 15-1. Object file format

The last four sections (relocation, line numbers, symbol table, and the
string table) may be missing if the program is linked with the -s option
of the link editor, or if the relocation (line number) information, symbol
table, and string table are removed by the strip command.

15-2 A/UX Programming Languages and Tools, Volume 1

The line number information does not appear unless you compile the
program with the compiler's (cc) -g option. Also, if there are no
unresolved external references after linking, the relocation information
is no longer needed and is absent. The string table is also absent if the
source file does not contain any symbols with names longer than eight
characters. An object file that contains no errors or unresolved
references may be executed.

section

physical address

virtual address

2. File Header

A section is the smallest portion of an object
file that is relocated and treated as one
separate and distinct entity. There are three
default sections: . text, . data, and
. bs s. Additional sections accommodate
multiple text or data segments, shared data
segments, or user-specified sections. When
the file is executed, however, the NUX
operating system loads only the . text and
. data memory. The kernel clears the
. b s s section.

This is the physical location in memory
where a section is loaded.

This is the offset of a section with respect to
the beginning of its segment or region. All
relocatable references in a section assume
that the section occupies the virtual address
at execution time.

The file header contains the 20 bytes of information shown in the
following table. The last two bytes are flags used by ld and object file
utilities. For more explicit information regarding the C language file
header structure, see filehdr(4) in AIUX Programmer's Reference.

COFF Reference 15-3

Table 15-1. File header contents

Bytes Declaration Name Description

0-1 unsigned short f_magic Magic number as
defined by the
symbol MAGIC
in the file
a.out.h.

2-3 unsigned short f nscns Number of
section headers
(equals the
number of
sections)

4-7 long int f timdat Time and date -
stamp indicating
when the file was
created relative to
the number of
elapsed seconds
since 00:00:00
GMT, January 1,
1970.

8-11 long int f_symptr File pointer
containing the
starting address
of the symbol
table

12-15 long int f_nsyms Number of
entries in the
symbol table

16-17 unsigned short f_opthdr Number of bytes
in the optional
header

18-19 unsigned short f_flags Flags

15-4 A/UX Programming Languages and Tools, Volume 1

The size of optional header information (f _ opthdr) is used by all
referencing programs that seek to the beginning of the section header
table. This enables the same utility programs to work correctly on files
originally targeted for different systems. On a VAX system, the
optional header is 28 bytes.

2.1 Magic numbers
The magic number specifies the machine on which the object file is
executable. The magic number for A/UX is 0520.

For a complete list of all currently defined magic numbers, refer to the
header file f ilehdr. h.

2.2 Flags
The last two bytes of the file header are flags that describe the type of
the object file. The A/UX version of COFF has no use for some of
these, but they are included here for commonality. The currently
defined flags are shown in Table 15-2.

COFF Reference 15-5

Table 15-2. File header flags

Mnemonic Flag Meaning

F RELFLG 00001 Relocation information stripped from the -
file

F EXEC 00002 File is executable (that is, no unresolved -
external references)

F LNNO 00004 Line numbers stripped from file -

F LSYMS 00010 Local symbols stripped from file -

F MINMAL 00020 Not used by A/UX -

F UPDATE 00040 Not used by A/UX -

F SWABD 00100 This file has had its bytes swabbed (that -
is, the bytes of symbol table name
entries have been reversed)

F AR16WR 00200 Created on an AR16WR machine, -
(PDP-11)

F AR32WR 00400 Created on an AR32WR machine, -
(VAX)

F AR32W 01000 Created on an AR32W machine, -
(M68000)

F PATCH 02000 Not used by A/UX -

F NODF 02000 (Minimal file only) No decision -
functions for replaced functions

where AR16WR defines the machine architecture (AR) as 16 bits per
word (16), right-to-left byte order with the least significant byte first
(WR); AR32WR defines the machine architecture (AR) as 32 bits per
word (32), right-to-left byte order with the least significant byte first
(WR); and AR32W defines the machine architecture (AR) as 32 bits
per word (32), left-to-right byte order with the most significant byte

15-6 NUX Programming Languages and Tools, Volume 1

first (W).

2.3 File header declaration
The C structure declaration for the file header is given in Figure 15-2.
You may find this declaration in the header file filehdr. h. See
f i lehdr(4) in A!UX Programmer's Reference.

f_magic; I* magic number */
struct f ilehdr {

unsigned short
unsigned short

long
f_nscns; /* number of sections
f_timdat; I* time/date stamp *I

long f _symptr; I* file ptr to symtab
long f _nsyms; I* lt symtab entries

} ;

unsigned short
unsigned short

f
f
_opthdr; /*
_flags; /*

#define FILHDR struct f ilehdr
#define FILHSZ sizeof(FILHDR)

sizeof (opt
flags *I

Figure 15·2. File header declaration

3. Optional header information

hdr)
*/
*/

*/

*I

The template for optional information varies among the different
systems that use COFF. Applications place all system-dependent
information into this record. This allows different operating systems
access to information that only that particular operating system uses,
without forcing all COFF files to save space for that information.
General utility programs (for example, the symbol table access library
functions) can be made to work properly on any common object file by
using the size of optional header information in bytes 16-17 of the file
header f_opthdr.

3.1 Standard A/UX system a. out header
By default, files produced by the link editor always have a standard
A/UX System a. out header in the optional header field. The fields of
the optional header are described in Table 15-3.

