

ST9040 FAMILY
8/16 BIT MCU

DATABOOK

1st EDITION

APRIL 1993

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF SGS-THOMSON M1croelectromcs.
As used herein:

1. L1fe support dev1ces or systems are those wh1ch (a) are
intended for surgical1mplant mlo the body, or (b) support
or sustam life, and whose failure to perform, when prop­
erly used 1n accordance w1th instructions for use prov1ded
w1th the product, can be reasonably expected to result 1n
significant mjury to the user.

2. A critical component IS any component of a life support
dev1ce or system whose failure to perform can reason­
ably be expected to cause the failure of the life support
device or system, or to affect 1ts safety or effectiveness.

TAtBlE OF CONTENTS

GENERAl INDEX Page 5

INTRODUCTION 12

ST9 FAMILY OVERVIEW 15

DEVELOPMENTS TOOLS 61

DATASHEETS 83

ST9040 16K ROM MCU 85
ST90E40/T40 EPROM & OTP version 305
ST90R40 ROMLess version 329

APPLICATION NOTES 337

GENERAL INDEX
Pages

Number

GENERAL INDEX 5

INTRODUCTION 12

ST9 FAMILY OVERVIEW .. 15

DEVELOPMENTS TOOLS 61

DATASHEETS ... 83

ST9040 ... 85

DESCRIPTION . 88
1.1 GENERAL DESCRIPTION.. 88

1.2 PIN DESCRIPTION 89

1.2.1 1/0 Port Alternate Functions.. 89

2 CORE ARCHITECTURE 93
2.1 CORE ARCHITECTURE .. 93

2.2 ADDRESS SPACES . 93

2.2.1 Register File.. 93
2.2.2 Addressing Registers . 95
2.2.3 Input/Output Ports . 95

2.3 SYSTEM REGISTERS . 97

2.3.1 Central Interrupt Control Register 97
2.3.2 Flag Register . 98
2.3.3 Register Pointing Techniques . 99
2.3.4 Page Configuration ... 101
2.3.5 Mode Registers .. 101
2.3.6 Stack Pointers ... 102

3 MEMORY ... 105
3.1 INTRODUCTION ... 105

3.2 PROGRAM SPACE DEFINITION ... 106

3.3 ROM LESS OPTION SUMMARY ... 106

3.4 DATA SPACE DEFINITION ... 106

3.5 EEPROM .. 106

3.5.1 Introduction .. 106
3.5.2 EEPROM Programming Procedure ... 107
3.5.3 Parallel Programming Procedure .. 108
3.5.4 EEPROM Programming Voltage .. 109
3.5.5 EEPROM Programming Time ... 109
3.5.6 EEPROM Interrupt Management .. 109
3.5.7 EEPROM Control Register .. 109

