Altos System V'™ Series 386
Reference (C)

Document
History

EDITION PART NUMBER DATE

First Edition 690-22869-001 December 1988
Second Edition 690-22869-002 June 1989

Copyright
Notice

Manual Copyright ©1988, 1989 Altos Computer Systems

Programs Copyright ©1988, 1989 Altos Computer Systems

All rights reserved. Printed in U.S.A.

Unless you request and receive written permission from Altos Computer Systems, yo

may not copy any part of this document or the software you received, except in the
normal use of the software or to make a backup copy of each diskette you received.

Trademarks

The Altos logo, as it appears in this manual, is a registered trademark of Altos
Computer Systems.

Altos System V is a trademark of Altos Computer Systems.

CP/M and MP/M are trademarks of Digital Research.

DOCUMENTER’S WORKBENCH is a trademark of AT&T Technologies.
IBM is a registered trademark of International Business Machines Corporation.
LaserJet is a trademark of Hewlett Packard Company.

MS-DOS is a registered trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

‘WorkNet II is a trademark of Altos Computer Systems.

XENIX is a registered trademark of Microsoft Corporation.

Limitations

Altos Computer Systems reserves the right to make changes to the product described
in this manual at any time and without notice. Neither Altos nor its suppliers
make any warranty with respect to the accuracy of the information in this manual.

GUIDE TO YOUR ALTOS SYSTEM V™
SERIES 386 DOCUMENTATION

RUN-TIME SYSTEM

Installation
Part numbers: 690-21170-nnn

690-21869-nnn

o Installation and upgrade
e Set up Multidrop and UPS

Using the AOM™ Menu System
Part number: 690-18055-nnn

o Easy-to-use menus to
access programs

¢ Menu Manager to add, update,
remove menus

Operatlons Gulde
Part number: 690-21171-nnn

System administration
Accounting, file systems
Backups, port setup
Communications (UUCP)
Error messages

Reference (C)

Part number: 690-22869-nnn

o Commands (C)

Reference (M)
Part number: 690-22870-nnn
m e Miscellaneous files (M)

User’s Gulde
Part number: 690-21178-nnn
(Not shipped with the Run-time system)

o Basic concepts and tasks
e Vi, ed, mail, awk, sed
e Shells: sh and csh

TEXT PROCESSING SYSTEM
DOCUMENTER’'S WORKBENCH™
2 Part numbers: 690-15843-nnn

. 690-15844-nnn

¢ Mm macros, reference
e« Nroff, troff, tbl, eqn

DEVELOPMENT SYSTEM
Set part number: 690-21585-000

ﬁ Reference (CP, S, F)

m e Programming commands (CP)
e System calls, library routines (S)
o File formats (F)

ﬁ Programmer’s Guide
m « Make, SCCS

¢ Lex, yacc

o Signals, system resources,
device drivers

e Adb, sdb

e Shared libraries

C Compiller Library and User’s Guide

1/0 functions, pipes

Curses, terminfo

Assembly routines

As, cc, COFF, lint, 1d

Error processing

Character and string processing

C Compller Language Reference

Elements of C

Program structure
Declarations, expressions
Statements, functions
Preprocessor directives

® o 0o 0o 0

Macro Assembler User’s Guide
and Reference

How to use masm
Error messages

Type declarations
Operands, expressions
Directives, file control
Instruction summary

To order the User's Guide or any of the above manuals, call 408/434-6688, ext. 3004

and give the manual title and part number.

About This Manual

USING THIS MANUAL

This reference alphabetically describes the commands and
programs that are on the Altos System V™ Run-time System.
Altos System V is based on UNIX® System V Release 3 with
enhancements from Altos and Microsoft.

ORGANIZATION
This manual contains the commands, programs, and utilities
(C) of the Run-time system.
For miscellaneous utilities and files (M), see the Refer-
ence (M).
NOTE
The last section of the manual, "Change
Information," summarizes the changes that have

been made to the manual since the previous
version.

MANUAL CONVENTIONS

The documentation conventions used in this manual are ex-
plained on the following page.

iii

About This Manual

Symbol

Description

boldface type

boldface type

italic type

| Esc I
[]

99

n"nn

What you type. For example:
Type tar tv

Used for command or parameter names
that must be typed as shown.

mail user

Variables (a value that can change),
such as user. See the previous exam-
ple. Also for manual titles, such as
Reference (C) and Reference (M).

Keys you press simultaneously (sepa-
ated by a hyphen and shown in re-
verse type). For example:

means you press and
hold the key and then
press the d key.

Keys you press sequentially.

Optional items in a syntax statement.
If you do not use the optional item,
the program selects a default action
to carry out.

Use only one of the separated items.

Repeat preceding argument one or
more times.

Repeat the preceding argument one or
more times and separate arguments
with a comma.

Terms defined in the text. Quotation
marks also indicate text from a
source code example.

iv

~—i

About This Manual

ADDITIONAL REFERENCE MATERIALS

For more information on your operating system, see the

following list of manuals. To order a manual, call (408)
434-6688, ext. 3004 and give the manual title and part

number.

Owner's Guide (part number 690-21264-nnn or 690-20351-
nnn) describes how to connect computer components and
peripherals, turn on power, and use the diagnostic
programs.

Using the AOM Menu System (part number 690-18055-nnn)
describes how to use the Altos Office Manager (AOM) to
install software and manage the operating system.

Altos System V User's Guide (part number 690-21178-nnn)
(not shipped with the Run-time system) explains basic
operating system concepts and programs (e.g., vi, ed, sh,
csh, mail, sed, and awk).

Altos System V Series 386 Operations Guide (part number
690-21171-nnn) tells how to set up the system for users
and peripherals, maintain and back up the system, optimize
system performance, and use uucp communications programs.
This manual also contains system and LP spooler error mes-
sages.

Altos System V Series 386 Reference (M) (part number
690-22870-nnn) describes the Altos Run-time system utili-
ties and files.

Altos System V Series 386 Development System Set (part
number 690-21585-000) contains reference and tutorial
material.

Manuals in this set include:

Altos System V Series 386 C Compiler Library and
User's Guide

Altos System V Series 386 C Compiler Language
Reference

Altos System V Series 386 Programmer’s Guide
Altos System V Series 386 Macro Assembler User's
Guide and Reference

Altos System V Series 386 Reference (CP, S, F)

About This Manual

DOCUMENTER'S WORKBENCH (part numbers 690-15843-nnn
and 690-15844-nnn) describes mm, nroff, troff, and type-
setting functions and commands.

vi

~——

Permuted Index

The Permuted Index on the following pages contains a listing of
programs, utilities, files, etc. in the Altos System V Run-time

and Development Systems. These programs are described in the
Altos System V Reference. Volume 1 of the Reference contains the
Run-time system commands (C) and miscellaneous (M) sections.
Volume 2 contains the Development system programming commands
(CP), system calls and library routines (S), and file formats (F).
intriecs in each section are in alphabetical order.

NOTE
These programs, utilities, files, etc. are

subject to change.

The table that follows contains a description of each section and
its location.

Permuted Index

Description . Section Manual
Run-time commands C Reference (C)
Miscellaneous -- programs M Reference (M)

and system files used for
system maintenance and to
access devices

Programming commands Cp Reference (CP, S, F

System calls and library S Reference (CP, S, F
routines for C and assembly
language programming

File formats -- programs F Reference (CP, S, F
and system files not de-
fined in the M section

PI-2

~—

as (CP)

13tol(S) 1tol3(S) convert between
tk(C) paginator for Tektronix
integer and base-64 ASCII string

abs(S) return integer
ceil(S) fabs(S) floor. ceiling. and
floor(s) fmod(S) floor. ceiling., and

requests

settime(C) change the

touch(C) update

utime(S) set file

login(C) give you system

sputl(S) sgetl(S)

dos(C)

sadp(M) disk

ldfcn(F) common object file
sdwaitv(S) synchronize shared data
sdenter(S) sdleave(S) synchronize
waitsem(S) nbwaitsem(S) wait and check
clock(M) provide

getutent(S) utmpname(S) endutent(S)
getut($) setutent(S) getutline(S)
access(S) determine

file

csplit(C) split files

acct(S) enable or disable process
acct (M) format of per-process
acct(C)

file

accounting

trig(S) sin(S) cos(S) tan(S) asin(s)
killall(C) kill all

sar(C) system

sar (M) system

sact(CP) print current SCCS file edit
debugger

add.hd(C)

nl(C)

map badblock(C)

lpinit (M)

putenv(S) change or

add.hd(C) add an
upgrade.hd(C) upgrade an
files

admin (CP) create and
ua(C) user

uadmin(s)

machines

mail alias file
alarm(S) set a process

brk(S) sbrk(S) change data segment space

Permuted Index

386 Assembler

3-byte integers and long integers

4014

a641(S) 164a(S) convert between long ____
abort(S) generate an IOT fault

absolute value

abgolute value functions floor(S)
absolute value functions

abs(S) return integer absolute value __
accept (C) reject(C) allow/prevent print
access and modification dates of files __
access and modification times of a file
access and modification times

access

access long integer data

access MS-DOS files

access profiler

access routines

access sdgetv(S)

access to a shared data segment

access to semaphore resource

access to the time-of-day chip

access utmp file entry getut(S)

access utmp file entry

accessibility of a file

access(S) determine accessibility of a __

according to context

accounting
ing file

accounting system

acct(C) accounting system

acct (M) format of per-process accounting
acct(S) enable or disable process

acos(S) trigonometric functions

active

activity report
activity report K
activity

adb(C) invoke x.out general purpose
add an additional hard disk

add line numbers to a file

add new bad sectors to the bad sector
add new line printers

add value to environment

add.hd(C) add an additional hard disk __
additional hard disk

additional hard disk

admin(CP) create and administer SCCS __
administer SCCS files

administration program
administrative control

aftp(C) transfer files between Altos
aliases(M) mail alias file
aliashash (M) rebuild data base for
alarm clock

alarm(S5) set a process alarm clock
allocation

PI-3

as(CP)
13tol(S)
tk(C)
a641(s)
abort (S)
abs(S)
£floor(s)
floor(s)
abs(S)

. accept(C)

settime(C)

_ touch(C)

utime(S)
login(C)
sputl(s)
dos(C)
sadp(M)
1dfcn(F)
sdgetv(s)
sdenter(S)
waitsem(S)
clock(M)
getut(S)
getut(S)
access(S)
access(S)
csplit(C)
acct(s)
acct(M)
acct(C)
acct(C)
acct (M)
acct(s)
trig(s)
killall(C)
sar(C)

sar (M)
sact (CP)
adb(C)
add. hd(C)
nl(c)

badblock(C)

lpinit (M)
putenv(Ss)
add.hd(C)
add. hd(C)
upgrade. hd (C)
admin (CP)
admin(CP)
ua(c)
uadmin(S)

aftp(C)

aliases(M)
aliashash(M)
alarm(s)
alarm(s)
brk(s)

Permuted Index

free(S) realloc(S) fast main memory
malloc(S) main memory

mallopt(S) calloc($S) fast main memory
terminal mesg(C)

get and set maximum number of users
accept (C) reject(C)

aftp(C) transfer files between
lex(CP) generate programs for lexical
editor output

dc(C)

be(C)

cpio(F) format of cpio

ar(F)

xar (F)

the archive header of a member of an
tar(C)

file ldahread(S) read the

streaming tape

ar(CP) maintain

xar (CP) maintain

cpio(C) copy file

ranlib(CP) convert

varargs(F) handles variable

getopt(S) get option letter from

expr{C) evaluate

echo(C) echo

bc(C) arbitrary-precision

asa(C) interpret

characters

ascii(M) map of the

convert between long integer and base-64

time to string ctime(S) tzset(S)
trig(S) sin(S) cos(S) tan(s)

a.out(F) format of

as(CP) 386

masm(CP) invoke the macro
assert(S) verify program

setbuf (S) setvbuf(s)

trig(S) atan(S)

trig(s)

later time

double-precision number strtod(s)
strtol(S) atol(s)

integer strtol(S)

adget (S) sdfree(S)

reboot (C)

reboot the system

language

wait(C) wait completion of
finc(M) fast incremental
ckbupscd(M) check file system

allocator malloc(S) malloc(S)
allocator malloc(S)
- allocator malioc(S) mallinfo(S) malloc(S)
allow or disallow messages sent to a ____ mesg(C)
allowed to log in 8(S) (s)
allow/prevent print requests accept (C)
Altos machines aftp(C)
analysis lex(CP)
a.out(F) format of assembler and link ___ a.out(F)
arbitrary precision calculator dc(C)
arbitrary-precision arithmetic language _ bc(C)
archive cpio(F)
archive file format ar(F)
archive file format xar (F)
archive file ldahread(S) read ldahread(s)
archive files tar(C)
archive header of a member of an archive 1ldahread(s)
archive(C) save a file system to a archive(C)
archives and libraries ar(CP)
archives and libraries xar (CP)
archives in and out cpio(C)
archives to random libraries ranlib(CP)
ar(CP) maintain archives and libraries __ ar(CP)
ar(F) archive file format ar(F)
argument list varargs (F)
argument vector getopt (S)
as an exp: ion expr (C)
arguments echo(C)
arithmetic 1 be(C)
asa carriage control characters asa(C)
asa(C) interpret asa carriage control ___ asa(C)
ASCII character set ascii(M)
ASCII string aé41(S) 164a(s) a641(s)
ascii(M) map of the ASCII character set _ ascii(M)
as(CP) 386 Assembler as (CP)
asctime(S) cftime(S) convert date and ___ ctime(S)
asin(S) acos(S) trigonometric functions _ trig(s)
asktime(C) set the system time of day _ _ asktime(C)
assembler and link editor output a.out(F)
ler as(CP)
bler masm(CP)
assertion assert(s)
assert(S) verify program assertion assert(S)
assign buffering to a stream setbuf(S)
atan2(S) trigonometric functions trig(s)
atan(S) atan2(S) trigonometric functions trig(s)
at(C) batch(C) execute commands at a ____ at(C)
atof(S) convert string to strtod(Ss)
atoi(S) convert string to integer strtol(S)
atol(S) atoi(S) convert string to strtol(S)
attach and detach a shared data segment _ sdget(S)
automatically reboot the system reboot (C)
autoreboot (C) automatically autoreboot (C)
awk (C) pattern scanning and processing __ awk(C)
background processes wait(C)
backup finc(M)
p hedule ckbupscd(M)

frec(M) recover files from a
badblock(C) add new bad sectors to the
badblock(C) add new

bad sector map

Permuted Index

back-up tape

bad sector map

bad sectors to the bad sector map
badblock(C) add new bad sectors to the __

frec(M)

badblock(C)
badblock(C)
badblock(C)

banner(C) print large letters banner (C)
164a(S) convert between long integer and base-64 ASCII string a64l(S) a641(S)
of pathnames basename(C) dirname(C) deliver portions _ basename(C)
time at{(C) batch(C) execute commands at a later ____ at(C)
 language bc(C) arbitrary-precision arithmetic ___ bc(C)
diff bdiff(C) compare files too large for bdiff(C)
cb(CP) beautify C programsa cb(CP)
bessel(S) jO(S) yo(S) Bessel functions bessel (S)
bessel(S) jO(S) yO(S) Bessel functions __ bessel(S)
bfs(C) scan big files bfa(C)
bfs(C) scan big files bfs(C)
fwrite(S) fread(S) binary input/output furite(S)
whereis(C) locate source, binary, or manual for program whereis(C)
bsearch(S) binary search of a sorted table bsearch(S)
tfind(S) tdelete(S) twalk(S) manage binary search trees tsearch(S) tasearch(S)
creatsem(S) create a binary h creatsem(S)
reset (C) reset the teletype bit reset (C)
ssp(C) remove consecutive blank lines ssp(C)
sync(S) update super block sync(S)
df (M) report number of free disk blocks and inodes ag (M)
sum(C) calculate checksum and count blocks in a file sum(C)
boot (M) boot program boot (M)
mkboot (M) convert object file to bootable object file mkboot (M)
table mkunix(M) make bootable system file with driver symbol _ mkunix(M)
table mkunix(M) make bootable system file with kernel symbol _ mkunix(M)
boot (M) boot program boot (M)
brc(M) system initialization procedure __ brc(M)
shutdown (M) bring system to single-user or shutdown _ shutdown(M)
multiuser(C) singleuser(C) bring system up multi/single-user mode __ multiuser(C)
allocation brk(S) sbrk(S) change data segment space brk(S)
table bsearch(S) binary search of a sorted ___ bsearch(S)
bsh(C) invoke the Business shell bsh(C)
stdio(S) standard buffered input/output package stdio(S)
setbuf (S) setvbuf(S) assign buffering to a stream setbuf (S)
mknod(C) build special files mknod (C)
bsh(C) invoke the Business shell bsh(C)
digest(C) create menu system(s) for the Business shell digest(C)
menus (M) format of Business shell menu system menus (M)
swab(S) swap Dbytes swab(S)
cc(CP) invoke the € compiler cc(CP)
xcc (CP) invoke the XENIX C compiler xcc(CP)
cflow(CP) generate C flow graph cflow(CP)
cpp(CP) the C Language Preprocessor <cpp(CP)
1int (CP) check C language usage and syntax lint (CP)
cxref (CP) g e c reference cxref (CP)
ctrace(CP) C program d ctrace(CP)
cb(CP) beautify C programs cb(CP)
xref (CP) cross-reference C programs xref (CP)
xstr(CP) extract strings from C programs xstr(CP)
1ist (CP) produce C source listing from COFF file 1list (CP)
create an error message file from C source mkstr(C) mkstr(C)
create an error message file from C source mkstr(CP) mkstr(CP)
cal(C) print a calendar cal(C)

PI-5

Permuted Index

calculate checksum and count blocks in a

file sum(C) sum(C)
dc(C) arbitrary precision calculator dc(C)
cal(C) print a calendar cal(C)
calendsr(C) invoke a reminder service ___ calendar(C)
cu(C) call another UNIX system cu(C)
stat (F) return data by stat system call stat (F)
malloc(S) mallinfo(8) mallopt(S) calloc(S) fast main memory allecator _____ malloc(S)
intro(8) introduce system calls, functions. and libraries intro(S)
line primter lp{(C) cancel(€) send/cancel requests to LP ____ 1p(C)
termcap(M) terminal capability & b termcap (M)
terminfo (M) terminal capability database terminfo (M)
description captoinfo(M) convert termcap to terminfo captoinfo(M)
asa(C) interpret asa carriage control characters asa(C)
cat (€) concatenate and display files ____ cat(C)
cb(CP) beautify C programs cb(CP)
gencc(€P) create a frent end to the cc d gencc(CP)
cc(CP) invoke the C compiler cc(CP)
cd(C) chenge working directory cd(C)
SCCS delta cdc(€P) change the delta commentary of __ cdc(CP)
absolute value funetions fleor($) ceil(S) fabs(S) floor. ceiling. and floor(S)
floor(S) ceil(s) fabs(S) floor. ceiling, and absolute value functions ___ floor(S)
floor(S) £mod(S) floor. ceiling. and absolute value functions ___ floor(S)
cflow(CP) generate C flow graph cflow(CP)
string ctime(S) tzset(S) asctime(S) cftime(S) convert date and time to ctime(S)
brk(S) sbrk(S) change data segment space allocation ____ brk(S)
P a(C) hange login p P da(C)
chmod(S) change mode of file chmod(S)
putenv(S) change or add value to envi put (s)
chown(S) change owner and group of a file chown(S)
chown (C) chgrp(C) change owner or group ID chown(C)
directery chmod(C) change permissions of a file or chmod(C)
nice(S) change priority of & process nice(S)
chroot(S) change root directory chroot (S)
chroot (C) change root ddrectory for command chroot (C)
swap(C) change swap device configuration awap (C)
of files settime(C) change the access and modification dates settime(C)
delta cdc(€P) echange the delta commentary of SCCS cdc(CP)
chsize(S) change the file mize chsize(S)
delta(CP) make a change to an SCCS file delta(CP)
cd(C) change working directory cd(C)
chddr(S) change working directory chdir(s)
pipe(s) te an i h 1 pipe(s)
ungetc(S) push character back into input stream ungetc(S)
cuserid(S) get character login name of the user cuserid(s)
getc(S) getw(S) fgetc(S) getchar(S) get character or word from a stream getc(S)
putc(S) putchar(8) putw(S) fputc(S) put character or word on a stream putc(s)
ascii(M) map of the ASCII character set ascii(M)
fgrep(C) mearxch a file for a character string fgrep(C)
asa(C) interpret asa carriage control h ers asa(C)
toascii(S) tolower(S) translate char conv(S) (S) conv(S)
islower(S) iscntrl(S) classify characters ctype(S) isalpha(S) ctype(S)
ispunct(S) isascii(S) classify characters ctype(S) isdigit(s) ctype(S)
tr(C) translate h tr(C)
wc(C) count lines, words. and characters we(C)
chdir(S) change working directory chdir(8)
waitsem(S) nbwaitsem(S) wait and check to Tesource waitsem(S)
fack(C) dfack(C) check and repair file systems £3ck(C)

PI-6

lint (CP)

ckbupscd (M)

pwck(M) grpck(M)
permissions file uucheck(M)

rdchk(s)

labelit (M) copy file system with label
by fsck

sum(C) calculate

chown (C)

times(S) get process and

wait(S) wait for

provide access to the time-of-day
libraries

directory

IDp
file

command

schedule

isalpha(S) islower(S) iscntrl(s)

isdigit(S) ispunct(S) isascii(s)

inir(M)

strclean(M) STREAMS error logger

uucleanup(M) uucp spool directory
clri(M)

clear(C)

inquiries ferror(S) fileno(S)

csh(C) shell command interpreter with
alarm(S) set a process alarm
time-of-day chip

STREAMS driver

ldclose(S) ldaclose(S)

close(S)

fclose(S) fflush(s)

haltsys(C)

directory operations directory(S)

dis(CP) object

ldclose(S) ldaclose{(S) close a
ldfhread(S) read the file header
1ist(CP) pioduce C source listing
to line number entries of a section

of a

from

to relocation entries of a section
an indexed/named section header
the index of a symbol table entry
read an indexed symbol table entry
seek to the symbol table

remove symbols and line numbers

o
Y
R

from
convert an object file from OMF to
manipulate line number entries of a
ldgetname(S) retrieve symbol name for

Permuted Index

check C language usage and syntax

check file system backup schedule

check password/group file

check the uucp directories and

check to see if there is data to be read
checking volcopy (M)

checklist (M) list file systems processed
checksum and count blocks in a file
chgrp(C) change owner or group ID

child process times

child process to stop or terminate

chip clock(M)

chkshlib(CP) tool for comparing shared ___
chmod(C) change permissions of a file or
chmod(S) change mode of file

chown(C) chgrp(C) change owner or group _
chown(S) change owner and group of a
chroot (C) change root directory for
chroot (S) change root directory
chsize(S) change the file size
ckbupscd(M) check file system backup ____
classify characters ctype(S)

classify characters ctype(S)

clean the file system and executes init _
cleanup program
cleanup
clear inode

clear terminal screen

clear(C) clear terminal screen
clearerr(S) feof(S) stream status
C-like syntax
clock
clock(M) provide access to the

clock(S) report CPU time used

clone(M) open any minor device on

close a COFF file

close a file descriptor

close or flush a stream

close the file systems and halt the CPU _
closedir(S) rewinddir(S) seekdir(s)
close(S) close a file descriptor
clri(M) clear inode

cmp(C) compare two files

code disassembler

COFF file
file
file
tile
file
file
file
file

ldlseek(S) seek
ldrseek(S) seek
ldshread(S) read
1dtbindex(S) compute
ldtbread(s)

file ldtbseek(S)

file strip(CP)

£ixobj (CP)
function ldlread(S) ldlitem(S) ____
symbol table entry

PI-7

lint (CP)
ckbupsacd (M)
pwck (M)
uucheck (M)
rdchk(S)
volcopy (M)
checklist (M)
sum(C)
chown(C)
times(S)
wait(s)
clock (M)
chkshlib(CP)
chmod(C)
chmod(S)
chown(C)

chown(S)

chroot (C)
chroot(S)
chsize(S)
ckbupscd (M)
ctype(S)
ctype(S)
inir(M)
strclean(M)
uucleanup (M)
clri(M)
clear(C)
clear(C)
ferror(S)
csh(C)
alarm(S)
clock(M)
clock(S)
clone(M)
ldclose(S)
close(S)
fclose(S)
haltsys(C)

directory(S)

close(S)
clri(M)
cmp(C)
dis(CP)
ldclose(S)
ldfhread(s)
list (CP)
ldlseek(S)
ldrseek(S)
ldshread(s)
ldtbindex(S)
ldtbread(s)
ldtbseek(S)
strip(CP)
£ixobj (CP)
1ldlread(S)
ldgetname(S)

Permuted Index

comb (CP) combine SCCS deltas comb (CP)
comb (CP) combine SCCS deltas comb (CP)
nice(C) run a conmand at a different priority nice(C)
chroot (C) change root directory for d chroot (C)
env(C) set envi for d execution env(C)
gencc{CP) create a front end to the cc d gence(CP)
nohup{C) run a d immune to h and quits ______ nohup(C)
setpgrp(C) execute in a new p: group <)
sh(C) rsh(C) invoke the shell command interpreter sh(C)
csh(C) shell command interpreter with C-like syntax __ csh(C)
uux(C) execute command on remote UNIX uwux(C)
getopt (C) parse d options getopt (C)
uuxgt (M) execute remote d req uuxgt (M)
system(S) issue a shell system(S)
time(C) time a d time(C)
at(C) batch(C) execute commands at a later time at(C)’
cron(C) execute commands at specified times cron(C)
rc2(M) eommands for multi-user environment rc2(M)
install(M) install d install(M)
intre(€) intreduce a intro(C)
intro(CP) introduce software development intro(CP)
rco(M) cemmands to stop the operating system ___ rcO(M)
xargs (C) and t q xargs (C)
two sorted files comm(C) select/reject lines common to ___ comm(C)
mcs (CP) manipulate the object file section mcs (CP)
cdc(€P) change the delta commentary of SCCS delta cdc (CP)
ldfcn(F) common object file accees routines 1dfcn(F)
cprs(CP) compresse a cemmon object file cprs(CP)
ldopen(S) ldaopen(S) open a common object file for reading ldopen(S)
lirenum(F) line number entries in a common object file linenum(F)
nm(CP) print name list of common object file nm(CP)
reloc(F) relocation of i ien for a object file reloc(F)
scnhdr (F) section header for a common object file scnhdr (F)
syms (F) aommon cbject file symbol table format __ syms(F)
conv(CP) coavert common object files conv(CP)
filehdr(F) file header for common object files filehdr(F)
aize(C) print section mizes of cemmon object files size(C)
Beek to the optional file header of a object 1 (s) ldohseek(S)
comm(C) select/reject lines common to two sorted files comm(C)
'gimlry(c) define common UNIX terms and symbols glossary(C)
ipcs (C) report inter-process communication facilities status ipca(C)
stdipc($) ftok(S) standard interprocess ication) stdipc(S)
diremp(C) compare directories dircmp (C)
sdiff(C) compare files side-by-side sdiff(C)
bAift(C) compare files too large for diff bdiff(C)
infoemp (M) compare or print terminfe descriptions __ infocmp(M)
dif£3(C) compare three files diff£3(C)
cmp(C) compare two files cmp (C)
diff(C) compare two text files diff(C)
sccsdiff (CP) compare two versions of an SCCS file _____ sccsdiff(CP)
chkshlib(CP) toel fer ecomparing shared libraries chkshlib(CP)
regemp (S) compile a regular expression regcmp (S)
regexp(F) regular expression compile and match routines _ =~~~ regexp(F)
routines regexp(s) compile regular expression and match ____ regexp(S)
regenp (EP) compile regular expressions regcmp (CP)
tie(C) eompile terminfo source tic(C)
cc(CP) invoke the C compiler <c(CP)

PI-8

<7

xcc(CP) invoke the XENIX C
yacc(CP) invoke a

erf(S) erfc(S) error function and
wait(C) wait

pack(C) pcat(C) unpack(C)

cprs (CP)

entry of a COFF file ldtbindex(S)
cat(C)

ldunix (M)

master (M) master

printers (M) print spooler
sysconf(C) get system

sysconf (S) get system

pconfig(C) set port

swap(C) change swap device
shutype(M) UPS shutdown

lpadmin (M)

establish an out-going terminal line
ssp(C) remove

system

system

math(F) math functions and
unistd(F) file header for symbolic
file header for implementation-specific
mkfs (M)

xargs(C)

uutry (M)

errprint (M) display error log
recover(C) restore

dump.hd(C) dump

18(C) list

csplit(C) split files according to
fcntl(S) file

uadmin(S) administrative

uustat(C) uucp status inquiry and job
vc(CP) version

asa(C) interpret asa carriage
ioctl(s)

IEEE floating point environment
IEEE floating point environment
IEEE floating point environment
1EEE floating point environment
IEEE floating point environment
init(M) process

msgctl(S) message

semctl(S) semaphore

shmctl(S) shared memory

fentl(F) file

term(M)

fixobj (CP)

ad(C)

ranlib(CP)

integers 13tol(S) 1ltol3(S)
ASCII string a641(S) 164a(S)
conv(CP)

ctime(S) gmtime(S) localtime(S)

Permuted Index

compiler

compiler-compiler
complementary error function

completion of background processes
compress and expand files

compress a common object file
compute the index of a symbol table
concatenate and display files
configurable kernel linker
configuration database
configuration file

configuration information
configuration information
configuration
configuration
configuration utility .

configure the LP spooling system
connection dial(s)

consecutive blank lines

console display
console keyboard
constants
constants
constants limits(F)

construct a file system

construct and execute commands

contact remote system with debugging on _
contents

contents of a file system from tape
contents of a hard disk to tape
contents of directories

context

control

control

control

control

control characters

control device

control fpgetround(S) fpgetmask(S)
control fpgetround(S) fpgetsticky(s)
control fpgetround(S) fpsetmask(S)
control fpgetround(S) fpsetround(S)
control fpgetround(S) fpsetsticky(S)
control initialization

control operations
control operations
control operations
control options

conv (CP) convert common object files
conventional names for terminals
convert an object file from OMF to COFF _
convert and copy a file

convert archives to random libraries _
convert between 3-byte integers and long
convert between long integer and base-64
convert common object files

convert date and time to string

PI-9

xcc (CP)
yacc(CP)
erf(S)
wait (C)
pack(C)
cprs(CP)

1dtbindex(S)

cat(C)
1dunix(M)
master (M)
printers (M)
aysconf (C)
aysconf (S)
pconfig(C)
swap(C)
shutype (M)
lpadmin (M)
aial(s)
ssp(C)
display(M)
keyboard (M)
math(F)
unistd(F)
limits(F)
mkfs (M)
xargs(C)
uutry(M)
errprint (M)
recover (C)
dump . hd(C)
18(C)
csplit(C)
fcntl(S)
uadmin(S)
uustat (C)
vec(CP)

asa(C)
ioctl(s)
fpgetround(S)
fpgetround(S)
fpgetround(S)
fpgetround(S)
fpgetround(s)v
init (M)
msgetl(s)
semctl(S)
shmetl(S)
fentl(F)

conv (CP)

term(M)
f£ixobj (CP)
aa(cy
ranlib(CP)
13tol(S)
a641(S)
conv(CP)
ctime(S)

Permuted Index

ctime(S) tzset(S) asctime(S) cftime(S)
ecvt (S)

scanf(S) fscanf(S) sscanf(S)
file mkboot (M)

FORTRAN ratfor (CP)

number strtod(S) atof(s)
strtol(S) atol(S) atoi(s)
captoinfo (M)

units(C)

translate characters

dd(C) convert and

fcopy (€)

cpio(C)

volcopy(M) labelit (M)

<p(C)

uucp(C) uulog(C) uuname(C)
copy(C)

tra(C)

public UNIX-to-UNIX system file

core(F) format of

sinh(S)

trigonometric functions trig(S) sin($)
sum(C) calculate checksum and

wc(C)

cpio(F) format of

close the file systems and halt the
clock({S) report
creatsem(S)

gencc{CP)

tmpnam(S) tempnam(S)

one creat(s)

fork(s)

mkshlib(CP)

ctags(C)

tee(C)

tmpfile(S)

source mkatr(C)

source mkstr(CP)

pipe(s)

admin(CP)

Shell digest(C)
makedevs (M)

makettys (M)

umask(S) set and get file
existing one

times
crontab(C) manage user

PI-10

convert date and time to string ctime(S)
convert floating-point number to string _ ecvt(S)
convert formatted input scanf (S)
convert object file to bootable object __ mkboot (M)
convert rational FORTRAN to standard ____ ratfor(CP)
convert string to double-precision strtod(s)
convert string to integer strtol(S)
convert termcap to terminfo description _ captoinfo(M)
convert units units(C)
conv(S) toupper(S) toascii(S) tolower(S) conv(S)
copy a file dd(C)
copy a floppy diskette £copy(C)
copy file archives in andout ____ cpio(Q)
copy file system with label checking _____ volcopy(M)
copy files cp(C)
copy files from UNIX to UNIX uucp(C)
copy groups of files copy (C)
copy out a file as it grows tra(C)
copy uuto(C) uupick(C) uuto(C)
copy(C) copy groups of files copy(C)
core image file core(F)
core(F) format of core image file core(F)
cosh(S) tanh(S) hyperbolic functions _____ sinh(S)
cos(S) tan(S) asin(S) acos(S) trig(s)
count blocks in a file sum(C)
count lines, words, and characters wc(C)
cp(C) copy files cp(C)
cpio archive cpio(F)
cpio(C) copy file archives in and out ___ cpio(C)
cpio(F) format of cpio archive cpio(F)
cpp(CP) the C Language Preprocessor cpp (CP)
cprs (CP) compresse a common object file _ cprs(CP)
cpset (C) install utilities cpset(C)
CPU haltsys(C) haltsys(C)
CPU time used clock(S)
create a binary e cr (s)
create a front end to the cc command ____ gencc(CP)
create a name for a temporary file tmpnam({S)
create a new file or rewrite an existing creat(S)
Create a new process fork(s)
create a shared library mkshlib(CP)
create a tags file ctags(C)
create a tee in a pipe tee(C)
create a temp vy file tmpfile(s)
create an error message file from C mkstr(C)
‘crente an error message file from C mhkstr (CP)
create an int h 1 pipe(S)
create and administer SCCS files admin(CP)
create menu system(s) for the Business digest(C)
create special device files makedevs (M)
create tty special files makettys (M)
creation mask umask (S)
creat(S) create a new file or rewrite an creat(S)
creatsem(S) create a binary semaphore ___ creatsem(S)
cref(CP) make a cross-reference listing _ cref(CP)
cron(C) execute commands at lpacigied — cron(C)
crontab files crontab(C)

-

xref (CP)

cxref (CP) generate C program
cref (CP) make a

functions

C-like syntax

context

terminal
date and time to string
convert date and time to string

iscntrl(S) classify characters
isascii(8) classify characters

tty(C) get the

sact (CP) print

uname(C) print the

uname(S) get name of

whoami (C) print effective

find the slot in the utmp file of the
getcwd(S) get path name of
scr_dump(F) format of

optimization package

spline(C) interpolate smooth

the user

cross-reference

1pd(M) line printer

strerr(M) STREAMS error logger

xpd(M) transparent printer

sdgetv(S) sdwaitv(S) synchronize shared
turn on/off

stat(F) return

plock(S) lock process. text, or

prof (CP) display profile

execseg(S) make a

synchronize access to a shared
sdfree(S) attach and detach a shared
brk(S) sbrk(S) change

sputl(S) sgetl(S) access long integer
rdchk(S) check to see if there is
types(F) primitive system

query terminfo

dbminit(S) fetch(S) nextkey(S) perform
firstkey(S) store(S) fetch(S) perform
master (M) master configuration
termcap(M) terminal capability
terminfo(M) terminal capability
ctime(S) gmtime(S) localtime(S) convert
tzset(S) asctime(S) cftime(S) convert
date(C) print and set the

change the access and modification
database functions dbm(S)

perform database functions
perform database functions

Permuted Index

crontab(C) manage user crontab files

crontab(C)

crosg-reference C programs xref (CP)
cross-reference cxref (CP)
cross-reference listing cref (CP)
crypt(S) password and file encryption ___ crypt(S)
csh(C) shell command interpreter with ___ csh(C)
csplit(C) split files according to csplit(C)
ctags(C) create a tags file ctags(C)
ct(C) spawn getty to a remote terminal __ ct(C)
ctermid(S) generate file name for ctermid(S)
ctime(S) gmtime(S) localtime(S) convert _ ctime(S)
ctime(S) tzset(S) asctime(S) cftime(S) __ ctime(S)
ctrace(CP) C prog gg ctrace(CP)
ctype(S) isalpha(S) islower(S) ctype(S)
ctype(S) isdigit(S) ispunct(S) ctype(S)
cu(C) call another UNIX system cu(C)
current port name tty(C)
current SCCS file edit activity sact (CP)
current UNIX information uname (C)
current UNIX system uname (S)
current user id whoami (C)
current user ttyslot(S) ttyslot(S)
current working directory getcwd(S)
curses screen image file scr_dump (F)
curses(S) terminal screen handling and __ curses(S)
curves spline(C)
cuserid(S) get character login name of __ cuserid(s)
cxref (CP) generate C program cxref (CP)
a 1pd (M)
daemon strerr (M)
daemon xpd (M)
data access sdgetv(S)
data collector d (M)
data by stat system call stat(F}
data in memory plock(S)
data prot (CP)
data region executable (s)
data segment sdenter(S) sdleave(S) sdenter(S)
data sdget (S) sdget(S)
data segment space allocation brk(S)
data sputl(s)
data to be read rdchk(S)
data types types (F)
database tput (C)
database functions dbm(S) dbm(S)
database functions dbm(S) dbm(S)
database master(M)
database termcap (M)
database terminfo (M)
date and time to string ctime(S)
date and time to string ctime(S) ctime(S)
date date(C)
date(C) print and set the date date(C)
dates of files settime(C) settime (C)
dbminit(S) fetch(S) nextkey(S) perform __ dbm(S)
dbm(S) dbminit(S) fetch(S) nextkey(S) ___ dbm(S)
dbm(S) firstkey(S) store(S) fetch(S) ____ dbm(S)

PI-11

Permuted Index

adb(C) invoke x.out general purpose
ctrace(CP) C program
f£3db(M) file syst

8db(C) symbolic

uutry(M) contact remote system with
default (M)

timezone(M) set

directory

glossary(C)

sysdef(M) output system
basename(C) dirname(C)

tail(C)

change the delta commentary of SCCS
cdc(CP) change the

rmdel (CP) remove a

comb(CP) combine sces

errstop(C) terminate error-logging
captoinfo(M) convert termcap to terminfo
infocmp(M) compare or print terminfo
close(S) clowe a file

dup(S) dup2(S) duplicate an open file
sdget (S) sdfree(S) attach and
access(S)

dtype(C)

file(C)

f£3typ(M)

drive sizefs(C)

whodo (M)

intro(CP) introduce software

swap(C) change swap

makedevs (M) create special

fold long lines for finite width output
devinfo(C) display

ioctl(S) control

devnm(C) identify

clone(M) open any minor

files reside

and inocdes

fack(C)

line connection

bdiff(C) compare files too large for

nice(C) run a command at a
Business Shell

uucheck (M) check the uucp

dircmp(C) compare

fleece(C) look for files in home
unlink(M) link and unlink files and
18(C) list contents of

mv(C) move (rename) files and
m(C) rmdir(C) remove files or

dc(C) arbitrary precision calculator ____ dc(C)
dd{(C) convert and copy a file ad(c)
adb(C)
ctrace(CP)
£3db(M)
8db(C)
debugging on uutry(M)
default program information directory ____ default(M)
default system time zone ti (M)
default (M) default program information __ default(M)
define common UNIX terms and symbols ____ glossary(C)
definition sysdef (M)
deliver portions of path ()
deliver the last part of a file tail(C)
delta cdc(CP) cdc(CP)
delta commentary of SCCS delta cdc(CP)
delta from an SCCS file rmdel (CP)
deita(CP) make a change to an SCCS file _ delta(CP)
deitas comb (CP)
demon errstop(C)
description captoinfo(M)
descriptions infocmp (M)
descriptor close(S)
descriptor dup (S}
detach a shared data segment sdget(S)
determine accessibility of a file access(S)
determine disk type dtype(C)
determine file type £ile(C)
4 ine the file sy identifier ___ fstyp(M)
determine the size of a logical disk ____ sizefs(C)
determine who is doing what whodo (M)
development d intro(CP)
device configuration swap(C)
device files devs (M)
device fold(C) fola(c)
device information . devinfo(C)
device joctl(s)
device name on which files reside devam(C)
device on STREAMS driver clone(M)
devinfo(C) display device information ___ devinfo(C)
devnm(C) identify device name on which __ devom(C)
df (M) report number of free disk blocks _ df(M)
dfsck(C) check and repair file systems __ fack(C)
dial(S) establish an out-going terminal _ dial(S)
aiff bdiff(C)
diff3(C) compare three files diff£3(C)
diff(C) compare two text files Aiff(C)
different priority nice(C)
digest(C) create menu system(s) for the _ digest(C)
dircmp(C) compare directories dircmp(C)
directories and permissions file uucheck (M)
directories diremp(C)
directories flee. ~(C)
directories link(M) link (M
directories 1s (O
Qirectories mv(C)
directories ™m{C)

PI-12

z

cd(C) change working

chdir(S) change working

chnod (C) change permissions of a file or
chroot (S) change root

uucleanup(M) uucp spool

default (M) default program information
dir(M) format of a

getdents(S) read

dirent (F) file system independent
unlink(S) remove

chroot(C) change root

get path name of current working
mkdir(C) make a

mkdir(S) make a

pwd(C) print working

closedir(S) rewinddir(S) seekdir(s)
telldir(S) readdir(S) opendir(S)
mknod(S) make a

rmdir(S) remove a

seekdir(S) directory operations
opendir(S) directory operations
directory entry

basename(C)
disable(C)
acct(S) enable or

mesg(C) allow or
dis (CP) object code
set terminal type, modes. speed, line

add.hd(C) add an additional hard
df(M) report number of free
determine the size of a logical
restore.hd(C) restore a hard
options(M) floppy

layout (M) manage hard

maintain

dump.hd(C) dump contents of a hard
dtype(C) determine

upgrade.hd(C) upgrade an additional hard
du(C) summarize

fcopy(C) copy a floppy

format(C) format a floppy
system console

see(C)

devinfo(C)

vi(C) invoke a screen-oriented
errprint (M)

cat(C) concatenate and

hd(C)

od(C)

prof (CP)

set up terminal to print screen
hdr(C)

who(C)

hypot(S) Euclidean

Permuted Index

directory

directory

directory

directory

directory cleanup
directory

directory

directory entries and put in a file
directory entry

directory entry

directory for a

directory getcwd(S)
directory

directory

directory name

directory operations directory(S)
directory operations directory(S)
directory, or a special or ordinary file
directory

directory(S) closedir(S) rewinddir(S)
directory(S) telldir(S) readdir(S)
dirent(F) file system independent
dir(M) format of a directory
dirname(C) deliver portions of pathnames
disable logins on a port

disable process accounting
disable(C) disable logins on a port
disallow messages sent to a terminal

di ler

discipline uugetty(M)
dis(CP) object code disassembler
disk

disk blocks and inodes
disk drive sizefs(C)
disk from tape

disk installation menu
disk partitions

disk partitions

disk to tape

disk type

disk

disk usage

diskette

diskette

display

display a file

display device information
display editor

display error log contents
display files

display files in hexadecimal format
display files in octal format
display profile data

display pscreen(C)

display selected parts of an object file

display who is on the system
distance function

PI-13

cd(C)
chdir(s)
chmod(C)
chroot (S)
uucleanup (M)
default (M)
air(M)

getdents(S)

dirent (F)
unlink(S)
chroot (C)
getcwd(S)
mkair(C)
mkdir(S)
pwd(C)
direclory(s)
directory(S)
mknod(S)
rmdir(S)

directory(s)

directory(S)
dirent(F)
dair(m)
basename (C)
disable(C)
acct(s)

disable(C)
mesg(C)

dis(CP)
uugetty (M)
dis(CP)
add. ha(C)
af (M)
sizefs(C)
restore.hd(C)
options (M)
layout (M)
faisk(C)
dump. hd(C)
dtype(C)
upgrade. hd(C)
du(C)
fcopy(C)
format (C)
display(M)
see(C)
devinfo(C)
vi(C)
etrprint(ﬁ)
cat(C)
ha{(c)

od(C)

prof (CP)
pscreen(C)
hdzr(C)
who(C)
hypot (S)

Permuted Index

whodo (M) determine who is

UNIX

strtod(S) atof(S) convert string to
pseudo-random numbers

1lrand48(S) generate pseudo-random/
jrand48(S) generate pseudo-random/
graph(C)

manufacturing drive(C)

determine the size of a logical disk
utility program for a streaming tape
during manufacturing

open any minor device on STREAMS
mkunix(M) make bootable system file with

dump . hd(C)

dump (CP)

object file

to tape

descriptor dup(S)

dup(S) dup2(S)

descriptor

drive(C) drive information written
echo(C)

string
ed(C) red(C) invoke the
program end(S)

sact (CP) print current SCCS file
edit(C) invoke the

ed(C) red(C) invoke the ed text
edit(C) invoke the edit text

ex(C) invoke a text

1d(CP) invoke the link

a.out(F) format of assembler and link
sed(C) invoke the stream

vi(C) invoke a screen-oriented display
x1d(CP) invoke the link

whoami (C) print

full regular expression

enable(C)

acct(s)

lpenable(C) lpdisable(C)
crypt(S) password and file
makekey (M) generate an
gencc(CP) create a front
entry getgrent(S) fgetgrent(S)

file entry getp (S) fgetp (s)

in program

getut(s) g (S) ut (s)

getdents(S) read directory
xlist(S) fxlist(S) get name list

doing what whodo (M)
dos(C) access MS-DOS files dos(C)
dos disk partitions fdisk(C)
double-precision number strtod(s)
drand48(S) erand48(S) generate drand48(s)
drand48(S) mrand48(S) nrand48(S) drand48(S)
drand48(S) seed48(S) srandd8(S) drand48(s)
draw a graph graph(C)
drive information written during drive(C)
drive sizefs(C) sizefs(C)
drive tapeutil(C) tapeutil(C)
drive(C) drive information written drive(C)
driver clone(M) clone (M)
driver symbol table mkunix (M)
dtype(C) determine disk type dtype(C)
du(C) summarize disk usage au(C)
dump contents of a hard disk to tape _____ dump.hd(C)
dump selected parts of an object file ____ dump(CP)
dump(CP) dump selected parts of an dump (CP)
dump.hd(C) dump contents of a hard disk _ dump.hd(C)
dup2(S) duplicate an open file dup(S)
duplicate an open file descriptor dup(S)
dup(S) dup2(S) duplicate an open file ___ dup(S)
during manufacturing drive(C)
echo echo(C)
echo(C) echo arguments echo(C)
ecvt(S) convert floating-point number to ecvt(S)
ed text editor ed(C)
edata(S) etext(S) last locations in end(S)
ed(C) red(C) invoke the ed text editor __ ed(C)
edit activity sact (CP)
edit text editor edit(C)
edit(C) invoke the edit text editor edit(C)
editor ed(C)
editor edit(C)
editor ex(C)
editor 1d(cp)
editor output a.out(F)
editor sed(C)
editor vi(C)
editor x1d(CP)
effective current user id whoami (C)
egrep(C) search file for pattern using __ egrep(C)
enable logins on a port enable(C)
enable or disable process accounting ____ acct(S)
enable(C} enable logins on a port enable(C)
enable/disable LP line printers lpenable(C)
encryption functions crypt(S)
encryption key ¥ (M)
end to the cc gencc(CP)
endgrent (S) setgrent(S) get group file __ getgrent(S)
P (S) P (S) get d getpwent (S)
end(S) edata(S) etext(S) last locations _ end(S)

d (S) access utmp file entry getut (S)
enroll(C) xsend(C) xget(C) mecret mail __ enroll(C)
entries and put in a file getdents (S)
entries from files xlist(S)

PI-14

nlist(S) get

linenum(F)} line number

ldlitem(S) manipulate line number
ldlseek(S) seek to line number
ldrseek(S) seek to relocation

utmp(M) wtmp(M) format of utmp and wtmp
file system independent directory
endgrent (S) setgrent(S) get group file
getgrnam(S) getgrgid(S) get group file
setpwent(S) get password file
getpwuid(S) get password file
utmpname (S) endutent(S) access utmp file
getutline(S) access utmp file

symbol name for COFF symbol table
compute the index of a symbol table
ldtbread(S) read an indexed symbol table
putpwent(S) write password file
unlink(S) remove directory

execution

profile(M) set up
IEEE floating point
IEEE floating point
IEEE floating point
IEEE floating point
IEEE floating point
environ(M) user
env(C) set
getenv(S) return value for

printenv(C) print out the

putenv(S) change or add value to

rc2(M) commands for multi-user

numbers drand48(S)

error function exf(S)

complementary error function

sys_nerr(S) sys_errlist(S)

function erf(S) erfc(s)

erfc(S) error function and complementary

fpgetmask(S)
fpgetsticky(S)
fpsetmask(S)
fpsetround(S)
fpsetsticky(S)

errprint (M) display
STREAMS
strerr(M) STREAMS

log(M) interface to STREAMS
mkstr(C) create an

mkstr(CP) create an

perror(S) system
s8y8_errlist(S) errno(S) system
find spelling

matherr(S)

errstop(C) terminate

strclean (M)

connection dial(s)
setmnt (C)

setmnt (C) establish
end(S) edata(s)
hypot (S)

test(C)

Permuted Index

entries name list

entries common object file
COFF function ldlread(S)
section of a COFF file

section of a COFF file

entries
entries
entries
entries
entry dirent (F)
entry getgrent (S) fgetgrent(S)
entry getgrent(S)
entry (s) p! {S)
entry getpwent(S) getpwnam(S)
entry getut(S) getutent(s)
entry getut(S) setutent(S)
entry ldgetname(S) retrieve
entry of a COFF file ldtbindex(S)
entry of a COFF file

entry
entry
env(C) set envi

/fgetp!

for d
environ(M) user environment
environment at login time
environment control fpgetround(s)
environment control fpgetround(S)
a(s)
control fpgetround(S)
control fpgetround(S)

envi

control £
environment
environment
environment
environment
environment
environment

for command execution
name i

envi

envi

erand48(S) generate pseudo-random
erfc(S) error function and complementary
erf(S) erfc(S) error function and
errno(S) system error messages

error
error
error
error
error
error
error
error

function and complementary error
function erf(s)

log contents

logger cleanup program

logger daemon
logging
message file from C source
message file from C

source
error

error messages sys_nerr(S)

errors

error-handling function

error-logging demon

errprint(M) display error log contents
errstop(C) terminate error-logging demon_
establish an out-going terminal line ____
establish /etc/mnttab table
/etc/mnttab table

etext(S) last locations in program
Euclidean distance function
evaluate an expression

PI-15

nlist(S)
linenum(F)

___ ldlread(s)

ldlseek(S)

ldrseek(S)

utmp (M)
dirent (F)
getgrent(S)
getgrent (S)
getpwent(S)
getpwent (S)
getut(S)
getut(S)
ldgetname(S)
1ldtbindex(S)
1dtbread(s)
putpwent (S)
unlink(S)
env(C)
environ (M)
profile(M)
fpgetround(s)
fpgetround(s)
£pgetround(s)
fpgetround(S)
fpgetround(S)
environ(M)
env(C)
getenv(S)
printenv(C)
putenv(S)
rc2(M)
drand48(s)
erf(s)

erf(S)
sys_nerr(S)

__ erf(s)

erf(s)
errprint (M)
strclean(M)
strerr(M)
log(M)
mkstr(C)
mkstr(CP)
perror(S)
sys_nerr(S)
spell(C)
matherx(S)
errstop(C)

. errprint(M)

errstop(C)
dial(s)
setmntC)
setmnt (C)
end(S)
hypot (S)
test (C)

Permuted Index

expr (C)

file exec(S) execvp(S) execlp(S)
execute a file exec(S) execvp(S)
execvp(S) execlp(S) execle(S) execv(S)
execv(S) execl(S) execute a file

execseg(S) make a data region
execlp(S) execle(S) execv(S) execl(S)
regex(S)

setpgrp(C)

uux(C)

at(C) batch(C)

cron(C)

xargs (C) construct and

uuxqgt (M)

inir(M) clean the file system and
env(C) set environment for command
nap($)

sleep(C)

sleep(S) suspend

monitor(S) prepare

profil(s)

execl(S) execute a file exec(S)
exec(S) execvp(S) execlp(S) execle(S)
creat(S) create a new file or rewrite an
false(C) return with a nonzero
true(C) return with a zero

suspend
suspend

pack(C) pcat(C) unpack{C) compress and
functions exp(S) pow(S) log(S)
functions exp(S) sqrt(S)

expression

regexp(S) compile regular

regexp(F) raegular

file for pattern using full regular
expr(C) evaluate arguments as an
regcmp(S) compile a regular
regex(S) execute a regular

test(C) evaluate an

regcmp(CP) compile regular
logarithm, and power functions

and square root functions

xstr(CP)

value functions floor(S) ceil(s)
report int

cation
help(C) system help
factor(C)

value

£e(M)

finc(M)

malloc(S) free(S) realloc(S)
mallinfo(S) mallopt(S) calloc(S)
abort(S) generate an IOT

stream

evaluate arguments as an expression expr(C)
ex(C) invoke a text editor ex(C)
execle(S) execv(S) execl(S) execute a ___ exec(S)
execlp(S) execle(S) execv(S) execl(S) __ exec(S)
execl(S) execute a file exec(S) exec(S)
exec(S) execvp(S) execlp(S) execle(S) ___ exec(S)
execseg(S) make a data region executable execseg(S)
executable (s)
execute a file exec(S) execvp(S) exec(S)
execute a regular expression regex(S)
execute command in a new process group __ setpgrp(C)
execute command on remote UNIX) uux(C)
execute commands at a later time at(C)
execute commands at specified times cron(C)
t. d xargs(C)
remote d q 8 uuxqgt (M)
executes init inir(M)
execution env(C)
execution for a short interval nap(S)
execution for an interval sleep(C)
execution for interval sleep(S)
execution profile monitor(S)
execution time profile profil(s)
execvp(S) execlp(S) execle(S) execv(S) ___ exec(S)
execv(S) execl(S) execute a file exec(S)
existing one creat(S)
exit value false(C)
exit value true(C)
exit(S) terminate process exit(S)
expand files pack(C)
exponential. logarithm. and power exp(S)
exponential. logarithm. and square root _ exp(S)
expr(C) evaluate arguments as an expr(C)
expression and match routines regexp(S)
expression compile and match routines ___ regexp(F)
expression egrep(C) search egrep(C)
expression expr(C)
expression regcmp(S)
expression regex(S)
expression test (C)
expressions regcmp (CP)
exp(S) pow(S) log(S) exponential, exp(S)
exp(S) sqrt(S) exponential. logarithm. ___ exp(S)
extract strings from C programs xstr(CP)
fabs(S) floor, ceiling. and absolute __ __ floor(S)
facilitiea status ipcs(C) ipes(C)
facility help(C)
factor a number factor(C)
factor(C) factor a number factor(C)
false(C) return with a nonzero exit false(C)
tfast find ££(M)
fast incremental backup finc(M)
fast main memory allocator malloc(S)
fast main memory allocator malloc(S) _____ malloc(S)
fault abort (S)
fclose(S) fflush(S) close or flush a ___ fclose(S)
fcntl(F) file control options fentl(F)

PI-16

UNIX DOS disk partitions
fopen(S)

intro(M) introduce miscellaneous
ferror(S) fileno(S) clearerr(S)
stream status inquiries
functions dbm(S) dbminit(s)
dbm(S) firstkey(S) store(S)
head(C) print the first
fclose(s)

word from a stream getc(S) getw(S)
group file entry getgrent(S)
password file entry getpwent(S)
geta(s)

string

utime(S) set

1ldfcn(F) common object

access(S) determine accessibility of a
acct (M) format of per-process accounting
cpio(C) copy

tra(C) copy out a

chmod(S) change mode of

chown (S) change owner and group of a
mcs (CP) manipulate the object
fentl(S)

fentl(F)

uupick(C) public UNIX-to-UNIX system
core(F) format of core image
cprs(CP) compresse a common object
umask(S) set and get

ctags(C) create a tags

dd(C) convert and copy a

delta(CP) make a change to an SCCS
close(S) close a

dup(S) dup2(S) duplicate an open
dump selected parts of an object
sact (CP) print current SCCS

crypt(S) password and

endgrent (S) setgrent(S) get group
getgrnam(S) getgrgid(S) get group
endpwent (S) setpwent(S) get password
getpwnam(S) getpwuid(S) get password
utmpname (S) endutent(S) access utmp
setutent(S) getutline(S) access utmp
putpwent(S) write password

execle(S) execv(S) execl(S) execute a
fgrep(C) search a

grep(C) search a

expression egrep(C) search
1daopen(S) open a common object
ar(F) archive

xar (F) archive

intro(F) introduction to

mkstr(C) create an error message
mkstr(CP) create an error message

Permuted Index

fcntl(S) file control

fcopy(C) copy a floppy diskette
tdisk(C)

fdopen(S) freopen(S) open a stream
features and files

feof (S) stream status inquiries
ferror(S) fileno(S) clearerr(S) feof(S)
fetch(S) nextkey(S) perform database
fetch(S) perform database functions
few lines of a stream

£flush(S) close or flush a stream
££(M) fast find

fgetc(S) getchar(S) get character or __
fgetgrent (S) endgrent(S) setgrent(S) get
fgetpwent (S) endpwent(S) setpwent(S) get

fgets(S) get a string from a stream
fgrep(C) search a file for a character
file access and modification times

file
file
file
file
file
file
file

access routines

archives in and out
as it grows

file
file
file
file
file
file
file
tile
tile
file
file
file
tile
file
file
file
file
file
fiie
file
file
file
file
file
file
file
file
file
file
file
file
file

comment section
control

control options
copy uuto(C)

creation mask

desacriptor

descriptor
dump (CP)
edit activity

encryption functions

entry getgrent(S) fgetgrent(S)
entry getgrent(S)

entry getpwent(S) fgetpwent(S)
entry getpwent(S)

entry getut(S) getutent(S)
entry getut(S)

entry
exec(S) execvp(S) execlp(S)
for a character string

for a pattern

for pattern using full regular
for reading ldopen(S)

format

format

formats
from C source
from C source

PI-17

fcntl(S)
fcopy(C)
£aisk(C)
fopen(s)
intro(M)
ferror(S)

_ ferror(s)
dbm(S)
dbm(S)

head(C)
fclose(S)
££(M)
getc(S)
getgrent (S)
getpwent (S)

gets(S)
.. fgrep(C)

utime(S)
ldfen(F)
access(S)
acct (M)
cpio(C)
tra(C)
chmod(s)
chown(S)
mes (CP)
fentl(S)
fcntl(F)
uuto(C)
core(F)
cprs{CP)
umask(S)
ctags(C)
ad(c)
delta(CP)
close(S)
aup(Ss)
dump (CP)
sact (CP)
crypt (S)

getgrent(S)

getgrent (S)

getpwent (S)

getpwent (S)
getut(s)
getut(s)
putpwent (S)
exec(S)
fgrep(C)
grep(C)
egrep(C)
ldopen(S)
ar (F)
xar(F)
intro(F)
mkstr(C)
mkstr (CP)

Permuted Index

fixobj(CP) convert an object file from OMF to COFF fixobj (CP)
get{(CP) get a version of an SCCS file get (CP)
read directory entries and put in a file getdents(S) ds (8)
group(M) format of the group file group (M}
display selected parts of an object file hdr(C) hdr(C)
filehar(F) tile header for common object files ____ filehdr(F)
constants limits(F) file header for implementation-specific _ limits(F)
unistd(F) file header for symbolic constants unistd(F)
ldfhread(S) read the file header of a COFF file ldfhread(S)
ldohseek(S) seek to the optional file header of a common object ldohseek(S)
split(C) split a file into piecea split(C)
archive header of a member of an archive file ldahread(S) read the ldahread(s)
ldclose(S) ldaclose(S) close a COFF file 1dclose(S)
read the file header of a COFF file ldfhread(S) ldfhread(S)
number entries of a section of a COFF file ldlseek(S) seek to line ldlseek(s)
entries of a section of a COFF file ldrseek(S) seek to relocation ldrseek(S)
indexed/named section header of a COFF file ldshread(S) read an ldshread(s)
index of a symbol table entry of a COFF file ldtbindex(S) compute the ldtbindex(S)
an indexed symbol table entry of a COFF file ldtbread(S) read ldtbread(S)
seek to the symbol table of a COFF - file ldtbseek(S) ldtbseek(S)
line number entries in a common object file linenum(F) linenum(F)
1ink(S) link to a file link(S)
produce C source listing from COFF file 1ist(CP) list (CP)
1n(C) make a link to a file 1n(C)
mem(M) kmem(M) memory image file mem{M)
convert object file to bootable object file mkboot (M) mkboot (M)
a directory., or a special or ordinary file mknod(S) make mknod(S)
ctermid(S) generate file name for terminal ctermid(s)
mktemp(S) make a unique file name mktemp(S)
nl(C) add line numbers to a file n1(C)
nm(CP) print name list of common object file am(CP)
null(M) null file null(M)
ttyslot(S) find the slot in the utmp file of the current user ttyslot(S)
more(C) view a file one full screen at a time more(C}
chmod(C) change permissions of a file or directory chmod(C)
fuser(M) identify processes using a file or file structure fuser (M)
creat(S) create a new file or rewrite an existing one creat(S)
d (M) d file passwd(M)
for CRTs file perusal filter pg(C)
fseek(S) ftell(S) rewind(S) reposition a file pointer in a stream fseek(S)
1seek(S) move read/write file pointer 1seek(S)
printers(M) print spooler configuration file printers (M)
prs(CP) print an SCCS file prs(CP)
pwck(M) grpck(M) check password/group file pwck(M)
read(S) read from file read(s)
locking(S) lock/unlock a file region for read/write locking($)
of information for a common object file reloc(F) relocation reloc(F)
rev(C) reverse lines of a file rev(C)
rmdel (CP) remove a delta from an SCCS file rmdel (CP)
compare two versions of an SCCS file sccsdiff(CP) sccsdif£(CP)
sccsfile(F) format of an SCCS file sccsfile(F)
section header for a common object file scnhdr(F) scnhdr (F)
format of curses screen image file scr_dump(F) scr_dump (F)
see(C) display a tile see(C)
chsize(S) change the file size chsize(S)
stat(s) fstat(S) get file status stat(s)
find the printable strings in an object file strings(C) strings(C)

PI-18

symbols and line numbers from COFF
identify processes using a file or
mount (C) umount{C) mount/unmount a
calculate checksum and count blocks in a
asyms(F) common object

inir(M) clean the

ckbupscd (M) check

£8db(M)

recover(C) restore contents of a
fsinfo(M) report information about a
fstyp(M) determine the

dirent (F)

statfs(S) fstatfs(S) get

mkfs (M) construct a

mount (S) mount a

quot (C) summarize

ustat (S) get

fsstat(M) report

fstab(M)

mnttab(M) mounted

archive(C) save a

sysfs(S) get

volcopy (M) labelit(M) copy
haltsys(C) close the

£sck(C) dfsck(C) check and repair
labelit(C) provide labels for
umountall(C) mount/unmount multiple
checklist (M) list

tail(C) deliver the last part of a
tmpfile(S) create a temporary
tempnam(S) create a name for a temporary
mkboot (M) convert object

tsort(C) sort a

access and modification times of a
uucico (M)

uusched (M) scheduler for the uucp
ftw(S) walk a

ttys(M) login terminals

file(C) determine

unget (CP) undo a previous get of an SCCS
unig(C) report repeated lines in a
the uucp directories and permissions
val(CP) validate an SCCS

mkunix (M) make bootable system
mkunix (M) make bootable system
write(S) write on a

umask (C) set

files

status inquiries ferror(S)
csplit(C) split

admin(CP) create and administer SCCS
link(M) unlink(M) link and unlink
mv(C) move (rename)

aftp(C) transfer

bfs(C) scan big

cat (C) concatenate and display

Permuted Index

file strip(CP) remove strip(CP)
file structure fuser(M) fuser (M)
file structure mount (C)
file sum(C) sum(C)
file symbol table format ayms (F)
file system and executes init inir(M)
file system backup schedule ckbupscd (M)
file system d fadb(M)
file system from tape recover (C)
file system fsinfo (M)
file system identifier fstyp(M)
file system independent directory entry _ dirent(F)
file system information statfs(S)
file aystem mkfs (M)
file system mount (S)
file system hip quot (C)
file system statistics ustat (S)
file system status fastat (M)
file system table f£stab(M)
file system table mnttab(M)
file system to a streaming tape archive(C)
file system type information sysfs(S)
file system with label checking volcopy (M)
file systems and halt the CPU haltsys(C)
file systems fack(C)
file systems labelit(C)
file systems mountall(C) mountall(C)
file systems processed by fsck checklist (M)
file tail(C)
file tmpfile(S)
file tmpnam(S) tmpnam(S)
file to bootable object file mkboot (M)
file topologically tsort (C)
file touch(C) update touch(C)
file transport program for uucp system __ uucico(M)
file transport program hed (M)
file tree tew(s)
file ttys (M)
file type file(C)
file unget (CP)
file uniq(C)
file heck (M) check heck (M)
tile val(CP)
file with driver symbol table mkunix (M)
file with kernel symbol table mkunix (M)
tile write(S)
file(C) determine file type tile(C)
file~creation mode mask umask (C)
filehdr(F) file header for common object filehdr(F)
fileno(S) clearerr(S) feof(S) stream ___ ferror(S)
files according to context csplit (C)
files admin(CP)
files and directories link(M)
files and directories mv(C)
files between Altos machines aftp(C)
files bfs(C)
files cat (C)

PI-19

Permuted Index

cmp(C) compare two

select/reject lines common to two sorted
conv{CP) convert common object
copy(C) copy groups of

cp(C) copy

crontab(C) manage user crontab
diff3(C) compare three

diff(C) compare two text

dos(C) access MS-DOS

filehdr(F) file header for common object
£ind(C) find

hplp(C) hplpR(C) filter

frec(M) recover

uucp(C) uulog{C) uuname(C) copy
fspec(F) format specification in text
£8plit (CP) split ratfor

hd(C) display

fleece(C) look for

od(C) display

introduce miscellaneous features and
lockf(S) record locking on
makedevs (M) create special device
makettys (M) create tty special
mknod(C) build special

pr(C) print

™m(C) rmdir(C) remove

pcat (C) unpack(C) compress and expand
devnm(C) identify device name on which
the access and modification dates of
sdiff(C) compare

print section sizes of common object
sort (C) sort and merge

tar(C) archive

1pr(C) route named

bdiff(C) compare

what (C) identify

£fxlist (S) get name list entries from

printer hplp(C) hpipR(C)

££(M) fast

£ind(C)

finger(C)

look(C)

ttyname(S) isatty(s)
library lorder (CP)

file strings(C)
current user ttyslot(S)

fold(C) fold long lines for
database functions dbm(S)

OMF to COFF

directories

fpgetround(S) fpgetmask(S) IEEE
fpgetround(S) fpgetsticky(S) IEEE

files cmp(C)
files comm(C) comm{(C)
files conv (CP)
files copy(C)
files cp(C)
files crontab(C)
files dAif£3(C)
files Aaiff(C)
files dos(C)
files filehdr(F)
files £ind(C)
files for printing on LaserJet printer __ hplp(C)
files from a back-up tape frec(M)
files from UNIX to UNIX uucp(C)
files £spec(F)
files fsplit (CP)
files in h imal format hd(C)
files in home directories fleece(C)
files in octal format od(C)
files intro(M) intro(M)
files lockf(S)
files ked M)
files makettys (M)
files mknod (C)
files on the standard output pr(C)
files or directories m(C)
files pack(C) pack(C)
files reside devnm(C)
files settime(C) ch settime(C)
files side-by-side sdiff(C)
files size(C) size(C)
files sort(C)
files tar(C)
files to printer spooler ipr(C)
files too large for diff bAiff(C)
files what (C)
files xiist(S) x1list(S)
filesystem(M) format of a system volume _ filesystem(M)
filter file for CRT pg(C)
filter files for printing on LaserJet ___ hplp{C)
finc(M) fast incremental backup finc(M)
find (M)

find files £ind(C)
find information about users finger(C)
f£ind lines in a sorted list look (C)
find name of a terminal ttyname(S)
£ind ordering relation for object lorder (CP)
find the printable strings in an object _ strings(C)
find the slot in the utmp file of the ___ ttyslot(S)
£ind(C) find files £ind(C)
finger(C) find information about users __ finger(C)
finite width output device ___ =~ f0ld(C)
firstkey(S) store(S) fetch(S) perform ____ dbm(S)
fixobj(CP) convert an object file from __ fixobj(CP)
fleece(C) look for files in home fieece(C)
floating point environment control fpgetround(S)
floating point environment control fpgetround(s)

PI-20

e

fpgetround(S) fpsetmask(S) IEEE
fpgetround(S) fpsetround(S) IEEE
fpgetround(S) fpsetsticky(sS) IEEE
isnan(8) isnanf(S) isnand(S) test for
ecvt(S) convert

modf (S) ldexp(S) manipulate parts of
functions floor(S) ceil(S) fabs(S)
functions floor(S) fmod(S)

and absolute value functions
absolute value functions

optionsa (M)

fcopy(C) copy a

format (C) format a

cflow(CP) generate C

fclose(S) fflush(S) close or

value functions floor(S)

device fold(C)
output device
stream

format (C)

ar(F) archive file

hd(C) display files in hexadecimal
0d(C) display files in octal
dir(M)

filesystem(M)

inode(M)

sccsfile(F)

output a.out(F)

menus (M)

core(F)

cpio(F)

scr_dump (F)

acct (M)

group (M)

utmp (M) wtmp(M)

fapec(F)

syms (F) common object file symbol table
xar(F) archive file

intro(F) introduction to file
scanf(S) fscanf(S) sscanf(S) convert
vprint£(S) vEprintf(S) vsprintf(S) print
printf(S) sprintf(S) fprintf(S) print
fmt(C) simple text

convert rational FORTRAN to standard
ratfor(CP) convert rational
environment control fpgetround(S)
point environment control

floating point environment control
point environment control

floating point environment control
floating point environment control
environment control fpgetround(S)
printf(S) sprintf(s)

environment control fpgetround(S)

Permuted Index

floating point environment control

floating point environment control _
floating point environment control
floating point NaN

floating-point number to string
floating-point numbers frexp(S)

floor. ceiling, and absolute value

floor, ceiling, and absolute value
floor(S) ceil(S) fabs(S) floor. ceiling.
floor(S) fmod(S) floor. ceiling, and ____
floppy disk installation menu

floppy diskette

floppy diskette

flow graph

flush a stream

fmod(S) floor. ceiling., and absolute ___
fmt(C) simple text formatter

fold long lines for finite width output _
fold(C) fold long lines for finite width

fopen(S) fdopen(S) freopen(S) open a __
fork(S) create a new process

format a floppy diskette

format

format

format

format of a directory

format of a system volume

format of an inode

format of an SCCS file

format of assembler and link editor
format of Business Shell menu system
format of core image file

format of cpio archive

format of curses screen image file
format of per-process accounting file __
format of the group file

format of utmp and wtmp entries
format specification in text files
format

format

format (C) format a floppy diskette
formats
formatted input
formatted output of varargs list
formatted output
formatter
FORTRAN ratfor(CP)

FORTRAN to standard FORTRAN

fpgetmask(S) IEEE floating point
fpgetround(S) fpgetmask(S) IEEE floating
fpgetround(S) fpgetsaticky(S) IEEE
fpgetround(S) fpsetmask(S) IEEE floating
fpgetround(S) fpsetround(S) I1EEE
fpgetround(S) fpsetsticky(S) IEEE
fpgetsticky(S) IEEE floating point
fprintf(S) print formatted output
fpsetmask(S) IEEE floating point

PI-21

fpgetround(S)
fpgetround(s)
fpgetround(s)
isnan(S)

ecvt (S)
frexp(S)
floor(S)
floor(S)
floor(S)
floor(S)
options (M)
£copy(C)
format(C)
cflow(CP)
fclose(s)
floor(s)

fmt (C)
£fo1d(C)
fo1d(C)
fopen(S)
fork(s)
format (C)
ar(F)

hd(c)

od(C)

dir(M)
filesystem(M)
inode (M)
sccsfile(F)
a.out (F)
menus (M)
core(F)
cpio(F)
scr_dump (F)
acct (M)

group (M)

utmp (M)
fspec(F)

syms (F)
xar(F)

format (C)
intro(F)
scanf (S)
vprintf(S)
printf (S)

fmt (C)

ratfor (CP)
ratfor(CP)
fpgetround(S)
fpgetround(S)
fpgetround(S)
fpgetround(s)
fpgetround(S)
fpgetround(S)
fpgetround(S)
printf(S)
fpgetround(S)

Permuted Index

environment control fpgetround(S)
environment control fpgetround(S)
stream putc(S) putchar(S) putw(S)
puts(s)

fwrite(S)

tape

df (M) report number of

allocator malloc(S)

fopen(S) fdopen(S)

parts of floating-point numbers

gencc(CP) create a

input scanf(S)

list file systems processed by
systems

file pointer in a stream
file system
files

statfs(S)

stat(s)

identifier

pointer in a stream fseek(S)
communication package stdipc(S)

egrep(C) search file for pattern using
more(C) view a file one

function erf(S) erfc(S) error

error function and complementary error
gamma(S) log gamma

hypot (S) Euclidean distance

nanipulate line number entries of a COFF
matherr(S) error-handling

prof (F) profile within a

math(F) math

intro(S) introduce system calls.
bessel(S) jO(S) yO(S) Bessel

crypt (S) password and file encryption
fetch(S) nextkey(S) perform database
store(S) fetch(S) perform database
log(S) exponential., logarithm. and power

exponential, logarithm, and square root.

floor, ceiling, and absolute value
floor. ceiling. and absolute value
8inh(S) cosh(S) tanh(S) hyperbolic
trig(S) atan(S) atan2(S) trigonometric
tan(S) asin(S) acos(S) trigonometric

: or file structure

files xlist(S)
gamma(S) log

command
adb(C) invoke x.out

fpsetround(S) IEEE floating point
fpsetaticky(S) IEEE floating point
fputc(S) put character or word on a
fputs(S) put a string on a stream
fread(S) binary input/output
frec(M) recover files from a back-up ___
free disk blocks and inodes

free(S) realloc(S) fast main memory
freopen(S) open a stream

frexp(S) modf(S) ldexp(S) manipulate
from(C) list who my mail is from
front end to the cc command
fscanf(S) sscanf(S) convert formatted __
fack checklist(M)

£3ck(C) dfsck(C) check and repair file

fpgetround(s)
fpgetround(S)

putc(s)

puts(s)
fuwrite(S)
frec(M)
4ag (M)
malloc(S)
fopen(S)

frexp(S)

from(C)
gencc(CP)
scanf(S)
checklist (M)

__ f3ck(C)

£sdb(M) file sy gg

fseek(S) ftell(S) rewind(S) reposition a
fainfo(M) report information about a
fspec(F) format specification in text ___
faplit(CP) split ratfor files

fsatat (M) report file system status
fstab(M) file system table

fstatfs(S) get file system information __
fstat(S) get file status

£atyp(M) determine the file system
ftell(S) rewind(S) reposition a file __
ftok(S) d
ftw(S) walk a file tree

full regular expression

full screen at a time

function and complementary error
function erf(S) erfc(S)

function
function
function
function
function
functions and constants
functions, and libraries
functions

d inter

ldlread(s) 1dlitem(S)

functions
functions
functions
functions
functions
functions
functions
functions

abm(s) dbminit(S)

dbm(S) firstkey(S)
exp(S) pow(S)

exp(S) sqrt(s)

floor(S) ceil(S) fabs(S)
floor(S) fmod(S)

functions

functions trig(S) sin(S) cos(S)

fuser (M) identify processes using a file
fwrite(S) fread(S) binary input/output __
fxlist(S) get name list entries from __
gamma function
gamma (S) log gamma function
gencc(CP) create a front end to the cc __
general p

PI1-22

£3db(M)
fseek(S)

feinfo(M)

fspec(F)
£split (CP)
fastat (M)
fstab(M)
statfs(s)
stat(s)
fstyp(M)
fseek(S)
stdipc(S)
£tw(S)
egrep(C)
more(C)
erf(s)
erf(S)
gamma (S)
hypot (S)
ldlread(s)
matherr(S)
prof (F)
math(F)
intro(S)
bessel(S)
crypt(S)
dbm(S)
dbm(s)
exp(S)
exp(S)
£loor(S)
floor(s)
sinh(S)
trig(s)
trig(s)
fuser (M)
fwrite(S)
xlist(S)
gamma(S)
gamma (S)
gence(CP)
adb(C)

Permuted Index

termio(M) general terminal interface termio(M)
random(C) generate a random number C)
mkvers (CP) generate a what string mkvers (CP)
makekey (M) generate an encryption key makekey (M)
abort(S) generate an IOT fault abort (S)
cflow(CP) generate C flow graph cflow(CP)
cxref (CP) generate C program cross-reference cxref (CP)
ctermid(S) generate file name for terminal ctermid(s)
ncheck (M) generate path names from inode numbers __ ncheck(M)
lex(CP) generate programs for lexical analysis __ lex(CP)
drand48(S) erand48(s) generate pseudo-random numbers drand48(S)
/mrand48(S) nrand48(S) lrand48(s) generate pseudo-random numbers drand48(S)
/seed48(S) srand48(S) jrand48(S) generate pseudo-random numbers drand48(s)
rand(S) srand(S) simple random-number generator rand(S)
stream getc(S) getw(S) fgetc(S) getchar(S) get character or word from a _ getc(S)
get (CP) get a version of an SCCS file ____ get (CP)
character or word from a stream getc(S) getw(S) fgetc(S) getchar(S) get _ getc(S)
working directory getcwd(S) get path name of current getcwd(S)
put in a file getdents(S) read directory entries and __ getdents(S)
group IDs getuid(S) getegid(sS) get real/effective user or ___ getuid(s)
name getenv(S) return value for environment __ getenv(S)
group IDs getuid(S) geteuid(S) get real/effective user or ___ getuid(s)
group IDs getuid(S) getgid(S) get real/effective user or . __ getuid(s)
setgrent(S) get group file entry getgrent(S) fgetgrent(S) endgrent(S) ____ getgrent(S)
group file entry getgrent (S) getgrnam(S) getgrgid(S) get _ getgrent(S)
getgrent (S) getgrnam(S) getgrgid(S) get group file entry getgrent (S)
entry getgrent(S) getgrnam(S) getgrgid(S) get group file __ getgrent(S)
getlogin(S) get login name getlogin(S)
getmsg(S) get next message off a stream _ getmsg(S)
getopt (C) parse command options getopt (C)
argument vector getopt(S) get option letter from getopt (S)
getpas(S) read a d getpas(S)
and parent process IDs getpid(S) get process., process group, ____ getpid(S)
P (S) get p d file entry getpwent (S) fgetpwent(S) endpwent(S) ____ getpwent(S)
password file entry getp (S) getp (S) getp d(S) get _ getpwent(S)
file entry getpwent(S) getpwnam(S) getp d(s) get p d ___ getp (s)
getpw(S) get name from UID getpw(S)
getp t(s) (s) getpt d(S) get password file entry ___ getpwent(S)
input gets(C) get a string from the standard __ gets(C)
stream gets(S) fgets(S) get a string from a _____ gets(S)
speed and terminal settings used by getty gettydefs(M) gettydefs (M)
ct(C) spawn getty to a remote terminal ct(C)
used by getty gettydefs(M) speed and terminal settings gettydefs(M)
getty(M) set terminal mode getty(M)
user or group IDs getuid(S) getegid(S) get real/effective _ getuid(s)
user or group IDs getuid(S) geteuid(S) get real/effective _ getuid(s)
user or group IDs getuid(S) getgid(S) get real/effective __ getuid(s)
access utmp file entry getut(S) getutent(S) utmpname(S) endutent(S) ______ getut(s)
getut(S) setutent(S) getutline(S) access utmp file entry getut(S)
endutent (S) access utmp file entry getut(S) g (s) (s) getut(S)
utmp file entry getut(S) setutent(S) getutline(S) access getut(S)
character or word from a stream getc(S) getw(S) fgetc(S) getchar($) get getc(S)
login(C) give you system access ____ login(C)
symbols glossary(C) define common UNIX terms and glossary(C)
time to string ctime(S) gmtime(S) localtime(S) convert date and _ ctime(S)
setjmp(S) longjmp(S) non-local goto set jmp(S)
cflow(CP) generate C flow graph cflow(CP)

PI-23

Permuted Index

graph(C) draw a graph graph(C)
graph(C) draw a graph graph(C)
plot(S) graphics interface subroutines plot(S)
grep(C) search a file for a pattern — grep(C)
getpid(S) get process. process group, and parent process IDs getpid(S)
fgetgrent (S) endgrent(S) setgrent(S) get group file entry getgrent(S) getgrent (S)
getgrent(S) getgrnam(S) getgrgid(S) get group file entry getgrent (S)
group(M) format of the group file group (M)
id(C) print user and group ID and names id(C)
chown(C) chgrp(C) change owner or group ID chown (C)
setpgrp(S) set process group id setpgrp(S)
getegid(S) get real/effective user or group IDs getuid(s) getuid(s)
geteuid(S) get real/effective user or group IDs getuid(s) getuid(s)
getgid(S) get real/effective user or group IDs getuid(S) getuid(S)
setuid(S) set user and group IDs setuid(s)
newgrp(C) log user into a new group newgrp(C)
chown(S) change owner and group of a file chown(S)
kill(S) send a signal to a process or a group of processes kill(s)
d in a new p group setpgrp(C) setpgrp(C)
group (M) format of the group file group(M)
copy(C) copy groups of files copy(C)
make(C) maintain. update, and regenerate groups of make(C)
tra{(C) copy out a file as it grows tra(C)
pwck (M) grpck (M) check password/group file pwek (M)
saignal(S) gsignal(S) software signals ssignal(S)
haltsys(C) close the file systems and halt the CPU haltsys(C)
halt the CPU haltsys(C) close the file systems and ___ haltsys(C)
varargs (F) handles variable argument list varargs (F)
curses(S) terminal screen handiing and optimization package curses(S)
nohup(C) run a command immune to hangups and quits nohup(C)
add.hd(C) add an additional hard disk add. hd(C)
restore.hd(C) restore a hard disk from tape restore.hd(C)
layout (M) manage hard disk partitions layout (M)
dump.hd(C) dump contents of a hard disk to tape dump. hd(C)
upgrade.hd(C) upgrade an additional hard disk upgrade. hd(C)
find spelling errors h k(C) 8pell(C)
find spelling errors h ©) spell (C)
hsearch(S) hdestroy(S) hcreate(S) manage hash search tables hsearch(S)
generate hashing encryption crypt (S)
hsearch(S) hdestroy(S) hcreate(S) manage hash search tables ___ hsearch(sS)
format hd(C) display files in hexadecimal ______ hd(C)
h tables (s) y(S) h [§:3) hash h h(S)
object file hdr(C) display selected parts of an _____ hdr(C)
stream head(C) print the first few lines of a __ head(C)
scnhdr(F) section header for a common object file scnhdr(F)
filehdr(F) file header for common object files filehdr(F)
constants limits(F) file header for implementation-specific limits(F)
unistd(F) file header for symbolic constants unistd(F)
ldfhread(S) read the file header of a COFF file ldfhread(s)
read an indexed/named section header of a COFF file ldshread(S) ldshread(s)
ldohgeek(S) seek to the optional file header of a common object ldohseek(S)
ldahread(S) read the archive header of a member of an archive file ___ ldahread(s)
help(C) system help facility help(C)
help(C) system help facility help(C)
hd(C) display files in hexadecimal format hd(C)
fleece(C) look for files in home directories fleece(C)
printing on LaserJet printer hplp(C) hplpR(C) filter files for hplp(C)

