.

Apple. A/UX. Programming
=——= Languages and Tools,
Volume 1

Copyright

This material contains trade secrets and
confidential and proprietary information of
Apple Computer, Inc., and UniSoft Corpora-
tion. Use of this copyright notice is precau-
tionary only and does not imply publication.
Copyright © 1985, 1986, 1987, Apple Com-
puter, Inc., and UniSoft Corporation. All
rights reserved. Portions of this document
have been previously copyrighted by AT&T
Information Systems, the Regents of the
University of California, and Motorola, Inc.,
and are reproduced with permission. Under
the copyright laws, this manual or the
software may not be copied, in whole or part,
without written consent of Apple or UniSoft,
except in the normal use of the software or to
make a backup copy of the software. The
same proprietary and copyright notices must
be affixed to any permitted copies as were
affixed to the original. This exception does
not allow copies to be made for others,
whether or not sold, but all of the material
purchased (with all backup copies) may be
sold, given, or loaned to another person.
Under the law, copying includes translating
into another language or format. You may
use the software on any computer owned by
you, but extra copies cannot be made for this
purpose.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, ImageWriter, Laser-
Writer, and Macintosh are registered trade-
marks of Apple Computer, Inc.

A/UX is a trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T
Information Systems.

VAX is a trademark of Digital Equipment
Corporation.

3B20 is a trademark of AT&T Informatior
Systems.

Limited Warranty on Media an
Replacement

If you discover physical defects in the mar
als distributed with an Apple product or in
media on which a software product is distr
buted, Apple will replace the media or mai
als at no charge to you, provided you retur
the item to be replaced with proof of purch
to Apple or an authorized Apple dealer dus
the 90-day period after you purchased the
software. In addition, Apple will replace d
aged software media and manuals for as lo
as the software product is included in App!
Media Exchange Program. While not an
upgrade or update method, this program
offers additional protection for up to two
years or more from the date of your origin:
purchase. See your authorized Apple deale
for program coverage and details. In some
countries the replacement period may be d
ferent; check with your authorized Apple
dealer.

ALL IMPLIED WARRANTIES ON TH
MEDIA AND MANUALS, INCLUDIN(
IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE, ARE LIM-
ITED IN DURATION TO NINETY (90
DAYS FROM THE DATE OF THE OR
GINAL RETAIL PURCHASE OF THI!
PRODUCT.

Even though Apple has tested the software
and reviewed the documentation, APPLE
AND ITS SOFTWARE SUPPLIER MA
NO WARRANTIES OR

REPRESENTATIONS, EITHER
EXPRESS OR IMPLIED, WITH

- RESPECT TO SOFTWARE, ITS QUAL-
ITY, PERFORMANCE, MERCHANTA-
BILITY, OR FITNESS FOR A PARTICU-
LAR PURPOSE. AS A RESULT, THIS
SOFTWAREIS SOLD AS IS, AND YOU
THE PURCHASER ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUAL-
ITY AND PERFORMANCE.

IN NO EVENT WILL APPLE ORITS
SOFTWARE SUPPLIER BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE ORITS
DOCUMENTATION, even if advised of the
possibility of such damages. In particular,
Apple and its software supplier shall have no
liability for any programs or data stored in or
used with Apple products, including the costs
of recovering such programs or data.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is author-
ized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or lim-
itation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply
to you. This warranty gives you specific legal
rights, and you may also have other rights
which vary from state to state.

A/UX Programming Languages and Tools, Volume 1

Contents

Preface
Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Appendix A

Overview of the A/UX Programming
Environment

cc Command Syntax

C Language Reference

C Implementation Notes

The Standard C Library (1ibc)
The C Math Library

The C Object Library

lint Reference

sdb Reference

£77 Command Syntax
Fortran Language Reference
EFL Reference

as Reference

1d Reference

COFF Reference

Additional Reading

Preface

Conventions Used in This Manual

Throughout the A/UX manuals, words that must be typed exactly as
shown or that would actually appear on the screen are in Courier
type. Words that you must replace with actual values appear in italics
(for example, user-name might have an actual value of joe). Key
names appear in CAPS (for example, RETURN). Special terms are in
bold type when they are introduced; many of these terms are also
defined in the glossary in the A/UX System Overview.

Syntax notation
All A/UX manuals use the following conventions to represent
command syntax. A typical A/UX command has the form

command [flag-option] [argumeni] ...
where:
command Command name (the name of an executable file).

flag-option One or more flag options. Historically, flag options
have the form

~[opt...]

where opt is a letter representing an option. The
form of flag options varies from program to
program. Note that with respect to flag options, the
notation

[-all-b][-c]

means you can select one or more letters from the
list enclosed in brackets. If you select more than one
letter you use only one hyphen, for example, —ab.

argument Represents an argument to the command, in this
context usually a filename or symbols representing
one or more filenames.

[1] Surround an optional item.

Courier type

italics

Follows an argument that may be repeated any
number of times.

anywhere in the syntax diagram indicates that
characters must be typed literally as shown.

for an argument name indicates that a value must be
supplied for that argument.

Other conventions used in this manual are:

<CR>

~

X

cmd(sect)

indicates that the RETURN key must be pressed.

An abbreviation for CONTROL-x, where x may be
any key.

A cross-reference to an A/UX reference manual.
cmd is the name of a command, program, or other
facility, and sect is the section number where the
entry resides. For example, cat(1).

Chapter 1

Overview of the A/UX Programming Environment

Contents

1. Introduction

2. Programming languages and compilers . . .
3. Libraries and archives

4. The A/UX filesystem

4.1 Structure of the file system
4.2 File descriptors . . e e e e .
4.3 Creating and deleting ﬁles e .
4.4 Retrieving and changing attributes of ﬁles
45 Specialfiles

. Performing inputand output

5.1 FormattedI/O
5.2 Buffered1l/O

S3Filel/O« .« . .
54 Pipesandfifos
5.5 Devicecontrol
5.6 Asynchronous I/O e e e e e e

. Processcontrol e .

6.1 Process creation and termmamon . e
62 Signals
6.3 Interprocess communication
6.4 Program pause and wakeup
6.5 Other process attributes

. Memory management

7.1 Dynamic memory allocation
7.2 Shared memory

. Theenvironment

OO INAOAOA LN h b W = =

ke kb b
W W —=OoOO

[
R A

[
W

9. Using shell commands .
10. Error handling
11. A/UX toolbox
12. Other C language functions
13. Other programming tools .

Tables

Table 1-1. Buffer vs. Disk Access with Asynchronous
/0

15
16
17
18
18

16

Chapter 1

Overview of the A/UX Programming Environment

1. Introduction

This manual describes some of the program development tools
provided with the A/UX operating system. The A/UX programming
environment is one of the most powerful application program
development environments currently available. Languages and tools
that originated on UNIX have gradually migrated to numerous other
operating systems, so even if you are new to the A/UX operating
system, you may well have already used many of these tools.

There are four main kinds of tools that you will use to develop
application programs under A/UX:

e language compilers, assemblers, and link editors
o function libraries and archives

» program debugging tools

o other development tools

This manual provides detailed information on the first three categories.
A summary of other important development tools (such as SCCS and
make) may be found in the last section of this chapter; for a complete
discussion of these tools, see A/UX Programming Languages and
Tools, Volume 2. We assume that the reader is conversant with the C
programming language and with the general process of coding,
compiling, testing, debugging, and so forth.

2. Programming languages and compilers
The A/UX programming environment includes compilers for several
programming languages.

cc The standard C compiler.
£77 The standard Fortran compiler.

Overview of the A/UX Programming Environment 1-1

efl An Extended Fortran Language (EFL) compiler.

In very many instances, the C programming language will be your
preferred language for writing applications programs. The C language
was developed primarily to provide a portable way of implementing the
UNIX operating system and its numerous utility programs. Hence, the
connections between the language and the operating system are very
deep. Many A/UX utility programs, indeed, are simply slightly
repackaged system calls or subroutines. For example, the shell
command sleep does nothing more than validate its command line
arguments and then call the s1eep subroutine. Because of this tight
connection, it is often a simple matter to translate a shell script into a
functionally equivalent (but much faster) C program.

Various aspects of the C language are covered in detail in the next six
chapters. The Fortran language, in its various A/UX incarnations, is
discussed in Chapters 10 through 12.

The following programs for checking and debugging are supported in
the A/UX programming environment:

lint The 1int program checks C programs for syntax errors,
type rule violations, inefficient constructions, potential
bugs, inconsistencies, and portability problems. You can
specify command line options to instruct 1int to check
only what is necessary for your program. lint is
discussed in detail in Chapter 8.

sdb The sdb program can be used on both C programs and
Fortran (£77) programs to debug core images or source
language after you have compiled your program using the
-g option. sdb is discussed in detail in Chapter 9.

The linker and assembler used automatically by the compilers are
14 The link editor
as The A/UX assembler for the Motorola 68020

Chapter 13 provides a complete reference manual for as. For a
technical discussion of 1d, see Chapter 14.

1-2 A/UX Programming Languages and Tools, Volume 1

3. Libraries and archives

A library is a collection of functions and declarations. A library
archive is a precompiled library whose routines can be linked to other
program modules to produce an executable program. It is the job of the
link editor (14d) to select from a library archive the routines that are
necessary to resolve external references in a set of object files.

Typically, a library archive is indicated by attaching the suffix . a to
the name of the library. Library archives are usually stored in the
system directories /1ib and /usr/1ib.

The four main C language libraries in the A/UX programming
environment are

libc This is the standard library for C language programs.
The C library is made up of functions and
declarations used for system calls, file access, string
testing and manipulation, character testing and
manipulation, memory allocation, and other functions.
It is covered in detail in Chapter 5.

libm This is the mathematical library for C language
programs. This library provides exponential, Bessel
functions, logarithmic, hyperbolic, and trigonometric
functions. It is covered in detail in Chapter 6.

libld This library provides functions for the access and
manipulation of common object files. It is covered in
detail in Chapter 7.

libcurses This library provides functions for writing to, reading
from, and updating terminal screens. It is covered in
detail in A/UX Programming Languages and Tools,
Volume 2.

There are also several libraries available for use with the £77
compiler. The most important are

1ibF77 This is the standard Fortran library. It includes
various mathematical routines, string functions, and
data conversion routines.

Overview of the A/UX Programming Environment 1-3

1ibI77 This is the Fortran input/output library.

In addition, it is also possible to gain access to routines contained in the
standard C library, 1ibc, from within a Fortran program. All of these
libraries are provided in precompiled form only.

4. The A/UX file system

4.1 Structure of the file system

In the A/UX operating system, a file is a linear stream of bytes
terminated by an end-of-file indicator. No other structure is imposed
by the system on a file. This fact makes it extremely straightforward to
write programs that do simple file manipulation. Programs can process
data streams a character at a time; there is no need to read or write files
according to a fixed-length record format (as in some other operating
environments). In addition, because of this simplicity, the system can
treat virtually every object it handles (such as input/output data
streams) as a file. Even terminal screens and peripherals are dealt with
as files.

Files may be attached anywhere (possibly in multiple locations) on a
hierarchy of dircctories. A directory is simply a file that you cannot
write. It contains the names of the files in that directory and an
indication of where to find the files on the disk.

In A/UX, a file system is a logical device containing the data structures
that implement all or part of the directory hierarchy. The directory
hierarchy is the collection of all files on the currently mounted
(accessible) file systems.

A file system breaks the logical device into four self-identifying
regions:
1. The first block (address 0) is unused by the file system. It is left
aside for booting procedures.

2. The second block (address 1) contains the so-called super-block.
This block contains, among other things, the size of the disk and
the boundaries of the other regions.

3. Following the super-block is the ilist, a list of file definitions.
Each file definition is a 64-byte structure, called an inode. The
offset of a particular inode within the ilist is called its inumber.

1-4 A/UX Programming Languages and Tools, Volume 1

The combination of device name (major and minor numbers) and
inumbers uniquely names a particular file.

4. After the ilist, and at the end of the disk, are free storage blocks
available for the contents of files. The free space on a disk is
maintained by a linked list of available disk blocks.

A logical directory hierarchy is added to this flat physical structure
simply by adding a new type of file, the directory. A directory is used
exactly as an ordinary file. It contains 16-byte entries consisting of a
14-byte name and an inumber.

4.2 File descriptors

To gain access to a file resident in the file system, a process must first
open that file. A typical way to open a file is to use the open system
call. When successful, this call returns a file descriptor, an integer

which may be used in other system calls and subroutines to refer to the
file.

Three files are opened automatically for each user process running
under the A/UX operating system: stdin, stdout, and stderr.
These are the standard input, the standard output, and the standard error
files, and are associated, respectively, with the file descriptors 0, 1, and
2.

4.3 Creating and deleting files

The close system call closes an open file. To create a new file, you
can use the creat system call. To remove a file from the file system,
you can use the unlink system call. To create and remove
directories, use mkdir and rmdir.

4.4 Retrieving and changing attributes of files

There are a number of other system calls that allow the programmer to
ascertain the status and modify the attributes of files. Among these are
stat, chown, chmod, chdir,ulimit, and umask.

4.5 Special files

There is a further kind of file in the A/UX operating system, called a
special file. Special files are contained in the system directory /dev.
Each file in /dev contains the description of a device and is used to
associate a device name with a physical device. There are three classes
of special files: block, character, and fifo, each of which requires its

Overview of the A/UX Programming Environment 1-5

own input and output system. All three types of special files, however,
are created with the system call mknod.

A block device is a collection of random access memory blocks. It is
accessed through a layer of software that caches these blocks in an
array of system buffers. When a request occurs to read a block of some
device, the buffers are searched to see if one of them contains the
requested data; if so, the device does not need to be physically
accessed, because the contents of the buffer can be supplied instead.
Writes are performed in an analogous manner: a buffer is filled with
the modified data, and the actual block device is not updated until the
operating system flushes its buffers. Some reads and most writes are
thus asynchronous (see ‘‘Asynchronous I/O’’).

A character device performs I/O one byte at a time. Input and output
for character devices are considerably easier than for block devices;
I/O requests from the user are sent to the device driver virtually
untouched, bypassing the complicated buffer caching of block input
and output. Characters generated by a user program are placed into a
character queue until some limit is reached; then the physical I/O is
performed.

A fifo is a special file that is also referred to as a ‘‘named pipe.’” Fifos
are discussed, along with pipes, in ‘‘Pipes and Fifos.”

5. Performing input and output
The C language contains numerous facilities for obtaining data from an
input stream and for sending data into an output stream.

5.1 Formatted I/O

It is possible to read and write files according to a fixed format, when it
is necessary or useful to do this. The subroutine scanf, for instance,
reads data from the standard input file in a format specified by its first
argument. Similarly, the routine print £ puts data on the standard
output file in a format specified by its first argument. In either case, it
is also possible to read or write files other than the standard input or
output. See scanf(3S) and print £(3S) for details.

5.2 Buffered I/0

It is not necessary to perform either input or output in fixed-length
records; primitives exist for reading characters (bytes), or words (32-bit

1-6 A/UX Programming Languages and Tools, Volume 1

integers) from the input and for writing characters or words on the
output. See getc(3S) and putc(3S) for details.

5.3 File /O

The A/UX system includes a number of system calls and subroutines
for performing low-level input and output. We have already mentioned
the open and close system calls, which, respectively, open and close
files accessible to programs. Associated with the file descriptor
returned by a successful open call is a pointer into the file called a file
pointer. This indicates the point at which subsequent reading or
writing is to occur. If the open call is invoked with the O_APPEND
flag, for instance, the file pointer is positioned at the end of the file;
otherwise it is placed at the beginning.

The two most fundamental file I/O primitives are read and write.
The read call moves a specified number of bytes from the current
read position in the file (as indicated by the file pointer) into a buffer.
Conversely, the write call moves a specified number of bytes from a
buffer to the current write position in the file (as indicated by the file
pointer).

The file pointer is moved automatically whenever a read or write is
performed; it may also be moved explicitly, without performing any
actual input or output, with the system call 1seek. The position in the
file to which the file pointer is to be moved may be specified as an
offset relative to the beginning of the file, the end of the file, or the
current position of the file pointer in the file. In all cases, however, the
return value of the 1seek call is the offset in bytes from the beginning
of the file.

Once a file is opened, its status and permissions may be controlled with
the fcnt 1 system call. For example, parts of the file may be locked to
prevent either reading and/or writing those parts of the file. The
fent 1 call may also be used to duplicate file descriptors.

5.4 Pipes and fifos

The A/UX operating system supports yet a further type of file, called
the pipe. A pipe is a data stream that must be read in order, that is,
there is no random access. Because it is a type of file, a pipe is
assigned an inode when it is created; an unnamed pipe, however, in
contrast to a named pipe, does not reside in a directory or take up space

Overview of the A/UX Programming Environment 1-7

in the file system. It is a temporary file created by the operating system
to pass data between related processes.

Pipes are created by invoking the system call pipe. Once created, a
pipe may be read or written with the read and write functions
mentioned earlier. There must be a process at each end of the pipe, one
writing data and the other reading data. The data passing through a
pipe cannot be reread. At most, a single character of data can be put
back into the pipe using the subroutine ungetc. Unlike named pipes,
unnamed pipes are unidirectional: data may flow in only one direction
through them. See pipe(2) for details.

A fifo special file is also called a named pipe, as it allows the same sort
of exchange of data among processes typified by ‘‘unnamed’” pipes.
Because a named pipe is a special file it resides in the file system. Itis
created, like the other special files, with the mknod system call. A
named pipe is opened with the open system call and is read from or
written to with the read and write routines discussed in the next
section. Like a pipe, a fifo requires data to be read in the order in
which they were written to the file, unlike normal files. Unlike
unnamed pipes, a named pipe allows data to pass in both directions.
More importantly, the processes writing to or reading from the named
pipe do not have to be related in any way.

5.5 Device control

Output to character special devices can make use of an additional
system call, ioct 1, which is used to perform a variety of device
control functions. A computer that contained a built-in speaker, for
example, could use ioct1l to adjust the parameters affecting speaker
output, such as volume, pitch, or duration. Similarly, a program could
use ioctl to eject a floppy disk from the computer. The common
element here is that ioct 1 is used to control the device, not to read or
write data. See ioct1(2) and section 7 of A/UX System
Administrator’s Reference for control commands for a particular
device.

5.6 Asynchronous I/O
Asynchronous I/O happens most of the time when the I/O is both
buffered and block.

1-8 A/UX Programming Languages and Tools, Volume 1

When it happens, reads may precede a request, while writes lag
behind. Historically, the need for anticipatory reading (for faster
response to reads) led to buffering, while the need to minimize disk
access led to blocking.

‘When block caching was defined earlier (see the paragraph in *‘Special
Files’’ on block devices), mention was made of the array of system
buffers in which a block device caches blocks of some file. In fact,
there are parallel arrays of buffers maintained, consisting of input
buffers and output buffers. The input buffers receive the results of
reads, while the output buffers hold intended writes.

When a read is requested, the results are shown immediately,
synchronously with the request. Thus reads do not appear
asynchronous, but may be so. If the data sought already have been
cached into an input buffer, there is no need to read the data from disk,
as they already were read into the input buffer previously.

The A/UX operating system buffers write calls until they are
absolutely necessary because actual disk access is relatively slow.
When you ask for a write (for instance, while editing a file), the
operating system responds with the character count and filename, as if
it were writing the file to disk. However, it is actually writing to the
output buffer.

writes to disk are forced when:
e all memory buffers are full
¢ sync(2) has been sent, requesting an update of the superblock

o the system is about to crash, and files must be written to disk to
avoid losing them

Thus the following relation holds:

Overview of the A/UX Programming Environment 1-9

Table 1-1. Buffer vs. Disk Access with Asynchronous I/0O

Process Buffer Disk
Access Access

read Synchronous Asynchronous
write Synchronous Asynchronous

6. Process control

6.1 Process creation and termination

Processes are created by the system primitive fork. The newly
created process (child) is a copy of the original process (parent).
There is no detectable sharing of primary memory between the two
processes (though of course, if the parent process is executing from a
read-only text segment, the child shares the text segment). Copies of
all writable data segments are made for the child process. Files that
were open before the fork are shared after the fork. The processes
are informed of their parts in the relationship, allowing them to select
their own (usually nonidentical) destiny. The parent may wait for the
termination of any of its children. This is accomplished through the
wait system call.

A process may exec a file through use of the exec system calls. This
consists of exchanging the current text and data segments of the
process for new text and data segments specified in the file. The old
segments are lost. An exec does not change processes; the process
that did the exec persists, but after the exec it is executing a different
program. Files that were open before the exec remain open after it.

If an executing program (for example, the first pass of a compiler)
wishes to overlay itself with another program (for example, the second
pass) then the executing program simply execs the second program.
In this sense, an exec is analogous to a goto statement in the
executing program.

If, however, the executing program needs to regain control of
execution after it execs a second program, it should first fork a child
process, have the child exec the second program, and have the parent
wait for the child. This is analogous to a subroutine call in the
executing program.

1-10 A/UX Programming Languages and Tools, Volume 1

A process may terminate by overlaying itself with a new process, as
described above in connection with the exec routines. A more
standard way to terminate a process is by invoking the exit system
call. Invoking exit closes all open file descriptors, notifies all parents
of the termination of the process, unlocks all process, text, or data locks
currently active, and returns an exit status to the parent process.

6.2 Signals

The execution of a process can be controlled externally to the process
by the use of signals. A signal is a software interrupt that usually
indicates some exceptional or error condition. The signal SIGSYS, for
instance, indicates that a bad argument to a system call was detected by
the system. See signal(3) for a list of signals.

Signals may be sent by the operating system, by the user from the shell,
or from another user program,; this is accomplished using either the
shell command k111 or the system call kill. The program to which
the signal is sent may choose one of three ways to respond. The
program receiving the signal may ignore the signal, it may terminate
upon receipt of the signal, or it can call a function in response to the
signal. These options are selected using the signal system call.
Some signals, however, cannot be caught or ignored. In particular, the
signal SIGKILL cannot be ignored by the receiving process.

A typical signal-handling scenario is as follows: A process indicates
that it will catch designated signals via the signal system call. A call
to signal simply associates the address of a process’ signal-catching
routine with the corresponding signals for later use by the system.
When such a signal is delivered, the kernel interrupts user-level
execution and transfers control to the signal-catching routine. The
signal catcher notifies the user process that a signal has occurred (for
example, through a global flag) and returns to the kernel. The user-
level execution resumes where it left off before the signal arrived.
Normally the user process would check the global flag at intervals and,
finding that a signal had arrived, would perform the appropriate
processing.

User programs that need to process signals should have a separate
signal-catching subroutine which simply sets a global flag of some type
and exits. While it is possible to do more in a signal catcher, it is not
usually wise to do so, especially in cases where the actions of a signal

Overview of the A/UX Programming Environment 1-11

catcher could interfere with the completion of atomic operations.

The A/UX implementation of signals allows a process to determine
which of two different methods it will use to process signals. A
process can interpret signals in accordance with the System V Interface
Definition (SVID) or in accordance with the conventions of the
Berkeley Software Distribution, Release 4.2 (4.2 BSD). The primary
difference between the two implementations of signal handling is that
Berkeley signals are said to be reliable, whereas SVID signals are not.
A program’s signal handling is reliable if a signal sent to it is
guaranteed to be processed. This means that if a signal is already being
handled, any new incoming signals will be caught and queued until
they can be processed. Using SVID-compatible signals, this is not
always the case; in certain circumstances, a program will lose signals,
possibly resulting in the premature termination of the program. For
more details, see set 42sig(3) and setcompat(2).

6.3 Interprocess communication

The type of interaction between independent processes provided by
signals is of a rather limited kind. In order to allow greater flexibility
in the interactions between processes, three further types of
interprocess communication have been developed: semaphores,
message queues, and sockets.

A semaphore is simply a positive integer. What allows it to function
as a means of interprocess communication is that it is stored in a
memory location that is accessible to various programs through certain
system calls. By reading the values of semaphores and, possibly, by
altering those values, a program can inspect and control the operation
of another process or group of processes. Programs can, for example,
suspend operation until a particular semaphore attains some value.

A semaphore is created with the semget system call and can be
incremented or decremented (by any process that has such permissions)
through the semop system call. Finally, semaphores may be removed
and the memory associated with them freed by use of the semct 1
system call. The semct 1 operation is also used to read and set values
of semaphores.

A message is a discrete portion of data stored in a buffer that is
accessible to a number of independent processes. Any number of

1-12 A/UX Programming Languages and Tools, Volume 1

messages can be available at one time, so they are stored in a structure
called a message queue. A process can send a message to such a
queue, read messages from it, and alter its process of execution
according to messages it receives.

A message queue is created with the msgget system call. Messages
are sent and received with the calls msgsnd and msgrcv, and
message queues are removed with the msget 1 system call.

The third type of interprocess communication facility, the socket, is
especially suited for setting up communications networks among
different computers, and underlics the B-Net networking software. A
socket is an endpoint for communication; different processes, and
indeed different computers, can exchange data and messages through
sockets. For full details on the implementation of sockets and
programming with them, see A/UX Network Applications
Programming.

6.4 Program pause and wakeup

There are several ways to suspend execution of a program until some
external event occurs. As noted, the implementations of both
semaphores and message queues allow a process to wait until a
particular semaphore or message is received from some other process.
A program may also be made to pause until it receives a signal with the
pause system call. The signal must, of course, be one that has not
been set to be ignored by the calling process.

Once a process has been suspended with the pause system call, it is
typically awakened with the signal SIGALRM. A process can arrange
to send this signal to itself after a specified amount of time by invoking
the alarm system call. A call of the form alarm(n) will instruct the
calling process’s alarm clock to send the signal SIGALRM to the
calling process after n seconds. This call does not itself suspend
execution of the calling process.

6.5 Other process attributes

There are several system calls that allow a process to determine its own
process ID, the process ID of its parent process, and its process group
ID. See getpid(2) for details.

Overview of the A/UX Programming Environment 1-13

7. Memory management

7.1 Dynamic memory allocation

Managing the available core memory is an important task for an
operating system (like A/UX) which allows multiple simultaneous
processes and multiple users. The system must ensure that each
process has access to whatever memory it needs, that other processes
do not try to gain access to that memory illegally, and that memory is
reclaimed when a process exits. The system may also need to allocate
additional memory to an executing process. The A/UX environment
provides a number of system calls and library routines for managing a
program’s use of memory storage.

The primary memory allocation request ismalloc. A successful call
of the form malloc (n) will return a pointer to n bytes of free
memory. Memory may be returned to the operating system by calling
the routine free. Other available memory allocation routines are
realloc, calloc, and cfree. For an explanation of these
routines, see malloc(3C) and Chapter 5, ¢‘The Standard C Library
(libc).”

These standard memory allocation routines are designed to be space-
efficient, sacrificing speed for smaller data space and code size. There
is an alternate set of memory allocation routines that is designed to run
considerably faster than the standard set of routines, though at the cost
of increased code size and increased memory usage. You can use these
time-efficient versions of malloc, free, and so forth, by using the
-1malloc option to the compiler. See cc(l) and malloc(3X).

7.2 Shared memory

There is another form of interprocess communication available under
the A/UX operating system called shared memory. Using this facility,
a process can arrange to share a core memory data segment with other
processes, thereby allowing a very fast means for two or more
independent processes to share data. This can be useful for
applications like data base management or multiplayer games where
several independent processes need to inspect (or modify) a common
data segment.

A shared data segment of memory is created using the system call
shmget. Other processes may then gain access to this segment of

1-14 A/UX Programming Languages and Tools, Volume 1

memory, provided that they possess permissions specified at the time
the segment was created. A process may attach itself to a shared
segment of memory by invoking the system call shmat and detach
itself from that segment by invoking the system call shmdt. A shared
memory segment is removed by using the system call shmct 1; this
call may also be used to alter the permissions associated with the
memory segment and to perform other operations on the segment (such
as locking it into core memory). For further details on shared memory,
see shmget(2), shmct 1(2), and shmop(2).

8. The environment

Whenever a program begins running, the operating system makes
available to it the set of all data inherited from the parent process. This
set of data is called the environment, and includes an array of strings
as well as information from the parent process such as the UID, GID,
current directory, and so on. The program may read the strings it finds
in the environment, and modify its subsequent actions according to the
results it receives. A program may also change the strings or add
further strings to the environment.

By convention, the strings in the environment are of the form
name=value

The environment that each process inherits includes the names HOME,
PATH, SHELL, TERM, and others. A program may read the
environment by executing a call of the form getenv (name) . It may
alter the environment it receives from the shell by executing a call of
the form putenv (string) , where string is of the form listed above.

It is a general characteristic of the A/UX operating system that a
process can change only its own environment (and the environment of
any subprocesses it creates), but not that of its parent process. So, a
call to putenv affects only the environment of the process that calls it
and of all processes that that process may create. Changes made to the
environment do not persist after that process has exited. For further
information, refer to putenv(3C) and environ(s).

9. Using shell commands

It is possible to execute an arbitrary shell command from within a C
program by using the system subroutine. A call of the form

Overview of the A/UX Programming Environment 1-15

system (string) will result in the program passing string to an
instance of /bin/sh for execution, exactly as if string had been typed
to the shell during an interactive login session. For instance, if a
program detects that a certain file needs to be time-stamped, it can
accomplish this by calling the function

system("touch /usr/tmp/dungeons")

The system subroutine makes no provisions for capturing any output
produced by the executing command. It is possible to send output to a
file by including standard shell redirection metacharacters in the
argument string, but the file thereby created must then be opened and
read if the data stored there are to be accessible to the original program.

A better way to get access to the output of a shell command is to use
the popen subroutine. The form of the popen function is

popen (string, mode)

where string is exactly like the single argument to system and mode
is either r or w, indicating that the calling program is to read from or
write to the specified command. A successful call to popen returns a
pointer to a file stream that may be used in subsequent reads or writes.
See popen(3S) for further details.

It is also possible to process command line arguments from withina C
program by using the get opt subroutine. See getopt(3C) for
details and an example.

10. Error handling

The C language interface to the A/UX operating system provides a
general facility for detecting and reporting error conditions which may
arise from invoking many of the system calls and subroutines discussed
above. When a system call returns, it typically returns an integer value
to its calling process. A successful function call usually returns a value
of 0. Some calls, however, return a nonzero, positive value; for
instance, a successful open call will return a non-negative integer
which is the file descriptor of the opened file.

An unsuccessful system call returns a value of —1. In order to provide
the calling program with a general and automatic way of further
specifying the cause of the error, the system maintains a global

1-16 A/UX Programming Languages and Tools, Volume 1

variable, errno, which is automatically set to a nonzero positive value
indicating the cause of the error. Thus, every unsuccessful system call
results in the following two actions:

1. areturn value of -1 is returned to the calling program; and
2. the global variable errno is set to some positive integer.

When the program detects an unsuccessful call by inspecting its return
value, it can further inspect the value of errno to determine the
precise cause of failure. Note that errno is not reset by successful
system calls, so it is important to inspect its value only after an
unsuccessful system call.

A program may report the occurrence of an error by using the perror
subroutine. perror prints a message on the standard error output file
that describes the last error received by a system call. The message
printed consists of two parts: first, the argument (if any) provided to
the call to perror is printed, followed by a colon, a space, and an
indication of the precise nature of the error. perror determines the
nature of the error by inspecting the variable errno.

It is the responsibility of the calling program to detect and react to error
conditions indicated by unsuccessful function calls. In addition to the
variable errno and the subroutine perror, the A/UX system also
provides an array, sys_errlist, containing the message strings
output by perror. See perror(3C) and int ro(2) for further
details.

11. A/UX toolbox

The A/UX Toolbox is a set of routines and utilities that make the
Macintosh ROM code directly available to a program running under
A/UX. Itlets you write applications in A/UX that take advantage of
the standard Macintosh user interface tools built into the ROMs. For a
description of the ROM code, see Inside Macintosh, Volumes 1
through 5.

