Inside
Macintosh

ol
L=
/>

A Letter from the Macintosh Developers Group 15 March 1985
DearReader:

After many months of work the Macintosh Division’s User Education Group (responsible for all the Macintosh
documentation) has completed the manuscript for Inside Macintosh. We’ve finalized production arrangements
with a major publisher and you can expect to see the final edition at better bookstores everywhere by late summer
’85. However, we can’t wait that long and don’t expect you to either. We’ve therefore produced this special
Promotional Edition to handle the demand for Inside Macintosh until the final edition becomes available. The
contents of this edition are still preliminary and subject to change; the final edition will include many updates and
corrections. The production quality of the final edition will be significantly improved from this inexpensive edition.

Now, here are answers to some questions we anticipate:

Q. I purchased the three-ring binder version of Inside Macintosh from your mail-house for
$100 and also bought the Software Supplement for $100. Is this Promotional Edition the
final copy I'm supposed to receive for purchasing the Software Supplement?

A. No. As promised, Supplement owners will receive a copy of the final version when it’s available.

Q. How can I get Macintosh developer utilities, example programs, example source code, the
libraries I need to do Lisa Pascal/Macintosh cross-development work, and additional copies of
this manual?

A.The Software Supplement consists of: 1) useful Macintosh utilities, example programs, and example source code,
2) the interface files, equate files, and trap definitions in both Macintosh and Lisa readable format, 3) all of the
libraries required for Lisa Pascal/Macintosh cross-development, 4) a new Lisa Pascal Compiler, which supports
SANE numerics, and 5) a copy of the final published edition of Inside Macintosh (this will be sent to you when
available). The price for the Software Supplement is $100. As of April "85 the Software Supplement has been
frozen to correspond to Inside Macintosh and automatic updates will no longer be included in the Software
Supplement price. We will, however, inform Supplement owners of other products and utilities as they become
available. You may also order additional copies of this special Promotional Edition of Inside Macintosh for $25
per copy.

You can order the Software Supplement and/or copies of this Promotional Edition of Inside Macintosh by
writing to (California residents please add 6.5% sales tax) :

Apple Computer, Inc.

467 Saratoga Avenue Suite 621

San Jose, CA 95129

(408) 988-6009

Q. Is there a good way to keep up-to-date with new utilities and technical notes and at the
same time stay in touch with other developers?

A. We’ve found that electronic distribution is a very cost-effective, timely way to keep the developer world
up-to-date. At least two major on-line services, Delphi and Compuserve, host the MicroNetworked Apple Users’
Group (MAUG)--an electronic service open to all people who are interested in or have information to share about
Apple products. MAUG is an independently run service and is not affiliated with Apple Computer, Inc. If you have a
modem and communication software you can sign-on and download the latest developer utilities from the Macintosh
Software Supplement, example programs, technical notes, and documentation. You can also carry on electronic

conversations with hundreds of other Macintosh developers. For more information on these services please write to
either:

Delphi Compuserve

3 Blackstone Street 5000 Arlington Centre Boulevard
Cambridge, MA 02139 Columbus, OH 43220

(617) 491-3393 (614) 457-8600

(800) 544-4005 (toll-free outside of Massachusetts)

All of us in the Macintosh Division would like to thank you for your support of Macintosh development. We'll
continue to provide the programs, tools, and documentation to assist your efforts.

We’d love to hear from you on any topic related to Macintosh Development. Send your letters to Apple Computer,
Macintosh Developers Group, Mail Stop 4T, 20525 Mariani Avenue, Cupertino CA 95014.

‘Inside
Macintosh

Promotional Edition ,

Copyright

Copyright © 1982, 1983, 1984, 1985 Apple Computer, Inc. All Rights Reserved.
20525 Mariani Avenue

Cupertino, CA 95014

(408) 996-1010

This manual is copyrighted. Under the Copyright laws, this manual may not be copied, in whole
or in part, without written consent of Apple. Under the law, copying includes translating into
another language or format.

Macintosh is a trademark licensed to Apple Computer, Inc.

Apple, the Apple logo, the Macintosh logo, MacWrite, MacDraw, and MacPaint are trademarks of
Apple Computer, Inc. ‘

Lisa i§ a registered trademark of Apple Computer, Inc.
Simultaneously published in the U.S.A. and Canada.

Limitation on Warranty and Liabilities

Inside Macintosh is a working document used by Apple’s own programmers and developers
which describes the hardware and software associated with the Macintosh computer. This is a
preliminary edition that is incomplete and may contain errors. Apple itself does not rely solely on
this document, but rather subjects all of its products to extensive testing prior to introduction.
Further, Apple is continuing to improve its products and the contents of this manual may be
obsoleted as a result of changes to Apple products. Accordingly, Apple makes rio warranty that
this manual is accurate or complete and notifies all readers that the specifications of its products are
subject to change without notice.

APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL, ITS ACCURACY, CONTENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “ ASIS” AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO THE USE OF AND RELIANCE ON THIS MANUAL.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
OMISSION IN THIS MANUAL, even if advised of the possibility of possible damages resulting
therefrom.

No Apple dealer, agent, or employee is authorized to make any mod1f1cat1on extension, or addition
to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental
or consequential damages, so the above limitation may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from state to state.

Contents

A i N ol

ot ek ok
W RS

ok ko o
PRI RS

b
=S

SN SN CNVEN
NS R WY

N b2
o ®;

9 9 L'
S Mo

Road Map

Macintosh User Interface Guidelines
Introduction to Memory Management
Programming in Assembly Language
Resource Manager

QuickDraw

- Font Manager

Toolbox Event Manager

Window Manager’

Control Manager

Menu Manager

TextEdit

Dialog Manager

Desk Manager

Scrap Manager

Toolbox Utilities

Macintosh Packages

Memory Manager -

Segment Loader

Operating System Event Manager
File Manager

Printing from a Macintosh Application
Device Manager

Disk Driver

Sound Driver

Serial Drivers

AppleTalk Manager

Vertical Retrace Manager
System Error Handler

Operating System Utilities
Structure of a Macintosh Application

. Apple Numerics Manual (SANE)

Index to Technical Documentation

MACINTOSH USER EDUCATION

INSIDE MACINTOSH: A ROAD MAP /ROAD .MAP/ROAD

See Also: Macintosh User Interface Guidelines
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
The Scrap Manager: A Programer's Guide
The Toolbox ‘Utilities: A Programmer's Guide
Macintosh Packages: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
The File Manager: A Programmer's Guide
Printing from Macintosh Applications
The Device Manager: A Programmer's Guide
The Sound Driver: A Programmer's Guide
The Vertical Retrace Manager: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide
The Structure of a Macintosh Application
Putting Together a Macintosh Application
Index to Technical Documentation

Modification History: First Draft (ROM 4.4) Caroline Rose 8/8/83
' Second Draft (ROM 7) Caroline Rose 12/22/83

Third Draft Caroline Rose 9/1@/84

ABSTRACT

This manual introduces you to the Macintosh technical documentation and
the "inside'" of Macintosh: the Operating System and other routines that
your application program will call. It will help you figure out which
software you need to learn more about and how to proceed with the rest
of the documentation. It also presents a simple example program.

Since the last draft, changes and additions have been made to the
overviews, an example program has been added, and the structure of a
typical Inside Macintosh manual is discussed.

2 Inside Macintosh Road Map

TABLE OF CCNTENTS

3 About This Manual

3 About Inside Macintosh

4 Everything You Know Is Wrong

4 Conventions

5 The Structure of a Typical Manual

6 Overview of the Software

6 The Toolbox and Other High-Level Software

10 The Operating System and Other Low-Level Software

11 A Simple Example Program

18 Where to Go From Here

19 Appendix: Resource Compiler Input for Example Program
20 Glossary '

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual introduces you to the Macintosh technical documentation and
the "inside" of Macintosh: the Operating System and User Interface
Toolbox routines that your application program will call. It will help
you figure out which software you need to learn more about and how to
proceed with the rest of the documentation. To orient you to the
software, it presents a simple example program. **%* Eventually it will
become the preface and introductory chapter in the comprehensive Inside
Macintosh manual. *%*

ABOUT INSIDE MACINTOSH

Inside Macintosh *** (currently a set of separate manuals) *** tells
you what you need to know to write software for the Macintosh.

Although directed mainly toward programmers writing standard Macintosh
applications, it also contains the information necessary for writing
simple utility .programs, desk accessories, device drivers, or amy other
Macintosh software. It includes:

- the user interface guidelines for applicaéions on the Macintosh
- a complete description of the routines available for your program
to call (both those built into the Macintosh and others on disk),
along with related concepts and background information
- a description of the Macintosh hardware *** (forthcoming) ***
It does mot include:
- information about getting started as a developer (for that, see '

the Apple 32 Developer's Handbook, available from Apple Computer'sb
Software Industry Relations)

- any information that's specific to the development system being
used, except where indicated *** (The manual Putting Together a
Macintosh Application will not be part of the final Inside
Macintosh.) **%

The routines you'll need to call are written in assembly language, but
they're also accessible from high-~level languages. The development
system currently available from Apple supports Lisa Pascal and includes
Pascal interfaces to all the routines (except for a few that are called
only from assembly language). Inside Macintosh documents these Pascal
interfaces; if you're using a development system that supports a
different high-level language, its documentation should tell you how to
apply the information presented here to that system.

Inside Macintosh is intended to serve the needs of both Pascal and
assembly-language programmers. Every routine is shown in its Pascal
form (if it has one), but assembly-language programmers are told how to

9/10/84 Rose /ROAD .MAP/ROAD.2

4 Inside Macintosh Road Map

14
translate this to assembly code. Information of interest only to

assembly-language programmers is isolated and labeled so that Pascal
programmers$ can conveniently skip it.

Familiarity with Lisa Pascal is recommended for all readers, since it's
used for most examples. Lisa Pascal is described in the Pascal
Reference Manual for the Lisa. You should also be familiar with the
basic information that's in Macintosh, the owner's guide, and have some
experience using a standard Macintosh application (such as MacWrite).

Everything You Know Is Wrong

On an innovative system like the Macintosh, programs don't look quite
the way they do on other systems. For example, instead of carrying out
a sequence of steps in a predetermined order, your program is driven
primarily by user actions (such as clicking and typing) whose order
cannot be predicted. You'll probably find that many of your
preconceptions about how to write applications don't apply here.
Because of this, and because of the sheer volume of information in
Inside Macintosh, it's essential that you read the Road Map *** (the
rest of this manual) ***, It will help you get oriented and figure-out
where to go next.

Conventions

The following notations are used in Inside Macintosh to draw your
attention to particular items of information:

(note)
A note that may be interesting or useful

(warning)
A point you need to be cautious about

Assembly-language note: A note of interest to assembly-language
programmers only *** (in final wmanual, may instead be a shaded
note or warning) ***

[No trap macro]
This notation is of interest only to assembly-language
programmers *** (may be shaded in final manual) ***; it's
explained along with other general information on using assembly
language in the manual Programming Macintosh Applications in
Assembly Language.

9/10/84 Rose /ROAD .MAP/ROAD.2

ABOUT INSIDE MACINTOSH 5

The Structure of a Typical Manual

*** This section refers to "manuals'" for the time being; when the
individual manuals become chapters of Inside Macintosh, this will be
‘changed to "chapters'. ***

Most manuals of Inside Macintosh have the same structure, as described
below. Reading through this now will save you a lot of time.and effort
later on. It contains important hints on how to find what you're
looking for within this vast amount of technical documentation.

Every manual begins with a very brief description of its subject and a
list of what you should already know before reading that manual. Then
_there's a section called, for example, "About the Window Manager",
which gives you more information about the subject, telling you what
you can do with it in general, elaborating on related user interface

" guidelines, and introducing terminology that will be used in the
manual. This is followed by a series of sections describing important
related concepts and background information; unless they're noted to be
for advanced programmers only, you'll have to read them in order to
understand how to use the routines described later.

Before the routine descriptions themselves, there's a section called,
for example, "Using the Window Manager". It introduces you to the
routines, telling you how they fit into the general flow of an
application program and, most important, giving you an idea of which
ones you'll need to use. Often you'll need only a few routines out of
many to do basic operations; by reading this section, you can save
yourself the trouble of learning routines you'll never use.

Then, for the details about the routines, read on to the next section.
It gives the calling sequence for each routine and describes all the
parameters, effects, side effects, and so on.

Following the routine descriptions, there may be some sections that
won't be of interest to all readers. Usually these contain information
about advanced techniques, or behind-the-scenes details for the

curious.

For review and quick reference, each manual ends with a summary of the
subject matter, including the entire Pascal interface and a subsection
for assembly-language programmers. *** For now, this is followed by a
glossary of terms used in the manual. Eventually, all the individual
glossaries will be combined into one. **%*

9/10/84 Rose : /ROAD.MAP/ROAD.2

6 Inside Macintosh Road Map

OVERVIEW OF THE SOFTWARE

The routines available for use in Macintosh programs are divided
according to function, into what are in most cases called '"managers" of
the application feature that they support. As shown in Figure 1 on the
following page, most are part of either the Operating System or the
User Interface Toolbox and are in the Macintosh ROM.

The Operating System is at the lowest level; it does basic tasks such
as input and output, memory management, and interrupt handling. The
User Interface Toolbox is a level above the Operating System; it helps.
you implement the standard Macintosh user interface in your
application. The Toolbox calls the Operating System to do low-level
operations, and you'll also call the Operating System directly
yourself.

RAM-based software is available as well. In most cases this software
performs specialized operations that aren't integral to the user
interface but may be useful to some applications (such as printing and
floating-point arithmetic).

The Toolbox and Other High-Level Software

The Macintosh User Interface Toolbox provides a simple means of
constructing application programs that conform to the standard
Macintosh user interface. By offering a common set of routines that
every application calls to implement the user interface, the Toolbox
not only ensures familiarity and consistency for the user but also
helps reduce the application's code size and development time. At the
" same time, it allows a great deal of flexibility: an application can
use its own code instead of a Toolbox call wherever appropriate, and
can define its own types of windows, menus, controls, and desk
accessories.

Figure 2 shows the various parts of the Toolbox in rough order of their
relative level. There are many interconnections between these parts;
the higher ones often call those at the lower levels. A brief
description of each part is given below, to help you figure out which
ones you'll need to learn more about. Details are given in the Inside
Macintosh documentation on that part of the Toolbox. The basic
Macintosh terms used below are explained in the Macintosh owner's
guide. ’)

9/10/84 Rose : /ROAD .MAP/ROAD.2

OVERVIEW OF THE SOFTWARE 7

A MACINTOSH APPLICATION PROGRAM

THE USER INTERFACE TOOLBOX

(in ROM)
Resource Mansger _
‘QuickDraw — :
Font Menager OTHER HIGH-LEVEL SOFTWARE
Toolbox Event Manager (not in ROM)
Window Manager -
Contro! Menager Binary-Decimal Conversion Package
Menu Manager International Utilities Package
TextEdit ' Standard.File Package
Dialog Manager

Desk Manager
Scrap Manager
Toolbox Utilities
Package Manager

THE OPERATING SYSTEM
(in ROM)
Memory Manager , OTHER LOW-LEVEL SOFTWARE
Segment Loader (not in ROM)
Operating System Event Manager L
File Manager Pr!ntmg Manager
Device Manager g Printer Driver \
Disk Driver AppleBus Manager
Sound Driver Disk Initialization Package
Serial Drivers Flosting-Point Arithmetic Package
Vertical Retrace Manager Transcendental Functions Package
System Error Handler
Operating System Utilities

THE MACINTOSH HARDWARE

Figure 1. Overview

9/10/84 Rose /ROAD .MAP/ROAD. 2

8 Inside Macintosh Road Map

Dialog Manager

Control Manager Menu Manager TextEdit

Window Manager

Toolbox Utilities

Toolbox Event Manager

Desk Manager Scrap Manager

QuickDraw

Package Manager Font Manager

Resource Manager

Figure 2. Parts of the Toolbox

To keep the data of an application separate from its code, making-the
data easier to modify and easier to share among applications, the
Toolbox includes the Resource Manager. The Resource Manager lets you,
for example, store menus separately from your code so that they can be
edited or translated without requiring recompilation of the code. It
also allows you to get standard data, such as the I-beam pointer for
inserting text, from a shared system file. When you call other parts
of the Toolbox that need access to the data, they call the Resource
Manager. Although most applications never need to call the Resource
Manager directly, an understanding of the concepts behind it is
essential because they're basic to so many other Toolbox operations.

Graphics are an important part of every Macintosh application. All
graphic operations on the Macintosh are performed by QuickDraw. To
draw something on the screen, you'll often call one of the other parts
of the Toolbox, but it will in turn call QuickDraw. You'll also call
QuickDraw directly, usually to draw inside a window, or just to set up
constructs like rectangles that you'll need when making other Toolbox
calls. QuickDraw's underlying concepts, like those of the Resource
Manager, are important for you to understand.

Graphics include text as well as pictures. To draw text, QuickDraw
calls the Font Manager, which does the background work necessary to
make a variety of character fonts available in various sizes and
styles. Unless your application includes a font menu, you need to know
only a minimal amount about the Font Manager.

An application decides what to do from moment to moment by examining
input from the user in the form of mouse and keyboard actions. It
learns of such actions by repeatedly calling the Toolbox Event Manager
. (which in turn calls another, lower-level Event Manager in the
Operating System). The Toolbox Event Manager also reports occurrences
within the application that may require a response, such as when a

9/10/84 Rose /ROAD.MAP/ROAD.2

¢

OVERVIEW OF THE SOFTWARE 9

window that was overlapped becomes exposed and needs to be redrawn.

All information presented by a standard Macintosh application appears
in windows. To create windows, activate them, move them, resize them,
or close them, you'll call the Window Manager. It keeps track of
overlapping windows, so you can manipulate windows without concern for
how they overlap. For example, the Window Manager tells the Toolbox
Event Manager when to .inform your application that a window has to be
redrawn. Also, when the user presses the mouse button, you call the
Window Manager to learn which part of which window it was pressed in,
or whether it was pressed in the menu bar or a desk accessory.

Any window may contain controls, such as buttons, check boxes, and
scroll bars. You create and manipulate controls with the Control
Manager. When you learn from the Window Manager that the user pressed
the mouse button inside a window containing controls, you call the
Control Manager to find out which control it was pressed in, if any.

A common place for the user to press the mouse button is, of course, in
the menu bar. You set up menus in the menu bar by calling the Menu
Manager. When the user gives a command, either from a menu with the
mouse or from the keyboard with the Command key, you call the Menu

Manager to find out which command was given.

To accept text typed by the user and allow the standard editing
capabilities, including cutting and pasting text within a document via
the Clipboard, your application can call TextEdit. TextEdit also
handles basic formatting such as word wraparound and justification.
You can use it just to display text if you like.

When an application needs more information from the user about a
command, it presents a dialog box. 1In case of errors or potentially
dangerous situations, it alerts the user with a box containing a
message or with sound from the Macintosh's speaker (or both). To
create and present dialogs and alerts, and find out the user's
responses to them, you call the Dialog Manager. N

Every Macintosh application should support the use of desk accessories.
The user opens desk accessories through the Apple menu, which you set
up by calling the Menu Manager. When you learn that the user has
pressed the mouse button in a desk accessory, you pass that information
on to the accessory by calling the Desk Manager. The Desk Manager also
includes routines that you must call to ensure that desk accessories:
work properly.

As mentioned above, you can use TextEdit to implement the standard text
editing capability of cutting and pasting via the Clipboard in your
application. To allow the use of the Clipboard for cutting and pasting
text or graphics between your application and another application or a
desk accessory, you need to call the Scrap Manager.

Some generally useful operations such as fixed—-point arithmetic, string
manipulation, and logical operations on bits may be performed with the
Toolbox Utilities.

9/10/84 Rose /ROAD .MAP/ROAD.2

10 Inside Macintosh Road Map

The final part of the Toolbox, the Package Manager, lets you use RAM-
based software called-packages. The Standard File Package will be
called by every application whose File menu includes the standard ‘
commands for saving and opening documents; it presents the standard
user interface for specifying the document. Some of the Macintosh
packages can be seen as extensions to the Toolbox Utilities: the
Binary-Decimal Conversion Package converts integers to decimal strings
and vice versa, and the International Utilities Package gives you
access to country-dependent informatior such as the formats for
numbers, currency, dates, and times.

The Operating System and Other Low-Level Software

The Macintosh Operating System provides the low-level support that
applications need in order to use the Macintosh hardware. As the
Toolbox is your program's interface to the user, the Operating System
is its interface to the Macintosh. '

The Memory Manager dynamically allocates and releases memory for use by
applications and by the other parts of the Operating System. Most of
the memory that your program uses is in an area called the heap; the
code of the program itself occupies space in the heap. Memory space in
the heap must be obtained from the Memory Manager.

The Segment Loader is the part of the Operating System that loads
program code into memory to be executed. Your program can be loaded
all at once, or you can divide it up into dynamically loaded segments
to economize on memory usage. The Segment Loader also serves as a
bridge between the Finder and your application, letting you know
whether the application has to open or print a document on the desktop
when it starts up.

Low-level, hardware-related events such as mouse-button presses and
keystrokes are reported by the Operating System Event Manager. (The
Toolbox Event Manager then passes them to the application, along with
higher—-level, software-generated events added at the Toolbox level.)
Your program will ordinarily deal only with the Toolbox Event Manager
and rarely call the Operating System Event Manager directly.

File I/0 is supported by the File Manager, and device I/0 by the Device
Manager. The task of making the various types of devices present the
same interface to the application is performed by specialized device
drivers. The Operating System includes three built-in drivers:

- The Disk Driver controls data storage and retrieval on 3 1/2-inch
disks. .

- The Sound Driver controls sound generation, including music
composed of up to four simultaneous tones.

- The Serial Driver reads and writes asynchronous data through the
two serial ports, providing communication between applications and
serial peripheral devices such as a modem or printer.

9/10/84 Rose /ROAD.MAP/ROAD.2

OVERVIEW OF THE SOFTWARE 11

The above drivers are all in ROM; other drivers are RAM-based. There's
a Serial Driver in RAM as well as the one in ROM, and there's a Printer
Driver in RAM that enables applications to print information on any
variety of printer via the same interface (called the Printing
Manager). The AppleBus Manager is an interface to a pair of RAM
drivers that enable programs to send and receive information via an
AppleBus network. More RAM drivers can be added independently or built
on the existing drivers. For example, the Printer Driver was built on
the Serial Driver, and a music driver could be built on the Sound
Driver.

The Macintosh video circuitry generates a vertical retrace interrupt 60
times a second. An application can schedule routines to be executed at
regular intervals based on this "heartbeat'" of the system. The
Vertical Retrace Manager handles the scheduling and execution of tasks
during the vertical retrace interrupt.

If a fatal error occurs while your application is running (for example,
if it runs out of memory), the System Error Handler assumes control.
The System Error Handler displays a box containing an error message and
provides a mechanism for the user to start up the system again or
resume execution of the application.

The Operating System Utilities perform miscellaneous operations such as
getting the date and time, finding out the user's preferred speaker
volume and other preferences, and doing simple string comparison.

(More sophisticated string comparison routines are available in the
International Utilities Package.)

Finally, there are three Macintosh packages that perform low-level
operations: the Disk Initialization Package, which the Standard File
Package calls to initialize and name disks; the Floating-Point
Arithmetic Package; and the Transcendental Functions Package.

A SIMPLE EXAMPLE PROGRAM

To illustrate various commonly used parts of the software, this section
presents an extremely simple example of a Macintosh application
program. Though too simple to be practical, this example shows the
overall structure that every application program will have, and it does
many of the basic things every application will do. By looking it
over, you can become more familiar with the software and see how your
own program code will be structured. ’

The example program's source code is shown in Figure 4, which begins on
page 15. A lot of comments are included so that you can see which part
of the Toolbox or Operating System is being called and what operation
is being performed. These comments, and those that follow below, may
contain terms that are unfamiliar to you, but for now just read along
to get the general idea. All the terms are explained at length within
Inside Macintosh. If you want more information right away, you can
look up the terms in the Glossary or the Index *** (currently the

9/10/84 Rose /ROAD .MAP/ROAD. 3

12 Inside Macintosh Road Map

individual glossaries in the various manuals, and the manual Index to
~Technical Documentation) ***

The application, called Samp, displays a single, fixed-size window in
which the user can enter and edit text (see Figure 3). It has three
menus: the standard Apple menu, from which desk accessories can be
chosen; a File menu, containing only a Quit command; and an Edit menu,
containing the standard editing commands Undo, Cut, Copy, Paste, and
Clear. The Backspace key may be used to delete, and Shift-clicking
will extend or shorten a selection. The user can move the document
window around the desktop by dragging it by its title bar.

F=———— A Semple

Figure 3. The Samp Application
The Undo command doesn't work in the application's document window, but
it and all the other editing commands do work in any desk accessories
that allow them (Note Pad, for example). Some standard features this
simple example doesn't support are as follows:

- Text cannot be cut (or copied) and pasted between the document and
a desk accessory. ‘ '

- The pointer remains an arrow rather than changing\to an I-beam
within the document.

- The standard keyboard equivalents—-Command-Z, X, C, and V for
Undo, Cut, Copy, and Paste--aren't in the Edit menu. They won't
work in the document window (but they will work in desk
accessories that allow those commands).

Because the File menu contains only a Quit command, the document can't
be saved or printed. Also, the application doesn't have an "About

9/10/84 Rose ‘ /ROAD.MAP/ROAD.3

A SIMPLE EXAMPLE PROGRAM 13

Samp" command as the first item in its Apple menu, nor does it present
any dialog boxes or alarts. All of these features and more are
illustrated in programs in the Sample Macintosh Programs manual **%*
(forthcoming) ***,

In addition to the code shown in Figure 4, the Samp application has a
resource file that includes the data listed below. The program uses
the numbers in the second column to identify the resources; for
example, it makes a Menu Manager call to get menu number 128 from the
resource file. , ‘

Resource Resource 1D Description
Menu 128 Menu with the apple symbol as its
title and no commands in it
Menu 129 File menu with one command, Quit
- Menu 130 Edit menu with the commands Undo

(dimmed), Cut, Copy, Paste, and
Clear, in that order, with a
_ dividing line between Undo and Cut
Window 128 Document window without a size box;
template top left corner of (50,40) on’
QuickDraw's coordinate -plane,
bottom right corner of (300,458);
title "A Sample"; no close box

Each menu resource also contains a "menu ID" that's used to identify
the menu when the user chooses a command from it; for all three menus,
this ID is the same as the resource ID.

(note) :
To create a resource file with the above contents, you
can use the Resource Editor *** (for now, the Resource
Compiler) *** or any similar program that may be
available on the development system you're using; for
more information, see the documentation for that program.
%%* The Resource Compiler is documented in Putting
Together a Macintosh application. The Resource Compiler
input file for the Samp application is shown in the
appendix of this manual. All these files will eventually

be provided to developers by Macintosh Technical Support.
ek

The program-starts with a USES clause that specifies all the necessary
Pascal interface files. (The names shown are for the Lisa Workshop
development system, and may be different for other systems.) This is
followed by declarations of some useful constants, to make the source
code more readable. Then there are a number of variable declarations,
some having simple Pascal data types and others with data types defined
in the Pascal interface files (like Rect and WindowPtr). Variables
used in the program that aren't declared here are global variables
defined in the interface to QuickDraw.

The variable declarations are followed by two procedure declarations:
SetUpMenus and DoCommand. You can understand them better after looking

9/10/84 Rose /ROAD.MAP/ROAD.3

14 Inside Macintosh Road Map

I

at the main program and seeing where they're called.

The program begins with a standard initialization sequence. Every
application will need to do this same initialization (in the order
shown), or something close to it.

Additional initialization needed by the program follows. This includes
setting up the menus and the menu bar (by calling SetUpMenus) and
creating the application's document window (reading its description
from the resource file and displaying it on the screen).

The heart of every application program is its main event loop, which
repeatedly calls the Toolbox Event Manager to get events and then
responds to them as appropriate. The most common event is a press of
the mouse button; depending on where it was pressed, as reported by the
Window Manager, the sample program may execute a command, move the
document window, make the window active, or pass the event on to a desk
accessory. The DoCommand procedure takes care of executing a command;
it looks at information received by the Menu Manager to determine which
command to execute.

Besides events resulting directly from user actions such as pressing
the mouse button or a key on the keyboard, events are detected by the
Window Manager as a side effect of those actions. For example, when a
window changes from active to inactive or vice versa, the Window
Manager tells the Toolbox Event Manager to report it to the application
program. A similar process happens when all or part of a window needs
to be updated (redrawn). The internal mechanism in each case is
invisible to the program, which simply responds to the event when
notified.

The main event loop terminates when the user takes some action to leave
the program--in this case, when the Quit command is chosen.

That'g it! Of course, the program structure and level of detail will
get more complicated as the application becomes more complex, and every
actual application will be more complex than this one. But each will
be based on the structure illustrated here.

;

9/10/84 Rose /ROAD.MAP/ROAD. 3

A SIMPLE EXAMPLE PROGRAM 15

PROGRAM Samp;

{ Sanp -- A snall sample application written in Pascal by Macintosh User Education }
{ It displays a single, fixed-size window in which the user can enter and edit text. }

USES {SU Obj/MenTypes } MenTypes, fbasxc Memory Manager data types}
SU Obj/QuickDraw} QuickDraw, nterface to QuickDraw}
SU 0bj/0SIntf 0SIntf, {interface to the Operating Systenm}
{SU Obj/ToolIntf } ToolIntf; {interface to the Toolbox}

CONST applelD = 128; {resource IDs/menu IDs for fApple, File, and Edit menus}
fileID = 129;
editID = 130;
apple = 1. {index for each nenu in array of mernu handles}
filed = 2;
editd = 3;
nenuCount =
windowID = 1
undoComnand

. cutCormand =

copyCormand
pasteCornand
clearConnand

{total number of menus}
resource ID for application’s window}
nenu item numbers identifying commands in Edit menu}

N
wonon u (- 20
.—a\
o

s N

o~
N

VAR myMenus: ARRAY [1..menuCount] OF MenuHandle;
dragRect, txRect: Rect’
extended, doneFlag: BOOLEAN;
nyEvent: EventRecord;
wRecord: WindowRecord;
nyWindow, whichWindow: WindowPtr;
textH: TEHandle;

PROCEDURE SetUpMenus; /
{ Set up menus and nenu bar }

VAR i: INTEGER:

BEGIN
nyMenus[appleM] = GetMenu(applelD); Eread Apple menu fron resource file}
HddResHenu(myMenus[appleH], ‘DRVR’); {add desk accessory nanes to Apple menu}
- nyMenus[fileM] := GetHenugfileID); {read File nenu from resource file}
nyMenus{editM] := GetMenu(editID); {read Edit menu fronm resource file}
FOR i:=1 TO mernuCount DO InsertMenu(myMenus[i],0); {install menus in menu bar }
DrawMenuBar; { and draw menu bar}
END; {of SetUpMenus}

PROCEDURE DoCommand (nResult: LONGINT);
{ Execute command specified by mResult, the result of MenuSelect }

VAR theltem, temp: INTEGER;
nane: Str255;

BEGIN
thelten := LoWord(nResult); {call Toolbox Utility routine to get }
. { menu iten nunber from low-order word}

Figure 4. Example Program

9/10/84 Rose ‘ /ROAD .MAP/ROAD. 3

16 Inside Macintosh Road Map

CASE HiWord(mResult) OF - {case on menu ID in high-order word}
uppleID
BEGIN call Menu Manager to get desk accessory }
GetIten(myMenus[appleM], thelten, nane); { nare, and call Desk Manager to open }
temp := OpenDeskAcc(name); accessory (OpenDeskficc result not used)}
SetPort(nyWindow); call QuickDraw to restore application }
END; {of applelD} window as grafPort to draw in (may have }
been changed during OpenDeskfAcc)}
fileID: ,
doneFlag := TRUE; {quit (nain loop repeats until doneFlag is TRUE)}
editID:
BEGIN {call Desk Manager to handle edltlng cormand if }

IF NOT SystemEdit(theltem-1) { desk accessory window is the active window}
THEN {application window is the active window}
CASE thelten OF {case on nenu iten (cormmand) nunber}

cutComnand: TECut(textH); {call TextEdit to handle command}
copyConnand: TECopy(textH); ‘
pasteCommand: TEPaste(textH);

clearCormand: TEDelete(textH);

END; {of iten case}
END; {of editID} '

END; {of menu case} {to indicate completion of command, call }

HiliteMenu(0); { Menu Manager to unhighlight menu title }
{ (highlighted by MenuSelect)}

END; {of DoComnand}

BEGIN { nain progran }

InitGraf(athePort); {initialize QuickDraw}

InitFonts; {initialize Font Manager}

FlushEvents(everyEvent, 0); {call 0S Event Manager to discard any previous events}
InitWindows; {initialize Window Manager}

InitMenus; . {initialize Menu Manager}

TEInit; {initialize TextEdit}

InitDialogs(NIL); {initialize Dialog Manager}

InitCursor; {call QuickDraw to make cursor (p01nter) an arrow}
SetUpMenus; {set up menus and menu bar}

WITH screenBits. bounds DO {call QuickDraw to set dragging boundaries; ensure at }
SetRect(dragRect, 4, 24, right-4,botton-4); { least 4 by 4 pixels will renain visible}

doneFlag := FALSE: {flag to detect when Quit command is chosen}

nyWindow := GetNewWindow(windowID, awRecord, POINTER(-1)).; {put up application window}

SetPort(nyWindow), {call QuickDraw to set current grafPort to this window}

txRect := thePort™.portRect; {rectangle for text in window; call QuickDraw to bring }

InsetRect(txRect, 4, 0). { it in 4 pixels from left and right edges of window} .

textH := TENew(txRect, txRect);. {call TextEdit to prepare for receiving text}

{ Main event loop }

REPEAT {call Desk Manager to perform any periodic }
SystenTask; { actions defined for desk accessories}
TEIdle(textH); {call TextEdit to make vertical bar blink}

Figure 4. Example Program (continued)

9/10/84 Rose ‘ , "/ROAD.MAP/ROAD.3

A SIMPLE EXAMPLE PROGRAM 17

IF GetNextEvent(evervaent, nyEvent) {call Toolbox Event Manager to get the next }
THEN event that the application should handle}

CASE myEvent. what OF - {case on event type}

nouseDown: {nouse button down: call Window Manager to learn where}
CASE FindWindow(myEvent.where, whichWindow) OF

inMenuBar: {menu bar: call Menu Manager to learn which command; }
DoComnmd(MenuSelect(myEvent.where)); { then execute it}

inSysWindow: {desk accessory window: call Desk Manager to handle it}
SystenClick(nyEvent, whichWindow);

inDrag: {title bar: call Window Manager to drag}
DragWindow(whichWindow, myEvent. where, dragRect);

inContent: {body of application window: }
BEGIN call Window Manager to check whether }
IF whichWindow <> FrontWindow it's the active window and make it }
THEN SelectWindow(whichWindow) active if not }
ELSE '
BEGIN {it's already active: call QuickDraw to }
GlobalTolLocal (nyEvent. where), % convert to window coordinates for }
TEClick, use Toolbox Utility BitAnd to }
extended : = BitAnd(nyEvent.modifiers, shiftKey) <> 0; { test for Shift }
TEClick(nyEvent. where, extended, textH); { key down, - and call TextEdit }
END; { to process the event}
END; {of inContent}

END; {of mouseDown}

keyDown, autoKey: {key pressed: pass character to TextEdit}
TEKey (CHR(Bi tAnd(nyEvent. nessage, charCodeMask)), textH);

activateEvt:
BEGIN

IF BitAnd(nyEvent.nodifiers, activeFlag) <> 0 .
THEN {application window is becoming active: }
BEGIN { call TextEdit to highlight selection }
TEActivate(textH); { or display blinking vertical bar, and call }
Disableltem(myMenus[editM], undoCormand); { Menu Manager to disable }
END { Undo (since application doesn’'t support Undo)}
ELSE
BEGIN " {application window is becoming inactive: }
TEDeactivate(textH); { unhighlight selection or remove blinking }
Enablelten(nyMenus{edit}], undoCormand); { vertical bar, and enable }
END; { Undo (since desk accessory may support it)}
END; {of activateEvt} '

updateEvt: ' {window appearance needs updating}
BEGIN
BeginUpdate(WindowPtr(nyEvent.nessage)); {call Window Manager to begin update}
EraseRect(thePort”. portRect); {call QuickDraw to erase text area}
TEUpdate(thePort". portRect, textH); {call TextEdit to update the text}

EndUpdate(WindowPtr(nmyEvent.nessage)); {call Window Manager to end update}
END; {of updateEvt}

END; {of event case}

UNTIL doneFlag;
END. '

Figure 4. Example Program (continued)

9/10/84 Rose . /ROAD .MAP/ROAD. 3

18 Inside Macintosh Road Map

WHERE TO GO FROM HERE

*** Thig section refers to "manuals" for the time being; when the
individual manuals become chapters of Inside Macintosh, this will be
changed to '"chapters". It also refers to the "order" of the manuals;
this means the order of the documentation when it's combined into a
single manual. For a list of what's been distributed so far and how it
will be ordered, see the cover page of this manual. Anything not
listed there hasn't been distributed yet by Macintosh User Education,
but programmer's notes or other preliminary documentation may be
available. ***

This section contains important directions for every reader of Inside
Macintosh. It will help you figure out which manuals to read next.

The Inside Macintosh documentation is ordered in such a way that you
can follow it if you read through it sequentially. Forward references
are given wherever necessary to any additional information that you'll
need in order to understand what's being discussed. Special-purpose
information that can possibly be skipped is indicated as such. Most
likely you won't need to read everything in each manual and can even
skip entire manuals.

You should begin by reading the following:

l. Macintosh User Interface Guidelines. All Macintosh applications
should follow these guidelines to ensure that the end user is
presented with a consistent, familiar interface.

2. Macintosh Memory Management: An Introduction.

3. Programming Macintosh Applications in Assembly Language, if you're
using assembly language. Depending on the debugging tools
available on the development system you're using, it may also be
helpful or necessary for Pascal programmers to read this manual.
You'll also have to read it if you're creating your own
development system and want to know how to write interfaces to the
routines.

4. The documentation of the parts of the Toolbox that deal with the
fundamental agpects of the user interface: the Resource Manager,
QuickDraw, the Toolbox Event Manager, the Window Manager, and the
Menu Manager.

. Read the other manuals if you're interested in what they discuss, which
you should be able to tell from the overviéws in this "road map" and
from the introductions to the manuals themselves. Each manual's
introduction will also tell you what you should already know before
reading that manual.

When you're ready to try something out, refer to the appropriate
documentation for the development system you'll be using. *** (Lisa
Workshop users, see Putting Together a Macintosh Application.) #*%*

9/10/84 Rose , /ROAD.MAP/ROAD.3

APPENDIX: RESOURCE COMPILER INPUT FOR EXAMPLE PROGRAM 19

APPENDIX: RESOURCE COMPILER INPUT FOR EXAMPLE PROGRAM

For Lisa Workshop users, this appendix shows the Resource Compiler
input file used with the example program presented earlier. For more

information on the format of the file, see Putting Together a Macintosh
Application. :

(note)
This entire appendix is temporary; it will not be part of
the final Inside Macintosh manual, because all the
information in that manual will be independent of the
development system being used. Authors of the
documentation for a particular development system may
choose to show how the resource file for Samp would be
created on that system. |

* SampR -- Resource Compiler input file‘for Samp application
* written by Macintosh User Education

Work/Samp.Rsrc

Type MENU
,128 (4)

* the apple symbol
\14

,129 (4)
File
Quit

»130 (4)

Edit
(Undo
(-
Cut

Copy
Paste

Clear

Type WIND
,128 (36)
A Sample
50 40 300 450
Visible NoGoAway
4

)
Type SAMP = STR
Saip Version 1. -- September 4, 1984
Type CODE

Work/SampL,®

9/10/84 Rose /ROAD .MAP/ROAD.3

20 Inside Macintosh Road Map

GLOSSARY

AppleBus Manager: An interface to a pair of RAM drivers that enable
programs to send and receive information via an AppleBus network.

Binary-Decimal Conversion Package: A Macintosh package for converting
integers to decimal strings and vice versa.

Control Manager: The part of the Toolbox that provides routines for
creating and manipulating controls (such as buttons, check boxes, and
scroll bars).

Desk Manager: The part of the Toolbox that supports the use of desk
accessories from an applicationm.

device driver: A piece of software that controls a peripheral device
and makes it present a standard interface to the application. ‘

Device Manager: The part of the Operating System that supports device
1/0.

Dialog Manager: The part of the Toolbox that provides routines for
implementing dialogs and alerts.

Disk Driver: The device driver that controls data storage and
retrieval on 3 1/2-inch disks.

Disk Initialization Package: A Macintosh package for initializing and
naming new disks; called by the Standard File Package.

Event Manager: See Toolbox Event Manager or Operating System Event
Manager.

File Manager: The part of the Operating System that supports file 1/0.

Font Manager: The part of the Toolbox that supports the use of various
character fonts for QuickDraw when it draws text.

heap: An area of memory. in which space can be allocated and released
on demand, using the Memory Manager. .

International Utilities Package: A Macintosh package that gives you
access to country-dependent information such as the formats for
numbers, currency, dates, and times. ’

" main event loop: In a standard Macintosh application program, a loop
that repeatedly calls the Toolbox Event Manager to get events and then
responds to them as appropriate.

Memory Manager. The part of the Operating System that dynamically
allocates and releases memory space in the heap.

9/10/84 Rose ‘ /ROAD.MAP/ROAD.G

GLOSSARY 21

Menu Manager: The part of the Toolbox that deals with setting up menus
and letting the user choose from them.

Operating System: The lowest-level software in the Macintosh. It does
basic tasks such as I/0, memory management, and interrupt handling.

Operating System Event Manager: The part of the Operating System that
reports hardware-related events such as mouse-button presses and
keystrokes.

Operating System Utilities: Operating System routines that perform
miscellaneous tasks such as getting the date and time, finding out the
user's preferred speaker volume and other preferences, and doing simple
string comparison.

package: A set of routines and data types that's stored as a resource
and brought into memory only when needed.

Package Manager: The part of the Toolbox that lets you access
Macintosh RAM-based packages.

Printer Driver: The device driver for the currently installed printer.

Printing Manager: The routines and data types that enable applications
to communicate with the Printer Driver to print on any variety of
printer via the same interface.

QuickDraw: The part of the Toolbox that performs all graphic
operations on the Macintosh screen.

resource: Data used by an application (such as menus, fonts, and
icons), and also the application code itself.

Resource Manager: The part of the Toolbox that reads and writes
resources.

Scrap Manager: The part of the Toolbox that enables cutting and
pasting between applications, desk accessories, or an application and a
desk accessory.

Segment Loader: The part of the Operating System that loads the code
of an application into memory, either as a single unit or divided into
dynamically loaded segments.

Serial Driver: The device driver that controls communication, via
serial ports, between applications and serial peripheral devices.

Sound Driver: The device driver that controls sound generation in an
application.

Standard File Package: A Macintosh package for presenting the standard
user interface when a file is to be saved or opened.

9/10/84 Rose : , /ROAD.MAP/ROAD.G

22 Inside Macintosh Road Map

System Error Handler: The part of the Operating System that assumes
control when a fatal error (such as running out of pemory) occurs.

TextEdit: The part of the Toolbox that supports the basic text entry
and editing capabilities of a standard Macintosh application.

Toolbox: Same as User Interface Toolbox.

Toolbox Event Manager: The part of the Toolbox that allows your
‘application program to monitor the user's actions with the mouse,
keyboard, and keypgd. ‘

Toolbox Utilities: The part of the Toolbox that performs generally
useful operations such as fixed-point arithmetic, string manipulation,
and logical operations on bits.

User Interface Toolbox: The software in the Macintosh ROM that helps
you implement the standard Macintosh user interface in your
application.

vertical retrace interrupt: An interrupt generated 6@ times a second
by the Macintosh video circuitry while the beam of the display tube
returns from the bottom of the screen to the top.

Vertical Retrace Manager: The part of the Operating System that
schedules and executes tasks during the vertical retrace interrupt.

Window Manager: The part of the Toolbox that provides routines for
creating and manipulating windows.

9/10/84 Rose /ROAD.MAP/kOAD.G

MACINTOSH USER EDUCATION

Macintosh User Interface Guidelines

/INTF/USER

- Modification History: First Draft

Rearranged and Revised
Total Redesign

Second Draft Prerelease
Second Draft

Third Draft

Fourth Draft

Joanna Hoffman
Chris Espinosa
Chris Espinosa
Chris Espinosa
Chris Espinosa
Andy Averill

Andy Averill

3/17/82
5/11/82
5/21/82
7/11/82
19/11/82
7/31/84
11/39/84

ABSTRACT

The User Interface Guidelines describe the most basic common features
of Macintosh applications. Unlike the rest of Inside Macintosh, these

guidelines describe these features as seen by the user:

Since the last draft, this manual has been reorganized and mostly
rewritten. Some new recommendations have been added, and some previous

recommendations have been clarified or amplified.

’

2 User Interface Guidelines

TABLE OF CONTENTS

4 About This Manual

4 Introduction

5 Avoiding Modes

7 Types of Applications

8 Using Graphics

19 Icons

19 Palettes

19 Components of the Macintosh System
11 The Keyboard :

12 Character Keys :
12 Modifier Keys: Shift, Caps Lock, Option, and Command
13 Typeahead and Auto-Repeat

-14 Versions of the Keyboard

14 The Numeric Keypad

15 The Mouse

15 Mouse Actions

16 Multiple-Clicking

17 Changing Pointer Shapes

17 . Selecting

18 Selection by Clicking

19 Range Selection

19 Extending a Selection’

29 Making a Discontinuous Selection
21 Selecting Text

22 Insertion Point

22 Selecting Words

23 Selecting a Range of Text
24 Graphics Selections

24 Selections in Arrays

25 Windows

26 Multiple Windows

27 Opening and Closing Windows
28 The Active Window

28 Moving a Window

28 Changing the Size of a Window
29 Scroll Bars

39 Automatic Scrolling

31 Splitting a Window

33 Panels

33 Commands

34 - The Menu Bar ,

34 Choosing a Menu Command

35 Appearance of Menu Commands
35 Command Groups

36 Toggles

36 Special Visual Features

37 Standard Menus

37 The Apple Menu

38 The File Menu

39 New

39 ' Open

49
40
41
41
41
41
41
41
42
42
43
44
44
44
44
44
45
45
45
45
46
47
47
47
47
47
49
50
59
51
51
52
52
53
54
54
56

TABLE OF CONTENTS

Close
Save
Save As
Revert to Saved
Page Setup
Print
Quit
Other Commands
The Edit Menu
The Clipboard
Undo
Cut
Copy
Paste
Clear
Show Clipboard 3
Select All
Font-Related Menus
Font Menu
FontSize Menu
Style Menu
Text Editing
Inserting Text
Backspace
Replacing Text
Intelligent Cut and Paste
Editing Fields
Dialogs and Alerts
Controls
Buttons
Check Boxes and Radio Buttons
Dials
Dialogs
Modal Dialog Boxes
Modeless Dialog Boxes
Alerts
Do's and Don'ts of a Friendly User Interface

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

4 User Interface Guidelines

ABOUT THIS MANUAL

This manual describes the Macintosh user interface, for the benefit of
people who want to develop Macintosh applications. *#** Eventually it
will become part of the comprehensive Inside Macintosh manual. ***
More details about many of these features can be found in the "About"
sections of the other chapters of Inside Macintosh.

Unlike the rest of Inside Macintosh, this manual describes applications
from the outside, not the inside. The terminology used is the
terminology users are familiar with, which is not necessarily the same
as that used elsewhere in Inside Macintosh.

The Macintosh user interface consists of those features that are
generally applicable to a variety of applications. Not all of the
features are found in every application. In fact, some features are
hypothetical, and may not be found in any current applicationms.

The best time to familiarize yourself with the user interface is before
beginning to design an application. Good application design on the
Macintosh happens when a developer has absorbed the spirit as well as
the details of the user interface. '

Before reading this manual, you should have read Inside Macintosh: A
Road Map and have some experience using one or more applications,
preferably one each of a word processor, spreadsheet or data base, and
graphics application. You should also have read Macintosh, the owner's
guide, or at least be familiar with the terminology used in that
manual,

- INTRODUCTION

The Macintosh is designed to appeal to an audience of nonprogrammers,
including people who have previously feared and distrusted computers.
To achieve this goal, Macintosh applications should be easy to learn
and to use. To help people feel more comfortable with the
applications, the applications should build on skills that people
already have, not force them to learn new ones. The user should feel
in control of the computer, not the other way around. This is achieved
in applications that embody three qualities: responsiveness,
permissiveness, and consistency.