------------------------- ~~~~;~~~~~~ -------------------------
5

GENERAL INDEX
Pages

Number

4 INTERRUPTS... 109
4.1 INTRODUCTION ... 109

4.2 INTERRUPT VECTORIZATION .. 109

4.3 INTERRUPT PRIORITY LEVEL ARCHITECTURE 111

4.4 PRIORITY LEVEL ARBITRATION . 111

4.4.1 Concurrent Mode . 112
4.4.2 Nested Mode . 115

4.5 EXTERNAL INTERRUPTS ... 118

4.6 TOP LEVEL INTERRUPT .. 120

4.7 ON-CHIP PERIPHERAL INTERRUPTS ... 120

4.8 WAIT FOR INTERRUPT INSTRUCTION .. 122

4.9 INTERRUPT RESPONSE TIME ... 122

4.10 INTERRUPT REGISTERS .. 124

5 ON-CHIP DMA . 127
5.1 INTRODUCTION ... 127

5.2 DMA PRIORITY LEVEL ARCHITECTURE .. 127

5.3 DMA TRANSACTIONS . 129

5.4 DMA CYCLE TIME ... 129

5.5 THE SWAP-MODE ... 132

5.6 DMA REGISTERS ... 132

6 CLOCK .. 133
6.1 INTRODUCTION ... 133

6.2 CLOCK MANAGEMENT .. 133

6.3 CLOCK CONTROL REGISTER .. 134

6.4 OSCILLATOR CHARACTERISTICS .. 135

7 RESET .. 137
7.1 INTRODUCTION ... 137

7.2 RESET GENERATION ... 137

7.3 RESET PIN TIMING .. 137

7.4 PROCESSOR SYNCHRONIZATION UNDER RESET 137

7.5 EPROM PROGRAMMING PIN .. 138

------------------------- ~~~~~!tl~~:~~ -------------------------
6

GENERAL INDEX
Pages

Number

8 EXTERNAL MEMORY INTERFACE ... 141
8.1 INTRODUCTION ... 141

8.2 CONTROL SIGNALS .. 141

8.3 MEMORY ACCESS CYCLE ... 143

8.4 STRETCHED ACCESS CYCLE .. 143

8.5 SHARED BUS .. 146

8.6 PORTS PO, P1, P6 INITIALIZATION AFTER RESET 147

8.7 ROMLESS FUNCTION ... 147

8.8 PIPELINE .. 148

8.9 "SPURIOUS" MEMORY ACCESSES .. 149

8.10 REGISTERS .. ." 150

9 1/0 PORTS . 151
9.1 INTRODUCTION ... 151

9.2 CONTROL REGISTERS .. 151

9.3 PORT BIT STRUCTURE AND PROGRAMMING 152

9.4 ALTERNATE FUNCTION ARCHITECTURE ... 155

9.5 SPECIAL PORTS ... 156

9.5.1 Bit Structure For AID Converter Inputs .. 156

9.6 1/0 STATUS AFTER WFI, HALT AND RESET .. 156

10 HANDSHAKE/DMA CONTROLLER ... 157
10.1 INTRODUCTION ... 157

10.2 PROGRAMMABLE HANDSHAKE MODES ... 158

1 0.2.1 Input Handshake .. 158
1 0.2.2 Output Handshake ... 160
1 0.2.3 Bidirectional Handshake ... 162
1 0.2.4 Mapping an ST9 onto the memory bus of another ST9 163

1 0.3 PROGRAMMABLE DMA MODES ... 164

10.3.1 DMA Transfers Driven By Timer CAPTO Channel With Handshake 164
1 0.3.2 DMA Input transfers with two line input handshake 164
1 0.3.3 DMA output transfers with two lines output handshake 165
1 0.3.4 DMA input transfers with one line input handshake 165
1 0.3.5 DMA output transfers with one line output handshake 166
1 0.3.6 DMA inpuVoutput transfers with bidirectional handshake 166
1 0.3.7 DMA Transfers Driven By Timer CompO Channel With Handshake 167

1 0.4 HANDSHAKE/DMA CONTROL REGISTERS .. 168

----------- Gi_ SCS·niOMSON
'J 1, l\lii!:~CQJ~l~li:VI<I©I'iilli:@

7

GENERAL INDEX
Pages

Number

11 SERIAL PERIPHERAL INTERFACE ... 171
11.1 INTRODUCTION ... 171

11.2 FUNCTIONAL DESCRIPTION .. 172

11.2.1 Input Signal Description ... 172
11.2.2 Output Signal Description .. 172

11.3 INTERRUPT STRUCTURE ... 173

11.4 SPI REGISTERS ... 174

11.5 WORKING with DIFFERENT PROTOCOLS ... 175

11.5.1 12C-bus Interface .. 175
11.5.2 S-Bus Interface .. 178
11.5.3 1M-Bus Interface .. 179

12 TIMER/WATCHDOG ... 181
12.1 INTRODUCTION ... 181

12.2 FUNCTIONAL DESCRIPTION .. 182

12.2.1 Timer/Counter Input Modes .. 182
12.2.2 Timer/Watchdog Output Modes . 182
12.2.3 Timer/Counter Control. ... 182
12.2.4 Timer/Watchdog Mode ... 183

12.3 TIMER/WATCHDOG INTERRUPT ... 184

12.4 TIMER/WATCHDOG REGISTERS .. 186

13 MULTIFUNCTION TIMER ... 187
13.1 INTRODUCTION ... 187

13.2 FUNCTIONAL DESCRIPTION .. 189

13.2.1 One Shot Mode .. 189
13.2.2 Continuous Mode ... 189
13.2.3 Trigger And Retrigger Modes ... 189
13.2.4 Gate Mode .. 189
13.2.5 Capture Mode ... 189
13.2.6 Up/Down Mode .. 189
13.2.7 Free Running Mode .. 189
13.2.8 Monitor Mode ... 190
13.2.9 Autoclear Mode .. 190
13.2.1 0 Bivalue Mode ... 190
13.2.11 Parallel Mode ... 190
13.2.12 Autodiscriminator Mode ... 190

13.3 INPUT PIN ASSIGNMENT .. 191

13.3.1 TxiNA = 1!0- TxiNB = 1!0 .. 191
13.3.2 TxiNA = 1!0- TxiNB =Trigger ... 191
13.3.3 TxiNA = Gate- TxiNB = 1!0 .. 191
13.3.4 TxiNA = Gate- TxiNB =Trigger .. 192
13.3.5 TxiNA = 1!0 - TxiNB = Ext. Clock .. 192