The A/UX Toolbox bridges the Macintosh and A/UX environments,
giving you two kinds of code compatibility:

» You can write common source code that can be separately built
(compiled and linked) into executable code for both
environments.

Overview of the A/UX Programming Environment 1-17

» You can execute Macintosh binary files under A/UX, within the
limitations of the A/UX Toolbox.

For details on the A/UX Toolbox, please see A/UX Toolbox: Macintosh
ROM Interface.

12. Other C language functions

There are numerous other C language functions available under the
A/UX operating system designed to handle a variety of tasks. For
instance, a very rich set of string functions is available, allowing the
programmer to concatenate strings, search for characters within strings,
find substrings of strings, determine the length of strings, and so forth.
See st ring(3C) for a complete list of the available string functions.

Associated with the string functions are numerous character testing
routines. For instance, the function isascii returns a nonzero value
if its argument is an ASCII character; otherwise it returns zero. There
are also several character conversion functions; the function
tolower, for example, converts its argument to lowercase. For
details on these functions, see ct ype(3C) and conv(3C).

The standard C library also contains functions to accomplish time and
date manipulation, numeric conversion, group file access, password file
access, parameter access, hash table management, random number
generation, and so on. A quick browse through Section 3 of A/UX
Programmer’ s Reference will provide an overview of these various
packages.

13. Other programming tools

In addition to the compilers, language tools, and debuggers already
discussed, the A/UX programming environment includes many other
useful software development tools. These tools include

make The make program is a program maintenance tool that
keeps track of (and updates) groups of related files. All
information about special libraries, special treatments, or
options necessary for compiling multiple files is contained
in a make description file. Using it ensures that all program
modules in your compilations will reflect your latest
changes.

1-18 A/UX Programming Languages and Tools, Volume 1

SCCS

awk

lex

yacc

bc

dc

The source code control system (SCCS) is a version
management tool for source code or text files. In group
projects, SCCS prevents multiple inconsistent versions of
files from accumulating in several places. For a single user,
multiple versions of a file may be stored without using a lot
of disk space, previous versions may be reconstructed
easily, and versions can be kept track of with a simple,
consistent numbering scheme.

The awk programming language is a file-processing
language designed to make common information retrieval
and manipulation tasks easy to state and to perform. The
awk language can be used to generate reports, match
patterns, validate data, or filter data for transmission.

lex is a lexical analyzer generator that processes character
input streams and recognizes regular expressions. It
accepts high-level, problem-oriented specifications for
character string matching.

The yacc program is a parser-generator used to impose
structure on program input. After you create a specification
of the input process, yacc generates a parser function,
which calls the user-supplied low-level input routine (the
lexical analyzer) to pick up the basic items, called
“‘tokens,’” from the input stream. Tokens are organized
according to the input structure rules, called ‘‘grammar
rules.”” When one of these rules has been recognized, the
user code (the ‘‘action’’) supplied for this rule is invoked.
Actions have the ability to return values and make use of
the values of other actions.

be is a specialized language and compiler for handling
arbitrary precision arithmetic using the dc calculator
program.

dc is an interactive desk calculator program for handling
arbitrary-precision integer arithmetic. It has provisions for
manipulating scaled fixed-point numbers and for input and
output in bases other than decimal.

Overview of the A/UX Programming Environment 1-19

m4 m4 is a general-purpose macro processor. The primary
function of m4 is to allow the replacement of some text by
some (other) text. See also the standard C preprocessor
(cpp).

curses The curses and terminfo packages provide a complete
set of utility routines for writing screen-oriented programs.

For information about these tools and how to use them, please refer to
A/UX Programming Languages and Tools, Volume 2. In addition, the
A/UX stream editor sed (which operates on a byte-stream rather than
an open file) is documented in A/UX Text Editing Tools, and all A/UX
programs have entries in A/UX Command Reference, A/IUX

Programmer’s Reference, or A/UX System Administrator’s Reference.

In closing this overview, we should mention that the A/UX shells are
themselves fully programmable interpreted languages. Shell scripts,
therefore, can sometimes provide very rapid prototyping of
programming tasks. As was mentioned earlier, it is often a trivial task
to translate a shell script into a functionally equivalent C program. So
you can begin generating an application program by using the shell’s
tools: pipes, input/output redirection, variables, quotation, and
filename substitution. In very many instances, indeed, these shell
scripts can serve as final versions of your program. The shell
programming facilities are fully documented in A/UX User Interface.

1-20 A/UX Programming Languages and Tools, Volume 1

Chapter 2
cc Command Syntax

Contents

1. Usingee
1.1 Command syntax
1.2 Default behavior

2.0ptions+ . o . . .
2.1 Recognized and executed by cc .
2.2 Recognized by cc and passed to 1d
2.3 Recognized by cc and passed to cpp

[« N T S \S) e

Chapter 2
cc Command Syntax

1. Using cc

The cc command is a front-end program that invokes the preprocessor,
compiler, assembler, and linkage editor, as appropriate. (The default is
to invoke each one in turn.)

This chapter describes the command syntax for cc (also see cc(1) in
A/UX Command Reference).

1.1 Command syntax
The syntax for cc is

cc [flagopt...] file...

where flagopt is zero or more flag options (see ‘‘Options’”) and file is
one or more filenames.

cc recognizes filenames of the form
file .x

The two-character extension .x identifies the contents of the file, as
follows:

Extension Contents Example
.c C source code program.c
.1 preprocessor output program. i
.s assembler source program.s
.0 assembler output program.o
.a library archive libc.a

A filename with no extension is assumed to be a library archive.

1.2 Default behavior
Running cc with no flag options on a file named file . c invokes the C
preprocessor, the C compiler, the assembler, and the linkage editor in

cc Command Syntax 2-1

turn. This process produces an executable file in the current directiory;
by default this executable file is named a . out.

cc has a large number of flag options that can be used to control the
compilation process. In addition, other flag options can be passed to
the preprocessor, compiler, assembler, and linkage editor. The sections
that follow describe these flag options.

2. Options

All options recognized by the cc command are listed below.
2.1 Recognized and executed by cc

Option Argument

-C none

-F none

-fm68881 none

-g none

-n none

Description

Suppress the link-editing phase of
compilation and force a relocatable
object file to be produced even if
only one file is compiled.

Do not generate inline code for
MC68881 floating-point
coprocessor. To link a program
that does not have floating-point
code, the libraries —1cno881 and
—1mno881 must be included on
the command line.

Generate inline code for MC68881
floating point coprocessor. This is
the default.

Produce symbolic debugging
information.

Arrange for the loader to produce
an executable which is linked in
such a manner that the text can be
made read-only and shared
(nonvirtual) or paged (virtual).

2-2 A/UX Programming Languages and Tools, Volume 1

-p none
-S none
-t [p012al]
-B string
-E none
-0 none
-pP none

cc Command Syntax

Reserved for invoking a profiler.

Compile the named C programs,
and leave the assembler-language
output within corresponding files
suffixed .s.

Find only the designated
preprocessor (p), compiler (0 and
1), optimizer (2), assembler (a)
and link editor (1) passes whose
names are constructed with the
string argument to the -B option.
In the absence of a ~B option and
its argument, string is taken to be
/lib/n. The value of -t ""is
equivalent to —-tp012.

Construct pathnames for substitute
preprocessor, compiler, and link
editor passes by concatenating
string with the suffixes cpp, c0 (or
ccom or comp), c1, c2 (or
optim), as and 1d. If string is
empty it is taken tobe /1ib/o.

Same as the -P option except
output is directed to the standard
output.

Invoke an object code optimizer.

Suppress compilation and loading;
that is, invoke only the
preprocessor and leave the output
on corresponding files with the
extension . i.

2-3

-V

2-4

none

none

none

c,argll,arg2...]

none

flags

Have assembler remove its input
file when done.

Truncate symbol names to 8
significant characters.

Print the command line for each
subprocess executed.

Pass the argument(s) argl! to c,
where ¢ is one of [p012al],
indicating preprocessor (p),
compiler first pass (0), compiler
second pass (1), optimizer (2),
assembler (a) or link editor (1),
respectively.

Ignored by A/UX for 68020.

Special flags to override the default
behavior (see cc(1)). Currently
recognized flags are:

c suppress returning pointers in
both a0 and dO

n emit no code for stack growth

m use Motorola SGS compatible
stack growth code

p usetst.b stack probes

E ignore all environment
variables

I emitinline code for MC68881
floating point coprocessor

1 suppress selection of a loader
command file

A/UX Programming Languages and Tools, Volume 1

-# none

t do not delete temporary files

F Aflip byte order of multicharacter
character constants

Special debug option which,
without actually starting the
program, echoes the names and
arguments of subprocesses which
would have started.

2.2 Recognized by cc and passed to 14

Option Argument

-1 name

-0 outfile
-5 none

-L dir

cc Command Syntax

Description

Same as -1 in 1d(1). Searcha
library 1ibx. a, where x is up to
seven characters. A library is
searched when its name is
encountered, so the placement of a
-1 is significant. By default,
libraries are located in LIBDIR. If
you plan to use the - L option, that
option must precede -1 on the
command line.

Same as -o in 1d4(1). Produce an
output object file, outfile. The
default name of the object file is
a.out.

Same as -s in 1d(1). Strip line
number entries and symbol table
information from the output of
object file.

Same as -L in 1d(1). Search for
libname. a in the named dir
before looking in LIBDIR. This

option is effective only if it
precedes the -1 option on the
command line.

-v none Print the version of the loader that
is invoked.

2.3 Recognized by cc and passed to cpp
Option Argument Description

-C none Same as -C in cpp(1). All
comments, except those found on
cpp directive lines, are passed
along. The default strips out all
comments.

-D symbol[=def] Same as -D in cpp(l). Define the
external symbol and give it the
value def (if specified). If no defis
given, symbol is defined as 1.

-I dir Search for #include files that do
not begin with / in the named dir
before looking in the directories on
the standard list. Thus, #include
files whose names are enclosed in
" v (for example, #include
"thisfile™) are first searched
for in the directory of the file being
compiled, then in directories named
by the -I options, and last in
directories on the standard list. For
#include files whose names are
enclosed in <> (for example,
#include <thisfile>),the
directory of the file being compiled
is not searched.

2-6 A/UX Programming Languages and Tools, Volume 1

-U symbol Remove any initial definition of
symbol (‘‘undefine’’ symbol),
where symbol is a reserved name
that is predefined by the particular
preprocessor.

By using appropriate options, you can terminate compilation early to
produce one of several intermediate translations. For example,

—-c This option produces relocatable object files.

It is often desirable to use this option to save relocatable files so
that changes to one file do not then require that the other files be
recompiled. A separate call to cc, with the relocatable files but
without the -c option, creates the linked executable a . out file.
A relocatable object file created under the —c option has the
same root as the relocatable object file, but the extension is . o
instead of . c.

-S This option produces assembly source expansions for C code.

-pP This option produces the output of the preprocessor. When you
use this option, the compilation process stops after
preprocessing. Output from the preprocessor is left in an output
file with the extension . i (for example, filel.i). These
output files can be subsequently processed by cc, but only if
their file name is changed to one with the extension . c. Except
for those produced by the preprocessor, any intermediate files
may be saved and resubmitted to the cc command, with other
files or libraries included as necessary.

-w This option lets you specify options for each step that is
normally invoked from the cc command line, that is, (1)
preprocessing, (2) the first pass of the compiler, (3) the second
pass of the compiler, (4) optimization, (5) assembly, and (6) link
editing.

At this time, only assembler and link editor options can be used

with the -W option. The most common example of the -W
option is

cc Command Syntax 2-7

-Wl,-VS,n

which passes the —vSn option to the link editor (1d(1)). In the
following example,
-Wa, -option
the compiler will pass the -option to the assembler.
-0 This option decreases the size and increases the execution speed
of programs by moving, merging, and deleting code. When the

optimizer is used, line numbers used for symbolic debugging
may be transposed.

-g This option produces information for a symbolic debugger. (For
more information see Chapter 9, ‘‘sdb Reference.’”)

For more information on any of the options which cc(1) passes to
either the preprocessor cpp(1) or the link editor 14(1), see the
appropriate manual page in A/UX Command Reference.

2-8 A/UX Programming Languages and Tools, Volume 1

Chapter 3
C Language Reference

Contents

1. Notation conventions

2. Lexical conventions .

2.1
22
23
24

Comments
Identifiers (names)
Keywords
Constants

2.4.1 Integer constants . .

2.4.2 Explicit long constants o e e
24.3 Character constants
244 Floating constants
24.5 Enumeration constants . . .

2.5 Strings . . .

2.6 Hardware charactenstlcs e e e e .
3. Names . . e e e e e

3.1 Storage class AN

32

Type . . « « « « « o o . .

4. Objects and lvalues o e e e

5. Conversions« . .

5.1
5.2
53
54
5.5
5.6

Characters and integers
Floatanddouble
Floating and integral
Pointers and integers
Unsigned
Arithmetic conversions

6. Expressions+

6.1
6.2

Primary expressions
Unary operators

OOV I ANV NEBRARDRLLWWLWNNDDNDNE =

bk
W - O

7.

6.3
6.4
6.5
6.6
6.7
6.8
6.9

Multiplicative operators . .
Additive operators
Shift operators
Relational operators
Equality operators
Bitwise AND operator . . .
Bitwise exclusive OR operator

6.10 Bitwise inclusive OR operator .
6.11 Logical AND operator

6.12 Logical OR operator . . .
6.13 Conditional operator . . .
6.14 Assignment operators . . .
6.15 Comma operator

Declarations . e e e e
7.1 Storage class specifiers . . .

72
73

74
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Type specifiers
Declarators

7.3.1 Meaning of declarators

Structure and union declarations
Enumeration declarations . .
Initialization
Typenames
Typedef

. Statements

Expression statement . . .
Compound statement or block .
Conditional statement . . .
while statement
do statement
forstatement
switchstatement
break statement o e e e
continue statement . .

8.10 returnstatement
8.11 goto statement . . .
8.12 Labeled statement . . .
8.13 Null statement . .

16
16
17
17
18
18
18
19
19
19
19
20
21

21
21
22
23
24
27
30
31
34
35

35
36
36
36
37
37
37
38
38
39
40
40
40
40

9. External definitions . . e e e e
9.1 External function deﬁnmons e e e e e
9.2 External data definitions

10. Scoperules o
10.1 Lexical scope e e e e e e e e
10.2 Scopeof externals

11. Compiler control lines
11.1 Tokenreplacement
11.2 Fileinclusion« . . .
11.3 Conditional compilation
114 Linecontrol

12. Implicit declarations

13. Typesrevisited+ . .
13.1 Structures andunions
13.2 Functions . . . e e .
13.3 Arrays, pointers, and subscnptmg e e e
13.4 Explicit pointer conversions

14. Constant expressions . . . « + +« + o+ o .
15. Portability considerations

16. Syntax summary+ .+ o+ . o . .
16.1 Expressions+ .« o+ o« . .
16.2 Declarations« . . .
163 Statements
164 External definitions
16.5 Preprocessor

Tables

Table 3-1. Character constants and escape
SEqUENCES+

Table 3-2. 68020 hardware characteristics . . .
Table 3-3. Categorization of fundamental types . .

40
41
42

42
43

45
45
46
47
48

48

49
49
50
51
52

53
54

55
55
57
59
60
61

Chapter 3
C Language Reference

This chapter describes the C programming language. The manner of
presentation of C syntax is meant to help you gain understanding of the
language structure. It should not be taken as a formal definition of the
language.

1. Notation conventions

In the syntax notation used in this chapter, syntactic categories are
indicated by italic type, and literal words and characters in courier
type. Alternative categories are listed on separate lines. An optional
terminal or nonterminal symbol is indicated by the subscript ““opt,”’ so
that

[expressiona pl]
indicates an optional expression enclosed in braces. The syntax is
summarized in ‘‘Syntax Summary.”’
2. Lexical conventions
There are six classes of tokens:
Identifiers
Keywords
Constants
Strings
Operators
Other separators

SR

Blanks, tabs, newlines, and comments (collectively called *‘white
space’’) are ignored except as they serve to separate tokens. Some
white space is required to separate otherwise adjacent identifiers,
keywords, and constants.

C Language Reference 3-1

If the input stream has been parsed into tokens up to a given character,
the next token is taken to include the longest string of characters that
could possibly constitute a token.

2.1 Comments

The characters / * introduce a comment, which terminates with the
characters * /.

/* Comments/* do not*/ nest*/

Note: The above comment would terminate after the * /
following not, leaving nest */ to be read as code.

2.2 Identifiers (names)

An identifier is a sequence of letters and digits. The first character
must be a letter. The underscore () counts as a letter. Uppercase and
lowercase letters are read differently and are not interchangeable.
Although there is no length limit for names, only the initial 256
characters of the name are significant. This implementation will accept
identifiers up to 1024 characters long. Other implementations truncate
identifiers to 7 or 8 characters, so long identifier names are not
recommended.

2.3 Keywords
The following identifiers are reserved for use as keywords and cannot
be used otherwise:

asm default float long struct
auto do for register switch
break double fortran return typedef
case else goto short union
char enum if sizeof unsigned
continue external int static while

2.4 Constants

There are several kinds of constants, each of which has a type. The
introduction to types is given in the ‘“Names’’ section. Hardware
characteristics that affect sizes are summarized in the subsection
‘‘Hardware Characteristics’’ under the general heading *‘Lexical
Conventions.’’ See also Chapter 4, ‘‘C Implementation Notes.”’

3-2 A/UX Programming Languages and Tools, Volume 1

2.4.1 Integer constants

An integer constant consisting of a sequence of digits is taken to be
octal if it begins with a zero. An octal constant consists of the digits 0
through 7 only. A sequence of digits preceded by 0x or 0X is taken to
be a hexadecimal integer. The hexadecimal digits include a through f
(or A through F) with corresponding decimal values 10 through 15.
Otherwise, the integer constant is taken to be decimal. A decimal
constant whose value exceeds the largest signed machine integer is
taken to be long. An octal or hex constant that exceeds the largest
unsigned machine integer is likewise taken to be long. Otherwise,
integer constants are int.

2.4.2 Explicit long constants

A decimal, octal, or hexadecimal integer constant immediately
followed by the letter 1 or L is a 1ong constant. As discussed below,
on the Macintosh II integer and long values are considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in "x’.
The value of a character constant is the numeric value of the character
in the machine’s character set.

Multicharacter character constants are permitted on the 68020.
Multicharacter character constants can be told from strings by the
following criterion: strings are enclosed in double quotes (* ™), while
multicharacter character constants are enclosed in single quotes (*).
Characters are assigned to a word backward. The -ZF flag option
reverses the order of character assignment within the word. For
example, when you compile a program including the line

i = 'abcd’;
1 is assigned the value 0x64636261, corresponding to ' dcba’. If

you compile the same program with the —zF flag option, i is assigned
the value 0x61626364, corresponding to * abcd’ .

Two nongraphic characters, the single quote (”) and the backslash (\),
are used in escape sequences. To use these characters literally, they
must be ‘‘escaped’’ as shown below.

C Language Reference 3-3

Table 3-1. Character constants and escape sequences

Character ASCII Escape sequence
Null NUL \O
Newline NL(ILF) \n
Horizontal tab ~ HT \t
Vertical tab VT \v
Backspace BS \b
Carriage return CR \r
Form feed FF \f
Backslash \ \\
Single quote ! \’

Bit pattern “\onum \onum

The escape \onum consists of the backslash followed by 1, 2, or 3 octal
digits (0 through 7), which are taken to specify the value of the desired
character. If the character following a backslash is not one of those
specified, the behavior is undefined. A newline character is illegal in a
character constant. The type of a character constant is int.

2.4.4 Floating constants

A floating constant consists of an integer part, a decimal point, a
fraction part, an e or E, and an optionally signed integer exponent. The
integer and fraction parts both consist of a sequence of digits. Either
the integer part or the fraction part may be missing, but not both.

Either the decimal point or the e and exponent may be missing, but not
both. Every floating constant has type double.

2.4.5 Enumeration constants

Names declared as enumerators have type int. For more information
see the sections ‘‘Structure and Union Declarations’’ and
‘‘Enumeration Declarations.”’

2.5 Strings

A string is a sequence of characters surrounded by double quotes, as in
"string". A string has type array of char and storage class
static and is initialized with the given characters. The compiler
places a null byte (\0) at the end of each string so that programs
scanning the string can find its end. In a string, the double-quote
character () must be preceded by a backslash (\). In addition, the

3-4 A/UX Programming Languages and Tools, Volume 1

same escapes as described for character constants may be used.

A backslash (\) and the newline immediately following are ignored.
All strings, even when formally identical, are distinct.

2.6 Hardware characteristics
The following table summarizes certain hardware properties for the
68020. Note that the ranges for £1oat and double are approximate.

Table 3-2. 68020 hardware characteristics

Type Representation
char 8 bits

int 32

short 16

long 32

float 32

double 64

float range ilOt38
doublerange +107°%

For more information on 68020 data representation, see Chapter 4, *‘C
Implementation Notes.”’

3. Names
The C language bases the interpretation of an identifier upon two
attributes of the identifier:

storage class determines the location and lifetime of the storage
associated with an identifier.

type determines the meaning of the values found in the
identifier’s storage.

3.1 Storage class
There are four declarable storage classes:

o Automatic variables are local to each invocation of a block and
are discarded upon exit from the block.

o Static variables are local to a block but retain their values upon
reentry to a block even after control has left the block.

C Language Reference 3-5

« External variables exist and retain their values throughout the
execution of the entire program. They may be used for
communication among functions, even separately compiled
functions.

o Register variables are stored in the fast registers of the machine
until these registers run out. The remainder are treated as
automatic variables. Like automatic variables, they are local to
each block and disappear on exit from the block.

3.2 Type

The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of
the implementation’s character set. If a genuine character from that
character set is stored in a char variable, its value is equivalent to the
integer code for that character. Other quantities may be stored into
character variables, but the implementation is machine dependent. In
particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long
int, are available. Longer integers do not provide less storage than
shorter ones, but the implementation may make short integers or long
integers, or both, equivalent to plain integers. ‘‘Plain’’ integers have
the natural size suggested by the host machine architecture. The other
sizes are provided to meet special needs. (See ‘‘Hardware
Characteristics’’ for the sizes of types on the 68020.)

enum types have the same size as an int or long. The properties of
enum types are identical to those of some integer types, with the
exceptions that some conversions to or from them are not allowed (for
example, with f1loat), and that they can be compared only for
equality.

Unsigned integers, declared unsigned, obey the laws of arithmetic
modulo 2%, where n is the number of bits in the representation.

Because objects of these types can usefully be interpreted as numbers,
they are referred to as arithmetic types. char, int of all sizes
whether unsigned or not, and enum are collectively called integral
types. The float and double types are collectively called floating
types.

3-6 A/UX Programming Languages and Tools, Volume 1

The following table summarizes the categorization of fundamental
types:
Table 3-3. Categorization of fundamental types

Type Category
arithmetic integral floating

char X X

double X X
enum X

float X X

int X X

long X X

short X X

Besides the fundamental arithmetic types, there is a conceptually
infinite class of derived types, constructed from the fundamental types
in the following ways:

e Arrays of objects of most types

« Functions that return objects of a given type

 Pointers to objects of a given type

« Structures containing a sequence of objects of various types

« Unions capable of containing any one of several objects of
various types

In general, these methods of constructing objects can be applied
recursively.

4. Objects and Ivalues

An object is a manipulatable region of storage. An lvalue is an
expression referring to an object; for example, an identifier. There are
operators that yield Ivalues. For example, if E is an expression of
pointer type, then *E is an lvalue expression referring to the object to
which E points. The name “‘lvalue’’ comes from the assignment
expression E1 = E2 in which the left operand E1 must be an lvalue
expression. The discussion of each operator below indicates whether it
expects lvalue operands and whether it yields an lvalue.

C Language Reference 3-7

5. Conversions

A number of operators may, depending on their operands, cause
conversion of the value of an operand from one type to another. This
section explains the result you can expect from such conversions. The
conversions demanded by most ordinary operators are summarized
later in this chapter in ‘‘ Arithmetic Conversions.”’

5.1 Characters and integers

A char or a short may be used wherever an int is allowed. In all
cases the value is converted to an integer. Conversion of a shorter
integer to a longer one preserves sign. Whether or not sign extension
occurs for characters is machine dependent, but it is guaranteed that a
member of the standard character set is non-negative.

On machines that treat characters as signed, the characters of the
ASCII set are all non-negative. A character constant specified with an
octal escape, however, suffers sign extension and may appear negative;
for example, "\ 377" has the value -1.

When a longer integer is converted to a shorter integer or to a char, it
is truncated on the left. Excess bits are simply discarded.

5.2 Float and double

All floating arithmetic in C is carried out in double precision.
Whenever a £1oat appears in an expression, it is lengthened to
double by right-padding its fraction with zeros. When a double
must be converted to £1oat, for example by an assignment, the
double is rounded before truncation to £ loat length. This result is
undefined if it cannot be represented as a £1loat.

5.3 Floating and integral

Conversions of floating values to integral type are rather machine
dependent. In particular, the direction of truncation of negative
numbers varies. On the 68020, negative floating values are rounded
toward zero. The result is undefined if it will not fit in the space
provided.

Conversions of integral values to floating type are well behaved. Some
loss of accuracy occurs if the destination lacks sufficient bits.

3-8 A/UX Programming Languages and Tools, Volume 1

5.4 Pointers and integers

An expression of integral type may be added to or subtracted from a
pointer (thus, pointer arithmetic is allowed). In such a case, the first
is converted as specified in the discussion of the addition operator
(below). Two pointers to objects of the same type may be subtracted.
In this case, the result is converted to an integer, as specified in the
discussion of the subtraction operator (below).

5.5 Unsigned

Whenever an unsigned integer and a signed integer are combined, the
signed integer is converted to unsigned and the result is unsigned. In a
2’s-complement representation, this conversion is conceptual, and there
is no actual change in the bit pattern. The value of the converted
integer is the least unsigned integer congruent to the signed integer
(modulo 2wordsize),

When an unsigned short integer is converted to long, the value of the
result is the same numerically as that of the unsigned integer. Thus, the
conversion amounts to padding with zeros on the left.

5.6 Arithmetic conversions

A great many operators cause conversions and yield result types in a
similar way. From here on in this document, this pattern is called the
“‘usual arithmetic conversions.”” These rules are applied in the order in
which they appear, if applicable.

Note: In this implementation, int and 1long have the same
size, and do not require conversions to or from each other. In
the following table, therefore, 1ong is used in place of int.

Conversions are performed only if necessary, depending on the
operation. If a char isadded to a char, the result stays a char. If
an int is the result of adding two chars, the conversion is done
before the addition.

» First, char or short is converted to long, and unsigned
char orunsigned short isconverted to unsigned
long. float is converted to double.

» Next, if either operand is double, the other one converts to
double and the result is double.

C Language Reference 3-9

o Next, if either operand is unsigned long, the other one
converts to unsigned long and isthe resultis unsigned
lonag.

o Next, if either operand is 1ong, the other one converts to 1ong
and the result is long.

o Next, if either operand is unsigned, the other one converts to
unsigned and the result is unsigned.

o Finally, if both operands are 1ong, that is the type of the result.

6. Expressions

The precedence of expression operators is the same as the order of the
major subsections of this section, highest precedence first. For
example, the expressions referred to as the operands of + are those
expressions defined in ‘‘Primary Expressions,”” ‘‘Unary Operators,”’
and ‘“Multiplicative Operators.”” Within each subpart, the operators
have the same precedence. Left or right associativity is specified in
each subsection for the operators discussed therein. The precedence
and associativity of all the expression operators are summarized in the
grammar in ‘‘Syntax Summary.”’

Otherwise, the order of evaluation of expressions is undefined. In
particular, the compiler considers itself free to compute subexpressions
in the order it believes most efficient, even if the subexpressions
involve side effects. The order in which subexpression evaluation
takes place is unspecified. Expressions involving a commutative and
associative operator (*, +, &, |, ~) may be rearranged arbitrarily, even
in the presence of parentheses; to force a particular order of evaluation,
your program must use an explicit temporary.

The handling of overflow and divide check in expression evaluation is
undefined. This implementation, like most that exist, ignores integer
overflows. The integer division by 0 exception is enabled by default.
The result of an integer division by 0 can be detected using adb on the
assembler file—it is designated Inf (infinity) or NaN (not a number).
All other floating-point exceptions are disabled. For more information
on the floating-point exception, see the Motorola MC68881 Floating
Point Coprocessor User’'s Manual, Motorola part number
M68KMASM.

3-10 A/UX Programming Languages and Tools, Volume 1

6.1 Primary expressions
Primary expressions involving ., —>, subscripting, and function calls
group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-listo B
primary-expression . identifier
primary-expression -> identifier

expression-list:
expression
expression-list, expression

An identifier is a primary expression, provided it has been suitably
declared as discussed below. Its declaration specifies its type. If the
identifier’s type is

array of some-type

the value of the identifier expression is a pointer to the first object in
the array, and the type of the expression is

pointer to some-type

Moreover, an array identifier is not an lvalue expression. Likewise, an
identifier that is declared

function returning some-type

when used, except in the function-name position of a call, is converted
to

pointer to function returning some-type

A constant is a primary expression. Its type may be int, long, or
double, depending on its form. Character constants have type int
and floating constants have type double.

A string is a primary expression. Its type is originally array of char,
but following the same rule given above for identifiers, this is modified

C Language Reference 3-11

to pointer to char. The result is a pointer to the first character in the
string (there is an exception in certain initializers; see ‘‘Initialization’’
under ‘‘Declarations’’).

A parenthetical expression is a primary expression whose type and
value are identical to those of the unadorned expression. The presence
of parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in brackets is a
primary expression. The intuitive meaning is that of a subscript.
Usually, the primary expression has type

pointer to some-type
The subscript expression is int, and the type of the result is
some-type

The expression E1 [E2] is identical (by definition) to

*((E1l) +(E2)). All the clues needed to understand this notation are
contained in this subsection together with the discussions in ‘‘Unary
Operators’’ and “‘Additive Operators’’ on identifiers * and +,
respectively. The implications are summarized under *‘Arrays,
Pointers, and Subscripting’’ under ‘‘Types Revisited.”’

A function call is a primary expression followed by parentheses
containing a possibly empty, comma-separated list of expressions that
constitute the actual arguments to the function. The primary expression
must be of type

function returning some-type
and the result of the function call is of type
some-type

As indicated below, a hitherto unseen identifier followed immediately
by a left parenthesis is contextually declared to represent a function
returning an integer. Therefore, in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type f1oat are converted to double before
the call. Any of type char or short are converted to int. Array
names are converted to pointers. No other conversions are performed
automatically; in particular, the compiler does not compare the types of

3-12 A/UX Programming Languages and Tools, Volume 1

actual arguments with those of formal arguments. If conversion is
needed, use a cast. For further information, see ‘“‘Unary Operators’’
and ‘‘Type Names’’ under *‘Declarations.’’

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A
function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. It is possible
to pass a pointer on the understanding that the function may change the
value of the object to which the pointer points. An array name is a
pointer expression; therefore, in effect, array arguments are passed by
reference. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ. Recursive calls to
any function are permitted.

A primary expression followed by a dot, followed by an identifier, is an
expression. The primary expression must be a structure or a union, and
the identifier must name a member of the structure or union. The value
is that named member of the structure or union, and it is an lvalue if the
first expression is an lvalue.