Responsiveness means that the user's actions tend to have direct
results. The user should be able to accomplish what needs to be done
spontaneously and intuitively, rather than having to think: '"Let's
see; to do C, first I have to do A and B and then...". For example,
with pull-down menus, the user can choose the desired command directly
and instantaneously. This is a typical Macintosh operation: The user
moves the pointer to a location on the screen and presses the mouse
button.,

11/30/84 Ayerill /INTF/INTRO

INTRODUCTION 5

Permissiveness means that the application tends to allow the user to do
anything reasonable. The user, not the system, decides what to do
next. Also, error messages tend to come up infrequently. If the user
is constantly subjected to a barrage of error messages, something is
wrong somewhere,

The most important way in which an application is permissive is in
avoiding modes. .This idea is so important that it's dealt with in a
separate section, "Avoiding Modes", below.

The third and most important principle is comnsistency. Since Macintosh
users usually divide their time among several applicatioms, they would
be confused and irritated if they had to learn a completely new
interface for each application. The main purpose of this manual is to
describe the shared interface ideas of Macintosh applications, so that
developers of new applications can gain leverage from the time spent
developing and testing existing applications.

Fortunately, consistency is easier to achieve on the Macintosh than on
many other computers. This is because many of the routines used to
implement the user interface are supplied in the Macintosh Operating
System and User Interface Toolbox. However, you should be aware that
implementing the user interface guidelines in their full glory often
requires writing additional code that isn't supplied.

Of course, you shouldn't feel that you're restricted to using existing
features., The Macintosh is a growing system, and new ideas are
essential., But the bread-and-butter features, the kind that every
application has, should certainly work the same way so that the user
can move easily back and forth between applications. The best rule to
follow is that if your application has a feature that's described in
these guidelines, you should implement the feature exactly as the
guidelines describe it. 1It's better to do something completely
different than to half-agree with the guidelines.,

Illustrations of most of the features described in this manual can be
found in various already-released applications. However, there is
probably no one application that illustrates these guidelines in every
particular. Although it's useful and important for you to get the
feeling of the Macintosh user interface by looking at existing
applications, the guidelines in this manual are the ultimate authority.
Wherever an existing application disagrees with the guidelines, follow
the guidelines.

Avoiding Modes

"But, gentlemen, you overdo the mode."
\ —-- John Dryden, The
Assignation, or Love i

Nunnery, 1672 -—.

a

11/30/84 Averill / INTF/ INTRO

6 User Interface Guidelines

A mode is a part of an application that the user has to formally enter
and leave, and that restricts the operations that can be performed
while it's in effect. Since people don't usually operate modally in
real life, having to deal with modes in computer software reinforces
the idea that computers are unnatural and unfriendly.

Modes are most confusing when you're in the wrong one. Unfortunately,
this is the most common case. Being in a mode is confusing because it
makes future actions contingent upon past ones; it changes the behavior
of familiar objects and commands; and it makes habitual actions cause
unexpected results.

It's tempting to use modes in a Macintosh application, since most
existing software leans on them heavily. If you yield to the
temptation too frequently, however, users. will consider spending time
with your application a chore rather than a satisfying experience.

This is not to say that modes are never used in Macintosh applications.
Sometimes a mode is the best way out of a particular problem. Most of
these modes fall into one of the following categories:

- Long-term modes with a procedural basis,.such as doing word
processing as opposed to graphics editing. Each application
program is a mode in this sense.

-~ Short-term "spring-loaded" modes, in which the user is constantly
doing something to perpetuate the mode. Holding down the mouse
button or a key is the most common example of this kind of mode.

- Alert modes,; where the user must rectify an unusual situation
before proceeding. These modes should be kept to a minimum.

Other modes are acceptable if they meet one of the following
requirements:

— They emulate a familiar real-life model that is itself modal, like
picking up different-sized paintbrushes in a graphics editor.
MacPaint and other palette-based applications are examples of this
use of modes.

- They change only the attributes of something, and not its
behavior, like the boldface and underline modes of text entry.

- They block most other normal operations of the éystem to emphasize
the modality, as in error conditions incurable through software
("There's no disk in the disk drive", for example).

If an application uses modes, there must be a clear visual indication
of the current mode, and the indication should be. near the object being
most affected by the mode. It should also be very easy to get into or
out of the mode (such as by clicking on a palette symbol).

11/30/84 Averill . /INTF/INTRO

TYPES OF APPLICATIONS 7

TYPES OF APPLICATIONS

Everything on a Macintosh screen 1is displayed graphically; the
Macintosh has no text mode. Nevertheless, it's useful to make a
distinction among three types of ‘objects that an application deals
with: text, graphics, and arrays. Examples of each of these are shown
in Figure 1.

The rest to some faint mesning make pretence
But Shadwell never deviates into sense.

Some beams of wit on other souls may fall,
Strike through snd make 8 lucid intervsl;

But Shadwell’s genuine night admits no ray,
His rising fogs preveil upon the day.

MacFlecknoe Page |
Text

ke
B

Graphics
Advertising 132.9
Masnufacturing 1213
R&D 18.7
Interest 12.2
Total 285.1
Arrsy

Figure 1. Ways of Structuring Information

11/30/84 Averill / INTF/ APPS

8 User Interface Guidelines

Text can be arranged in a variety of ways on the screen. Some
applications, such as word processors, might consist of nothing but
text, while others, such as graphics-oriented applications, use text
almost incidentally. It's useful to consider all the text appearing
together in a particular context as a block of text. The size of the
block can range from a single field, as in a dialog box, to the whole
document, as in a word processor. Regardless of its size or
arrangement, the application sees each block as a one-dimensional
string of characters. Text is edited the same way regardless of where
it appears.

Graphics are pictures, drawn either by the user or by the application.
Graphics in a document tend to consist of discrete objects, which can
be selected individually. Graphics are discussed further below, under
"Using Graphics'.

Arrays are one- or two-dimensional arrangements of fields. If the
array is one-dimensional, it's called a form; if it's two-dimensional
it's called a table. Each field, in turn, contains a collection of
information, usually text, but conceivably graphics. A table can be
readily identified on the screen, since it consists of rows and columns
of fields (often .called cells), separated by horizontal and vertical
lines. A form is something you fill out, like a credit-card
application. A form may not be as obvious to the user as a table,
since the fields can be arranged in any appropriate way. Nevertheless,
- the application regards the fields as in a definite linear order.

Each of these three ways of presenting information retains its
integrity, regardless of the context in which it appears. For example,
a field in-an array can contain text. When the user is manipulating
the field as a whole, the field is treated as part ‘of the array. When
the user wants to change the contents of the field, the contents are
edited in the same way as any other text.

Another case is text that appears in a graphics application. Depending
on the circumstances, the text can be treated as text or as graphics.
In MacDraw, for example, the way text is treated depends on which
palette symbol is in effect. If the text symbol is in effect, text can
be edited in the usual way, but cannot be moved around on the screen.
If the selecting arrow is in effect, a block of text can be moved
around, or even stretched or shrunk, but cannot be edited.

.USING GRAPHICS

A key feature of the Macintosh is its high-resolution graphics screen.
To use this screen to its best advantage, Macintosh applications use
graphics copiously, even in places where other applications use text.
As much as possible, all commands, features, and parameters of an
application, and all the user's data, appear as graphic objects on the
screen. Figure 2 shows some of the ways in which applications can use
graphics to communicate with the user.

11/30/84 Averill ' / INTF/GRAPHICS

USING GRAPHICS 9

r-q
Lo

A€l

G Psiette, with
paintbrush
symbol selected

& O
LE 8

Icons

n[alo]oa]/
0000

Figure 2. Objects on the Screen

Objects, whenever applicable, resemble the famjiliar material objects
they resemble. Objects that act like pushbuttons "light up" when
pressed; the Trash icon looks like a trash can.

Objects are designed to look good on the screen. Predefined graphics
patterns can give objects a shape and texture beyond simple line
graphics. Placing a drop-shadow slightly below and to the right of an
object can give it a three-~dimensional appearance. -

Generally, when the user clicks on an object, it's highlighted to
distinguish it from its peers. . The most common way to show this
highlighting is by inverting the object: reversing its black and white
pixels. In some situations, other forms of highlighting, such as the
knobs used in MacDraw, may be more appropriate. The important thing is
that there should always be some sort of feedback, so that the user
knows that the click had an effect.

One special aspect of the appearance of a document on the screen is
visual fidelity. This principle is also known as "what you see is what
"you get". It primarily refers to printing: The version of a document
shown on the screen should be as close as possible to its printed
version, taking into account inevitable differences due to different
media,

11/30/84 Averill /INTF/GRAPHICS

10 User Interface Guidelines

Icons

A fundamental object in Macintosh software is the icon, a small graphic
object that is usually symbolic of an operation or of a larger entity
such as a document.

Icons should be sprinkled liberally over the screen. Wherever an
explanation or label is needed, first consider using an icon instead of
using text as the label or explanation. Icons not only contribute to
the clarity and attractiveness of the system, they don't need to be
translated into foreign languages.

Palettes

Some applications use palettes as a quick way for the user to change
from one operation to another. A palette is a collection of small
squares, each containing a symbol. A symbol can be an icon, a pattern,
a character, or just a drawing, that stands for an operation. When the
user clicks on one of the symbols, it's distinguished from the other
symbols, such as by highlighting, and the previous symbol goes back to
its normal state.

Typically, the symbol that's selected determines what operations the
user can perform., Selecting a palette symbol puts the user into a
mode. This use of modes can be justified because changing from one
mode to another is almost instantaneous, and the use can always see at
a glance which mode is in effect. Like all modal features, palettes
should be used only when they're the most natural way to structure an
application.

A palette can either be part of a window (as in MacDraw), or a séparate
window (as in MacPaint). Each system has its disadvantages. 1If the
palette is part of the window, then parts of the palette might be
concealed if the user makes the window smaller. On the other hand, if
it's not part of the window, then it takes up extra space on the
desktop. If an application supports multiple documents open at the
same time, it might be better to put a separate palette in each window,
so that a different palette symbol can be in effect in each document.

COMPONENTS OF THE MACINTOSH SYSTEM

This section explains the relationship among the principal large-scale
components of the Macintosh system (from an external point of view).

The main vehicle for the interaction of the user and the system is the
application. Only one application is active at a time. When an
application is active, it's in control of all communications between
the user and the system. The application's menus are in the menu bar,
and the application is in charge of all windows as well as the desktop.

11/30/84 Averill / INTF/STRUC

COMPONENTS OF THE MACINTOSH SYSTEM 11

To the user, the main unit of information is the document. Each
document is a unified collection of information-—-a single business
letter or spreadsheet or chart. A complex application, such as a data
base, might require several related documents. Some documents can be
processed by more than one application, but each document has a
principal application, which 1s usually the one that created it. The
other applications that process the document are called secondary
applications.

The only way the user can actually see the document (except by printing
it) is through a window. The application puts one or more windows on
the screen; each window shows a view of a document or of auxiliary
information used in processing the document. The part of the screen
underlying all the windows is called the desktop.

The user returns to the Finder to change applications. When the Finder
is active, if the user double-clicks on either the application's icon
or the icon of a document belonging to that application (or opens the
document or application by choosing Open from the File menu), the
application becomes active and displays the document window.

Internally, applications and documents are both kept in files.
However, the user never sees files as such, so they dofi't really enter
into the user interface.

THE KEYBOARD

The Macintosh keyboard is used primarily for entering text. Since
commands are chosen from menus or by clicking somewhere on the screen,
the keyboard is not needed for this function, although it can be used
for alternative ways to enter commands.

The keys on the keyboard are arranged in familiar typewriter fashion.
The U.S. keyboard is shown in Figure 3.

OO0
CooocoooLooouu
.@UUUUUU@.UU(‘D
[l G 6
O O

Figure 3. The Macintosh U.S. Keyboard

11/30/84 Averill . ‘ / INTF/KEY

12 User Interface Guidelines

¢

There are two kinds of keys: character keys and modifier keys. A
character key sends characters to the computer; a modifier key alters
the meaning of a character key if it's held down while the character
key is pressed.

N

Character Keys

Character keys include keys for letters, numbers, and symbols, as well
as the space bar. 1If the user presses one of these keys while entering
text, the corresponding character is added to the text. Other keys,
such as the Enter, Tab, Return, Backspace, and Clear keys, are also
considered character keys. However, the result of pressing one of
these keys depends on the application and the context.

The Enter key tells the application that the user is through entering
information in a particular area of the document, such as a field in an
array. Most applications add information to a document as soon as the
user types or draws it. However, the application may need to wait
until a whole collection of information is available before processing
it In this case, the user presses the Enter key to signal that the
information is complete. :

The Tab key is a signal to proceed: It signals movement to the next
item in a sequence. Tab often implies an Enter operation before the
Tab motion is performed.

The Return key is another signal to proceed, but it defines a different
type of motion than Tab. A press of the Return key signals movement to
the leftmost field one step down (just like a carriage return on a
typewriter). Return can also imply an Enter operation before the
Return operation. C

(note) ,
Return and Enter also dismiss dialog and alert boxes (see
"Dialogs and Alerts").

Backspace is used to delete téxt or graphics. The exact use of
Backspace in text is described in the section on text editing.

The Clear key on the keypad has the same effect as the Clear command in
the Edit menu; that is, it removes the selection from the document
without putting it on the Clipboard. This is also explained in the
section on text editing. Because the keypad is optional equipment, no
application should ever require use of the Clear key or any other key
on the pad.

Modifier Keys: Shift, Caps Lock, Option, and Command

There are six keys on the keyboard that change the interpretatiom of
keystrokes: two labeled Shift, two labeled Option, one labeled

Caps Lock, and one labeled with the "freeway interchange' symbol, which
is usually called the Command key. These keys change the

11/30/84 Averill - /INTF/KEY

THE KEYBOARD 13

interpretation of keystrokes, and sometimes mouse actions. When one of
these keys 1s held down, the effect of the other keys (or the mouse
button) may change. .

The Shift and Option keys choose among the characters on each character
key. Shift gives the upper character on two-character keys, or the
uppercase letter on alphabetic keys. The Shift key is also used in
conjunction with the mouse for extending a selection; see 'Selecting".
Option gives an alternate character set interpretation, including
international characters, special symbols, and so on. Shift and Option
can be used in combination.

Caps Lock latches in the down position when pressed, and releases when
pressed again. When down it gives the uppercase letter on alphabetic
keys. The operation of Caps Lock on alphabetic keys is parallel to
that of the Shift key, but the Caps Lock key has no effect whatsoever
on any of the other keys. Caps Lock and Option can be used in
combination on alphabetic keys.

Pressing a character key while holding down the Command key usually

tells the application to interpret the key as a command, not as a
character (see "Commands").

Typeahead and Auto—-Repeat

If the user types when the Macintosh is unable to process the
keystrokes immediately, or types more quickly than the Macintosh can
handle, the extra keystrokes are queued, to be processed later. This
queuing is called typeahead. There's a limit to the number of
keystrokes that can be queued, but the limit is usually not a problem
unless the user types while the application is performing a lengthy
operation.

When the user holds down a character key for a certain amount of time,
it starts repeating automatically. The delays and the rates of
repetition are global preferences that the user can set through the
Control Panel desk accessory. An application can tell whether a series
of n keystrokes was generated by auto-repeat or by pressing the same
key n times. It can choose to disregard keystrokes generated by
auto-repeat; this is usually a good idea for menu commands chosen with
the Command key.

Holding down a modifier key has the same effect as pressing it once.
However, 1f the user holds down a modifier key and a character key at
the same time, the effect is the same as if the user held down the
modifier key while pressing the character key repeatedly.

Auto-repeat does not function during typeahead; it operates only when
the application is ready to accept keyboard input.

11/30/84 Averill /INTF/KEY

14 User Interface Guidelines

Versions of the Keyboard '

There are two physical versions of the keyboard: U.S. and European.
The European version has one more key than the U.S. version. The
standard layout on the European version is designed to conform to the
IS0 (Internation Standards Organization) standard; the U.S. key layout
mimics that of common American office typewriters. European keyboards
have different labels on the keys in different countries, but the
overall layout is the same. ‘

The Numeric Keypad

An optional numeric keypad can be hooked up between the main unit and
the standard keyboard; see Figure 4.

Clear + 7
&

O
e
&

_C

Figure 4. Numeric Keypad

C
s

/

OC

OB

The keypad contains 18 keys, some of which duplicate keys on the main
keyboard, and some of which are unique to the keypad. The application’
can tell whether the keystrokes have come from the main keyboard or the
numeric keypad.)

The character keys on the keypad are labeled with the digits @ through
9, a decimal point, the four standard arithmetic operators for

addition, subtraction, multiplication, and division, and a comma. The
keypad also contains the Enter and Clear keys; it has no modifier keys.

The keys on the numeric keypad follow the same rules fofltypeahead and
auto-repeat as the main keyboard.

Four keys on the numeric keypad are labeled with "field-motion"
symbols: small rectangles with arrows pointing in various directions.

11/30/84 Averill ' / INTF/KEY

THE KEYBOARD 15

Some applications may use these keys to select objects in the direction
indicated by the key; the most likely use for this feature is in
tables. When a key is used this way, the user must use the Shift key
to obtain the four characters (+ * / ,) normally available on those
keys. i

Since the numeric keypad is optional equipment, no application should
require it or any keys available on it in order to perform standard
functions. Specifically, since the Clear key is not available on the
main keyboard, a Clear function may be implemented with this key only
as the equivalent of the Clear command in the Edit menu.

THE MOUSE

The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There's a button
on the top of the mouse. The user holds the mouse and rolls it on a
flat, smooth surface. A pointer on the screen follows the motion of
the mouse.

Simply moving the mouse results only im a corresponding movement of the
pointer and no other action. Most actions take place when the user
positions the "hot spot' of the pointer over an object on the screen
and presses and releases the mouse button. The hot spot should be
intuitive, like the point of an arrow or the center of a crossbar.

Mouse Actions

The three basic mouse actions are:

- clicking: positioning the pointer with the mouse, and briefly
pressing and releasing the mouse button without moving the mouse

- pressing: positioning the pointer with the mouse, and holding
down the mouse button without moving the mouse

- dragging: positioning the pointer with the mouse, holding down
the mouse button, moving the mouse to a new position, and
releasing the button

The system provides "mouse-ahead"; that is, any mouse actions the user
performs when the application isn't ready to process them are saved in
a buffer and can be processed at the application's convenience.
Alternatively, the application can choose to ignore saved-up mouse
actions, but should do so only to protect the user from possibly
damaging consequences.)

Clicking something with the mouse performs an instantaneous action,

such as selecting a location within the user's document or activating
an object.

11/30/84 Averill / INTF/MOUSE

16 User Interface Guidelines

For certain kinds of objects, pressing on the object has the same
effect as clicking it repeatedly. For example, clicking a scroll arrow
causes a document to scroll one line; pressing on a scroll arrow causes
the document to scroll repeatedly until the mouse button is released or
the end of the document is reached. :

Dragging can have different effects, depending on what's under the

' pointer when the mouse button is pressed. The uses of dragging include
choosing a menu item, selecting a range of objects, moving an object
from one place to another, and shrinking or expanding an object.

Some objects, especially graphic objects, can be moved by dragging. 1In
this case, the application attaches a dotted outline of the object to
the pointer and redraws the outline continually as the user moves the
pointer. When the user releases the mouse button, the application
redraws the complete object at the new location.

An object being moved can be restricted to certain boundaries, such as
the edges of a window frame. If the user moves the pointer outside of
the boundaries, the application stops drawing the dotted outline of the
object. If the user releases the mouse button while the pointer is
outside of the boundaries, the object isn't moved. 1If, on the other
hand, the user moves the pointer back within the boundaries again
before releasing the mouse button, the outline is drawn again.

In general, moving the mouse changes nothing except the location, and
possibly the shape, of the pointer. Pressing the mouse button
indicates the intention to do something, and releasing the button
completes the action. Pressing by itself should have no effect except
in well-defined areas, such .as scroll arrows, where it has the same
effect as repeated clicking. :

Multiple-Clicking

A variant of clicking involves performing a second click shortly after
the end of an initial click. If the downstroke of the second click
follows the upstroke of the first by a short amount of time (as set by
the user in the Control Panel), and if the locations of the two clicks
are reasonably close together, the two clicks constitute a
double-click. Its most common use is as a faster or easier way to
perform an action that can also be performed in another way. For
example, clicking twice on an icon is a faster way\to open it than
choosing Open; clicking twice on a word to select it is fdster than
dragging through it.

To allow the software to distinguish efficiently between single clicks
and double-clicks on objects that respond to both, an operation invoked
by double-clicking an object must be an enhancement, superset, or
extension of the feature invoked by single-clicking that object.

Triple-clicking is also possible; it should similarly represent an
extension of a double-click.

11/30/84 Averill ’ / INTF/MOUSE

THE MOUSE 17

Changing Pointer Shapes

—

The pointer may change shape to give feedback on the range of
activities that make sense in a particular area of the screen, in a -

current mode, or both.

~ The result of any mouse action depends on the item under the
pointer when the mouse button is pressed. To emphasize the
differences among mouse actions, the pointer may assume different
appearances in different areas to indicate the actions possible in
each area.

- Where an application uses modes for different functions, the
pointer can be a different shape in each mode. For example, in
MacPaint, the pointer shape always reflects the active palette
symbol.

Figure 5 shows some examples of pointers and their effect. An
application can design additional pointers for other contexts.

Pointer Used for
\ ‘ Scroll bsr and-other controls, size box

title bar, menu bar, desktop, and so on

] Selecting text

+ Drawing, shrinking, or stretching
graphic objects

=2 Selecting fields in an array
@ Showing thet a lengthy operation is
in progress

Figure 5. Pointers

SELECTING

The user selects an object to distinguish it from other objects, just
before performing an operation on it. Selecting the object of an
operation before identifying the operation is a fundamental
characteristic of the Macintosh system.

Selecting an object has no effect on the contents of a document.
Making a selection shouldn't commit the user to anything; the user is

11/30/84 Averill / INTF/SELECT

18 User Interface Guidelines

never penalized for making an incorrect selection. The user fixes an
incorrect selection by making the correct selection.

Although there is a variety of ways to select objects, they fall into
easily recognizable groups. Users get used to doing specific things to
select objects, and applications that use these methods are therefore
easier to learn. Some of these methods apply to every type of
application, and some only to particular types of applicatioms.

This section discusses first the general methods, and then the specific
methods that apply to text applications, graphics applications, and
arrays. Figure 6 shows a comparison of some of the general methods.

A B C D E

Clickingon B
selects B

Range
selection of
A through C
selects A, B,
snd C

E xtending
selection to E
selecis A, B, C,
end E

Figure 6. Selection Methods

Selection by Clicking

The most straightforward method of selecting an object is by clicking
on it once. Most things that can be selected in Macintosh applications
can be selected this way.

Some applications support selection by double-clicking and triple-
clicking. As always with multiple clicks, the second click extends the
effect of the first click, and the third click extends the effect of
the second click. 1In the case of selection, this means that the second
click selects the same sort of thing as the first click, only more of
them. The same holds true for the third click. ‘

For example, in text, the first click selects an insertion point,
whereas the second click selects a whole word. The third click might
select a whole block or paragraph of text. In graphics, the first
click selects a single object, and double- and triple-clicks might
select increasingly larger groups of objects.

11/30/84 Averill / INTF/SELECT

SELECTING 19

Range Selection

The user selects a range of objects by dragging through them. Although
the exact meaning of the selection depends on the type of application,
the procedure is always the same:

1. The user positions the pointer at one corner of the range and
presses the mouse button. This position is called the anchor
point of the range.

2. The user moves the pointer in any direction. As the pointer is
moved, visual feedback keeps the user informed of the objects that
would be selected if the mouse button were released. For text and
arrays, the selected area is continually highlighted. For
graphics, a dotted rectangle expands or contracts to show the
range that will be selected.

3. When the feedback shows the desired range, the user releases the-

mouse button. The point at which the button is released is called
the endpoint of the range.

Extending a Selection

A user can change the extent of an existing selection by holding down
the Shift key and clicking the mouse button. 'Exactly what happens next
depends on the context.

In text or an array, the result of a Shift-click is always a range.
The position where the button is clicked becomes the new endpoint or
anchor point of the range; the selection can be extended in any
direction. 1If the user clicks within the current range, the new range
will be smaller than the old range.

In graphics, a selection is extended by adding objects to it; the added
objects do not have to be adjacent to the objects already selected.

The user can add either an individual object or a range of objects to
the selection by holding down the Shift key before making the
additional selection. If the user holds down the Shift key and selects
one or more objects that are already highlighted, the objects are
deselected.)

Extended selections can be made across the panes of a split window.
(See "Splitting Windows".)

11/30/84 Averill /INTF/SELECT

20 User Interface Guidelineé

Making a Discontinuous Selection

any particular sequence. Therefore, the user can use Shift-click to
extend a selection by a single object, even if that object 1s nowhere
near the current selection. When this happens, the objects between the
current selection and the new object are not automatically included in
the selection. This kind of selection is called a discontinuous
selection. In the case of graphics, all selections are discontinuous
selections.

i
?
In graphics applications, objects aren't usually considered to be in !
|
i

1
1
This is not the case with arrays and text, however. In these two kindsﬁ !
of applications, an extended selection made by a Shift-click always \
includes everything between the old selection and the new endpoint. To '
provide the possibility of a discontinuous selection in these
applications, Command-click is included in the user interface.

To make a discontinuous selection in a text or array application, the
user selects the first piece in the normal way, then holds down the
Command key before selecting the remaining pieces. Each piece is
selected in the same way as 1f it were the whole selection, but because
the Command key is held down, the new pleces are added to the existing
selection instead of supplanting it.

If one of the pieces selected is already within an existing part of the
selection, then instead of being added to the selection it's removed
from the selection. Figure 7 shows a sequence in which several pieces
are selected and deselected. '

11/30/84 Averill ’ / INTF/SELECT

SELECTING 21

A B C D
Cells B2, B3, C2, and C3 1
are selected 2]
3
4
5
The user holds down the 1
Command key and clicks in 2
DS 3
4
)
A B c D
The user holds down the 1
Command key and clicks in 2
C3 3]
4
5 .

Figure 7. Discontinuous Selection

Not all applications support discontinuous selections, and those that
do might restrict the operations that a user can perform on them. For
example, a word processor might allow the user to choose a font after
making a discontinuous selection, but not to choose Cut or Paste.

Selecting Text

Text 'is used in most applications; it's selected and edited in a
consistent way, regardless of where it appears.

A block of text is a string of characters. A text selection is a
substring of this string, which can have any length from zero
characters to the whole block. Each of the text selection methods

selects a different kind of substring. Figure 8 shows different kinds
of text selections.

11/30/84 Averill / INTF/SELECT

22 - User Interface Guidelines

Insertion point Andlspringth the wude nu.

Range of characters ABIEIEngth the wude nu.

word : springth the wude nu.
Range of words IR the wude nu.
Discontinuous ATGBIEAR ngth the &

Selection

" Figure 8, Text Selections

Insertion Point

The insertion point is a zero-length text selection. The user
establishes the location of the insertion point by clicking between two
characters. The insertion point then appears at the nearest character
boundary. If the user clicks to the right of the last character on a
line, the insertion point appears immediately after the last character.
The converse is true if the user clicks to the left of the first
character in the line.

The insertion point shows where text will be inserted when the user
begins typing, or where the contents of the Clipboard will be pasted.
After each character is typed, the insertion point is relocated to the
right of the insertion. .

If, between the mouse-down and the mouse-up, the user moves the pbinter

more than about half the width of a character, the selection is a range
selection rather than an insertion point.

Selecting Words

The user selects a whole word by double-clicking somewhere within that
word.- If the user begins a double-click sequence, but then drags the

mouse between the mouse-down and the mouse-up of the second click, the
selection becomes a range of words rather than a single word. As the

pointer moves, the application highlights or unhighlights a whole word
at a time.

A word, or range of words, can also be selected in the same way as any
other range; whether this type of selection is treated as a range of
characters or as a range of words depends on the operation., For
example, in MacWrite, a range of individual characters that happens to
coincide with a range of words is treated like characters for purposes

11/30/84 Averill / INTF/SELECT

SELECTING 23

of extending a selection, but is treated like words for purposes of
intelligent cut and paste.

A 'word is defined as any continuous substring that contains only the
following characters:

- a letter (including letters with diacritical marks)

- a digit

- a nonbreaking space (Option-space)

- a dollar sign, cent sign, English pound symbol, or yen symbol
- a percent sign \ .)

- a comma between.digits

- a period before a digit

- an apostrophe between letters or digits

- a hyphen, but not a minus sign (Option-hyphen) or a dash
(Option—-Shift~hyphen)

This is the definition in the United States and Canada; in other
countries, it would have to be changed to reflect local formats for
numbers, dates, and currency.

If the user double-clicks over any character not on the list above,
only that character is selected.

Examples of words:

$123,456.78

shouldn't

3 1/2 [with a nonbreaking space]
57

Examples of nonwords:

7/10/6
blue cheese [with a breaking space]
"Yoicks!" [the quotation

marks and exclamation point aren't part of the word]

s

- Selecting a Range of Text

The user selects a range of text by dragging through the range. A
range is either a range of words or a range of individual characters,
as described under "Selecting Words', above.

11/30/84 Averill \ / INTF/SELECT

24 User Interface Guidelines

If the user extends the range, the way the range is extended depends on
what kind of range it is. If it's a range of individual characters, it
can be extended one character at a time. If it's a range of words
(includiﬁg a single word), it's extended only by whole words.

Graphics Selections

There are several different ways to select graphic objects and to show
selection feedback in existing Macintosh applications. MacDraw,
MacPaint, and the Finder all illustrate different possibilities. This
section describes the MacDraw paradigm, which is the most extensible to
other kinds of applicationms.

A MacDraw document is a collection of individual graphic objects. To
select one of these objects, the user clicks once on the object, which
is then shown with knobs. (The knobs are used to stretch or shrink the
object, and won't be discussed in this manual.) Figure 9 shows some
examples of selection in MacDraw. '

:This is 8 block of:
lext in HMecDraw,

Figure 9. Graphics Selections in MacDraw

To select more than one object, the user can select either a range or a
multiple selection. A range selection includes every object completely
contained within the dotted rectangle that encloses the range, while an
extended selection includes only those objects explicitly selected.

Selections in Arrays

As described above, under "Types of Applications", an array is a one-
or two-dimensional arrangement of fields. If the array is
one-dimensional, it's called a form; if it's two-dimensional, it's

called a table. The user can select one or more fields, or part of the
contents of a field.

To select a single field, the user clicks in the field. The user can

also implicitly select a field by moving into it with the Tab or Return
key.

11/30/84 Averill /INTF/SELECT

SELECTING 25

The Tab key cycles through the fields in an order determined by the
application. From each field, the Tab' key selects the 'next" field.
Typically, the sequence of fields is first from left to right, and then
from top to bottom. When the last field in a form is selected,
pressing the Tab key selects the first field in the form. 1In a form,
an application might prefer to select the fields in logical, rather
than physical, order.

The Return key selects the first field in the next row. If the idea of
rows doesn't make sense in a particular context, then the Return key
should have the same effect as the Tab key.

Tables are more likely than forms to support range selections and
extended selections. A table can also support selection of rows and
columns. The most convenient way for the user to select a column is to
click in the column header. To select more than one column, the user
drags through several column headers. The same applies to rows.

To select part of the contents of a field, the user must first select
the field. The user then clicks ‘again to select the desired part of
the field. Since the contents of a field are either text or graphics,
this type of selection follows the rules outlined above. Figure 18
shows some selections in an array,

Column Field

Range

Tt = U] Part of 8

tieid

Discontinuous
Selection

Figure 1§. Array Selections

WINDOWS

Windows are the rectangles on the desktop that display information.
The most commmon types of windows are document windows, desk
accessories, dialog boxes, and alert boxes. (Dialog and alert boxes

11/30/84 Averill : / INTF/WINDOW

26 User Interface Guidelines

are discussed under "Dialogs and Alerts".) Some of the features
described in this section are applicable only to document windows.
Figure 11 shows a typical active window and some of its components.

Title ber

—Scroll srrow
—Scroll box

Close box

- Scroll bar

— Size box

Scroll ber

Figure 11. An Active Window

Multiple Windows

Some applications may be able to keep several windows on the desktop at
the same time. Each window is in a different plane. Windows can be
moved around on the Macintosh's desktop much like pieces of paper can
be moved around on a real desktop. Each window can overlap those
behind it, and can be overlapped by those in front of it. Even when
windows don't overlap, they retain their front-to-back ordering.

Different windows can represent:

- different parts of the same document, such as the beginning and
end of a long report

-~ different interpretations of the same document, such as the
tabular and chart forms of a set of numerical data

- related'parts of a logical whole, like the listing, execution, and
debugging of a program

- separate documents being viewed or edited simultaneously

Each application may deal with the meaning and creation of multiple
windows in its own way.

The advantage of multiple windows is that the user can isolate

unrelated chunks of information from each other. The disadvantage is
that the desktop can become cluttered, especially if some of the

11/30/84 Averill / INTF/WINDOW

WINDOWS 27

windows can't be moved. Figure 12 shows multiple windows.

Meome
Job Titles _
g Inactive
—Eﬁiﬂ_ windows
D= fccoumls T
B The
active
ik . window

...................
Siatassiiiatiisaasatelatatatatesilaieies
Siidisasiaisatitissatataciiintisciaise

Figure 12, Multiple Windows

Opening and Closing Windows

Windows come up onto the screen in different ways as appropriate to the
purpose of the window., The application controls at least the initial
size and placement of its windows.

Most windows have a close box that, when clicked, makes the window go
away. The application in control of the window determines what's done
with the window visually and logically when the close box is clicked.
Visually, the window can either shrink to a smaller object such as an
icon, or leave no trace behind when it closes. Logically, the
information in the window is either retained and then restored when the
window is reopened (which is the usual case), or else the window is
reinitialized each time it's opened. When a document is closed, the
user is given the choice whether to save any changes made to the
document since the last time it was saved.

If an application doesn't support closing a window with a close box, it
should not include a close box on the window.

11/30/84 Averill | / INTF/WINDOW

28 User Interface Guidelines

The Active Window

0f all the windows that are open on the desktop, the user can work in
only one window at a time. This window is called the active window.
All other open windows are inactive. To make a window active, the user
clicks in it. Making a window active has two immediate consequences:

- The window's title bar is highlighted, the scroll bars and size
box are shown, and any controls inside the window become active.
If the window is being reactivated, the selection that was in
effect when it was deactivated is rehighlighted.

- The window is moved to the frontmost plane, so that it's shown in
front of any windows that it overlaps.

Clicking in a window does nothing except activate it., To make a
selection in the window, the user must click again. When the user
clicks in a window that has been deactivated, the window should be
reinstated just the way it was when it was deactivated, with the same
position of the scroll box, and the same selection highlighted.

When a window becomes inactive, all the visual changes that took place
when it was activated are reversed. - The title bar becomes

unhighlighted, the scroll bars and size box aren't shown, any controls
inside the window are dimmed, and no selection is shown in the window.

Moving a Window

Each application initially places windows on the screen wherever it
wants them. The user can move a window-—to make more room on the
desktop or to uncover a window it's overlapping--by dragging it by its
title bar. As soon as the user presses in the title bar, that window
becomes the active window. A dotted outline of the window follows the
pointer until the user releases the mouse button. At the release of
the button the full window is drawn in its new location. Moving a
window doesn't affect the appearance of the document within the window.

If the user holds down the Command key while moving the window, the
window isn't made active; it moves in the same plane.

The aﬁplication should ensure that a window can never be moved
completely off the screen.

Changing the Size of a Window

If a window has a size box in its bottom right corner, where the scroll
bars come together, the user can change the size of the window--
enlarging or reducing it to the desired size.

Dragging the size box attaches a dotted outline of the window to the
pointer. The outline's top left corner stays fixed, while the bottom

11/30/84 Averill . /INTF/WINDOW

WINDOWS 29

right corner follows the pointer. When the mouse button is released,
the entire window is redrawn in the shape of the dotted outline.

Moving windows and sizing them go hand in hand. If a window can be
moved, but not sized, then the user ends up constantly moving windows
on and off the screen. The reason for this is that if the user moves
the window off the right or bottom edge of the screen, the scroll bars
are the first thing to disappear. To scroll the window, the user must
move the window back onto the screen again. If, on the other hand, the
window can be resized, then the user can change its size instead of
moving it off the screen, and will still be able to scroll.

Sizing a window doesn't change the position of the top left corner of
the window over the document or the appearance of the part of the view
that's still showing; it changes only how much of the view is visible
inside the window. One exception to this rule is a command such as
Reduce to Fit in MacDraw, which changes the scaling of the view to fit
the size of the window. 1If, after choosing this command, the user
resizes the window, the application changes the scaling of the view.

The appliéation can define a minimum window size. Any attempt to
shrink the window below this size is ignored.

Scroll Bars

Scroll bars are used to change which part of a document view is shown
in a window. Only the active window can be scrolled.

A scroll bar (see Figure 1l above) is a light gray shaft, capped on
each end with square boxes labeled with arrows; inside the shaft is a
white rectangle. The shaft represents one dimension of the entire
document; the white rectangle (called the scroll box) represents the
location of the portion of the document currently visible inside the
window. As the user moves the document under the window, the position
of the rectangle in the scroll bar moves correspondingly. If the
document is no larger than the window, the scroll bars are inactive
(the scrolling apparatus isn't shown in them). If the document window
is inactive, the scroll bars aren't shown at all.

There are three ways to move the document under the window: by
sequential scrolling, by "paging" windowful by windowful through the
document, and by directly positioning the scroll box.

Clicking a scroll arrow moves the document in the opposite direction
from the scroll arrow. For example, when the user clicks the top
scroll arrow, the document moves down, bringing the view closer to the
top of the document. The scroll box moves towards the arrow being
clicked.

Each click in a scroll arrow causes movement a distance of one unit in
the chosen direction, with the unit of distance being appropriate to
the application: one line for a word processor, one row or column for
a spreadsheet, and so on. Within a document, units should always be

11/30/84 Averill . / INTF/WINDOW

30 User Interface Guidelines

the same size, for smooth scrolling. Pressing the scroll arrow causes
continuous movement in its direction.

Clicking the mouse anywhere in the gray area of the scroll bar advances
the document by windowfuls. The scroll box, and the document view,
move toward the place where the user clicked. Clicking below the
scroll box, for example, brings the user the next windowful towards the
bottom of the document. Pressing in the gray area keeps windowfuls
flipping by until the user releases the button, or until the location
of the scroll box catches up to the location of the pointer. Each
windowful is the height or width of the window, minus one unit overlap
(where a unit is the distance the view scrolls when the scroll arrow is
clicked once).

In both the above schemes the user moves the document incrementally
until it's in the proper position under the window; as the document
moves, the scroll box moves accordingly. The user can also move the
document directly to any position simply by moving the scroll box to
the corresponding position in the scroll bar. To move the scroll box,
the user drags it along the scroll bar; an outline of the scroll box
follows the pointer. When the mouse button is released, the scroll box
jumps to the position last held by the outline, and the document jumps
to the position corresponding to the new position of the scroll box.

If the user starts dragging the scroll box, and then moves the pointer
a certain distance outside the scroll bar, the scroll box detaches
itself from the pointer and stops following it; if the user releases
the mouse button, the scroll box returns to its original position and
the document remains unmoved. But if the user still holds the mouse
button and drags the pointer back into the scroll bar, the scroll box
reattaches itself to the pointer and can be dragged as usual.

If a document has a fixed size, and the user scrolls to the right or
bottom edge of the document, the application displays a small amount of
gray background (the same pattern as the desktop) between the edge of
the document and the window frame. :

Automatic Scrolling

There are several instances when the application, rather than the user,
scrolls the document. These instances involve some potentially sticky
problems about how to position the document within the window after
scrolling.

The first case is when the user moves the pointer out of the wirdow
while selecting by dragging. The window keeps up with the selection by
scrolling automatically in the direction the pointer has been moved.
The rate of scrolling is the same as if the user were pressing on the
corresponding scroll arrow or arrows.

The second case is when the selection isn't currently showing in the

window, and the user performs an operation on it. When this happens,
it's usually because the user has scrolled the document after making a

11/30/84 Averill / INTF/WINDOW

WINDOWS 31

selection. In this case, the application scrolls the window so that
the selection is showing before performing the operation.

The third case is when the application performs an operation whose side
effect is to make a new selection. An example is a search operation,
after which the object of the search is selected. If this object isn't
showing in the window, the application must scroll the window so as to
show it.

The second and third cases present the same problem: Where should the
selection be positioned within the window after scrolling? The primary
rule is that the application should avoid unnecessary scrolling; users
prefer to retain control over the positioning of a document. The
following guidelines should be helpful:

- If part of the new selection is already showing in the window,
don't scroll at all. An exception to this rule is when the part
of the selection that isn't showing is more important than the
part that's showing.

- If scrolling in one orientation (horizontal or vertical) is
sufficient to reveal the selection, don't scroll in both
orientations.

- If the selection is smaller than the window, position the
selection so that some of its context is showing on each side.
It's better to put the selection somewhere near the middle of the
window than right up against the corner.

- Even if the selection is too large to show in the window, it might

be preferable to show some context rather than to try to fit as
much as possible of the selection in'the window.

Splitting a Window

Sometimes it's desirable to be able to see disjoint parts of a document
simultaneously. Applications that accommodate such a capability allow
the window to be split into independently scrollable panes.

Applications that support splitting a window into panes place split
bars at the top of the vertical scroll bar and to the left of the
horizontal one. Pressing a split bar attaches it to the pointer.
Dragging the split bar positions it anywhere along the scroll bar;
releasing the mouse button moves the split bar to a new position,
splits the window at'that location, and divides the appropriate scroll
bar (horizontal or vertical) into separate scroll bars for each pane.
Figure 13 shows the ways a window can be split.

11/30/84 Averill / INTF/WINDOW

32 User Interface Guidelines

i
m
=
i
imj“

- >
AL AT o e [T I

Horizontal Split Vertical Split Both Spiits

Figure 13. Types of Split Windows

After a split, the document appears the same, except for the split line
lying across it. But there are now separate scroll bars for each pane.
The panes are still scrolled together in the orientation of the split,
but can be scrolled independently in the other orientation. For
example, if the split is horizontal, then horizontal scrolling (using
the scroll bar along the bottom of the window), is still synchronous,
Vertical scrolling is controlled separately for each pane, using the

two scroll bars along the right of the window. This is shown in Figure
14,

E[J==————== Bingo
D CBD MDD CND

- — P "

A2 > B> | M2 N2

The panes scroll

| together in
—— — — — the vertical
CR3 > B3 O| (M3 <_E_> orientation

3
3
h
h
3
3
3
h
3

CRD D CHD (MDD

B I S

[

The pgnes scroll independémly
in the horizontal orientation

Figure 14. Scrolling a Split Window

To remove a split, the user drags the split bar to the bottom or the
right of the window.

The number of views in a document doesn't alter the number of
selections per document: that is, one. The active selection appears
highlighted in all views that show it. If the application has to

11/30/84 Averill ' / INTF/WINDOW

WINDOWS 33

scroll automatically to show the selection, the pane that should be
scrolled is the last one that the user clicked in. If the selection is
already showing in one of the panes, no automatic scrolling takes
place.

Panels

If a document window is more or less permanently divided into different
regions, each of which has different content, these regions are called
panels. Unlike panes, which show different parts of the same document
but are functionally identical, panels are functionally different from
each other but might show different interpretations of the same part of
the document. For example, one panel might show a graphic version of
the document while another panel shows a textual version.

Panels can behave much like subwindows; they can have scroll bars, and
can even be split into more than one pane. An example of a panel with
scroll bars is the list of files in the Open dialog box.

Whether to use panels instead of separate windows is up to the
application., Multiple panels in the same window are more compact than
separate windows, but they have to be moved, opened, and closed as a
unit.

COMMANDS

Once the information to be operated on has been selected, a command to
operate on that information can be chosen from lists of commands called
menus,

Macintosh's pull-down menus have the advantage that they're not visible
until the user wants to see them; at the same time they're easy for the
user to see and choose items from.

Most commands either do something, in which case they're verbs or verb
phrases, or else they specify an attribute of an object, in which case
they're adjectives. They usually apply to the current selection,
although some commands apply to the whole document or window.

When you're designing your application, don't assume that everything
has to be done through menu commands. Sometimes it's more appropriate
for an operation to take place as a result of direct user manipulation
of a graphic object on the screen, such as a control or icon.
Alternatively, a single command can execute complicated instructions if
it brings up a dialog box for the user to fill in.

11/30/84 Averill / INTF/COMMANDS

34 User Interface Guidelines

The Menu Bar

The menu bar is displayed at the top of the screen. It contains a
number of words and phrases: These are the titles of the menus
associated with the current application. Each application has its own
menu bar. The names of the menus do not change, except when the user
calls for a desk accessory that uses different menus.

Only menu titles appear in the menu bar. If all of the commands in a
menu are currently disabled (that is, the user can't choose them), the
menu title should be dimmed (in gray type). The user can pull down the
menu to see the commands, but can't choose any of them.

Choosing a Menu Command

To choose a command, the user positions the pointer over the menu title
and presses the mouse button. The application highlights the title and
displays the menu, as shown in Figure 15.

Show Rulers
Custom Rulers... 31— Ellipsis

vNormal Size ———3— Checked command
Reduce To Fit ¥ R1+—Keyboard equivalent
Reduce
tnlarge Dimmed commesnd

/
{.

Turn 6rid Off

C and
ommand 0% 11 Wide Grid Lines

Show Size
Hide Page Breaks
Drawing Size...

Figure 15. Menu

While holding down the mouse button, the user moves the pointer down
the menu. As the pointer moves to each command, the command is
highlighted. The command that's highlighted when the user releases the
mouse button is chosen. As soon as the mouse button is released, the
command blinks briefly, the menu disappears, and the command is
executed. (The user can set the number of times the command blinks in
the Control Panel desk accessory.) The menu title in the menu bar

11/30/ 84 Averill / INTF/COMMANDS

COMMANDS 35

remains highlighted until the command has completed execution.

Nothing actually happens until the user chooses the command; the user
can look at any of the menus without making a commitment to do
anything.

The most frequently used commands should be at the top of a menu;
research shows that the easiest item for the user to choose is the
second item from the top. The most dangerous commands should be at the
bottom of the menu, preferably isolated from the frequently used.
commands.

Appearance of Menu Commands

The commands in a particular menu should be logically related to the
title of the menu. In addition to command names, three features of
menus help the user understand what each command does: command groups,
toggles, and special visual features.

Command Groups

.As mentioned above, menu commands can be divided into two kinds: verbs
and adjectives, or actions and attributes. An important difference
between the two kinds of commands is that an attribute stays in effect
until it's cancelled, while an action ceases to be relevant after it
has been performed. Each of these two kinds can be grouped within a
menu. Groups are separated by gray lines, which are implemented as
disabled commands.

The most basic reason to group commands is to break up a menu so it's
easier to read. Commands grouped for this reason are logically
related, but independent. Commands that are actions are usually
grouped this way, such as Cut, Copy, Paste, and Clear in the Edit menu.

Attribute commands that are interdependent are grouped to show this
interdependence. Two kinds of attribute command groups are mutually
exclusive groups and accumulating groups.

- In a mutually exclusive attribute group, only one command in the group
is in effect at the same time. The command that's in effect is
preceded by a check mark. If the user chooses a different command in
the group, the check mark is moved to the new command. An example is
the Font menu in MacWrite; no more than one font can be in effect at a
time.

In an accumulating attribute group, any number of attributes can be in
effect at the same time. One special command in the group cancels all
the other commands. An example is the Style menu in MacWrite: the
user can choose any combination of Bold, Italic, Underline, Outline, or
Shadow, but Plain Text cancels all the other commands.

11/30/84 Averill / INTF/COMMANDS

36 User Interface Guidelines

Toggles

Another way to show the presence or absence of an attribute is by a
toggled command. In this case, the attribute has two states, and a
single command allows the user to toggle between the states. For
example, when rulers are showing in MacWrite, a command in the Format
menu reads '"Hide Rulers". If the user chooses this command, the rulers
are hidden, and the command is changed to read "Show Rulers". This
kind of group should be used only when the wording of the commands
makes it obvious that they're opposites.

Special Visual Features

.In addition to the command names and how they're grouped, several other
features of commands communicate information to the user:

A check mark indicates whether an attribute command is currently
in effect.

~ An ellipsis (...) after a command nanme means that choosing that
command . brings up a dialog box. '‘The command isn't actually
executed until the user has finished filling in the dialog box and
has clicked the OK button or its equivalent.

- The application dims a command when the user can't choose it. If
the user moves the pointer over a dimmed item, it isn't
highlighted.