COFF Reference 15-7

Table 15-3. Optional header contents

Bytes Declaration Name Description

0--1 short magic Magic number

2-3 short vs tamp Version stamp

4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized
data in bytes

12-15 long int bsize Size of uninitialized
data in bytes

16-19 long int entry Entry point

20--23 long int text start Base address of text -

24-27 long int data start Base address of data
-

The magic number in the optional header supplies
operating-system-dependent information about the object file, whereas
the magic number in the file header specifies the machine on which the
object file runs. The magic number in the optional header supplies
information telling that machine's operating system how that file
should be executed. The magic numbers recognized by the NUX
operating system are shown in Table 15-4.

15-8 NUX Programming Languages and Tools, Volume 1

Table 15-4. NUX magic numbers

Value Meaning

0407 The text segment is not write protected or
sharable; the data segment is contiguous with
the text segment.

0410 The data segment starts at the next segment
following the text segment and the text segment
is write protected.

0413 The text segment is demand paged from the file
system, with separate instruction and data
space.

The magic number for the A/UX operating system is a
machine-dependent constant that can be found in the header file
a. out. h. See a. out(4) in A!UX Programmer's Reference.

3.2 Optional header declaration
The C language structure declaration used for the A/UX system a. out
file header is given in Figure 15-3. This declaration may be found in
the header file aouthdr. h.

typedef struct aouthdr
short magic; /* magic number */
short vstamp;
long tsize;

long dsize;
long bsize;
long entry;
long text_start;
long data start
AOUTHDR;

/* version stamp */
/* text size (bytes)

padded to word boundary */
/* initialized data size */
/* uninitialized data size */
/* entry point */
/* base of text, this file */
/* base of data, this file */

Figure 15-3. aouthdr declaration

COFF Reference 15-9

4. Section headers
Every object file has a table of section headers to specify the layout of
data within the file. Every section in an object file also has its own
header. The section header table has one entry for every section in the
file. Each entry contains descriptive information about the section as
shown in Table 15-5.

Table 15-5. Section header contents

Bytes Declaration Name Description

0-7 char s name 8-char null padded -
section name

8-11 long int s_paddr Physical address of
section

12-15 long int s vaddr Virtual address of -
section

16-19 long int s size Section size in -
bytes*

20-23 long int s_scnptr File pointer to raw
datat

24-27 long int s_relptr File pointer to
relocation entriest

28-31 long int s_lnnoptr File pointer to line
number entriest

32-33 unsigned short s nreloc Number of -
relocation entries

34-35 unsigned short s nlnno Number of line -
number entries

36-39 long int s_flags Flags

* The size of a section is always padded to a multiple of 4 bytes.

t File pointers are byte offsets that may be used to locate the start of data, relocation, or
line number entries for the section. They may be readily used with the A/UX
operating system function f seek(3S).

15-10 NUX Programming Languages and Tools, Volume 1

4.1 Flags
The lower 4 bits of the flag field indicate a section type as shown in
Table 15-6.

Table 15·6. Section header flags

Mnemonic Flag Meaning

STYP REG OxOO Regular section (allocated, -
relocated, loaded)

STYP DSECT OxOl Dummy section (not -
allocated, relocated, not
loaded)

STYP NOLOAD Ox02 Noload section (allocated, -
relocated, not loaded)

STYP GROUP Ox04 Grouped section (formed -
from input sections)

STYP PAD Ox08 Padding section (not -
allocated, not relocated,
loaded)

STYP COPY OxlO Copy section (for a -
decision function used in
updating fields; not
allocated, not relocated,
loaded, relocation and line
number entries processed
normally)

STYP TEXT Ox20 Section contains -
executable text only

STYP DATA Ox40 Section contains -
initialized data only

STYP BSS Ox80 Section contains only -
uninitialized data

COFF Reference 15-11

4.2 Section header declaration
The C structure declaration for the section headers is described in
Figure 15-4. You can find this declaration in the header file
scnhdr. h (see scnhdr(4) in A!UX Programmer's Reference):

struct scnhdr
char
long
long
long
long

long

long

s_name[8];
s_paddr;
s_vaddr;
s_size;
s_scnptr;

s_relptr;

/* section name */
I* physical address */
/* virtual address */
/* section size */
/* file pointer to

section raw data */
/* file pointer to

relocation */
s_lnnoptr; /* file pointer to

line number */
unsigned short s_nreloc; /* # relocation

entries */
unsigned short s_nlnno; /* # line number

entries */
long

} ;

#define SCNHDR
#define SCNHSZ

s_flags; /* flags */

struct scnhdr
sizeof(SCNHDR}

Figure 15-4. Section header declaration

4.3 .bss section header
The one deviation from the rule in the section header table is the entry
for uninitialized data in a . bs s section. A . bs s section has a size,
symbols that refer to it, and symbols that are defined in it. At the same
time, a . bss section has no relocation entries, no line number entries,
and no data. Therefore, a . bs s section has an entry in the section
header table, but occupies no space elsewhere in the file. In this case,
the number of relocation and line number entries, as well as all file
pointers in a .bss section header, are zero.

5. Sections
Section headers are followed by the appropriate number of bytes of text
or data. The raw data for each section begin on a full word boundary
in the file.