-------------------------- ~~~~;~~~~?c~ --------------------------
8

GENERAL INDEX
Pages

Number

13.3.6 TxiNA =Trigger- TxiNB = 1/0... 192
13.3.7 TxiNA = Gate - TxiNB = Ext. Clock . 192
13.3.8 TxiNA = Trigger- TxiNB =Trigger . 192
13.3.9 TxiNA =Clock Up- TxiNB =Clock Down.. 192
13.3.1 0 TxiNA = Up/Down- TxiNB = Ext Clock... 192
13.3.11 TxiNA =Trigger Up - TxiNB =Trigger Down . 192
13.3.12 TxiNA=Up/Down-TxiNB=I/0 .. 193
13.3.13 Autodiscrimination Mode . 193
13.3.14 TxiNA =Trigger- TxiNB = Ext. Clock .. 193
13.3.15 TxiNA = Ext. Clock- TxiNB =Trigger .. 193
13.3.16 TxiNA =Trigger- TxiNB =Gate . 193

13.4 OUTPUT PIN ASSIGNMENT... 194

13.5 INTERRUPT AND DMA 196

13.5.1 Timer Interrupt 196
13.5.2 Timer DMA . 196
13.5.3 DMA Pointers.. 196
13.5.4 Priority During The DMA Transactions .. 197
13.5.5 The DMA Swap Mode . 197
13.5.6 The DMA End Of Block Interrupt Routine.. 198
13.5.7 DMA Software Protection . 198

13.6 TIMER DMA EXTERNAL MODES ON 1/0 PORTS . 198

13.6.1 CMO Channel External Mode 198
13.6.2 CPO Channel In External Mode . 198
13.6.3 DMA Channel Synchronization . 199

13.7 REGISTER DESCRIPTION ... 200

13.7.1 Register a (REGOR) Registers .. 201
13.7.2 Register 1 (REG1 R) Registers .. 201
13.7.3 Compare 0 (CMPOR) Registers .. 201
13.7.4 Compare 1 (CMP1 R) Registers ... 201
13.7.5 Timer Control Register (TCR) ... 202
13.7.6 Timer Mode Register (TMR) ... 202
13.7.7 External Input Control Register(ICR) .. 203
13.7.8 Prescaler Register (PRSR) .. 204
13.7.9 Output A Control Register (OACR) .. 204
13.7.1 0 Output B Control Register (OBCR) .. 205
13.7.11 Flag Register (FLAGR) ... 205
13.7.12 lnterrupt/DMA Mask Register (IDMR) ... 206
13.7.13 DMA Counter Pointer Register (DCPR) 206
13.7.14 DMA Address Pointer Register (DAPR) .. 207
13.7.15 Interrupt Vector Register (IVR) .. 207
13.7.16 lnterrupt!DMA Control Register (IOCR) ... 208
13.7.17 1/0 Connection Register (IOCR) .. 208

9

GENERAL INDEX
Pages

Number

14 SERIAL COMMUNICATIONS INTERFACE .. 209
14.1 INTRODUCTION ... 209

14.2 FUNCTIONAL DESCRIPTION .. 210

14.2.1 Serial Frame Format .. 210
14.2.2 Clocks And Serial Transmission Rates 213
14.2.3 Input Signals ... 215
14.2.4 Output Signals ... 215

14.3 INTERRUPTS AND DMA .. 215

14.3.1 Interrupts ... 215
14.3.2 DMA ... 217

14.4 CONTROL REGISTERS .. 217

15 A/D CONVERTER 225
15.1 INTRODUCTION ... 225

15.2 FUNCTIONAL DESCRIPTION .. 226

15.2.1 Operational Modes ... 226
15.2.2 Synchronisation .. 226
15.2.3 Analog Watchdog .. 227
15.2.4 Power down Mode ... 227

15.3 INTERRUPT ... 229

15.4 REGISTERS ... 230

15.4.1 Register Mapping .. 230
15.4.2 Data Registers (DiR) .. 230
15.4.3 Lower Threshold Registers (LTiR) ... 231
15.4.4 Compare Result Register (CRR) .. 231
15.4.5 Control Logic Register (CLR) ... 232
15.4.6 Interrupt Control Register (ICR) .. 233
15.4.7 Interrupt Vector Register (IVR) ... 233