- If a command can be chosen from the keyboard, it's followed by the
Command key symbol and the character used to choose it. To choose
a command this way, the user holds down the Command key and then
presses the character key.

Some characters are reserved for special purposes, but there are
different degrees of stringency. Since almost every application has a
‘File menu and an Edit menu, the keyboard equivalents in those menus are
strongly reserved, and should never be used for any other purpose:

Character Command

Copy (Edit menu)
Quit (File menu)
Paste (Edit menu)
Cut (Edit menu)

Undo (Edit menu)

NX<OO

The keyboard equivalents in the Style menu are conditionally reserved.
If an application has this menu, it shouldn't use these characters for
any other purpose, but if it doesn't, it can use them however it likes:

11/30/84 Averill / INTF/COMMANDS

COMMANDS 37

Character Command

Bold
Italic
Outline
Plain text
Shadow
Underline

LYo HW

One keyboard command doesn't have a menu equivalent:

Character Command

. Stop current .operation
Several other menu features are also supported:

- A command can be shown in Bold Italic, Outline, Underline, or
Shadow type style.

- A command can be preceded by an icon. J

- The application can draw its own type of menu. An example of this
is the Fill menu in MacDraw.

STANDARD MENUS

One of the strongest ways in which Macintosh applications can take -
advantage of the consistency of the user interface is by using standard
menus. The operations controlled by these menus occur so frequently
that it saves considerable time for users if they always match exactly.
Three of these menus, the Apple, File, and Edit menus, appear in almost
every application. The Font, FontSize, and Style menus affect the
appearance of text, and appear only in applications where they're
relevant.

The Apple Menu

Macintosh doesn't allow two applications to be running at once. Desk
accessories, however, are mini-applications that are available while
using any application.

At any time the user can issue a command to call up one of several

desk accessories; the available accessories are listed in the Apple
menu, as shown in Figure 16. :

11/30/84 Averill / INTF/SMENUS

38 User Interface Guidelines

About MacPaint...

scrapbook
Alarm Clock
Note Pad
Calculator
Key Caps
Control Panel
Puzzle

4

Figure 16. Apple Menu

Accessories are disk-based: Only those accessories on an available
disk can be.used. The list of accessories is expanded or reduced
according to what's available. More than one accessory can be on the
desktop at a time. :

For a description of these desk accessories, see Macintosh, the owner's
guide. An application can also provide its own desk accessories.

The Apple menu also contains the "About xxx" menu item, where "xxx" is
the name of the application. Choosing this item brings up a dialog box
with the name and copyright information for the application, as well as
any other information the application wants to display.

The File Menu

The File menu allows the user to perform certain simple filing
operations without leaving the application and returning to the Finder.
It also contains the commands for printing and for leaving the
application, The standard File menu includes the commands shown in
Figure 17.)

11/30/84 Averill / INTF/SMENUS

STANDARD MENUS 39

/ e |
New
Open...

Close

Save

Save As...
Revert to Saved

Page Setup...
Print...

Quit %0

Figure 17. File Menu

Other frequently used commands are Print Draft, Print Final, and Print
One. All of these commands are described below.

New

New opens a new, untitled document. The user names the document the
first time it's saved. This command is disabled when the maximum
number of documents allowed by the application is already open.

OEen

Open opens an existing document. To select the document, the user is
presented with a dialog box (Figure 18). This dialog box shows a list
of all the documents on the disk whose name is displayed that can be
handled by the current application. The user can scroll this list
forward and backward. The dialog box also gives the user the chance to
look at the documents on the disk in the other disk drive that belong
to the current application, or to eject either disk.

11/30/84 Averill / INTF/SMENUS

40 User Interface Guidelines

Letter

N March Figures Current
Marketing
Memo (_Eject)
Messages

AH New Totals (Orive)
0id Totals

Figure 18. Open Dialog Box

Using the Open command, the user can only open a document that can be
processed by the current application. Opening a document that can only
be processed by a different application requires leaving the
application and returning to the Finder.

This command is disabled when the maximum number of documents allowed
by the application is already open.

Close

Close closes the active document or desk accessory., If the user has
changed the document since the last time it was saved, the command
presents an alert box giving the user the choice of whether or not to
save the changes.

Clicking in the close box of a window is the same as choosing Close.

Save

Save makes permanent any changes to the active document since the last
time it was saved. It leaves the document open.

If the user chooses Save for a new document that hasn't been named yet,
the application presents the Save As dialog (see below) to name the
document, and then continues with the save. The active document
remains active. ’

If there's not enough room on the disk to save the document, the
application asks if the user wants to save the document on another
disk. If the answer is yes, the application goes through the Save As
dialog to find out which disk.

\

11/30/84 Averill / INTF/SMENUS

STANDARD MENUS 41

Save As

Save As saves a copy of the active document under a file name provided
by the user. .

If the document already has a name, Save As closes the old version of
the document, creates a copy, and displays the copy in the window.

If the document is untitled, Save As saves the original document under
the specified name. The active document remains active.

Revert to Saved

Revert to Saved returns the document to the state it was in the last
time it was saved. Before doing so, it puts up an alert box to confirm
that this is what the user wants.

Page Setup

Page Setup lets the user specify printing pérameters such as what its
. paper size and printing orientation are. These parameters remain with
the document. :

Print

Print lets the user specify various parameters such as print quality
and number of copies, and then prints the document. The parameters
apply only to the current printing operation.

Quit

Quit leaves the application and returns to the Finder. If any open
documents have been changed since the last time they were saved, the

application presents the same alert box as for Close, once for each
document.

Other Commands

Other commands that are in the File menu in some applications include:

- Print Draft. This command prints one copy of a rough version of a
document more quickly than Print. It's useful in applications
where ordinary printing is slow. If an application has this
command, it should change the pame of the Print command to Print
Final.

- Print One. This command saves time by printing one copy using
default parameters without bringing up the Print dialog box.

11/30/84 Averill / INTF/SMENUS

42 User Interface Guidelines

The Edit Menu

The Edit menu contains the commands that delete, move, and copy
objects, as well as commands such as Undo, Show Clipboard, and Select
All. This section also discusses the Clipboard, which is controlled by
the Edit menu commands. Text editing methods that don't use menu
commands are discussed under "Text Editing".

If the application supports desk accessories, the order of commands in
the Edit menu should be exactly as shown here. This is because, by
default, the application passes the numbers, not the names, of the menu
commands to the desk accessories. (For more details, see the Desk
Manager manual.) In particular, your application must provide an Undo
command for the benefit of the desk accessories, even if it doesn't
support the command (in which case it can disable the command until a
desk accessory 1is opened).

The standard order of commands in the Edit menu is shown in Figure 19.

Undo (lest) 382

Cut %BH
Copy 8C
Paste RBU
Clear

Show Clipboard
Select Rl

Figure 19. Edit Menu

The Clipboard

The Clipboard is a special kind of window with a well-defined function:
it holds whatever is cut or copied from a document. 1Its contents stay
intact when the user changes documents, opens a desk accessory, or
leaves the application. An application can choose whether to have the
Clipboard open or closed when the application starts up.

The Clipboard looks like a document window, with a close box but with
no scroll bars. Its contents cannot be edited.

Every time the user performs a Cut or Copy on the current selection, a

copy of the selection replaces the previous contents of the Clipboard.
The previous contents are kept around in case the user chooses Undo.

11/30/84 Averill /INTF/SMENUS

STANDARD MENUS 43

The user can see the contents of the Clipboard but can't edit them. 1In
most other ways the Clipboard behaves just like any other window.

There is only one Clipboard, which is present for all applications that
support Cut, Copy, and Paste. The user can see the Clipboard window by
choosing Show Clipboard from the Edit menu. If the window is already
showing, it's hidden by choosing Hide Clipboard. (Show Clipboard and
Hide Clipboard are a single toggled command.) ’

Because the contents of the Clipboard remain unchanged when
applications begin and end, or when the user opens a desk accessory,
the Clipboard can be used for transferring data among mutually
compatible applications and desk accessories.

Undo

Undo reverses the effect of the previous operation. Not all operations
can be undone; the definition of an undoable operation is somewhat
application-dependent. The general rule is that operations that change
the contents of the document are undoable, and operations that don't
are not. Most menu items are undoable, and so are typing sequences.

A typing sequence is any sequence of characters typed from the keyboard
or numeric keypad, including Backspace, Return, and Tab, but not
including keyboard equivalents of commands.

Operations that aren't undoable include selecting, scrolling, and
splitting the window or changing its size or location. None of these
operations interrupts a typing sequence. That is, if the user types a
few characters and then scrolls the document, the Undo command still
undoes the typing. Whenever the location affected by the Undo
operation isn't currently showing on the screen, the application should
scroll the document so the user can see the effect of the Undo.

An application should also allow the user to undo any operations that
are initiated directly on the screen, without a menu command. This
includes operations controlled by setting dials, clicking check boxes,
and so on, as well as drawing graphic objects with .the mouse.

The actual wording of the Undo command as it appears in the Edit menu
is "Undo xxx", where xxx is the name of the last operation. If the .
last operation isn't a menu command, use some suitable term after the
word Undo. If the last operation can't be undone, the command reads

"Undo", but is disabled.

If the last operation was Undo, the menu command says '"Redo xxx'", where

xxx is the operation that was undone. If this command is chosen, the
Undo is undone.

11/30/84 Averill v - /INTF/SMENUS

44 User Interface Guidelines

Cut

The user chooses Cut either to delete the current selection or to move
it. 1If it's a move, it's eventually completed by choosing Paste.

When the user chooses Cut, the application removes the current
selection from the document and puts it in the Clipboard, replacing the
Clipboard's previous contents. The place where the selection used to
be becomes the new selection; the visual implications of this vary
among applications., For example, in text, the new selection is an
insertion point, while in an array, it's an empty but highlighted cell.
If the user chooses Paste immediately after choosing Cut, the document
should be just as it was before the cut; the Clipboard is unchanged.

When the user chooses Cut, the application doesn't know if it's a
deletion or the first step of a move. Therefore, it must be prepared
for either possibility.

" Copy

Copy is the first stage of a copy operation. Copy puts a copy of the
selection in the Clipboard, but the selection also remains in the
document.

Paste

Paste is the last stage of a copy or move operation. It pastes the
contents of the Clipboard to the document, replacing the current
selection. The user can choose Paste several times in a row to paste
multiple copies. After a paste, the new selection is the object that
was pasted, except in text, where it's an insertion point immediately
after the pasted text. The Clipboard remains unchanged.

Clear

When the user chooses Clear, or presses the Clear key on the numeric
keypad, the application removes the selection, but doesn't put it on
the Clipboard. The new selection is the same as it would be after a
Cut.

‘Show‘Clipboard

Show Clipboard is a toggled command. Initially, the Clipboard isn't

displayed, and the command is "Show Clipboard". If the user chooses

the command, the Clipboard is displayed and the command changes to
"Hide Clipboard".

11/30/84 Averill ‘ / INTF/ SMENUS

STANDARD MENUS 45

Select All

Select All selects every object in the document.

Font-Related Menus

Three standard menus affect the appearance of text: Font, which
determines the font of a text selection; FontSize, which determines the
size of the characters; and Style, which determines aspects of its
appearance such ‘as boldface, italics, and so on.

Font Menu

A font 1s a set of typographical characters created with a consistent
design. Things that relate characters in a font include the thickness
of vertical and horizontal lines, the degree and position of curves and
swirls, and the use of serifs, A font has the same general appearance,
regardless of the size of the characters. The Font menu always lists
the fonts that are currently available. Figure 20 shows .a Font menu
with some of the most.common fonts,

Chicago
Geneva
vNew York
Monaco
Uenice
London
Athens

Figure 2@. Font Menu

FontSize Menu

Font sizes are measured in points; a point is about 1/72 of an inch.
Each font is available in predefined sizes. The numbers of these sizes
for each font are shown outlined in the FontSize menu. The font can
also be scaled to other sizes, but it may not look as good. Figure 21
shows a FontSize menu with the standard font sizes.

11/30/84 Averill /INTF/SMENUS

46 User Interface Guidelines

9 point

10
12

14

18

24

36

48

72

Figure 21. FontSize Menu

If there's insufficient room . in the menu bar for the word FontSize, it

can be abbreviated to Size.

If there's insufficient room for both a

Font menu and a Size menu, the sizes can be put at the end of the Font
or Style menu,

Style Menu

The commands
Outline, and

also toggled
selection is

other choices.

in the Style menu are Plain Text, Bold, Italic, Underline,
Shadow. All the commands except Plain Text are
accumulating attributes; the user can choose any combination. They are
commands; a command that's in effect for the current

preceded by a check mark.

Style

vPlain Text
Seid
I1alic

Underline
Ootiinn

|
%8
%1

%xU
%0
xS

Figure 22. Style Menu

11/30/84 Averill

Plain Text cancels all the
Figure 22 shows these styles.

/ INTF/ SMENUS

TEXT EDITING 47

TEXT EDITING

In addition to the operations described under "The Edit Menu" above,
there are other ways to edit text that don't use menu items.

Inserting Text

To insert text, the user selects an insertion point by clicking where

the text is to go, and then starts typing it., As the user types, the

application continually moves the insertion point to the right of each
new character.,

Applications with multiline text blocks should support word wraparound,

according to the definition of a word given above. The intent is that
no word be broken between lines.

Backspace

When ‘the user presses the Backspace key, one of two things happens:
- If the current selection is one or more characters, it's deleted.

- If the current selection is an insertion point, the previous
character is deleted.

In both cases, the deleted characters don't go into the Clipboard, and
the insertion point replaces the deleted characters in the document.

Replacing Text

If the user starts typing when the selection is one or more characters,
the characters that are typed replace the selection. The deleted
characters don't go into the Clipboard, but the replacement can be
undone by immediately choosing Undo.

Intelligent Cut and Paste

An application that lets the user select a word by double-clicking
should also see to 1t that the user doesn't regret using this feature.
The only way to do this is by providing "intelligent' cut and paste.

To understand why this feature is necessary, consider the following
sequence of events in an application that doesn't provide it:

"l. A sentence in the user's document reads: ''Returns are only
accepted if the merchandise is damaged." The user wants to change
this to: "Returns are accepted only if the merchandise is
damaged."

11/30/84 Averill) /INTF/EDIT

48

2.

3.

User Interface Guidelines

The user selects the word "only" by double~clicking. The letters
are highlighted, but not either of the adjacent spaces.

The user chooses Cut, .clicks just before the word "if", and
chooses Paste.

The sentence now reads: '"Returns are accepted onlyif the
merchandise is damaged.'" To correct the sentence, the user has to
remove a space between "are'" and "accepted", and add one between
"only" and "if". At this point he or she may be wondering why the
Macintosh is supposed to be easier to use than other computers.

If an application supports intelligent cut and paste, the rules to
follow are:

- If the user selects a word or a range of words, highlight the

selection, but not any adjacent spaces.

- When the user chooses Cut, if the character to the left of the

selection is a space, discard it.

When the. user chooses Paste, if the character to the left of the
current selection isn't a space, add a space. If thé character to
the right of the current selection isn't a punctuation mark or a
space, add a space. Punctuation marks include the period, comma,
exclamation point, question mark, apostrophe, colon, semicolon,’
and quotation mark.

This feature makes more sense if the application supports the full
definition of a word (as detailed above under "Selecting a Word"),
rather than the definition of a word as anything between two spaces.

These rules apply to any selection that's one or more whole words,
whether it was chosen with a double-click or as a range selection.

Figure 23 shows some examples of intelligent cut and paste.

11/30/84 Averill ' ‘ /INTF/EDIT

TEXT EDITING 49

Example 1: ,
1. Select a word, Drink to me Wil with thine eyes.
2. Choose Cut. Drink to me|with thine eyes

3. Select an insertion point. Drink to me withfthine eyes

4. Chaose Paste. Drink to me with only thine eyes.
Example 2
1. Select & word, How, [lERE brown cow

2. Choose Cut. How |brown cow
3. Select an insertioh point HowL brown cow
4. Choose Paste. How now|, brown cow

Figure 23. Intelligent Cut and Paste

Editing Fields

If an application isn't primarily a text application, but does use text
in fields (such as in a dialog box), it may not be able to provide the
full text editing capabilities described so far,

It's important, however, that whatever editing capabilities the
application provides under these circumstances be upward-compatible
with the full text editing capability. The following list shows the
capabilities that can be provided, going from the minimal to the most
sophisticated: { :

~ The user can select the Qhole field and type in a new value,
- The user can backspace.
- The user can select a substring of the field and replace it.
- The user can select a word.by double-clicking.
~ The user can choose Undo, Cut, Copy, Paste, and Clear, as
described above under "The Edit Menu". In the most sophisticated
version, the application implements intelligent cut and paste.
An application should also perform appropriate edit checks. For
example, if the only legitimate value for a field is a string of
digits, the application might issue an alert if the user typed any

nondigits. Alternatively, the application could wait until the user is
through typing before checking the validity of the contents of the

11/30/84 Averill /INTF/EDIT

N

50 User Interface Guidelines

field. 1In this case, the appropriate time to check the field is when
the user clicks anywhere other than within the field.

DIALOGS AND ALERTS

The "select-then-choose" paradigm is sufficient whenever operations are
simple and act on only one object. But occasionally a command will
require more than one object, or will need additional parameters before
it can be executed. And sometimes a command won't be able to carry out
its normal function, or will be unsure of the user's real intent. For
these special circumstances the Macintosh user interface includes two
additional features:

- dialogs, to allow the user to provide additional information

before a command is executed -

- alerts, to notify the user whenever an unusual situation occurs
Since both of these features lean heavily on controls, controls are

described in this section, even though controls are also used in other
places.

Controls

Friendly systems act by direct cause-and-effect; they do what they're
told. Performing actions on a system in an indirect fashion reduces
the sense of direct manipulation. To give Macintosh users the feeling
that they're in control of their machines, many of an application's
features are implemented with controls: graphic objects that, when
directly manipulated by the mouse, cause instant action with visible
results.

There are four main types of controls: buttons, check boxes, radio
buttons, and dials. These four kinds are shown in Figure 24.

11/30/84 Averill /INTF/BOX

(Button |]
l Button 2 I

& Check Box 1
X Check Box 2
(OJ Check Box 3

O Radio Button 1|
@ Radio Button 2
O Radio Button 3

DIALOGS AND ALERTS 51

\\u r Dials

E

Figure 24, Controls

Buttons

Buttons are small objects, usually inside a window, labeled with text.
Clicking or pressing a button performs the action described by the

button's label.

Buttons perform instantaneous actions, such as completing operations
defined by a dialog box or acknowledging error messages. Conceivably
they could perform continuous actions, in which case the effect of
pressing on the button would be the same as the effect of clicking it

repeatedly.

Two particular buttons, OK and Cancel, are especially important in
dialogs and alerts; they're discussed under those headings below.

Check Boxes and Radio Buttons

Whereas buttons perform instantaneous or continuous actions, check
boxes and radio buttons let the user choose among alternative values

for a parameter.

Check boxes act like toggle switches; they're used to indicate the
state of a parameter that must be either off or on. The parameter is
on if the box is checked, otherwise it's off. The check boxes
appearing together in a given context are independent of each other;
any number of them can be off or on.

Radio buttons typically occur in'groups; they're round and are filled

in with a black circle when on.

11/30/84 Averill

They're called radio buttons because

/INTF/BOX

s

52 User Interface Guidelines

they act like the buttons on a car radio. At any given time, exactly
one button in the group is. on. Clicking one button in a group turns
off the current button.

Both check boxes and radio buttons are accompanied by text that
identifies what each button does.

Dials

Dials display the value, magnitude, or position of something in the
application or system, and optionally allow the user to alter that
value. Dials are predominantly analog devices, displaying their values
graphically and allowing the user to change the value by dragging an
indicator; dials may also have a digital display.

The most common example of a dial is the scroll bar. The indicator of
the scroll bar is the scroll box; it represents the position of the
window over the length of the document. The user can drag the scroll
box . to change that position.

Dialogs

Commands in menus normally act on only one object. If a command needs
more information before it can be performed, it presents a dialog box
to gather the additional information from the user. The user can tell
which commands bring up dialog boxes because they're followed by an
ellipsis (...) in the menu.

A dialog box is a"rectangle that may contain text, controls, and‘icons.
There should be some text in the box that indicates which command
brought up the dialog box.

Other than explanatory text, the contents of a dialog box are all
objects that the user sets to provide the needed information. These
objects include controls and text fields. When the application puts up
the dialog box, it should set the controls to some default setting and
fill in the text fields with default values, if possible. One of the
text fields (the "first" field) should be highlighted, so that the user
can change its value just by typing in the new value. If all the text
fields are blank, there should be an insertion point in the first
field.

Editing text fields in a dialog box should éonform to the guidelines
detailed above, under "Text Editing".

When the user is through editing an item:

~ Pressing Tab accepts the changes made to the item, and selects the
next item in sequence.

= Clicking in another item accepts ﬁhe changes made to the previous
item and selects the newly clicked item.

11/30/84 Averill / INTF/BOX

DIALOGS AND ALERTS 53

Dialog boxes are either modal or modeless, as described below.

Modal Dialog Boxes

J

A modal dialog box is one that the user must explicitly dismiss before
doing anything else, such as making a selection outside the dialog box
or choosing a command. Figure 25 shows a modal dialog box.

Print the document
@8 1/2" 8w 11" paper
O81/2" » 14" paper

R Stop printing after each page

Title: |Annual Report|

Figure 25. A Modal Dialog Box

Because it restricts the user's freedom of action, this type of dialog
box should be used sparingly. In particular, the user can't choose a
menu item while a modal dialog box is up, and therefore can only do the
simplest kinds of text editing.

For these reasons, the main use of a modal dialog box is when it's
important for the user to complete an operation before doing anything
else. :

A modal dialog box usually has at least two buttons: OK and Cancel.

OK dismisses the dialog box and performs the original command according
to the information provided; it can be given a more descriptive name
than "OK". Cancel dismisses the dialog box and cancels the original
command; it must always be called '"Cancel".

A dialog box can have other kinds of buttons as well; these may or may
not dismiss the dialog box. One of the buttons in the dialog box may
be outlined boldly. The outlined button is the default button; if no
button is outlined, then the OK button is the default button. The
default button should be the safest button in the current situation.
Pressing the Return or Enter key has the same effect as clicking the
default button., If there is no default button, then Return and Enter
have no effect.

A special type of modal dialog box is one with no buttons. This type
of box is just to inform the user of a situation without eliciting any
response, Usually, it would describe the progress of an ongoing
operation. Since it has no buttons, the user has no way to dismiss it.
Therefore, the application must leave it up long enough for the user to-
read it before taking it down again. ‘

11/30/84 Averill ' / INTF/BOX

54 User Interface Guidelines

Modeless Dialog Boxes

A modeless dialog box allows the user to pérform other operations
without dismissing the dialog box. Figure 26 shows a modeless dialog
box.

[T
1

Change

Find text: |[Guide Lines | (Change ANl)
(Change Nesnt)

Change to: | guidelines|

Figure 26. A Modeless Dialog Box

.A modeless dialog box is dismissed by clicking in the close box or by
choosing Close when the dialog is active. The dialog box is also
dismissed implicitly when the user chooses Quit., 1It's usually a good
idea for the application to remember the contents of the dialog box
after it's dismissed, so that when it's opened again, it can be
restored exactly as it was.

Controls work the same way in modeless'dialog boxes as in modal dialog
boxes, except that buttons never dismiss the dialog box. In this
context, the OK button means "go ahead and perform the operation, but
leave the dialog box up", while Cancel usually terminates an ongoing
operation.

A modeless dialog box can also have text fields; since the user can

choose menu commands, the full range of editing capabilities can be
made available.

Alerts

Every user of every application is liable to do something that the
application won't understand, From simple typographical errors to
slips of the mouse to trying to write on a protected disk, users will
do things an application can't cope with in a normal manner. Alerts
give applications a way to respond to errors not only in a consistent
manner, but in stages according to the severity of the error, the
user's level of expertise, and the particular history of the error.

11/30/84 Averill /INTF/BOX

DIALOGS AND ALERTS 55

The two kinds of alerts are beeps and alert boxes.

Beeps are used for errors that are both minor and immediately obvious.
For example, if the user tries to backspace past the left boundary of a
text field, the application could choose to beep instead of putting up
an alert box. A beep can also be part of a staged alert, as described
below.

An alert box looks like a modal dialog box, except that it's somewhat
narrower and appears lower on the screen. An alert box is primarily a
one-way communication from the system to the user; the only way the
user can respond is by clicking buttons. Therefore alert boxes might
contain dials and buttons, but usually not text fields, radio buttons,
or check boxes. Figure 27 shows a typical alert box.

CAUTION

Are you sure

you want to erase all
changes to your document?

Figure 27. An Alert Box

There are three types of alert boxes:
- Note: A minor mistake that wouldn't have any disastrous
consequences 1f left as is.

= Caution: An operation that may or may not have undesirable
results if it is allowed to continue. The user is given the
choice whether or not to continue.

- Stop: A situation that requires remedial action by the user. The
situation could be either a serious problem, or something as
simple as a request by the application to the user to change
diskettes.

An application can define several stages for an alert, so that if the
user persists in the same mistake, the application can issue
increasingly more helpful (or sterner) messages. A typical sequence is
for the first two occurrences of the mistake to result in a beep, and
for subsequent occurrences to result in an alert box. This type of
sequence is especially appropriate when the mistake is one that has a
high probability of being accidental. An example is when the user
chooses Cut when the selection is an insertion point.

11/30/84 Averill | . / INTF/BOX

56 User Interface Guidelines

How the buttons in an alert box are labeled depends on the nature of
the box. If the box presents the user with a situation in which no
alternative actions are available, the box has a single button that
says OK. Clicking this button means "I have read the alert." 1If the
user is given alternatives, then typically the alert is phrased as a
question that can be answered "yes" or "no". In this case, buttons
labeled Yes and No are appropriate, although some variation such as
Save and Don't Save is also acceptable. OK and Cancel can be used, as
long as their meaning isn't ambiguous.

The preferred (safest) button to use in the current situation is boldly
outlined. This is the alert's default button; its effect occurs if the
user presses Return or Enter.

It's important to phrase messages in alert boxes so that users aren't
left guessing the real meaning. Avoid computer jargon.

Use icons whenever possible. Graphics can better describe some error
situations than words, and familiar icons help users distinguish their
alternatives better. Icons should be internationally comprehensible;
they should not contain any words, or any symbols that are unique to a
particular country.

Generally, it's better to be polite than abrupt, even if it means
lengthening the message. The role of the alert box is to be helpful
and make constructive suggestions, not to give out orders. But its
focus is to help the user solve the problem, not to give an interesting
but academic description of the problem itself.

.Under no circumstances should an alert message refer the user to
. external documentation for further clarification. It should provide an
adequate description of the information needed by the user to take
appropriate action.

The best way to make an alert message understandable is to think
carefully through the error condition itself. Can the application
handle this without an error? 1Is the error specific enough so that the
user can fix the situation? What are the recommended solutions? Can
the exact item causing the error be displayed in the alert message?

DO'S AND DON'TS OF A FRIENDLY USER INTERFACE

“

Do:

Let the user have as much control as possible over the. appearance
of objects on the screen--their arrangement, size, and visibility.

Use verbs as menu commands.

Make alert messages self-explanatory.

11/30/84 Averill . ' / INTF/THOUS

DO'S AND DON'TS OF A FRIENDLY USER INTERFACE 57

- Use controls and other graphics instead of just menu commands.
- Take the time to use good graphic design; it really helps.
Don't:
- Overuse modes, including modal dialog boxes.
- ﬁequire using the keyboard for an operation that would be easier
with the mouse, or require using the mouse for an operation that

would be easier with -the keyboard.

- Change the way the screen looks unexpectedly, especiaily by
scrolling automatically more than necessary.

- Make up your own menus and then give them the same names as
standard menus.

- Take an old-fashioned prompt-based application originally

developed for another machine and pass it off as a Macintosh
application. -

11/30/84 Averill ' /INTF/THOUS

‘MACINTOSH USER EDUCATION

Macintosh Memory Management: An Introduction /MEM/ INTRO

See Also: The Memory Manager: A Programmer's Guide
Programming Macintosh Applications in Assembly Language

Modification History: First Draft Steve Chernicoff and ‘
: ‘ Bradley Hacker 8/2(/84

ABSTRACT

This manual contains the minimum information needed about memory
management on the Macintosh. Memory management is covered in greater
detail in the manual The Memory Manager: A Programmer's Guide.

2 Memory Management Introduction

TABLE OF CONTENTS

3 About This Manual

3 The Stack and the Heap

5 Pointers and Handles

9 General-Purpose Data Types
12 Summary

13 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual contains the minimum information needed about memory

*%% Eventually it will form an early
chapter in the comprehensive Inside Macintosh manual. *** Memory
management is covered in greater detail in the Memory Manager manual.

management on the Macintosh.

This manual assumes you're familiar with Lisa Pascal and the
information in Inside Macintosh: A Road Map.

THE STACK AND THE HEAP

A running program can dynamically allocate and release memory in two

different ways:

from the stack or the heap.

The stack is an area of

memory that can grow or shrink at one end while the other end remains
This means that space on the stack is
always allocated and released in LIFO (last-in-first—out) order: the
last item allocated is always the first to be released. It also means
~that the allocated area of the stack is always contiguous. Space is
released only at the top of the stack, never in the middle, so there
can never be any unallocated "holes" in the stack.

fixed, as shown in Figure 1.

top of
stack

low memory

high memory

low memory

low memory

high memory

stack D

Figure 1. The Stack

high memory

5
free space

By convention, the stack grows from high toward low memory addresses.
The end of the stack that grows and shrinks is usually referred to as
the "top" of the stack, even though it's actually at the lower end of
the stack in memory.

The other method of dynamic memory allocation is from the heap. Unlike
stack space, which is implicitly tied to a program's subroutine
structure, heap. space is allocated and released only at the program's
explicit request. In Pascal, objects on the heap are referred to by

8/20/84 Chernicoff-Hacker

/MEM/ INTRO.2

4 Memory Management Introduction

means of pointers instead of by name.

Space on the heap is allocated in blocks, which may be of any size
needed for a particular object. The Macintosh Operating System's
Memory Manager does all the necessary "housekeeping" to keep track of
the blocks as they're allocated and released. Because these operations
can occur in any order, the heap doesn't grow and shrink in an orderly
way like the stack. After a program has been running for a while, the
heap tends to become fragmented into a patchwork of allocated and free
blocks, as shown in Figure 2.

. low memory .

allocsted blocks
D free blocks

high memory

Figure 2. A Fragmented Heap

As a result of heap fragmentation, when the program asks to allocate a
new block of a certain size, it may be impossible to satisfy the
request even though there's enough free space available, because the -
space is broken up into blocks smaller than the requested size. When
this happens, the Memory Manager will try to create the needed space by
compacting the heap: moving already allocated blocks together in order
to collect the free space into a single larger block (see Figure 3).

low memory . low memory

allocated blocks
[:] free blocks

! high memory * high memory
Before After

Figure 3. Heap Compaction

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

A\

THE STACK AND THE HEAP 5

There are always two independent heap areas in memory: the system
heap, which is used by the Toolbox and Operating System, and the
application heap, which is used by the application program.

POINTERS AND HANDLES

The Memory Manager contains a few fundamental routines for allocating
and releasing heap space. The NewPtr function allocates a block on the
heap of a requested size and returns a pointer to the block. The
DisposPtr procedure releases the block the variable points to and sets
the variable to NIL.

For example, after the declarations

TYPE ThingPtr = “Thing;
Thing = RECORD
END;

VAR aThingPtr: ThingPtr;
the statement
aThingPtr := NewPtr(SIZEOF(Thing))

will allocate heap space for a new variable of type Thing and set
aThingPtr to point to it. The amount of space to be allocated is
determined by the size of Thing. To allocate a 2K-byte memory block,
you can use:

aThingPtr := NewPtr($200¢)

Once you've used NewPtr to allocate a block and obtain a pointer to it,
you can make as many copies of the pointer as you need and use them in
any way your program requires. When you're finished with the block,
you can release the memory it occupies (returning it to available free
space) with the statement

DisposPtr(aThingPtr)

Any pointers you may have to the block are now invalid, since the block
they're supposed to point to no longer exists. You have to be careful
not to use such "dangling" pointers. This type of bug can be very
difficult to diagnose and correct, since its effects typically aren't
discovered until long after the pointer is left dangling.

Another way a pointer can be left dangling is for its underlying block
to be moved to a different location within the heap. To avoid the
problem, blocks that are referred to through simple pointers, as in
Figure 4, are nonrelocatable. The Memory Manager will never move a
nonrelocatable block, so you can rely on all pointers to it to remain
correct for as long as the block remains allocated.

8/20/84 Chernicoff~Hacker /MEM/INTRO.2

6 Memory Management Introduction

heap

pointer

nonrelocatable
block

Figure 4. A Pointer to a Nonrelocatable Block

If all blocks on the heap were nonrelocatable, there would be no way to
prevent the heap's free space from becoming fragmented. Since the
Memory Manager needs to be able to move blocks around in order to
compact the heap, it also uses relocatable blocks. (All the allocated
blocks shown earlier in Figure 3, the illustration of heap compaction,
are relocatable.) To keep from creating dangling pointers, the Memory
Manager maintains a single master pointer to each relocatable block.
Whenever a relocatable block is created, a master pointer is allocated
from the heap at the same time and set to point to the block. All
references to the block are then made by double indirection, through a
pointer to the master pointer, called a handle to the block (see Figure
5). If the Memory Manager needs to move the block during compaction,
it has only to update the master pointer to point to the block's new
location; the master pointer itself is never moved. Since all copies
of the handle point to this same master pointer, they can be relied on
not to dangle, even after the block has been moved.

hesp

handle

____ master
pointer

4

7| ___ relocatable
1 block

Figure 5. A Handle to a Relocatable Block

Given a handle to an object on the heap, you can access the object
itself by double indirection. For example, after the following
additional declarations

~

8/20/84 Chernicoff-Hacker /MEM/ INTRO. 2

POINTERS AND HANDLES 7

TYPE ThingHandle = “ThingPtr;
VAR aThingHandle: ThingHandle;

you can access the Thing referred to by the handle aThingHandle with
the expression

aThingHandle”™"

Once you've allocated a block and obtained a handle to it, you can make
as many copies of the handle as you need and use them in any way your
program requires. When you're finished with the block, you can free
the space 1t occupies with the statement

DisposHandle(aThingHandle)

(note)
Toolbox routines that create new objects of various
kinds, such as NewWindow and NewControl, implicitly call
the NewPtr and NewHandle routines to allocate the space
they need. There are also analogous routines for
releasing these objects, such as DisposeWindow and
‘DisposeControl.

If the Memory Manager can't allocate a block of a requested size even
after compacting the entire heap, it can try to free some space by
purging blocks from the heap. Purging a block removes it from the heap
and frees the space it occupies. The block's master pointer is set to
NIL, but the space occupied by the master pointer itself remains
allocated. Any handles to the block now point to a NIL master pointer,
and are said to be empty. If your program later needs to refer to the
purged block, it can detect that the handle has become empty and ask
the Memory Manager to reallocate the block. This operation updates the
original master pointer, so that all handles to the block are left
referring correctly to its new location (see Figure 6 on the following
page).

(warning)
Reallocating a block recovers only the space it occupies,
not its contents. Any information the block contains is
lost when the block is purged. 1It's up to your program
to reconstitute the block's contents after reallocating
it.

Relocatable and nonrelocatable are permanent properties of a block that
can never be changed once the block is allocated. A relocatable block
can also be locked or unlocked, purgeable or unpurgeable; your program
can set and change these attributes as necessary. Locking a block
temporarily prevents it from being moved, even if the heap is
compacted. The block can later be unlocked, again allowing the Memory
Manager to move it during compaction. A block can be purged only if
it's relocatable, unlocked, and purgeable. A newly allocated
relocatable block is initially unlocked and unpurgeable.

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

8 Memory Management Introduction

heap
handle
> _ master
pointer
7] ____ relocatable
: block
Before purging
heap
handle
[S master
Vd PR
NIL pointer

After purging

heap

___ relocatable
block

handle

master
pointer

NV

After reallocating

Figure 6. Purging and Reallocating a Block

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

) GENERAL-PURPOSE DATA TYPES 9

GENERAL-PURPOSE DATA TYPES

The Memory Manager includes a number of type definitions for general-
purpose use. For working with pointers and handles, there are the
following definitions:

TYPE SignedByte = -128..127;
Byte = (#..255;
Ptr = “SignedByte;
Handle = “Ptr; \

SignedByte stands for an arbitrary byte in memory, just to give Ptr and
Handle something to point to. You can define a buffer of, say, bufSize
untyped memory bytes as a PACKED ARRAY [l..bufSize] OF SignedByte.

Byte is an alternative definition that treats byte-length data as
unsigned rather that signed quantities.

Because of Pascal's strong typing rules, you can't directly assign a
value of type Ptr to a variable of some other pointer type. Instead,
you have to convert the pointer from one type to another. For example,
- after the declarations ’

TYPE Thing = RECORD
END;
ThingPtr = “Thing;

VAR aPtr: Ptr;
aThingPtr: ThingPtr;

Lisa Pascal allows you to make aThingPtr point to the same object as
" aPtr with the assignment

aThingPtr := ThingPtr(aPtr)

or, you can refer to a field of a record of type Thing with the
expression

ThingPtr(aPtr)”~.field

In fact, you can use this same syntax to equate any two variables of
the same length. For example:

VAR aChar: CHAR;
aByte: Byte;

aByte := Byte(aChar);

You can also use the Lisa Pascal functions ORD, ORD4, and POINTER, to
convert variables of different length from one type to another. For
example: ‘

8/20/84 Chernicoff-Hacker /MEM/ INTRO. 2

10 Memory Management Introduction

VAR anInteger: INTEGER;
alongInt: LONGINT;
aPointer: Ptr;

* e e

anInteger := ORD(alongInt); {two low-order bytes only}
anInteger := ORD(aPointer); {two low-order bytes only}
alongInt := ORD(anInteger); {packed into high-order bytes}
aLongInt := ORD4(anInteger); {packed into low-order bytes}

alongInt := ORD(aPointer);
aPointer := POINTER(anInteger);
aPointer := POINTER(aLongInt);

Assembly-language note: Of course, assembly-language
programmers needn't bother with type conversion.

For working with strings, pointers to strings, and handles to strings,
the Memory Manager includes the following definitions:

TYPE Str255 = STRING[255];
StringPtr “Str255;
StringHandle = “StringPtr;

- For treating procedures and functions as data objects, there's the
ProcPtr data type:

|

TYPE ProcPtr = Ptr;
For example, after the declarations

‘.VAR‘aProcPtr: ProcPtr;

PROCEDURE MyProc;
BEGIN

END;

you can make aProcPtr point to MyProc by using Lisa Pascal s @
operator, as follows:

aProcPtr := @MyProc

With the @ operator, you can assign procedures and functions to
variables of type ProcPtr, embed them in data structures, and pass them
as arguments to other routines. Notice, however, that the data type
ProcPtr technically points to an arbitrary byte (SignedByte), not an
actual routine. As a result, there's no way in Pascal to access the
underlying routine' via this pointer in order to call it. Only routines
written in assembly language (such as those in the Operating System and
the Toolbox) can actually call the routine designated by a pointer of
type ProcPtr.

8/20/84 Chernicoff-Hacker /MEM/ INTRO.2

GENERAL-PURPOSE DATA TYPES 11

(warning)
Procedures and functions that are nested within other
routines can't be passed with the @ operator.

Finally, for treating long integers as fixed-point numbers, there's the
following data type: :

TYPE Fixed = LONGINT;

As illustrated in Figure 7, a fixed—-point number is a 32-bit quantity
containing an integer part in the high-order word and a fractional part
in the low-order word. Negative numbers are the two's ‘complement
(formed by inverting each bit and adding 1).

15 0
32768{16384 | 8192 . 4 2 1

integer (high-order)

15 o
N T B T
2 4 8 e : 16384 32768165536

fraction (low-order)

Figure 7. Fixed-Point Numbers

*%% (The discussion of Fixed will be removed from the next draft of the
Toolbox Utilities manual.) #**%*

8/20/84 Chernicoff-Hacker . /MEM/ INTRO. 2

12 Memory Management Introduction

SUMMARY

TYPE SignedByte = -128..127;
Byte = ¢..255;
Ptr = “SignedByte;
Handle = “Ptr; '
Str255 = STRING[255];
StringPtr = “Str255;
StringHandle = “StringPtr;

ProcPtr = Ptr;

Fixed = LONGINT;

8/20/84 'Chernicoff-Hacker A /MEM/ INTRO. S

GLOSSARY 13

GLOSSARY

allocate: To reserve an area of memory for use.

application heap: The portion of the heap available to the running
application program for its own memory allocation.

block: An area of contiguous memory on the heap.

compaction: The process of moving allocated blocks within the heap in
order to collect the free space into a single block.

empty handle: A handle that points to a NIL master pointer, signifying
that the underlying relocatable block has been purged.

fixed-point number: A 32-bit quantity containing an integer part in
the high-order word and a fractional part.in the low-order word.

handle: A pointer to a master pointer, which designates a relocatable
block on the heap by double indirection.’

heap: The area of memory in which space is dynamically allocated and
released on demand, using the Memory Manager.

lock: To temporarily prevent a relocatable block from being moved
during heap compaction.

master pointer: A single pointer to a relocatable block, maintained by
the Memory Manager and updated whenever the block is moved, purged, or
reallocated. All handles to a relocatable block refer to it by double
indirection through the master pointer.

nonrelocatable block: A block whose location in the heap is fixed and
can't be moved during heap compaction.

purge: To remove a relocatable block from the heap, leaving its master
pointer allocated but set to NIL.

purgeable block: A relocatable block that can be purged from the heap.

reallocate: To allocate new space on the heap for a purged block,
updating its master pointer to point to its new location.

release: To freée an allocated area of memory, making it available for
reuse. ’

relocatable block: A block that can be moved within the heap during
compaction. .

stack: The area of memory in which space is allocated and released in
- LIFO (last-in-first-out) order.

8/20/84 Chernicoff-Hacker - /MEM/ INTRO.G

14 Memory Management Introduction

system heap: The portion of the heap reserved for use by the Toolbox
and Operating System.

unlock: To allow a relocatable block to be moved during heap
compaction.

unpurgeable block: A relocatable block that can't be purged from the
heap. ,

8/20/84 Chernicoff-Hacker .~ /MEM/INTRO.G

MACINTOSH USER EDUCATION

Programming Macintosh Applications in Assembly Language /INTRO/ASSEM

See Also: 1Inside Macintosh: A Road Map
Macintosh Memory Management: .An Introduction
The Memory Manager: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide

Modification History: First Draft Steve Chernicoff 2/27/84
Second Draft Bradley Hacker 8/20¢/84

Third Draft Caroline Rose 1/22/85

ABSTRACT

This manual gives you general information that you'll need to write all
or part of your Macintosh application program in assembly language.

Summary of significant changes and additions since last draft:

— Some additional generally useful global variables are documented
(page 4).

- Additions, corrections, and clarifications have been made to the
sections ''Pascal Data Types'" (page 4) and "Calling Conventions"
(page 9).

L]

— All illustrations of the stack now place high memory at the top.

2 Programming in Assembly Language

TABLE OF CONTENTS

3 About This Manual

3 Definition Files

4 Pascal Data Types

5 The Trap Dispatch Table
7 The Trap Mechanism

8 Format of Trap Words -
9 Trap Macros

9 Calling Conventions

1¢ Stack—Based Routines

12 Register—-Based Routines

13 Macro Arguments

14 Result Codes

14 Register—Saving Conventions

15 Pascal Interface to the Toolbox and Operating System
15 Mixing Pascal and Assembly Language

19 Summary

2¢ Glossary

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual gives you general information that you'll need to write all
or part of your Macintosh application program in assembly language.

*** Eventually it will become part of the comprehensive Inside
Macintosh manual. *** Tt assumes you already know how to write
assembly-language programs for the Motorola MC68(@@, the microprocessor
in the Macintosh. You should also be familiar with the information in
the manuals Inside Macintosh: A Road Map and Macintosh Memory
Management: An Introduction.

%% Lisa running MacWorks is called '"Macintosh XL" in this manual. *%%*

DEFINITION FILES

The primary aids to assembly-language programmers are a set of
definition files for symbolic names used in assembly-language programs.
The definition files include equate files, which equate symbolic names
with values, and macro files, which define the macros used to call

« Toolbox and Operating System routines from assembly language. The
equate files define a variety of symbolic names for various purposes,
such as:

= useful numeric quantities
- masks and bit numbers
- offsets into data structures

- addresses of global variables (whicH often in turn contain
addresses)

It's a good idea to always use the symbolic names defined in an equate
file in place of the corresponding numeric values (even if you know
them), since some of these values may change. Note that the names of
the offsets for a data structure don't always match the field names in
the corresponding Pascal definition. In the documentation, the
definitions are normally shown in their Pascal form; the corresponding
offset constants for assembly-language use are listed in the summary at
the end of each manual.

1/22/85 Hacker—Rose /INTRO/ASSEM. 2

‘4 Programming in Assembly Language

Some generally useful global variables are defined in the equate files
as follows:

Name Contents
OneOne ‘ SPPP10091
MinusOne SFFFFFFFF
Lo3Bytes SPPFFFFFF
Scratch2§ 20-byte scratch area
Scratch8 8-byte scratch area
~ ToolScratch 8-byte scratch area
ApplScratch 12-byte scratch area reserved for use by
applications

Scratch2@, Scratch8, and ToolScratch will not be preserved across calls
to the routines in the Macintosh ROM. ApplScratch will be preserved;
it ‘should be used only by application programs and not by desk

~ accessories or other drivers.

4

PASCAL DATA TYPES

Pascal's strong typing ability lets Pascal programmers write programs
without really considering the size of variables. But assembly-
language programmers must keep track of the size of every variable.
The sizes of the standard Pascal data types, and some of the basic
types defined in the Memory Manager, are listed below. (See the Apple
Numerics Manual (Apple Product #nnn) **%* fill in the number #*%*%* for
more information about REAL, DOUBLE, EXTENDED, and COMP.)

Type Size Contents

INTEGER 2 bytes Two's complement integer

LONGINT 4 bytes Two's complement integer

BOOLEAN 1 byte Boolean value in bit @

CHAR 2 bytes Extended ASCII code in low—order byte
REAL 4 bytes IEEE standard single format

DOUBLE 8 bytes IEEE standard double format
EXTENDED 19 bytes IEEE standard extended format

COMP 8 bytes Two's complement integer with

, reserved value

STRING[n] n+l bytes Byte containing string length (not

counting length byte) followed by
bytes containing ASCII codes of
characters in string

SignedByte 1 byte Two's complement integer
Byte 2 bytes Value in low-order byte
Ptr 4 bytes Address of data

Handle 4 bytes Address of master pointer

Other data types are constructed from these. For some commonly used
data types, the size in bytes is available as a predefined constant.

Before allocating épace for any variable whose size is greater than one
byte, Pascal adds ''padding" to the next word boundary, if it isn't

1/22/85 Hacker—Rose / /INTRO/ASSEM. 2

PASCAL DATA TYPES 5

already at a word boundary. It does this not only when allocating
variables declared successively in VAR statements, but also within
arrays and records. As you would expect, the size of a Pascal array or
record is the sum of the sizes of all its elements or fields (which are
stored with the first one at the lowest address). For example, the
size of the data type

TYPE TestRecord = RECORD
testHandle: Handle;
testBoolA: BOOLEAN;
testBoolB: BOOLEAN;
testChar: CHAR
END;

is eight bytes: four for the handle, one each for the Booleans, and
two for the character. 1If the testBoolB field weren't there, the size
would be the same, because of the byte of padding Pascal would add to
make the character begin on a word boundary. -~

In a packed record or array, type BOOLEAN is stored as a bit, and types
CHAR and Byte are stored as bytes. The padding rule described above
still applies. For example, if the TestRecord data type shown above
were declared as PACKED RECORD, it would occupy only six bytes: four
for the handle, one for the Booleans (each stored in a bit), and one
for the character. 1If the last field were INTEGER rather than CHAR,
padding before the 2-byte integer field would cause the size to be
eight bytes. .

(note)
The packing algorithm may not be what you expect. If you
need to exactly how data is packed, or if you have !
questions about the size of a particular data type, the
best thing to do is write a test program in Pascal and
look at the results. (You can use the SIZEOF function to
. get the size.) h '

THE TRAP DISPATCH TABLE

The Toolbox and Operating System reside in ROM. However, to allow
flexibility for future development, application code must be kept free
of any specific ROM addresses. So all references to Toolbox and
Operating System routines are made indirectly through the trap dispatch
table in RAM, which contains the addresses of the routines. As long as
the location of the trap dispatch table is known, the routines
themselves can be moved to different locations in ROM without
disturbing the operation of programs that depend on them.