PI-24

~

LaserJet printer hplp(C)
hash search tables
sinh(8) cosh(S) tanh(S)

id(C) print user and group

chown (C) chgrp(C) change owner or group
queue, semphore set, shared memory
setpgrp(S) set process group

whoami(C) print effective current user

fstyp(M) determine the file system
shmget (S) get shared memory segment
reside devnm(C)

what (C)

structure fuser (M)

process group. and parent process
get real/effective user or group
get real/effective user or group
get real/effective user or group
setuid(S) set user and group
fpgetround(S) fpgetmask(S)
fpgetround(S) fpgetsticky(S)
fpgetround(S) fpsetmask(S)
fpgetround(S) fpsetround(S)
fpgetround(S) fpsetsticky(S)
core(F) format of core

mem (M) kmem(M) memory

scr_dump(F) format of curses screen
nohup(C) run a command

limits(F) file header for

finc(M) fast

dirent (F) file system

file ldtbindex(S) compute the

file ldtbread(s) read an

file ldshread(s) read an
descriptions

fsinfo(M) report

finger(C) find

devinfo(C) display device

default (M) default program

reloc(F) relocation of

lpstat(C) print LP status

statfs(S) fstatfs(S) get file system
sysconf(C) get system configuration
sysconf (S) get system configuration
sysfs(S) get file system type
uname(C) print the current UNIX
drive(C) drive

executes init

clean the file system and executes
inittab(M) script for the

special login program invoked by
init (M) process control

brc(M) system

popen(S) pclose(S)

Permuted Index

hplpR(C) filter files for printing on
hsearch(S) hdestroy(S) hcreate(S) manage
hyperbolic functions

hypot(S) Euclidean distance function
1D and names

ID

id ipcrm(C) remove message

id

id

1d(C) print user and group ID and names _
identifier

identifier
identify device name on which files
identify files

identify processes using a file or file _

1Ds getpid(S) get process.
IDa getuid(S) getegid(S)
IDs getuid(S) geteuid(S)
IDs getuid(S) getgid(sS)
IDs

IEEE floating point environment control
IEEE floating point environment control
IEEE floating point environment control
IEEE floating point environment control
IEEE floating point environment control
image file

image file

image file

immune to hangups and quits
implementation-specific constants
incremental backup

independent directory entry

index of a symbol table entry of a COFF _
indexed symbol table entry of a COFF
indexed/named section header of a COFF __
infocmp(M) compare or print terminfo
information about a file system
information about users

information

information directory

i ion for a

object file
information
information

information

information

information

information

information written during manufacturing
inir(M) clean the file system and
init inir(M)

init p

init sulogin(M)

initialization

initialization procedure

initiate pipe to/from a process
init(M) process control initialization
inittab(M) script for the init processes

PI-25

___ hpip(C)

hsearch(s)
sinh(S)

hypot (S)

id(C)
chown (C)
iperm(C)
setpgrp(S)
whoami (C)
ida(cy
£atyp(M)
shmget (S)

devnm(C)

what(C)

fuser (M)
getpid(s)
getuid(s)
getuid(s)
getuid(s)
setuid(s)

_ fpgetround(s)
_ fpgetround(s)
_ fpgetround(s)
_ fpgetround(s)
_ Ipgetround(s)

core(F)

mem (M)
scr_dump (F)
nohup(C)
limits(F)
finc(M)
dirent (F)
1ldtbindex(s)

1dtbread(s)

ldshread(S)

infocmp (M)

fsinfo(M)
finger(C)
devinfo(C)
default (M)

reloc(F)

lpatat (C)
statfs(S)
sysconf (C)
sysconf (S)
sysfs(S)
uname (C)
drive(C)
inir(M)
inir(M)
inittab(M)
sulogin (M)
init (M)
brc(m)
popen(S)

__ init(m)

inittab(M)

Permuted Index

clri(M) clear
inode(M) format of an
ncheck (M) generate path names from

report number of free disk blocks and
gets(C) get a string from the standard
line(C) read one line of

fscanf(S) sscanf(S) convert formatted
ungetc(S) push character back into
fwrite(S) fread(S) binary

poll(S) STREAMS

stdio(S) standard buffered
clearerr(S) feof(S) stream status
uustat(C) uucp status

install (M)

cpset (C)

options (M) floppy disk

abs(S) return
a641(S) l64a(S) convert between long
sputl(S) sgetl(S) long

inode
inode

inode numbers

inode(M) format of an inode
inodes af (M))
input

input

input scanf(S)
input stream
input/output
input/output multiplexing
input/

inquiries ferror(S) fileno(S)

inquiry and job control

install

install utilities =~
installation menu

install(M) install commands

integer absolute value

integer and base-64 ASCII string

i data

atol(S) atoi(S) convert string to
13tol(S) 1tol3(S) convert between 3-byte
convert between 3-byte integers and long
plot(S) graphics

termio(M) general terminal

log(M)

spline(C)

characters asa(C)

sh(C) rsh(C) invoke the shell command
csh(C) shell command

pipe(S) create an

status ipcs(C) report

stdipc(S) ftok(S) standard

nap(S) suspend execution for a short
sleep(C) suspend execution for an
sleep(S) suspend execution for

commands
intro(C)

files intro(M)
intro(CP)
libraries intro(S)
intro(F)

features and files
functions., and libraries
yacc (CP)

m4 (CP)

calendar(C)

vi(C)

ex(C)

bsh(C)

cc(CP)

ed(C) red(C)
edit(C)

1a(cp)

integer strtol(S)

integers and long integers

integers 13tol(S) 1ltol3(S)

interface
interface
interface to STREAMS error logging
interpolate smooth curves

ines

interpret asa carriage control
interpreter
interpreter with C-like syntax
interp h, 1

inter-p:
interprocess
interval

cation facilities
ication L

interval

interval
intro(C) il
intro(CP) introduce software development
introduce d

introduce miscellaneous features and
introduce software development commands
introduce system calls. functions, and __
introduction to file formats

intro(F) introduction to file formats ___
intro(M) introduce miscellaneous

intro(s) i d yst calls,

invoke a compiler-compiler

invoke a macro p
a reminder service

a screen-oriented display editor
a text editor

invoke the Business shell

invoke the C compiler
invoke the
invoke the
invoke the

invoke

invoke
invoke

ed text editor _
edit text editor
link editor

PI-26

clri(M)
inode(M)
ncheck (M)
inogde(M)
af (M)
gets(C)
line(C)
scanf(S)
ungetc(S)
fwrite(s)
poll(s)
atdio(S)
ferror(S)
uustat(C)
install(M)
cpset (C)
options (M)
install(M)
abs(s)
a64l1(s)
sputl(S)
strtol(s)
13tol(S)
13tol(S)
plot(s)
termio(M)
log (M)
spline(C)
asa(C)
sh(C)
csh(C)
pipe(S)

__ ipes(C)

stdipc(s)
nap(s)
sleep(C)
sleep(S)
intro(C}
intro(CP;
intro(C)

intro(M)
_ intro(CP)

intro(S)
intro(F)
intro(F)
intro(M)
intro(s)
yacec(CP)

mé (CP)
calendar(C)

_ vi(C)

ex(C)
bsh(C)
cc(CP)
ed(C)
edit(C)
a(cey

x1d{(CP)

masm (CP)

sh(C) rsh(C)

sed(C)

adb(C)

sulogin (M) speéial login program

abort(S) generate an

set, shared memory id
communication facilities status
classify characters ctype(S)
ctype(S) isdigit(S) ispunct(S)
ttyname(S)

ctype(S) isalpha(S) islower(S)
classify characters ctype(S)
characters ctype(S) isalpha(S)
isnan(S) isnanf(S)

point NaN isnan(S)

floating point NaN

characters ctype(S) isdigit(S)
system(S)

bessel(S)

uustat(C) uucp status inquiry and
join(C)

numbers drand48(S) seed48(S) srand48(S)
1dunix(M) configurable

mkunix (M) make bootable system file with
makekey (M) generate an encryption
killall(C)

group of processes

mem (M)

integers and long integers
base-64 ASCII string a641(S)
labelit (M) copy file system with
systems

checking volcopy(M)

labelit(C) provide

awk (C) pattern scanning and p ing

Permuted Index

be(C) arbitrary-precision arithmetic
nawk (C) pattern scanning and processing
cpp(CP) the C

1int(CP) check C

bdiff(C) compare files too

banner(C) print

hplpR(C) filter files for printing on

at(C) batch(C) execute commands at a
ldclose(S)

member of an archive file
reading ldopen(S)

floating-point numbers frexp(S) modf(S)

invoke the link editor x1d(CP)
invoke the macro assembler masm(CP)
invoke the shell command interpreter ____ sh(C)
invoke the stream editor sed(C)
invoke x.out general purpose debugger ___ adb(C)
invoked by init sulogin(M)
ioctl(S) control device ioctl(S)
I0T fault abort(S)
ipcrm(C) remove message queue, semphore _ ipcrm(C)
ipcs(C) report inter-process ipes(C)
isalpha(S) islower(S) iscntrl(S) ctype(S)
isascii($) classify characters ctype(S)
isatty(S) find name of a terminal ttyname(S)
iscntrl(S) classify characters ctype(S)
isdigit(S) ispunct(S) isascii($) ctype(S)
islower(S) iscntrl(S) classify ctype(S)
isnand(S) test for floating point NaN __ _ ignan(S)
isnanf(S) isnand(S) test for floating ___ isnan(s)
isnan(S) isnanf(S) isnand(S) test for ___ isnan(s)
ispunct(S) isascii(S) classify ctype(S)
issue a shell system(S)
JO(S) yO0(S) Bessel functions bessel(S)
job control uustat(C)
join two relations join(C)
join(C) join two relations join(C)
jrand48(S) generate pseudo-random drand48(S)
kernel linker ldunix(M)
kernel symbol table mkunix (M)
key key (M)
kill ail active processes killall(C)
killalli(C) kill all active processes _____ killall(C)
kill(C) terminate a process kill(C)
kill(S) send a signal to a process or a _ kill(S)
kmem(M) memory image file mem (M)
13tol(S) 1tol3(S) convert between 3-byte 13tol(S)
164a(S) convert between long integer and a64l1(S)
label checking volcopy(M) volcopy (M)
labelit (C) provide labels for file labelit(C)
labelit (M) copy file system with label __ volcopy(M)
labels for file aystems labelit (C)
1 awk(C)

1 be(C)

1 nawk (C)
Language Preprocessor cpp(CP)
language usage and syntax 1int(CP)
large for aiff bdiff(C)
large letters banner(C)
LaserJet printer hplp(C) hplp(C)
last(C) print last record of user logins last(C)
later time at(C)
layout (M) manage hard disk partitions ___ layout(M)
ldaclose(S) close a COFF file ldclose(S)
ldahread(S) read the archive header of a ldahread(s)
ldaopen(S) open a common object file for 1ldopen(S)
ldclose(S) ldaclose(S) close a COFF file 1ldclose(S)
14(CP) invoke the link editor 14(CP)
ldexp(S) manipulate parts of frexp(S)

PI-27

Permuted Index

routines

COFF file

COFF symbol table entry

entries of a COFF function ldlread(S)
number entries of a COFF function

of a gection of a COFF file

header of a common object

object file

a section

for reading
of a COFF file
of a COFF file
of a COFF file
of a COFF file

a COFF file

section header
symbol table entry
entry

leave(C) remind you when you have to
leave

getopt (S) get option

banner(C) print large

analysis

1lex(CP) generate programs for
lgearch(S)

ar(CP) maintain archives and
chkshlib(CP) tool for comparing shared
introduce system calls. functions, and
ranlib(CP) convert archives to random
xar(CP) maintain archives and

find ordering relation for object
mkshlib(CP) create a shared
shuttype(S) get and set UPS shutdown
ulimit(S) get and get user
implementation-specific constants
dial(S) establish an out-going terminal
set terminal type., modes, speed.

file linenum(F)

ldlread(S) 1dlitem(S) manipulate

COFF file ldlseek(S) seek to
strip(CP) remove symbols and

nl(C) add

line(C) read one

1pd(M)

cancel (C) send/cancel requests to LP
turn on/off

lpdisable(C) enable/disable LP
lpinit(M) add new

1search(S) 1ifind(S)

common object file

comm(C) select/reject
fold(C) fold long

unig(C) report repeated
look(C) find

num(C) number

rev(C) reverse

head(C) print the first few
3sp(C) remove consecutive blank
wc(C) count

1ink(M) unlink(M)

1dfcn(F) common object file access
ldfhread(S) read the file header of a
ldgetname(S) retrieve symbol name for
ldlitem(S) manipulate line number
ldlread(S) ldlitem(S) manipulate lire
ldlseek(S) seek to line number entries

ldfcn(F)

ldthread(s)
ldgetname(S)

ldlread(s)

ldiread(s)
__ ldlseek(s)

ldohseek(S) seek to the optional file ___ ldohseek(S)
ldopen(S) ldaopen(S) open a common 1dopen(S)
ldrseek(S) seek to relocation entries of ldrseek(S)
ldshread(S) read an indexed/named ldshread(S)
ldtbindex(S) compute the index of a ldtbindex(S)
1dtbread(S) read an indexed symbol table 1ldtbread(S)
ldtbseek(S) seek to the symbol table of _ ldtbseek(S)
ldunix(M) configurable kernel linker _____ ldunix(M)
leave leave(C)
leave(C) remind you when you have to ____ leave(C)
letter from argument vector getopt (S)
letters banner (C)
lex(CP) generate programs for lexical ___ 1lex(CP)
lexical analysis 1ex(CP)
1find(S) linear search and update 1search(S)
libraries ar (CP)
libraries chkshlib(CP)
libraries intro(S) intro(S)
libraries ranlib(CP)
libraries xar (CP)
library lorder(CP) lorder (CP)
library mkshlib(CP)
limits shuttype(S)
limits ulimit(s)
1imits(F) file header for limits(F)
line connection dial(S)
line discipline uugetty(M) uugetty(M)
line number entries in a common object __ linenum(F)
line number entries of a COFF function __ ldlread(S)
line number entries of a section of a ___ ldlseek(S)
line numbers from COFF file strip(CP)
line numbers to a file nl(c)

line of input line(C)
line printer daemon 1pd(M)

line printer 1p(C) 1p(C)

line printer scheduler 1pon(M)
line printers lpenable(C) lpenable(C)
line printers lpinit (M)
linear search and update 1search(S)
1line(C) read one line of input line(C)
linenum(F) line number entries in a linenum(F)
lines common to two sorted files comm (C)
lines for finite width output device ___ fold(C)
lines in a file uniq(C)
lines in a sorted list Llook(C)
lines num(C)
lines of a file rev(C)
lines of a stream head(C)
lines 8sp(C)
lines, words, and characters we(C)

link and unlink files and directories Llink(M)

PI-28

~ T

1d(CP) invoke the

a.out(F) format of assembler and
x1d(CP) invoke the

1link(S)

1n(C) make a

1dunix (M) configurable kernel
and directories

syntax

18(C)

xlist(S) £xlist(S) get name
checklist (M)

look(C) find lines in a sorted
nlist(S) get entries from name
nm(CP) print name

terminals(M)

varargs(F) handles variable argument
print formatted output of varargs
from(C)

xnm(CP) print name

COFF file

cref(CP) make a cross-reference
1ist (CP) produce C source

string ctime(S) gmtime(S)
program whereis(C)

end(S) edata(S) etext(S) last
lock(s)

plock(S)

lockf(S) record
read/write

locking(S)

errprint (M) display error
gamma(S)

set maximum number of users allowed to
newgrp(C)

exp(S) pow(S) log(S) exponential,
exp(S) sqrt(S) exponential,
strclean(M) STREAMS error
strerr(M) STREAMS error

log{(M) interface to STREAMS error
sizefs(C) determine the size of a
getlogin(S) get

logname{C) get

cuserid(S) get character
logname(S) return

passwd(C) change

sulogin(M) special

ttys(Mm)

profile(M) set up environment at

last(C) print last record of user
disable(C) disable

enable(C) enable

logging

Permuted Index

link editor 1d(CP)

link editor output a.out (F)
link editor x1d(CP)
link to a file 1ink(S)
link to a file 1n{C)
linker ldunix (M)
1ink(M) unlink(M) link and unlink files _ link(M)
link(S) link to a file 1ink(S)
1lint(CP) check C language usage and 1int (CP)
list contenta of directories 1s(C)

list entries from files x1ist(S)
list file systems processed by fsck _____ checklist(M)
list look(C)
list nlist(S)
1ist of common object file nm(CP)
list of supported terminals terminals (M)
list varargs(F)
list vprintf(S) vfprintf(S) vaprintf(S) _ vprintf(s)
list who my mail is from from(C)
list xnm(CP)
1ist(CP) produce C source listing from __ list(CP)
listing cref (CP)
listing from COFF file list (CP)
1n(C) make a link to a file 1n(C)
localtime(S) convert date and time to ____ ctime(S)
locate source, binary, or manual for ____ whereis(C)
locations in program end(S)
lock a process in primary memory lock(S)
lock process. text. or data in memory _ _ plock(S)
lockf (S) record locking on files lockf(S)
locking on files lockf(S)
locking(S) lock/unlock a file region for locking(Ss)
lock(S) lock a process in primary memory lock(S)
lock/unlock a file region for read/write locking($S)
log contents errprint (M)
log gamma function gamma (S)
log in numusers(S) get and numusers (S)
log user into a new group newgrp(C)
logarithm, and power functions exp(S)
logarithm, and square root functions ____ exp(S)
logger cleanup program strclean(M)
logger daemon strerr (M)
logging log(M)
logical disk drive sizefs(C)
login name getlogin(s)

login name

1 ©)

login name of the user
login name of user

cuserid(s)
1 (s)

login d

login program i

login time

logins

(©)
by init sulogin(M)
login terminals file ttys(M)
profile(M)
login(C) give you system access login(C)
last (C)
logins on a port disable(C)
logins on a port enable(C)
log(M) interface to STREAMS error log(M)

PI-29

Permuted Index

functions exp(S) pow($)
set jmp(S)
fleece(C)

object library

1p(C) cancel(C) send/cancel requests to
lpenable(C) lpdisable(C) enable/disable
lpsched(M) lpshut(M) start/stop the
lpsched(M) lpmove(M) move

lpadmin(M) configure the

lpstat(C) print

system

LP line printer

printers lpenable(C)

LP line printers

lpsched(M)
turn on/off
spooler

request scheduler
scheduler lpsched(M)

drand48(S) mrand48(S) nrand48(s)
update
and long integers 13tol(S)

values(F)

aftp(C) transfer files between Altos
masm(CP) invoke the

mé4(CP) invoke a

enroll(C) xsend(C) xget(C) secret
mail(C) system

ali s (M)

aliashash(M) rebuild data base for

trom(C) list who my

malloc(S)

malloc(S) free(S) realloc(S) fast
mallinfo(S) mallopt(S) calloc(S) fast
ar(CP)

xar (CP)

of programs make(C)

groups of programs

main memory allocator malloc(S)
memory allocator

calloc(S) fast main memory allocator
allocator malloc(S) mallinfo(S)

PI-30

logname(C) get login name logname(C}
logname(S) return login name of user _____ logname(s)
log(sS) exponential, logarithm, and power exp(S)
longjmp(S) non-local goto set jmp(S)
look for files in home directories fleece(C)
look(C) find lines in a sorted list look(C)
lorder(CP) find ordering relation for ___ lorder(CP)
LP line printer 1p(C)
LP line printers lpenable(C)
LP request scheduler lpsched (M)
LP requests lpsched (M)
LP spooling system 1lpadmin (M)
LP status information lpstat(C)
lpadmin(M) configure the LP spooling ____ lpadmin(M)
1p(C) cancel(C) send/cancel requests to _ 1p(C)
lpdisable(C) enable/disable LP line _____ lpenable(C)
1pd(M) line printer daemon 1pd(M)
lpenable(C) lpdisable(C) enable/disable _ lpenable(C)
lpinit(M) add@ new line printers lpinit (M)
lpmove(M) move LP r lpsched (M)
lpon(M) line printer scheduler 1pon (M)
1pr(C) route named files to printer 1pr(C)
1psched(M) lpmove(M) move LP requests ____ lpsched(M)
ilpsched(M) lpshut(M) start/stop the LP __ lipsched(M)
1pshut (M) start/stop the LP request lpsched(M)
ipstat(C) print LP status information ___ lpstat(C)
1lrand48(S) generate pseudo-random/ drand48(S)
18(C) list contents of directories 1s(C)
1search(S) 1£ind(S) linear sesrch and ___ lsearch(S)
lseek(S) move read/write file pointer ___ lseek(S)
1tol3(S) convert between 3-byte integers 13tol(S)
m4 (CP) invoke a macro processor m4 (CP)
machi d values values (F)
machines aftp(C)
macro assembler masm(CP)
macro pr m4 (CP)
mail enroll(C)
mail mail(C)
mail alias file aliases(M)
mail alias file aliashash(M)
mail(C) system mail mail(C)
mail is from from(C)
main memory allocator malloc(S)
main memory allocator malloc(S)
main memory allocator malloc(S) malloc(S)
maintain archives and libraries ar(CP)
maintain archives and libraries xar (CP)
maintain, update. and regenerate groups _ make(C)
make(C) maintain, update. and regenerate make(C)
makedevs (M) create special device files _ makedevs(M)
makekey(M) generate an encryption key ___ makekey (M)
makettys(M) create tty special files ____ makettys(M)
mallinfo(S) mallopt(S) calloc{S) fast ___ malloc(S)
malloc(S) free(S) realloc(S) fast main __ malloc(S)
malloc(S) main memory allocator malloc(S)

- malloc(S) mallinfo(S) mallopt(S) malloc(S)
mallopt(S) calloc(S) fast main memory ___ malloc(S)

tsearch(S) tfind(S) tdelete(S) twalk(S)

@, layout (M)
' hsearch(S) hdestroy(S) hcreate(S)
crontab(C)

sigrelse(S) sigignore(S) signal

sigset(S) sigpause(S) signal

function ldlread(S) ldlitem(s)

numbers frexp(S) modf(S) ldexp(S)

section mcs(CP)

whereis(C) locate source, binary, or

sysaltos(S)

drive information written during

add new bad sectors to the bad sector

ascii (M)

umask (C) set file-creation mode

umask(S) set and get file creation

master (M)

regexp(F) regular expression compile and
regexp(S) compile regular expression and
math (F)

in numusers(S) get and set

comment section

Y ldahread(S) read the archive header of a
memory (S)
memory(S) memset(S) memcpy(S) memcmp(S)

memory(S) memset(S) memcpy(S)

operations memory(S) memset (S)

malloc(S) free(S) realloc(S) fast main
malloc(S) main

mallopt(S) calloc(S) fast main
shmct1(S) shared
hore set,
mem(M) kmem(M)
lock(S) lock a process in primary

queue, P

memory(S) memccpy(S)

memset (S) memcpy(S) memcmp(S) memchr(S)
shmop(S) shared

plock(S) lock process. text. or data in
shmget (S) get shared

memchr(S) memory operations
memory operations memory(S)
options (M) floppy disk installation
menus (M) format of Business Shell
digest(C) create

system

sort(C) sort and

to a terminal

magctl(S)

mkstr(C) create an error
mkstr(CP) create an error
getmsg(S) get next

Permuted Index

manage binary search trees tsearch(s)
manage hard disk partitions layout (M)
manage hash search tables hsearch(S)
manage user crontab files crontab(C)
management sigset(S) sighold(s) sigset(S)
sigset(S)
manipulate line number entries of a COFF 1ldlread(S)
manipulate parts of floating-point frexp(S)
manipulate the object file comment mcs (CP)
manual for program whereis(C)
manufacturer specific system requests sf-altos(S)
manufacturing drive(C) drive(C)
map badblock(C) badblock(C)
map of the ASCII character set ascii(M)
mask umask (C)
mask umask (S)
masm(CP) invoke the macro assembler masm(CP)
master configuration database master (M)
master (M) master configuration database _ master(M)
match routines regexp (F)
match routines regexp(S)
math functions and constants math(F)
matherr(S) error-handling function matherr(S)
math(F) math functiona and constants ____ math(F)
maximum number of users allowed to log __ numusers(S)
mcs(CP) manipulate the object file mes (CP)
member of an archive file ldahread(s)
memccpy(S) memory operations memory (S)
memchr (S) memory operations memory(S)
memcmp (S) memchr(S) memory operations ___ memory(S)
memcpy (S) memcmp(S) memchr(S) memory ___ memory(S)
mem(M) kmem(M) memory image file mem (M)
memory allocator malloc(S)
memory allocator malloc(S)
memory allocator malloc(S) mallinfo(S) __ malloc(S)
memory control operations shmctl1(S)
memory id ipcrm(C) remove ipcrm(C)
memory image file mem (M)
memory lock(S)
memory operations memory (S)
memory operations memory(S) memory(S)
memory operations shmop(S)
memory plock(S)
memory segment identifier shmget (S)
memory(S) memccpy(S) memory operations __ memory(S)
memory(S) memset(S) memcpy(S) memcmp(S) _ memory(S)
memset (S) memcpy(S) memcmp(S) memchr(S) _ memory(S)
menu options (M)
menu system menus (M)
menu system(s) for the Business Shell ___ digest(C)
menus(M) format of Business Shell menu __ menus(M)
merge files sort(C)
mesg(C) allow or disallow messages sent _ mesg(C)
message control operations msgctl(S)
message file from C source mkstr(C)
message file from C source mkstr{CP)
message off a stream getmsg(S)

PI1-31.

Permuted Index

putmsg(S) send a message on a stream putmsg(S)
msgop (S) message operations msgop(S)
magget (S) get queue g (S)
memory id ipcrm(C) remove queue. hore set, sh __ iperm(C)
perror(S) system error perror(S)
mesg(C) allow or disallow messages sent to a terminal mesag(C)
strace(M) print STREAMS trace strace(M)
sys_errlist(S) errno(S) system error messages sys_nerr(S) sys_nerr(S)
clone(M) open any minor device on STREAMS driver clone(M)
intro(M) introduce miscellaneocus features and files intro(M)
bootable object file mkboot(M) convert object file to mkboot (M)
mkdir(C) make a directory mkdir (C)
mkdir(S) make a directory mkdir(S)
mkfs (M) construct a file system mkfs (M)
mknod(C) build special files mknod(C)
or ordinary file mknod(S) make a directory. or a special _ mknod(S)
mkshlib(CP) create a ghared library _____ mkshlib(CP)
from C source mkstr(C) create an error message file ___ mkstr(C)
from C source mkstr(CP) create an error message file __ mkstr(CP)
mktemp(S) make a unique file name mktemp(S)
driver symbol table mkunix(M) make bootable system file with mkunix(M)
kernel symbol table mkunix(M) make bootable system file with mkunix(M)
mkvers (CP) generate a what string mkvers (CP)
mnttab(M) mounted file system table mnttab(M)
getty(M) set terminal mode getty(M)
umask(C) set file-creation mode mask umask (C)
bring system up multi/single-user mode multiuser(C) singleuser(C) multiuser(C)
chmod(S) change mode of file chmod(S)
setmodem(C) set up tty port for a modem d Cc)
uugetty(M) set terminal type, modes, speed, line discipline uugetty(M)
tset(C) set terminal modes tset(C)
setmode(C) printer modes utility setmode(C)
floating-point numbers frexp(S) modf(S) ldexp(S) manipulate parts of ___ frexp(S)
settime(C) change the access and modification dates of files settime(C)
touch(C) update access and modification times of a file touch(C)
utime(S) set file access and modification times utime(s)
monitor(S) prepare execution profile ____ monitor(s)
time more(C) view a file one full screen at a more(C)
mount (S) mount a file system mount (S)
N multiple file sy 11(C) 11(C) mount/ —_ 11(C)
structure mount(C) umount(C) mount/unmount a file _ mount(C)
mnttab(M) mounted file system table mnttab (M)
mount (S) mount a file system mount (S)
mount (C) umount(C) mount/unmount a file structure mount (C)
mountall(C) umountall(C) mount/unmount multiple file systems mountall(C)
1lpsched(M) lpmove(M) move LP request 1 a(m)
lgeek(S) move read/write file pointer 1seek(S)
mv(C) move (rename) files and directories mv (C)
generate pseudo-random/ drand48(S) mrand48(S) nrand48(S) lrand48(S) drand48(S)
dos(C) access MS-DOS files dos(C)
msgctl(S) message control operations __ msgctl(S)
(S) get queue gget (S)
msgop(S) message operations msgop(S)
mountall (C) umountall(C) mount/unmount multiple file systems mountall(C)
poll(S) STREAMS input/output multiplexing Poli(S)
singleuser(C) bring system up multi/single-user mode multiuser(C) ___ multiuser(C)
rc2(M) commands for multi-user environment rc2{M)

PI-32

up multi/single-user mode
directories

tmpnam(S) tempnam(S) create a
ldgetname(S) retrieve symbol
ctermid(S) generate file
getpw(S) get

getenv(S) return value for environment
getlogin(S) get login

xlist(S) fxlist(S) get
nlist(S) get entries from
nm(CP) print

xnm(CP) print

logname(C) get login

mktemp(S) make a unigque file
ttyname(S) isatty(S) find
uname(S) get

getcwd(S) get path

cuserid(S) get character login
logname(S) return login
devom(C) identify device
pwd(C) print working directory
tty(C) get the current port
1pr(C) route

term(M) conventional

ncheck (M) generate path

id(C) print user and group ID and
isnand(S) test for floating point
interval

language

semaphore resource waitsem(S)
numbers

getmsg(S) get
dbm(S) dbminit(S) fetch(S)
priority

file

and quits

set jmp(S) longjmp(S)

false(C) return with a
pseudo-random/ drand48(S) mrand48(S)
null (M)

linenum(F)} line

ldlread(S) ldlitem(8) manipulate line
file ldlseek(S) seek to line
factor(C) factor a

num(C)

daf (M) report

numusers(S) get and set maximum
random(C) generate a random
convert string to double-precision
ecvt(S) convert floating-point
erand48(S) generate pseudo-random
lrand48(S) generate pseudo-random

Permuted Index

multiuser(C) singleuser(C) bring system _ multiuser(C)
mv{C) move (rename) files and mv(C)

name for a temporary file tmpnam(S)
name for COFF symbol table entry ldgetname(S)
name for terminal ctermid(S)
name from UID getpw(S)
name getenv(S)
name getlogin(S)
name list entries from files xlist(S)
name list nlist(S)
name list of common object file am(CP)
name list xnm(CP)
name 1)
name mktemp(S)
name of a terminal ttyname(S)
name of current UNIX system uname (S)
name of current working directory getcwd(s)
name of the user cuserid(s)
name of user logname(S)
name on which files reside devnm (C)
name pwd(C)
name tty(C)
named files to printer spooler 1pr(C)
names for terminals term(M)
names from inode numbers ncheck (M)
names id(C)

NaN isnan(S) isnanf(S) isnan(S)
nap(S) suapend execution for a short ____ nap(S)
nawk(C) pattern scanning and processing _ nawk(C)
nbwaitsem(S) wait and check access to ___ waitsem(S)
ncheck (M) generate path names from inode ncheck(M)
newgrp(C) log user into a new group _____ newgrp(C)
next message off a stream getmsg(S)
nextkey(S) perform database functions ___ dbm(S)
nice(C) run a command at a different __ nice(C)
nice(S) change priority of a process ____ nice(S)
nl(C) add line numbers to a file nl(C)
nlist(S) get entries from name list nlist(s)
nm(CP} print name list of common object _ nm(CP)
nohup(C) run a command immune to hangups nohup(C)
non-local goto setjimp(S)
nonzero exit value false(C)
nrand48(S) lrand48(S) generate drand48(s)
nuli file null(M)
nuli(M) null file _______ null(M)
number entries in a common object file __ linenum(F)
number entries of a COFF function ldlread(s)
number entries of a section of a COFF ___ 1ldlseek(S)
number factor(C)
number lines num(C)
number of free disk blocks and inodes ___ df (M)
number of users allowed to log in numusers(S)
number random(C)
number strtod(S) atof(S) strtod(s)
number to string ecvt(S)
numbers drand48(S) drand48(S)
numbers /mrand48(S) nrand48(S) drand48(s)

PI-33

Permuted Index

jrand48(S) generate pseudo-random
manipulate parts of floating-point
strip(CP) remove symbols and line
ncheck(M) generate path names from inode
nl(C) add line

of users allowed to log in

dis(CP)

ldfcn(F) common

mcs (CP) manipulate the

cprs(CP) compresse a common

dump(CP) dump selected parts of an
ldopen(S) ldaopen(S) open a common
fixobj (CP) convert an

hdr(C) display selected parts of an
line number entries in a common
convert object file to bootable
nm(CP) print name list of common
relocation of information for a common
scnhdr (F) section header for a common
£ind the printable strings in an

syms (F) common

mkboot (M) convert

conv(CP) convert common

f£ilehdr(F) file header for common
size(C) print section sizes of common
to the optional file header of a common
lorder (CP) find ordering relation for
0d(C) display files in

fixobj(CP) convert an object file from
ldopen(S) ldaopen(S)

opensem(S)

fopen(S) fdopen(S) freopen(S)
clone(M)

dup(S) dup2(S) duplicate an

open(S)

directory(S) telldir(S) readdir(S)

rcO(M) commands to stop the
rewinddir(S) seekdir(S) directory
readdir(S) opendir(S) directory
memory(S) memccpy(S) memory
(s) (S) memory
msgctl(S) message control

pY(S)

msgop(S) message

semctl(S) semaphore control

semop (S) semaphore

shmct1(S) shared memory control
shmop($) shared memory

strdup(S) strpbrk(S) stremp(S) string
strcpy(S) strlen(S) strchr(S) string
string(S) strspn(S) strtok(S) string
curses(S) terminal screen handling and
getopt(S) get

ldohseek(S) seek to the

numbers drand48(S) seed48(S) srand48(S) _ drandds(s)
numbers frexp(S) modf(S) ldexp(S) frexp(S)
numbers from COFF file strip(CP)
numbers ncheck (M)
numbers to a file ni(C)
num(C) number lines num(C)
numusers(S) get and set maximum number __ numusers(S)
object code disassembler dis(CP)
object file access routines 1dfcn(F)
object file section mes (CP)
object file cprs (CP)
object file dump (CP)
object file for reading 1dopen(S)
object file from OMF to COFF fixobj (CP)
object file hdr(C)
object file linenum(F) linenum(F)
object file mkboot (M) mkboot (M)
object file nm(CP)
object file reloc(F) reloc(F)
object file scnhdx (F)
object file strings(C) strings(C)
object file symbol table format syms (F)
object file to bootable object file _____ mkboot(M)
object files conv(CP)
object files filehdr (F)
object files size(C)
object 1 k(S) seek ldoh (s)
object library lorder(CP)
octal format 0d(C)
0d{(C) display files in octal format 0d(C)

OMF to COFF fixobj(CP)
open a common object file for reading ___ ldopen(S)
open a ph P s)
open a stream fopen(S)
open any minor device on STREAMS driver _ clone(M)
open file descriptor dup(S)
open for reading or writing open(S)
opendir(S) directory operations directory(S)
open(S) open for reading or writing open(S)

(S) open a P (s)
operating system rco (M)
operations directory(S) closedir(s) ____ directory(s)
operations directory(S) telldir(s) directory(S)
operations memory(S)
operations memory(S) memset(S) memory(S)
operations msgcti(S)
operations msgop(S)
operations semctl(S)
operations semop(S)
operations shmctl(S)
operations shmop(S)
operations string(S) strcat(S) string(S)
operations string(S) strncmp(S) string(S)
operations string(S)
optimization H curses(S)
option letter from argument vector getopt (S)
optional file header of a common object _ ldohseek(S)

PI-34

g

~—

Permuted Index

fcntl(F) file control options fentl(F)
stty(C) set the options for a port stty(C)
xtty(C) set the options for a port xtty(C)
getopt (C) parse command options getopt (C)
getopta(C) parse command options getopts (C)
options(M) floppy disk installation menu options(M)
lorder(CP) find ordering relation for object library lorder(CP)
make a directory. or a special or ordinary file mknod(s) mknod(S)
dial(S) establish an out-going terminal line connection dial(S)
format of assembler and link editor output a.out(F) a.out(F)
fold(C) fold long lines for finite width output device £014(C)
veprintf(S) vsprintf(S) print formatted output of varargs list vprintf(S) vprintf(s)
pr(C) print files on the standard output pr(C)
sprintf(S) fprintf(S) print formatted output printf(S) printf(s)
sysdef (M) output system definition sysdef (M)
chown(S) change owner and group of a file chown(S)
chown(C) chgrp(C) change owner or group ID chown (C)
quot (C) summarize file system ownership quot (C)
screen handling and optimization package curses(S) terminal curses(S)
sar(M) system activity report K sar (M)
stdio(S) standard buffered input/output 3! stdio(S)
standard interprocess communication package stdipc(S) ftok(S) stdipc(S)
expand files pack(C) pcat(C) unpack(C) compress and pack(C)
tk(C) paginator for Tektronix 4014 tk(C)
get process, process group. and parent process IDs getpid(S) getpid(S)
getopt (C) parse d options getopt (C)
getopts(C) parse options getopts(C)
tail(C) deliver the last part of a file tail(C)
layout (M) manage hard disk partitions layout (M)
dump (CP) dump selected parts of an object file dump (CP)
hdr(C) display selected parts of an object file hdr(C)
frexp(S) modf(S) ldexp(S) manipulate parts of floating-point number frexp(S)
passwd(C) change login a P d(C)
passwd (M) file (M)
crypt(S) password and file encryption functions __ crypt(S)
fgetp t(s) jol (s) (S) get password file entry getpwent(S) getpwent (S)
getpwent (S) getpwnam(S) getpwuid(S) get password file entry getpwent (S)
putpwent (S) write password file entry putpwent(S)
d(M) d file a(M)
getpas(S) read a pasaword getpas(S)
passwd(C) change login d P <)
pwck (M) grpck(M) check password/group file pwek (M)
getcwd(S) get path name of current working directory __ getcwd(S)
ncheck(M) generate path names from inode numbers ncheck(M)
dirname(C) deliver portions of p (C) ({5
grep(C) search a file for a pattern grep(C)
awk(C) pattern scanning and processing language awk(C)
nawk (C) pattern scanning and processing language nawk(C)
egrep(C) search file for pattern using full regular expression ___ egrep(C)
pause(S) suspend process until signal ___ pause(S)
files pack(C) pcat (C) unpack(C) compress and expand ___ pack(C)
process popen(s)' pclose(S) initiate pipe to/from a popen (S}
peonfig(C) set port configuration peonfig(C)
dbm(S) dbminit(S) fetch(S) nextkey(S) perform database functions dbm(S)
abm(S) firstkey(S) store(S) fetch(S) perform database functions dbm(S)
check the uucp directories and permissions file heck (M) (M)
chmod(C) change permissions of a file or directory chmod (C)

PI-35

Permuted Index

acct (M) format of

split(C) split a file into
tee(C) create a tee in a
popen(S) pclose(S) initiate

memory

fpgetround(S) fpgetmask(S)
fpgetsticky(S)
fpgetround(S) f (s)
fpsetround(S) IEEE
Epsetsticky(S) IEEE floating

isnanf(S) isnand(S) test for floating
ftell(S) rewind(S) reposition a file
lseek(S) move read/write file
multiplexing

a process

pconfig(C) set

disable(C) disable logins on a

enable(C) enable logins on a

setmodem(C) set up tty

tty(C) get the current

stty(C) set the options for a

xtty(C) set the options for a
basename(C) dirname(C) deliver

log(S) exponential. logarithm, and

and power functions exp(S)

I1EEE
IEEE
1EEE

floating
floating
floati

floating

dc(C) arbitrary
monitor(S)
cpp(CP) the C L

per-process accounting file
perror(S) system error messages
pg(C) file perusal filter
pieces

pipe

pipe to/from a process

pipe(S) create an interprocess channel __
plock(S) lock process, text, or data in
plot(S) graphics interface subroutines

acct (M)
perror(S)
Pg(C)
split(C)
tee(C)
popen(S)
pipe(s)

_ Plock(s)
__ plot(s)

unget (CP) undo a

lock(S) lock a process in

types (F)

cal(C)

yes(C)

pra(CP)

date(C)

sact (CP)

whoami (C)

pr(C)

vprintf(S) viprintf(S) vsprintf(s)
printf(S) sprintf(S) fprintf(s)

banner(C)

last (C)

1pstat (C)

nm(CP)

xnm(CP)

printenv(C)

accept(C) reject(C) allow/prevent
pscreen(C) set up terminal to
files size(C)

printers (M)

strace(M)

infocmp(M) compare or

point environment control fpgetround(S)
point envi control £p d(S) _ fpgetround(s)
point environment control fpgetround(s)
point environment control fpgetround(S) _ fpgetround(s)
point environment control fpgetround(S) _ fpgetround(s)
point NaN isnan(S) isnan(s)
pointer in a stream faeek(S) faeek(S)
pointer lseek(S)
poll(S) STREAMS input/output poll(s)
popen(S) pclose(S) initiate pipe to/from popen(S)
port configuration pconfig(C)
port disable(C)
port enable(C)
port for a modem setmodem(C)
port name tty(C)

port stty(C)

port xtty(C)
portions of h b ()
power functions exp(S) pow(S) exp(S)

pow(S) log(S) exponential, logarithm, ___ exp(S)

pr(C) print files on the standard output pr(C}
precision calculator dc(C)
prepare execution profile monitor(Ss)

P cpp(CP)
previous get of an SCCS file unget (CP)
primary memory lock($S)
primitive system data types types(F)
print a calendar cal(C)
print a string 1y yes(C)
print an SCCS file pra(CP)
print and set the date d.té(c)
print current SCCS file edit activity ___ sact(CP)
print effective current user id whoami (C)
print files on the standard output pr(C)
print formatted output of varargs list __ vprintf(S)
print formatted output printf(S)
print large letters banner(C)
print last record of user logins last(C)
print LP status information 1pstat(C)
print name list of common object file _ nm(CP)
print name list xnm(CP)
print out the envi printenv(C)
print requests accept (C)
print screen display pscreen(C)
print section sizes of common object ___ size(C)
print spooler configuration file printers (M)
print STREAMS trace messages strace(M)
print terminfo descriptions infocmp (M)

PI-36

uname (C)

head(C)

id(c)

pwd(C)

strings(C) £ind the

1pd(M) line

xpd(M) transparent

filter files for printing on LaserJet
send/cancel requests to LP line
setmode (C)

turn on/off line

1lpr(C) route named files to
1pdisable(C) enable/disable LP line
1lpinit (M) add new line

file

formatted output

hplp(C) hplpR(C) filter files for
nice(C) run a command at a different
nice(S) change

brc(M) system initialization

acct(S) enable or disable

alarm(S) set a

times(S) get

init (M)

exit(S) terminate

fork(S) create a new

getpid(S) get process.

setpgrp(S) set

setpgrp(C) execute command in a new
get process, process group, and parent
lock(S) lock a

kill(C) terminate a

nice(S) change priority of a

kill(S) send a signal to a

pclose(S) initiate pipe to/from a
process IDs getpid(S) get

ps(C) report

plock(S) lock

times(S) get process and child
wait(S) wait for child

ptrace(S)

pause(S) suspend

checklist(M) list file systems
inittab(M) script for the init
killall(C) kill all active

send a signal to a process or a group of
fuser(M) identify

wait(C) wait completion of b a

Permuted Index

print the current UNIX information
print the first few lines of a stream
print user and group ID and names
print working directory name
printable strings in an object file __
printenv(C) print out the environment
printer daemon

printer daemon

printer hplp(C) hplpR(C)
printer lp(C) cancel(C)
printer modes utility
printer scheduler
printer spooler
printers lpenable(C)
printers
printers(M) print spooler configuration
printf(S) sprintf(S) fprintf($) print
printing on LaserJet printer

priority
priority of a process
procedure

process accounting
process alarm clock
process and child process times
process control initialization
process
process

process group. and parent process IDs

process group id

process group
process IDs getpid(S)

process in primary memory
process

proceas

process or a group of processes
process popen(S)

process. process group, and parent
process status

process. text, or data in memory
process times

process to stop or terminate

process trace

process until signal
processed by fack

processes kill($)

processes using a file or file structure

awk (C) pattern scanning and
nawk (C) pattern scanning and
md (CP) invoke a macro
1ist(CP)

prof(CP) display
monitor(S) prepare execution

ing 1

P

p ing 1

produce C source listing from COFF file _
prof (CP) display profile data

prof (F) profile within a function

profile data
profile

PI-37

uname (C)

___ head(C)

id(c)
pwd (C)
atrings(C)

___ printenv(C)

1pd(M)

xpd (M)
hplp(C)
1p(C)
setmode (C)
lpon(M)
1pr(C)
lpenable(C)
lpinit (M)

_ printers(M)

printf£(S)
hplp(C)
nice(C)
nice(S)
brc (M)
acct(S)
alarm(S)
times(S)
init(M)
exit(s)
fork(s)
getpid(s)
aetpgrp(s)
setpgrp(C)
getpid(s)
lock(S)
kili(C)
nice(s)
kili(s)
popen(S)

getpid(s)

ps(C)
plock(S)
times(S)
wait(S)
ptrace(S)
pause(S)
checklist (M)
inittab(M)
killall(C)
kill(s)
fuser (M)
wait(C)
awk(C)
nawk (C)

m4 (CP)
list (CP)
prof (CP)
prof (F)
prof (CP)
monitor(s)

Permuted Index

profil(S) execution time
prof(F)
time

assert(S) verify

boot (M) boot

cxref (CP) generate C

ctrace(CP) C

edata(S) etext(S) last locations in
tapeutil(C) utility

uucico(M) file transport

default (M) default

sulogin(M) special login

strclean(M) STREAMS error logger cleanup
ua(C) user administration

scheduler for the uucp file transport
locate source, binary. or manual for
cb(CP) beautify C

lex(CP) generate

update, and regenerate groups of
xref(CP) cross-reference C

xstr(CP) extract strings from C
clock (M)

labelit(C)

screen display

drand48(S) erand48(S) generate
nrand48(S) lrand48(S) generate
seed48(S) srand48(S) jrand48(S) generate

uuto(C) uupick(C)
adb{(C) invoke x.out general

getc(s)

puts(S) fputs(s)

putc(S) putchar(S) putw(S) fputc(S)
getdents(S) read directory entries and
character or word on a stream putc(S)
character or word on a stream
environment

stream
on a stream putc(S) putchar(s)
file

msgget (S) get message

ipcrm(C) remove message

gsort(S)

run a command immune to hangups and

ranlib(CP) convert archives to
random(C) generate a

rand(S) srand(S) simple

profile profil(s)
profile within a function prof (F)
profile(M) set up environment at login __ profile(M)
profil(S) execution time profile profil(s)
program assertion assert(S)
program boot (M)
program cross-reference cxref (CP)
program 4 ctrace(CP)
program end(S) end(S)
program for a streaming tape drive tapeutil(C)
program for uucp system uucico(M)
program information directory default (M)
program invoked by init sulogin (M)
program strclean(M)
program ua{C)
program hed (M) hed (M)
program whereis(C) whereis (C)
programs cb(CP)
programs for lexical analysis lex{CP)
programs make(C) maintain, make (C)
programs xref (CP)
programs xstr(CP)
provide access to the time-of-day chip __ clock(M)
provide labels for file systems labelit(C)
prs(CP) print an SCCS file prs(CP)
ps(C) report p status ps(C)
pscreen(C) set up terminal to print pscreen(C)
pseudo-random numbers drand48(S)
pseudo-random numbers /mrand48(S) drandd8(s)
pseudo-random b drand48(s) drand48(S)
ptrace(S) process trace ptrace(S)
public UNIX-to-UNIX system file copy _____ uuto(C)
purpose adb(C)
push ch back into input stream ___ ungetc(S)
put a string on a stream puts($)
put character or word on a stream putc(s)
put in a file getdents(S)
putchar(S) putw(S) fputc(S) put putc(s)
putc(S) putchar(S) putw(S) fputc(S) put _ putc(S)
putenv(S) change or add value to putenv(s)
putmsg(S) send a message on a stream ____ putmsg(S)
P (S) write file entry ___ putpwent(S)
puts(S) fputs(S) put a string on a puts(s)
putw(S) fputc(S) put character or word __ putc(S)
pwck(M) grpck(M) check password/group ____ pwck(M)
pwd(C) print working directory name ______ pwd(C)
gsort(S) quicker sort gsort(S)
query terminfo database tput(C)
queue msgget (S)
queue, semphore set, shared memory id ___ iperm(C)
quicker sort qsort(S)
quits nohup(C) nohup (C)
quot(C) summarize file system ownership _ quot(C)
random libraries ranlib(CP)
random number random(C)
random(C) generate a random number random(C)
random-number generator rand(S)

PI-38

generator

libraries

£8plit(CP) split

standard FORTRAN

ratfor(CP) convert

system

environment

to be read

getpas(S)

COFF file ldtbread(s)

a COFF file ldshread(s)

getdents(S)

read(S)

line(C)

check to see if there is data to be
an archive file ldahread(s)
ldfhread(s)

operations directory(S) telldir(S)
ldaopen(S) open a common object file for
open(S) open for

lseek(S) move

locking(S) lock/unlock a file region for
getuid(S) getegid(S) get
getuid(S) geteuid(S) get
getuid(S) getgid(S) get
malloc(S) free(S)

autoreboot (C) automatically
reboot (C) automatically
shutdn(S) reboot(S) shutdown or
system

shutdn(s)

signal(S) specify what to do on
lockf(S)

last(C) print last

script (C) make a

frec(M)

system from tape

ed(C)

make(C) maintain, update., and
match routines
match routines

execseg(S) make a data
locking(S) lock/unlock a file
regexp(S) compile

routines regexp(F)

search file for pattern using full
regcmp(S) compile a

regex(S) execute a

regcmp (CP) compile

accept (C)

lorder(CP) find ordering
join(C) join two

COFF file ldrseek(S) seek to

Permuted Index

rand(S) srand(S) simple random-number ____ rand(S)
ranlib(CP) convert archives to random ___ ranlib(CP)
ratfor files E£split (CP)
ratfor(CP) convert rational FORTRAN to __ ratfor(CP)
rational FORTRAN to standard FORTRAN __ ratfor(CP)
rc0(M) commands to stop the operating __ rcO(M)
rc2(M) commands for multi-user rc2(M)
rdchk(S) check to see if there is data __ rdchk(S)
read a password getpas(S)
read an indexed symbol table entry of a _ ldtbread(s)
read an indexed/named section header of _ ldshread(s)
read directory entries and put in a file getdents(S)
read from file read(s)
read one line of input line(C)
read rdchk(S) rdchk(S)
read the archive header of a member of __ ldahread(S)
read the file header of a COFF file _ _ ldfhread(s)
readdir(S) opendir(S) directory directory(S)
reading ldopen(S) ldopen(S)
reading or writing open(S)
read(S) read from file read(s)
read/write file pointer lseek(S)
read/write locking(8)
real/effective user or group IDs getuid(S)
real/effective user or group IDs getuid(s)
real/effective user or group IDs getuid(s)
realloc(S) fast main memory allocator ___ malloc(S)
reboot the system autoreboot (C)
reboot the system reboot (C)
reboot the system shutdn(S)
reboot (C) automatically reboot the reboot (C)
reboot (S) shutdown or reboot the system _ shutdn(S)
receipt of signal signal(S)
record locking on files lockf(S)
record of user logins last (C)
record of your terminal session script(C)
recover files from a back-up tape frec(M)
recover(C) restore contents of a file __ recover(C)
red(C) invoke the ed text editor ed(C)
regcmp (CP) compile regular expressions __ regcmp(CP)
regemp(S) compile a regular expression __ regcmp(S)
regenerate groups of programs make (C)
regexp(F) regular expression compile and regexp(F)
regexp(S) compile regular expression and regexp(S)
regex(S) execute a regular expression ___ regex(S)
region executable g(s)
region for read/write locking(S)
regular expression and match routines ___ regexp(S)
regular expression compile and match ____ regexp(F)
regular expression egrep(C) egrep(C)
regular expression regcmp (S)
regular expression regex(S)
regular expressions regcmp (CP)
reject(C) allow/prevent print requests __ accept(C)
relation for object library lorder (CP)
relations join(cC)
relocation entries of a section of a ldrseek(S)

PI-39

Permuted Index

object file reloc(F)

relocation of information for a common

. reloc(F)

common object file reloc(F) relocation of information for a ' reloc(F)
leave(C) remind you when you have to leave leave(C)
calendar(C) invoke a reminder service calendar(C)
uuxqt (M) execute remote command requests uuxqt (M)
uutry(M) contact remote system with debugging on uutry(M)
ct(C) spawn getty to a remote terminal ct(C)
uux(C) execute command on remote UNIX uux(C)
rmdel (CP) remove a delta from an SCCS file rmdel (CP)
mdir(S) remove a directory rmdir(s)
88p(C) remove consecutive blank lines ssp(C)
unlink(S) remove directory entry unlink(S)
m(C) rmdir(C) remove files or directories m(C)
shared memory id ipcrm(C) remove message queue, semphore set, ipcrm(C)
COFF file strip(CP) remove symbols and line numbers from ____ strip(CP)
mv(C) move (rename) files and directories mv(C)
f£ack(C) dfsck(C) check and repair file systems fack(C)
uniq(C) report repeated lines in a file unig(C)
yes(C) print a string rep dly yes(C)
clock(S) report CPU time used clock(S)
fsstat (M) report file system status fsatat (M)
fainfo(M) report information about a file system __ fsinfo(M)
facilities status ipcs(C) report inter-process communication ipes(C)
inodes 4f(M) report number of free disk blocks and ___ df(M)
sar(C) system activity report kag sar(C)
sar(M) system activity report sar (M)
p8(C) report process ps(C)
unig(C) report repeated lines in a file uniq(C)
fseek(S) ftell(S) rewind(S) reposition a file pointer in a stream _ _ fseek(S)
1psched({M) lpshut(M) start/stop the LP request scheduler 1 hed(M)
accept(C) reject(C) allow/prevent print requests accept(C)
lpsched(M) lpmove(M) move LP req 1p)
sysaltos(S) manufacturer specific system requests sysaltos(s)
1p{(C) cancel(C) send/cancel requests to LP line printer : 1p(C)
uuxgt (M) execute remote a qu uuxqt (M)
reset (C) reset the teletype bit reset (C)
reset(C) reset the teletype bit reset (C)
identify device name on which files reside devam(C) devnm(C)
wait and check to waitsem(S) nbwaitsem(S) waitsem(S)
restore.hd(C) restore a hard disk from tape restore.hd(C)
tape) tents of a file system from __ recover(C)
tape restore.hd(C) restore a hard disk from __ restore.hd(C)
table entry ldgetname(S) retrieve symbol name for COFF symbol ____ ldgetname(S)
stat(F) return data by stat system call stat(F)
abs (S) return integer absolute value abs(S)
l.ognmc(S)' return login name of user 1 {S)
getenv(S) return value for environment name getenv(S)
false(C) return with a nonzero exit value . false(C)
true(C) return with a zero exit value true(C)
rev{C) reverse lines of a file rev(C)
rev(C) reverse lines of a file rev(C)
operations directory(S) closedir(S) rewinddir(S) seekdir(S) directory directory(s)
stream fseek(S) ftell(S) rewind(S) reposition a file pointer in a fseek(S)
creat(S) create a new file or rewrite an existing one creat(S)
directories rm(C) rmdir(C) remove files or m(C)
uucp link rmail(C) receives mail from ______ rmail(C)
file rmdel(CP) remove a delta from an SCCS ___ rmdel(CP)

PI-40

~—

~

m(C)

chroot(S) change

chroot (C) change

exponential. logarithm. and square
1pr(C)

ldfcn(F) common object file access
regular expression compile and match
compile regular expression and match
interpreter sh(C)

nice(C)

quits nohup(C)

activity

system activity

archive(C)

allocation brk(S)

bfs(C)

formatted input

awk (C) pattern

nawk(C) pattern

cdc(CP) change the delta commentary of
comb (CP) combine

delta(CP) make a change to an

sact (CP) print current

get (CP) get a version of an

prs(CP) print an

rmdel (CP) remove a delta from an
sccsdiff (CP) compare two versions of an
sccafile(F) format of an

unget (CP) undo a previous get of an
val(CP) validate an

admin(CP) create and administer

SCCS file

turn on/off

ckbupscd(M) check file system backup
turn on/off

program uusched(M)

1pshut (M) start/stop the LP request
object file

image file

more(C) view a file one full
clear(C) clear terminal

pscreen(C) set up terminal to print
curses(S) terminal

scr_dump(F) format of curses

vi(C) invoke a

inittab(M)

session

to a shared data segment
data segment sdget(S)
shared data segment
data access

Permuted Index

mdir(C) remove files or directories ____ rm(C)
rmdir(S) remove a directory rmdir(S)
root directory chroot (S)
root directory for command chroot (C)
root functions exp(S) sqrt(S) exp(S)
route named files to printer spooler ___ 1pr(C)
routines ldfen(F)
routines regexp(F) regexp (F)
routines regexp(S) regexp(S)
rsh(C) invoke the shell command 8h(C)

run a command at a different priority ___ nice(C)

run a d immune to and nohup(C)
sact(CP) print current SCCS file edit ___ sact(CP)
sadcon(M) data collector sadcon (M)
sar(C) system activity report package ____ sar(C)
sar(M) system activity report package ___ sar(M)
save a file system to a streaming tape __ archive(C)
sbrk(S) change data segment space brk(S)

scan big files bfs(C)
scanf(S) fscanf(S) sscanf($S) convert ____ scanf(S)
scanning and pr ing 1 awk (C)
scanning and p ing 1 nawk (C)
SCCS delta cdc (CP)
SCCS deltas comb (CP)
SCCS file delta(CP)
SCCS file edit activity sact (CP)
SCCS file get (CP)
SCCS tile prs(CP)
SCCS file rmdel (CP}
SCCS file sccsdiff(CP)
SCCS file sccefile(F)
SCCS file unget (CP)
SCCS file val(CP)
SCCS files admin(CP)
sccadiff (CP) compare two versions of an _ sccsdiff(CP)
sccsfile(F) format of an SCCS file sccafile(F)
scheduler for line printer 1lpon{M)
schedule ckbupscd(M)
acheduler for line printer lpon (M)
scheduler for the uucp file transport ___ uusched(M)
scheduler 1p. d(M) lpsched (M)
scnhdr (F) section header for a common ___ scnhdr(F)
scr_dump(F) format of curses screen scr_dump (F)
screen at a time more(C)
screen clear(C)
screen display pscreen(C)
screen handling and optimization package curses(S)

screen image file

screen-oriented display editor

script for the init processes

script(C) make a record of your terminal
8db(C) symbolic deb

sdenter(S) sdleave(S) synchronize access
sdfree(S) attach and detach a shared
sdget (S) sdfree(S) attach and detach a __
sdgetv(S) sdwaitv(S) synchronize shared _
8diff (C) compare files side-by-side __

PI-41

scr_dump (F)
vi(C)
inittab(M)
script (C)
3db(C)
sdenter(S)
sdget (S)
sdget (S)
sdgetv(S)
sdif£(C)

Permuted Index

shared data segment sdenter(S)
access sdgetv(s)

fgrep(C)

grep(C)

lsearch(S) 1f£ind(S) linear
regular expression egrep(C)
bsearch(S) binary

hdestroy(S) hcreate(S) manage hash
tdelete(S) twalk(S) manage binary
enroll(C) xsend(C) xget(C)

scnhdr (F)

ldshread(S) read an indexed/named
manipulate the object file comment
seek to line number entries of a
seek to relocation entries of a
size(C) print

add new bad sectors to the bad
badblock(C) add new bad

pseudo-random numbers drand48(S)

of a COFF file ldlseek(S)

of a COFF file ldrseek(S)

common object ldohseek(S)

ldtbseek(S)

directory(S) closedir(S) rewinddir(S)
shmget (S) get shared memory
synchronize access to a shared data
attach and detach a shared data
brk(S) sbrk(S) change data

dump(CP) dump

hdr(C) display

files comm(C)

semctl(S)

creatsem(S) create a binary
opensem(S) open a

semop(S)

nbwaitsem(S) wait and check access to
semget (S) get set of

ipcrm(C) remove message queue,
putmsg(s)

processes kill(s)

1p(C) cancel(C)

mesg(C) allow or disallow messages
calendar(C) invoke a reminder
script(C) make a record of your terminal
alarm(S)

umask(S)

ascii(M) map of the ASCII character
timezone(M)

env(C)

utime(S)

umask(C)

log in numusers(S) get and

sdleave(S) synchronize access to a sdenter(S)
sdwaitv(S) synchronize shared data sdgetv(S)
search a file for a character string _____ fgrep(C)
search a file for a pattern grep(C)
search and update 1search(S)
search file for pattern using full egrep(C)
search of a sorted table bsearch(S)
search tables hsearch(S) hsearch(S)
search trees tsearch(S) tfind(S) tsearch(s)
secret mail enroll(C)
section header for a common object file _ scnhdr(F)
section header of a COFF file ldshread(s)
section mcs(CP) mcs (CP)
section of a COFF file ldlseek(S) ldiseek(S)
section of a COFF file ldrseek(S) ldrseek(S)
section sizes of common object files ____ size(C)
sector map badblock(C) badblock(C)
sectors to the bad sector map badblock(C)
sed(C) invoke the stream editor sed(C)
see(C) display a file =~~~ see(C)
seed48(S) srandd8(S) jrand48(S) generate drand48(S)
seek to line number entries of a section 1ldlseek(S)
seek to relocation entries of a section _ ldrseek(S)
seek to the optional file header of a ___ ldohseek(S)
seek to the aymbol table of a COFF file _ ldtbseek(S)
seekdir(S) directory operations directory(S)
segment identifier shmget (S)
segment sdenter(S) sdleave(S) sdenter(S)
segment sdget(S) sdfree(S) sdget (S)
segment space allocation brk(s)
selected parts of an object file dump (CP)
selected parts of an object file har(C)
select/reject lines common to two sorted comm(C)
semaphore control operations semctl(S)
P e cr (s)
e P (S)
semaphore operations semop(S)
semaphore resource waitsem(S) waitsem(S)
semget (S)
semctl(S) semaphore control operations __ semctl(S)
semget (S) get set of semaphores semget(S)
semop(S) semaphore operatiocns semop (S)
semphore set, shared memory id iperm(C)
send a message on a stream ____ = putmsg(S)
send a signal to a process or a group of kill(S)
send/cancel requests to LP line printer _ 1p(C)
sent to a terminal mesg(C)
service calendar(C)
session script (C)
set a process alarm clock alarm(S)
set and get file creation mask umask (S)
set ascii(M)
set default system time zone timezone (M)
set environment for command execution ___ env(C)
set file access and modification times __ utime(S)
set file-creation mode mask umask (C)
set maximum number of users allowed to __ numusers(S)

PI-42

N>

semget (S) get
pconfig(C)

setpgrp(S)

ipcrm(C) remove message queue, semphore
tabs (C)

getty(M)

taet (C)

discipline uugetty(M)
date(C) print and
stty(C)

xtty(C)

asktime(C)

stime(S)

profile(M)

pscreen(C)
setmodem(C)
shuttype(S) get and
setuid(s)

ulimit(S) get and

a stream

getgrent (S) fgetgrent(S) endgrent(S)

process group

getpwent (S) fgetpwent(S) d t(S)

Permuted Index

modification dates of files
gettydefs (M) speed and terminal

file entry getut(S)

setbuf (S)

sputl(s)

sdgetv(S) sdwaitv(S) synchronize
sdleave(S) synchronize access to a
sdget (S) sdfree(S) attach and detach a
chkshlib(CP) tool for comparing
mkshlib(CP) create a

shmct1(S)

remove message queue, semphore set,
shmop (S)

shmget (S) get

interpreter

bsh(C) invoke the Business

sh(C) rsh(C) invoke the

syntax csh(C)

system(S) issue a

create menu system(s) for the Business
menus (M) format of Business

operations
identifier

nap(S) suspend execution for a
the system
shutype(M) UPS

set of semaphores semget (S)
set port configuration pconfig(C)
set process group id setpgrp(S)
set. shared memory id iperm(C)
set tabs on a terminal tabs(C)
set terminal mode getty(M)
set terminal modes tset (C)
set terminal type, modes, speed, line ___ uugetty(M)
set the date date(C)
set the options for a port stty(C)
set the options for a port xtty(C)
set the system time of day asktime(C}
set time stime(S)
set up environment at login time profile(M)
set up terminal to print screen display _ pscreen(C)
set up tty port for a modem setmodem(C)
set UPS shutdown limits shuttype(S)
set user and group IDs setuid(s)
set user limits ulimit(S)
setbuf (S) setvbuf(S) assign buffering to setbuf(S)
setgrent(S) get group file entry getgrent (S)
setjmp(S) longjmp(S) non-local goto ___ setjmp(S)
setmnt(C) establish /etc/mnttab table ___ setmnt(C)
setmode(C) printer modes utility setmode (C)
setmodem(C) set up tty port for a modem _ setmodem(C)
setpgrp(C) execute command in a new setpgrp(C)
setpgrp(S) set process group id setpgrp(S)
P (S) get file entry getpwent (S)
settime(C) change the access and settime(C)
settings used by getty gettydefs (M)
setuid(S) set user and group IDs setuid(s)
gsetutent(S) getutline(S) access utmp ____ getut(S)
setvbuf(S) assign buffering to a stream _ setbuf(S)
sgetl(S) acceas long integer data sputl(S)
shared data access sdgetv(S)
h d data Lt (8) sdenter(S)
h d data sdget(S)
shared libraries chkshlib(CP)
shared library mkshlib(CP)
shared memory control operations shmctl(S)
shared memory id ipcrm(C) ipcrm(C)
shared memory operations shmop(S)
shared memory segment identifier shmget (S)
sh(C) rsh(C) invoke the shell command ____ sh(C)
shell bsh(C)
shell command interpreter sh(C)
shell command interpreter with C-like __ csh(C)
shell Y (s)
Shell digest(C) digest (C)
Shell menu system menus (M)
shl(C) shell layers shl{(C)
shmctl(S) shared memory control shmctl(S)
shmget (S) get shared memory segment shmget (S)
shmop(S) shared memory operations shmop(S)
short interval nap($)
shutdn(S) reboot(S) shutdown or reboot __ shutdn(S)
shutdown configuration utility shutype (M)

P1-43

Permuted Index

shuttype(S) get and set UPS
shutdn(S) reboot(S)

bring system to single-user or
or shutdown

limits

utility

8diff(C) compare files

signal management sigset(S)
sigset(S) sighold(S) sigrelse(S)
sighold(S) sigrelse(S) sigignore(S)
sigset(S) sigpause(S)

pause(S) suspend process until
specify what to do on receipt of
processes kill(S) send a

of signal

ssignal(S) gsignal(S) software
sigset(S)

management sigset(S) sighold(S)
sigignore(S) signal management

rand(S) srand(S)

£mt (C)

shutdown (M) bring system to
multi/single-user mode multiuser(C)
functions

trigonometric functions trig(s)
chsize(S) change the file
sizefa(C) determine the

object files

logical disk drive

size(C) print section

interval

user ttyslot(S) find the
spline(C) interpolate
intro(CP) introduce
ssignal(S) gsignal(S)
tsort (C)

sort (C)

gsort(S) quicker

select/reject lines common to two
look(C) find lines in a

b h(S) binary h of a
whereis(C) locate

1list(CP) produce C

create an error message file from C
create an error message file from C
tic(C) compile terminfo

brk(S) sbrk(S) change data segment
ct(C)

makedevs (M) create

makettys(M) create tty

mknod(C) build

sulogin(M)

mknod(S) make a directory. or a

sysaltos(S) manufacturer

shutdown limits shuttype(S)
shutdown or reboot the system shutdn(S)
shutdown shutdown (M) shutdown (M)
shutdown (M) bring system to single-user _ shutdown (M)
shuttype(S) get and set UPS shutdown ____ shuttype(S)
shutype(M) UPS shutdown configuration ___ shutype(M)
side-by-side sdiff£(C)
sighold(S) sigrelse(S) sigignore(S) sigset(S)
sigignore(S) signal management sigset(S)
signal management sigset(S) sigset(S)
signal sigset(S)
signal pause(S)
signal signal(S) signal(S)
signal to a process or a group of kill(s)
signal(S) specify what to do on receipt _ signal(s)
signals ssignal(S)
sigpause(S) signal management sigset (S)
sigrelse(S) sigignore(S) signal sigset(S)
sigset (S) sighold(S) sigrelse(S) sigset(S)
sigset (S) sigpause(S) signal management _ sigset(S)
simple random-number generator rand(S)
simple text formatter fmt (C)
single-user or shutdown (M)
singleuser(C) bring system up multiuser(C)
sinh(S) cosh(S) tanh(S) hyperbolic sinh(S)
sin(S) cos(S) tan(S) asin(S) acos(S) ____ trig(s)
size chsize(S)
size of a logical disk drive sizefs(C)
size(C) print section sizes of common ____ size(C)
sizefs(C) determine the size of a sizefs(C)
sizes of common object files size(C)
sleep(C) suspend execution for an aleep(C)
sleep(S) suspend execution for interval _ sleep(S)
slot in the utmp file of the current _____ ttyslot(S)
smooth curves spline(C)
software development commands intro{(CP)
software signals ssignal(s)
sort a file topologically tsort (C)
sort and merge files sort(C)
sort qgsort(S)
sort(C) sort and merge files sort (C)
sorted files comm(C) comm(C)
sorted list look(C)
sorted table bsearch(S)
source, binary, or manual for program whereis(C)
source listing from COFF file 1ist (CP)
source mkstr(C) mkstr(C)
source mkstr(CP) mkstr (CP)
source tic(C)
space allocation brk(s)
spawn getty to a remote terminal ct(C)
special device files ked M
special files makettys (M)
special files mknod (C)
special login program invoked by init ___ sulogin(M)
special or ordinary file mknod(S)
specific system requests sysaltos(S)

PI-44

~

S

f£apec(F) format

cron(C) execute commands at
signal(S)

getty gettydefs(M)

uugetty(M) set terminal type. modes.
find spelling errors

split(C)
csplit(C)
fsplit (CP)

uucleanup(M) uucp

printers(M) print

1pr(C) route named files to printer
lpadmin(M) configure the LP

output printf(S)

data

square root functions exp(S)
sqrt(S) exponential. logarithm, and
pseudo-random/ drand48(S) seed48(s)
rand(S)

scanf(S) fscanf(S)

stdio(S)

ratfor(CP) convert rational FORTRAN to
gets(C) get a string from the

package stdipc(S) ftok(S)

pr(C) print files on the

1lpsched(M) 1lpshut(M)
stat(F) return data by

information
ustat (S) get file system

fsstat (M) report file system

lpstat(C) print LP

fileno(S) clearerr(S) feof(S) stream
uustat(C) uucp

inter-process communication facilities
p8(C) report process

atat(S) fstat(S) get file

package

communication package

wait(S) wait for child process to
rc0(M) commands to
functions dbm(S) firstkey(S)

string operations string(s)

string(S) strncmp(S) strcpy(S) strlen(S)
program

string(S) strcat(S) strdup(S) strpbrk(S)
operations string(S) strncmp(S)
operations string(S) strcat(S)

sed(C) invoke the

fclose(S) fflush(S) close or flush a

Permuted Index

specification in text files
specified times

specify what to do on receipt of signal
speed and terminal settings used by
speed. line discipline

spell{C)

spline(C) interpolate smooth curves
split a file into pieces

split files according to context
split ratfor files

split(C) split a file into pieces
spool directory cleanup

spooler configuration file
spooler
spooling system
aprintf(S) fprintf(S) print formatted __
sputl(S) sgetl(S) access long integer
sqrt(S) exponential. logarithm, and __
sgquare root functions exp(S)

srand48(S) jrand48(S) generate

arand(S) simple random-number generator
sscanf (S) convert formatted input
ssignal(S) gsignal(S) software signals __
83p(C) remove consecutive blank lines __
standard buffered input/output package
standard FORTRAN

standard input
standard interprocess communication
standard output
start/stop the LP requesat scheduler ______
stat system call

stat(F) return data by stat system call _
atatfs(S) fstatfs(S) get file system ___
astatistics

stat(S) fstat(S) get file status

status

status information

status inquiries ferror(S)

status inquiry and job controli

status ipcs(C) report

status

status

stdio(S) standard buffered input/output
stdipc(S) ftok(S) standard interprocess
stime(S) set time

stop or terminate

stop the operating system

store(S) fetch(S) perform database
strace(M) print STREAMS trace messages _
strcat(S) strdup(S) strpbrk(S) strcmp(s)
strchr(S) string operations

strclean(M) STREAMS error logger cleanup
stremp(S) string operations

strepy(S) strlen(S) strchr(S) string __
strdup(S) strpbrk(S) strcmp(S) string ____
stream editor

stream

PI-45 °

fapec(F)
cron(C)

. signal(s)

gettydefs(M)
uugetty(M)
spell(C)

spline(C)

split(C)
csplit (C)
faplit (CP)
split(C)
uucleanup(M)
printers(M)
1pr(C)
1lpadmin (M)
printf(s)

___ Sputl(s)

exp(S)
exp(S)
drand48(s)

_ rand(S)

scanf(S)
ssignal(S)
88p(C)

__ stdio(s)

ratfor(CP)
gets(C)
stdipc(S)
pr(c)
1lpsched(M)
atat (F)
stat(F)
atatfs(S)
ustat(s)
stat(s)
featat (M)
lpstat(C)
ferror(S)
uustat (C)
ipcs(C)
ps(C)
stat(s)

_ stdio(S)

stdipe(S)
stime(S)
wait(s)
rcO(M)
dbm{(S)
strace (M)
string(S)
string(S)
strclean(M)
string(S)
string(S)
string(s)
sed(C)
fclose(s)

Permuted Index

fopen(S) fdopen(S) freopen(S) open
rewind(S) reposition a file pointer in
getchar(S) get character or word from
getmsg(S) get next message off

gets(S) fgets(S) get a string from
head(C) print the first few lines of
fputc(S) put character or word on
putmsg(S) send a message on

puts(S) fputs(S) put a string on
setvbuf(S) assign buffering to a
ferror(S) fileno(S) clearerr(S) feof(S)
ungetc(S) push character back into input
archive(C) save a file system to a
tapeutil(C) utility program for a
clone(M) open any minor device on

strclean(M)
strerr(M)

log(M) interface to
poll(s)

strace(M) print

between long integer and base-64 ASCII
localtime(S) convert date and time to
cftime(S) convert date and time to
ecvt(S) convert floating-point number to
fgrep(C) search a file for a character
gets(S) fgets(S) get a

gets(C) get a

mkvers (CP) generate a what

puts(S) fputs(S) put a

strcat(S) strdup(S) strpbrk(S) strcmp(S)
strncmp(S) strcpy(S) strlen(S) strchr(S)
string(S) strapn(S) strtok(S)

yes(C) print a

strtod(S) atof(S) convert

strtol(S) atol(S) atoi(S) convert
xstr(CP) extract

strings(C) find the printable

strcmp(S) string operations

strchr(S) string operations

operations

an object file

numbers from COFF file

string(S) strncmp(S) strcpy(S)

string operations string(S)

string(S) strcat(S) strdup(s)

string(s)

double-precision number

string(S) strspn(s)

to integer

identify processes using a file or file
mount (C) umount(C) mount/unmount a file

Plot(S) graphics interface
another user

by init

blocks in a file

stream
stream fseek(S) ftell(s)

stream getc(S) getw(S) fgetc(S)
stream

stream

stream

stream putc(S) putchar(S) putw(S)
stream

stream

stream setbuf(s)

stream status inquiries

stream
streaming tape
streaming tape drive
STREAMS
STREAMS
STREAMS
STREAMS

driver

error logger cleanup program ___
error logger daemon

error logging

STREAMS input/output multiplexing

STREAMS trace
strerr(M) STREAMS error logger daemon __
2641(S) 164a(S) convert

ctime(S) gmtime(S)

ctime(S) tzset(S) asctime(S)

string
string
string
string

string
string
string
string
string

from a stream
from the standard input

on a stream
string(S)
string(s)

string
string
string
string
string
string

operations
operations
operations
repeatedly
to double-precision number

to integer

strings from C programs

strings in an object file

string(S) strcat(S) strdup(S) strpbrk(S)
string(S) strncmp(S) strcpy(S) strlen(S)
string(S) strspn(S) strtok(S) string ____
strings(C) find the printable strings in
strip(CP) remove symbols and line
strlen(S) strchr(S) string operations ___
strncmp(S) strepy(S) strlen(S) strchr(S)
strpbrk(S) strcmp(S) string operations _

strapn(S) strtok(S) string operations
strtod(S) atof(S) convert string to
strtok(S) string operations _
strtol(S) atol(S) atoi(S) convert string
structure fuser(M)

structure

stty(C) set the options for a port
subroutines

su(C) make the user a super-user or
sulogin(M) special login program invoked
sum(C) calculate checksum and count

PI-46

topen(S)
fseek(S)
getc(S)
getmsg(S)
gets(S)
head(C)
putc(S)
putmsg(s)
puts(S)
setbuf(S)
ferror(s)
ungetc(S)
archive{(C)
tapeutil(C)
clone(M)
strclean(M)
strerr (M)
log(M)
poll(S)
strace(M)
strerr(M)
a641(S)
ctime(S)
ctime(S)
ecvt(S)
fgrep(C)
gets(s)
gets(C)
mkvers (CP)
puts(S)
string(S)
string(s)
string(s)
yes(C)
strtod(s)
strtol(s)
xstr(CP)
strings(C)
string(S)
string(S)
string(S)
strings(C)
strip(CP)
string(S)
string(S)
string(S)

string(S)

strtod(S)
string(S)
strtol(s)
fuser (M)
mount (C)
stty(C)
plot(S)
su(C)
sulogin(M)
sum(C)

~N_F

du(C)

quot (C)

sync(S) update
sync(C) update the
su(C) make the user a
terminals (M) list of
nap($)

sleep(C)

sleep(S)

pause(S)

swab(Ss)
swap(C) change

ldgetname(S) retrieve

retrieve symbol name for COFF
1dtbindex(S) compute the index of a
ldtbread(S) read an indexed

syms (F) common object file

make bootable system file with driver
make bootable system file with kernel
ldtbseek(S) seek to the

unistd(F) file header for

8db(C)

strip(CP) remove

glossary(C) define common UNIX terms and
format

segment sdenter(S) sdleave(S)
sdgetv(S) sdwaitv(S)

shell command interpreter with C-like
1int(CP) check C language usage and
requests

information

information

messages ays_nerr(S)
information

system error messages
login(C) give you
acct(C) ing

Permuted Index

summarize disk usage

summarize file system ownership

super block
super-block

super-user or another user

supported terminals

suspend execution for a short interval __

suspend execution for an interval

suspend execution for interval
suspend process until signal
swab(S)

swap bytes

swap bytes

swap device configuration
swap(C) change swap device configuration

symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol

symbolic constants
symbolic

name for COFF symbol table entry _
table entry ldgetname(S)

table entry of a COFF file

table entry of a COFF file

table format

table mkunix(M)

table mkunix(M)

table of a COFF file

symbols and line numbers from COFF file _
symbols

syms (F) common object file symbol table

aync(C) update the super-block
synchronize access to a shared data
synchronize shared data access
sync(S) update super block

ayntax csh(C)

syntax

sysaltos(S) manufacturer specific system

sysconf (C) get system configuration
sysconf(S) get system configuration
sysdef (M) output system definition
eys_errlist(S) errno(S) system error

sysfs(S) get file system type

sys_nerr(S) sys_errlist(S) errno(S)
system access

sar (C)

sar (M)

inir(M) clean the file
ckbupscd(M) check file

stat (F) return data by stat
intro(S) introduce

sysconf (C) get

sysconf (S) get

cu(C) call another UNIX
types(F) primitive

fsdb(M) file

sysdef (M) output

perror(S)

8ys_nerr(S) sys_errlist(S) errno(S)

Y
system
system
system
system
system

activity data collection
activity report package
activity report package
and executes init

backup schedule

call

system
system
system
aystem
system
system
system

calls, functions. and libraries __

configuration information
configuration information

data types

definition
error

8y

system

PI1-47

error

du(C)

quot (C)
sync(S)
sync(C)
su(C)
terminals (M)
nap(s)
sleep(C)
sleep(S)
pause(S)
swab(S)

swab (S)
swap(C)

swap (C)
ldgetname(S)
ldgetname(S)
ldtbindex(s)
ldtbread(s)
syms (F)
mkunix (M)
mkunix (M)
ldtbseek(S)
unistd(F)
8db(C)
strip(CP)
glossary(C)

. syms (F)

sync(C)
sdenter(S)
sdgetv(S)
sync(S)
csh(C)

1int (CP)
sysaltos(S)
sysconf (C)
sysconf (S)
sysdef (M)
ays_nerr(S)
sysfs(S)

ays_nerr(S)

login(C)
acct(C)
aadcon (M)
sar(C)
sar{M)
inir(M)
ckbupscd (M)
stat(F)
intro(S)
sysconf(C)
sysconf(S)
cu(C)

types (F)
£adb(M)
sysdef (M)
perror(S)
sys_nerr(S)

Pem')uted Index

uuto(C) uupick(C) public UNIX-to-UNIX
mkunix(M) make bootable

mkunix(M) make bootable

recover(C) restore contents of a file
report information about a file
help(C)

fstyp(M) determine the file

dirent (F) file

statfs(S) fstatfs(S) get file

brc(M)

lpadmin(M) configure the LP spooling
mail(C)

menus (M) format of Business Shell menu
mkfs (M) construct a file

mount (S) mount a file

quot (C) summarize file

rcO(M) commands to stop the operating
reboot (C) automatically reboot the
sysaltos(S) manufacturer specific
reboot (S) shutdown or reboot the
ustat(S) get file

f£sstat (M) report file

fstab(M) file

mnttab(M) mounted file

asktime(C) set the

timezone(M) set default

archive(C) save a file

shutdown (M) bring

sysfs(S) get file

uname(S) get name of current UNIX
multiuser(C) singleuser(C) bring
file transport program for uucp
filesystem(M) format of a

who(C) display who is on the

uutry(M) contact remote

volcopy(M) labelit (M) copy file
haltsys(C) close the file

digest(C) create menu

fsck(C) dfsck(C) check and repair file

labelit(C) provide labels for file
umountall(C) mount/unmount multiple file
checklist (M) list file

bsearch(S) binary search of a sorted
retrieve symbol name for COFF symbol
compute the index of a symbol
ldtbread(S) read an indexed symbol

syms (F) common object file symbol
fatab(M) file system

bootable system file with driver symbol
bootable system file with kernel symbol
mnttab(M) mounted file system
1ldtbseek(S) seek to the symbol

setmnt (C) establish /etc/mnttab
hcreate(S) manage hash search

tabse(C) set

tile copy

file with driver symbol table
file with kernel symbol table
from tape

fsinto(M)

help facility

identifier

aystem

system
system
aystem
system
system
system
system
system
system
system
system

independent directory entry _ -
information
initialization procedure

mail

system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system with ng on
system with label checking
systems and halt the CPU
system(s) for the Business Shell
aystems
system(S) issue a shell command
systems
systems mountall(C)

yst d by fack
table
table
table
table
table
table

ownership

requests
shutdn(s)
statistics

status
tabie
table
time of day
time zone

to a streaming tape
to single-user or shutdown
type information

up multi/single-user mode
uucico(M)
volume

entry ldgetname(S)

entry of a COFF file ldtbindex(S)
entry of a COFF file

format

table
table
table
table
table
tables hsearch(S) hdestroy(S)
tabs on a terminal

tabs(C) set tabs on a terminal

mkunix(M) make
mkunix(M) make

of a COFF file

P1-48

uuto(C)

mkunix(M)
mkunix (M)

recover(C)
fsinfo(M)
help(C)
fstyp(M)
dirent (F)
statfs(S)
brc(M)
lpadmin (M)
mail(C)
menus (M)
mkis (M)
mount (S)
quot(b)
rcO(M)
reboot (C)
sysaltos(S)
shutdn(s)
ustat(Ss)
fsatat (M)
fstab(M)
mnttab(M)
asktime(C)
timezone (M)
archive(C)
shutdown (M)
sysfa(S)
uname (S)
multiuser(C)
uucico(M)
filesystem(M)
who(C)
uutry(M)
volcopy (M)
haltsys(C)
digest (C)
fack(C)
system(S)
labelit (C)
mountall(C)
checklist (M)
bsearch(S)
ldgetname(S)