15-12 NUX Programming Languages and Tools, Volume 1

Files produced by the cc compiler and the as assembler always
contain three sections: . text, . data, and . bss. The . text
section contains the instruction text (that is, executable code); the
. data section contains initialized data variables; and the . bss
section contains uninitialized data variables.

The link editor SECTIONS directives (see Chapter 14, "ld
Reference") let you

• describe how input sections are to be combined

• direct the placement of output sections

• rename output sections

If you do not include any SECTIONS directives, each input section
appears in an output section of the same name. For example, if a
number of object files from the compiler are linked together (each
containing the three sections . text, . data, and . bss), the output
object file will also contain those three sections.

6. Relocation information
Object files have one relocation entry for each relocatable reference in
the text or data. The relocation information consists of entries with the
10-byte format as shown in Table 15-7.

Table 15-7. Relocation section contents

Bytes Declaration Name Description

0-3 long int r vaddr - (Virtual)
address of
reference

4-7 long int r_symndx Symbol table
index

8-9 unsigned short r_type Relocation type

The first 4 bytes of the entry make up the virtual address of the text or
data to which the entry applies. The next field is the index, counted
from 0, of the symbol table entry that is being referenced. The type

COFF Reference 15-13

field indicates the type of relocation to be applied.

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within
the input section are treated.

The currently recognized relocation types are given in Table 15-8, and
are documented in the header file reloc. h.

Table 15-8. VAX and M68000 relocation types

Mnemonic Flag Meaning

R ABS 0 Reference is absolute; no relocation is -
necessary. The entry will be ignored.

R RELBYTE 017 Direct 8-bit reference to the symbol's -
virtual address.

R RELWORD 020 Direct 16-bit reference to the symbol's -
virtual address.

R RELLONG 021 Direct 32-bit reference to the symbol's -
virtual address. (a VAX relocation
type)

R PCRBYTE 022 A PC-relative 8-bit reference to the -
symbol's virtual address.

R PCRWORD 023 A PC-relative 16-bit reference to the -
symbol's virtual address.

R PCRLONG 024 A PC-relative 32-bit reference to the -
symbol's virtual address.

15-14 NUX Programming Languages and Tools, Volume 1

On VAX processors, relocation of a symbol index of -1 indicates that
the amount by which the section is being relocated is added to the
relocatable address. In other words, the relative difference between the
current segment's start address and the program's load address is added
to the relocatable address.

The as assembler automatically generates relocation entries, which are
then used by the link editor to resolve external references in the file.

6.1 Relocation entry declaration
The structure declaration for relocation entries is given in Figure 15-5.
This declaration can be found in the header file reloc. h.

struct reloc {

long r_vaddr; /* ref virt addr */
long r_symndx; I* index into symtab *I
unsigned short r_type; /* reloc type */

} ;

#define RELOC struct reloc
#define RELSZ 10 /* sizeof (RELOC) */

Figure 15·5. Relocation entry declaration

7. Line numbers
When invoked with the -g option, the A/UX system compilers (cc,
f77) generate an entry in the object file for every C language source
line where a breakpoint can be inserted. You can then reference line
numbers using a software debugger like sdb. All line numbers in a
section are grouped by function as shown in Figure 15-6.

COFF Reference 15-15

Symbol index 0

Physical address Line number

Physical address Line number

...
Symbol index 0

Physical address Line number

Physical address Line number

Figure 15·6. Line number grouping

The first entry in a function grouping has line number 0 and has, in
place of the physical address, an index into the symbol table for the
entry containing the function name. Subsequent entries have actual
line numbers and addresses of the text corresponding to the line
numbers. The line number entries appear in increasing order of
address.

7.1 Line number declaration
Figure 15-7 contains the structure declaration currently used for line
number entries. This declaration can be found in the header file
linenum.h.

struct lineno
union {

long l_syrnndx;

long l_paddr;

l_addr;
unsigned short l_lnno;

} ;

/* symbol table index
of function name */

/* physical address
of line number */

/* line number */

#define LINENO struct lineno
#define LINESZ 6 I* sizeof (LINENO) */

Figure 15·7. Line number entry declaration

15-16 A/UX Programming Languages and Tools, Volume 1

8. Symbol table
Because of symbolic debugging requirements, the order of symbols in
the symbol table is very important. Symbols appear in the symbol table
in the sequence shown in Figure 15-8.

Filename 1

Function 1

Local symbols
for function 1

Function 2

Local symbols
for function 2

...
Statics

...
Filename 2

Function 1

Local symbols
for function 1

...
Statics

...
Defined global

symbols

Undefined global
symbols

Figure 15-8. COFF global symbol table

The word "statics" means symbols defined in the C language storage
class static outside any function. The symbol table consists of at
least one fixed-length entry per symbol, with some symbols followed
by auxiliary entries of the same size. The entry for each symbol is a
structure that holds the name (null-padded), structure value, type, and
other information.

COFF Reference 15-17

8.1 Special symbols
The symbol table contains some special symbols that are generated by
the cc compiler, the as assembler, and other tools as listed in Table
15-9.