Information about the locations of the various Toolbox and Operating
System routines is encoded in -compressed form in the ROM itself. When
the system is started up, this encoded information is expanded to form
the trap dispatch table. Because the trap dispatch table resides in-
RAM, individual entries can be "patched" to point to addresses other

1/22/85 Hacker-Rose /INTRO/ASSEM.2

6 Programming in Assembly Language

than the original ROM address. This allows changes to be made in the
ROM code by loading corrected versions of individual routines into RAM
at system startup and patching the trap dispatch table to point to
them. It 'also allows an application program to replace specific
Toolbox and Operating System routines with its own '"custom" versions.
A pair of utility routines for manipulating the trap dispatch table,
GetTrapAddress and SetTrapAddress, are described in the Operating
System Utilities manual. r '

For compactness, entries in the trap dispatch table are encoded into
one word each, instead of a full long-word address. Since the trap
dispatch table is 1024 bytes long, it has room for 512 word-length
entries. The high-order bit of each entry tells whether the routine
resides in ROM (@) or RAM (1). The remaining 15 bits give the offset
of the routine relative to a base address. For routines in ROM, this
base address is the beginning of the ROM; for routines in RAM, it's the
beginning of the system heap. The two base addresses are kept in a
pair of global variables named ROMBase and RAMBase.

The offset in a trap dispatch table entry is expressed in words instead
of bytes, taking advantage of the fact that instructions must always
fall on word boundaries (even byte addresses). As illustrated in
Figure 1, the system does the following to find the absolute address of
the routine: ‘

l. checks the high-order bit of the trap dispatch table entfy to find
out which base address to use

2. doubles the offset to convert it from words to bytes (by left-
shifting one bit)

3. adds the result to the designated base address

trap dispatch table entry
15 14 0

K .

15 10
0
0: (BOhABaseﬂ + _ 8ddress ot
1. (RAMBase)| routine

Figure 1. Trap Dispatch Table Entry

1/22/85 Hacker-Rose /INTRO/ASSEM. 2

THE TRAP DISPATCH TABLE 7

Using 15-bit word offsets, the trap dispatch table can address
locations within a range of 32K words, or 64K bytes, from the base
address. Starting from ROMBase, this range is big enough to cover the
~entire ROM; but only slightly more than half of the 128K RAM lies
within range of RAMBase. Since all RAM-based code resides in the heap,
RAMBase 'is set to the beginning of the system heap to maximize the
amount of useful space within range. Locations below the start of the
heap are used to hold global system data (including the trap dispatch
table itself), and can never contain executable code; but if the heap
.is big enough, it's possible for some of the application's code to lie
beyond the upper end of the trap dispatch table's range. Any such code
is inaccessible through the trap dispatch table.

(note)
This problem is particularly acute on the Macintosh 512K
and Macintosh XL. To make sure they lie within range of
RAMBase, patches to Toolbox and Operating System routines
are typically placed in the system heap rather than the
application heap.

THE TRAP MECHANISM

Calls to the Toolbox and Operating System via the trap dispatch table
are implemented by means of the MC68@¢@'s "1P10 emulator" trap. To
issue such a call in assembly language, you use one of the trap macros
defined in the macro files. When you assemble your program, the macro
generates a trap word in the machine-language code. A trap word always
begins with the hexadecimal digit $A (binary 1016); the rest of the
word identifies the routine you're calling, along with some additional
information pertaining to the call. o

(note) ,
A list of all Macintosh trap words is given in the
appendix of the Operating System Utilities manual.

Instruction words beginning with SA or S$F ("A-line" or "F-line"
instructions) don't correspond to any valid machine-language
instruction, and are known as unimplemented instructions. They're used
to augment the processor's native instruction set with additional
operations that are "emulated" in software instead of being executed
directly by the hardware. A-line instructions are reserved for use by
Apple; on a Macintosh, they provide access to the Toolbox and Operating
System routines. Attempting to execute such an instruction causes ‘a
trap to the trap dispatcher, which examines the bit pattern of the trap
word to determine what operation it stands for, looks up the address of
the corresponding routine in the trap dispatch table, and jumps to the
routine.

(note)
F-line instructions are reserved by Motorola for use in
future processors. :

1/22/85 Hacker—Rose /INTRO/ASSEM. 2

8 Programming in Assembly Language

Format of Trap Words

As noted above, a trap word always contains $A in bits 12-15. Bit 1i
determines how the remainder of the word will be interpreted; usually
it's @ for Operating System calls and 1 for Toolbox calls, though there
are some exceptions.

Figure 2 shows the Toolbox trap word format. Bits $-8 form the trap
number (an index into the trap dispatch table), identifying the
particular routine being called. Bit 9 isn't used. Bit 1§ is the
"auto-pop" bit; this bit is used by language systems that, rather than
directly invoke the trap like Lisa Pascal, do a JSR to the trap word
followed immediately by a return to the calling routine. 1In this case,
the return addresses for the both the JSR and the trap get pushed onto
the stack, in that order. The auto-pop bit causes the trap dispatcher
to pop the trap's return address from the stack and return directly to
the calling program.

15 14 13 12 1110 9 8 0]
110111011 trap number

l— not used

auto-pop bit

Figure 2. Toolbox Trap Word (Bit 11=1)

For Operating System calls, only the low-order eight bits (bits §-7)
are used for the trap number (see Figure 3). Thus of the 512 entries
in the trap dispatch table, only the first 256 can be used for
Operating System traps. Bit 8 of an Operating System trap has to do
with reglster usage and is dlscussed below under "Register—-Saving
Conventions" B1ts 9 and 19 have specialized meanings depending on
which routine you're calling, and are covered where relevant in other
manuals.

15 14 13 121110 8 8 7 ‘ 0
1101110 0] flegs trap number

L set it trap dispatcher
doesn't preserve AQ
(routine passes it back)

Figure 3. Operating System Trap Word (Bit 11=@)

1/22/85 Hacker-Rose /INTRO/ASSEM. 2

THE TRAP MECHANISM 9

Trap Macros

The names of all trap macros begin with the underscore character (),
followed by the name of the corresponding routine. As a rule, the
macro name is the same as the name used to call the routine from
Pascal, as given in the Toolbox and Operating System documentation.
For example, to call the Window Manager routine NewWindow, you would
use an instruction with the macro name _NewWindow in the opcode field.
There are some exceptions, however, in which the spelling of the macro
name differs from the name of the Pascal routine itself; these are
noted in the documentation for the individual routines.

(note)
The reason for the exceptions is that assembler names
must be unique to eight characters. Since one character
is taken up by the underscore, special macro names must
be used for Pascal routines whose names aren't unique to
seven characters.

Trap macros for Toolbox calls take no arguments; those for Operating
System calls may have as many as three optional arguments. The first
argument, if present, is used to load a register with a parameter value
for the routine you're calling, and is discussed below under '"Register-
Based Routines". The remaining arguments control the settings of the
various flag bits in the trap word. The form of these arguments varies
~with the meanings of the flag bits, and is described in the manuals on
the relevant parts of the Operating System. :

CALLING CONVENTIONS

The calling conventions for Toolbox and Operating System routines fall
into two categories: stack—based and register—based. As the terms
imply, stack-based routines communicate via the stack, following the
same conventions used by the Pascal Compiler for routines written in
Lisa Pascal, while register-based routines receive their parameters and
return their results in registers. Before calling any Toolbox or
Operating System routine, you have to set up the parameters in the way
the routine expects.

(note)
As a general rule, Toolbox routines are stack-based and
Operating System routines register—based, but there are
exceptions on both sides. Throughout the technical
documentation, register—-based calling conventions are
given for all routines that have them; if none is shown,
then the routine is stack-based.

1/22/85 Hacker-Rose /INTRO/ASSEM.3

10 Programming in Assembly Language

Stack-Based Routines

To call a stack-based routine from assembly language, you have to set
up the parameters on the stack in the same way the compiled object code
would if your program were written in Pascal. 1If the routine you're
calling is a function, its result is returned on the stack. The number
and types of parameters, and the type of result returned by a function,
depend on the routine being called. The number of bytes each parameter
or result occupies on the stack depends on its type:

Type of parameter

or function result Size © Contents

INTEGER 2 bytes Two's complement integer

LONGINT 4 bytes Two's complement integer

BOOLEAN 2 bytes Boolean value in bit @ of high-
order byte

CHAR 2 bytes Extended ASCII code in low-order
byte

REAL, DOUBLE, or 4 bytes Pointer to value converted to

COMP : EXTENDED

EXTENDED 4 bytes Pointer to value

STRING([n] 4 bytes Pointer to string (first byte
pointed to is length byte)

SignedByte 2 bytes Value in low-order byte

Byte 2 bytes Value in low-order byte

Ptr 4 bytes Address of data

Handle 4 bytes Address of master pointer

Record or array 2 or 4 Contents of structure (padded to

bytes word boundary) if <= 4 bytes,

otherwise pointer to structure

VAR parameter 4 bytes Address of variable, regardless:
of type

The steps to take to call the routine are as follows:
l. If it's a function, reserve space on the stack for the result.

2. Push the parameters onto the stack in the order they occur in the
routine's Pascal definition.

3. Call the routine by executing the corresponding trap macro.

The trap pushes the return address onto the stack, along with an extra
word of processor status information. The trap dispatcher removes this
extra status word, leaving the stack in the state shown in Figure 4 on
entry to the routine. The routine itself is responsible for removing
its own parameters from the stack before returning. If it's a
function, it leaves its result on top of the stack in the space
reserved for it; if it's a procedure, it restores the stack to the same
state it was in before the call.

1/22/85 Hacker-Rose /INTRO/ASSEM.3

CALLING CONVENTIONS 11

o high memory '
' high memory ; previous stack contentsl
previous stack contenfs | 7
v e function result
. (sP) —> |
function result (if any) :

tirst parameter . BUSREBEE0N

' low memory '

¢ ' .
On return (functions)
last parameter
4(SP) —> .
return address) .
(SP) —> }— ' high memory .
5 previous stack contents
SOEReS R . L
' low memory , (SPYy —> |-
On entry SEUBIB
' low memory '
On return (procedures)
Figure 4. Stack Format for Stack-Based Routines

For example, the Window Manager function GrowWindow is defined in

Pascal as follows:

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point;
sizeRect: Rect) : LONGINT;

To call this function from assembly language, you'd write something

like the following:

SUBQ.L #4,SP ;make room for LONGINT result

MOVE.L theWindow,-(SP) spush window pointer

MOVE.L startPt,-(SP) ;a Point is a 4-byte record,
3 so push actual contents

PEA sizeRect ;a Rect is an 8-byte record,
; so push a pointer to it

_GrowWindow strap to routine

MOVE.L (SP)+,D3 ;pop result from stack

Although the MC68@@@ hardware provides for separate user and supervisor
stacks, each with its own stack pointer, the Macintosh maintains only
one stack. All application programs run in supervisor mode and share
the same stack with the system; the user stack pointer isn't used.

1/22/85 Hacker-Rose

/INTRO/ASSEM. 3

12 Programming in Assembly Language

Remember that the stack pointer must always be aligned on a word
boundary. This is why, for example, a Boolean parameter occupies two
bytes; it's actually the Boolean value followed by a byte of padding.
Because all Macintosh application code runs in the MC68(¢@'s superv1sor
mode, an odd stack pointer will cause a ''double bus fault": a
catastrophic system failure that causes the system to restart.

To keep the stack pointer properly aligned, the MC68@@#@ automatically
adjusts the pointer by 2 instead of 1 when you move a byte-length value
to or from the stack. This happens only when all of the following
three conditions are met:

- A 1-byte value is being transferred.

= Either the source or the destination is specified by predecrement
or postincrement addressing.

— The register being decremented or incremented is the stack pointer
(A7).

An extra, unused byte will automatically be added in the low-order byte
to keep the stack pointer even. (Note that if you need to move a
character to or from the stack, you must explicitly use a full word of
data, with the character in the low-order byte.)

(warning)
If you use any other method to manipulate the stack
pointer, it's your responsibility to make sure the
pointer stays properly aligned.

(note)
Some Toolbox and Operating System routines accept the
address of ‘one of your own routines as a parameter, and
call that routine under certain circumstances. In these
cases, you must set up your routine to be stack-based.

Register—Based Routines

By convention, register-based routines normally use register A@ for
passing addresses (such as pointers to data objects) and D for other
data values (such as integers). Depending on the routine, these
registers may be used to pass parameters to the routine, result values
back to the calling program, or both. For routines that take more than
two parameters (one address and one data value), the parameters are
normally collected in a parameter block in memory and a pointer to the
parameter block is passed in Af). However, not all routines obey these
conventions; for example, some expect parameters in other registers,
such as Al. See the documentation on each individual routine for
details.

Whatever the conventions may be for a particular routine, it's up to
you to set up the parameters in the appropriate registers before
calling the routine. For instance, the Memory Manager procedure

1/22/85 Hacker-Rose o /INTRO/ASSEM. 3

CALLING CONVENTIONS 13

BlockMove, which copies a block of consecutive bytes from one place to
another in memory, expects to find the address of the first source byte
in register A, the address of the first destination location in Al,
and the number of bytes to be copied in D@. So you might write
something like ‘

LEA src(AS5) ,AQ ;source address in A{@

LEA dest (A5),Al sjdestination address in Al
MOVEQ #2¢,D@ ;byte count in D@
_BlockMove strap to routine

Macro Arguments

The following information applies to the Lisa Assembler. If you're
using some other assembler, you should check its documentation to find
out whether this information applies.

Many register-based routines expect to find an address of some sort in
register Aff. You can specify the contents of that register as an
argument to the macro instead of explicitly setting up the register
yourself. The first argument you supply to the macro, if any,
represents an address to be passed in A@. The macro will load the
register with an LEA (Load Effective Address) instruction before
trapping to the routine. So, for instance, to perform a Read operation
on a file, you could set up the parameter block for the operation and
then use the instruction

_Read paramBlock strap to routine with bointer to
; parameter block in A

This feature is purely a convenience, and is optional: If you don't
supply any arguments to a trap macro, or if the first argument is null,
the LEA to A will be omitted from the macro expansion. Notice that Af
is loaded with the address denoted by the argument, not the contents of
that address.

(note) :

You can use any of the MC68(@@'s addressing modes to
specify this address, with one exception: You can't use
the two-register indexing mode ("address register
indirect with index and displacement"). An instruction
such as

_Read offset(A3,D5)
won't work properly, because the comma separating the two

registers will be taken as a delimiter marking the end of
the macro argument. ’

1/22/85 Hacker-Rose /INTRO/ASSEM.3

14 Programming in Assembly Language

Result Codes

. Many register-based routines return a result code in the low-order word
of register D to report successful completion or failure due to some
error condition. A result code of ¢ always indicates that the routine
was completed successfully. Just before returning from a register-
based call, the trap dispatcher tests the low-order word of D@ with a
TST.W instruction to set the processor's condition codes. You can then
check for an error by branching directly on the condition codes,
without any explicit test of your own. For example:

_PurgeMem strap to routine
BEQ NoError sbranch if no error
« o o shandle error

(warning) ' _

Not all register-based routines return a result code.
Some leave the contents of D@ unchanged; others use the
full 32 bits of the register to return a long-word
result. See the documentation of individual routines for
details.

Register—Saving Conventions

All Toolbox and Operating System routines preserve the contents of all
registers except A, Al, and D#-D2 (and of course A7, which is the
stack pointer). 1In addition, for register—based routines, the trap
dispatcher saves registers Al, D1, and D2 before dispatching to the
routine and restores them before returning to the calling program. A7
and D@ are never restored; whatever the routine leaves in these
registers is passed back unchanged to the calling program, allowing the
routine to manipulate the stack pointer as appropriate and to return a
result code.

{
Whether the trap dispatcher preserves register A for a register-based’
trap depends on the setting of bit 8 of the trap word: 1If this bit is
@, the trap dispatcher saves and restores A@; if it's 1, the routine
passes back A@ unchanged. Thus bit 8 of the trap word should be set to
1 only for those routines that return a result in A@, and to ¢ for all
other routines. The trap macros automatically set this bit correctly
for each routine, so you never have to worry about it yourself.

Stack-based traps preserve only registers A2-A6 and D3-D7. If you want
to preserve any of the other registers, you have to save them yourself
before trapping to the routine--typically on the stack with a MOVEM
(Move Multiple) instruction-—and restore them afterward.

(note)
Any routine in your application that may be called as the
result of a Toolbox or Operating System call shouldn't
rely on the value of any register except A5, which '
shouldn't change.

1/22/85 Hacker—Rose /INTRO/ASSEM. 3

CALLING CONVENTIONS 15

Pascal Interface to the Toolbox and Operating System

When you call a register—based Toolbox or Operating System routine from
Pascal, you're actually calling an interface routine that fetches the
parameters from the stack where the Pascal-calling program left them,
puts them in the registers where the routine expects them, and then
traps to the routine. On return, it moves the routine's result, if
any, from a register to the stack and then returns to the calling
program. (For routines that return a result code, the interface
routine may also move the result code to a global variable, where it
can later be accessed.)

For stack-based calls, there's no interface routine; the trap word is
inserted directly into the compiled code.

MIXING PASCAL AND ASSEMBLY LANGUAGE

You can mix Pascal and assembly language freely in your own programs,
calling routines written in either language from the other. The Pascal
and assembly-language portions of the program have to be compiled and
assembled separately, then combined with a program such as the Linker.
For convenience in this discussion, such separately compiled or
assembled portions of a program will be called "modules". You can
divide a program into any number of modules, each of which may be
written in either Pascal or assembly language.

References in one module to routines defined in another are called
external references, and must be resolved by a program such as the
Linker that resolves external references by matching them up with their
definitions in other modules. You have to identify all the external
references in each module so they can be resolved properly. For more
information, and for details about the actual process of linking the
modules together, see the documentation for the development system
you're using.

In addition to being able to call your own Pascal routines from
assembly language, you can call certain routines in the Toolbox and
Operating System that were created expressly for Lisa Pascal
programmers and aren't part of the Macintosh ROM. (These routines may
also be available to users of other development systems, depending on
how the interfaces have been set up on those systems.) They're marked
with the notation

[Not in ROM]

% previously [Pascal only] or [No trap macro] *** in the
documentation. There are no trap macros for these routines (though
they may call other routines for which there are trap macros). Some of
them were created just to allow Pascal programmers access to assembly-
language information, and so won't be useful to assembly-language
programmers. Others, however, contain code that's executed before a

1/22/85 Hacker-Rose /INTRO/ASSEM. 3

16 Programming in Assembly Language

trap macro is invoked, and you may want to perform the operations they
provide.

All calls from one language to the other, in either direction, must
obey Pascal's stack-based calling conventions (see '"Stack-Based
Routines'", above). To call your own Pascal routine from assembly
language, or one of the Toolbox or Operating System routines that
aren't in ROM, you push the parameters onto the stack before the call
and (if the routine is a function) look for the result on the stack on
return. In an assembly-language routine to be called from Pascal, you
look for the parameters on the stack on entry and leave the result (if
any) on the stack before returning.

Under stack-based calling conventions, a convenient way to access a
routine's parameters on the stack is with a frame pointer, using the
MC68@@@'s LINK and UNLK (Unlink) instructions. You can use any address
register for the frame pointer (except A7, which is reserved for the
stack ‘pointer), but on the Macintosh register A6 is conventionally used
for this purpose. The instruction

LINK A6,#-12

at the beginning of a routine saves the previous contents of A6 on the
stack and sets A6 to point to it. The second operand specifies the
number of bytes of stack space to be reserved for the routine's local
variables: in this case, 12 bytes. The LINK instruction offsets the
stack pointer by this amount after copying it into A6.

(warning) .

The offset is added to the stack pointer, not subtracted
from it. So to allocate stack space for local variables,
you have to give a negative offset; the instruction won't
work properly if the offset is positive. Also, to keep
the stack pointer correctly aligned, be sure the offset
is even. For a routine with no local variables on the
stack, use an offset of #0.

Register A6 now points to the routine's stack frame; the routine can
locate its parameters and local variables by indexing with respect to
this register (see Figure 5). The register itself points to its own
saved contents, which are often (but needn't necessarily be) the frame
pointer of the calling routine. The parameters and return address are
found at positive offsets from the frame pointer. .

1/22/85 Hacker—-Rose : /INTRO/ASSEM. 3

MIXING PASCAL AND ASSEMBLY LANGUAGE 17

' high memory .

previous stack contents

tunction result (if any)

tirst parameter

ast parameter

- 8(AB) —>
return address

4(AB) —>
previous (AB)

(AB) >

{ocal variables

L 4

saved registers

Figure 5. Frame Pointer -

Since the saved contents of the frame pointer register occupy a long
word (four bytes) on the stack, the return address is located at 4(A6)
and the last parameter at 8(A6). This is followed by the rest of the
parameters in reverse order, and finally by the space reserved for the
function result, if any. The proper offsets for these remaining
parameters and for the function result depend on the number and types
of the parameters, according to the table above under "Stack-Based
Routines'". If the LINK instruction allocated stack space for any local
variables, they can be accessed at negative offsets from the frame
pointer, again depending on their number and types.

At the end of the routine, the instruction

UNLK A6
reverses the process: First it releases the local variables by setting
the stack pointer equal to the frame pointer (A6), then it pops the
saved contents back into register A6. This restores the register to
its original state and leaves the stack pointer pointing to the

routine's return address.

A routine with no parameters can now just return to the caller with an
RTS instruction. But if there are any parameters, it's the routine's

1/22/85 Hacker-Rose ~ /INTRO/ASSEM.3

18 Programming in Assembly Language

responsibility to pop them from the stack before returning. The usual
way of doing this is to pop the return address into an address
register, increment the stack pointer to remove the parameters, and
then exit with an indirect jump through the register.

Remember that any routine called from Pascal must observe Pascal
register conventions and preserve registers A2-A6 and D3-D7. This is
usually done by saving the registers that the routine will be using on
the stack with a MOVEM instruction, and then restoring them before
returning. Any routine you write that will be accessed via the trap
mechanism——for instance, your own version of a Toolbox or Operating
System routine that you've patched into the trap dispatch table--should
‘observe the same conventions.

Putting all this together, the routine should begin with a sequence
like -

MyRoutine LINK A6,#-dd ;set up frame pointer—-—
‘ 3 dd = number of bytes

; of local variables

MOVEM.L A2-A5/D3-D7,-(SP) ;...or whatever subset of
; these registers you use

and end with something like

MOVEM.L (SP)+,A2-A5/D3-D7 ;restore registers

UNLK A6 srestore frame pointer
MOVE.L (SP)+,Al jsave return address in an

; available register
ADD.W #pp,SP ;pop parameters—-—

3 pp = number of bytes
: ; of parameters
JMP (A1) sreturn to caller

Notice that A6 doesn't have to be included in the MOVEM instructions,
since it's saved and restored by the LINK and UNLK.

(warning)

When the Segment Loader starts up an application, it sets
register A5 to point to the boundary between the
application's globals and parameters. Certain parts of
the system (notably QuickDraw and the File Manager) rely
on finding A5 set up properly-—so you have to be a bit
more careful about preserving this register. The safest
policy is never to touch A5 at all. If you must use it
for your own purposes, just saving its contents at the
beginning of a routine and restoring them before
returning isn't enough: You have to be sure to restore
it before any call that might depend on it. The correct
setting of A5 is always available in the global variable
CurrentAS5. ‘

"1/22/85 Hacker-Rose /INTRO/ASSEM. 3

SUMMARY 19

SUMMARY

Variables

OneOne SO0010301

MinusOne SFFFFFFFF

Lo3Bytes S@PFFFFFF

Scratch2d@ 2@~byte scratch area

Scratch8 8-byte scratch area

ToolScratch 8-byte scratch area

ApplScratch 12-byte scratch area reserved for use by applications
CurrentAS Correct value of A5 (long)

1/22/85 Hacker-Rose . /INTRO/ASSEM. S

20 Programming in Assembly Language

GLOSSARY

external reference: A reference to a routine or variable defined in a’
separate compilation or assembly.

frame pointer: A pointer to a routine's stack frame, held in an
address register and manipulated with the LINK and UNLK instructions.

interface routine: A routine called from Pascal whose purpose is to
trap to a certain Toolbox or Operating System routine.

parameter block: Memory space used to transfer information between
applications and certain Operating System routines.

register—based routine: A Toolbox or Operating System routine that
receives its parameters and returns its results, if any, in registers.

stack-based routine: A Toolbox or Operating System routine that
receives its parameters and returns its results, if any, on the stack.

stack frame: The area of the stack used by a routine for its
parameters, return address, local variables, and temporary storage.

trap dispatch table: A table in RAM containing the addresses of all
Toolbox and Operating System routines in encoded form.

trap dispatcher: The part of the Operating System that examines a trap
word to determine what operation it stands for, looks up the address of
the corresponding routine in the trap dispatch table, and jumps to the
routine. .

trap macro: A macro that assembles into a trap word, used for calling
a Toolbox or Operating System routine from assembly language.

trap number: The identifying number of a Toolbox or Operating System
routine; an index into the trap dispatch table.

trap word: An unimplemented instruction representing a call to a
Toolbox or Operating System routine.

unimplemented instruction: An instruction word that doesn't correspond
to any valid machine-language instruction but instead causes a trap.

p)

1/22/85 Hacker—Rose . /INTRO/ASSEM.G

MACINTOSH USER EDUCATION

The Resource Manager: A Programmer's Guide /RMGR/RESOURCE

See Also: Macintosh User Interface Guidelines
Inside Macintosh: A Road Map :
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
QuickDraw: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft (ROM 2.0) Caroline Rose 2/2/83
' Second Draft (ROM 4) Caroline Rose 6/21/83
Third Draft (ROM 7) Caroline Rose 19/3/83
Errata added Caroline Rose 3/8/84
Fourth Draft " Caroline Rose &
Bob Anders 11/28/84
ABSTRACT

Macintosh applications make use of many resources, such as menus, fonts,
and icons. These resources are stored in resource files separately from
the application code, for flexibility and ease of maintenance. This
manual describes resource files and the Resource Manager routines.

Summary of significant changeé and additions since the last draft:

— A detailed discussion of the specification of resource ID numbers
has been added (page 9).

- The concept of "system references" has been moved from the
discussion of resource references (page 11) to a separate section
(page 37). Since the Finder does not recognize these references
to system resources, they aren't particularly useful and have been
moved to a section which is essentially "of historical interest
only". For this reason, "local references" are now simply called
"resource references'".

- SizeResource returns a long integér rather than an integer (page
25).

2 Resource Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

3 About the Resource Manager
5 Overview of Resource Files
8 Resource Specification

8 Resource Types '

9 Resource ID Numbers

19 Resource IDs of Owned Resources
11 Resource Names

11 Resource References

14 Using the Resource Manager

16 Resource Manager Routines

16 Initialization

17 Opening and Closing Resource Files
18 Checking for Errors

19 Setting the Current Resource File
29 Getting Resource Types

21 Getting and Disposing of Resources
25 Getting Resource Information

26 Modifying Resources

31 Advanced Routines

32 Resources Within Resources

34 Format of a Resource File

37 System References

39 Resource Attributes of System References
39 System References in Resource Manager Routines
49 Format of System References

42 Summary of the Resource Manager

46 Summary of the Resource File Format
47 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Resource Manager, the part of the Macintosh
User Interface Toolbox through which an application accesses various
resources that it uses, such as menus, fonts, and icons., **%*
Eventually it will become part of the comprehensive Inside Macintosh
manual, *%** It discusses resource files, where resources are stored.
Resources form the foundation of every Macintosh application; even the
application's code is a resource. In a resource file, the resources
used by the application are stored separately from the code for
flexibility and ease of maintenance.

- You can use an existing prbgram for creating and editing resource
files, or write one of your own. These programs will call
Resource Manager routines.)

- Usually you'll access resources indirectly through other parts of
the Toolbox, such as the Menu Manager and the Font Manager, which
in turn call the Resource Manager to do the low-level resource
operations. In some cases, you may need to call a Resource
Manager routine directly.

Like all Toolbox documentation, this manual assumes you're familiar
with Lisa Pascal and the information in the following manuals:

- Inside Macintoéh: A Road Map

- Macintosh User Interface Guidelines

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications in Assembly Language, if you're
using assembly language)

Familiarity with Macintosh files, as described in the File Manager
manual, is optional. It's useful if you want a complete understanding
of the internal structure of a resource file, but you don't have to
know it to be. able to use the Resource Manager.

If you're going to write your own program to create and edit resource
files, you also need to know the exact format of each type of resource.
The documentation for the part of the Toolbox that deals with a
particular type of resource will tell you what you need to know for
that resource.

ABOUT 'THE RESOURCE MANAGER

Macintosh applications make use of many resources, such as menus,
fonts, and icons, which are stored in resource files. For example, an
icon resides in a resource file as a 32-by-32 bit image, and a font as
a large bit image containing the characters of the font. In some cases

11/28/84 Rose-Anders /RMGR/RESOURCE. 2

4 Resource Manager Programmer's Guide

the resource consists of descriptive information (such as, for a menu,
the menu title, the text of each command in the menu, whether the
command is checked with a check mark, and so on). The Resource Manager
keeps track of resources in resource files and provides routines that
allow applications and other parts of the Toolbox to access them.

There's a resource file associated with each application, containing
the resources specific to that application; these resources include the
application code itself. There's also a system resource file, which
contains standard resources shared by all applications (also called
system resources).

The resources used by an application are created and changed separately
from the application's code. This separation is the main advantage to
having resource files. A change in the title of a menu, for example,
won't require any recompilation of code, nor will translation to a
foreign language.

The Resource Manager is initialized by the system when it starts up,
and the system resource file is opened as part of the initialization.
Your application's resource file is opened when the application starts
up. When instructed to get a certain resource, the Resource Manager
normally looks first in the application's resource file and then, if
the search isn't successful, in the system resource file. This makes
it easy to share resources among applications and also to override a
system resource with one of your own (if you want to use something
other than a standard icon in an alert box, for example).

Resources are grouped logically by function into resource types. You
refer to a resource by passing the Resource Manager a resource
specification, which consists of the resource type and either an ID
number or a name. Any resource type is valid, whether one of those
recognized by the Toolbox as referring to standard Macintosh resources
(such as menus and fonts), or a type created for use by your
application. Given a resource specification, the Resource Manager will
read the ‘resource into memory and return a handle to it.

(note)
The Resource Manager knows nothing about the formats of
the individual types of resources. Only the routines in
the other parts of the Toolbox that call the Resource
Manager have this knowledge.

While most access to resources is read-only, certain applications may
want to modify resources. You can change the content of a resource or
its ID number, name, or other attributes-—everything except its type.
For example, you can designate whether the resource should be kept in
memory or whether, as is normal for large resources, it can be removed
from memory and read in again when needed. You can change existing
resources, remove resources from the resource file altogether, or add
new resources to the file,

Resource files are not limited to applications; anything stored in a
file can have its own resources. For instance, an unusual font used in

11/28/84 Rose-Anders /RMGR/RESOURCE. 2

ABOUT THE RESOURCE MANAGER 5

only one document can be included in the resource file for that
document rather than in the system resource file.

(note) \
Although shared resources are usually stored in the
system resource file, you can have other resource files
that contain resources shared by two or more applications
(or documents, or whatever).

A number of resource files may be open at one time; the Resource
Manager by default searches the files in the reverse of the order that
they were opened. Since the system resource file is opened when the
Resource Manager is initialized, it's always searched last. The search
starts with the most recently opened resource file, but you can change
it to start with a file that was opened earlier. (See Figure 1l.)

Order of ‘ Ususl! search YbO can change
openi’ng: path: it to this: or this:

Opened Document’s
last resource file

Opened | Application’s
second resource file

Opened | System resource
first tile

Figure 1. Resource File Searching

OVERVIEW OF RESOURCE FILES

Resources may be put in a resource file with the aid of the Resource
Editor, which is documented *#** nowhere right now, because it isn't yet
available. Meanwhile, you can use the Resource Compiler. You describe
the resources in a text file that the Resource Compiler uses to
generate the resource file. The exact format of the input file to the
Resource Compiler is given in the manual Putting Together a Macintosh

Application. *¥**

A resource file is not a file in the strictest sense, Although it's
functionally like a file in many ways, it's actually just one of two
parts, or forks, of a file. (See Figure 2.) Every file has a resource
fork and a data fork (either of which may be empty). The resource fork
of an application file contains not only the resources used by the

11/28/84 Rose-Anders /RMGR/RESOURCE. 2

6 Resource Manager Programmer's Guide

application but also the application code itself. The code may be
divided into different segments, each of which is a resource; this
allows various parts of the program to be loaded and purged
dynamically. Information is stored in the resource fork via the
Resource Manager. The data fork of an application file can contain
anything an application wants to store there. Information is stored in
the data fork via the File Manager.

(""resource file")

______________ | Fiename | . . .
; The spplication’s initially empty; 5
' resources (which the application :.
E include its code) may store dsts '
' here. 5
E Resource fork Data fork
= ~s

...

Figure 2. An Application File

As shown in Figure 3, the system resource file has this same structure.
The resource fork contains the system resources and the data fork

contains "patches" to the routines in the Macintosh ROM. Figure 3 also
shows the structure of a file containing a document; the resource fork

contains the document's resources and the data fork contains the data
that comprises the document.

{ File name |

i | Thesystem || Systemcode: | i i |The document's || The dete in | :

. | resources patches to » + | resources the document | .

' ROM routines | . 5 E

' Resource fork Datafork | : Resourcefork Datafork

» ("'resource tile™; | 1+ ("resourcefile”)

e T i
System Resource File Document File

Figure 3. Other Files

11/28/84 Rose—Anders / RMGR/RESOURCE. 2

OVERVIEW OF RESOURCE FILES 7

To open a resource file, the Resource Manager calls the appropriate
File Manager routine and returns the reference number it gets from the
File Manager. This is a number greater than @ by which you can refer
to the file when calling other Resource Manager routines.

.

(note)
This reference number is actually the path reference
number, as described in the File Manager manual.

Most of the Resource Manager routines don't require the resource file's
reference number as a parameter. Rather, they assume that the current
resource file is where they should perform their operation (or begin
it, in the case of a search for a resource). The current resource file
is the last one that was opened unless you specify otherwise.

A resource file consists primarily of resource data and a resource map.
The resource data consists of the resources themselves (for example,
the bit image for an icon or the descriptive information for a menu).
The resource map contains an entry for each resource that provides the
location of its resource data. Each entry in the map either gives the
offset of the resource data in the file or contains a handle to the
data if it's in memory. The resource map is like the index of a book;
the Resource Manager looks in it for the resource you specify and
determines where its resource data is located.

The resource map is read into memory when the file is opened and
remains there until the file is closed. Although for simplicity we say
that the Resource Manager searches resource files, it actually searches
the resource maps that were read into memory, and not the resource
files on the disk. ‘

" Resource data is normally read into memory when needed, though you can
specify that it be read in as soon as the resource file is opened.

When read in, resource data is stored in a relocatable block in the
heap. Resources are designated in the resource map as being either
purgeable or unpurgeable; if. purgeable, they may be removed from the
heap when space is required by the Memory Manager. Resources
consisting of a relatively large amount of data are usually designated
as purgeable. Before accessing such a resource through its handle, you
ask the Resource Manager to read the resource into memory again if it
has been purged.

(note) -
Programmers concerned about the amount of available
memory should be aware that there's a 12-byte overhead in
the resource map for every resource and an additional
12-byte overhead for memory management if the resource is
read into memory.

To modify a resource, you change the resource data or resource map in
memory. The change becomes permanent only at your explicit request,
and then only when the application terminates or when you call a
routine specifically for updating or closing the resource file.

11/28/84 Rose-Anders /RMGR/RESOURCE. 2

8 Resource Manager Programmer's Guide

Each resource file also may contain a partial copy of its entry in the
file directory, written and used by the Finder, and up to 128 bytes of
any data the application wants to store there.

RESOQURCE SPECIFICATION

L
3

In a resource file, every resource is assigned a type, an ID number,
and optionally a name. When calling a Resource Manager routine to
access a resource, you specify the resource by passing its type and
either its ID number or its name. This section gives some general
information about resource specification.

Resource Types

The resource type is a sequence of four characters. Its Pascal data
type is:

TYPE ResType = PACKED ARRAY [1..4] OF CHAR;
The standard Macintosh resource typés are as follows:

Resource type Meaning

'ALRT' Alert template

'BNDL' Bundle

'CDEF' Control definition function
'CNTL' Control template

'CODE' Application code segment
'CURS' Cursor

'DITL' Item list in a dialog or alert
'DLOG' Dialog template

'DRVR' Desk accessory or other device driver
'DSAT' System startup alert table
'FKEY' Command-Shift-number routine
'FONT' Font

'FREF' File reference

'FRSV' Font reserved for system use
'FWID' Font widths

'ICNi#! Icon list

'ICON' Icon ,
'INIT® " Initialization resource
"INTL' " International resource

'KEYC' Keyboard configuration

'MBAR' Menu bar

'MDEF' Menu definition procedure
'MENU' Menu

'PACK' Package

'"PAT ' Pattern (The space is required.)
"PAT#' Pattern list

'PDEF' Printing code

'PICT' Picture

'"PREC' Print record

11/28/84 Rose-Anders /RMGR/RESOURCE, 2

RESOURCE SPECIFICATION 9

'STR ' String (The space 1is required.)’
'STR#' String list

" '"WDEF' Window definition function

'WIND' Window template

(warning)
Uppercase and lowercase letters are distinguished in
resource types. For example, 'Menu' will not be
recognized as the resource type for menus.

Notice that some of the resources listed above are "templates". A
template is a list of parameters used to build a Toolbox object; it is
not the object itself. For example, a window template contains i
information specifying the size and location of the window, its title,
whether it's visible, and so on. The Window Manager uses this
information to build the window in memory and then never accesses the
template again.

You can use any four-character sequence (except those listed above) for
resource types specific to your application.

Resource ID Numbers

Every resource has an ID number, or resource ID. The resource ID must
be unique within each resource type, but resources of different types
may have the same ID. If you assign the same resource ID to two
resources of the same type, the second assignment of the ID will
override the first, thereby making the first resource inaccessible.

(warning)
Certain resources contain the resource IDs of other
resources; for instance, a dialog template contains the
resource ID of its item list. In order not to duplicate
an existing resource ID, a program that copies resources
may need to change the resource ID of a resource; such a
program may not, however, change the ID where it occurs
in other resources. For instance, an item list's
resource ID contained in a dialog template may not be
changed, even though the actual resource ID of the item
list was changed to avoid duplication; this would make it
impossible for the template to access the item list. Be
sure to verify, and if necessary, correct, the IDs
contained within such resources. (For related
information, see the section '"Resource IDs of Owned
Resources' below.)

By convention, the ID numbers are divided into the following ranges:

11/28/84 Rose-Anders /RMGR/RESOURCE. 2

10 Resource Manager Programmer's Guide

Range Description

-32768 through -16385 Reserved; do not use

-16384 through -1 Used for system resources owned by other
system resources (explained below)

® through 127 . Used for other system resources

128 through 32767 Available for your use in whatever
way you wish :

(note)
The manuals that describe the different types of
resources in detail give information about resource types
that may be more restrictive about the allowable range
for their resource IDs. A device driver, for instance,
can't have a resource ID greater than 31, :

Resource IDs of Owned Resources

This section is intended for advanced programmers who are involved in
writing their own desk accessories (or other drivers), or special types
of windows, controls, and menus. It's also useful in understanding the

way that resource-copying programs recognize resources that are
associated with each other.

Certain types of system resources may have resources of their own in
the system resource file; the "owning" resource consists of code that
reads the "owned" resource into memory. For example, a desk accessory
might have its own pattern and string resources. A special numbering
convention is used to associate owned system resources with the
resources they belong to. This enables resource-copying programs to
recognize which additional resources need to be copied along with an

owning resource. An owned system resource has the ID illustrated in
Figure 4.

15 14 13 11 10 S5 4 0
[1 [1 [type bits |ID of owning resource| veriable |

Figure 4., Resource ID of an Owned System Resource

Bits 14 and 15 are always 1. Bits 11 through 13 specify the type of
the owning resource, as follows:

Type bits Type

[T "DRVR'
901 '"WDEF'
919 'MDEF'
g11 'CDEF'
199 '"PDEF'
191 "PACK'
119 Reserved for future use
111 Reserved for future use

11/28/84 Rose-Anders /RMGR/RESOURCE. 2

RESOURCE SPECIFICATION 11

Bits 5 through\IG contain the resource ID of the owning resource
(1imited to @ through 63). Bits @ through 4 contain any desired value
(# through 31). ¢ .

Certain types of resources can't be owned, because their IDs don't
conform to the special numbering convention described above. For
instance, the resource ID for a resource of type 'WDEF can't be more
than 12 bits long (as described in the Window Manager manual)., Fonts
are also an exception because their IDs include the font size. The
manuals describing the different types of resources provide detailed
information about such restrictionms.

An owned resource may itself contain the ID of a resource associlated
with it. For instance, a dialog template owned by a desk accessory
contains the resource ID of its item list. Though the item list is
associated with the dialog template, it's actually owned (indirectly)
by the desk accessory. The resource ID of the item list should conform
to the same special convention as the ID of the template. For example,
if the resource ID of the desk accessory is 17, the IDs of both the
template and the item list should contain the value 17 in bits 5
through 14.

As mentioned above, a program that copies resources may need to- change
the resource ID of a resource in order not to duplicate an existing
resource ID. Bits 5 through 1§ of resources owned, directly or
indirectly, by the copied resource will also be changed when those
resources are copied. For instance, in the above example, if the desk
accessory must be given a new ID, bits 5 through 10 of both the
template and the item list will also be changed.
(warning)
: Remember that while the ID of an owned resource may be
changed by a resource-copying program, the ID may not be
changed where it appears in other resources (such as an
item 1list's ID contained in a dialog template).

Resource Names

A resource may optionally have a resource name. Like the resource ID,
the resource name must be unique within each type. When comparing
resource names, the Resource Manager ignores case (but does not ignore
diacritical marks in foreign names).

RESQURCE REFERENCES

The entries in the resource map that identify and locate the resources
in a resource file are known as resource references. Using the analogy
of an index of a book, resource references are like the individual
entries in the indgx.

11/28/84 Rose-Anders ’ /RMGR/RESOURCE. 2

12 Resource Manager Programmer's Guide

resource J resource . J resource |
specification reference dete

resource map

Figure 5. Resource References in Resource Maps

Every resource reference includes the type, ID number, and optional
name of the resource. Suppose you're accessing a resource for the
first time. You pass a resource specification to the Resource Manager,
which looks for a match among all the references in the resource map of
the current resource file. If none is found, it looks at the
references in the resource map of the next resource file to be
searched. (Remember, it looks in the resource map in memory, not in
the file.) Eventually it finds a reference matching the specification,
which tells it where the resource data is in the file. After reading
the resource data into memory, the Resource Manager stores a handle to
that data in the reference (again, in the resource map in memory) and
returns the handle so yod can use it to refer to the resource in
subsequent routine calls. :

Every resource referénce also contains certain resource attributes that
determine how the resource should be dealt with. In the routine calls
for setting or reading them, each attribute is specified by a bit in
the low-order byte of a word, as illustrated in Figure 6.

11/28/84 Rose-Anders /RMGR/RESOURCE. 2

RESOURCE REFERENCES 13

low-order byte (high-order byte is ignored)
7 686 5 4 3 2 10

‘ L— reserved for use by the Resource Manager
| 1 if to be written to resource tile, 0 if not
1 it to be preloaded, O if not
1 it protected, O if not

it locked, O if not

if purgeable, 0 if not
it reaa into system hesp, O if application heap

. ok

-t

I

Figure 6. Resource Attributes

The Resource Manager provides a predefined constant for each attribute,
in which the bit corresponding to that attribute 1is set.

64; {set if read into system heap}

CONST resSysHeap

resPurgeable = 32; {set if purgeable}

resLocked = 163 {set if locked}

resProtected = 8; {set if protected}

resPreload = 4 {set if to be preloaded}

resChanged = 23 {set if to be written to resource file}

(warning)
Your application should not change the setting of bit @
or 7, nor should it set the resChanged attribute
directly. (ResChanged is set as a side effect of the
procedure you call to tell the Resource Manager that
you've changed a resource.)

Normally the resSysHeap attribute is set for all system resources; it
should not be set for your application's resources. If a system
resource is too large for the system heap, this attribute will be @,
and the resource will be read into the application heap.

Since a locked resource is neither relocatable nor purgeable, the
resLocked attribute overrides the resPurgeable attribute; when
reslocked is set, the resource will not be purgeable regardless of
whether resPurgeable is set.

If the resProtected attribute is set, the application can't use
Resource Manager routines to change the ID number or name of the
resource, modify its contents, or remove the resource from the resource
file. The routine that sets the resource attributes may be called,
however, to remove the protection or just change some of the other
attributes.

11/28/84 Rose-Anders 7 /RMGR/RESOURCE. 2

14 Resource Manager Programmer's Guide

The resPreload attribute tells the Resource Manager to read this
resource into memory immediately after opening the resource file. This
is useful, for example, if you immediately want to draw ten icons
stored in the file; rather than read and draw each one individually in
turn, you can have all of them read in when the file is opened and just
draw all ten.

The resChanged attribute is used only while the resource map is in
memory; it must be 9 in the resource file. It tells the Resource
Manager whether this resource has been changed.

USING THE RESOURCE MANAGER

The Resource Manager is initialized automatically when the system
starts up: the system resource file is opened and its resource map is
read into memory. Your application's resource file is opened when the
application starts up; you can call CurResFile to get its reference
number. You can also call OpenResFile to open any resource file that
you specify by name, and CloseResFile to close any resource file. A
function named ResError lets you check for errors that may occur during
execution of Resource Manager routines.

(note) :
These are the only routines you need to know about to use
the Resource Manager indirectly through other parts of
the Toolbox; you can skip to their descriptions in the
next section.

Normally when you want to access a resource for the first time, you'll
specify it by type and ID number (or type and name) in a call to
GetResource (or GetNamedResource). In special situations, you may want
to get every resource of each type. There are two routines which, used
together, will tell you all the resource types that areé in all open
resource files: CountTypes and GetIndType. Similarly, CountResources
and GetIndResource may be used to get all resources of a particular

type.

If you don't specify otherwise, GetResource, GetNamedResource, and
GetIndResource read the resource data into memory and return a handle
to it. Sometimes, however, you may not need the data to be in memory.
You can use a procedure named SetResLoad to tell the Resource Manager
not to read the resource data into memory when you get a resource; in
this case, the handle returned for the resource will be an empty handle
(a pointer to a NIL master pointer). You can pass the empty handle to
routines that operate only on the resource map (such as the routine
that sets resource attributes), since the handle is enough for the
Resource Manager to tell what resource you're referring to. Should you
later want to access the resource data, you can read it into memory
with the LoadResource procedure. Before calling any of the above
routines that read the resource data into memory, it's a good idea to
call SizeResource to see how much space is needed.

11/28/84 Rose-Anders ' . /RMGR/RESOURCE. 2

USING THE RESOURCE MANAGER 15

Normally the Resource Manager starts looking for a resource in the most
recently opened resource file, and searches other open resource files
in the reverse of the order that they were opened. In some situations,
you may want to change which file is searched first. You can do this
with the UseResFile procedure. One such situation might be when you
want a resource to be read from the same file as another resource; in
this case, you can find out which resource file the other resource was
read from by calling the HomeResFile function.

Once you have a handle to a resource, you can call GetResInfo or
GetResAttrs to get the information that's stored for that resource in
the resource map, or you can access the resource data through the
handle. (If the resource was designated as purgeable, first call
LoadResource to ensure that the data 1s in memory.)

Usually you'll just read resources from previously created resource
files with the routines described above. You may, however, want to
modify existing resources or even create your own resource file. To
create your own resource file, call CreateResFile (followed by
OpenResFile to open it). The AddResource procedure lets you add
resources to a resource file; to be sure a new resource won't override
an existing one, you can call the UniqueID function to get an ID number
~for it. To make a copy of an existing resource, call DetachResource
followed by AddResource (with a new resource ID). There are a number
of procedures for modifying existing resources:

- To remove a resource, call RmveResource.

= If you've changed the resource data for a resource and want the
changed data to be written to the resource file, call
ChangedResource; it signals the Resource Manager to write the data
out when the resource file is later updated.

- To change the information stored for a resource in the resource
map, call SetResInfo or SetResAttrs. If you want the change to be
written to the resource file, call ChangedResource. (Remember
that ChangedResource will also cause the resource data itself to
be written out.)