_ ldtbindex(S)

ldtbread(s)
syms (F)
fstab(M)
mkunix (M)
mkunix (M)
mnttab (M)
ldtbseek(S)
setmnt (C)
hsearch(S)
tabs(C)
tabs(C)

e

ctags(C) create a

sinh(S) cosh(S)

functiens trig(S) sin(S) cos(S)

save a file system to a streaming
utility pregram for a streaming

dump contents of a hard disk to
frec(M) recover files from a back-up
restore contents of a file system from
restore.hd(€) restore a hard disk from
streaming tape drive

trees tsearch(S) tfimnd(S)
tee(C) create a

tk(C) paginator for

reset (C) reset the

directory operatioms directory(S)

file tmpnam(§)

tmpfile(S) create a

tmpnam(S) tempnam(8) create a name fer a
captoinfo(M) convert

termcap(M)

terminfe (M)

<t (C) spawn getty teo a remote
ctermid($) generate file name for
termio(M) general

dial(S) establish an out-going
virtual

allow or disallow messages sent to a
getty(M} set

tset (C) set

clear(C) clear

optimization package curses(S)
script(C) make a record of your
gettydefs(M) speed and

tabs(C) set tabs on a

pscreen(C) set up

ttyname(§) isatty(S) find name of a
discipline uugetty(My set

ttys(M) login

terminals(M) list of supperted
term(M) cenventienai names for

kil1(C)

errstop(€)

exit(8)

wait for child process to stop or
query

captoinfo(M) convert termcap to
infeomp(M) compare or prinmt
tic(€) compile

glossary(C) define common UNIX

Permuted Index

tags file

tail(C) deliver the last part of a file
tanh(§) hyperbelic functions

tan(S) asin(S) acos(S) trigonometric
tape archive(C)

tape drive tapeutili{C)
tape dump.hd(C)

tape

tape receover(C)

tape

tapeutil (C) utility program for a
tar(C) archive files

tdelete(S) twalk(S) manage binary search

tee in a pipe

tee(C) create a tee in a pipe
Tektronix 4014

teletype bit

telldir(S) readdir(S) opendir($S)
tempnam(S) create a name for a temporary
temporary file

temporary file

termcap to terminfo description
termcap(M) terminal capability database
terminal capability database
terminal capability database
terminal

terminal

terminal interface
terminal line ion

terminal

terminal mesg(C)

terminal mode

terminal modes

terminal screen

terminal screen handling and
terminal seasion

terminal settings used by getty
terminal

terminal te print screen display
terminal

terminal type. modes. zpeed, line
terminals file

terminals

terminals

termirals (M) list of supperted terminals
terminate a process

terminate error-logging demon

terminate process
terminate wait(s)
terminfo database
terminfo deseription
terminfo descriptions
terminfo source

terminfo(M) terminal capability database

termio{(M) general termiral interface

term{) conventional names for terminals
teams and symbols

PI-49

ctags(C)

_ tail(©)

sinh(s)

trig(s)

archive(C)
tapeutil(C)
dump. hd(C)
frec(M)
recover (C)
restore.hd(C)
tapeutil(C)
tar(C)
tsearch(s)
tee(C)
tee(C)

tk(C)

reset (C)
directory(s)
tmpnam(S)
tmpfile(S)
tmpriam(S)
captoinfo (M)

_ termcap(M)

termcap(M)
terminfo (M)
ct(C)
ctermid(s)
termio(M)
dial(s)

vt (M)
mesg(C)
getty(M)
tset (C)
clear(C)
curses(S)
script(C)
gettydefs (M)
tabs(C)
pscreen(C)
ttyname(S)
uugetty (M)
ttys (M)
terminals(M)
term(M)
terminals (M)
kill(C)
erratop(C)
exit(S)
wait(S)

tput (C)
captoinfo(M)
infocmp (M)
tic(C)
terminfo(M)
termio (M)
term(M)
glessary(C)

Permuted Index

isnan(S) isnanf(S) isnand(S)

ed(C) red(C) invoke the ed
edit(C) invoke the edit

ex(C) invoke a

diff(C) compare two

fapec(F) format specification in
fmt (C) simple

plock(S) lock process,

binary search trees tsearch(S)

clock(M) provide access to the
cron(C) execute commands at specified

touch(C) update access and modification
times(S) get process and child process
set file access and modification

times

temporary file

characters conv(S) toupper(S)
popen(S) pclose(S) initiate pipe
conv(S) toupper(S) toascii(s)
chkshlib(CP)

tsort(C) sort a file

times of a file

translate characters conv(S)
query terminfo database

strace(M) print STREAMS

ptrace(S) process

aftp(C)

conv(S) toupper(S) toascii(S) tolower(S)
tx(C)

xpd(M)

uucico(M) file

uusched(M) scheduler for the uucp file

ftw(S) walk a file

tdelete(S) twalk(S) manage binary search
trig(S) atan(S) atan2(s)

8in(S) cos(S) tan(S) asin(S) acos(S)
functions

acos(S) trigonometric functions

manage binary search trees
setmodem(C) set up
makettys (M) create

terminal
file of the current user

test for floating point NaN isnan($)
test(C) evaluate an expression test (C)
text editor ed(C)

text editor edit(C)
text editor ex(C)

text files aige(C)
text files £apec(F)
text formatter £mt (C)
text. or data in memory plock(S)
tfind(S) tdelete(S) twalk(S) manage tsearch(S)
tic(C) compile terminfo source tic(C)
time(C) time a d time(C)
time-of-day chip clock(M)
times cron(C)
time(S) get time time(S)
times of a file touch(C)
times timea(S)
times utime(S) utime(S)
times(S) get process and child process __ times(S)
timezone (M) set default system time zone timezone(M)
tk(C) paginator for Tektronix 4014 tk(C)
tmpfile(S) create a temporary file tmpfile(S)
tmpnam(S) tempnam(S) create a name for a tmpnam(S)
toascii(S) tolower(S) translate conv(S)
to/from a process popen(S)
tolower(S) translate characters conv(S)
tool for comparing shared libraries ______ chkshlib(CP)
topologically tsort(C)
touch(C) update access and modification _ touch(C)
toupper(S) toascii(S) tolower(s) conv(S)
tput(C) tput(C)
tra(C) copy out 2 file as it grows tra(C)
trace strace(M)
trace ptrace(S)
transfer files between Altos machines ___ aftp(C)
translate characters conv(S)
translate characters tr(C)
transparent printer daemon xpd(M)
transport program for uucp system uucico(M)
transport program a(M)
tr(C) translate characters tr(C)

tree ftw(s)
trees tsearch(S) tfind(S) tsearch(S)
trigonometric functions trig(s)
trigonometric functions trig(s) trig(s)
trig(S) atan(S) atan2(S) trigonometric __ trig(s)
trig(S) sin(S) cos(S) tan(S) asin(S) ___ trig(s)
true(C) return with a zero exit value __ true(C)
tsearch(S) tfind(S) tdelete(S) twalk(S) _ tsearch(S)
taet (C) set terminal modes tset (C)
tgort (C) sort a file topologically tsort(C)
tty port for a modem setmodem(C)
tty special files makettys (M)
tty(C) get the current port name tty(C)
ttyname(S) isatty(S) find name of a ttyname(S)
ttyslot(S) find the slot in the utmp ____ ttyslot(S)
ttys(M) login terminals file ttys (M)

PI-50

Permuted Index

tsearch(S) tfind(S) tdelete(S) twalk(S) manage binary search trees ___ tsearch(S)
dtype(C) determine disk type dtype(C)
file(C) determine file type file(C)
sysfs(S) get file system type information aysfs(S)
uugetty (M) set terminal type. modes. speed., line discipline ____ uugetty(M)
types (F) primitive system data types types(F)
types(P) primitive system datea types __ types(F)
date and time to string ctime(S) tzset(S) asctime(S) cftime(S) convert ___ ctime(S)
ua(C) uweer admimistration program ua{(C)
vedmin(S) admimistratiwe control uadmin(S)
getpw(S) get name from UID getpw(S)
ulimit(S) get and set user limits ulimit(S)
wmagk (C) set file-creation mode mask _____ umask(C)
umesh(S) set and get file creation mask _ umask(S)
systems mountall(€) umountall (€) meunt/ummount multiple file mountall(C)
mount (€) umount (C) meunt/unmmount a file structure mount(C)
information uname(C) print the current UNIX uname (C)
uname (S) get name of current UNIX system uname(S)
unget (CP) undo a previeus get of an SCCS file _____ unget(CP)
file unget(CP) umdo a previous get of an SCCS unget(CP)
stream ungetc(S) push character back into input ungetc(S)
uniq(C) report repeated lines in a file _ unig(C)
mktemp(S) make a unique file name mktemp(S)
constants unistd(F) file header for symbolic unistd(F)
units(C) convert units units(C)
units(C) convert units units(C)
uname(C) print the current UNIX information uname (C)
cu(C) call another UNIX system cu(C)
glossary(C) define common UNIX terms and symbols glossary(C)
uulog(C) uuname(C) copy files from UNIX to UNIX uucp(C) uucp(C)
uuname(C) copy files from UNIX to UNIX uucp(C) uulog(C) uucp(C)
uux(C) emecute command on remote UNIX uux(C)
uute(€) uupick(C) public UNIX-to-UNIX system file copy uuto(C)
link (M) unlink(M) link and unlink files and directories 1ink (M)
directories link(M) unlink(M) link and unlink files and link (M)
unlink(S) remove directory entry unlink(S)
pack(C) pcat(C) (C) P! and d files pack(C)
pause(S) suspend process until signal pause(S)
a file h(C) P and modification times of _ touch(C)
programs make(C) maintain. update, and regenerate groups of make(C)
lsearch(S) 1find(¢S) linear search and update 1search(S)
sync(S) update super block sync(S)
sync(C) update the super-block sync(C)
upgrade. hd(C) upgrade an additional hard disk upgrade. hd(C)
disk upgrade.hd(C) upgrade an additional hard upgrade.hd(C)
shutype (M) UPS shutdown configuration utility shutype (M)
shuttype(S) get and set UPS shutdown limits shuttype(S)
1int (CP) check C language usage and syntax 1int (CP)
Au(C) swmmarize disk usage du(C)
su{C) make the user a super-user or another user su(C)
ua(C) user administration program ua(C)
1d4(C) print user and group ID and names ida(c)
setuid(S) set user and group IDs setuid(s)
) user files b(C)
get character login name of the user cuserid(s) cuserid(S)
environ (M) user envi environ (M)
whoami (C) print effective current user ia whoami (C)

PI-51

Permuted Index

newgrp(C) log

ulimit(S) get and set

last(C) print last record of

logname(S) return login name of
getuid(S) getegid(S) get real/effective
getuid(S) geteuid(S) get real/effective
getuid(S) getgid(S) get real/effective
make the user a super-user or another
the slot in the utmp file of the current
write(C) write to another

get and set maximum number of

finger(C) find information about
wall(C) write to all

fuser (M) identify processes

egrep(C) search file for pattern

cpset (C) install

drive tapeutil(C)

setmode(C) printer modes

shutype (M) UPS shutdown configuration
modification times

utmp (M) wtmp(M) format of
utmpname(S) endutent(S) access
getut(S) setutent(S) getutline(S) access
ttyslot(S) find the slot in the
entries

entry getut(S) getutent(S)

and permissions file

uucp system

cleanup

uucheck (M) check the

uusched(M) scheduler for the

mail from

uucleanup(M)

uustat(C)

uucico(M) file transport program for
from UNIX to UNIX

speed. line discipline

to UNIX uucp(C)

uucp(C) uulog(C)

file copy uuto(C)

transport program

control

system file copy

debugging on

val(CP)

abs(S) return integer absolute
false(C) return with a nonzero exit
getenv(S) return

fabs(S) floor. ceiling. and absolute
fmod(S) floor, ceiling. and absolute
putenv(S) change or add

true(C) return with a zero exit
values (F) machine-dependent

user into a new group newgrp{C)
user limits ulimit(s)
user logins laat(C)
user logname(S)
user or group 1Ds getuid(s)
user or group IDs getuid(S)
user or group IDs getuid(s)
user su(C) su(C)

user ttyslot(S) find ttyslot(S)
user write(C)
users allowed to log in (s) ____ (s)
users finger(C)
users wall(C)
using a file or file structure fuser (M)
using full regular expression egrep(C)
ustat(S) get file system statistics ustat(S)
utilities cpset (C)
utility program for a streaming tape ____ tapeutil(C)
utility de(C)
utility shutype (M)
utime(S) set file access and utime(S)
utmp and wtmp entries utmp (M)
utmp file entry getut(S) getutent(S) ____ getut(s)
utmp file entry getut(S)
utmp file of the current user ttyslot(S)
utmp(M) wtmp(M) format of utmp and wtmp _ utmp(M)
utmpname(S) endutent(S) access utmp file getut(S)
uucheck(M) check the uucp directories ___ uucheck(M)
uucico(M) file transport program for ____ uucico(M)
uucleanup(M) uucp spool directory uucleanup (M)
uucp directories and permissions file ___ uucheck(M)
uucp file t g hed (M)
uucp link rmail(C) receives rmail (C)
uucp spool directory cleanup uucleanup (M)
uucp status inquiry and job control uustat(C)
uucp system uucico(M)
uucp(C) uulog(C) uuname(C) copy files ___ uucp(C)
uugetty(M) set terminal type, modes, ____ uugetty(M)
uulog(C) uuname(C) copy files from UNIX _ uucp(C)
uuname(C) copy files from UNIX to UNIX __ uucp(C)
uupick(C) public UNIX-to-UNIX system ____ uuto(C)
uusched(M) scheduler for the uucp file __ uusched(M)
uustat(C) uucp status inquiry and job ___ uustat(C)
uuto(C) uupick(C) public UNIX-to-UNIX ____ uuto(C)
uutry(M) contact remote system with uutry(M)
uux(C) execute command on remote UNIX ___ uux(C)
uuxgt (M) te remote r 8 uuxgt (M)
val(CP) validate an SCCS file val(CP)
validate an SCCS file val(CP)
value abs(S)
value false(C)
value for envi name getenv(S)
value functions floor(S) ceil(s) £loor(S)
value functions floor(S) floor(S)
value to envi putenv(s)
value true(C)
values values (F)

PI-52

D vsprintf(S) print formatted output of
list
varargs (F) handles

get option letter from argument
assert(S)

ve(CP)

get (CP) get a

sccsdiff(CP) compare two

output of varargs list vprintf(S)
editor

more(C)

with label checking

filesystem(M) format of a system
formatted output of varargs list
varargs list vprintf(S) vfprintf(S)
virtyal terminal management
resource waitsem(S) nbwaitsem(S)
wait(C)

terminate wait(s)

processes

or terminate

access to semaphore resource
ftw(s)

manual for program
ia

users

fold(C) fold long lines for finite

prof(F) profile

fgetc(S) getchar(S) get character or
putw(S) fputc(S) put character or
wc(C) count lines,

cd(C) change

chdir($) change

getcwd(S) get path name of current
pwd(C) print

write(S)

putpwent (S)

wall(C)

write(C)

open(S) open for reading or
drive(C) drive information

utmp(M) wtmp(M) format of utmp and
utmp (M)

N 4

Permuted Index

values(F) machine-dependent values values(F)
varargs list vprintf(S) vfprintf(S) ____ vprintf(s)
varargs(F) handles variable argument ____ varargs(F)
variable argument list varargs(F)
vc(CP) version control vc(CP)
vector getopt(S) getopt (S)
verify program assertion assert (S)
version control ve(CP)
version of an SCCS file get (CP)
versions of an SCCS file sccsdif£(CP)
vfprintf(S) veaprintf(S) print formatted _ vprintf(S)
vi(C) invoke a screen-oriented display __ vi(C)

view a file one full screen at a time ___ more(C)
virtual terminal vt (M)
volcopy(M) labelit(M) copy file system __ volcopy(M)
volume filesystem(M)
vprint£(S) vEprintf(S) vsprintf(S) print vprintf(S)
veprintf(S) print formatted output of ___ vprintf(s)
vt (M) vt(M)

wait and check access to semaphore waitsem(S)
wait completion of background processes _ wait(C)
wait for child process to stop or wait(S)
wait (C) wait completion of background ___ wait(C)
wait(S) wait for child process to stop __ wait(S)
waitsem(S) nbwaitsem(S) wait and check __ waitsem(S)
walk a file tree ftw(s)
wall(C) write to all users wall(C)
wc(C) count lines, words, and characters wc(C)
what (C) identify files what (C)
whereis (C) locate source, binary. or ____ whereis(C)
whoami (C) print effective current user __ whoami(C)
who(C) display who is on the system who(C)
whodo (M) determine who is doing what _____ whodo(M)
whom(C) display in columns logged in _____ whom(C)
width output device fold(C)
within a function prof (F)
word from a stream getc(S) getw(S) getc(S)
word on a stream putc(S) putchar(S) putc(S)
words, and characters wc{C)
working directory cd(C)
working directory chdir(s)
working directory getcwd(S)
working directory name pwa(c)
write on a file write(S)
write password file entry putpwent (S)
write to all users wall(C)
write to another user write(C)
write(C) write to another user write(C)
write(S) write on a file write(s)
writing open(S)
written during manufacturing drive(C)
wtmp entries utmp (M)
wtmp(M) format of utmp and wtmp entries _ utmp(M)
xar(CP) maintain archives and libraries _ xar(CP)
xar(F) archive file format xar(F)
xargs (C) construct and execute commands _ xargs(C)
xcc(CP) invoke the XENIX compiler xcc(CP)

PI-53

Permuted Index

enroll(C) xsend(C)
from files

adb(C) invoke

enroll(C)

bessel(S) jO(S)

true(C) return with a
timezone(M) set default system time

xget

zero
zone

(C) secret mail enroll(C)
x1d(CP) invoke the link editor x1d(CP)
xliat(S) fxlist(S) get name list entries xlist(S)
xnm(CP) print name list xnm(CP)
x.out 1 purpose deb adb(C)
xpd(M) transparent printer daemon xpd(M)
xref (CP) cross-reference C programs ______ xref (CP)
xsend(C) xget(C) secret mail enroll(C)
xstr(CP) extract strings from C programs xstr(CP)
xtty(C) set the options for a port xtty(C)
y0(S) Bessel functions bessel(S)
yacc(CP) invoke a compiler-compiler yacc(CP)
yes(C) print a string repeatedly yes(C)

exit value true(C)

ti (M)

PI-54

S

~——

Contents

Commands (C)

intro

accept, reject
acct
adb

add.hd
aftp
archive

asa
asktime

at, batch
autoreboot
awk

badblock

banner

basename,
dirname

be

bdiff

bfs

bsh

cal
calendar
cat

cd
chmod

chown, chgrp
chroot

clear

cmp

comm

copy
cp
cpio

Introduces operating system commands.

Allows/prevents print requests.

Accounting system.

Invokes a general purpose debugger (for x.out
binaries).

Adds an additional hard disk.

Transfers files between Altos machines.
Saves the contents of a file system to a
streaming tape drive.

Interprets asa carriage control characters.
Sets the system time of day.

Executes commands at a later time.
Automatically reboots the system.

Pattern scanning and processing language.

Adds new bad sectors to the bad sector map.
Prints large letters.
Delivers portions of pathnames.

Arbitrary-precision arithmetic language.
Compares files too large for diff.
Scans big files.

Invokes the Business shell.

Prints a calendar.

Invokes a reminder service.

Concatenates and displays files.

Changes working directory.

Changes the access permissions of a file or
directory.

Changes owner or group ID.

“Changes root directory for command.

Clears terminal screen.

Compares two files.

Selects or rejects lines common to two sorted
files.

Copies groups of files.

Copies files.

Copies file archives in and out.

Contents(C)

cpset Installs utilities.

cron Executes commands at specified times.

crontab Manages. user crontab files.

csh Invokes a shell command interpreter with C-like
syntax.

csplit Splits files according to context.

ct Spawns getty to a remote terminal.

ctags Creates a tags file.

cu Calls another UNIX system.

date Prints and sets the date.

dc Invokes an arbitrary precision calculator.

dd Converts and copies a file.

devinfo Displays device information.

devnm Identifies device name on which files reside.

diff Compares two text files.

diff3 Compares three files.

digest Creates menu system(s) for the Business Shell.

dircmp Compares directories.

disable Disables logins on a port.

dos Accesses MS-DOS files.

drive Reads drive information written during
manufacturing,

dtype Determines disk type.

du Summarizes disk usage.

dump.hd Dumps the contents of a hard disk to tape.

echo Echoes arguments.

ed, red Invokes the ed text editor.

edit Invokes the edit text editor (variant of ex).

egrep Searches a file for a pattern using full
regular expression.

enable Enables logins on a port.

enroll, Secret mail.

xsend, xget :

env Sets environment for command execution.

errstop Terminates error-logging demon.

ex Invokes a text editor. .

expr Evaluates arguments as an expression.

factor Factors a number.

false Returns with a nonzero exit value.

fcopy Copies a floppy diskette.

fdisk Maintains disk partitions.

fgrep Searches a file for a character string.

file Determines file type.

find Finds files.

R

finger
fleece

fmt

fold

format
from

fsck, dfsck

getopt
gets
glossary
graph
grep

haltsys

hd

hdr

head

help

hplp, hplpR

id
ipcrm

ipcs

join

kill
killall

labelit

last

leave

line

In

login

logname

look

Ip, cancel

ipenable,
Ipdisable

Ipr

Ipstat

Contents(C)

Finds information about users.

Looks for files in home directories.

Simple text formatter.

Fold long lines for finite width output device.
Formats a floppy diskette.

Lists who my mail is from.

Checks and repairs file systems.

Parses command options.

Gets a string from the standard input.
Defines common UNIX terms and symbols.
Draws a graph.

Searches a file for a pattern.

Closes out the file systems and halts the CPU.
Displays files in hexadecimal format.

Displays selected parts of an object file.
Prints the first few lines of a stream.
Operating system help facility.

Filters files for printing on an HP LaserJet
printer.

Prints user and group ID and names.
Removes a message queue, semphore set, or
shared memory id.

Reports inter-process communication facilities
status.

Joins two relations.

Terminates a process.
Kills all active processes.

Provides labels for file systems.

Prints last record of user and teletype logins.
Reminds you when you have to leave.

Reads one line of input.

Makes a link to a file.

Gives you to the system.

Gets login name.

Finds lines in a sorted list.

Sends/cancels requests to LP line printer.
Enables/disables LP line printers.

Routes named files to printer spooler.
Prints LP status information.

Contents(C)
Is

mail

make

mesg
mkdir
mknod

mkstr
more

mount, umount

mountall,
umountall
multiuser,
singleuser
mv

nawk
newgrp
nice

nl
nohup
num

od

pack, pcat,
unpack

passwd

pconfig

pg

pr

printenv

ps

pscreen

pwd

quot
random
reboot

recover

reset
restore.hd

Gives information about contents of
directories.

System mail.

Maintains, updates, and regenerates groups of
programs.

Allows or disallows messages sent to a
terminal.

Makes a directory.

Builds special files.

Creates an error message file from C source.

Views a file one full screen at a time.
Mounts/unmounts a file structure.
Mounts/unmounts multiple file systems.

Brings system up in multi-user/single-user
mode.
Moves or renames files and directories.

Pattern scanning and processing language.
Logs user into a new group.

Runs a command at a different priority.

Adds line numbers to a file.

Runs a command immune to hangups and quits.
Numbers lines.

Displays files in octal format.
Compresses and expands files.

Changes login password.

Sets the port configuration.

File perusal filter for CRTs.

Prints files on the standard output.
Prints out the environment.

Reports process status.

Sets up terminal to print screen display.
Prints working directory name.

Summarizes file system ownership.

Generates a random number.

Automatically reboots the system.

Restores the contents of a file system from
streaming tape to disk.

Resets the teletype bits.

Restores a hard disk from tape.

S

rev
rm, rmdir
rmail

sar
script

sdb

sdiff

sed

see
setmnt
setmode
setmodem

setpgrp
settime

sh, rsh
shl
size
sizefs
sleep
sort
spell
spline
split
Ssp
strings
stty

su

sum

swap

sync
sysconf

tabs
tail
tapeutil
tar

tee

test

tic

time

tk
touch

tput

Contents(C)

Reverse lines of a file.
Removes files or directories.
Receives mail (from uucp link).

System activity reporter.

Makes a record of your terminal seSsion.
Symbolic debugger.

Compares files side-by-side.

Invokes the stream editor.

Displays a file.

Establishes /etc/mnttab table.

Port modes utility.

Sets up tty port for use with a modem.
Executes a command in a new process group.
Changes the access and modification dates of
files.

Invokes the shell command interpreter.

Shell layer manager.

Prints section sizes of common object files.
Determines the size of a logical disk drive.
Suspends execution for an interval.

Sorts and merges files.

Finds spelling errors.

Interpolates smooth curves.

Splits a file into pieces.

Removes consecutive blank lines.

Finds the printable strings in an object file.

Sets the options for a port.

Makes the user a super-user or another user.

Calculates checksum and counts blocks in a
file.

Changes swap device configuration.

Updates the super-block.

Gets system configuration information.

Set tabs on a terminal.

Delivers the last part of a file.

Utility program for a streaming tape drive.

Archives files.

Creates a tee in a pipe.

Evaluates an expression.

Compiles terminfo source.

Times a command.

Paginator for Tektronix 4014,

Updates access and modification times of a
file.

Queries terminfo database.

Contents(C)

tr
tra
true
tset
tsort
tty

ua
umask
uname

uniq

units

upgrade.hd

uucp, uulog,
uuname

uustat

uuto, uupick

uux

vi

wait
wall

wce
what
whereis
who
whoami
whom
write

xargs
xtty

yes

Translates characters.

Copies out a file as it grows.

Returns with a zero ("true") exit value.
Sets terminal modes.

Sorts a file topologically.

Gets the current port name.

User Administration program.

Sets file-creation mode mask.
Displays the current operating system
information.

Reports repeated lines in a file.

Converts units.

Upgrades an additional hard disk.

Copies files from UNIX to UNIX.

Uucp status inquiry and job control.
Public UNIX-to-UNIX system file copy.
Executes command on remote UNIX,

Invokes a screen-oriented display editor.
Awaits completion of background processes.

Writes to all users.
Counts lines, words, and characters.

- Identifies files.

Locates source, binary, or manual for program.
Displays who is on the system.

Prints effective current user id.

Columnar display of system users.

Writes to another user.

Constructs and executes commands.
Sets the options for a port.

Prints a string repeatedly.

v

INTRO(C) INTRO(C)

Name

intro - Introduces operating system commands.

Description

This section describes use of the commands available in
the Run-time System. Unless otherwise noted, commands
described in this section accept options and other argu-
ments according to the following syntax:

name [option... 1 [emdarg... 1

where:
name Is the name of an executable file.

option Is -noargletter(s) or, -argletter<>optarg (<>
is optional whitespace).

noargletter Is a single letter representing
an option without an argument.

argletter Is a single letter representing
an option requiring an argument.

optarg Is an argument (character
string) satisfying the preceding
argletter.

emdarg Is a pathname (or other command argument) not
beginning with -. By itself, - indicates the
standard input.

Command Syntax Standard: Rules

These command syntax rules are not followed by all current
commands, but all new commands will obey them.
Getopts(C) should be used by all shell procedures to parse
positional parameters and to check for legal options. It
supports Rules 3-10 below. The enforcement of the other
rules must be done by the command itself.

INTRO(C) INTRO(C)
1. Command names (name above) must be between two
and nine characters long.

2, Command names must include only lower-case letters
and digits.

3. Option names (option above) must be one character
long.

4. All options must be preceded by "-".

5. Options with no érguments may be grouped after a
single "-",

6. The first option-argument (optarg above) following an
option must be preceded by white space.

7. Option-arguments cannot be optional.
8. Groups of option-arguments following an option must
either be separated by commas or separated by white

space and quoted (e.g., -0 xxx,z,yy or -0 "xxx z yy").

9. All options must precede operands (emdarg above) on
the command line.

10. "--" may be used to indicate the end of the options.

11. The order of the options relative to one another
should not matter.

12. The relative order of the operands (ecmdarg above)
may affect their significance in ways determined by
the command with which they appear.

13. "-" preceded and followed by white space should only
be used to mean standard input.

See Also

getopts(C), getopt(S)

INTRO(C) INTRO(C)

Diagnostics

Upon termination, each command returns 2 bytes of status,
one supplied by the system and giving the cause for ter-
mination, and (in the case of "normal" termination) one
supplied by the program (see wait(S) and exit(S)). The
former byte is 0 for normal termination; the latter is
customarily 0 for successful execution and nonzero to in-
dicate troubles such as erroneous parameters, bad or in-
accessible data. It is called variously "exit code,"”

"exit status," or "return code," and is described only
where special conventions are involved.

Notes

Not all commands adhere to the syntax described here.

(BLANK)

ACCEPT(C) ACCEPT(C)

Name

accept, reject - Allows/prevents print requests to a line-
printer or class of printers.

Syntax

/usr/lib/accept destination...
/usr/lib/reject [-r [reason 1 1 destination...

Description

Files

Accept allows Ip(C) to accept requests for the named des-
tinations. A destination can be either a printer or a
class of printers. Use Ipstat(C) to find the status of
destinations.

Reject prevents Ip(C) from accepting requests for the
named destinations. A destination can be either a printer
or a class of printers. Use Ipstat(C) to find the status
of destinations.

These commands can only be used by the super-user.
You can use the following option with reject:

-r{reason] Associates a reason that prevents Ip from
accepting requests. This reason applies to
all printers mentioned up to the next -r
option. Reason is reported by Ip when
users direct requests to the named destina-
tions. Reason is also reported by Ipstat.
If -r is not present or is given without a
reason, a default reason will be used.

/usr/spool/lp/*

See Also

enable(C), Ip(C), lpadmin(M), lpinit(M), Ipsched(M),
Ipstat(C)

ACCT(C) ACCT(C)

Name

acct - Accounting system.

Description

The accounting system, contained in the directory
/usr/lib/acct, provides ways to collect per-process re-
source utilization data, record connect sessions, monitor
disk use, and charge fees to specific logins. The ac-
counting system has a set of C language programs and shell
procedures to reduce the accounting data into summary
files.

For a description of the accounting system, see the Opera-
tions Guide. ‘

Files
/usr/lib/acect/* C programs and shell procedures
to run the accounting system
/usr/adm/* Active data collection files
/usr/adm/acct/nite/* Files reused daily by runacct
/usr/adm/acct/sum/* Cumulative summary files updated
by runacct
/usr/adm/acct/fiscal/* Periodic summary files created by
monacct
See Also

/ete/init, /etc/rc2, /etc/wtmp, /usr/lib/cron

S

ADB(C) ADB(C)

Name

adb - Invokes a general-purpose debugger.

Syntax

adb [-w] [-p prompt 1 [objfile [corefile 1]

Description

Adb is a general purpose debugging program for use only
with x.out binaries. Adb may be used to examine files and
to provide a controlled environment for the execution of
programs. To debug COFF programs, use sdb(C).

Objfile is normally an executable program file, preferably
containing a symbol table; if not then the symbolic fea-
tures of adb cannot be used although the file can still be
examined. The default for objfile is a.out. Corefile is
assumed to be a core image file produced after executing
objfile; the default for corefile is core.

Requests to adb are read from the standard input and re-
sponses are written to the standard output. The options
are:

-w Both objfile and corefile are created if necessary
and opened for reading and writing so that files can
be modified using adb. The key causes
adb to return to the next command.

-p Defines the prémpt string: any combination of char-
acters. The default is an asterisk (*).

In general requests to adb are of the form:

[address] [, count] [command] [;]
If address is present, then the current address (dot) is
set to address. Initially dot is set to 0. For most com-
mands, count specifies how many times the command will
be executed. The default count is 1. Address is a spe-
cial expression having the form:

[segment:]offset

ADB(C) ADB(C)

where segment gives the address of a specific text or data
segment, and offset gives an offset from the beginning of
that segment. If segment is not given, the last segment
value given in a command is used.

The interpretation of an address depends on the context it
is used in. If a sub-process is being debugged, then ad-
dresses -are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping, see the following section, "Addresses."

Expressions
The value of dot.

+ The value of dot incremented by the current in-
crement.

The value of dot decremented by the current in-
crement.

" The last address typed.

integer An octal number if integer begins with a 0; a
hexadecimal number if preceded by # or 0x;
otherwise a decimal number.

integer.fraction
A 32-bit floating point number.

'ecee! The ASCII value of up to 4 characters. The
backslash (\) may be used to escape a '.

< name The value of name, which is either a variable
name or a register name. Adb maintains a num-
ber of variables (see Variables) named by single
letters or digits. If name is a register name
then the value of the register is obtained from
the system header in corefile. The register
names are eax, ebx, ecx, edx, edi, esi, ebp,
esp, efi, eip, cs, ds, es, fs, gs, and ss. The
name fl refers to the status flags.

ADB(C)

symbol

_symbol

(exp)

ADB(C)

A symbol is a sequence of upper or lower case
letters, underscores or digits, not starting

with a digit. The value of the symbol is taken
from the symbol table in objfile. An initial
underscore (_) or tilde character (™) will be
prepended to symbol if needed.

In C, the 'true name' of an external symbol be-
gins with underscore (_). It may be necessary
to use this name to distinguish it from internal
or hidden variables of a program.

The value of the expression exp.

Monadic Operators

*exp
-exp

“exp

The contents of the location addressed by exp.
Integer negation.

Bitwise complement.

Dyadic Operators

Dyadic operators are left-associative and are less binding
than monadic operators.

el+e2
el*e2
el%e2
el&e?
el\e2
el”e2

el#e2

Integer addition (+) or subtraction (-).
Integer multiplication.

Integer division.,

Bitwise conjunction.

Bitwise disjunction.

Remainder after division of el by e2.

E1 rounded up to the next multiple of e2.

ADB(C) ADB(C)

Commands

Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. (The
commands '?' and '/' may be followed by '*'; see
"Addresses" following for further details.)

?f Locations starting at address in objfile are
printed according to the format f.

/f Locations starting at address in corefile are
printed according to the format f.

=f The value of address itself is printed in the
styles indicated by the format f. (For i format
'?' is printed for the parts of the instruction
that reference subsequent words.)

A format consists of one or more characters that specify a
style of printing. Each format character may be preceded
by a decimal integer that is a repeat count for the format
character. While stepping through a format, dot is incre-
mented temporarily by the amount given for each format
letter. 1f no format is given, the last format is used.

The format letters available are:

(<]
[\V]

Prints 1 word in octal. All octal numbers
output by adb are preceded by 0.

Prints 2 words in octal.

Prints in signed octal.

Prints long signed octal.

Prints in decimal,

Prints long decimal.

Prints 1 word in hexadecimal.

Prints 2 words in hexadecimal.

Prints as an unsigned decimal number.

Prints long unsigned decimal.

Prints the 32-bit value as a floating point
number. ‘

Prints double floating point.

Prints the addressed byte in octal.

Prints the addressed character.

Prints the addressed character using the
following escape convention. Character values
000 to 040 are printed as an at-sign (@) fol-
lowed by the corresponding character in the oc-
tal range 0100 to 0140. The at-sign character
itself is printed as @@.

mOE XX OO0
PN N I ECIF SIS S

Q6 T
— =00

T

ADB(C)

(o> o)]

ADB(C)

Prints the addressed characters until a zero
character is reached.

Prints a string using the at-sign (@) escape
convention. Here n is the length of the string
including its zero terminator.

Prints 4 bytes in date format (see ctime(S)).

Prints as machine instructions. N is the number
of bytes occupied by the instruction. This
style of printing causes variables 1 and 2 to
be set to the offset parts of the source and
destination respectively.

Prints the value of dot in symbolic form.
Symbols are checked to ensure that they have
an appropriate type as indicated below:

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

Prints the value of dot in absolute form.

Prints the addressed value in symbolic form
using the same rules for symbol lookup as a.
When preceded by an integer, tabs to the next
appropriate tab stop. For example, 8t moves to

the next 8-space tab stop.

Prints a space.

Prints a newline.

Prints the enclosed string.

Decrements dot by the current increment.
Nothing is printed.

Increments dot by 1. Nothing is printed.

Decrements dot by 1. Nothing is printed.

Available commands include:

newline

If the previous command temporarily incremented
dot, makes the increment permanent. Repeats
the previous command with a count of 1.

[?/1IL1] value mask

Words starting at dot are masked with mask and
compared with value until a match is found. If
L is used, then the match is for 4 bytes at a
time instead of 2. If no match is found then
dot is unchanged; otherwise dot is set to the
matched location. If mask is omitted, then -1
is used. If a question mark (?) is given, a
text segment is affected; if a slash (/), a data
segment.

ADB(C)

ADB(C)

[?2/1IWw] value ...) ;

Writes the 2-byte value into the addressed loca-
tion. If the command is W, writes 4 bytes. Odd
addresses are not allowed when writing to the
subprocess address space. If a question mark

(?) is given, a text segment is affected; if a
slash (/), a data segment.

[?/1[Mm] segnum fpos size

>name

-

$modifier

Sets new values for the given segment's file
position and size. If size is not given, then

only the file position is changed. The segnum
must the segment number of a segment already in
the memory map (see "Addresses"). If a question
mark (?) is given, a text segment is affected;

if a slash (/), a data segment.

Dot is assigned to the variable or register
named.

A shell is called to read the rest of the line
following '!'.

Miscellaneous commands. The available modifiers
are:

<f Reads commands from the file f and returns.

>f Sends output to the file f, which is
created if it does not exist.

r Prints the general registers and the in-
struction addressed by ip. Dot is set to
ip.

f Prints the floating registers in single or
double length.

b Prints all breakpoints and their associated
.counts and commands.

.

~—

ADB(C)

:modifier

ADB(C)

C stack backtrace. If address is given, it
is taken as the address of the current
frame (instead of bp). If C is used then
the names and (16-bit) values of all auto-
matic and static variables are printed for
each active function. If count is given
then only the first count frames are
printed.

Prints the names and values of external
variables.

Sets the page width for output to address
(default 80).

Sets the limit for symbol matches to ad-
dress (default 255).

Sets input and output default format to
octal.

Sets input and output default format to
decimal.

Sets input and output default format to
hexadecimal.

Exits from adb.
Prints all non-zero variables in octal.

Prints the address map.

Manage a subprocess. Available modifiers are:

bre

Sets a breakpoint at address; breakpoint is
executed count-1 times before causing a
stop. Each time the breakpoint is encoun-
tered the command ¢ is executed. If this
command sets dot to zero then the break-
point causes a stop.

ADB(C)

dl

ADB(C)

Delete a breakpoint at address.

r [arguments]

Runs objfile as a subprocess. If address

is given explicitly then the program is
entered at this point; otherwise the pro-
gram is entered at its standard entry

point. Count specifies how many break-
points are to be ignored before stopping.
Arguments to the subprocess may be supplied
on the same line as the command. An argu-
ment starting with < or > causes the stan-
dard input or output to be established for
the command. All signals are turned on on
entry to the subprocess.

R [arguments]

cos

SS

Same as the r command except that
arguments are passed through a shell before
being passed to the program. This means
shell metacharacters can be used in file-
names.

The subprocess is continued and signal s is
passed to it (see signal(S)). If address
is given, then subprocess is continued at
this address. If no signal is specified,
then the signal that caused the subprocess
to stop is sent. Breakpoint skipping is
the same as for r.

As for co except that the subprocess is
single-stepped count times. If there is no
current subprocess, then objfile is run as
a subprocess as for r. In this case no
signal can be sent; the remainder of the
line is treated as arguments to the sub-
process.

The current subprocess, if any, is ter-
minated.

ADB(C) ADB(C)

Variables
Adb provides a number of variables. Named variables are
set initially by adb but are not used subsequently. Num-
bered variables are reserved for communication as follows:
0 The last value printed
1 The last offset part of an instruction source
2 The previous value of variable 1
On entry the following are set from the system header in
the corefile. 1f corefile does not appear to be a core
file then these values are set from objfile:
b The base address of the data segment.
d The data segment size.
e The entry point.
m The execution type.
n The number of segments.

s The stack segment size.

t The text segment size.

Addresses

Addresses in adb refer to either a location in a file or

in actual memory. When there is no current process in
memory, adb addresses are computed as file locations, and
requested text and data are read from the objfile and
corefile files. When there is a process, such as after a

:r command, addresses are computed as actual memory loca-
tions.

All text and data segments in a program have associated
memory map entries. Each entry has a unique segment num-
ber. In addition, each entry has the file position of

that segment's first byte, and the physical size of the
segment in the file. When a process is running, a
segment's entry has a virtual size which defines the size

ADB(C) ~ ADB(C)

Files

of the segment in memory at the current time. This size
can change during execution.

When an address is given and no process is running, the
file location corresponding to the address is calculated
as:

effective-file-address = file-position + offset

If a process is running, the memory location is simply the
offset in the given segment. These addresses are valid if
and only if:

0 <= offset <= size

where size is physical size for file locations and virtual
size for memory locations. Otherwise, the requested ad-
dress is not legal.

The initial setting of both mappings is suitable for nor-
mal a.out and core files. If either file is not of the
kind expected then, for that file, file position is set to
0, and size is set to the maximum file size. In this way,
the whole file can be examined with no address transla-
tion.

All appropriate values are kept as signed 32-bit integers
so that adb may be used on large files.

/dev/swap
a.out
core

See Also

ptrace(S), a.out(F), core(F) in the Reference (CP, S, F)
Programmer’'s Guide

10

ADB(C) ADB(C)

Diagnostics

The message "adb" appears when there is no current com-
mand or format.

Comments appear when there are inaccessible files, syntax
errors, abnormal termination of commands, etc.

Exit status is 0, unless the last command failed or re-
turned non-zero status.

Notes

A breakpoint set at the entry point is not effective on
initial entry to the program.

System calls cannot be single-stepped.

Local variables whose names are the same as an external
variable may foul up the accessing of the external.

11

ADD.HD(C) ADD.HD(C)

Name

add.hd - Adds an additional hard disk.

Syntax

add.hd [-d] [2] [3]

Description

The add.hd command is a shell script that installs an ad-
ditional hard disk if your system supports more than one

add-on hard disk. You must be the super-user to use this
command.

If you don't specify the number (i.e., 2 or 3) on the com-
mand line, the script prompts you for the number. Once
you reply with a correct number, the system installs the
additional hard disk.

To safely add (or read) a hard disk, log in as root, and
follow these steps:

1. Reboot the system.

2. Enter system maintenance mode.

3. Immediately execute add.hd. Do not open the drive
in any way (e.g., by executing mount, swap, etc.)

before you add the hard disk.

Add.hd runs the layout(C) program, which divides the disk
into the following areas:

. Spare sectors for bad spots (non-SCSI drives only).

. File system.

. Extra swap space. Add.hd asks you if you want a
swap area on this drive. If you do, answer yes.

Add.hd will prompt you for the size of the area. If
you answer no, no swap area is created on the drive.

ADD.HD(C) : ADD.HD(C)

Next the badblock(C) program checks the additional drive
for bad spots. If there are any, it maps them into the
spare area. When badblock is finished (takes 15 - 20
minutes), you are asked to specify the number of inodes or
press for the default.

Before the additional hard disk goes to multiuser mode, it
is checked, and if necessary fsck(C) is run. Then, the
add-on hard disk is mounted.

The directory used for the add-on hard disk is /usr2 for
the second hard disk, /usr3 for the third hard disk. The
add-on hard disk remains mounted as /usr2 (/usr3) when
add.hd exits and whenever the system is in multiuser mode.

-d Non-destructive add. Does not run layout, badblock,
and mkfs routines. Does not destroy the files on the
disk. The -d option makes the /usrn directory and
the necessary devices in /dev, and adds the mount(C)
command to /etc/fstab, if it does not already exist.

See Also

layout(C), make.hd(C), sizefs(C), upgrade.hd(C)

AFTP(C) : AFTP(C)

Name

aftp - Transfers files between Altos machines.

Syntax

aftp [-f devicel [-s speed] [file...]

Description

The aftp program allows you to transfer flles between two
Altos computer systems.

The aftp program must be run on both the sending and re-
ceiving computer. The port that aftp is running on must
have login disabled (see disable(C)). Either side may be
started first, but both sides must be started within about
1 minute of each other. The sending side will output 's'
every few seconds until communication is established with
the other side; likewise, the receiving side will output
'w' every few seconds. During file transfer, aftp will
output a '¥' every time a 128 byte block is successfully
transmitted, and a '?' every time a block is retransmitted
to overcome a transmission error.

For information on setting up your systems see the Opera-
tions Guide.

Options
-f device The special file device is used to transfer
files between the machines. The ports as-
sociated with the devices on each machine
should be connected via a null modem cable.
-s speed The transmission rate is set to speed.

Currently supported speeds are 1200, 2400,
4800, and 9600 bits per second. The de-
fault transmission rate is 9600 baud.

AFTP(C) AFTP(C)

file On the sending side, file is a file or a
list of files If file is "-", standard in-
put is sent. On the receiving side, file
is an existing directory into which the
files are received. If file is omitted,
files are received into the current direc-
tory. If file is "--", received files are
written to standard output.

CP/M and MP/M Systems

The aftp program is compatible with the ftp program
available for Altos CP/M and MP/M systems, so files can
be transferred between CP/M-MP/M systems and UNIX
systems. Files sent to MP/M and CP/M systems must have
file names that are legal on those systems. Files sent
from MP/M and CP/M systems to UNIX systems may end up
with file names containing and sometimes ending with
spaces; the UNIX shells can deal with these file names

if the entire name is enclosed in double quotes.

Since MP/M and CP/M pad files with (octal 32),
is deleted from the end of files sent to UNIX
systems. The files also contain Ctrl-m entries (octal

15), which need to be stripped out once on the UNIX
side. For example,

cat filel | tr -d '\015' > file2

ARCHIVE(C) ARCHIVE(C)

Name
archive - Saves the contents of a file system to a stream-
ing tape drive.

Syntax

archive [-Al[-e][-i string][-V] file_system mag_tape_device

Description
You must be the super-user to use the archive command.

Use archive to copy the contents of a file system (speci-
fied by file_system) to a cartridge tape (specified by
mag_tape). If the files will not fit on a single tape,
you will be prompted to install a new tape.

The system must be in single-user (maintenance) mode when
you back up /dev/root. Be sure to specify mag_tape device
as /dev/rsct. If possible, run archive on an unmounted

file system.

If you are backing up the first hard disk (/dev/hdOb), use
the dump.hd(C) command.
Options

-A Aborts the backup (at the end of the tape) when a
write error occurs.

-e Erases the tape prior to writing data on it. We
recommend you use the -e option before you back up
your files.

-i Puts string (any string up to 128 characters) into
the header block on the tape.

-V Verifies that the contents of the tape match the con-
tents of the disk (bit-for-bit compare).

ARCHIVE(C) ARCHIVE(C)

Examples
This command backs up the first hard disk to tape.

/etc/dump.hd

The dump.hd(C) command calls archive, which gives the ap-
propriate parameters for the first hard disk.

To restore the first hard disk from tape, boot from the
diskette labeled "Root File System" and select option ¢ on
the menu.

For example, this command backs up the second hard disk to
tape.

/etc/umount /dev/hdlb [
archive /dev/rhdlb /dev/rsct [T
This command restores the second hard disk from tape.

/etc/umount /dev/hdlb
recover /dev/rsct /dev/rhdlb

You can check the device name by typing

mount

The screen displays the device name, for example

See Also

recover(C), dump.hd(C), restore.hd(C)
Operations Guide

ASA(C) _ ASA(C)

Name

asa - Interprets asa carriage control characters.

Syntax

asa [-s 1 [file ... 1

Description
Asa processes the output of Fortran programs that use asa
carriage control characters. Asa processes the files
whose names are given as arguments, or standard input if
no file names are given, and sends the results to the
standard output.

The first character of each line is interpreted as an asa
control character as follows:

' ' Single space before printing

'0' Double space before printing

'-' Triple space before printing

'l' New page before printing

'+' Overstrike the previous line
If the first character of a line is not one those listed
above, it is treated as if it were a space. Asa forces
the first line of each file to begin on a new page.

The -s option suppresses error messages from asa.

Asa returns one of the following values as its exit
status: ‘

0 No error
-1 Output error
>0 Some input files could not be opened; the

return code is the total number of files that
could not be opened.

ASKTIME(C) ASKTIME(C)

Name

asktime - Sets the system time of day.

b Syntax

/etc/asktime

Description

The asktime command prompts you for the date: year,
month, day, and time: hour and minute. This command syn-
chronizes the real-time clock and the system clock. You
must be the super-user to use this command.

Example

This example sets the new time, date, and year to "9:23
January 1, 1987".

See Also

date(C)

AT(C) AT(C)

Name

at, batch - Executes commands at a later time.

Syntax

at time [date 1 [+ increment]
at -r job...

at -1 [job... 1

batch

Description

At and batch read commands from standard input to be exe-
cuted at a later time. At allows you to specify when the
commands should be executed, while jobs queued with batch
will execute when system load level permits. At may be
used with the following options:

-r Removes jobs previously scheduled with at.
-1 Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to
the user unless they are redirected elsewhere. The shell
environment variables, current directory, umask, and

ulimit are retained when the commands are executed. Open
file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the
file /usr/lib/cron/at.allow. If that file does not exist,
the file /usr/lib/cron/at.deny is checked to determine if
the user should be denied access to at. If neither file
exists, only root is allowed to submit a job. If at.deny

is empty, global usage is permitted. The allow/deny files
consist of one user name per line. These files can only
be modified by the super-user.

The time may be specified as 1, 2, or 4 digits. One and
two digit numbers are taken to be hours, four digits to be
hours and minutes. The time may alternately be specified
as two numbers separated by a colon, meaning hour:minute.
A suffix am or pm may be appended; otherwise a 24-hour
clock time is understood. The suffix zulu may be used to

AT(C) AT(C)

indicate GMT. The special names noon, midnight, now, and
next are also recognized.

An optional date may be specified as either a month name
followed by a day number (and possibly year number pre-
ceded by an optional comma) or a day of the week (fully
spelled or abbreviated to three characters). Two special
"days," today and tomorrow, are recognized. If no date is
given, today is assumed if the given hour is greater than
the current hour, and tomorrow is assumed if it is less.

If the given month is less than the current month (and no
year is given), next year is assumed.

The optional increment is simply a number suffixed by one
of the following: minutes, hours, days, weeks, months, or
years. (The singular form is also accepted.)

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to
standard error. Batch submits a batch job. It is almost
equivalent to "at now", but not quite. For one, it goes
into a different queue. For another, "at now" will re-
spond with the message "too late."

At -r removes jobs previously scheduled by at or batch.

The job number is the number given to you previously by
the at or batch command. You can also get job numbers by
typing at -1. You can only remove your own jobs unless
you are the super-user.

Examples

The at and batch commands read from standard input the
commands to be executed at a later time. Sh(C) provides
different ways of specifying standard input. Within your
commands, it may be useful to redirect standard output.
This sequence can be used at a terminal:

batch
sort filename > outfile

AT(C) ‘ AT(C)

This sequence, which demonstrates redirecting standard
error to a pipe, is useful in a shell procedure (the se-
quence of output redirection specifications is significant):

batch <!
sort filename 2y &1 > outfile | mail loginid
1

To have a job reschedule itself, invoke at from within the
shell procedure, by including code similar to the follow-
ing within the shell file:

echo "sh shellfile" | at 1900 thursday next week

Files
/usr/lib/cron Main cron directory
/usr/lib/cron/at.allow List of allowed users
/usr/lib/cron/at.deny List of denied users
/usr/lib/cron/queuedefs Scheduling information
/usr/spool/cron/atjobs Spool area

See Also

kill(C), mail(C), nice(C), ps(C), sh(C), sort(C), cron(C)

Diagnostics

Complains about various syntax errors and times out of
range.

AUTOREBOOT(C) AUTOREBOOT(C)

Name

autoreboot - Toggles the autoreboot process on and off.
(Series 2000 only)

Syntax

/etc/autoreboot [on | off]

Description -

When autoreboot is enabled (on), rebooting the machine
requires no user input from the console. Thus, the system
will reboot without the attendance of a system administra-
tor. Autoreboot off disables the process.

Autoreboot with no options displays whether the autoreboot
process is "on" or "off."

Normally, when the machine is recovering from a system
crash or a power loss with no UPS installed, the rebooting
process will invoke fsck(C) (file-system check) which will
wait for user response.

Enabling autoreboot causes fsck -y to be run instead,
which asks no questions. The output of the fsck command
is saved and mailed to root after the fsck is finished.

The message "Redirecting fsck output..." is printed when
the file-system check begins.

AWK(C) AWK(C)

Name

awk - Invokes a pattern processing editor.

Syntax

awk [-Fc] [-f filel ['prog'] [filel

Description

The awk command scans each input file for lines that match
any of a set of patterns specified in prog. With each
pattern in a program there can be an associated action

that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as

prog, or in a file specified as -f file. The prog string
should be enclosed in single quotation marks (') to pro-
tect it from the shell. The -Fe¢ option uses ¢ as a field
separator.

Files are read in order; if there are no files, the stan-
dard input is read. The file name '-' means the standard
input. Each line is matched against the pattern portion
of every pattern-action statement; the associated action
is performed for each matched pattern.

An input line is made up of fields separated by spaces.
The fields are denoted $1, $2, ... ; $0 refers to the
entire line.

A pattern-action statement has the form:

pattern {action}

A missing {action} means print the line; a missing pattern
always matches.

AWK(C) AWK(C)

An action is a sequence of statements. A statement can be
one of the following:

if (conditional) statement [else statement]
while (conditional) statement

for (expression; condition; expression) statement
break

continue

{[statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next #skip remaining patterns on this input line
exit #skip the rest of the input

Statements are terminated by semicolons, newlines or right
braces. An empty expression-list stands for the whole
line. Expressions take on string or numeric values as
appropriate, and are built using the operators +, -, *, /,

%, and concatenation (indicated by a blank). The C opera-
tors ++, --, +=, -=, *=, /=, and %= are also available in
expressions. Variables may be scalars, array elements
(denoted x[i]) or fields. Variables are initialized to

the null string. Array subscripts may be any string, not
necessarily numeric; this allows for a form of associative
memory. String constants are delimited with double quotes
(").

The print statement prints its arguments on the standard

output (or on a file if >file is present), separated by

the current output field separator, and terminated by the
output record separator. The printf statement formats its
expression list according to the format (see printf(S)).

The built-in function length returns the length of its
argument taken as a string, or of the whole line if no
argument is given. There are also built-in functions exp,
log, sqrt, and int. The last truncates its argument to an
integer. Substr(s, m, n) returns the n-character sub-
string of s that begins at position m. The function
sprintf(fmt, expr, expr, ...) formats the expressions ac-
cording to the printf(S) format given by fmt and returns
the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&,
and parentheses) of regular expressions and relational
expressions. Regular expressions must be surrounded by

AWK(C) AWK(C)

slashes and are as in egrep(C). Isolated regular expres-
sions in a pattern apply to the entire line. Regular ex-
pressions may also occur in relational expressions.

A pattern may consist of two patterns separated by a
comma; in this case, the action is performed for all lines
between the first occurrence of the first pattern and the
next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C,
and a matchop is either ~~ (for contains) or !~ (for does
not contain). A conditional is an arithmetic expression,

a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to cap-
ture control before the first input line is read and after
the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by
starting the program with:

BEGIN { FS = c }
or by using the -Fe¢ option.
Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal
number of the current record; FILENAME, the name of the
current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default newline);
and OFMT, the output format for numbers (default "%.6g").

Examples

Print lines longer than 72 characters:

awk 'length > 72'

Print first two fields in opposite order:

awk '{ print $2, $1 }'

N

AWK(C) AWK(C)

Add up first column, print sum and average:

awk ' { s += 81}
END { print "sum is", s, "average is", s/NR }'

Print fields in reverse order:

awk '{ for (i = NF; i > 0; --i) print $i }'
Print all lines between start/stop pairs:

awk '/start/, /stop/'

Print all lines whose first field is different from previous
one:

awk '$1 != prev { print; prev = $1 }'

See Also

nawk(C), grep(C), lex(CP), sed(C)

Notes

There are no explicit conversions between numbers and
strings. To force an expression to be treated as a num-
ber, add 0 to it; to force it to be treated as a string,
concatenate " to it. Input white space is not preserved
on output if fields are involved.

BADBLOCK(C) BADBLOCK(C).

Name

badblock - Adds new bad sectors to the bad sector map.

Syntax

badblock -p disk_no
badblock [-v] [-n] -u minor_dev block_no ...
badblock [-v] -i disk_no

Description

The badblock command displays the bad sector list and map,
adds bad sectors to the bad sector list and map, or in-
itializes the bad sector map from the bad sector list.

This command can only be executed by the super user.

-i Initializes the hard disk bad sector map from the bad
sector list for the specified hard disk (disk_no).
This operation is executed by the system when the
disk is initialized.

CAUTION

The -i option must not be used after you have
added any bad blocks with the -u option unless
you are completely rebuilding the disk. Doing
so will cause bad sectors to be mapped incor-

rectly.

For the Series 500, if you partition the disk with
more than one partition, the disk no is a 2-digit
number. The first digit is the physical disk number
(0 or 1). The second digit is the partition number
(0, 1, 2, or 3).

When initializing the bad sector map (-i option) on a
Series 500, badblock will create the bad sector list
by scanning the disk for bad sectors.

-n No attempt is made to copy the bad block to the
newly mapped sector.

BADBLOCK(C) BADBLOCK(C)

Note

-P

Displays the bad sector list and bad sector map of
the specified disk number (disk_no).

For the Series 500, see the -i option.

-u minor_dev

-V

Allows new bad blocks to be added to the bad sector
list and map. When a bad sector is found on a disk,
an error message indicating the major/minor device
number and bad block number is printed on the con-
sole. The two parameters required for the -u option
are given in this error message. The minor device
number (minor dev) is given in the message in the
form (major_dev/minor_dev). Use the badblock utility
to copy the bad block to the newly mapped sector:

badblock -u minor_dev block _no
To check that the bad block was mapped, type:
badblock -p disk_no

Lists the bad sectors map on the screen. -

Badblock will make 10 attempts to copy the sector before
it gives up, and reports the success or failure of the

copy. The user will be prompted before the new bad sector
map and new bad sector list are actually written to the

disk.

The new bad sector map information will take effect

immediately after the user permits the write of the new

map.

The -i and -p options are not supported on SCSI hard
drives.

BANNER(C) BANNER(C)

Name

banner - Prints large letters.

Syntax

banner string ...

Description
Banner prints its arguments (each up to ten characters
long per line) in large letters on the standard output.

This is useful for printing names at the front of print-
outs.

See Also

echo(C)

BASENAME(C) BASENAME(C)

Name

basename, dirname - Delivers portions of path names.

<z

Syntax
basename string [suffix]
dirname string

Description
Basename deletes any prefix ending in / and the suffix (if
present in string) from string, and prints the result on
the standard output. It is normally used inside substitu-
tion marks (*°) within shell procedures.
Dirname delivers all but the last level of the path name
in string.

Examples
The following example, invoked with the argument
Jusr/src/cemd/cat.c, compiles the named file and moves the

output to a file named cat in the current directory:

cc $1
mv a.out “basename-$1 '\.c'"

The following example will set the shell variable NAME to
/usr/src/cmd:

NAME="dirname /usr/src/cmd/cat.c’

See Also

sh(C)

BC(C) BC(C)

Name

be - Arbitrary-precision arithmetic language.

Syntax

bcl[-c1[-111 file.. 1

Description

Bc is an interactive processor for a language that resem-
bles C but provides unlimited precision arithmetic. It
takes input from any files given, then reads the standard
input. The bc(C) utility is actually a preprocessor for
de(C), which it invokes automatically unless the -c¢ option
is present. In this case the dc input is sent to the
standard output instead.

Be may also be used as a desktop calculator. The follow-
ing example shows the sequence necessary to set the radix
to base-64 and convert the decimal value 884 into its cor-
responding base-64 representation.

be
obase=64
884

13 52 (response from bc)
The options are as follows:

-¢ Compile only. The ou'tput is sent to the standard
output.

-1 Argument stands for the name of an arbitrary preci-
sion math library.

The syntax for bc programs is as follows; L means letter
a-z, E means expression, S means statement.

Comments are enclosed in /* and */.

BC(C)

Names
simple variables: L

array elements: L [E]
The words ibase, obase, and scale

Other operands

arbitrarily long numbers with optional sign and

decimal point.
(E)
sqrt (E)

length (E) number of significant decimal digits

BC(C)

scale (E) number of digits right of decimal point

L(E,...,E)

Operators

+ =% / % ° (% is remainder;
+ -- (prefix and postfix; apply to names)

== <=): 1= <

=+ =- =% :/ =% ="

Statements
E
{S;...;S}
if(E)S
while (E) S
for(E;E;E)S
null statement
break
quit

Function definitions
define L (L,...,L) {
auto L,...,L
S5eeeS
return (E)

}

Functions in -1 math library
s(x) sine
c(x) cosine
e(x) exponential
I(x) log
a(x) arctangent
j(n,x) Bessel function

BC(C) BC(C)

All function arguments are passed by value.

The value of a statement that is an expression is printed
unless the main operator is an assignment. Either semi-
colons or new-lines may separate statements. Assignment
to scale influences the number of digits to be retained on
arithmetic operations in the manner of de(C). Assignments
to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and
a simple variable simultaneously. All variables are global
to the program. "Auto" variables are pushed down during
function calls. When using arrays as function arguments
or defining them as automatic variables, empty square
brackets must follow the array name.

Example

scale = 20
define e(x){

auto a, b, c, i, s

a=1

b=1

s=1

for(i=1; 1==1; i++){
a=a¥*x
b=b*ji
c=a/b

if(c == 0) return(s)

s = s+C
}

defines a function to compute an approximate value of the
exponential function and

for(i=1; i<=10:;i++) e(d)

prints approximate values of the exponential function of
the first ten integers.

BC(C) BC(C)

Files
/usr/lib/lib.b Mathematical library
/usr/bin/dc Desk calculator proper
See Also
de(C)
Notes

The be command does not yet recognize the logical opera-
tors, && and ||. The for statement must have all three
expressions (E's). Quit is interpreted when read, not
when executed.

BDIFF(C) BDIFF(C)

Name

bdiff - Compares files too large for diff.

Syntax

bdiff filel file2 [n] [-s 1

Description

Bdiff compares two files, finds lines that are different,
and prints them on the standard output. It allows proces-
sing of files that are too large for diff(C). Bdiff

splits each file into n-line segments, beginning with the
first nonmatching lines, and invokes diff on the corres-
ponding segments. If both arguments are specified, they
must appear in the order indicated above. The arguments
are:

n The number of lines into which bdiff splits each file
for processing. The default value is 3500. This is
useful when 3500-line segments are too large for
diff(C) causing it to fail. If the optional third
argument is given, and it is numeric, it is used as
the value for n.

-8 Suppresses printing of bdiff diagnostics. Note that
this does not suppress printing of diagnostics from
diff(C), which bdiff calls.

If filel (or file2) is a dash (-), the standard input is
read.

The output of bdiff is exactly like that of diff. Line
numbers are adjusted to account for the segmenting of the
files, and the output looks as if the files had been pro-
cessed whole. Note that because of the segmenting of the
files, bdiff does not necessarily find a smallest suffi-

cient set of file differences.

BDIFF(C) BDIFF(C)

Files

™
ﬂ) See Also

diff(C), help(C)

BFS(C) ‘ BFS(C)

Name

bfs - Big file scanner.

Syntax

bfs [- 1 name

Description

The bfs command is (almost) like ed(C) except that it is
read-only and processes much larger files. Files can be

up to 1024K bytes and 32K lines, with up to 512 charac-
ters, including new-line, per line (255 for 16-bit

machines). Bfs is usually more efficient than ed(C) for
scanning a file, since the file is not copied to a buffer.

It is most useful for identifying sections of a large file
where csplit(C) can be used to divide it into more manage-
able pieces for editing.

Normally, the size of the file being scanned is printed,
as is the size of any file written with the w command.
The optional - suppresses printing of sizes. Input is
prompted with * if P and a carriage return are typed, as
in ed(C). Prompting can be turned off again by inputting
another P and carriage return. Note that messages are
given in response to errors if prompting is turned on.

All address expressions described under ed(C) are sup-
ported. In addition, regular expressions may be sur-
rounded with two symbols besides / and ?: > indicates
downward search without wrap-around, and < indicates up-
ward search without wrap-around. There is a slight dif-
ference in mark names: only the letters a through z may
be used, and all 26 marks are remembered.

The e, g, v, k, P, q, W, = ! and null commands operate
as described under ed(C). Commands such as ---, +#+-,
+++=, -12, and +4p are accepted. Note that 1,10p and 1,10
will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no
remembered file name. The w command is independent of
output diversion, truncation, or crunching (see the xo, xt
and xe¢ commands, below).

BFS(C)

BFS(C)

The following additional commands are available:

xf file

xo [file]

: label

Further commands are taken from the named file.
When an end-of-file is reached, an interrupt
signal is received or an error occurs, reading
resumes with the file containing the xf. The xf
commands may be nested to a depth of 10.

List the marks currently in use (marks are set
by the k command).

Further output from the p and null commands is
diverted to the named file, which, if necessary,
is created mode 666 (readable and writable by
everyone), unless your umask setting (see
umask(C)) dictates otherwise. If file is miss-
ing, output is diverted to the standard output.
Note that each diversion causes truncation or
creation of the file.

This positions a label in a command file. The
label is terminated by new-line, and blanks be-
tween the : and the start of the label are ig-
nored. This command may also be used to insert
comments into a command file, since labels need
not be referenced. '

(.,.)xb/regular expression/label

A jump (either upward or downward) is made to
label if the command succeeds. It fails under
any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.

3. The regular expression does not match at
least one line in the specified range, in-
cluding the first and last lines.

On success, . is set to the line matched and a
jump is made to label. This command is the only
one that does not issue an error message on bad
addresses, so it may be used to test whether
addresses are bad before other commands are exe-
cuted. Note that the command:

xb/" /label

BFS(C)

xt number

BFS(C)

is an unconditional jump. The xb command is
allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only
a downward jump is possible.

Output from the p and null commands is trun-
cated to at most number characters. The in-
itial number is 255.

xv[digitllspaces]value]

The variable name is the specified digit following
the xv. The commands xv5100 or xv5 100 both
assign the value 100 to the variable 5. The
command xv61,100p assigns the value 1,100p to
the variable 6. To reference a variable, put a

% in front of the variable name. For example,
using the above assignments for variables 5 and
6:

1,%5p
1,%5
%6

will all print the first 100 lines.
g/%5/p

would globally search for the characters 100 and
print each line containing a match. To escape
the special meaning of %, a \ must precede it.

g/".*\%[cds]/p

could be used to match and list lines containing
printf(S) of characters, decimal integers, or
strings.

Another feature of the xv command is that the

first line of output from a system command can
be stored into a variable. The only requirement
is that the first character of value be an !.

BFS(C)

xbz label
xbn label

BFS(C)

For example:

w junk

xv5lcat junk

rm junk

echo "%5"
Xvé!expr %6 + 1

would put the current line into variable 5,

print it, and increment the variable 6 by one.
To escape the special meaning of ! as the first
character of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

These two commands will test the last saved re-
turn code from the execution of a system com-
mand (!command) or nonzero value, respectively,
to the specified label. The two examples below
both search for the next five lines containing
the string size.

xv55

:1

/size/

xv5!expr%5 - 1

1if 0%5 != O exit 2
xbn 1

xv45

:1

/size/

Xv4lexpr %4 - 1
1if 0%4 = 0 exit 2
Xxbz 1

xc [switch]

If switech is 1, output from the p and null com-
mands is crunched; if switeh is 0 it is not.
Without an argument, xc reverses switch. Ini-
tially switeh is set for no crunching. Crunched
output has strings of tabs and blanks reduced to
one blank and blank lines suppressed.

BFS(C) » BFS(C)

See Also

csplit(C), ed(C), umask(C), more(C)

Diagnostics

There is a ? for errors in commands, if prompting is
turned off. Self-explanatory error messages are produced
when prompting is on.

BSH(C) BSH(C)

Name

bsh - Invokes the Business shell.

Syntax

bsh [-thqs] [menusystem]

Description

The Business shell is a menu-driven command language in-
terpreter, It may be installed as the "login shell" in
the password file, or invoked directly by typing bsh.

The bsh command is implemented using the termcap and
curses facilities. Run bsh from a terminal defined in
/etc/termcap. If the terminal is not defined in
/etc/termecap, bsh will be aborted.

The bsh command should only be run interactively, not in
the background.

Options

-f Starts bsh in fast mode. In this mode, a prompt
whose first letter is lower-case alphabetic character
is executed immediately when the first letter is
typed. The system does not wait for a terminating
newline. Prompts whose first letter is upper-case
alphabetic wait for a terminating newline before exe-
cuting the requested actions. Fast mode is the de-
fault mode, if not overridden by the command line or
the BSHINIT variable (see below). The current mode
may be changed during execution through use of the
?mode command (described below).

-h Displays a short help message describing how to in-
voke bsh.

-q Displays a one line description of the syntax used to
invoke bsh.

BSH(C) BSH(C)

-S Start bsh in slow mode. In this mode, all prompts
must be terminated by a newline before execution
occurs. The current mode may be changed during exe-
cution through use of the ?mode command (described
below).

If you write your own menu system, bsh utilizes the desig-
nated menusystem instead of the standard one
(/etc/menusys.bin). Prior to use by bsh, a menu system
must be "digested" using the digest utility. If it is

not, or if it is not read-accessible, bsh issues an error
message and terminates.

Using the Business Shell

Prompts

Typing any of the prompts on the current menu screen im-
mediately causes the actions associated with the prompt to
be executed. Selecting a prompt with no associated action
causes an error message to be displayed.

An action may be any one of the following:
. Go to a specified menu
. Execute a sh script

. Execute a bsh internal command

Menu Name

Typing the name of a menu causes it to immediately become
the current menu. If the menu name is misspelled, or if

it does not exist in the current menu system, an error
message is displayed.

New Line

Typing a newline causes the immediately preceding menu to
become the current one. If there is no previous menu, an

error message is displayed. The bsh command does not dis-
tinguish between Line Feed and -- both generate a

newline.

BSH(C) BSH(C)

?

Typing a question mark (?) causes the "help" menu associ-
ated with the current menu to be displayed.

??

Typing a pair of question marks (??) causes the bsh system
help files to be displayed. It contains much the same
information as is presented here.

Menu Name?

Typing the name of a menu followed by question mark calls
up the designated help menu to become the current one.

tcommand

The exclamation point (!) allows you to escape to the
standard shell (sh). The command must follow the usual
rules as described in the sh documentation. In partic-
ular, the command may consist of a sequence of shell com-
mands separated by semicolons - thus several actions may
be invoked. If the command is absent, sh is invoked as a
sub-shell with no arguments, In this case, bsh will be
resumed as soon as the sub-shell terminates. (Usually,
this is accomplished by sending the sub-shell an end-of-
file message. End-of-file is on most terminals.)

?index

This special command causes bsh to display its internal
"index" for the current menu system. The index contains
the names of every accessible menu.

?mode

This special command allows you to change from "slow" mode
to "fast" mode and vice versa. You are asked if you wish
to change to the alternate mode. If your response begins
with "y" or "Y", the change is made, otherwise the current
mode remains in effect.

BSH(C) BSH(C)

Delete

The bsh command immediately returns to the top-level com-
mand interpreter upon receipt of an interrupt signal. Such
a signal is usually generated via the or
Rubout key.

backspace

The bsh command understands the backspace function as ob-
tained from /etc/termcap.

Escape, Cancel

The bsh command interprets the or Cancel key to
mean "re-start input.” on other terminals also
performs this function.

Ctrl-r

If you cannot clear the screen, you can force bsh to clear
it and redisplay the current contents by pressing [[eRIRal

q, Q, Quit

Typing a q, Q or Quit all have the same effect: bsh is
terminated. If bsh is your login shell, the use of this
command also results in your being logged out.

Environment

The BSHINIT environment variable contains the initial
value of the default mode ("fast" or "slow"). If this
variable does not exist in the environment, bsh assumes
"fast" mode. BSHINIT should be set by inserting the line
BSHINIT=fast or BSHINIT=slow into your .profile file.

Note that even if bsh is designated as the "login shell”
in /etc/passwd, your .profile file will be interpreted
correctly (see login(C) and sh(C)). In particular, any
overriding definitions you may have for the kill and erase
characters will be correctly interpreted by bsh.

BSH(C) BSH(C)

Files
/.profile Contains commands to be executed
‘ during login
Ig /etc/menusys.bin Default menu system used by bsh
/etc/passwd Used to define a user's login name,
password, home directory, shell
/etc/termeap Contains terminal attribute descrip-
tions
See Also

login(C), sh(C), termcap(M)

(BLANK)

7

CAL(C) CAL(C)

Name

cal - Prints a calendar.

Syntax

cal [[month] year]

Description

Cal prints a calendar for the specified year. If month is
also specified, a calendar for that month only is printed.
If no arguments are specified, a calendar for the current
month is printed. Year must be a number between 1 and
9999; month must be a number between 1 and 12.

Notes
Note that "cal 84" refers to the year 84, not 1984.

The calendar produced is that for England and her colonies.
Note that England switched from the Julian to the Gregor-
ian calendar in September of 1752, at which time eleven
days were excised from the year. To see the result of
this switch, try cal 9 1752.

CALENDAR(C) CALENDAR(C)

Name

calendar - Invokes a reminder service.

Syntax

calendar [-]

Description

Calendar looks at the file named calendar in the user's
current directory, and prints (to the user's terminal)

lines that contain today's or tomorrow's date. Month-day
dates such as "Sep. 7," "september 7", and "9/7", are
recognized, but not "7 September", "7/9" or "07/09" for
September 7.

On weekends, "tomorrow" extends through Monday. Lines
that contain the date of a Monday will be sent to the user
on the previous Friday. This is not true for holidays.

When an argument is present, calendar does its job for
every user who has a calendar file in his login directory
and sends the user the results by mail(C). Normally this
is done daily, in the early morning, under the control of
cron(C). ‘

Files

calendar

/usr/lib/calprog To figure out today's and tomorrow's
dates

/etc/passwd

/tmp/cal*

/usr/lib/crontab

See Also

cron(C), mail(C)

CALENDAR(C) CALENDAR(C)

Notes

To get reminder service, a user's calendar file must have
read permission for all.

CAT(C) CAT(C)

Name

cat - Concatenates and prints files.

Syntax

cat [-ull[-s1/[-v([-t] [-e]] file...

Description

Cat reads each file in sequence and writes it on the stan-
dard output. Thus:

cat file
prints the file, and:
cat filel file2 >file3

concatenates the first two files and places the result in
the third.

If no input file is given, or if the argument - is encoun-
tered, cat reads from the standard input.

The following options apply to cat.

-u The output is not buffered. (The default is buffered
output.)

-S Cat is silent about non-existent files.

-v Causes non-printing characters (with the exception of
tabs, new-lines, and form-feeds) to be printed visi-
bly. Control characters are printed “X (control-x);
the DEL character {octal 0177) is printed ~?.
Non-ASCII characters (with the high bit set) are
printed as M-x, where x is the character specified by
the seven low-order bits.

~_7

CAT(C) CAT(C)

When used with the -v option, the following options may be
used.

-t Causes tabs to be printed as “I's.

-e Causes a $ character to be printed at the end of each
line (prior to the new-line).

The -t and -e options are ignored if the -v option is not
specified.

Notes
Command formats such as
cat filel file2 >filel

will cause the original data in filel to be lost; there-
fore, take care when using shell special characters.

See Also

cp(C), pg(C), pr(C)

CD(C) CD(C)

Name

cd - Changes directory.

Syntax

cd [directory]

Description
Use the cd command to change directories. Typing cd with
no argument places you in your login (home) directory.
This command is built into the shells; it is not a sepa-
rate command.
Examples
This command moves you up one level of your directory.

cd ..

This command changes the current directory to
/usr/wendy/memos/meetings.

cd /usr/wendy/memos/meetings

This command moves you into the April directory, which is
a subdirectory of the Letters directory.

cd Letters/April

Related Commands

pwd(C), sh(C)

~_7

CHMOD(C) CHMOD(C)

Name

chmod - Changes the access permissions of a file or direc-
tory.

Syntax

chmod mode file...
chmod mode directory...

Description

The permissions of the named files or directories are
changed according to mode, which may be symbolic or abso-
lute. Absolute changes to permissions are stated using
octal numbers:

chmod nnn file

where n is a number from 0 to 7. Symbolic changes are
stated using mnemonic characters:

chmod a operator b file

where a is one or more characters corresponding to user,
group, or other; where operator is +, -, and =, signifying
assignment of permissions; and where b is one or more
characters corresponding to type of permission.

An absolute mode is given as an octal number constructed
from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit is turned on ({(see chmod(S))
0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Symbolic changes are stated using letters that correspond
both to access classes and to the individual permissions
themselves.

CHMOD(C) CHMOD(C)

Permissions to a file may vary depending on your user
identification number (UID) or group identification number
(GID). Permissions are described in three sequences each
having three characters:

User Group Other
Iwx I'wx rwx

This example (meaning that user, group, and others all
have reading, writing, and execution permission to a given
file) demonstrates two categories for granting permis-
sions: the access class and the permissions themselves.

Thus, to change the mode of a file's (or directory's) per-
missions using chmod's symbolic method, use the following
syntax for mode:

[who 1 operator [permission(s) Il,...

A command line using the symbolic method would appear as
follows:

chmod g+rw file

This command would make file readable and writable by the
group.

The who part can be stated as one or more of the following
letters:

u user's permissions
g group's permissions
o others permissions

The letter a (all) is equivalent to ugo and is the default
if who is omitted.

Operator can be + to add permission to the file's mode, -
to take away permission, or = to assign permission abso-
lutely. (Unlike other symbolic operations, = has an abso-
lute effect in that it resets all other bits.) Omitting
permission is only useful with = to take away all permis-
sions.

CHMOD(C) ' CHMOD(C)

Permission is any compatible combination of the following

letters:
r reading permission
w writing permission
b.4 execution permission
S user or group set-ID is turned on
t sticky bit is turned on

Multiple symbolic modes separated by commas may be given,
though no spaces may intervene between these modes.
Operations are performed in the order given. Multiple
symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously.
The letter s is only meaningful with u or g, and t only
works with u.

Only the owner of a file or directory (or the super-user)
may change a file's mode. Only the super-user may set the
sticky bit. In order to turn on a file's set-group-1D,
your own group ID must correspond to the file's, and group
execution must be set.
Examples
chmod a-x file

chmod 444 file

The first example denies execution permission to all. The
absolute (octal) example permits only reading permissions.

chmod go+rw file
chmod 666 file

These examples make a file readable and writable by the
group and others.

chmod =rwx,g+s file
chmod 2777 file

These last two examples enable all to read, write, and
execute the file; and they turn on the set-group-ID.

CHMOD(C) CHMOD(C)

Notes
In a Remote File Sharing environment, you may not have

the permissions that the output of the Is -1 command leads
you to believe. For more information seevthe Remote File

Sharing manual.

See Also
Is(C) and chmod(S) in the Reference (CP, S, F)

CHOWN(C) CHOWN(C)

Name

chown, chgrp - Changes owner or group.

Syntax

chown owner file...
chown owner directory...

chgrp group file...
chgrp group directory...

Description

Chown changes the owner of the files or directories to
owner. The owner may be either a decimal user ID or a
login name found in the password file. Chgrp changes the
group ID of the files or directories to group. The group
may be either a decimal group ID or a group name found in
the group file. If either command is invoked by other

than the super-user, the set-user-ID and setgroup-ID bits

of the file mode, 04000 and 02000 respectively, will be
cleared. Only the owner of a file (or the super-user) may
change the owner or group of that file.

Files
/etc/passwd
/etc/group
Notes
In a Remote File Sharing environment, you may not have the
permissions that the output of the 1s -1 command leads you

to believe. For more information see the Remote File
Sharing manual.

CHOWN(C) CHOWN(C)

See Also

chmod(C), group(M), passwd(M) and éhown(S) in the Refer-
ence (CP, S, F)

.

~—

CHROOT(C)

Name

CHROOT(C)

chroot - Changes the root directory for a command.

Syntax

/ete/chroot newroot command

Description

Chroot causes the given command to be executed relative to
the new root. The meaning of any initial slashes (/) in
the path names is changed for the command and any of its
child processes to newroot. Furthermore, upon execution,
the initial working directory is newroot.

Notice, however, that if you redirect the output of the
command to a file:

chroot newroot command >x

will create the file x relative to the original root of
the command, not the new one.

The new root path name is always relative to the current
root: even if a chroot is currently in effect, the
newroot argument is relative to the current root of the
running process.

This command can be run only by the super-user.

See Also

cd(C) and chroot(S) in the Reference (CP, S, F)

Notes

One should exercise extreme caution when referencing de-
vice files in the new root file system.

CLEAR(C) CLEAR(C)

Name

clear - Clears terminal screen.

Syntax

clear

Description
Clear clears your screen. It looks in the environment for
the terminal type and then in /etc/lib/terminfo to figure
out how to clear the screen.

Files

/ete/lib/terminfo Terminal information data base

~ T

~

CMP(C) CMP(C)

Name

cmp - Compares two files.

Syntax

cmp [-1][-s] filel file2

Description
Cmp compares two files and, if they are different, dis-
plays the byte and line numbers of the differences. If
filel is -, the standard input is used.

The options are:

-1 Prints the byte number (decimal) and the differing
bytes (octal) for each difference.

-S Returns an exit code only, 0 for identical files, 1
for different files, and 2 for an inaccessible or
missing file.

This command should be used to compare binary files; use

diff(C) or diff3(C) to compare text files.

See Also

comm(C), diff(C), diff3(C)

Diagnostics

Exit code 0 is returned for identical files, 1 for differ-
ent files, and 2 for an inaccessible or missing argument.

COMM(C) COMM(C)

Name
comm - Selects or rejects lines common to two sorted
files.

Syntax
comm [- [123]] filel file2

Description
Comm reads filel and file2, which should be ordered in
ASCII collating sequence (see sort(C)), and produces a
three-column output: lines only in filel; lines only in
file2; and lines in both files. A - for filel means the
standard input.
The 1, 2, or 3 flags suppress printing of the correspond-
ing column. Thus comm -12 prints only the lines common to
the two files; comm -23 prints only lines in the first
file but not in the second; comm -123 doesn't work and
will print nothing.

See Also

cmp(C), diff(C), sort(C), uniq(C)

COPY(C) COPY(C)

Name

copy - Copies groups of files.

Syntax

copy [option 1 ... source ... dest

Description

The copy command copies the contents of directories to
another directory. It is possible to copy whole file sys-
tems since directories are made when needed.

If files, directories, or special files do not exist at

the destination, then they are created with the same modes
and flags as the source. In addition, the super-user may
set the user and group ID. The owner and mode are not
changed if the destination file exists. Note that there
may be more than one source directory. If so, the effect
is the same as if the copy command had been issued for
each source directory with the the same destination direc-
tory for each copy.

All of the options must be given as separate arguments and
they may appear in any order even after the other argu-
ments. The options are:

~a Asks the user before attempting a copy. If the re-
sponse does not begin with a "y" for yes, then a copy
is not done. This option also sets the -ad option.