A primary expression followed by an arrow (built from - and >),
followed by an identifier, is an expression. The first expression must
be a pointer to a structure or a union and the identifier must name a
member of that structure or union. The result is an lvalue that refers to
the named member of the structure or union to which the pointer
expression points. Thus the expression E1->MOS is the same as

(*E1) .MOS. Structures and unions are discussed in greater detail in
¢‘Structure and Union Declarations’’ and ‘‘Enumeration Declarations’’
under ‘‘Declarations.”’

6.2 Unary operators
Expressions with unary operators group right to left.

C Language Reference 3-13

unary-expression:
* expression
& Ivalue
- expression
! expression
~ expression
++ Ivalue
-— lvalue
lvalue ++
lvalue —-
(type-name) expression
sizeof expression
sizeof (type-name)

The unary operator (*) means ‘‘indirection’’; the expression must be a
pointer, and the result is an lvalue referring to the object to which the
expression points. If the type of the expression is

pointer to some-type
the type of the result is
some-type

The result of the unary & operator is a pointer to the object referred to
by the lvalue. If the type of the lvalue is

some-type
the type of the result is
pointer to some-type

The result of the unary - operator is the negative of its operand. The
usual arithmetic conversions are performed. The negative of an
unsigned quantity is computed by subtracting its value from 2”, where
n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one (1) if the value of
its operand is zero (0), and zero if the value of its operand is nonzero.
The type of the result is int. It is applicable to any arithmetic type or
to pointers.

3-14 A/UX Programming Languages and Tools, Volume 1

The ~ operator yields the 1’s-complement of its operand. The usual
arithmetic conversions are performed. The operand must be of the

integral type.

The object referred to by the lvalue operand of prefix ++ is
incremented. The value is the new value of the operand but is not an
Ivalue. The expression ++x isequivalenttox = x + 1. See

‘“ Additive Operators’’ and ‘*Assignment Operators’’ for information
on conversions.

The Ivalue operand of prefix -~ is decremented analogously to the
prefix ++ operator.

‘When postfix ++ is applied to an lvalue, the result is the value of the
object to which the lvalue refers. After the result is noted, the object is
incremented in the way the prefix ++ operator was implemented. The
type of the result is the same as the type of the lvalue expression.

‘When postfix —- is applied to an lvalue, the result is the value of the
object to which the lvalue refers. After the result is noted, the object is
decremented in the same manner as the prefix —- operator. The type of
the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type
causes the expression value to convert to the named type. This
construction is called a cast. Type names are described in ‘“Type
Names’’ under *‘Declarations.”’

The sizeof operator yields its operand’s size in bytes (a byte is
undefined by the language except in terms of the value of sizeof. In
this implementation, as in all existing ones, however, a byte is the
space required to hold a char). When applied to an array, the result is
the total number of bytes in the array. The size is determined from the
declarations of the objects in the expression. This expression is
semantically an unsigned constant and can be used anywhere a
constant is required. Its major use is in communication with routines
like storage allocators and I/O systems.

The sizeof operator also can be applied to a type name enclosed in
parentheses. In that case it yields the size, in bytes, of an object of the
indicated type.

C Language Reference 3-15

The construction sizeof (type) is taken to be a unit, so the
expression sizeof (type) -2 isthe same as (sizeof (type)) -2.

6.3 Multiplicative operators
The multiplicative operators *, /, and % group left to right. The usual
arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression / expression

o

expression % expression

The binary * operator indicates multiplication. The * operator is
associative, and expressions with several multiplications at the same
level can be rearranged by the compiler. The binary / operator
indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0. The
remainder has the same sign as the dividend. It is always true that
(a/b) *b + a$bisequal to a (if b is not 0).

6.4 Additive operators

The additive operators + and - group left to right. The usual arithmetic
conversions are performed. There are some additional type
possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The
latter is in all cases converted to an address offset by multiplying it by
the length of the object to which the pointer points. The resultis a
pointer of the same type as the original pointer, which points to another
object in the same array, appropriately offset from the original object.
Thus if P is a pointer to an object in an array, the expression P+1 isa
pointer to the next object in the array. No further type combinations
are allowed for pointers.

3-16 A/UX Programming Languages and Tools, Volume 1

The + operator is associative, and expressions with several additions at
the same level can be rearranged by the compiler.

The result of the - operator is the difference of the operands. The
usual arithmetic conversions are performed. Additionally, a value of
any integral type may be subtracted from a pointer, and then the same
conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is
converted (through division by the length of the object) to an int
representing the number of objects separating the objects pointed to.
This conversion in general gives unexpected results unless the pointers
point to objects in the same array, because pointers, even to objects of
the same type, do not necessarily differ by a multiple of the object
length.

6.5 Shift operators
The shift operators << and >> group left to right. Both perform the
usual arithmetic conversions on their operands, each of which must be
integral. Then the right operand is converted to int; the type of the
result is that of the left operand. The result is undefined if the right
operand is negative, or greater than or equal to, the length of the object
in bits.

shift-expression:

expression << expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2
bits. Vacated bits are O filled. The value of E1>>E2 isEl
right-shifted E2 bit positions. The right shift is guaranteed to be logical
(0 fill) if E1 is unsigned; otherwise, it may be arithmetic.

6.6 Relational operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

C Language Reference 3-17

The operators < (less than), > (greater than), <= (less than or equal to),
and >= (greater than or equal to) all yield 0 if the specified relation is
false, and 1 if it is true. The type of the result is int. The usual
arithmetic conversions are performed. You can compare two pointers;
the result depends on the relative locations in the address space of the
objects pointed to. Pointer comparison is portable only when the
pointers point to objects in the same array.

6.7 Equality operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the ! = (not equal to) operators are exactly
analogous to the relational operators, except they have lower
precedence (thus a<b == c<dis 1 whenever a<b and c<d have the
same truth value).

You can compare a pointer to an integer only if the integer is the
constant 0. A pointer to which 0 has been assigned is guaranteed not to
point to any object and will appear to be equal to 0. In conventional
usage, such a pointer is considered to be ‘‘null.”’

6.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative; expressions involving & can be
rearranged. The usual arithmetic conversions are performed. The
result is the bitwise AND function of the operands. The operator
applies only to integral operands.

6.9 Bitwise exclusive OR operator

exclusive-or-expression:

expression ~ expression

The ~ operator is associative; expressions involving ~ can be
rearranged. The usual arithmetic conversions are performed; the result
is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands.

3-18 A/UX Programming Languages and Tools, Volume 1

6.10 Bitwise inclusive OR operator

inclusive-or-expression:
expression | expression

The | operator is associative; expressions involving | can be
rearranged. The usual arithmetic conversions are performed; the result
is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

6.11 Logical AND operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands
evaluate to nonzero; otherwise it returns 0. Unlike &, && guarantees
left-to-right evaluation. Moreover, the second operand is not evaluated
if the first operand is O.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always int.

6.12 Logical OR operator

logical-or-expression:
expression | | expression

The | | operator groups left to right. It returns 1 if either of its
operands evaluates to nonzero; otherwise it returns 0. Unlike |, | |
guarantees left-to-right evaluation. Moreover, the second operand is
not evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always int.

6.13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is
evaluated. If it is nonzero, the result is the value of the second
expression; otherwise, that of the third expression. If possible, the
usual arithmetic conversions are performed to bring the second and

C Language Reference 3-19

third expressions to a common type. If both are structures or unions of
the same type, the result has that type as well. If both pointers are of
the same type, the result has the common type. Otherwise, one must be
a pointer and the other the constant 0, and the result has the type of the
pointer. Only one of the second and third expressions is evaluated.

6.14 Assignment operators

There are a number of assignment operators, all of which group right to
left. All require an lvalue as their left operand. The type of an
assignment expression is that of its left operand. The value is the value
stored in the left operand after the assignment has taken place. The two
parts of a compound assignment operator are separate tokens.

assignment-expression:
Ivalue = expression
Ivalue += expression
lvalue -= expression
lvalue *= expression
lvalue /= expression
lvalue %= expression
lvalue >>= expression
Ivalue <<= expression
lvalue &= expression
lvalue ~= expression
Ivalue |= expression

I

In the simple assignment with =, the value of the expression replaces
that of the object to which the lvalue refers. If both operands have
arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. If both operands are structures or
unions, they must be of the same type. If the left operand is a pointer,
the right operand must in general be a pointer of the same type. The
constant 0 may be assigned to a pointer, however; it is guaranteed that
this value will produce a null pointer that is distinguishable from a
pointer to any object.

You can understand the behavior of an expression of the form E1 op =
E2 by taking it as equivalent to E1 = E1 op (E2); however, E1 is
evaluated only once. In += and -=, the left operand may be a pointer,
in which case the (integral) right operand is converted as explained in
‘“Additive Operators.”” All right operands and all nonpointer left

3-20 A/UX Programming Languages and Tools, Volume 1

operands must have arithmetic type.
6.15 Comma operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right.
The value of the left expression is discarded. The type and value of the
result are the type and value of the right operand. This operator groups
left to right. It is useful in situations where you wish to combine
operations on one line and do not care about seeing the first result, just
about using it in the second operation. In contexts where a comma is
given a special meaning, for example, in lists of actual arguments to
functions (see ‘‘Primary Expressions’”) and lists of initializers (see
““Initialization’’ under ‘‘Declarations’’), the comma operator as
described in this subpart can appear only in parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

7. Declarations

Declarations are used to specify the interpretation that C gives to each
identifier. They don’t necessarily reserve storage associated with the
identifier. Declarations have the form

declaration:
decl-specifiers declarator-listopt;
The declarators in the declarator-list contain the identifiers being
declared. The decl-specifiers consist of a sequence of type and storage
class specifiers.

decl-specifiers:
type-specifier decl-speciﬁerso .
sc-specifier decl-speciﬁersopt

The list must be self-consistent, as described below.

7.1 Storage class specifiers
The storage class specifiers are

C Language Reference 3-21

auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a
‘‘storage class specifier’” only for syntactic convenience (see
‘“Typedef’’ for more information). The meanings of the various
storage classes are discussed in ‘‘Names.”’

The auto, static, and register declarations also serve as
definitions because they cause an appropriate amount of storage to be
reserved. In the extern case, there must be an external definition
(see ‘‘External Definitions’’) for the given identifiers, somewhere
outside the function in which they are declared.

A register declaration is best thought of as an auto declaration
that hints to the compiler that the variables declared will be heavily
used. Only the first few such declarations in each function are
effective. Moreover, only variables of certain types will be stored in
registers. One other restriction applies to register variables: The
address-of operator & cannot be applied to them. Smaller, faster
programs can be expected if register declarations are used
appropriately.

At most, one storage class specifier can be given in a declaration. If the
storage class specifier is missing from a declaration, it is taken to be
auto inside a function, extern outside.

Note: The exception is that functions are never automatic.

7.2 Type specifiers
The type specifiers are

3-22 A/UX Programming Languages and Tools, Volume 1

type-specifier:

struct-or-union-specifier

basic-type-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifier
basic-type:

char

short

int

long

unsigned

float

double

long or short may be specified in conjunction with int; the
meaning is the same as if int were not mentioned. The word long
may be specified in conjunction with £1oat; the meaning is the same
as double. unsigned may be specified alone or in conjunction with
int or any of its short or long varieties, or with char.

Except for the combinations just described, only a single type specifier
may be given in a declaration. In particular, using long, short, or
unsigned as an adjective is not permitted with t ypede f names. If
the type specifier is missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in
““‘Structure and Union Declarations’’ and ‘‘Enumeration
Declarations.”” Declarations with t ypede £ names are discussed in

“Typedef.”’

7.3 Declarators
The declarator-list appearing in a declaration is a comma-separated
sequence of declarators, each of which may have an initializer.

declarator-list:
init-declarator
init-declarator, declarator-listop‘

C Language Reference 3-23

init-declarator:
declarator initializer
opt

Initializers are discussed in *‘Initialization.”” The specifiers in the
declaration indicate the type and storage class of the objects to which
the declarators refer. Declarators have the syntax

declarator:
identifier
(declarator)
* declarator
declarator ()

declarator [constant-expressionapt]
The grouping is the same as in expressions.

7.3.1 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of
the same form as the declarator appears in an expression, it yields an
object of the indicated type and storage class.

Each declarator contains exactly one identifier: This is what is being
declared. If an unadorned identifier appears as a declarator, it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but
the binding of complex declarators may be altered by parentheses (see
the examples below).

Now imagine a declaration:
TDI

where T is a type specifier (for example, int) and D/ is a declarator.
Suppose this declaration declares the identifier to be of type

[modifier]T

where the [modifier] is empty if D1 is just a plain identifier (so that the
type of xin int xisjust int). Then if DI has the form

*D
the type of the contained identifier is

3-24 A/UX Programming Languages and Tools, Volume 1

[modifierlpointer to T
If DI has the form
D ()
the contained identifier has the type
[modifier)function returning T
If D1 has the form
D [constant-expression]
or
D1]
the contained identifier has type
[modifierlarray of T

In the first case, the constant expression is an expression whose value
can be determined at compile time, whose type is int, and whose
value is positive (constant expressions are defined precisely in
““‘Constant Expressions’’). When several array of specifications are
adjacent, a multidimensional array is created. The constant expressions
that specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is
external and the actual definition, which allocates storage, is given
elsewhere. The first constant expression may also be omitted when the
declarator is followed by initialization. In this case, the size is
calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a
pointer, a structure or union, or from another array (to generate a
multidimensional array).

Not all the possibilities of the above syntax are actually permitted. The
restrictions are as follows: Functions may not return arrays or
functions although they may return pointers; there are no arrays of
functions although there may be arrays of pointers to functions;
likewise, a structure or union may not contain a function, but it may
contain a pointer to a function.

C Language Reference 3-25

As an example, the declaration

int i, *ipl £0, *fip(): (*Pfi) (Ol

declares
i an integer
*ip a pointer to an integer
£() a function returning an integer
*fip () a function returning a pointer to an integer

(*pfi) () a pointer to a function that returns an integer
It is especially useful to compare the last two.

*fip() The binding of *fip () is * (£ip ()). If this declaration
were part of an expression in the code, it would call the
function fip. fip returns a pointer. Using indirection
through this pointer yields an integer.

(*pfi) () In the declarator (*pfi) (), or such a construct in an
expression, the parentheses must enclose *pf i to show
that the whole thing yields a function (via indirection
through a pointer). When this function is called, it returns
an integer.

As another example,
float fa[l7], *afp[17]:;

declares an array of £ 1oat numbers and an array of pointers to
float numbers.

Finally,
static int x3d[3]([5]1(7]:

declares a static three-dimensional array of integers, with rank 3x5x7.
In complete detail, x3d is an array of three items. Each item is an
array of five arrays. Each of the arrays is an array of seven integers.

Any of the expressions

3-26 A/UX Programming Languages and Tools, Volume 1

x3d

x3d[1]
x3d[1][3]
x3d[i1[3] [k]

may reasonably appear in an expression. The first three have type
array and the last has type int.

7.4 Structure and union declarations

A structure is an object made up of a sequence of named members.
Each member may have any type. A union is an object that can, at a
given time, contain any one of several members. Structure and union
specifiers have the same form:

struct-or-union-specifier:
struct-or-union {struct-decl-list}
struct-or-union identifier {struct-decl-list}
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-list.
struct-declarator
struct-declarator, struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member
of a structure or union. A structure member may also consist of a
specified number of bits. Such a member is also called a *‘field’’; its
length, a non-negative constant expression, is set off from the field
name by a colon.

C Language Reference 3-27

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses that increase as
the declarations are read left to right. Each nonfield member of a
structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field
that does not fit into the space remaining in a word is put into the next
word. No field may be wider than a word.

A struct-declarator with no declarator, only a colon and a width,
indicates an unnamed field useful for padding to conform to externally
imposed layouts. As a special case, a field with a width of 0 specifies
alignment of the next field on an implementation-dependent boundary.

The language does not restrict the types of things that are declared as
fields, but implementations are not required to support any but integer
fields. Moreover, even int fields can be considered to be unsigned.

It is strongly recommended that fields be declared as unsigned. In all
implementations, there are no arrays of fields, and the address-of
operator & cannot be applied to them, so that there are no pointers to
fields.

A union can be thought of as a structure, all of whose members begin
at offset 0 and whose size is sufficient to contain any of its members.
At most, one of the members can be stored in a union at any time.

A structure or union specifier of the second form,

struct identifier {struct-decl-list}
union identifier {struct-decl-list}

declares the identifier to be the ‘‘structure tag’’ (or union tag) of the
structure specified by the list. A subsequent declaration may then use
the third form of specifier,

struct identifier
union identifier

3-28 A/UX Programming Languages and Tools, Volume 1

Structure tags allow definition of self-referencing structures. They also
permit the long part of the declaration to be given once and used
several times. It is illegal to declare a structure or union that contains
an instance of the structure or union itself, but it may contain a pointer
to an instance of itself.

You may use the third form of a structure or union specifier before a
declaration that gives the specifier’s complete specification in situations
in which its size is unnecessary. The size is unnecessary in two
situations: (1) when a pointer to a structure or union is being declared,
and (2) when a t ypede £ name is declared to be a synonym for a
structure or union. This, for example, allows the declaration of a pair
of structures that contain pointers to each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the
same structure, but the same name may be used in several different
structures in the same scope.

A simple but important example of a structure declaration is the binary
tree structure

struct tnode
{
char tword[20];
int count;
struct tnode *left;
struct tnode *right;
}:

which contains an array of 20 characters, an integer, and two pointers
to similar structures. Once this declaration has been given, the
declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. With these declarations, the expression

sp—->count

refers to the count field of the structure to which sp points;

C Language Reference 3-29

s.left
refers to the left subtree pointer of the structure s; and
s.right->tword[0]

refers to the first character of the t word member of the right subtree
of s.

7.5 Enumeration declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum {enum-list}
enum identifier {enum-list}
enum identifier

enum-list.
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enwmn-list are declared as constants and may
appear wherever constants are required. If no enumerators with =
appear, the values of the corresponding constants begin at 0 and
increase by 1 as the declaration is read from left to right. An
enumerator with = gives the associated identifier the value indicated;
subsequent identifiers continue the progression from the assigned
value.

The names of enumerators in the same scope must all be distinct from
each other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to
that of the structure tag in a struct-specifier; it names a particular
enumeration. For example,

3-30 A/UX Programming Languages and Tools, Volume 1

enum color {mauve,burgundy,claret=20,wine};
enum color *cp, col;

col = claret:;
cp = &col;

if (*cp == burgundy)

makes color the enumeration-tag of a type describing various colors,
and then declares cp as a pointer to an object of that type, and col as
an object of that type. The possible values are drawn from the set {0,
1, 20, 21}.

7.6 Initialization
A declarator may specify an initial value for the identifier being
declared. The initializer is preceded by = and consists of an expression
or a list of values nested in braces.
initializer:
= expression
= {initializer-list}
= [{initializer-list, }

initializer-list:
expression
initializer-list , initializer-list
{initializer-list}
{initializer-list, }

All the expressions in an initializer for a static or external variable must
be constant expressions (see ‘‘Constant Expressions’”) or expressions
that reduce to the address of a previously declared variable, possibly
offset by a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and previously
declared variables and functions.

Static and external variables that are not initialized are guaranteed to
start off as zero. Automatic and register variables that are not
initialized are undefined.

C Language Reference 3-31

When an initializer applies to a scalar (a pointer or object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial
value of the object is taken from the expression,; it is converted in the
same way it would be in an assignment.

When the declared variable is an aggregate (a structure or array), the
initializer consists of a brace-enclosed, comma-separated list of
initializers for the members of the aggregate, written in increasing
subscript or member order. If the aggregate contains subaggregates,
this rule applies recursively to the members of the aggregate. If there
are fewer initializers in the list than there are members of the
aggregate, the aggregate is padded with zeros. You may not initialize
unions or automatic aggregates.

You may, in some cases, omit braces. If the initializer begins with a
left brace, the succeeding comma-separated list of initializers initializes
the members of the aggregate; the compiler will report an error if there
are more initializers than members. If, however, the initializer does not
begin with a left brace, only enough elements to account for the
members of the aggregate are taken from the list; any remaining
members are left to initialize the next aggregate member.

A final abbreviation allows a char array to be initialized by a string.
In this case, successive characters of the string initialize the members
of the array.

The syntax of char array initialization can be derived from that of
numerical array initialization. For example, the construct

int x[] = {1, 3, 5}

declares and initializes x as a one-dimensional array that has three
members, as no size was specified and there are three initializers.

Now consider an example of two-dimensional array initialization. The
construct

3-32 A/UX Programming Languages and Tools, Volume 1

float y[4]1[3] =

{
{1, 3, 5},
{2, 4, 6},
{3, 5, 7},

}i

gives a completely bracketed initialization: 1, 3, and 5 initialize the
first row of the array y [0], namely,

y[0]1[0]
y[0][1]
y[01[2]

Likewise, the next two lines initialize y [1] and y [2]. The initializer
ends early and therefore y [3] is initialized with 0. Precisely the same
effect could have been achieved with

float yI[4]1[3] =
{

1, 3, 5, 2, 4, 6, 3, 5, 7
}i

The initializer for y begins with a left brace but the one for y [0] does
not; therefore, three elements from the list are used. Likewise, the next
three are taken successively for y[1] and y [2]. Also,

float yI[4]I[3] =
{

{1}, {2}, {31}, {4}
}s

initializes the first column of y (regarded as a two-dimensional array)
and leaves the rest 0.

A further leap allows for the syntax of character array initialization.
Because commas are common elements within strings, it would be
handier not to have to separate elements with them. It is preferable in
this situation to presuppose a variable-length one-dimensional array,
the successive elements of which become array members. The array
ends when the string is exhausted, as in the two-dimensional array
example, and no commas are needed, as the initialization happens all at
once. Thus, the construct

C Language Reference 3-33

static char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.
Note the lack of size specification, as in the one-dimensional array
example.

7.7 Type names

In two contexts (to specify type conversions explicitly by means of a
cast and as an argument of sizeof), you should supply the name of a
data type. Your program can do this by using a type name, which in
essence is a declaration for an object of the type that omits the name of
the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
*agbstract-declarator
abstract-declarator ()

abstract-declarator [constant—expressionop ’

1
To avoid ambiguity, in the construction
(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this
restriction, your program can identify uniquely the location in the
abstract-declarator where the identifier would appear if the
construction were a declarator in a declaration. The named type is then
the same as the type of the hypothetical identifier. For example,

int is type integer

int * is type pointer to integer

int *[3] is type array of three pointers to integers

int (*) [3] is type pointer to an array of three integers
int * () is type function returning pointer to integer
int (%) () is type pointer to function returning an integer

3-34 A/UX Programming Languages and Tools, Volume 1

int (*[3]) () istype array of three pointers to functions
returning an integer

7.8 Typedef

Declarations whose storage class is t ypedef do not define storage,
but instead define identifiers. Your program can later use these
identifiers as if they were type keywords naming fundamental or
derived types.

typedef-name:
identifier

Within a declaration that involves t ypede £, each identifier that is part
of a declarator is syntactically equivalent to the type keyword that
names the identifier type as described in ‘‘Meaning of Declarators.”’
For example, after

typedef int MILES, *KLICKSP;
typedef struct {double re, im;} complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the following types apply:
e distance is int
e metricp is a pointer to int
e z is the specified structure complex
e zp is a pointer to such a structure

The typedef does not introduce brand new types, only synonyms for
types that could be specified in another way. Thus in the example
above, distance is considered to have exactly the same type as any
other int object.

8. Statements
Except as indicated, statements are executed in sequence.

C Language Reference 3-35

8.1 Expression statement
Most statements are expression statements, which have the form

expression ;
Usually expression statements are assignments or function calls.

8.2 Compound statement or block
The compound statement lets your program use several statements
where only one is expected:

compound-statement:
{declaration-list _ statement-list }
opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were declared previously,
the outer declaration is pushed down for the duration of the block, after
which it resumes its force.

Any initializations of auto or register variables are performed
each time the block is entered at the top. Although it is bad practice,
your program can transfer into a block; in that case the initializations
are not performed. Initializations of stat ic variables are performed
only once, when the program begins execution. Inside a block,
extern declarations do not reserve storage, so initialization is not
permitted.

8.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated. If it is nonzero, the first
substatement is executed. If the expression is 0, the second
substatement is executed. The ‘‘else’’ ambiguity is resolved by
connecting an else with the last encountered else-less if.

3-36 A/UX Programming Languages and Tools, Volume 1

8.4 while statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly as long as the value of the
expression remains nonzero. The test takes place before each
execution of the statement.

8.5 do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the
expression is 0. The test takes place after each execution of the
statement.

8.6 for statement
The for statement has the form

for (exp-1 ; exp~20p; exp-3opt) statement

opt t
This statement is equivalent to
exp-1 opt
v{vhlle (exp-Zop‘)
statement
exp-3op' ;
}
except in the case where a cont inue appears before or in exp-3. In
this case, (all of) exp-3 will not be read or implemented (see
‘““continue Statement’’).

The first expression specifies initialization for the loop; the second
specifies a test made before each iteration such that the loop is exited
when the expression becomes 0. The third expression often specifies
an incrementation that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes
the implied while clause equivalent to while (1). Other missing
expressions are simply dropped from the expansion above.

C Language Reference 3-37

8.7 switch statement

The switch statement causes control to be transferred to one of
several statements, depending on the value of an expression. It has the
form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the
result must be int. The statement is typically compound. Any
statement within the statement may be labeled with one or more case
prefixes, as in

case constant-expression :

where the constant expression must be int. No two case constants
in the same switch can have the same value. Constant expressions
are precisely defined in ‘‘Constant Expressions.’’

There also can be no more than one statement prefix of the form
default:

When the switch statement is executed, its expression is evaluated
and compared with each case constant. If one of the case constants is
equal to the expression’s value, control is passed to the statement
following the matched case prefix. If no case constant matches the
expression, control passes to the statement with the default prefix.
If no case matches and there is no default, none of the statements in
the switch are executed.

The prefixes case and default do not alter the flow of control; it
continues unimpeded across such prefixes. To learn about exiting from
a switch, see ‘‘Break Statement.”’

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but
initializations of automatic or register variables are ineffective.

8.8 break statement
The statement

break;

causes termination of the smallest enclosing while, do, for, or
switch statement. Control passes to the statement following the

3-38 A/UX Programming Languages and Tools, Volume 1

terminated statement.

8.9 continue statement

The statement

continue;

causes control to pass to the loop-continuation portion of the smallest
enclosing while, do, or for statement; that is, to the end of the loop.

More precisely, in each of the statements

Statement 1:

while (exp-1) {
exp-2
contin:;

}

Statement 2:

do {
exp-1
contin:;
} while (exp-2);

Statement 3:

for (exp-1) {
exp-2
contin:;

}

a continue is equivalent to goto contin (following the
contin: isanull statement; see ‘“Null Statement’’).

C Language Reference

3-39

8.10 return statement
A function returns to its caller by means of the return statement,
which has one of the two forms

return;
return expression;

In the first case, the returned value is undefined. In the second case, the
value of the expression is returned to the caller of the function. If
required, the expression is converted, as if by assignment, to the type of
function in which it appears. Flowing off the end of a function is
equivalent to a return with no returned value. The expression may
be enclosed in parentheses.

8.11 goto statement
Control may be transferred unconditionally by means of the statement

goto identifier;

The identifier must be a label (see ‘‘Labeled Statement’’) located in the
current function.

8.12 Labeled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label
is as a target of a goto. The scope of a label is the current function,
excluding any subblocks in which the same identifier has been
redeclared (see ‘‘Scope Rules’’).

8.13 Null statement
The null statement has the form

.
’

A null statement is useful to carry a label just before the ending brace
of a compound statement or to supply a null body to a looping
statement such as while.

9. External definitions

A C program consists of a sequence of external definitions. An
external definition declares an identifier to have storage class extern

3-40 A/UX Programming Languages and Tools, Volume 1

(by default) or perhaps static, and a specified type. The type
specifier (see ‘“Type Specifiers’ in ‘‘Declarations’”) may also be
empty, in which case the type is taken to be int. The scope of
external definitions persists to the end of the file in which they are
declared, just as the effect of declarations persists to the end of a block.
The syntax of external definitions is the same as for all declarations,
except that only at this level can the code for functions be given.

9.1 External function definitions
Function definitions have the form

function-definition:
decl-speciﬁersop , function-declarator function-body
The only storage class specifiers allowed among the declaration
specifiers are extern or static (see ‘‘Scope of Externals’’ in

““Scope Rules’’ for the distinction between them). A function
declarator is similar to a declarator for a

function returning some-type
except that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter—listopt)

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-list compound-statement
The identifiers in the parameter list, and only those identifiers, can be
declared in the declaration list. Any identifier whose type is not given
is taken to be int. The only storage class that can be specified is
register; if it is specified, the corresponding actual parameter will
be copied, if possible, into a register at the outset of the function.

A simple example of a complete function definition is

C Language Reference 3-41

int max(a, b, c)
int a, b, c;
{

int m;

m= (a >Db) ?2 a : b;
return({(m > c) ? m : c);

}

Here, int is the type-specifier; max (a, b, c) isthe
function-declarator; int a, b, c; isthe declaration-list for the
formal parameters, and { ...} is the block giving the code for the
statement.

The C compiler converts all £1oat actual parameters to double, SO
formal parameters declared £1oat have their declaration adjusted to
read double.

All char and short formal parameter declarations are similarly
adjusted toread int. Also, because a reference to an array in any
context (in particular as an actual parameter) is taken to mean a pointer
to the first element of the array, declarations of formal parameters
declared

array of some-type
are adjusted to read
pointer to some-type

9.2 External data definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (the default) or
static, butnot auto or register.

10. Scope rules

A C program doesn’t have to be compiled all at the same time. The
source text of the program can be kept in several files and precompiled
routines can be loaded from libraries. Communication among the

3-42 A/UX Programming Languages and Tools, Volume 1

functions of a program may be carried out through both explicit calls
and manipulation of external data.

Therefore, there are two kinds of scope to consider: (1) lexical scope,
which is essentially the region of a program within which your program
can use some identifier without drawing ‘‘undefined identifier”’
diagnostics, and (2) scope of externals, which is the scope associated
with external identifiers; it is characterized by the rule that states that
references to the same external identifier are references to the same
object.

10.1 Lexical scope

The lexical scope of identifiers that are declared in external definitions
persists from the definition through the end of the source file in which
they appear.

The lexical scope of identifiers that are formal parameters persists
through the function with which they are associated.

The lexical scope of identifiers that are declared at the head of a block
persists until the end of the block.

The lexical scope of labels is the whole of the function in which they
appear.

In all cases, however, if an identifier is explicitly declared at the head
of a block, including the block constituting a function, any declaration
of that identifier outside the block is suspended until the end of the
block.

Remember also that tags, identifiers associated with ordinary variables,
and identities associated with structure and union members form three
disjoint classes that do not conflict (see ‘‘Structure and Union
Declarations’’ and ‘‘Enumeration Declarations’’ in ‘‘Declarations’’).
Members and tags follow the same scope rules as other identifiers.

The enum constants are in the same class as ordinary variables and
follow the same scope rules.

The typedef names are in the same class as ordinary identifiers.
They may be redeclared in inner blocks, but an explicit type must be
given in the inner declaration.

C Language Reference 3-43

typedef float distance;
{

auto int distance;

The int must be present in the second declaration, or it will be taken
as a declaration with no declarators and with type distance.

10.2 Scope of externals

If a function refers to an identifier that’s declared to be extern,
somewhere among the files or libraries that constitute the complete
program there must be at least one external definition for that identifier.
All functions in a given program that refer to the same external
identifier are referring to the same object, so you must take care that the
type and size you specify in the definition are compatible with those
specified by each function that references the data.

It is illegal to initialize any external identifier explicitly more than once
in the set of files and libraries that make up a multifile program. Your
program can have more than one data definition for any external
nonfunction identifier, however; explicit use of extern does not
change the meaning of an external declaration.