These procedures for adding and modifying resources change only the
resource map in memory. The changes are written to the resource file
when the application terminates (at which time all resource files other
than the system resource file are updated and closed) or when one of
the following routines is called:

- CloseResFile, which updates the resource file before closing it.

- UpdateResFile, which simply updates the resource file.

= WriteResource, which writes the resource data for a specified
resource to the resource file.

11/28/84 Rose-Anders /RMGR/RESOURCE. R

16 Resoﬁrce Manager Programmer's Guide

RESOURCE MANAGER ROUTINES

Assembly-language note: Except for LoadResource, all Resource
Manager routines preserve all registers except AP and D@.
LoadResource preserves A@ and D@ as well.

Initialization

Although you don't call these initialization routines (because they're
executed automatically for .you), it's a good idea to familiarize
yourself with what they do.

FUNCTION InitResources : INTEGER;

InitResources is called by the system when it starts up, and should not
be called by the application. It initializes the Resource Manager,
opens the system resource file, reads the resource map from the file
into memory, and returns a reference number for the file,

Assembly-language note: The name of the system resource file is
stored in the global variable SysResName; the reference number
for the file is stored in the global variable SysMap. ‘A handle
to the resource map of the system resource file is stored in the
variable SysMapHndl.

(note)
The application doesn't need the reference number for the
system resource file, because every Resource Manager
routine that has a reference number as a parameter
interprets @ to mean the system resource file.

PROCEDURE RsrcZonelnit;

RsrcZonelnit is called automatically when your application starts up,
to initialize the resource map read from the system resource file;
normally you'll have no need to call it directly. It "cleans up" after
any resource access that may have been done by a previous application,
First it closes all open resource files except the system resource
file. Then, for every system resource that was read into the
application heap (that is, whose resSysHeap attribute is @), it
replaces the handle to that resource in the resource map with NIL.

11/28/84 Rose-Anders /RMGR/RESOURCE. R

RESOURCE MANAGER ROUTINES 17

This lets the Resource Manager know that the resource will have to be
read in again (since the previous application heap is no longer
around). '

Opening and Closing Resource Files

When calling the CreateResFile or OpenResFile routines, described
below, you specify a resource file by its file name; the routines
assume that the file has a version number of § and is on the default
volume. (Version numbers and volumes are described in the File Manager
manual.) ‘

w

PROCEDURE CreateResFile (fileName: Str255);

CreateResFile creates a resource file containing no resource data or
copy of the file's directory entry. If there's no file at all with the
given name, it also creates an empty data fork for the file. If
there's already a resource file with the given name (that is, a
resource fork that isn't empty), CreateResFile will do nothing and the
ResError function will return an appropriate Operating System result
code.

(note)
Before you can work with the resource file, you need to
open it with OpenResFile.

FUNCTION OpenResFile (fileName: Str255) : INTEGER;

OpenResFile opens the resource file having the given name and makes it
the current resource file. It reads the resource map from the file
into memory and returns a reference number for the file. It also reads
in every resource whose resPreload attribute is set. If the resource
file is already open, it doesn't make it the current resource file; it
simply returns the reference number.

(note)
You don't have to call OpenResFile to open the system
resource file or the application's resource file, because
they're opened when the system and the application start
up, respectively. To get the reference number of the
application's resource file, you can call CurResFile
after the application starts up (before you open any
other resource file),

If the file can't be opened, OpenResFile will return -1 and the
ResError function will return an appropriate Operating System result
code. For example, an error occurs if there's no resource file with
the given name. ’

11/28/84 Rose-Anders /RMGR/RESOURCE. R

18 Resource Manager Programmer's Guide

Assembly-language note: A handle to the resource map of the
most recently opened resource file is stored in the globa
variable TopMapHndl. \

PROCEDURE CloseResFile (refNum: INTEGER);

Given the reference number of a resource file, CloseResFile does the
follgwing:

- updates the resource file by calling the UpdateResFile procedure

- for each resource in the resource file, releases the memory it
occupies by calling the ReleaseResource procedure

releases the memory occupied by the resource map
- closes the resource file

If there's no resource file open with the given reference number,
CloseResFile will do nothing and the ResError function will return the
result code resFNotFound. A refNum of @ represents the system resource
file, but if you ask to close this file, CloseResFile first closes all
other open resource files.

A CloseResFile of every open resource file except the system resource
file is done automatically when the application terminates. So you
only need to call CloseResFile if you want to close the system resource
file, or if you want to close any resource file before the application
terminates.

Checking for Errors

FUNCTION ResError : INTEGER;

Called after one of the various Resource Manager routines that may
result in an error condition, ResError returns a result code
identifying the error, if any. If no error occurred, it returns the
result code

CONST noErr = 0; {no error}

If an error occurred at the Operating System level, it returns an
Operating System result code, such as the File Manager '"disk I/0" error
or the Memory Manager '"out of memory' error. (See the File Manager and
Memory Manager manuals for a list of the result codes.) 1If an error
happened at the Resource Manager level, ResError returns one of the

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 19

following result codes:

CONST resNotFound ~192;: {resource not found}

resFNotFound = -193; {resource file not found}
addResFailed = -194; {AddResource failed}
rmvResFailed = -196; {RmveResource failed}

Each routine description tells which errors may occur for that routine.
You can also check for an error after system startup, which calls
InitResources, and application startup, which opens the application's
resource file.

Assembly-language note: The current value of ResError is stored
in the global variable ResErr. In addition, you can specify a
procedure to be called whenever there's an error by storing a
pointer to the procedure in the global variable ResErrProc ,
(which is normally NIL). Before returning a result code other
than noErr, the ResError function places that result code in
register D@ and calls your procedure.

Setting the Current Resource File

FUNCTION CurResFile : INTEGER;

CurResFile returns the reference number of the current resource file.
You can call it when the application starts up to get the reference
number of its resource file.

(note)
If the system resource file is the current resource file,
CurResFile returns the actual reference number of the
system reference file (found in the global variable
SysMap). You needn't worry about this number being used
(instead of P) in the routines that require a reference
number; these routines recognize both § and the actual
reference number as referring to the system resource
file.

Assembly-language note: The reference number of the current
resource file is stored in the global variable CurMap.

-

11/28/84 Rose-Anders ; /RMGR/RESOURCE.R

20 Resource Manager Programmer's Guide

FUNCTION HomeResFile (theResource: Handle) : INTEGER;

Given a handle to a resource, HomeRes#ile returns the reference number
of the resource file containing that resource. If the given handle
isn't a handle to a resource, HomeResFile will return -1 and the
ResError function will return the result code resNotFound.

PROCEDURE UseResFile (refNum: INTEGER);

Given the reference number of a resource file, UseResFile sets the
current resource file to that file. If there's no resource file open
with the given reference number, UseResFile will do nothing and the
ResError function will return the result code resFNotFound. A refNum
of § represents the system resource file.

Open resource files are arranged as a linked list; the most recently
opened file is at the end of the list and is the first one to be
searched. UseResFile lets you start the search with a file opened
earlier; the file(s) following it on the list are then left out of the
search process. This is best understood with an example. Assume there
are four open resource files (R@ through R3); the search order is R3,
R2, Rl, RP. If you call UseResFile(R2), the search order becomes R2,
Rl, RP; R3 is no longer searched. If you then open a fifth resource
file (R4), it's added to the end of the list and the search order
becomes R4, R3, R2, Rl, R@.

This procedure is useful if you no longer want to override a system
resource with one by the same name in your application's resource file.
You can call UseResFile(f}) to leave the application resource file out
of the search, causing only the system resource file to be searched.

(warning)

Early versions of some desk accessories may, upon
closing, always set the current resource file to the one
opened just prior to the accessory, ignoring any
additional resource files that may have been opened while
the accessory was in use. To be safe, whenever desk
accessories may have been in use, call UseResFile to
ensure access to resource files opened after accessories.

Getting Resource Types

EUNCTION CountTypes : INTEGER; -

CountTypes returns the number of resource types in all open resource
fileS. ’

11/28/84 Rose—Anders . /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 21

PROCEDURE GetIndType (VAR theType: ResType; index: INTEGER);

Given an index ranging from 1 to CountTypes (above), GetIndType returns
a resource type in theType. Called repeatedly over the entire range
for the index, it returns all the resource types in all open resource
files. If the given index isn't in the range from 1 to CountTypes,
GetIndType returns four NUL characters (ASCII code §).

Getting and Disposing of Resources

N

PROCEDURE SetResLoad (load: BOOLEAN);

Normally, the routines that return handles to resources read the
resource data into memory if it's not already in memory.
SetResLoad(FALSE) affects all those routines so that they will not read
the resource data into memory and will return an empty handle.
Resources whose resPreload attribute is set will still be read in,
however, when a resource file is opened. SetResLoad(TRUE) restores the
normal state.

(warning) ‘
If you call SetResLoad(FALSE), be sure to restore the
normal state as soon as possible, because other parts of
the Toolbox that call the Resource Manager rely on it.

Assembly-language note: The current SetResLoad state is stored
in the global variable ResLoad.

FUNCTION CountResources (theType:~ResType) : INTEGER;

CountResources returns the total number of resources of the given type
in all open resource files.

FUNCTION GetIndResource (theType: ResType; index: INTEGER) : Handle;

Given an index ranging from 1 to CountResources(theType),
GetIndResource returns a handle to a resource of the given type (see
CountResources, above), Called repeatedly over the entire range for
the index, it returns handles to all resources of the given type in all
open resource files. GetIndResource reads the resource data into
memory if it's not already in memory, unless you've called
SetResLoad(FALSE).

11/28/84 Rose-Anders /RMGR/RESOURCE. R

22 Resource Manager Programmer's Guide

(warning)
The handle returned will be an empty handle if you've
called SetResLoad(FALSE) (and the data isn't already in
memory). The handle will become empty if the resource
data for a purgeable resource is read in but later
purged. (You can test for an empty handle with, for
example, myHndl"~ = NIL.) To read in the data and make
the handle no longer be empty, you can call LoadResource.

GetIndResource returns handles for all resources in the most recently
opened resource file first, and then for those in the resource files
opened before it, in the reverse of the order that they were opened.

If you want to find out how many resources of a given type are in-a
particular resource file, you can do so as follows: Call
GetIndResource repeatedly with the index ranging from 1 to the number
of resources of that type. Pass each handle returned by GetIndResource
to HomeResFile and count all occurrences where the reference number
returned is that of the desired file. Be sure to start the index from
1, and to call SetResLoad(FALSE) so the resources won't be réad in.

(note) '
The UseResFile procedure affects which file the Resource
Manager searches first when looking for a particular
resource but not when getting indexed resources with
GetIndResource.

If the given index isn't in the range from 1 to
CountResources(theType), GetIndResource returns NIL and the ResError
function will return the result code resNotFound. GetIndResource also
returns NIL if the resource is to be read into memory but won't fit; in
this case, ResError will return an appropriate Operating System result
code.

FUNCTION GetResource (theType: ResType; theID: INTEGER) : Héndle;

GetResource returns a handle to the resource having the given type and
ID number, reading the resource data into memory if it's not already in
memory and if you haven't called SetResLoad(FALSE) (see the warning
above for GetIndResource). GetResource looks in the current resource
file and all resource files opened before it, in the reverse of the
order that they were opened; the system resource file is searched last.
If it doesn't find the resource, GetResource returns NIL and the
ResError function will return the result code resNotFound. GetResource
also returns NIL if the resource is to be read into memory but won't
fit; in this case, ResError will return an appropriate Operating System
result code.

FUNCTION GetNamedResource (theType: ResType; name: Str255) : Handle;

GetNamedResource is the same as GetResource (above) except that you
pass a resource name instead of an ID number.

11/28/84 Rose—Anders /RMGR/RESOURCE. R

RESOURCE MANAGER ROUTINES 23

PROCEDURE LoadResource (theResource: Handle);

Given a handle to a resource (returned by GetIndResource, GetResource,
or GetNamedResource), LoadResource reads that resource into memory. It
does nothing if the resource is already in memory or if the given
handle isn't a handle to a resource; in the latter case, the ResError
function will return the result code resNotFound. Call this procedure
if you want to access the data for a resource through its handle and
either you've called SetResLoad(FALSE) or if the resource is purgeable.

If you've changed the resource data for a purgeable resource and the
resource is purged before being written to the resource file, the
changes will be lost; LoadResource will reread the original resource
from the resource file. See the descriptions of ChangedResource and
SetResPurge for information about how to ensure that changes made to
purgeable resources will be written to the resource file.

Assembly-language note: LoadResource preserves all registers.

PROCEDURE ReleaseResource (theResource: Handle);

Given a handle to a resource, ReleaseResource releases the memory
occupied by the resource data, if any, and replaces the handle to that
resource in the resource map with NIL. (See Figure 7.) The given
handle will no longer be recognized as a handle to a resource; if the
Resource Manager 1s subsequently called to get the released resource, a
new handle will be allocated. Use this procedure only after you're
completely through with a.resource. ’

11/28/84 Rose-Anders /RMGR/RESOURCE . R

24 Resource Manager Programmer's Guide

TYPE myHndl: Hendle; resourceé map
myHnd! : = : resource data
Getﬁesqurce (type,1D); handle g\&s':teé'r
\ myHnd|
After T atter

ReieaseResource{myHnd!); : DetachResource{myHndl);

resource mep resource map

' resource date
' master
NIL : NIL pointer
myHnd| E myHndl }———

Figure 7. ReleaseResource and DetachResource

If the given handle isn't a handle to a resource, ReleaseResource will
do nothing and the ResError function will return the result code
resNotFound.

PROCEDURE DetachResource (theResource: Handle);‘

Given a handle to a resource, DetachResource replaces the handle to
that resource in the resource map with NIL. (See Figure 7 above.) The
given handle will no longer be recognized as a handle to a resource; if
the Resource Manager is subsequently called to get the detached
resource, a new handle will be allocated.

DetachResource is useful if you want the resource data to be accessed
only by yourself through the given handle and not by the Resource
Manager. DetachResource is also useful in the unusual case that you
don't want a resource to be released when a resource file is closed.

To copy a resource, you can call DetachResource followed by AddResource
(with a new resource ID).

If the given handle isn't a handle to a resource, DetachResource will

do nothing and the ResError function will return the result code
resNotFound.

11/28/84 Rose-Anders /RMGR/RESOURCE. R

RESOURCE MANAGER ROUTINES 25

Getting Resource Information

FUNCTION UniqueID (theType: ResType) : INTEGER; /

UniqueID returns an ID number greater than @ that isn't currently
assigned to any resource of the given type in any open resource file.
Using this number when you add a new resource to a resource file
ensures that you won't duplicate a resource ID and override an existing
resource.

(warning)
It's possible that UniqueID will return an ID in the
range reserved for system resources (§ to 127). You
should check that the ID returned is greater than 127; if
it isn't, call UniqueID again.

PROCEDURE GetResInfo (theResource: Handle; VAR theID: INTEGER; VAR
theType: ResType; VAR name: Str255);

Given a handle to a resource, GetResInfo returns the ID number, type,
and name of the resource. If the given handle isn't a handle to a
resource, GetResInfo will do nothing and the ResError function will
return the result code resNotFound.

FUNCTION GetResAttrs (theResource: Handle) : INTEGER;

Given a handle to a resource, GetResAttrs returns the resource
attributes for the resource. (Resource attributes are described above
- under "Resource References'.) If the given handle isn't a handle to a
resource, GetResAttrs will do nothing and the ResError function will
return the result code resNotFound.

FUNCTION SizeResource (the Resource: Handle) : LONGINT;

Given a handle to a resource, SizeResource returns the size in bytes of
the resource in the resource file. If the given handle isn't a handle
to a resource, SizeResource will return -1 and the ResError function
will return the result code resNotFound. 1It's a good idea to call ‘
SizeResource and ensure that sufficient space is available before
reading a resource into memory.

Assembly-language note: The macro you invoke to call
SizeResource from assembly language is named _SizeRsrc.

11/28/84 Rose—-Anders /RMGR/RESOURCE.R

26 Resource Manager Programmer's Guide.

Modifying Resources

Except for UpdateResFile and WriteResource, all the routines described
below change the resource map in memory and not the resource file
itself.

PROCEDURE SetResInfo (theResource: Handle; theID: INTEGER; name:
Str255);

Given a-handle to a resource, SetResInfo changes the ID number and name
of the resource to the given ID number and name.

Assembly-language note: If you pass NIL for the name parameter,
the name will not be changed. ‘ o

(warning)
It's a dangerous practice to change the ID number and
name of a system resource, because other applications may
already access the resource and may no longer work
properly.

The change will be written to the resource file when the file is
updated if you follow SetResInfo with a call to ChangedResource.

(warning)
Even if 'you don't call ChangedResource for this resource,
the change may be written to the resource file when the
file is updated. 1If you've ever called ChangedResource
for any resource in the file, or if you've added or.
removed a resource, the Resource Manager will write out
the entire resource map when it updates the file, so all
changes made to resource information in the map will
become permanent. If you want any of the changes to be
temporary, you'll have to restore the original
information before the file is updated.

SetResInfo does nothing in the following cases:
- The resProtected attribute for the resource is set.

— The given handle isn't a handle to a resource. The ResError
function will return the result code resNotFound.

- The resource map becomes too large to fit in memory (which can
happen if a name is passed) or sufficient space for the modified
resource file can't be reserved on the disk. ResError will return
an appropriate Operating System result code.

11/28/84 Rose—-Anders /RMGR/RESOURCE. R

RESOURCE MANAGER ROUTINES 27

PROCEDURE SetResAttrs (theResource: Handle; attrs: INTEGER);

Given a handle to a resource, SetResAttrs sets the resource attributes
for the resource to attrs. (Resource attributes are described above
under "Resource References'. The resProtected attribute takes effect
immediately; the others take effect the next time the resource is read
in.

(warning)
Do not use SetResAttrs to set the resChanged attribute;
you must call ChangedResource instead. Be sure that the
attrs parameter passed to SetResAttrs doesn't change the
current setting of this attribute.

The attributes set with SetResAttrs will be written to the resource
file when the file is updated if you follow SetResAttrs with a call to
ChangedResource. However, even if you don't call ChangedResource for
this resource, the change may be written to the resource file when the
file is updated. See the last warning for SetResInfo (above).

If the given handle isn't a handle to a resource, SetResAttrs will do
nothing and the ResError function will return the result ¢ode
resNotFound.

PROCEDURE ChangedResource (theResource: Handle);

Call ChangedResource after changing either the information about a
resource in the resource map (as described above under SetResInfo and
SetResAttrs) or the resource data for a resource, if you want the
change to be permanent. Given a handle to a resource, ChangédResource
sets the resChanged attribute for the resource. This attribute tells
the Resource Manager to do both of the following: '

- write the resource data for the resource to the resource file when
the file is updated or when WriteResource is called

- write the entire resource map to the resource file when the file
is updated

(warning) : -
If you change information in the resource map with
SetResInfo or SetResAttrs and then call ChangedResource,
remember that not only the resource map but also the
resource data will be written out when the resource file
is updated.

To change the resource data for a purgeable resource and make the
change permanent, you have to take special precautions to ensure that
the resource won't be purged while you're changing it. You can make
the resource temporarily unpurgeable and then write it out with
WriteResource before making it purgeable again. You have to use the
Memory Manager procedures HNoPurge and HPurge to make the resource
unpurgeable and purgeable; SetResAttrs can't be used because it won't

11/28/84 Rose-Anders /RMGR/RESOURCE.R

28 Resource Manager Programmer's Guide

take effect immediately. For example:

myHndl := GetResource(type,ID); {or LoadResource(myHndl) if }
{ you've gotten it previously}

HNoPurge(myHndl); . {make it unpurgeable}

.« o e {make the changes here}
ChangedResource(myHndl); {mark it changed}
WriteResource(myHndl); {write it out}
HPurge(myHnd1l) {make it purgeable again}

Or, instead of calling WriteResource to write the data out immediately,
you can call SetResPurge(TRUE) before making any changes to purgeable
resource data.

ChangedResource does nothing in the following cases:

- The given handle isn't a handle to a resource. The ResError
function will return the result code resNotFound. ,

- Sufficient space for the modified resource file can't be reserved
on the disk. ResError will return an appropriate Operating System
result code.

(warning)
Be aware that ChangedResource (and not WriteResource)
checks to see if there's sufficient disk space to write
out the modified file; if there isn't enough space, the
resChanged attribute won't be set. This means that when
WriteResource is called, it won't know that the resource
file has been changed; it won't write out the modified
filé and no error will be returned. For this reason,

. always check to see that ChangedResource returns noErr.

PROCEDURE AddResource (theData: Handle; theType: ResType; thelD:
INTEGER; name: Str255);

Given a handle to data in memory (not a handle to an existing
resource), AddResource adds to the current resource file a resource
reference that points to the data. It sets the resChanged attribute
for the resource, so the data will be written to the resource file when
the file is updated or when WriteResource is called. If the given
handle is empty, zero-length resource data will be written.

AddResource does nothing in the following cases:

- The given handle is NiL or is already a handle to an existing
resource. The ResError function will return the result code
addResFailed.

- The resource map becomes too large to fit in memory or sufficient
space for the modified resource file can't be reserved on the
disk. ResError will return an appropriate Operating System result
code,

11/28/84 Rose-Anders /RMGR/RESOURCE. R

RESOURCE MANAGER ROUTINES 29

(warning)
AddResource doesn't verify whether the resource ID you've.
passed is already assigned to another resource of the
same type; be sure to call UniqueID before adding a
resource.

PROCEDURE RmveResource (theResource: Handle);

Given a handle to a resource in the current resource file, RmveResource
removes the resource reference to the resource. The resource data will
be removed from the resource file when the file is updated.

(note)
RmveResource doesn't release the memory occupied by the
resource data; to do that, call the Memory Manager
procedure DisposHandle after calling RmveResource.

If the resProtected attribute for the resource is set or if the given
handle isn't a handle to a resource in the current resource-file,
,RmveResource will do nothing and the ResError function will return the
result code rmvResFailed.

PROCEDURE UpdateResFile (refNum: INTEGER);

Given the reference nﬁmber of a resource file, UpdateResFile does the
following:

- Changes, adds, or removes resource data in the file as appropriate
to match the map. Remember that changed resource data is written
out only if you called ChangedResource (and the call was

. successful); if you did, the resource data will be written out
with WriteResource,

~ Compacts the resource file, closing up any empty space created
when a resource was removed or made larger. (If the size of a
changed resource is greater than its original size in the resource
file, it's written at the end of the file rather than at its
original location; the space occupied by the original is then
compacted.) UpdateResFile doesn't close up any empty space
created when a resource is made smaller.

- Writes out the resource map of the resource file, if you ever
; called ChangedResource for any resource in the file or if you
added or removed a resource. All changes to resource information
in the map will become permanent as a result of this, so if you
want any such changes to be temporary, you must restore the
original information before calling UpdateResFile.

If there's no open resource file with the given reference number,
UpdateResFile will do nothing and the ResError function will return the
result code resFNotFound. A refNum of @ represents the system resource
file.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

30 Resource Manager Programmer's Guide

The CloseResFile procedure calls UpdateResFile before it closes the
resource file, so you only need to call UpdateResFile yourself if you
want to update the file without closing it.

PROCEDURE WriteResource (theResource: Handle);

Given a handle to a resource, WriteResource checks the resChanged
attribute for that resource and, if it's set (which it will be if you
called ChangedResource or AddResource successfully), writes its
resource data to the resource file and clears its resChanged attribute.

. (warning)

Be aware that ChangedResource (and not WriteResource)
determines 1f sufficient disk space is available to write
out the modified file; if there isn't it will clear the
resChanged attribute and WriteResource will be unaware of
the modifications. For this reason, always verify that
ChangedResource returns noErr.

If the resource is purgeable and has been purged, zero-length resource
data will be written. WriteResource does nothing if the resProtected
attribute for the resource is set or if the given handle isn't a handle
to a resource; in the latter case, the ResError function will return
the result code resNotFound.

Since the resource file is updated when the application terminates or
when you call UpdateResFile (or CloseResFile, which calls
UpdateResFile), you only need to call WriteResource if you want to
write out just one or a few resources immediately.

(warning) :
The maximum size for resources to be written to a
resource file is 32K bytes. ’

PROCEDURE SetResPurge (install: BOOLEAN);

SetResPurge(TRUE) sets a "hook'" in the Memory Manager such that before
purging data specified by a handle, the Memory Manager will first pass
the handle to the Resource Manager. The Resource Manager will
determine whether the handle is that of a resource in the application
heap and, if so, will call WriteResource to write the resource data for
that resource to the resource file if its resChanged attribute is set
(see ChangedResource and WriteResource above). SetResPurge(FALSE)
restores the normal state, clearing the hook so that the Memory Manager
will once again purge without checking with the Resource Manager.

.SetResPurge(TRUE) is useful in applications that modify purgeable
resources. You still have to make the resources temporarily
unpurgeable while making the changes, as shown in the description of
ChangedResource, but you can set the purge hook instead of writing the
data out immediately with WriteResource., Notice that you won't know
exactly when the resources are being written out; most applications

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 31

will want more control than this. If you wish, you can set your own
such hook; for details, refer to the section "Memory Manager Data
Structures" in the Memory Manager manual.

Advanced Routines

The routines described below allow advanced programmers to have even
greater control over resource file operations. Just as individual
resources have attributes, an entire resource file also has attributes,
which these routines manipulate. Like the attributes of individual
resources, resource file attributes are specified by bits in the
lowerder byte of a word. The Resource Manager provides a predefined
constant for each attribute, in which the bit corresponding to that
attribute is set.

CONST mapReadOnly = 128; {set if resource file is read-only}
mapCompact 64; {set to compact file on update}
mapChanged 32; {set to write map on update}

When the mapReadOnly attribute is set, the Resource Manager will

" neither write anything to the resource file nor check whether there's
sufficient space for the file on the disk when the resource map is
modified..

(warning)
If you set mapReadOnly but then later clear it, the
resource file will be written even if there's no room for
it on the disk. This would destroy the file,

Assembly-language note: The current value of the read-only
attribute is stored in the global variable ResReadOnly.

\
\

The mapCompact attribute causes resource file compaction to occur when
the file is updated. 1It's set by the Resource Manager when a resource
is removed, or when a resource is made larger and thus has to be
written at the end of the resource file. You may want to set
mapCompact to force compaction when you've only made resources smaller.

The mapChanged attribute causes the resource map to be written to the
resource file when the file is updated. 1It's set by the Resource
Manager when you call ChangedResource or when you add or remove a
resource. You can set mapChanged if, for example, you've changed
resource attributes only and don't want to call ChangedResource because
you don't want the resource data to be written out.

11/28/84 Rose-Anders " /RMGR/RESOURCE.X

32 Resource Manager Programmer's Guide

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;

Given the reference number of a resource file, GetResFileAttrs returns
the resource file attributes for the file. If there's no resource file
with the given reference number, GetResFileAttrs will do nothing and
the ResError function will return. the result code resFNotFound. A
refNum of 9 represents the system resource file.

PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

Given the reference number of a resource file, SetResFileAttrs sets the
resource file attributes of the file to attrs. If there's no resource -
file with the given reference number, SetResFileAttrs will do nothing
and the ResError function will return the result code resFNotFound. A
refNum of § represents the system resource file, but you shouldn't
change its resource file attributes.

RESOURCES WITHIN RESOURCES

Resources may point to other resources; this section discusses how this
is normally done, for programmers who are interested in background
information about resources or who are defining their own resource
types.

In a resource file, one resource points to another with the ID number
of the other resource. For example, the resource data for a menu
includes the ID number of the menu's definition procedure (a separate
resource that determines how the menu looks and behaves). To work with
the resource data in memory, however, it's faster and more convenient
to have a handle to the other resource rather than its ID number,

Since a handle occupies two words, the ID number in the resource file
is followed by a word containing @; these two words together serve as a
placeholder for the handle. Once the other resource has been read into

memory, these two words can be replaced by a handle to it. (See Figure
8.)

11/28/84 Rose-Anders | /RMGR/RESOURCE. F

RESOURCES WITHIN RESOURCES 33

plscehoider { D A

for handle 0 .
Lo}
menu
menu definition
Application's resource file procedure
Memory
master
hendle pointeq .
4’ ° " '
menu
menu definition
procedure
Figure 8. How Resources Point to Resources
(note)

The practice of using the ID number followed by @ as a
placeholder is simply a convention. If you like, you can
set up your own resources to have the ID number followed
by a dummy word, or even a word of useful information, or
you can put the ID in the second rather than the first
word of the placeholder.

In the case of menus, the Menu Manager function GetMenu calls the
Resource Manager to read the menu ‘and the menu definition procedure
into memory, and then replaces the placeholder in the menu with the
handle to the procedure. There may be other cases where you call the
Resource Manager directly and store the handle in the placeholder
yourself., It might be useful in these cases to call HomeResFile to
learn which resource file the original resource is located in, and .
then, before getting the resource it points to, call UseResFile to set
the current resource file to that file. This will ensure that the
resource pointed to is read from that same file (rather than one that
was opened after it).
. 3
(warning)
If you modify a resource that points to another resource
and you make the change permanent by calling
ChangedResource, be sure you reverse the process
described here, restoring the other resource's ID number
in the placeholder.

11/28/84 Rose—Anders ' /RMGR/RESOURCE., F

34 Resource Manager Programmer's Guide

FORMAT OF A RESOURCE FILE

You need to know the exact format of a resource file, described below,
only if you're writing a program that will create or modify resource
files directly; you don't have to know it to be able to use the
Resource Manager routines.

resource header
(16 bytes)

copy of directory entry
(112 bytes) - 256 bytes

application date
{128 bytes)

o

8 .resource data 2

1 1

% ‘r@source map %

Figure 9. Format of a Resource File

As illustrated in Figure 9, every resource file begins with a resource
header. The resource header gives the offsets to and lengths of the
resource data and resource map parts of the file, as follows:

Number of bytes Contents
4 bytes Offset from beginning of resource file
to resource data
4 bytes - Offset from beginning of resource file
to resource map
4 bytes Length of resource data
4 bytes Length of resource map

(note)
All offsets and lengths in the resource file are given in
bytes.

This is what immediately follows the resource header:

Number of bytes Contents ,
112 bytes Partial copy of directory entry for this file
128 bytes Available for application data

The directory copy is used by the Finder. The application data may be
whatever you want. : ‘

11/28/84 Rose-Anders . /RMGR/RESOURCE.F

FORMAT OF A RESOURCE FILE 35

The resource data follows the abplication data. It consists of the
following for each resource in the file: :

Number of bytes Contents

For each resource:)
4 bytes Length of following resource data
n bytes Resource data for this resource .

To learn exactly what the resource data is for a standard type of
resource, see the documentation on the part of the Toolbox that deals
with that resource type.

After the resource data, the resource map begins as follows:

Number of bytes Contents :
16 bytes P (reserved for copy of resource header)
4 bytes @ (reserved for handle to next resource map
' to be searched)
2 bytes @ (reserved for file reference number)
2 bytes . ' Resource file attributes
2 bytes Offset from beginning of resource map
to type list (see below)
2 bytes Offset from beginning of resource map

to resource name list (see below)

After reading the resource map into memory, the Resource Manager stores’
the indicated information in the reserved areas at the beginning of the
map.

The resource map continues with a type list,ireference lists, and a
resource name list. The type list contains the following:

Number of bytes Contents
2 bytes Number of resource types in the map minus 1
For each type: ’
4 bytes Resource type
2 bytes Number of resources of this type in the map
. minus 1) .
2 bytes ~ Offset from beginning of type list

to reference list for resources of this type

This is followed by the reference list for each type of resource, which
contains the resource references for all resources of that type. The
reference lists are contiguous and in the same order as the types in
the type list. The format of a reference list is as follows:

11/28/84 Rose-Anders /RMGR/RESOURCE.F

36 Resource Manager Programmer's Guide

Number of bytes Contents

For each reference

of this type: :
2 bytes Resource ID

2 bytes Offset from beginning of resource name list
to length of resource name, or -1 if none

1 byte , Resource attributes

3 bytes Offset from beginning of resouce data to
length of data for this resource

4 bytes @ (reserved for handle to resource)

The resource name list follows the reference list and has this format:.

Number of bytes Contents
For each name:
1 byte Length of following resource name
n bytes Characters of resource name

Figure 10 shows where the various offsets lead to in a resource file,
in general and also specifically for a resource reference.

11/28/84 Rose—-Anders /RMGR/RESOURCE.F

FORMAT OF A RESOURCE FILE 37

resource r- offset to resource dats
header offset to resource map
and other :
dets . i
resource lergth of resource deta 1€
date resource data
L Lo :
I—4 offset to type list
| offset to name |ist -
— offset 1o reference 1ist ¥ m:;e
- 1| =3
resource)
map ‘offset to resource name:
“resource sftributesi: ¢ :'ieaftirence
:offset to resource deta:
iireserved for handle i
ok 1
M :
length of resource name resource
resource name } name list

Figure 1@. Resource Reference in a Resource File

SYSTEM REFERENCES

This section gives information of historical interest only. It
explains another kind of resource reference besides the one explained
in the "Resource References" section above. This additional kind of
reference, called a system reference, was intended to be used by the
Finder, as described below. 1In fact, the Finder doesn't use system
references, so they're not particularly useful.

There are. actually two different kinds of resource references, as
illustrated in Figure 1l1: ‘

. = Local reference. The term "resource reference', as used earlier
in this manual, refers to this type of reference. A local

11/28/84 Rose-Anders /RMGR/RESOURCE. F

38 Resource Manager Programmer's Guide

reference is an entry in the resource map that locates the
resource data of a resource. If the resource data is already in
memory, the local reference provides a handle to the data;
otherwise it gives an offset to the resource data in the file.

- System reference. This is also an entry in the resource map but
it's a reference to a system resource., It provides a resource
specification for the resource in the system resource file, which
in turn leads to a local reference to the resource in that file.

Applicatior’s System

resource file resource file -
resource | local _| | resource
specification |reference dete
resource system , resource local resource
specification ‘| reference " specification ‘| reference dats

for system
‘ resource

' . resource mep resource map

Figure 1ll. Local and System References

Every resource reference has its own type, ID number, and optional
name. In the case of local references, the ID number and name are
simply those of the resource itself. A system reference, on the other
hand, may have its own ID number and name, different from those of the
actual resource it refers to in the system resource file.

System references need not be included in an application's resource
file in order for the system resources to be found, because the system
resource file will be searched anyway as part of the normal search
process. The major reason for having system references was to tell the
Finder what system resources an application or document was using.

This would ensure that those resources would accompany the application
or document should it be copied to a disk having a different system
resource file on it. The Finder, however, doesn't recognize system
references, which renders them lérgely ineffectual. (One remaining use
for such a reference could be to provide an "alias" for a systen
resource.)

The remainder of this section explains the use and format of system

references, and discusses several routines that work with such
references.

11/28/84 Rose-Anders ‘ /RMGR/RESOURCE. F

SYSTEM REFERENCES 39

Resource Attributes of System References

As stated in the section on resource references, each reference has a
set of resource attributes associated with it, and each attribute is
specified by a bit in the low-order byte of a word in the resource map.
In Figure 6 in that section, bit 7 of the low—-order byte is shown as @.
This bit actually specifies whether or not the reference is a system
reference. If you have a system reference in your resource file, this
bit should be set. A predefined constant for this attribute is also
provided:

CONST resSysRef = 128; {set if system reference}

System References in Resource Manager Routines

Some of the previously described Resource Manager routines take special
action if the current resource file contains a system reference to the
given resource: :

- GetResInfo will return the ID number, type, and name of the system
reference. The ID number and name may be different from those of
the resource itself in the system resource file.

- GetResAttrs will return the attributes of the system reference,
which may be different from those of the resource itself in the
system resource file.

— SetResInfo will change only the ID number and name of the system
reference.

- SetResAttrs will set only the attributes of the system reference.

The following additional procedures can be used to add or remove a
system reference.

(note)
If you've added or removed a system reference, the
Resource Manager will write out the entire resource map
‘when it updates the resource file. Also, file compaction
will occur during the update if a system reference has
been removed.

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name:
Str255);

Given a handle to a system resource, AddReference adds to the current
resource file a system reference to the resource, giving it the ID
number and name specified by the parameters. It sets the resChanged
attribute for the resource, so the reference will be written to the
resource file when the file is updated. AddReference does nothing in

11/28/84 Rose-Anders ' /RMGR/RESOURCE., F

40 Resource Manager Programmer's Guide

the following cases:

- The current resource file is the system resource file or already
contains a system reference to the specified resource, or the
given handle isn't a handle to a system resource. The ResError
function will return the result code

CONST addRefFailed = -195; {AddReference failed}

- The resource map becomes too large to fit in memory or sufficient

space for the modified resource file can't be reserved on the

disk. ResError will return an appropriate Operating System result
code.

PROCEDURE RmveReference (theResource: Handle);
Given a handle to a system resource, RmveReference removes the system
reference to the resource from the current resource file. (The
reference will be removed from the resource file when the file is
updated.) RmveReference will do nothing and the ResError function will
return the result code

CONST rmvRefFailed = -197; {RmveReference failed}
if any of the fbllowing are true:

- The resProtected attribute for the resource is set.

- There's no system reference to the resource in the current
resource file,

— The given handle isn't a handle to a system resource.

Format of System References

In the section "Format of a Resource File", the format of a resource
list actually covered only the case of a local reference; the format of
a reference list containing either local or system references is
outlined below:

11/28/84 Rose-Anders ‘ /RMGR/RESOURCE. F

Number of bytes
For each reference
of this type:

2 bytes

2 bytes

1 byte
3 bytes

4 bytes

11/28/84 Rose-Anders

SYSTEM REFERENCES 41

Contents

Resource ID

Offset from beginning of resource name list
to length of resource name, or -1 if none
Resource attributes)

If local reference, offset from beginning
of resource data to length of data for this
resource

If system reference, @ (ignored)

If local reference, @ (reserved for handle
to resource)

If system reference, resource specification
for system resource: in high-order word,
resource ID; in low-order word, offset from
beginning of resource name list to length
of resource name, or -1 if none

/RMGR/RESOURCE. F

42 Resource Manager Programmer's Guide

SUMMARY OF THE RESOURCE MANAGER

Constants

CONST { Resource attributes }

128; {set if system reference}

resSysRef =

resSysHeap = 64; {set if read into system heap}
resPurgeable = 32; {set if purgeable}

resLocked = 16; {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to resource file}

{ Resource Manager result codes }

resNotFound = -=192; {resource not found}

resFNotFound = -193; {resource file not found})
addResFailed = -194; {AddResource failed}

addRefFailed = -195; {AddReference failed}

rmvResFailed = -196; {RmveResource failed}

rmvRefFailed = -197; {RmveReference failed}

{ Resource file attributes }

mapReadOnly = 128; {set if file is read-only}

mapCompact = 64; {set to compact file on update}

mapChanged = 32; {set to write map on update}
Data Types

TYPE ResType = PACKED ARRAY [1..4] OF CHAR;

Routines

Initialization

FUNCTION InitResources : INTEGER; |
PROCEDURE RsrcZonelInit;

Opening and Closing Resource Files

PROCEDURE CreateResFile (fileName: Str255);
FUNCTION OpenResFile (fileName: Str255) : INTEGER;
PROCEDURE CloseResFile (refNum: INTEGER);

11/28/84 Rose-Anders ' /RMGR/RESOURCE. S

Checking for Errors

SUMMARY OF THE RESOURCE MANAGER 43

FUNCTION ResError : INTEGER;

Setting the Current Resource File

FUNCTION

PROCEDURE

CurResFile : INTEGER;
FUNCTION HomeResFile (theResource: Handle) : INTEGER;
UseResFile (refNum: INTEGER);

Getting Resource Types

FUNCTION
PROCEDURE

CountTypes : INTEGER;
GetIndType (VAR theType: ResType; index: INTEGER);

Getting and Disposing of Resources

PROCEDURE
FUNCTION
FUNCTION
FUNCTION
FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE

SetResLoad
CountResources
GetIndResource
GetResource

(load: BOOLEAN); :
(theType: ResType) : INTEGER;
(theType: ResType; index: INTEGER)
(theType: ResType; theID: INTEGER)

Handle;
Handle;

GetNamedResource (theType: ResType; name: Str255) : Handle;

LoadResource
ReleaseResource
DetachResource

(theResource: Handle);
(theResource: Handle);
(theResource: Handle);

Getting Resource Information

FUNCTION
PROCEDURE

FUNCTION
FUNCTION

Modifying

UniqueID (theType: ResType) : INTEGER;

GetResInfo (theResource: Handle; VAR theID: INTEGER; VAR
theType: ResType; VAR name: Str255);

GetResAttrs (theResource: Handle) : INTEGER;

SizeResource (theResource: Handle) : LONGINT;

Resources

PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

SetResInfo

SetResAttrs
ChangedResource
AddResource

RmveResource
UpdateResFile
WriteResource
SetResPurge

11/28/84 Rose—Anders,

(theResource: Handle; theID: INTEGER; name:
Str255);

(theResource: Handle; attrs: INTEGER);
(theResource: Handle);

(theData: Handle; theType: ResType; thelD:
INTEGER; name: Str255);

(theResource: Handle);

(refNum: INTEGER);

(theResource: Handle);

(install: BOOLEAN);

/RMGR/RESOURCE. S

44 Resource Manager Programmer's Guide

Advanced Routines

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;
PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

‘Modifying System References

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name:
Str255);
PROCEDURE RmveReference (theResource: Handle);

Assembly-Language Information

Constants

;s Resource attributes

resSysRef .EQU 7 ;set if system reference
resSysHeap .EQU 6 ;set if read into system heap
resPurgeable JEQU 5 ;set if purgeable

resLocked .EQU 4 ;set’ if locked

resProtected .EQU 3 sset if protected

resPreload .EQU 2 . ;set if to be preloaded
resChanged .EQU 1

;set 1f to be written to resource file
;s Resource Manager result codes

resNotFound LEQU ~-192 ;resource not found
resFNotFound .EQU -193 ;resource file not found
addResFailed +.EQU -194 ;AddResource failed
addRefFailed L.EQU ~195 ;AddReference failed
rmvResFailed .EQU -196 sRmveResource failed
rmvRefFailed .EQU =197 sRmveReference failed

3+ Resource file attributes

mapReadOnly -EQU 7 ;set if resource file is read-only

mapCompact " .EQU 6 ;set to compact file on update

mapChanged <EQU 5 ;set to write map on update

Variables

Name Size Contents

TopMapHndl 4 bytes Handle to resource map of most recently
opened resource file

SysMapHndl 4 bytes Handle to map of system resource file

11/28/84 Rose-Anders /RMGR/RESOURCE. S

SUMMARY OF THE RESOURCE MANAGER 45

SysMap : 2 bytes Reference number of system resource file
CurMap 2 bytes Reference number of current resource file
ResReadOnly 2 bytes Current value of mapReadOnly attribute
ResLoad 2 bytes - Current value of SetResLoad

ResErr 2 bytes Current value of ResError

ResErrProc 4 bytes Pointer to resource error procedure
SysResName 20 bytes Name of system resource file (beginning

with one-byte length)

Special Macro Name

Routine name Macro name
SizeResource _SizeRsrc

11/28/84 Rose-Anders ~ _ /RMGR/RESOURCE. S

46 Resource Manager Programmer's Guide

SUMMARY OF THE RESOURCE FILE FORMAT

(note)
' All offsets and lengths are given in bytes.
Resource . 4 bytes - Offset to resource data
Header 4 bytes Offset to resource map
and other 4 bytes Length of resource data
data 4 bytes Length of resource map :
112 bytes Partial copy of file's directory entry
128 bytes Application data
Resource For each resource:
Data 4 bytes Length of following resource data
n bytes Resource data for this resource
Resource 16 bytes Reserved for copy of resource header
Map 4 bytes b Reserved for handle to next resource map
' to be searched
2 bytes Reserved for file reference number
2 bytes Resource file attributes
2 bytes Offset to type list
2 bytes Offset to resource name list
Type list 2 bytes Number of resource types minus 1
For each type:
4 bytes Resource type
2 bytes Number of resources of this type minus 1
2 bytes Offset to reference list for this type
Reference For each reference
lists (one of this type:
per type, 2 bytes Resource 1D
contiguous, 2 bytes Offset to length of resource name or -1
same order if none
as in type 1 byte. Resource attributes
list) 3 bytes Offset to length of resource data
4 bytes Reserved for handle to resource
Resource For each name: .
name list 1 byte Length of following resource name
n bytes Characters of resource name

11/28/84 Rose-Anders /RMGR/RESOURCE. S

GLOSSARY 47

GLOSSARY

current resource file: The last resource file opened, unless you
specify otherwise with a Resource Manager routine.

data fork: The part of the file that contains data accessed via the
File Manager.

empty handle: A pointer to a NIL master pointer.
fork: One of two parts of a file; see data fork and resource fork.

reference number: A number greater than @, returned when a file is
opened, by which you can refer to that file. In Resource Manager
routines that expect a reference number, § represents the system
resource file. .

resource: Data or code stored in a resource file and managed by the
Resource Manager.

resource attribute: One of several characteristics, specified by bits
in a resource reference, that determine how the resource should be
dealt with.

resource data: In a resource file, the data that comprises a resource.

resource file: The resource fork of a file, which contains data used
by the application (such as menus, fonts, and icons) and also the
application code itself,

resource fork: The part of the file that contains the resources used
by an application (such as menus, fonts, and icons) and also the
application code itself; usually accessed via the Resource Manager.

resource header: At the beginning of a resource file, data that gives
the offsets to and lengths of the resource data and resource map.

resource ID: A number that, together with the resource type,
identifies a resource in a resource file. Every resource has an ID
number.

resource map: In a resource file, data that is read into memory when
the file is opened and that, given a resource specification, leads to
the corresponding resource data.

resource name: A string that, together with the resource type,
identifies a resource in a resource file. A resource may or may not
have a name,

resource reference: 1In a resource map, an entry that identifies a
resource and contains either an offset to its resource data in the
resource file or a handle to the data if it's already been read into
memory.

11/28/84 Rose~Anders ‘ /RMGR/RESOQURCE.G

48 Resource Manager Programmer's Guide

resource specification: A resource type and either a resource ID or a
resource name.

resource type:. The type of a resource in a resource file, designated
by a sequence of four characters (such as 'MENU' for a menu).

systém resource: A resoufce in the system resource file.

system resource file: A resource file containing standard resources,
accesged if a requested resource wasn't found in any of the other
resource files that were searched.

11/28/84 Rose-Anders /RMGR/RESOURCE. G

MACINTOSH PUBLICATIONS

QuickDraw: A Programmer”s Guide ‘ /QUICK/QUIKDRAW

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
The Window Manager: A Programmer”s Guide

Modification History: First Draft C. Espinosa 11/27/81
Revised and Edited C. Esplnosa 2/15/82

Revised and Edited C. Rose 8/16/82

Errata Added C. Rose 8/19/82

Revised C. Rose 11/15/82

Revised for ROM 2.1 C. Rose 3/2/83

ABSTRACT

\

This document describes the QuickDraw graphics package, heart of -the
Macintosh User Interface Toolbox routines. It describes the conceptual
and physical data types used by QuickDraw and gives details of the
procedures and functions available in QuickDraw.

Summary of significant changes and additions since last version:

- "Font" no longer includes type size. There is a new grafPort
field (txSize) and a procedure (TextSize) for specifying the size
(pages 25, 43). Some other grafPort fields were reordered and
some global variables were moved to the grafPort (page 18).

— The character style data type was renamed Style and now includes
two new variations, condense and extend (page 23).

- You can set up your application now to produce color output when
devices supporting it are available in the future (pages 30, 45).

- The Polygon data type was changed (page 33), and the PolyNext
procedure was removed.

- There are two new grafPort routines, InitPort and ClosePort (pages
35, 36), and three new calculation routines, EqualRect and
EmptyRect (page 48) and EqualPt (page 65).

- XferRgn and XferRect were removed; use CopyBits, PaintRgn,
FillRgn, PaintRect, or FillRect. CursorVis was also removed; use
HideCursor or ShowCursor. : ‘

- A section on customizing QuickDraw operations was added (page 7@).