-1 Uses links whenever they can be used. Otherwise a
copy is done. Note that links are never used for
special files or directories.

-n Requires the destination file to be new. If not,
then the copy command does not change the destina-
tion file. The -n flag is meaningless for directories.
For special files, an -n flag is assumed (i.e., the
destination of a special file must not exist).

COPY(C)

-0

-m

-V

dest

COPY(C)

If set, then every file copied has its owner and
group set to those of the source. If not set, then
the file's owner is the user who invoked the program.

If set, then every file copied has its modification
time and access time set to that of the source. If
not set, then the modification time is set to the
time of the copy.

If set, then every directory is recursively examined
as it is encountered. If not set, then any director-
ies that are found are ignored.

Asks the user whether an -r flag applies when a di-
rectory is discovered. If the answer does not begin
with a "y," then the directory is ignored.

If the verbose option is set, messages are printed
that reveal what the program is doing. source This
may be a file, directory or special file. It must
exist. If it is not a directory, then the results of
the command are the same as for the cp(C) command.

The destination must be either a file or directory
that is different from the source.

If source and destination are anything but directories,
then copy acts just like a ¢p command. If both are direc-
tories, then copy copies each file into the destination
directory according to the flags that have been set.

Notes

Special device files can be copied. When they are copied,
any data associated with the specified device is not
copied.

CP(C) CP(C)

Name

cp - Copies files.

Syntax
cp filel file2
cp file directory
cp -t directoryl directory2

Description
Use the cp command to make a copy of a file within the
same directory or to copy a file from one directory to
another., In the latter case you can either rename the

file or keep the same name.

The -r option recursively copies directory trees.

NOTE

You cannot copy a directory into a file.

Examples

This command makes a copy of the file letterl and renames
it letter2.

cp letterl letter2

This command places a copy of file letterl in the direc-
tory January.

cp letterl January/letterl

Related Commands

In(C), mv(C), rm(C)

CPIO(C) , CPIO(C)

Name

cpio - Copies file archives in and out.

Syntax

cpio -0 [aBevV] [-Cbufsize] [-Mmessage] <name-list >collection

cplo -0 [aBevV] -Ocollection [-Cbufsize] [-Mmessage] <name-list

cpio -i [bBedfkmrsStuvV6] [-Cbufsize] [-Mmessage] [pattern] <collection
cpio -1 [bBedfkmrsStuvV6] -Icollection [-Cbufsize] [-Mmessage] [pattern]
cpio -p [adlmruvV] directory <name-list

Description

Cpio -0 (copy out) reads the standard input to obtain a
list of pathnames and copies those files onto the standard
output together with pathname and status information.

Cpio -1 (copy in) extracts from the standard input (which
is assumed to be the product of a previous cpio -o) the
names of files selected by zero or more patterns given in
the name-generating notation of sh(C). In patterns, the
special characters ?, *, and [...] match the slash (/)
character. The default for patterns is * (i.e., select

all files).

Remember to escape special characters to prevent expansion
by the shell.

Cpio -p (pass) copies out and in during a single opera-
tion. Destination pathnames are interpreted relative to
the named directory.

The meanings of the available option flags are:

-a Resets access times of input files after they have
~ been copied.

-b Swaps both bytes and halfwords. Use only with the -i
option.

-B Blocks input/output 512 bytes to the record (does not
apply to the pass option; meaningful only with data
directed to or from raw devices).

T

~_

CPIO(C)

-C Writes header information in ASCII character form for
portability.

-Cbufsize
Sets buffer size to bufsize.

-d Directories are created as needed.

-f Do not consider patterns on the command line.

-Icollection
Reads input from collection instead of standard
input.

-k In case of I/O errors in reading, tries several times
before reporting I/0 error and exiting. If the file
header is corrupted, prints a message about the sit-
uation and continues reading input.

-1 Whenever possible, links files rather than copying
them. Usable only with the -p (pass) option.

-m Retains previous file modification time. This option
is ineffective on directories that are being copied.

-Mmessage
Sets alternate message message for end-of-media.

-Qcollection
Writes output to collection instead of standard
output.

-r Interactively renames files. If the user types a
null line, the file is skipped.

-s Swaps bytes. Use only with the -i option.

-S Swaps halfwords. Use only with the -i option.

~t Prints a table of contents of the input. No files
are created.

-u Copies unconditionally (normally an older file will

CPIO(C)

not replace a newer file with the same name).

CPIO(C) ‘ CPIO(C)

-v Verbose. Causes a list of filenames to be printed.
When used with the -t option, the table of contents
looks like the output of an 1ls -1 command (see
1s(C)).

-V Verbose. Prints a dot (.) for each file.

-6 Processes an old file. Use only with the -i (copy
in) option.

Examples

The first example copies the contents of a directory into
an archive; the second duplicates a directory hierarchy:

Is | cpio -0 >/dev/fdo

cd olddir
find . -print | cpio -pdl newdir

or:

find . -print | cpio -oB >/dev/rfdo

See Also

ar(CP), cpio(F), find(C)

Notes

Pathnames are restricted to 128 characters. If there are
too many unique linked files, the program runs out of mem-
ory to keep track of them; thereafter, linking information
is lost. Only the super-user can copy special files.

CPSET(C) CPSET(C)

Name

cpset - Installs utilities.

Syntax

/ete/cpset [-0] filename destination [model [owner] [groupl

Description

The cpset command is used by make files to install new
utilities. You can also invoke this command from the com-

mand line.
Options

-0 If filename already exists, cpset moves it
to OLDfilename.

filename The name of the utility you want to in-
stall.

destination The destination directory of the utility.

mode Permissions for the utility (default is set

by umask(C)).
owner group The user and group id for the installed
utility.
See Also

chgrp(C), chmod(C), chown(C), make(C), umask(C)

CRON(C) CRON(C)

Name

cron - Executes commands at specified dates and times.

Syntax

/ete/cron

Description

Cron executes commands at specified dates and times.
Regularly scheduled commands can be specified according to
instructions found in crontab files (in the
/usr/spool/cron/crontabs directory). Users can submit
their own crontab file by using the crontab(C) command.
Since cron never exits, it should only be executed once.
This is best done by running cron from the initialization
process through the file /ete/rc2.d/S??cron.

The file crontab consists of lines of six fields each.

The fields are separated by spaces or tabs. The first

five are integer patterns to specify the minute (0-59),
hour (0-23), day of the month (1-31), month of the year
(1-12), and day of the week (0-6 with 0=Sunday). Each of
these patterns may contain a number in the range above,
two numbers separated by a minus means a range (inclusive);
a list of numbers separated by commas means any of the
numbers; or an asterisk meaning all legal values. The
sixth field is a string that is executed by the shell at

the specified times. A percent character in this field is
translated to a new-line character. Only the first line

(up to a % or end of line) of the command field is exe-
cuted by the Shell. The other lines are made available to
the command as standard input.

Cron only examines crontab files during process initiali-
zation and when a file changes. This reduces the overhead
of checking for new or changed files at regularly sched-
uled intervals.

CRON(C) CRON(C)

Examples

A sample crontab file follows:

b 0,5,10,15,20,25,30,35,40,45,50,55 * * * * /ugr/lib/atrun
; 0,10,20,30,40,50 * * * * /etc/dmesg ->>/usr/adm/messages
1,21,41 * * * %¥ (echo -n ' '; date: echo) >/dev/console

Cron creates log entries in /usr/lib/cron/log. Be sure
to monitor the size of /usr/lib/cron/log so that it
doesn't unreasonably consume disk space.

Files
/usr/lib/cron Main cron directory
/usr/lib/cron/log Accounting information
/usr /spool/cron Spool area
See Also
» crontab(C), sh(C), init(M)

A

ST

CRONTAB(C) CRONTAB(C)

Name

crontab - User crontab file.

Syntax

crontab [file]
crontab -r
crontab -1

Description

Crontab copies the specified file, or standard input, if
no file is specified, into a directory that holds all

users' crontabs. The -r option removes a user's crontab
from the crontab directory. The -1 option lists your own
crontab file,

Users are permitted to use crontab if their names appear
in the file /usr/lib/cron/cron.allow. If that file does
not exist, the file /usr/lib/cron/cron.deny is checked to
determine if the user should be denied access to crontab.
If neither file exists, only root can submit a job. If
either file is at.deny, global usage is permitted. The’
allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The
fields are separated by spaces or tabs. The first five
are integer patterns that specify the following:

minute (0-59)

hour (0-23)

day of the month (1-31)

month of the year (1-12)

day of the week (0-6 with 0=Sunday)

Each of these patterns may be either an asterisk (that is,
all legal values) or a list of elements separated by commas.
An element is either a number or two numbers separated by
a minus sign (that is, an inclusive range). Two fields
specify days (day of the month and day of the week). If
both are specified as a list of elements, both are adhered
to. For example, 0 0 1,15 * 1 runs a command on the first
and fifteenth of each month, as well as on every Monday.

—

CRONTAB(C) CRONTAB(C)

To specify days by only one field, set the other fields to
* (for example, 0 0 * * 1 would run a command only on
Mondays).

The sixth field of a line in a crontab file is a string

that is executed by the shell at the specified times. A
percent character in this field (unless escaped by a \) is
translated to a new-line character. Only the first line
(up to a % or end of line) of the command field is exe-
cuted by the shell. The other lines are made available to
the command as standard input.

The shell is invoked from your $HOME directory with an
arg0 of sh. Users who desire to have their .profile exe-
cuted must explicitly do so in the crontab file. Cron sup-
plies a default environment for every shell, defining HOME,
LOGNAME, SHELL(=/bin/sh), and PATH(=:/bin:/usr/bin).

Files
/usr/lib/cron Main cron directory
/usr/spool/cron/crontabs Spool area
/usr/lib/cron/log Accounting information
/usr/lib/cron/cron.allow List of allowed users
/usr/lib/cron/cron.deny List of denied users
See Also

sh(C), cron(C)

Notes

Remember to redirect the standard output and standard
error of commands! If not, any generated output or errors
will be mailed to you.

If you inadvertently enter the crontab command with no
argument(s), do not attempt to get out with a [KEEIRIN.
This will cause all entries in your crontab file to be
removed. Instead, exit with a BN

CSH(C) CSH(C)

Name

csh - Invokes a shell command interpreter with C-like
syntax.

Syntax

csh [-cefinstvVxX] [arg ... 1

Description

The csh command, a command language interpreter, begins
by executing commands from the file .cshre in the user's
home directory. If this is a login shell, csh also exe-
cutes commands from the file .login in the user's home
directory. The shell will then begin reading commands
from the terminal, prompting with %.

The shell then repeatedly performs the following actions:

a line of command input is read and broken into words.
This sequence of words is placed on the command history
list and then parsed. Finally each command in the current
line is executed.

When a login shell terminates, it executes commands from
the file .logout in the user's home directory.

Lexical Structure

The shell splits input lines into words at blanks and tabs
with the following exceptions. The characters &, |, 3, <,
>, (,) form separate words. If the |, <, or > characters
are doubled (]], <<, or >>), these pairs form single

words. The parser metacharacters may be made part of
other words, or prevented their special meaning, by pre-
ceding them with a backslash (\). A new line preceded by
a \ is equivalent to a blank.

In addition, strings enclosed in matched pairs of quota-
tions (', °, or ") form parts of a word; metacharacters in
these strings, including blanks and tabs, do not form sep-
arate words. Within pairs of \ or " characters, a new
line preceded by a \ gives a true newline character.

CSH(C) CSH(C)

When the shell's input is not a terminal, the character #
introduces a comment which continues to the end of the
input line. It does not have this special meaning when
preceded by a \ and placed inside the quotation marks °,
'yor ",

Commands

A simple command is a sequence of words, the first of
which specifies the command to be executed. A simple
command or a sequence of simple commands separated by |
characters forms a pipeline. The output of each command
in a pipeline is connected to the input of the next. Se-
quences of pipelines may be separated by a semi-colon (;),
and are then executed sequentially. A sequence of pipe-
line commands may be executed without waiting for them to
terminate by following it with an &. Such a sequence is
automatically prevented from being terminated by a hangup
signal; the nohup command need not be used.

Any of the above may be placed in parentheses to form a
simple command which may be a component of a pipeline,
etc. It is also possible to separate pipelines with || or
&& indicating, as in the C language, that the second is to
be executed only if the first fails or succeeds respec-
tively. (See "Expressions.")

Substitutions

The following sections describe the various transforma-
tions the shell performs on the input in the order in
which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences
of words from previous commands, possibly performing modi-
fications on these words. Thus history substitutions pro-
vide a generalization of a redo function.

History substitutions begin with the character ! and may
begin anywhere in the input stream if a history substitu-
tion is not already in progress. This ! may be preceded
by a \ to prevent its special meaning; a ! is passed un-

CSH(C) ' CSH{C)

changed when it is followed by a blank, tab, newline, =,
or (. History substitutions also occur when an input line
begins with “. This special abbreviation will be described
later.

Any input line which contains history ‘substitution is
echoed on the terminal before it is executed as it could
have been typed without history substitution.

Commands input from the terminal which consist of one or
more words are saved on the history list, the size of which
is controlled by the history variable. The previous com-

mand is always retained. Commands are numbered sequen-
tially from 1. :

For example, consider the following output from the history
command:

The commands are shown with their event numbers. It is
not usually necessary to use event numbers, but the cur-
rent event number can be made part of the prompt by plac-
ing a ! in the prompt string.

With the current event 13 we can refer to previous events
by event number !11, relatively as in 1-2 (referring to

the same event), by a prefix of a command word as in !d
for event 12 or !w for event 9, or by a string contained
in a word in the command as in !?mic? also referring to
event 9. These forms, without further modification,
simply reintroduce the words of the specified events, each
separated by a single blank. As a special case !! refers
to the previous command; thus !! alone is essentially a
redo. The form !# references the current command (the
one being typed in). It allows a word to be selected from
further left in the line, to avoid retyping a long name,

as in 1.

CSH(C) CSH(C)

To select words from an event we can follow the event spe-
cification by a : and a designator for the desired words.
The words of an input line are numbered from 0, the first
(usually command) word being 0, the second word (first
argument) being 1, and so on. The basic word designators
are:

0 First (command) word

n nth argument

First argument, i.e., 1

$ Last argument

% Word matched by (immediately preceding)

?s? search

x-y Range of words

-y Abbreviates 0-y

* Abbreviates “-$, or nothing if only one word in event
x* Abbreviates x-$

x- Like x* but omitting word $

The : separating the event specification from the word
designator can be omitted if the argument selector begins
with a , $, ¥, -, or %. After the optional word desig-
nator a sequence of modifiers can be placed, each preceded
by a :. The following modifiers are defined:

h Removes a trailing pathname component

r Removes a trailing .xxx component

s/l/r/
Substitutes | for r

t Removes all leading pathname components

& Repeats the previous substitution

CSH(C) CSH(C)

g Applies the change globally, prefixing the above
P Prints the new command but does not execute it

q Quotes the substituted words, preventing substitu-
tions

b4 Like q, but breaks into words at blanks, tabs, and
newlines

Unless preceded by a g, the modification is applied only
to the first modifiable word. In any case it is an error
for no word to be applicable.

The left side of substitutions are not regular expressions
in the sense of the editors, but rather strings. Any
character may be used as the delimiter in place of /; a \
quotes the delimiter into the ! and r strings. The char-
acter & in the right side is replaced by the text from the
left. A \ quotes & also. A null [uses the previous
string either from a | or from a contextual scan string s
in 12s?. The trailing delimiter. in the substitution may

be omitted if a newline follows immediately as may the
trailing ? in a contextual scan.

A history reference may be given without an event specifi-
cation, e.g., !$. In this case the reference is to the
previous command unless a previous history reference oc-
curred on the same line in which case this form repeats
the previous reference. Thus !1?fo0?"!$ gives the first

and last arguments from the command matching ?foo?.

A special abbreviation of a history reference occurs when
the first nonblank character of an input line is a “.

This is equivalent to !:s”, providing a convenient short-
hand for substitutions on the text of the previous line.
Thus “Ib"lib fixes the spelling of lib in the previous
command. Finally, a history substitution may be sur-
rounded with { and } if necessary to insulate it from the
characters that follow. Thus, after Is -1d paul we might
do !{1}a to do Is -1d paula, while !la would look for a
-command starting la.

-

CSH(C) CSH(C)

Quotations With ' and "

The quotation of strings by ' and " can be used to prevent
all or some of the remaining substitutions. Strings en-
closed in ' are prevented any further interpretation.
Strings enclosed in " are variable and command expansion
may occur.

In both cases, the resulting text becomes (all or part of)
a single word; only in one special case (see "Command
Substitution” below) does a " quoted string yield parts of
more than one word; ' quoted strings never do.

Alias Substitution

The shell maintains a list of aliases which can be estab-
lished, displayed and modified by the alias and unalias
commands. After a command line is scanned, it is parsed
into distinct commands and the first word of each command,
left-to-right, is checked to see if it has an alias. If

it does, then the text which is the alias for that command
is reread with the history mechanism available as though
that command were the previous input line. The resulting
words replace the command and argument list. If no refer-
ence is made to the history list, then the argument list

is left unchanged.

Thus, if the alias for lIs is 1s -1, the command Is /usr
would map to Is -1 /usr. Similarly if the alias for look-
up was grep !° /ete/passwd, then lookup bill would map to
grep bill /etc/passwd.

If an alias is found, the word transformation of the input
text is performed and the aliasing process begins again on
the reformed input line. Looping is prevented if the

first word of the new text is the same as the old by flag-
ging it to prevent further aliasing. Other loops are de-
tected and cause an error.

Note that the mechanism allows aliases to introduce parser
metasyntax. Thus, we can alias print 'pr \!* | Ipr' to
make a command that paginates its arguments to the line-
printer.

CSH(C) CSH(C)

Variable Substitution

The shell maintains a set of variables, each of which has
as a value a list of zero or more words. Some of these
variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell's
argument list, and words of this variable's value are re-
ferred to in special ways.)

The values of variables may be displayed and changed by
using the set and unset commands. Of the variables re-
ferred to by the shell, a number are toggles; the shell
does not care what their value is, only whether they are
set or not. For instance, the verbose variable is a
toggle that causes command input to be echoed. The set-
ting of this variable results from the -v command line
option.

Other operations treat variables numerically. The at-sign
(@) command permits numeric calculations to be performed
and the result assigned to a variable. However, variable
values are always represented as (zero or more) strings.
For the purposes of numeric operations, the null string is
considered to be zero, and the second and subsequent words
of multiword values are ignored.

After the input line is aliased and parsed, and before
each command is executed, variable substitution is per-
formed, keyed by dollar sign ($) characters. This expan-
sion can be prevented by preceding the dollar sign with a
backslash (\) except within double quotation marks (")
where it always occurs, and within single quotation marks
(') where it never occurs. Strings quoted by back quota-
tion marks (°) are interpreted later (see "Command Sub-
stitution" below) so dollar sign substitution does not
occur there until later, if at all. A dollar sign is

passed unchanged if followed by a blank, tab, or end-of-
line.

Input and output redirections are recognized before vari-
able expansion and are variable expanded separately.
Otherwise, the command name and entire argument list are
expanded together. It is thus possible for the first
(command) word to generate more than one word, the first
of which becomes the command name, and the rest of which
become arguments.

CSH(C) CSH(C)

Unless enclosed in double quotation marks or given the :q
modifier, the results of variable substitution may even-
tually be command and filename substituted. Within double
quotation marks ("), a variable whose value consists of
multiple words expands to a portion of a single word, with
the words of the variable's value separated by blanks.

When the :q modifier is applied to a substitution the var-
iable expands to multiple words with each word separated
by a blank and quoted to prevent later command or filename
substitution.

The following sequences are provided for introducing vari-
able values into the shell input. Except as noted, it is
an error to reference a variable that is not set.

$name

${name} Are replaced by the words of the value of
variable name, each separated by a blank.
Braces insulate name from following char-
acters which would otherwise be part of it.
Shell variables have names consisting of up
to 20 letters, digits, and underscores.

If name is not a shell variable, but is set
in the environment, then that value is re-
turned; however, modifiers and the other
forms given below are not available in this
case.

$namelselector]

${namelselectorl}
May be used to select only some of the
words from the value of name. The selec-
tor is subjected to $ substitution and may
consist of a single number or two numbers
separated by a -. The first word of a
variable's value is numbered 1. If the
first number of a range is omitted it de-
faults to 1. If the last member of a range
is omitted it defaults to $#name. The se-
lector * selects all words. It is not an
error for a range to be empty if the second
argument is omitted or in range.

CSH(C) CSH(C)

$#name -

${#iname} Gives the number of words in the variable.
This is useful for later use in a
[selector].

$0 Substitutes the name of the file from which
command input is being read. An error oc-
curs if the name is not known.

$number 4

${number} Equivalent to $argv[number].

$* Equivalent to $argol*].

The modifiers :h, :t, :r, :q and :x may be applied to the
substitutions above as may :gh, :gt, and :gr. If braces

{ } appear in the command form, then the modifiers must ap-
pear within the braces. Only one : modifier is allowed

on each $ expansion.

The following substitutions may not be modified with :

modifiers.

$?name

${?name} Substitutes the string 1 if name is set, 0
if it is not.

$20 Substitutes 1 if the current input filename
is known, 0 if it is not.

$$ Substitutes the (decimal) process number of

the (parent) shell.

Command and Filename Substitution

Command and filename substitution are applied selectively
to the arguments of built-in commands. This means that
portions of expressions which are not evaluated are not
subjected to these expansions. For commands which are not
internal to the shell, the command name is substituted
separately from the argument list. This occurs very late,
after input-output redirection is performed, and in a

child of the main shell.

CSH(C) CSH(C)

Command Substitution

Command substitution is indicated by a command enclosed in
back quotation marks. The output from such a command is
normally broken into separate words at blanks, tabs and
newlines, with null words being discarded, this text then
replacing the original string. Within double quotation
marks, only newlines force new words; blanks and tabs are
preserved.

In any case, the single final newline does not force a new
word. Note that it is thus possible for a command substi-
tution to yield only part of a word, even if the command
outputs a complete line.

Filename Substitution

If a word contains any of the characters *, 2, [, or {, or
begins with the character -, then that word is a candidate
for filename substitution, also known as globbing. This
word is then regarded as a pattern, and replaced with an
alphabetically sorted list of filenames which match the
pattern. In a list of words specifying filename substitu-
tion it is an error for no pattern to match an existing
filename, but it is not required for each pattern to

match. Only the metacharacters ¥, ?, and [imply pattern
matching, the characters ~ and { being more akin to abbre-
viations.

In matching filenames, the character . at the beginning
of a filename or immediately following a /, as well as the
character / must be matched explicitly. The character *
matches any string of characters, including the null

string. The character ? matches any single character.
The sequence [...] matches any one of the characters en-
closed. Within [...], a pair of characters separated by -
matches any character lexically between the two.

The character ~ at the beginning of a filename is used to
refer to home directories. Standing alone, it expands to
the invoker's home directory as reflected in the value of
the variable home. When followed by a name consisting of
letters, digits, and - characters, the shell searches for

a user with that name and substitutes the user's home di-
rectory; thus "ken might expand to /usr/ken and
“ken/chmach to /usr/ken/chmach. If the character ~ is

10

CSH(C) , CSH(C) -

followed by a character other than a letter or /, or ap-
pears not at the beginning of a word, it is left un-
changed. :

The metanotation af{b,c,d}e is a shorthand for abe ace ade.
Left to right order is preserved, with results of matches
being sorted separately at a low level to preserve this
order. This construct may be nested. Thus
“source/sl/{oldls,Is}.c expands to /usr/source/sl/oldls.c
/usr/source/sl/ls.c, whether or not these files exist,
without any chance of error if the home directory for
source is /usr/source. Similarly ../{memo,*box} might
expand to ../memo ../box ../mbox. (Note that memo was
not sorted with the results of matching *box.) As a spe-
cial case {, }, and {} are passed unchanged.

Input/Output

The standard input and standard output of a command may
be redirected with the following syntax:

< name Opens file name (which is first variable,
command and filename expanded) as the
standard input.

<< word Reads the shell input up to a line which is
identical to word. The variable word is
not subjected to variable, filename, or
command substitution, and each input line
is compared to word before any substitu-
tions are made on this input line. Unless
a quoting backslash, double, or single quo-
tation mark, or a back quotation mark ap-
pears in word, variable and command substi-
tution is performed on the intervening
lines, allowing \ to quote $, \, and °.
Commands that are substituted have all
blanks, tabs, and newlines preserved, ex-
cept for the final newline which is
dropped. The resulting text is placed in
an anonymous temporary file which is given
to the command as standard input.

11

CSH(C)

> name
>! name
>& name
>&! name

>> name
>>& name
1 name
>>&! name

CSH(C)

The file name is used as standard output.
If the file does not exist then it is
created; if the file exists, it is trun-
cated, and its previous contents is lost.

If the variable noclobber is set, then the
file must not already exist or it must be a
character special file (e.g., a terminal or
/dev/null) or an error results. This helps
prevent accidental destruction of files.

In this case, the ! forms can be used to
suppress this check.

The forms involving & route the diagnostic
output into the specified file as well as
the standard output. Name is expanded in
the same way as < input filenames are.

Uses file name as standard output like >
but places output at the end of the file.
If the variable noclobber is set, then it
is an error for the file not to exist un-
less one of the ! forms is given. Other-
wise similar to >.

If a command is run detached (followed by &), then the
default standard input for the command is the empty file

/dev/null.

Otherwise the command receives the environ-

ment in which the shell was invoked as modified by the
input-output parameters and the presence of the command

in a pipeline.

Thus, unlike some previous shells, com-

mands run from a file of shell commands have no access to
the text of the commands by default; rather they receive
the original standard input of the shell. Use the <<
mechanism to present inline data, so shell command scripts
can function as components of pipelines and the shell can
block-read its input.

Diagnostic output may be directed through a pipe with
the standard output. Simply use the form |& rather than

just |.

12

CSH(C) CSH(C)

Expressions

A number of the built-in commands (to be described later)
take expressions, in which the operators are similar to
those of C, with the same precedence. These expressions
appear in the @, exit, if, and while commands. The fol-
lowing operators are available:

| && | ~ & == 1= <=>= <> KM
+-* /%17 ()

Here the precedence increases to the right, with the oper-
ators:

== and !=

<=, >=, ¢ and >
<< and >»>

+ and -

*# / and %

forming groups at the same level. The == and != operators
compare their arguments as strings; all others operate on
numbers. Strings which begin with 0 are considered octal
numbers. Null or missing arguments are considered 0. The
result of all expressions are strings, which represent
decimal numbers. No two components of an expression can
appear in the same word; they should be surrounded by
spaces except when adjacent to components of expressions
which are syntactically significant to the parser (& | < >
().

Also available in expressions as primitive operands are
command executions enclosed in { and } and file enquiries
of the form -l name where | is one of:

Read access
Write access
Execute access
Existence
Ownership
Zero size
Plain file
Directory

NSO O X gD

The specified name is command and filename expanded, then
tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible,

13

e

S~

CSH(C) . CSH(C)

all enquiries return false, i.e., 0. Command executions
succeed, returning true, i.e., 1, if the command exits
with status 0, otherwise they fail, returning false, i.e.,
0. If more detailed status information is required then
the command should be executed outside of an expression
and the variable status examined.

Control Flow

The shell contains a number of commands which can be used
to control command files (shell scripts) and, in limited

but useful ways, terminal input. These commands all oper-
ate by forcing the shell to reread or skip in its input

and, due to the implementation, restrict the placement of
some of the commands.

The foreach, switch, and while statements, as well as the
if-then-else form of the if statement require that the
major keywords appear in a single simple command on an
input line as shown below.

If the shell's input is not seekable, the shell buffers up
input whenever a loop is being read and performs seeks in
this internal buffer to accomplish the rereading implied
by the loop. (To the extent that this allows, backward
goto commands will succeed on nonseekable inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a
built-in command occurs as any component of a pipeline
except the last, then it is executed in a subshell. The
_following list describes the syntax and function of the
built-in commands:

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints
the alias for name. The final form assigns the specified
wordlist as the alias of name; wordlist is command and
filename substituted. The value for name is not allowed
to be alias or unalias.

14

CSH(C)

break

breaksw

case label:

cd

cd name
chdir

chdir name

continue

default:

echo wordlist

CSH(C)

Causes execution to resume after the end
of the nearest enclosing foreach or while
statement. The remaining commands on the
current line are executed. Multi-level
breaks are thus possible by writing them
all on one line.

Causes a break from a switch, resuming
after the endsw.

A label in a switch statement as discussed
below.

Changes the shell's working directory to
directory name. If no argument is given,
changes to the home directory of the user.
If name is not found as a subdirectory of
the current directory (and does not begin
with /, ./, or ../), then each component of
the variable cdpath is checked to see if it
has a subdirectory name. Finally, if all
else fails but name is a shell variable
whose value begins with /, then this is
tried to see if it is a directory.

Continues execution of the nearest enclos-
ing while or foreach. The rest of the com-
mands on the current line are executed.

Labels the default case in a switch state-
ment. ' The default should come after all
case labels.

The specified words are written to the
shell's standard output. A \c causes the
echo to complete without printing a new-
line. A \n in wordlist causes a newline to
be printed. Otherwise, the words are
echoed, separated by spaces.

15

AN 4

CSH(C)

else
end
endif
endsw

exec command

exit
exit(expr)

CSH(C)

See the description of the foreach, if,
switch, and while statements below.

The specified command is executed in place
of the current shell.

The shell exits either with the value of
the status variable (first form) or with
the value of the specified expr (second
form).

foreach name (wordlist)

end

glob wordlist

goto word

The variable name is successively set to
each member of wordlist and the sequence
of commands between this command and the
matching end are executed. (Both foreach
and end must appear alone on separate
lines.)

The built-in command continue may be used
to continue the loop prematurely and the
built-in command break to terminate it pre-
maturely. When this command is read from
the terminal, the loop is read once prompt-
ing with ? before any statements in the
loop are executed.

Like echo but no \ escapes are recognized
and words are delimited by null characters
in the output. Useful for programs that
wish to use the shell to filename expand a
list of words.

The specified word is filename and com-
mand expanded to yield a string of the form
label. The shell rewinds its input as much
as possible and searches for a line of the
form label: possibly preceded by blanks or
tabs. Execution continues after the speci-
fied line.

16

CSH(C)

history

CSH(C)

Displays the history event list.

if (expr) command

if (expr) then

If the specified expression evaluates true,
then the single command with arguments is
executed. Variable substitution on command
happens early, at the same time it does for
the rest of the if command. The value for
command must be a simple command, not a
pipeline, a command list, or a parenthe-
sized command list. Input/output redirec-
tion occurs even if expr is false, when
command is not executed.

else if (expr2) then

else

endif

logout

nice
nice +number
nice command

If the specified expr is true, the commands
to the first then are executed; else if
expr2 is true then the commands to the
second then are executed, etc. Any number
of else-if pairs are possible; only one

endif is needed. The else part is likewise
optional. (The words else and endif must
appear at the beginning of input lines; the
if-then clause must appear alone on its
input line or after an else.)

Terminates a login shell. The only way to
log out if ignoreeof is set.

nice +number command

The first form sets the nice for this shell
to 4. The second form sets the nice to the
given number. The final two forms run
command at priority 4 and number respec-
tively. The superuser may specify negative
niceness by using "nice -number"

17

N

CSH(C)

nohup
nohup command

onintr
onintr -
onintr label

rehash

CSH(C)

The command is always executed in a sub-
shell, and the restrictions placed on com-
mands in simple if statements apply.

The first form can be used in shell scripts
to cause hangups to be ignored for the re-
mainder of the script. The second form
causes the specified command to be run with
hangups ignored. Unless the shell is run-
ning detached, nohup has no effect. All
processes detached with & are automatically
run with nohup. (Thus, nohup is not really
needed.)

Controls the action of the shell on inter-
rupts. The first form restores the default
action of the shell on interrupts: to ter-
minate shell scripts or to return to the
terminal command input level. The second
form onintr - causes all interrupts to be
ignored. The final form causes the shell
to execute a goto label when an interrupt
is received or a child process terminates
because it was interrupted.

In any case, if the shell is running de-

tached and interrupts are being ignored,
all forms of onintr have no meaning and
interrupts continue to be ignored by the
shell and all invoked commands.

Causes the internal hash table of the con-
tents of the directories in the path vari-
able to be recomputed. This is needed if
new commands are added to directories in
the path while you are logged in. This
should only be necessary if you add com-
mands to one of your own directories, or if
a systems programmer changes the contents
of one of the system directories.

18

CSH(C)

CSH(C)

repeat count command

set
set name

set name=word

The specified command, which is subject to
the same restrictions as the command in the
one-line if statement above, is executed
count times. I/0 redirection occurs ex-
actly once, even if count is 0.

set name[index]=word
set name=(wordlist)

The first form of the command shows the
value of all shell variables. Variables

that have other than a single word as value
print as a parenthesized word list. The
second form sets name to the null string.
The third form sets name to the single
word. The fourth form sets the indexth
component of name to word; this component
must already exist. The final form sets
name to the list of words in wordlist. In
all cases, the value is command and file-
name expanded. These arguments may be
repeated to set multiple values in a single
set command. Note however, that variable
expansion happens for all arguments before
any setting occurs. ’

setenv name value

shift
shift variable

Sets the value of the environment variable
name to be value, a single string. Useful
environment variables are TERM, the type
of your terminal and SHELL, the shell you
are using.

The members of argv are shifted to the
left, discarding argvf1]. It is an error

for argv not to be set or to have less than
one word as value. The second form per-
forms the same function on the specified
variable.

19

CSH(C)

source name

switch (string)
case strl:

.

breaksw
default:
breaksw
endsw

time
time command

CSH(C)

The shell reads commands from name.
Source commands may be nested; if they are
nested too deeply, the shell may run out of
file descriptors. An error in a source at
any level terminates all nested source com-
mands. Input during source commands is
never placed on the history list.

Each case label is successively matched
against the specified string, which is

first command and filename expanded. The
file metacharacters ¥, ?, and [...] may be
used in the case labels, which are variable
expanded. If none of the labels match be-
fore a default label is found, then the
execution begins after the default label.
Each case label and the default label must
appear at the beginning of a line. The
command breaksw causes execution to con-
tinue after the endsw. Otherwise control
may fall through case labels and default
labels, as in C. If no label matches and
there is no default, execution continues
after the endsw.

With no argument, a summary of time used
by this shell and its children is printed. If
arguments are given, the specified simple
command is timed and a time summary as de-
scribed under the time variable is printed.

If necessary, an extra shell is created to
print the time statistic when the command
completes.

20

CSH(C)

umask
umask value

unalias pattern

unhash

unset pattern

wait

while (expr)

end

CSH(C)

The file creation mask is displayed (first
form) or set to the specified value (second
form). The mask is given in octal. Com-
mon values for the mask are 002 giving all
access to the group, and read and execute
access to others; or 022 giving all access
except no write access for users in the
group or others,

All aliases whose names match the specified
pattern are discarded. Thus all aliases

are removed by unalias *. ‘It is not an
error for nothing to match the unalias pat-
tern.

Use of the internal hash table to speed
location of executed programs is disabled.

All variables whose names match the speci-
fied pattern are removed. Thus all vari-
ables are removed by unset *; this has no-
ticeably distasteful side-effects. It is

not an error for nothing to be unset.

All child processes are waited for. If the
shell is interactive, an interrupt can dis-
rupt the wait, at which time the shell
prints names and process numbers of all
children known to be outstanding.

While the specified expression evaluates
non-zero, the commands between while and
the matching end are evaluated. Use break
and continue to terminate or continue the
loop prematurely. While and end must ap-
pear alone on their input lines. Prompting
occurs here the first time through the loop
as for the foreach statement if the input
is a terminal.

21

CSH(C)

@
@ name = expr

@ name[index] =

Predefined Variables

CSH(C)

expr

The first form prints the values of all the
shell variables. The second form sets the
specified name to the value of expr. If
the expression contains <, >, &, or |, at
least this part of the expression must be
placed within (). The third form assigns
the value of expr to the indexth argument
of name. Both name and its indexth com-
ponent must already exist.

Assignment operators, such as *= and +=,
are available as in C. The space separat-
ing the name from the assignment operator
is optional. Spaces are mandatory in sepa-
rating components of expr which would
otherwise be single words.

Special postfix ++ and -- operators incre-
ment and decrement name respectively,
€.8., @ i+,

The following variables have special meaning to the shell.
Of these, argv, child, home, path, prompt, shell, and
status are always set by the shell. Except for child and
status, this setting occurs only at initialization; these
variables will not then be modified unless done explicitly

by the user.

The shell copies the environment variable PATH into the
variable path, and copies the value back into the environ-
ment whenever path is set. Thus it is not necessary to
worry about its setting other than in the file .cshre, as
inferior csh processes will import the definition of path
from the environment.

argv

Set to the arguments of the shell, from
this variable positional parameters are
substituted, i.e., $1 is replaced by
$argol1].

22

CSH(C)

cdpath

child

echo

histchars

history

home

ignoreeof

CSH(C)

Gives a list of alternate directories
searched to find subdirectories in ¢d com-
mands.

The process number printed when the last
command was forked with &. This variable
is unset when this process terminates.

Set when the -x command line option is
given. Causes each command and its argu-
ments to be echoed just before it is exe-
cuted. For nonbuilt-in commands, all ex-
pansions occur before echoing. Built-in
commands are echoed before command and
filename substitution, since these substi-
tutions are then done selectively.

Can be assigned a two-character string.
The first character is used as a history
character in place of !, the second char-
acter is used in place of the ° substitu-
tion mechanism. For example, set histchars
= ";s" will cause the history characters to
be comma and semicolon.

Can be given a numeric value to control the
size of the history list. Any command that
has been referenced in this many events
will not be discarded. A history that is

too large may run the shell out of memory.
The last executed command is always saved
on the history list.

The home directory of the user, initialized
from the environment. The filename expan-
sion of ~ refers to this variable.

If set, the shell ignores end-of-file from
input devices that are terminals., This
prevents a shell from accidentally being
terminated by typing a Ctrl-d.

23

CSH(C)

mail

noclobber

noglob

nonomatch

path

CSH(C)

The files where the shell checks for mail.
This is done after each command completion
and will result in a prompt, if a specified
interval has elapsed. The shell sends the
message, "You have new mail," if the file
exists with an access time not greater than
its modify time. If the first word of the
value of mail is numeric, it specifies a
different mail checking interval, in sec-
onds, than the default, which is 10 min-
utes. If multiple mail files are speci-

fied, the shell sends the message "New mail
in name" when there is mail in the file
name.

As described in the section "Input/output,"
restrictions are placed on output redirec-
tion to insure that files are not acci-
dentally destroyed, and that >> redirec-
tions refer to existing files.

If set, filename expansion is inhibited.
This is most useful in shell scripts that
are not dealing with filenames, or after a
list of filenames has been obtained and
further expansions are not desirable.

If set, it is not an error for a filename
expansion to not match any existing files;
rather, the primitive pattern is returned.
It is still an error for the primitive pat-
tern to be malformed, i.e., echo [still
gives an error.

Each word of the path variable specifies a
directory in which commands are to be
sought for execution. A null word speci-
fies the current directory. If there is no
path variable, only full pathnames will
execute. The usual search path is /bin,
/usr/bin, and ., but this may vary from
system to system. For the super-user the
default search path is /etc, /bin and
/usr/bin. A shell that is given neither
the -¢ nor the -t option will normally hash
the contents of the directories in the path
variable after reading .cshre, and each

24

CSH(C)

prompt

shell

status

time

verbose

CSH(C)

time the path variable is reset. If new
commands are added to these directories
while the shell is active, it may be neces-
sary to use rehash or the commands may
not be found.

The string which is printed before each
command is read from an interactive ter-
minal input. If a ! appears in the

string, it will be replaced by the current
event number unless a preceding \ is given.
Default is % (or # for the super-user).

The file in which the shell resides. This

is used in forking shells to interpret

files that have execute bits set, but which
are not executable by the system. (See the
section "Nonbuilt-In Command Execution"
below.) Initialized to the system-dependent
home of the shell.

The status returned by the last command.
If it terminated abnormally, then 0200 is
added to the status. Abnormal termination
results in a core dump. Built-in commands
that fail return exit status 1, all other
built-in commands set status 0.

Controls automatic timing of commands. If
set, any command that takes more than this
many CPU seconds will cause a line giving
user, system, and real times and a utiliza-
tion percentage (ratio of user plus system
times to real time) to be printed when it
terminates.

Set by the -v command line option, causes
the words of each command to be printed
after history substitution.

Nonbuilt-In Command Execution

When a command to be executed is found to not be a
built-in command, the shell attempts to execute the com-
mand via exec(S). Each word in the variable path names a
directory from which the shell will attempt to execute the

25

CSH(C) CSH(C)

command. If it is given neither a -¢ nor a -t option, the
shell will hash the names in these directories into an
internal table so that it will only try an exec in a di-
rectory if there is a possibility that the command resides
there. This greatly speeds command location when a large
number of directories are present in the search path. If
this mechanism has been turned off (with unhash), or if
the shell was given a -c¢ or -t argument, and in any case
for each directory component of path which does not begin
with a /, the shell concatenates with the given command
name to form a pathname of a file which it then attempts
to execute.

Parenthesized commands are always executed in a subshell.
Thus:

(cd ; pwd) ; pwd

prints the home directory; leaving you where you were
(printing this after the home directory), while:

cd 5 pwd

leaves you in the home directory. Parenthesized commands
are most often used to prevent cd from affecting the cur-
rent shell.

If the file has execute permissions but is not an execut-
able binary to the system, then it is assumed to be a file
containing shell commands and a new shell is spawned to
read it.

If there is an alias for shell then the words of the alias
will be prepended to the argument list to form the shell
command. The first word of the alias should be the full
pathname of the shell (e.g., $shell). Note that this is a
special, late occurring case of alias substitution, and
only allows words to be prepended to the argument list
without modification.

26

CSH(C)

CSH(C)

Argument List Processing

If argument 0 to the shell is -, then this is a login

shell.

-C

-e

-n

-S

-V

-X

-V

-X

The flag arguments are interpreted as follows:

Commands are read from the (single) following argu-
ment which must be present. Any remaining arguments
are placed in argv.

The shell exits if any invoked command terminates
abnormally or yields a nonzero exit status.

The shell will start faster, because it will neither
search for nor execute commands from the file .cshrc
in the user's home directory.

The shell is interactive and prompts for its
top-level input, even if it appears to not be a ter-
minal. Shells are interactive without this option if
their inputs and outputs are terminals.

Commands are parsed, but not executed. This may aid
in syntactic checking of shell scripts.

Command input is taken from the standard inpﬁt.

A single line of input is read and executed. A \ may
be used to escape the newline at the end of this line
and continue onto another line.

Causes the verbose variable to be set, with the ef-
fect that command input is echoed after history sub-
stitution. o

Causes the echo variable to be set, so that commands
are echoed immediately before execution.

Causes the verbose variable to be set even before
.cshrc is executed.

Causes the echo variable to be set even before .cshrc
is executed.

After the flag arguments have been processed, if arguments
remain but none of the -¢, -i, -s, or -t options were
given, the first argument is taken as the name of a file

of commands to be executed. The shell opens this file,

27

CSH(C) CSH(C)

and saves its name for possible resubstitution by $0.
Since on a typical system most shell scripts are written
for the standard shell (see sh(C)), the C shell will exe-
cute such a standard shell if the first character of a
script is not a # (if the script does not start with a
comment). Remaining arguments initialize the variable
argo.

Signal Handling

The shell normally ignores quit signals. The interrupt

and quit signals are ignored for an invoked command if the
command is followed by &; otherwise the signals have the
values that the shell inherited from its parent. The
shell's handling of interrupts can be controlled by

onintr. Login shells catch the terminate signal; other-
wise this signal is passed on to children from the state

in the shell's parent. In no case are interrupts allowed
when a login shell is reading the file .logout.

Files
/etc/defauit/.cshre Read by each shell at the be-
ginning of execution.
/ete/default/.login Read by login shell, after
.cshre at login.
/etc/default/.logout Read by login shell, at
logout.
/bin/sh Shell for scripts not starting
with a #.
/tmp/sh* Temporary file for <<.
/dev/null Source of empty file.
/etc/passwd Source of home directories for
name.
/etc/cshre Default file of automatically
invoked commands.
Limitations

Words can be no longer than 512 characters. The number
of arguments to a command which involves filename expan-
sion is limited to 1/6 number of characters allowed in an
argument list, which is 10240, less the characters in the
environment. Also, command substitutions may substitute
no more characters than are allowed in an argument list.

28

CSH(C) CSH(C)

To detect looping, the shell restricts the number of alias
substitutions on a single line to 20.

See Also
access(S), a.out(F), environ(M), exec(S), fork(S),
pipe(S), signal(S), umask(S), wait(S)
User's Guide

Credit
This utility was developed at the University of California
at Berkeley and is used with permission.

Notes

Built-in control structure commands like foreach and while
cannot be used with |, &, or ;.

Commands within loops, prompted for by ?, are not placed
in the history list.

It is not possible to use the colon (:) modifiers on the
output of command substitutions.

Csh attempts to import and export the PATH variable for
use with regular shell scripts. This only works for sim-
ple cases, where the PATH contains no command characters.

This version of csh does not support or use the process
control features of the 4th Berkeley Distribution.

29

T

CSPLIT(C) ~ CSPLIT(C)

Name

csplit - Splits files according to context.

Syntax

csplit [-f prefix] [-k] [-s] file argl [... argn]

Description

Csplit reads file and separates it into n+l1 sections, de-
fined by the arguments argl...argn. By default the sec-
tions are placed in xx00...xxn (n may not be greater
than 99). These sections get the following pieces of
file:

00: From the start of file up to (but not including) the
line referenced by argl.

01: From the line referenced by argl up to the line re-
ferenced by arg2?

n: From the line referenced by argn to the end of file.
The options are:

-f prefix If the -f option is used, the created files are
named prefix00...prefixn. The default is
xx00...xxn.

-k Csplit normally removes created files if an
- error occurs. If this option is present, csplit
leaves previously created files intact.

-S Csplit normally prints the character counts for
each file created. If this option is present,
csplit suppresses the printing of all character
counts.

The arguments (argl...argn) can be a combination of the
following:

CSPLIT(C) : CSPLIT(C)

/rexp/ A file is to be created for the section from the
current line up to (but not including) the line
containing the regular expression rexp. The
current line becomes the line containing rexp.
This argument may be followed by an optional +
or - some number of lines (e.g., /Page/-5).

Srexp% This argument is the same as /rexp/, except that
no file is created for the section.

Inno A file is to be created from the current line up
to (but not including) Inno. The current line
becomes Inno.

{num} Repeat argument. This argument may follow any
of the above arguments. If it follows a rexp
argument, that argument is applied num more
times. If it follows Inno, the file will be
split every Inno lines (num times) from that
point.

Enclose all rexp arguments that contain blanks or other

characters meaningful to the shell in the appropriate quo-

tation marks. Regular expressions may not contain em-

bedded newline characters. Csplit does not affect the
original file; it is the user's responsibility to remove it.

Examples
csplit -f cobol file '/procedure division/' /par5./ /parl6./
This example creates four files, cobol00...cobol03.
After editing the "split" files, they can be recombined
as follows:
cat cobol0[0-3] > file
Note that this example overwrites the original file.

csplit -k file 100 {99}

~

~——

CSPLIT(C) CSPLIT(C)

This example would split the file at every 100 lines, up
to 10,000 lines. The -k option causes the created files
to be retained if there are less than 10,000 lines; how-
ever, an error message would still be printed.

csplit -k prog.c '%main(%' '/"}/+1' {20}
Assuming that prog.c follows the normal C coding conven-
tion of ending routines with a } at the beginning of the
line, this example will create a file containing each sep-
arate C routine (up to 21) in prog.c.

See Also

ed(C), regex(S), sh(C)

Diagnostics
Self-explanatory, except for:
arg - -out of range

which means that the given argument did not reference a
line between the current position and the end of the file.

CT(C) C1(C)

Name

ct - Spawns getty to a remote terminal.

Syntax

ct [-h] [-v] [-wn] [-xn] [-sspeed] telno ...

Description

Ct dials the phone number of a modem that is attached to
a terminal, and spawns a getty process to that terminal,
Telno is a telephone number, with equal signs for secon-
dary dial tones and minus signs for delays at appropriate
places. If you specify more than one telephone number, ct
tries each in succession until one answers; this is useful
for specifying alternate dialing paths.

Ct tries each line in the file /usr/lib/uucp/Devices until
it finds an available line with appropriate attributes or
runs out of entries. If there are no free lines, ct asks

if it should wait for one, and if so, for how many minutes
it should wait before it gives up. Ct continues to try to
open the dialers at one-minute intervals until the speci-
fied limit is exceeded.

Options

-xn Produces a detailed output of the program execution
on stderr (used for debugging). The debugging level,
n, is a single digit; -x9 is the most useful value.

-wn Overrides dialogue. n is the maximum number of min-
utes that ct is to wait for a line.

-h Prevents ct from hanging up current line to allow
that line to answer the incoming call (the default is
to hang up). Waits for the termination of the speci-
fied ct process before returning control to the
user's terminal.

-v Sends a running narrative to the standard error out-
put stream.

CT(C) ’ CT(C)

- Sets the data rate; speed is the baud rate. The de-
fault rate is 1200.

If there is already an active getty(M) or uugetty(M)
running on the dial-out port prior to invoking ct, et will
establish the connection and exit, allowing the running
getty(M) or uugetty(M) to print the "login:" prompt on
the destination terminal. The connection is terminated
after the user on the destination terminal logs out.

On the other hand, if the dial-out port is disabled, ct
spawns a new getty(M) on the port after establishing
connection, and waits for the user on the destination
terminal to log out.

After the user logs out, ct prompts,

If the response begins with the letter n or there is no
response in 20 seconds, the line is dropped; otherwise,

N getty(M) will be started again and the login: prompt will
Y be printed.
To log out properly, type Eiemel.
Of course, the destination terminal must be attached to a
modem that can answer the telephone.
Files
/usr/lib/uucp/Devices
/usr/adm/ctlog
See Also
cu(C), login(C), uucp(C), getty(M), uugetty(M)
N
/

CTAGS(C) v CTAGS(C)

Name

ctags - Creates a tags file.

Syntax

ctags [-ul [-w1lI[-x1] name ...

Description

Ctags makes a tags file for vi(C) from the specified C
sources. A tags file gives the locations of specified
objects (in this case functions) in a group of files. Each
line of the tags file contains the function name, the file
in which it is defined, and a scanning pattern used to
find the function definition. These are given in separate
fields on the line, separated by blanks or tabs. Using
the tags file, vi can quickly find these function defini-
tions. Options are:

-u Causes the specified files to be updated in tags;
that is, all references to them are deleted, and the
new values are appended to the file. (Note: this
option is implemented in a way which is rather slow;
it is usually faster to simply rebuild the tags
file.)

-w Suppresses warning diagnostics.

-x Produces a list of function names, the line number
and file name on which each is defined, as well as
the text of that line and prints this on the standard
output. With the -x option no tags file is created.
This is a simple index which can be printed out as an
off-line readable function index. Files whose name
ends in .c or .h are assumed to be C source files and
are searched for C routine and macro definitions.

The tag main is treated specially in C programs. The tag
formed is created by prepending M to the name of the file,
with a trailing .c removed, if any, and leading pathname
components also removed. This makes use of ctags prac-
tical in directories with more than one program.

CTAGS(C) CTAGS(C)

Files

tags Output tags file

See Also

ex(C), vi(C)

Credit

This utility was developed at the University of California
at Berkeley and is used with permission.

cu(c)

Name

Ccu(c)

cu - Calls another UNIX system.

Syntax

cu [-sspeed] [-line] [-h] [-t] [-d] [-o0 | -e] [-n] telno
cul[-sspeed][-h1[-d]l[-0o]| -e]-lline
cu [-h] [-d] [-0 | -e] systemname

Description

Cu calls up another UNIX system, a terminal, or possibly
a non-UNIX system. It manages an interactive conversa-
tion with possible transfers of ASCII files.

NOTE

Before you run cu, set up the serial port as:
xtty ixon ixoff iflow oflow. See xtty(C) for
an explanation of these flags.

Cu accepts the following options and arguments:

-sspeed

-lline

Specifies the transmission speed (300,

1200, 2400, 4800, 9600). The default value
is "Any" speed which will depend on the
order of the lines in the
/usr/lib/uucp/Devices file. Most modems
are either 300 or 1200 baud. Directly con-
nected lines may be set to a speed higher
than 1200 baud.

Specifies a device name to use as the com-
munication line. This can be used to over-
ride the search that would otherwise take
place for the first available line having

the right speed. When the -1 option is
used without the -s option, the speed of a
line is taken from the Devices file. When
the -1 and -s options are both used to-
gether, cu will search the Devices file to
check if the requested speed for the re-

N_T

CU(C)

-0

-n

-

telno

systemname

Cu(C)

quested line is available. If so, the con-
nection will be made at the requested
speed; otherwise an error message will be
printed and the call will not be made. The
specified device is generally a directly
connected asynchronous line (e.g.,
/dev/ttynn) in which case a telephone num-
ber (telno) is not required. The specified
device need not be in the /dev directory.
If the specified device is associated with
an auto dialer, a telephone number must be
provided. Use of this option with system-
name rather than telno will not give the
desired result (see systemname below).

Emulates local echo, supporting calls to
other computer systems which expect ter-
minals to be set to half-duplex mode.

Used to dial an ASCII terminal which has
been set to auto answer. Appropriate map-
ping of carriage-return to carriage-return-
line-feed pairs is set.

Causes diagnostic traces to be printed.

Designates that odd parity is to be gener-
ated for data sent to the remote system.

For added security, will prompt the user to
provide the telephone number to be dialed
rather than taking it from the command
line.

Designates that even parity is to be gener-
ated for data sent to the remote system.

When using an automatic dialer, the argu-
ment is the telephone number with equal
signs for secondary dial tone or minus
signs placed appropriately for delays of 4
seconds.

A uucp system name may be used rather
than a telephone number; in this case, cu
will obtain an appropriate direct line or
telephone number from
/usr/lib/uucp/Systems.

Cu(C)

Cu(C)

NOTE

The systemname option should not be used in
conjunction with the -1 and -s options as cu
will connect to the first available line for
the system name specified, ignoring the re-
quested line and speed.

After making the connection, cu runs as two processes:

the transmit process reads data from the standard input
and, except for lines beginning with ~, passes it to the
remote system; the receive process accepts data from the
remote system and, except for lines beginning with ~,
passes it to the standard output. - Normally, an automatic
DC3/DC1 protocol is used to control input from the remote
system so the buffer is not overrun. Lines beginning with
~ have special meanings.

The transmit process interprets these user-initiated com-
mands:

.) Terminate the conversation.

-1 Escape to an interactive shell on the
local system.

“lemd... Run emd on the local system (via sh
-c).

~$emd... Run emd locally and send its output to
the remote system.

“%cd Change the directory on the local sys-
tem. Note: ~led will cause the com-
mand to be run by a sub-shell, prob-
ably not what was intended.

~%take from [to] Copy file from (on the remote system)
to file to on the local system. If to
is omitted, the from argument is used
in both places.

CU(C) cu(C)

“%put from [to 1] Copy file from (on local system) to
file to on remote system. If to is
omitted, the from argument is used in
both places.

For both ~“%take and put commands, as
each block of the file is transferred,
consecutive single digits are printed
to the terminal.

=~ line Send the line “line to the remote
system.

“%break Transmit a BREAK to the remote sys-
tem (which can also be specified as
~%b).

~%debug Toggle the -d debugging option on or
off (which can also be specified as
~%d).

"t Print the values of the termio‘ struc-
ture variables for the user's terminal
(useful for debugging).

"1 Print the values of the termio struc-
ture variables for the remote communi-
cation line (useful for debugging).

“%nostop Toggle between DC3/DCl input control
protocol and no input control. This
is useful in case the remote system is
one which does not respond properly
to the DC3 and DC1 characters.

The receive process normally copies data from the remote
system to its standard output. Internally the program
accomplishes this by initiating an output diversion to a
file when a line from the remote begins with ~>.

Data from the remote is diverted (or appended, if >)> is
used) to file on the local system. The trailing ~> marks
the end of the diversion.

The use of “%put requires stty(C) and cat(C) on the remote
side. It also requires that the current erase and kill
characters on the remote system be identical to these cur-

CU(C) CU(C)

rent control characters on the local system. Backslashes
are inserted at appropriate places.

The use of “%take requires the existence of echo(C) and
cat(C) on the remote system. Also, tabs mode (see
stty(C)) should be set on the remote system if tabs are to
be copied without expansion to spaces.

When cu is used on system X to connect to system Y and
subsequently used on system Y to connect to system Z, com-
mands on system Y can be executed by using . Executing
a tilde command reminds the user of the local system
uname, For example, uname can be executed on Z, X, and
Y as follows:

uname

4
“[X]!uname
X

"7 {Y}!uname
Y

In general, ~ causes the command to be executed on the
original machine ~~ causes the command to be executed on
the next machine in the chain.
Examples

To dial a system whose telephone number is 9 (201)
555-1212 using 1200 baud (where a dialtone is expected
after the 9):

cu -s1200 9=12015551212
If the speed is not specified, "Any" is the default value.
To login to a system connected by a direct line:

cu -1 /dev/ttynn

or

cu -1 ttynn

CU(C) Ccu(c)
To dial a system with the specific line and a specific
speed:

cu -s1200 -1 ttynn

J To dial a system using a specific line associated with an
auto dialer:

cu -1 culnn 9=12015551212
To use a system name:

cu systemname

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/spool/locks/LCK..(tty-device)

See Also

/ cat(C), echo(C), stty(C), uucp(C), uname(C)

Diagnostics

Exit code is zero for normal exit, otherwise, one.

Notes

The cu command does not do any integrity checking on data
it transfers. Data fields with special cu characters may

not be transmitted properly. Depending on the interconnec-
tion hardware, it may be necessary to use a ~. to termi-
nate the conversion even if stty 0 has been used. Non-
printing characters are not dependably transmitted using
either the “%put or “%take commands. Cu with some modems
will not return a login prompt immediately upon connec-

> tion. A carriage return will return the prompt.

There is an artificial slowing of transmission by cu dur-
ing the ~%put operation so that loss of data is unlikely.

Cu and csh(C) are not compatible.

DATE(C) DATE(C)

Name

date - Prints and sets the date.

Syntax

date [-cms] [mmddhhmm[yy] 1 [+format]

Description

If no argument is given, or if the argument begins with +,
the current date and time are printed. If an argument is
given, the current date is set. Arguments are

mm= the month number

dd = the day number in the month

hh = the hour number (24-hour clock)

mm= the minute number

yy = the last two digits of the year (optional)

For example,
date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the
default if no year is given. The system operates in GMT
(Greenwich Mean Time). Date takes care of the conversion
to and from local standard and daylight time. To change
the time zone, see the TZ option of environ(C).

To change the time zone,

. Bourne shell (sh)
Insert the following in /etc/profile:

TZ=timezone
export TZ

o C shell (csh)
Insert the following in /etc/cshrc:
[4

setenv TZ timezone

Timezone is either PST, MST, CST, or EST.

DATE(C)

DATE(C)

If the argument begins with +, the output of date is un-
der the control of the user. The format for the output is
similar to that of the first argument to printf(S). All
output fields are of fixed size (zero padded, if neces-

sary).

Each field descriptor is preceded by a percent

sign (%) and will be replaced in the output by its corres-
ponding value. A single percent sign is encoded by doub-
ling the percent sign, i.e., by specifying "%%". All

other characters are copied to the output without change.
The string is always terminated with a newline character.

Options

-C

-m

-S

Prints the current date and time from the hardware
real-time clock; date -¢ mmddhhmm[yy] sets the real-
time clock.

Updates the year on the hardware real-time clock if
it is January 1, and makes adjustments to the real-
time clock if it is February 29 in a leap year.

These dates are not automatically incremented. Be
sure to use this option after midnight. The -m op-
tion checks for January 1 or February 29, and then
updates the hardware real-time clock if necessary.
For the -m option to work correctly, the software
clock and the hardware clock should be within twelve
hours of one another. Use cron(C) to execute date -m
each day.

Sets (synchronizes) the system (i.e., software) clock
to the current time and date from the hardware real-
time clock.

The operating system normally uses only the system
(software) clock. It uses the hardware real-time clock
only with the date command.

DATE(C) DATE(C)

Field Descriptors:

Abbreviated weekday (Sun to Sat)
Day of month (01 to 12)

Date as mm/dd/yy

Abbreviated month (Jan to Dec)
Hour (00 to 23)

Month of year (01 to 12)

Julian date (001 to 366)

Minute (00 to 59)

Inserts a newline character

Time in AM/PM notation

Second (00 to 59)

Time as HH:MM:SS

Inserts a tab character

Day of the week (Sunday = 0)
Last 2 digits of the year (00 to 99)

<scoHuRBEEg-gnEgas

Example
If you type
date '+DATE:%¥m/%d/%y%nTIME:SH:3M:%S'

the output is:

Related Commands

asktime(C)

Files

/usr/adm/wtmp To record time-setting

DATE(C) DATE(C)

Diagnostics

no permission = you aren't the super-user when changing
the date.

bad conversion = incorrect syntax used.

bad format character = incorrect field descriptor used.

DC(C)

Name

DC(C)

dc - Desk calculator.

Syntax

de [file]

Description

Dec is an arbitrary precision arithmetic package. Ordi-
narily it operates on decimal integers, but one may speci-
fy an input base, output base, and a number of fractional
digits to be maintained. (See be(C), a preprocessor for
dc that provides infix notation and a C-like syntax that
implements functions. Bc also provides reasonable control
structures for programs.) The overall structure of dc is a
stacking (reverse Polish) calculator. If an argument is
given, input is taken from that file until its end, then
from the standard input. The following constructions are
recognized:

number

The value of the number is pushed on the stack.
A number is an unbroken string of the digits

0-9. It may be preceded by an underscore (_) to
input a negative number. Numbers may contain
decimal points.

+-/*%"

SX

The top two values on the stack are added (+),
subtracted (-), multiplied (*), divided (/), re-
maindered (%), or exponentiated (°). The two
entries are popped off the stack; the result is
pushed on the stack in their place. Any frac-
tional part of an exponent is ignored.

The top of the stack is popped and stored into a
register named x, where x may be any character.
If the s is capitalized, x is treated as a stack
and the value is pushed on it.

DC(C)

<XOx=X

DC(C)

The value in register x is pushed on the stack.
The register x is not altered. All registers
start with zero value: If the 1 is capitalized,
register x is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top
value remains unchanged.

Interprets the top of the stack as an ASCII
string, removes it, and prints it.

All values on the stack are printed:

Exits the program. If executing a string, the
recursion level is popped by two.

Exits the program. The top value on the stack
is popped and the string execution level is
popped by that value.

Treats the top element of the stack as a charac-
ter string and executes it as a string of de
commands.

Replaces the number on the top of the stack with
its scale factor.

Puts the bracketed ASCII string onto the top of
the stack.

The top two elements of the stack are popped
and compared. Register x is evaluated if they
obey the stated relation.

Replaces the top element on the stack by its
square root: Any existing fractional part of
the argument is taken into account, but other-
wise the scale factor is ignored.

Interprets the rest of the line as an operating
system command.

DC(C)

Example

See Also

DC(C)

All values on the stack are popped.

The top value on the stack is poped and used as
the number radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as
the number radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value
is used as a non-negative scale factor: the
appropriate number of places are printed on out-
put, and maintained during multiplication, divi-
sion, and exponentiation. The interaction of
scale factor, input base, and output base will

be reasonable if all are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with
its length.

A line of input is taken from the input source
(usually the terminal) and executed.

Used by be(C) for array operations:

This example prints the first ten values of nl:

[lal+dsa*plal0>ylsy

DC(C) DC(C)

Diagnostics

x is unimplemented
Where x is an octal number.

stack empty
Not enough elements on the stack to do what was
asked.

Out of space
The free list is exhausted (too many digits).

Out of headers
Too many numbers being kept around.

Out of pushdown
Too many items on the stack.

Nesting Depth
Too many levels of nested execution.

DD(C)

Name

DD(C)

dd - Converts and copies a file.

Syntax

dd [option=value] ...

Description

The dd command copies the specified input file to the spe-
cified output with possible conversions. The standard
input and output are used by default. The input and out-
put block size may be specified to take advantage of raw

physical 1/0.

Options
if=file

of=file

ibs=n
obs=n

bs=n

cbs=n
skip=n
files=n

seek=n

count=n

Values
Input file name; standard input is default

Output file name; standard output is de-
fault

Input block size n bytes (default 512)
Output block size (default 512)

Set both input and output block size,
superseding ibs and obs; also, if no con-
version is specified this is particularly
efficient since no copy need be done
Conversion buffer size

Skip n input records before starting copy
Copy n files from (tape) input

Seek n records from beginning of output
file before copying (the output file is

truncated first)

Copy only n input records

s

DD(C) DD(C)

conv=ascii Convert EBCDIC to ASCII

conv=ebcdic Convert ASCII to EBCDIC

conv=ibm Slightly different map of ASCII to
EBCDIC

conv=lcase Map alphabetics to lower case

conv=ucase Map alphabetics to upper case

conv=swab Swap every pair of bytes

conv=noerror Do not stop processing on an error
conv=sync Pad every input record to ibs
conv="... , ..." Several comma-separated conversions

Where sizes are specified, a number of bytes is expected.
End a number with k, b, or w to specify multiplication by
1024, 512, or 2 respectively; separate a pair of numbers
with x to indicate a product.

The cbs option is used only if ASCII or EBCDIC conversion
is specified. In the former, case characters are placed
into the conversion buffer, converted to ASCII, and trail-
ing blanks trimmed and newline added before sending the
line to the output. In the latter, case ASCII characters
are read into the conversion buffer, converted to EBCDIC,
and blanks added to make up an output record of size cbs.

The ASCII/EBCDIC conversion tables are taken from the 256
character standard in the CACM Nov, 1968. The ibm conver-
sion corresponds better to certain IBM print train conven-
tions.

Newlines are inserted only on conversion to ASCII; padding
is done only on conversion to EBCDIC. These should be
separate options.

After completion, dd reports the number of whole and par-
tial input and output blocks.

DD(C)

DD(C)

Examples

For example, to read an EBCDIC tape blocked ten 80-byte
EBCDIC card images per record into the ASCII file x:

dd if=/dev/ret of=x ibs=800 cbs=80 conv=ascii,lcase,sync
Note the use of raw mag tape. Dd is especially suited to
1/0 on the raw physical devices because it allows reading
and writing in arbitrary record sizes.

To skip over a file before copying from magnetic tape,
type the following:

(dd of=/dev/null; dd of=x) </dev/rct

Related Commands

cp(C), cat(C)

Notes

Error

The c¢bs value must be zero if no block conversion is re-
quested.

The last block of data is not written to tape (/dev/rct)
or floppy if there is not enough data to fill that block.
Therefore, use the conv=sync option to make sure the last
block is written.

If you are using raw I/0 on the file processor, use a
block size that is a mulitiple of 512 bytes.

It's best to use the same block size (used when storing
data) when you retrieve data.
Messages

f+p records in(out): numbers of full and partial records
read(written)

See "Operating System Error Messages" in the Operations
Guide.

DEVINFO(C) DEVINFO(C)

Name

devinfo - Displays device information.

Syntax

/etc/devinfo [-jp 1 [-bboard 1 [-cchan] [-ttype 1}

Description

Use devinfo to display information about certain devices
in the system. These devices are usually related to com-
munications (e.g., SIO and Multidrop boards). The devinfo
information comes from the /etc/sysdisp file, if it ex-
ists, otherwise from the sysconf(S) system call.

The command without any arguments prints information about
each board currently in the system that is associated with
tty devices. For example,

The options are:

-bboard Displays the type of the specified board as a
decimal code. For example, the code for a
Multidrop-type board is a 4 and for an SIO-type
board is 3.

-cchan Displays the tty name associated with channel
chan on the board specified by the -b option.

-j Gives the subjumpering sequence of the board
specified by the -b option.

-p Displays the entire sysdisp entry.

DEVINFO(C) . DEVINFO(C)

Files

~ttype Specifies a sysdisp entry for boards with a type
code of type. Must be used with the -p option.

For example,
devinfo -bl -c8

displays /dev/tty72, which is the tty name associated with
channel 8 on the board in slot 1.

devinfo -bl
displays 3, which is the board type as a decimal code.

For more information, see /usr/include/sys/bootinfo.h and
the sysconf system call.

/etc/sysdisp Describes all possible board types

See Also

sysconf(C), sysconf(S)

Notes

If devinfo can't obtain the current board map (the
sysconf(S) system call was introduced at the same time
that Multidrop was added), it assumes that the current
system configuration consists of four SIO boards.

As explained in sysconf(C), on an Altos 386 Series 1000,
an SIO board is reported as a Multidrop. Also, multiple
SI0s are reported as only one Multidrop on these systems.

However, the range of tty ports reported in "First" and
"Last" is still accurate. For example, a 386 Series 1000
with three SIOs would be reported as shown with only
one Multidrop board and 24 ports:

DEVNM(C) DEVNM(C)

Name
devnm - Identifies device name on which files reside.
h
Syntax
/etc/devnm name...
Description
Devﬁm identifies the special file associated with the
mounted file system where the argument name resides.
Examples
Be sure to type full pathnames as in this example:
/etc/devnm /usr
\ If /dev/hdOb is mounted on /usr, this produces:
/
Files
/dev/* device names
/ete/mnttab

~

DIFF(C) , DIFF(C)

Name

diff - Compares two text files.

Syntax

diff [-befh] filel file2

Description

Diff tells what lines must be changed in two files to
bring them into agreement. If filel (file2) is -, the
standard input is used. If filel (file2) is a directory,
then a file in that directory with the name file2 (filel)
is used. Normal output line format is:

nl a n3,nd
nl,n2 d n3
nl,n2 ¢ n3,n4

These lines resemble ed(C) commands to convert filel into
file2. The numbers after the letters pertain to file2.

In fact, by exchanging a for d and reading backward you
can ascertain how to convert file2 into filel. As in ed,
identical pairs, where nl = n2 or n3 = n4, are abbreviated
as a single number.

Following each of these lines come all the lines that are
affected in the first file flagged by <, then all the
lines that are affected in the second file flagged by >.

Except in rare circumstances, diff finds the smallest suf-
ficient set of file differences. The options are:

-b Causes trailing spaces and tabs to be ignored and
other strings of spaces to compare equally.

-e Produces a script of a, ¢, and d commands for the
editor ed, which will recreate file2 from filel.

-f Produces a similar script, not useful with ed, in the
opposite order.

N
/

DIFF(C) DIFF(C)

In connection with -e, the following shell procedure helps
maintain multiple versions of a file:

(shift:; cat $*: echo '1.$p') | ed - $1

which performs a set of editing operations on an original
ancestral file. It combines the sequence of ed scripts
given as all command line arguments except the first.
These scripts are presumed to be created with diff in the
order given on the command line. The set of editing oper-
ations is then piped as an editing script to ed where all
editing operations are performed on the ancestral file
given as the first argument on the command line. The
final version of the file is then displayed. Only an an-
cestral file ($1) and a chain of version-to-version ed
scripts ($2,$3,...) made by diff need be on hand.

-h Produces a fast, but less rigorous job. It works
only when changed stretches are short and well sepa-
rated, but it also works on files of unlimited
length. The -e and -f options cannot be used with
the -h option.

/usr/lib/difth for -h

See Also

cmp(C), comm(C), ed(C)

Diagnostics

Exit status: 0 = no differences, 1 = differences, 2 =
errors.

Missing newline at end of file X. The last line of file X
did not have a newline. If the lines are different, they
will be flagged and output; although the output will seem
to indicate they are the same.

DIFF(C) DIFF(C)

Notes

Editing scripts produced under the -e or -f options do not
always work correctly on lines consisting of a single per-
iod (.).

DIFF3(C) DIFF3(C)

Name

diff3 - Compares three files.

Syntax

diff3 [-ex3 1 filel file2 file3

Description

Diff3 compares three versions of a file, and publishes
disagreeing ranges of text flagged with these codes:

==== All three files differ
==z=z] Filel is different
==== File2 is different
==z== File3 is different

The type of change suffered in converting a given range of
a given file to some other range is indicated in one of
these ways:

f:nl a Text is to be appended after line number
nl in file f, where f = 1, 2, or 3.

f:nl,n2c Textis to be changed in the range from
line nl to line n2. If nl = n2, the range
may be abbreviated to nl.

The original contents of the range follows immediately
after a c¢ indication. When the contents of two files are
identical, the contents of the lower-numbered file is sup-
pressed.

The options are:

-e Publishes a script for the editor, ed(C), that will
incorporate into filel all changes between file2 and
file3, i.e., the changes that normally would be
flagged with "====" and "====3."

DIFF3(C) DIFF3(C)

-x Produces a script to incorporate changes flagged with

| —]

-3 Produces a script to incorporate changes flagged with

The following command applies an editing script to filel:

(cat script; echo '1,$p") | ed - filel

Files
/tmp/d3*
/usr/lib/diff3prog
See Also

diff(C)

Notes

The -e option does not work properly for lines consisting
of a single period.

The input file size limit is 64K bytes.

~_

DIGEST(C)

Name

DIGEST(C)

digest - Creates menu system(s) for the Business Shell.

Syntax

digest [options] menufile ...

Description

Digest is used to create a menu system for use by the
Business Shell (bsh(C)). This program is also used to
modify an existing menu system.

One or more menu systems may be created using the options
described below.

-h or -q

-1 number

-m

-0 file

Displays an informative summary of the available
options and defaults.

Checks for menus longer than number lines in
length., The default value is 25 if none is
specified. This is the correct maximum number
for a conventional 24-line CRT screen. In gen-
eral, number should be one larger than the
length of the screen area (as defined by "li" in
termcap) for the terminal to be used. The user
is responsible for ensuring that the width of a
menu will fit on the terminal(s) he uses.

Bsh(C) will truncate lines that are too wide
(without issuing a warning message).

Multiple menu systems: For each menu file
(which must be a directory), this option pro-
duces a separate menu system. The names for
each menu system are created by suffixing ".bin"
to the menu file name.

The digested output is sent to the named file.
By convention, a digested menu system file name
should end with a ".bin" suffix.

DIGEST(C) DIGEST(C)

-s menu The starting menu for the generated menu system
is the one specified. (This option doesn't make
much sense if used with the -m option.) If no
starting menu is specified, the alphabetically
first menu name is used for each menu system.

-V Verbose: echo menu names as they are processed.

A menufile may contain one or more menus or directories
containing menus. Digest will recursively process all
menus within a directory structure.

Note that the -m and -o options are mutually exclusive.
The -m option indicates that each menu is to produce a
separate ".bin" file: -o indicates that a single output
file is to be produced with the name given.

The default output file is menul.bin if none is specified
via the -o option, where menul is the first menu file
name.

The recommended way to create a menu system is to create
a tree of directories containing the various portions of the
system. Each subtree contains all the menus related to a
given subject. For example, a primary menu (directory)
can be created for system management functions and sub-
sidiary menus can be placed beneath (within) the directory
for each of the individual system management functions or
function areas. Help menus may be placed wherever appro-
priate in the structure.

Example

Assuming that /usr/lib/menusys contains the following
files for the Business Shell menu system:

Backup Execute Help? SysAdmin
Backup? Execute? Mail SysAdmin?
Commands? FloppyBackup Mail? TapeBackup
Dir FloppyBackup? Start Tape Backup?
Dir? Help Start?

Then the following command will make a menu system file:

digest -0 /etc/menusys.bin -s Start /usr/lib/menusys

DIGEST(C) DIGEST(C)

See Also

bsh(C), menus(M), termcap(M)

Diagnostics

The diagnostics produced by digest are intended to be self
explanatory.

DIRCMP(C) DIRCMP(C)

Name

dircmp - Compares directories.

Syntax

dircmp [-d1[-s11[-wn] dirl dir2

Description
Dircmp examines dirl and dir2 and generates tabulated in-
formation about the contents of the directories. Listings
of files that are unique to each directory are generated
in addition to a list that indicates whether the files
common to both directories have the same contents.
The options are:

-d Performs a full diff(C) on each pair of like-named
files if the contents of the files are not identical.

-S Reports whether the files are "same" or "different."

-wn Changes the width of the output line to n charac-
ters. The default width is 72 characters.

See Also

cmp(C), diff(C)

DISABLE(C) DISABLE(C)

Name

disable - Disables logins on a port.

Syntax

disable [-d] [-e] ttynn...

Description
You must be the super user to use the disable command.

The disable command manipulates the /etc/inittab file and
signals init to disallow logins on a particular port.

Options
-d This option "disables" the port.

-e This option "enables" the port.

Examples
disable ttyo01

Multiple terminals can be disabled or enabled using the -d
and -e options before the appropriate port:

disable tty0l1 -e tty02 -d tty03

Files

/ete/inittab

Related Commands

login(M), enable(C), getty(M), ps(C)

DOS(C)

Name

DOS(C)

dos - Accesses MS-DOS files.

Syntax

doscat [-r 1 file ...
dostype [-r] file ...

doscopy [-¢ -r 1 filel file2
doscp [-¢ -r] filel file2

doscopy [-r | file ... directory
doscp [-r] file ... directory

dosdir directory ...

dosls directory ...

dosmkdir directory ...

dosrm file ...
dosdel file ...

dosrmdir directory ...

Description

The dos commands provide access to the files and director-
ies on MS-DOS disks. The commands perform the following

actions:

doscat

dostype

doscopy
doscp

Copies one or more MS-DOS files to the standard
output. If -r is given, the files are copied
without newline conversions (see the next sec-
tion, "Conversions.")

Copies files between an MS-DOS disk and a
UNIX file system. If filel and file2 are given,
filel is copied to file2. 1f directory is given,
one or more files are copied to that directory.
If -c is given, DOS upper-case names are con-
verted to lower-case (for UNIX compatibility).
If -r is given, the files are copied without
newline conversions (see the section titled
"Conversions").

Ed

DOS(C) DOS(C)

dosdir Lists MS-DOS files in the standard MS-DOS
style directory format.

dosls Lists MS-DOS directories and files.
dosrm Removes files from an MS-DOS disk.
dosdel

dosmkdir Creates a directory on an MS-DOS disk.
dosrmdir Deletes directories from an MS-DOS disk.

The file and directory arguments for MS-DOS files and di-
rectories have the form:

device:name

where device is a UNIX pathname for the special device
file containing the MS-DOS disk, and name is a pathname
to a file or directory on the MS-DOS disk. The two com-
ponents are separated by a colon (:). For example, the
argument:

/dev/£d0:/src/file.asm

specifies the MS-DOS file file.asm in the directory /srec
in the device file /dev/fd0. Note that slashes, not back-
slashes, are used as filename separators for MS-DOS path-
names. Arguments without a device name are assumed to
be UNIX files.

The dos commands operate on the following kinds of floppy
disks:

5-1/4 inch MS-DOS

8 or 9 sectors per track
40 tracks per side

1 or 2 sides

MS-DOS version 1, 2, or 3

DOS(C) DOS(C)

Conversions

All MS-DOS text files use a carriage return-linefeed com-
bination, CR-LF, to indicate a newline. UNIX uses a

single newline LF characters. When the doscat and doscopy
commands transfer MS-DOS text files to UNIX, they auto-
matically remove the CR.

When text files are transferred to MS-DOS, the commands
insert the CR before each LF character. You can use the
-r option to override the automatic conversion and force

the command to perform a true byte copy, regardless of
file type.

Examples
The following are examples of each type of dos command.
To display a file contained on an MS-DOS floppy disk type:

doscat /dev/fd0:/docs/memo.txt

To list the contents of an MS-DOS floppy disk, type one of
the following:

dosdir /dev/fdo:

dosls /dev/fdo:
For a Series 500 with Altos System V and MS-DOS parti-
tions, if you are in the active Altos System V partition
and want to list files in the DOS partition, enter:

dosls /dev/hd01
where /dev/hd01 is the DOS partition on the hard disk.
On a Series 500, to copy an MS-DOS file from the MS-DOS
partition to the current directory in the active Altos

System V partition, enter:

doscp /dev/hd01:filename .

DOS(C) DOS(C)

Or, to copy a file named "notes" from the Altos System V
active partition to an existing MS-DOS directory, named
"misc," enter: '

w doscp notes /dev/hd01:/misc/notes

The next command copies a file from an MS-DOS floppy disk
to the current directory:

doscopy /dev/fd0:filename

or, for all the files in the root directory of the
MS-DOS floppy disk:

doscopy /dev/fd0:"* *"

To copy from a UNIX hard disk to an MS-DOS floppy disk,
type:

doscopy filename /dev/fd0:

The next command makes the directory /usr/docs on an
MS-DOS disk:

dosmkdir /dev/fd0:/usr/docs

The following command removes the file memo.text from an
MS-DOS disk:

dosrm /dev/fd0:/docs/memo.txt

To remove the directory /usr/docs from an MS-DOS disk,
type: .

dosrmdir /dev/fd0:/usr/docs

See Also
dtype(C)
) Files

/dev/fd* Floppy disk devices

DOS(C) DOS(C)

Notes

You cannot access MS-DOS directories with wild card speci-
fications. You must make sure you have exclusive access
to the device containing the MS-DOS disk. If more than
one process tries to access the MS-DOS disk at the same
time, the result is unpredictable.

The diskette should be formatted using the format command
on an MS-DOS system.

DRIVE(C)

Name

DRIVE(C)

drive - Reads drive information written during manufactur-

ing.

Syntax

drive drive-info option...

Description

Drive is used by the system during installation. The

drive command reads the hard disk drive information speci-
fied by the option from the manufacturing drive informa-
tion table (drive-info) and writes it on the standard out-
put. Options include:

cylinders

heads

spt

secsize

skew

interleave

magic

megabytes

Number of cylinders on the disk (ST-506
and ESDI drives only).

Number of heads on the disk (ST 506 and
ESDI drives only).

Number of sectors per track on the disk
(ST-506 and ESDI drives only).

Number of bytes per sector on the disk
(0=512, 1=1024)

Offset between logical sector number zero
on one track and logical sector number zero
on the next track (default 1).

Number of sectors between consecutively
numbered logical sectors on a track. This
number is always 0.

A number indicating that the drive informa-
tion exists. If the number is 0xd6dl, the
drive information exists; otherwise, it

does not.

Approximate number of megabytes of storage
on the disk.

DRIVE(C)

DRIVE(C)

type If a 0 is returned, the drive is an ST-506

drive. If a 1 is returned, the drive is an
If a 2 is returned, the drive
is an SCSI drive.

ESDI drive.

nblocks Number of 512-byte blocks on the disk.

Drive information is recorded on the disk by the company
when the computer is manufactured. The following struc-
ture shows the format of this information:

pragma pack(2)
struct drive {

char dc_jump([3]:
char dc_unused[9]:
unsigned short dc_magic:
union {
struct {
short dc_cyls:
char dc_heads:
char dc_spt:
} dc_hsc:
unsigned long dc_nblocks;
} dc_un:
char dc_secsize:
char dc_skew:
char dc_interleave
char dc_manutype:

unsigned éhort dc_megabytes:
unsigned short dc_precmp:
char dc_drivetype:;
}:
#pragma pack()

Example

/*
/*
/*

/*
/*
/*
/*

/i

/*
/*

/*

3 bytes for a jump instruction */
unused */
magic number (0xd6d10 */

number of cylinders */
number of heads */
number of sectors per track */

number of sectors for SCSI */
number of bytes per sector ¥/
skew */

interleave */

code for disk drive manufacturer *

approx. number of megabytes */

The following command displays the number of cylinders on

/dev/hdo0:

drive /dev/hd0.drinfo cylinders

Related Commands

layout(C), sizefs(C)

DTYPE(C)

Name

DTYPE(C)

dtype - Determines disk type.

Syntax

dtype [-s] device ...