With a more restrictive compiler, the use of the extern storage class
takes on an additional meaning. With such a compiler, the explicit
appearance of the extern keyword in the external data declarations
of identities without initialization indicates that the identifiers’ storage
is allocated elsewhere, either in that file or in another file. Your
program must have exactly one definition of each external identifier
(without extern) in the set of files and libraries composing a multifile
program.

The A/UX C compiler accepts multiply-defined externals. For future
portability of code, however, you might find it easier to observe the
above restrictions in any case. To help you do this, you can use the —M
flag option to 1d, which causes the link editor to check for multiply-
defined externals. (The flag option should be entered on the cc
command line, and will be passed on to 1d by cc.) 1d prints a
warning message if any multiple definitions are found.

3-44 A/UX Programming Languages and Tools, Volume 1

In addition, in A/UX, 14 warns you by default if the size of these
multiple externs differs among the files in which it is found. This will
catch such errors as a variable defined as char in one file and as int
in another. You can use the —t flag option to 1d to disable this check.
To invoke this option on the cc command line, you must pass it
explicitly to 1d via the —W option to cc, as

cc —Wl-t

where —W passes an argument to the link editor (1), and -t is the
argument passed to 1d. This form must be used, as the —t option to
cc is already defined to mean something else.

Together, the —M and —t flag options to 14 allow for simulation of the
more restrictive environment required by other machines. Using these
options, you will find it easier to write code that ports to more
restrictive compilers with fewer, if any, changes.

Identifiers declared stat ic at the top level in external definitions are
not visible in other files. Functions may be declared static. This

provides a way of hiding globals, and hence should be used with
caution.

11. Compiler control lines

The C compiler contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning
with # communicate with this preprocessor. There may be any number
of blanks and horizontal tabs between the # and the directive. These
lines have syntax independent of the rest of the language; they may
appear anywhere. Their effect lasts (independent of scope) until the
end of the source program file.

11.1 Token replacement
A compiler-control line of the form

#define identifier token-string

causes the preprocessor io replace subsequent instances of the identifier
with the given string of tokens. Semicolons in or at the end of the
token string are taken as part of that string. A line of the form

#define identifier (identifier, . . .)token-string

C Language Reference 3-45

where there is no space between the first identifier and the (is a macro
definition with arguments. It may have zero or more formal
parameters. Subsequent instances of the first identifier, followed by a

(, a sequence of tokens delimited by commas, and a) are replaced by
the token string in the definition. Each occurrence of an identifier
mentioned in the formal parameter list of the definition is replaced by
the corresponding token string from the call.

The actual arguments in the call are token strings separated by
commas; however, commas in quoted strings or commas protected by
parentheses do not separate arguments. The number of formal and
actual parameters must be the same. Strings and character constants in
the token-string are scanned for formal parameters, but strings and
character constants in the rest of the program are not scanned for
defined identifiers for replacement.

In both forms the replacement string is rescanned for more defined
identifiers. In both forms a long definition may be continued on
another line by preceding the newline with a backslash (\).

This facility is most valuable for definition of ‘‘manifest constants,”” as
in

#define TABSIZE 100

int table[TABSIZE];
A control line of the form
#undef identifier
causes the identifier’s preprocessor definition (if any) to be dropped.

If a #defined identifier is the subject of a subsequent #define with
no intervening #undef, the two token strings are compared textually.
If the two token strings are not identical (all white space is considered
equivalent), the identifier is considered to be redefined.

11.2 File inclusion
A compiler control line of the form

#include "filename"

3-46 A/UX Programming Languages and Tools, Volume 1

causes that line to be replaced by the entire contents of the file
Sfilename. The named file is first searched for in the directory of the file
containing the #include, and then in a sequence of specified or
standard places. Alternatively, a control line of the form

#include <filename>

searches only the specified or standard places and not the directory of
the #include (how the places are specified is not part of the
language). #includes may be nested.

11.3 Conditional compilation
A compiler control line of the form

#if restricted-constant expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in ‘‘Constant Expressions.’”” Here,
the restricted-constant expression cannot contain sizeof casts or an
enumeration constant.)

A restricted-constant expression may also contain the additional unary
expression

defined identifier
or
defined (identifier)

each of which evaluates to one if the identifier is currently defined in
the preprocessor, and to zero if it is not.

All currently defined identifiers in restricted-constant expressions are
replaced by their token strings (except those identifiers modified by
defined), justas in normal text. The restricted-constant expression
is evaluated only after all expressions have finished. During this
evaluation, all identifiers undefined to the procedure evaluate to zero.

A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor;
that is, whether it has been the subject of a #define control line. Itis
equivalent to #ifdef (identifier) .

C Language Reference 3-47

A control line of the form
#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
Itis equivalent to #if ! defined (identifier) .

All three forms are followed by an arbitrary number of lines that may
include the control line

#else
followed by the control line
#endif

If the checked condition is true, any lines between #else and
#endif are ignored. If the checked condition is false, any lines
between the test and #else or, lacking #else, #endi £, are ignored.

These constructions may be nested.

11.4 Line control

For the benefit of other preprocessors that generate C programs, a line
of the form

#line constant filename

causes the compiler to believe, for purposes of error diagnostics, that
the line number of the next source line is given by the constant and the
current input file is named by filename. If filename is absent, the
remembered filename does not change.

12. Implicit declarations

When you are writing a program, you don’t always have to specify
both the storage class and type of identifiers in a declaration. The
storage class is supplied by the context in external definitions,
declarations of formal parameters, and structure members. In a
declaration inside a function, if you specify a storage class, but no type,
the identifier is assumed to be int. If you specify a type, but no
storage class, the identifier is assumed to be auto. An exception to the
latter rule is made for functions, because aut o functions do not exist.
If the type of an identifier is

3-48 A/UX Programming Languages and Tools, Volume 1

function returning some-type
itis implicitly declared to be extern.

In an expression, an undeclared identifier followed by (is contextually
declared to be function returning int.

13. Types revisited
This section summarizes the operations that can be performed on
objects of certain types.

13.1 Structures and unions

Structures and unions may be assigned, passed as arguments to
functions, and returned by functions. Other plausible operators, such
as equality comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of
the —=> or . must specify a member of the aggregate that is named or
pointed to by the expression on the left. In general, a member of a
union may not be inspected unless that member had a value assigned
more recently than any other member which overlaps the same space.
One special guarantee is made by the language, however, in order to
simplify the use of unions: If a union contains several structures that
share a common initial sequence and the union currently contains one
of these structures, you can inspect the common part of any member in
which it occurs. For example, the following is a legal fragment:

C Language Reference 3-49

union

struct
{
int type;
} n;
struct
{
int type;
int intnode;
} ni;
struct
{
int type:
float floatnode;
} nf;

} u;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)
. sin(u.nf.floatnode)

13.2 Functions

A program can do only two things with a function: call it or take its
address. If the name of a function appears in an expression, not in the
function-name position of a call, a pointer to the function is generated.
Thus, to pass one function to another, your program could include

int £();

g(f);

3-50 A/UX Programming Languages and Tools, Volume 1

The definition of g might read

g (funcp)
int (*funcp) ()
{

(*funcp) () ;

}

Notice that £ must be declared explicitly in the calling routine because
its appearance in g (£) was not followed by (.

13.3 Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is
converted into a pointer to the first member of the array. Because of
this conversion, arrays are not lvalues. By definition, the subscript
operator [] is interpreted in such a way that E1 [E2] is identical to
* ((E1) +(E2)). Because of the conversion rules that apRlly to +, if
E1lis anarray and E2 an integer, E1 [E2] refers to the E2° member
of E1. Therefore, despite its asymmetric appearance, subscripting is a
commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If
E is an n-dimensional array of rank iXjX...xk, then E appearing in an
expression is converted to a pointer to an (n-1)-dimensional array with
rank jx...xk. If the * operator is applied to this pointer, either
explicitly or implicitly as a result of subscripting, the result is the
pointed-to (n-1)-dimensional array, which itself is immediately
converted into a pointer.

For example, consider
int x[3][5]1;

Here x is a 3x5 array of integers. When x appears in an expression, it
is converted to a pointer to (the first of three) five-membered arrays of
integers. In the expression x [1], which is equivalent to * (x+1i), x is
first converted to a pointer as described; then 1 is converted to the type
of %, which involves multiplying i by the length of the object to which
the pointer points, namely, five-integer objects.

C Language Reference 3-51

The results are added and indirection applied to yield an array (of five
integers), which, in turn, is converted to a pointer to the first of the
integers. If there is another subscript, the same argument applies again;
this time the result is an integer.

Arrays in C are stored by rows (last subscript varies most quickly).
The first subscript in the declaration helps determine the amount of
storage consumed by an array, but plays no other part in subscript
calculations.

13.4 Explicit pointer conversions

Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by means of
an explicit type-conversion operator; see ‘‘Unary Operators’” under
‘“Expressions’’ and ‘‘Type Names’’ under ‘‘Declarations.”’

A pointer may be converted to any of the integral types large enough to
hold it. Whether an int or long is required is machine dependent.
The mapping function is also machine dependent, but is intended to be
unsurprising to those who know the addressing structure of the
machine. Details for this machine are given below.

An object of integral type may be converted explicitly to a pointer.
The mapping always carries an integer converted from a pointer back
to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type.
The resulting pointer may cause addressing exceptions upon use if the
subject pointer does not refer to an object suitably aligned in storage. It
is guaranteed that a pointer to an object of a given size may be
converted to a pointer to an object of a smaller size and back again
without change.

For example, a storage-allocation routine might accept a size (in bytes)
of an object to allocate, and return a char pointer,

extern char *alloc():;
double *dp;

dp = (double *) alloc(sizeof (double));
*dp = 22.0 / 7.0;

3-52 A/UX Programming Languages and Tools, Volume 1

The alloc must ensure (in a machine-dependent way) that its return
value is suitable for conversion to a pointer to double; then the use of
the function is portable.

In A/UX, pointers are 32 bits long and measure bytes. This is the same
size as an int or long. The chars have no alignment requirements;
everything else must have an even address.

14. Constant expressions
In several places C requires expressions that evaluate to a constant:

o after case
e as array bounds
e in initializers
In the first two cases, the expression can involve only integer constants,

character constants, casts to integral types, enumeration constants, and
sizeof expressions, possibly connected by the binary operators

+-*x /%8| "
<KL >> == 1= < > <= >= && ||

or by the unary operators

or by the ternary operator

?:
Parentheses can be used for grouping, but not for function calls.

When writing your program, you have more latitude with initializers.
Besides constant expressions as discussed above, you can also use
floating constants and arbitrary casts. You can also apply the unary &
operator to external or static objects and to external or static arrays
subscripted with a constant expression. You can apply the unary &
implicitly by appearance of unsubscripted arrays and functions. The
basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus
a constant.

C Language Reference 3-53

15. Portability considerations

Certain parts of C are inherently machine dependent. The following
list of potential trouble spots is not meant to be complete, but to point
out the main ones.

Purely hardware issues like word size and the properties of
floating-point arithmetic and integer division have proved not to be a
problem. Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension
(converting a negative character into a negative integer) and the order
in which bytes are placed in a word, are nuisances that must be
carefully watched. Most others are only minor problems.

The number of register variables that can actually be placed in
registers varies from machine to machine, as does the set of valid types.
Nonetheless, the compilers all do things properly for their own
machines; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It
is exceedingly unwise to write programs that depend on any of these
properties.

The order of evaluation of function arguments is not specified by the
language. The order in which side effects take place is also
unspecified.

Because character constants are really objects of type int,
multicharacter character constants may be permitted. The specific
implementation is machine dependent, because the order in which
characters are assigned to a word varies from one machine to another.
(See “‘Character Constants’’ for the treatment of multicharacter
character constants on the 68020.)

Fields are assigned to words, and characters to integers, from right to
left on some machines and from left to right on other machines. (Bit
fields run from left to right in this implementation.) These differences
are invisible to isolated programs that do not indulge in type punning
(that is, by converting an int pointer to a char pointer and inspecting
the storage pointed to), but must be accounted for when conforming to
externally imposed storage layouts.

3-54 A/UX Programming Languages and Tools, Volume 1

16. Syntax summary

This summary of C syntax is intended more for aiding comprehension

than as an exact statement of the language.

16.1 Expressions
The basic expressions are

expression:
primary
* expression
& Ivalue
- expression
! expression
~ expression
++ lvalue
—-- lvalue
lvalue ++
lvalue --
sizeof expression
sizeof (type-name)
(type-name) expression

expression binop expression
expression ? expression :

lvalue asgnop expression
expression, expression

primary:
identifier
constant
string
(expression)

primary (expression-listo ;)

primary [expression]
lvalue . identifier
primary -> identifier

C Language Reference

3-55

lvalue:
identifier
primary [expression]
Ivalue . identifier
primary -> identifier
* expression
(lvalue)

The primary-expression operators
L I O e

have highest priority and group left to right. The unary operators
* & - ! ~ 4+ —-- sizeof (type-name)

have priority below the primary operators but above any binary
operator and group right to left. Binary operators group left to right;
they have decreasing priority, as shown here:

binop:
* / 3
+ -
>> <<
< > <= >=
= 1=
&
I
&&

The conditional operator groups right to left. Assignrﬁent operators all
have the same priority and all group right to left.

asgnop:.
= += - *= /= %=
>>= <<= g= "= |=

The comma operator has the lowest priority and groups left to right.

3-56 A/UX Programming Languages and Tools, Volume 1

16.2 Declarations

declaration:
decl-specifiers init-declarator-listop i

decl-specifiers:
type-specifier decl—speciﬁerso .
sc-specifier decl—speciﬁersopt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
basic-type-specifier
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers
basic-type:
char
short
int
long
unsigned
float
double

enum-specifier:
enum {enum-list}

enum identifier {enum-list}
enum identifier

C Language Reference 3-57

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializer
opt

declarator:
identifier
(declarator)
* declarator
declarator ()

declarator [constant-expressionopt]

struct-or-union-specifier:
struct {struct-decl-list}
struct identifier {struct-decl-list}
struct identifier
union {struct-decl-list}
union identifier {struct-decl-list}
union identifier

struct-decl-list.
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

3-58 A/UX Programming Languages and Tools, Volume 1

struct-declarator:
declarator
declarator : constant-expression
: constant-expression
initializer:
= expression
{initializer-list}
= {initializer-list, }

initializer-list:
expression
initializer-list, initializer-list
{initializer-list}
{initializer-list, }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()

abstract-declarator [constant-expressionop .1

typedef-name:
identifier

16.3 Statements

compound-statement:

{declaration-list _ statement-list }
opt opt

declaration-list.
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

C Language Reference 3-59

Statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expopt; expopt; expopt) Statement
switch (expression) statement
case constant-expression: Sstatement
default: statement
break;
continue;
return;
return expression;
goto identifier;
identifier: statement

-

’

16.4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

Sfunction-definition:
type-speciﬁerop . function-declarator function-body

function-declarator:

declarator (parameter—listo

pt)

parameter-list.
identifier
identifier, parameter-list

3-60 A/UX Programming Languages and Tools, Volume 1

function-body:
{ declaration-listopt compound-statement }

data-definition:
externop declaration;
static declaration;
opt
16.5 Preprocessor

#define identifier token-string
#define identifier (identifier, ...) token-string
#undef identifier

#include "filename"
#include <filename >

#1if restricted-constant-expression
#ifdef identifier

#ifndef identifier

#else

#endif

#line constant “filename"

C Language Reference 3-61

Chapter 4
C Implementation Notes

Contents

Introduction
Data representations
Parameter passinginC

Settingupthestack
. Allocation of local variables and registers . . .

. Returning from a function or subroutine
.Systemcalls 0 0 0 .. .

. Optimizations « « « « .« .

© 0 N AW N~

. Use of register variables

[
o

. Miscellaneousnotes

Figures

Figure 4-1. Stack contents after evaluation of function
cal0 0L

Figure 4-2. Stack contents after entry to the function
call <

Figure 4-3. Stack contents after execution of prolog
code00

O O 00 00 00 N W b = e

Chapter 4

C Implementation Notes

1. Introduction

This chapter describes the A/UX 68020 C programming language,
including how data are represented, how data are passed between
functions, the environment of a function, and the calling mechanism for
a function. The information in this chapter is intended for
programmers who must have detailed knowledge of the interface
mechanisms in order to match C code with the assembler. It is also
intended for those who wish to write new system or mathematical
functions.

When a C program is compiled and assembled, the program is split into
three parts:

.text The executable code of the program. The compiler/assembler
combination produces this.

.data The initialized data area. This contains literal constants,
character strings, and so on. The compiler/assembler
combination produces this.

.bss The uninitialized data areas. The loader generates and clears
this area to zero at load time. This is a feature of the system
and can be relied upon.

During execution of a program, the stack area contains indeterminate
data. In other words, its previous contents (if any) cannot be relied

upon.

2. Data representations

In general, all data elements of whatever size are stored such that their
least significant bit is in the highest addressed byte and their most
significant bit is in the lowest addressed byte. The list below describes
the representation of data:

C Implementation Notes 4-1

char
Values of type char occupy 8 bits. Such values can be aligned
on any byte boundary.

short
Values of type short occupy 16 bits. Values of type short are
aligned on word (16-bit) address boundaries.

long
Values of type Long occupy 32 bits. A Long value is the same
as an int value in 68020 C. Values of this type are aligned on
word (16-bit) boundaries.

float
Values of type £1oat occupy 32 bits. All £1loat values are
automatically converted to type double for computation
purposes, except when testing for zero or nonzero. Values of
this type are aligned on word (16-bit) boundaries. A float
value consists of a sign bit, followed by an 8-bit biased exponent,
followed by a 23-bit mantissa (24 bits including the hidden bit).
Values of type £1oat are stored in IEEE Floating Point
Standard P754 representation.

double
Values of type double occupy 64 bits. Values of this type are
aligned on word (16-bit) boundaries. A double value consists
of a sign bit, followed by an 11-bit biased exponent, followed by
a 52-bit mantissa (53 bits including the hidden bit). Values of
type double are stored in IEEE representation.

pointer
All pointers are represented as long (32-bit) values. Pointers are
aligned on word (16-bit) boundaries.

array
The base address of an array value is always aligned on a word
(16-bit) address boundary. Elements of an array are stored
contiguously, one after the other. Elements of multidimensional
arrays are stored in row-major order. That is, the last dimension
of an array varies the most quickly. When a multidimensional
array is declared, it is possible to omit the size specification for
the last dimension. In such a case, what is allocated is actually

4-2 A/UX Programming Languages and Tools, Volume 1

an array of pointers to the elements of the last dimension.

struct and union
Within structures and unions, it is possible to obtain unfilled
holes of size char. This is because the compiler rounds
addresses up to 16-bit boundaries to accommodate word-aligned
elements.

This situation can best be demonstrated by an example. Consider
the following structure:

struct {
int x; /* This is a 32-bit element */
char y; /* Takes up a single byte */
short z; /* Aligned on 16-bit boundary */
}:

The total number of bytes declared above is seven: four for the
int, one for the char, and two for the short.

In reality, the z field, which is a short, is aligned on a 16-bit
boundary by the C compiler. In this case, the compiler inserts a
hole after the char element y, to align the short element z.
The net effect of these machinations is a structure that behaves

like this:
struct {
int X; /* This is a 32-bit element */
char vy: /* Takes up a single byte */
char dummy; /* Fills the structure */
short z; /* Aligned to a 16-bit boundary */

}:

The C compiler never reorders any parts of a structure. Similar
considerations apply to arrays of structures or unions. Each
element of an array (other than an array of char) begins on a
16-bit boundary.

For a detailed treatment of data storage, consult The C Programming
Language by Kernighan and Ritchie.

C Implementation Notes 4-3

3. Parameter passing in C

The C programming language is unique, in that it really has only
functions. The effect of a subroutine is achieved simply by having a
function that does not return a value. The type of such a function
should be void.

Another unique feature of C is that parameters to functions are always
passed by value. The C programming language has no concept of
declaring parameters to be passed by reference, as in languages such as
Pascal. To pass a parameter by reference in a C program, the
programmer must pass the address of the parameter explicitly. The
called function must be aware that it is receiving an address instead of
a value, and the appropriate code must be present to handle that case.

When a function is called, its parameters (if any) are evaluated and are
then pushed onto the stack in reverse order. All parameters are pushed
onto the stack as 32-bit 1ongs, except for £loats and doubles,
which are pushed as 64-bit doubles. If a parameter is shorter than 32
bits, it is expanded to a 32-bit value with sign extension, if necessary.
The calling procedure is responsible for popping the parameters off the
stack.

Consider a C function call such as
ferry (charon, 7, &styx, 1<<10);

After parameter evaluation, but just before the call, the stack looks like
this:

Figure 4-1. Stack contents after evaluation of function call

$sp - Value of variable charon

7

Address of variable styx

1024
...Previous stack contents. ..

Functions are called by issuing either a bsr instructionora jsr
instruction, depending upon whether the callee is within a 16-bit

4-4 A/UX Programming Languages and Tools, Volume 1

addressing range or not, and whether the C optimizer was used. The
bsr or jsr instruction pushes the return address upon the stack and
then branches to the indicated function. After the call, on entry to the
function, the stack looks like this:

Figure 4-2. Stack contents after entry to the function call

gsp - Return address

Value of variable charon

7

Address of variable styx

1024
...Previous stack contents. ..

In each function, register $a6 is used as a stack frame base. The stack
location referenced by %a 6 contains the return address.

4. Setting up the stack

Upon entry into the function, the prolog code is executed. The prolog
code allocates enough space on the stack for the local variables, plus
enough space to save any registers that this function uses. The prolog
code looks like this:

link.1 %fp, &F%1
movm. 1l &M%1, (4, 3sp)

The F%1 constant is the size of the stack frame for the local variables,
plus 4 bytes for each ordinary register variable and 12 bytes for each
float or double register variable.

The M%1 constant is a mask to determine which registers need to be
saved on the stack for this particular function. This is dependent on the
register variables that the programmer declared for that particular
routine. If the function has floating-point register variables, the

movm. 1 instruction is followed by

fmovm &FPM%1, (FPO%1l, %sp)

which saves the floating-point registers used by the routine for register

C Implementation Notes 4-5

variables of types f1oat and double. FPO%1 is the offset of the
floating register save area, and FPM%1 is a mask to tell the fmovm
instruction which registers to save.

5. Allocation of local variables and registers

A total of ten registers are available for register variables. Six of these
are the 68020 data (%d) registers, and four are the 68020 address (%a)
registers. The available %a registers are $a2 through %a5. The
available %d registers are $d2 through $d7. There are also six
floating-point registers on the 68881 (% £p2 through % fp7) available
for register variables of type £1oat and double.

The location of a function’s return value depends on the type of the
function. Functions that return integral types (char, short, int,
long, or the unsigned versions of any of these) return their results
in $40. Functions returning pointers return their results in $a0, while
float and double functions use $£p0. Structure-valued and
union-valued functions return their results in $d0 if the entire st ruct
or union will fit in 32 bits; otherwise, the return value is stored in a
special temporary area inside the function, a pointer to this temporary
area is returned in a0, and, if the return value is used, code is
generated to copy the returned st ruct or union into the appropriate
place.

Remember that undeclared functions are assumed to be of type int. It
follows that functions must be declared if they return values of type
float, double, pointer, struct, or union, or else the
generated code will be wrong. Use the 1int program to find places
where functions have not been declared (see Chapter 8, ‘“1int
Reference’’).

pointer register variables are assigned only to address registers,
float and double register variables only to floating-point registers.
Other register variables are assigned only to data registers. Register
declarations are ignored for variables of type st ruct or union.

Register variables are allocated to registers in the order in which they
are declared in the C source program, starting at the low end (%3a2,
$d2 or $£p2) of the appropriate type of register.

4-6 A/UX Programming Languages and Tools, Volume 1

If there are more register variables of either kind than there are
registers to accommodate them, the remaining variables are allocated
on the stack as local variables, just as if the register attribute had never
been given in the declaration.

When the prolog code has completed, the stack looks like this:
Figure 4-3. Stack contents after execution of prolog code

$sp — | Nextargument list starts here

Register save area

Floating register save area

Local variables

%a6 — old %ab

Return address

Value of variable charon

7

Address of variable styx

1024
...Previous stack contents...

C Implementation Notes 4-7

6. Returning from a function or subroutine

Upon reaching a return statement, either explicit or implicit, the
function executes the epilog code. If the function has a return value, it
is generated from the line

return (expression) ;

The value of expression (converted, if necessary, to match the type of
the function) is placed in register $d0, %$a0, or $£p0, as appropriate,
and the epilog code is executed to effect a return from the function.
The epilog code looks like this:

movm. 1 (4, %sp), &M%31
unlk 3fp
rts

The movm. 1 instruction restores any registers which were saved
during the prolog. If there were floating-point register variables, the
movm. 1 instruction is followed by

fmovm (FPO%1, %sp), &FPM%1

which restores the floating-point registers that were saved. The stack
frame base pointer in % £p is then put back to the point where $fp
once again points to the return address, and the function is exited via
the rts instruction, which pops the stack to the state it was in prior to
the original call and returns to the function that called it.

7. System calls

The C compiler generates code for system calls by calling library
routines that place the system call number in register $d0 and execute
a TRAP &0 instruction.

Parameters are passed on the user stack in the C calling convention.
On return from the system call, errors are signaled by the carry flag
being set. The C interface to the system calls typically returns a —1 on
error, as the carry flag cannot be tested from C.

8. Optimizations

The C compiler may be run to optimize the code it generates, making
that code both compact and fast. The command line

4-8 A/UX Programming Languages and Tools, Volume 1

cc -0 file

generates optimized code.

9. Use of register variables

The decision to declare a variable in a register should depend on the
number of times that variable is referenced during the execution of a
function. If a variable is used more than twice in a function, it may be
declared as a register variable. If a variable is used less than twice in a
function, it is not useful to declare it as a register variable, because the
amount of time spent saving and restoring that register is more than the
time saved in using a register instead of a location on the stack.

10. Miscellaneous notes
The object files created by the assembler and linker use the common
object file format (see Chapter 15, ‘‘COFF Reference’’).

The C compiler will accept multiply-defined external variables, as long
as no more than one of the definitions includes an initialization.

The C compiler supports floating and double variables by using the
68881. Floating-point data values are represented in IEEE standard
floating-point format.

C Implementation Notes 4-9

Chapter 5

The Standard C Library (1ibc)

Contents

1. Introduction
2. Including functions
3. Including declarations
4. Input/outputcontrol

4.1 File access functions . . .
4.2 File status functions
4.3 Inputfunctions
44 Output functions
4.5 Miscellaneous functions . .

5. String manipulation functions . . .

. Character manipulation

6.1 Character testing functions . .
6.2 Character translation functions

7. Time functions

8. Miscellaneous functions e e e

8.1 Numeric conversion
8.2 DES algorithm access . . .
83 Groupfileaccess
8.4 Password file access . .
8.5 Parameteraccess
8.6 Hash table management . .
8.7 Binary trec management . .
8.8 Table management
89 Memory allocation
8.10 Pseudorandom number generation
8.11 Signal handling functions . .

.

.

OO 00 OO i B D WNN N = =

8.12 Miscellaneous

.

16

Chapter 5
The Standard C Library (1ibc)

1. Introduction

This chapter describes the A/UX C library. A library is a collection of
related functions and/or declarations. Using a library simplifies
programming effort by linking what is needed, allowing use of locally
produced functions, and so on. All the functions described in this
chapter are also described in Section 3 of A/UX Programmer’s
Reference. Most of the declarations described in this chapter are also
described in Section 5 of A/UX Programmer’ s Reference.

This C library is the basic library for C language programs. The C
library is made up of functions and declarations used for file access,
string testing and manipulation, character testing and manipulation,
memory allocation, and other functions. This library is described in
greater detail further on in this chapter.

2. Including functions

The C library is made up of several types of functions. When a
program is being compiled, the compiler automatically searches the C
language library to locate and include functions that are used in the
program. All C library functions are loaded automatically by the
compiler, although you must sometimes include the proper header file
with its various declarations in your program for the functions to work
properly. C library functions are divided into the following types:

« Input/output control

e String manipulation

o Character manipulation
o Time functions

o Miscellaneous functions

The Standard C Library (1ibc) 5-1

3. Including declarations

Some functions need a set of declarations to operate properly. A set of
declarations is stored in a file called a header file (witha .h
extension). Header files for the C library are stored in the
/usr/include directory. To include a certain header file in your
program, you must specify the following near the top of the file
containing the program:

#include <file.h>

where file . h is the name of the header file. Because the header files
define the type of functions and various preprocessor constants, you
must include them before invoking the functions they declare.

4. Input/output control

C library functions are automatically included as needed during the
compiling of a C language program. No command line request is
needed.

You need to include the header file required by the input/output
functions near the beginning of each file that references an input or
output function:

#include <stdio.h>
The input/output functions are grouped into the following categories:
o File access
o File status
e Input
o Output
¢ Miscellaneous
4.1 File access functions

Function Reference Brief description

fclose fclose(3S) Close an open stream.

fdopen fopen(3S) Associate stream with an
open(2)ed file.

5-2 A/UX Programming Languages and Tools, Volume 1

fileno ferror(3S)

fopen fopen(3S)
freopen fopen(3S)
fseek fseek(3S)
pclose popen(3S)
popen popen(3S)
rewind fseek(3S)
setbuf setbuf(3S)
vsetbuf setbuf(3S)

4.2 File status functions

Function Reference
clearerr ferror(3S)
feof ferror(3S)
ferror ferror(3S)
ftell fseek(3S)

The Standard C Library (1ibc)

File descriptor associated with
an open stream.

Open a file with specified
permissions and return a
pointer to a stream that is used
in subsequent references to the
file.

Substitute named file in place
of open stream.

Reposition the file pointer.
Close a stream opened by
popen.

Create pipe as a stream

between calling process and
command.

Reposition file pointer at
beginning of file.
Assign buffering to stream.

Similar to setbuf, but
allowing finer control.

Brief description
Watch for side effects. Reset
error condition on stream.

Watch for side effects. Test
for end-of-file (EOF) on
stream.

Watch for side effects. Test
for error condition on stream.

Return current position in the
file.

4.3 Input functions

Function
fgetc
fgets
fread

fscanf

getc

getchar

gets

getw

scanf

sscanf

ungetc

Reference
getc(3S)
gets(3S)
fread(3S)

scanf(3S)
getc(3S)

getc(3S)
gets(3S)

getc(3S)
scanf(3S)

scanf£(3S)
ungetc(3S)

4.4 Output functions

Function
fflush

fprintf
fputc
fputs
fwrite

printf

Reference
fclose(3S)

print£(3S)
putc(3S)
puts(3S)
fread(3S)

print£(3S)

Brief description
True function for get c(3S).
Read string from stream.

General buffered read from
stream.

Formatted read from stream.

Watch for side effects. Read
character from stream.

Watch for side effects. Read
character from standard input.

Read string from standard
input.
Read word from stream.

Read using format from
standard input.

Formatted read from a string.

Put back one character on
stream.

Brief description

Write all currently buffered
characters from stream.

Formatted write to stream.
True function for putc (3S).
Write string to stream.

General buffered write to
stream.

Print using format to standard
output.

A/UX Programming Languages and Tools, Volume 1

putc

putchar

puts
putw
sprintf
vfprintf

vprintf

vsprintf

4.5 Miscellaneous functions

Function

ctermid

cuserid

system
tempnam

tmpnam

tmpfile

putc(3S)
putc(3S)

puts(3S)
putc(3S)
print£(3S)
vprint (3C)

vprint(3C)

vprint £(3C)

Reference
ctermid(3S)

cuserid(3S)

system(3S)
tmpnam(3S)

tmpnam(3S)
tmpfile(3S)

Watch for side effects. Write
character to standard output.