QuickDraw Programmer”s Guide

TABLE OF CONTENTS

About This Manual
About QuickDraw
How To Use QuickDraw
The Mathematical Foundation of QuickDraw
The Coordinate Plane
Points
Rectangles
Regions
Graphic Entities
The Bit Image
The BitMap
Patterns
Cursors
The Drawing Environment: GrafPort
Pen Characteristics
Text Characteristics
Coordinates 1n GrafPorts-
General Discussion of Drawing
Transfer Modes
Drawing in Color
Pictures and Polygons
Pictures
Polygons
QuickDraw Routines
GrafPort Routines’
Cursor-Handling Routines
Pen and Line-Drawing Routines
Text-Drawing Routines
Drawing in Color
Calculations with Rectangles
Graphic Operations on Rectangles
Graphic Operations on Ovals
Graphic Operations on Rounded-Corner Rectangles
Graphic Operations on Arcs and Wedges
Calculations with Regions
Graphic Operations on Regions
Bit Transfer Operations
Pictures
Calculations with Polygons
Graphic Operations on Polygons
Calculations with Points
. Miscellaneous Utilities
Customizing QuickDraw Operations
Using QuickDraw from Assembly Language
Summary of QuickDraw
Glossary

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes QuickDraw, a set of graphics procedures,
functions, and data types that allow a Pascal or' assembly-language
programmer of Macintosh to perform highly complex graphic operations
very easily and very quickly. It covers the graphic concepts behind
QuickDraw, as well as the technical details of the data types,
procedures, and functions you will use in your programs..

(hand)
This manual describes version 2.1 of the ROM. 1In earlier
versions, QuickDraw may not work as discussed here.

We assume that you are familiar with the Macintosh User Interface
Guidelines, Lisa Pascal, and the Macintosh Operating System”s memory
management. This graphics package 1s for programmers, not end users.
Although QuickDraw may be used from either Pascal or assembly language,
this manual gives all examples in their Pascal form, to be clear,
concise, and more intuitive; a section near the end describes the
details of the assembly-language interface to QuickDraw.

The manual begins with an introduction to QuickDraw and what you can do

with it. It then steps back a little and looks at the mathematical

concepts that form the foundation for QuickDraw: coordinate planes,

- points, and rectangles. Once you understand these concepts, read on
about the graphic entities based on those concepts —~— how the

mathematical world of planes and rectangles is translated into the

physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports, a
summary of the basic drawing process, and a discussion of two more
parts of QuickDraw, pictures and polygons.

Next, there”s the detailed description of all QuickDraw procedures and
functions, their parameters, calling protocol, effects, side effects,
and so on —— all the technical information you”ll need each time you
write a program for Macintosh.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given for programmers who want
to customize QuickDraw operations by overriding the standard drawing
procedures, and for those who will be using QuickDraw from assembly
language. ‘

Finally, there”s a summary of the QuickDraw data structures and routine

calls, for quick reference,, and a glossary that explains terms that may
be unfamiliar to you. -

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2

4

QuickDraw Programmer”s Guide

ABOUT QUICKDRAW

QuickDraw allows you to divide the Macintosh screen into a number of
individual areas. Within each area you can draw many things, as
illustrated in Figure 1.

Text Lines Pectangles Creals

Bold
ftaire }
Guitline

(S had o

Folyaons

.‘_, §
{‘ ‘;"‘ G
A
LTI

EoundEects

ro
20
L

Figure 1. Samples of QuickDraw”s Abilities

You can draw:

Text characters in a number of proportionally-spaced fonts, with
variations that include boldfacing, italicizing, underlining, and
outlining.

Straight lines of any length and width.
A variety of shapes, either solid or hollow, including:
rectangles, with or without rounded cormners; full circles and

ovals or wedge-shaped sections; and polygons.

Ahy other arbitrary shape or collection of shapes, again either
solid or hollow.

A pilcture consisting of any combination of the above items, with
just a single procedure call.

In addition, QuickDraw has some other abilities that you won"t find in

many

other graphics packages. These abilities take care of most of the

"housekeeping” —- the trivial but time-consuming and bothersome
overhead that”s necessary to keep things in order.

The ability to define many distinct "ports™ on the screen, each
with its own complete drawing environment —-- its own coordinate
system, drawing location, character set, location on the screen,
and so on. You can easily switch from one such port to another.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW. 2

ABOUT QUICKDRAW 5

- Full and complete "clipping"” to arbitrary areas, so that drawing
will occur only where you want. It”“s like a super-duper coloring
book that won"t let you color outside the lines. You don”t have
to worry about accidentally drawing over something else on the
screen, or drawing off the screen and destroying memory.

- Off-screen drawing. Anything you can draw on the screen, you can
draw into an off-screen buffer, so you can prepare an image for an
output device without disturbing the screen, or you can prepare a
picture and move it onto the screen very quickly.

And QuickDraw lives up to its name! 1It”s very fast. The speed and
responsiveness of the Macintosh user interface is due primarily to the
speed of the QuickDraw package. You can do good—-quality animation,
fast interactive graphics, and complex yet speedy text displays using
the full features of QuickDraw. This means you don”t have to bypass
the general-purpose QuickDraw routines by writing a lot of special
routines to improve speed.

How To Use QuickDraw

QuickDraw can be used from either Pascal or MC68@@@ machine language.
It has no user interface of its own; you must write and 'compile (or
assemble) a Pascal (or assembly-language) program that includes the
proper QuickDraw calls, link the resulting object code with the
QuickDraw code, and execute the linked object file.

Some programming models are available through your Macintosh software
coordinator; they show the structure of a properly organized QuickDraw
program. What”s best for beginners is to obtain a machine-readable
version of the text of one of these programs, read through the text,
and, using the superstructure of the program as a "shell”, modify it to
suit your own purposes. Once you get the hang of writing programs
inside the presupplied shell, you can work on changing the shell
itself.

QuickDraw is stored permanently in the ROM memory. All access is made
through an indirection table in low RAM. When you write a program that
uses QuickDraw, you link it with this indirection table. Each time you
call a QuickDraw procedure or function, or load a predefined constant,
the request goes through the table into QuickDraw. You”ll never access
any QuickDraw address directly, nor will you have to code constant
addresses into your program. The linker will make sure all address
references get straightened out.

QuickDraw is an independent unit; it doesn”t use any other units, not
even HeapZone (the Pascal interface to the Operating System”s memory
management routines). This means it cannot use the data types Ptr and
Handle, because they are defined in HeapZone. Instead, QuickDraw
defines two data types that are equivalent to Ptr and Handle, QDPtr and
QDHandle. ‘ .

3/2/83 Espinosa-Rose : * /QUICK/QUIKDRAW.2

6 QuickDraw Programmer”s Guide

TYPE QDByte
QDPtr
QDHandle

-128..127;
“QDByte;
“QDPtr;

QuickDraw includes only the graphics and utility procedures and
functions you“ll need to create graphics on the screen. Keyboard
input, mouse input, and larger user—-interface constructs such as
windows and menus are implemented in separate packages that use
QuickDraw but are linked in as separate units. You don”"t need these
units in order to use QuickDraw; however, you”ll probably want to read
the documentation for windows and menus and learn how to use them with
your Macintosh programs.

THE MATHEMATICAL FOUNDATION OF QUICKDRAW

To create graphics that are both precise and pretty requires not
supercharged features but a firm mathematical foundation for the
features you have. TIf the mathematics that underlie a graphics package
are imprecise or fuzzy, the graphics will be, too. QuickDraw defines -
some clear mathematical constructs that are widely used in its
procedures, functions, and data types: the coordinate plane, the
point, the rectangle, and the region. '

The Coordinate Plane

A1l information about location, placement, or movement that yod give to
QuickDraw is in terms of coordinates on a plane. The coordinate plane
is a two—dimensional grid, as illustrated in Figure 2.

- 32766

J’\

10
o
’u

~32768 -3

AT
R Y

Figure 2. The Coordinate Plane

There are two distinctive features of the QuickDraw coordinate plane:

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW, 2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 7

— All grid coordinates are integers.
- All grid lines are infinitely thin.

These concepts are important! First, they mean that the QuickDraw
plane is finite, not infinite (although it”s very large). Horizontal
coordinates range from —-32768 to +32767, and vertical coordinates have
the same range. (An auxiliary package 1s available that maps real
Cartesian space, with X, Y, and Z coordinates, onto QuickDraw”s
two—dimensional integer coordinate system.)

Second, they mean that all elements represented on the coordinate plane
are mathematically pure. Mathematical calculations using integer
arithmetic will produce intuitively correct results. TIf you keep in
mind that grid lines are infinitely thin, you”ll never have "endpoint
paranoia” —- the confusion that results from not knowing whether that
last dot is included in the line.

Points

i

On the coordinate plane are 4,294,967,296 unique points. Each point is
at the intersection of a horizontal grid line and a vertical grid line.
As the grid lines are infinitely thin, a point is infinitely small. Of
course there are more points on this grid than there are dots on the
Macintosh screen: when using QuickDraw you associate small parts of
the grid with areas on the screen, so that you aren”t bound into an
arbitrary, limited coordinate system.

The coordinate origin (f,0) is in the middle of the grid. Horizontal
coordinates increase as you move from left to right, and vertical
coordinates increase as you move from top to bottom. This is the way
both a TV screen and a page of English text are scanned: from the top
left to the bottom right.

You can store the coordinates of a point into a Pascal variable whose
type is defined by QuickDraw. The type Point is a record of two
integers, and has this structure: ‘

TYPE VHSelect = (V,H);

Point RECORD CASE INTEGER OF
@#: (v: INTEGER;
- h: INTEGER);

1: (vh: ARRAY [VHSelect] OF INTEGER)
" END;
The variant part allows you to access the vertical and horizontal
components of a point either individually or as an array. For example,

if the variable goodPt were declared to be of type Point, the following
would all refer to the coordinate parts of the point:

3/2/83 Espinosa—-Rose /QUICK/QUIKDRAW.2

8 QuickDraw Programmer”s Guide

goodPt.v goodPt.h
goodPt.vh{[V] goodPt.vh[H]
Rectangles

Any two points can define the top left and bottom right corners of a

rectangle. As these points are infinitely small, the borders of the
rectangle are infinitely thin (see Figure 3).

Left

]]
{

Tap

kLT,

1
Right

Figure 3. A Rectangle

Rectangles are used to define active areas on the screen, to assign
coordinate systems to graphic entities, and to specify the locations
and sizes for various drawing commands. QuickDraw also allows you to

perform many mathematical calculations on rectangles —— changing their
sizes, shifting them around, and so on.

(hand) .
Remember that rectangles, like points, are mathematical
concepts that have no direct representation on the -
screen. The association between these conceptual

elements and their physical representations is made by.a
bitMap, described below.

The data type for rectangles is called Rect, and consists of four
integers or two points:

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW,2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 9

TYPE Rect = RECORD CASE INTEGER OF

@: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER) ;

1: (topLeft: Point;
botRight: Point)

END;

Again, the record variant allows you to access a variable of type Rect
either as four boundafy coordinates or as two diagonally opposing
corner points. Combined with the record variant for points, all of the
following references to the rectangle named bRect are legal:

bRect ' {type Rect}
bRect.topLeft bRect .botRight {type Point}
bRect.top . bRect.left {type INTEGER}
bRect.topLeft.v . bRect.topLeft.h {type INTEGER}
bRect.topLeft.vh[V] bRect.topLeft.vh[H] {type INTEGER}
bRect.bottom bRect.right {type INTEGER}
bRect.botRight.v ‘ bRect .botRight.h {type INTEGER}
bRect.botRight.vh[V] * bRect.botRight.vh[H] {type INTEGER}

(eye)

. If the bottom coordinate of a rectangle 1s equal to or

less than the top, or the right coordinate is equal to or
less than the left, the rectangle is an empty rectangle
(i.e., one that contains no bits).

Regions

Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectilinear, at that), QuickDraw has the unique and
amazing ability to gather an arbitrary set of spatially coherent points
into a structure called a region, and perform complex yet rapid
manipulations and calculations on such structures. This remarkable
feature not only will make your standard programs simpler and faster,
but will let you perform operations that would otherwise be nearly
impossible; it is fundamental to the Macintosh user interface.

You define a region by drawing lines, shapes such as rectangles and
ovals, or even other regions. The outline of a region should be one or
more closed loops. A region can be concave or convex, can consist of
one area or many disjoint areas, and can even have "holes" in the
middle. 1In Figure 4, the region on the left has a hole in the middle,
and the region on the right consists of two disjoint areas.

3/2/83 Espinosa-Rose : /QUICK/QUIKDRAW.2

10 QuickDraw Programmer”s Guide

S)

0

T

AL
LA

N O Y

LI

et
]

Figure 4. Regions

Because a region can be any arbitrary area or set of areas on the
coordinate plane, it takes a variable amount of information to store
the outline of a region. The data structure for a region, therefore,
is a variable-length entity with two fixed fields at the beginning,
followed by a variable-length data field:

TYPE Region = RECORD
rgnSize: INTEGER;
rgnBBox: Rect;
{optional region definition data}
END;

The rgnSize field contains the size, in bytes, of the region variable.
The rgnBBox field is a rectangle which completely encloses the region.

The simplest region is a rectangle. 1In this case, the rgnBBox field
defines the entire reglon, and there is no optional region data. For
rectangular regions (or empty regions), the rgnSize field contains 1.

The region definition data for nonrectangular regions 1s stored in a
compact way which allows for highly efficient access by QuickDraw
procedures.

As regions are of variable size, they are stored dynamically on the
heap, "and the Operating System”s memory management moves them around as
their sizes change. Being dynamic, a region can be accessed only
through a pointer; but when a region is moved, all pointers referring
to it must be updated. For this reason, all regions are accessed
through handles, which point to one master pointer which in turn points
to the region.

TYPE RgnPtr = “Region;
RgnHandle “RgnPtr;

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW .2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 11

When the memory management relocates a region”s data in memory, it
updates only the RgnPtr master pointer to that region. The references
through the master pointer can find the region”s new home, but any
references pointing directly to the region”s previous position in
memory would now.point at dead bits. To access individual fields of a
region, use the region handle and double indirection:

myRgn~".rgnSize {size of region whose handle is myRgn}
myRgn”".rgnBBox {rectangle enclosing the same region}
myRgn”".rgnBBox. top {minimum vertical coordinate of all

, points in the region}
myRgn”.rgnBBox {syntactically incorrect; will not compile

if myRgn is a rgnHandle}

Regions are created by a QuickDraw function which allocates space for
the region, creates a master pointer, and returns a rgnHandle. When
you're done with a region, you dispose of it with another QuickDraw
routine which frees up the space used by the region. Only these calls
allocate or deallocate regions; do NOT use the Pascal procedure NEW to
create a new region!

You specify the outline of a region with procedures that draw lines and
shapes, as described in the section "QuickDraw Routines”. An example
is given in the discussion of CloseRgn under "Calculations with
Regions” in that section.

Many calculations can be performed on regions. A region can be
"expanded” or "shrunk” and, given any two regions, QuickDraw can find
their union, intersection, difference, and exclusive-OR; it can also
determine whether a given point or rectangle intersects a given region,
and so on. There is of course a set of graphic operations on regions
to draw them on the screen.

GRAPHIC ENTITIES

Coordinate planes, points, rectangles, and regions are all good
mathematical models, but they aren”t really graphic elements —- they
don”“t have a direct physical appearance. Some graphic entities that do
have a direct graphic interpretation are the bit image, bitMap,
pattern, and cursor. This section describes the data structure of
these graphic entities and how they relate to the mathematical
constructs described above. ’

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2

12 QuickDraw Programmer”s Guide

The Bit Image

A bit image is a collection of bits in memory which have a rectilinear
representation. Take a collection of words in memory and lay them end
to end so that bit 15 of the lowest-numbered word is on the left and
bit ¢ of the highest-numbered word is on the far right. Then take this
array of bits and divide it, on word boundaries, ‘into a nmumber of
equal-size rows. Stack these rows vertically so that the first row is
on the top and the last row is on the bottom. The result is a matrix
like the one shown in Figure 5 — rows and columns of bits, with each
row containing the same number of bytes. The number of bytes in each
row of the bit image is called the row width of that image.

Fiver

Byte
Rows
Width,
13
& bytes
Last
B

Figure 5. A Bit Image

A bit image can be stored in any static or dynamic variable, and can be
of any length that is a multiple of the row width.

The Macintosh screen itself is one large visible bit image. The upper
21,888 bytes of memory are displayed as a matrix of 175,104 pixels on

the screen, each bit corresponding to one pixel. If a bit”s value is

@, its pixel is white; if the bit”s value is 1, the pixel is black.

The screen is 342 pixels tall and 512 pixels wide, and the row width of
its bit image is 64 bytes. Each pixel on the screen is square; there
are 72 pixels per inch in each direction.

(hand) :
Since each plxel on the screen represents one bit in a
bit image, wherever this document says "bit", you can
substitute "pixel” if the bit image is the Macintosh
screen. Likewise, this document often refers to pixels
on the screen where the discussion applies equally to
bits in an off-screen bit image.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 13

The BitMap

When you combine the physical entity of a bit image with the conceptual
entities of the coordinate plane and rectangle, you get a bitMap. A
bitMap has three parts: a pointer to a bit image, the.row width (in
bytes) of that image, and a boundary rectangle which gives the bitMap
both its dimensions and a coordinate system. Notice that a bitMap does
not actually include the bits themselves: it points to them.

There can be several bitMaps pointing to the same bit image, each
imposing a different coordinate system on it. This important feature
is explained more fully in "Coordinates in GrafPorts”, below.

As shown in Figure 6, the data structure of a bitMap is as follows:

TYPE BitMap = RECORD
baseAddr: QDPtr;
rowBytes: INTEGER;
bounds: Rect
END;

Base
Address

base Adidr /

rovbyres
botinds

e Rt Wit

Figure 6. A BitMap

The baseAddr field is a pointer to the beginning of the hit image in
memory, and the rowBytes field is the number of bytes in each row of
the image. Both of these should always be even: a bitMap should
always begin on a word boundary and contain an integral number of words
in each row.

The bounds' field is a boundary rectangle that both encloses the active
area of the bit image and imposes a coordinate system on it. The
relationship between the boundary rectangle and the bit image in a
bitMap is simple yet very important. First, a few general rules:’

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2

14 QuickDraw Programmer”s Guide

- Bits in a bit image fall between points on the coordinate plane.

- A rectangle divides a bit image into two sets of bits: those bits
inside the rectangle and those outside the rectangle.

- A rectangle that is H points wide and V points tall encloses
exactly (H—l)*(V—l) bits.

The top left corner of the boundary rectangle is aligned around the
first bit in the bit image. The width of the rectangle determines how
many bits of one row are logically owned by the bitMap; the
relationship

8%map.rowBytes >= map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many
rows of the image are logically owned by the bitMap; the relationship

SIZEOF (map.baseAddr™) >= (map.bounds.bot tom-map.bounds. top)
* map.rowBytes

must always be true to ensure that the number of bits in the logical
bitMap area is not larger than the number of bits in the bit image.

Normally, the boundary rectangle completely encloses the bit image:
the width of the boundary rectangle is equal to the number of bits in
one row of the image, and the height of the rectangle is equal to the
number of rows in the image. If the rectangle is smaller than the
dimensions of the image, the least significant bits in each row, as
well as the last rows in the image, are not affected by any operations
on the bitMap.

The bitMap also imposes a coordinate system on the image. Because bits
fall between coordinate points, the coordinate system assigns integer
values to the lines that border and separate bits, not to the bit
positions themselves. For example, if a bitMap is assigned the
boundary rectangle with cormers (1¢,-8) and (34,8), the bottom right
bit in the image will be between horizontal coordinates 33 and 34, and
between vertical coordinates 7 and 8 (see Figure 7).

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 15

(10, -8 (34, -3)
AR]
i

A

Sl S S S SR

bt

"

F105 £34.5)

(LA A (Sl)

[

Figure 7. Coordinates and BitMaps

Patterns

A pattern is a 64-bit image, organized as an 8-by-8-bit 'square, which
is used to define a repeating design (such as stripes) or tone (such as
gray). Patterns can be used to draw lines and shapes or to fill areas
on the screen. ’

When a pattern is drawn, it is aligned such that adjacent areas of the
same pattern in the same graphics port will blend with it into a
continuous, coordinated pattern. QuickDraw provides the predefined
patterns white, black, gray, ltGray, and dkGray. Any other 64-bit
variable or constant can be used as a pattern, too. The data type
definition for a pattern is as follows: ‘

TYPE Pattern = PACKED ARRAY [#..7] OF #..255;

The row width of a pattern is 1 byte.

Cursors

A cursor is a small image that appears on the screen and is controlled
by the mouse. (It appears only on the screen, and never in an
off-screen bit image.)

(hand)
Other Macintosh documentation calls this image a
"pointer”, since it points to a location on the screen.
To avoid confusion with other meanings of "pointer” in
this manual and other Toolbox documentation, we use the
alternate term “"cursor”.

3/2/83 Espinosa-Rose \ /QUICK/QUIKDRAW .2

16 QuickDraw Programmer”s Guide

A cursor is defined as a 256-bit image, a 16-by-16-bit square. The row
"width of a cursor is 2 bytes. Figure 8 illustrates four cursors.

]
4
"
-]

et et

-
-l

>
|
]

an

l
&

Figure 8. Cursors

0

A cursor has three fields: a l6-word data field that contains the
image itself, a 16-word mask field that contains information about the
screen appearance of each bit of the cursor, and a hotSpot point that
aligns the cursor with the position of the mouse.

TYPE Cursor = RECORD
data: ARRAY [@..15] OF INTEGER;
mask: ARRAY [@..15] OF INTEGER;
hotSpot: Point
END;

The data for the cursor must begin on a word boundary.

The cursor appears on the screen as a 16-by-16-bit square. The
appearance of each bit of the square is determined by the corresponding
bits in the data and mask and, if the mask bit is @, by the pixel
"under” the cursor (the one already on the screen in the same position
as this bit of the cursor):

Data Mask Resulting pixel on screen

@ 1 White

1 1 Black

1)) Same as pixel under cursor

1 1) " Inverse of pixel under cursor

Notice that if all mask bits are (), the cursor is completely
transparent, in that the image under the cursor can still be viewed:
pixels under the white part of the cursor appear unchanged, while under
the black part of the cursor, black pixels show through as white.

3/2/83 Espinosa-Rose . /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 17

‘The hotSpot aligns a point in the image (not a bit, a point!) with the
mouse position. Imagine the rectangle with corners (9,#) and (16,16)
framing the image, as in each of the examples in Figure 8; the hotSpot
is defined in this coordinate system. A hotSpot of (#,0) is at the top
left of the image. For the arrow in Figure 8 to point to the mouse
position, (@,0) would be its hotSpot. A hotSpot of (8,8) is in the
exact center of the image; the center of the plus sign or circle in
Figure 8 would coincide with the mouse position if (8,8) were the
hotSpot for that cursor. Similarly, the hotSpot for the pointing hand
would be (16,9). '

Whenever you move the mouse, the low—-level interrupt—driven mouse
routines move the cursor”s hotSpot to be aligned with the new mouse
position.

(hand)
The mouse position is always linked to the cursor
position. You can“t reposition the cursor through
software; the only control you have is whether 1it"s
visible or not, and what shape it will assume. Think of
it as being hard-wired: 1if the cursor is visible, it
always follows the mouse over the full size of the
screen.

QuickDraw supplies a predefined arrow cursor, an arrow pointing
north-northwest.

THE DRAWING ENVIRONMENT: GRAFPORT

A grafPort 1is a completejdrawing environment that defines how and where
graphic operations will have their effect. It contains all the
information about one instance of graphic output that is kept separate
from all other instances. You can have many grafPorts open at once,
and each one will have its own coordinate system, drawing pattern,
background pattern, pen size and location, character font and style,
and bitMap in which drawing takes place. You can instantly switch from
one port to another. GrafPorts are the structures on which a program
builds windows, which are fundamental to the Macintosh "overlapping
windows"” user interface.

3/2/83 Espinosa-Rose ' /QUICK/QUIKDRAW.3

18 QuickDraw Programmer”s Guide

A grafPort’is a dynamic dqta structure, defined as follows:

TYPE GrafPtr = “GrafPort;

GrafPort = RECORD

i device: INTEGER;
portBits: BitMap;
portRect: Rect;
visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat: Pattern;
fillPat: Pattern;
pnLoc: Point;
pnSize: Point; .
pnMode: . INTEGER;
pnPat: Pattern;
pnVis: INTEGER;
txFont: INTEGER;
txFace: Style;
txMode: INTEGER;

! txSize: INTEGER;
spExtra: INTEGER;
fgColor: LongInt;
bkColor: LongInt;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: QDHandle;
rgnSave: QDHandle;

polySave: QDHandle;
grafProcs: QDProcsPtr
END;

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure NEW and use the resulting pointer in
calls to QuickDraw. You could, of course, declare a static VAR of type
grafPort, and obtain a pointer to that static structure (with the @
operator), but as most grafPorts will be used dynamically, their data
structures should. be dynamic also.

(hand)
You can access all fields and subfields of a grafPort
normally, but you should not store new values directly
into them. QuickDraw has procedures for altering all
fields of a grafPort, and using these procedures ensures
that changing a grafPort produces no unusual side
effects.

The device field of a grafPort is the number of the logical output
device that the grafPort will be using. The Font Manager uses this
information, since there are physical differences in the same logical
font for different output devices. The default device number is @, for
the Macintosh screen. For more information about device numbers, see
the *** not yet existing *** Font Manager documentation.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3

Table of Contents

1861 Table of Contents

B chapter 1 Introduction 190

W Chapter2 Basics 192

194 Operation Forms ,
194 Arithmetic and Auxiliary Operations
195 Conversions

195 Comparisons

195 Other Operations

196 External Access

196 Calling Sequence

197 The Opword

198 Assembly-Language Macros

199 Arithmetic Abuse

] Chapter 3 Data Types 200

B Chapter4 Arithmetic Operations and 204
Auxiliary Routines ' ‘

206 Add, Subtract, Multiply, and Divide
206 Square Root

206 Round-to-Integer, Truncate-to-Integer
207 Remainder

207 Logb, Scalb

208 Negate, Absolute-Vaiue, Copy-Sign
209 Next-After

Table of Contents 187

H Chapter 5 Conversions 210

211 Conversions Between Binary Formats
21 Conversions to Extended

212 Conversions From Extended

212 Binary-Decimal Conversions

212 Binary to Decimal

213 Fixed-Format “Overflow”
213 Decimal to Binary
213 Techniques for Maximum Accuracy

H Chapter 6 Comparisons and Inquiries 216

217 Comparisons
218 Inquiries

] Chapter 7 = Environmental Control 220

221 The Environment Word

223 Get-Environment and Set-Environment
224 Test-Exception and Set-Exception

225 Procedure-Entry and Procedure-Exit

M chapter 8 Halts 226

227 Conditions for a Halt
228 The Halt Mechanism
229 Using the Halt Mechanism

| Chapter 9 Elementary Functions 232

233 One-Argument Functions
234 Two-Argument Functions
235 Three-Argument Functions

1881 Part lil: The 68000 Assembly-Language SANE Engine

W Appendix A 68000 SANE Access 236

M Appendix B 68000 SANE Macros 238

W Appendix C 68000 SANE Quick Reference 262
- Guide

Table of Contents l189

THE DRAWING ENVIRONMENT: GRAFPORT 19

The portBits field is the bitMap that points to the bit image to be
used by the grafPort. All drawing that is done in this grafPort will
take place in this bit image. The default bitMap uses the entire
Macintosh screen as its bit image, with rowBytes of 64 and a boundary
rectangle of ($,$,512,342). The bitMap may be changed to indicate a
different structure in memory: all graphics procedures work in exactly
the same way regardless of whether their effects are visible on the
screen. A program can, for example, prepare an image to be printed on
‘a printer without ever displaying the image on the screen, or develop a
picture in an off-screen bitMap before transferring it to the screen.
By altering the coordinates of the portBits.bounds rectangle, you can
change the coordinate system of the grafPort; with a QuickDraw
procedure call, you can set an arbitrary coordinate system for each
grafPort, even 1f the different grafPorts all use the same bit image
(e.g., the full screen).

The portRect field is a rectangle that defines a subset of the bitMap
for use by the grafPort. Its coordinates are in the system defined by
the portBits.bounds rectangle. All drawing done by the application
occurs Inside this rectangle. The portRect usually defines the
"writable"” interior area of a window, document, or other object on the
screen.

The visRgn field is manipulated by the Window Manager; users and
programmers will normally never change a grafPort”s visRgn. It
indicates that region (remember, an arbitrary area or set of areas)
which is actually visible on the screen. For example, if you move one
window in front of another, the Window Manager logically removes the
area of overlap from the visRgn of the window in the back. When you
draw into the back window, whatever”s being drawn is clipped to the
visRgn so that it doesn“t run over onto the front window. The default
visRgn is set to the portRect. The visRgn has no effect on images that
are not displayed on the screen.

The clipRgn is an arblitrary region that the application can use to
limit drawing to any region within the portRect. If, for example, you
want to draw a half circle on the screen, you can set the clipRgn to
half the square that would enclose the whole circle, and go ahead and
draw the whole circle. Only the half within the clipRgn will actually
be drawn in the grafPort. The default clipRgn 1s set arbitrarily
large, and you have “full control over its setting. Notice that unlike
the visRgn, the clipRgn affects the 1image even 1if it is not displayed
on the screen.

Figure 9 illustrates a typical bitMap\(as defined by portBits),
portRect, visRgn, and clipRgn.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW,.3

Chapter 1

Introduction

1901 Part lll: The 68000 Assembly-Language SANE Engine

The purpose of the software package described in Part lil of this
manual is.to provide the features of the Standard Apple Numeric .
Environment (SANE) to assembly-language programmers using
Apple’s 68000-based systems. SANE —described in detail in

Part |—fully supports the IEEE Standard (754) for Binary
Floating-Point Arithmetic, and augments the Standard to provide
greater utility for applications in accounting, finance, science, and -
engineering. The IEEE Standard and SANE offer a combination of
quality, predictability, and portability heretofore unknown for
numerical software.

A functionally equivalent 6502 assembly-language SANE engine is
available for Apple’s 6502-based systems. Thus numerical
algorithms coded in assembly language for an Apple 68000-based
system can be readily recoded for an Apple 6502-based system.
We have chosen macros for accessing the 6502 and 68000
engines to make it easier to port algorithms from one system to
the other.

Part lll of this manual describes the use of the 68000
assembly-language SANE engine, but does not describe SANE
itself. For example, Part lll explains how to call the SANE
_remainder function from 68000 assembly language, but does not
discuss what this function does. See Part | for information about
the semantics of SANE.

See Appendix A for information about accessing the 68000 SANE
engine from the Apple 68000-based systems.

Chapter 1: Introduction [191

Chapter 2

Basics

1921 - Part lil: The 68000 Assembly-Language SANE Engine

PEA
PEA
FSUBS

The following code illustrates a typical invocation of the SANE
engine, FP68K. '

A_ADR ; Push address of A (single format)
B_ADR ; Push address of B (extended format)

; Floating-point SUBtract Single: B < B - A

, FSUBS is an assembly-language macro taken from the file listed

in Appendix B. The form of the operation in the example

(B —~ B - A, where A is a numeric type and B is extended) is
similar to the forms for most FP68K operations. Also, this example
is typical of SANE engine calls because operands are passed to
FP68K by pushing the addresses of the operands onto the stack
prior to the call. Details of SANE engine access are given later in
this chapter. '

The SANE elementary functions are provided in Elems68K.
Access to Elems68K is similar to access to FP86K; details are
given in Chapter 9.

Chapter 2: Basics [193

/

| Operation Forms

1941

The example above illustrates the form of an FP68K binary
operation. Forms for other FP68K operations are described in this
section. Examples and further details are given in subsequent
chapters.

Qrithmetic‘and Auxiliary Operations

Most numeric operations are either unary (one operana), like
square root and negation, or binary (two operands), like addition
and multiplication. '

The 68000 assembly-language SANE engine, FP68K, provides
unary operations in a one-address form: -

DST <= <op> DST ... for example, B < sqgrt(B)

The operation <op > is applied to (or operates on) the operand
DST and the result is returned to DST, overwriting the previous
value. DST is called the destination operand.

FP68K provides binary operations in a two-addresé form:
DST < DST <op> SRC ... for example,B <« B/A

The operation <op > is applied to the operands DST and SRC
and the result is returned to DST, overwriting the previous value.
SRC is called the source operand.

In order to store the result of an operation (unary or binary), the
location of the operand DST must be known to FP68K, so DST is
passed by address to FP68K. In general all operands, source and
destination, are passed by address to FP68K.

For most operations the storage format for a source operand
(SRC) can be one of the SANE numeric formats (single, double,
extended, or comp). To support the extended-based SANE
arithmetic, a destination operand (DST) must be in the extended
format.

The forms for the copysign next-after functions are unusual and
are discussed in Chapter 4.

Part lll: The 68000 Assembly-Language SANE Engine

Conversions

FPB8K provides conversions between the extended format and
other SANE formats, between extended and 16- or 32-bit integers,
. and between extended and decimal records. Conversions between
binary formats (single, double, extended, comp, and integer) and
conversions from decimal to binary have the form '

DST < SRC
Conversions from binary to decimal have the form
DST + SRC according to SRC2

where SRC2 is a DecForm record specifying the decimal format
for the conversion of SRC to DST.

Comparisons
Comparisons have the form
<relation> <« SRC, DST

where DST is extended and SRC is single, double, comp, or
extended, and where <relation > is less, equal, greater, or
unordered according as -

DST <relation> SRC

Here the result <relation> is indicated by setting the 68000 CCR
flags. ‘ :

{

Other Operations

FP68K provides inquiries for determining the class and sign of an
operand and operations for accessing the floating-point
environment word and the halt address. Forms for these
operations vary and are given as the operations are introduced.

Chapter 2: Basics ‘ l195

. External Access

The SANE engine, FP68K, is reentrant, position-independent code,
which may be shared in multiprocess environments. It is accessed

- through one entry point, labeled FP68K. Each user process has a

static state area consisting of one word of mode bits and error
flags, and a two-word halt vector. The package allows for different
access to the state word in single and multiprocess environments.

The package preserves all 68000 registers across invocations,
except that REMAINDER modifies D0. The package modifies the
68000 CCR flags. Except for binary-decimal conversions, it uses
little more stack area than is required to save the sixteen 32-bit
68000 registers. Because the binary-decimal conversions
themselves call the package (to perform multiplies and divides),
they use about twice the stack space of the regular operations.

The access constraints described in this section also apply to
Elems68K. :

| Calling Sequence

1961

A typical invocation of the engine consists of a sequence of PEA’s
to push operand addresses followed by one of the Appendix B
macros:

PEA <source address>
PEA <destination address>
<FOPMACRO>

peA’s for source operands always precede those for destination
operands. <FOPMACRO> represents a typical operation macro
defined as

MOVE.W <opword>,-(SP) ; Push op code.
JSRFP -

The macro JsrFP in turn generates a call to FP68K; for
Macintosh™ it expands to an A-line trap, whereas for Lisa® it
expands to an intrinsic unit subroutine call

JSR FP68K .

Part lll: The 68000 Assembly-Language SANE Engine

The Opword Co

The opword is the logical OR of an operand format code and an
operation code.

The operand format code specifies the format (extended, double,
single, integer, or comp) of one of the operands. The operand
format code typically gives the format for the source operand
(SRC). At most one operand format need be specified, because
other operands’ formats are implied.

The operation code specifies the operation to be performed by
FP68K.

(Opwords are listed in Appendix C; operand format codes and
operation codes are listed in Appendix B.)

Example

The format code for single is 1000 (hex). The operation code for
divide is 0006 (hex). Hence the opword 1006 (hex) indicates divide
by a value of type single.

Chapter 2: Basics 97

Assembly-Language Macros
The macro file in Appendix B provides macros for

MOVE.W <opword>, -(SP)
JSRFP

for most common <opword > calls to FP68K.

Example 1

Add a single-format operand A to an extended-format operand B.

PEA A_ADR ; Push address of A
PEA B_ADR ; Push address of B
FADDS ; Floating-point ADD Single: B “~ B + A
Example 2 (

Compute B + sqrt(A), where A and B are extended. The value of
A should be preserved.

PEA A_ADR ; Push address of A

PEA B_ADR i Push address of B

FX2X ; Floating-point eXtended to eXtended: B “ A

PEA B_ADR ; Push address of B

FSQRTX ; Floating SQuare RooT eXtended: B “ sqrt(B)
Example 3

Compute C < A - B, where A, B, and C are in the double format.
Because destinations are extended, a temporary extended
variable T is required.

PEA A_ADR ; Push address of A

PEA T_ADR ; Push address of 10-byte temporary variable
FD2X ; F1-pt convert Double to eXtended: T “ A
PEA B_ADR ; Push address of B

PEA T_ADR ; Push address of temporary

FSUBD ; F1-pt SUBtract Double: T < T - B

PEA T_ADR ; Push address of temporary

PEA C_ADR ; Push address of C ,

FX2D ; F1-pt convert eXtended to Double: C “ T

1981 Part lll: The 68000 Assembly-Language SANE Engine

iArithmetic Abuse

FP68K is designed to be as robust as possible, but it is not
bullet-proof. Passing the wrong number of operands to the engine
damages the stack. Using UNDEFINED opword parameters or
passing incorrect addresses produces undefined results.

Chapter 2: Basics [199

20 QuickDraw Programher’s Guide

Grathornt | POnE it sy
|

R "o XL f
=CLipRan

......

Figure 9. GrafPort Regions

The bkPat and fillPat fields of a grafPort contain patterns used by
certain QuickDraw routines. BkPat is the "background" pattern that is
used when an area is erased or when bits are scrolled out of it. When
asked to fill an area with a specified pattern, QuickDraw stores the
given pattern in the fillPat field and then calls a low-level drawing
routine which gets the pattern from that field. The various graphic
operations are discussed in detail later in the descriptions of
individual QuickDraw routines.

Of the next ten fields, the first five determine characteristics of the
graphics pen and the last five determine characteristics of any text
that may be drawn; these are described in subsections below.

The fgColor, bkColor, ‘and colrBit fields contain values related to
~drawing in color, a capability that will be available in the future
when Apple supports color output devices for the Macintosh. FgColor is
the grafPort”s foreground color and bkColor is its background color.
ColrBit tells the color imaging software which plane of the color
picture to draw into. For more information, see "Drawing in Color" in
the general discussion of drawing. : '

The patStretch field 1s used during output to a printer to expand
patterns if necessary. The .application should not change its value.

The picSave, rgnSave, and polySave fields reflect the state of picture,
region, and polygon defintion, respectively. To define a region, for
example, you "open" it, call routines that draw it, and then "close”
it. If no region is open, rgnSave contains NIL; otherwise, it contains
~a handle to information related to the region definition. The
application should not be concerned about exactly what information the
handle leads to; you may, however, save the current value of rgnSave,
set the field to NIL to disable the region definition, and later
restore it to the saved value to resume the region definition. The

N

3/2/83 .Espinosa-Rose /QUICK/QUIKDRAW.3

Chapter 3

Data Types

2001 Part {ll: The 68000 Assembly-Language SANE Engine

FP68K fully supports the SANE data types

single — 32-bit floating-point

double — 64-bit floating-point

comp — B4-bit integer

extended — 80-bit floating-point

and the 68000-specific types

integer — 16-bit two’s complement integer
longint — 32-bit two's complement integer

The 68000 engine uses the convention that least-significant bytes
are stored in high memory. For example, let us take a variable of
type single with bits

s — sign
e0 ... e7 — exponent (msb...Isb)
fo ... f22 — significand fraction (msb...Isb)

Chapter 3: Data Types . (201

The logical structure of this four-byte variable is shown below.

. Order '
msb 1sb msb 1sb

1000 1001 1002 1003
Memory Location ‘

If this variable is assigned the address 1000, then its bits are
distributed to the locations 1000 to 1003 as shown. (

The other SANE formats (see Chapter 2 in Part 1) are represented
in memory in similar fashion.

2021 Part lll: The 68000 Assembly-Language SANE Engine

Chapter 4

- Arithmetic Operations and Aukiliary Routines

2041 Part lll: The 68000 Assembly-Language SANE Engine

The operations covered in this chapter follow the access schemes
described in Chapter 2.

Unary operations follow the one-address form:.
DST < <op> DST. They use the calling sequence

PEA <DST address>
<FOPMACRO>

Binary operations follow the two-address form:
DST « DST <op> SRC. They use the calling sequence

PEA <SRC address>
PEA" <DST address>
<FOPMACRO>

The destination operand (DST) for these operations is passed by
address and is generally in the extended format. The source
operand (SRC) is also passed by address and may be single,
double, comp, or extended. Some operations are distinguished by
requiring some specific type for SRC, by using a nonextended
destination, or by returning auxiliary information in the DO register
and in the processor CCR status bits. In this section, operations
so distinguished are noted. The examples employ the macros in
Appendix B.

Chapter 4: Arithmetic Operations and Auxiliary Routines [205

| Add, Subtract, Multiply, and Divide

PEA
PEA

FDIVD

These are binary operations and follow the two-address form.

Example
B <~ B /A, where A is double and B is extended.

A_ADR ; push address of A
B_ADR ' ; push address of B

; divide with source operand of type double

N Square Root

PEA

FSQRTX

This is.a unary operation and follows the one-address form.

- Example

B + sqrt(B) , where B is extended.

B_ADR ; push address of B

; square root (operand is always extended)

M Round-to-Integer, Truncate-to-Integer

2061

These are unary operations and follow the one-address form.

Round-to-integer rounds (according to the current rounding
direction) to an integral value in the extended format.
Truncate-to-integer rounds toward zero (regardless of the current
rounding direction) to an integral value in the extended format. The
calling sequence is the usual one for unary operators, illustrated
above for square root.

Part lll: The 68000 Assembly-Language SANE Engine

tRemainder

This is a binary operation and follows the two-address form.

Remainder returns auxiliary information: the low-order integer
quotient (between -127 and +127) in DO.W. The high half of D0.L
is undefined. This intrusion into the register file is extremely
valuable in argument reduction—the principal use of the remainder
function. The state of DO after an invalid remainder is undefined.

Example \
B < Brem A, where A is single and B is extended. -
PEA A_ADR i push address of A
PEA B_ADR ; push address of B
FREMS ; remainder with source operand of type single

| Logb, Scalb

Logb is a unary operation and follows the one-address form.

Scalb is a binary operation and follows the two-address form. lts
source operand is a 16-bit integer.

Example

B+ B = 2! where B is extended.

PEA I_ADR ; push address of 1
PEA B_ADR ;s push address of B
FSCALBX ; scalb

Chapter 4: Arithmetic Operations and Auxiliary Routines [207

N Negate, Absolute Value, Copy-Sign

208

Negate and absolute value are uﬁary operations and follow the
one-address form.

Copy-sign uses the calling sequence

PEA <SRC address>
" PEA <DST address>
FCPYSGNX

to copy the sign of DST onto the sign of SRC. Note that copy-sign
differs from most two-address operations in that it changes the
SRC value rather than the DST value. The formats of the
operands of FCPYSGNX can be single, double, or extended. (For
efficiency, the 68000 assembly-language programmer should copy
signs directly rather than calling FP68K.)

Example

Copy the sign of B (single, double, or extended) into the sign of A
{single, double, or extended).

PEA A_ADR ; push address of A

PEA B_ADR ; push address of B
FCPYSGNX ; copy-sign

Part lll: The 68000 Assembly-Language SANE Engine

. Next-After

Both source and destination operands must be of the same
floating-point type (single, double, or extended). The next-after
operations use the calling sequence

PEA <SRC address>
PEA <DST address>
<next-after macro>

to effect SRC + next value, in the format indicated by the macro,
after SRC in the direction of DST. Note that next-after operations
differ from most two-address operations in that they change SRC
values rather than DST values.

Example

A + next-after(A) in the direction of B, where A and B are double
(so next-after means next-double-after).

PEA A_ADR s push address of A
PEA B_ADR ; push address of B
FNEXTD ; next-after in double format

Chapter 4: Arithmetic Operations and Auxiliary Routines (209

THE DRAWING ENVIRONMENT: GRAFPORT 21

picSave and polySave fields work similarly for pictures and polygons.

Finally, the grafProcs field may point to a special data structure that
the application stores into if it wants to customize QuickDraw drawing
procedures or use QuickDraw in other advanced, highly specialized ways.
(For more information, see "Customizing QuickDraw Operations”.) If
grafProcs 1s NIL, QuickDraw responds in the standard ways described in
this manual.

Pen Characteristics

The pnlLoc, pnSize, pnMode, pnPat, and anis‘fields of a grafPort deal
with the graphics pen. Each grafPort has one and only one graphics
pen, which is used for drawing lines, shapes, and text. As illustrated
in Figure 1, the pen has four characteristics: a location, a size, a
drawing mode, and a drawing pattern.

2 Patiern
S Width

Locatian «

Figure 1#. A Graphics Pen

The pen location is a point in the coordinate system of the grafPort,
and is where QuickDraw will begin drawing the next line, shape, or
character. It can be anywhere on the coordinate plane: there are no
restrictions on the movement or placement of the pen. Remember that
the pen location is a point on the coordinate plane, not a pixel in a
bit image! ‘

The pen is rectangular in shape, and has a user—-definable width and
height. The default size is a 1-by-l1-bit square; the width and height
can range from (§,0) to (32767,32767). 1f either the pen width or the
- pen height is less than 1, the pen will not draw on the screen.

~ The pen appears as a rectangle with its top left cornmer at the pen

location; it hangs below and to the right of the pen location.
{ . ’

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3

Chapter 5

Conversions .

2101 Part lil: The 68000 Assemblﬁ;Language SANE Engine
} \

This chapter discusses conversions between binary formats and
conversions between binary and decimal formats.

| Conversions Between Binary Formats

FPB8K provides conversions between the extended type and the
} SANE types single, double, and comp, as well as the 16- and
32-bit integer types.

Conversions to Extended

FPE68K provides conversions of a source, of type single, double,
comp, extended, or integer, to an extended destination.

single
.~ double
extended b comp
extended
integer

All operands, even integer ones, are passed by address. The
following example illustrates the calling sequence.

Example

Convert A to B, where A is of type comp and B is extended.
PEA A_ADR ; push address of A

PEA B_ADR ; push address of B

FC2X ; convert comp to extended

Chapter 5: Conversions [211

Conversions From Extended

FP68K provides conversions of an extended source to a
destination of type single, double, comp, extended, or integer.

single

double

comp - extended
extended

integer .

{Note that conversion to a narrower format may alter values.)
Contrary to the usual scheme, the destination for these
conversions need not be of type extended. All operands are
passed by address. The following example illustrates the calling
sequence. ‘

Example

Convert A to B where A is extended and B is doubie.

PEA A_ADR ; push address of A
PEA B_ADR ; push address of B
FX2D ; convert extended to double

] Binary-Decimal Conversions

2121

FP68K provides conversions between the binary types (single,
double, comp, extended, and integer) and the decimal record type.

Decimal records and decform records (used to specify the form of
decimal representations) are described in Chapter 4 of Part |. For
FP68K, the maximum length of the sig digits field of a decimal
record is 20. (The value 20 is specific to this implementation:
algorithms intended to port to other SANE implementations should
use no more than 18 digits in sig.)

Binary to Decimal

The calling sequence for a conversion from a. binary format to a
decimal record passes the address of a decform record, the
address of a binary source operand, and the address of a
decimal-record destination. The maximum number of significant
digits that will be returned is 19..)

Part lll: The 68000 Assembly-Language SANE Engine

Example

Convert a comp-format value A to a decimal record D according to
the decform record F.

PEA F_ADR i push address of F
PEA A_ADR ; push address of A
PEA D_ADR ; push address of D
FC2DEC ; convert comp to decimal

Fixed-Format “Overﬂow”

If a number is too large for a chosen fixed style, then FP68K
returns the string ‘?’ in the sig field of the decimal record.

Decimal to Binary

The calling sequence for a conversion from decimal to binary
passes the address of a decimal-record source operand and the
address of a binary destination operand.

The maximum number of digits in sig is 19. If the length of sig

is 20, then sig represents its first 19 digits plus one or more
additional nonzero digits after the 19th. The exponent corresponds
to the 19-digit integer represented by the first 19 digits of sig.

Example

~ Convert the decimal record D to a double-format value B.
PEA D_ADR ; push address of D
PEA B_ADR ; push address of B

FDEC2D ; convert decimal to double

Techniques for Maximum Accuracy

The following techniques apply to FP68K; other SANE
implementations require other techniques.

For maximum accuracy, insert or delete trailing zeros for the sig
field of a decimal record in order to minimize the magnitude of the
exp field. For example, for 1.0E60 set sig to
‘1000000000000000000000000000° (17 zeros) and exp to 43, and
for 300E-43 set sig to ‘3’ and exp to -41.

Chapter 5: Conversions ‘ [213

214]

If you are writing a parser and must handle a number with more
than 19 significant digits, follow these rules:

e Place the implicit decimal point to the right of the 19 most
significant digits.

o If any of the discarded digits to the right of the implicit decimal
point are nonzero, then concatenate the digit ‘1’ to sig.