Description

Dtype determines type of disk, prints pertinent informa-
tion on the standard output unless the silent (-s) option
is selected, and exits with a corresponding code (see

below).

When more than one argument is given, the exit

code corresponds to the last argument.

Disk Exit Message
Type Code (optional)
Misc. 60 error (specified)
61 empty or unrecognized data
Storage 70 dump format, volume n
71 tar format[,extent e of n]
72 cpio format
73 cpio character (-c) format
MS-DOS 80 MS-DOS 1.x, 8 sec/track, single sided
81 MS-DOS 1.x, 8 sec/track, dual sided
90 MS-DOS 8 sec/track, single sided
91 MS-DOS 8 sec/track, dual sided
92 MS-DOS 9 sec/track, single sided
93 MS-DOS 9 sec/track, dual sided
94 MS-DOS fixed disk
110 MS-DOS 9 or 15 sec/track, dual sided
UNIX 120 UNIX 2.x filesystem (needs fsck)
130 UNIX 3.x filesystem (needs fsck)
131 UNIX 5.x filesystem (or UNIX 3.0

with 1024-byte blocks -- needs fsck)

DTYPE(C) DTYPE(C)

Notes

UNIX file systems and dump and cpio binary formats may
not be recognized if created on a foreign system. This is
due to such system differences as byte and word swapping
and structure alignment.

DU(C) bu(C)

Name

du - Summarizes disk usage.

Syntax

du [-sar] [name ... 1

Description

Du reports the number of blocks contained in all files and
directories (recursively) within each directory and file
specified by the name argument. The block count includes
the indirect blocks of the file. If name is missing, the
current directory is used.

The optional arguments are as follows:

-S Causes the grand total only (for each of the speci-
fied names) to be given.

-a Causes an output line to be generated for each file.

If neither -s or -a is specified, an output line is gener-
ated for each directory only.

-r Causes du to generate messages about directories that
cannot be read, files that cannot be opened, etc.,
rather than being silent (the default).

A file with two or more links is only counted once.

Notes

If the -a option is not used, non-directories given as
arguments are not listed.

If there are links between files in different directories
where the directories are on separate branches of the file
system hierarchy, du will count the excess files more than
once.

Files with holes in them will get an incorrect block
count.

DUMP.HD(C) DUMP.HD(C)

Name

dump.hd - Dumps a hard disk to tape.

Syntax

/etc/dump.hd

Description

The dump.hd command dumps the entire file system from the
hard disk to a cartridge tape. Go to single-user mode
(enter /etc/singleuser) to guarantee that the hard disk is
not being used by any other users while dump.hd is run-
ning.

Duimp.hd only dumps the file system from the first hard
disk to tape; it does not dump the second hard disk. If

you want to dump the second (third) hard disk to tape, use
the archive(C) command.

Related Commands

restore.hd(C), archive(C), recover(C)

See Also

Operations Guide

ECHO(C) ECHO(C)

Name

echo - Echoes arguments.

Syntax

/bin/echo [arg ... 1

Description

Echo writes its arguments separated by blanks and termi-
nated by a new-line on the standard output. The arguments
are:

-e Prints arguments on the standard output.
-n Prints line without a new line.
-u Uses unbuffered I/0 when printing.

- Prints the arguments exactly so that an argument be-
ginning with a dash (e.g., -e or -n) can be speci-
fied.

Echo also understands C-like escape conventions; beware of
conflicts with the shell's use of \:

\b backspace

\¢ print line without new-line

\f form-feed

\n new-line

\r carriage return

\t tab

\v vertical tab

\\ backslash

\On the 8-bit character whose ASCII code is the 1-,
2- or 3-digit octal number n.

Echo is useful for producing diagnostics in command files
and for sending known data into a pipe.

ECHO(C) ECHO(C)

See Also

sh(C)

Notes

When representing an 8-bit character by using the escape
convention \0n, the n must always be preceded by the digit
zero (0).

For example, typing: echo 'WARNING:\07' will print the
phrase WARNING: and sound the "bell" on your terminal.
The use of single (or double) quotes (or two backslashes)
is required to protect the "\" that precedes the "07".

For the octal equivalents of each character, see ascii(M).

ED(C) ED(C)
Name
ed, red - Invokes a line editor.
Syntax
ed [-s] [-p string] [file]
red [-s] [-p string 1 [file]
Description

Ed is the standard line editor. For a full-screen editor,
see vi(C). If the file argument is given, ed simulates an
e command (see below) on the named file; that is to say,
the file is read into ed's buffer so that it can be ed-
ited.

-S Suppresses the printing of character counts by e, r,
and w commands, of diagnostics from e and q com-
mands, and of the ! prompt after a !shell command.
Also, see the "Notes" section at the end of this
manual page.

-p Allows the user to specify a prompt string to replace
the default (*).

Ed operates on a copy of the file it is editing; changes
made to the copy have no effect on the file until a w
(write) command is given. The copy of the text being ed-
ited resides in a temporary file called the buffer. There
is only one buffer.

Red is a restricted version of ed. It will only allow
editing of files in the current directory. It prohibits
executing shell commands via !shell command. Attempts to
bypass these restrictions result in an error message.

Both ed and red support the fspec(F) formatting capabil-
ity. After including a format specification as the first

ED(C) ED(C)

line of file and invoking ed with your terminal in stty
-tabs or stty tab3 mode (see stty(C)), the specified tab
stops will automatically be used when scanning file. For
example, if the first line of a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a
maximum line length of 72 would be imposed.

NOTE

While inputing text; tab characters when typed
are expanded to every eighth column as is the
default.

Commands to ed have a simple and regular structure: zero,
one, or two addresses followed by a single-character
command, possibly followed by parameters to that command.
These addresses specify one or more lines in the buffer.
Every command that requires addresses has default ad-
dresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Cer-
tain commands allow the input of text. This text is
placed in the appropriate place in the buffer. While ed
is accepting text, it is said to be in input mode. In

this mode, no commands are recognized; all input is merely
collected. Input mode is left by typing a period (.)

alone at the beginning of a line, followed immediately by
a carriage return.

Ed supports a limited form of regular expression notation;
regular expressions are used in addresses to specify lines
and in some commands (e.g., s) to specify portions of a
line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of
this set of strings is said to be matched by the RE. The
REs allowed by ed are constructed as follows:

ED(C)

ED(C)

The following one-character REs match a single character:

1.1

1.2

1.3

1.4

An ordinary character (not one of those discussed
in 1.2 below) is a one-character RE that matches it-
self.

A backslash (\) followed by any special character is
a one-character RE that matches the special character
itself. The special characters are:

a. ., ¥ [, and \ (period, asterisk, left square
bracket, and backslash, respectively), which are
always special, except when they appear within
square brackets ([]1) (see 1.4 below).

b. “ (caret or circumflex), which is special at the
beginning of an entire RE, or when it immediate-
ly follows the left of a pair of square brackets
([1) (see 1.4 below).

c. $ (dollar sign), which is special at the end of
an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an
entire RE, which is special for that RE (for
example, see how slash (/) is used in the g com-
mand, below.)

A period (.) is a one-character RE that matches any
character except new-line.

A non-empty string of characters enclosed in square
brackets ([1) is a one-character RE that matches any
one character in that string. If, however, the first
character of the string is a circumflex (~), the
one-character RE matches any character except
new-line and the remaining characters in the string.
The ~ has this special meaning only if it occurs

first in the string. The minus (-) may be used to
indicate a range of consecutive ASCII characters; for
example, [0-9] is equivalent to [0123456789]. The -
loses this special meaning if it occurs first (after

an initial *, if any) or last in the string. The

right square bracket (]) does not terminate such a
string when it is the first character within it

(after an initial °, if any); e.g., [la-f] matches
either a right square bracket (]) or one of the let-

ED(C)

ED(C)

ters a through f inclusive. The four characters
listed in 1.2.a above stand for themselves within
such a string of characters.

The following rules may be used to construct REs from
one-character REs:

2.1

2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever the
one-character RE matches.

A one-character RE followed by an asterisk (*) is a
RE that matches zero or more occurrences of the
one-character RE. If there is any choice, the long-
est leftmost string that permits a match is chosen.

"A one-character RE followed by \{m\}, \{m,\}, or

\{m,n\} is a RE that matches a range of occurrences

of the one-character RE. The values of m and n must
be non-negative integers less than 256; \{m\} matches
exactly m occurrences; \{m,\} matches at least m oc-

currences; \{m,n\} matches any number of occurrences
between m and n inclusive. Whenever a choice exists,
the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the
concatenation of the strings matched by each compo-
nent of the RE.

A RE enclosed between the character sequences \(and
\) is a RE that matches whatever the unadorned RE
matches.

The expression \n matches the same string of charac-
ters as was matched by an expression enclosed betweer
\(and \) earlier in the same RE. Here n is a digit;
the sub-expression specified is that beginning with

the nth occurrence of \(counting from the left. For
example, the expression “\(.*¥\)\1$ matches a line
consisting of two repeated appearances of the same
string.

Finally, an entire RE may be constrained to match only an
initial segment or final segment of a line (or both).

ED(C) ED(C)

3.1 A circumflex (*) at the beginning of an entire RE
constrains that RE to match an initial segment of a
line.

3.2 A dollar sign ($) at the end of an entire RE con-
strains that RE to match a final segment of a line.

The construction “entire RE$ constrains the entire RE to
match the entire line. The null RE (e.g.,//) is equiva-
lent to the last RE encountered. See also the last para-
graph before "Files" below. To understand addressing in
ed it is necessary to know that at any time there is a
current line. Generally spepeaking, the current line is
the last line affected by a command; the exact effect on
the current line is discussed under the description of
each command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buf-
fer.

3. A decimal number n addresses the n-th line of the
buffer.

4. 'x addresses the line marked with the mark name char-
acter x, which must be a lower-case letter. Lines
are marked with the k command described below.

5. A RE enclosed by slashes (/) addresses the first line
found by searching forward from the line following
the current line toward the end of the buffer and
stopping at the first line containing a string match-
ing the RE. If necessary, the search wraps around to
the beginning of the buffer and continues up to and
including the current line, so that the entire buffer
is searched. See also the last paragraph before
"Files" below.

6. A RE enclosed in question marks (?) addresses the
first line found by searching backward from the line
preceding the current line toward the beginning of
the buffer and stopping at the first line containing
a string matching the RE. If necessary, the search
wraps around to the end of the buffer and continues
up to and including the current line. See also the
last paragraph before "Files" below.

ED(C) ED(C)

7. An address followed by a plus sign (+) or a minus
sign (-) followed by a decimal number specifies that
address plus (respectively minus) the indicated num-
ber of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or
subtraction is taken with respect to the current
line; e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or
subtracted from the address, respectively. As a con-
sequence of this rule and of Rule 8, immediately
above, the address - refers to the line preceding the
current line. (To maintain compatibility with
earlier versions of the editor, the character ° in
addresses is entirely equivalent to -.) Moreover,
trailing + and - characters have a cumulative effect,
so —- refers to the current line less 2.

10. For convenience, a comma {,) stands for the address
pair 1,$, while a semicolon (;) stands for the pair

Commands may require zero, one, or two addresses. Com-
mands that require no addresses regard the presence of an
address as an error. Commands that accept one or two ad-
dresses assume default addresses when an insufficient num-
ber of addresses is given; if more addresses are given

than such a command requires, the last one(s) given are
used. :

Typically, addresses are separated from each other by a
comma (,). They may also be separated by a semicolon (;).
In the latter case, the current line (.) is set to the

first address, and only then is the second address calcu-
lated. This feature can be used to determine the starting
line for forward and backward searches (see Rules 5 and 6,
above). The second address of any two-address sequence
must correspond to a line that follows, in the buffer, the
line corresponding to the first address.

In the following list of ed commands, the default ad-
dresses are shown in parentheses. The parentheses are not
part of the address; they show that the given addresses
are the default.

ED(C)

ED(C)

It is generally illegal for more than one command to ap-
pear on a line. However, any command (except e, f, r, or
w) may be suffixed by 1, n, or p in which case the current
line is either listed, numbered or printed, respectively,

as discussed below under the 1, n, and p commands.

(.)a
{text>

(.)c
<text>

(.,.)d

e file

The append command reads the given text and ap-
pends it after the addressed line; . is left at

the last inserted line, or, if there were none,

at the addressed line. Address 0 is legal for

this command: it causes the "appended" text to
be placed at the beginning of the buffer. The
maximum number of characters that may be en-
tered from a terminal is 256 per line (including
the new-line character).

The change command deletes the addressed lines,
then accepts input text that replaces these
lines; . is left at the last line input, or, if
there were none, at the first line that was not
deleted.

The delete command deletes the addressed lines
from the buffer. The line after the last line
deleted becomes the current line; if the lines
deleted were originally at the end of the buf-
fer, the new last line becomes the current line.

The edit command causes the entire contents of
the buffer to be deleted, and then the named
file to be read in; . is set to the last line

of the buffer. If no file name is given, the
currently-remembered file name, if any, is used
(see the f command). The number of characters
read is typed; file is remembered for possible
use as a default file name in subsequent e, r,
and w commands. If file is replaced by !, the
rest of the line is taken to be a shell (sh(C))
command whose output is to be read. Such a
shell command is not remembered as the current
file name. See also "Diagnostics" below.

ED(C)

E file

f file

ED(C)

The Edit command is like e, except that the ed-
itor does not check to see if any changes have
been made to the buffer since the last w com-
mand.

If file is given, the file name command changes
the currently remembered file name to file;
otherwise, it prints the currently remembered
file name.

(1,$)g/RE/command list

In the global command, the first step is to mark
every line that matches the given RE. Then, for
every such line, the given command list is exe-
cuted with . initially set to that line. A

single command or the first of a list of com-
mands appears on the same line as the global
command. All lines of a multi-line list except
the last line must be ended with a \; a, i, and
¢ commands and associated input are permitted.
The . terminating input mode may be omitted if
it would be the last line of the command list.
An empty command list is equivalent to the p
command. The g, G, v, and V commands are not
permitted in the command list. See also "Notes"
and the last paragraph before "Files" below.

(1,$)G/RE/

In the interactive Global command, the first
step is to mark every line that matches the
given RE. Then, for every such line, that line
is printed, . is changed to that line, and any
one command (other than one of the a, ¢, i, g,
G, v, and V commands) may be input and is exe-
cuted. After the execution of that command, the
next marked line is printed, and so on; a new-
line acts as a null command; an & causes the re-
execution of the most recent command executed
within the current invocation of G. Note that
the commands input as part of the execution of
the G command may address and affect any lines
in the buffer. The G command can be termi-
nated by an interrupt signal (JEISLYAeIN).

The help command gives a short error message
that explains the reason for the most recent ?
diagnostic.

T

ED(C)

()i
<{text>

(cse+1)j

(.)kx

(.,

(.,.)ma

ED(C)

The Help command causes ed to enter a mode in
which error messages are printed for all subse-
quent ? diagnostics. It will also explain the
previous ? if there was one. The H command
alternately turns this mode on and off; it is
initially off.

The insert command inserts the given text before
the addressed line; . is left at the last in-
serted line, or, if there were none, at the ad-
dressed line. This command differs from the a
command only in the placement of the input text.
Address 0 is not legal for this command. The
maximum number of characters that may be en-
tered from a terminal is 256 per line (including
the new-line character).

The join command joins contiguous lines by re-

moving the appropriate new-line characters. If
exactly one address is given, this command does
nothing.

The mark command marks the addressed line with
name Xx, which must be a lower-case letter. The
address 'x then addresses this line; . is un-
changed.

The list command prints the addressed lines in
an unambiguous way: a few non-printing charac-
ters (e.g., tab, backspace) are represented by
visually mnemonic overstrikes. All other
non-printing characters are printed in octal,

and long lines are folded. An 1 command may be
appended to any other command other than e, f,
r, or w.

The move command repositions the addressed
line(s) after the line addressed by a. Address
0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the
file. It is an error if address a falls within
the range of moved lines; . is left at the last
line moved.

ED(C)

(.,.)n

(5P

($)r file

ED(C)

The number command prints the addressed lines,
preceding each line by its line number and a tab
character; . is left at the last line printed.

The n command may be appended to any other
command other than e, f, r, or w.

The print command prints the addressed lines; .
is left at the last line printed. The p command
may be appended to any other command other
than e, f, r, or w. For example, dp deletes the
current line and prints the new current line.

The editor will prompt with the prompt string (*
by default) for all subsequent commands. The P
command alternately turns this mode on and off;
it is initially off unless a prompt string is
specified with the -p option.

The quit command causes ed to exit. No auto-
matic write of a file is done; however, see
"Diagnostics," below.

The editor exits without checking if changes
have been made in the buffer since the last w
command.

The read command reads in the given file after
the addressed line. If no file name is given,
the currently-remembered file name, if any, is
used (see e and f commands). The currently-
remembered file name is not changed unless file
is the very first file name mentioned since ed
was invoked: Address 0 is legal for r and
causes the file to be read at the beginning of
the buffer. If the read is successful, the num-
ber of characters read is typed; . is set to

the last line read in. If file is replaced by

!, the rest of the line is taken to be a shell
(sh(C)) command whose output is to be read:
For example, "$r !ls" appends a listing of the
current directory to the end of the file being
edited. Such a shell command is not remembered
as the current file name.

10

ED(C) ED(C)

(.,.)s/RE/replacement/ or

(.,.)s/RE/replacement/g or

(.,.)s/RE/replacement/n n = 1-512
The substitute command searches each addressed
line for an occurrence of the specified RE. In
each line in which a match is found, all
(non-overlapped) matched strings are replaced by
the replacement if the global replacement indi-
cator g appears after the command. If the glob-
al indicator does not appear, only the first
occurrence of the matched string is replaced.
If a number n appears after the command, only
the nth occurrence of the matched string on each
addressed line is replaced. It is an error for
the substitution to fail on all addressed lines.
Any character other than space or new-line may
be used instead of / to delimit the RE and the
replacement; . is left at the last line on
which a substitution occurred. See also the
last paragraph before "Files" below.

An ampersand (&) appearing in the replacement is
replaced by the string matching the RE on the
current line. The special meaning of & in this
context may be suppressed by preceding it by \.
As a more general feature, the characters \n,
where n is a digit, are replaced by the text
matched by the nth regular subexpression of the
specified RE enclosed between \(and \). When
nested parenthesized subexpressions are present,
n is determined by counting occurrences of \(
starting from the left. When the character % is
the only character in the replacement, the re-
placement used in the most recent substitute
command is used as the replacement in the cur-
rent substitute command. The % loses its spe-
cial meaning when it is in a replacement string
of more than one character or is preceded by a

\.

A line may be split by substituting a new-line
character into it. The new-line in the replace-
ment must be escaped by preceding it with a \.
Such substitution cannot be done as part of a g
or v command list:

11

ED(C)

ED(C)

(ey.)ta This command acts just like the m command, ex-
cept that a copy of the addressed lines is
placed after address a (which may be 0); . is
left at the last line of the copy.

u The undo command nullifies the effect of the

most recent command that modified anything in
the buffer, namely the most recent a, c, d, g,
i, j my r, s, t, v, G, or V command.

(1,$)v/RE/command list
This command is the same as the global command
g except that the command list is executed with
. initially set to every line that does not match
the RE.

(1,$)V/RE/
This command is the same as the interactive
global command G except that the lines that are
marked during the first step are those that do
not match the RE.

(1,$)w file
The write command writes the addressed lines
into the named file. If the file does not ex-
ist, it is created with mode 666 (readable and
writable by everyone), unless your umask setting
(see umask(C)) dictates otherwise. The
currently-remembered file name is not changed
unless file is the very first file name men-
tioned since ed was invoked. If no file name is
given, the currently-remembered file name, if
any, is used (see e and f commands); . is un-
changed. If the command is successful, the num-
ber of characters written is typed. If file is
replaced by !, the rest of the line is taken to
be a shell (sh(C)) command whose standard input
is the addressed lines. Such a shell command is
not remembered as the current file name.

X An encryption key is requested from the standarc
input. Subsequent e, r, and w commands will us
this key to encrypt or decrypt the text. An
explicitly empty key turns off encryption.

Also, see the -x option of ed.

12

N

ED(C) ED(C)

($)= The line number of the addressed line is typed;
. is unchanged by this command.

tshell command
The remainder of the line after the ! is sent
to the operating system shell (sh(C)) to be in-
terpreted as a command. Within the text of that
command, the unescaped character % is replaced
with the remembered file name; if a ! appears
as the first character of the shell command, it
is replaced with the text of the previous shell
command. Thus, !! will repeat the last shell
command: If any expansion is performed, the ex-
panded line is echoed; . is unchanged.

(.+1)<new-line)>
An address alone on a line causes the addressed
line to be printed. A new-line alone is equiva-
lent to .+1p; it is useful for stepping forward
through the buffer.

If an interrupt signal (SiGLL¥ABEIN) is sent, ed prints a ?
and returns to its command level.

Some size limitations: 512 characters per line, 256 char-
acters per global command list, and 64 characters per file
name, the limit on the number of lines depends on the
amount of user memory.

When reading a file, ed discards ASCII NUL characters.
Files (e.g., a.out) that contain characters not in the
ASCII set (bit 8 on) cannot be edited by ed.

If a file is not terminated by a new-line character, ed
adds one and outputs a message explaining what it did.

If the closing delimiter of a RE or of a replacement
string (e.g.,/) would be the last character before a
new-line, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of com-
mands are equivalent:

s/sl/s2 s/sl/s2/p

g/sl g/sl/p
?sl ?s1?

13

ED(C) ED(C)

Files
/usr/tmp default directory for temporary work file
$TMPDIR if this environmental variable is not null,
its value is used in place of /usr/tmp as
the directory name for the temporary work
file
ed.hup work is saved here if the terminal is hung
up
Diagnostics
? For command errors.
?file For an inaccessible file. (use the help and

Help commands for detailed explanations).

If changes have been made in the buffer since the last w
command that wrote the entire buffer, ed warns the user if
an attempt is made to destroy ed's buffer via the e or q
commands. It prints ? and allows one to continue edit-
ing. A second e or q command at this point will take ef-
fect. The -s command-line option inhibits this feature.

See Also

edit(C), ex(C), grep(C), sed(C), sh(C), stty(C), umask(C),
vi(C) fspec(F), regexp(S) in the Reference (CP, S, F)

Notes

A ! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w com-
mands cannot be used if the editor is invoked from a re-
stricted shell (see sh(C)). The sequence \n in a RE does
not match a new-line character. Characters are masked to
7 bits on input. If the editor input is coming from a
command file (e.g., ed file < ed-cmd-file), the editor

will exit at the first failure.

14

Ly

~_

ED(C)

ED(C)

The - option, although supported in this release for up-
ward compatibility, will no longer be supported in the
next major release of the system. Convert shell scripts
that use the - option to use the -s option, instead.

15

EDIT(C) EDIT(C)

Name

edit - Text editor (variant of ex for casual users).

Syntax

edit [-r 1 name...

Description

Edit is a variant of the text editor ex recommended for
new or casual users who wish to use a command-oriented
editor.

-r Recover file after an editor or system crash.

This brief introduction should help you get started with
edit. To edit the contents of an existing file, enter

edit filename. Edit makes a copy of the file which you
can then edit, and tells you how many lines and characters
are in the file. To create a new file, just make up a
name for the file and try to run edit on it.

Edit prompts for commands with a colon (:), which you
should see after starting the editor. If you are editing
an existing file, then you will have some lines in edit's
buffer (its name for the copy of the file you are
editing). Most commands to edit use its "current line" if
you do not tell them which line to use. Thus, if you say
print (which can be abbreviated p) and press (as you
should after all edit commands), this current line will be
printed. If you delete (d) the current line, edit will
print the new current line. When you start editing, edit
makes the last line of the file the current line. If you
delete this last line, then the new last line becomes the
current one. In general, after a delete, the next line in
the file becomes the current line. (Deleting the last
line is a special case.)

If you start with an empty file or wish to add some new
lines, then the append {a) command can be used. After you
give this command (typing a carriage return after the word
append), edit will read lines from your terminal until you
give a line consisting of just a period (.), placing these
lines after the current line. The last line you type then

<_F

EDIT(C) EDIT(C)

becomes the current line. The command insert (i) is like
append but places the lines you give before, rather than
after, the current line.

Edit numbers the lines in the buffer, with the first line
having number 1. If you give the command 1 then edit will
type this first line. If you then give the command de-
lete, edit will delete the first line, line 2 will become

line 1, and edit will print the current line (the new line

1) so you can see where you are. In general, the current
line will always be the last line affected by a command.

You can make a change to some text within the current line
by using the substitute (s) command. You type s/old/new/
where old is replaced by the old characters you want to
get rid of and new is the new characters you want to re-
place it with.

The command file (f) will tell you how many lines there
are in the buffer you are editing and will say
"[Modified]" if you have changed it. After modifying a
file, you can put the buffer text back to replace the file
by giving a write (w) command. You can then leave the
editor by issuing a quit (q) command. If you run edit on
a file, but do not change it, it is not necessary (but
does no harm) to write the file back. If you try to quit
from edit after modifying the buffer without writing it
out, you will be warned that there has been "No write
since last change" and edit will wait for another command.
If you don't want to write the buffer out, then you can
issue another quit command. The buffer is then ir-
retrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line
numbers to see lines in the file, you can make any changes
you desire. You should learn at least a few more things,
however, if you are to use edit more than a few times.

The change (c) command will change the current line to a
sequence of lines you supply (as in append) you give ‘lines
up to a line consisting of only a period (.). You can

tell change to change more than one line by giving the
line numbers of the lines you want to change, i.e.,
3,5change. You can print lines this way too. Thus 1,23p
prints the first 23 lines of the file.

EDIT(C) EDIT(C)

The undo (u) command will reverse the effect of the last
command you gave which changed the buffer. Thus if you
give a substitute command taht does not do what you want,
you can use the undo command to restore the old contents
of the line. You can also undo an undo command.

Edit will give you a warning message when commands you
do affect more than one line of the buffer. If the amount
of change seems unreasonable, you should consider doing an
undo and looking to see what happened. If you decide that
the change is ok, then you can press u again to get it
back. Note that commands such as write and quit cannot
be undone.

To look at the next line in the buffer, just press
To look at a number of lines, press (press the

key and, while it is held down, press the d key)
rather than 3358 This will show you a half screen of
lines on a CRT or 12 lines on a hardcopy terminal. You
can look at the text around you by giving the command, z.
The current line will then be the last line printed; you

can get back to the line where you were before the z com-
mand by typing a double quote (").

The z command can also be given other characters: z+
prints a screen of text (or 24 lines) ending where you
are; z+ prints the next screenful. If you want less than
a screenful of lines, type in z.12 to get 12 lines total.
This method of giving counts works in general; thus you
can delete 5 lines starting with the current line with the
command delete 5.

To find things in the file, you can use line numbers if
you happen to know them; since the line numbers change
when you insert and delete lines this is somewhat unreli-
able. You can search backwards and forwards in the file
for strings by giving commands of the form /text/ to
search forward for text, or ?text? to search backward for
text. If a search reaches the end of the file without
finding the text, it goes back to the beginning, and con-
tinues to search back to the line where you are. A useful
feature here is a search of the form /“text/ which
searches for text at the beginning of a line, Similarly,
/text$/ searches for text at the end of a line. You can
leave off the trailing / or ? in these commands.

EDIT(C) EDIT(C)

The current line has a symbolic name dot (.); this is most
useful in a range of lines as in .,$print which prints the
rest of the lines in the file. To get to the last line in
the file, you can refer to it by its symbolic name "$".
Thus the command $ delete or $d deletes the last line in
the file, no matter which line was the current line be-
fore. Arithmetic with line references is also possible.
Thus the line "$-5" is the fifth before the last, and
".+20" is 20 lines after the present.

You can find out the current line by typing .=. This is
useful if you wish to move or copy a section of text with-
in a file or between files. Find out the first and last

line numbers you wish to copy or move (say 10 to 20). For
a move, you can then enter 10,20delete a, which deletes
these lines from the file and places them in a buffer

named a. Edit has 26 such buffers named a through z. You
can later get these lines back by doing "put a" to put the
contents of buffer a after the current line. If you want

to move or copy these lines between files, you can give an
edit (e) command after copying the lines, following it

with the name of the other file you wish to edit, i.e.,

"edit chapter2". By changing delete to yank above, you

can get a pattern for copying lines. If the text you wish
to move or copy is all within one file, then you can just
type 10,20move $, for example. It is not necessary to use
named buffers in this case (but you can if you wish).

See Also

id(C), ex(C), vi(C)

EGREP(C) ' EGREP(C)

Name
egrep - Searches a file for a pattern using full regular
expressions.

Syntax

egrep [options] full regular expression [file ...}

Description

Egrep (expression grep) searches files for a pattern of
characters and prints all lines that contain that pattern.
Egrep uses full regular expressions (expressions that have
string values that use the full set of alphanumeric and
special characters) to match the patterns. It uses a fast
deterministic algorithm that sometimes needs exponential
space.

Egrep accepts full regular expressions as in ed(C), except
for \(and \), with the addition of:

1. A full regular expression followed by + that matches
one or more occurrences of the full regular expres-
sion.

2, A full regular expression followed by ? that matches
0 or 1 occurrences of the full regular expression.

3. Full regular expressions separated by | or by a
new-line that match strings that are matched by any
of the expressions.

4. A full regular expression that may be enclosed in
parentheses () for grouping.

Be careful using the characters $, *, [, =, |, (,), and \
in full regular expression, because they are also meaning-
ful to the shell. It is safest to enclose the entire full
regular expression in single quotes '...".

The order of precedence of operators is [], then *?+, then
concatenation, then | and new-line.

)

EGREPR(C)

EGREP(C)

If no files are specified, egrep assumes standard input.
Normally, each line found is copied to the standard out-

put.

The file name is printed before each line found if

there is more than one input file.

Command line options are:

-b

-C

=N

-S

-V

Precede each line by the block number on which it was
found. This can be useful in locating block numbers
by context (first block is 0).

Print only a count of the lines that contain the pat-
tern.

Suppress the filename header at the beginning of each
line.

Ignore upper/lower case distinction during compari-
sons.

Print the names of files with matching lines once,
separated by newlines. Does not repeat the names of
files when the pattern is found more than once.

Precede each line by its line number in the file
(first line is 1).

Suppress the error message for an inaccessible file.

Print all lines except those that contain the pat-
tern.

-e special_expression

Search for a special expression (full regular expres-
sion that begins with a -).

-t file

See Also

Take the list of full regular expressions from file.

ed(C), fgrep(C), grep(C), sed(C), sh(C)

EGREP(C) EGREP(C)

Diagnostics

Exit status is 0 if any matches are found, 1 if none, 2
for syntax errors or inaccessible files (even if matches
were found).

Notes

Ideally there should be only one grep command, but there
is not a single algorithm that spans a wide enough range
of space-time tradeoffs. Lines are limited to BUFSIZ
characters; longer lines are truncated. BUFSIZ is de-
fined in /usr/include/stdio.h.

ENABLE(C) ENABLE(C)

Name

enable - Enables logins on a port.

Syntax

enable [-d] [-e] ttynn...

Description

The enable command manipulates the /etc/inittab file and
signals init(M) to allow logins on a particular port.
(However, never enable a printer port.}) You must be the
super-user to use this command.

Options
-d,-e The -d and -e options can be used in a single
command line to enable (-e) login on some ports
and disallow (-d) logins on others.
Examples

In the example below, tty0l is enabled:

enable tty0l
In the next example, the -d and -e options are put in be-
fore the appropriate port names to allow and disallow
logins on those ports.

enable console -e tty02 -d tty03 tty04

Related Commands

login(M), disable(C), inittab(M)

Files

/etc/inittab

ENROLL(C) ENROLL(C)

Name

enroll, xsend, xget - Secret mail.

Syntax

enroll

xsend person
xget

Description

These commands implement a secure communication channel;
like mail(C), but no one can read the messages except the
intended recipient. The method embodies a public-key
cryptosystem using knapsacks.

To receive messages, use enroll; it asks you for a pass-
word that you must subsequently quote in order to receive
secret mail.

To receive secret mail, use xget. It asks for your pass-
word, then gives you the messages. Typing a ? displays a
menu of valid xget commands.

To send secret mail, use xsend in the same manner as the
ordinary mail command. (However, it will accept only one
target.) A message announcing the receipt of secret mail
is also sent by ordinary mail.

Files
/usr/spool/secretmail/*.key Public keys
/usr/spool/secretmail/*,[0-9] Messages
See Also

mail(C)

ENV(C) ENV(C)

Name

env - Sets environment for command execution.

D Syntax

env [-1 [name=value ... 1 [command args]

Description

Env obtains the current environment, modifies it according
to its arguments, then executes the command with the modi-
fied environment. Arguments of the form name=value are
merged into the inherited environment before the command
is executed. The - flag causes the inherited environment
to be ignored completely, so that the command is executed
with exactly the environment specified by the arguments.

If no command is specified, the resulting environment is
printed, one name/value pair per line.

" See Also
sh(C), environ(M), profile(M), and exec(S) in the
Reference (CP, S, F)

~_F

ERRSTOP(C) ERRSTOP(C)

Name

errstop - Terminates the error-logging daemon.

Syntax

/ete/errstop

Description

The error-logging daemon strerr(M) is terminated by using
errstop. This is accomplished by executing ps(C) to de-
termine the daemon's identity and then sending it a soft-
ware kill signal. Only the super-user may use errstop.

See Also

ps(C), kill(C), strerr(M) and signal(S) in the Reference
(CP, S, F)

EX(C) | EX(C)

Name

ex - Invokes a text editor.

Syntax

ex [-]J[-v]l[-ttagl[-rfile}[-L]1[-R]
[-¢ ecommand] file ...

Description

Ex is the root of a family of editors: ex and vi. Ex is
a superset of ed(C), with the most notable extension being
a display editing facility. Display-based editing is the
focus of vi(C).

For ed Users

If you have used ed you will find that ex has a number of
new features useful on CRT terminals. Intelligent termi-
nals and high speed terminals are very pleasant to use
with vi. Generally, the editor uses far more of the capa-
bilities of terminals than ed does, and uses the terminal
capability data base and the type of the terminal you are
using from the variable TERM in the environment to deter-
mine how to drive your terminal efficiently. The editor
uses features such as insert and delete character and line
in its visual command (abbreviated vi); this is the cen-
tral mode of editing when using vi.

Ex contains a number of new features for easily viewing
the text of the file. The z command gives easy access to
windows of text. Pressing causes the editor to
scroll a half-window of text and is more useful for quick-
ly stepping through a file than just pressing of
course, the screen-oriented visual mode gives constant
access to editing context.

Ex gives you more help when you make mistakes. The undo
(u) command lets you reverse any single change that goes
astray. Ex gives you a lot of feedback, normally printing
changed lines, and indicates when more than a few lines
are affected by a command. So it is easy to detect when
a command has affected more lines than it should have.

EX(C) EX(C)

The editor also normally prevents overwriting existing
files unless you edited them so that you do not acciden-
tally clobber with a write a file other than the one you
are editing. If the system (or editor) crashes, you can
use the editor recover command to retrieve your work.
This will get you back to within a few lines of where you
left off.

Ex has several features for dealing with more than one
file at a time. You can give it a list of files on the
command line and use the next (n) command to deal with
each in turn. The next command can also be given a list
of file names, or a pattern as used by the shell to speci-
fy a new set of files to be dealt with. In general, file
names in the editor may be formed with full shell meta-
syntax. The metacharacter '%' is also available in form-
ing file names and is replaced by the name of the current
file.

For moving text between files and within a file the editor
has a group of buffers, named a through z. You can place
text in these named buffers and carry it over when you
edit another file, ’

There is a command & in ex which repeats the last substi-
tute command. In addition there is a confirmed substitute
command. You give a range of substitutions to be done and
the editor interactively asks whether each substitution is
desired.

It is possible to ignore case of letters in searches and
substitutions. Ex also allows regular expressions which
match words to be constructed. This is convenient, for
example, in searching for the word "edit" if your document
also contains the word "editor."

Ex has a set of options which you can set to tailor it to
your liking. One option which is very useful is the auto-
indent option which allows the editor to automatically
supply leading white space to align text. You can then

use as a backtab and space and tab forward to alig
new code easily.

Miscellaneous new useful features include an intelligent
join (j) command which supplies white space between joined
lines automatically, commands < and > which shift groups
of lines, and the ability to filter portions of the buffer
through commands such as sort.

Invocation Options

EX(C)

The following invocation options are interpreted by ex:

-V

-t tag

-r file

-L

-R

-¢ command

file

Ex States

Command

Insert

Visual

Suppresses all interactive-user feedback.
This is useful in processing editor
scripts.

Invokes vi.

Edits the file containing the tag and
position the editor at its definition.

Recovers file after an editor or system
crash. If file is not specified a list of
all saved files will be printed.

Lists the names of all files saved as the
result of an editor or system crash.

Sets readonly mode, which prevents acciden-
tally overwriting the file.

Begins editing by executing the specified
editor search or positioning command.

Indicates files to be edited.

Normal and initial state. Input prompted
for by :. Your kill character cancels par-
tial command.

Entered by a, i, or c. Arbitrary text may
be entered. Insert is normally terminated
by a line having only . on it, or abnor-
mally with an interrupt.

Entered by vi, terminates with Q or ~\.

"EX(C)

Ex Command Names and Abbreviations

abbrev
append
args
change
copy
delete
edit
file
global
insert
join
list
map
mark
move

ab next

a number

ar .

c preserve

co print

d put

e quit

f read

g recover

i rewind

] set

1 shell
source

ma stop

m substitute

Ex Command Addresses

=

W+ 1 +ene

line n
current
last

next
previous

n forward

1,$

Initializing Options

EXINIT

$HOME/.exrc

./.exrc
set x
set nox
set x=val
set

set all
set x?

n
nu
pre
P
pu
q

re
rec
rew
se
sh

st

EX(C)
unabbrev una
undo u
unmap unm
version ve
visual vi
write w
xit X
yank ya
window z
escape !
1shift <
print next CR
resubst &
rshift >
scroll “D

next with pat
previous with pat
n before x

x through y
marked with x
previous context

Place sets here in environment var

Editor initialization file

Editor initialization file
Enable option
Disable option
Give value val to option x
Show changed options

Show all options
Show value of option x

EX(C)

Most Useful Options

autoindent ai
autowrite aw
ignorecase ic
list

magic

modelines

number nu
paragraphs para
redraw

report

scroll

sections sect
shiftwidth SW
showmatch sm
showmode smd
slowopen slow
term

window

wrapscan wSs
wrapmargin wm

EX(C)

Supply indent

Write before changing files

In scanning ~

Print °I for tab, $ at end

.[* special in patterns

First five lines and last five
lines executed as vi/ex com-
mands if they are in the form
viccommand: or ex:command:
Number lines

Macro names which start...
Simulate smart terminal
Informs you if the number of
lines modified by the last
command is greater than the
value of the report variable
command mode lines

Command mode lines

Macro names...

For ¢, and input "D

To) and } as typed

Show insert mode in vi

Stop updates during insert
Specifies to vi the type of
terminal being used (the default
is the term value of the
environmental variable TERM)

Visual mode lines

Around end of buffer?
Automatic line splitting

Scanning Pattern Formation

-

Beginning of line

$ End of line

. Any character

\< Beginning of word
\> End of word

[str] Any char in str

[“str]
[x-y]
%*

Not in str
Between x and y
Any number of preceding

EX(C) EX(C)

Author

Vi and ex are based on software developed by The Univer-
sity of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Com-
puter Science.

Files
/usr/lib/ex.strings Error messages
/usr/lib/ex.recover Recover command
/usr/lib/ex.preserve Preserve command
Jusr/lib/* /* Describes capabilities of ter-
minals
$HOME/.exrc Editor startup file
./.exrc Editor startup file
/tmp/Exnnnnn Editor temporary
/tmp/Rxnnnnn Named buffer temporary
/usr/preserve/login Preservation directory (where
login is the user's login)
See Also

awk(C), ed(C), edit(C), grep(C), sed(C), vi(C) term(M),
terminfo(M) and curses(S) in the Reference (CP, S, F)

Notes

The undo command causes all marks to be lost on lines
changed and then restored if the marked lines were
changed. Undo never clears the buffer modified condition.

The z command prinfs a number of logical rather than phy-
sical lines. More than a screen full of output may result
if long lines are present.

File input/output errors do not print a name if the com-
mand line '-' option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buf-
fers and not used before exiting the editor. Null charac-
ters are discarded in input files and cannot appear in
resultant files.

EXPR(C) EXPR(C)

Name

expr - Evaluates arguments as an expression.

Syntax

expr arguments

Description

The arguments are taken as an expression. After evalua-
tion, the result is written on the standard output. Terms
of the expression must be separated by blanks. Characters
special to the shell must be escaped. Note that zero is
returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special char-
acters should be quoted. Integer-valued arguments may be
preceded by a minus sign. Internally, integers are

treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters

that need to be escaped are preceded by \. The list is in
order of increasing precedence, with equal precedence op-
erators grouped within braces ({ and }).

expr \| expr

Returns the first expr if it is neither null nor 0,
otherwise returns the second expr.

expr \& expr

Returns the first expr if neither expr is null nor 0,
otherwise returns 0.

expr { = \>, \>=, \{ \<5, 1=} expr
Returns the result of an integer comparison if both
arguments are integers, otherwise returns the result
of a lexical comparison.

expr { +, - } expr

Addition or subtraction of integer-valued arguments.

EXPR(C) EXPR(C)

expr { *y /y % } expr

Multiplication, division, or remainder of the
integer-valued arguments.

expr : expr

The matching operator : compares the first argument
with the second argument which must be a regular ex-
pression; regular expression syntax is the same as
that of ed(C), except that all patterns are
“anchored" (i.e., begin with a caret (*)) and there-
fore the caret is not a special character in that
context. (Note that in the shell, the caret has the
same meaning as the pipe symbol (|).) Normally the
matching operator returns the number of characters
matched (zero on failure). Alternatively, the

\(...\) pattern symbols can be used to return a por-
tion of the first argument.

Examples
To add 1 to the shell variable a:
a="expr $a + 1°
For $a equal to either "/usr/abc/file" or just "file,"
expr $a : . *¥/\(.¥\)' \| $a
returns the last segment of the pathname (i.e., file).
Watch out for the slash alone as an argument; expr will
take it as the division operator (see "Notes" below).
Even better and more simple than the above expression, add
the // characters to eliminate any ambiguity about the
division operator:
expr //$a : 'F/\(.*\)'

To return the number of characters in $VAR:

expr $VAR : '.#'

EXPR(C) EXPR(C)

Related Commands

ed(C), sh(C)

Diagnostics

As a side effect of expression evaluation, expr returns
the following exit values:

0 If the expression is neither null nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:
syntax error For operator/operand errors
nonnumeric argument If arithmetic is attempted on
such a string
Notes
After argument processing by the shell, expr cannot tell
the difference between an operator and an operand except
by the value. If $a is an equal sign (=), the command:
expr $a = '='
looks like:
exp[' ===
Thus the arguments are passed to expr (and will all be
taken as the = operator). The following permits comparing

equal signs:

expr X$a = X=

FACTOR(C) FACTOR(C)

Name

factor - Factors a number.

Syntax

factor [integer]

Description

When factor is invoked without an argument, it waits for a
number to be typed. If you type in a positive number less
than 10 4, it will factor the number and print its prime
factors; each one is printed the proper number of times.
Then it waits for another number. Factor exits if it en-
counters a zero or any nonnumeric character.

If factor is invoked with an argument, it factors the num-
ber as above and then exits.

The time it takes to factor a number, n, is proportional
to sqrt(n). It usually takes longer to factor a prime or
the square of a prime, than to factor other numbers.

Diagnostics
Factor returns an error message if the supplied input

value is greater than 10" or if it is not an integer num-
ber.

FALSE(C) FALSE(C)

Name

false - Returns with a nonzero exit value.

Syntax

false

Description
The false command returns a nonzero exit value and is typ-
ically used in shell procedures.

Example

Following is an example of using false in a shell proce-
dure:

until false
do

command
done

Related Commands

sh(C), true(C)

Diagnostics

False has exit status 1.

FCOPY(C) FCOPY(C)

Name

fcopy - Copies a floppy diskette.

Syntax

fcopy

Description
Use the fcopy command to make duplicate copies of a floppy
diskette. The routine is menu driven and will prompt you
when to insert and remove the diskette. After one copy
has been made, you can make additional copies of the same
diskette.
All new diskettes must be formatted before they can be
copied (see format(C)).

Example
To copy a floppy diskette, type:

fcopy

and press 8. The screen displays the following:

Select the option you want, insert the diskette you want
to copy, and press K5 The system copies a certain
amount of data from the diskette to a temporary file on
the hard disk. Then you are prompted to:

FCOPY(C) ~FCOPY(C)

During this phase, the system copies the data from the
hard disk to the blank disket‘te.

Depending on the amount of data, you may be prompted to
repeat the above procedure.

Files

/tmp/junk.????22? Temporary working file, created and
subsequently removed by fcopy.

Related Commands

format(C), dd(C)

FDISK(C) FDISK(C)

Name

fdisk - Maintains disk partitions (Series 500 only).

Syntax

fdisk [[-p] [-n] [-x] [-ad partition] [-c start size typel
[-f devicenamel]]

Description

Fdisk displays information about disk partitions. Fdisk
also creates and deletes disk partitions and changes the
active partition. Fdisk functionality is a superset of

the MS-DOS command of the same name. Fdisk is usually
used interactively from a menu.

The hard disk has at most four partitions. Only one par-
tition is active at any given time. It is possible to
assign a different operating system to each partition.
Once a partition is made active, the operating system res-
ident in the partition boots automatically once the cur-
rent operating system is halted.

To use Altos System V, at least one partition must be as-
signed to Altos System V.

The "Use Entire Disk for Altos System V" option always
leaves the first track unassigned. The first track on the
hard disk is reserved for masterboot.

For example, if a disk has 2442 tracks, fdisk reports
these as tracks 0-2441. Fdisk will assign (using the "Use
Entire Disk for Altos System V" option) tracks 1-2441.
(Track 0 is reserved for masterboot.)

Partitions are defined by a "partition table" at the end

of the master boot block. The partition table provides
the location and size of the partitions on the disk. The
partition table also defines the active partition. Each
partition can be assigned to Altos System V, DOS or some
other operating system. The DOS partition must be for-
matted using the DOS format command. Once a DOS par-
tition is set up, DOS files and directories resident in the
DOS partition may then be accessed while running Altos
System V by means of the dos(C) commands.

<_7

FDISK(C)

Arguments

FDISK(C)

These flags are used to invoke fdisk non-interactively:

-a number

-c start size type

~-d number

-f name

-n

P

-X

Options

Activates the specified partition num-
ber.

Creates partition with specified ‘
start, size, and type; start and size

are specified in tracks, and type is

one of:

1
2

Altos System V partition
DOS partition

Deletes the specified partition
number.

Opens device name and reads the
partition table associated with the
device's partition. The default is
/dev/rhd0.entire.

Deletes all partitions and removes the
masterboot. The disk must be com-
pletely re-installed.

Prints out the partition table. Dis-
plays the partition number, start,
end, size, and type; start, end, and
size are given in tracks.

Uses the entire disk for UNIX.

The fdisk command displays a prompt and a menu of options.
Updates to the disk are not made until you enter "q" from

the main menu.

FDISK(C)

FDISK(C)

Display Partition Table.

This option displays a table of information about
each partition on the hard disk., The PARTITION
column gives the partition number. The STATUS
column tells whether the partition is active (A) or
inactive (I). TYPE tells whether the partition is
Altos System V, DOS, or "other." the option also
displays the starting track, ending track and total
number of tracks in each partition.

Use Entire Disk for Altos System V

Fdisk creates one partition that includes all the
tracks on the disk, except the first track and the
last cylinder. This partition is assigned to Altos
System V and is designated the active partition.

Create a Partition

The option allows the creation of a partition by al-
tering the partition table. Fdisk reports the number
of tracks available for each partition and the number
of tracks in use. Fdisk prompts for the partition to
create, the starting track, size in tracks, and par-
tition type. The change is written to the operating
system and the hard disk when you enter "q" from the
main menu.

Activate Partition

This option activates the specified partition. Only
one partition may be active at a time. The change is
not effective until you exit. The operating system
residing in the newly activated partition boots once
the current operating system is halted.

Delete Partition

This option requests which partition you wish to de-
lete. Fdisk reports the new available amount of disk
space in tracks. The change is not effective until
you exit.

Exit the fdisk program by typing a "q" at the main
fdisk menu. Your changes are now written to the op-
erating system and the hard disk.

FDISK(C) FDISK(C)

Notes

The minimum recommended size for an Altos System V parti-
tion on the first hard disk is 20 megabytes.

Since fdisk is intended for use with DOS, it may not work
with all operating system combinations.

FGREP(C) FGREP(C)

Name

fgrep - Searches a file for a character string.

Syntax

fgrep [options] string [file...]

Description

Fgrep (fast grep) searches files for a character string
and prints all lines that contain that string. Fgrep is
different from grep(C) and egrep(C) because it searches
for a string, instead of searching for a pattern that
matches an expression. It uses a fast and compact al-
gorithm.

The characters $, *, [, ~, |, (,), and \ are interpreted
literally by fgrep; that is, fgrep does not recognize full
regular expressions as does egrep. Since these characters
have special meaning to the shell, it is safest to enclose
the entire string in single quotes '...'.

If no files are specified, fgrep assumes standard input.
Normally, each line found is copied to the standard out-
put. The file name is printed before each line found if
there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was
found. This can be useful in locating block numbers
by context (first block is 0).

-¢ Print only a count of the lines that contain the pat-
tern.

-h Suppress the filename header at the beginning of each
line.

-i Ignore upper/lower case distinction during compari-
sons. :

FGREP(C) FGREP(C)

-1 Print the names of files with matching lines once,

separated by newlines. Does not repeat the names of

files when the pattern is found more than once.

-n Precede each line by its line number in the file
(first line is 1).

- Suppress the error message for an inaccessible file.

-v Print all lines except those that contain the pat-
tern.

-x Print only lines matched entirely.
-y Same as -i option.

-e special_string
Search for a special string (string begins with a -).

-f file
Take the list of strings from file.

See Also

ed(C), egrep(C), grep(C), sed(C), sh(C)

Diagnostics

Exit status is 0 if any matches are found, 1 if none, 2
for syntax errors or inaccessible files (even if matches
were found).

Notes

Ideally there should be only one grep command, but there
is not a single algorithm that spans a wide enough range
of space-time tradeoffs. Lines are limited to BUFSIZ
characters; longer lines are truncated. BUFSIZ is de-
fined in /usr/include/stdio.h.

FILE(C) . FILE(C)

Name

file - Determines file type.

Syntax

file [-c 1 [-f ffile 1 [-m mfile 1 arg...

Description

Files

File performs a series of tests on each argument in an
attempt to classify it. If an argument appears to be
ASCII, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable
a.out, file will print the version stamp, provided it is
greater than 0.

-¢ The -c option causes file to check the magic file for
format errors. This validation is not normally
carried out for reasons of efficiency. No file typ-
ing is done under -c.

-f If the -f option is given, the next argument is taken
to be a file containing the names of the files to be
examined.

-m The -m option instructs file to use an alternate
magic: file.

File uses the file /etc/magic to identify files that have

some sort of magic number, that is, any file containing a
numeric or string constant that indicates its type. Com-
mentary at the beginning of /etc/magic explains its for-
mat.

/etc/magic

See Also

filehdr(F) in the Reference (CP, S, F)

FIND(C)

Name

FIND(C)

find - Finds files that match certain conditions.

Syntax

find pathname-list expression

Description

The find program recursively searches the directory hier-
archy for each path name in the pathname-list, looking for
files that match a boolean expression written in the pri-
maries given below. In the descriptions, the argument n
is used as a decimal integer where +n means more than n,
-n means less than n, and n means exactly n.

Options

-atime n

~cpio device

-ctime n

-depth

-exec cmd

True if the file has been accessed in n
days. The access time of directories in
pathname-list is changed by find itself.

Always true; write the current file on
device in cpio(C) format (5120-byte
records).

True if the file status (mode, ownership,
links) has been changed in n days.

Always true; causes descent of the direc-
tory hierarchy so that all entries in a
directory are acted on before the directory
itself. This can be useful when find is
used with cpio(C) to transfer files that

are contained in directories without write
permission.

True if the executed emd returns a

zero value as exit status. The end of emd
must be punctuated by a space and an es-
caped semicolon. A command argument {} is
replaced by the current pathname.

FIND(C)

(expression)

-group gname

-inum n

-links n

~-local

-mount

-mtime n

-name file

-newer file

-nosym

-ok cmd

FIND(C)

True if the parenthesized expression is
true (parentheses are special to the shell
and must be escaped).

True if the file belongs to the group
gname. If gname is numeric and does not
appear in the /etc/group file, it is taken
as a group ID.

- True if the file has the specified inode

number, n.
True if the file has n links.

True if the file physically resides on the
local system.

Always true; restricts the search to the
file system containing the directory speci-
fied, or if no directory was specified, the
current directory.

True if the file data has been modified in
n days.

True if file matches the current file name.
Normal shell argument syntax may be used il
escaped (watch out for the left bracket

([), the question mark (?) and the star

(*)).

True if the current file has been modified
more recently than the argument file.

Does not descend into directories that are
symbolic links.

Like -exec except that the generated
command line is displayed with a question
mark first, and is and is executed only if
the user responds by typing y.

FIND(C)

-perm onum

-print

-size nlc]

-type ¢

-user uname

FIND(C)

True if the file permission flags exactly
match the octal number onum (see chmod(C)).
If onum is prefixed by a minus sign, more
flag bits (017777, see stat(S)) become sig-
nificant and the flags are compared:

(flags&onum)==onum

Always true; causes the current pathname to
be printed.

True if the file is n blocks long (512
bytes per block). If n is followed by a c,
the size is in characters.

True if the type of the file is ¢, where ¢
is b, ¢, d, 1, p, or £, for block special
file, character special file, directory,
symbolic link, named pipe, or plain file.

True if the file belongs to the user uname.
If uname is numeric and does not appear as
a login name in the /etc/passwd file, it is

taken as a user ID.

The primaries may be combined using the following opera-
tors (in order of decreasing precedence):

negation

AND

OR

Examples

The negation of a primary is specified with
the exclamation (!) unary NOT operator.

The AND operation is implied by the juxta-

position of two primaries.

The OR operation is specified with the -o
operator given between two primaries.

In the example below all the files named a.out or *.0 that
have not been accessed for a week are found and removed.

find / \(-name a.out -o -name '*.0' \) \(-atime +7 \)

-exec rm {} \:

FIND(C) FIND(C)

See Also

chmod(C), cpio(C), sh(C), test(C), stat(S), umask(S)

Files

/ete/passwd
/etc/group

FINGER(C) FINGER(C)

Name

finger - Finds information about users.

Syntax

finger [-bfilpgsw 1 [login ...]

Description

By default, finger lists the login name, full name, ter-
minal name and write status (as a "*" before the terminal
name if write permission is denied), idle time, login

time, office location, and phone number (if known) for
each current user. (Idle time is in minutes if it is a
single integer, hours and minutes if a colon (:) is used,
or days and hours if a "d" is used.)

A longer format also exists and is used by finger whenever
a list of names is given. (Account names as well as first
and last names of users are accepted.) This is a
multi-line format; including all of the information de-
scribed above as well as the user's home directory and
login shell, any plan which the person has placed in the
.plan file in their home directory, and the project on
which that user is working from the .project file, also in
the home directory.

Options are:

-b Prints briefer long output format of users.

-f Suppresses the printing of the header line (short
format).

-i Prints quick list of users with idle times.
-1 Forces long output format.

-p Suppresses printing of the .plan files.

-q Prints quick list of users.

-s Forces short output format.

-w Forces narrow format list of specified users.

FINGER(C) FINGER(C)

Files
/etc/utmp Who file
/etc/passwd User names, offices, phones, login
directories, and shells
$HOME/.plan Plans
$HOME/.project Projects
See Also
who(C)
Notes

Only the first line of the .project file is printed.

The "office" column of the output will contain any text in
the comment field of the user's /etc/passwd file entry
that immediately follows a comma (,). For example, if the
entry is:

johnd:eX8HinAk:201:50:John Doe, 321:/usr/johnd:/bin/sh
the number 321 will appear in the office column.
Idle time is computed as the elapsed time since any activ-
ity on the given terminal. This includes previous invoca-
tions of finger which may have modified the terminal's
corresponding device file, /dev/tty??.

This utility was developed at the University of California
at Berkeley and is used with permission.

e

FLEECE(C) FLEECE(C)

Name

fleece - Looks for files in home directories.

Syntax

fleece file

Description

Fleece looks for the named file in every home directory on
the system and lists those which exist.

Files

/etc/passwd To find home directories

FMT(C) FMT(C)

Name

fmt - Simple text formatter.

Syntax

fmt [file...]

Description

Fmt is a simple text formatter that reads the concatena-
tion of input files (or standard input if none are given)
and produces on the standard output a version of its input
with lines as close to 72 characters long as possible.

The spacing at the beginning of the input lines is pre-
served in the output, as are blank lines and interword
spacing.

Fmt is meant to format mail messages prior to sending, but
may also be useful for other simple tasks. For instance,
within vi(C), the command:

1}fmt

will reformat a paragraph, evening the lines.

See Also

mail(C), nroff(1)

Notes

The program was designed to be simple and fast; for more
complex operations, use the standard text processors.

FOLD(C) FOLD(C)

Name

fold - Folds long lines for finite width output device.

Syntax
fold [-width 1 [file ...]

Description

Fold is a filter that will fold the contents of a speci-
fied file, breaking the lines to fit a maximum width. If
no file name is given, the program will use the standard
input.

Fold accepts the following option:

~width The default for width is 80. Width should be a
multiple of 8 if tabs are present, or the tabs
should be expanded using expand(C) before using
the fold command.

FORMAT(C) FORMAT(C)

Name

format - Formats a floppy diskette.

Syntax

format

Description

Format is a menu-driven program for formatting fldppy
disks. Disks are formatted in a 5-1/4 inch,
double-density, double-sided format.

For Altos systems with a dual-speed floppy drive, when you
type format, the screen looks like this:

Type 1, then and you are prompted to insert a blank
diskette and press JEEAM. A series of dots (......) will
appear on the screen. When the diskette is formatted the
format menu reappears. Type 4 to quit; the system prompt
returns to the screen.

CAUTION

The computer has a dual-speed floppy disk
drive. Floppy disks designed for a high speed
drive cannot be used on a low speed drive, and
floppy disks designed for a low speed drive
cannot be used on a high speed drive.

The system will determine what type of floppy disk you
have before it begins copying files to the floppy disk.

FORMAT(C) FORMAT(C)

Files

/usr/lib/ffmt

ﬁ See Also

fcopy(C), dd(C)

FROM(C) i FROM(C)

Name

from - Who is my mail from?

Syntax

from

Description

From lists the mail header lines in your mailbox file, to
show you who your mail is from.

Files

/usr/spool/mail/*

FSCK(C) FSCK(C)

Name

fsck, dfsck - Checks and repairs file systems.

Syntax

/ete/fsck [options] [file-system]
/etc/dfsck [optionsl] fsysl ... - [options2] fsys2 ...

Description of fsck

The fsck command must be run on the root device in
single-user mode.

The fsck command performs a file system check by auditing
and interactively repairing inconsistencies in the file
system. If a file system is consistent, then the number

of files, number of blocks used, and number of blocks free
are reported. If the file system is inconsistent, you are
prompted for agreement before each correction is at-
tempted. The system waits for you to respond yes or no.
Most corrective actions result in some loss of data. The
amount and severity of the loss may be determined from the
diagnostic output. If you do not have write permission,
fsck defaults to the action of the -n option.

Inconsistencies checked are as follows:

. Blocks claimed by more than one inode or the free
list

. Blocks claimed by an inode or the free list outside
the range of the file system

. Incorrect link counts
. Size checks:
Incorrect number of blocks
Directory size not 16-byte aligned
. Bad inode format

. Blocks not accounted for anywhere

. Directory checks:

' FSCK(C) FSCK(C)

File pointing to unallocated inode
Inode number out of range

. Super-block checks:
More than 65536 inodes
More blocks for inodes than there are in the
file system

. Bad free block list format
. Total free block or free inode count incorrect

Orphaned files and directories (allocated but unreferenced)
are reconnected by placing them in the lost+found direc-
tory. The name assigned is the inode number. The only
restriction is that the directory lost+found must pre-

exist in the root of the file system being checked and
must have empty slots in which entries can be made. This
is accomplished (when the system is installed) by making
lost+found, copying a number of files to the directory,

and then removing them before fsck is executed.

Options

-b Reboot. If the file system being checked is the root
file system and modifications have been made, then
either remount the root file system or reboot the
system. A remount is done only if there was minor
damage.

-D Checks directories for bad blocks (useful after sys-
tem crash).

-f Does a fast check of the file system (blocks and
sizes and free list checks). Reconstructs free list
if necessary.

-h Complains about files whose byte and block counts
don't match.

-n Assumes a "no" response to all questions asked by
fsck; does not open the file system for writing.

-q Quiet fsck. Assumes yes in response to most ques-
tions. Unreferenced fifos will be silently removed.
If required, counts in the superblock will be cor-
rected.

FSCK(C)

-sX

-y

FSCK(C)

Ignores the actual free list and (unconditionally)
reconstructs a new one by rewriting the super-block
of the file system. The file system must be un-
mounted while this is done. If this is not possible,
care should be taken that the system is quiescent and
that it is rebooted immediately afterwards. This
precaution is necessary so that the old, bad, in-core
copy of the superblock will not continue to be used,
or written on the file system. The -sX option allows
for creating an optimal freelist organization. The
format for X is eylinder size:gap size. If X is not
given, then the values used when the file system was
created are used.

Conditionally reconstructs the free list. This op-
tion is like -sX except that the free list is rebuilt
only if there are no discrepancies discovered in the
file system. Using -S forces a "no" response to all
questions asked by fsck. This option is useful for
forcing free list reorganization on uncontaminated
file systems.

If fsck cannot obtain enough memory to keep its
tables, it uses a scratch file. If the -t option is
specified, the file named in the next argument is
used as the scratch file, if needed. Without -t,
fsck prompts for the name of the scratch file. The
file chosen should not be on the file system being
checked, and if it is not a special file or did not
already exist, it is removed when fsck completes.

Assumes a "yes" response to all questions asked by
fsck.

If no file systems are specified, fsck reads a list of
default file systems from the file /etc/checklist.

Description of dfsck

Dfsck allows two file system checks on two different

drives simultaneously. Optionsl and options2 are used to
pass options to fsck for the two sets of file systems. A
dash (-) is the separator between the file system groups.

Dfsck permits you to interact with two fsck programs at

once.

To aid this, dfsck will print the file system name

for each message.

FSCK(C) . FSCK(C)

When answering a question from dfsck, you must prefix the
response with a 1 or a 2 to indicate that the answer re-
fers to the first or second file system.

Do not use dfsck to check the root file system.

Examples
For example, to check the main hard disk, type:
fsck /dev/root

For the second hard disk, the procedure is as follows. If
the second hard disk is mounted, type:

/etc/umount /dev/hdlb
fsck /dev/hdlb

To remount the second hard disk back to usr2, type:
/etc/mount /dev/hdlb /usr2

If the second hard disk is not mounted, skip the umount

and mount steps. If you have a third hard disk, substi-

tute hd2b for hdlb and /usr3 for /usr2.

If the file system is in good order, the screen displays:

FSCK(C) FSCK(C)

The following example shows file system inconsistencies:

The system automatically clears and salvages the file sys-
tem, and the following message apppears:

The system should automatically reboot after fsck shuts it

down.
Files
/etc/checklist Contains default list of file systems
to check
See Also

mkfs(M), ncheck(M), checklist(M), filesystem(M)

FSCK(C) ; 4 FSCK(C)

Notes

Inode numbers for . and .. in each directory are not
checked for validity.

The fsck program will not run on a mounted non-raw file
system unless the file system is the root file system or
unless the -n option is specified and no writing out of
the file system will take place. If any such attempt is
made, a warning is displayed on the screen and no further
processing of the file system is done for the specified
device.

Checking the raw device is almost always faster and should
be used with everything but the root file system.

Although checking a raw device is almost always faster,
there is no way to tell if the file system is mounted.
And cleaning a mounted file system will almost certainly
result in an inconsistent superblock.

Unreferenced files of size 0 are removed without asking
first.

GETOPT(C) GETOPT(C)

Name

getopt - Parses command options.

Syntax

set -- “getopt optstring $*°

Description

Getopt is used to check and break up options in command
lines for parsing by shell procedures. Optstring is a
string of recognized option letters (see getopt(S)). If a
letter is followed by a colon, the option is expected to
have an argument which may or may not be separated from
it by whitespace. The special option -- is used to delimit
the end of the options. Getopt will place -- in the ar-
guments at the end of the options, or recognize it if it

is used explicitly. The shell arguments ($1 $2 ...) are
reset so that each option is preceded by a dash (-); each
option argument is also in its own shell argument.

Example

The following code fragment shows you how to process the
arguments for a command that can take the a and b op-
tions, and the o option, which require an argument:

set -- ‘getopt abo: $*°
if [$2 1= 0]
then
echo $SUSAGE
exit 2
fi
for i in $*

do
case $i in
-a | -b) FLAG=$i: shift:;:;
~0) OARG=$2; shift; shift;:
- =) shift: break::
esac
done

GETOPT(C) GETOPT(C)

This code will accept any of the following as equivalent:

cmd -aocarg file file
cmd -a -o arg file file
cmd -oarg -a file file

cmd -a -oarg - - file file

See Also

getopt(S), sh(C)

Diagnostics

Getopt prints an error message on the standard output when
it encounters an option letter not included in optstring.

GETS(C) GETS(C)

Name

gets - Gets a string from the standard input.

Syntax

gets [string]

Description

Gets can be used with csh(C) to read a string from the
standard input. If string is given, it is used as a de-
fault value if an error occurs. The resulting string
(either string or as read from the standard input) is
written to the standard output. If no string is given and
an error occurs, gets exits with exit status 1.

See Also

csh(C), line(C)

GLOSSARY(C) GLOSSARY(C)

Name

glossary - Defines eommon UNIX system terms and symbols.

Syntax

[help] glossary [term]

Description

The operating system Help Facility command, glossary, pro-
vides definitions of common technical terms and symbols.

Without an argument, glossary displays a menu screen list-
ing the terms and symbeols that are currently included in
glossary. A user may choose one of the terms or may exit
to the shell by typing q (for "quit"). When a term is
selected, its definition is retrieved and displayed. By
selecting the appropriate menu choice, the list of terms

and symbols can be redisplayed. Press after entering
your choice.

A term's definition may also be requested directly from
shell level (as shown in the syntax), causing a definition
to be retrieved and the list of terms and symbols not to
be displayed. Some of the symbols must be escaped if re-
quested at shell level in order for the facility to under-
stand the symbol. The following table lists the symbols
and their escape sequence.

SYMBOL ESCAPE SEQUENCE
L1l \"\"

.. NN

[\\[\\1

" \' \ A

\#

\&

*

W\

\|

— % oSk

From any screen in the Help Facility, a user may execute a
command via the shell (sh(C)) by typing a ! and the com-
mand to be executed. The screen will be redrawn if the
command that was executed was entered at a first level

~

GLOSSARY(C) GLOSSARY(C)

prompt. If entered at any other prompt level, only the
prompt will be redrawn.

By default, the Help Facility scrolls the data that is
presented to the user. If you prefer to have the screen
clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will
become part of your environment. This is done by adding
the following line to your .profile file (see profile(M)):

export SCROLL j SCROLL=no

If you later decide that scrolling is desired, SCROLL must
be set to yes.

For information on each of the Help Facility commands, see
help(C).

See Also

help(C), helpadm(M), locate(C), sh(C), starter(C),
usage(C), term(M)

Warnings

If the shell variable TERM (see sh(C)) is not set in the
user's .profile file, then TERM will default to the ter-
minal value type 450 (a hard-copy terminal). For a list
of valid terminal types, refer to term(M).

GRAPH(C) » GRAPH(C)

Name

graph - Draws a graph.

Syntax

graph [options 1]

Description

Graph with no options takes pairs of numbers from the
standard input as abscissas and ordinates of a graph.
Successive points are connected by straight lines. The
graph is encoded on the standard output for display.

If the coordinates of a point are followed by a non-
numeric string, that string is printed as a label be-
ginning on the point. Labels may be surrounded with
quotes ("), in which case they may be empty or contain
blanks and numbers; labels never contain new-lines.

The following options are recognized, each as a separate
argument,

-a Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument
(default 1), A second optional argument is the
starting point for automatic abscissas (default 0 or
lower limit given by -x).

-b Break (disconnect) the graph after each label in the
input.

-¢ Character string given by next argument is default
label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with
ticks, 2 full grid (default).

-1 Next argument is a label for the graph.

GRAPH(C) ' GRAPH(C)

-m Next argument is mode (style) of connecting lines: 0
disconnected, 1 connected (default). Some devices
give distinguishable line styles for other small in-
tegers (e.g., the Tektronix 4014: 2=dotted,
3=dash-dot, 4=short-dash, 5=long-dash).

-s Save screen, do not erase before plotting.

-x [11
If 1 is present, x axis is logarithmic. Next 1 (or
2) arguments are lower (and upper) x limits. Third
argument, if present, is grid spacing on x axis.
Normally these quantities are determined automatic-
ally.

-y[1]
Similarly for y.

-h Next argument is fraction of space for height.
-w Similarly for width.

-r Next argument is fraction of space to move right be-
fore plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option -x
now applies to the vertical axis.)

A legend indicating grid range is produced with a grid
unless the ~-s option is present. If a specified lower
limit exceeds the upper limit, the axis is reversed.

See Also

spline(C), tplot(C)

Notes

The terminal' you use must have graphics capabilities for
successful execution of this command. Graph stores all
points internally and drops those for which there is no
room. Segments that run out of bounds are dropped, not
windowed. Logarithmic axes may not be reversed.

GREP(C) GREP(C)

Name

grep - Searches a file for a pattern.

Syntax

grep [options] limited regular expression [file...]

Description

Grep searches files for a pattern and prints all lines
that contain that pattern. Grep uses limited regular ex-
pressions (expressions that have string values that use a
subset of the possible alphanumeric and special charac-
ters) like those used with ed(C) to match the patterns.
It uses a compact non-deterministic algorithm.

Be careful using the characters $, *, [, ~, |, (,), and \
in the limited regular expression because they are also
meaningful to the shell, It is safest to enclose the en-
tire limited regular expression in single quotes '...'.

If no files are specified, grep assumes standard input.
Normally, each line found is copied to standard output.
The file name is printed before each line found if there
is more than one input file.

Command line options are:

-b Precede each line by the block number on which it wa
found. This can be useful in locating block numbers
by context (first block is 0).

-¢ Print only a count of the lines that contain the pat-
tern.

-i Ignore upper/lower-case distinction during compari-
sons. .

-1 Print the names of files with matching lines once,
separated by newlines. Does not repeat the names of
files when the pattern is found more than once.

-n Precede each line by its line number in the file
(first line is 1). -

Y

GREP(C) GREP(C)
- Suppress error messages about nonexistent or unread-
able files
-v Print all lines except those that contain the pat-
tern.
See Also

ed(C), egrep(C), fgrep(C), sed(C), sh(C)

Diagnostics

Exit status is 0 if any matches are found, 1 if none, 2
for syntax errors or inaccessible files (even if matches
were found).

Notes

Lines are limited to BUFSIZ characters; longer lines are
truncated. BUFSIZ is defined in /usr/include/stdio.h.
If there is a line with embedded nulls, grep will only
match up to the first null; if it matches, it will print
the entire line.

HALTSYS(C) HALTSYS(C)

Name

haltsys - Closes out the file systems and halts the CPU.

Syntax

/etc/haltsys

Description
You must be the super-user to access this command.

The haltsys command immediately terminates the operating
system and should only be used if a system problem pre-
vents the running of shutdown. Do not run haltsys in mul-
tiuser mode and when other users are on the system. Since
haltsys takes effect immediately, user processes should be
killed beforehand (see kill(C)).

Related Commands

shutdown(C), kill(C), ps(C)

HD(C) HD(C)

Name

hd - Displays files in hexadecimal format.

Syntax

hd [-format 1 [-s offset 1 [-n count 1 [file ... 1

Description

The hd command displays the contents of file in hexadeci-
mal, octal, decimal, and character formats. Control over
the specification of ranges of characters is also avail-
able. The default behavior is with the following flags
set: -abx -A. This says that addresses (file offsets)

and bytes are printed in hexadecimal and that characters
are also printed. If no file argument is given, the stan-
dard input is read.

Options include:

-s offset Specify the beginning offset in the file where
printing is to begin. If no file argument is
given, or if a seek fails because the input is a
pipe, offset bytes are read from the input and
discarded. Otherwise, a seek error will termi-
nate processing of the current file.

The offset may be given in decimal, hexadecimal
(preceded by '0x'), or octal (preceded by a
'0'). It is optionally followed by one of the
following multipliers: w, 1, b, or k; for words
(2 bytes), long words (4 bytes), blocks (512
bytes), or K bytes (1024 bytes). Note that this
is one case where "b" does not stand for bytes.
Since specifying a hexadecimal offset in blocks
would result in an ambiguous trailing 'b', any
offset and multiplier may be separated by an
asterisk (*).

-n count Specify the number of bytes to process. The
count is in the same format as offset, above.

HD(C) HD(C)

Format Flags

Format flags may specify addresses, characters, bytes,
words (2 bytes), or longs (4 bytes) to be printed in hexa-
decimal, decimal, or octal. Two special formats may also
be indicated: text or ASCII. Format and base specifiers
may be freely combined and repeated as desired in order to
specify different bases (hexadecimal, decimal or octal)

for different output formats (addresses, characters,

etc.). All format flags appearing in a single argument

are applied as appropriate to all other flags in that ar-
gument.

acbwlA Output format specifiers for addresses, charac-
ters, bytes, words, longs and ASCII, respective-
ly. Only one base specifier will be used for
addresses; the address will appear on the first
line of output that begins each new offset in
the input.

The character format prints printable characters
unchanged, special C escapes as defined in the
language, and remaining values in the specified
base.

The ASCII format prints all printable characters
unchanged, and all others as a period (.). This
format appears to the right of the first of
other specified output formats. A base speci-
fier has no meaning with the ASCII format. If
no other output format (other than addresses) is
given, bx is assumed. If no base specifier is
given, all of xdo are used.

xdo Output base specifiers for hexadecimal, decimal
and octal. If no format specifier is given, all
of acbwl are used. :

t Print a text file, each line preceded by the
address in the file. Normally, lines should be
terminated by a \n character; but long lines
will be broken up. Control characters in the
range 0x00 to Oxlf are printed as *"@' to *"_'.
Bytes with the high bit set are preceded by a
tilde (7) and printed as if the high bit were
not set. The special ‘characters (%, =, \) are
preceded by a backslash (\) to escape their spe-

HD(C)

HD(C)

cial meaning. As special cases, two values are
represented numerically as *\177' and “\377'.
This flag will override all output format speci-
fiers except addresses.

HDR(C) HDR(C)

Name

hdr - Displays selected parts of object files.

Syntax

hdr [-dhIKmprsSt] file ...

Description

Hdr displays object file headers, symbol tables, and text

or data relocation records in human-readable formats. It
also prints out seek positions for the various segments in
the object file. Only a.out, x.out, and x.out segmented

formats and archives are understood. COFF format files
are not handled; see dump(CP).

The symbol table format consists of six fields. In a.out
formats, the third field is missing.

1. The first field is the symbol's index or position in
the symbol table, printed in decimal. The index of
the first entry is zero.

2. This field is the type, printed in hexadecimal.

3. The third field is the s_seg field, printed in hexa-
decimal.

4. The fourth field is the symbol's value in hexadeci-
mal.

5. This field is a single character which represents the
symbol's type as in nm(CP), except C common is not
recognized as a special case of undefined.

6. The sixth field is the symbol name.

HDR(C) HDR(C)

If long form relocation is present, the format has six
fields.

1. The first is the descriptor, printed in hexadecimal.

2. The second is the symbol ID, or index, in decimal.
This field is used for external relocations as an
index into the symbol table. It should reference an
undefined symbol table entry.

3. This field is the position, or offset, within the
current segment where relocation is to take place
(printed in hexadecimal).

4. The fourth field is the name of the segment refer-
enced in the relocation: text, data, bss or EXT for
external.

5. The fifth field is the size of relocation: byte,
word (2 bytes), or long.

6. This field, if present, indicates the relocation is
relative.

If short form relocation is present, the format has three
fields.

1. The first field is the relocation command in hexa-
decimal.

2, This field has the referenced segment name: text or
data.

3. This field indicates the size of relocation: word or
long.

Options and their meanings are:

~h Causes the object file header and extended header to
be printed out. Each field in the header or extended
header is labeled. This is the default option.

-1 Uses Intel kernel dataseg (150) and textseg (158)
instead of the default 27 and 3F, respectively.
(Numbers are in hex.)

HDR(C)

-K

P

-r
-S

-S

-t

See Also

HDR(C)

Uses kernel dataseg (18) and textseg (20) instead of
the default 27 and 3F, respectively. - (Numbers are in
hex.) '

Causes the data relocation records to be printed out.
Prints segment table memory images only.

Causes seek positions to be printed out as defined by
macros in the include file, a.out.h.

Causes both text and data relocation to be printed.
Prints the symbol table.

Prints the file segment table with a header. (Only
applicable to x.out segmented executable files.)

Causes the text relocation records to be printed out.

a.out(F), nm(CP), dump(CP) in the Reference (CP, S, F)

HEAD(C) HEAD(C)

Name

head - Prints the first few lines of a stream.

Syntax

head [-count 1 [file ...]

Description
This filter prints the first count lines of each of the
specified files. If no files are specified, head reads

from the standard input. If no count is specified, then
10 lines are printed.

See Also

tail(C)

Notes

This utility was developed at the University of California
at Berkeley and is used with permission.

HELP(C) HELP(C)

Name

help - Operating system Help Facility.

Syntax

help

[help] starter

[help J usage [-d 1 [-e 1 [-0 1 [command_name]
[help] locate [keywordl [keyword? l...]

[help 1 glossary [term]

help arg...

Description

The system Help Facility provides on-line assistance for
operating system users, whether they desire general infor-
mation or specific assistance for use of the Source Code
Control System (SCCS) commands.

Without arguments, help prints a menu of available on-line
assistance commands with a short description of their
functions. The commands and their descriptions are:

Command Description

starter Information about the operating system for
the beginning user

locate Locate operating system commands using
function-related keywords

usage Operating system command usage information
glossary Definitions of operating system technical
terms

The user may choose one of the above commands by enter-
ing its corresponding letter (given in the menu), or may
exit to the shell by typing q (for "quit").

HELP(C) HELP(C)

With arguments, help directly invokes the named on-line
assistance command, bypassing the initial help menu. The
commands starter, locate, usage, and glossary, optionally
preceded by the word help, may also be specified at shell
level. When executing glossary from shell level some of
the symbols listed in the glossary must be escaped
(preceded by one or more backslash (\) characters) to be
understood by the Help Facility. For a list of symbols
and how many backslashes to use for each, refer to the
glossary(C) manual page.

From any screen in the Help Facility, a user may execute a
command via the shell (sh(C)) by typing a ! and the com-
mand to be executed. The screen will be redrawn if the
command that was executed was entered at a first level
prompt. If entered at any other prompt level, only the
prompt will be redrawn.

By default, the Help Facility scrolls the data that is
presented to the user. If you prefer to have the screen
clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it
will become part of your environment. This is done by
adding the following line to your .profile file (see
profile(M)):

export SCROLL ; SCROLL=no

If you later decide that scrolling is desired, SCROLL must
be set to yes.

Information on each of the Help Facility commands (starter,
locate, usage, glossary, and help) is located on their
respective manual pages.

If the first argument to help is different from starter,
usage, locate, or glossary, help assumes information is
being requested about the SCCS Facility. The arguments
may be either message numbers (which normally appear in
parentheses following messages) or command names, of one
of the following types:

HELP(C) HELP(C)

typel Begins with non-numerics, ends in numerics. The
non-numeric prefix is usually an abbreviation
for the program or set of routines which pro-
duced the message (e.g., ge3 for message 3 from
the get(C) command).

type2 Does not contain numerics (as a command, such
as get).
type3 Is all numeric (e.g., 212).
See Also

glossary(C), locate(C), sh(C), starter(C), usage(C),
term(M) profile(M), and admin(S), cdc(S), comb(S),
delta(S), get(S), prs(S), rmdel(S), sact(S), sccsdiff(S),
unget(S), val(S), vc(S), what(S), sccsfile(F) in-the Ref-
erence (CP, S, F)

Warnings

If the shell variable TERM (see sh(C)) is not set in the
user's .profile file, then TERM will default to the ter-
minal value type 450 (a hard-copy terminal). For a list
of valid terminal types, refer to term(M).

Y
»

HPLP(C) HPLP(C)

Name
hplp - Filters files for printing on HP Laserjet.

hplpR - Filters and reverses pages for printing on HP
Laserjet.

Syntax

hplp [file ... 1
hplpR [-w] [file ...]

Description

These commands filter files for printing on the Hewlett-
Packard Laserjet printer. If no files are given, both
commands will read from the standard input. Both commands
write the output to the standard output (screen), and are
normally run as part of a pipeline:

hplp file | lprN

Hplp simply prepends the command sequences that enable the
printing of a full 66 lines by 80 columns on standard 8

1/2 x 11 paper (without putting lines in the "unprintable"
regions of the paper).

HplpR will reverse the pages in a file, so that when they
are actually printed, they will be correctly collated in

the output tray. A maximum of 256 pages can be reversed.
It is assumed that all pages are 66 lines, so documents
formatted for other page lengths may not be handled cor-
rectly. If a formfeed (octal 014) is found, it terminates

a page, allowing correct reversal of short pages.

-w Prints wide documents (hplpR). The -w option sends
the command sequences that request "landscape mode"
printing (rotated 90 degrees), and that use 17 pitch
characters. This allows printing of pages with a
full 66 lines by 170 columns.

Files

/usr/bin/hplp

(BLANK)

A= 4

N5

ID(C) ID(C)

Name

id - Prints user and group IDs and names.

Syntax

id

Description

Id outputs the user and group IDs and the corresponding
names of the invoking process. If the effective and real
IDs are different, both are printed.

See Also

getuid(S), logname(C)

IPCRM(C)

Name

IPCRM(C)

iperm - Removes a message queue, semaphore set, or shared

memory id.

Syntax

iperm [options]

Description

Ipcrm will remove one or more specified messages, sema-
phore or shared memory identifiers. The identifiers are
specified by the following options:

-m shmid

-M shmkey

-q msqid

-Q msgkey

-s semid

-S semkey

Removes the shared memory identifier shmid
from the system. The shared memory seg-

ment and data structure associated with it

are destroyed after the last detach.

Removes the shared memory identifier,
created with key shmkey, from the system.
The shared memory segment and data struc-
ture associated with it are destroyed after
the last detach.

Removes the message queue identifier msqid
from the system and destroys the message
queue and data structure associated with
it.

Removes the message queue identifier,
created with key msgkey, from the system
and destroys the message queue and data
structure associated with it.

Removes the semaphore identifier semid frc
the system and destroys the set of sema-
phores and data structure associated with
it.

Removes the semaphore identifier, created
with key semkey, from the system and de-
stroys the set of semaphores and data
structure associated with it.

LT

IPCRM(C) IPCRM(C)

The details of the removes are described in msgctl(S),
shmctl(S), semctl(S). The identifiers and keys may be
found by using ipes(C).

See Also

ipcs(C) and msgctl(S), msgget(S), msgop(S), semctl(S),
semget(S), semop(S), shmectl(S), shmget(S), shmop(S) in the
Reference (CP, S, F)

IPCS(C) IPCS(C)

Name

ipecs - Reports inter-process communication facilities
status.