Watch for side effects. Write
character to standard output.

Write string to standard output.
Write word to stream.
Formatted write to string.

Print using format to stream by
varargs(5) argument list.
Print using format to standard
output by varargs(5)
argument list.

Print using format to stream
string by varargs(5)
argument list.

Brief description

Return filename for controlling
terminal.

Return login name for owner
of current process.

Execute shell command.
Create temporary filename
using directory and prefix.
Create temporary filename.
Create temporary file.

5. String manipulation functions

These functions are used to locate characters within a string or to copy,
concatenate, or compare strings. These functions are automatically
located and loaded during the compiling of a C language program. No
command line request is needed because these functions are part of the
C library. The string manipulation functions are declared in a header

The Standard C Library (1ibc)

5-5

file that you should include near the beginning of each file that uses any

of these functions:

#include <string.h>

Function
strcat
strchr
strcmp
strcpy
strcspn

strlen

strncat

strncmp

strncpy

strpbrk

strrchr

strspn

strtok

6. Character manipulation

Reference

string(3C)
string(3C)
string(3C)
string(3C)
string(3C)

string(3C)
string(3C)

string(3C)
string(3C)
string(3C)
string(3C)
string(30C)

string(3C)

Brief description
Concatenate two strings.
Search string for character.
Compares two strings.
Copy string.

Length of initial string not
containing set of characters.
Length of string.
Concatenate two strings with a
maximum length.

Compare two strings with a
maximum length.

Copy string over string with a
maximum length.

Search string for any set of
characters.

Search string backward for
character.

Length of initial string
containing set of characters.
Search string for token
separated by any of a set of
characters.

The following functions and declarations are used for testing and
translating ASCII characters. These functions are located and loaded
automatically during the compiling of a C language program. No
command line request is needed because these functions are part of the

C library.

5-6

A/UX Programming Languages and Tools, Volume 1

You should include the declarations associated with these functions
near the beginning of the file being compiled:

#include <ctype.h>

6.1 Character testing functions

These functions can be used to identify characters as uppercase or
lowercase letters, digits, punctuation, and so on.

Function

isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower

isprint

ispunct
isspace
isupper

isxdigit

Reference
ctype(3C)

ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)

ctype(3C)

ctype(3C)
ctype(3C)
ctype(BC)

ctype(3C)

The Standard C Library (1ibc)

Brief description

Return true if character is
alphanumeric.

Return true if character is
alphabetic.

Return true if integer is an
ASCII character.

Return true if character is a
control character.

Return true if character is a
digit.

Return true if character is a
printable character.

Return true if character is a
lowercase letter.

Return true if character is a
printing character including
space.

Return true if character is a
punctuation character.
Return true if character is a
white space character.
Return true if character is an
uppercase letter.

Return true if character is a
hex digit.

5-7

6.2 Character translation functions
These functions provide translation of uppercase to lowercase,
lowercase to uppercase, and integer to ASCIL.

Function Reference Brief descriptlon

toascii conv(3C) Convert integer to ASCII
character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

7. Time functions

These functions are used for gaining access to and reformatting the
system’s idea of the current date and time. These functions are located
and loaded automatically during the compiling of a C language
program. No command line request is needed because these functions
are part of the C library.

You should include the header file associated with these functions near
the beginning of any file using the time functions:

#include <time.h>

These functions (except t zset) convert a time such as returned by
time(2).

Function Reference Brief description

asctime ctime(3C) Return string representation of
date and time.

ctime ctime(3C) Return string representation of
date and time, given integer
form.

gmt ime ctime(3C) Return Greenwich mean time.

localtime ctime(3C) Return local time.

tzset ctime(3C) Set time-zone field from
environment variable.

5-8 A/UX Programming Languages and Tools, Volume 1

8. Miscellaneous functions
These functions support a wide variety of operations:

o Numeric conversion

o DES algorithm access

o Group file access

o Password file access

o Parameter access

o Hash table management

o Binary tree management

« Table management

e Memory allocation

¢ Pseudorandom number generation

These functions are automatically located and included in a program
being compiled. No command line request is needed because these
functions are part of the C library.

Some of these functions require declarations to be included. These are
described following the descriptions of the functions.

8.1 Numeric conversion
The following functions perform numeric conversion.

Function Reference Brief description

a64l a641(30) Convert string to base 64
ASCIL.

atof atof(3C) Convert string to floating.

atoi ato£(3C) Convert string to integer.

atol ato£(3C) Convert string to long.

frexp frexp(3C) Split floating into mantissa and
exponent.

13tol 13tol(3C) Convert 3-byte integer to long.

The Standard C Library (1ibc) ‘ 5-9

1tol3 13tol1(30) Convert long to 3-byte integer.

ldexp frexp(3C) Combine mantissa and
. exponent.
l64a a641(30) Convert base 64 ASCII to
string.
modf frexp(3C) Split mantissa into integer and
fraction.

8.2 DES algorithm access

The following functions allow access to the Data Encryption Standard
(DES) algorithm used on the A/UX operating system. (Not present in
international distributions.) The DES algorithm is implemented with
variations to frustrate use of hardware implementations of the DES for
key search.

Function Reference Brief description

crypt crypt(3C) Encode string.

encrypt crypt(30) Encode/decode string of 0’s
and 1’s.

setkey crypt(30) Initialize for subsequent use of
encrypt.

8.3 Group file access

The following functions are used to obtain entries from the group file
(stored in /etc/group). You must include declarations for these
functions in the program being compiled with the line

#include <grp.h>

Function Reference Brief description

endgrent getgrent(3C) Close group file being
processed.

getgrent getgrent(3C) Get next group file entry.

getgrgid getgrent(3C) Return next group with
matching group ID.

5-10 A/UX Programming Languages and Tools, Volume 1

getgrnam getgrent(3C) Return next group with

matching name.

setgrent getgrent(3C) Rewind group file being
processed.

fgetgrent getgrent(3C) Get next group file entry from
a specified file.

8.4 Password file access

These functions are used to search for and gain access to information
stored in the password file (/etc/passwd). Some functions require
declarations that you can include in the program being compiled by
adding the line

#include <pwd.h>

Function Reference Brief description

endpwent getpwent(3C) Close password file being
processed.

getpw getpw(3C) Search password file for user
ID.

getpwent getpwent(3C) Get next password file entry.

getpwnam getpwent(3C) Return next entry with
matching name.

getpwuid getpwent(3C) Return next entry with
matching user ID.

putpwent putpwent(3C) Write entry on stream.

setpwent getpwent (3C) Rewind password file being
examined.

fgetpwent getpwent(3C) Get next password file entry
from a specified file.

8.5 Parameter access
The following functions provide access to several different types of

The Standard C Library (1ibe) 5-11

parameters. None require any declarations.

Function Reference Brief description

getopt getopt(3C) Get next option from option
list.

getcwd getcwd(3C) Return string representation of
current working directory.

getenv getenv(3C) Return string value associated
with environment variable.

getpass getpass(3C) Read string from terminal
without echoing.

putenv putenv(3C) Change or add value of an
environment variable.

8.6 Hash table management

The following functions are used to manage hash search tables. You
should include the header file associated with these functions in the
program being compiled. You can do so by including the line

#include <search.h>

near the beginning of any file using the search functions.

Function Reference Brief description
hcreate hsearch(3C) Create hash table.
hdestroy hsearch(3C) Destroy hash table.
hsearch hsearch(3C) Search hash table for entry.

8.7 Binary tree management

These functions are used to manage a binary tree. You should include
the header file associated with these functions near the beginning of
any file using the search functions:

#include <search.h>

Function Reference Brief description
tdelete tsearch(3C) Delete nodes from binary tree.

5-12 A/UX Programming Languages and Tools, Volume 1

tfind tsearch(3C) Find element in binary tree.

tsearch tsearch(30) Look for and add element to
binary tree.
twalk tsearch(3C) Walk binary tree.

8.8 Table management

These functions are used to manage a table. Because none of these
functions allocate storage, sufficient memory must be allocated before
using these functions. You should include the header file associated
with these functions near the beginning of any file using the search
functions:

#include <search.h>

Function Reference Brief description

bsearch bsearch(3C) Search table using binary
search.

lsearch lsearch(3C) Look for and add element in
table (linear search).

1find lsearch(3C) Find element in table (lincar
search).

gsort gsort(3C) Sort table using quick-sort
algorithm.

8.9 Memory allocation
To use these routines, either include the following line in your

program:
include <malloc.h>

or compile your program with the command:
cc [option...] [file...]-Imalloc

or both.

The following functions provide a means by which memory can be

The Standard C Library (1ibc) 5-13

dynamically allocated or freed:

Function Reference Brief description

calloc malloc(3C) Allocate zeroed storage.

free malloc(3C) Free previously allocated
storage.

malloc malloc(3C) Allocate storage.

realloc malloc(3C) Change size of allocated
storage.

The following is another set of memory allocation functions available.
They are faster than the (3C) versions, but require more memory.

Function Reference Brief description

calloc malloc(3X) Allocate zeroed storage.

free malloc(3X) Free previously allocated
storage.

malloc malloc(3X) Allocate storage.

mallopt malloc(3X) Control allocation algorithm.

mallinfo malloc(3X) Space usage.

realloc malloc(3X) Change size of allocated
storage.

8.10 Pseudorandom number generation

The following functions are used to generate pseudorandom numbers.
The function names that end with 48 are a family of interfaces to a
pseudorandom number generator based upon the linear congruent
algorithm and 48-bit integer arithmetic. The rand and srand
functions provide an interface to a multiplicative congruential random
number generator with period of 232.

Note: For intervals, the notation [a to b] means that a and b are
included in the range, whereas the notation (a to b) means that a
and b are not included, but all points in between are in the
range. Therefore, the notation [a to b) means that a is included,
as is everything from a to b, and b is not included.

5-14 A/UX Programming Languages and Tools, Volume 1

Function Reference Brief description

drand48 drand48(3C) Random double over the
interval [0 to 1).

lcong48 drand48(3C) Set parameters for drand48,
lrand48, and mrand48.

lrand48 drand48 (3C) Random long over the
interval [0 to 231).

mrand48 drand48(3C) Random long over the
interval [-231 to 231).

rand rand(3C) Random integer over the
interval [0 to 32767).

seed48 drand48(3C) Seed the generator for
drand48, 1rand48, and
mrand48.

srand rand(3C) Seed the generator for rand.

srand48 drand48(3C) Seed the generator for

drand48, 1rand48, and
mranb48 using a long.

8.11 Signal handling functions

The functions gsignal and ssignal implement a software facility
similar to signal(3) in A/UX Command Reference. This facility lets
you indicate the disposition of error conditions and allows you to
handle signals for your own purposes. The declarations associated
with these functions should be included near the beginning of any file
using the signal handling functions.

#include <signal.h>

These declarations define ASCII names for the 15 software signals.

Function Reference Brief description
gsignal ssignal(3C) Send a software signal.
ssignal ssignal(3C) Arrange for handling of

software signals.

The Standard C Library (1ibc) 5-15

8.12 Miscellaneous
These functions do not fall into any previously described category.

Function
abort

abs

ecvt
fcvt

gcvt

isatty

mktemp

monitor

swab

ttyname

5-16

Reference
abort(3C)

abs(3C)

ecvt(30)
ecvt(3C)

ecvt(3C)

ttyname(3C)

mktemp(3C)

monitor(3C)

swab(3C)
ttyname(3C)

Brief description

Cause an IOT signal to be sent
to the process.

Return the absolute integer
value.

Convert double to string.
Convert double to string
using Fortran format.
Convert double to string
using Fortran F or E format.

Test whether integer file
descriptor is associated with a
terminal.

Create filename using
template.

Cause process to record a
histogram of program counter
location.

Swap and copy bytes.

Return pathname of terminal
associated with integer file
descriptor.

A/UX Programming Languages and Tools, Volume 1

Chapter 6
The C Math Library

Contents

1. Introduction

2. The math library functions
2.1 Trigonometric functions
2.2 Bessel functions
2.3 Hyperbolic functions
2.4 Miscellaneous functions

W NN = e

Chapter 6
The C Math Library

1. Introduction

This chapter describes the A/UX math library. A libraryisa
collection of related functions and/or declarations. All the functions
described here are also described in Section 3 of A/UX Programmer’s
Reference. Most of the declarations described in this chapter can be
found in math(5) in A/UX Programmer’s Reference.

The math library is made up of functions and a header file. The
functions may be located and loaded during compile time if you make
this request on the command line:

ccfile.c —1m

This causes the link editor to search the math library. In addition to the
request to load the functions, you should include the header file of the
math library near the beginning of the first file being compiled.

#include <math.h>
2. The math library functions
The math library functions are grouped into the following categories:
o Trigonometric functions
« Bessel functions
« Hyperbolic functions
» Miscellaneous functions

2.1 Trigonometric functions

These functions are used to compute angles (in radian measure), sines,
cosines, and tangents. All of these values are expressed in double
precision.

The C Math Library 6-1

Function
acos
asin
atan
atan2
cos

sin

tan

Reference
trig(3M)
trig(3M)
trig(3M)
trig(3M)
trig(3M)
trig(3M)
trig(3M)

2.2 Bessel functions
These functions calculate Bessel functions of the first and second kinds
of several orders for real values. j0, j1, and jn are Bessel functions
of x of the first kind, while y0, y1, and yn are Bessel functions of x of
the second kind. The value of x must be positive.

Function
30
j1
jn
yO0
vl
yn

Reference

bessel(3M)
bessel(3M)
bessel(3M)
bessel(3M)
bessel(3M)
bessel(3M)

2.3 Hyperbolic functions
These functions are used to compute the hyperbolic sine, cosine, and

tangent for real values.
Function Reference
cosh sinh(3M)
sinh sinh(3M)
tanh sinh(3M)
6-2

Brief description

Return arc cosine.

Return arc sine.

Return arc tangent.

Return arc tangent of a ratio.
Return cosine.

Return sine.

Return tangent.

Brief description

Give result of order 0.
Give result of order 1.
Give result of order n.
Give result of order 0.
Give result of order 1.

Give result of order n.

Brief description
Return hyperbolic cosine.
Return hyperbolic sine.
Return hyperbolic tangent.

A/UX Programming Languages and Tools, Volume 1

2.4 Miscellaneous functions

These functions cover a wide variety of operations, such as natural
logarithm, exponential, and absolute value. In addition, several are
provided to truncate the integer portion of double-precision numbers.

Function

ceil

exp

fabs

floor

fmod

gamma

hypot

log

logl0

matherr

pow

Reference
floor(3M)

exp(3M)

floor(3M)

floor(3M)

floor(3M)

gamma(3M)

hypot(3M)

exp(3M)

exp(3M)

matherr(3M)
exp(3M)

The C Math Library

Brief description

Return the smallest integer not
less than a given value.

Return the exponential
function of a given value.

Return the absolute value of a
given value.

Return the largest integer not
greater than a given value.

Return the remainder produced
by the division of two given
values.

Return the natural log of the
absolute value of the result of
applying the gamma function
to a given value.

Return the square root of the
sum of the squares of two
numbers.

Return the natural logarithm of
a given value.

Return the logarithm base ten
of a given value.

Error-handling function.

Return the result of a given
value raised to another given
value.

6-3

sqgrt exp(3M) Return the square root of a
given value.

6-4 A/UX Programming Languages and Tools, Volume 1

Chapter 7
The C Object Library

Contents

1. Introduction
2. The object library functions .

3. Common object file interface macros (1dfcn . h)

Chapter 7
The C Object Library

1. Introduction

This chapter describes the A/UX object library. A library is a
collection of related functions and/or declarations. All the functions
described in this chapter are also described in Section 3 of A/UX
Programmer’s Reference. Most of the declarations described in this
chapter can be found in Section 5 of A/UX Programmer’ s Reference.

The object file library provides functions for the access and
manipulation of object files. Some of these functions locate portions of
an object file such as the symbol table, the file header, sections, and
line number entries associated with a function. Other functions read
these types of entries into memory. For a description of object file
format, see Chapter 15, ‘‘COFF Reference’” in this manual.

These functions are usually used only by compilers, link editors,
cross-reference generators, and so on. Most applications programmers
will not need to use them.

The object file library functions reside in /usr/1ib/1libld.a and
may be located and loaded at compile time if you give the following
command line request:

cc file -11d

This command causes the link editor to scarch the object file library.
The argument —11d must appear after all files that reference functions
in 1ibld.a.

In addition, you must include various header files:

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

The C Object Library 7-1

2. The object library functions

Function

ldaclose

ldahread
ldaopen

ldclose

ldfhread

ldgetname

ldlinit

ldlitem

ldlread

ldlseek

ldnlseek

ldnrseek

7-2

Reference
ldclose(3X)

ldahread(3X)

ldopen(3X)

ldclose(3X)

ldfhread(3X)

ldgetname(3X)

1dlread(3X)

ldlread(3X)

1ldlread(3X)

ldlseek(3X)

ldlseek(3X)

ldrseek(3X)

Brief description

Close object file being
processed.

Read archive header.

Open object file for reading.

Close object file being
processed.

Read file header of object file
being processed.

Retrieve the name of an object
file symbol table entry.

Prepare object file for reading
line number entries via
ldlitem.

Read line number entry from
object file after 1d1linit.

Read line number entry from
object file.

Seek to the line number entries
of the object file being
processed.

Seek to the line number entries
of the object file being
processed given the name of a
section.

Seek to the relocation entries
of the object file being
processed given the name of a
section.

A/UX Programming Languages and Tools, Volume 1

ldnshread

ldnsseek

ldohseek

ldopen

ldrseek

ldshread

ldsseek

ldtbindex

ldtbread

ldtbseek

sgetl

sputl

ldshread(3X)

ldsseek(3X)

ldohseek(3X)

ldopen(3X)
ldrseek(3X)

ldshread(3X)

ldsseek(3X)

1ldtbindex(3X)

ldtbread(3X)

ldtbseek(3X)

sput 1(3X)

sput1(3X)

The C Object Library

Read section header of the
named section of the object file
being processed.

Seek to the section of the
object file being processed
given the name of a section.

Seek to the optional file header
of the object file being
processed.

Open object file for reading.

Seck to the relocation entries
of the object file being
processed.

Read section header of an
object file being processed.

Seek to the section of the
object file being processed.

Return the long index of the
symbol table entry at the
current position of the object
file being processed.

Read a specific symbol table
entry of the object file being
processed.

Seek to the symbol table of the
object file being processed.

Access long integer datain a
machine-independent format.

Translate a long integer into a
machine-independent format.

7-3

3. Common object file interface macros
(1dfcn.h)

The interface between the calling program and the object file access

routines is based on the defined type 1dfile, which is defined in the

header file 1dfcn.h (see 1dfcn(3X)). The primary purpose of this

structure is to provide uniform access both to simple object files and to

object files that are members of an archive file.

The function 1dopen allocates and initializes the 1dfile structure
and returns a pointer to that structure to the calling program. You can
gain access to the fields of the 1dfile structure individually through
the following macros:

Macro Reference Brief description
type 1dfcn(3X) Return the magic number of
the file, which is used to

distinguish between archive
files and simple object files.

IOPTR 1dfen(3X) Return the file pointer that was
opened by 1dopen, and is
used by the input/output
functions of the C library.

OFFSET 1dfcn(3X) Return the file address of the

beginning of the object file.
This value is nonzero only if
the object file is a member of
the archive file.

HEADER 1dfen(3X) Access the file header structure
of the object file.

Additional macros are provided to access an object file. These macros
parallel the input/output functions in the C library; each macro
translates a reference to an 1dfile structure into a reference to its file
descriptor field. The available macros are described in 1dfcn(3X) in
A/UX Programmer’ s Reference.

7-4 A/UX Programming Languages and Tools, Volume 1

Chapter 8
lint Reference

Contents

1. 1lint: A C program checker

2. Usinglint
21 Options

3. Message categories .

3.1 Unused variables and functions

3.2 Set/used information
3.3 Flow of control .
34 Function values . .
3.5 Typechecking .
36 Typecasts . .

.

.

.

.

.

.

.

3.7 Nonportable character use .
3.8 Assignments of longs to ints

3.9 Strange constructions
3.10 Old syntax . . .
3.11 Pointer alignment .

.

.

.

3.12 Multiple uses and side effects .

Neli- RN le Ne WY B

Chapter 8

lint Reference

1. lint: A C program checker

The 1int program can be used to detect bugs, obscurities,
inconsistencies, and portability problems in C programs. It is generally
more restrictive than the C compiler. Constructions that the C compiler
will accept without complaint, 1int considers wasteful or error prone.
The 1int program is also more rigid than the C compiler with regard
to the C language type rules. Also, 1int accepts multiple files and
library specifications and checks them for consistency.

You can suppress some or all of 1int’s checking mechanisms if they
aren’t necessary for a given application.

2. Using 1lint
The 1int command has the form

lint [option ... file ... library-descriptor ...

where options are optional flags that control 1int checking and
messages, files are the files to be checked by 1int (files containing C
language programs must have a . ¢ extension; this is mandatory for
both 1int and the C compiler), and library-descriptors are the names
of the libraries to be used in checking the program.

The 1int library files are processed almost exactly like ordinary
source files. The only difference is that functions which are defined in
a library file, but aren’t used in a source file, do not result in messages.

The 1int program does not simulate a full library search algorithm
and will print messages if the source files contain a redefinition of a
library routine.

2.1 Options

‘When you use more than one option, you should combine them into a
single argument, such as -ab or -xha.

lint Reference 8-1

The options that are currently supported by the 1int program are

—-a

=C

_ly

Use this option to suppress messages concerning the
assignment of 1ong values to variables that are not
long. This option is often useful because there are a
number of legitimate reasons for assigning 1ong values
to type int.

Use this option to suppress messages concerning break
statements that are unreachable. For example, programs
generated by yacc and lex (see A/UX Programming
Languages and Tools, Volume 2, for information on
these programs) may have hundreds of unreachable
break statements. If the C compiler optimizer were
used, these unreachable statements would be of little
importance, but the resulting messages would clutter up
the 1int output. The -b option takes care of this
problem.

Use this option to treat casts as though they were
assignments subject to warning messages. (The default
is to pass all legal casts without comment, no matter
how bizarre the type mixing might seem.)

Use this option only to suppress the use of heuristics.
By default, heuristics are used to check for wasteful or
error-prone constructions and to detect bugs. For
example, by default, 1 int prints messages about
variables declared in inner blocks whose names conflict
with the names of variables declared in outer blocks.
Though this construction is considered legal, it is bad
programming style, and frequently a bug.

Use this option to specify libraries you wish to include
and have checked by 1int. The source code is tested
for compatibility with these libraries. This is done by
getting access to library description files whose names
are constructed from the library arguments. These files
must all begin with the comment

/¥ LINTLIBRARY */

A/UX Programming Languages and Tools, Volume 1

-n

P

-u

-V

-X

—O name

This comment must then be followed by a series of
dummy function definitions. The critical parts of these
definitions are

o the declaration of the function return type
« whether the dummy function returns a value

o the number and types of arguments to the function

The VARARGS and ARGSUSED comments can be used
to specify features of the library functions.

Use this option to suppress checking for compatibility
with either the standard or the portable 1int library. In
effect, this option suppresses all library checking.

Use this option to check a program’s portability to other
dialects of C language. This option checks a file
containing descriptions of standard library routines that
are expected to be portable.

Use this option to suppress messages concerning
function and external variables that are either used and
not defined or defined and not used. For more
information, please refer to ‘“‘Unused Variables and
Functions’’ later in this chapter.

Use this option to suppress messages concerning unused
function arguments. For more information, please refer
to ‘“Unused Variables and Functions’ later in this
chapter.

This option suppresses messages about variables
referenced by external declarations but never used.

Use this option to create a 1int library from input files
named 11ib-1name.1n.

The -D, -U, and -I flag options of cpp(1) are also recognized as
separate arguments. By default, 1int checks the programs you give it
against a standard library file that contains descriptions of programs
normally loaded when a C language program is run. When the -p
option is used, another file is checked that contains descriptions of the

lint Reference 8-3

standard library routines expected to be portable across various
machines. You can use the —n option to suppress all library checking.

3. Message categories
The following subsections describe the major categories of messages
printed by 1int.

3.1 Unused variables and functions

As sets of programs evolve and develop, variables and function
arguments that were used previously may fall into disuse. It’s not
uncommon for external variables or even entire functions to become
unnecessary and yet not be removed from the source. Although these
types of errors rarely cause working programs to fail, they are a source
of inefficiency and make programs harder to understand and to change.
Also, information about such unused variables and functions
occasionally can serve to help discover bugs.

The 1int program prints messages about variables and functions that
are defined but not otherwise mentioned.

You can suppress messages regarding variables that are declared
through explicit extern statements but are never referenced. The
statement

extern double sin():;

will evoke no comment if sin is never used, providing the —x option
is used.

Note: This agrees with the semantics of the C compiler.

If these unused external declarations are of interest, you can use 1int
without the —x option.

In some programming styles, many functions are written with similar
interfaces. Frequently, some of the arguments are unused in many of
the calls. The -v option is available to suppress the printing of
messages about unused arguments, including those arguments that are
unused and declared as register arguments. This can prevent a waste of
the register resources of the machine.

8-4 A/UX Programming Languages and Tools, Volume 1

To suppress such messages for one function only add the comment
/* ARGSUSED */

to the program before the function. Also, you can use the comment
/* VARARGS */

to suppress messages about variable number of arguments in calls to a
function. If you wish to check the first several arguments and leave the
later ones unchecked, include a digit giving the number of arguments
that should be checked. For example,

/* VARARGS2 */
causes only the first two arguments to be checked.

One case in which information about unused or undefined variables is
more distracting than helpful is when 1int is applied to some but not
all files out of a collection that is to be loaded at one time.

In this case, many of the functions and variables defined may not be
used. Conversely, many functions and variables defined elsewhere
may be used. The —u option may be used to suppress the spurious
messages that might otherwise appear.

3.2 Set/used information

The 1int program attempts to detect cases where a variable is used
before it is set. The 1int program detects local variables (automatic
and register storage classes) whose first use appears earlier than the
first assignment to the variable. It assumes that taking the address of a
variable constitutes a ‘‘use,’’ as the actual use may occur at any later
time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes
the algorithm very simple and quick to implement because the true flow
of control need not be discovered. It does mean that 1int can print
messages about some programs that are legal, but these programs
would probably be considered bad on stylistic grounds. Because static
and external variables are initialized to zero, no meaningful
information can be discovered about their uses. The 1int program
does deal with initialized automatic variables.

lint Reference 8-5

The set/used information also permits recognition of those local
variables that are set and never used. These are a frequent source of
inefficiency and may also be symptomatic of bugs.

3.3 Flow of control

The 1int program tries to detect unreachable portions of the programs
that it processes. It will print messages about unlabeled statements
immediately following got o, break, continue, or return
statements. An attempt is made to detect loops that can never be left at
the bottom and to recognize the special cases while (1) and
for(;;) asinfinite loops.

The 1int program also prints messages about loops that cannot be
entered at the top. Some valid programs may have such loops but they
are considered to be bad style at best and bugs at worst.

The 1int program has no way of detecting functions that are called
and never returned. Thus, a call to exit may cause unreachable code
that 1int does not detect. This can seriously affect the determination
of returned function values (see ‘‘Function Values’’). If a particular
place in the program cannot be reached but this is not apparent to
lint, you can add the comment

/* NOTREACHED */

at the appropriate place. This will inform 1int that a portion of the
program cannot be reached.

If you give the -b option, 1int will not print a message about
unreachable break statements. Programs generated by yacc and
especially 1ex may have hundreds of unreachable break statements.
The -0 option in the C compiler often eliminates the resulting object
code inefficiency. These unreachable statements are of little
importance. There is usually nothing you can do about them, and the
resulting messages would clutter up the 1int output. If you wish to
get these messages, you can invoke 1int without the -b option.

3.4 Function values

Sometimes functions return values that are never used. Sometimes
programs incorrectly use function ‘‘values’’ that have never been
returned. The 1int program addresses these problems in a number of
ways.

8-6 A/UX Programming Languages and Tools, Volume 1

Locally, within a function definition, the appearance of both
return(expr) ;

and
return;

is cause for alarm. The 1int program will give you the message
function name contains return(e) and return

The most serious difficulty with this is detecting when a function return
is implied by the control flow of a program reaching the end of the
function. For example,

£f (a) {
if (a) return (3);
g ():

}

In this example, if the result of a is false, £ will call g and return with
no defined return value. This will trigger a message from 1int. If g,
like exit, never returns, the message still will be produced when in
fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by
using this feature.

On a global scale, 1int detects cases where a function returns a value
that is seldom or never used. When the value is never used, it may
constitute an inefficiency in the function definition. When the value is
seldom used, it may represent bad style (for example, not testing for
error conditions).

The serious problem of using a function value when the function does
not return one is also detected.

3.5 Type checking

The 1int program enforces the C language type-checking rules more
strictly than the compilers do. The additional checking is in four major
areas:

o Across certain binary operators and implied assignments

lint Reference 8-7

o At the structure selection operators
« Between the definition and uses of functions
o In the use of enumerations

There are several operators that have an implied balance between
operand types. The assignment, conditional (? :), and relational
operators have this property. The argument of a return statement
and expressions used in initialization suffer similar conversions. In
these operations, char, short, int, long, unsigned, float,
and double types can be freely mixed.

The types of pointers must agree exactly except that arrays of x’s can,
of course, be intermixed with pointers to x’s.

The type-checking rules also require that in structure references the left
operand of the —> must be a pointer to structure; the left operand of the
. must be a structure; and the right operand of both operators must be a
member of the structure implied by the left operand. Similar checking
is done for references to unions.

Strict rules apply to function argument and return value matching. The
types £loat and double can be freely matched, as can the types
char, short, int, and unsigned. Also, pointers can be matched
with the associated arrays. Aside from this, all actual arguments must
agree in type with their declared counterparts.

'With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and that
the only operations applied are =, initialization, ==, !=, function
arguments, and return values.

If you want to turn off strict type checking for an expression, you
should add the comment

/* NOSTRICT */

to the program immediately before the expression. This comment will
prevent strict type checking for the next line in the program only.

3.6 Type casts
The type cast feature in the C language was introduced largely as an
aid to producing more portable programs. Consider the assignment

8-8 A/UX Programming Languages and Tools, Volume 1

p=1

where p is a character pointer. The 1int program prints a message as
aresult of detecting this. Consider the assignment

p = (char *)1;

in which a cast has been used to convert the integer to a character
pointer. The programmer’s intentions are clearly signaled. It seems
harsh for 1int to continue to print messages about this. On the other
hand, if this code is moved to another machine, such code should be
looked at carefully. The -c flag controls the printing of comments
about casts. When -c is in effect, casts are treated as though they were
assignments subject to messages. Otherwise, all legal casts are passed
without comment, no matter how strange the type mixing seems to be.

3.7 Nonportable character use

On some systems, characters are signed quantities with a range from
-128 to 127. On other C language implementations, characters take on
only positive values. Thus, 1int will print messages about certain
comparisons and assignments being illegal or nonportable. For
example,

char c;

if ((c = getchar()) < 0)...

will work on one machine but will fail on machines whose characters
always take on positive values. The real solution is to declare c an
integer because getchar is actually returning integer values. In any
case, 1int prints the message

nonportable character comparison

A similar issue arises with bit fields. When constant values are
assigned to bit fields, the field may be too small to hold the value. This
is true especially because on some machines bit fields are considered
signed quantities. While it may seem logical to consider that a two-bit
field declared of type int cannot hold the value 3, the problem
disappears if the bit field is declared to have type unsigned.

lint Reference 8-9

3.8 Assignments of 1ongs to ints

Bugs may arise from the assignment of 1ong to an int, which may
truncate the contents. (Truncation happens only when longs hold a
longer quantity than ints. In the current implementation, 1ongs are
the same length as ints.) This may happen in programs that have
been incompletely converted to use t ypedefs. When a typedef
variable is changed from int to long, the program may stop working.
This is because some intermediate results may be assigned to ints,
which are truncated. Because there are a number of legitimate reasons
for assigning 1ongs to ints, the detection of these assignments is
disabled by the —a option. If 1int is using the —p option to detect
possible portability problems, however, it may print the message

warning: conversion from long may lose accuracy
even if you’re using the —a option.