Part lll: The 68000 Assembly-Language SANE Engine

Chapter 6

Comparisons and Inquiries

2161 Part lll: The 68000 Assembly-Language SANE Engine

| Comparisons

FP68K offers two comparison operations: FCPX (which signals
invalid if its operands compare unordered) and FCMP (which does
not). Each compares a source operand (which may be single,
double, extended, or comp) with a destination operand (which
must be extended). The result of a comparison is the relation
(less, greater, equal, or unordered) for which

DST <relation> SRC
is true. The result is delivered in the X, N, Z, V, and C status bits:

Result Status Bits

' XNzZVC
greater 00000
less 11001
equal 00100
unordered 00010

These status bit encodings reflect that fioating-point comparisons
have four possible results, unlike the more familiar integer
comparisons with three possible results. You need not learn these
encodings, however; simply use the FBxxx series of macros for
branching after FCMP and FCPX.

FCMP and FCPX are both provided to facilitate implementation of
relational operators defined by higher level languages that do not
contemplate unordered comparisons. The IEEE standard specifies
that the invalid exception shall be signaled whenever necessary to
alert users of such languages that an unordered comparison may
have adversely affected their program’s logic.

Chapter 6: Comparisons and Inquiries [217

Example.1

Test B < = A, where B is extended and A is single; if TRUE
branch to LOC; signal if unordered.

PEA A_ADR 7 push address of A

PEA B_ADR ; push address of B

FCPXS ; compare using source of type single,
; signal invalid if unordered

FBLE Loc ; branch if B <= A

Example 2

Test B not-equal A, where B is extended and A is double'; if TRUE
branch to LOC. (Note that not-equal is equivalent to less, greater,
or unordered, so invalid should not be signaled on unordered.)

PEA A_ADR : push address of A
" PEA- B_ADR ; push address of B
FCMPD ; compare using source of type double,
; do not signal invalid if unordered
FBNE LOC ; branch if B not-equal A
N Inquiries

The classify operation provides both class and sign inquiries. This
operation takes one source operand (single, double, or extended),
which is passed by address, and places the result in a 16-bit
integer destination.

The sign of the result is the sign of the source; thé magnitude of

the result is

1 signaling NaN
2 quiet NaN

3 infinite

4 zero

5 normal

6 denormal

2181 Part Ill: The 68000 Assembly-Language SANE Engine

Example ‘
Set C to sign and class of A.

PEA A_ADR i push address of A
PEA C_ADR ; push address of result
FCLASSS ; classify single

Chapter 6: Comparisons and Inquiries |219_

22 QuickDraw Programmer”s Guide

The pnMode and pnPat fields of a grafPort determine how the bits under
the pen are affected when lines or shapes are drawn. The pnPat is a°
pattern that is used like the "ink"” in the pen. This pattern, like all
other patterns drawn in the grafPort, is always aligned with the port”s
coordinate system: the top left. corner of the pattern is aligned with
the top left corner of the portRect, so that adjacent areas of the same
pattern will blend into a continuous, coordinated pattern. Five
patterns are predefined (white, black, and three shades of gray); you
can also create your own pattern and use it as the pnPat. (A utility
procedure, called StuffHex, allows you to fill patterns easily.)

The pnMode field determinesthow the pen pattern is to affect what”s
already on the bitMap when lines or shapes are drawn. When the pen
draws, QuickDraw first determines what bits of the bitMap will be
affected and finds their corresponding bits in the pattern. It then
does a bit-by-bit evaluation based on the pen mode, which specifies omne
of eight boolean operations to perform. The resulting bit is placed -
into its proper place in the bitMap. The pen modes are described under
"Transfer Modes” in the general discussion of}drawing below.

The pnVis field determines the pen”s visibility, that is, whether it
draws on the screen. For more information, see the descriptions of
HidePen and ShowPen under "Pen and Line-Drawing Routines” in the
"QuickDraw Routines"” section.

Text Characteristics

The txFont, txFace, txMode, txSize, and spExtra fields of a grafPort
determine how text will be drawn -— the font, style, and size of
characters and how they will be placed on the bitMap.

(hand) ,
In the Macintosh User Interface Toolbox, character style
means stylistic variations such as bold, italic, and
underline; font means the complete set of characters of
one typeface, such as Helvetica, and does not include the
character style or size. ’

QuickDraw can draw characters as quickly and easily as it draws lines
and shapes, and in many prepared fonts. Figure 11 shows two QuickDraw
characters and some terms you should become familiar with.

3/2/83 Espinosa-Rose | /QUICK/QUIKDRAW.3

Chapter 7

Environmental Control

2201 Part lll: The 68000 Assembly-Language SANE Engine

. The Environment Word

The floating-point environment is encoded in the 16-bit integer
format as shown below in hexadecimal:

msb ' Isb
—{rlrix]d]lofuli]-{RIR[X]|D]OJU]I]
rounding exception rounding halts
direction flags precision enabled
rounding direction, bits 6000 rr
0000 — to-nearest
2000 — upward
4000 — downward
6000 — toward-zero
exception flags, bits 1F00
0100 — invalid i
0200 — underflow u
0400 — overflow o]
0800 — division-by-zero d
1000 — inexact X

Chapter 7: Environmental Control [221

rounding precision, bits 0060 RR

0000 — extended
0020 — double
0040 — single
0060 — UNDEFINED

halts enabled, bits 001F
0001 — invalid |
0002 — underflow U
0004 — overflow @)
0008 — division-by-zero D
0010 — inexact X

Bits 8000 and 0080 are undefined.

Note that the default environment is represented by the integer
value zero.

Example

With rounding toward-zero, inexact and underflow exception flags
raised, extended rounding precision, and halt on invalid, overflow,
and division-by-zero, the most significant byte of the environment
is 72 and the least significant byte is 0D.

Access to the environment is via the operations get-environment,
set-environment, test-exception, set-exception, procedure-entry,
and procedure-exit. ‘

222] Part lll: The 68000 Assembly-Language SANE Engine

. Get-Environment and Set-Environment

Get-environment takes one input operand: the address of a-16-bit
integer destination. The environment word is returned in the
destination. ’

Set-environment has one input operand: the address of a 16-bit
integer, which is to be interpreted as an environment word.

Example

Set rounding direction to toward-zero.

PEA A_ADR

FGETENV

LEA A_ADR, AO ; AO gets address of A
MOVE.w (AO),DO ; DO gets environment

OR.W #$6000, D0 ~ : set rounding toward-zero
MOVE.W DO, (AO) ; restore A

PEA A_ADR

FSETENV

Chapter 7: Environmental Control [223

N Test-Exception and Set-Exception

Test— exception takes one operand: the address of a 16— bit integer
destination. On input the destination contains a bit index:

0 -- invalid

1 -- underflow

2 -- overflow

3 -- divide—~ by- zero
4 -- inexact

If the corresponding exception flag is set, then test— exception
returns the value 1 in the high byte of the destination; otherwise it
returns zero.

Example
Branch to XLOC if underflow is set.

MOVE.W #FBUFLOW,-(SP) ;underflow bit index

PEA (SP) -

FTESTXCP

TST.B (SP)+ ; test byte, pop word
BNE XLOC

Set—- exception takes one source operand, the address of a16— bit
integer which encodes an exception in the manner described above
for test— exception. Set— exception stimulates the indicated
exception.

2241 Part lll: The 68000 Assembly-Language SANE Engine

] Procedure-Entry and Procedure-Exit

Procedure-entry saves the current floating-point environment
(16-bit integer) at the address passed as the sole operand, and
sets the operative environment to the default state.

Procedure-exit saves (temporarily) the exception. flags, sets the
environment passed as the sole operand, and then stimulates the
saved exceptions.

Example
Here is a procedure that appears to its callers as an atomic
operation.
ATOMICPROC
PEA E_ADR i push address to store environment
FPROCENTRY ; procedure entry
...body of routine. ..
PEA E_ADR ; push address of environment
FPROCEXIT ; procedure exit
RTS

Chapter 7: Environmental Control [225

Chapter 8

Halts

2261 Part lll: The 68000 Assembly-Language SANE Engine

FP68K lets you transfer program control when selected
floating-point exceptions occur. Because this facility will be used to
implement halts in high-level languages, we refer to it as a halt
mechanism. The assembly-language programmer can write a halt
handler routine to cause special actions for floating-point
exceptions. The FP68K halting mechanism differs from the traps
that are an optional part of the IEEE Standard.

B conditions for a Halt

Any floating-point exception can, under the appropriate conditions,
trigger a halt. The halt for a particular exception is enabled when
the user has set the halt-enable bit corresponding to that

" exception.

Chapter 8: Halts , [227

. The Halt Mechanism

If the halt for a given exception is enabled, FP68K does these
things when that exception occurs:

1. FP68K delivers the same result to the destination address that
it would return if the halt were not enabled.

2. It sets up the following stack frame:

I pending DO (long word)
i pending CCR (word)
! ‘ halt exceptions (word)

MISC record pointer (long word) —-——-J

SRC2 address (long word)

SRC address (long word)

DST address (long word)

opcode (word)

(A7)-———0| return address (long word)

. The first word of the record MISC contains in its five low-order
bits the AND of the halt-enable bits with the exceptions that
occurred in the operation just completing. If halts were not
enabled, then (upon return from FP68K) CCR and DO would -
have the values given in MISC. '

3. It passes control by JSR through the halt vector previously set
by FSETHYV, pushing another long word containing a return
address in FP68K. If execution is to continue, the halt
procedure must clear 18 bytes from the stack to remove the
opword and the DST, SRC, SRC2, and MISC addresses.

2281 Part lll: The 68000 Assembly-Language SANE Engine

Set-halt-vector has one input operand: the address of a 32-bit
integer, which is interpreted as the hait vector (that is, the address
to jump to in case a halt occurs).

Get-halt-vector has one iriput operand: the address of a 32-bit
integer, which receives the halt vector.

| Using the Halt Mechanism

This example illustrates the use of the halt' mechanism. The user
must set the halt vector to the starting address of a halt handler
routine. This particular halt handler returns control to FP68K,
which will continue as if no halt had occurred, returning to the next
instruction in the user’s program. ‘

LEA HROUTINE, AO

MOVE.L AO,H_ADR
PEA . H_ADR
FSETHV
PEA
<FOPMACRO>

-HROUTINE
MOVE.L (SP)+,A0

ADD.L #18,SP
JMP (A0)

Chapter 8: Halts

; AO gets address of halt routine

H_ADR gets same
set halt vector to HROUTINE

floating-point operand here
a floating-point call here

; called by FP68K

AO saves return address in FP68K
increment stack past arguments
return to FP68K

[229

THE DRAWING ENVIRONMENT: GRAFPORT 23

i : aacent line
ascent ‘ D
: | ! hiaze line
chaganter
descent width
= descent line

. Figure 11. QuickDraw Characters
QuckDraw can display characters in any size, as well as boldfaced,
italicized, outlined, or shadowed, all without changing fonts. It can
also underline the characters, or draw them closer together or farther
apart. '

The txFont field is a font number that identifies the character font to
be used in the grafPort. The font number ¢ represents the system font.
For more information about the system font, the other font numbers
recognized by the Font Manager, and the construction, layout, and
loading of fonts, see the *** not yet existing *** Font Manager
documentation.

A character font is defined as a collection of bit images: these
images make up the individual characters of the font. The characters
can be of unequal widths, and they“re not restricted to their "cells":
the lower curl of a lowercase j, for example, can stretch back under
the previous character (typographers call this kerning). A font can
consist of up to 256 distinct characters, yet not all characters need
be defined in a single font. Each font contains a missing symbol to be
drawn in case of a request to draw a character that is missing from the
font.

The txFace field controls the appearance of the font with values from
the set defined by the Style data type:

(bold, italic, underline, outline, shadow,
condense, extend);
SET OF Styleltem;

TYPE Styleltem

Style

You can apply these either alone or in combination (see Figure 12).
Most combinations usually look good only for large fonts.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3

The FP68K halt machanism is designed so that a halt procedure
may be written in Lisa Pascal. This is the form of a Pascal
equivalent to HROUTINE: :

type miscrec = record
halterrors : integer ;
ccrpending : integer -;

DOpending : longint ;
end {record} ;
procedure haltroutine
(var misc : miscrec ;

src2, src, dst : longint ;
opcode : integer) ;

begin {haltroutine}
end {haltroutine} ;

Like HROUTINE, haltroutine merely continues execution as if no
" halt had occurred.

2301 Part lll: The 68000 Assembly-Language SANE Engine

Chapter 9

Elementary Functions

2321 Part lll: The 68000 Assembly-Language SANE Engine

The elementary functions that are specified by the Standard Apple
Numeric Environment are made available to the 68000
assembly-language programmer in ELEMS68K. Also included are
two functions that compute log{1 + x) and 2*- 1 accurately.
ELEMSB8K calls the SANE engine (FP68K) for its basic arithmetic.
The access schemes for FP68K (described in Chapter 2) and
ELEMSB68K are similar. Opwords and sample macros are included
at the end of the file listed in Appendix B. (These macros are used
freely in the examples below.)

] One-Argument Functions

The SANE elementary functions logx(x), In(x), In1(x) = In(1 + x),
2% e expi(x) = e*- 1, cos(x), sin(x), tan(x), atan(x), and
random(x), together with log21(x) = log{1 + x) and

exp21(x) = 2*- 1, each have one extended argument, passed by
address. These functions use the one-address calling sequence

PEA DST
<EOPMACRO>

to effect
DST «~ <op> DST

<EOPMACRO> is one of the macros in Appendix B that generate
code to push an opword and invoke ELEMS68K. This calling
sequence follows the FP68K access scheme for unary operations,
such as square root and negate.

Chapter 9: Elementary Functions : [233

Example
B + sin(B), where B is of extended type.

PEA B_ADR i push address of B
FSINX ; B © sin(B)

'Two-Argument Functions
General exponentiation (x¥) has two extended arguments, both
passed by address. The result is returned in x.

Integer exponentiation (x) also has two arguments. The extended
argument x, passed by address, receives the result. The 16-bit
integer argument i is also passed by address.

Both exponentiation functions use the calling sequence for binary

operations

PEA SRC address ;s push exponent address first
PEA DST address ; push base address second
<EOPMACRO> ’

to effect

DST +— DSTSR®

Example

B « BX where the type of B is extended.

PEA K_ADR ; push address of K

PEA B_ADR ; push address of B

FXPWRI ; integer exponentiation

2341 - Part llil: The 68000 Assembly-Language SANE Engine

R Three-Argument Functions

Compound and annuity use the calling sequence

PEA SRC2 address
PEA - SRC address
PEA’ DST address
<EOPMACRO>

to effect

; push address of rate first
; push address of number of periods second
; push address of destination third

DST < <op> (SRC2, SRC)

where <op > is compound or annuity, SRC2 is the rate, and SRC
is the number of periods. All arguments SRC2, SRC, and DST
must be of the extended type.

Example

C ~ (1 + R)M where C, R, and N are of type extended.

PEA R_ADR

. PEA N_ADR

. PEA C_ADR
FCOMPOUND

; push address of R

push address of N
push address of C

; compound

Chapter 9: Elementary Functions [235

Appendix A

68000 SANE Access

2361 Part lll: The 68000 Assembly-Language SANE Engine

In your assemblies include the file TLASM/SANEMACS.TEXT,
which contains the macros mentioned in this manual. The
standard version is for Macintosh. For programs that will run on
Lisa, redefine the symbol FPBYTRAP as follows:

FPBYTRAP .EQU O

On Macintosh, the object code for FP68K and ELEMS68K is
automatically loaded as needed by the Package Manager. On Lisa,
it suffices to link your assembled code with the intrinsic unit file
IOSFPLIB.OBJ. '

Appendix A: 68000 SANE Access [237

Appendix B

- 68000 SANE Macros

2381 Part lll: The 68000 Assembly-Language SANE Eng'ine

; FILE: SANEMACS.TEXT

;. These macros and equates give assembly-language access to
; the 68K floating-point arithmetic routines.

P i . R R el

FPBYTRAP .EQU 1 ;O for Lisa, 1 for Macintosh
.MACRO JSRFP
.IF FPBYTRAP
_FpP68K ;defined in TOOLMACS
.ELSE

.REF FPE8K
JSR FPE8K
.ENDC
. ENDM

.MACRO JSRELEMS
IF FPBYTRAP
_ELEMS68K ;defined in TOOLMACS
.ELSE
.REF ELEMSE8K
JSR ELEMS68K
.ENDC
. ENDM

Appendix B: 68000 SANE Macros : [239

24 QuickDraw Programmer”s Guide

Mormat Characters

Bold Characters

Sadn Shacantaes

Underlined Characters xyz
Cutlinee Cherasters .
Shadowse Charasiars
Condensed Characters
Extended Characters

Bold Kalc {}bmrffm

... and in other fonts, wo!l

Figure 12. Character Styles

If you specify bold, each character is repeatediy drawn one bit to the
right an appropriate number of times for extra thickness.

Italic adds an italic .slant to the characters. Character bits above
the base line are skewed right; bits below the base line are skewed
left.

Underline draws a line below the base line of the characters. If part
of a character descends below the base line (as "y" in Figure 12), the
underline is not drawn through the pixel on either side of the
descending part.

You may specify either outline or shadow. Outline makes a hollow,
outlined character rather than a solid one. With shadow, not only is
the character hollow and outlined, but the outline is thickened below
and to the right of the character to achieve the effect of a shadow.
If you specify bold along with outline or shadow, the hollow part of
the character is widened.

Condense and extend affect the horizontal distance between all
characters, including spaces. Condense decreases the distance between
characters and extend increases it, by an amount which the Font Manager
determines is appropriate.

The txMode field controls the way characters are placed on a bit image.
It functions much like a pnMode: when a character is drawn, QuickDraw
determines which bits of the bit ‘image will be affected, does a
bit-by-bit comparison based on the mode, and stores the resulting bits
into the bit image. These modes are described under "Transfer Modes™
in the general discussion of drawing below. Only three of them —-
srcOr, srcXor, and srcBic —— should be used for drawing text.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3

FOX22

FOSQRT

FORTI

FOTT1
FOSCALB
FOLOGB
FOCLASS

3 UNDEFINED

FOSETENV
FOGETENV
FOSETHV
FOGETHV
FOD2B
FOB2D
FONEG
FOABS
FOCPYSGN
FONEXT
FOSETXCP
FOPROCENTRY
FOPROCEXIT
FOTESTXCP

: UNDEFINED
; UNDEFINED

2401

add

subtract

multiply

divide

compare, no exception from unordered
compare, signal invalid if unordered
rema inder

convert to extended

convert from extended

square root

round to integral value

truncate to integral value

binary scale

binary log

classify

set environment

get environment

set halt vector

get halt vector .
convert decimal to binary
convert binary to decimal
negate

absolute

copy sign

next-after

set exception

procedure entry
_procedure exit

test exception

Part lIl: The 68000 Assembly-Language SANE Engine

FFEXT EQU $0000
FFDBL EQU $0800
FFSGL .EQU $1000 ;
FEINT EQU $2000 ;
FFLNG EQU $2800 ;
FFCOMP EQU $3000 ;

; Precision code masks: forces

; value to be coerced to the range and precision specified.

FCEXT .EQU $0000 ;
FCDBL .EQU $4000 ;
FCSGL .EQU $8000 ;

extended 80-bit float
doubie 64-bit float
single 32-bit float
integer 16-bit integer
long int 32-bit integer
comp 64-bit integer

a floating point output

extended
double
single

; Dperation macros: operand addresses should already be on
; the stack, with the destination address on top. The

; suffix X, D, S, C, I, or L determines the format of the
; source operand extended, double, single, comp,

; integer, or long integer, respectively; the destination

; operand is always extended.

S e e = e = = e = = e S e e e e e S . -

I e e I R L R R L

.MACRO FADDX

MOVE.W #FFEXT+FOADD,-(SP)

.MACRO FADDD

MOVE.W #FFDBL+FOADD, -(SP)

.MACRO FADDS

MOVE.W #FFSGL+FOADD, -(SP)

Appendix B: 68000 SANE Macros

[241

.MACRO FADDC

MOVE.W #FFCOMP+FOADD, -(SP)
JSRFP

. ENDM

.MACRO FADDI

MOVE.W - #FFINT+FODADD, - (SP)
JSRFP

. ENDM

.MACRO FADDL

MOVE.W #FFLNG+FDADD, -(SP)
JSRFP

.ENDM

.MACRO FSUBX
MOVE.W #FFEXT+FOSUB, -(SP)

.MACRO FSUBD
MOVE.W #FFDBL+FOSUB, -(SP)

.MACRO FSUBS
MOVE.W #FFSGL+FOSUB, -(SP) -

.MACRO FSUBC
MOVE.W #FFCOMP+FOSUB, -(SP)

.MACRD FSUBI
MOVE.W #FFINT+FOSUB, -(SP)

.MACRO FSUBL
MOVE.W #FFLNG+FOSUB,-(SP)

2421 Part lil: The 68000 Assembly-Language SANE Engine

I e b e T i i R L PP

.MACRO FMULX

MOVE.W #FFEXT+FOMUL,-(SP)
JSRFP

.ENDM

.MACRO FMULD

MOVE.W #FFDRL+FOMUL,-(SP)
JSRFP

. ENDM

.MACRO FMULS

MOVE.W #FFSGL+FOMUL, -(SP)
JSRFP

. ENDM

.MACRO FMULC .
MOVE.W #FFCOMP+FOMUL,-(SP)
JSRFP

.ENDM

.MACRO FMULI
MOVE.W #FFINT+FOMUL, - (SP)
JSRFP -

. ENDM

.MACRO FMULL

MOVE.W #FFLNG+FOMUL, -(SP)
JSRFP

. ENDM

P T e e

P e e e I R N R N

.MACRD FDIVX
MOVE.W #FFEXT+FODIV,-(SP)

.MACRO FDIVD
MOVE .W #FFDBL+FODIV,-(SP)

Appendix B: 68000 SANE Macros

.MACRO FDIVS
" MOVE.W #FFSGL+FODIV,-(SP)

.MACRO FDIVC
MOVE.W #FFCOMP+FODIV, -(SP)

.MACRO FDIVI
MOVE.W #FFINT+FODIV,-(SP)

.MACRO FDIVL
MOVE.W #FFLNG+FODIV,-(SP)

T e N

T e = e e = e e = = e = = - - ==

.MACRO FSGRTX
MOVE.W #FOSQRT, -(SP)
JSRFP

.ENDM

P e = = e = = = = L e - e e T e = S R = P e .-

R L e L

.MACRO FRINTX
MOVE.W #FORTI,-(SP)
JSRFP

.ENDM.

G e e = = e = T T e e e e e e e e

; Truncate to integer, using round toward zero.
.MACRO FTINTX
MOVE.W #FOTTI,-(SP)
JSRFP
. ENDM

244 Part lll: The 68000 Assembly-Language SANE Engine

FREMX
#FFEXT+FOREM, - (SP)

FREMD
#FFDBL+FOREM, - (SP)

FREMS
#FFSGL+FOREM, - (SP)

FREMC
#FFCOMP+FOREM, -(SP)

FREMI
#FFINT+FOREM, -(SP)

FREML
#FFLNG+FOREM, - (SP)

FLOGBX
#FOLOGB, -(SP)

Appendix B: 68000 SANE Macros

[245

.MACRO FSCALBX
MOVE.W #FFINT+FOSCALB, -(SP)

.MACRO FCPYSGNX
MOVE.W #FOCPYSGN, -(SP)

.MACRO FNEG

L R e e N e T

.MACRO FABSX
MOVE.W #FOABS,-(SP)
JSRFP

.ENDM

B e I R R e R R

; Next-after. NOTE: both operands are of the same
; format, as specified by the usual suffix.

.MACRO FNEXTS
MOVE.W #FFSGL+FONEXT,-(SP)

N
.MACRO FNEXTD
MOVE.W #FFDBL+FONEXT, -(SP)

246 | Part lll: The 68000 Assembly-Language SANE Engine

'

.MACRO
MOVE . W
JSRFP
.ENDM

L R e e e R R e R e e

-MACRO
MOVE . W
JSRFP
- ENDM

.MACRO
MOVE . W
JSRFP
- ENDM

" -MACRO
MOVE. W
JSRFP
. ENDM

.MACRO
MOVE . W
JUSRFP
. ENDM

.MACRO
MOVE . W
JSRFP

.ENDM

-MACRO
MOVE . W
JSRFP
. ENDM

FNEXTX
#FFEXT+FONEXT, -(SP)

FX2X
#FFEXT+F022X, ~(SP)

FD2X
#FFDBL+F022X, -(SP)

FS2X
#FFSGL+F0Z2X, -(SP)

FI2X
#FFINT+F0Z2X, -(SP)

FL2X
#FFLNG+FOZ2X, -(SP)

FC2X
#FFCOMP+F02Z2X, -(SP)

A_ppendix B: 68000 SANE Macros

247

.MACRO FX2D .

MOVE.W #FFDBL+FOX2Z,-(SP)
JSRFP

ENDM

.MACRO FX2S
MOVE.W #FFSGL+FOX22,-(SP)

.MACRO FX2I
MOVE.W #FFINT+FOX2Z,-(SP)

.MACRO FX2L
MOVE.W #FFLNG+FOX2Z,-(SP)

.MACRD FX2C
MOVE.W #FFCOMP+FOX2Z, -(SP)

.MACRO FX2DEC

MOVE.W #FFEXT+FOB2D,-(SP)
JSRFP

.ENDM

.MACRD FD2DEC

MOVE.W #FFDBL+FOB2D, -(SP)

JSRFP ’
. ENDM

.MACRO FS2DEC

MOVE.W #FFSGL+FOB2D,-(SP)
JSRFP

. ENDM

2481 Part ill: The 68000 Assembly-Language SANE Engine

.MACRO

MOVE . W

JSRFP
- .ENDM

.MACRO
MOVE .W
JSRFP
. ENDM

.MACRO
MOVE.W
JSRFP
.ENDM

FC2DEC
#FFCOMP+FOB2D, - (SP)

FI2DEC
#FFINT+FOB2D,-(SP)

FL2DEC
#FFLNG+FOB2D, - (SP)

; Decimal to binary conversion.

.MACRO
MOVE. W
JSRFP
.ENDM

.MACRO
MOVE.W
JSRFP
. ENDM

.MACRO
MOVE.W
JSRFP
. ENDM

.MACRO
MOVE . W
JSRFP
. ENDM

.MACRO
MOVE.W
JSRFP
. ENDM

.MACRO
MOVE . W
JSRFP
. ENDM

FDEC2X
#FFEXT+FOD2B, -(SP)

FDEC2D
#FFDBL+FOD2B, - (SP)

FDEC2S
#FFSGL+FOD2B, -(SP)

FDEC2C
#FFCOMP+FOD2B, - (SP)

FDEC21I
#FFINT+FOD2B, -(SP)

FDEC2L
#FFLNG+FOD2B, - (SP)

Appendix B: 68000 SANE Macros

[249

THE DRAWING ENVIRONMENT: GRAFPORT 25

The txSize field specifies the type size for the font, in points (where
"point"” here is a printing term meaning 1/72 inch). Any size may be
‘specified. If the Font Manager ‘does not have the font in a specified
size, it will scale a size it does have as necessary to produce the
size desired. A value of @ in this field directs the Font Manager to
choose the size from among those it has for the font; it will choose
whichever size is closest to the system font size.

Finally, the spExtra field is useful when a line of characters is to be
drawn justified such that it is aligned with both a left and a right
margin (sometimes called "full justification"). SpExtra is the number
of pixels by which each space character should be widened to fill out
the line.

COORDINATES IN GRAFPORTS

Each grafPort has its own local coordinate system. All fields in the
grafPort are expressed in these coordinates, and all calculations and
actions performed in QuickDraw use the local coordinate system of the
currently selected port.

" Two things are important to remember:

- Each grafPort maps a portion of the coordinate plane into a
similarly-sized portion of a bit image.

- The portBits.bounds rectangle defines the local coordinates for a
grafPort.

The top left corner of portBits.bounds is always aligned around the
first bit in the bit image; the coordinates of that corner "anchor" a -
point on the grid to that bit in the bit image. "This forms a common
reference point for multiple grafPorts using the same bit image (such
as the screen). Given a portBits.bounds rectangle for each port, you
know that their top left cormers coincide.

The interrelationship between the portBits.bounds and portRect
rectangles 1s very important. As the portBits.bounds rectangle
establishes a coordinate system for the port, the portRect rectangle
indicates the section of the coordinate plane (and thus the bit image)
that will be used for drawing. The portRect usually falls inside the
portBits.bounds rectangle, but it”s not required to do so.

When a new grafPort is created, its bitMap is set to point to the
entire Macintosh screen, and both the portBits.bounds and the portRect
rectangles are set to 512-by-342-bit rectangles, with the point 9,8
~at the top left corner of the screen.

You can redefine the local coordinates of the top left corner of the
grafPort”s portRect, using the SetOrigin procedure. This changes the
" local coordinate system of the grafPort, recalculating the coordinates
of all points in the grafPort to be relative to the new corner

3/2/83 Espinosa—-Rose |) /QUICK/QUIKDRAW .3

; Compare, not signaling invalid on unordered.
.MACRO FCMPX
MOVE.W #FFEXT+FOCMP,-(SP)

.MACRO FCMPD
MOVE.W #FFDBL+FOCMP,-(SP)

.MACRO FCMPS
MOVE.W #FFSGL+FOCMP,-(SP)

.MACRO FCMPC

MOVE.W #FFCOMP+FOCMP,-(SP)
JSRFP

.ENDM

.MACRO FCMPI

MOVE.W #FFINT+FOCMP,-(SP)
JSRFP

. ENDM -

.MACRO FCMPL

MOVE.W #FFLNG+FOCMP,-(SP)
JSRFP

.ENDM

L R L

; Compare, signaling invalid on unordered.
.MACRO FCPXX
MOVE.W #FFEXT+FOCPX, -(SP)
JSRFP
. ENDM

.MACRD FCPXD

MOVE.W #FFDBL+FOCPX,-(SP)
JSRFP

.ENDM

250 Part lll: The 68000 Assembly-Language SANE Engine

.MACRO FCPXS

MOVE.W #FFSGL+FOCPX, -(SP)
JSRFP

.ENDM

.MACRO FCPXC

MOVE.W #FFCOMP+FOCPX, -(SP)
JSRFP

.ENDM

.MACRO FCPXI

MOVE.W #FFINT+FOCPX,-(SP)
JSRFP

. ENDM

.MACRO FCPXL

MOVE.W #FFLNG+FOCPX,-(SP)
JSRFP

.ENDM

: The following macros define a set of so-called floating

; branches. They presume that the appropriate compare
; operation, macro FCMPz or FCPXz, precedes.

.MACRO FBEQ
BEQ %1

. ENDM

.MACRO FBLT
BCS %1

. ENDM

.MACRO FBLE
BLS %1

. ENDM

.MACRO FBGT
BGT %1

. ENDM

.MACRO FBGE
BGE %1

. ENDM

Appendix B: 68000 SANE Macros

[251

.MACRO FBULT
BLT %1
. ENDM

.MACRO FBULE

BLE %1

. ENDM

.MACRO FBUGT

BHI %1
.ENDM

.MACRO FBUGE

BCC %1

. ENDM

.MACRO FBU

BVS %1

. ENDM

.MACRO FBO

BVC %1
.ENDM

.MACRC FBNE

BNE %1

. ENDM

.MACRD FBUE

BEQ %1

BVS %1
.ENDM

.MACRO FBLG

BNE %1

BVC %1
ENDM

S e e e = . =

.MACRO FBEQS
BEQ.S %t
. ENDM

.MACRO FBLTS
BCS.S %1
. ENDM

252| Part Ill: The 68000 Assembly-Language SANE Engine

.MACRO
BLS.S
.ENDM

.MACRO
BGT.S
. ENDM

.MACRO
BGE.S
.ENDM

.MACRO
BLT.S
. ENDM

.MACRO
BLE.S
.ENDM

.MACRO
BHI.S
.ENDM

.MACRO
BCC.S
. ENDM

.MACRO
BVS.S
. ENDM

.MACRO
BVC.S
.ENDM

.MACRO
BNE.S
.ENDM

.MACRO
BEQ.S
BVS.S
. ENDM

FBLES
%1

FBGTS
%1

FBGES
%1

FBULTS
%1

FBULES
%1

FBUGTS
%1

FBUGES
%1

FBUS
%1

FBOS
%1

FBNES
‘%1 Al

FBUES
%1
% 1 ' [

Appendix B: 68000-SANE Macros

[253

-.MACRO FBLGS

BNE.S %1
BVC.S %1
.ENDM

FCSNAN .EQU 1 ; signaling NAN
FCQNAN .EQU 2 ; quiet NAN

FCINF .EQU 3 ; infinity

FCZERO .EQU 4 ;. zero

FCNORM .EQU 5 ;s nhormal number
FCDENORM .EQU 6 ; denormal number

.MACRD FCLASSS

MOVE.W #FFSGL+FOCLASS, -(SP)
USRFP '

.ENDM

.MACRO FCLASSD

MOVE.W #FFDBL+FOCLASS,-(SP)
JSRFP

. ENDM

.MACRD FCLASSX

MOVE.W #FFEXT+FOCLASS, -(SP)
JSRFP)
.ENDM

2541 Part lil: The 68000 Assembly-Language SANE Engine

@ e e e e e e = e e = = e = e e = e e . e e -

FBINVALID .EQU. (o] '
FBUFLOW .EQU 1 ;
FBOFLOW .EQU 2 H
FBDIVZER .EQU 3 ;
FBINEXACT -EQU 4 H
FBRNDLO g .EQU S H
FBRNDHI .EQU 6 ;
FBLSTRND .EQU 7 ;
FBDBL ’ -EQU 5 H
FBSGL .EQU 6 :

.MACRO FGETENV
MOVE.W #FOGETENV,-(SP)

.MACRO FSETENV
MOVE.W #FOSETENV,-(SP)

L R e R L L R R R e e Y

.MACRO FTESTXCP

MOVE.W #FOTESTXCP,-(SP)

.MACRO FSETXCP
MOVE.W #FOSETXCP,-(SP)

invalid operation

underf low

overflow

division by zero

inexact

low bit of rounding mode
high bit of rounding mode
last round result bit
double precision control
single precision control

Appendix B: 68000 SANE Macros

[255

.MACRO FPROCENTRY

MOVE.W #FOPROCENTRY, -(SP)
JSRFP '

. ENDM

.MACRO FPROCEXIT

MOVE.W #FOPROCEXIT, -(SP)
JSRFP

. ENDM

.MACRO FGETHV

MOVE.W #FOGETHV,-(SP)
JSRFP

. ENDM .

.MACRDO FSETHV*
MOVE.W #FOSETHV, - (SP)
JSRFP

. ENDM

2561 Part lll: The 68000 Assembly-Language SANE Engine

FOLNX
FOLOG2X
FOLN1X
FOLOG21X

FOEXPX
FOEXP2X
FOEXP1X
FOEXP21X

FOXPWRI
FOXPWRY
FOCOMPOUND
FOANNUITY

FOSINX
FOCOSX
FOTANX
FOATANX
FORAND X

-EQU $0000
.EQU $0002
-EQU $0004
-EQU $0006

-EQU $0008
-EQU $000A
-EQU $000C
.EQU $000E

.EQU $8010
.EQU $8012
.EQU = $CO14
.EQU $C0O16

.EQU $0018
-EQU $001A
.EQU $001C
.EQU $001E
.EQU $0020

base-e 1o0g
base-2 log
in (1 + x)
log2 (1 + x)

base-e exponential
base-2 exponential
exp (x) - 1

exp2 (x) - 1

integer exponentiation
general exponentiation
compound

annuity

sine
cosine
tangent
arctangent
random

Appendix B: 68000 SANE Macros

[257

S e = e - = = = e - e - e e e

.MACRD FLNX ; base-e log
MOVE.W #FOLNX,-(SP)

JSRELEMS

. ENDM

.MACRO FLOG2X ; base-2 log
MOVE.W #FOLDG2X, -(SP)

JSRELEMS

.ENDM

.MACRDO FLN1X :In (1 + x)
MOVE.W #FOLN1X,-(SP)

JSRELEMS

.ENDM

.MACRO FLOG21X i log2 (1 + x)
MOVE.W #FOLOG21X, -(SP)

JSRELEMS

.ENDM

.MACRO FEXPX : ; base-e exponential
MOVE.W #FOEXPX,-(SP) ’
JSRELEMS

.ENDM

.MACRD FEXP2X ; base-2 exponential
MOVE.W #FOEXP2X, -(SP)

JSRELEMS

.ENDM

.MACRO TFEXPiX ; exp (x) - 1
MOVE.W #FOEXP1X,-(SP)

JSRELEMS

. ENDM

.MACRO FEXP21X ; exp2 (x) - 1
MOVE.W #FOEXP21X,-(SP)

JSRELEMS -

.ENDM

.

2581 Part lil: The 68000 Assembly-Language SANE Engine

.MACRO FXPWRI ; integer exponential
MOVE.W #FOXPWRI,-(SP)

JSRELEMS

. ENDM

.MACRO FXPWRY ; general exponential
MOVE.W #FOXPWRY,-(SP)

JSRELEMS

.ENDM.

.MACRO FCOMPOUND 3 compound

MOVE.W #FOCOMPOUND ,-(SP)

JSRELEMS

. ENDM

.MACRO FANNUITY ; annuity

MOVE.W #FOANNUITY ,-(SP)

JSRELEMS

. ENDM

.MACRO FSINX 7 sine

MOVE.W #FOSINX,-(SP)

JSRELEMS

. ENDM

.MACRO FCOSX ; cosine

MOVE.W #FOCOSX,-(SP)

JSRELEMS

. ENDM

.MACRQ FTANX ; tangent

MOVE.W #FOTANX, -(SP)

JSRELEMS ;

. ENDM]

.MACRO FATANX ; arctangent

MOVE.W #FOATANX, -(SP)

JSRELEMS X
.ENDM ’
.MACRO FRAND IX ; random number generator
MOVE.W #FORANDI X,-(SP)

JSRELEMS

. ENDM

Appendix B: 68000 SANE Macros

[259

26 QuickDraw Programmer”s Guide

coordinates. For example, consider these procedure calls:

SetPort(gamePort);
SetOrigin(40,80);

The call to SetPort sets the current gfafPort to gamePort; the call to
SetOrigin changes :the local coordinates of the top left corner of that
port”s portRect to (40,80) (see Figure 13).

0 ag o0 532 =55 40 245 457
T | i '
t—
$20—
275 —
32— : : 7
visFgn {95 1’“hqﬂ&2q5| wisFgn (40,8245, 235
WWW‘%JMﬂWM WWm!%JWhmﬁ%

Before SetCnigin After SecCriging40,60)
Figure 13. Changing Local Coordinates
This recalculates the coordinate components of the following elements:
gamePort”.portBits.bounds ’ gamePort~.portRect
gamePort”~.visRgn

These elements are always kept "in sync"”, so that all calculations,
‘comparisons, or operations that seem right, work right.

Notice that when the local coordinates. of a grafPort are offset, 'the
visRgn of that port is offset also, but the clipRgn is not. A good way
to think of it is that if a document is being shown inside a grafPort,
the document "sticks" to the coordinate system, and the port”’s
structure "sticks"” to the screen. Suppose, for example, that the
visRgn and clipRgn in Figure 13 before SetOrigin are the same as the
portRect, and a document 1is being shown. After the SetOrigin call, the
top left corner of the clipRgn is still (95,128), but this location has
moved down and to the right, and the location of the pen within the
document has similarly moved. The locations of portBits.bounds,
portRect, and visRgn did not change; their coordinates were offset. As
always, the top left corner of portBits.bounds remains aligned around
the first bit in the bit image (the first pixel on the screen).

If you are moving, comparing, or otherwise dealing with mathematical

items in different grafPorts (for example, finding the intersection of

|

3/2/83 Espinosa-Rose) : /QUICK/QUIKDRAW .3

NANSQRT .EQU 1
NANADD .EQU 2
NANDIV .EQU 4
NANMUL .EQU 8
NANREM _EQU b}
NANASCBIN .EQU 1
NANCOMP . EQU 20
NANZERO .EQU 21
NANTRIG .EQU 33
NANINVTRIG .EQU 34
NANLOG .EQU 36
NANPOWER .EQU 37

NANFINAN .EQU 38

NANINIT .EQU 255

Invalid square root such as sqrt(-1).
Invalid addition such as +INF - +INF.
Invalid division such as 0/0.

Invalid multiply such as O * INF.

Invalid remainder or mod such as x REM O.
Attempt to'convert invalid ASCII string.
Result of converting comp NaN to floating.
Attempt to create a NaN with a zero code. °
Invalid argument to trig routine.

Invalid argument to inverse trig routine.
Invalid argument to log routine.

Invalid argument to x"i or x*y routine.

Invalid argument to financial function.
Uninitialized storage.

2601 Part Ill: The 68000 Assembly-Language SANE Engine

Appendix C

68000 SANE Quick Reference Guide

2621 Part lll: The 68000 Assembly-Language SANE Engine

This guide contains diagrams of the SANE data formats and the
68K SANE operations and environment word.

M Formats of SANE Types

Each of the diagrams below is followed by the ruies for evaluating
the number v.

In each field of each diagram, the leftmost bit is the msb and the
rightmost is the Isb.

Table C-1. Format Diagram Symbols
v value of number
s sign bit
e biased exponent
i
o f

explicit one’s-bit (extended type only)
fraction '

Appendix C: 68000 SANE Quick Reference Guide [263

Single: 32 Bits

1 8 23
S e f
msb Isb msb Isb
0 < e < 255, thenv = (-1)°« 212+ (1.f).
fe=0andf#0, thenv = (-1)+ 2028« (0.f).
fe=0andf =0, thenv = (-1)°« 0.
fe =255andf = 0, thenv. = (-1)° * =,

Ife =255 andf#0,

then v is a NaN.

K

Double: 64 Bits
1 52
S e f
msb isb msb Isb

f0 < e < 2047,

ife =0andf=#0,
fe=0andt =0,
fe = 2047 and t = 0,
ife = 2047 and f # 0,

thenv = (-1)%+ 261023 4 (1),
then v = (-1)%s 201922 . (0.f).
thenv = (-1)*« 0.

thenv = (-1)°« &,

then v is a NaN.

Part lil: The 68000 Assembly-Language SANE Engine

Comp: 64 Bits

1 63
s d
msb isb
fs=1andd = 0, then v is the unique comp NaN.
Otherwise, . v is the two’s-complement value of

the 64-bit representation.

Extended: 80 Bits

15 - 1 63
e i f
msb Isb msb , Isb
if0 <=e < 32767, thenv = (-1)% » 216383, (i),
lfe = 32767 and f = 0, thenv = (-1)° x =, regardless of i.
Ife = 32767 and f # 0, then v is a NaN, regardless of i.

Appendix C: 68000 SANE Quick Reference Guide [265

- Operations

2661

Or—»wo X

In the operations below, the operation’s mnemonic is followed by
the opword in parentheses: the first byte is the operation code;
the second is the operand format code. For some operations, the
first byte of the opword (xx) is ignored. ‘

Abbreviations and Symbols

The symbols and abbreviations in this section closely pérallel
those in the text, although some are shortened. In some cases,
the same symbol has various meanings, depending on context.

Operands
DST destination operand (passed by address)
SRC source operand (passed by address), pushed
: before DST
SRC2 second source operand (passed by address),
pushed before SRC
Data Types
extended (80 bits)
double (64 bits)
single (32 bits)
integer (16 bits)
longint (32 bits)
comp (64 bits)
Dec decimal Record
Decform ~ decform Record

68000 Processor Registers

Do data register 0

X ' extend bit of processor status register
N negative bit of processor status register
Zz zero bit of processor status register

Vv overflow bit of processor status register
C carry bit of processor status register

Part lll: The 68000 Assembly-Language SANE Engine

Operation

ADD

FADDX (0000)
* FADDD (0800)
FADDS (1000)
FADDC (3000)
FADDI (2000)

FADDL (2800)

SUBTRACT
FSUBX (0002)
FSUBD (0802)
FSUBS (1002)
FSUBGC (3002)
FSUBI (2002)
FSUBL (2802)

MULTIPLY

* FMULX (0004)

FMULD (0804)
FMULS (1004)
FMULC (3004)
FMULI (2004)

FMULL (2804)

Exceptions

invalid operation
underflow
overflow
divide-by-zero
inexact

XgocCc—

For each operation, an exception marked with x indicates that the
operation will signal the exception for some input.

Environment and Halits

EnWrd SANE environment word (16-bit integer)
HitVetr SANE halt vector (32-bit longint)

Arithmetic Operations and Auxiliary Routines
(Entry Point FP68K)

Operands and Data Types Exceptions
DST - DST + SRC Il UODX
X X X X - X - X
X X D X - X - X
X X S X - X - X
X X Cc X - X - X
X X I X - X b
X X L X - X - X
DST - DST - SRC 1 UODX
X X X X - X - X
X X D X - X X
X X S X - X - x
X . X C X - X - X
X X | X X - X
X X L X X - X
DST - DST .« SRC l UODX
X X X X X X - X
X X D X X X - X
X X S X X X - X
X X C X - X - X
X X [X - x - X
X X L , X X - X

Appendix C: 68000 SANE Quick Reference Guide [267

Operation

DIVIDE
FDIVX (0006)
FDIVD (0806)
FDIVS (1006)
FDIVC (3006)
FDIVI (20086)
FDIVL (2806)

SQUARE ROOT
‘FSQRTX (0012)

ROUND TO INT
FRINTX (0014)

TRUNC TO INT
FTINTX (0016)

REMAINDER
FREMX (000C)
FREMD (080C)
FREMS (100C)
FREMC (300C)
FREMI (200C)
FREML (280C)

Do

LOG BINARY
FLOGBX (001A)

SCALE BINARY
FSCALBX (0018)

NEGATE
FNEGX (000D)

ABSOLUTE VALUE
FABSX (000F)

COPY-SIGN
FCPYSGNX (0011)

NEXT-AFTER

FNEXTX (0013)
FNEXTD (0813)
FNEXTS (1013)

268

Operands and Data Types
DST = DST / SRC
X X X
X X D
X X S
X X C
X X]
X X . L
DST +~ sgri(DST)
X X
DST - md(DST)
X X
DST = chop(DST)
X X
DST - DST REM SRC
X X X
X X D
X X S
X X Cc
X X |
X X L
- integer quotient DST/SRC,
between -127 and + 127
DST =~ logb(DST)
X X
DST < DST.:2~SRC
X X]
DST -~ .DST
X X
DST - |psT|
X X
SRC - SRC with DST's sign
X, D, X, D, X, D,
orS orS orS
SRC -

» next after SRC toward DST
X

X
D D
S S

X X XK M XK M —

MW -

M -

3 -

M X X XK XK X -

W -

- x =
Cc xC
+ O %O
O =]

X XK X -

Part lll: The 68000 Assembly-Language SANE Engine

x X X X X X C

c
+ QO

-
e}
-]

e
+ 0
' o

R
frv i a0
I -
G X

r C
+ O
(=)
v X

c
e
«+ O
¢ X

x % x C

(o)

R R R

+ O

»x x x O
T w |

»x »x x X

. Exceptions

X X X X x X O

o

T O %O

x X X X X %X X

x X x X xX

‘|>< x X

Conversions (Entry Point FP68K)

Operation Operands and Data Types Exceptions
CONVERT

Bin to Bin DST - SRC 1 UO DX
FX2X (0010) X X X - - :
FX2D (0810) D X X X X - X
FX2S (1010) S X X X X - X
FX2C (3010) (o X X - = - X
FX2l (2010) | X X - - - X
FXaL (2810) L X X - - X
FD2X (0BOE) X D x - - -
FS2X (100E) X S X - - - -
FC2X (300E) X C L S
FI2X (200E) X] e e e
FL2X (280E) X L - - - -
Bin to Dec DST - SRC accordingto SRC2 I UO DX
FX2DEC (000B) Dec X Decform X - - X
FD2DEC (080B) Dec D Decform X - - - X
FS2DEC (100B) Dec S Decform X - - - X
FC2DEC (300B) Dec (o} Decform - - - - X
FI2DEC (200B) Dec | Decform - - - -0 X
FL2DEC (280B) Dec L Decform S ¢

(First SRC2 is pushed, then SRC, then DST.)