Syntax

ipes [options]

Description

Ipcs prints certain information about active inter-process
communication facilities. Without options, information is
printed in short format for message queues, shared memory,
and semaphores that are currently active in the system.
Otherwise, the information that is displayed is controlled
by the following options.

Options

-m Print information about active shared memory seg-
ments.

-q Print information about active message queues.
-s Print information about active semaphores.

If any of the options -m, -q, or -s are specified, infor-
mation about only those indicated will be printed. If
none of these three are specified, information about all
three will be printed subject to these options:

-a Use all print options. (This is a shorthand notation
for -b, -¢, -0, -p, and -t.)

-b Print biggest allowable size information. (Maximum
number of bytes in messages on queue for message
queues, size of segments for shared memory, and num-
ber of semaphores in each set for semaphores.) See
the following for meaning of columns in a listing.

-¢ Print creator's login name and group name. See the
following description.

IPCS(C) IPCS(C)

-C corefile
Use the file corefile in place of /dev/kmem.

-N namelist
The argument will be taken as the name of an alter-
nate namelist (/unix is the default).

-0 Print information on outstanding usage. (Number of
messages on queue and total number of bytes in mes-
sages on queue for message queues and number of pro-
cesses attached to shared memory segments.)

-p Print process number information. (Process ID of
last process to send a message and process ID of last
process to receive a message on message queues and
process ID of creating process and process ID of last
process to attach or detach on shared memory
segments). See the following description.

-t Print time information. (Time of the last control
operation that changed the access permissions for all
facilities. Time of last msgsnd and last msgrcv on
message queues, last shmat and last shmdt on shared
memory, last semop on semaphores.) See the following
description.

The column headings and the meaning of the colummns in an
ipes listing follow; the letters in parentheses indicate

the options that cause the corresponding heading to ap-
pear; "all" means that the heading always appears. Note
that these options only determine what information is pro-
vided for each facility; they do not determine which f-
acilities will be listed.

T (all)
Type of the facility:
m Shared memory segment;
q Message queue;
S Semaphore.
ID (all)

The identifier for the facility entry.

IPCS(C) IPCS(C)

KEY (all) v
The key used as an argument to msgget,
semget, or shmget to create the facility
entry. (Note: The key of a shared mem-
ory segment is changed to IPC_PRIVATE
when the segment has been removed until
all processes attached to the segment de-
tach it.)

MODE (all)
The facility access modes and flags: The
mode consists of 11 characters that are
interpreted as follows:

The first two characters are:

C if the associated shared memory seg-
ment is to be cleared when the first
attach is executed;

D if the associated shared memory seg-
ment has been removed. It will disap-
pear when the last process attached t«
the segment detaches it;

R if a process is waiting on a msgrev;
S if a process is waiting on a msgsnd;

- if the corresponding special flag is
not set.

The next 9 characters are interpreted as
three sets of three bits each. The first
set refers to the owner's permissions; the
next to permissions of others in the
user-group of the facility entry; and the
last to all others. Within each set, the
first character indicates permission to
read, the second character indicates per-
mission to write or alter the facility en-
try, and the last character is currently
unused.

IPCS(C)

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

IPCS(C)

The permissions are indicated as follows:
a if alter permission is granted;
r if read permission is granted;
w if write permission is granted;

- if the indicated permission is not
granted.

(all)
The login name of the owner of the facility
entry.

(all)
The group name of the group of the owner
of the facility entry.

(a,c)
The login name of the creator of the
facility entry.

(a,c)
The group name of the group of the creator
of the facility entry.

(a,0)
The number of bytes in messages currently
outstanding on the associated message
queue.

(a,0)
The number of messages currently
outstanding on the associated message
queue.

(a,b)
The maximum number of bytes allowed in
messages outstanding on the associated
message queue.

(a,p)
The process ID of the last process to send
a message to the associated queue.

IPCS(C)

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

IPCS(C)

(a,p)
The process ID of the last process to
receive a message from the associated
queue.

(a,t)
The time the last message was sent to the
associated queue.

(a,t)
The time the last message was received fror
the associated queue.

(a,t)
The time when the associated entry was
created or changed.

(a,0)
The number of processes attached to the
associated shared memory segment.

(a,b)
The size of the associated shared memory
segment.

(a,p)
The process ID of the creator of the sharec
memory entry.

'(a,p)
The process ID of the last process to
attach or detach the shared memory segmen

(a,t)
The time the last attach was completed to
the associated shared memory segment.

(a,t)
The time the last detach was completed on
the associated shared memory segment.

(a,b)
The number of semaphores in the set
associated with the semaphore entry.

7

IPCS(C) IPCS(C)

OTIME (a,t)
The time the last semaphore operation was
completed on the set associated with the
semaphore entry.

Files
/unix System namelist
/dev/kmem Memory
/etc/passwd User names
/etc/group Group names
See Also
msgop(S), semop(S), shmop(S) in the Reference Manual
(Cp, S, F)
Notes

Things can change while ipes is running; the picture it
gives is only a close approximation to reality.

JOIN(C) JOIN(C)

Name

join - Joins two relations.

Syntax

join [options] filel file2

Description

Join forms, on the standard output, a join of the two re-
lations specified by the lines of filel and file2. 1If
filel is -, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collat-
ing sequence on the fields on which they are to be joined,
normally the first in each line (see sort(C)).

There is one line in the output for each pair of lines in
filel and file2 that have identical join fields. The out-
put line normally consists of the common field, then the
rest of the line from filel, then the rest of the line
from file2.

The default input field separators are blank, tab, or new-
line. In this case, multiple separators count as one

field separator, and leading separators are ignored. The
default output field separator is a blank.

Some of the options below use the argument n. This argu-
ment should be a 1 or a 2 referring to either filel or
file2, respectively. The following options are recog-

nized:

-an In addition to the normal output, produce a line
for each unpairable line in file n, where n is 1
or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is

missing, use the mth field in each file. Fields
are numbered starting with 1.

JOIN(C) JOIN(C)

-0 list Each output line comprises the fields specified
in list, each element of which has the form n.m,
where n is a file number and m is a field num-
ber. The common field is not printed unless
b specifically requested.

-te Use character ¢ as a separator. Every appear-
ance of ¢ in a line is significant. The charac-
ter ¢ is used as the field separator for both
input and output.

Example

The following command line will join the password file and
the group file, matching on the numeric group ID, and out-
putting the login name, the group name and the login di-
rectory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group

\ See Also
/

awk(C), comm(C), sort(C), uniq(C)

Notes

With default field separation, the collating sequence is
that of sort -b; with -t, the sequence is that of a plain
sort.

The conventions of join(C), sort(C), comm(C), uniq(C), and
awk(C) are wildly incongruous.

Filenames that are numeric may cause conflict when the -o
option is used right before listing filenames.

(BLANK)

KILL(C) KILL(C)

Name

kill - Terminates a process.

Syntax

kill [-signo 1 PID...

Description

Kill sends signal 15 (terminate) to the specified pro-
cesses. This will normally kill processes that do not
catch or ignore the signal. The process number of each
asynchronous process started with & is reported by the
shell (unless more than one process is started in a pipe-
line, in which case the number of the last process in the
pipeline is reported). Process numbers can also be found
by using ps(C).

The details of the kill are described in kill(S). For
example, if process number 0 is specified, all processes
in the process group are signaled.

The killed process must belong to the current user unless
he is the super-user. If a signal number preceded by - is
given as the first argument, that signal is sent instead

of terminate (see signal(S)). In particular kill -9 PID

is a sure kill.

See Also

ps(C), sh(C), and kill(S), signal(S) in the Reference (CP,
S, F)

KILLALL(C) KILLALL(C)

Name

killall - Kills all active processes.

Syntax

/ete/killall [signall

Description
Killall terminates all active processes not directly re-
lated to the shutdown procedure. Killall is used by
/ete/shutdown, and can only be run by the super-user.

Killall terminates all processes with open files so that
the mounted file systems will be unbusied and can be un-
mounted.

Killall sends signal (see kill(C)). The default signal
is 9.
Files

/ete/shutdown

See Also

kill(C), ps(C), shutdown(C)

LABELIT(C) LABELIT(C)

Name

labelit - Provides labels for file systems.

Syntax

/etc/labelit special [fsname volume [-n]]

Description

Use labelit to provide labels for unmounted disk file sys-
tems or file systems being copied to tape.

-n Provides for initial labeling only (this destroys
previous contents).

With the optional arguments omitted, labelit prints cur-
rent label values.

The special name should be the physical disk section
(e.g., /dev/hdOb), or the cartridge tape (e.g., /dev/rct).
The device may not be on a remote machine.

The fsname argument represents the mounted name (e.g., /,
/usr2, etc.) of the file system.

Volume may be used to equate an internal name to a volume
name applied externally to the disk pack, diskette or
tape.

For file systems on disk, fsname and volume are recorded
in the superblock.

See Also

sh(C)

LAST(C) LAST(C)

Name

last - Indicates last logins of users and terminals.
Syntax

last [-f file] [-t ttynn...] [name...]
Description

The last command looks in the wtmp file (where every login
and logout is recorded) for information about a user, a
terminal, or any group of users and terminals. Other ar-
guments specify names of users or terminals.

The last command displays the sessions of the specified
users and terminals, most recent first, indicating the
times the session began, the duration, and terminals used.
The last command indicates if the session was cut short by
a reboot. There is a pseudo-user "reboot" that is logged
in each time the system reboots. So the command:

last reboot
gives an indication of mean time between reboot.

For multiple arguments, information applying to any of the
arguments is printed. For example,

last root croot

lists all of root's sessions as well as all of croot's
sessions.

last -t tty02 console
lists all logins on tty02 and console.

If the last command is issued with no arguments, a record
of all logins and logouts are displayed in reverse order.

N_F

LAST(C) LAST(C)

Options
-f file Specifies an alternate wtmp file.

-t ttynn Lists the logins on the named terminal (separate
terminal names with a space).

Related Commands

utmp(M)

See Also

/usr/adm/wtmp Login data base

LEAVE(C) LEAVE(C)

Name

leave - Reminds you when you have to leave.

Syntax

leave [hhmm 1

Description

Leave waits until the specified time, then reminds you

that you have to leave. You are reminded five minutes and
one minute before the actual time, at the time, and every
minute thereafter. When you log off, leave exits just
before it would have printed the next message.

The time of day is in the form hhmm where hh is a time in
hours (on a 12 or 24 hour clock). All times are converted
to a 12 hour clock, and assumed to be in the next 12
hours.

If no argument is given, leave prompts with "When do you
have to leave?" A reply of newline causes leave to exit,

otherwise the reply is assumed to be a time. This form is
suitable for inclusion in a .login or .profile.

Leave ignores interrupts, quits, and terminates. To get
rid of it you should either log off or use "kill -9"
giving its process id.

See Also

calendar(C)

LINE(C) LINE(C)

Name

line - Reads one line of input.

Syntax

line

Description

Line copies one line (up to a newline) from the standard
input and writes it on the standard output. It returns an
exit code of 1 on end-of-file and always prints at least a
newline., It is often used within shell files to read from
the user's terminal.

See Also

gets(C), sh(C), and read(S) in the Reference (CP, S, F)

LN(C) LN(C)

Name

In - Makes a link to a file.

Syntax

In [options] filel file2
In [options] filel ... filen directory

Description

A link is a directory entry referring to a file; the same
file (together with its size, all its protection informa-
tion, etc.) may have several links to it. There is no way
to distinguish a link to a file from its original direc-
tory entry. Any changes to the file are effective inde-
pendent of the name by which the file is known.

Ln creates a link to the existing file, filel. The file2
argument is a new name referring to the same file contents
as filel. If the last argument is a directory, links to

filel ... filen will be made in directory.

Ln has the following options:

-f Makes the link even if file2 already exists (by first
unlinking file2).

-s Makes a symbolic link to a file. A symbolic link
differs from a regular link in that it is a separate
inode on disk that points to another file. The tar-
get of a symbolic link may be on a different file
system, or even on a different machine if the network
is in use.

Symbolic links can nest three deep. That is, if W is a
file, X may be symbolically linked to W, Y to X, and Z to
Y. However, if ZZ is symbolically linked to Z, attempting
to access ZZ will fail.

.

LN(C) LN(C)

See Also
¢p(C), 1s(C), mv(C), rm(C), and symlink(S) in the
Reference (CP, S, F)

Notes

You cannot make a hard link to a directory or across file
systems.

LOGIN(C) LOGIN(C)

Name

login - Gives you access to the system.

Syntax

login [name [env-var... 1]

Description

The login command is used at the beginning of each termi-
nal session and allows you to identify yourself to the
system. It may be invoked as a command or by the system
when a connection is first established. Also, it is in-
voked by the system when a previous user logs out by typ-

Ly Ctri-d B

If login is invoked as a command it must replace the ini-
tial command interpreter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an
argument), and, if appropriate, your password. Echoing is
turned off (where possible) during the typing of your
password, so it will not appear on the written record of
the session.

At some installations, an option may be invoked that will
require you to enter a second “dialup" password. This
will occur only for dial-up connections, and will be
prompted by the message "dialup password:". Both pass-
words are required for a successful login.

If you do not complete the login successfully within a
certain period of time (e.g., one minute), you are likely
to be silently disconnected.

After a successful login, accounting files are updated,
the procedure /etc/profile is performed, the
message-of-the-day, if any, is printed, the user-ID, the
group-1D, the working directory, and the command inter-

A —

LOGIN(C) LOGIN(C)

preter (usually sh(C)) are initialized, and the file
.profile in the working directory is executed, if it
exists.

These specifications are found in the /etc/passwd file
entry for the user. The name of the command interpreter
is - followed by the last component of the interpreter's
path name (e.g., -sh). If this field in the password file
is empty, then the default command interpreter, /bin/sh is
used. If this field is "™*", then the named directory be-
comes the root directory, the starting point for path
searches for path names beginning with a /. At that
point, login is re-executed at the new level which must
have its own root structure, including /etc/login and
/ete/passwd.

The basic environment is initialized to:

HOME-=your-login-directory
PATH-=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/usr/mail/your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying
additional arguments to login, either at execution time or
when login requests your login name. The arguments may
take either the form xxx or xxx=yyy. Arguments without an
equal sign are placed in the environment as:

Ln=xxx

where n is a number starting at 0 and is incremented each
time a new variable name is required. Variables contain-
ing an = are placed into the environment without modifica-
tion. If they already appear in the environment, then
they replace the older value. There are two exceptions.
The variables PATH and SHELL cannot be changed. This
prevents users, logging into restricted shell environ-

ments, from spawning secondary shells that are not re-
stricted. Both login and getty(M) understand simple
single-character quoting conventions. Typing a backslash
in front of a character quotes it and allows the inclusion
of such things as spaces and tabs.

LOGIN(C) LOGIN(C)

Files
/etc/utmp Accounting
/etc/wtmp Accounting
/usr/mail/your-name Mailbox for user your-name
/etc/motd Message-of-the-day
/etc/passwd Password file
/etc/profile System profile
profile User's login profile

See Also

mail(C), newgrp(C), sh(C), environ(M), getty(M), su(M),
passwd(M), profile(M)

Diagnostics

login incorrect
The user name or the password cannot be matched.

No shell, eannot open password file, or no directory
There is an error in the password file, /etc/passwd.

No utmp entry. You must exec "login" from the lowest
level shell
You attempted to execute login as a command without
using the shell's internal exec command or from a
subshell.

LOGNAME(C) LOGNAME(C)

Name

logname - Gets login name.

Syntax

logname

Description

Logname returns the user's login name as set when the
user logs into the system.

See Also

env(C), environ(M), login(C), and logname(S) in the
Reference (CP, S, F)

LOOK(C) LOOK(C)

Name

look - Finds lines in a sorted list.

Syntax

look [-df 1 [-tec] string [file]

Description

Look consults a sorted file and prints all lines that be-
gin with string. It uses binary search.

The -d and -f options affect comparisons as in sort(C):

-d Dictionary order: only letters, digits, tabs, and
spaces are compared.

-f Fold: uppercase letters compare equally to lowercase
letters.

-tc Specify an alternate tab character (word separator),
c.

If no file is specified, /usr/dict/words is assumed with
the collating sequence, -df.

Files

/usr/dict/words

See Also

grep(C), sort(C)

~”

LP(C) LP(C)

Name

1p, cancel - Sends/cancels requests to an LP line printer.

Syntax

Ip [-c11[~ddest 1 [-m] [-nnumber 1 [-ooption]
[-s1[-ttitle 1 [-w 1 file ...
cancel [ids] [printer ...]

Description

Lp arranges for the named files and associated information
(collectively called a request) to be printed by a line
printer. If no file names are mentioned, the standard

input is assumed. The file name - (the standard input)
may also be supplied on the command line along with named
files. The order in which the files appear is the same
order in which they will be printed.

Lp associates a unique id with each request and prints it
on the standard output. This id can be used later to can-
cel (see cancel below) or find the status (see Ipstat(C))
of the request.

Options

-C Make copies of the files to be printed immedi-
ately when Ip is invoked. For RFS, you must
specify -c¢, which copies the files to
/usr/spool/lp/request/printername. Normally,
the files will not be copied, but will be linked
whenever possible. If the -c option is not
given, then be careful not to remove any of the
files before the request has been printed in its
entirety. It should also be noted that in the
absence of the -c option, any changes made to
the named files after the request is made but
before it is printed will be reflected in the
printed output.

LP(C)

LP(C)

NOTE

You must specify -¢ when printing across an
RFS network.

-ddest

-m

-nnumber

-ooption

-8

-ttitle

~W

Choose dest as the printer or class of printers
that is to do the printing. If dest is a
printer, then the request will be printed only
on that specific printer. If dest is a class of
printers, then the request will be printed on
the first available printer in that class.

Under certain conditions (printer unavailabil-
ity, file space limitation, etc.), requests for
specific destinations may not be accepted. By
default, dest is taken from the environment var-
iable LPDEST (if it is set). Otherwise, a de-
fault destination (if one exists) for the com-
puter system is used. Destination names vary
between systems.

Send mail (see mail(C)) after printing the
files. By default, no mail is sent upon normal
completion of the print request.

Print number copies (default of 1) of the out-
put.

Specify printer-dependent or class-dependent
options. Several such options may be collected
by specifying the -o keyletter more than once.

Suppress messages from lp such as "request id is
"

Print title on the banner page of the output.

Write a message on the user's terminal after
printing the files. If the user is not logged
in, sends mail instead.

Cancel cancels line printer requests that were made by the
Ip command. The command line arguments may be either re
quest ids (as returned by lp) or printer names (see lpstat
for a list of names). Specifying a request id cancels the
associated request even if it is currently printing.
Specifying a printer cancels the request which is cur-

LP(C) LP(C)

rently printing on that printer. In either case, cancelling
a request that is curerntly printing frees the printer to
print its next available request.

If you attempt to print with Ip a file that is not read-
able by others or is in a directory not accessible by
others, then you must use one of the following syntaxes to
print such a file with Ip:

cat file | Ip
Ip < file

If your system uses lpr instead of lp, these restrictions
do not apply.
Files

/usr/spool/Ip/*

See Also

Ipadmin(M), Ipenable(C), Ipinit(M), Ipstat(C), mail(C),
accept(C), lpsched(M), Operations Guide

LPENABLE(C) LPENABLE(C)

Name

Ipenable, Ipdisable - Enables/disables LP printers.

Syntax

Ipenable printer ...
Ipdisable [-c¢] [-r[reasonl] printer ...

Description

Files

Lpenable activates the named printers to print requests
taken by Ip(C). Use lpstat(C) to find the status of the
printers.

Lpdisable deactivates the named printers, disabling them
from printing requests taken by Ip(C). By default, any
requests that are currently printing on the designated
printers will be reprinted in their entirety either on the
same printer or on another member of the same class. Use
Ipstat(C) to find the status of printers.

Options useful with lpdisable are:

-C Cancel any requests that are currently
printing on any of the designated printers.

-r[reason] Associates a reason with the deactivation
of the printers. This reason applies to
all printers mentioned up to the next -r
option. If the -r option is not present or
the -r option is given without a reason,
then a default reason will be used. Reason
is reported by lpstat(C).

/usr/spool/Ilp/*

See Also

1p(C), lIpstat(C)

LPR(C) LPR(C)

Name

Ipr - Routes named files to printer spooler.

Syntax

Ipr [-b[x]] [-k] [-m[login]] [-n] [-@[netname]l [-pR] [-r]
[-sconf] [-Smodes] file name(s)

Description

The lpr command routes the named files to the printer you
specify. (See "Notes" for restrictions.) There are sev-
eral options that you can add to the Ipr command so it
will do more than route the files to a printer.

Most of these options have an associated environment vari-
able and a corresponding field in a configuration file

line (see printers(M)). Command-line arguments have pre-
cedence over environment variables, and environment vari-
ables override configuration file fields.

NOTE

Beginning with Altos System V, Release 5.3d,
the Ipr program is a filter for (calls) the

lIp program. It no longer processes the -N and
-S options. See the description of Ip in the
Operations Guide for information on how to set
up a printer interface program.

Options

~-bx Adds a banner page at the beginning of a
print job. The x argument (4 characters
maximum) supplies the text of the header.
Use of this option overrides the BANNER
environment variable, which tells Ipd and
Ipr that BANNER is the name used in the
header page attached to your job.

LPR(C)

-mflogin]

-N

‘ -@[netname]

LPR(C)

If you use the -b option without defining
x, and the BANNER environment variable is
undefined, the spooler will use your login
name.

If you specify -b, the banner page is
printed, then the print job, and a form-
feed is supplied after the print job is
finished. If no banner is desired, print-
ing begins at the current position of the
printhead (no initial formfeed), and a page
is ejected after printing is completed.

Sends you mail when a printer job has com-
pleted. If you specify a login name, the
specified user is notified; otherwise, the

-m option alone sends a message to the re-
questor.

Suppresses the formfeed after each page.

Specifies a WorkNet computer name other
than your local machine.

When you use this option, the files you
want to print are copied to spool director-
ies on the named machine. A print daemon
(see the lpd command) is remotely invoked
to do the actual printing. If no machine
name is specified, printing is assumed to
be local.

Where n is a number that represents the
printer device. If you don't use this op-
tion, the print spooler checks the environ-
mental variable PRINTER for the printer
device number. If PRINTER is not defined,
the spooler checks the configuration file,

The default printer spool directory is
/usr/spool/lpd and the default printer de-
vice is /dev/lp. If printer 1 is selected,
the spool directory is /usr/spool/lpdl, and
device /dev/Ipl.

LPR(C) LPR(C)

As an alternative, you can supply the
printer number as part of the lpr name,
(for example, Iprl [-optionl] [option2]
..). The -p option overrides a printer
digit supplied from the file name.

-r Removes a file from the home directory
after printing.

-sconf Selects a printer configuration line from
the printer configuration file (see the
miscellaneous file printers in the next
section). Conf is the name of the con-
figuration line you select from the config-
uration file. You can also use the en-
vironmental variable PCONF to select the
configuration line you want.

-Smodes Supplies baud and other tty modes for
serial printers. The modes argument con-
sists of a set of tty modes, enclosed in
quotes. For example, -S1200 selects 1200
as the baud rate for this print request.
This option overrides a mode selection from
the configuration file. You can also use
the environment variable PMODES to supply
this information.

If you specify a configuration line name, and no printer
device, the print spooler uses the first line in the
printer configuration file that matches that name. The
spooler then takes the printer device digit from the cor-
responding field in the same line.

If you specify a configuration line name and a printer
device, the print spooler uses the first line in the
printer configuration file that matches both printer de-
vice and name fields.

If you specify a printer device only, or if the spooler is
invoked as "lpr," the first line that matches the printer
device is used. The printer device defaults to /dev/Ip if
no configuration file lines are selected, or if no config-
uration file exists.

LPR(C) LPR(C)

Examples

This command prints the file lemons on the local‘ printer,
and sends you a message when the print job is finished.

Ipr -m lemons
This command queues the file lemons to be printed from
spool directory /usr/spool/lpd2 on printer /dev/Ip2 at a
speed of 1200 baud.

Ipr -S1200 -p2 lemons
This command prints the file lemons on the default printer
of the computer machinel in your network, and sends user
chris a message when the print job is finished.

Ipr -mchris -@machinel lemons

Files
/usr/spool/lpd* Spooling directories
/dev/Ip* Line printer devices
/usr/lib/1pd Line printer daemon
/etc/printers Printer configuration file
See Also

mail(C), lpd(M), Ip(C), printers(M)

Notes

For Unix System V compatibility on the Altos 386 Series
500 and software release 5.3d and later, lpr executes Ip
and its associated commands.

—

LPSTAT(C) LPSTAT(C)

Name

Ipstat - Prints LP status information.

Syntax

Ipstat [options 1 [requestid...]

Description

Lpstat prints information about the current status of the
LP line printer system.

If no options are given, then Ipstat prints the status of

all requests made to Ip(C) by the user. Any argument that
is not an option is assumed to be a requestid, which is a
unique id that Ip(C) associates with each request. Lpstat
prints the status of such requests.

Options

Options may appear in any order and may be repeated and

mixed with other arguments. Some of the keyletters below

may be followed by an optional list that can be in one of

two forms:

. A list of items separated from one another by a comma

. A list of items enclosed in double quotes and sepa-
rated from one another by a comma and/or one or
more spaces.

For example:
-u"userl, user2, user3"

The omission of a list following such keyletters causes

all information relevant to the keyletter to be printed.

For example:

Ipstat -o

prints the status of all output requests.

LPSTAT(C) LPSTAT(C)

All options listed below apply to a Worknet network. In
addition, local/remote refers to local/remote machines in
an RFS network.

-a[list] Print acceptance status (with respect to lIp) of
destinations for requests. List is a list of
mixed printer names and class names. RFS
local/remote.

-c[list] Print class names and their members. List is a
list of class names. RFS local.

-d Print the system default destination for Ip.
The destination can be local/remote.

-o[list} Print the status of output requests. List is a
list of mixed printer names, class names, and
request ids. RFS local/remote.

-pllist] Print the status of printers. List is a list of
printer names. RFS local/remote.

-r Print the status of the LP request scheduler.
RFS local.
-S Print a status summary, including the system

default destination, a list of class names and
their members, and a list of printers and their
associated devices. RFS local.

-t Print all status information. RFS local.

-u[list] Print status of output requests for users. List
is a list of login names. RFS local.

-v[list] Print the names of printers and the path names

of the devices associated with them. List is a
list of printer names. RFS local/remote.

Files

/usr/spool/Ip/*

See Also

Ipenable(C), 1p(C)

LS(C) LS(C)

Name

Is - Lists contents of a directory.

m Syntax

Is [options 1 [name ...]
1
le
1f
1
Ir
Ix

Description

For each directory argument, ls lists the contents of the
directory; for each file argument, ls repeats its name and
any other information requested. The output is sorted
alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are

N given, the arguments are first sorted appropriately, but

/ file arguments appear before directories and their con-
tents. Lec, If, 1I, Ir, and Ix abbreviate 1s -C, Is -F, Is
-1, Is -R and Is -x, respectively.

The Is command has the following options:

-A List all entries including those that begin with a
dot except "." and "..".

-a List all entries, including those that begin with a
dot (.), which are normally not listed.

-b Force printing of non-printing characters to be in
the octal \ddd notation.

-C Multi-column output with entries sorted down the
columns.

-¢ Use time of creation of the inode for sorting (-t).
-d If an argument is a directory, list only its name

(not its contents); often used with -1 to get the
status of a directory.

LS(C)

~m

-n

-0

-P

-q

LS(C)

Put a slash (/) after each filename if that file is a

directory and put an asterisk (*) after each filename
if that file is executable. This is the same as typ-

ing If,

Force each argument to be interpreted as a directory
and list the name found in each slot. This option
turns off -1, -t, -s, and -r, and turns on -a; the
order is the order in which entries appear in the
directory.

The same as -1, except that the owner is not printed.

For each file, print the inode number in the first
column of the report.

Mark directories or files with a trailing ">" if they
are symbolic links and the -1 option is not used. If
-1 is used, list the name of the file to which it is
symbolically linked.

List in long format, giving mode, number of links,
owner, group, size in bytes, and time of last modifi-
cation for each file (see below). If the file is a
special file, the size field will instead contain the
major and minor device numbers rather than a size.

Stream output format; files are listed across the
page, separated by commas.

The same as -1, except that the owner's UID and
group's GID numbers are printed, rather than the as-
sociated character strings.

The same as -1, except that the group is not printed.

Put a slash (/) after each filename if that file is a
directory.

Force printing of non-printing characters in file
names as the character (?).

Recursively list subdirectories encountered.

Reverse the order of sort to get reverse alphabetic
or oldest first as appropriate.

LS(C) LS(C)

-s Give size in blocks, including indirect blocks, for
each entry.

-t Sort by time stamp (latest first) instead of by name.
The default is the last modification time. (See -u
and -c.)

-u Use time of last access instead of last modification
for sorting (with the -t option) or printing (with
the -1 option).

-x Multi-column output with entries sorted across rather
than down the page.

-1 List only one (1) entry per line, even if output is
to a terminal. This is the default when output is
not to a terminal.

The mode printed under the -1 option consists of ten char-
acters. The first character may be one of the following:

the entry is a block special file

the entry is a character special file

the entry is a directory

the entry is a symbolic link

the entry is a shared memory special file

the entry is a fifo (a.k.a. "named pipe") special file
the entry is a semaphore file

the entry is an ordinary file

fmo g~ o

The next 9 characters are interpreted as three sets of
three bits each. The first set refers to the owner's per-
missions; the next to permissions of others in the user-
group of the file; and the last to all others. Within

each set, the three characters indicate permission to .
read, to write, and to execute the file as a program, re-
spectively. For a directory, "execute" permission is in-
terpreted to mean permission to search the directory for a
specified file.

1s -1 (the long list) prints its output as follows:
-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2
This horizontal configuration provides a good deal of in-

formation. Reading from right to left, you see that the
current directory holds one file, named "part2." Next, the

LS(C) ' LS(C)

last time that file's contents were modified was 9:42 A.M.
on May 16. The file is moderately sized, containing
10,876 characters, or bytes. The owner of the file, or
the user, belongs to the group "dev" (perhaps indicating
"development"”), and his or her login name is "smith." The
number, in this case "1," indicates the number of links to
file "part2.," Finally, the row of dashes and letters tell
you that user, group, and others have permissions to read,
write, execute "part2."

The execute (x) symbol here occupies the third position of
the three-character sequence. A - in the third position
would have indicated a denial of execution permissions.

The permissions are indicated as follows:

r The file is readable

w The file is writable

X The file is executable

- The indicated permission is not granted

s The set-user-ID or set-group-ID bit is on, and the
corresponding user or group execution bit is also on

S The set-user-ID bit or set-group-ID bit is on and the
corresponding execution bit is off

t The 1000 (octal) bit, or sticky bit, is on (see
chmod(C)), and execution is on

T The 1000 bit is turned on, and execution by others is
off

For user and group permissions, the third position is
sometimes occupied by a character other than x or -, s
also may occupy this position, referring to the state of

the set-ID bit, whether it be the user's or the group's.
The ability to assume the same ID as the file owner during
execution is, for example, used by the passwd command to
allow you to update your password file entry, normally
writeable only by the super-user.

For others permissions, the third position may be occupied
by t or T. These refer to the state of the sticky bit and
execution permissions.

LS(C) LS(C)

Examples
The first set of examples refers to permissions:
~-IWXYr--I--

This describes a file that is readable, writable, and exe-
cutable by the user and readable by the group and others.

~I'wSsr-xr-x

The second example describes a file that is readable,
writable, and executable by the user, readable and execut-
able by the group and others, and allows its user-ID to be
assumed, during execution, by the user presently executing
it.

Is -a

This command will print the names of all files in the cur-
rent directory, including those that begin with a dot (.),
which normally do not print.

Is -aisn

This command will provide you with quite a bit of informa-
tion including all files, including non-printing ones (a),

the i-number--the memory address of the i-node associated
with the file--printed in the left-hand column (i); the

size (in blocks) of the files, printed in the column to

the right of the inumbers (s); finally, the report is dis-
played in the numeric version of the long list, printing

the UID (instead of user name) and GID (instead of group
name) numbers associated with the files.

When the sizes of the files in a directory are listed, a
total count of blocks, including indirect blocks, is

printed.

Files
/ete/passwd User IDs for Is -1 and Is -0
/ete/group Group IDs for Is -1 and Is -g
/usr/lib/terminfo/?/* Terminal information database

LS(C) ' LS(C)

See Also

chmod(C), find(C)

Notes

Unprintable characters in file names may confuse the
columnar output options.

=

MAIL(C) MAIL(C)

Name

mail - Sends or receives mail among users.

Syntax
mail [user ...]
mail [-f file] [-pr]

Description
The mail command (/bin/mail) is used both to send mail to
other users, and to read mail that has been sent to you.
When you log in, the system tells you if you have mail.
There are several options you can use with the mail com-
mand to print, delete, and store mail.

Options

When you see the "You have mail" message, read your mail
by entering:

mail

You can use any of the following arguments with the mail

command:

-f [file] Causes the named file to be displayed in
mail format. .

-p Causes the mail to be printed on your
printer.

-r Causes the oldest message to appear first.

Without this option, the most current mes-
sage appears first.

You can enter the following at the "?" prompt:
Goes on to the next message

d Deletes the current message and goes on to
the next one

MAIL(C) MAIL(C)
(EOF) Puts unexamined mail back in the mailbox
and stops

m[user ...] Sends a copy of the current message to the
specified users

P Displays a message again

q Puts mail back in the mailbox and quits

s [file ...] Saves the message in the named file(s)

w {file ...] Saves the message, without a header, in the

named file(s)
b.4 Exits, without changing the mailbox file
- Goes back to previous message

+ Goes to next message. After last message,
returns you to system prompt.

lcommand Escapes to the shell and executes the spe-
cified command

? Displays a summary of what you can enter
at the "?" prompt

Examples

This command sends the message "This is a message sent to
chris, wendy, and ric" to chris, wendy, and ric. Press

then ARl to send a message.

mail chris wendy ric
This is a message sent to chris, wendy, and

ric.

This command prints your mail on your system's printer.

mail -p

MAIL(C)

Files

/usr/spool/mail/*
/etc/passwd
mbox

/tmp/ma*
dead.letter

MAIL(C)

Mailboxes

Identifies senders and recipients
Saved mail

Tempfile

Unmailable text

MAIL(C) ' MAIL(C)

Name

mail - Sends, reads, or disposes of mail.

Syntax

mail [[-u user] [-b bcelist] [-c¢ cclist] [-r rrlist]
[-f mailbox]1]l [-d] [-el [-R] [-i] [user ...]
mail [-s subject] [-i] [user ...]

Description

Mail (/usr/bin/mail) is a mail processing system that
supports composing of messages, and sending and receiving
of mail between multipe users. When sending mail, a user
is the name of a user or of an alias assigned to a machine
or to a group of users.

Options include:

-u user Tells mail to read the system mailbox
belonging to the specified user.

-b beelist

-c¢ cclist

-r rrlist When sending mail, initialize the bcc
(before carbon copy), cc (carbon copy), or
rr (return receipt) fields in the message
header to the following list of users.
These fields may be subsequently added to
or edited through the use of “bee, ~cc,
“rrt, and “header commands in compose
mode. Only the last occurrence of each
flag is used.

-f mailbox Tells mail to read the specified mailbox
instead of the default user's system mail-
box.

-d ~ Prints debugging information.

-e Allows escapes from compose mode when
input comes from a file.

e

MAIL(C) MAIL(C)

-R Makes the mail session '"read-only" by pre-
venting alteration of the mailbox being
read. Useful when accessing system-wide
mailboxes.

-i Tells mail to ignore interrupts sent from
the terminal. This is useful when reading
or sending mail over telephone lines where
"noise" may produce unwanted interrupts.

-s subject Specifies subject as the text of the
Subject: field for the message being sent.

Sending Mail

To send a message to one or more other people, invoke mail
with arguments which are the names of peole to send to.
You are then expected to type in your message, followed by
a at the beginning of a line.

Reading Mail

To read mail, invoke mail with no arguments. This will
check your mail out of the system-wide directory so that
you can read and dispose of the messages sent to you. A
message header is printed out for each message in your
mailbox. The current message is initially the last num-
bered message and can be printed using the print command
(which can be abbreviated p). You can move among the
messages much as you move between lines in ed(C), with
the + and - commands moving backwards and forwards, and
simple numbers typing the addressed message.

If new mail arrives during the mail session you can read
in the new messages with the restart command.

Disposing of Mail

After examining a message you can delete(d) the message
or reply(r) to it. Deletion causes the mail program to
forget about the message. This is not irreversible; the
message can be undeleted(u) by giving its number, or the
mail session can be aborted by giving the exit(x) command.
Usually, though, deleted messages will disappear com-
pletely.

MAIL(C) MAIL(C)

Specifying Messages

Commands such as print and delete often can be given a
list of message numbers as arguments to apply to a number
of messages at once. Thus, delete 1 2 deletes messages 1
and 2, while delete 1-5 deletes messages 1 through 5. The
special name * addresses all messages, and $ addresses the
last message; thus, the top command, which prints the

first few lines of a message, could be used in top * to
print the first few lines of all messages.

Replying To or Originating Mail

You can use the reply command to set up a response to a
message, sending it back to the person who sent it. Then
you can type the text of the reply, and press to
send it. While you are composing a message, mail treats
lines beginning with a tilde (7) as special. For in-
stance, typing “m (alone on a line) places a copy of the
current message into the response, shifting it right by

one tabstop. Other escapes set up subject fields, add and
delete recipients to the message, and allow you to escape
either to an editor to revise the message or to a shell to
run some commands. (These options are summarized later.)

Ending a Mail Session

You can end a mail session with the quit(q) command. Mes-
sages that have been examined go to your mbox file unless
they have been deleted. Unexamined messages go back to
the post office. The -f option causes mail to read in the
contents of your mbox (or the specified file) for proces-
sing; when you quit, mail writes undeleted messages back

to this file. The -i option causes mail to ignore inter-
rupts.

Using Aliases and Distribution Lists

It is also possible to create a personal distribution

list. For instance, you can send mail to "cohorts" and
have it go to a group of people. Such lists can be de-

fined by typing a line like:

alias cohorts bill bob barry bobo betty beth bobbi

<

MAIL(C) MAIL(C)

in the .mailrc file of your home directory. The current
list of such aliases can be displayed by the alias(a) com-
mand in mail. System-wide distribution lists can be
created by editing /usr/lib/mail/aliases; see aliases(M);
these are kept in a slightly different syntax. In mail

that you send, personal aliases will be expanded in mail
sent to others so that they will be able to reply to the
recipients. System-wide aliases are not expanded when the
mail is sent, but any reply returned to the machine will
have the system-wide alias expanded.

Mail has a number of options that can be set in the
.mailrc file to alter its behavior; thus, set askcc en-
ables the "askce" feature. (These options are summarized
below.)

Summary

Each mail command is typed on a line by itself, and may
take arguments following the command word. The command
need not be typed in its entirety - the first command
which matches the typed prefix is used. For the commands
that take message lists as arguments, if no message list

is given, then the next message forward that satisfies the
command's requirements is used. If there are no messages
forward of the current message, the search proceeds back-
wards, and if there are no messages at all, mail displays
"No applicable messages" and aborts the command.

- [n] Goes to the previous message and prints
it out. If given a numeric argument, n,
goes to the nth previous message and prints
it.

+ [n] Goes to the next message and prints it out.
If given a numeric argument, n, goes to the
nth next message and prints it.

Goes to the next message and prints it out.
? Prints a brief summary of commands.
teommand Executes the shell command which follows.

= Prints out the current message number.

MAIL(C)

alias (a)

Alias users

cd (c)

delete (d)

dp

echo Path

edit (e)

exit (x)

file (fi)

forward (f)

MAIL(C)

Prints out the first message.
Prints out the last message.

With no arguments, prints out all currently-
defined aliases. With one argument, prints
out that alias. With more than one argu-
ment, adds the users named in the second
and later arguments to the alias named in
the first argument.

Prints system-wide list of aliases for
users. At least one user must be speci-
fied.

Changes the user's working directory to
that specified. If no directory is given,
it changes to the user's login directory.

Takes a list of messages as an argument anc
marks them all as deleted. Deleted mes-
sages are not retained in the system mail-
box after a quit, nor are they available to
any command other than the undelete com-
mand.

Deletes the current message and prints the
next message. If there is no next message,
mail says "no more messages."

Expands shell metacharacters.

Takes a list of messages and invokes the
text editor on each one in turn. Upon re-
turning from the editor, the message is
read back in.

Effects an immediate return to the shell
without modifying the user's system mail-
box, mbox file, or edit file in -f.

Prints the name of the file mail is
reading. If it is a mailbox, the name of
the owner is returned.

Forwards the current message to the named
users. The current message is indented
within the forwarded message.

¥

MAIL(C)

Forward (F)

headers (h)

hold (ho)

list

Ipr (1)

mail (m)

mbox (mb)

MAIL(C)

Forwards the current message to the named
users. The current message is not indented
within the forwarded message.

Lists the current range of headers, which
is an 18 message group. If a + argument
is given, then the next 18 message group is
printed, and if a - argument is given, the
previous 18 message group is printed. Both
+ and - may take a number to view a par-
ticular window. If a message-list is given,
it prints the specified headers.

Takes a message list and marks each message
to be saved in the user's system mailbox
instead of in mbox. Use only when the
autombox switch is set. Does not override
the delete command.

Prints a list of mail commands.

Prints out each message in a message-list
on the lineprinter.

Takes as argument login names and
distribution group names and sends mail to
those people.

Marks messages in a message list so that
they are saved in the user mailbox after
leaving mail.

move mesg-list mesg-num

next (n)

print (p)

Places the messages specified in mesg-list
after the message specified in mesg-num.
If mesg-num is 0, mesg-list moves to the
top of the mailbox.

Goes to the next message in sequence and
prints it. With an argument list, next
types the next matching message (like + or

| Retn I}

Prints out each message in a message-list
on the terminal display.

MAIL(C)

quit (q)

reply (r)

Reply (R)

restart

save (s)

set (se)

shell (sh)
size (si)

source (so) file

MAIL(C)

Terminates the session, retdining all
undeleted, unsaved messages in the system
mailbox and removing all other messages.
Files marked with a star (*) are saved;
files marked with an "M" are saved in the
user mailbox. If new mail has arrived dur-
ing the session, the message "You have new
mail" is given. If quit is given while
editing a mailbox file with the -f flag,
then the edit file is rewritten. You then
return to the shell, unless the rewrite of
the edit file fails, in which case you can
escape with the exit command.

Takes a message list and sends mail to each
message author. The default message must
not be deleted.

Takes a message list and sends mail to each
message author and each member of the mes-
sage just like the mail command. The de-
fault message must not be deleted.

Reads in messages that arrived during the
current mail session.

Takes a message list and a filename and
appends each message in turn to the end of
the file. The filename, in quotation

marks, followed by the line count and char-
acter count is echoed on the user's termi-
nal.

With no arguments, prints all variable
values. Otherwise, sets an option. Argu-
ments are of the form option=value or op-
tion.

Invokes an interactive version of the
shell.

Takes a message list and prints out the
size in characters of each message.

Reads mail commands from the file given as
its only argument.

MAIL(C)

MAIL(C)

string string mesg-list

top (t)

undelete (u)

unset (uns)

visual (v)

whois

Searches for string in mesg-list. If no
mesg-list is specified, all undeleted mes-
sages are searched. Case is ignored in the
search.

Takes a message list and prints the top few
lines of each. The number of lines printed
is controlled by the toplines variable and
defaults to six.

Takes a message list and marks each one as
not being deleted.

Takes a list of option names and discards
their remembered values; the inverse of
set.

Takes a message list and invokes vi on each
message.

Looks up a list of target mail recipients
and prints the real names or descriptions

of each recipient. If the first character
of the first argument is alphabetic, the
arguments are looked up without change.
Otherwise, the arguments are assumed to be
a message list. For each message in the
list, the "From" person is extracted from
the header and added to list of users to be
searched.

If a target mail recipient contains a
machine and user name, nothing is printed.
If it is a private alias, "private alias"

is printed. If it is a global alias, the
name or description of the recipient is
printed (contents of the $n field in the
alias file). If all of the above fail, the
user is looked up in /etc/passwd; if the
user is a local user, "local user" is
printed. Finally, if none of the above
tests and searches succeed, "unknown" is
printed.)

write (w) filename

Saves the body of the message in the named
file.

MAIL(C)

MAIL(C)

Here is a summary of the compose escapes, which are used
when composing messages to perform special functions.
Compose escapes are only recognized at the beginning of

lines.

“~string

~lemd

~|emd

~_mail-command

~:mail-command

~alias

~alias aliasname

~Alias

Inserts the string of text in the message
prefaced by a single tilde (7). If you
have changed the ESCAPE character, then
you should double that character instead.

Prints out help for compose escapes.
Same as J@igE@ on a new line.

Executes the indicated shell command, then
returns to the message.

Pipes the message through the command as
a filter. If the command gives no output
or terminates abnormally, retains the orig-
inal text of the message.

Executes a mail command, then returns to
compose mode.

Executes a mail command, then returns to
compose mode.

Prints list of private aliases.

Prints names included in private aliasname.

Performs aliasing by first examining pri-
vate aliases and then system-wide aliases
using all three global alias files
(aliases.hash, faliases, and mailiases).
Only the final result is printed (non-local
mail recipients will have the complete de-
livery path printed). The user list is
taken from header fields.

MAIL(C)

~Alias users

b name...

¢ name...

~“cc name...

~d

“h

“m mesg-list

"M mesg-list

“Print

MAIL(C)

Performs aliasing by first examining
private aliases and then system-wide
aliases using all three global alias files
(aliases.hash, faliases, and mailiases).
Only the final result is printed (non-local
mail recipients will have the complete de-
livery path printed). At least one user
must be specified.

Adds the given names to the list of blind
carbon copy recipients.

Adds the given names to the list of carbon
copy recipients.

Same as “c.

Reads the dead.letter file from your home
directory into the message.

Invokes the text editor on the message col-
lected so far. After the editing session

is finished, you may continue appending
text to the message.

Edits the message header fields by typing

each one in turn and allowing the user to

append text to the end or modify the field
with the current terminal ERASE and KILL
characters.

Reads the named messages into the message
buffer, shifted right one TAB. If no mes-

sages are specified, reads the current mes-
sage. .

Reads the named messages into the message
buffer, shifted right one TAB. If no mes-
sages are specified, reads the current mes-
sage.

Prints out the messages collected so far,
prefaced by the message header fields.

Prints the real names or descriptions (in

parentheses) after each recipient in a
header field.

10

MAIL(C)

“r filename
“Return name
“s string

“t name...

“w filename

MAIL(C)

Aborts the message being sent, copying the
message to the dead.letter file in your
home directory if save is set.

Reads the named file into the message
buffer.

Adds the given names to the Return-receipt-
to field.

Causes the named string to become the
current subject field.

Adds the given names to the direct
recipient list.

Invokes a visual editor (defined by the
VISUAL option) on the message buffer.
After you quit the editor, you may resume
appending text to the end of your message.

Writes the body of the message to the
named file.

Options are controlled with the set and unset commands.
An option may be either a switch, in which case it is
either on or off, or a string, in which case the actual
value is of interest. The switch options include the fol-

lowing:

askee

asksubject

autombox

Causes you to be prompted for additional
carbon copy recipients at the end of each
message. Responding with a newline indi-
cates your satisfaction with the current
list.

Causes mail to prompt you for the subject
of each message you send. If you respond
with simply a newline, no subject field is
sent.

Causes all examined messages to be saved ir
the user mailbox unless deleted or saved.
autoprint Causes the delete command to be-
have like dp - thus, after deleting a mes-
sage, the next one will be typed auto-
matically.

11

MAIL(C)

chron

dot

ignore

mchron

metoo

nosave

quiet

verify

MAIL(C)

Causes messages to be displayed in chrono-
logical order.

Permits use of dot (.) as the end-of-file
character when composing messages.

Causes interrupt signals from your terminal
to be ignored and echoed as at-signs (@).

Causes messages to be listed in numerical
order (most recently received first), but
displayed in chronological order.

Usually, when a group is expanded that con-
tains the sender, the sender is removed
from the expansion. Setting this option
causes the sender to be included in the
group.

Prevents aborted messages from being ap-
pended to the dead.letter file in your home
directory on receipt of two interrupts (or
a “q).

Suppresses the printing of the version
header when first invoked.

Causes each target mail recipient to be
verified. This option permits errors made
while composing messages to be corrected or
ignored.

The following options have string values:

EDITOR

SHELL

VISUAL

Pathname of the text editor to use in the
edit command and “e escape. If not de-
fined, then a default editor is used.

Pathname of the shell to use in the ! com-
mand and the ~! escape. A default shell
is used if this option is not defined.

Pathname the text editor to use in the
visual command and ~v escape.

12

MAIL(C)

escape

MAIL(C)

If defined, the first character of this

option gives the character to use in the
place of the tilde () to denotes escapes.

page=n

Specifies the number of lines (n) to be

printed in a "page" of text when displaying

messages.

record

If defined, gives the pathname of the file
used to record all outgoing mail.

If not

defined, then outgoing mail is not saved.

toplines

If defined, gives the number of lines of a

message to be printed out with the top
command; normally, the first six lines are

printed.

Files

/usr/spool/mail /*
/usr/name/dead.letter

/usr/name/mbox
/usr/name/.mailrc

/usr/lib/mail/aliases
/usr/lib/mail/aliases.hash
/usr/lib/mail/faliases

/usr/lib/mail/mailiases
/usr/lib/mailhelp.cmd
/usr/lib/mailhelp.esc
/usr/lib/mailhelp.set
/usr/lib/mail/mailrc
/usr/bin/mail

See Also

System mailboxes

File where undeliverable mail
is deposited.

Your old mail

File giving initial mail com-
mands

System-wide aliases
System-wide alias database
Forwarding aliases for the
local machine

Machine aliases

Help file

Help file

Help file

System initialization file
The mail command

aliases(M), aliashash(M), netutil(C)

13

MAIL(C) MAIL(C)

Notes

This utility was developed at the University of California
at Berkeley and is used with permission.

If you use the C-shell to send mail, be sure to escape any
exclamation point (!) used on the command line.

14

MAKE(C) ‘ MAKE(C)

Name

make - Maintains, updates, and regenerates groups of pro-
grams.

Syntax

make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n] [-b] [-e]
[-u] [-t] [-q] [names]

Description

The make command allows the programmer to maintain, up-
date, and regenerate groups of computer programs. The
following is a brief description of all options and some
special names:

-f makefile
Description file name. Makefile is assumed to be the
name of a description file.

-p Print out the complete set of macro definitions and
target descriptions.

-i Ignore error codes returned by invoked commands.
This mode is entered if the fake target name .IGNORE
appears in the description file.

-k Abandon work on the current entry if it fails, but
continue on other branches that do not depend on that
entry.

-s Silent mode. Do not print command lines before exe-
cuting. This mode is also entered if the fake target
name .SILENT appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute¢
them. Even lines beginning with an @ are printed.

-b Compatibility mode for old makefiles.

T

MAKE(C) MAKE(C)

-e Environment variables override assignments within
makefiles.

-u Force an unconditional update.

-t Touch the target files (causing them to be
up-to-date) rather than issue the usual commands.

-q Question. The make command returns a zero or
non-zero status code depending on whether the target
file is or is not up-to-date.

DEFAULT
If a file must be made but there are no explicit
commands or relevant built-in rules, the commands
associated with the name .DEFAULT are used if it
exists.

.PRECIOUS
Dependents of this target will not be removed when
quit or interrupt are hit.

.SILENT
Same effect as the -s option.

.IGNORE
Same effect as the -i option.

Make executes commands in makefile to update one or more
target names. Name is typically a program. If no ~-f op-
tion is present, makefile, Makefile, and the Source Code
Control System (SCCS) files s.makefile, and s.Makefile are
tried in order. If makefile is -, the standard input is
taken. More than one -f makefile argument pair may ap-
pear.

Make updates a target only if its dependents are newer
than the target (unless the -u option is used to force an
unconditional update). All prerequisite files of a target
are added recursively to the list of targets. Missing
files are deemed to be out-of-date.

Makefile contains a sequence of entries that specify de-
pendencies. The first line of an entry is a
blank-separated, non-null list of targets, then a :, then
a (possibly null) list of prerequisite files or dependen-
cies. Text following a ; and all following lines that

MAKE(C) MAKE(C)

begin with a tab are shell commands to be executed to up-
date the target. The first non-empty line that does not
begin with a tab or # begins a new dependency or macro
definition. Shell commands may be continued across lines
with the <backslash)> <new-line> sequence. Everything
printed by make (except the initial tab) is passed direct-
ly to the shell as is. Thus,

echo a\
b

will produce:

ab
exactly the same as the shell would.
Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files
a.0 and b.o, and that they in turn depend omn their corres-
ponding source files (a.c and b.c) and a common file
incLh:

pgm: a.o b.o

cc a.o b.o -o pgm
a.o: incl.h a.c

cc -c a.c
b.o: incl.h b.c

‘ce -¢c b.c

Command lines are executed one at a time, each by its own
shell. The SHELL environment variable can be used to
specify which shell make should use to execute commands.
The default is /bin/sh. The first one or two characters

in a command can be the following: -, @, -@, or @-. If @
is present, printing of the command is suppressed. If -

is present, make ignores an error. A line is printed when
it is executed unless the -s option is present, or the

entry .SILENT: is in makefile, or unless the initial charac-
ter sequence contains a @ The -n option specifies print-
ing without execution; however, if the command line has
the string $(MAKE) in it, the line is always executed (see
discussion of the MAKEFLAGS macro under "Environment").
The -t (touch) option updates the modified date of a file
without executing any commands.

=

MAKE(C) MAKE(C)

Commands returning non-zero status normally terminate
make. If the -i option is present, or the entry .IGNORE:
appears in makefile, or the initial character sequence of
the command contains -. the error is ignored. If the -k
option is present, work is abandoned on the current entry,
but continues on other branches that do not depend on that
entry.

The -b option allows old makefiles (those written for the
old version of make) to run without errors.

Interrupt and quit cause the target to be deleted unless
the target is a dependent of the special name .PRECIOUS.

Environment

The environment is read by make. All variables are as-
sumed to be macro definitions and processed as such. The
environment variables are processed before any makefile
and after the internal rules; thus, macro assignments in a
makefile override environment variables. The -e option
causes the environment to override the macro assignments
in a makefile. Suffixes and their associated rules in the
makefile will override any identical suffixes in the

built-in rules.

The MAKEFLAGS environment variable is processed by make
as containing any legal input option (except -f and -p)
defined for the command line. Further, upon invocation,
make "invents" the variable if it is not in the environ-
ment, puts the current options into it, and passes it on

to invocations of commands. Thus, MAKEFLAGS always
contains the current input options. This proves very use-
ful for "super-makes". In fact, as noted above, when the
-n option is used, the command $(MAKE) is executed any-
way; hence, one can perform a make -n recursively on a
whole software system to see what would have been exe-
cuted. This is because the -n is put in MAKEFLAGS and
passed to further invocations of $(MAKE). This is one way
of debugging all of the makefiles for a software project
without actually doing anything.

MAKE(C) 4 A MAKE(C)

Include Files

If the string include appears as the first seven letters

of a line in a makefile, and is followed by a blank or a
tab, the rest of the line is assumed to be a file name and
will be read by the current invocation, after substituting
for any macros. ’

Macros

Entries of the form stringl = string2 are macro defini-
tions. string2 is defined as all characters up to a com-
ment character or an unescaped new-line. Subsequent ap-
pearances of $(stringll:substl=[subst2]]) are replaced by
string2. The parentheses are optional if a single charac-
ter macro name is used and there is no substitute se-
quence. The optional :substl=subst2 is a substitute se-
quence., If it is specified, all non-overlapping occur-
rences of substl in the named macro are replaced by
subst2. Strings (for the purposes of this type of
substitution) are delimited by blanks, tabs, new-line
characters, and beginnings of lines. An example of the
use of the substitute sequence is shown under "Libraries."

Internal Macros

There are five internally maintained macros which are use-
ful for writing rules for building targets.

$* The macro $* stands for the file name part of the
current dependent with the suffix deleted. It is
evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the
current target. It is evaluated only for explicitly
named dependencies.

$< The $< macro is only evaluated for inference rules or
the .DEFAULT rule. It is the module which is
out-of-date with respect to the target (i.e., the
"manufactured" dependent. file name). Thus, in the
.c.o rule, the $< macro would evaluate to the .c
file. An example for making optimized .o files from
.c files is:

~_7

MAKE(C) MAKE(C)

cc -¢c -0 $*.c

or:
cc -¢ -0 $<

$? The $? macro is evaluated when explicit rules from
the makefile are evaluated. It is the list of pre-
requisites that are out-of-date with respect to the
target; essentially, those modules which must be re-
built.

$% The $% macro is only evaluated when the target is an
archive library member of the form lib(file.o). In
this case, $ evaluates to lib and $% evaluates to the
library member, file.o.

Four of the five macros can have alternative forms. When
an upper case D or F is appended to any of the four
macros, the meaning is changed to "directory part" for D
and "file part" for F. Thus, $(@D) refers to the direc-
tory part of the string $@. If there is no directory

part, ./ is generated. The only macro excluded from this
alternative form is $?.

Suffixes

Certain names (for instance, those ending with .0) have
inferable prerequisites such as .c, .s, etc. If no update
commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is com-
piled to make the target. In this case, make has infer-
ence rules which allow building files from other files by
examining the suffixes and determining an appropriate in-
ference rule to use. The current default inference rules
are:

.c .c” .f .f7 .sh .sh~

.c.0 .c.a .c".0 .c”.c .c”.a

.f.0 .f.a .f7.0 .f°.f .f".a

.h7.h .s.0 .s7.0 .57.s .87.a .sh”.sh
Jo e 170 0700 0%.e

.y.0 .y.c .y~.0 .y".y .y .C

MAKE(C) MAKE(C)

The internal rules for make are contained in the source
file rules.c for the make program. These rules can be
locally modified. To print out the rules compiled into

the make on any machine in a form suitable for recompila-
tion, the following command is used:

make -fp - 2>/dev/null <{/dev/null

A tilde in the above rules refers to an SCCS file (see
scesfile(F)). Thus, the rule .c”.0 would transform an
SCCS C source file into an object file (.0). Because
the s. of the SCCS files is a prefix, it is incompat-
ible with make's suffix point of view. Hence, the tilde
is a way of changing any file reference into an SCCS
file reference.

A rule with only one suffix (i.e., .c:) is the definition
of how to build x from x.c. In effect, the other suffix
is null. This is useful for building targets from only
one source file (e.g., shell procedures, simple C
programs).

Additional suffixes are given as the dependency list for
.SUFFIXES., Order is significant; the first possible

name for which both a file and a rule exist is inferred as
a prerequisite. The default list is:

.SUFFIXES: .0 .c .¢c” .y .y~ .l .l” .s .s” .sh .sh™ .,h
8 1 I S i

Here again, the above command for printing the internal
rules will display the list of suffixes implemented on the
current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suf-
fixes.

Inference Rules
The first example can be done more briefly.
pgm: a.o b.o

cc a.o b.o -o pgm
a.o b.o: incl.h

7

MAKE(C) MAKE(C)

This is because make has a set of internal rules for
building files. The user may add rules to this list by
simply putting them in the makefile.

Certain macros are used by the default inference rules to
permit the inclusion of optional matter in any resulting
commands. For example, CFLAGS, LFLAGS, and YFLAGS
are used for compiler options to cc¢(CP), lex(CP), and
yvacc(CP), respectively. Again, the previous method for
examining the current rules is recommended.

The inference of prerequisites can be controlled. The
rule to create a file with suffix .0 from a file with suf-
fix .c is specified as an entry with .c.0: as the target
and no dependents. Shell commands associated with the
target define the rule for making a .o file from a .c
file. Any target that has no slashes in it and starts
with a dot is identified as a rule and not a true target.

Libraries

If a target or dependency name contains parentheses, it is
assumed to be an archive library, the string within paren-
theses referring to a member within the library. Thus
lib(file.o) and $(LIB)(file.0) both refer to an archive
library which contains file.o. (This assumes the LIB
macro has been previously defined.) The expression
$(LIB)(filel.o file2.0) is not legal. Rules pertaining to
archive libraries have the form .XX.a where the XX is the
suffix from which the archive member is to be made. An
unfortunate byproduct of the current implementation re-
quires the XX to be different from the suffix of the ar-
chive member. Thus, one cannot have lib(file.o) depend
upon file.o explicitly. The most common use of the ar-
chive interface follows. Here, we assume the source files
are all C type source:

lib: lib(filel.o) 1lib(file2.0) lib(file3.o0)
€@echo 1lib is now up-to-date

$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $€ $*.o
rm -f $*.0

MAKE(C) MAKE(C)

In fact, the .c.a rule listed above is built into make and
is unnecessary in this example. A more interesting, but
more limited example of an archive library mamtenance
construction follows:

1ib: 1lib(filel.o) lib(file2.0) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.0=.c)
$(AR) $(ARFLAGS) 1lib $7?
rm $? @echo lib is now up-to-date
.c.a:;

Here the substitution mode of the macro expansions is
used. The $? list is defined to be the set of object

file names (inside lib) whose C source files are
out-of-date. The substitution mode translates the .o to
.¢. (Unfortunately, one cannot as yet transform to .c”;
however, this may become possible in the future.) Note
also, the disabling of the .c.a: rule, which would have
created each object file, one by one. This particular
construct speeds up archive library maintenance consider-
ably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs
and C programs.

Files

[Mm]akefile and s.[Mm]akefile /bin/sh

See Also

cd(C), sh(C), and cc(CP), lex(CP), yacc(CP), printf(S),
sccsfile(F) in the Reference (CP, S, F)

Notes

Some commands return non-zero status inappropriately; use
-1 to overcome the difficulty.

File names with the characters = : @ will not work. Com-
mands that are directly executed by the shell, notably
cd(C), are ineffectual across newlines in make. The syn-
tax (lib(filel.o file2.0 file3.0) is illegal. You cannot

build lib(file.o) from file.o. The macro $(a:.o=.c™) does
not work. Named pipes are not handled well.

MESG(C) MESG(C)

Name

mesg - Allows or disallows messages sent to a terminal.

T) Syntax
mesg [-n][-y]
Description
Mesg allows or disallows messages sent to a terminal and
reports the current state without changing it. The argu-
ments are:
-n Forbids messages via write(C) by revoking non-user
write permission on the user's terminal.
-y Reinstates write permission.
Files
5
) /dev/tty*
See Also
write(C)
Diagnostics

The exit status is 0 if messages are receivable, 1 if they
are not, 2 if there is an error.

MKDIR(C) MKDIR(C)

Name

mkdir - Makes a new directory.

Syntax

mkdir [-m mode 1 [-p] dirname ...

Description

The mkdir command creates a new directory. The standard
entries "dot" (.), for the directory itself, and "dot dot"
(..), for its parent, are made automatically.

A directory name can be up to 14 characters long. Do not
use spaces or any of the following characters in the name:

*
1

.
?

- -0

.

o S

You can create several directories at one time by separat-
ing the directory names with spaces.

To use the mkdir command, you must have write permission
in the current directory.

The owner ID and group ID of the new directories are set
to the process's real user ID and group ID, respectively.
Options
The following options apply to mkdir:
-m Specifies the mode to be used for new directories.
(See chmod(C) for types of modes.) The default is
777, modified by the umask value.

-p Creates dirname by creating all the non-existing
parent directories first.

MKDIR(C) MKDIR(C)

Examples

This command creates directories called Accounting, En-
gineering, and Marketing in the current directory.

i mkdir Accounting Engineering Marketing
To create the subdirectory structure ltr/jd/scott, type:

mkdir -p Itr/jd/scott

See Also

chmod(C), rmdir(C), umask(C)

Diagnostics

Mkdir returns exit code 0 if all directories given in the
command line were made successfully. Otherwise, it prints
a diagnostic and returns non-zero.

MKNOD(C) MKNOD(C)

Name

mknod - Builds a special file.

Syntax

/etc/mknod name [bl | [c] major minor
/ete/mknod name m
/ete/mknod name p
/etc/mknod name s

Description
This command can only be used by the super user.
Mknod makes a directory entry and corresponding i-node for
a special file. The first argument is the name of the
file. The second argument is b if the special file is
block-type (disks, tape) or c¢ if it is character-type
(other devices). The last two arguments are numbers spe-
cifying the major device type and the minor device (for
example, unit, drive, or line number). They may be either
decimal or octal.
The assignment of major device numbers is specific to each
system. These numbers come from the system source file
master.

Options
m Creates named shared data (memory)
p Creates named pipes

S Creates semaphores

Examples

The following command creates a block-type device named
hd0d on major device number 0, minor device number 4.

/etc/mknod hdod b 0 4

MKNOD(C) MKNOD(C)
The next command creates a character device named tty03 on
major device 10, tty number 3.

/etc/mknod /dev/tty03 ¢ 10 3

See Also

mknod(S) in the Reference (CP, S, F)

Notes

If mknod is used to create a device in a remote directory
(RFS), the major and minor device numbers are interpreted
by the server.

MKSTR(C) MKSTR(C)

Name

mkstr - Creates an error message file from C source.
Syntax

mkstr [-] messagefile prefix file ...
Description

Mkstr is used to create files of error messages. Its use
can make programs with large numbers of error diagnostics
much smaller, and reduce system overhead in running the
program as the error messages do not have to be constantly
swapped in and out.

Mkstr will process each specified file, by placing a modi-
fied version of the input file in a file whose name con-

sists of the specified prefix and the original name. The
optional dash (-) causes the error messages to be placed
at the end of the specified message file for recompiling

part of a large mkstr program.

A typical mkstr command line is:
mkstr pistrings xx *.c

This command causes all the error messages from the C
source files in the current directory to be placed in the
file pistrings and processed copies of the source for
these files to be placed in files whose names are prefixed
with xx.

To process the error messages in the source to the message
file, mkstr keys on the string 'error("' in the input

stream. Each time it occurs, the C string starting at the
'™ is placed in the message file followed by a null char-
acter and a newline character; the null character termi-
nates the message so it can be easily used when retrieved,
the newline character makes it possible to sensibly cat(C)
the error message file to see its contents. The massaged
copy of the input file then contains an Iseek(S) pointer
into the file which can be used to retrieve the message.

MKSTR(C)

MKSTR(C)

For example, the command changes the following:

error ("Error on reading", a2, a3, a4):

v into:

error(m,

a2, a3, a4):

where m is the seek position of the string in the result-

ing error message file.

The programmer must create a rou-

tine error which opens the message file, reads the string,

and prints it out.

error(al,

a routine.

Example
char
int
{

)

oops
}

See Also

The following example illustrates such

efilname[] = "/usr/lib/pi_strings”:
efil = -1:

a2, a3, a4)
char buf[256]:;

if (efil < 0) ¢
efil = open(efilname, 0):
if (efil < 0) {

perror{efilname):
exit(C):

if (lseek(efil, (long) al, 0) || read(efil,
buf, 256) <= 0)
goto oops:
printf (buf, a2, a3, a4):

1seek(S), xstr(CP)

MKSTR(C) MKSTR(C)

Credit

This utility was developed at the University of California
at Berkeley and is used with permission.

==

MORE(C) MORE(C)

Name

more - Views a file one screen at a time.

Syntax

more -[cdflrsuw] [-n] [+linenumber] [+/pattern] [file ...]

Description

Using the more command, you can examine continuous text
one screen at a time. More pauses at the end of each
screen, printing:

--More--

If you type at the "--More--" message, one more line
is displayed. If you press the a0, another full
screen of the text is displayed. ’

If more is reading from a file, rather than a pipe, the
"--More--" message also contains a percentage telling you
the amount you have read so far.

More looks in the environment variable MORE to preset any
flags desired. For example, if you prefer to view files
using the -c option, the shell command MORE=-¢ in the
.profile file causes all invocations of more to use this

mode.
Options

-C Redraws each full screenful of text from
the top of the screen instead of scrolling.
When you use -c, the -n option is ignored.
The -c option is ignored if the terminal
does not have the ability to clear to the
end of the line.

-d Displays the message "Hit space to con-

tinue, Del to abort" at the end of each
screen. This is useful if more is being
used as a filter.

MORE(C)

-f

-r

~U

-wW

-n

+linenumber

+/pattern

MORE(C)

Causes more to count logical, rather than
screen lines. That is, long lines are not
folded.

Causes more to ignore form feed control
characters (J(SSY&MD). If this option is not
given, more pauses after any line that con-
tains a as if the end of a screen
had been reached. Also, if a file begins
with a form feed, the screen is cleared
before the file is printed.

Causes any control characters that more
does not recognize to be displayed as “x,
where is the unrecognized control
character.

Removes multiple blank lines from the out-
put. This is especially helpful when view-
ing nroff output, maximizing the useful
information present on the screen.

Suppresses underlining in the source file.

Causes more to prompt you with the mes-
sage:

"--No more--"
and wait for you to press any key before
exiting, Without this option, you auto-
matically exit to system level at the end
of the file,
Displays n lines in the specified file,

Starts the file display at the specified
line number.

Starts the file display two lines before
the line containing the pattern.

There are several responses you can use when more pauses
at the "--More--" prompt. With the exception of i/expr,
you don't need to press after these options.

MORE(C)

A Ctri-d |

hor ?

& Space |

i/expr

it

i:n

i:p

is

qor Q

MORE(C)

Displays 11 more lines. If you specify the
i option, scroll size is changed from 11 to
what you specify.

Same as [Koidsdl.

Displays the current file name and line
number.,

Describes all the more commands.

Displays i more lines, or another screenful
if no argument is given.

Searches for the ith occurrence of the
regular expression expr. If there are less
than i occurrences of expr, and the input
is a file rather than a pipe, the position

in the file remains unchanged. Otherwise,
a screenful is displayed, starting two

lines before the place where the expression
was found. The user's erase and kill char-
acters may be used to edit the regular ex-
pression. Erasing back past the first
column cancels the search command.

Skips i screenfuls and prints a screen full
of lines.

Skips to the ith next file given in the
command line (skips to the last file if i
doesn't make sense).

Skips to the ith previous file given in the
command line. If in the middle of printing
out a file, more goes back to the beginning
of the file. If i doesn't make sense, more
skips back to the first file.

If more is not reading from a file, the
bell rings.

Skips i lines and prints a screenful of
lines.

Exits from more.

MORE(C) MORE(C)

q or :Q Same as q or Q.

v Starts up the screen editor vi(C) at the
current line.

= Displays the current line number

. Repeats the previous command. What you
type will not show on your screen, except
for the slash (/) and exclamation (!) com-
mands.

! Goes to the point from which the last
search started. If no search has been per-
formed in the current file, this command
goes back to the beginning of the file,

tcommand Invokes a shell with the specified command.
The characters % and ! in command are re-
placed with the current file name and the
previous shell command respectively. If
there is no current file name, % is not
expanded. The sequences "\%" and "\!" are
replaced by "%" and "!" respectively.

Up to the time when the command character itself is given,
you can press the line kill character to cancel the numer-
ical argument being formed. In addition, you can press

the erase character to redisplay the "--More--(nn%)" mes-
sage.

Examples

This command displays the file pretzels one screen at a
time.

more pretzels
This command displays a file named marzipan, 15 lines at a
time, beginning two lines before the expression
"munchkin."

more -15 +/munchkin marzipan

J

MORE(C) MORE(C)

This command pipes the nroff output from the file jiminy
through the more command so you can preview the nroff
output.

nroff -mm jiminy|more +2 -s

where:
-mm is a macro package referenced by nroff
more pipes the nroff output through the more

command
-S removes blank lines from the output
+2 begins at line number 2
Files
/ete/termeap Terminal data base

/usr/lib/more.help Help file

Related Commands

cat(C), sh(C)

See Also

environ(M)

MOUNT(C) MOUNT(C)

Name
mount, umount - Mounts and unmounts file systems and re-
mote resources.

Syntax
/ete/mount [[-r -c] [-f fstyp] special directory]
/ete/mount [[-r -¢] [-d] resource directory]l
/etc/umount special
/etc/umount [-d] resource

Description

File systems other than root (/) are considered removable
in the sense that they can be either available to users or
unavailable. Mount announces to the system that special,
a block special device or resource, a remote resource, is

available to users from the mount point directory. Direc-
tory must exist already; it becomes the name of the root
of the newly mounted special.

Mount, when entered with arguments, adds an entry to the
table of mounted devices, /etc/mnttab. Umount removes th:
entry. If invoked with no arguments, mount prints the
entire mount table. If invoked with an incomplete argu-
ment list, mount searches /etc/fstab for the missing argu-
ments.

The following options are available:

-r Indicates that special or resource is to be
mounted read-only. If special or resource
is write-protected, this flag must be used.

-d Indicates that resource is a remote re-
source that is to be mounted on directory
or unmounted. To mount a remote resource
Remote File Sharing must be up and running
and the resource must be advertised by a
remote computer. If -d is not used, spe-
cial must be a local block device.

-c Does not use RFS client caching.

-

!

MOUNT(C) MOUNT(C)

-f fstyp Indicates that fstyp is the file system
type to be mounted. If this argument is
omitted, it defaults to the root fstyp.

special Indicates the block special device that is
to be mounted on directory.

resource Indicates the remote resource name that is
to be mounted on a directory.

directory Indicates the directory mount point for
special or resource. (The directory must
already exist.)

Umount announces to the system that the file system pre-
viously mounted special or resource is to be made unavail-
able. If invoked with an incomplete argument list, umount
searches /etc/fstab for the missing arguments.

Mount can be used by any user to list mounted file systems
and resources. Cnly the super-user can mount and unmount
file systems.

Files
/etc/mnttab Mount table
/etc/fstab File system table
See Also

fuser(M), setmnt(C), and mount(S), umount(S), fstab(F),
mnttab(F) in the Reference (CP, S, F).

adv, rfstart, unadv in the Remote File Sharing manual

Diagnostics

If the mount(S) system call fails, mount prints an appro-
priate diagnostic. Mount issues a warning if the file

system to be mounted is currently mounted under another
name. A remote resource mount will fail if the resource
is not available or if Remote File Sharing is not running.

MOUNT(C) "MOUNT(C)

The error message "mount: Object is remote" occurs when
an attempt is made to mount local devices or remote re-
sources on a directory that is remote or has a remote re-
source mounted on it.

Umount fails if special or resource is not mounted or if
it is busy. Special or resource is busy if it contains an
open file or some user's working directory. In such a
case, you can use fuser(M) to list and kill processes that
are using special or resource.

Notes

Physically removing a mounted file system diskette from
the diskette drive before issuing the umount command dam-
ages the file system.

—

MOUNTALL(C) MOUNTALL(C)

Name
mountall, umountall - Mounts, unmounts multiple file sys-
tems.

Syntax
/etc/mountall [-] [file-system-table] ...
/etc/umountall [-k]

Description
These commands may be executed only by the super-user.
Mountall is used to mount file systems according to a
file-system-table (/etc/fstab is the default file system
table). The special file name "-" reads from the standard
input.
Before each file system is mounted, it is checked using
fsstat(M) to see if it appears mountable. If the file
system does not appear mountable, it is checked, using
fsck(M), before the mount is attempted.
Umountall causes all mounted file systems except root to
be unmounted. The -k option sends a SIGKILL signal, via
fuser(M), to processes that have files open.

Files

File-system-table format:

column 1 block special file name of file system

column 2 mount-point directory -

column 3 "-r" if to be mounted read-only; "-d"
if remote

column 4 (optional) file system type string

column 5+ ignored

MOUNTALL(C) MOUNTALL(C)

White-space separates columns. Lines beginning with "#"
are comments. Empty lines are ignored.

A typical file-system-table might read:

/dev/dsk/c1d0s2 /usr -r S51K

See Also

fsck(C), fsstat(M), fstab(M), fuser(M), mount(C),
sysadm(C), and signal(S), in the Reference (CP, S, F)

Diagnostics

No messages are pnnted if the file systems are mountable
and clean.

Error and warning messages come from fsck(C), fsstat(M),
and mount(C).

MULTIUSER(C) MULTIUSER(C)

Name
multiuser, singleuser - Causes the system to enter
multi-user or single-user mode.

Syntax
/etc/multiuser
/etc/singleuser

Description
This command can only be used by the super-user.
Multiuser changes the system mode of operation from
single-user to multi-user. Multiuser performs system
startup functions such as mounting file systems and start-
ing various daemons and spoolers. The /etc/telinit 2 com-
mand is executed to tell init(M) to enter multi-user mode
(run level 2).
Singleuser causes the system to kill all currently running
processes and enter system maintenance mode (run level 1).

See Also

init(M), shutdown(C), who(C)

MV(C) MV/(C)

Name

mv - Moves or renames files and directories.

Syntax
mv [-f] filel file2
mv [-f] file... directory
mv [-f] directoryl directory2

Description
Mv moves (changes the name of) filel to file2.
If file2 already exists, it is removed before filel is
moved. If file2 is write-protected, mv prints the mode
(see the chmod(C) command) and reads the standard input
to obtain a line; if the line begins with y, the move takes

place; if not, mv exits.

If you use the -f (force) option, the move takes place
regardless of file2's mode.

If you move one or more files to a specified directory,
the files retain their original file names.

Mv refuses to move a file onto itself.

If filel and file2 are in different file systems, mv must
copy the file and delete the original. The owner name
becomes that of the copying process and any linking rela-
tionship with other files is lost.

Directories may not be moved across filesystems.

Examples

The following command changes the name of the existing
file rhubarb to the new file name alfalfa.

mv rhubarb alfalfa

Mv(C) mv(C)
This command moves the files alfalfa, alfredo, and
alfresco to the directory /usr/al.

mv alfalfa alfredo alfresco /usr/al

The following command moves the directory seeds/flowers to
the directory seeds/mums.

mv seeds/flowers seeds/mums

Files

/usr/lib/mv_dir Program to move directories

See Also

cp(C), chmod(C)

NAWK(C) NAWK(C)

Name

nawk - Pattern scanning and processing language.

Syntax

nawk [-F rel [parameter...]1 ['prog'] [-f progfile] [file...]

Description

Nawk is a pattern scanner and language processor. The
latest version of nawk provides capabilities unavailable
in previous versions, including new built-in functions and
variables, and the ability to use 8-bit character sets.
The previous version of nawk is called awk(C).

The ~-F re option defines the input field separator to be
the regular expression re.

Parameters, in the form x=... y=... may be passed to
nawk, where x and y are nawk built-in variables (variables
are discussed later).

Nawk scans each input file for lines that match any of a
set of patterns specified in prog. The prog string must
be enclosed in single quotes (') to protect it from the
shell. For each pattern in prog there may be an associ-
ated action' performed when a line of a file matches the
pattern. The set of pattern-action statements may appear
literally as prog or in a file specified with the -f
progfile option.

Input files are read in order; if there are no files, the
standard input is read. The file name - means the stan-
dard input. Each input line is matched against the pat-
tern portion of every pattern-action statement; the asso-
ciated action is performed for each matched pattern.

An input line is normally made up of fields separated by
white space. (This default can be changed by using the FS
built-in variable or the -F re option.) The fields are
denoted $1, $2, ...; $0 refers to the entire line.

NAWK(C) NAWK(C)

A pattern-action statement has the form:
pattern { action }

Either pattern or action may be omitted. If there is no
action with a pattern, the matching line is printed. If
there is no pattern with an action, the action is per-
formed on every input line.

Patterns are arbitrary Boolean combinations (!, ||, &&,
and parentheses) of relational expressions and regular
expressions. A relational expression is one of the fol-
lowing:

expression relop expression
expression matchop regular expression

where a relop is any of the six relational operators in C,
and a matchop is either a ~ (contains) or !~ (does not
contain). A conditional is an arithmetic expression, a
relational expression, the special expression:

var in array
or a Boolean combination of these.

The special patterns BEGIN and END may be used to
capture control before the first input line has been read
and after the last input line has been read, respectively.

Regular expressions are as in egrep(C). In patterns they
must be surrounded by slashes. Isolated regular expres-
sions in a pattern apply to the entire line. Regular ex-
pressions may also occur in relational expressions. A
pattern may consist of two patterns separated by a comma;
in this case, the action is performed for all lines be-
tween an occurrence of the first pattern and the next oc-
currence of the second pattern.

A regular expression may be used to separate fields by
using the -F re option or by assigning the expression to
the built~-in variable FS. The default is to ignore lead-
ing blanks and to separate fields by blanks and/or tab
characters. However, if FS is assigned a value, leading
blanks are no longer ignored.

NAWK(C)

NAWK(C)

Other built-in variables include:

ARGC

ARGV

FILENAME

FNR

FS

NF

NR

OFMT

OFS

ORS

RS

Command line argument count
Command line argument array
Name of the current input file

Ordinal number of the current record in the
current file

Input field separator regular expression
(default blank)

Number of fields in the current record
(default 0)

Ordinal number of the line of the current
record

Output format for numbers (default %.6g)
Output field separator (default blank)
Output record separator (default new-line)

Input record separator (default new-line)

An action is a sequence of statements. A statement may b
one of the following:

if (conditional) statement [else statement]

while (conditional) statement

do statement while (conditional)

for (expression ; conditional ; expression) statement
for (var in array) statement

delete arraylsubscript]

break
continue

{ [statement 1 ... }

expression

commonly variable = expression

print [expression-list 1 [>expression 1
printf format [, expression-list] [D>expression]

next

skip remaining patterns on this input line

exit [expr] # skip the rest of the input; exit status

is expr ‘
return [expr]

NAWK(C) NAWK(C)

Statements are terminated by semicolons, new-lines, or
right braces. An empty expression-list stands for the
whole input line. Expressions take on string or numeric
values as appropriate, and are built using the operators
+ -, ¥ /, %, and concatenation (indicated by a blank).
The C operators ++, --, +=, -=, ¥=, /= and %= are also
available in expressions. Variables may be scalars, array
elements (denoted x[il), or fields. Variables are in-
itialized to the null string or zero. Array subscripts
may be any string, not necessarily numeric; this allows
for a form of associative memory. String constants are
quoted (").

The print statement prints its arguments on the standard
output, or on a file if >expression is present, or on a
pipe if | emd is present. The arguments are separated by
the current output field separator and terminated by the
output record separator. The printf statement formats its
expression list according to a format string (see

printf(S) in the Reference (CP, S, F)).

Nawk has a variety of built-in functions: arithmetic,
string, input/output, and general.

The arithmetic functions are: atan2, cos, exp, int, log,
rand, sin, sqrt, and srand. Int truncates its argument to

an integer. Rand returns a random number between 0 and 1.
Srand (expr) sets the seed value for rand to expr or

uses the time of day if expr is omitted.

The string functions are:

gsub(for, repl, in)
Behaves like sub (see below), except that
it replaces successive occurrences of the
regular expression (like the ed(C) global
substitute command).

index(s, t) Returns the position in string s where
string t first occurs, or 0 if it does not
occur at all.

length(s) Returns the length of its argument taken as
a string, or of the whole line if there is
no argument.

NAWK(C)

match(s, re)

split(s, a, fs)

NAWK(C)

Returns the position in string s where the
regular expression re occurs, or 0 if it
does not occur at all. RSTART is set to
the starting position (which is the same as
the returned value), and RLENGTH is set to
the length of the matched string.

Splits the string s into array elements
alll, al2], aln]l, and returns n. The sep-
aration is done with the regular expression
fs or with the field separator FS if fs is
not given.

sprintf(fmt, expr, expr,...)

Formats the expressions according to the
printf(S) format given by fmt and returns
the resulting string.

sub(for, repl, in)

substr(s, m, n)

Substitutes the string repl in place of the
first instance of the regular expression
for in string in and returns the number of
substitutions. If in is omitted, nawk sub-
stitutes in the current record ($0).

Returns the n-character substring of s
that begins at position m.

The input/output and general functions are:

close(filename)

emd | getline

getline

gefline <file

getline var

Closes the file or pipe named filename.

Pipes the output of emd into getline; each
successive call to getline returns the next
line of output from cmd.