3.9 Strange constructions

Several perfectly legal but somewhat strange constructions are detected
by 1int. The messages hopefully encourage better code quality and
clearer style, and can even point out bugs. The ~h option is used to
suppress the majority of these checks.

For example, in
*pt++;

the * does nothing. This provokes the message
null effect

from 1int. For another example,

unsigned x;
if(x < 0) ...

results in a test that will never succeed. For a third example,

unsigned x;

if(x > 0)
is equivalent to
if(x !'= 0)

8-10 A/UX Programming Languages and Tools, Volume 1

which may not be the intended action. The 1int program will print
the message

degenerate unsigned comparison
in these latter two cases.
If a program contains something similar to
if(1 !'=20)...
1lint will print the message
constant in conditional context
because the comparison of 1 to O gives a constant result.

Another construction detected by 1int involves operator precedence.
Bugs that arise from misunderstandings about operator precedence can
be exacerbated by spacing and formatting, making such bugs extremely
hard to find. For example,

if(x&077 == 0) ...
or
x << 2 + 40

probably do not do what was intended. The best solution is enclose
such expressions in parentheses; 1int encourages this with an
appropriate message.

When the -h option has not been used, 1int prints messages about
variables that are redeclared in inner blocks in a way that conflicts with

their use in outer blocks. Although this is considered legal, it remains
bad style, usually unnecessary, and frequently a bug.

3.10 Old syntax
Several forms of older syntax are now illegal. These fall into two
classes: (1) assignment operators and (2) initialization.

The older forms of assignment operators (for example, =+, =-, and so
on) could cause ambiguous expressions. For example,

lint Reference 8-11

could be taken as either
a == 1;

or
a = -1;

The situation is especially perplexing if this kind of ambiguity arises as
the result of a macro substitution. The newer and preferred operators
(for example, += and -=) have no such ambiguities. To encourage the
abandonment of the older forms, 1int prints messages about these
old-fashioned operators.

A similar issue arises with initialization. The older language allowed
int x 1;

to initialize x to 1. This also caused syntactic difficulties. For
example,

int x (-1);
looks somewhat like the beginning of a function definition
int x (y) (...

The compiler must read past x to determine the correct meaning.
Again, the problem is even more perplexing when the initializer
involves a macro. The current syntax places an equals sign between
the variable and the initializer. For example,

int x = -1;
This is free of any possible syntactic ambiguity.

3.11 Pointer alignment

Certain pointer assignments may be reasonable on some machines and
illegal on others, due entirely to alignment restrictions. The 1int
program tries to detect cases where such alignment problems might
arise by finding pointers that are assigned to other pointers. The
message

possible pointer alignment problem

will appear.

8-12 A/UX Programming Languages and Tools, Volume 1

3.12 Multiple uses and side effects

In complicated expressions, the best order in which to evaluate
subexpressions may depend on the machine being used. For example,
on machines (like the PDP-11) in which the stack runs backward,
function arguments are probably best evaluated from right to left. On
machines with a stack running forward, left to right seems most
attractive. Function calls embedded as arguments of other functions
may or may not be treated in a similar manner to ordinary arguments.
The same uncertainty arises with other operators that have side effects,
such as the assignment operators and the increment and decrement
operators.

To avoid compromising the efficiency of the C language on a particular
machine, the C language leaves the order of evaluation of complicated
expressions up to the local compiler. In fact, the various C compilers
differ considerably in the order in which they will evaluate complicated
expressions. In particular, if any variable changed by a side effect is
also used elsewhere in the same expression, the result is explicitly
undefined.

The 1int program checks for the important special case where a
simple scalar variable is affected. For example,

af[i] = b[i++]:;
causes 1int to print the message
warning: i evaluation order undefined

to call attention to this condition.

l1lint Reference 8-13

Chapter 9
sdb Reference

Contents

1. sdb: A symbolic debugger .

2.Usingsdb . . .« .+ « « « « .+ .
2.1 Arguments
22 Example
2.3 Printing astack trace
2.4 Examining variables . .

3. Display and manipulation
3.1 Displaying the source file . . .
3.2 Displaying another source file or functnon
3.3 Changing the current line display . .

4. A controlled testing environment
4.1 Setting and deleting breakpoints .
4.2 Running the program
4.3 Calling functions

5. Machine language debugging

5.1 Displaying machine language statements

5.2 Manipulating registers
5.3 Othercommands

Figures

Figure 9-1. Sample sdb inputfile
Figure 9-2. Sample sdb session.

.

OO 0000 LW =

et
= OO

b
A b LW

Chapter 9
sdb Reference

1. sdb: A symbolic debugger

This chapter describes the symbolic debugger sdb(1) as implemented
for the C language and Fortran 77 compilers (cc and £77) on the
A/UX operating system. The sdb program is useful both for
examining core images of aborted programs and for providing an
environment in which you can monitor and control the execution of a
program.

The sdb program allows you to interact with a debugged program at
the source language level. When debugging a core image from an
aborted program, sdb reports which line in the source program caused
the error and allows symbolic access to all variables, displayed in the
proper format.

You may place breakpoints at selected statements or single step the
program line by line. To facilitate specification of lines in the program
without a source listing, sdb provides a mechanism for examining the
source text. You may call procedures directly from the debugger. This
feature is useful both for testing individual procedures and for calling
user-provided routines that provide formatted printout of structured
data.

2. Using sdb

To use sdb to its full capabilities, you need to compile the source
program with the —g option. This causes the compiler to generate
additional information about the variables and statements of the
compiled program. When the -g option has been specified, you can
use sdb to obtain a trace of the called functions at the time of the abort
and to display the values of variables interactively.

A typical sequence of shell commands for debugging a core image is

sdb Reference 9-1

cc —-g prgm.c -0 prgm
prgm

Bus error - core dumped
sdb prgm

main:25: x[1i] = 0;

The program prgm was compiled with the ~g option and then
executed. An error caused a core dump. The sdb program was then
invoked to examine the core dump to determine the cause of the error.
It reports that the bus error occurred in function main at line 25 (line
numbers are always relative to the beginning of the file) and displays
the source text of the offending line. sdb then prompts you with an *,
indicating that it awaits a command.

It is useful to know that sdb has a notion of current function and
current line. In this example, they are initially set tomain and 25,
respectively.

2.1 Arguments
In the above example, sdb was called with one argument, prgm. In
general, sdb takes three arguments on the command line:

1. The name of the executable file to be debugged, which defaults
to a . out when not specified. Even with the new COFF format,
the executable file will be named a . out. sdb, however, will
not work on old a . out format files. Only COFF files may be
used with sdb.

2. The name of the core file, defaulting to core.

The name of the directory containing the source of the program
being debugged.

The sdb program currently requires all source to reside in a single
directory. The default is the working directory. In the example, the
second and third arguments defaulted to the correct values, so only the
first was specified.

It is possible that the error occurred in a function that was not compiled
with the —g option. In this case, sdb prints the function name and the

9-2 A/UX Programming Languages and Tools, Volume 1

address at which the error occurred. The current line and function are
set to the first executable line in main. The sdb program will print an
error message if main was not compiled with the -g option, but
debugging can continue for those routines compiled with the -g
option.

2.2 Example

The following is a typical example of sdb use. The first example,
Figure 9-1, is the source file used to create the output file shown in
Figure 9-2, an illustration of a session with sdb.

Figure 9-1. Sample sdb input file

cat testdiv2.c
main(argc, argv, envp)
int argc:;
char **argv, **envp; ({
int i;
i = div2(-1);
printf("-1/2 = %d\n", 1i);
}
div2 (i)
int i; {
int j;
j o= i>>1;
return (j);
}
cc —-g testdiv2.c
a.out
-1/2 = -1

sdb Reference 9-3

Figure 9-2. Sample sdb session.

Session Annotations

sdb
No core image ‘Wamning message from sdb
*x/~div2 Search for function ‘div2’
7: div2(i) { It starts on line 7

*z Print the next few lines
7: div2(i) {
8: int j;

9: J = i>>1;
10: return(j);

11: }
*div2:b Place breakpoint at start of ‘div2’
div2:9 b sdb echoes proc name and line number
*r Run the program
a.out sdb echoes command line executed
Breakpoint at Execution stops just before line 9
div2:9: 3 = i>>1;
*t Print trace of subroutine calls

div2 (i=-1) [testdiv2.c:9]
main (arge=1, ...

*i/ Print i
-1
*s Single step
div2:10: return(j); Execution stops before line 10
*j/ Print j
-1
*9d Delete the breakpoint
*div2 (1) / Run ‘div2’ with other arguments
0
*div2 (-2) /
-1
*div2 (-3)/
-2
*q

9-4 A/UX Programming Languages and Tools, Volume 1

2.3 Printing a stack trace
It’s often useful to obtain a listing of the function calls that led to the
error. You can do so with the t command. For example,

*t
sub (x=2,y=3) [prgm.c:25]
inter (i=16012) [prgm.c:96]
main (argc=1,argv=0x7££f£f£f£54,
envp=0x7£ff££ff5c) [prgm.c:15]

This indicates that the error occurred within the function sub at line
25 in file prgm.c. The sub function was called with the arguments
x=2 and y=3 from inter atline 96. The inter function was called
from main at line 15. The main function is always called by the shell
with three arguments often referred to as argc, argv, and envp.
Note that argv and envp are pointers, so their values are printed in
hexadecimal.

2.4 Examining variables
You can use the sdb program to display variables in the stopped
program. To do so, type each name followed by a slash. For example,

*errflag/

causes sdb to display the value of variable errflag. Unless
otherwise specified, variables are assumed to be local to or accessible
from the current function. To specify a different function, use the form

*sub:i/

to display variable i in function sub. £77 users can specify a
common block variable in the same manner.

The sdb program supports a limited form of pattern matching for
variable and function names. The symbol * is used to match any
sequence of characters of a variable name and ? to match any single
character. Consider the following commands:

*xx /
*sub:y?/
**/

The first prints the values of all variables beginning with x, the second
prints the values of all two-letter variables in function sub beginning

sdb Reference 9-5

with y, and the last prints all variables. In the first and last examples,
only variables accessible from the current function are printed. The
command

**:*/
displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format
determined by its type as declared in the source program. If you want
to request a different format, place a specifier after the slash. The
specifier consists of an optional length specification followed by the
format. The length specifiers are

b one byte
h two bytes (half word)
1 four bytes (long word)

The lengths are effective with the formats d, o, %, and u only. If you
don’t specify a length, the word length of the host machine is used. A
numeric length specifier may be used for the s or a commands. These
commands normally print characters until either a null is reached or
128 characters are printed. The number specifies how many characters
should be printed.

There are a number of format specifiers available:

a Print characters, starting at the variable’s address, until a null is
reached.

Character.

Decimal.

32-bit single-precision floating point.
64-bit double-precision floating point.

- Q H A Q

Interpret as a machine-language instruction.
Octal.

o

o) Pointer to function.

9-6 A/UX Programming Languages and Tools, Volume 1

s Assume variable is a string pointer and print characters starting
at the address pointed to by variable until a null is reached.

u Decimal unsigned.

X Hexadecimal.

For example, the variable i can be displayed with
*i/x

which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and pointers so
that all of the following commands work:

*array[2][3]1/
*sym.id/
*psym->usage/
*xsym[20] .p->usage/

The only restriction is that array subscripts must be numbers.
Depending on your machine, gaining access to arrays may be limited to
one-dimensional arrays. Note that as a special case

*psym->/d
displays the location pointed to by psym in decimal.

You can also display core locations by specifying their absolute
addresses. The command

*1024/

displays location 1024 in decimal. As in the C language, numbers may
also be specified in octal or hexadecimal so the above command is
equivalent to both

*02000/

and
*0x400/

It is possible to mix numbers and variables so that
*1000.x/

sdb Reference 9-7

refers to an element of a structure starting at address 1000, and
*1000->x/

refers to an element of a structure whose address is at 1000. For
commands of the type *1000.x/ and *1000~>x/, the sdb program
uses the structure template of the last structure referenced.

The address of a variable is printed with the =, so

*i=

displays the address of i. Another feature whose usefulness will
become apparent later is the command

* | /
which redisplays the last variable typed.

3. Display and manipulation

The sdb program has been designed to make it easy for you to debug a
program without constantly referring to a current source listing.
Facilities are provided that perform context searches within the source
files of the program you’re debugging and display selected portions of
the source files. The commands are similar to those of the A/UX
system text editor ed(1). Like the editor, sdb has a notion of current
file and current line within the file.

The sdb program also knows how the lines of a file are partitioned into
functions, so it has a notion of current function. As noted elsewhere,
the current function is used by a number of sdb commands.

3.1 Displaying the source file

There are four commands for displaying lines in the source file. They
are useful for perusing the source program and for determining the
context of the current line. The commands are

P Prints the current line.

w Prints a window of ten lines around the current line.

z Prints ten lines starting at the current line. Advances the
current line by ten.

9-8 A/UX Programming Languages and Tools, Volume 1

CoNTROL-d Scrolls; prints the next ten lines and advances the
current line by ten. This command is used to display
long segments of the program cleanly.

When a line from a file is printed, it is preceded by its line number.
This not only gives an indication of its relative position in the file but
also is used as input by some sdb commands.

3.2 Displaying another source file or function
The e command is used to display a different source file. Either of the
forms

*e function
*e file.c

may be used. The first makes the file containing the named function
the current file. The current line becomes the first line of the function.
The other form causes the named file to become current. In this case,
the current line becomes the first line of the named file. Finally, an e
command with no argument causes the current function and filename to
be printed.

3.3 Changing the current line display

The z and CONTROL-d commands have a side effect of making a new
line the current line in the source file. The following paragraphs
describe other commands that change the display.

There are two commands for searching for instances of regular
expressions in source files. They are

*/regular expression/
*?regular expression?

The first command searches forward through the file for a line
containing a string that matches the regular expression. The second
command searches backward through the file for the same thing. The
trailing slash character (/) and question mark (?) may be omitted from
these commands. Regular expression matching is identical to that of
ed(1).

The + and - commands may be used to move the current line forward
or backward by a specified number of lines. Typing a newline
advances the current line by one, and typing a number causes that line

sdb Reference 9-9

to become the current line in the file. These commands may be
combined with the display commands so that

*+15z

advances the current line by 15 and then prints 10 lines.

4. A controlled testing environment

One very useful feature of sdb is breakpoint debugging. After
entering sdb, certain lines in the source program may be specified to
be breakpoints. The program is then started with the sdb command.
The program is executed as normal until it’s about to execute one of
the breakpoints. The program stops and sdb reports the breakpoint
where the program stopped. At this point, sdb commands can be used
to display the trace of function calls and the values of variables. If
you’re satisfied the program is working correctly up to the breakpoint,
you can delete some breakpoints and set others; then program
execution can continue from the point at which it stopped.

A useful alternative to setting breakpoints is single stepping. You can
request the sdb program to execute the next line of the program and
then stop. This feature is especially useful for testing new programs, so
they can be verified statement by statement.

If an attempt is made to single step through a function that has not been
compiled with the —g option, execution will proceed until a statement
in a function compiled with the -g option is reached.

You can also have the program execute one machine level instruction
atatime. This is particularly useful when the program has not been
compiled with the -g option.

4.1 Setting and deleting breakpoints
You can set breakpoints at any line in a function that contains
executable code. The command format is

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. Line
numbering starts at the beginning of the file as printed by the source file

9-10 A/UX Programming Languages and Tools, Volume 1

display commands. The second form sets a breakpoint at line 12 of
function proc, and the third sets a breakpoint at the first line of proc.
The last sets a breakpoint at the current line.

You can delete breakpoints with the commands

*12d
*proc:12d
*proc:d

In addition, if the command 4 is given alone, the breakpoints are
deleted interactively. Each breakpoint location is printed, and a line is
read from the user. If the line begins with a y or d, the breakpoint is
deleted.

A list of the current breakpoints is printed in response to a B command,
and the D command deletes all breakpoints. It is sometimes desirable
to have sdb automatically perform a sequence of commands at a
breakpoint and then have execution continue. You can do this with
another form of the b command:

*12b t;x/

This causes both a trace back and the printing of value x each time
execution gets to line 12. The a command is a variation of the above
command. There are two forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is
called, and the second prints the source line each time it is about to be
executed. For both forms of the a command, execution continues after
the function name or source line is printed.

4.2 Running the program
The r command is used to begin program execution. It restarts the
program as if it were invoked from the shell. The command

*r args

runs the program with the given arguments as if it had been typed on
the shell command line. If no arguments are specified, the arguments
from the last execution of the program are used. To run a program

sdb Reference 9-11

with no arguments, use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as interrupt or quit occurs, or the program
terminates. In all cases, after an appropriate message is printed, control
returns to sdb.

You can use the ¢ command to continue execution of a stopped
program. A line number may be specified, as in

*proc:1l2c

This places a temporary breakpoint at the named line. The breakpoint
is deleted when the ¢ command finishes. There is also a c command
that continues but passes the signal that stopped the program back to
the program. This is useful for testing user-written signal handlers.
Execution can be continued at a specified line with the g command.
For example,

*17 g

continues at line 17 of the current function. This command is useful if
you want to avoid executing a section of code that is known to be bad.
You should not attempt to continue execution in a function other than
the one in which the breakpoint is located.

The s command is used to run the program for a single line. Itis
useful for slowly executing the program to examine its behavior in
detail. An important alternative is the S command. This command is
like the s command, but does not stop within called functions. It is
often used when you’re confident that the called function works
correctly but you're interested in testing the calling routine.

The i command is used to run the program one machine level
instruction at a time while ignoring the signal that stopped the program.
Its uses are similar to those of the s command. There is also an I
command, which causes the program to execute one machine level
instruction at a time, but passes the signal that stopped the program
back to the program.

4.3 Calling functions
You can call any of the program functions from sdb. This is useful
both for testing individual functions with different arguments and for

9-12 A/UX Programming Languages and Tools, Volume 1

calling a function that prints structured data in a nice way. There are
two ways to call a function:

*proc(argl, arg2, ...)
*proc(argl, arg2, ...)/m

The first simply executes the function. The second is intended for
calling functions; it executes the function and prints the value that it
returns. The value is printed in decimal format unless some other
format is specified by m. Arguments to functions may be integer,
character, or string constants, or values of variables that are accessible
from the current function.

If a function is called when the program isn’t stopped at a breakpoint
(such as when a core image is being debugged), all variables are
initialized before the function is started. This makes it impossible to
use a function that formats data from a dump.

5. Machine language debugging

The sdb program has facilities for examining programs at the
machine-language level. You can print the machine-language
statements associated with a line in the source and you can place
breakpoints at arbitrary addresses. You can also use the sdb program
to display or modify the contents of the machine registers.

5.1 Displaying machine language statements
To display the machine-language statements associated with line 25 in
function ma in, use the command

*main:25?

The ? command is identical to the / command except that it displays
from text space. The default format for printing text space is the i
format, which interprets the machine-language instruction. You can
press CONTROL-d to print the next ten instructions.

You can specify absolute addresses instead of line numbers by
appending a colon (:) to them. For example,

*0x1024:7

displays the contents of address 0x1024 in text space. Note that the
command

sdb Reference 9-13

*0x10247

displays the instruction corresponding to line 0x1024 in the current
function. You also can set or delete a breakpoint by specifying its
absolute address. For example,

*0x1024:b
sets a breakpoint at address 0x1024.

5.2 Manipulating registers

The x command prints the values of all the registers. Also, you can
name individual registers instead of variables by appending a % to their
names. For example,

*r3%
displays the value of register r3.

5.3 Other commands
Use the g command to exit sdb.

The exclamation mark (!) command in sdb is identical to the same
command in ed(1). It takes you to the shell, where you can execute a
command.

You can change the values of variables when the program is stopped at
a breakpoint. You can do this with the command

*yariable ! value

which sets the variable to the value you enter. The value may be a
number, character constant, register, or the name of another variable.
If the variable is of type £1oat or double, it can also be a floating-
point constant.

9-14 A/UX Programming Languages and Tools, Volume 1

Chapter 10
£77 Command Syntax

Contents

1. Using £77
2. Related utilities

Chapter 10
£77 Command Syntax

1. Using £77
This chapter describes how to invoke and use the A/UX Fortran 77
compiler.

The £77 command compiles and loads Fortran and Fortran-related
files into an executable module.

If EFL (compiler) source files are given as arguments to the £77
command, they will be translated into Fortran before being presented to
this Fortran compiler (see ‘‘ef1 Reference’’ in this volume).

The £77 command invokes the C compiler to translate C source files
and the assembler to translate assembler source files.

Object files will be link edited unless the —c option is used.
Note: The £77 and cc commands have slightly different link

editing sequences. Fortran programs need two extra libraries,
1ibI77.aand 1ibF77.a, and an additional startup routine.

The command to run the A/UX Fortran compiler is
£77 loption ...] [file]

The following options have the same meaning in the Fortran compiler
as in cc(1) (see 1d(1) for load-time options).

-c Suppress loading and produce . o files for each source file.

-g Have the compiler produce additional symbol table
information for sdb(1). Also pass the —1g flag to 14(1).

-w Suppress all warning messages. If the option is —w6 6,
only Fortran 66 compatibility warnings are suppressed.

£77 Command Syntax 10-1

Prepare object files for profiling (see pro£(1)).
Invoke an object-code optimizer.

Compile the named programs, and leave the assembler
language output on corresponding files with a . s suffix
(no .o is created).

—o output Name the final output file output instead of a . out

(default).

The following options are specific to £77:

—onetrip Compile do loops that are performed at least once if

-u

—m

-E x

reached (Fortran 77 do loops are not performed at all if
the upper limit is smaller than the lower limit).

Make the default type of a variable undef ined rather
than using the default Fortran rules.

Compile code to check that subscripts are within declared
array bounds.

Apply EFL preprocessor to relevant files. Put the result in
the file with the extension changed to . £, but do not
compile.

Apply the M4 preprocessor to each . e file before
transforming it with the EFL preprocessor.

Use the string x as an EFL option in processing . e files.

Other arguments are taken to be loader option arguments, £77-
compatible object programs (typically produced by an earlier run), or
libraries of £77-compatible routines. These programs, together with
the results of any specified compilations, are loaded (in the order given)
to produce an executable program with name a . out (default).

The file argument to £77 may have one of the following suffixes:

.f Fortran source file

.e

.C

10-2

EFL source file
C language source file

A/UX Programming Languages and Tools, Volume 1

.s Assembler source file
.o Object file
Arguments are processed as follows:

o Arguments whose names end with . £ are taken to be Fortran 77
source programs. When compiled, a source program produces
an object file with the same root name, but with a . o substituted
for the . £ extension.

o Arguments whose names end with . e are taken to be EFL source
programs.

« Arguments whose names end with . c or . s are taken to be C or
assembly source programs, respectively, and are compiled or
assembled, producing a . o file.

2. Related utilities
These utilities are useful adjuncts to £77. Their special characteristics
are described in the following table:

efl Compiles a program written in Extended Fortran
Language (EFL) into Fortran 77. See ‘‘ef1 Reference’’
in this volume for information on how to use this
command.

asa Interprets the output of Fortran programs that use ASA
carriage control characters. See asa(l) for information
on how to use this command.

fsplit Splits the named file(s) into separate files, with one
procedure per file. See £split(l) for information on
how to use this command.

£77 Command Syntax 10-3

Chapter 11
Fortran Language Reference

Contents

1. Fortran standards .

2. Language extensions

2.1
22
23
24
2.5
2.6
2.7
238
29

double complex data type
Internal files

Implicit undefined statement
Recursion .

Automatic storage . .
Variable length input lines .
Uppercase/lowercase
include statement .
Binary initialization constants .

2.10 Character strings .

2.11 Hollerith . .

2.12 Equivalence statements .

2.13 One-trip do loops

2.14 Commas in formatted input

2.15 Short integers

2.16 Additional intrinsic functlon hbrary

3. Violationsof the standard

31
32
33

Double-precision alignment
Dummy procedure arguments .
t and t1 formats .

4. Interprocedure interface

4.1
42
43
44

Procedure names N
Data representations
Return values .

Argument lists

5. File formats . .

OO AN UL DB BRWWWRNDNDDNDN M - -

5.1 Filestrucure
5.2 Preconnected files and file positions

14
15

Chapter 11
Fortran Language Reference

This chapter describes the Fortran 77 run-time system and language as
implemented on the A/UX system. Also described are the interfaces
between procedures and the file formats assumed by the I/O system.

Please note that this chapter only describes the differences between the
A/UX Fortran 77 and the ANSI Standard Fortran 77, and is not
intended to be a complete language reference.

1. Fortran standards
Fortran 77 and Fortran 66 are names for two standardized versions of
the language.

Fortran 77 includes almost all of Fortran 66. The most important
additions are a character string data type, file-oriented input/output
statements, and random access 1/O.

The £77 language described in this chapter is an extended version of a
Fortran 77 standard language, as specified in ANS! Standard X3.9-1978
Fortran.

Most of the extensions included in £77 are useful additions; however,
some are necessary to facilitate communication with C language
functions, allowing easier compilation of old (Fortran 66) programs.

2. Language extensions

2.1 double complex data type

In the double complex data type, each datum is represented by a
pair of double-precision real variables. A double complex version of
every complex built-in function is provided.

2.2 Internal files

The Fortran 77 American National Standard introduces internal files
(memory arrays) but restricts their use to formatted sequential
I/O statements. The A/UX I/O system also permits internal files to be
usedin direct and unformatted readsand writes.

Fortran Language Reference 1141

2.3 Implicit undefined statement

Fortran has a rule that the variable type that does not appear in a type
statement is integer if its first letter is i, j, k, 1, m, or n.
Otherwise, it is real. Fortran 77 has an implicit statement for
overriding this rule. An additional type statement, undefined, is
permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism. The compiler will
issue a diagnostic for each variable that is used but does not appear in a
type statement. Specifying the —u compiler option is equivalent to
beginning each procedure with this statement.

2.4 Recursion

Procedures may call themselves directly or through a chain of other
procedures. This differs from ANSI Standard Fortran 77, which does
not allow any form of recursion.

2.5 Automatic storage

static and automatic are recognized keywords in this
implementation, but not in ANSI Standard Fortran 77. These keywords
may appear in implicit statements or as fypes in type statements.
Local variables are static by default; there is exactly one copy of the
datum, and its value is retained between calls. There is one copy of
each variable declared automatic for each invocation of the procedure.
Automatic variables may not appear in equivalence, data, or
save statements.

2.6 Variable length input lines
The Fortran 77 American National Standard expects input to the
compiler to be in a 72-column format (except in comment lines):

o The first five characters are the statement number.
o The next character is the continuation character.
» The next 66 are the body of the line.

o If there are fewer than 72 characters on a line, the compiler pads
it with blanks.

e Characters after the first 72 are ignored.

11-2 A/UX Programming Languages and Tools, Volume 1

To make it easier for you to type in Fortran programs, this compiler
also accepts input in variable length lines:

o An ampersand (&) in the first position of a line indicates a
continuation line; the remaining characters form the body of the
line.

o A tab character in one of the first six positions of a line signals
the end of the statement number and continuation part of the line;
the remaining characters form the body of the line.

o A tab anywhere except in one of the first six positions on the line
is treated as another kind of blank by the compiler.

2.7 Uppercase/lowercase
In the Fortran 77 Standard, there are only 26 letters because Fortran is a
one-case language. This compiler expects lowercase input.

By default, the compiler converts all uppercase characters to lowercase
except those inside character constants. If you specify the —U compiler
option, uppercase letters are not transformed. In this mode, you can
specify external names that have uppercase letters and you can have
distinct variables differing in case only.

If the —U option is set, keywords will be recognized only if they appear
in lowercase.

2.8 include statement
The statement

include ’‘stuff’

is replaced by the contents of the file stuff. include statements
may be nested to a reasonable depth, currently ten.

2.9 Binary Initialization constants

A logical, real, or integer variable may be initialized in a
data statement by a binary constant, which is denoted by a letter,
followed by a quoted string. If the letter is b, the string is binary, and
only zeros and ones (0 and 1) are permitted. If the letter is o, the string
is octal, with digits zero through seven (0 - 7). If the letter is z or x,
the string is hexadecimal, with digits zero through nine (0 -9), a
through £. Thus, the statements

Fortran Language Reference 11-3

integer a(3)
data a/b’1010’,0712’,z'a’/

initialize all three elements of a to 10.

2.10 Character strings
To be compatible with the C language, this compiler recognizes the
following backslash escapes:

\n newline

\t tab

\b backspace
\f form feed
\0 null

\’ apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
\\ \(backslash)

\x the character (in general)

Fortran 77 has only one quoting character: the apostrophe (7). This
compiler and I/O system recognize both the apostrophe and the double
quote (™). If a string begins with one variety of quote mark, you may
embed the other within it without using the repeated quote or backslash
escapes.

Every unequivalenced scalar local character variable and every
character string constant is aligned on an integer word boundary.
Each character string constant appearing outside a data statement is
followed by a null character to ease communication with C language
routines.

2.11 Hollerith

Fortran 77 does not have the old Hollerith (nh) notation, although the
new Standard recommends implementing it to improve compatibility
with old programs. In this compiler, Hollerith data may be used in
place of character string constants and may also be used to initialize
noncharacter variables in data statements.

11-4 A/UX Programming Languages and Tools, Volume 1

2.12 Equivalence statements

This compiler permits single subscripts in equivalence statements
under the interpretation that all missing subscripts are equal to 1. A
warning message is printed for each such incomplete subscript.

2.13 One-trip do loops

The Fortran 77 American National Standard requires that the range of a
do loop not be performed if the initial value is already past the limit
value. For example,

do 10 1 =2, 1

The 1966 Standard stated that the effect of such a statement was
undefined, but it was common practice that the range of a do loop
would be performed at least once.

To accommodate old programs, although they are in violation of the
1977 Standard, this compiler offers the —onet rip compiler option,
which causes loops whose initial value is greater than or equal to the
limit value to be performed exactly once.

2.14 Commas in formatted input

The I/O system attempts to be more lenient than the Fortran 77
American National Standard when it seems worthwhile. When you
request a formatted read of noncharacter variables, commas may be
used as value separators in the input record, overriding the field lengths
given in the format statement. Thus, if you have the format

(i10, £20.10, i4)
the record

—-345, .05e-3,12
will be read correctly.
2.15 Short integers
This compiler accepts declarations of type integer*2. (Ordinary
integers follow the Fortran rules about occupying the same space as a
real variable; they are assumed to be of C language type long
int; half word integers are of C language type short int.) An
expression involving only objects of type integer*2 is also of that

type. Generic functions return short or long integers, depending on the
actual types of their arguments. If a procedure is compiled using the

Fortran Language Reference 115

—12 flag, all small integer constants will be of type integer*2. If
the precision of an integer-valued intrinsic function cannot be
determined by the generic function rules, the compiler will choose one
that returns the prevailing length (integer*2 when the —12
command flag is in effect). When the —I2 option is in effect, all
quantities of type Logical will be deemed short. Note that these
short integer and logical quantities do not obey the standard
rules for storage association.