Dec to Bin DST - SRC Il UO DX
FDEC2X (0009) X Dec - X X - X
FDEC2D (0809) D Dec - X X - X
FDEC2S (1009) S Dec - X X - X
FDEC2C (3009) c Dec X - - - X
FDEC2l (2009) i Dec X = - - X
FDEC2L (2809) L Dec X -~ - - X

Appendix C: 68000 SANE Quick Reference Guide [269

COORDINATES IN GRAFPORTS 27

two regions in two different grafPorts), you must adjust to a common
coordinate system before you perform the operation. A QuickDraw
procedure, LocalToGlobal, lets you convert a point”“s local coordinates
to a global system where the top left corner of the bit image is (9,0);
by converting the various local coordinates to global coordinates, you
can compare and mix them with confidence. TFor more information, see
the description of this.procedure under "Calculations with Points” in
the section "QuickDraw Routines”. '

GENERAL DISCUSSION OF DRAWING

Drawing occurs:

Always inside a grafPort, in the hit image and coordinate system
defined by the grafPort”s bitMap.
i

Always within the intersection of the grafPort”s portBits.bounds
and portRect, and clipped to its visRgn and clipRgn.

Always at the grafPort”s pen location.

Usually with the grabert’s pen size, pattern, and mode.

With QuickDraw procedures, you can draw lines, shapes,‘and text.
Shapes include rectangles, ovals, rounded-corner rectangles,
wedge-shaped sections of ovals, regions, and polygons..

Lines are defined by two points: the current pen location and a
destination location. When drawing a line, QuickDraw moves the top
left corner of the pem along the mathematical trajectory from the
current location to the destination. The pen hangs below and to the
right of the trajectory (see Figure 14).

o x 7 2wy
PO M s
hateretetetetstetstets
G S
R S S
(BN N W W N W

Figure l4. Drawing Lines

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3

Operation
COMPARE

No invalid

for unordered
FCMPX (0008)
FCMPD (0808)
FCMPS (1008)
FCMPC (3008)
FCMPI (2008)

Compare and Classify (Entry Point FP68K)

Operands and Data Types

Status Bits — <relation >

where DST <relation>

XXX XXX

r OO!UX%
(o]

FCMPL (2808)
(Invalid only for signaling NaN inputs.)
Signal invalid Status Bits — <relation>
if unordered where DST <relation> SRC
FCPXX (000A) X X
FCPXD (080A) X D
FCPXS (100A) X S
FCPXC (300A) X C
FCPXi (200A) X |
FCPXL (280A) X L
<relation > Status Bits
X N 2 V
DST > SRC 0 0 0 O
DST < SRC 11 0 0
DST = SRC 0 0 1 0
DST & SRC unordered 0 0 0 1
CLASSIFY <class> - class of SRC
<sign> - sign of SRC
DST - (-1)~ <sign> » <class>
FCLASSX (001C) | X
FCLASSD (081C) I D
FCLASSS (101C) | S
2701

Part lll: The 68000 Assembly-Language SANE Engine

co-=-0 0O

H X X X X X

M M X KX X X

Exceptions

[)
L T T B N)
L R S R N)
LI R T B)

SRC <class> SRC = <sign>

signaling NaN 1 positve 0
quiet NaN 2 negative 1
infinite 3
zero 4
normalized 5
denormalized 6

Environmental Control (Entry Point FP68K)

Operation Operands and Data Types - Lo ' Exceptions

GET ENVIRONMENT DST - Eanrd . g -] UO DX
FGETENYV (0003) I - . e ..
SET ENVIRONMENT EnvWrd = SRC *° l UO DX
FSETENYV (0001) I X X X X X

(Exceptions set by set-environment cannot cause halts.)

TEST EXCEPTION DST hiah bvte <-- DST it l UODX
FTESTXCP (001B) | gh byte <-- DS chfet ~ DGR
SET EXCEPTION EnvWrd — EnvWrd AND SRC- l UODX
FSETXCP (0015) I X X X X X
PROCEDURE ENTRY - DST * EnvWrd, EnvWrd = 0 lUODX
FPROCENTR,Y. (0017) | : X X X X X
PROCEDURE EXIT EnvWrd — SRC OR current Xcps 1l UODX
FPROCEXIT (0019) 1 X X X X .X
Halt Control (Entry Point FP68K)
SET HALT VECTOR HitVctr — SRC | UODX
" FSETHV (xx05) L - .
GET HALT VECTOR DST = HitVetr I UOD X
FGETHV (0007) L . -l
Appendix C: 68000 SANE Quick Reference Guide [271

Elementary Functions (Entry Point ELEMS68K)

Operation

BASE-E LOGARITHM
FLNX (0000)

BASE-2 LOGARITHM
FLOG2X (0002)

BASE-E LOG1 (LN1)
FLN1X (0004)

BASE-2 LOG1
FLOG21X (0006)

BASE-E EXPONENTIAL
FEXPX (0008)

BASE-2 EXPONENTIAL
FEXP2X (000A)

BASE-E EXP1
FEXP1X (000C)

BASE-2 EXP1
FEXP21X (000E)

INTEGER EXPONENTIATION
FXPWRI (8010)

GENERAL EXPONENTIATION
FXPWRY (8012)

COMPOUND INTEREST
FCOMPOUND (C014)

Operands and Data Types
DST « In(DST)
X X

DST * log2(DST)

X X
DST * In(1 +DST)

X X
DST * log2(1 +DST)
X X
DST —~ e~DST

X X

DST - 2~DST
X X
DST « e~DST - 1
X X

DST - 2~DST - 1
X X

DST ~ DST~SRC
X X I

DST ~ DST~SRC
X X X

DST + compound(SRC2,SRC)
X X X

(SRC2 is the rate; SRC is the number of periods.)

ANNUITY FACTOR
FANNUITY (C016)

DST <« annuity(SRC2,SRC)
X X X

(SRC2 is the i'ate; SRC is the number of periods.)

SINE
FSINX (0018)

COSINE
FCOSX {001A)

>
y

2721 Part lli:

DST <+ sin(DST)
X X

cos(DST)

DST =+
X X

Exceptions

|
b

o —

bed

XEC XC XC XC XC XC %XC xC xC

xO %O x0O x0O x0O0 0O x0O

x O

The 68000 Assembly-Language SANE Engine

><.C x C

U

v C

x

o

o

¢+ O

¢+ O
x O x QO

x

x 0O %O

O O O

' o

x O > O

o

+ O
x X x X

x X XX X xX xX xX xX xX xX xX xX

TANGENT
FTANX (001C)

ARCTANGENT
FATANX (001E)

RANDOM

FRANDX (0020)

DST <+« 1an(DST) I UODX
X X X X - X X
DST <+« atan(DST)) I UODX
X X X X - X
DST <+ random(DST) I UODX
X X X X X X

. Environment Word

The floating-point environment is encoded in the 16-bit integer
format as shown below in hexadecimal:

msb Isb
—lrlrix]dlojuli]-RIR[X]DIOJU]!]
rounding exception rounding halts
direction flags precision enabled
rounding direction, bits 6000 rr
0000 — to-nearest :
2000 — upward
4000 — downward
6000 — toward-zero
exception flags, bits 1FO0
0100 — invalid i
02000 ~— underflow u
0400 — overflow o
0800 — division-by-zero d
1000 - inexact X

Appendix C: 68000 SANE Quick Reference Guide [273

28 QuickDraw Programmer”s Guide

(hand) , , ~ ‘
No mathematical element (such as the pen location) is
ever affected by clipping; clipping only determines what
appears where in the bit image. If you draw a line to a
location outside your grafPort, the pen location will
move there, but only the ‘portion of the line that is
inside the port will actually be drawn. This is true for
all drawing procedures. .

Rectangles, ovals, and rounded-corner rectangles are defined by two
corner points. The shapes always appear inside the mathematical
rectangle defined by the two points. A region is defined in a more
complex manner, but also appears only within the rectangle enclosing
it. Remember, these enclosing rectangles have 1nfinite1y thin borders
and are not visible on the screen.

As 111ustrated in Figure 15, shapes may be drawn either solid (filled
in with a pattern) or framed (outlined and hollow).

en heizht ‘ l
pen heizht _,‘__;@E!@an_

Flic) o ﬂ@\
=

Figure 15. Solid Shapes and Framed Shapes

In the case of framed shapes, the .outline appears completely within -the
enclosing rectangle -- with one exception - and the vertical and ,
horizontal thickness of the outline 1s determined by the pen size. The
exception is polygons, as discussed in "Pictures and Polygons” below.

The pen pattern is used to fill in the bits that are affected by the
drawing operation. The pen mode defines how those bits are to be
affected by directing QuickDraw to apply one of eight boolean
operations to the bits in the shape and the correspondlng pixels on the
screen.

Text drawing does not use the pnSize, pnPat, or pnMode, but it does use
the pnLoc. Each character 1is placed to the right of the current pen
location, with the left end of its base line at the pen”s location.

The pen is moved to the right to the location where it will draw the

3/2/83 Espinosa-Rose -/QUICK/QUIKDRAW.3

GENERAL DISCUSSION OF DRAWING 29

next character. No wrap or carriage return is performed automatically.

The method QuickDraw uses in placing text is controlled by a mode
similar to the pen mode. ' This 1is explained in "Transfer Modes”, below.
Clipping of text is performed in exactly the same manner as all other
clipping in QuickDraw.

Transfer Modes

When lines or -shapes are drawn, the pnMode field of the grafPort
determines how the drawing is to appear in the port”s bit image;
similarly, the txMode field determines how text is to appear. There is
also a QuickDraw procedure that transfers a bit image from one bitMap
to another, and this procedure has a mode parameter that determines the
appearance of the result. 1In all these cases, the mode, called a
transfer mode, specifies one of eight boolean operations: for each bit
in the item to be drawn, QuickDraw finds the corresponding bit in the
destination bit image, performs the boolean operation on the pair of
bits, and stores the resulting bit into the bit image.

- There are two types of transfer mode:

- Pattern transfer modes, for drawing lines or shapes with a
pattern.)

.= Source transfer modes, for drawing text or transferring any bit
image between two bitMaps.

"For each type of mode, there are four basic operations —— Copy, Or,
Xor, and Bic. The Copy operation simply replaces the pixels in the
destination with the pixels in the pattern or source, "painting” over
the destination without regard for what is already there. The Or, Xor,
and Bic operations leave the destination pixels under. the white part of
the pattern or source unchanged, and differ in how they affect the
pixels under the black part: Or replaces those pixels with black
pixels, thus "overlaying"” the destination with the black part of the
pattern or source; Xor inverts the pixels under the black part; and Bic
erases them to white.

Each of the basic operations has a variant in which every pixel in the

pattern or source is inverted before the operation is performed, giving
eight operations in all. FEach mode is defined by name as a constant in
QuickDraw (see Figure 16).

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3

- 30 QuickDraw Programmer”s Guide

patlecn of sougee destination

“Paint" Overlay “Invert" “Epaset

o

patEor patEic

patCopy i
arcior srelic

areCapy

0

noPaiCopy notPatdr notPatEor notPatBic

Tanh

notSreCopy notSeedr fwtSeoiur notSreBic

Figure 16. Transfer Modes

. Pattern Source Action on each pixel in destination:
transfer transfer If black pixel in If white pixel in
mode mode pattern or source pattern or source
patCopy srcCopy Force black Force white

patOr . srcOr Force black Leave alone
patXor srcXor Invert ‘ ~ Leave alone
patBic srcBice Force white Leave alone
notPatCopy notSrcCopy Force white Force black
notPatOr notSrcOr Leave ' alone Force black
notPatXor notSrcXor Leave alone Invert

notPatBic notSrcBic Leave alone Force white

Drawing in Color

Currently you can only look at QuickDraw output on a black-and-white
" screen or printer.. Eventually, however, Apple will support color
output devices. If you want to set up your application now to produce
color output in the future, you can do so by using QuickDraw procedures
to set the foreground color and the background color. Eight standard
colors may be specified with the following predefined constants:
blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor,
magentaColor, and yellowColor. Initially, the foreground color is
blackColor and the background color is whiteColor. If you specify a
color other than whiteColor, it will appear as black on a
black—-and-white output device.

To apply the table in the "Transfer Modes" section above to drawing in
color, make the following translation: where the table shows "Force
black”, read "Force foreground color”, and where it shows "Force
white”, read "Force background color”. When you eventually receive the

3/2/83 Espinosa-Rose - /QUICK/QUIKDRAW.3

GENERAL DiSCUSSION OF DRAWING 31

color output device, you”1ll find out the effect of inverting a color on
1t. :

(hand)
QuickDraw can support output devices that have up to 32

~ bits of color information per pixel. A color picture may
be thought of, then, as having up to 32 planes. At any
one time, QuickDraw draws into only one of these planes. -
A QuickDraw routine called by the color—-imaging software
specifies which plane.

PICTURES AND‘POLYGONS

QuickDraw lets you save a sequence of drawing commands and "play them
back"” later with a single procedure call. There are two such
mechanisms: one for drawing any picture to scale in a destination
rectangle that you specify, and another for drawing polygons in all the
ways you can draw other shapes in QuickDraw.

Pictures

A picture in QuickDraw is a transcript of calls to routines which draw
something -- anything —— on a bitMap. Pictures make it easy for one
program to draw something defined in another program, with great
flexibi}ity and without knowing the details about what”s being drawn.

For each picture you define, you specify a rectangle that surrounds the
picture; this rectangle is called the picture frame. When you later
call the procedure that draws the saved picture, you supply a
destination rectangle, and QuickDraw scales the picture so that its
frame is completely aligned with the destination rectangle. Thus, the
plcture may be expanded or shrunk to fit its destination rectangle.

For example, if the picture is a circle inside a square picture frame,
and the destination rectangle 1s not square, the picture is drawn as an
oval. : :

Since a picture may include any sequence of drawing«comﬁands, its data
structure is a variable-length entity. It consists of two fixed fields
followed by a variable-length data field: _ '

TYPE Picture = RECORD
picSize: INTEGER;
pilcFrame: Rect;
{picture definition data}
END;

- The picSize field contains the size, in bytes, of the picture variable.
The picFrame field is the picture frame which surrounds the picture and
gives a frame of reference for scaling when the picture 1is drawn. The
rest of the structure contains a compact representation of the drawing

3/2/83 Rose /QUICK/QUIKDRAW.P

32 QuickDraw Programmer”s Guide

commands that define the picture.

All pictures are accessed through handles, which point to one master
pointer which in turn points to the picture.

1

TYPE PicPtr = “Picture;
PicHandle “PicPtr;

To define a picture, you call a QuickDraw function that returns a
picHandle and then call the routines that draw the picture. There is a
procedure to call when you“ve finished defining the picture, and
another for when you“re done with the picture altogether.

QuickDraw also allows you to intersperse picture comments in with the
definition of a picture. These comments, which do not affect the
picture”s appearance, may be used to provide additional information
about the picture when it”s played back. - This is especially valuable
when pictures are transmitted from one application to another. There
are two standard types of comment which, like parentheses, serve to
group drawing commands together (such as all the commands that draw a
particular part of a picture):

CONST picLParen = {;
picRParen 1;

The application defining the picture can use these standard comments as
well as comments of its own design.

~To include a comment in the definition of a picture, the application
calls a QuickDraw procedure that specifies the comment with three
parameters: the comment kind, which identifies .the type of comment; a
handle to additional ‘data if desired; and the size of the additional
data, if any. When playing back a picture, QuickDraw passes any
comments in the picture”s definition to a low-level procedure accessed
indirectly through the grafProcs field of the grafPort (see
"Customizing QuickDraw Operations” for more information). To process
comments, the application must include a procedure to do the processing
and store a pointer to it in the data structure pointed. to by the
grafProcs field.

(hand) ,
The standard low-level procedure for processing picture
comments simply ignores all comments. ' ‘

-Polygons

Polygons are similar to pictures in that you define them by a sequence
of calls to QuickDraw routines. They are also similar to other shapes
that QuickDraw knows about, since there is a set of procedures for
performing graphic operations and calculations on them.

A polygon is simply any sequence of connected lines (éee,Figure 17).
You define a polygon by moving to the starting point of the polygon and

3/2/83 Rose /QUICK/QUIKDRAW.P

PICTURES AND POLYGONS 33

t

drawing lines from there to the next point, from that point to the .
next, and so on. : .

Figure 17. Polygons

The data structure for a polygon is a variable-length entity. It
consists of two fixed fields followed by a variable—length array:

TYPE Polygon = RECORD
polySize: INTEGER;
polyBBox: ~ Rect;
polyPoints: ARRAY [@..#] OF Point
END; ‘

The polySize field contains the size, in bytes, of the polygon
variable. The polyBBox field is a rectangle which just encloses the
entire polygon. The polyPoints array expands as necessary to contain
the points of the polygon —-— the starting point followed by 'each
succesive point to which a line is drawn.

Like plctures and regions, polygons are acéessed through handles.

TYPE PolyPtr = “Polygon;
PolyHandle “PolyPtr;-

To define a polygon, you call a QuickDraw function that returns a -
~polyHandle and then form the polygon by calling procedures that draw
lines. You call a procedure when you“ve finished defining the polygon,
and another when you”"re done with the polygon altogether.

Just as for other shapes that QuickDraw knows about, there is a set of
- graphic operations on polygons to draw them on the screen. QuickDraw
draws a polygon by moving to the starting point and then drawing lines
to the remaining points in succession, just as when the routines were
called to define the polygon. In this semse it "plays back” those

routine calls. As a result, polygons are not treated exactly the same

3/2/83 Rose /QUICK/QUIKDRAW.P

34 | QuickDraw Programmer”s Guide

as other QuickDraw shapes. For example, the procedure that frames a
polygon draws outside the actual boundary of the polygon, because
QuickDraw line-drawing routines draw below and to the right of the pen
location. The procedures that fill a polygon with a pattern, however,
stay within the boundary of the polygon; they also add an additional 1line
between the ending point and the starting point 1f those points are not
the same, to complete the shape.

There is also a difference in the way QuickDraw scales a polygon and a
similarly-shaped region if it”s being drawn as part of a picture: when
stretched, a slanted line is drawn more smoothly if it”s part of a
polygon rather than a region. You may find it helpful to keep in mind
the conceptual difference between polygons and regions: a polygon is
treated more as a continuous shape, a region more as a set of bits.

QUICKDRAW ROUTINES

This section describes all the procedures and functions in QuickDraw,
their parameters, and their operation. They are presented in their
Pascal form; for information on using them from assembly language, see
"Using QuickDraw from Assembly Language"”.

GrafPort Routines

PROCEDURE InitGraf (globalPtr: QDPtr);

Call InitGraf once and only once at the beginniﬁg of your program to
initialize QuickDraw. It initializes the QuickDraw global variables
listed below.

Variable. Type Initial setting

thePort GrafPtr NIL

white Pattern all-white pattern

black Pattern all-black pattern

gray Pattern 5@¢% gray pattern

1tGray Pattern 25% gray pattern

dkGray Pattern 75% gray pattern

arrow Cursor pointing arrow cursor '
screenBits BitMap Macintosh screen, (9,0,512,342)
randSeed " Longlnt/ 1

The globalPtr parameter tells QuickDraw where to store its global
variables, beginning with thePort. From Pascal programs, this
parameter should always be set to @thePort; assembly-language
programmers may choose any location, as long as it can accommodate the
number of bytes specified by GRAFSIZE in GRAFTYPES.TEXT (see "Using
QuickDraw from Assembly Language”). :

3/2/83 Espinosa-Rose ' ' /QUICK/QUIKDRAW.4

QUICKDRAW ROUTINES 35

(hand) ~
To initialize the cursor, call InitCursor (described
under "Cursor—Handling Routines” below).

PROCEDURE OpenPort (gp: GrafPtr);

OpenPort allocates space for the given grafPort”s visRgn and clipRgn,
initializes the fields of the grafPort as indicated below, and makes
the grafPort the current port (see SetPort). You must call OpenPort
before using any grafPort; first perform a NEW to create a grafPtr and
then use that grafPtr in the OpenPort call.

Field Type Initial setting
device INTEGER # (Macintosh screen)
portBits BitMap screenBits (see InitGraf)
portRect Rect screenBits.bounds (9,9,512,342)
visRgn - RgnHandle handle to the rectangular region
(6,0,512,342)
clipRgn RgnHandle ' handle to the rectangular region
' . (-39000,-30000,30¢00,30000)
bkPat Pattern white
fillPat Pattern black
pnLoc Point 2,9 .
pnSize Point (1,1)
pnMode INTEGER patCopy
pnPat Pattern black
pnVis INTEGER - @ (visible)
txFont INTEGER @ (system font)
txFace ‘Style normal
txMode INTEGER srcOr
txSize INTEGER # (Font Manager decides)
spExtra INTEGER]
 fgColor LongInt blackColor
bkColor LongInt whiteColor
colrBit INTEGER @
patStretch INTEGER @
plcSave QDHandle NIL
rgnSave QDHandle NIL
polySave QDHand1le NIL
grafProcs QDProcsPtr NIL

PROCEDURE InitPort (gp: GrafPtr);

Given a poiﬁter to a grafPort that has been opened with OpenPort,
InitPort reinitializes ‘the fields of the grafPort and makes it the
current port (if it“s not already).

(hand)
InitPort does everything OpenPort does except allocate
space for the visRgn and clipRgn.

3/2/83 Espinosa-Rose - /QUICK/QUIKDRAW.4

36 QuickDraw Programmer”s Guide

PROCEDURE ClosePort (gp: GrafPtr);

ClosePort deallocates the space occupied by the given grafPort”s visRgn
and clipRgn. When you are completely through with a grafPort, call
this procedure and then dispose of the grafPort (with a DISPOSE of the
grafPtr). :

(eye)

: If you do not call ClosePort before disposing of the
grafPort, the memory used by the visRgn and clipRgn will
be. unrecoverable. :

(eye)
After calling ClosePort, be sure not to use any copies of
the visRgn or clipRgn handles that 'you may have made.

PROCEDURE SetPort (gp: GrafPtr);

SetPort sets the grafPort indicated by gp to be the current port. The
global pointer thePort always points to the current port. All
QuickDraw drawing routines affect the bitMap thePort”.portBits and use
the local coordinate system of thePort”. Note that OpenPort and
InitPort do a SetPort to the given port.

(eye) o . | | .
Never do a SetPort to a port that has not been opened
with OpenPort.

Each port possesses its own pen and text characteristics which remain
unchanged when the port is not selected as the current port.

PROCEDURE GetPort (VAR gp: GrafPtr);

GetPort returns a pointer to the current grafPort. If you have a
program that draws into more than one grafPort, it”s extremely useful
to have each procedure save the current grafPort (with GetPort), set
its own grafPort, do drawing or calculations, and then restore the
previous grafPort (with SetPort). The pointer to the current grafPort .
is also available through the global pointer thePort, but you may ;
prefer to use GetPort for better readability of your program text. For
example, a procedure could do a GetPort(savePort) before setting its
own grafPort and a SetPort(savePort) afterwards to restore the previous
port.

PROCEDURE GrafDevice (device: INTEGER);

GrafDevice sets thePort”.device to the given number, which identifies
the logical output device for this grafPort. The Font Manager uses
this information. The initial device number is @, which represents the
Macintosh screen. . »

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4

QUICKDRAW ROUTINES 37

PROCEDURE SetPortBits (bm: BitMap);

SetPortBits sets thePort”.portBits to any previously defined bitMap.
This allows you to perform all normal drawing and calculations on a
buffer other than the Macintosh screen -- for example, a 64@-by-7
output buffer for a C. Itoh printer, or a small off-screen image for
later "stamping” onto the screen.

Remember to prepare all fields of the bitMap before you call
SetPortBits.

PROCEDURE PortSize (width,height: INTEGER);

PortSize changes the size of the current grafPort”s portRect. THIS
DOES NOT AFFECT THE SCREEN; it merely changes the size of the "active
area” of the grafPort.

(hand)
This procedure 1s normally called only by the Window
Manager.

The top left cornmer of the portRect remains at its same location; the
width and height of the portRect are set to the given width and height.
In other words, PortSize moves the bottom right corner of the portRect
to a position relative to the top left corner.

PortSize does not change the clipRgn or the visRgn, nor does it affect
the -local coordinate system of the grafPort: it changes only the
portRect”s width and height. Remember that all drawing occurs only in
the intersection of the portBits.bounds and the portRect, clipped to
the visRgn and the clipRgn.

PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER);

MovePortTo changes the position of the current grafPort”s portRect.
THIS DOES NOT AFFECT THE SCREEN; it merely changes the location at
which subsequent drawing inside the port will appear.

.(hand)
This procedure is normally called only by the Window
Manager.

The leftGlobal and topGinal parameters set the distance between the
top left corner of portBits.bounds and the top left corner of the new
portRect. For example,

MovePortTo(256,171);
will move the top left corner of the portRect to the center of the

screen (if portBits is the Macintosh screen) regardless of the local
coordinate system.

3/2/83 Espinosa—Rose /QUICK/QUIKDRAW.4

38 QuickDraw Programmer”s Guide

i

Like PortSize, MovePortTo does not change the clipRgn or the visRgn,
nor does it affect the local coordinate system of the grafPort.

PROCEDURE SetOrigin (h,v: INTEGER);

SetOrigin changes the local coordinate system of the current grafPort.
THIS DOES NOT AFFECT THE SCREEN; it does, however, affect where
subsequent drawing and calculation will appear in the grafPort.
SetOrigin updates the coordinates- of the portBits.bounds, the portRect,
and the visRgn. All subsequent drawing and calculation routines will
use the new coordinate system.

The h and v parameters set the coordinates of the top left corner of
the portRect. All other coordinates are calculated from this point.
All relative distances among any elements in the port will remain the
same; only their absolute local coordinates will change.

(hand))
SetOrigin does not update the coordinates of the clipRgn
or the pen; these items stick to the coordinate system
(unlike the port”s structure, which sticks to the
screen). \

SetOrigin is useful fof ad justing the coordinatevsystem after a
scrolling operation. - (See ScrollRect under "Bit Transfer Operations”
below.)

PROCEDURE SetClip (rgn: RgnHandle);

SetClip changes the clipping region of the current grafPort to a region
equivalent to the given region. Note that this does not change the
reglon handle, but affects the clipping region itself. Since SetClip
makes a copy of the given region, any subsequent changes you make to -
that region will not affect the clipping region of the port.

You can set the clipping region to any arbitrary region, to aid you in

drawing inside the grafPort. The initial clipRgn is an arbitrarily
large rectangle.

PROCEDURE GetClip (rgn: RgnHandle);

GetClip changes the given region to a region equivalent to the ciipping
region of the current grafPort. This is the reverse of what SetClip
does. Like SetClip, it does not change the region handle.

PROCEDURE ClipRect (r: Rect);

ClipRect changes the clipping region of the current grafPort to a
rectangle equivalent to given rectangle. Note that this does not
change the region handle, but affects the region itself.

3/2/83 Espinosa-Rose ' JQUICK/QUIKDRAW.4

QUICKDRAW ROUTINES 39

PROCEDURE BackPat (pat: Pattern);

BackPat sets the background patfern of the current grafPort to the
given pattern.. The background pattern is used in ScrollRect and in all
QuickDraw routines that perform an "erase"” operation.

Cursor-Handling Routines

PROCEDURE InitCursor;

InitCursor sets the current cursor to the predefined arrow cursor, an
arrow pointing north-northwest, and sets the cursor level to @, making
the cursor visible. The cursor level, which is initialized to @ when -
the system is booted, keeps track of the number of times the cursor has
been hidden to compensate for nested calls to HideCursor and ShowCursor
(below). ’

Before you call InitCursor, the cursor is undefined (or, if set by a
previous process, it”s whatever that process set it to).

PROCEDURE SetCursor (crsr: Cursor);

SetCursor sets the current cursor to the 16-by-16-bit image in crsr.
If the cursor is hidden, it remains hidden and -will attain the new
appearance when it“s uncovered; if the cursor is already visible, it
changes to the new appearance immediately.

The cursor image is initialized by InitCursor to a north-northwest
arrow, visible on the screen. There is no way to retrieve the current
cursor image.

PROCEDURE HideCursor;

HideCursor removes the cursor from the screen, restoring the bits under
it, and decrements the cursor level (which InitCursor initialized to
$). Every call to HideCursor should be balanced by a subsequent call

" to ShowCursor. ‘ :

PROCEDURE ShowCursor;

ShowCursor increments the cursor level, which may have been decremented
by HideCursor, and displays the cursor on the screen if the level
becomes . A call to ShowCursor should balance each previous call to
HideCursor. The level is not incremented beyond @, 'so extra calls to
ShowCursor don”t hurt.

QuickDraw low-level interrupt—driven routines link the cursor with the
mouse position, so that if the cursor level is ¢ (visible), the cursor

3/2/83 Espinosa-Rose , . /QUICK/QUIKDRAW.4

40 QuickDraw Programmer”s Guide

automatically follows the mouse. You don”"t need to do anything but a
ShowCursor to have a cursor track the mouse. There is no way to
"disconnect” the cursor from the mouse; you can”t force the cursor to a
certain position, nor can you easily prevent the cursor from entering a
certain area of the screen. '

If the cursor has been changed (with SetCursor) while hidden,
ShowCursor presents the new cursor. .

The cursor is initialized by InitCursor to a north—-northwest arrow, not
hidden.

PROCEDURE ObscureCursor;/

ObscureCursor hides the cursor until the next time the mouse is moved.

Unlike HideCursor, it has no effect on the cursor level and must not be
balanced by a call to ShowCursor. :

Pen and Line-Drawing Routines

The pen and line-drawing routines all depend on the coordinate system
of the current grafPort. Remember that each grafPort has its own pen;
if you draw in one grafPort, change to another, and return to the
first, the pen will have remained in the same location.

PROCEDURE HidePenj;

HidePen decrements the current grafPort”s pnVis field, which is
initialized to ¢ by OpenPort; whenever pnVis is negative, the pen does
not draw on the screen. PnVis keeps track of the number of times the
pen has been hidden to compensate for nested calls to HidePen and
ShowPen (below). HidePen is called by OpenRgn, OpenPicture, and
OpenPoly so that you can define regions, pictures, and polygons without
drawing on the screen. :

PROCEDURE ShowPen;

ShowPen increments the current grafPort”s pnVis field, which may have
been decremented by HidePen; if pnVis becomes @, QuickDraw resumes
drawing on the screen. Extra calls to ShowPen will increment pnVis
beyond @, so every call to ShowPen should be balanced by a subsequent
call to HidePen. ShowPen is called by CloseRgn, ClosePicture,. and
ClosePoly. ‘ :

PROCEDURE GetPen (VAR pt: Point);

GetPen returns the current pen location, in the local coordinates of
the current grafPort.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW .4

QUICKDRAW ROUTINES 41

PROCEDURE GetPenState (VAR pnState: PenState);

GetPenState saves the pen location, size, pattern, and mode into a
storage variable, to be restored later with SetPenState (below). This
is useful when calling short subroutines that operate in the current
port but must change the graphics pen: each such procedure can save
the pen”s state when it”s called, do whatever it needs to do, and
restore the previous pen state immediately before returning.

The PenState data type 1s not useful for anything except saving the
pen”“s state.

PROCEDURE SetPenState (pnState: PenState);

SetPenState sets the pen location, size, pattern, and mode in the
current grafPort to the values stored in pnState. This 1s usually
called at the end of a procedure that has altered the pen parameters
and wants to restore them to their state at the beginning of the
procedure. (See GetPenState, above.) :

PROCEDURE PenSize (width,height: INTEGER);

PenSize sets the dimensions of the\graphics pen in the current
grafPort. All subsequent calls to Line, LineTo, and the procedures
that draw framed shapes in the current grafPort will use the new pen
dimensions.

The pen dimensiond can be accessed in the variable thePort”.pnSize,
which 1s of type Point. If either of the pen dimensions is set to a
negative value, the pen assumes the dimensions (§,8) and no drawing is
performed. For a discussion of how the pen draws, see the "General
Discussion of Drawing"” earlier in this manual.

PROCEDURE PenMode (mode: INTEGER);

- PenMode sets the transfer mode through which the pnPat is transferred
onto the bitMap when lines or shapes are drawn. The mode may be any
one of the pattern transfer modes:

patCopy patXor . . notPatCopy notPatXor
pator patBic . notPatOr notPatBic

If the mode 1is one of the source transfer modes (or negative), no
drawing is performed. The current pen mode can be obtained in the
variable thePort”.pnMode. The initial pen mode 1is patCopy, in which
the pen pattern 1s copied directly to the bitMap.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4

42 QuickDraw Progfammer's Guide

PROCEDURE PenPat (pat: Pattern);

PenPat sets the pattern that is used by the pen in the current
grafPort. The standard patterns white, black, gray, ltGray, and dkGray
are predefined; the initial pnPat is black. The current pen pattern
can be obtained in the variable thePort”.pnPat, and this value can be
assigned (but not compared!) to any other variable of type Pattern.

PROCEDURE PenNormal}

PenNormal resets the initial state of the pen in the current grafPort
as follows:

Field Setting
pnSize v (1,1)
pnMode patCopy
pnPat black

The pen location is not changed.

PROCEDURE MoveTo (h,v: INTEGER);

MoveTo moves the pen to location (h,v) in the local coordinates of the
current grafPort. No drawing is performed.

PROCEDURE Move (dh,dv: INTEGER);

This procedure moves the pen a distance of dh horizontally and dv
vertically from its current location; it calls MoveTo(ht+dh,v+dv), where
(h,v) is the current location. The positive directtons are to the
right and down. No drawing is performed.

PROCEDURE LineTo (h,v: INTEGER);

LineTo draws a line from the current pen location to the location
specified (in local coordinates) by h and v. The new pen location is
(h,v) after the line is drawn. See the general discussion of drawing.

If a region or pelygon is open and being formed, its outline is
infinitely thin and is not affected by the pnSize, pnMode, or pnPat.
(See OpenRgn and OpenPoly.)

PROCEDURE Line (dh,dv: INTEGER);

This procedure draws a line to the location that is a distance of dh
horizontally and dv vertically from the current pen location; it calls
LineTo(h+dh,v+dv), where (h,v) is the current location. The positive
directions are to the right and down. The pen location becomes the
coordinates of the end of the line after the line is drawn. See the

3/2/83 Espinosa-Rese | /QUICK/QUIKDRAW .4

QUICKDRAW ROUTINES 43

general discussion of drawing.
If a region or polygon 1s open and being formed, its outline is

infinitely thin and is not affected by the pnSize, pnMode, or pnPat.
(See OpenRgn and OpenPoly.)

Text-Drawing Routines

Each grafPort has its own text characteristics, and all these
procedures deal with those of the current port. :

PROCEDURE TextFont (font: INTEGER);

TextFont sets the current grafPort”s font (thePort”.txFont) to the
given font number. The initial font number is ¢, which represents the
system font. '

PROCEDURE TextFace (face: Style);

TextFace sets the current grafPort”s character style (thePort”.txFace).
‘The Style data type allows you to specify a set of one or more of the
following predefined constants: bold, italic, underline, outline,
shadow, condense, and extend. For example.

TextFace([bold]); {bold}
TextFace([bold,italic]);. {bold and italic}
TextFace(thePort”.txFacet+[bold]); {whatever it was plus bold}
TextFace(thePort”.txFace-[bold]); {whatever it was but not bold}

TextFace([]); {normal}

PROCEDURE TextMode (mode: INTEGER);

TextMode sets the current grafPort”s transfer mode for drawing text
(thePort”.txMode). The mode should be srcOr, srcXor, or schic. The
initial transfer mode for drawing text 1s srcOr.

PROCEDURE TextSize (size: INTEGER);

TextSize sets the current grafPort”s type size (thePort”.txSize) to the
given number of points. Any size may be specified, but the result will
look best if the Font Manager has the font in that size (otherwise it
will scale a size it does have). The next best result will occur if
the given size is an even multiple of a size available for the font.

If @ is specified, the Font Manager will choose one of the available
sizes —- whichever is closest to the systelm font size. The initial
txSize setting is 0.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4

44 QuickDraw Programmer”s Guide

PROCEDURE SpaceExtra (extra: INTEGER);

SpaceExtra sets the current grafPort”s spExtra field, which specifies
the number of pixels by which to widen each space in a line of text.
This is useful when text is being fully justified (that is, aligned
with both a left and a right margin). Consider, for example, a line
that contains three spaces; if there would normally be six pixels
between the end of the line and the right margin, you would call
SpaceExtra(2) to print the line with full justification. The initial
spExtra setting is ¢

(hand)
SpaceExtra will also take a negative -argument, but be
careful not to narrow spaces so much that the text is
unreadable.

PROCEDURE DrawChar (ch: CHAR);

DrawChar places the given character to the right of the pen location,

with the left end of its base line at the pen s location, and advances
the pen accordingly. If the character is not in the font, the font”s

missing symbol is drawn.

PROCEDURE DrawString (s: -Str255);

DrawString performs consecutive calls to DrawChar for each character in
the supplied string; the string is placed beginning at the current pen
location and extending right. No formatting (carriage returns, line
feeds, etc.) 1is performed by QuickDraw. The pen location ends up to
the right of the last character in the string.

* PROCEDURE DrawText (textBuf: QDPtr; firstByte,byteCount: iNTEGER);

DrawText draws text from an arbitrary structure in memory specified by
textBuf, starting firstByte bytes into the structure and continuing for
byteCount bytes. The string of text is placed beginning at the current
pen location and extending right. No formatting (carriage returns,
line feeds, etc.) 1is performed by QuickDraw. The pen location ends up
to the right of the last character in the string.

FUNCTION CharWidth (ch: CHAR) : INTEGER; .

CharWidth returns the value that will be added to the pen horizontal
coordinate 1f the specified character is drawn. CharWidth includes the
.effects of the stylistic variations set with TextFace; if you change
these after determining the character width but before actually drawing
the character, ‘the predetermined width may not be correct. If the
character is a space, CharWidth also includes the effect of SpaceExtra.

- 3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4

i

QUICKDRAW ROUTINES 45

FUNCTION StringWidth (s: Str255) : INTEGER;

StringWidth returns the width of the given text string, which it
calculates by adding the CharWidths of all the characters in the string
(see above). This value will be added to the pen horizontal coordinate
if the specified string is drawn. ’

FUNCTION TextWidth (textBuf: QDPtr; firstByte,byteCount: INTEGER) :
INTEGER;

TextWidth returns the width of the text stored in the arbitrary
structure in memory specified by textBuf, starting firstByte bytes into
the structure and continuing for hbyteCount bytes. It calculates the
width by adding the CharWidths of all the characters in the text. (See
CharWidth, above.)

PROCEDURE GetFontInfo (VAR info: FontInfo);

GetFontInfo returns the following information about the current
grafPort”s character font, taking into consideration the style and size
in which the characters will be drawn: the ascent, descent, maximum
character width (the greatest distance the pen will move when a
character is drawn), and leading (the vertical distance between the
descent line and the ascent line below it), all in pixels. The
FontInfo data structure is defined as: ‘

TYPE FontInfo = RECORD
ascent: INTEGER;
descent: INTEGER;
widMax: TINTEGER;
leading: INTEGER
END; v L

Drawing in Color

‘These routines will enable applications to do color drawing in the
future when Apple supports color output devices for the Macintosh. All
nonwhite colors will appear as black on black-and-white output devices.

PROCEDURE ForeColor (color: LongInt);

ForeColor sets the foreground color for all drawing in the current
grafPort (“thePort.fgColor) to the given color. The following standard
colors are predefined: blackColor, whiteColor, redColor, greenColor,
blueColor, cyanColor, magentaColor, and yellowColor. The initial
foreground color is blackColor.

3/2/83 Espinosa-Rose : /QUICK/QUIKDRAW.4

46 QﬁickDraw Programmer”s Guide

PROCEDURE BackColor (color: LongInt);

BackColor sets the background color for all drawing in the current
grafPort (“thePort.bkColor) to the given color. Eight standard colors

are predefined (see ForeColor above). The initial background color is
whiteColor.

PROCEDURE ColorBit (whichBit: INTEGER);

ColorBit is called by printing software for a color printer, or other
color-imaging software, to set the current grafPort”s colrBit field to
whichBit; this tells QuickDraw which plane of the color picture to draw
into. QuickDraw will draw into the plane corresponding to bit number
whichBit. Since QuickDraw can support output devices that have up to
32 bits of color information per pixel, the possible range of values
"for whichBit is @ through 31. The initial value of the colrBit field
is @.

Calculations with Rectangles

Calculation routines are independent of the current coordinate system;
a calculation will operate the same regardless of which grafPort is
active.

(hand)

Remember that if the parameters to one of the calculation
routines were defined in different grafPorts, you must
first adjust them to be in the same coordinate system.

If you do not ‘ad just them, the result returned by the
routine may be different from what you see on the screen.
To adjust to a common coordinate system, see
LocalToGlobal and GlobalToLocal under "Calculations with
Points" below. ’

" PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: INTEGER);

SetRect assigns the four boundary coordinates to the rectangle. The
result is a rectangle with coordinates (left,top,right,bottom).

This procedure is supplied as a utility to help you shorten your
program text. If you want a more readable text at the expense of ~
length, you can assign integers (or points) directly into the
rectangle”s fields. There is no significant code size or execution .
speed advantage to either method; one”s just easier to write, and the
other”s easier to read.

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);
OffsetRect moves the rectangle by adding dh to each horizontal

coordinate and dv to each vertical coordinate. If dh and dv are

3/2/83 Espinosa—Rose . | /QUICK.2/QUIKDRAW.5

’

QUICKDRAW ROUTINES 47

positive, the movement is to the right and down; if either is negative,
the corresponding movement is in the opposite direction. The rectangle
retains its shape and size; it”s merely moved on the coordinate plane.

- This does not affect the screen unless you subsequently call a routine

to draw within the rectangle.

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

InsetRect shrinks or expands the rectangle. The left and right sides
are moved in by the amount specified by dh; the top and bottom are
.moved towards the center by the amount specified by dv. If dh or dv is
negative, the appropriate pair of sides is moved outwards instead of
~.inwards. The effect is to alter the size by 2*dh horizontally and 2*dv
vertically, with the rectangle remaining centered in the same place on
the coordinate plane.

If the resulting width or height becomes less than 1, the rectangle is

set to the empty rectangle (9,0,0,8). ,

~ FUNCTION SectRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect)
BOOLEAN; '

SectRect calculates the rectangle that is the intersection of the two
input rectangles, and returns TRUE if they indeed intersect or FALSE if
‘they do not. Rectangles that "touch" at a line or a point are not
considered intersecting, because their intersection rectangle (really,
in this case, an intersection line or point) does not enclose any bits
on the bitMap.

If the rectangles do not intersect, the destination rectangle is set to
(9,9,8,8). SectRect works correctly even if one of the source
rectangles is also the destination.

PROCEDURE UnionRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect);
UnionRect calculates the smallest rectangle which encloses both input
rectangles. It works correctly even if one of the source rectangles is
;also the destination.

FUNCTION PtInRect (pt: Point; r: Rect) : BOOLEAN;

PtInRect determines whether the pixel below and to the right of the
given coordinate point is enclosed in the specified rectangle, and
returns TRUE if so or FALSE if not.

PROCEDURE Pt2Rect (ptA,ptB: Point; VAR: dstRect: Rect);

Pt2Rect returns the smallest rectangle which encloses the two input

points.

3/2/83 Espinosa-Rose . /QUICK.2/QUIKDRAW.5

48 QuickDraw Programmer”s Guide

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

PtToAngle calculates an integer angle between a line from the center of
the rectangle to the given point and a line from the center of the
rectangle pointing straight up (12 o”“clock high). The angle is in
degrees from ¢ to 359, measured clockwise from 12 o“clock, with 90
degrees at 3 o“clock, 180 at 6 o“clock, and 27@ at 9 o"clock. Other
angles are measured relative to the rectangle: 1If the line to the
given point goes through the top right corner of the rectangle, the
angle returned is 45 degrees, even 1f the rectangle is not square; if
it goes through the bottom right corner, the angle is 135 degrees, and
so on (see Figure 18). '

angle = 45

— p

.
%
»

angle’= 45

.
o,
it

.

Figure 18. PtToAngle

The angle returned might be used as input to one of the procedures that
manipulate arcs and wedges, as described ‘below under "Graphic
Operations on Arcs and Wedges". '

FUNCTION EqualRect (rectA,rectB: Rect) : BOOLEAN:

EqualRect compares the two rectangleé and returns' TRUE if they are
equal or FALSE if not. The two rectangles must have identical boundary
coordinates to be considered equal.

FUNCTION EmptyRect (r: Rect) : BOOLEAN;

EmptyRect returns TRUE if the given rectangle is an empty rectangle or
FALSE 1if not. A rectangle is considered empty if the bottom coordinate
‘1s equal to or less than the top or the right coordinate is equal to or
less than the left.

3/2/83 Espinosa-Rose JQUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 49

Graphic Operations on Rectangles

These procedures perform graphic operations on rectangles. See also
~ ScrollRect under "Bit Transfer Operations”.

PROCEDURE FrameRect (r: Rect);

FrameRect draws a hollow.outline just inside the specified rectangle,
using the current grafPort”s pen pattern, mode, and size. The outline
is as wide as the pen width and as tall as the pen height. It is drawn
with the pnPat, according to the pattern transfer mode specified by
pnMode. The pen location is not changed by this procedure.

If a region is open and being formed, the outside outline of the new
rectangle is mathematically added to the region”s boundary.

PROCEDURE PaintRect (r: Rect);

PaintRect paints the specified rectangle with the current grafPort”s
pen pattern and mode. The rectangle on the bitMap is filled with the
pnPat, according to the pattern transfer mode specified by pnMode. The
pen location is not changed by this procedure.

PROCEDURE EraseRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort”s
background pattern bkPat- (in patCopy mode). The grafPort”s pnPat and
pnMode are ignored; the pen location is not changed.

.

PROCEDURE InvertRect (r: Rect);

" InvertRect inverts the pixels enclosed by the specified rectangle:
every white pixel becomes black and every black pixel becomes white.
The grafPort”s pnPat, pnMode, and kaat are all ignored; the pen
location is not changed.

 PROCEDURE FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in
patCopy mode). The grafPort”s pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

3/2/83 Espinosa-Rose : ' , /QUICK.2/QUIKDRAW.5"

50 QuickDraw Programmer”s Guide

Graphic Operations on Ovals

Ovals are drawn inside rectangles that you specify. If the rectangle
you specify is square, QuickDraw draws a circle.

PROCEDURE FrameOval (r: Rect);

FrameOval draws a hollow outline just inside the oval that fits inside
the specified rectangle, using the current grafPort”s pen pattern,
mode, and size. The outline is as wide as the pen width and as tall as
the pen height. It is drawn with the pnPat, according to the pattern
transfer mode specified by pnMode. The pen location is not changed by
this procedure.

If a region is open and being formed, the outside outline of the new
oval is mathematically added to the region”s boundary.

PROCEDURE PaintOval (r: Rect);

PaintOval paints an oval just inside the specified rectangle with the
current grafPort”s pen pattern and mode. The oval on the bitMap is
filled with the pnPat, according to the pattern transfer mode specified
by pnMode. The pen location is not changed by this procedure.

PROCEDURE EraseOval (r: Rect);
. 1

EraseOval paints an oval just inside the'specified rectangle with the

current grafPort”s background pattern bkPat (in patCopy mode). The

grafPort”s pnPat and pnMode are ignored; the pen location is not

changed. ‘ :

PROCEDURE InvertOval (r: Rect);

InvertOval inverts the pixels enclosed by an oval just inside the
specified rectangle: every white pixel becomes black and every black
pixel becomes white. The grafPort”s pnPat, pnMode, and bkPat are all
ignored; the pen location 1s not changed.

PROCEDURE FillOval (r: Rect; pat: Pattern);
FillOval fills an oval just inside the specified rectangle with the

given pattern (in patCopy mode). The grafPort”s pnPat, pnMode, and
bkPat are all ignored; the pen location is not changed.

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 51

Graphic Operations on Rounded-Corner Rectangles
{

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

FrameRoundRect draws a hollow outline just inside the specified
rounded—-corner rectangle, using the current grafPort”s pen pattern,
mode, and size. OvalWidth and ovalHeight specify the diameters of
curvature for the corners (see Figure 19). The outline is as wide as -
the pen width and as tall as the pen height. It is drawn with the
pnPat, according to the pattern transfer mode specified by pnMode. The
pen location is not changed by this procedure.

vl Width wralHeight

~ T P
— A

Figure 19. Rounded-Corner Rectangle

If a region is open and being formed, the outside outline of the new
rounded-corner rectangle is mathematically added to the region”s

boundary.
P

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

PaintRoundRect paints the specified rounded-corner rectangle with the
current grafPort”s pen pattern and mode. OvalWidth and ovalHeight
specify the diameters of curvature for the corners. The rounded-corner
rectangle on the bitMap is filled with the pnPat, according to the" '
pattern transfer mode specified by pnMode. The pen location 1is not
changed by this procedure. -

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER) ;

EraseRoundRect paints the specified rounded-corner rectangle with the
current grafPort”s background pattern bkPat (in patCopy mode).

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW .5

52 QuickDraw Programmer”s Guide

OvalWidth and ovalHeight specify the diameters of curvature for the
corners. The grafPort”s pnPat and pnMode are ignored; the pen lo