Table 15-9. Special symbols in the symbol table

Symbol Meaning

.file Filename

.text Address of . text section

.data Address of . data section

.bss Address of . b s s section

.bb Address of start of inner block

.eb Address of end of inner block

.bf Address of start of function

.ef Address of end of function

.target Pointer to the structure or
union returned by a function

.xfake Dummy tag name for
structure, union, or
enumeration

.eos End of members of structure,
union, or enumeration

_etext,etext Next available address after
the end of the output section
.text

_edata,edata Next available address after
the end of the output section
.data

_end, end Next available address after
the end of the output section
.bss

Six of these special symbols occur in pairs. The . bb and . eb symbols
indicate the boundaries of inner blocks. A . bf and . ef pair brackets

15-18 A/UX Programming Languages and Tools, Volume 1

each function and .xfake and . eos form a pair that names and
defines the limit of structures, unions, and enumerations that were not
named. The . eos symbol also appears after named structures, unions,
and enumerations.

When a structure, union, or enumeration has no tag name, the cc
compiler invents a name to be used in the symbol table. The name
chosen for the symbol table is .xfake, where xis an integer. If there
are three unnamed structures, unions, or enumerations in the source,
their tag names will be . Ofake , . lfake , and . 2fake .

Each of the special symbols has different information stored in the
symbol table entry as well as the auxiliary entry.

8.2 Inner blocks
The C language defines a block as a compound statement that begins
and ends with braces ({ and }). An inner block is a block that occurs
within a function (which is also a block), such as if, while or
switch.

For each inner block that has local symbols defined, a special symbol,
. bb, is put in the symbol table immediately before the first local
symbol of that block. Another special symbol, . eb, is put in the
symbol table immediately after the last local symbol of that block.
Figure 15-9 shows this sequence:

.bb

Local symbols
for that block

.eb

Figure 15-9. Special symbols

Because inner blocks may be nested by several levels, the . bb/. eb
pairs and associated symbols may also be nested. The code illustrated
in Figure 15-10 is used as an example of nested blocks.

COFF Reference 15-19

int i;
char c;

long a;

int x;

long i;

/* block 1 */

/* block 2 */

/* block 3 */

I* block 3 *I
/* block 2 */
/* block 4 */

/* block 4 */

I* block 1 */

Figure 15-10. Nested blocks

The symbol table built for the coding example in Figure 15-10 is shown
in Figure 15-11.

15-20 A/UX Programming Languages and Tools, Volume 1

. bb for block 1

Local symbols for block 1:
i
c

. bb for block 2

Local symbols for block 2:
a

. bb for block 3

Local symbols for block 3:
x

. eb for block 3

. eb for block 2

. bb for block 4

Local symbols for block 4:
i

. eb for block 4

. eb for block 1

Figure 15-11. Example of the symbol table

8.3 Symbols and functions
For each function, a special symbol, . bf, is put between the function
name and the first local symbol of the function in the symbol table.
Also, a special symbol, . ef, is put immediately after the last local
symbol of the function in the symbol table. The sequence is shown in
Figure 15-12.

Function name

.bf

Local symbol

.ef

Figure 15-12. Symbols for functions

If the return value of the function is a structure or union, a special
symbol, . target, is put between the function name and the . bf.
The sequence is shown in Figure 15-13.

COFF Reference 15-21

Function name

.target

.bf

Local symbols

.ef

Figure 15-13. The special symbol . target

The cc compiler invents . target to store the function-returned
structure or union. The symbol . target is an automatic variable
with pointer type. Its value field in the symbol is always 0.

8.4 Symbol table entries
All symbols, regardless of storage class and type, have the same format
for their entries in the symbol table. The symbol table entries each
contain the 18 bytes of information. The meaning of each of the fields
in the symbol table entry is described in Table 15-10. The declarations
can be found in s yms • h header file.

It should be noted that indexes for symbol table entries begin at zero
and count upward. Each auxiliary entry also counts as one symbol.

15-22 A/UX Programming Languages and Tools, Volume 1

Table 15-10. Symbol table entry format

Bytes Declaration Name Description

0-7 char name 8-character -
null-padded
symbol name or
an offset to a
symbol name
stored in the
string table.

8-11 long int n value Symbol value; -
storage class
dependent

12-13 short n scnum Section number -
of symbol

14-15 unsigned short n_type Basic and
derived type
specification

16 char n sclass Storage class of -
symbol

17 char n numaux Number of -
auxiliary
entries

The first 8 bytes in the symbol table entry are the symbol name field.
This field is defined as the union of a character array and two longs.
A symbol name may be up to 50 characters long. If the symbol name
is eight characters or less, the (null-padded) symbol name is stored
there. If the symbol name is longer than eight characters, the entire
symbol name is stored in the string table. In this case, the 8 bytes
contain two long integers; the first is zero, and the second is the offset
(relative to the beginning of the string table) of the name in the string
table. Because there can be no symbols with a null name, the zeros on
the first 4 bytes serve to distinguish a symbol table entry with an offset
from one with a name in the first 8 bytes, as shown in Table 15-11.

COFF Reference 15-23

Table 15-11. Name field

Bytes Declaration Name Description

0-7 char n name 8-character -
null-padded
symbol name

0-3 long n zeroes Zero in this -
field indicates
the name is in
the string
table

4-7 long n off set Offset of the
name in the
string table

Some special symbols are generated by the compiler and link editor, as
discussed in "Special Symbols". Special symbol names always start
withadot,suchas .file, .Sfake,and .bb.