‘Sets $0 to the next input record from the

current input file.
Sets $0 to the next record from file.

Sets variable var instead.

NAWK(C) NAWK(C)
getline var <file
Sets var from the next record of file.
system(cemd) Executes emd and returns its exit status.

All forms of getline return 1 for successful input, 0 for
end of file, and -1 for an error.

Nawk also provides user-defined functions. Such functions
may be defined (in the pattern position of a
pattern-action statement) as

function name(args,...) { stmts }
func name(args,...) { stmts }

Function arguments are passed by value if scalar and by
reference if array name. Argument names are local to the
function; all other variable names are global. Function

calls may be nested and functions may be recursive. The
return statement may be used to return a value.

Examples
The following examples are taken from a file.
Print lines longer than 72 characters:
'length > 72'
Print the first two fields in opposite order:

'{ print $2, $1 }'

Same as above, with input fields separated by comma and/or
blanks and tabs:

'BEGIN { FS = ",[\t]*[\t]+" }
{ print $2, $1 }'

Add up the first column, print the sum and average:

'{s+=$1}
END { print "sum is", s, " average is", s/NR }'

NAWK(C) NAWK(C)

Print fields in reverse order:
*{ for (1 = NF; i > 0; --i) print $i }'
Print all lines between start/stop pairs: |
'/start/, /stop/’

Print all lines whose first field is different from pre-
vious one:

'$1 != prev { print; prev = $1 }'
Simulate echo(C):
'BEGIN {
for (i = 1; i < ARGC; i++)
printf "%s", ARGVIil
printf "\n"

exit
} 1]

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

command line: nawk -f program n=5 input

See Also

grep(C), awk(C), sed(C), lex(C)
printf(S) in the Programmer's Guide

Notes

Input white space is not preserved on output if fields are
involved.

There are no explicit conversions between numbers and
strings. To force an expression to be treated as a num-
ber, add 0 to it; to force it to be treated as a string,
concatenate the null string (™) to it.

A4

NEWGRP(C) NEWGRP(C)

Name

newgrp - Logs user in to a new group.

Syntax

newgrp [-] [group]

Description

Newgrp changes a user's group identification. The user
remains logged in and the current directory is unchanged,
but calculations of access permissions to files are per-
formed with respect to the new real and effective group
IDs. The user is always given a new shell, replacing the
current shell, by newgrp, regardless of whether it termi-
nated successfully or due to an error condition (e.g.,
unknown group).

Exported variables retain their values after invoking
newgrp; however, all unexported variables are either reset
to their default value or set to null. System variables
(such as PS1, PS2, PATH, MAIL, and HOME), unless ex-
ported by the system or explicitly exported by the user,
are reset to default values. For example, suppose a user
has a primary prompt string (PS1) other than $ (default)
and has not exported PS1. After an invocation of newgrp,
successful or not, their PS1 will now be set to the de-
fault prompt string $. Note that the shell command export
(see sh(C)) is the method to export variables so that they
retain their assigned value when invoking new shells.

With no arguments, newgrp changes the group identification
back to the group specified in the user's password file
entry. This is a way to undo the effect of an earlier
newgrp command.

If the first argument to newgrp is a -, the environment is
changed to what would be expected if the user actually
logged in again as a member of the new group.

A password is demanded if the group has a password and
the user does not, or if the group has a password and the
user is not listed in /etc/group as being a member of that
group.

NEWGRP(C) NEWGRP(C)

Files

/etc/group System's group file

/ete/passwd System's password file
See Also

login(C), sh(C), environ(M) group(M), passwd(M)
Notes

There is no convenient way to enter a password into
/etc/group. Use of group passwords is not encouraged,
because, by their very nature, they encourage poor secur-
ity practices. Group passwords may disappear in the fu-
ture.

\

/

NICE(C) NICE(C)

Name

nice - Runs a command at a different priority.

Syntax

nice [-increment 1 command [arguments }

Description

Nice executes command with a lower CPU scheduling prior-
ity. Nice values range from 0 to 39, where 0 yields the
highest priority and 39 the lowest. By default, commands
have a value of 20.

If an -increment argument is given, where increment is in
the range 1-19, increment is added to the default nice of
20 to produce a numerically higher value, meaning a lower
scheduling priority.

If no increment is given, an increment of 10 to produce a
value of 30 is assumed.

The super-user may run commands with a higher priority
than normal by using a double negative increment. For
example, an argument of "--10" would decrement the default
to produce a value of 10, increasing the scheduling prior-
ity.

See Also

nice(S), nohup(C)

Diagnostics

Nice returns the exit status of the subject command.

Notes

If you specify a value outside the range, a value greater
than 39 is equivalent to 39; a value less than zero is
equivalent to zero.

NL(C)

Name

NL(C)

nl - Adds line numbers to a file.

Syntax

nl [-btype] [-htype 1 [-ftype 1 [-vstart #] [-iiner]
[-p1I[-lnum] [-ssep 1 [-wwidth 1 [-nformat]
[-ddelim 1 {file]

Description

Nl reads lines from the named file, or from the standard
input if no file is named, and reproduces the lines on the
standard output. Lines are numbered on the left in accor-
dance with the command options in effect.

Nl views the text it reads in terms of logical pages.

Line numbering is reset at the start of each logical page.
A logical page consists of a header, a body, and a footer
section. Empty sections are valid. Different line num-
bering options are available independently for header,
body, and footer (e.g., no numbering of header and footer
lines while numbering blank lines in the body).

The start of logical page sections is signaled by input
lines containing nothing but the following character(s):

Page Section Line Contents

Header \e\e\s
Body \e\e
Footer \:

Unless signaled otherwise, nl assumes the text being read
is in a single logical page body.

Command options may appear in any order and may be inter-
mingled with an optional filename. Only one file may be
named. The options are:

NL(C)

-btype

-htype

-ftype

-p

-vstart#

-iiner

-ssep

-wwidth

-nformat

NL(C)

Specifies which logical page body lines are to
be numbered. Recognized types and their mean-
ing are:

a number all lines

t number lines with printable text only
(the default)

n no line numbering

p string number only lines that contain the
regular expression specified in string

Same as -btype except for header. The default
type for logical page header is n (no lines
numbered).

Same as -btype except for footer. The default
for logical page footer is n (no lines

» numbered).

Does not restart numbering at logical page de-
limiters.

Start# is the initial value used to number log-
ical page lines. The default is 1.

Iner is the increment value used to number log-
ical page lines. The default is 1.

Sep is the character(s) used in separating the
line number and the corresponding text line.
Default is TAB.

Width is the number of characters to be used for
the line number. The default width is 6.

Format is the line numbering format. The recog-
nized values are: In, left justified, leading
zeroes suppressed; rn, right justified, leading
zeroes suppressed; rz, right justified, leading
zeroes kept. The default format is rn (right
justified).

NL(C) NL(C)

-lnum Num is the number of blank lines to be con-
sidered as one. For example, -12 results in
only the second adjacent blank being numbered
(if the appropriate -ha, -ba, and/or -fa option
is set). The default is 1.

~-dxx You can change the delimiter characters, xx,
specifying the start of a logical page section,
from the default characters (\:) to two
user-specified characters. If you enter only
one character, the second character remains the
default character (:). Do not enter a space
between -d and the delimiter characters. To
enter a backslash (\) use two backslashes (\\).

Example
The command:
nl -v10 -i10 -d!+ filel
will number filel starting at line number 10 with an in-
crement of ten. The logical page delimiters are !+.
See Also

num(C), pr(C)

g

NOHUP(C) NOHUP(C)

Name

nohup - Runs a command immune to hangups and quits.

Syntax

nohup command [arguments]

Description

Nohup executes command with hangups and quits ignored.
If output is not redirected by the user, it will be sent
to nohup.out. If nohup.out is not writable in the current
directory, output is redirected to $HOME /nohup.out.

Examples

It is frequently desirable to apply nohup to pipelines or
lists of commands. This can be done only by placing pipe-
lines and command lists in a single file, called a shell
procedure. You can then issue;

nohup sh file
and the nohup applies to everything in file. If the shell
procedure file is to be executed often, then the need to
type sh can be eliminated by giving file execute permis-
sion. Add an ampersand and the contents of file are run
in the background with interrupts also ingnored (see
sh(C)):

nohup file &
An example of what the contents of file could be is:

sort ofile > nfile

See Also

nice(C), sh(C), signal(S)

NOHUP(C) : NOHUP(C)

Notes
The command:
nohup commandl;command2
nohup applies only to commandl. To correct this, use:

nohup (commandl;command2)

-

NUM(C) NUM(C)

Name

num - Numbers lines.

Syntax

num [file...]

Description

The lines in the specified files, or the standard input,
are copied to the standard output preceded by line num-
bers. Tabs remain aligned in the ouput as the lines are
printed preceded by the number, blank padded to six
digits, and then two spaces.

See Also

see(C), nl(C)

(BLANK)

A

OD(C) 0D(C)

Name

od - Displays files in octal format.

Syntax

od [-bedhosx 1 [file J[[+ 1 offset [. 1[I b1]

Description

Od displays file in one or more formats as selected by the
first argument (-0 is default). The format options are:

-b Interprets bytes in octal.

-¢ Interprets bytes in ASCII. Certain nongraphic char-
acters appear as C escapes: null=\0, BACKSPACE=\b,
FORMFEED=\f, NEWLINE=\n, RETURN=\r, TAB=\t;
others appear as 3-digit octal numbers.

-d Interprets words in decimal.

-h Interprets words in hexadecimal (same as -x).

-0 Interprets words in octal.

-s Interprets words in signed decimal.

-x Interprets words in hexadecimal (same as -h).

The file argument specifies which file is to be displayed.

If no file argument is specified, the standard input is

used.

The offset argument (normally interpreted as octal bytes)

specifies the offset in the file where the display is to

start. If . is appended, the offset is interpreted in
decimal. If b is appended, the offset is interpreted in
512-byte blocks. If file is omitted, offset must be pre-
ceded by +. The display continues until EOF.

See Also

adb(C), hd(C)

(BLANK)

=

PACK(C) PACK(C)

Name

pack, pcat, unpack - Compresses and expands files.

Syntax

pack [- 1 [-f] name ...
pcat name ...
unpack name ...

Description

Pack attempts to store the specified files in a compressed
form. Wherever possible (and useful), each input file
name is replaced by a packed file name.z with the same
access modes, access and modified dates, and owner as
those of name. The -f option will force packing of name.
This is useful for causing an entire directory to be
packed even if some of the files will not benefit., If
pack is successful, name will be removed. Packed files
can be restored to their original form using unpack or
pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-
by-byte basis. If the - argument is used, an internal

flag is set that causes the number of times each byte is
used, its relative frequency, and the code for the byte to
be printed on the standard output. Additional occurrences
of - in place of name will cause the internal flag to be
set and reset.

The amount of compression obtained depends on the size of
the input file and the character frequency distribution.
Because a decoding tree forms the first part of each .z
file, it is usually not worthwhile to pack files smaller

than three blocks, unless the character frequency distri-
bution is very skewed, which may occur with printer plots
or pictures.

Typically, text files are reduced to 60-75% of their
original size. Load modules, which use a larger character
set and have a more uniform distribution of characters,
show little compression, the packed versions being about
90% of the original size.

"PACK(C) PACK(C)

Pack returns a value that is the number of files that it
failed to compress. No packing will occur if:

. The file appears to be already packed
. The filename has more than 12 characters
. The file has links
. The file is a directory
. The file cannot be opened
. No disk storage blocks will be saved by packing
. A file called name.z already exists
. The .z file cannot be created
° An I/O error occurred during processing
The last segment of the filename must not contain more
than 12 characters to allow space for the appended .z ex-
tension. Directories cannot be compressed.
Pcat does for packed files what cat(C) does for ordinary
files. The specified files are unpacked and written to
the standard output. Thus, to view a packed file named
name.z use:
pcat name.z
or just:

pcat name

To make an unpacked copy, say nnn, of a packed file,
name.z (without destroying name.z), use the command:

pcat name >nnn

Pcat returns the number of files it was unable to unpack.
Failure may occur if: :

. The filename (exclusive of the .z) has more than 12
characters

PACK(C) PACK(C)

. The file cannot be opened
. The file does not appear to be the output of pack

Unpack expands files created by pack. For each name file
specified in the command, a search is made for a file
called name.z (or just name, if name ends in .z). If this
file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped
from its name, and has the same access modes, access and
modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was
unable to unpack. Failure may oecur for the same reasons
that it may in pcat, as well as in a file where the
"unpacked" name already exists, or if the unpacked file
cannot be created.

See Also

cat(C), passwd(M)

PASSWD(C) PASSWD(C)

Name

passwd - Changes login password.

Syntax

passwd [name 1}

Description

This command changes or installs a password associated
with the login name.

Ordinary users may change only the password which corres-
ponds to their login name.

Passwd prompts ordinary users for their old password, if
any. It then prompts for the new password twice. The
first time the new password is entered, passwd checks to
see if the old password has "aged" sufficiently, Password
"aging" is the amount of time (usually a certain number of
days) that must elapse between password changes. If
"aging"” is insufficient the new password is rejected and
passwd terminates; see passwd(F). Note that password
aging is NOT enabled by default. See passwd(M) for more
information.

Assuming "aging" is sufficient, a check is made to insure
that the new password meets construction requirements.
When the new password is entered a second time, the two
copies of the new password are compared. If the two
copies are not identical the cycle of prompting for the
new password is repeated for at most two more times.

Passwords must be constructed to meet the following re-
quirements:

. Each password must have at least six characters.
Only the first eight characters are significant.

. Each password must contain at least two alphabetic
characters and at least one numeric or special char-
acter. In this case, "alphabetic" means upper and
lower-case letters. g

PASSWD(C) PASSWD(C)

. Each password must differ from the user's login name
and any reverse or circular shift of that login name.
For comparison purposes, an upper case letter and its
corresponding lower-case letter are equivalent.

. New passwords must differ from the old by at least
three characters. For comparison purposes, an upper
case letter and its corresponding lower-case letter
are equivalent.

One whose effective user ID is zero is called a super-
user; see id(C) and su(C). Super-users may change any
password; hence, passwd does not prompt super-users for
the old password. Super-users are not forced to comply
with password aging and password construction require-
ments. A super-user can create a null password by enter-
ing a carriage return in response to the prompt for a new
password.

Files

/etc/passwd

See Also

login(C), id(M), su(M) and crypt(S), passwd(F) in the
Reference (CP, S, F)

PCONFIG(C) PCONFIG(C)

Name

pconfig - Port configuration utility.

Syntax

peonfig [-f | -h | -i]

Description
The pconfig command defines port configuration information
for your system; with pconfig, you can set up ports on
your computer as terminal, modem, or printer devices. You
can also set parameters, such as communication speed (baud
rate) and terminal type for these devices.

You must be the super-user to use this command.

Options
The options are as follows:

- Forces execution even if someone else is using
pconfig

-h Displays a brief help introduction

-i Initializes modem ports

After you invoke the pconfig command, the prompt at the
bottom of the screen asks you to type one of the following
commands:

a Adds a new port specification

c Changes a port assignment

d Deletes a port assignment

q Updates the system port assignment files, then termi-
nates the program

r Configures a remote printer.

PCONFIG(C) PCONFIG(C)

“W Displays help information

! Passes a command to the operating system for execu-
tion

Each of these command options is described below. To
select an option, just type the character. You do not

need to press When executing one of the options,
you may, however, be asked to enter a werd. In this case,
follow the word with a Il In most cases, entering just
a will leave that particular command or attribute
unchanged.

a Add a port. The named port will be added to the port
configuration list, and eventually to the
/etc/inittab file.

c Change a port. You will be asked to specify the port
to change. Enter the name of the port as it appears
when you use the d option to display the port assign-
ments. You will be asked to enter the device type:
terminal, printer, or other.

Select terminal, and you will be asked to specify the ter-
minal, then the action for the port. "Respawn" means the
port is enabled, "off" means disabled. Finally, you will

be asked for the baud rate (communication speed) of the
port. The baud rate is determined by the protocol defined
in the /etc/gettydefs file, and is selected by an identi-
fier that is in the first field of each line in
/etc/gettydefs. Enter the desired identifier to set the
baud rate.

To set the port up as a modem, select the identifier that
contains the word "MODEM." For a bidirectional line (dial
out and dial in), select the identifier that contains
"UucCp."

Select printer, and you will be asked to enter the name of
the printer, which can be lp or IpNN, where NN is a digit
between 0 and 255. Enter the baud rate as described
above.

Select other only if you want to directly edit the fields
within the /etc/inittab file. These fields will then be
written to the /etc/inittab file without error checking.

FCONFIG(C) ~ FCONFIG(C)

q Quits the program. If any changes have been made to
the port assignments, you will be asked if you want
to save the changes. Type y to install the new con-
figuration, or n to exit the program without making
any changes.

1 Escapes to a sub-shell invoked from within pconfig.
If the SHELL environment variable is initialized, the
specified shell will be run; if not, /bin/sh is in-
voked.

During the execution of the quit command, the /etc/inittab
file is copied to /etc/oinittab. Thus, if a problem

occurs during the use of this program, you can recover the
prior state of the port configurations.

Files
/etc/inittab
/etc/gettydefs
/etc/printers
/usr/lib/PCF
See Also

init(M), inittab(M), getty(M), gettydefs(M)
Operations Guide

PG(C) PG(C)

Name

pg - File perusal filter for CRTs.

Syntax

pg [-number] [-p string] [-cefns] [+linenumber]
[+/pattern/] [files...]

Description

The pg command is a filter that allows the examination of
files one screenful at a time on a CRT. (The file name
dash (-) and/or NULL arguments indicate that pg should
read from the standard input.) Each screenful is followed
by a prompt. If you type a carriage return, another page
is displayed; other possibilities are enumerated below.

This command is different from previous paginators in that
it allows you to back up and review something that has
already passed. The method for doing this is explained
below.

In order to determine terminal attributes, pg scans the
terminfo(M) data base for the terminal type specified by
the environment variable TERM. If TERM is not defined,
the terminal type "dumb" is assumed.

The command line options are:

-number An integer specifying the size (in lines) of the
window that pg is to use instead of the default.
(On a terminal containing 24 lines, the default
window size is 23.)

-p string Causes pg to use string as the prompt. If the
prompt string contains a "%d", the first occur-
rence of "%¥d" in the prompt will be replaced by
the current page number when the prompt is
issued. The default prompt string is ™:".

-C Moves the cursor to home and clears the screen
before displaying each page. This option is
ignored if clear screen is not defined for this
terminal type in the terminfo(M) data base.

PG(C) PG(C)

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen
width, but some sequences of characters in the
text being displayed (e.g., escape sequences for
underlining) generate undesirable results. The
-f option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a
Newline character. This option causes an auto-
matic end of command as soon as a command
letter is entered.

- Causes pg to print all messages and prompts in
standout mode (usually inverse video).

+linenumber
Start up at linenumber.

+/pattern/
Start up at the first line containing the reg-
ular expression pattern.

The responses that may be typed when pg pauses can be di-
vided into three categories: those causing further per-
usal, those that search, and those that modify the perusal
environment.

Commands that cause further perusal normally take a pre-
ceding address, an optionally signed number indicating the
point from which further text should be displayed. This
address is interpreted in either pages or lines depending
on the command. A signed address specifies a point rela-
tive to the current page or line, and an unsigned address
specifies an address relative to the beginning of the

file. Each command has a default address that is used if
none is provided.

The perusal commands and their defaults are as follows:
(+1)<Newline> or <Blank>

This causes one page to be displayed. The
address is specified in pages.

PG(C) PG(C)

(+1) 1 With a relative address this causes pg to simu-
late scrolling the screen, forward or backward,
the number of lines specified. With an absolute
address this command prints a screenful beginni-
ng at the specified line.

(+1) d or “D
Simulates scrolling half a screen forward or
backward.

The following perusal commands take no address.

. or “L Causes the current page of text to be
redisplayed.

$ Displays the last windowful in the file. Use
with caution when the input is a pipe.

The following commands are available for searching for
text patterns in the text. The regular expressions de-
scribed in ed(C) are available. They must always be ter-
minated by a <{Newline)>, even if the -n option is speci-
fied.

i/pattern/
Search forward for the ith (default i=1)
occurrence of pattern. Searching begins im-
mediately after the current page and continues
to the end of the current file, without wrap-
around.

i“pattern®

i?pattern?
Search backwards for the ith (default i=1) oc-
currence of pattern. Searching begins immedi-
ately before the current page and continues to
the beginning of the current file, without wrap-
around. The ° notation is useful for Adds 100
terminals which will not properly handle the 2.

After searching, pg will normally display the line found

at the top of the screen. This can be modified by append-
ing m or b to the search command to leave the line found
in the middle or at the bottom of the window from now on.
The suffix t can be used to restore the original situa-

tion.

PG(C) ' PG(C)

You can modify the environment of perusal with the follow-
ing commands:

in Begin perusing the ith next file in the command
line. The i is an unsigned number, default
value is 1.

ip Begin perusing the ith previous file in the com-
mand line. The i is an unsigned number, default
is 1.

iw Display another window of text. If { is pres-
ent, set the window size to i.

s filename
Save the input in the named file. Only the
current file being perused is saved. The white
space between the s and filename is optional.
This command must always be terminated by a
<{Newline>, even if the -n option is specified.

h Help by displaying an abbreviated summary of
available commands.

qor Q Quit pg.

lecommand Command is passed to the shell, whose name is
taken from the SHELL environment variable. If
this is not available, the default shell is
used. This command must always be terminated
by a {Newline), even if the -n option is spe-
cified.

At any time when output is being sent to the terminal, you
can press the quit key (normally [[SSS@ND or the interrupt
(EE2TW) key. This causes pg to stop sending output, and
display the prompt. You may then enter one of the above
commands in the normal manner. Unfortunately, some out-
put is lost when this is done, due to the fact that any
characters waiting in the terminal's output queue are
flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts
just like cat(C), except that a header is printed before
each file (if there is more than one).

PG(C)

PG(C)

Example

A sample usage of pg in reading system news would be:

news | pg -p"(Page%d):"

Notes

Files

While waiting for terminal input, pg responds to JEIEIE,
B3R, and " by terminating execution. Between prompts,
however, these signals interrupt pg's current task and
place you in prompt mode. These should be used with cau-
tion when input is being read from a pipe, since an inter-
rupt is likely to terminate the other commands in the
pipeline.

Users of Berkeley's more will find that the z and f com-
mands are available, and that the terminal /, °, or ? may
be omitted from the searching commands.

/usr/lib/terminfo/?/* Terminal information database
/tmp/pg* Temporary file when input is
from a pipe

See Also

Bugs

ed(C), grep(C), terminfo(M)

If terminal tabs are not set every eight positions, unde-
sirable results may occur.

When using pg as a filter with another command that
changes the terminal I/O options, terminal settings may
not be restored correctly.

PR(C)

Name

PR(C)

pr - Prints files.

Syntax

pr [[-column] [-wwidth] [-a]] [-eck] [-ick] [-drtfp]
[+pagel [-nck] [-ooffset] [-llength] [-sseparator]
{-h header] [file...]

pr [[-m] [-wwidth] 1 [-eck] [-ick] [-drtfp] [+pagel
[-nck] [-ooffset] [-llength} [-sseparator] [-h header]
filel file2...

Description

Pr is used to format and print the contents of a file. If
file is -, or if no files are specified, pr assumes stan-
dard input. Pr prints the named files on standard output.

By default, the listing is separated into pages, each
headed by the page number, a date and time, and the name
of the file. Page length is 66 lines which includes 10
lines of header and trailer output. The header is com-
posed of 2 blank lines, 1 line of text (can be altered

with -h), and 2 blank lines; the trailer is 5 blank lines.
For single column output, line width may not be set and is
unlimited. - For multi-column output, line width may be set
and the default is 72 columns. Diagnostic reports (failed
options) are reported at the end of standard output asso-
ciated with a terminal, rather than interspersed in the
output. Pages are separated by series of line feeds
rather than form feed characters.

By default, columns are of equal width, separated by at
least one space; lines which do not fit are truncated. If
the -s option is used, lines are not truncated and columns
are separated by the separator character.

Either -column or -m should be used to produce
multi-column output. -a should only be used with -column
and not -m.

PR(C)

PR(C)

Command line options are:

+page

-column

-a

-m

-eck

-ick

Begin printing with page numbered page
(default is 1).

Print column columns of output (default is
1). Output appears as if -e and -i are
turned on for multi-column output. May not
use with -m.

Print multi-column output across the page
one line per column. Columns must be
greater than one. If a line is too long to
fit in a column, it is truncated.

Merge and print all files simultaneously,
one per column. The maximum number of
files that may be specified is eight. If a
line is too long to fit in a column, it is
truncated. May not use with -column.

Double-space the output. Blank lines that
result from double-spacing are dropped when
they occur at the top of a page.

Expand input tabs to character positions
k+l, 2%k+1, 3*k+1, etc. If k is O or is
omitted, default tab settings at every
eighth position are assumed. Tab charac-
ters in the input are expanded into the
appropriate number of spaces. If ¢ (any
non-digit character) is given, it is

treated as the input tab character (defauit
for ¢ is the tab character).

In output, replace white space wherever
possible by inserting tabs to character
positions k+l, 2*k+1, 3*k+1l, etc. If k is
0 or is omitted, default tab settings at
every eighth position are assumed. 1If ¢
(any non-digit character) is given, it is
treated as the output tab character
(default for ¢ is the tab character),

PR(C)

-nck

~wwidth

-00ffset

-llength

-h header

Y

PR(C)

Provide k-digit line numbering (default for
k is 5). The number occupies the first k+l
character positions of each column of
single column output or each line of -m
output. If ¢ (any non-digit character) is
given, it is appended to the line number to
separate it from whatever follows (default
for ¢ is a tab).

Set the width of a line to width character
positions (default is 72). This is effec-
tive only for multi-column output (-column
and -m). There is no line limit for single
column output.

Offset each line by offset character posi-
tions (default is 0). The number of char-
acter positions per line is the sum of the
width and offset.

Set the length of a page to length lines
(default is 66). -10 is reset to -166.

When the value of length is 10 or less, -t
appears to be in effect since headers and
trailers are suppressed. By default, out-
put contains 5 lines of header and 5 lines
of trailer leaving 56 lines for user-
supplied text. When -llength is used and
length exceeds 10, then length-10 lines are
left per page for user supplied text. When
length is 10 or less, header and trailer
output is omitted to make room for user
supplied text.

Use header as the text line of the header
to be printed instead of the file name. -h
is ignored when -t is specified or -liength
is specified and the value of length is 10
or less. (-h is the only pr option requir-
ing space between the option and argument.

Pause before beginning each page if the
output is directed to a terminal (pr will
ring the bell at the terminal and wait for
a carriage return).

PR(C)

PR(C)

Use single form-feed character for new
pages (default is to use a sequence of
line-feeds). Pause before beginning the
first page if the standard output is asso-
ciated with a terminal.

Print no diagnostic reports on files that
will not open.

Print neither the five-line identifying
header nor the five-line trailer normally
supplied for each page. Quit printing
after the last line of each file without
spacing to the end of the page. Use of -t
overrides the -h option.

Separate columns by the single character
separator instead of by the appropriate
number of spaces (default for separator is
a tab). Prevents truncation of lines on
multicolumn output unless -w is specified.

Print filel and file2 as a double-spaced, three-column
listing headed by "file list™:

pr -3dh "file list" filel file2

Copy filel to file2, expanding tabs to columns 10, 19, 28,

pr -e9 -t (filel >file2

Print filel and file2 simultaneously in a two-column list-
ing with no header or trailer where both columns have line

pr -t -n filel | pr -t -m -n file2 -

-f
)
-r
-t
-sseparator
™ Examples
374000 ¢
numbers:
N
J

PR(C)

Files

/dev/tty*

See Also

cat(C), pg(C)

PR(C)

To delay messages enabling them to print at
the bottom of files rather than interspersed
throughout printed output.

PRINTENV(C) PRINTENV(C)

Name

printenv - Prints out the environment.

Syntax

printenv [name 1

Description
Printenv prints out the values of the variables in the
environment. If a name is specified, only its value is
printed.
If a name is specified and it is not defined in the en-
vironment, printenv returns exit status 1; otherwise, it
returns status 0.

See Also

sh(C), environ(M), csh(C)

PS(C)

Name

PS(C)

ps - Reports process status.

Syntax

ps [-adefl] [-c corefile] [-s swapdev] [-t tlist]
[-p plist] [-u ulist] [-g glist]

Description

Ps prints certain information about active processes. If
you use the ps command without arguments, it lists infor-
mation about processes associated with the current ter-
minal. If you use arguments with the ps command, more
specialized information is listed.

Options

-a

-c corefile

-d

-e

Prints information about all processes,
except process group leaders and processes
not associated with a terminal.

Uses the file corefile in place of
/dev/mem.

Prints information about all processes,
except process group leaders.

Prints information about all processes.

Generates a full listing. Normally, a
short listing containing only process ID,
terminal ("tty") identifier, cumulative
execution time, and the command name is
printed. See below for a description of
each column in a full listing.

Under the -f option, ps tries to determine
the command name and arguments given
when the process was created by examining
memory or the swap area. Failing this, the
command name, as it would appear without
the -f option, is printed in square brackets.

=7

PS(C)

-g glist

-1

-p plist

-s swapdev

-t tlist

-u ulist

PS(C)

Lists information about processes whose
process groups are given in glist. Glist
is a list of process group leaders and is
in the same format as tlist.

Generates a long listing. See below.

Lists information about processes whose
process ID numbers are given in plist.
Plist is in the same format as tlist.

Uses the file swapdev in place of
/dev/swap. This is useful when examining a
corefile.

Lists information about the processes
associated with the terminals given in

tlist. Tlist can be in one of two forms:

a list of terminal identifiers separated

from one another by a comma, or a list of
terminal identifiers enclosed in double
quotes and separated from one another by a
comma and/or one Or more spaces.

Lists information about processes whose

user ID numbers or login names are given in
ulist. Ulist is in the same format as

tlist. In the listing, the numerical user

ID is printed unless the -f option is used,
in which case the login name is printed.

When you type a ps command, the status of all processes
running on your system is displayed in columns across your
screen. The meaning of each column in a ps listing is
given below, as well as the options that cause that column
to appear (-1 for the long option and -f for the full
option). When all is listed as the option, it means that
the column always displays no matter what option you

enter.

PS(C)

PS(C)
Column
Heading Option Description
F 1 A status word consisting of flags asso-

ciated with the process. Each flag is
associated with a bit in the status word.
These flags are ored to form a single hex

number.

Process flag bits and their meanings are:

0x00001
0x00002
0x00004

0x00008

0x00010
0x00020
0x00040
0x00080
0x00100

0x00200
0x00400
0x00800
0x01000
0x02000
0x04000

0x08000
0x10000
0x20000
0x40000

0x80000

System (resident) process.
Process is being traced.
Stopped process given to
parent by wait system call.
Process cannot wakeup by a
signal.

In core.

Process cannot be swapped.
Set when signal goes remote.

Process in stream poll.

Process is being stopped via
/proc.

Signal tracing via /proc.

Doing 1/0 via /proc.

Stop on exec.

Process is open via /proc.

U-block is in core.

Set process to run on last
/proc close.

Process asleep.

Processing exiting via ptrace.
Process stopped within a call
to sleep.

U-block is being swapped in
or out.

Waiting for u-block swap to
complete.

=

PS(C)

PS(C)

Column

Heading Option Description

UID

PID

PPID

STIME

PRI

NI

ADDR

Sz

1,1

all

1,1

1,1

The state of the process

non-existent
sleeping

waiting

runable
intermediate
terminated

stopped

waiting for memory
running

MXHEN-IS N

The user ID number of the process owner;
the login name is printed under the -f
option.

The process ID of the process; it is
possible to kill a process if you know

this data.

The process ID of the parent process.

Process utilization for scheduling, in
hex.

Starting time of the process.

The priority of the process; higher
numbers mean lower priority.

CPU on which process last run.

Nice value; used in priority
computation.

The memory address of the process, if
resident; otherwise, the disk address.

The virtual size in 1K units of the stack
and data regions process.

PS(C) PS(C)

Column _
Heading Option Description

WCHAN 1 The event for which the process is
waiting or sleeping; if blank, the process
is runable, in hex.

TTY all The controlling terminal for the process.
If using windows, also shows number of the
window in which process is running.

TIME all The cumulative executive time for the
process.

CMD all The command name; the full command name
and its arguments are printed under the
-f option.

A process that has exited and has a parent, but has not
yet been waited for by the parent, is marked <defunct).

Examples

This command lists your processes using the long form.

ps -1

PS(C)

Files

/dev/mem
/dev

/dev/swaptab

Related Commands

kill(C)

Notes

PS(C)

Memory

Searched to find swap device and ter-
minal ("tty") names

Contains kernel structure list of all
swap devices

If ps can't find the swap device, you will see an error

message:

Cannot open swapdev

where swapdev is a swap device such as /dev/hd0Oa.

PSCREEN(C) PSCREEN(C)

Name

pscreen - Sets up terminal to enable print-screen capabil-
ity.

Syntax

pscreen -k key-seq [-e escape-seq] [-d device]
[-t terminal type]

Description

The pscreen command sets up the terminal so that when a
specified key is pressed on the keyboard, the contents of
the screen will be printed on a printer connected to the
auxiliary port on the terminal. Pscreen does not directly
cause the screen to be printed on the printer; its only
function is to set things up so that whenever the speci-
fied key is pressed, the screen will be printed.

The terminal that is being used must have an auxiliary
port on it and it must accept an escape sequence that will
cause the contents of the screen to be printed on a print-
er connected to the auxiliary port.

Some terminals such as the Altos V have a PRINT key that
will automatically print the screen. If you are using

such a terminal, it is not necessary to use pscreen. How-
ever, other terminals such as the Altos II and Altos III

do not have such a key, but they will accept an escape
sequence to print the screen. On such terminals, it is
suggested that a function key be reserved for the print
screen key and that pscreen be used to define the sequence
of characters that the function key sends to the computer
when the key is pressed.

Options

-k Specifies the sequence of characters that the termi-
nal sends to the computer when the print-screen key
is pressed. The -k option must be specified.

PSCREEN(C) PSCREEN(C)

-e Specifies the escape sequence that the computer
should send to the terminal after the print-screen
key is pressed. If not specified, then the string of
characters specified in the termcap capability "SP"
is used.

-d Specifies the device name (e.g., /dev/tty04 or tty04).
If not specified, the user's current port is used.
Only the super-user can specify a device other than
the current port.

-t Specifies the terminal type (e.g., altos3). The ter-
minal type must be one of the terminal types in the
/etc/termcap file.

If neither -t nor -d are specified, then the terminal type
specified in the environment variable TERM is used. If -t
is not specified but -d is specified, then the terminal

type specified in /etc/ttytype for the specified device is
used.

Each character in the sequences specified by the -k and -e
options can be either a single ASCII character, a hexa-
decimal number (e.g., 0x1b), an octal number (e.g., 033),
or an ASCII abbreviation (e.g., ESC or SOH). Alternative-
ly, the character can be specified as a decimal number
provided that it contains at least 2 digits. A single
decimal digit (0 through 9) will be interpreted as a

single ASCII character unless a trailing "d" (or "D") is
appended (e.g., 9D). The character must have a non-zero
value less than 0x80 (i.e., less than 128).

The following list shows all the valid ASCII abbrevia-
tions. Each abbreviation can be either uppercase or
lowercase letters.

PSCREEN(C) PSCREEN(C)

Abbreviation Hex Value Abbreviation Hex Value
SOH 0x01 DLE 0x10
STX 0x02 DC1 0x11
ETX 0x03 DC2 0x12
EOT 0x04 DC3 0x13
ENQ 0x05 DC4 Ox14
ACK 0x06 NAK 0x15
BEL 0x07 SYN 0x16
BS 0x08 ETB 0x17
HT 0x09 CAN 0x18
LF 0x0a EM 0x19
VT 0x0b SUB Oxla-
FF 0x0c ESC 0x1b
CR 0x0d FS Oxlc
SO 0x0e GS ox1d
SI 0x0f RS Oxle
Us Ox1f
Examples

pscreen -k SOH j CR -e ESC [0i -t altos3
and

pscreen -k 0x01 0x6a 0x0d -e Ox1b 0x5b 0x69 -t altos3
Both of these commands are identical. The shifted
key on the Altos III produces the "SOH j CR" sequence. S«

when that key is pressed, the screen will be printed on the
printer.

Notes
Be careful about using the special shell characters in the
command line for pscreen. For example, when using the C
shell (csh), the above example should be typed as follows:
pscreen -k SOH j CR -e ESC '[' i -t altos3

because the left bracket is a special character.

PSCREEN(C) PSCREEN(C)

If the printer is also configured as an auxiliary (trans-
parent) printer using pconfig, it is not possible to print
the screen while the printer is busy printing another
file.

PWD(C) PWD(C)

Name

pwd - Prints the working directory name.

Syntax

pwd

Description

The pwd command prints the pathname of the working
(current) directory. Using pwd, you can always check to
see where you are in the system. ‘

Example

The system responds that you are on machine x1 in the
WorkNet network in the directory /usr/chris. If your com-
puter is not part of a network, the system response would
be "/usr/chris" with no machine name.

See Also
cd(C)

Diagnostics

"Cannot open ..." and "Read error in ..." indicate
possible file system trouble; contact your system
administrator.

QUOT(C)

Name

QUOT(C)

quot - Summarizes file system ownership.

Syntax

quot [option 1 ... [filesystem]

Description

Quot prints the number of blocks in the named filesystem
currently owned by each user. If no filesystem is named,
the file systems given in /etc/mnttab are examined.

The following options are available:

-C

-n

Files

Prints three columns giving file size in blocks, num-
ber of files of that size, and cumulative total of
blocks in that size or smaller file., Data for files
of size greater than 499 blocks are included in the
figures for files of exactly size 499.

Prints count of number of files as well as space
owned by each user.

This option uses the output of the ncheck(C) command
to produce a list of files and their owners, in the
specified filesystem. For example:

ncheck /dev/hd0b | sort +0On | quot -n /dev/hdOb

will produce a listing of all files and their owners,
on the root file system.

/ete/passwd Gets user names
/etc/mnttab Contains list of mounted file systems

QUOT(C) ‘ QUOT(C)

See Also

du(C), 1s(C)

Notes

Holes in files are counted as if they actually occupied
space.

RANDOM(C) RANDOM(C)

Name

random - Generates a random number.

Syntax

random [-s] [scale]

Description

Random generates a random number on the standard output,
and returns the number as its exit value. By default,

this number is either 0 or 1. If scale is given a value
between 1 and 255, then the range of the random value is
from 0 to scale. If scale is greater than 255 an error
message is printed.

-S Silent: returns the random number as an exit value
but is not printed on the standard output. If an
error occurs, random returns an exit value of zero.

See Also

rand(S)

Notes

This command does not perform any floating point computa-
tions. Random uses the time of day as a seed.

REBOOT(C) REBOOT(C)

Name

reboot - Automatically reboots the system.

Syntax

/etc/reboot

Description

The reboot command, when used with the haltsys command,
automatically reboots the system.

To use reboot with the haltsys command, enter:
/etc/reboot JRTEAN
/etc/haltsys RO
Related Commands

haltsys(C), shutdown(M)

RECOVER(C) RECOVER(C)

Name

recover - Restores the contents of a file system from
streaming tape to disk.

Syntax

recover [-i|-s|-v] mag_tape file_system

Description
This command can only be used by the super-user.

The recover command copies the tape (specified by
mag_tape) to the hard disk file system. Specify

file system as /dev/rhdlb for the second hard disk, or
/dev/rhd2b for the third hard disk.

Recover can only restore a tape that was backed up using
the archive(C) command. To restore a tape created with
the dump.hd(C) command, use restore.hd(C).

Options

-1 Displays the character string that was specified by
the -i option on the archive command that created the
tape. This option does not copy the contents of the
tape to the hard disk; it only displays the character
string.

-S Displays information from the header block: the num-
ber of the tape, the creation date, the starting
block number on the tape, and the name of the file
system. This option does not copy the contents of
the tape to the hard disk.

-v Verifies the checksums on the tape (makes sure the
data was written correctly), without writing to the
hard disk.

When restoring the root file system on the hard disk

(i.e., /dev/rhdOb), boot the system from the Root floppy
disk, and select option "c" on the menu. The tape used by
this procedure must have been created by the dump.hd(C)

RECOVER(C) RECOVER(C)
command, or by the backup commands of the AOM menu
system or Business shell.

Be sure to specify /dev/rsct (for streaming tape) when
using archive or recover. Do not use /dev/rct, because
the tape will "stream" only with /dev/rsct.

Examples

For example, this command backs up the second hard disk to
tape. ;

/etc/umount /dev/hdlb
archive -e /dev/rhdlb /dev/rsct

This command restores the files on the archive tape to the
second hard disk.

/etc/umount /dev/hdlb
recover /dev/rsct /dev/rhdlb
To see the name of the device you want to back up, use:

mount

The screen displays the device name, for example,

Related Commands

archive(C)

See Also

Operations Guide

RESET(C) RESET(C)

Name

reset - Resets the teletype bits to soft-copy terminal

” standard mode.
\
%

Syntax

reset

Description

The reset command sets the teletype bits to a sensible

state with the erase character set to and the kill
character set to (i@l The reset command is most useful
when a program that you are running in raw mode (terminal
input is passed to a program one character at a time)

fails.

To reset your terminal using this command, you may have to
type reset followed by a linefeed (or [K®3g8il if there is
no linefeed).

S

Related Commands

stty(C)

RESTORE.HD(C) RESTORE.HD(C

Name
restore.hd - Restores a hard disk from tape.
Syntax
restore.hd
Description
The restore.hd command restores the root file system from
cartridge tape (made with dump.hd(C)) to the hard disk.
To run restore.hd, boot the system from the Root floppy
disk, then select option "C," Restore data to the hard
disk from cartridge tape. To restore files from the
second (third) hard disk, see recover(C).
CAUTION
Restore.hd overwrites ALL data on the hard
disk and replaces it with the files from the
cartridge tape.
See Also

archive(C), layout(C), recover(C), sizefs(C)
Operations Guide

~=

REV(C) REV(C)

Name

rev - Reverses lines of a file.

Syntax

rev [file...]

Deseription
Rev copies the named files to the standard output, revers-
ing the order of characters in every line. If no file is
specified, the standard input is copied.

Notes

There is a limit of 255 characters per line.

RM(C) ' RM(C)

Name

rm, rmdir - Removes files or directories.’

Syntax

rm [-f] [-1] file...
rm -r [-f] [-i] dirname... [file...]
rmdir [-p] [-s] dirname...

Description

Rm removes the entries for one or more files from a direc-
tory. If an entry was the last link to the file, the file

is destroyed. Removal of a file requires write permission
in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input
is a terminal, the full set of permissions (in octal) for
the file are printed followed by a question mark. This is
a prompt for confirmation. If the answer begins with y
(for yes), the file is deleted, otherwise the file re-
mains.

Note that if the standard input is not a terminal, the
command will operate as if the -f option is in effect.

Rmdir removes the named directories, which must be empty.
Three options apply to rm:

-f This option causes the removal of all files (whether
write-protected or not) in a directory without
prompting the user. In a write-protected directory,
however, files are never removed (whatever their per-
missions are), but no messages are displayed. If the
removal of a write-protected directory was attempted,
this option cannot suppress an error message.

-r This option causes the recursive removal of any di-
rectories and subdirectories in the argument list.
The directory will be emptied of files and removed.
Note that the user is normally prompted for removal
of any write-protected files which the directory con-

~

RM(C) RM(C)

tains. The write-protected files are removed without
prompting, however, if the -f option is used, or if
the standard input is not a terminal and the -i op-
tion is not used.

If the removal of a non-empty, write-protected direc-
tory was attempted, the command will always fail
(even if the -f option is used), resulting in an

error message.

-i With this option, confirmation of removal of any
write-protected file occurs interactively. It over-
rides the -f option and remains in effect even if the
standard input is not a terminal.

Two options apply to rmdir:

-p This option allows users to remove the directory
dirname and its parent directories which become
empty. A message is printed on standard output as
to whether the whole path is removed or part of the
path remains for some reason.

-S This option is used to suppress the message prmted
on standard error when -p is in effect.
Diagnostics
All messages are generally self-explanatory. It is for-
bidden to remove the files "." and ".." in order to avoid

the consequences of inadvertently doing something like the
following:

rm -r .*
Both rm and rmdir return exit codes of 0 if all the speci-

fied directories are removed successfully. Otherwise,
they return a non-zero exit code.

See Also

unlink(S), rmdir(S) in the Reference (CP, S, F)

RMAIL(C) RMAIL(C)

Name

rmail - Receives mail (from uucp link).

Synopsis

‘rmail to-path
text

Description
This front-end mailer is only for systems with "execmail."
It takes the first lines of a message from the standard
input, and folds "From" lines to produce a single line
with an accurate uucp(C) path, and pipes the mail through
usr/lib/mail/execmail from-path to-path.
Text is the text of the letter on the standard input until
an (end-of-file).

See Also

uucp(C)

SAR(C) SAR(C)

Name

sar - System activity reporter.

Syntax

sar [-aAbcCdDmpqrSuvwy] [-o file]l] t [n]
sar [-aAbcCdDmpqrSuvwy] [-s time] [-e time] [-i sec]
[-f file]

Description

Sar, in the first instance, samples cumulative activity
counters in the operating system at n intervals of t
seconds, where t should be 5 or greater. If the -o option
is specified, it saves the samples in file in binary for-
mat. The default value of n is 1. In the second in-
stance, with no sampling interval specified, sar extracts
data from a previously recorded file, either the one spe-
cified by -f option or, by default, the standard system
activity daily data file /usr/adm/sa/sadd for the current
day dd. The starting and ending times of the report can
be bounded via the -s and -e time arguments of the form
hh[:mm[:ss]]. The -i option selects records at sec second
intervals. Otherwise, all intervals found in the data

file are reported.

In either case, subsets of data to be printed are speci-
fied by option:

-a Report use of file access system routines: iget/s,
namei/s, dirblk/s.

-A Report all data. Equivalent to -aAbcCdDmpqrSuvwy
-b Report buffer activity:
bread/s, bwrit/s transfers per second of data
between system buffers and disk

or other block devices

Iread/s, lwrit/s accesses of system buffers

%rcache, %wcache cache hit ratios, i.e.,

SAR(C)

~-C

%rcache, %wcache

pread/s, pwrit/s

pread/s, pwrit/s

Report system calls:

scall/s

SAR(C)

cache hit ratios, i.e.,
(1-bread/lread) as a percentage

transfers via raw (physical)
device mechanism

transfers via raw (physical)
device mechanism. When used
with -D, buffer caching is re-
ported for locally-mounted re-
mote resources

system calls of all types

sread/s, swrit/s, fork/s, exec/s

rchar/s, wchar/s

specific system calls

characters transferred by read
and write system calls

When used with -D, the system calls are split into
incoming, outgoing, and strictly local calls.

Report Remote File Sharing buffer caching overhead:

snd-inv/s

snd-msg/s

rev-inv/s

rev-msg/s

dis-bread/s

number of invalidation messages
per second sent by your machine
as a server

total outgoing RFS messages sent
per second

number of invalidation messages
received from the remote server

total number of incoming RFS
messages received per second

number of buffer reads that woul
be eligible for caching if cach-
ing were not turned off (indi-
cates the penalty of running
unchached)

SAR(C)

-m

-p

SAR(C)

blk-inv/s number of buffers removed from
the client cache.

Report activity for each block device, e.g., disk or
tape drive. When data is displayed, the device spe-
cification dskis generally used to represent a disk
drive. The device specification used to represent a
tape drive is machine dependent.

The activity data reported is:

%busy, avque portion of time device was busy
servicing a transfer request,
average number of requests out-
standing during that time

r+w/s, blks/s number of data transfers from or
to device, number of bytes trans-
ferred in 512-byte units

avwait, avserv average time in milliseconds that
transfer requests wait idly on
queue, and average time to be
serviced (which for disks in-
cludes seek, rotational latency
and data transfer times)

Report Remote File Sharing activity., When used in
combination with -u or -¢, it causes sar to produce
the remote file sharing version of the corresponding
report (-u is assumed when neither -u or -c¢ is
specified).

Report message and semaphore activities:
msg/s, sema/s primitives per second
Report paging activities:

vflt/s address translation page faults
(valid page not in memory)

pflt/s page faults from protection
errors (illegal access to page)
or "copy-on-writes"

SAR(C)

-q

-r

-ua

pgfil/s

rclm/s

SAR(C)
vflt/s satisfied by page-in from
file system

valid pages reclaimed for free
list

Report average queue length while occupied, and % of

time occupied:

rung-sz, %runocc

SWpQ-sz, ¥swpocc

run queue of processes in memory
and runnable

swap queue of processes swapped
out but ready to run

Report unused memory pages and disk blocks:

freemem

freeswap

average pages available to user
processes

disk blocks available for process
swapping

Report server and request queue status: average num-
ber of Remote File Sharing servers on the system
(serv/lo- hi), % of time receive descriptors are on

the request queue (request %¥busy), average number of
receive descriptors waiting for service when queue is
occupied (request avg lgth), % of time there are idle
servers (server %avail), average number of idle

servers when idle ones exist (server avg avail).

Report CPU utilization (the default):

%usr, %sys, ¥wio, %idle

portion of time running in user
mode, running in system mode,
idle with some process waiting
for block I/0, and otherwise

idle. When used with -D, %sys
is split into percent of time

servicing requests from remote
machines (%sys remote) and all
other system time (%sys local)

SAR(C) SAR(C)

-v Report status of process, i-node, file tables:
text-sz, proc-sz, inod-sz, file-sz, lock-sz
entries/size for each table, eval-
uated once at sampling point; ov -
overflows that occur between
sampling points for each table
-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s
number of transfers and number
of 512-byte units transferred for
swapins and swapouts (including
initial loading of some programs)
pswch/s process switches
-y Report TTY device activity:
rawch/s, canch/s, outch/s
input character rate, input
character rate processed by
canon, output character rate
rcvin/s, xmtin/s, mdmin/s
receive, transmit and modem
interrupt rates.
Examples
To see today's CPU activity so far:
sar
To watch CPU activity evolve for 10 minutes and save data:
sar -0 temp 60 10
To later review disk and tape activity from that period:

sar -d -f temp

SAR(C)

Files

/usr/adm/sa/sadd

See Also

sar(M)

SAR(C)

Daily data file, where dd are digits
representing the day of the month.

SCRIPT(C) SCRIPT(C)

Name

script - Makes a record of your terminal session.

Syntax

script [-a 1 [-q 1 [-S shell 11 file]

Description

Script makes a file of everything printed on your termi-
nal. The typescript is saved in a file, and can be sent
to the line printer later with Ipr(C). If a file name is

given, the typescript is saved there. If not, the type-

script is saved in the file named typescript.

To exit script, type [[SiJsll. This sends an end-of-file to
all processes you have started up, and causes script to
exit. For this reason, Ctrl-d behaves as though you had
typed an infinite number of them.

This program is useful when using a CRT and a hard-copy
record of the dialog is desired, as for a student handing
in a program that was developed on a CRT when hard-copy
terminals are in short supply.

The options are:

-a Causes script to append to the typescript file in-
stead of creating a new file.

-q Asks for "quiet mode", where the "script started" and
"script done" messages are turned off.

-S Lets you specify the shell; the default depends on
the system. If the variable SHELL is set in the en-
vironment, it is used if possible.

Notes

Since the operating system has no way to write an end of
file down a pipe without closing the pipe, there is no way
to simulate a single Ctrl-d without ending script.

SCRIPT(C) SCRIPT(C)

The new shell has its standard input coming from a pipe
rather than a tty, so stty(C) will not work, and neither
will ttyname. In particular, this means that screen
editors such as vi(C) are inoperative.

When the user interrupts a printing process, script at-
tempts to flush the output backed up in the pipe for
better response. Usually the next prompt also gets
flushed.

SDB(C) SDB(C)

Name

sdb - Symbolic debugger.

Syntax

sdb [-w] [-W] [objfile [corfile [directory-list]]]

Description

The sdb command calls a symbolic debugger that can be used
with C programs. It may be used to examine object files
and core files and to provide a controlled environment for
program execution.

Objfile is an executable program file which has been com-
piled with the -g (debug) option. If it has not been com-
piled with the -g option, the symbolic capabilities of sdb
will be limited, but the file can still be examined and

the program debugged. The default for objfile is a.out.
Corfile is assumed to be a core image file produced after
executing objfile; the default for corfile is core. The
core file need not be present. A - in place of corfile
will force sdb to ignore any core image file. The
colon-separated list of directories (directory-list) is

used to locate the source files used to build objfile.

It is useful to know that at any time there is a current
line and current file. If corfile exists then they are
initially set to the line and file containing the source
statement at which the process terminated. Otherwise,
they are set to the first line in main(). The current

line and file may be changed with the source file examina-
tion commands. '

By default, warnings are provided if the source files used
in producing objfile cannot be found, or are newer than
objfile. This checking feature and the accompanying warn-
ings may be disabled by the use of the -W flag.

Names of variables are written just as they are in C. Sdb
does not truncate names. Variables local to a procedure
may be accessed using the form procedure:variable. If no
procedure name is given, the procedure containing the cur-
rent line is used by default.

SDB(C) SDB(C)

You can also refer to structure members as
variable.member, pointers to structure members as
variable->member, and array elements as variable[number].
Pointers may be dereferenced by using the form pointer[0].
Combinations of these forms may also be used. A number
may be used in place of a structure variable name, in
which case the number is viewed as the address of the
structure, and the template used for the structure is that
of the last structure referenced by sdb. An unqualified
structure variable may also be used with various commands.
Generally, sdb will interpret a structure as a set of
variables. Thus, sdb will display the values of all the
elements of a structure when it is requested to display a
structure. An exception to this interpretation occurs
when displaying variable addresses. An entire structure
does have an address, and it is this value sdb displays,

not the addresses of individual elements.

Elements of a multi-dimensional array may be referenced as
variable [number][number]..., or as variable
[number,number,...]. In place of number, the form
number;number may be used to indicate a range of values,
* may be used to indicate all legitimate values for that
subscript, or subscripts may be omitted entirely if they

are the last subscripts and the full range of values is
desired. As with structures, sdb displays all the values

of an array or of the section of an array if trailing sub-
scripts are omitted.

A particular instance of a variable on the stack may be
referenced by using the form procedure:variable,number.

All the variations mentioned in naming variables may be
used. Number is the occurrence of the specified procedure
on the stack, counting the top, or most current, as the
first. If no procedure is specified, the procedure cur-
rently executing is used by default.

It is also possible to specify a variable by its address.
All forms of integer constants that are valid in C may be
used, so that addresses may be input in decimal, octal, or
hexadecimal.

Line numbers in the source program are referred to as
file-name:number or procedure:number. In either case, the
number is relative to the beginning of the file. If no
procedure or file name is given, the current file is used

<

SDB(C) SDB(C)

by default. If no number is given, the first line of the
named procedure or file is used.

While a process is running under sdb, all addresses refer
to the executing program; otherwise they refer to objfile
or corfile. An initial argument of -w permits overwriting
locations in objfile. In order to overwrite a location in
obfile, the process must not be running and a corefile
must be present.

Addresses

The offset in a file associated with a virtual address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (bl, el, f1) and
(b2, e2, f2), and the file offset corresponding to a vir-
tual address is calculated as follows:

bl <=address < el
file address=address+f1-bl
b2 <=address < e2
file address=address+f2-b2,

or the requested address is not legal. In some cases
(e.g., for programs with separated I and D space), the two
segments for a file may overlap.

The initial setting of both mappings is suitable for nor-
mal a.out and core files. If either file is not of the
kind expected for that file, bl is set to 0, el is set to
the maximum file size, and f1 is set to 0; in this way,
the whole file can be examined with no address transla-
tion. :

In order for sdb to be used on large files, all appropri-
ate values are kept as unsigned 32-bit integers.

SDB(C)

Commands

SDB(C)

The commands for examining data in the program are:

t Print a stack trace of the terminated or halted pro-

gram.

T Print the top line of the stack trace.

variable/elm

Print the value of variable according to length [and

format m.

A numeric count ¢ indicates that a region

of memory, beginning at the address implied by vari-
able, is to be displayed. The length specifiers are:

b
h
1

one byte
two bytes (half word)
four bytes (long word)

Legal values for m are:

c

d

character

decimal

decimal, unsigned

octal

hexadecimal

32-bit single precision floating point
64-bit double precision floating point
Assume variable is a string pointer and
print characters starting at the address
pointed to by the variable.

Print characters starting at the variable's
address. This format may not be used with

register variables.

pointer to procedure

SDB(C)

SDB(C)
i Disassemble machine-language instruction
with addresses printed numerically and
symbolically.
I Disassemble machine-language instruction

with addresses just printed numerically.

Length specifiers are only effective with the c, d,
u, o and x formats. Any of the specifiers, ¢, 1, and
m, may be omitted. If all are omitted, sdb chooses a
length and a format suitable for the variable's type
as declared in the program. If m is specified, then
this format is used for displaying the variable. A
length specifier determines the output length of the
value to be displayed, sometimes resulting in trunca-
tion. A count specifier ¢ tells sdb to display that
many units of memory, beginning at the address of
variable. The number of bytes in one such unit of
memory is determined by the length specifier I, or if
no length is given, by the size associated with the
variable. If a count specifier is used for the s or
a command, then that many characters are printed.
Otherwise successive characters are printed until
either a null byte is reached or 128 characters are
printed. The last variable may be redisplayed with
the command ./.

The sh(C) metacharacters ¥ and ? may be used within
procedure and variable names, providing a limited
form of pattern matching. If no procedure name is
given, variables local to the current procedure and
global variables are matched; if a procedure name is
specified then only variables local to that procedure
are matched. To match only global variables, the
form :pattern is used.

linenumber?lm
variable:?lm

Print the value at the address from a.out or I space
given by linenumber or variable (procedure name),
according to the format Im. The default format is
i,

SDB(C) SDB(C)

variable=lm

linenumber=lm

number=lm
Print the address of variable or linenumber, or the
value of number, in the format specified by Ilm. If
no format is given, then Ix is used. The last vari-
ant of this command provides a convenient way to con-
vert between decimal, octal, and hexadecimal.

variablelvalue
Set variable to the given value. The value may be a
number, a character constant or a variable. The
value must be well defined; expressions which produce
more than one value, such as structures, are not al-
lowed. Character constants are denoted 'character.
Numbers are viewed as integers unless a decimal point
or exponent is used. In this case, they are treated
as having the type double. Registers are viewed as
integers. The variable may be an expression which
indicates more than one variable, such as an array or
structure name. If the address of a variable is _
given, it is regarded as the address of a variable of
type int. C conventions are used in any type conver-
sions necessary to perform the indicated assignment.

X Print the machine registers and the current
machine-language instruction.

X Print the current machine-language instruction.
The commands for examining source files are:
procedure

filename

directory/
directory filename

o o000

The first two forms set the current file to the file con-
taining procedure or to filename. The current line is set
to the first line in the named procedure or file. Source
files are assumed to be in directory. The default is the
current working directory. The latter two forms change
the value of directory. If no procedure, filename, or
directory is given, the current procedure name and file-
name are reported.

SDB(C) SDB(C)

/regular expression/
Search forward from the current line for a line con-
taining a string matching regular expression as in
ed(C). The trailing / may be deleted.

?regular expression?
Search backward from the current line for a line con-
taining a string matching regular expression as in
ed(C). The trailing ? may be deleted.

P Print the current line.

z Print the current line followed by the next 9
lines. Set the current line to the last line
printed.

w Window. Print the 10 lines around the current
line.

number
Set the current line to the given line number. Print
the new current line.

count+
Advance the current line by count lines. Print the
new current line.

count-
Retreat the current line by count lines. Print the
new current line.

The commands for controlling the execution of the source
program are:

count r args

count R
Run the program with the given arguments. The r com-
mand with no arguments reuses the previous arguments
to the program while the R command runs the program
with no arguments. An argument beginning with < or >
causes redirection for the standard input or output,
respectively. If count is given, it specifies the
number of breakpoints to be ignored.

SDB(C)

SDB(C)

linenumber ¢ count
linenumber C count

Continue after a breakpoint or interrupt. If count

is given, the program will stop when count break-
points have been encountered. The signal which
caused the program to stop is reactivated with the C
command and ignored with the ¢ command. If a line
number is specified then a temporary breakpoint is
placed at the line and execution is continued. The
breakpoint is deleted when the command finishes.

linenumber g count

Continue after a breakpoint with execution resumed at
the given line. If count is given, it specifies the
number of breakpoints to be ignored.

s count
S count

Single step the program through count lines. If no
count is given then the program is run for one line.
S is equivalent to s except it steps through proce-
dure calls.

Single step by one machine-language instruction. The
signal which caused the program to stop is reacti-
vated with the I command and ignored with the i com-
mand.

variable$m -count
address:m count

level

Single step (as with s) until the specified location

is modified with a new value or count instructions
have been executed. If count is omitted, it is ef-
fectively infinity. Variable must be accessible from
the current procedure. Since this command is done by
software, it can be very slow.

A .
Toggle verbose mode, for use when single stepping
with S, s or m. If level is omitted, then just the
current source file and/or subroutine name is printed
when either changes. If level is 1 or greater, each
C source line is printed before it is executed; if
level is 2 or greater, each assembler statement is
also printed. A v turns verbose mode off if it is on
for any level.

SDB(C) SDB(C)

k Kill the program being debugged.

procedure(argl,arg2,...)

procedure(argl,arg2,...)/m
Execute the named procedure with the given arguments.
Arguments can be integer, character or string con-
stants or names of variables accessible from the cur-
rent procedure. The second form causes the value
returned by the procedure to be printed according to
format m. If no format is given, it defaults to d.
This facility is only available if the program was
loaded with the -g option.

linenumber b commands
Set a breakpoint at the given line. If a procedure
name without a line number is given (e.g., "proc:"),
a breakpoint is placed at the first line in the pro-
cedure even if it was not compiled with the -g op-
tion. If no linenumber is given, a breakpoint is
placed at the current line. If no commands are
given, execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands
are executed when the breakpoint is encountered and
execution continues. Multiple commands are specified
by separating them with semicolons. If k is used as
a command to execute at a breakpoint, control returns
to sdb, instead of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no line-
number is given then the breakpoints are deleted in-
teractively. Each breakpoint location is printed and
a line is read from the standard input. If the line
begins with a y or d then the breakpoint is deleted.

D Delete all breakpoints.
1 Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number,
the command effectively does a linenumber b 1. If
linenumber is of the form proc:, the command effec-
tively does a proc: b T.

SDB(C) ’ SDB(C)

Miscellaneous commands:

feommand
The command is interpreted by sh(C).

newline
If the previous command printed a source line, then
advance the current line by one line and print the
new current line. If the previous command displayed
a memory location, then display the next memory loca-
tion.

end-of-file character
Scroll. Print the next 10 lines of instructions,
source or data depending on which was printed last.
The end-of-file character is usually control-d.

< filename
Read commands from filename until the end of file is
reached, and then continue to accept commands from
standard input. When sdb is told to display a vari-
able by a command in such a file, the variable name
is displayed along with the value. This command may
not be nested; < may not appear as a command in a
file.

M Print the address maps.

MI[?2/] [*1b e f
Record new values for the address map. The argument:
? and / specify the text and data maps, respec-
tively. The first segment (bl, el, f1) is changed
unless * is specified, in which case the second seg-
ment (b2, e2, f2) of the mapping is changed. If
fewer than three values are given, the remaining map
parameters are left unchanged.

" string
Print the given string. The C escape sequences of
the form \character are recognized, where character
is a nonnumeric character.

q Exit the debugger.

10

SDB(C) SDB(C)
The following commands also exist and are intended only
for debugging the debugger:

\% Print the version number.

) Q Print a list of procedures and files being
debugged.

Y Toggle debug output.

Files

a.out
core

See Also

cc(C), a.out(F), core(F), sh(C)

Notes

When sdb prints the value of an external variable for
which there is no debugging information, a warning is
printed before the value. The size is assumed to be int
(integer).

Data which are stored in text sections are indistinguish-
able from functions.

Line number information in optimized functions is unreli-
able, and some information may be missing.

If a procedure is called when the program is not stopped
at a breakpoint (such as when a core image is being
debugged), all variables are initialized before the proce-
dure is started. This makes it impossible to use a proce-
dure which formats data from a core image.

11

SDIFF(C) SDIFF(C)

Name

sdiff - Compares files side-by-side.

Syntax

sdiff [options] filel file2

Description

Sdiff uses the output of diff(C) to produce a side-by-side
listing of two files indicating the lines that are differ-
ent. The lines of the two files are printed with a blank
gutter between them if they are identical; a < is put in
the gutter if the line only exists in filel, a > is put in
the gutter if the line only exists in file2, and a | is

put in the gutter for lines that are different.

For example:

The following options exist:

-1 Only prints the left side of any lines that are
identical.

-0 output Uses the next argument, output, as the name of
a third file created by merging filel with
file2. 1dentical lines of filel and file2 are
copied to output. Sets of differences, as pro-
duced by diff(C), are printed; sets of differ-
ences share a common gutter character. After
printing each set of differences, sdiff prompts
the user with a % and waits for one of the fol-
lowing commands:

SDIFF(C)

A%

SDIFF(C)

Calls the editor with a zero length file
Calls the editor with the left column
Calls the editor with the right column

Calls the editor with the concatenation of
left and right

Appends the left column to the output file
Exits from the program

Appends the right column to the output
file

Turns on silent mode; does not print
identical lines

Turns off silent mode

-s Does not print identical lines.

-w n Uses the next argument, n, as the width of the output
line. The default line length is 130 characters.

Upon exiting from the editor, the resulting file is con-
catenated onto the end of the output file.

See Also

diff(C), ed(C)

SED(C) SED(C)

Name

sed - Invokes a stream editor.

Syntax

sed [-n][-e seript 1 [-f sfile 1 [file ... 1

Description

Sed copies the named files (standard input default) to the
standard output, edited according to a script of commands.
The -f option causes the script to be taken from file

sfile; these options accumulate. If there is just one -e
option and no -f options, the flag -e may be omitted. The
-n option suppresses the default output. A script con-
sists of editing commands, one per line, of the following
form:

[address [, address 1 1 function [arguments]

In normal operation, sed cyclically copies a line of input
into a pattern space (unless there is something left after
a D command), applies in sequence all commands whose ad-
dresses select that pattern space, and at the end of the
script copies the pattern space to the standard output
(except under -n) and deletes the pattern space.

Some of the commands use a hold space to save all or part
of the pattern space for subsequent retrieval. An address
is either a decimal number that counts input lines cumu-
latively across files, a $ that addresses the last line of
input, or a context address, i.e., a /regular expression/

in the style of ed(C) modified thus:

e In a context address, the construction \?regular ex-
pression?, where ? is any character, is identical to
/regular expression/. Note that in the context ad-
dress \xabc\xdefx, the second x stands for itself, so
that the regular expression is abexdef.

. The escape sequence \n matches a new-line embedded
the pattern space.

==

SED(C) SED(C)

. A period . matches any character except the terminal
newline of the pattern space.

. A command line with no addresses selects every pat-
tern space.
. A command line with one address selects each pattern

space that matches the address.

. A command line with two addresses selects the inclu-
sive range from the first pattern space that matches
the first address through the next pattern space that
matches the second. (If the second address is a num-
ber less than or equal to the line number first se-
lected, only one line is selected.)

Thereafter the process is repeated, looking again for the
first address.

Editing commands can be applied only to non-selected pat-
tern spaces by use of the negation function ! (below).

In the following list of functions, the maximum number of
permissible addresses for each function is indicated in
parentheses.

The text argument consists of one or more lines, all but
the last of which end with \ to hide the new-line. Back-
slashes in text are treated like backslashes in the re-
placement string of an s command, and may be used to pro-
tect initial blanks and tabs against the stripping that is
done on every script line. The rfile or wfile argument
must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before proces-
sing begins. There can be at most 10 distinct wfile argu-
ments.

(1)a\

text Append. Place text on the output before
reading the next input line.

(2)b_label Branch to the : command bearing the label.
If label is empty, branch to the end of the
script.

SED(C)

(2)e\

text

(2)d

(2)D

(2)g

(2)G

(2)h

(2)H

(DN
(2)1

(2)n

(2)N

(2)p

(2)P

text

SED(C)

Change. Delete the pattern space. With 0
or 1 address or at the end of a 2-address
range, place text on the output. Start the
next cycle.

Delete the pattern space. Start the next
cycle.

Delete the initial segment of the pattern
space through the first new-line. Start
the next cycle.

Replace the contents of the pattern space
by the contents of the hold space.

Append the contents of the hold space to
the pattern space.

Replace the contents of the hold space by
the contents of the pattern space.

Append the contents of the pattern space to
the hold space.

Insert. Place text on the standard output.

List the pattern space on the standard out-
put in an unambiguous form. Non-printing
characters are spelled in two-digit ASCII
and long lines are folded.

Copy the pattern space to the standard out-
put. Replace the pattern space with the
next line of input.

Append the next line of input to the pat-
tern space with an embedded new-line.
(The current line number changes.)

Print. Copy the pattern space to the stan-
dard output.

Copy the initial segment of the pattern
space through the first new-line to the
standard output.

SED(C)

(1)q

(2)r rfile

SED(C)

Quit. Branch to the end of the script. Do
not start a new cycle.

Read the contents of rfile. Place them on
the output before reading the next input
line.

(2)s/regular expression/replacement/flags

(2)t label

(2)w wfile

(2)x

Substitute the replacement string for in-
stances of the regular expression in the
pattern space. Any character may be used
instead of /. for a fuller description see
ed(C). Flags is zero or more of:

n n =1 - 512. Substitute for just
the nth occurrence of the regular
expression.

g Global. Substitute for all non-

overlapping instances of the reg-
ular expression rather than just
the first one.

P Print the pattern space if a re-
placement was made.

w wfile Write. Append the pattern space
to wfile if a replacement was
made.

Test. Branch to the : command bearing
the label if any substitutions have been
made since the most recent reading of an
input line or execution of a t. If label
is ‘empty, branch to the end of the script.

Write. Append the pattern space to wfile.

Exchange the contents of the pattern and
hold spaces.

(2)y/stringl/ string2/

Transform. Replace all occurrences of
characters in stringl with the correspond-
ing character in string2.. The lengths of
stringl and string2 must be equal.

SED(C)

(2)! function

(0):label
(1)=

(2){

(0)
(0)#

See Also

SED(C)

Don't. Apply the function (or group, if
function is {) only to lines not selected
by the address(es).

This command does nothing; it bears a label
for b and t commands to branch to.

Place the current line number on the stan-
dard output as a line.

Execute the following commands through a
matching } only when the pattern space is
selected.

An empty command is ignored.

If a # appears as the first character on
the first line of a script file, then that
entire line is treated as a comment, with
one exception. If the character after the
is an 'n', then the default output will
be suppressed. The rest of the line after
fin is also ignored. A script file must
contain at least one non-comment line.

awk(C), ed(C), grep(C)

SEE(C) SEE(C)

Name

see - Displays a file

Syntax

see [-][file... 1]

Description

See lists a file, displaying non-printing characters in
visible format. Control characters show as ""X" for
where x is any letter. Tab prints as ""I." De-
lete prints as "*?." Ends of lines are marked with "$"
unless the "-" option is given.

See Also

cat(C), ex(C)

SETMNT(C) SETMNT(C)

Name

setmnt - Establishes /etc/mnttab table.

Syntax

/etc/setmnt

Description
The setmnt command is usually executed by the system and
creates and updates the /etc/mnttab table, which is needed
for both the mount(C) and umount(C) commands. Setmnt
reads the standard input and creates a mnttab entry for
each line. Input lines have the format:

filesys node

where filesys is the name of the file system's special
file (for example, /dev/hd0b) and node is the root name of
that file system. Thus filesys and node become the first
two strings in the mnttab entry.

Files

/etc/mnttab

See Also

mount(C)

Notes

Problems may occur if filesys or node are longer than 32
characters. Setmnt silently enforces an upper limit on
the maximum number of mnttab entries.

Ry

/

SETMODE(C) SETMODE(C)

Name

setmode - Port modes utility.

Syntax

setmode device mode ...

Description

Files

Setmode sets tty modes (see tty(M)) for tty ports that
are used for serial devices. Use this program to set
baud rate, tab expansion, and newline actions for pro-
grams that communicated directly through a serial port.

Setmode takes a list of tty modes from its command line,
does an stty(C) on the indicated device, and sleeps for-
ever, which keeps the device open with the desired modes.
Invoke setmode once for each port device.

To ensure that'setmode is run every time the system en-
ters multi-user mode, invoke setmode in the /etc/inittab
file.

You must invoke setmode with at least two arguments: the
name of the device (special file) and at least one tty
mode.

/dev/tty* tty devices
/etc/inittab

Related Commands

disable(C), enable(C), pconfig(C), stty(C), xtty(C),
inittab(M)

See Also

tty(M)

SETMODEM(C)

‘Name

SETMODEM(C)

setmodem - Sets and unsets a tty port to be used with a

modem.

Syntax

/ete/setmodem mode ttynn

Description

This command can only be accessed by the super user.

Use the setmodem command to set up a device (/dev/ttynn)
for use with a modem. The letters nn stand for a one or
two-digit device number, for example, tty05. Execute this
command every time the system is booted for every port
that has a modem attached.

The setmodem command ensures that a dial-up tty will be
logged out when a telephone connection is terminated.

Options

Mode is either on, off, or user.

on

off

Sets clocal to OFF, and hupcl to ON. This
flag cannot be changed without issuing another
setmodem command.

Sets clocal to ON, and hupcl to OFF. This flag
cannot be changed without issuing another
setmodem command,

user is as follows:

If the clocal flag is not set, a high-to-low
signal on pin 6 causes a hang up; a low-to-high
signal allows login to occur.

If the hupcl flag is set, the system sends a
hangup signal when the last file connected to
that terminal is closed.

You can change modes with the stty(C) command.

SETMODEM(C) SETMODEM(C)

Examples

These commands are equivalent and tell the system that a
modem is being used on serial port 5.

/etc/setmodem on /dev/tty05
/ete/setmodem on tty05
Related Commands

disable(C), tty(C), enable(C), getty(M), login(C),
pconfig(C)

SETPGRP(C) SETPGRP(C)

Name

setpgrp - Executes a command in a new process group.

Syntax

setpgrp command [arg ...]

Description

This command creates a new process group to execute the
specified command. It also removes the controlling tty
from the new process group. Setpgrp can be useful for
detaching commands that are run in the background from the
parent shell process.

Diagnostics
Setpgrp returns an exit code of 1 if the command cannot be
executed. Otherwise, the exit code is that returned by
the command.

See Also

exec(S), setpgrp(S) in the Reference (CP, S, F)

=

SETTIME(C) ' SETTIME(C)

Name
settime - Changes the access and modification dates of
files.

Syntax

settime [mmddhhmm 1 [yy 1 [-f sfile 1 file ...

Description
This command sets the access and modification dates for

one or more files. The dates are set to the specified
date.

-f Sets file to the access and modification dates of
sfile.

Use one of these methods to specify the new date. The
first mm is the month number; dd is the day number in-the
month; hh is the hour number (24 hour system); the second
mm is the minute number; yy is the last two digits of the
year and is optional. For example:

settime 1008004586 ralph pete

sets the access and modification dates of files named
ralph and pete to Oct 8, 12:45 AM, 1986. Another example:

settime -f ralph john

This sets the access and modification dates of the file
named john to those of the file named ralph.

See Also

touch(C)

SH(C) SH(C)

Name
sh, rsh - Shell, the standard/restricted command program-
ming language.
Syntax
sh [-acefhiknrstuvx] [args]
rsh [-acefhiknrstuvx 1 [args]
Description

Sh is a command programming language that executes com-
mands read from a terminal or a file. Rsh is a restricted
version of the standard command interprepter sh; it is
used to set up login names and execution environments
whose capabilities are more controlled than those of the
standard shell. See "Invocation" that follows for the
meaning of arguments to the shell.

Definitions

A blank is a tab or a space. A name is a sequence of
letters, digits, or underscores beginning with a letter or
underscore. A parameter is a name, a digit, or any of the
characters *, @, #, ?, -, $, and !.

Commands

A simple shell command is a sequence of words separated by
blanks (a blank is a tab or a space). The first word spe-
cifies the name of the command to be executed. Except as
specified below, the remaining words are passed as argu-
ments to the invoked command. The command name is
passed as argument 0. The value of a simple command is
its exit status if it terminates normally, or (octal) 200+
status if it terminates abnormally, i.e., if the failure
produces a core file.

A pipeline is a sequence of one or more commands separate:
by a vertical bar (|). The caret (*) also has the same
effect. The standard output of each command but the last
is connected by a pipe to the standard input of the next

x_F

SH(C) SH(C)

command. Each command is run as a separate process; the
shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by
3y &, &&, or || and optionally terminated by ; or & Of
these symbols, ; and & have equal precedence, which is
lower than that of && and ||. The symbols && and ||
also have equal precedence. A semicolon (;) causes se-
quential execution of the preceding pipeline; an ampersand
(&) causes asynchronous execution of the preceding pipe-
line (i.e., the shell does not wait for that pipeline to
finish). The symbol && (||) causes the list following it
to be executed only if the preceding pipeline returns a
zero (nonzero) exit status. An arbitrary number of new-
lines may appear in a list, instead of semicolons, to de-
limit commands.

A command is either a simple-command or one of the follow-
ing. Unless otherwise stated, the value returned by a
command is that of the last simple-command executed in the
command.

for name [in word ...] do list done

Each time a for command is executed, name is set to
the next word taken from the in word list. If in
word is omitted, the for command executes the do list
once for each positional parameter that is set (see
"Parameter Substitution" below). Execution ends when
there are no more words in the list.

case word in [pattern [|pattern] ...) list ;;] ... esac

A case command executes the list associated with the
first pattern that matches word. The form of the
patterns is the same as that used for file name gen-
eration (see "File Name Generation" below) except
that a slash, leading dot, or dot immediately follow-
ing a slash need not be matched explicitly.

if list then list [elif list then list] ... [else list] fi

The list following if is executed and, if it returns
a zero exit status; the list following the first then
is executed. Otherwise, the list following elif is
executed. If its value is zero, the list following
the next then is executed. Failing that, the else

SH(C) SH(C)

list is executed. If no else list or then list is
executed, the if command returns a zero exit status.

while list do list done

A while command repeatedly executes the while list
and, if the exit status of the last command in the
list is zero, executes the do list; otherwise the

loop terminates. If no commands in the do list are
executed, then the while command returns a zero exit
status. You can use until in place of while to ne-
gate the loop termination test.

(list)
Executes list in a subshell.
{list;}

List is executed in the current (that is, parent)
shell.

name () {list; }

Define a function which is referenced by name. The
body of the function is the list of commands between
{ and }. Execution of functions is described below
(see "Execution"). The curly brace (}) must be on a
line by itself, or preceded by a semicolon (;) or
followed by a delimiter.

Use type name to display the commands executed by
name.

The following words are only recognized as the first word
of a command and when not quoted (not preceded by a bacl
slash (\)):

if then else elif fi case esac for while until do
done { }

Comments

A word beginning with # causes that word and all the fol-
lowing characters up to a newline to be ignored.

SH(C) SH(C)

Command Substitution

The standard output from a command enclosed in a pair of
grave accents (°°) can be used as part or all of a word;
trailing newlines from the standard output are removed.

No interpretation is done on the string before it is read,
except to remove backslashes (\) used to escape other
characters. Backslashes may be used to escape a grave
accent (") or another backslash (\) and are removed before
the command string is read. Escaping grave accents allows
nested command substitution. If the command substitution
lies within a pair of double quotes ("...%...%..."), a
backslash used to escape a double quote (\") will be re-
moved; otherwise, it will be left intact.

If a backslash is used to escape a new-line character
(\new-line), both the backslash and the new-line are re-
moved (see the later section on "Quoting"). In addition,
backslashes used to escape dollar signs (\$) are removed.
Since no interpretation is done on the command string be-
fore it is read, inserting a backslash to escape a dollar
sign has no effect. Backslahses that precede characters
other than \,%,", new-line, and $ are left intact when the
command string is read.

Parameter Substitution

The character $ is used to introduce substitutable param-
eters. There are two types of parameters, positional and
keyword. If parameter is a digit, it is a positional pa-
rameter. Positional parameters may be assigned values by
set. Keyword parameters (also known as variables) may be
assigned values by writing:

name=value [name=value] ...

Pattern-matching is not performed on value. There cannot
be a function and a variable with the same name.

SH(C)

SH(C)

${parameter}

A parameter is a sequence of letters, digits, or un-
derscores (a name), a digit, or any of the characters
* e # 2 -, $ and . The value, if any, of the
parameter is substituted. The braces are required
only when parameter is followed by a letter, digit,
or underscore that is not to be interpreted as part
of its name. A name must begin with a letter or un-
derscore. If parameter is a digit, it is a posi-
tional parameter. If parameter is * or @, all the
positional parameters, starting with $1, are substi-
tuted (separated by spaces). Parameter $0 is set
from argument zero when the shell is invoked.

${parameter:-word}

If parameter is set and is non-null, substitute its
value; otherwise, substitute word.

${parameter:==word}
If parameter is not set or is null, set it to word;
the value of the parameter is then substituted. Po-
sitional parameters may not be assigned in this way.

${parameter:?word}

If parameter is set and is non-null, substitute its
value; otherwise, print word and exit from the shell.
If word is omitted, the message "parameter null or
not set" is printed.

${parameter:+word}

If parameter is set and is non-null, substitute word;
otherwise, substitute nothing.

In the above, word is not evaluated unless it is to be
used as the substituted string. In the following example,
pwd is executed only if d is not set or is null:

echo ${d:- “pwd'}

If the colon (:) is omitted from the above expressions,
the shell only checks whether parameter is set.

SH(C) SH(C)

Command Substitution

The standard output from a command enclosed in a pair of
grave accents (°°) can be used as part or all of a word;
trailing newlines from the standard output are removed.

No interpretation is done on the string before it is read,
except to remove backslashes (\) used to escape other
characters. Backslashes may be used to escape a grave
accent (') or another backslash (\) and are removed before
the command string is read. Escaping grave accents allows
nested command substitution. If the command substitution
lies within a pair of double quotes ("...%...%..."), a
backslash used to escape a double quote (\") will be re-
moved; otherwise, it will be left intact.

If a backslash is used to escape a new-line character
(\new-line), both the backslash and the new-line are re-
moved (see the later section on "Quoting"). In addition,
backslashes used to escape dollar signs (\$) are removed.
Since no interpretation is done on the command string be-
fore it is read, inserting a backslash to escape a dollar
sign has no effect. Backslahses that precede characters
other than \,",", new-line, and $ are left intact when the
command string is read.

Parameter Substitution

The character $ is used to introduce substitutable param-
eters. There are two types of parameters, positional and
keyword. If parameter is a digit, it is a positional pa-
rameter. Positional parameters may be assigned values by
set. Keyword parameters (also known as variables) may be
assigned values by writing:

name=value [name=value 1 ...

Pattern-matching is not performed on value. There cannot
be a function and a variable with the same name.

SH(C)

SH(C)

${parameter}

A parameter is a sequence of letters, digits, or un-
derscores (a name), a digit, or any of the characters
* @ # 2, -, $, and I. The value, if any, of the
parameter is substituted. The braces are required
only when parameter is followed by a letter, digit,
or underscore that is not to be interpreted as part
of its name. A name must begin with a letter or un-
derscore. If parameter is a digit, it is a posi-
tional parameter. If parameter is * or @, all the
positional parameters, starting with $1, are substi-
tuted (separated by spaces). Parameter $0 is set
from argument zero when the shell is invoked.

${parameter:-word}

If parameter is set and is non-null, substitute its
value; otherwise, substitute word.

${parameter:==word}
If parameter is not set or is null, set it to word;
the value of the parameter is then substituted. Po-
sitional parameters may not be assigned in this way.