2.16 Additional intrinsic function library

This compiler supports all the intrinsic functions specified in the
Fortran 77 Standard. In addition, there are functions for performing
bitwise Boolean operations (or, and, xor, and not) and for
accessing command arguments (getarg and iargc).

The following is the Fortran intrinsic function library plus some
additional functions. These functions are automatically available to the
Fortran programmer and require no special invocation of the compiler.
The dagger (1) beside some of the commands indicates that they are
not part of ANSI standard F77. In parentheses beside each function
description is the location for the command in A/UX Programmer’s
Reference. These functions are as follows:

tabort Terminate program (abort(3F))

abs Absolute value (max(3F))

acos Arccosine (acos(3F))

aimag Imaginary part of complex argument
(aimag(3F))

aint Integer part (aint(3F))

alog Natural logarithm (1og(3F))

alog7 Common logarithm (alog10(3F))

amax0 Maximum value (max(3F))
amaxl Maximum value (max(3F))

amin0 Minimum value (min(3F))
aminl Minimum value (min(3F))
amod (mod(3F))

tand Bitwise Boolean (boo1(3F))
anint Nearest integer (round(3F))
asin Arcsine (asin(3F))

atan Arctangent (atan(3F))

11-6 A/UX Programming Languages and Tools, Volume 1

atan2
cabs
ccos
cexp
char
clog
cmplx
conijg
cos
cosh
csin
csqrt
dabs
dacos
dasin
datan
datan2

dble
tdcemplx
tdconjg
dcos
dcosh
ddim
dexp
dim
tdimag

dint
dlog
dloglo0
dmax1l
dminl
dmod
dnint
dprod
dsign
dsin
dsinh

Arctangent (at an2(3F))

Complex absolute value (abs(3F))
Complex cosine (cos(3F))

Complex exponential (exp(3F))
Explicit type conversion (ftype(3F))
Complex natural logarithm (1og(3F))
Explicit type conversion (£t ype(3F))
Complex conjugate (conjg(3F))
Cosine (cos(3F))

Hyperbolic cosine (cosh(3F))
Complex sine (sin(3F))

Complex square root (sqrt(3F))
Absolute value (abs(3F))

Arccosine (acos(3F))

Arcsine (asin(3F))

Arctangent (atan(3F))
Double-precision arctangent
(atan2(3F))

Explicit type conversion (£t ype(3F))
Explicit type conversion (£t ype(3F))
Complex conjugate (con jg(3F))
Cosine (dcos(3F))

Hyperbolic cosine (cosh(3F))
Positive difference (dim(3F))
Exponential (exp(3F))

Positive difference (dim(3F))
Imaginary part of complex argument
(aimag(3F))

Integer part (aint(3F))

Natural logarithm (10g(3F))
Common logarithm (10g10(3F))
Maximum value (max(3F))

Minimum value (min(3F))
Remaindering (dmod(3F))

Nearest integer (round(3F))
Double-precision product (dprod(3F))
Transfer of sign (sign(3F))

Sine (sin(3F))

Hyperbolic sine (sinh(3F))

Fortran Language Reference

11-7

dsqrt Square root (sqrt (3F))

dtan Tangent (t an(3F))

dtanh Hyperbolic tangent (t anh(3F))

exp Exponential (exp(3F))

float Explicit type conversion (£t ype(3F))

tgetarg Return command-line argument
(getarg(3F))

tgetenv Return environment variable
(getenv(3F))

iabs Absolute value (abs(3F))

iargc Return number of arguments
(iargc(3F))

ichar Explicit type conversion (£t ype(3F))

idim Positive difference (dim(3F))

idint Explicit type conversion (£t ype(3F))

idnint Nearest integer (round(3F))

ifix Explicit type conversion (£t ype(3F))

index Return location of substring
(index(3F))

int Explicit type conversion (£t ype(3F))

tirand Random number generator

isign Transfer of sign (sign(3F))

len Return length of string (Len(3F))

1lge String comparison (st rcmp(3F))

1gt String comparison (st rcmp(3F))

lle String comparison (st rcmp(3F))

11t String comparison (st rcmp(3F))

log Natural logarithm (1og(3F))

logl0 Common logarithm (10g10(3F))

t1lshift Bitwise Boolean (bool1(3F))

max Maximum value (max(3F))

max0 Maximum value (max(3F))

maxl Maximum value (max(3F))

tmclock Return Fortran time accounting
(mclock(3F))

min Minimum value (min(3F))

min0 Minimum value (min(3F))

minl Minimum value (min(3F))

mod Remaindering (mod(3F))

11-8 A/UX Programming Languages and Tools, Volume 1

nint Nearest integer (boo1(3F))

tnot Bitwise Boolean (boo1(3F))

tor Bitwise Boolean (boo1(3F))

trand Random number generator (rand(3F))

real Explicit type conversion (£t ype(3F))

trshift Bitwise Boolean (bool(3F))

sign Transfer of sign (sign(3F))

tsignal Specify action on receipt of system
signal (signal(3F))

sin Sine (sine(3F))

sinh Hyperbolic sine (sinh(3F))

sngl Explicit type conversion (ft ype(3F))

sqrt Square root (sqrt(3F))

tsrand Random number generator (rand(3F))
tsystem Issue a shell command (system(3F))

tan Tangent (t an(3F))
tanh Hyperbolic tangent (t anh(3F))
txor Bitwise Boolean (boo1(3F))

tzabs Complex absolute value (abs(3F)).

For more information on the £77 intrinsic function commands, see
A/UX Command Reference.

3. Violations of the standard

The following sections describe the three known ways in which the
A/UX system implementation of Fortran 77 violates the new American
National Standard. These exceptions to the standard involve the
following:

1. Double-precision alignment
2. Dummy procedure arguments
3. t and t1 formats

3.1 Double-precision alignment

The Fortran 77 American National Standard permits common or
equivalence statements to force a double-precision quantity onto
an odd word boundary.

Fortran Language Reference 119

For example,

real a(4)
double precision b,c
equivalence (a(l),b), (a(4),c)

Some machines require that double-precision quantities be on double
word boundaries; other machines run less efficiently if this alignment
rule is not observed. It is possible to tell which equivalenced and
common variables suffer from a forced odd alignment, but every
double-precision argument must be assumed on a bad boundary.

To load a double-precision quantity on some machines, you must use
two separate operations:

1. Move the upper and lower halves into the halves of an aligned
temporary.

2. Load that double-precision temporary.

To store such a result, you must reverse the order of the above two
operations.

All double-precision real and complex quantities must fall on even
word boundaries on machines with corresponding hardware
requirements or if the source code issues a diagnostic whenever there is
a violation of the odd-boundary rule.

3.2 Dummy procedure arguments

If any argument of a procedure is of type character, all dummy
procedure arguments of that procedure must be declared in an
external statement. For an example illustrating this, see
‘“‘Argument Lists’’ later in this chapter.

This requirement arises as a subtle corollary of the way Fortran
represents character string arguments. A warning is printed if a
dummy procedure is not declared external. The same code is
correct (in this regard), however, if there are no character
arguments.

3.3 t and t1 formats
The t (absolute tab) and t 1 (leftward tab) format codes allow you to
reread or rewrite part of a record that has already been processed.

11-10 A/UX Programming Languages and Tools, Volume 1

This compiler’s implementation uses ‘‘seeks.’”” Therefore, if the
standard output unit is not one that allows seeks, such as a terminal, the
program is in error.

Benefits of the implementation chosen include the following:
o There is no upper limit on the length of a record.

¢ You do not have to predeclare any record lengths, except where
specifically required by Fortran or by the operating system.

4. Interprocedure interface

The following sections provide information necessary for writing C
language procedures that call or are called by Fortran procedures.
Specifically, you should understand the conventions regarding the
following:

1. Procedure names
2. Datarepresentation
3. Return values

4. Argument lists

4.1 Procedure names

On A/UX systems, the compiler appends an underscore to the name of
a common block for a Fortran procedure to distinguish it from a C
language procedure or an external variable with the same user-assigned
name,

Fortran library procedure names have embedded underscores, to avoid
clashes with user-assigned subroutine names.

4.2 Data representations
The following is a table of corresponding Fortran and C language
declarations:

Fortran Language Reference 11-11

Fortran C Language

integer*2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct {float r, i;} x;
double complex x struct {double dr, di;} x;
character*6 x char x[6];

By the rules of Fortran, integer, logical, and real data occupy
the same-sized areas in memory.

4.3 Return values

A function of type integer, logical, real, or double
precision, declared as a C language function, returns the
corresponding type.

A complex ordouble complex function is equivalenttoa C
language routine with an additional initial argument that points to the
place where the return value is to be stored. Thus

complex function f(arg...)
is equivalent to

struct {float r, i;} temp;
f_(&temp, arg...)

A character-valued function is equivalent to a C language routine
with two extra initial arguments:

 a data address
» alength
Thus,
character*15 function g(arg...)

is equivalent to

11-12 A/UX Programming Languages and Tools, Volume 1

char result[];
long int length;
g_(result, length, arg...)

and could be invoked in the C language by

char chars[15];

g_{(chars, 15L, arg...);

Subroutines are invoked as if they were integer-valued functions whose
value specifies which alternate return to use. Alternate return
arguments, or statement labels, are not passed to the function, but are
used to do an indexed branch in the calling procedure. If the
subroutine has no entry points with alternate return arguments, the
returned value is undefined.

Thus, the statement
call nret (*1, *2, *3)

is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()

4.4 Argument lists
All Fortran arguments are passed by address.

For every argument that is of type character or a dummy
procedure, an argument giving the length of the value is passed. The
string lengths are 1ong int quantities passed by value.

The order of arguments is then:

1. Extra arguments for complex and character functions

2. Address for each datum or function

3. Along int for each character or procedure argument
Thus, the call in

Fortran Language Reference 11-13

external £

character*7 s

integer b (3)

call sam(f, b(2), s)
is equivalent to that in

int £();

char s([7];
long int b[3];
sam (£, &b[1l], s, OL, 7L);

o Note that the first element of a C language array always has
subscript 0, but Fortran arrays begin at 1 by default. For
example, in C the above array of 3 elements would be
subscripted 0, 1, 2; in £77 they are subscripted 1, 2, 3.

o Fortran arrays are stored in column-major order. C language
arrays are stored in row-major order. The stored order for each
language is given by the numbers in the sample two-dimensional
arrays that follow:

£77:
1 3
2 4

1 2
3 4

5. File formats

5.1 File structure
Fortran requires four kinds of external files:

1. Sequential formatted
2. Sequential unformatted
3. Direct formatted

11-14 A/UX Programming Languages and Tools, Volume 1

4. Direct unformatted

On A/UX systems, these are all implemented as ordinary files that are
assumed to have the proper internal structure.

Fortran I/O is based on records. When a direct file is openedina
Fortran program, the record length of the records must be given. This
is used by the Fortran I/O system to make the file look as if it is made
up of records of the given length. In the special case that the record
length is given as 1, the files are not considered to be divided into
records but are treated as ordinary files on the A/UX system (byte-
addressable byte strings). A read or write request on such a file
keeps consuming bytes until satisfied, rather than being restricted to a
single record.

The peculiar requirements on sequential unformatted files
make it unlikely that they will ever be read or written by any means
except Fortran I/O statements. Each record is preceded and followed
by an integer containing the record’s length in bytes.

The Fortran I/O system breaks sequential formatted files into
records while reading by using each newline as a record separator. The
result of reading off the end of a record is undefined, according to the
Fortran 77 American National Standard. The I/O system is permissive
and treats the record as being extended by blanks. On output, the I/O
system will write a newline at the end of each record. It is also
possible for programs to write newlines for themselves. This is an
error, but the only effect will be that the single record you thought was
written will be treated as more than one record when being read or
backspaced over.

5.2 Preconnected files and file positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is
connected to the standard input, unit 6 is connected to the standard
output, and unit O is connected to the standard error unit. All are
connected for sequential formattedl/O.

All the other units are also preconnected when execution begins. Unit

n is connected to a file named fort .n. These files need not exist and

will not be created unless their units are used without first executing an
open. The default connection is for sequential formatted

I/0.

Fortran Language Reference 11-15

The Fortran 77 Standard does not specify where a file that has been
opened explicitly for sequential I/O is positioned initially. In fact,
the I/O system attempts to position the file at the end. A write will
append to the file and a read will result in an end-of-file indication.
To position a file at its beginning, use a rewind statement. The
preconnected units 0, 5, and 6 are positioned as they come from the
parent process.

11-16 A/UX Programming Languages and Tools, Volume 1

Chapter 12
EFL Reference

Contents

1. EFL: An extended Fortran language

1.1 efl command syntax
2. Lexical form . .

2.1
22
23
24
25
2.6
2.7
28
29

2.10 Floating-point constants

Character set .
Tokens . .
Lines . . .

.

.

.

.

.

.

.

.

.

.

Multiple statements on a line

Comments .
include files
Identifiers . .
Strings . . .

.

.

Integer constants .

2.11 Punctuation .
2.12 Operators . .
2.13 Macros . .

3. Program form . .

3.1
32
33
34
35

Files . .

Procedures .
Block scope .
Statements .
Labels . . .

.

4. Data types and variables

4.1
42
43
44
4.5

Basic types .
Constants . .
Variables . .
Arrays . . .
Structures . .

.

.

.

.

.

.

.

.

.

OO0 XONANAANVUNPERDRWWLWWW N -

5.

6.

Expressions .

5.1 Primaries
5.1.1 Constants
5.1.2 Variables
5.1.3 Array elements

5.1.4 Structure members

5.1.5 Procedure invocations
5.1.6 Input/output expressions

5.1.7 Coercions .
5.1.8 Sizes

5.2 Parentheses

5.3 Unary operators
5.3.1 Arithmetic
532 Logical

5.4 Binary operators .
54.1 Arithmetic
542 Logical

5.5 Relational operators .

5.6 Assignment operators

5.7 Dynamic structures

5.8 Repetition operator

5.9 Constant expressions

Declarations . .

6.1 Syntax .

6.2 Attributes .
6.2.1 Arrays .
6.22 Structures .
6.2.3 Precision
6.24 Common
6.2.5 External

6.3 Variablelist . . .

6.4 The initial statement

. Executable statements .

7.1 Expression statements
7.2 Blocks .
7.3 Test statements
7.3.1 4if statement .
732 if-else .

14
16
16
16
16
16
16
17
18
18
19
19
19
19
19
19
21
21
22
23
23
23

23
23
24
24
25
26
26
26
27
27

27
27
28
28
29
29

8.

74

15

7.6

73.3 select statement

Loops
74.1
742
743
744
745 doloop . .
Branch statements

for statement

7.5.1 goto statement

while statement

repeat statement
repeat-until statement

.

.

7.5.2 break statement

7.5.3 next statement

7.54 return statement
Input/output statements .

7.6.1
762
7.63
7.64
7.6.5
7.6.6

I/Ounits . .
Binary /O .
Formatted 1/0

Iolists . . .
Formats . .

Procedures
8.1 procedure statement .

82
83

end statement . .
Argument association

-

.

.

8.4 Execution and return values

85

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Known functions .

8.5.1 Minimum and maximum functions

8.5.2 Absolute value

8.5.3 Elementary functions

8.54 Other generic functions

. Atavisms

Escape lines . . .
call statement . .
Obsolete keywords
Numeric labels . .
Implicit declarations
Computed goto . .
goto statement . .
Dotnames . . .

.
.
.

.

.

.

.

Manipulation statements

.

.

.

.

.

.

.

.

.

.

30
31
31
31
32
32
33
33
33
34
35
35
35
36
36
36
37
37
38

39
39
39
39
40
40
40
41
41
41

42
42
42
42
42
42
43
43
43

10.

11.

12.

13.

14.

9.9 Complexconstants
9.10 Functionvalues
9.11 Equivalence

9.12 Minimum and maximum functlons

Compileroptions
10.1 Defaultoptions
10.2 Input language options
10.3 Input/output error handling . .
104 Continuation conventions . . .
10.5 Default formats
10.6 Alignments and sizes
10.7 Default input/output units . . .

10.8 Miscellaneous output control options

Examples
11.1 Filecopying
11.2 Matrix multiplication
11.3 Searching alinkedlist
114 Walkingatree

Portability
12.1 Primitives e e
12.1.1 Character strmg copying .
12.1.2 Character string comparisons

Compiler« . . .
13.1 Currentversion
13.2 Diagnostics« e .
13.3 Quality of Fortran produced . .

ConstraintsonEFL
14.1 Externalnames
14.2 Procedure interface
143 Pointers
144 Recursion« .
14.5 Storage allocation

Figures

-jv -

44
44
45

45
46
46
46
46
46
47
47
48

48
48
48
49
50

54
54
54
54

54
54
55
55

57
57
58
58
58
58

Figure 12-1.
Figure 12-2.
Figure 12-3.

Figure 12-4.

Figure 12-5.
Figure 12-6.

Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 12-10.
Figure 12-11.

Figure 12-12.
Figure 12-13.
Figure 12-14.
Figure 12-15.

Figure 12-16.
Figure 12-17.

Figure 12-18.
Figure 12-19.
Figure 12-20.
Figure 12-21.

Legal characters in EFL
Reserved words in EFL

Forms for floating-point constants in
EFL . .

Characters for grouping or separating in
EFL e e e e e e

EFL operators

Procedure illustrating block level
scope .

Example of a label .

Examples of EFL declarations .
Basic EFL types

Examples of legal array attributes .

Examples of valid structure
attributes .

Example of a block
Nested if-else
Sequential pif-else

select statement with case and
default .

Use of gotos with case labels in a
select

Permissible format specifiers in
EFL

File-copying example .

Matrix multiplication example
Example of searching a linked list .
Pseudocode for a tree walk .

10
24
24
25

26
28
29
30

31

34

38
48
49
50
51

Figure 12-22.

Figure 12-22.

Figure 12-23.

Figure 12-24.

Figure 12-24.

Tables

Table 12-1.
Table 12-2.

Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.

Table 12-8.
Table 12-9.

Table 12-10.

Example of walking a tree (page 1 of
2) e e e e e e

Example of walking a tree (page 2 of
2) e e e e e

Fortran code produced from matrix
multiplication example

Fortran code produced from tree-walk
example (page 1 of 2)

Fortran code produced from tree-walk
example (page 2 of 2)

Precedence of operators in EFL

Type of result of binary operation A op
B . C e e e e e e

Truth tables for and and or
Relational operators in EFL
Generic functions

Recognized keyword synonyms

Regular and dot s=on forms of
operators

Nongeneric functions

Options for changing default read/write

formats .

Alignment and size options for Fortran data

types

52

54

55

56

57

15

20
21
2
41
42

44
45

47

47

Chapter 12
EFL Reference

1. EFL: An extended Fortran language

This chapter is a reference for the EFL programming language. It
describes the features and use of the language, and, although
supplemented by the chapters on Fortran, can stand alone as an arbiter
of the EFL language. To use this chapter, you should have some
familiarity with a procedural language.

EFL is a clean, general-purpose computer language intended to
encourage portable programming. It has a uniform and readable syntax
and good data and control flow structuring.

EFL programs can be translated into efficient Fortran code. This
means that you can take advantage of the Fortran libraries and benefit
from the portability that comes with the use of a standardized language.
Even though EFL originally stood for ‘‘Extended Fortran Language,”’
the EFL compiler is much more than a simple preprocessor.

The EFL compiler attempts to diagnose all syntax errors, provide
readable Fortran output, and avoid a number of Fortran restrictions.
For example, while EFL allows variable white space in its input,
standard Fortran requires placement of comment indicators and data in
standard, specified columns, and will not compile properly if these
columns are not used. In addition, EFL is a structured language, while
standard Fortran uses gotos and cont inue statements. These and
other Fortran restrictions are mentioned in sections such as
‘“‘Continuation Conventions’’ and ‘“Miscellaneous Output Control
Options.”’

EFL is especially useful for numeric programs, and lets you express
complicated ideas in a comprehensible way, while giving you access to
the power of the Fortran environment.

In this chapter’s examples and syntax specifications, a construct
surrounded by double brackets represents a list of one or more of those

EFL Reterence 12-1

items, separated by commas. Thus, the notation
[[item]]
could refer to any of the following:

item
item, item
item, item, item

To increase the legibility of EFL programs, you may break some of the
statement forms without an explicit continuation. A square ((J) in the
syntax represents a point where an end-of-line will be ignored.

1.1 e£1 command syntax
The A/UX ef1 command has the following syntax:

efl [—w] [-#] [-C] [filename. . .]
The flag options for e£1 are:
—w Suppresses warning messages

—# Suppresses comments in the generated program and the flag
option

—C (on by default) Causes comments to be included in the generated
program

An argument with an embedded = (equals sign) sets an ef1 flag option
as if it had appeared in an opt ion statement at the start of the
program. Many options are described in the section ‘‘Compiler
Options.”’ A set of defaults for a particular target machine may be
selected by one of the choices: system=unix, system=gcos,or
system=cray. The default setting of the system option is the same
as the machine on which the compiler is running. Other specific
options determine the style of input/output, error handling, continuation
conventions, the number of characters packed per word, and default
formats.

12-2 A/UX Programming Languages and Tools, Volume 1

2. Lexical form

2.1 Character set
The following characters are legal in an EFL program:

Letters abcdefghijklm
nopgrstuvwzxyz

Digits 01234567829

White space blank tab

Quotes rom

Number sign #

Continuation _

Braces { }

Parentheses «)

Other ’ ; . + - * /
= < > & ~ | $

Figure 12-1. Legal characters in EFL

Even though all the examples are printed in lowercase, case is ignored,
except within strings (for example, a and A are treated as the same
character). An exclamation mark (!) may be used in place of a tilde
(~) as the logical unary operator ‘‘complement.”” Square brackets ([
and 1) may be used in place of braces ({ and }) for punctuation.

Outside a character string or comment, a sequence of one or more
spaces or tab characters acts as a single space and terminates a token.

2.2 Tokens

A program is made up of a sequence of tokens. Each token is a
sequence of characters. A blank terminates any token except a quoted
string. An end-of-line also terminates a token unless you signal
explicit continuation by an underscore.

2.3 Lines

EFL is a line-oriented language. Except in special cases where
continuation is made explicit by use of an underscore (_), the end of a
line marks the end of a token and the end of a statement.

You may use the trailing portion of a line for a comment. Diagnostic
messages are labeled with the line number of the file in which they are
detected.

EFL Reference 12-3

You may continue lines explicitly by using the underscore (_)
character. If the last character of a line (after comments and trailing
white space have been stripped) is an underscore, the end of the line
and the initial blanks on the next line are ignored. Underscores are
ignored in other contexts, except inside quoted strings. Thus,

1_000_000_
000

equals 109,

There are also rules for continuing lines automatically: The end-of-line
is ignored whenever it’s obvious that the statement is not complete. A
statement is continued if the last token on a line is an operator, comma,
left brace, or left parenthesis, but a statement is not continued if
unbalanced braces or parentheses exist. Some compound statements
also are continued automatically; these points are noted in the sections
on executable statements.

2.4 Multiple statements on a line

A semicolon terminates the current statement. Therefore, you can
write more than one statement on a line. A line consisting only of a
semicolon, or a semicolon following a semicolon, forms a null
statement.

2.5 Comments

You can place a comment at the end of any line. It is introduced by a
number sign (#), and continues to the end of the line. The number sign
and succeeding characters on the line are discarded. A blank line is
also considered a comment. Comments have no effect on execution.

Note: A number sign inside a quoted string does not mark a
comment.

2.6 include files
You can insert the contents of a file joe at a certain point in the source
text by referencing it in the line

include joe

No statement or comment may follow an include onaline. In
effect, the include line is replaced by the lines in the named file, but

12-4 A/UX Programming Languages and Tools, Volume 1

diagnostics refer to the line number in the included file. includes
may be nested at least ten deep.

2.7 ldentifiers

An identifier is a name used in an EFL program consisting of a letter
or a letter followed by letters or digits. Figure 12-2 shows a list of the
reserved words that have special meaning in EFL, and therefore should
not be used as identifiers.

array exit precision
automatic external procedure
break false read

call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value
else long while

end next write
equivalence option writebin

Figure 12-2. Reserved words in EFL

You should use these words only for the purposes described in this
chapter.

2.8 Strings

A character string is a sequence of characters surrounded by
quotation marks. If the string is bounded by single-quote marks (), it
may contain double-quote marks ('), and vice versa. You may not
break a quoted string across a line boundary. Legal character strings
include

EFL Reference 12-5

‘hello there’
"ain’t misbehavin’"

2.9 Integer constants
An integer constant is a sequence of one or more digits.

0
57
123456

2.10 Floating-point constants

A floating-point constant contains a dot, an exponent field, or both.
An exponent field is the letter d or e followed by an optionally signed
integer constant. If I and J are integer constants and E is an exponent
field, then a floating constant has one of the following forms:

g
I
LJ
IE
LE
AE
LJE
Figure 12-3. Forms for floating-point constants in EFL

2.11 Punctuation
You may use certain characters to group or to separate objects in the
language, as follows:

Parentheses ()

Braces { 1}

Comma ’

Semicolon ;

Colon

End-of-line <CR>

Figure 12-4. Characters for grouping or separating in EFL

The end-of-line is a token (statement separator) if the line is nonblank
or noncontinued.

12-6 A/UX Programming Languages and Tools, Volume 1

2.12 Operators
The EFL operators are written as sequences of one or more
nonalphanumeric characters, as shown in Figure 12-5.

Operator Meaning
+ unary plus (no effect)
+ binary plus (a + b)
++ prefixplus(a=a+1)
- prefix minus (a=a-1
binary minus (a - b)
* times (a X b)
/ divided by (a + b)
* % exponentiation (a®)
is less than (a < b)
<= is less than or equals (a < b)
> is greater than (a > b)
>= is greater than or equals (a = b)
== equals (a=b)
T= does not equal (a # b)
$ repetition (2$a = aa)
fp decimal point (a.exp field)
&& logical and (a A b)
Il logical or (a v b)
& and (a and b)
| or (aorb)
= assign equals (a ‘‘gets’’ b)
+= assign plus (a=a +b)
-= assignminus (a=a- b)
/= assign divide (a=a+b)
*= assign times (a =a X b)
* k= assign exp (a = a?)
&&= assign logical and (a=a A b)
| = assign logical or (a=av b)
&= assign and (a = a and b)
|= assignor(a=aorb)
-> leftside = structure name

Figure 12-5. EFL operators
where *‘fp’’ stands for ‘‘floating point.”’

A dot (.) is an operator if it qualifies a structure element name, but not
if it acts as a decimal point in a numeric constant. There is a special

EFL Reference 12-7

mode (see ‘‘Atavisms’’) in which some of the operators may be
represented by a string consisting of a dot, an identifier, and another dot
(for example, .1t .).

2.13 Macros

EFL has a simple macro substitution facility. You may define an
identifier to be equal to a string of tokens; whenever that name appears
as a token in the program, the string replaces it. A macro name is
given a value in a define statement such as

define count n +=1

Any time the name count appears in the program, it is replaced by the
statement

n +=1
A define statement must appear alone on a line; the format is
define name definition-string

Trailing comments are part of the definition-string.

3. Program form

3.1 Files

A file is a sequence of lines and is compiled as a single unit. It may
contain one or more procedures. Declarations and options that appear
outside a procedure affect the succeeding procedures on that file.

3.2 Procedures

Procedures are the largest grouping of statements in EFL. Each
procedure has a name by which it is invoked (the first procedure
invoked during execution, known as the main procedure, has a null
name).

3.3 Block scope

You may form statements into groups inside a procedure. Then, their
influence on the rest of the program is determined by their location in
the program, the resulting scope of their effect, or both.

The beginning of a program file is at ‘‘nesting level’’ zero. Any
options, macro definitions, or variable declarations you enter are also at
level zero.

12-8 A/UX Programming Languages and Tools, Volume 1

After the declarations, if you enter a left brace, this marks the
beginning of a new block and increases the nesting level by one; a right
brace decreases the nesting level by one. Braces that are inside
declarations do not mark blocks (see ‘‘Blocks’’ under ‘‘Executable
Statements’’ for further information on blocks).

You may then enter a procedure statement for level 1. The text
immediately following the procedure statement is also at level 1.
An end statement marks the end of the procedure and level 1, and
returns you to level 0 within the program.

If you define a name (variable or macro) at level 0, it remains defined
throughout that block and in all deeper (higher numbered: for example,
1, 2, 3) nesting levels, unless that name is redefined or redeclared. If,
for example, you define a variable in level O (for example,a = 7), a
will be 7 throughout the program. If you want to include a subroutine
at a deeper level and that subroutine needs a to equal 3, you may
redefine a for that subroutine. a will equal 3 in that subroutine only,
however, because, as soon as the program leaves the subroutine, the
definition set forth in level 0 will prevail.

A procedure illustrating block level scope might look like the code
shown in Figure 12-6.

block 0

procedure george

real x

x = 2

if(x > 2)
{ # new block
integer x # a different variable
do x =1,7

write (, x)

} # end of block
end # end of procedure, return to block 0

Figure 12-6. Procedure illustrating block level scope

EFL Reference 12-9

3.4 Statements
Statements are of the following types:

option
include
define

procedure
end

declarative
executable

The opt ion statement is described in ‘‘Compiler Options.”” The
include, define, and end statements have been described
previously; you may not follow them with another statement on a line.
Each procedure begins with a procedure statement and finishes with
an end statement. Declarations or declarative statements
describe types and values of variables and procedures. executable
statements cause specific actions to occur. A block is an example of an
executable statement; it is made up of declarative and executable
statements.

3.5 Labels
An executable statement may have a label, which may be used in a
branch statement. A label is an identifier followed by a colon,
appearing at the margin to the left of some statement, such aserror:
in Figure 12-7.

read(, x)

if(x < 3) goto error

error: fatal("bad input")

Figure 12-7. Example of a label

4. Data types and variables

EFL supports a small number of basic (scalar) types. You may define
objects made up of variables of basic type (that is, aggregates) and
then define other aggregates in terms of previously defined aggregates.

12-10 A/UX Programming Languages and Tools, Volume 1

4.1 Basic types

The basic types are

logical

integer

field(m:n)

real

complex

long real

long complex

character(n)

4.2 Constants

A logical quantity may take on the two values
true and false.

An integer may take on any whole number
value in a machine-dependent range.

A field quantity is an integer restricted to a
particular closed interval ([m:n]).

A real quantity is a floating-point approximation
to a real or rational number. Real quantities are
represented as single-precision floating-point
numbers.

A complex quantity is an approximation to a
complex number, and is represented as a pair of
reals.

A long real is a more precise approximation to
arational. long reals are double-precision
floating-point numbers.

A long complex quantity is an approximation
to a complex number, and is represented as a pair
of long reals.

A character quantity is a fixed-length string of
n characters.

There is a notation for a constant of each basic type.

A logical may take on the two values:

true
false

An integer or £ield constant is a fixed-point constant, optionally
preceded by a plus or minus sign, as in

EFL Reference

12-11

17
-94
+6
0

A long real ‘‘double-precision’’ constant is a floating-point
constant containing an exponent field that begins with the letter d. A
real ‘‘single-precision’’ constant is any other floating-point constant.
A real or long real constant may be preceded by a plus or minus
sign. The following are valid real constants:

17.3
-.4
7.9e—6 (= 7.9 X 1076)
l4e9 (=1.4 x 1010

The following are valid 1long real constants:

7.9d-6 (= 7.9 X 1076)
5d3

A character constant is a quoted string. Consider, for example, the
following:

"bad input"
"I'm real, not integer”

4.3 Variables

A variable is a quantity with a name and a location; at any particular
time the variable may also have a value. A variable is said to be
‘‘undefined’’ before it is initialized or assigned its first value.

Each variable has certain attributes:
» storage class
e SCOpE
» precision

A variable’s storage class is the association of its name and its
location. A storage class may be either transitory or permanent.