The storage class field has one of the values described in Tables 15-12
and 15-13. You can find these defines in the header file
storclass. h.

15-24 A/UX Programming Languages and Tools, Volume 1

Table 15-12. Storage classes (page 1of2)

Mnemonic Value Storage class

C EFCN -1 Physical end of a function -
C NULL 0 --
C AUTO 1 Automatic variable -
C EXT 2 External symbol -
C STAT 3 Static -
C REG 4 Register variable

C EXTDEF 5 External definition

C LABEL 6 Label -

C ULABEL 7 Undefined label -

C MOS 8 Member of structure -
C ARG 9 Function argument -
C STRTAG 10 Structure tag -

C MOU 11 Member of union -

COFF Ref ere nee 15-25

Table 15-13. Storage classes (page 2 of 2)

Mnemonic Value Storage class

C UNTAG 12 Union tag -
C TPDEF 13 Type definition -
C USTATIC 14 Uninitialized static -
C ENTAG 15 Enumeration tag -
C MOE 16 Member of enumeration -
C REGPARM 17 Register parameter -
C FIELD 18 Bit field -

C BLOCK 100 Beginning and end of block -
C FCN 101 Beginning and end of function -
C EOS 102 End of structure -

C FILE 103 Filename -
C LINE 104 Used only by utility programs -
C ALIAS 105 Duplicate tag -
C HIDDEN 106 Like static, used to avoid name -

conflicts

15-26 A/UX Programming Languages and Tools, Volume 1

All these storage classes, except for C _ALIAS and C _HIDDEN, are
generated by the cc compiler or as assembler. They are not used by
any NUX system tools.

There are some "dummy" storage classes defined in the header file
that are used only internally by the C compiler (cc) and the assembler
(as). These storage classes are

C EFCN
C EXTDEF
C ULABEL
C USTATIC
C LINE

Some special symbols are restricted to certain storage classes, listed in
Table 15-14.

Some storage classes are used only for certain special symbols as
shown in Table 15-15.

COFF Reference 15-27

Table 15-14. Storage class by special symbols

Special symbol Storage class

.file C FILE -

.bb C BLOCK -

.eb C BLOCK -

.bf C FCN -

.ef C FCN -

.target C AUTO -

.xfake C_STRTAG, C_UNTAG, C ENTAG -
.eos C EOS -

.text C STAT -

.data C STAT -

.bss C STAT -

Table 15-15. Restricted storage classes

Storage class Special symbol

C BLOCK - .bb, .eb

C FCN .bf, .ef

C EOS .eos -
C FILE .file

15-28 NUX Programming Languages and Tools, Volume 1

The meaning of a symbol's value depends on its storage class. This
relationship is summarized in Tables 15-16 and 15-17.

If a symbol is the last symbol in the object file and has storage class
c _FI LE (. file symbol), its value equals the symbol table entry
index of the first global symbol. That is, the . file entries form a
one-way linked list in the symbol table. If there are no more . file
entries in the symbol table, the value of the symbol is the index of the
first global symbol.

Relocatable symbols have a value equal to their virtual address. When
the section is relocated by the link editor, the value of these symbols
changes.

Table 15-16. Storage class and value (page 1 of 2)

Storage class Meaning

C AUTO Stack offset in bytes -

C EXT Relocatable address -
C STAT Relocatable address -

C REG Register number -
C LABEL Relocatable address -
C MOS Offset in bytes -
C ARG Stack offset in bytes -
C STRTAG 0 -
C MOU Offset -
C UNTAG 0 -
C TPDEF 0

COFF Reference 15-29

Table 15-17. Storage class and value (page 2 of 2)

Storage class Meaning

C ENTAG 0 -

C MOE Enumeration value -

C REGPARM Register number -

C FIELD Bit displacement -
C BLOCK Relocatable address -
C FCN Relocatable address -
C EOS Size -
C FILE (See text) -

Section numbers are declared in the header file s yms . h and are listed
in Table 15-18:

Table 15-18. Section number

Mnemonic Section number Meaning

N DEBUG -2 Special symbolic debugging -
symbol

N ABS -1 Absolute symbol -

N UNDEF 0 Undefined external symbol -
N SCNUM 1-077767 Section number where symbol -

was defined

A special section number (-2) marks symbolic debugging symbols
including structure (or union or enumeration) tag names, typedefs,
and the name of the file. A section number of -1 indicates that the
symbol has a value but is not relocatable. Examples of absolute-valued
symbols include automatic and register variables, function arguments,

15-30 NUX Programming Languages and Tools, Volume 1

and .eos symbols. The. text, .data, and .bss symbols default
to section numbers 1, 2, and 3, respectively.

With one exception, a section number of 0 indicates a relocatable
external symbol that is not defined in the current file. The one
exception is a multiply-defined external symbol (for example, a Fortran
COMMON directive or an uninitialized variable defined external to a
function in C). In the symbol table of each file where the symbol is
defined, the section number of the symbol is 0 and the value of the
symbol is a positive number giving the size of the symbol. When the
files are combined, the link editor combines all the input symbols into
one symbol with the section number of the . bs s section. The
maximum size of all the input symbols with the same name is used to
allocate space for the symbol, and the value becomes the address of the
symbol. This is the only case where a symbol has a section number of
0 and a nonzero value.