${parameter:?2word}
If parameter is set and is non-nuil, substitute its
value; otherwise, print word and exit from the shell.
If word is omitted, the message "parameter null or
not set" is printed.

${parameter:+word}

If parameter is set and is non-null, substitute word;
otherwise, substitute nothing.

In the above, word is not evaluated unless it is to be
used as the substituted string. In the following example,
pwd is executed only if d is not set or is null:

echo ${d:- ‘pwd"}

If the colon (:) is omitted from the above expressions,
the shell only checks whether parameter is set.

==

SH(C) SH(C)

Shell Parameters

The following parameters are automatically set by the
shell:

The number of positional parameters in decimal.

- Flags supplied to the shell on invocation or by the
set command.

-~

The decimal value returned by the last synchronously
executed command.

$ The process number of this shell.

L

The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for
the ed command.

PATH The search path for commands (see
"Execution" below). The user may not
change PATH if executing from rsh.

MAIL If this is set to the name of a mail file
and MAILPATH is not set, then the shell
informs the user of the arrival of mail in
the specified file.

CDPATH The search path for the c¢d command.

MAILCHECK This parameter specifies how often (in
seconds) the shell will check for the ar-
rival of mail in the files specified by the
MAILPATH or MAIL parameters. The de-
fault value is 600 seconds (10 minutes).
If set to 0, the shell will check before
each prompt.

SH(C) SH(C)

MAILPATH A colon (:) separated list of file names.
If this parameter is set, the shell informs
the user of the arrival of mail in any of
the specified files. Each file name can be
followed by % and a message that will be
printed when the modification time changes.
The default message is "You have mail."

PS1 Primary prompt string, by default "$".
PS2 Secondary prompt string, by default ">".
IFS Internal field separators, normally space,

tab, and new-line.

SHACCT If this parameter is set to the name of a
file writable by the user, the shell will
write an accounting record in the file for
each shell procedure executed. SHACCT
must be exported for this to work.

SHELL When the shell is invoked, it scans the
enviroment (see "Environment" that follows)
for this name. If it is found and 'rsh' is
the file name part of its value, the shell
becomes a restricted shell.

The shell gives default values to PATH, PSl, PS2,
MAILCHECK and IFS, while HOME and MAIL are set by
login(C).

Blank Interpretation

After parameter and command substitution, the results of
substitution are scanned for internal field separator
characters (those found in IFS). When such characters are
found, they are split into distinct arguments. Explicit

null arguments are retained. Implicit null arguments

(those resulting from parameters that have no values) are
removed.

SH(C)

Input/Output

SH(C)

Before a command is executed, its input and output can be
redirected using a special notation interpreted by the

shell. The following character strings may appear any-
where in a simple command or may precede or follow a com-
mand. These character strings are not passed on to the
invoked command; substitution occurs before word or digit

is used:

<word

>word

>>word

<L[--1word

Use file wordv as standard input (file de-
scriptor 0).

Use file word as standard output (file de-
scriptor 1). If the file does not exist
then it is created; otherwise, it is trun-
cated to zero length.

Use file word as standard output. If the
file exists then output is appended to it
(by first seeking to the end-of-file);
otherwise, the file is created.

After parameter and command substitution is
done on word, the shell input is read up to
the first line that literally matches the
resulting word, or to an end-of-file. If,
however, -- is appended to <<:

1) leading tabs are stripped from word
before the shell input is read (but
after parameter and command substitu-
tion is done on word),

2) leading tabs are stripped from the
shell input as it is read and before
each line is compared with word, and

3) shell input is read up to the first
line that literally matches the re-
sulting word, or to an end-of-file.

If any character of word is quoted (see
"Quoting," later), no additional processing
is done to the shell input. If no charac-
ters of word are quoted:

SH(C) SH(C)

1) parameter and command substitution
occurs,

2) (escaped) \new-line is ignored, and

3) \ must be used to quote the charac-
ters \, $, and °.

The resulting document becomes the stan-
dard input.

<&digit The standard input is duplicated from file
descriptor digit. Similarly for the stan-
dard output using >&--.

{&- The standard input is closed. Similarly
for the standard output using >.

If one of the above is preceded by a digit, the file de-
scriptor created is that specified by the digit (instead
of the default 0 or 1). For example:

e 2>&1

creates file descriptor 2, (a duplicate of file descriptor
1.

The order in which redirections are specified is signifi-
cant. The shell evaluates redirections left-to-right.
For example:

e IDXXX 2>&1

first associates file descriptor 1 with file xxx. It as-
sociates file descriptor 2 with the file associated with
file descriptor 1 (i.e., xxx). If the order of redirec-
tions were reversed, file descriptor 2 would be associated
with the terminal (assuming file descriptor 1 had been)
and file descriptor 1 would be associated with file xxx.

Using the terminology introduced previously under
"Commands," if a command is composed of several simple
commands, redirection will be evaluated for the entire
command before it is evaluated for each simple command.
That is, the shell evaluates redirection for the entire

list, then each pipeline within the list, then each com-
mand within each pipeline, then each list within each com-
mand.

SH(C)

SH(C)

If a command is followed by an ampersand (&), the defauit
standard input for the command is the empty file
/dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted
shell.

File Name Generation

Following substitution, each command word is scanned for
the characters *, ?, and [. If one of these characters
appears, the word is regarded as a pattern. The word is
replaced with alphabetically-sorted file names that match
the pattern. If no file name is found that matches the
pattern, the word is left unchanged. A period (.) at the
start of a file name, or immediately following a slash
(/), must be matched explicitly. (The slash (/) must be
explicitly matched as well.)

These characters and their matching patterns are:

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A

pair of characters separated by - matches any
character lexically between the pair, inclusive.
If the first character following the opening "["
is a "!I" any character not enclosed is matched.

Quoting

The following characters have a special meaning to the
shell and cause termination of a word unless quoted
(preceded with a backslash (\)):

; & () | © <> newline space tab
A character may be quoted (i.e., made to stand for itself)
by preceding it with a backslash (\) or inserting it be-

tween a pair of quote marks ('' or " "), During proces-
sing, the shell may quote certain characters to prevent

10

SH(C) SH(C)

them from taking on a special meaning. Backslashes used
to quote a single character are removed from the word be-
fore the command is executed. The pair \new-line is re-
moved from a word before command and parameter substitu-
tion.

All characters enclosed between a pair of single quote
marks (''), except a single quote, are quoted by the

shell. Backslash has no special meaning inside a pair of
single quotes. A single quote may be quoted inside a pair
of double quote marks (for example, " ' ").

Inside a part of double quote marks (" "), parameter and
command substitution occurs and the shell quotes the re-
sults to avoid blank intepretation and file name genera-
tion, If $* is within a pair of double quotes, the posi-
tional parameters are substituted and quoted, separated by
quoted spaces ("$1 $2 ..."); however, if $@ is within a
pair of double quotes, the positional parameters are sub-
stituted and quoted, separated by unquoted spaces ("$1"
"$2" ...). \ quotes the characters \, ', ", and $. The
pair \new-line is removed before parameter and command
substitution. If a backslash precedes characters other
than \, ', ", $, and new-line, then the backslash itself

is quoted by the shell.

Prompting

When used interactively, the shell prompts with the value
of PS1 before reading a command. If at any time a new-
line is typed and further input is needed to complete a
command, the secondary prompt (i.e., the value of PS2) is
is used.

Environment

The environment (see environ(M)) is a list of name-value
pairs that is passed to an executed program in the same
way as a normal argument list. The shell interacts with
the environment in several ways. On invocation, the shell
scans the environment and creates a parameter for each
name found, giving it the corresponding value. Executed
commands inherit the same environment. If the user modi-
fies the values of these parameters or creates new ones,
none of these affects the environment unless the export

11

SH(C)

Signa

SH(C)

command is used to bind the shell's parameter to the en-
vironment (see also set -a). A parameter may be removed
from the environment with the unset command. The en-
vironment seen by any executed command is thus composed of
any unmodified name-value pairs originally inherited by

the shell, minus any pairs removed by unset, plus any mod-
ifications or additions, all of which must be noted in

export commands.

The environment for any simple command may be augmented
by prefixing it with one or more assignments to parameters.
Thus:

TERM=450 c¢md args
and
(export TERM; TERM=450; cmd)

are equivalent (as far as the above execution of emd is
concerned).

If the -k flag is set, all keyword arguments are placed in
the environment, even if they occur after the command
name. The following first prints a=b ¢ and then c:

echo a=b ¢
set -k
echo a=b ¢

Is

The INTERRUPT and QUIT signals for an invoked command
are ignored if the command is followed by an ampersand
(&); otherwise, signals have the values inherited by the
shell from its parent, with the exception of signal 11
(memory fault). (Also see the trap command under "Spe-
cial Commands.")

Execution

Each time a command is executed, the above substitutions
are carried out. If the command name does not match a
Special Command, but matches the name of a defined func-
tion, the function is executed in the shell process (note

12

SH(C) SH(C)

how this differs from the execution of shell procedures).
The positional parameters $1, $2, ... are set to the
arguments of the function, If the command name matches
neither a Special Command nor the name of a defined func-
tion, a new process is created and an attempt is made to
execute the command via exec(S).

The shell parameter PATH defines the search path for the
directory containing the command. Alternative directory
names are separated by a colon (:). The default path is
:/bin:/usr/bin (specifying the current directory, /bin,

and /usr/bin, in that order). Note that the current di-
rectory is specified by a null pathname, which can appear
immediately after the equal sign or between the colon de-
limiters anywhere else in the path list. I1f the command
name contains a /, the search path is not used. Other-
wise, each directory in the path is searched for an exe-
cutable file, If the file has execute permission but is
not an binary executable file, it is assumed to be a file
containing shell commands. A subshell (i.e., a separate
process) is spawned to read it. A parenthesized command
is also executed in a subshell.

The location in the search path where a command was found
is remembered by the shell (to help avoid unnecessary

execs later). If the command was found in a relative di-
rectory, its location must be re-determined whenever the
current directory changes. The shell forgets all remem-
bered locations whenever the PATH variable is changed or
the hash -r command is executed (see "Special Commands").

Special Commands
Input/output redirection is now permitted for these com-
mands, although they cannot be used in pipelines. File

descriptor 1 is the default output location.

: No effect; the command does nothing. A zero
exit code is returned.

. file Reads and executes commands from file and

returns. The search path specified by PATH
is used to find the directory containing file.

13

SH(C)

break [n

SH(C)

1
Exits from the enclosing for or while loop, if
any. If n is specified, then breaks n levels.

continue [n]

cd [arg]

Resumes the next iteration of the enclosing for
or while loop. If n is specified, then resumes
at the nth enclosing loop.

Change the current directory to arg. The shell
parameter HOME is the default arg. The shell
parameter CDPATH defines the search path for
the directory containing arg. Alternative di-
rectory names are separated by a colon (:). The
default path is <null> (specifying the current
directory). Note that the current directory is
specified by a null path name, which can appear
immediately after the equal sign or between the
colon delimiters anywhere else in the path list.
If arg begins with a \ the search path is not
used. Otherwise, each directory in the path is
searched for arg. The ed command may not be
executed by rsh.

echo [arg ...]

Echo arguments. See echo(C) for usage and de-
scription.

eval [arg ... 1

The arguments are read as input to the shell and
the resulting command(s) executed.

exec [arg ...]

exit [n]

The command specified by the arguments is exe-
cuted in place of this shell without creating a
new process. Input/output arguments may appear
and, if no other arguments are given, cause the
shell input/output to be modified.

Causes a shell to exit with the exit status spe-
cified by n. If n is omitted, the exit status
is that of the last command executed (an
end-of-file will also cause the shell to exit).

14

SH(C)

SH(C)

export [name ...]

getopts

The given names are marked for automatic export
to the environment of subsequently executed com-
mands. If no arguments are given, a list of all
names marked for export in this shell is

printed. (Variable names exported from a parent
shell are listed only if they have been exported
again during the current shell's execution.)
Function names are not exported.

Use in shell scripts to support command syntax
standard (see intro(C)); it parses positional
parameters and checks for legal options. See
getopts(C) for usage and description.

hash [-r 1 [name ...]

For each name, the location in the search path
of the command specified by name is determined
and remembered by the shell. The -r option
causes the shell to forget all remembered loca-
tions. If no arguments are given, information
about remembered commands is presented, along
with columns titled hits and cost. Hits is the
number of times a command has been invoked by
the shell.

Cost is a measure of the work required to locate
a command in the search path. If a command is
found in a "relative" directory in the search
path, after changing to that directory, the
stored location of that command is recalculated.
Commands for which this will be done are indi-
cated by an asterisk (*) adjacent to the hits
information. Cost will be incremented when the
recalculation is done.

newgrp [arg ...]

pwd

Equivalent to exec newgrp arg See
newgrp(C) for usage and description.

Print the current working directory. See pwd(C,
for usage and description.

15

SH(C)

SH(C)

read [name ...]

readonly [

return [n

One line is read from the standard input and,
using the internal field separator, IFS

(normally space or tab), to delimit word boun-
daries, the first word is assigned to the first
name, the second word to the second name, etc.,
with leftover words assigned to the last name.
Lines can be continued using \new-line. Charac-
ters other than new-line can be quoted by pre-
ceding them with a backslash. These backslashes
are removed before words are assigned to names,
and no interpretation is done on the character
that follows the backslash. The return code is
0 unless an end-of-file is encountered.

name ...]

The given names are marked readonly and the
values of the these names may not be changed
by subsequent assignment. If no arguments are
given, a list of all readonly names is printed.

1

Causes a function to exit with the return value
specified by n. If n is omitted, the return
status is that of the last command executed.

set [-aefhkntuvx [arg ... 11

The following options can be used with the sh
command directly, as well as with the set com-
mand:

-a Marks variables that are modified or
created for export.

-e If the shell is noninteractive, exits im-
mediately if a command exits with a non-
zero exit status.

-k Places all keyword arguments in the en-
vironment for a command, not just those
that precede the command name.

-f Disables file name generation.
-h Locates and remembers function commands
as functions are defined (function commands

are normally located when the function is
executed).

16

SH(C)

SH(C)

-n Reads commands but does not execute them.

-t Exits after reading and executing one com-
mand. Intended for use by C programs
only; not useful interactively.

-u Treats unset variables as errors when sub-
stituting.

-v Prints shell input lines as they are read.

-x Prints commands and their arguments as
they are executed.

- Does not change any of the flags; useful in
setting $1 to -.

Using + rather than - causes these flags to be turned off.
These flags can also be used when invoking the shell. The
current set of flags, including those listed under
"Invocation,”" which follows, may be found in $-. The re-
maining arguments are positional parameters and are as-
signed, in order, to $1, $2, If no arguments are
given, the values of all names are printed.

shift [n]
The positional parameters from $n+l1 ... are
renamed $1 If n is not given, it is as-
sumed to be 1.

test Evaluates conditional expressions. See test(C)
for usage and description.

times Prints the accumulated user and system times for
processes run from the shell.

trap L arg 1 [n] '
The command arg is read and executed when the
shell receives signal(s) n. (Arg is scanned
once when the trap is set and once when the
trap is taken.)

Trap commands are executed in order of signal
number. The highest signal number allowed is
16. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is
ineffective. An attempt to trap on signal 11

17

=3

SH(C) SH(C)

(memory fault) produces an error, because the
shell uses this signal internally. If arg is

absent, then all trap(s) n are reset to their
original values. If arg is the null string,

this signal is ignored by the shell and by the
commands it invokes. If n is 0, the command arg
is executed on exit from the shell. The trap
command with no arguments prints a list of com-
mands associated with each signal number.

type [name ...]
For each name, indicate how it would be inter-
preted if used as a command name.

ulimit [n]
Impose a size limit of n blocks on files written
by the shell and its child processes (files of
any size may be read). If n is omitted, the
current limit is printed. You may lower your
own ulimit, but only the super-user (see su(C))
can raise a ulimit.

umask [nnn]
The user file-creation mask is set to nnn (see
umask(C)). If nnn is omitted, the current value
of the mask is printed.

unset [name ... 1]
For each name, remove the corresponding variable
or function. The variables PATH, PS1, PS2,
MAILCHECK and IFS cannot be unset.

wait [n]
Wait for your background process whose process
id is n and report its termination status. If n
is omitted, all your shell's currently active
background processes are waited for and the re-
turn code will be zero.

18

SH(C) SH(C)

Invocation

If the shell is invoked through exec(C) and the first
character of argument zero is -, commands are initially
read from /etc/profile and from $HOME/.profile, if such
files exist. Thereafter, commands are read as described
below, which is also the case when the shell is invoked as
/bin/sh. The flags below are interpreted by the shell on
invocation only.

-c string If the -c flag is present, commands are read
from string.

-S If the -s flag is present or if no arguments
remain commands are read from the standard in-
put. Any remaining arguments specify the posi-
tional parameters. Shell output (except for
Special Commands) is written to file descriptor
2.

-i If the -i flag is present or if the shell input
and output are attached to a terminal, the shell
is interactive. In this case TERMINATE is
ignored so that kill 0 does not kill an interac-
tive shell) and INTERRUPT is caught and ignored
(so that wait is interruptible). In all cases,
QUIT is ignored by the shell.

-r If the -r flag is present, the shell is a re-
stricted shell.

The remaining flags and arguments are described under the
set command above.

Rsh Only
Rsh is used to set up login names and execution environ-
ments whose capabilities are more controlled than those of
the standard shell. The actions of rsh are identical to
those of sh, except that the following are disallowed:

. Changing directory (see cd(C))

. Setting the value of $PATH

19

SH(C) SH(C)

. Specifying path or command names containing /
o Redirecting output (> and >>).

The restrictions above are enforced after .profile is in-
terpreted.

A restricted shell can be invoked in one of the following
ways:

. Rsh is the file name part of the last entry in the
/etc/passwd file (see passwd(M)).

. The environment variable SHELL exists and rsh is the
file name part of its value.

. The shell is invoked; rsh is the file name part of
argument 0.

. The shell is invoked with the -r option.

When a command to be executed is found to be a shell pro-
cedure, rsh invokes sh to execute it. Thus, it is pos-

sible to provide to the end-user shell procedures that

have access to the full power of the standard shell, while
imposing a limited menu of commands; this scheme assumes
that the end-user does not have write and execute permis-
sions in the same directory.

The net effect of these rules is that the writer of
.profile (see profile(M)) has complete control over user
actions by performing guaranteed setup actions and leaving
the user in an appropriate directory (probably not the
login directory).

The system administrator often sets up a directory of com-
mands (i.e., /usr/rbin) that can be safely invoked by a
restricted shell. Some systems also provide a restricted
editor, red. Note that PATH must be set to something
other than the default to prevent the user from simply
invoking an unrestricted shell by typing sh.

20

SH(C) SH(C)

Exit Status

Errors detected by the shell, such as syntax errors, cause
the shell to return a non-zero exit status. If the shell
is being used non-interactively, execution of the shell
file is abandoned. Otherwise, the shell returns the exit
status of the last command executed (see also the exit
command described previously).

Files

/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

See Also

cd(C), echo(C), env(C), getops(C), intro(C), login(C),
newgrp(C), profile(M), pwd(C), test(C), umask(C), wait(C),
and dup(S), exec(S), fork(S), pipe(S), signal(S),

ulimit(S) in the Reference (CP, S, F)

User's Guide

Caveats

Words used for file names in input/output redirection are
not interpreted for file name generation (see "File Name
Generation," above). For example, cat filel >a* will
create a file named a*.

Because commands in pipelines are run as separate pro-
cesses, variables set in a pipeline have no effect on the
parent shell.

If you get the error message "cannot fork, too many
processes," try using the wait(C) command to clean up your
background processes. If this doesn't help, the system
process table is probably full or you have too many active
foreground processes. (There is a limit to the number of
process ids associated with your login, and to the number
the system can keep track of.)

21

SH(C) SH(C)

Notes

If a command is executed, and a command with the same
name is installed in a directory in the search path
(before the directory where the original command was
found), the shell will continue to exec the original com-
mand. Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may
not give the correct response. Use the c¢d command with a
full path name to correct this situation.

Not all the processes of a 3- or more-stage pipeline are
children of the shell, and thus cannot be waited for.

For wait n, if n is not an active process id, all your

shell's currently active background processes are waited
for and the return code will be zero.

22

SHL(C) SHL(C)

Name

shl - Shell layer manager.

Syntax

shl

Description

Shl allows a user to interact with more than one shell
from a single terminal. The user controls these shells,
known as layers, using the commands described below.

The current layer is the layer which can receive input
from the keyboard. Other layers attempting to read from
the keyboard are blocked. Output from multiple layers is
multiplexed onto the terminal. To have the output of a
layer blocked when it is not current, the stty option
-loblk may be set within the layer.

The stty(C) character swtch (set to = if NUL) is used to
switch control to shl from a layer. Shl has its own
prompt, >»>>, to help distinguish it from a layer. A layer
is a shell which has been bound to a virtual tty device
(/dev/sxt???). The virtual device can be manipulated like
a real tty device using stty(C) and ioctl(S). Each layer
has its own process group id.

Definitions

A name is a sequence of characters delimited by a blank,
tab, or new-line. Only the first eight characters are
significant. The names (1) through (7) cannot be used
when creating a layer. They are used by shl when no name
is supplied. They may be abbreviated to just the digit.

SHL(C)

Commands

SHI(C)

The following commands may be issued from the shl prompt
level. Any unique prefix is accep_ted.

create [name]

block name [name ...

delete name [name

help (or ?)

layers [-1 1 [name ...

resume [name]

toggle

Create a layer called name and make
it the current layer. If no argu-
ment is given, a layer will be
created with a name of the form (#)
where # is the last digit of the
virtual device bound to the layer.
The shell prompt variable PS1 is set
to the name of the layer followed by
a space. A maximum of seven layers
can be created.

]
For each name, block the output of
the corresponding layer when it is
not the current layer. This is
equivalent to setting the stty op-
tion -loblk within the layer.

wee 1

For each name, delete the corres-

ponding layer. All processes in the
process group of the layer are sent
the SIGHUP signal (see signal(S)).

Print the syntax of the shl commands.

1

For each name, list the layer name
and its process group. The -1
option produces a ps(C)-like list-
ing. If no arguments are given,
information is presented for all
existing layers.

Make the layer references by name
the current layer. If no argument
is given, the last existing current
layer will be resumed.

Resume the layer that was current
before the last current layer.

SHL(C)

unblock name [name

quit

name

Files

/dev/sx?2??

$SHELL

See Also

SHL(C)

voe]

For each name, do not block the out-
put of the corresponding layer when
it is not the current layer. This

is equivalent to setting the stty
option -loblk within the layer.

Exit shl. All layers are sent the
SIGHUP signal.

Make the layer referenced by name
the current layer.

Virtual tty devices

Variable containing path name of
the shell to use (default is /bin/sh).

sh(C), stty(C), ioctl(S), signal(S)

<=

SIZE(C) SIZE(C)

Name

size - Prints section sizes in bytes of common object
files.

Syntax

size [-n] [-f] [-0] [-x] [-d] [-V] files

Description

The size command produces section size information in
bytes for each loaded section in the common object files
(COFF). The size of the text, data, and bss
(uninitialized data) sections is printed, as well as the
sum of the sizes of these sections. If an archive file is
input to the size command the information for all archive
members is displayed.

The -n option includes NOLOAD sections in the size.

The -f option produces full output, that is, it prints the
size of every loaded section, followed by the section name
in parentheses.

The -d option prints numbers in decimal (the default).

The -0 or -x option prints in octal or in hexadecimal,
respectively.

The -V option will supply the version information on the
size command.

See Also

as(CP), cc(CP), 1d(CP), ar(F) in the Reference (CP, S, F)

Notes

Since the size of bss sections is not known until
link-edit time, the size command will not give the true
total size of pre-linked objects.

SIZE(C) SIZE(C)

Diagnostics

size: name: cannot open
if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

—d

SIZEFS(C) SIZEFS(C)

Name

sizefs - Determines the size of a logical device from the
layout information associated with a hard disk.

Syntax

sizefs layout-file logical-device-number

Description

The sizefs command prints the size in sectors of the area
on the disk you specify. It gets its information out of
the structure created by the layout(C) command. Its most
common use is in shell scripts to create a file system on
the hard disk, where the size of the root partition is

used as an argument to mkfs(M) or archive(C).

Logical device number 0 is the size of the entire disk
(excluding bad blocks). For example,

sizefs /dev/hd0.layout 2

returns the size of the root file system.

Related Commands

layout(C), mkfs(M)

SLEEP(C) SLEEP(C)

Name

sleep - Suspends execution of a command for a specified
interval.

Syntax

sleep time

Description

The sleep command suspends execution of a command for a
specified number of seconds. It is used to execute a com-
mand after a certain amount of time as in:

(sleep 105:; command)&
or to execute a command every so often, as in:

while true
do
command
sleep 37
done

Time must be less than 4,294,967,295 (2%-1) seconds for
the Series 386.

SORT(C) SORT(C)

Name

sort - Sorts and merges files.

b Syntax

sort [-cmu] [-ooutput] [-Tdirectory] [-ykmem] [-zrecsz]
[-dfiMnr] [-btx] [+pos] [-pos] [file ...]

Description

The sort command merges and sorts lines from all named
files and writes the result on the standard output. A
dash (-) may appear as a file in the files argument signi-
fying the standard input. If no input files are named,
the standard input is sorted.

The default sort key is an entire line. Default ordering
is lexicographic by bytes in machine collating sequence.
The ordering is affected globally by the options you spe-
cify with the command.

Options
The following options alter output behavior:

-c Checks that the input file is sorted according
to the ordering rules; gives no output unless
the file is out of sort.

-m Merges only, the input files are already sorted.

~u Suppresses all but one in each set of duplicated
lines. Ignored bytes and bytes outside keys do
not participate in this comparison.

-ooutput Uses output file instead of the standard output.
This file may be the same as one of the inputs.
There may be ptional blanks between -0 and
output.

-Tdirectory
Uses directory as a temporary directory (instead
of /usr/tmp or /tmp) when doing the sort.

SORT(C)

-ykmem

-Zrecsz

SORT(C)

" The amount of main memory used by the sort has

a large impact on its performance. Sorting a
small file in a large amount of memory is a
waste. If this option is omitted, sort begins
using a system default memory size, and con-
tinues to use more space as needed. If this
option is presented with a value, kmem, sort
will start using that number of kilobytes of
memory, unless the administrative minimum or
maximum is violated, in which case the corre-
sponding limit will be used. By convention, -y
(with no argument) starts with maximum memory.

The size of the longest line read is recorded in
the sort phase so buffers can be allocated dur-
ing the merge phase. If the sort phase is
omitted via the -¢ or -m options, a popular sys-
tem default size will be used. Lines longer

than the buffer size will cause sort to termi-
nate abnormally. Supplying recsz the actual
number of bytes in the longest line to be merged
(or some larger value) will prevent termination.

The following options override the default ordering rules:

-Nn

-r

"Dictionary" order: only letters, digits and
blanks are significant in comparisons.

Folds uppercase letters onto lowercase.

Ignores characters outside the ASCII octal range
040 - 0176 in non-numeric comparisons.

Compare as months. The first three non-blank
characters of the field are folded to uppercase
and compared so that "JAN" < "FEB" < ...
"DEC." Invalid fields compare low to "JAN.,"
This option implies -b.

An initial numeric string, consisting of op-
tional blanks, optional minus sign, and zero or
more digits with optional decimal point, is
sorted by arithmetic value. Option n implies
option b.

Reverses the sense of comparisons.

A& 4

SORT(C) SORT(C)

The notation +posl -pos2 restricts a sort key to a field
beginning at posl and ending at pos2.

NOTE

Column O is the starting position (posl =
column 0).

Specifying posl and pos2 involves the notion of a field, a
minimal sequence of characters followed by a field sepa-
rator or a new-line. By default, the first blank (space
or tab) of a seguence of blanks acts as the field separa-
tor. All blanks in a sequence of blanks are considered to
be part of the first field. The treatment of field sepa-
rators can be altered using the options:

-tx Use x as the field separator character; x is not con-
sidered to be part of a field (although it may be
included in a sort key). Each occurrence of x is
significant (e.g., xx delimits an empty field.

-b Ignore leading blanks when determining the starting
and ending positions of a restricted sort key. If
the -b option is specified before the first +posi
argument, it will be applied to all +posl arguments.
Otherwise, the b flag may be attached independently
to each +posl or -pos2 argument (see below).

Posl and pos2 each have the form m.n optiomally followed
by one or more of the flags bdfinr. A starting position
specified by +m.n is interpreted to mean the n+lst charac-
ter in the m+lst field. A missing .n means .0, indicating
the first character of the m+lst field. If the b flag is
in effect, n is counted from the first non-blank in the
m+lst field; +m.0b refers to the first non-blank charac-
ter in the m+lst field.

A last position specified by -m.n is interpreted to mean
the nth character (including separators) after the last
character of the mth field. A missing .n means .0, indi-
cating the last character in the mth field. If the b flag
is in effect, n is counted from the last leading blank in
the m+1st field; -m.b refers to the first non-blank in the
m+1st field.

SORT(C) | SORT(C)

When there are multiple sort keys, later keys are compared
only after all earlier keys compare equal. Lines that
otherwise compare equal are ordered with all bytes signi-
ficant. Very long lines are silently truncated.

Examples
This command prints an alpabetized list of all the unique
spellings in a list of words (capitalized words differ
from uncapitalized).
sort -u +0f +0 list
This command prints the password file sorted by user ID.

sort -t: +2n /etc/passwd

This command prints the first instance of each month in an
already-sorted file of month-day entries.

sort -um +0 -1 dates

SPELL(C) SPELL(C)

Name

spell, hashmake, spellin, hashcheck - Finds spelling
errors.

Syntax

spell [~v]1[-b1[-x1[-1}I +local file1 [files]
/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling list

Description

Spell collects words from the named files and looks them
up in a spelling list. Words that neither occur among nor
are derivable (by applying certain inflections, prefixes,
and/or suffixes) from words in the spelling list are
printed on the standard output. If no files are named,
words are collected from the standard input.

Spell ignores most troff(l), tbl(1l), and eqgn(l) construc-
tions.

Under the -v option, all words not literally in the spell-
ing list are printed, and plausible derivations from the
words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides
preferring centre, colour, programme, speciality,

travelled, etc., ‘this option insists upon -ise in words

like standardise, Fowler and the OED to the contrary not-
withstanding.

Under the -x option, every plausible stem is printed with
= for each word.

By default, spell (like deroff(1)) follows chains of in-
cluded files (.so and .nx troff(1) requests), unless the
names of such included files begin with /usr/lib. Under
the -1 option, spell will follow the chains of all in-
cluded files.

SPELL(C) SPELL(C)

Files

Under the +local file option, words found in local_file
are removed from spell's output. Local file is the name
of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can spe-
cify a set of words that are correct spellings (in addi-
tion to spell's own spelling list) for each job.

The spelling list is based on many sources, and while more
haphazard than an ordinary dictionary, is also more effec-
tive with respect to proper names and popular technical
words. Coverage of the specialized vocabularies of bio-
logy, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name argu-
ments, indicated below with their default settings (see
FILES). Copies of all output are accumulated in the his-
tory file. The stop list filters out misspellings (e.g.,
thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used
by spell:

hashmake Reads a list of words from the standard
input and writes the corresponding
nine-digit hash code on the standard out-
put.

spellin Reads n hash codes from the standard input
and writes a compressed spelling list on
the standard output.

hashcheck Reads a compressed spelling list and re-
creates the nine-digit hash codes for all
the words in it; it writes these codes on
the standard output.

D_SPELL=/usr/lib/spell/hlist[ab] Hashed spelling lists,
American/British
S_SPELL=/usr/lib/spell/hstop Hashed stop list
H_SPELL=/usr/lib/spell/spellhist History file
/usr/lib/spell/spellprog Spell program

SPELL(C) SPELL(C)

See Also

sed(C), sort(C), tee(C), and dtroff(l)
eqn(1), tbl(1), troff(l) in the DOCUMENTER'S
WORKBENCH

Bugs

The spelling list's coverage is uneven; new installations
will probably wish to monitor the output for several
months to gather local additions; typically, these are
kept in a separate local file that is added to the hashed
spelling list via spellin.

SPLINE(C) SPLINE(C)

Name

spline - Interpolates smooth curve.

Syntax

spline [options }

Description

Spline takes pairs of numbers from the standard input as
abcissas and ordinates of a function. It produces a sim-
ilar set, which is approximately equally spaced and in-
cludes the input set, on the standard output. The cubic
spline output has two continuous derivatives, and enough
points to look smooth when plotted.

The following options are recognized, each as a separate
argument:

-a Supplies abscissas automatically (they are mis-
sing from the input); spacing is given by the
next argument, or is assumed to be 1 if next
argument is not a number.

-k num The constant num used in the boundary value
computation:

"

yy=numy ..,y =mumy

is set by the next argument. By default
num = 0.

-n num Spaces output points so that approximately num
intervals occur between the lower and upper x
limits. Num is a positive interger; the default
is 100.

-p Makes output periodic, i.e., match derivatives
at ends. First and last input values should
normally agree.

SPLINE(C) SPLINE(C)

-X Next 1 (or 2) arguments are lower (and upper) x
limits. Normally, these limits are calculated
from the data. Automatic abcissas start at
lower limit (default 0).

Diagnostics
When data is not strictly monotone in x, spline reproduces
the input without interpolating extra points.

Notes

- A limit of 1000 input points is silently enforced.

SPLIT(C) SPLIT(C)

Name
split - Splits a file into pieces.

Syntax
split [-n 1 [file [name 1]

Description
Split reads file and writes it in n-line pieces (default
1000) onto a set of output files. The name of the first
output file is name with aa appended, and so on lexicog-
raphically. If no output name is given, x is used by de-
fault.
If no input file is given, or if a dash (-) is given in-
stead, the standard input file is used.

See Also

bfs(C), csplit(C)

SSP(C) SSP(C)

Name

ssp - Removes consecutive blank lines.

Syntax

ssp [-11 file ... 1

Description

Ssp compresses consecutive blank lines to at most one
blank line to produce more compact output for a CRT ter-
minal or save paper on the printer. If the optional - is
given, ssp is even more zealous, and gets rid of all empty
lines.

STRINGS(C) STRINGS(C)

Name

strings - Finds the printable strings in an object file.

Syntax

strings [-] [-0] [-number] file ...

Description
Strings looks for ASCII strings in a binary file. A
string is any sequence of four or more printing characters
ending with a newline or a null character. Unless the -
flag is given, strings only looks in the initialized data
space of object files.

-0 Each string is preceded by its decimal offset in
the file.

-number Uses number as the minimum string length rather
than 4.

Strings is useful for identifying random object files and
many other things.

See Also
hd(C), od(C)

Credit

This utility was developed at the University of California
at Berkeley and is used with permission.

STTY(C) STTY(C)

Name

stty - Sets the options for a terminal.

)

Syntax

stty [-al[-g 1 [options]

Description
Stty sets certain terminal 1/0 options for the device that
is the current standard input; without arguments, it re-
ports the settings of certain options.
See xtty(C) for stty extensions.

In this report, if a character is preceded by a caret (°),
then the value of that option is the corresponding control

character (e.g., “h is [[8idQl; in this case, recall that
(03481l is the same as the JEEWGYIEY key.) The sequence
“' means that an option has a null value.

-a Reports all of the option settings.

-g Reports current settings in a form that can be used
as an argument to another stty command.

Options in the last group are implemented using options in
the previous groups. Note that many combinations of op-
tions make no sense, but no sanity checking is performed.
The options are selected from the following:

Control Modes

parenb (-parenb) Enable (disable) parity generation
and detection.

parodd (-parodd) Select odd (even) parity.
c¢s5 cs6 cs7 cs8 Select character size (see termio(M)).
0 Hang up phone line immediately.

STTY(C)

STTY(C)

110 300 600 1200 1800 2400 4800 9600 19200 38400

hupel (-hupel)

hup (-hup)
cstopb (-cstopb)
cread (-cread)

clocal (-clocal)

loblk (-loblk)

Input Modes

ignbrk (-ignbrk)
brkint (-brkint)
ignpar (-ignpar)

parmrk (-parmrk)

inpck (-inpck)

istrip (-istrip)

inler (-inler)
igner (-igncer)
icrnl (-icrnl)

iucle (-iucle)

Set terminal baud rate to the number
given, if possible. (All speeds are
not supported by all hardware inter-
faces.)

Hang up (do not hang up) dataphone
connection on last close.

Same as hupcl (~hupcl).
Use two (one) stop bits per character.
Enable (disable) the receiver.

Assume a line without (with) modem
control.

Block (do not block) output from a
non-current layer.

Ignore (do not ignore) break on input.
Signal (do not signal) INTR on break.
Ignore (do not ignore) parity errors.

Mark (do not mark) parity errors (see
termio{M)).

Enable (disable) input parity
checking.

Strip (do not strip) input characters
to seven bits.

Map (do not map) NL to CR on input.
Ignore (do not ignore) CR on input.
Map (do not map) CR to NL on input.

Map (do not map) upper-case alpha-
betics to lower case on input.

STTY(C)

ixon (-ixon)

ixany (-ixany)

ixoff (-ixoff)

Output Modes

opost (-opost)

olcuc (-olcuc)

onler (-onler)

ocrnl (-ocrnl)
onocr (-onocr)

onlret (-onlret)

ofill (-ofill)

ofdel (-ofdel)

cr0 crl cr2 crd

nl0 nil

tab0 tabl tab2 tab3

STTY(C)

Enable (disable) START/STOP output

control. Output is stopped by sending
an ASCII DC3 and started by sending

an ASCII DC1.

Allow any character (only DC1) to
restart output.

Request that the system send (not

send) START/STOP characters when
the input queue is nearly empty/full.

Post-process output (do not post-
process output; ignore all other
output modes).

Map (do not map) lower-case alpha-
betics to upper case on output.

Map (do not map) NL to CR-NL on
output.

Map (do not map) CR to NL on output.
Do not (do) output CRs at column zero.

On the terminal NL performs (does not
perform) the CR function.

Use fill characters (use timing) for
delays.

Fill characters are DELs (NULSs).

Select style of delay for carriage
returns (see termio(M)).

Select style of delay for line-feeds
(see termio(M)).

Select style of delay for horizontal
tabs (see termio(M)).

STTY(C)

bs0 bsl

£f0 ff1

vt0 vtl

.Local Modes

isig (-isig)

icanon (-icanon)

xcase (-xcase)

echo (-echo)

echoe (-echoe)

echok (-echok)

Ifke (-1fkc)
echonl (-echonl)

noflsh (-noflsh)

STTY(C)

Select style of delay for backspaces
(see termio(M)).

Select style of delay for form-feeds
(see termio(M)).

Select style of delay for vertical
tabs (see termio(M)).

Enable (disable) the checking of
characters against the special control
characters INTR, QUIT, and SWTCH.

Enable (disable) canonical input
(ERASE and KILL processing).

Canonical (unprocessed) upper/lower-
case presentation.

Echo back (do not echo back) every
character typed.

Echo (do not echo) ERASE character
as a backspacespace-backspace string.
Note: this mode will erase the
ERASEed character on many CRT
terminals; however, it does not keep
track of column position and, as a
result, may be confusing on escaped
characters, tabs, and backspaces.

Echo (do not echo) NL after KILL
character.

The same as echok (-echok); obsolete.
Echo (do not echo) NL.

Disable (enable) flush after INTR,
QUIT, or SWTCH.

-

STTY(C)

Control Assignments

control-character ¢

Combination Modes
evenp or parity

oddp

STTY(C)

Set control-character to ¢, where
control-character is erase, kill,

intr, quit, swtch, eof, ctab, min, or
time (ctab is used with -stappl; min
and time are used with -icanon; see
termio(M)). If ¢ is preceded by an
(escaped from the shell) caret (°),
then the value used is the correspond-
ing character (e.g., “d is a
ICEEW); “? is interpreted as

and “- is interpreted as undefined.

Set line discipline to i (0 < i <
127).

Enable parenb and cs7.

Enable parenb, c¢s7, and parodd.

-parity, -evenp, or -oddp

raw (-raw or cooked)

nl-(-nl)

lcase (-lcase)

LCASE (-LCASE)

tabs (-tabs or tab3)

ek

Disable parenb, and set cs8.

Enable (disable) raw input and output
(no ERASE, KILL, INTR, QUIT, SWTCH,
EOT, or output post processing).

Unset (set) icrnl, onler. In addition
-nl unsets inler, igner, oernl, and
onlret.

Set (unset) xcase, iucle, and olcuc.
Same as lcase (-lcase).

Preserve (expand to spaces) tabs when

printiqg.

Reset ERASE and KILL characters
back to normal # and @.

STTY(C) STTY(C)

sane Resets all modes to some reasonable
values.
term Set all modes suitable for the ter-

minal type term, where term is one of
tty33, tty37, vt05, tn300, ti700, or
tek.

See Also

tabs(C), termio(M) and ioctl(S) in the Reference
(cp, S, F) :

Su(C) SU(C)

Name

su - Become super-user or another user without logging
off.,

Syntax

su [-] [name [arg ...]]

Description

Su allows one to become another user without logging off.
The default user name is root (i.e., super-user). If a
user name has a password, su prompts for the user's pass-
word.

To use su, the appropriate password must be supplied
(unless one is already root). If the password is correct,
su will execute a new shell with the real and effective
user ID set to that of the specified user. The new shell
will be the optional program named in the shell field of
the specified user's password file entry (see passwd(M)),
or /bin/sh if none is specified (see sh(C)). To restore
normal user ID privileges, exit the new shell.

The following statements are true only if the optional
program named in the shell field of the specified user's
password file entry is like sh(C). If the first argument

to su is a -, the environment will be changed to what
would be expected if you actually logged in as the speci-
fied user. This is done by invoking the program used as
the shell with an arg0 value whose first character is -,
thus causing first the system's profile (etc/profile) and
then the specified user's profile (.profile in the new
HOME directory) to be executed. Otherwise, the environ-
ment is passed along with the possible exception of $PATH,
which is set to /bin:/etc:/usr/bin for root. If the op-
tional program used as the shell is /bin/sh, the user's
.profile can check arg0 for -sh or -su to determine if it
was invoked by login(C) or su(C), respectively. If the
user's program is other than /bin/sh then .profile is in-
voked with an arg0 of -program by both login(C) and su(C).

SU(C) ‘ SU(C)

Examples

To become user bin while retaining your previously ex-
ported environment, type:

su bin

To become user bin but change the environment to what
would be expected if bin had originally logged in, type:

su - bin

To execute a command with the temporary environment and
permissions of user bin, type:

su - bin -¢ command args

Files
/etc/passwd System's password file
/ete/profile System's profile
$HOME/.profile User's profile
/usr/adm/sulog Log file

See Also

env(C), login(C), sh(C), passwd(C), profile(M), environ(M)

=

SUM(C) SUM(C)

Name
sum - Calculates checksum and counts blocks in a file.
Syntax
sum [-r] file ...
Description
Sum calculates and prints a 16-bit checksum for the named
file, and also prints the number of blocks in the file.
It is typically used to look for bad spots, or to validate
a file communicated over a transmission line.
-r Causes an alternate algorithm to be used in computing
the checksum.
See Also
we(C)
Diagnostics

"Read error" is not distinguishable from end-of-file on
most devices; therefore, check the block count.

SWAP(C) SWAP(C

Name

swap - Changes swap device configuration.

Syntax

/etc/swap -a swapdev swaplow swaplen
/ete/swap ~d swapdev swaplow
/etc/swap -1

Description

Swap provides a method of adding, deleting, and monitoring
the system swap areas used by the memory manager. The
following options are recognized.

-a Add the specified swap area. Swapdev is the name of
the block special device, e.g., /dev/hd0a. Swaplow
is the offset in 512-byte blocks into the device
where the swap area should begin. Swaplen is the
length of the swap area in 512-byte blocks. This
option can only be used by the super-user. Swap
areas are normally added by the system start-up rou-
tine /etc/rc when going into multi-user mode,

-d Delete the specified swap area. Swapdev is the name
of block special device, e.g., /dev/hd0a. Swaplow is
the offset in 512-byte blocks into the device where
the swap area begins. Using this option marks the
swap area as "INDEL" (in process of being deleted).
The system will not allocate any new blocks from the
area, and will try to free swap blocks from it. The
area will remain in use until all blocks from it are
freed. This option can only be used by the
super-user.

-1 List the status of all the swap area. The output has
four columns:

DEV The swapdev special file for the swap area
if one can be found in the or /dev direc-
tory, and its major/minor device number in
decimal. LOW The swaplow value for the
area in 512-byte blocks.

SWAP(C) SWAP(C)

LEN The swaplen value for the area in 512-byte
blocks.
FREE The number of free 512-byte blocks in the

area. If the swap area is being deleted,
this column will be marked INDEL.

Warnings

No check is done to see if a swap area being added over-
laps with an existing swap area or file system.

SYNC(C) ' v SYNC(C)

Name

sync - Updates the super block.

Syntax

sync

Description

The sync command executes the sync(S) system primitive.
If the system is to be stopped, sync must be called to
insure file system integrity. It will flush all previous-

ly unwritten system buffers out to disk, thus assuring
that all file modifications up to that point will be

saved. Shutdown(M) automatically calls sync before shut-
ting down the system.

Sync will only write local buffers to local disks. So, if
you do a write to a file on a remote machine in an RFS
environment, sync will not force buffers to be written out
to disk on the remote machine.

See Also

sync(S) in the Reference (CP, S, F)

SYSCONF(C) SYSCONF(C)

Name

sysconf - Prints system configuration information.

Syntax

sysconf [-pnrafcv]

Description

Sysconf prints system configuration information.

If you type sysconf without any options, you will see all
of the information below.

The options are:

-p Displays the number of processors installed on the
system,

-n Displays the maximum number of processes allowed to
exist systemwide.

-r Displays the amount of real memory.

-a Displays the amount of available memory.

-f Displays "fp" if a floating point co-processor is in-
stalled and "fpem" if not. '

-C Displays the types of communication boards in-
stalled. The logical number of the board is dis-
played first, followed by a ™", followed by the
board type. An "m" represents a Multidrop board,
an "s" represents a SIO board, and an "a" repre-
sents an ACPA board. For the 386 Series 1000, an
SIO will be reported as a Multidrop. Multiple SIO
boards appear only as one board (e.g., 0:m).

-v Displays the version string of the kernel.

See Also
sysconf(S)

TABS(C) TABS(C)

Name

tabs - Sets tabs on a terminal.

Syntax

tabs [tabspec] [-Ttype] [+mn]

Description

Tabs sets the tab stops on the user's terminal according
to the tab specification tabspee, after clearing any pre-
vious settings. The user's terminal must have
remotely-settable hardware tabs.

tabspec Four types of tab specification are ac-
cepted for tabspec. They are described
below: canned (-code), repetitive (-n),
arbitrary (nl1,n2,...), and file (--file).
If no tabspec is given, the default value
is -8, i.e., operating system "standard"
tabs. The lowest column number is 1.
Note that for tabs, column 1 always refers
to the leftmost column on a terminal, even
one whose column markers begin at 0, e.g.,
the DASI 300, DASI 300s, and DASI 450.

-code Use one of the codes listed below to select
a canned set of tabs. The legal codes and
their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

‘TABS(C)

-c2

-u

TABS(C)

1,6,10,14,49

COBOL compact format (columns 1-6
omitted). Using this code, the first
typed character corresponds to card
column 7, one space gets you to
column 8, and a tab reaches column
12, Files using this tab setup should
include a format specification as
follows (see fspec(F)):

{:t-c2 m6 s66 d:>

1,6,10,14,18,22,26,30,34,38,42,46,50,
54, 58, 62, 67

COBOL compact format (columns 1-6
omitted), with more tabs than -c2.
This is the recommended format for
COBOL. The appropriate format spe-
cification is (see fspec(F)):

{:t-c3 m6 s66 d:>

1,7,11,15,19,23
FORTRAN

1,5,9,13,17,21,25,29,33,37,41,45,49,
53 , 57, 61
PL/1

1,10,55
SNOBOL

1,12,20,44
UNIVAC 1100 Assembler

A repetitive specification requests tabs

at columns 1l+n, 1+2*n, etc. Of particular
importance is the value 8: this represents
the operating system '"standard" tab set-
ting, and is the most likely tab setting to
be found at a terminal. Another special
case is the value 0, implying no tabs at

all.

TABS(C) ' TABS(C)

nl,n2,... The arbitrary format permits the user to
type any chosen set of numbers, separated
by commas, in ascending order. Up to 40
numbers are allowed. If any number (ex-
cept the first one) is preceded by a plus
sign, it is taken as an increment to be
added to the previous value. Thus, the
formats 1,10,20,30, and 1,10,+10,+10 are
considered identical.

--file If the name of a file is given, tabs reads
the first line of the file, searching for a
format specification (see fspec(F)). If it
finds one there, it sets the tab stops ac-
cording to it, otherwise it sets them as
-8. This type of specification may be used
to make sure that a tabbed file is printed
with correct tab settings, and would be
used with the pr(C) command as follows:

tabs --file; pr file

Any of the following also may be used; if a given flag
occurs more than once, the last value given takes effect:

-Ttype Tabs usually needs to know the type of ter-
minal in order to set tabs and always needs
to know the type to set margins. Type is a
name listed in term(M). If no -T flag is
supplied, tabs uses the value of the en-
vironment variable TERM. If TERM is not
defined in the environment (see '
environ(M)), tabs tries a sequence that
will work for many terminals.

+mn The margin ‘argument may be used for some
terminals. It causes all tabs to be moved
over n columns by making column n+I the
left margin., If +m is given without a
value of n, the value assumed is 10. For a
TermiNet, the first value in the tab list
should be 1, or the margin will move even
further to the right. The normal
(leftmost) margin on most terminals is ob- -

A=

TABS(C)

Tab and margin

put.

Examples

tabs

tabs

tabs

tabs

1,8,36

TABS(C)

tained by +m0. The margin for most termi-
nals is reset only when the +m flag is
given explicitly.

setting is performed via the standard out-

Example using -code (canned specification)
to set tabs to the settings required by the
IBM assembler: columns 1, 10, 16, 36, 72.

Example of using -n (repetitive specifi-
cation), where n is 8, causes tabs to be
set every eighth position: 1+(1*8),
1+(2*8),... which evaluate to columns 9,
17,00

Example of using nil,n2,... (arbitrary
specification) to set tabs at columns 1, 8,
and 36.

--$HOME/fspec.list/att4425

. Diagnostics

illegal tabs

illegal inerement

Example of using -file (file specification)
to indicate that tabs should be set accord-
ing to the first line of
$HOME/fspec.list/att4425 (see fspec(F)).

Arbitrary tabs were ordered incor-
rectly.

A zero or missing increment is found
in an arbitrary specification.

unknown tab code A canned code cannot be found.

can't open

The --file option was used, and file
can't be opened.

TABS(C) ' TABS(C)

file indirection The ~--file option was used and the
specification in that file points to
yet another file. Indirection of this
form is not permitted.

See Also
pr(C), environ(M), term(M), terminfo(M), and fspec(F) in
the Reference (CP, S, F)

Notes

There is no consistency among different terminals regard-
ing ways of clearing tabs and setting the left margin.

Tabs clears only 20 tabs (on terminals requiring a long
sequence), but is willing to set 64.

TAIL(C) - TAIL(C)

Name

tail - Delivers the last part of a file.

Syntax

tail [+[number 1[Ibc 1 [-f } 1 [file]

Description

Tail copies the named file to the standard output begin-
ning at a designated place. If no file is named, the
standard input is used.

Copying begins at distance +number from the beginning, or
-number from the end of the input (if number is null, the
value 10 is assumed). Number is counted in units of
lines, blocks, or characters, according to the appended
option, 1, b, or c¢. When no units are specified, counting
is by lines. :

With the -f (follow) option, if the input file is not a
pipe, the program will not terminate after the line of the
input file has been copied, but it will enter an endless
loop. In this loop, the program sleeps for a second and
then attempts to read and copy further records from the
input file. Thus, it may be used to monitor the growth of
a file that is being written by some other process. For
example, the command:

tail -f terry

will print the last ten lines of the file, terry, followed
by any lines that are appended to file between the time
tail is initiated and killed. As another example, the
command:

tail -15c¢f terry
will print the last 15 characters of the file terry, fol-

lowed by any lines that are appended between the time tail
is initiated and killed.

TAIL(C) TAIL(C)

See Also

dd(C)

Notes

- Tails relative to the end of the file are kept in a buf-
fer, and thus are limited in length. Unpredictable re-
sults can occur if character special files are "tailed."
The tail command will only tail at most the last 4096
bytes of a file regardless of its line count unless the b
option is used.

TAPEUTIL(C) TAPEUTIL(C)

Name

tapeutil ~ Utility program for a streaming tape drive.

Syntax

tapeutil [-e] [-r] ...

Description
If you invoke tapeutil without any arguments, the tape
operations are selected using an interactive menu. If you
specify command line options, the corresponding tape oper-
ation will be performed non-interactively once for each
occurrence of the option. Unknown options are ignored.
Options
-e Erases the tape once.
-r Retensions the tape once.
It is recommended that you erase the tape before each
archive(C) operation. If the tape does not stream when
using archive, retensioning and erasing the tape will
usually remedy this problem.

Related Commands

archive(C)

Examples
To retension the tape twice and erase it once, type:

tapeutil -r -r -e

TAR(C) TAR(C)

Name

tar - Copies files to and from the hard disk to tape or
floppy disk.

Syntax

tar [crtux] [bBefFilhklmnopsvVw 0,...,7] [arguments]
file ...

Description

The tar command saves and restores files on magnetic tape
or floppy disk. Tar's actions are controlled by a key
argument, which contains at least one function letter fol-
lowed by one or more function modifiers. Other arguments
to the command are file or directory names specifying
which files are to be dumped or restored. In all cases, a
directory name refers to the files and (recursively) sub-
directories of that directory.

Tar permits a file to extend across media boundaries.

Specify the function portion of the key by one of the fol-
lowing letters:

c Creates a new tape; writing begins at the beginning
of the tape instead of after the last file. When you
use this command, all previous data is erased.

r Writes the named files at the end of the tape (only
for seekable devices).

t Lists the named file each time it occurs on the tape.
If no file argument is given, all of the names on the
tape are listed.

u Adds the named file to the tape if it is not already
there or if it has been modified since last put on
the tape. This option can be slow (only for seekable
devices). :

ot

~

TAR(C) TAR(C)

X Extracts the named file from the tape. If the named
file matches a directory whose contents have been
written on the tape, this directory is (recursively)
extracted. The owner and mode are restored (if
possible). If no file argument is given, the entire
content of the tape or floppy is extracted. If mul-
tiple entries specifying the same file are on the
tape, the last version will overwrite all preceding
versions.

In addition to the key argument function, you can use the
following modifiers. Arguments to the modifiers are given
in the same order as the modifiers themselves.

b Causes tar to use the next argument as the blocking
factor for tape records. The default is 18 (a maxi-
mum of 1024 for the 386 series). Use the same block-
ing factor on the x (extract) as used on the ¢
(create) option.

This option should only be used with raw magnetic
tape archives (see f below).

Don't use the b option with archives that are going
to be updated. If the archive is on a disk file, the
b option should not be used at all, as updating an
archive stored in this manner can destroy it.

B Archives all files modified after the modification
date and time of the file you specify (instead of
/etc/bkupdate).

Can only be used with the I option. Also tar sets
the modification time of the given file after the
backup is complete. The B option sets the modifica-
tion time in the user-specified file. For example:

tar cvfbBI /dev/rct 1024 /etc/timefile ./*

The user-specified file is set to zero length when
its modification date is set.

e Prevents files from being split across volumes (tapes
or disks). If there is not enough room on the pre-
sent volume for a given file, tar prompts for a new
volume. This is only valid when you also specify the
k option.

TAR(C)

TAR(C)

Causes tar to use the next argument as the name of
the archive instead of /dev/tar. If the name of the
file is '-', tar writes to standard output or reads
from standard input, whichever is appropriate. Thus,
you can use tar to move hierarchies with the command

cd fromdir; tar cf - . | (ed todir; tar xf -)

You must use this option with magnetic tape and
add-on hard disks. The default is to floppy disk.

Causes tar to use the next argument as the name of a
file from which succeeding arguments are taken. A
dash (-) signifies that arguments are taken from the
standard input.

Archives the contents of the symbolically-linked
named files. Tar cv will only archive linkage in-
formation; tar chv will archive the contents.

i date time

Archives all files modified after date and time. The
format for date and time is:

MM/DD/YY,HH:MIN:SEC

Files modified before date and time will be skipped.
Any trailing portion may be omitted. DD, HH, MIN
default to 0; YY defaults to the current year. For
example:

tar cvif 12/22/86,04:00:00 /dev/rct files

Archives all files modified after the date and time

as defined by the modification time of the file
/etc/bkupdate. Also, sets the modification time of
/etc/bkupdate after the backup is complete. To use a
different file, see the B option.

Causes tar to use the next argument as the size of an
archive volume in kilobytes. The minimum value al-
lowed is 250. This value must be a multiple of the
blocking factor (9K by default). For tape, you can
specify the block size using the b option. Very

large files are split into "extents" across volumes.
When restoring from a multivolume archive, tar only
prompts for a new volume if a split file has been
partially restored.

=

TAR(C) TAR(C)

1 Tells tar to notify you if the link count of a dumped
file doesn't match the actual number of dumped links
to that file. If this option is not specified, no
error messages are printed.

m Tells tar not to restore the modification time; the
time of extraction then becomes the modification
time.

n Indicates the archive device is not a magnetic tape.
The k option implies this. Because it can seek over
files it wishes to skip, tar can quickly list and
extract the contents of an archive. Sizes are
printed in kilobytes instead of tape blocks.

o Causes extracted files to take on the user/group
identifier of the user running the program, rather
than those on the tape.

p Indicates that files are extracted using their orig-
inal permissions. It is possible that a regular user
may be unable to extract files because of the permis-
sion associated with the files or directories being
extracted.

s file
Runs the /bin/sum algorithm on the archive and writes
the resulting checksum in file.

Y Displays the name of each file it treats preceded by
the function letter. With the t function, v gives
more information about the tape entries than just the
name and path.

\Y Verifies the named file on the tape. Tar will com-
pare the tape file to the disk file and report any
file change or comparison errors. If no file argu-
ment is given, the entire contents of the tape or
floppy is verified. Tar will exit with an exit code
of 9 if there are any verify errors.

w Causes tar to display the action to be taken and file
name, then wait for user confirmation. If you type
y, the action is performed. Any other input causes
the file to be skipped.

TAR(C) _ TAR(C)

0,...,7
Selects the drive on which the archive is mounted.
This option should only be selected if you have
linked the appropriate /dev/mt to the desired device.

The floppy devices supported are:

floppy tracks/ double or sectors/ size
device inch single sided track (bytes) sectors
£d096ds15 96 double 15 1.15M 2300
£d096ds9 (default) 96 double 9 720K 1440
£4048d4s9 48 double 9 360K 720
£d048ds8 48 double 8 320K 640
£d048ss9 48 single 9 180K 360
£d048ss8 48 single 8 160K 320
Files
/dev/tar Default input/output device
/tmp/tar*
Examples

This command copies the directory /usr/john to floppy
disk(s).

tar ev /usr/john

This command copies the files on the floppy disk to the
directory /usr/john. The c¢d command is used first to make
sure you are in the correct directory.

ed /usr/john
tar xv

This command displays the contents of the floppy disk you
have in the drive.

tar tv

TAR(C) TAR(C)

This eommand pipes the tar tv command through the Ipr
command. This causes the contents of the floppy disk to
be printed out on your serial printer.

tar tv | lpr

This command copies files from a floppy disk device named
/dev/£d096ds15 (files are the names of files to archive,
and 1152 is the capacity of the disk in kilobytes). Argu-
ments to key letters are given in the same order as the
key letters themselves, thus the fk key letters have cor-
responding arguments /dev/fd096ds15 and 1152, If a file
is a directory, the contents of the directory are recur-
sively archived.

tar cvfk /dev/fd096ds15 1152 files

This command extracts all the files with the exact same
pathnames used when the archive was created.

tar xvf /dev/fd096ds15

This command copies the directory /usr/john to cartridge
tape(s).

tar cvfb /dev/rct 126 /usr/john

TEE(C) TEE(C)

Name

tee - Creates a tee in a pipe.

Syntax

tee [-al[-1 file.. 1

Description

Tee transcribes standard input to the standard output and
makes copies in the files. The options are:

-a Causes the output to be appended to the files rather
than overwriting them.

-i Ignores interrupts.

Examples

The following example illustrates the creation of tempo-
rary files at each stage in a pipeline:

grep ABC file | tee ABC.grep | sort | tee ABC.sort | more

This example shows how to tee output to the terminal
screen:

grep ABC file | tee /dev/tty | sort | uniq >final.file

TEST(C) TEST(C)

Name

test - Evaluates an expression.

Syntax

test expr
[expr]

Description

Test evaluates the expression expr and, if its value is
true, returns a zero (true) exit status; otherwise, a
non-zero (false) exit status is returned; test also sets a
non-zero exit status if there are no arguments. When per-
missions are tested, the effective user ID of the process
is used.

All operators, flags, and brackets (brackets used as shown
in the second Syntax line) must be separate arguments to
the test command; normally these items are separated by
spaces.

The following primitives are used to construct expr:

-r file True if file exists and is readable.

-w file True if file exists and is writable.

-x file True if file exists and is executable.

-f file True if file exists and is a regular file.
-d file True if file exists and is a directory.
-c file True if file exists and is a character

special file.

-b file True if file exists and is a block special
file.

-p file True if file exists and is a named pipe
(fifo).

TEST(C)

-u file

-g file

-k file

-s file

-t [fildes]

-z sl

-n sl

sl = 82

sl 1= 82

sl

nl -eq n2

These primaries
tors:

1
-a

-0

(expr)

TEST(C)
True if file exists and its set-user-ID bit
is set.

True if file exists and its set-group-ID
bit is set.

True if file exists and its sticky bit is
set.

True if file exists and has a size greater
than zero.

True if the open file whose file descriptor
number is fildes (1 by default) is
associated with a terminal device.

True if the length of string sl is zero.

True if the length of the string sl is
non-zero.

True if strings sl and s2 are identical.

True if strings sl and s2 are not
identical.

True if s1 is not the null string.

True if the integers nl and n2 are
algebraically equal. Any of the compari-
sons -ne, -gt, -ge, -1t, and -le may be
used in place of -eq.

may be combined with the following opera-

Unary negation operator.
Binary and operator.

Binary or operator (-a has higher prece-
dence than -o).

Parentheses for grouping. Notice also that
parentheses are meaningful to the shell
and, therefore, must be quoted.

TEST(C) : TEST(C)

See Also

find(C), sh(C)

b Notes

If you test a file you own (the -r, -w, or -x tests), but
the permission tested does not have the owner bit set, a
non-zero (false) exit status will be returned even though
the file may have the group or other bit set for that per-
mission. The correct exit status will be set if you are
super-user.

The = and != operators have a higher precedence than the
-r through -n operators, and = and != always expect argu-
ments; therefore, = and != cannot be used with the -r
through -n operators.

If more than one argument follows the -r through -n opera-
tors, only the first argument is examined; the others are
ignored, unless a -a or a -o is the second argument.

TIC(C) | TIC(C)

Name

tic - Compiles terminfo source.

Syntax
tic [-vIn]] [-c] file

Description

Tic translates a terminfo(M) file from the source format
into the compiled format. The results are placed in the
directory /usr/lib/terminfo. The compiled format is ne-
cessary for use with the library routines described in
curses(S).

-vn Output (verbose) to standard error trace infor-
mation showing tic's progress. The optional
integer n is a number from 1 to 10, inclusive,
indicating the desired level of detail of infor-
mation. If n is omitted, the default level is
1. If n is specified and greater than 1, the
level of detail is increased.

-C Only check file for errors. Errors in use=
links are not detected.

file Contains one or more terminfo(M) terminal de-
scriptions in source format (see terminfo(M)).
Each description in the file describes the capa-
bilities of a particular terminal. When a
use=entry-name field is discovered in a terminal
entry currently being compiled, tic reads in the
binary from usr/lib/terminfo to complete the
entry. (Entries created from file will be used
first. If the environment variable TERMINFO is
set, that directory is searched instead of
/usr/lib/terminfo.)

Tic duplicates the capabilities in entry-name
for the current entry, with the exception of
those capabilites that explicitly are defined in
the current entry.

If the environment variable TERMINFO is set, the compiled
results are placed there instead of /usr/lib/terminfo.

TIC(C) TIC(C)

Files
/usr/lib/terminfo/?/* Compiled terminal description
data base
See Also
terminfo(M), term(M) and curses(S) in the Reference
(CP, S, F)
Notes

Total compiled entries cannot exceed 4096 bytes. The name
field cannot exceed 128 bytes.

Terminal names exceeding 14 characters will be truncated
to 14 characters and a warning message will be printed.

When the -c option is used, duplicate terminal names will
not be diagnosed; however, when -¢ is not used, they will
be.

To allow existing executables from the previous release of
the UNIX System to continue to run with the compiled
terminfo entries created by the new terminfo compiler,
cancelled capabilities will not be marked as cancelled
within the terminfo binary unless the entry name has a '+'
within it. (Such terminal names are only used for inclu-
sion within other entries via a use= entry. Such names
would not be used for real terminal names.)

For example:
4415+n1, kfle, kf2e, ...
4415+base, kfl=\EOc, kf2=\EO04, ...

4415-n1 4415 terminal without keys.
use=4415+nl, use=4415+base.

The above example works as expected; the definitions for
the keys do not show up in the 4415-nl entry. However, if
the entry 4415+nl did not have a plus sign within its

name, the cancellations would not be marked within the
compiled file and the definitions for the function keys
would not be cancelled within 4415-nl.

TIC(C) ' TIC(C)

Diagnostics

Most diagnostic messages produced by tic during the com-
pilation of the source file are preceded with the approxi-
mate line number and the name of the terminal currently
being worked on.

mkdir ... returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments,
must be the list of terminal names.

Token after a seek not NAMES
Somehow the file being compiled changed during the
compilation.

Not enough memory for use_list element
or

Out of memory
Not enough free memory was available (malloc(S)
failed).

Can't open ...
The named file could not be created.

Error in writing ...
The named file could not be written to.

Can't link ... to ...
A link failed.

Error in re-reading compiled ...
The compiled file could not be read back in.

Premature EOF
The current entry ended prematurely.

Backspaced off beginning of line
This error indicates something wrong happened within
tic.

Unknown Capability - "..."
The named invalid capability was found within the
file.

-

TIC(C) TIC(C)

Wrong type used for capability "..."
For example, a string capability was given a numeric
value.

Unknown token type .
Tokens must be followed by '@' to cancel, ',' for
booleans, '#' for numbers, or '=' for strings.

"...": bad term name
or

Line ...: Illegal terminal name - "..."
Terminal names must start with a letter or digit
The given name was invalid. Names must not contain
white space or slashes, and must begin with a letter
or digit.

"...": terminal name too long.
An extremely long terminal name was found.

"...": terminal name too short.
A one-letter name was found.

"..." filename too long, truncating to "..."
The given name was truncated to 14 characters due to
the operating system file name length limitations.

"..." defined in more than one entry. Entry being used is
" "

An entry was found more than once.

Terminal name "..," synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin with a letter.
At least one of the names of the terminal should
begin with a letter.

Illegal character - "..."
The given invalid character was found in the input
file.

Newline in middle of terminal name
The trailing comma was probably left off of the list
of names.

Missing comma
A comma was missing.

TIC(C) - TIC(C)

Missing numeric value
The number was missing after a numeric capability.

NULL string value

The proper way to say that a string capability does
not exist is to cancel it.

Very long string found. Missing comma?
Self-explanatory

Unknown option. Usage is:
' An invalid option was entered.

Too many file names. Usage is:
Self-explanatory

"..." non-existent or permission denied
The given directory could not be written into.

"..." is not a directory
Self-explanatory

"...": Permission denied
Access denied.

"...": Not a directory
Tic wanted to use the given name as a directory, but
it already exists as a file

SYSTEM ERROR!! Fork failed!!!
A fork(S) failed.

Error in following up use-links. Either there is a loop
in the links or they reference non-existant terminals.
The following is a list of the entries involved:

A terminfo(M) entry with a use=name capability either
referenced a non-existant terminal called name or
name somehow referred back to the given entry.

TIME(C) TIME(C)

Name

time - Times a command.

%

Syntax

time command

Description
The given command is executed. After it is complete, time
prints the elapsed time during the command, the time spent
in the system, and the time spent in execution of the com-
mand. Times are reported in seconds.

The times are printed on the standard error output.

See Also

times(S)

TK(C) TK(C)

Name

tk - Paginator for the Tektronix 4014.

Syntax

tk [-NI1[-pL]1[-t]1I file]

Description

The output of tk is intended for a Tektronix 4014 termi-
nal. Tk arranges for 66 lines to fit on the screen, di-
vides the screen into N columns, and contributes an eight
space page offset in the (default) single-column case.
Tabs, spaces, and backspaces are collected and plotted.
At the end of each page, tk waits for a newline (empty
line) from the keyboard before continuing on to the next
page. In this wait state, the:-command "!command" will
send the command to the shell.

The command line options are:

-N Divide the screen into N columns and wait after the
last column,

-pL Set page length to L lines.
-t Don't wait between pages (for directing output to a
file).
See Also

pr(C)

TOUCH(C) TOUCH(C)

Name

touch - Updates access and modification times of a file.

Syntax

-touch [-amc 1 [mmddhhmm[yy] 1 file ...

Description
Touch causes the access and modification times of each
argument to be updated. If no time is specified (see
date(C)) the current time is used.

-a Causes touch to update only the access time (default
is ~am).

-c Silently prevents touch from creating the file if it
did not previously exist.

-m Updates only the modification time (default is -am).
The return code from touch is the number of files for
which the times could not be successfully modified
(including files that did not exist and were not created).

See Also

date(C), settime(C) and utime(S) in the Reference
(CP, S, F)

TPUT(C) TPUT(C)

Name

tput - Queries terminfo database.

Syntax

tput [-Ttype] capname

Description

The tput command uses the terminfo(M) database to make
terminal-dependent capabilities and information available
to the shell. This command outputs a string if the attri-
bute (capability name) is of type string, or an integer if
the attribute is of type integer. If the attribute is of
type boolean, tput simply sets the exit code (0 for TRUE,
1 for FALSE), and produces no output.

-'ftype Indicates the type of terminal. Normally this
flag isis unnecessary, as the default is taken
from the environment variable TERM.

capname Indicates the attribute from the terminfo data-
base. (See terminfo(M).)

Examples

This command echoes a clear-screen sequence for the cur-
rent terminal.

tput clear

This command prints the number of colurmis for the current
terminal.

tput cols

This command prints the number of columns for the 450 ter-
minal.

tput -T450 cols

TPUT(C) TPUT(C)

This command sets the shell variable "bold" to stand-out
mode sequence for the current terminal.
bold="tput smso"

This might be followed by a prompt:

This command sets the exit code to indicate if the current
terminal is a hardcopy terminal.

tput he

Files

/usr/lib/terminfo/?/* Terminal descriptor files
/usr/include/term.h Definition files
/usr/include/curses.h

TR(C)

Name

TR(C)

tr - Translates characters.

Syntax

tr [-cds 1 [stringl [string2 11

Description

Tr copies the standard input to the standard output with
substitution or deletion of selected characters. Input
characters found in stringl are mapped into the corres-
ponding characters of string2. Any combination of the
-cds options may be used:

-C

-S

Complements the set of characters in stringl
with respect to the universe of characters whose
ASCII codes are 001 through 377 octal.

Deletes all input characters in stringl.

Squeezes all strings of repeated output charac-
ters that are in string? to single characters.

The following abbreviation conventions may be used to in-
troduce ranges of characters or repeated characters into
the strings:

[a-2]

[a*n]

Stands for the string of characters whose
ASCII codes run from character a to character
z, inclusive.

Stands for n repetitions of a. If the first
digit of n is 0, n is considered octal; other-
wise, n is taken to be decimal. A zero or mis-
sing n is taken to be huge; this facility is
useful for padding string2.

The escape character, \, may be used in the shell to re-
move special meaning from any character in a string.
Also, a \ followed by 1, 2, or 3 octal digits stands for
the character whose ASCII code is given by those digits.

TR(C) TR(C)

The following example creates a list of all the words in
filel one per line in file2, where a word is taken to be a
maximal string of alphabetics. The strings are quoted to
protect the special characters from interpretation by the
shell; 012 is the ASCII code for newline:

tr -cs "[A-Z][a-z]" "[\012*]" <filel >file2

See Also

ascii(M), ed(C), sh(C)

Notes

Tr won't handle ASCII NUL in stringl or string2; always
deletes NUL from input.

TRA(C) TRA(C)

Name

tra - Copies out a file as it grows.

Syntax

tra [- 1 [-interval 1 [+limit] file

Description

Tra will copy out the contents of a growing file to the
standard output as it grows. It alternately copies out
the new material in the file and sleeps for interval
seconds; the default interval is 15 seconds. Limit can be
given to limit the total running time of the tra; the de-
fault is effectively infinite.

Tra normally copies out all the text currently in file
before beginning to watch for new text. The option "-"
alone causes only new material to be copied out.

Tra is particularly useful for alternately watching the
output file being written by a long shell script or a
long-running program and doing real work.

See Also

tail(C)

TRUE(C) TRUE(C)

Name

true - Returns with a zero exit value.

h

4

Syntax

true

Description

The true command returns with a zero exit value. False,
true's counterpart, returns a non-zero exit value. True
is typically used in shell procedures such as:

while true
do

command

done

Related Commands

sh(C), false(C)

TSET(C)

Name

TSET(C)

tset - Sets terminal modes.

Syntax

tset

Description

The t

[- 1 [-eEhkrsIQS] [-m [ident][test baudrate]:typel
[typel

set command causes terminal-dependent processing such

as setting erase and kill characters or setting and reset-
ting delays. It is driven by the /etc/ttytype and
/usr/lib/terminfo/* files.

Ports
identi

for which the terminal type is indeterminate are
fied in /etc/ttytype as dialup, plugboard, etc. The

port name is determined by a ttyname call on the diagnos-
tic output. If the port is not found in /etc/ttytype the
terminal type is set to unknown.

Options

Prints the terminal type on the standard output; this
can be used to get the terminal type by saying:

set termtype = “tset -°

If no other options are given, tset operates in "fast
mode" and only outputs the terminal type, bypassing
all other processing.

Sets the erase character to be the character ¢ on all
terminals. To override this option, enter -e#. The
default for ¢ is the backspace character on the ter-

minal, usually [[Siimsl

Operates only on terminals that can backspace (same
as -e).

Forces tset to search /etc/ttytype for information,
and to overlook the environment variable, TERM.

TSET(C)

TSET(C)

Suppresses outputting the terminal initialization
strings.

Sets the kill character to ¢ (KS33mWl] is the default
for ¢). No kill processing is done if -k is not spe-
cified. In all of these flags, ""X" (where X is any
character) is equivalent to [[CRgEE.

-m[ident][test baudratel:type

~-r

-S

-S

Allows you to specify how a given serial port is to
be mapped to an actual terminal type. The option
applies to any serial port in /etc/ttytype whose type
is indeterminate (e.g., dialup, plugboard, etc.).

The type specifies the terminal type to be used and
ident identifies the name of the indeterminate type
to be matched. If no ident is given, all indetermi-
nate types are matched. The test baudrate defines a
test to be performed on the serial port before the
type is assigned. The baudrate must be as defined in
stty(C). The test may be any combination of: >, =,
<, @ and !.

If the type begins with a question mark, the system
asks you if you really want that type. A null re-
sponse means to use that type; otherwise, you can
enter another type to be used instead. (The question
mark must be escaped to prevent filename expansion by
the shell.)

Suppresses the printing of the "Erase set to" and
"Kill set to" messages.

Prints the terminal type on the diagnostic output.
Outputs the "setenv" commands (for csh(C)), or
"export" and assignment commands (for sh(C)) as de-
termined by user's login shell.

Outputs only the strings to be placed in the environ-
ment variables.

Tset is most useful when included in the .login (for
csh(C)) or .profile (for sh(C)) file executed automatical-
ly at login, with -m mapping used to specify the terminal
type you most frequently dial in on.

TSET(C) TSET(C)

Examples

This command sets your terminal to the parameters con-
tained under terminal type gt42 in your
/usr/lib/terminfo/* file.

tset gt42
This command sets the terminal parameters for an adm3a
terminal if a dialup line is used; otherwise, it prompts
for the terminal type.

tset -m dialup\>300:adm3a -m unknown:\? -e"Z -k°U
where

-m mapping flag

dialup identifier

\ tells the system to take the next character
literally
>300 speed of the baud rate test

adm3a terminal type

unknown specifies "unknown" terminal type

? tells the system to ask the user if he really
wants that terminal type

-e"Z sets the erase character to &334

kU sets the kill character to

To use the information created by the -s option for the
Bourne shell, {sh(C)), repeat these commands:

tset -s...> /tmp/tset$$
/tmp/tset$$
rm -f /tmp/tset$$

TSET(C) TSET(C)

To use the information for csh(C), use the following:

set noglob

set term=('tset -S....")

J setenv TERM $term([1]
setenv TERMCAP "$term[2]"
unset term
unset noglob

Files
/etc/ttytype Port name to terminal type map
database
/usr/lib/terminfo Terminal capability database
See Also

stty(C), ttys(M), termcap(M)

Credit
i
This utility was developed at the University of California
at Berkeley and is used with permission.

TSORT(C) TSORT(C)

Name

tsort - Sorts a file topologically.

Syntax

tsort [file]

Description
Tsort produces on the standard output a totally ordered
list of items consistent with a partial ordering of items
mentioned in the input file. If no file is specified, the
standard input is assumed.
The input consists of pairs of items (nonempty strings)
separated by blanks. Pairs of different items indicate
ordering. Pairs of identical items indicate presence, but
not ordering.

See Also

lorder(CP) in the Reference (CP, S, F)

Diagnostics
Odd data: There is an odd number of fields in the input
file.

Notes

The sort algorithm is quadratic, which can be slow if you
have a large input list.

TTY(C) ' TTY(C)

Name

" tty - Gets the name of the terminal.

Syntax

tty [-1] [-s]

Description

Tty prints the path name of the user's terminal. The op-
tions are:

-1 Prints the synchronous line number to which the
user's terminal is connected, if it is on an active
synchronous line,

-S Inhibits printing of the terminall path name, al-
lowing one to test just the exit code.

The exit code is:
2 if invalid options were specified,
0 if standard input is a terminal,
1 otherwise.

Diagnostics

"not on an active synchronous line" if the standard input
is not a synchronous terminal and -1 is specified.

'"not a tty" if the standard input is not a terminal and -s
is not specified.

(BLANK)

UA(C) UA(C)

Name

ua - User administration.

Syntax

ua [-h]

Description
You must be the super-user to access these commands.

Use the ua command for the addition, deletion, and modifi-
cation of users and groups. It provides an effective
means for maintaining the system password (/etc/passwd)
and system group (/etc/group) files.

The command is implemented using the termcap(M) and
curses(S) facilities from UC Berkeley. It must be run
interactively from a terminal defined in /etc/termcap.

Options

-h Displays the program's current version and copy-
right notice as well as a short description of
the program's functions.

After you enter the command, ua displays its legal com-
mands at the top of the screen. Select a command and en-
ter the first letter of the command at the "Command?"
prompt at the bottom of the screen. Full command words
are not acceptable as input. The case of each word is
significant: "group" is not the same as "Group."

The ua screen commands are summarized as follows:

Add Adds a new user or group. After you specify the
user or group and a new name, the system immedi-
ately enters the change command to allow modifi-
cation of the new entry. At the conclusion of
the change command, the addition is made. 1If a
directory already exists for a new user, it is
not removed. All files under /etc/newuser are
copied to the new directory during the user in-

UA(C)

Delete

Show

Change

Help

UA(C)

stallation process. Typically, /etc/newuser
will contain the standard versions of the fol-
lowing files: .cshre, .login, .logout, .profile.

The initial value given to a new user ID is one
more than the maximum user ID currently in use.
The same is true for a new group ID.

Deletes an existing user or group. When you
delete a user, the files and directories in that
user's home directory will be deleted, but any
other files owned by this user in the system
will not be deleted. Thus, some files may have
an "unknown" owner after a user is deleted.
And, if a user is later added with the same user
ID as the deleted user, these files will sud-
denly belong to the new user. The same problem
may arise with the deletion and later addition
of a group.

Shows an individual user or group or all users
or groups. The word "show" may be omitted if
desired.

Modifies any existing user or group. When you
select this command, a menu appears so you can
select the item to be modified. Typing o
at a field change request empties th
field. When you change a user or group, the
corresponding entry in /etc/passwd is also
changed.

Changing a user's directory causes a renaming of
that directory. Make sure that the entry in
/etc/passwd remains consistent.

If you want to move a user's directory from one
file system to another, use cp -r to copy the
user's directory to a new directory.

Displays a short informative text on the screen,
explaining each of the commands. "?" is equiva-
lent to help. The message is the same one you
get when you enter the ua command with the "-1
option.

Escapes to the shell (see the sh(C) command).

=

UA(C)

UA(C)

! Escapes to the shell (see the sh(C) command).
If no arguments are given, a shell is invoked
which will continue until it receives an
end-of-file. Then ua resumes. If arguments are
present, a shell is invoked with the "-c" option
and the arguments are passed along. Ua resumes
immediately thereafter.

Quit Immediately terminates ua and returns to the
system.

Any command that is not understood by ua causes an appro-
priate error message to be displayed. As a side-effect,
the working portion of the screen is cleared.

The ua command does not distinguish between and
EXXXW. They may be used interchangeably. .

If the screen becomes "dirty" for some reason, you can
force ua to clear it and redisplay the current contents by
transmitting an ASCII DC2. This is [(&jddB:ll on most ter-
minals. ~

The ua command understands the Backspace function (as ob-
tained from /etc/termcap). In addition, any time a word
is partially formed, the key will cause the partial
word to be discarded and input restarted.

The ua command interprets the Cancel key to mean "termi-
nate the current operation." The Cancel key is
on most terminals. The Cancel key is more powerful

than JE38, but not as powerful as "interrupt."

The ua command will immediately return to the top-level
command interpreter upon receipt of an interrupt signal.
Such a signal is usually generated by [O8 Break |

The ua command creates a special user named "standard" in
/etc/passwd if one is not already present. This entry is
used as the template for installing new users. Thus, if
you want all new users defaulted to the standard shell
(/bin/sh) for the shell field, it is only necessary to

update the shell field in the "standard" user.

Before adding a new user with a new group, the new group
should be added. Otherwise, ua has no way to properly
create the new entry in /etc/passwd since it contains
group numbers rather than group names.

UA(C)

UA(C)

During program initialization uwa copies /etc/passwd and
/etc/group to /etc/opasswd and /etc/ogroup, respectively.
Thus, if a mistake or disaster occurs during the use of
this program, the user may recover the prior state of
either or both files.

Files
/etc/passwd
/etc/group
/etc/opasswd
/etc/ogroup
/etc/newuser
/etc/termcap

/tmp/passwd
/tmp/group

See Also

Used for login name to user ID conversions
Used for group name to group ID conversion
This file is a copy of /etc/passwd before
any modifications are made

This file is a copy of /etc/group before
any modifications are made

Directory containing files which will be
installed in a new user's account

Contains terminal attribute descriptions
Temporary file

Temporary file /etc/ua.lock lock file

group(M), passwd(M)
Operations Guide

UMASK(C) UMASK(C)

Name

umask - Sets file-creation mode mask.

Syntax

umask [nnn}

Description

The user file-creation mode mask is set to nnn. The three
octal digits refer to read/write/execute permissions for
owner, group, and others, respectively. Only the
low-order 9 bits of cmask and the file mode creation mask
are used. The value of each specified digit is
"subtracted" from the corresponding "digit" specified by
the system for the creation of any file (see the create
files). This is actually a binar