» Transitory association is achieved when arguments are passed
to procedures.

12-12 A/UX Programming Languages and Tools, Volume 1

» Other associations are considered permanent or static
associations.

The scope of a variable may be either global or local.

1. The names of common areas are global. Global variables may
be used anywhere in the program, as they are known throughout
the program.

2. All other names are considered local to the block in which they
are declared.

(For further information about scope, refer to ‘‘Block Scope.’”)

Floating-point variables are either of normal or long precision.
Normal precision is 32 bits; long precision is 64 bits. You may state
this attribute independently of the basic type.

4.4 Arrays

You may declare rectangular arrays (of any dimension) of values of the
same type. The index set is always a cross-product of intervals of
integers. The lower and upper bounds of the intervals must be
constants for arrays that are local or common. A formal argument
array may have intervals that are of length equal to that of one of the
other formal arguments. An element of an array is denoted by the
array name, followed by a parenthesized, comma-separated list of
integer values, each of which must lie within the corresponding
interval. The intervals may include negative numbers. Entire arrays
may be passed as procedure arguments or in input/output lists, or they
may be initialized; all other array references must be to individual
clements.

For example, the declared integer array
array (2, 10) chance
might have the elements

chance (3)
chance (2, 8)

4.5 Structures
You may define new types that are made up of elements of other types.
This compound object is known as a structure; its constituents are

EFL Reference 12-13

called members of the structure.

You may name the structure. This name then acts as a type name in the
remaining statements within the scope of its declaration. The elements
of a structure may be of any type (including previously defined
structures), or they may be arrays of such objects. You may pass entire
structures to procedures or use them in input/output lists; you may also
reference individual elements of structures.

The following structure might represent a symbol table:

struct tableentry

{
character(8) name
integer hashvalue
integer numberofelements
field(0:1) initialized, used, set
field(0:10) type

}

5. Expressions
Expressions are syntactic forms that yield a value. An expression may
have any of the following forms, recursively applied:
primary
(expression)
unary-operator expression
expression binary-operator expression

The precedence of EFL operators, pictured from highest to lowest, is
shown in the following table. Lines separate the precedence levels.
The meanings of these operators are described in ‘‘Unary Operators’’
and ‘‘Binary Operators.”’

12-14 A/UX Programming Languages and Tools, Volume 1

Table 12-1. Precedence of operators in EFL

Operator Meaning Priority
-> leftside = structure name Highest
fp decimal point (a.exp field)

*k exponentiation (ab)

* times (a X b)

/ divided by (a + b)

+ unary plus (no effect)

- unary minus (negation)

++ prefix plus(a=a+1)

- prefix minus (a=a- 1)
binary plus (a + b)

- binary minus (a - b)

A

is less than (a < b)

is less than or equals (a <b)

is greater than (a > b)

is greater than or equals (a > b)
equals (a=b)

does not equal (a #b)

VvV VA
]

(|
oo

and (a and b)
logical and (a A b)

o]

or(aorb)
logical or (a v b)

repetition (2$a = aa)

Nlwn|——| &

assignment (a ‘‘gets’’ b) Lowest
assignplus(a=a+b)

assign minus (a=a- b)

assign times (a=a x b)

assign divide (@a=a +b)

assignexp(a=a

assign and (a =a and b)

assignor (a=aorb)

assign logical and (a=a A b)

assign logical or (@a=av b)

+

*

*
I

—?I-—Rlil * S

— R |

EFL Reference 12-15

The following are examples of expressions:

a<b && b<c
—(a + sin(x)) / (5+cos(x))**2

5.1 Primaries

Primaries are the basic elements of expressions. They include
constants, variables, array elements, structure members, procedure
invocations, input/output expressions, coercions, and sizes.

5.1.1 Constants
Constants are described in ‘‘Constants’’ under ‘‘Data Types and
Variables.””

5.1.2 Variables

Scalar variable names are primaries. They may appear on the left or
right side of an assignment. Unqualified names of aggregates
(structures or arrays) may appear only as procedure arguments and in
input/output lists.

5.1.3 Array elements

You may denote an element of an array with the array name, followed
by a parenthesized list of subscripts, with one integer value for each
declared dimension

a(5)
b(el _31 4)

5.1.4 Structure members

A structure name, followed by a dot, followed by the name of a
member of that structure constitutes a reference to that element. If that
element is itself a structure, the reference may be further qualified.

a.b
x(3) .y(4) .z (5)

5.1.5 Procedure invocations
You may invoke a procedure by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-1, ..., expression-n)

12-16 A/UX Programming Languages and Tools, Volume 1

The procedurename is either the name of a variable declared
external (see ‘‘Attributes’’ under ‘‘Declarations’’), the name of a
function known to the EFL compiler (see ‘‘Known Functions’’ under
‘‘Procedures’’), or the actual name of a procedure as it appears in a
procedure statement. If a procedurename is declared external and
is an argument of the current procedure, it is associated with the
procedure name passed as actual argument; otherwise, it is the actual
name of a procedure. Each expression in the above is called an “‘actual
argument.”’’

The following are examples of procedure invocations:

f(x)
work ()
g(x, y+3, 'xx’)

‘When one of these procedure invocations is going to be performed,
each of the actual argument expressions is evaluated first. The types,
precisions, and bounds of actual and formal arguments should agree.

If an actual argument is a variable name, array element, or structure
member, the called procedure may use the corresponding formal
argument as the left side of an assignment or in an input list; otherwise,
it may use only the value.

After the formal and actual arguments are associated, control is passed
to the first executable statement of the procedure. When a return
statement is executed in that procedure, or when control reaches the
end statement of that procedure, the function value is made available
as the value of the procedure invocation. The type of the value is
determined by the attributes of the procedurename that are declared or
implied in the calling procedure. These must agree with the attributes
declared for the function in its procedure. In the special case of a
generic function, the type of the result is also affected by the type of
the argument (see ‘‘Procedures’’).

5.1.6 Input/output expressions
The EFL input/output syntactic forms may be used as integer primaries
that have a nonzero value if an error occurs during the input or output.

EFL Reference 1217

5.1.7 Coercions
You may coerce or convert an expression of one precision or type to
another by an expression with the form

attributes (expression)

At present, the only attributes permitted are precision and basic types.
Attributes are separated by white space.

An arithmetic value of one type may be coerced to any other arithmetic
type. A character expression of one length may be coerced to a
character expression of another length. Logical expressions may not be
coerced to a nonlogical type.

As a special case, a quantity of complex or long complex type
may be constructed from two integer or real quantities by passing two
expressions (separated by a comma) in the coercion. Examples and
equivalent values are

integer(5.3) = 5
long real(5) 5.0d0
complex(5,3) = 5+3i

Most conversions are done implicitly, as most binary operators permit
operands of different arithmetic types. Explicit coercions are most
useful when you need to convert the type of an actual argument to
match that of the corresponding formal parameter in a procedure call.

5.1.8 Sizes
The notation that yields the amount of memory required to store a
datum or an item of specified type is

sizeof (leftside)
sizeof (attributes)

In the first case, leftside may denote a variable, array, array element, or
structure member. In the second case, attributes may denote an item of
a specified type. The value of sizeof is an integer, which gives the
size in arbitrary units. If the size is needed in terms of the size of some
specific unit, this may be computed by division,

sizeof (x) / sizeof (integer)

12-18 A/UX Programming Languages and Tools, Volume 1

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal
sizeof because certain data types require final padding on some
machines. The lengthof operator gives this larger value, again in
arbitrary units. The syntax is as follows:

lengthof (leftside)
lengthof (attributes)

5.2 Parentheses

An expression surrounded by parentheses is itself an expression. A
parenthesized expression will be evaluated before any larger
expression of which it is a part is evaluated.

5.3 Unary operators
All the unary operators in EFL are prefix operators. The result of a
unary operator has the same type as its operand.

5.3.1 Arithmetic
Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator —--
subtracts one from its operand. The value of either expression is the
result of the addition or subtraction. For these two operators, the
operand must be a scalar, array element, or structure member of
arithmetic type. As a side effect, the operand value is changed.

5.3.2 Logical
The only logical unary operator is complement (~). This operator is
defined by the equations

~ true = false
~ false = true

5.4 Binary operators

Most EFL operators have two operands separated by the operator.
Because the character set is limited, some of the operators are denoted
by strings of iwo or three special characters. All binary operators
except exponentiation are left associative.

5.4.1 Arithmetic
The binary arithmetic operators are

EFL Reference 12-19

+ addition

- subtraction

* multiplication
/ division

*

* exponentiation
Exponentiation is right associative:
axxpbkx*c = g*x% (bx*xc) = g (b

The operations have the conventional meanings:

8 + 2 =10
8 -2=26
8* 2 = 16
8/2 = 4

8 ** 2 = 82 = 64

The type of the result of a binary operation A op B is determined by
the types of its operands; as shown in Table 12-2.

Table 12-2. Type of result of binary operationa op B

Type of B
Typeof A | i r Ir ¢ Ic
i i r Ir ¢ Ic
r r r Ir ¢ Ic
Ir r r I It I
c ¢c ¢ It ¢ I
Ic Ic Ic It I I

wherei = integer,r = real,c = complex,Ir = long real,
Ic = long complex.

If the type of an operand differs from the type of the result, the
calculation is done as if the operand were first coerced to the type of
the result. If both operands are integers, the result is of type integer,
and is computed exactly (quotients are truncated toward zero, so 8/3 =
2).

12-20 A/UX Programming Languages and Tools, Volume 1

5.4.2 Logical

The two binary logical operations in EFL, and and or, are defined by
the truth tables shown in Table 12-3.

Table 12-3. Truth tables for and and ox

A B AandB | AorB
false | false false false
false | true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of
evaluation is specified. The expression

a && b

is evaluated by first evaluating a; if it is false, the expression is false

and b is not evaluated; otherwise, the expression has the value of b.
The expression

all b

is evaluated by first evaluating a; if it is true then the expression is true
and b is not evaluated; otherwise, the expression has the value of b.
The other forms of the operators (& for and, and | for or) do not
imply an order of evaluation. With the latter operators, the compiler
may evaluate the operands in any order, thus speeding up the code.

5.5 Relational operators
There are six relations between arithmetic quantities. These operators
are not associative.

EFL Reference 12-21

Table 12-4. Relational operators in EFL

EFL Operator | Meaning
< < Less than
<= < Less than or equal to
== = Equalto
~= # Not equal to
> > Greater than
>= 2 Greater than or equal

Because the complex numbers are not ordered, the only relational
operators that may take complex operands are == and ~=. The
character collating sequence is not defined.

5.6 Assignment operators
All the assignment operators are right associative. The simple form of
assignment is

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure
member of basic type. This statement computes the expression on the
right side and stores that value (possibly after coercing the value to the
type of the left side) in the location named by the left side. The value
of the assignment expression is the value assigned to the left side after
coercion.

Corresponding to each binary operator there is an assignment operator.
For each binary operator, the assignment operator is formed by
concatenating an equal sign (=) to the operator with no space between
them. For the case of binary +, the assignment operator becomes +=,
and the assignment

a +=b
is translated as
a=a+b
Thus, the assignment
n += 2

adds 2 to n. The basic-left-side is evaluated only once.

12-22 A/UX Programming Languages and Tools, Volume 1

5.7 Dynamic structures
EFL does not have an address (pointer, reference) type. There is a
notation, however, for dynamic structures:

leftside —> structurename

This expression is a structure with the shape implied by structurename
but starting at the location of leftside. In effect, this overlays the
structure template on the specified location. The leftside must be a
variable, array, array element, or structure member. The type of the
leftside must be one of the types in the structure declaration. An
element of such a structure is denoted in the usual way, using the dot
operator. Thus,

place (i) —> st.nth

refers to the nth member of the st structure starting at the ith
element of the array place.

5.8 Repetition operator
Inside a list, an element of the form

integer-constant-expression $ constant-expression

is equivalent to the appearance of the expression a number of times
equal to the first expression. Thus,

(3, 3%4, 5)
is equivalent to

(3, 4, 4, 4, 5)

5.9 Constant expressions

If you build an expression out of operators (other than functions) and
constants, the value of the expression is a constant, and may be used
anywhere a constant is required.

6. Declarations
Declarations statements describe the meaning, shape, and size of
named objects in the EFL language.

6.1 Syntax
A declaration statement is made up of attributes and variables.
Declaration statements are of two forms:

EFL Reference 12-23

attributes variable-list
attributes {declarations}

In the first case, each name in the variable-list has the specified
attributes. In the second, each name in the declarations also has the
specified attributes. A variable name may appear in more than one
variable list, as long as the attributes are not contradictory. Each name
of a nonargument variable may be accompanied by an initial value
specification. The declarations inside the braces are one or more
declaration statements. Examples of declarations are shown in Figure
12-8.

integer k=2
long real b(7,3)

common (cname)
{
integer i
long real array(5,0:3) x, y
character(7) ch

}

Figure 12-8. Examples of EFL declarations

6.2 Attributes
The following are basic types in declarations:

logical
integer
field(m:n)
character (k)
real
complex

Figure 12-9. Basic EFL types

In the above list, the quantities k, m, and n denote integer constant
expressions with the properties k > 0 and n > m.

6.2.1 Arrays
The dimensionality can be declared by an array attribute:

12-24 A/UX Programming Languages and Tools, Volume 1

array(by, ...b,)

Each of the b; may be a single integer expression or a pair of integer
expressions separated by a colon. The pair of expressions form a lower
and an upper bound; the single expression is an upper bound with an
implied lower bound of 1. The number of dimensions is equal to n, the
number of bounds.

Each of the integer expressions must be a constant. An exception is
permitted only if each of the variables associated with an array
declarator is a formal argument of the procedure. In this case, each
bound must have the property that upper — lower + 1 is equal to a
formal argument of the procedure. (The compiler has limited ability to
simplify expressions, but it will recognize important cases such as
(0:n-1).) The upper bound for the last dimension (b,) may be
marked by an asterisk (*) if the size of the array is unknown.

The following are legal array attributes:

array (5)

array(5, 1:5, -3:0)
array (5, *)
array(0:m-1, m)

Figure 12-10. Examples of legal array attributes

6.2.2 Structures
A structure declaration is of the form

struct [structname] {declarations}

If the optional structname is present, it takes the place of a type name
within the rest of its scope. Each name that appears inside a
declaration is a member of the structure, and has a special meaning
when used to qualify any variable declared with the structure type. The
declarations inside the braces are one or more declaration statements.

A name may appear as a member of any number of structures. It may
also be the name of an ordinary variable, as a structure member name
is used only in contexts where the parent type is known.

Figure 12-11 shows valid structure attributes.

EFL Reference 12-25

struct xx
{
integer a, b
real x(5)
}
struct {xx z(3); character(5) y}

Figure 12-11. Examples of valid structure attributes

The last line defines a structure that contains an array of three xxs and
a character string.

6.2.3 Precision

Variables of floating-point (real or complex) type may be declared
to be 1long to ensure that they have higher precision than ordinary
floating-point variables. The default precision is short.

6.2.4 Common
Certain objects called ‘‘common areas’’ have external scope, and may
be referenced by any procedure that has a declaration for the name
using a

common (common-area-name)

attribute. All the variables declared with a particular common attribute
are in the same block. The order in which they are declared is
significant; declarations for the same block in different procedures
must have the variables in the same order and with the same types,
precision, and shapes, although not necessarily with the same names.

6.2.5 External

If a name is used as the procedure name in a procedure invocation, it is
implicitly declared to have the external attribute. If a procedure
name is to be passed as an argument, you must declare it in a statement
with the form

external [[name]]

If a name has the external attribute and is a formal argument of the
procedure, it is associated with a procedure identifier passed as an
actual argument at each call. If the name is not a formal argument, it is
the actual name of a procedure as it appears in the corresponding
procedure statement.

12-26 A/UX Programming Languages and Tools, Volume 1

6.3 Variable list

The variable list in a declaration consists of a name, an optional
dimension specification, and an optional initial value specification. The
name follows the usual rules.

The dimension specification has the same form and meaning as the list
enclosed in parentheses in an array attribute.

The initial value specification has an equal sign (=) followed by a
constant expression. If the name is an array, the right side of the equal
sign may be a list of constant expressions or repeated elements or lists
enclosed in parentheses; the total number of elements in the list must
not exceed the number of elements in the array. Array elements are
filled in column-major order.

6.4 The initial statement
An initial value may also be specified for a simple variable, array, array
element, or member of a structure using a statement with the form

initial [[var = val]]

where var may be a variable name, array element specification, or
member of structure, and val is the initial value specified.

The right side follows the same rules as for an initial value
specification in other declaration statements.

7. Executable statements

Every useful EFL program must contain executable statements;
otherwise it cannot do anything. Executable statements are frequently
made up of other statements. While blocks are the most obvious
example of this, many other forms are made up of statements as well.

To increase the legibility of EFL programs, you may break some of the
statement forms without an explicit continuation. A square ({J) in the
syntax represents a point where an end-of-line will be ignored.

7.1 Expression statements
A procedure invocation that returns no value is known as a subroutine
call. Such an invocation is a statement. Examples are

EFL Reference 12-27

work (in, out)
run()

Input/output statements (see ‘‘Input/Output Statements’’ in this
section) resemble procedure invocations but do not yield a value. If an
error occurs here, the program stops.

An expression that is a simple assignment (=) or a compound

assignment (+=, —=, and so on) is a statement, such as
a=>b
a = sin(x)/6
x k= Y

7.2 Blocks

A block is a compound statement that acts as a single statement. A
block uses the following syntax:

{ [[declaration]] [[executable-statement]] }

A block may be used anywhere a statement is permitted. A block is not
an expression and does not have a value. Figure 12-12 shows a sample
block.

{

integer i # this variable is unknown
outside the braces of this block
big = 0
doi=1,n
if (big < a(i))
big = a (1)

Figure 12-12. Example of a block

7.3 Test statements
A test statement permits execution of another statement or group of
statements based on the outcome of a conditional expression.

There are several forms of test statements:
e if statements

12-28 A/UX Programming Languages and Tools, Volume 1

e if-else statements
e select statements

7.3.1 if statement
The simplest of the test statements is the if statement. Its form is

if (logical-expression) [statement
where [0 means the line may be broken at this point.

First, the logical-expression is evaluated; if it is true, the statement is
executed; if it is not, the statement is skipped.

7.3.2 if-else
A more general statement is of the form

if (logical-expression) [statement-1 O
else O statement-2

where [0 means the line may be broken at this point.

Just as with the if statement, the logical-expression is evaluated and if
it’s true, statement-1 is executed, if not, statement-2 is executed. Either
of the consequent statements may itself be an i f-else statement, so a
completely nested test sequence is possible. For example,

if (x<y)
if (a<b)
k =1
else
k =2
else
if (a<b)
m=1
else
m= 2

Figure 12-13. Nested if-else

An else statement applies to the nearest preceding i f that is not
already followed by an else.

A more common use of the i f-else test statement is the sequential
test, shown in Figure 12-14.

EFL Reference 12-29

if (x==1)

k=1

else if (x== | x==95)
k =2

else
k =3

Figure 12-14. Sequential if-else

You may use any number of else if statements within a single
if-else statement to test for several conditions; if, however, you
need more than two else ifs, you may prefer to use a select
statement instead.

7.3.3 select statement

Much like the switch statement in the C shell or case statements in
many programming languages, a select statement is used to direct
the branching of a program based on the result of a conditional or
arithmetic expression. A select statement has the general form

select (expression) [block

Inside the block, two special types of labels are recognized. A prefix
with the form

case [[constant]] :

marks the statement to which control is passed if the value of the
expression in the select is equal to one of the case constants. If the
expression does not equal any of these constants but there is a label
default inside the select, a branch is taken to that point;
otherwise, the statement following the right brace is executed.

Once execution begins at a case or default label, it continues until
the next case or default is encountered. An example follows:

12-30 A/UX Programming Languages and Tools, Volume 1

select (x)
{
case 1:
k =
case 3,5:
k =2
default:
k =3
}

Figure 12-15. select statement with case and default

7.4 Loops

The loop constructs (while, for, repeat, repeat-until and
do) provide an efficient way to repeat an operation or series of
operations. Loop termination is generally initiated by the failure of a
logical or iterative test statement. Although the while loop is the
simplest construct, and consequently the most frequently used, each
construct has its own strengths to be exploited in a given application.

7.4.1 while statement
This construct has the form

while (logical-expression) O statement

First, the logical-expression is evaluated; if it is true, statement is
executed, and the logical-expression is evaluated again. If it is false,
statement is not executed and program execution continues at the next
statement.

7.4.2 for statement
The for statement is a more elaborate looping construct. It has the
form

for (initial-statement, [logical-expression ,
O iteration-statement) [body-statement

Except for the behavior of the next statement (see ‘‘Branch
Statement’’ under ‘‘Executable Statements’’), this construct is
equivalent to

EFL Reference 12-31

initial-statement

while (logical-expression)
{
body-statement
iteration-statement
}

This form is useful for general arithmetic iterations and for various
pointer-type operations. The sum of the integers from 1 to 100 may be
computed by the fragment

n =20
for(i =1, i <= 100, i += 1)
n+=1i
Alternatively, the computation could be done by the single statement

for({n=0; i=1}, i<=100, {n+=i; ++i})

’

Note that the body of the for loop is a null statement in this case. An
example of following a linked list will be given later.

7.4.3 repeat statement
The statement

repeat O statement

executes the statement, then does it again, without any termination test.
A test inside the statement is needed to stop the loop.

7.4.4 repeat-until statement
The while loop performs a test before each iteration. The statement

repeat [statement [0 until (logical-expression)

executes the statement, then evaluates the logical-expression. If the
logical-expression is true, the loop is complete; otherwise, control
returns to the statement. Thus, the body is always executed at least
once. The unt il refers to the nearest preceding repeat that has not
been paired with an unt i1. In practice, this appears to be the least
frequently used looping construct.

12-32 A/UX Programming Languages and Tools, Volume 1

7.4.5 do loop

The simple arithmetic progression is a very common one in numeric
applications. EFL has a special loop form for ranging over an
ascending arithmetic sequence:

do variable = expression-1, expression-2, expression-3
statement

The variable is first given the value expression-1. The statement is
executed, then expression-3 is added to the variable. The loop is
repeated until the variable exceeds expression-2. If expression-3 and
the preceding comma are omitted, the increment is taken to be 1. The
loop above is equivalent to

[}

t2 = expression-2

t3 = expression-3

for (variable=expression-1, variable<=t2, variable+=t3)
statement

(the compiler translates EFL do statements into Fortran do statements,
which are usually compiled into excellent code). The do variable may
not be changed inside of the loop, and expression-1 must not exceed
expression-2. The sum of the first hundred positive integers could be
computed by the following code:

n=20
do i =1, 100
n += i

7.5 Branch statements

It is not considered good programming practice to use branch
statements if you could use a loop construct instead. If you must use a
branch statement, however, EFL provides a few for your convenience.

7.5.1 goto statement
The most general, and most risky, branching statement is the simple,
unconditional

goto label

After this statement, the statement following the given label is
performed. Inside a select, the case labels of that block may be
used as labels, as in Figure 12-16.

EFL Reference 12-33

select (k)

{

case 1:
error (7)

case 2:
k =2
goto case 4

case 3:
k=35
goto case 4

case 4:
fixup (k)
goto default

default:
prmsg ("ouch")

}

Figure 12-16. Use of gotos with case labels in a select

If two select statements are nested, the case labels of the outer
select are not accessible from the inner one.

7.5.2 break statement

A safer statement is one that transfers control to the statement
following the current select or loop form. A statement of this sort
is almost always needed in a repeat loop:

repeat
{
do a computation
if (finished)
break

}

More general forms permit controlling a branch out of more than one
construct. For example,

break 3

12-34 A/UX Programming Languages and Tools, Volume 1

transfers control to the statement following the third loop and/or
select surrounding the statement.

You may specify the type of construct from which control is to be
transferred, for example, for, while, repeat, do, or select. For
example,

break while

breaks out of the first surrounding while statement. Either of the
statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

7.5.3 next statement

The next statement causes the first surrounding loop statement to go
on to the next iteration. The next operation performed is the testof a

while, the iteration-statement of a for, the body of a repeat, the

test of a repeat .. .until, or the increment of a do. Elaborations
similar to those for break are available:

next

next 3
next 3 for
next for 3

A next statement ignores select statements.

7.5.4 return statement

The last statement of a procedure is followed by a return of control to
the caller. If you want to effect such a return from any other point in
the procedure, a return statement should be executed. Inside a
function procedure, the function value is specified as an argument of
the statement

return (expression)

7.6 Input/output statements

EFL has two input statements (read and readbin), two output
statements (write and writebin), and three control statements
(endfile, rewind, and backspace). You may use any of these

EFL Reference 12-35

forms either as a primary with an integer value or as a statement.

If an exception occurs when one of these forms is used as a statement,
the result is undefined but will probably be treated as a fatal error. If
these forms are used in a context where they return a value, they return
zero if no exception occurs. For the input forms, a negative value
indicates end-of-file and a positive value an error. EFL’s input/output
statements reflect very strongly the facilities of Fortran.

7.6.1 1/O units

Each I/O statement refers to a ‘“unit,”’” which is identified by a small
positive integer. Two special units are defined by EFL, the ‘‘standard
input unit’’ and the ‘‘standard output unit.”” If no unit is specified in an
I/O transmission statement, these units are assumed.

The data on the unit are organized into records. These records may be
read or written in a fixed sequence. Each transmission moves an
integral number of records. Transmission proceeds from the first
record until the end-of-file character is reached.

7.6.2 Binary 1/0
The readbin and writebin statements transmit data in a
machine-dependent but swift manner. The statements are of the form

writebin (unit, binary-output-list)
readbin (unit, binary-input-list)

Each statement moves one unformatted record between storage and the
device. unit is an integer expression. A binary-output-list is an iolist
(see below) without any format specifiers. A binary-input-list is an
iolist without format specifiers, in which each of the expressions is a
variable name, array element, or structure member.

7.6.3 Formatted /O

The read and write statements transmit data in the form of lines of
characters. Each statement moves one or more records (lines).
Numbers are translated into decimal notation. The exact form of the
lines is determined by format specifications, whether provided
explicitly in the statement or implicitly. The syntax of the statements is

write (unit, formatted-output-list)
read (unit, formatted-input-list)

12-36 A/UX Programming Languages and Tools, Volume 1

The lists are of the same form as for binary I/O, except that they may
include format specifications. If unit is omitted, the standard input or
output unit is used.

7.6.4 lolists

An iolist specifies a set of values to be written or a set of variables into
which values are to be read. An iolist is a list of one or more
ioexpressions with the form

expression
{ iolist }
do-specification { iolist}

For formatted I/O, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier
A do-specification 1ooks just like a do statement, and has a similar

effect: the values in the braces are transmitted repeatedly until the do
execution is complete.

7.6.5 Formats
The following are permissible format-specifiers. The quantities w, d,
and k must be integer constant expressions:

EFL Reference 12-37

i(w) Integer with w digits

f (w,d) Floating-point number of w characters, d of them to the
right of the decimal point

e (w,d) Floating-point number of w characters, d of them to the
right of the decimal point, with the exponent field marked
with the letter e

1(w) Logical field of width w characters, the first of which is t
or £ (the rest are blank on output, ignored on input),
standing for t rue and false, respectively

c Character string of width equal to the length of the datum
c(w) Character string of width w

s (k) Skip k lines

x (k) Skip k spaces

Use the characters inside the string as a Fortran format

Figure 12-17. Permissible format specifiers in EFL

If you do not specify a format for an item in a formatted input/output
statement, the EFL compiler chooses a default form.

If an item in a list is an array name, the entire array is transmitted as a
sequence of elements, each with its own format. The elements are
transmitted in column-major order, the same order that is used for array
initializations.

7.6.6 Manipulation statements

The three input/output statements

backspace (unit)
rewind (unit)
endfile (unit)

look like ordinary procedure calls, but you may use them either as
statements or as integer expressions that yield nonzero if an error is
detected.

12-38 A/UX Programming Languages and Tools, Volume 1

backspace causes the specified unit to back up, so that the next
read will reread the previous record, and the next write will over-
write it.

rewind moves the device to its beginning, so that the next input
statement will read the first record.

endfile causes the file to be marked so that the record most recently
written will be the last record on the file, and any attempt to read past it
will be an error.

8. Procedures
Procedures are the basic unit of an EFL program and provide the means
of segmenting a program into separately compilable and named parts.

8.1 procedure statement
Each procedure begins with a statement with one of the following
forms:

procedure

attributes procedure procedurename

attributes procedure procedurename ()
attributes procedure procedurename ([[name 11)

The first form specifies the main procedure, where execution begins.

In the other forms, the attributes may specify precision and type or they
may be omitted entirely. You may declare the procedure’s precision
and type in an ordinary declaration statement. If you do not declare a
type, the procedure is a subroutine and no value may be returned for it.
Otherwise, the procedure is a function, and a value of the declared type
is returned for each call.

Each name inside the parentheses in the last form above is called a
‘‘formal argument’’ of the procedure.

8.2 end statement
Each procedure terminates with the statement

end

8.3 Argument association
When a procedure is invoked, the actual arguments are evaluated. If
the actual argument is one of the following:

EFL Reference 12-39

o the name of a variable
e an array element
e a structure member

that entity becomes associated with the formal argument. The
procedure may reference the values in the entity and assign values to it.
Otherwise, the value of the actual argument is associated with the
formal argument, but the procedure may not change the formal
argument’s value.

If the value of one of the arguments is changed in the procedure, the
corresponding actual argument is not permitted to be associated with
another formal argument or with a common element that is referenced
in the procedure.

8.4 Execution and return values

After actual and formal arguments are associated, control passes to the
first executable statement of the procedure. Control returns to the
invoker when the end statement of the procedure is reached or when a
return statement is executed. If the procedure is a function (has a
declared type) and a return (value) is executed, the value is
coerced to the correct type and precision and returned.

8.5 Known functions

A number of functions that are known to EFL need not be declared.
The compiler knows the types of these functions. Some of them are
generic; that is, they name a family of functions that differ in the types
of their arguments and return values. The compiler chooses which
element of the set to invoke, based upon the attributes of the actual
arguments.

8.5.1 Minimum and maximum functions

The generic functions are min and max. The min calls return the
value of their smallest argument; the max calls return the value of their
largest argument. These are the only functions that may take different
numbers of arguments in different calls. If any of the arguments are
long real,then the resultis long real. If any of the arguments
are real, the result is real. Otherwise, all arguments and result
must be integer. Sample function calls follow:

12-40 A/UX Programming Languages and Tools, Volume 1

min(5, x, -3.20)
max(i, z)

8.5.2 Absolute value

The abs function is a generic function that returns the magnitude of its
argument. For integer and real arguments the type of the result is
identical to the type of the argument; for complex arguments, the type
of the result is the real of the same precision.

8.5.3 Elementary functions
Generic functions take arguments of real, long real,or
complex type and return a result of the same type:

Table 12-5. Generic functions

Function Description

sin sine function

cos cosine function

exp exponential function (e*).
log natural (base e) logarithm
logl0 common (base 10) logarithm
sgrt square root function (‘/;).

In addition, the following functions accept only real or long real
arguments:

Function Description

atan arctangent function
atan2 arctangent of x/y

8.5.4 Other generic functions
The sign function takes two arguments of identical type: xand y. It
returns positive x or negative x according to the sign of y.

The mod function yields the remainder of its first argument divided by
its second argument.

Function Description

sign(x,y) sign conversion function
mod (X, y) remainder function

These functions accept integer and real arguments.

EFL Reference 12-41

9. Atavisms
The following constructs are included to ease the conversion of old
Fortran programs to EFL.

9.1 Escape lines

To make use of nonstandard features of the local Fortran compiler, it is
occasionally<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>