Symbols having certain storage classes are also restricted to certain
section numbers. They are shown in Tables 15-19 and 15-20.

COFF Reference 15-31

Table 15-19. Section number and storage class (page 1 of 2)

Storage class Section number

C AUTO N ABS - -

C EXT N_ABS, N_UNDEF, N SCNUM - -

C STAT N SCNUM - -
C REG N ABS - -

C LABEL N_UNDEF, N SCNUM - -

C MOS N ABS - -
C ARG N ABS - -
C STRTAG N DEBUG - -
C MOU N ABS - -

15-32 A/UX Programming Languages and Tools, Volume 1

Table 15-20. Section number and storage class (page 2 of 2)

Storage class Section number

C UNTAG N DEBUG - -

C TPDEF N DEBUG

C ENTAG N DEBUG - -

C MOE N ABS - -

C REGPARM N ABS - -

C FIELD N ABS - -

C BLOCK N SCNUM - -

C FCN N SCNUM - -

C EOS N ABS - -

C FILE N DEBUG - -

C ALIAS N DEBUG - -

The type field in the symbol table entry contains information about the
basic and derived type for the symbol. This information is generated
by cc. The VAX and M68020 cc compilers generate this information
only if the -g option is used. Each symbol has exactly one basic or
fundamental type, but can have more than one derived type. The
format of the 16-bit type entry is

I d6 I dS I d4 I d3 I d2 I dl I typl
Bits 0 through 3, called t yp, indicate one of the fundamental types
given in Table 15-21.

COFF Reference 15-33

Table 15·21. Fundamental types

Mnemonic Value Type

T NULL 0 Type not assigned -
T ARG 1 Function argument -

(used only by compiler)

T CHAR 2 Character

T SHORT 3 Short integer -

T INT 4 Integer -
T LONG 5 Long integer -
T FLOAT 6 Floating point -

T DOUBLE 7 Double word -
T STRUCT 8 Structure

T UNION 9 Union -
T ENUM 10 Enumeration -
T MOE 11 Member of enumeration -
T UCHAR 12 Unsigned character -
T USHORT 13 Unsigned short -

T UINT 14 Unsigned integer -
T ULONG 15 Unsigned long -

Bits 4 through 15 are arranged as six 2-bit fields marked dl through
d6. These d fields represent levels of the derived types given in Table
15-22.

15-34 NUX Programming Languages and Tools, Volume 1

(

)

Table 15-22. Derived types

Mnemonic Value Type

DT NON 0 No derived type -

DT PTR 1 Pointer -

DT FCN 2 Function -

DT ARY 3 Array -

The following examples demonstrate the interpretation of the symbol
table entry representing type.

char *June () ;

Herefunc is the name of a function that returns a pointer to a character.
The fundamental type of June is 2 (character), the dl field is 2
(function), and the d2 field is 1 (pointer). Therefore, the type word in
the symbol table forfunc contains the hexadecimal number Ox62,
which is interpreted to mean "a function that returns a pointer to a
character."

short *tabptr[10] [25] [3];

Here tabptr is a three-dimensional array of pointers to short integers.
The fundamental type of tabptr is 3 (short integer); each of the dl, d2,
and d3 fields contains a 3 (array), and the d4 field is 1 (pointer).
Therefore, the type entry in the symbol table contains the hexadecimal
number Ox7f7, indicating "a three-dimensional array of pointers to
short integers.''

Tables 15-23 and 15-24 show the type entries that are legal for each
storage class.

COFF Reference 15-35

Table 15-23. Type entries by storage class (page 1 of 2)

d entry typ
Storage entry
class Function Array Pointer basic

type

C AUTO x x Any except
T MOE -

C EXT x x x Any except -
T MOE -

C STAT x x x Any except -
T MOE -

C REG x Any except -
T MOE -

C LABEL T NULL - -
C MOS x x Any except

T MOE -

C ARG x x Any except
T MOE -

C STRTAG T STRUCT -
C MOU x x Any except -

T MOE -

C UNTAG T UNION - -
C TPDEF x x Any except

T MOE -

C ENTAG T ENUM -

15-36 A/UX Programming Languages and Tools, Volume 1

Table 15·24. Type entries by storage class (page 2 of 2)

d entry typ
Storage entry
class Function Array Pointer basic

type

C MOE T MOE - -

C REGPARM x Any except -
T MOE -

C FIELD T_ENUM, -
T_UCHAR,
T_USHORT,
T_UNIT,
T ULONG -

C BLOCK T NULL - -
C FCN T NULL - -
C EOS T NULL - -
C FILE T NULL - -
C ALIAS T_STRUCT, -

T_UNION,
T ENUM -

Conditions for the d entries apply to dl through d6, except that it is
impossible to have two consecutive derived types of function.

Although/unction arguments can be declared as arrays, they are
changed to pointers by default Therefore, no function argument can
have array as its first derived type.

The C language structure declaration for the symbol table entry is
given in Figure 15-14. This declaration can be found in the header file
syms.h.

COFF Reference 15-37

struct syment
union {

char _n_name[SYMNMLEN]; /*symbol name*/
struct {

long _n_zeroes;
long _n_offset;

_n_n;
char *_n_nptr[2];

_n;
long n _value;
short n scnum; -

unsigned short n_type;

I*
I*

I*

I*
I*
I*

symbol name *I
location in
string table *I

allows
overlaying */

symbol value *I
section number
type & derived

*/

*I
char n sclass; /* storage class *I -
char n _numaux; I* * of aux entries

} ;

#define n name n. n name
#define n_nptr _n._n_nptr[l]
#define n zeroes n. n n. n zeroes - - - - -
#define n off set n. n n. n offset

#define SYMNMLEN 8

#define SYMENT struct syment

*/

#define SYMESZ 18 /* symbol table entry size */

Figure 15-14. Symbol table entry declaration

8.5 Auxiliary table entries
Currently, there is at most one auxiliary entry per symbol. The
auxiliary table entry contains the same number of bytes as the symbol
table entry. Unlike symbol table entries, however, the format of an
auxiliary table entry of a symbol depends on its type and storage class.
Table 15-25 lists auxiliary table entry formats by type and storage
class:

15-38 A/UX Programming Languages and Tools, Volume 1

Table 15-25. Auxiliary symbol table entries

Type entry Auxiliary

Storage entry

Name class d2 typ format

.file C FILE DT NON T NULL Filename

.text, C STAT OT NON T NULL Section

.data,

.bss

tag name C STRTAG OT NON T NULL Tagname
C UNTAG
C ENTAG

.eos C EOS DT NON T NULL End of structure

fcname C EXT DT FCN Any except T _MOE Function
C STAT

arrname C AUTO OT ARY Any except T _MOE Array
C STAT
C MOS
C MOU
C TPOEF -

.bb C BLOCK DT NON T NULL Beginning of
block

.eb C BLOCK DT NON T NULL End of block

.bf, .ef C FCN DT NON T NULL Beginning and
end of function

Name C AUTO OT PTR T STRUCT Name related to
related to C STAT OT ARR T UNION, T ENUM structure, union, - - -

structure, C MOS DT NON enumeration - -

union,
C MOU
C TPOEF

enumeration

COFF Reference 15-39

In the preceding table, tagname means any symbol name including the
special symbol .xfake, andfcname and arrname represent any
symbol name.

Any symbol that satisfies more than one condition should have a union
format in its auxiliary entry. Symbols that do not satisfy any of the
above conditions should not have any auxiliary entry.

Each of the auxiliary table entries for a filename contains a 14-
character filename in bytes 0 through 13. The remaining bytes are 0,
regardless of the size of the entry.

The auxiliary table entries for sections have the format as shown in
Table 15-26.

Table 15-26. Format for sections in auxiliary table

Bytes Declaration Name Description

0-3 long int x scnlen Section -
length

4-6 unsigned short x nreloc Number of -
relocation
entries

6-7 unsigned short x nlinno Number of -
line numbers

8-17 - dummy Unused (filled
with zeros)

The auxiliary table entries for tag names have the format shown in
Table 15-27.

The auxiliary table entries for the end of structures have the format
shown in Table 15-28.

The auxiliary table entries for functions have the format shown in
Table 15-29.

The auxiliary table entries for arrays have the format shown in Table
15-30.

15-40 A/UX Programming Languages and Tools, Volume 1

The auxiliary table entries for the beginning of blocks have the format
shown in Table 15-31.

The auxiliary table entries for the end of blocks have the format shown
in Table 15-32.

The auxiliary table entries for structure, union, and enumeration
symbols have the format shown in Table 15-33.

Table 15·27. Format for tag names

Bytes Declaration Name Description

0-5 - dummy Unused (filled
with zeros)

6-7 unsigned short x size Size of struct,
union, and
enumeration

8-11 - dummy Unused (filled
with zeros)

12-15 long int x endndx Index of next
entry beyond
this structure,
union, or
enumeration

16-17 - dummy Unused (filled
with zeros)

COFF Reference 15-41

Table 15-28. Format for end of structures

Bytes Declaration Name Description

0-3 long int x_tagndx Tag index

4-5 - dummy Unused (filled
with zeros)

6-7 unsigned short x size Size of struct,
union, or
enumeration

8-17 - dummy Unused (filled
with zeros)

Table 15-29. Format for functions

Bytes Declaration Name Description

0-3 long int x_tagndx Tag index

4-7 long int x fsize Size of function
(in bytes)

8-11 long int x_lnnoptr File pointer to
line number

12-15 long int x endndx Index of next -
entry beyond this
function

16-17 unsigned short x tvndx Index of the -
function's
address in the
transfer vector
table (not used by
A/UX operating
system)

15-42 NUX Programming Languages and Tools, Volume 1

Table 15-30. Format for arrays

Bytes Declaration Name Description

0-3 long int x_tagndx Tag index

4-5 unsigned short x lnno Line number of -
declaration

6-7 unsigned short x size Size of array -

8-9 unsigned short x_dimen[O] First dimension

10-11 unsigned short x_dimen[l] Second dimension

12-13 unsigned short x_dimen[2] Third dimension

14-15 unsigned short x_dimen[3] Fourth dimension

16-17 - dummy Unused (filled
with zeros)

Table 15-31. Format for beginning of block

Bytes Declaration Name Description

0-3 - dummy Unused (filled with
zeros)

4-5 unsigned short x lnno C-source line -
number

6-11 - dummy Unused (filled with
zeros)

12-15 long int x endndx Index of next entry -
past this block

16-17 - dummy Unused (filled with
zeros)

COFF Reference 15-43

Table 15-32. Format for end of block

Bytes Declaration Name Description

0-3 - dummy Used (filled with
zeros)

4-5 unsigned short x lnno C-source line -
number

6-17 - dummy Unused (filled with
zeros)

Table 15-33. Format for structures, unions, and enumerations

Bytes Declaration Name Description

0-3 long int x_tagndx Tag index

4-5 - dummy Unused (filled with
zeros)

6--7 unsigned short x size Size of the
structure, union or
enumeration

8-17 - dummy Unused (filled with
zeros)

15-44 NUX Programming Languages and Tools, Volume 1

Names defined by typedef may or may not have auxiliary table
entries. For example,

typedef struct people STUDENT;

struct people {
char name[20];
long id;
} ;

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol
table, but the symbol STUDENT does not.

The C language structure declaration for an auxiliary symbol table
entry is given in Figures 15-15 and 15-16. This declaration may be
found in the header file syms. h.

union auxent

struct {
long x_tagndx;
union {

struct {
unsigned short x_lnno;
unsigned short x_size;

x_lnsz;
long x_fsize;

x_misc;
union {

struct
long x_lnnoptr;
long x_endndx;

x_fcn;
struct {

unsigned short x_dimen[DIMNUM];
} x_ary;

x_fcnary;
unsigned short x_tvndx;

Figure 15-15. Auxiliary symbol table entry (page 1 of 2)

GOFF Reference 15-45

x_sym;
struct

char x_fnarne[FILNMLEN];
} x_file;
struct {

long x scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

x sen;
struct {

long x tvfill;
unsigned short x tvlen;
unsigned short x_tvran[2];

x_tv;

#define FILNMLEN 14
#define DIMNUM 4
#define AUXENT union auxent
#define AUXESZ 18

Figure 15-16. Auxiliary symbol table entry (page 2 of 2)

9. String table
Symbol table names longer than eight characters are stored
contiguously in the string table with each symbol name delimited by a
null byte. The first four bytes of the string table are the size of the
string table in bytes; offsets into the string table are therefore greater
than or equal to 4.

For example, given a file containing two symbols with names longer
than eight characters, long_ narne _ 1 and another_ one, the string
table has the format shown in Table 15-34.

15-46 A/UX Programming Languages and Tools, Volume 1

Table 15-34. String table

28

'l' 'o' 'n' 'g'

'-' 'n' 'a' 'rn'
'e' ,_, 'l' '\0'

'a' 'n' 'o' 't'
'h' 'e' 'r' ,_,

'o' 'n' 'e' '\0'

Note: The index of long_ narne _ 1 in the string table is 4 and
the index of another one is 16.

10. Access routines
Supplied with every standard A/UX system release is a set of access
routines that are used for reading the various parts of a common object
file. Although the calling program must know the detailed structure of
the parts of the object file it processes, the routines effectively insulate
the calling program from the knowledge of the overall structure of the
object file. In this way, you can concern yourself with the section you
are interested in without knowing all the object file details.

The access routines may be divided into four categories:

1. Functions that open or close an object file.

2. Functions that read header or symbol table information.

3. Functions that position an object file at the start of a particular
section of the object file.

4. Functions that return the symbol table index for a particular
symbol.

These routines can be found in the library libld. a and are listed,
along with a summary of what is available, in AIUX Programmer's
Reference under ldfcn(3X).

COFF Reference 15-47

Appendix A

Additional Reading

Advanced UNIX Programming
Marc J. Rochkind
Prentice-Hall, 1985
(UNIX system calls}

C: A Reference Manual
Samuel P. Harbison, Guy L. Steele, Jr.
Prentice-Hall, 1984

MC68020 32-Bit Microprocessor User's Manual, 2nd. ed.
Motorola, 1985

MC68881 Floating-Point Coprocessor User's Manual
Motorola, 1985

System V Interface Definition
AT&T, 1986

The C Programming Language
Brian W. Kernighan, Dennis M. Ritchie
Prentice-Hall, 1978

The Design of the UNIX Operating System
Maurice J. Bach
Prentice-Hall, 1986
(internal algorithms and data structures}

The Elements of Programming Style
Brian W. Kernighan, P. J. Plauger
McGraw-Hill, 1974
r coding and design techniques}

Additional Reading A-1

	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	01-00-i
	01-00-ii
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-00-i
	02-00-ii
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-00-i
	03-00-ii
	03-00-iii
	03-00-iv
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	04-00-i
	04-00-ii
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-00-i
	05-00-ii
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-00-i
	06-00-ii
	06-01
	06-02
	06-03
	06-04
	07-00-i
	07-00-ii
	07-01
	07-02
	07-03
	07-04
	08-00-i
	08-00-ii
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-00-i
	09-00-ii
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	10-00-i
	10-00-ii
	10-01
	10-02
	10-03
	11-00-i
	11-00-ii
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-00-i
	12-00-ii
	12-00-iii
	12-00-iv
	12-00-v
	12-00-vi
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	12-49
	12-50
	12-51
	12-52
	12-53
	12-54
	12-55
	12-56
	12-57
	12-58
	13-00-i
	13-00-ii
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	14-00-i
	14-00-ii
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	15-00-i
	15-00-ii
	15-00-iii
	15-00-iv
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	A-01