16 SOFTWARE DESCRIPTION .. 235
16.1 ADDRESSING MODES ... 235

16.1.1 Register Addressing Modes .. 238
16.1.2 Memory Addressing Modes .. 239

16.2 INSTRUCTION SET .. 242

16.2.1 ST9 Processor Flags .. 248
16.2.2 Condition Codes .. 248
16.2.3 Notation ... 249

16.3 INSTRUCTION SUMMARY . 251

REGISTER MAP .. 283

17 ELECTRICAL CHARACTERISTICS ... 287

----------- Gi_ SGS·llfOMSON -----------
• 1 ,, i:ll©lil:!!l~C.~©ul'ilG!Il'!l©~

10

GENERAL INDEX

ST90E40

Pages
Number

ST90T 40 . 305

1 DESCRIPTION . 308

1.1 GENERAL DESCRIPTION .. 308

1.2 PIN DESCRIPTION .. 309

1.3 1/0 PORT ALTERNATE FUNCTIONS ... 309

1.4 MEMORY ... 312

1.5 EPROM PROGRAMMING .. 312

1.5.1 Eprom Erasing . 312

1.5.1 A/D CONVERTER . 325

ST90R40 .. , 329

1 DESCRIPTION .. 331

1.1 GENERAL DESCRIPTION 331

1.2 PIN DESCRIPTION ... 332

1.3 1/0 PORT ALTERNATE FUNCTIONS ... 332

1.4 MEMORY ... 335

APPLICATION NOTES .. 337

AN411/1292 SYMBOLS.INC ... 339

AN413/1292 INITIALIZATION OF THE ST9 ... 369

AN415/1092 USING THE FC-bus PROTOCOL WITH THE ST9 413

AN418/1292 EXTERNAL DMA MODE-I/O DATA TRANSFER
WITH TIMER 447

AN421/1292 STACK OVERFLOW DETECTION USING
WATCHDOG/TIMER ... 477

AN426/1192 FREQUENCY DOUBLER DEMONSTRATION
SYSTEM .. 483

'="= Sl:iS·THOMSON ----------- ~""!/, """'©~m1~©¥1i!GJI!O©~ -----------

11

INTRODUCTION

ST9 APPLICATION TAILORED MCU
The ST9 family of 8/16 bit Microcontrollers (MCUs) was designed after the requirements of the most advanced
applications in computer, consumer, telecom, industrial and automotive Segments.

Processed with the same proprietary CMOS EPROM and EEPROM technologies that have established SGS­
THOMSON as a world leading supplier of non-volatile memories, the ST9 provides high speed computing with
reduced power consumption.
Built around a high performance, register based core, the ST9 family offers different program and data memory
sizes and a wide ran[je of on-chip peripherals to meet the needs of most systems.
Time to market is minimized with ST9's well defined, socket compatible, evolution path, from application evalu­
ation with EPROMs, to prototyping using OTPs, up to the high volume production using cost effective ROM
versions.
All standard ST9 devices include a Serial Peripheral Interface, a Watchdog Timer to ensure system integrity
against externally generated malfunctions, bit configurable 1/0s, prioritizable Interrupts for real-time data han­
dling, and DMA for fast data transfers with handshake (HSHK).

In addition ST9 family variants include up to three Multi-Function Timers, two Serial Communication Interfaces
(SCI), an Analog to Digital converter (AID) and On-Screen Display and Data-Slicer for TV control.

REGISTER BASED ARCHITECTURE
The Register based architecture provides more efficient data handling and reduced code size compared to an
accumulator based MCU. It also provides the capability for fast context switching.
224 ofthe 256 8-bit Registers in the ST9 Register File are available as accumulators, index registers, or stack pointers
and can be cascaded to perform all these functions as 16-bit registers. The remaining registers are dedicated to system
and peripheral control.
This architecture is common to all ST9 devices.
FLEXIBLE 1/0
The flexibility of the ST9 1/0 pins allow designers to match the MCU to the application, and not the application
to the MCU.
Most 1/0s can be individually programmed as input (TTL or CMOS thresholds), output (open-drain or push­
pull), bidirectional, or as the Alternate Function of a peripheral, such as a Timer or an AID Converter.

COMPREHENSIVE SCI
Serial communication is easily implemented, using formats and facilities offered by the ST9 Serial Communi­
cation Interface.

2
0
a:
a.
w

:2:
0
a:
a.
w
w

MEMORY BUS

:2:
0
a:

I
WI
a:, g,

I
:::II
a.,
o,

I

w
...J
u::
a:
w
1-en
a w
a:

I

I
I
I
I
I
I
I
I

~
I

(!)

t! 0
I c a: :c 0 I {) a. I !;;

0 I 3:
t! I ci: a: I w
0 I ::;
a.

I f=

I
I
I
I 0::
I en
I

I
I
I

STANDARD
PERIPHERALS

/1~

REGISTER BUS/INTERRUPT-DMA BUS

ST9 Architectural Block Diagram

12

DEDICATED
PERIPHERALS

z
W>
Wet
li:...J
ua.
en en
:Zc
0

1
a:
w
u
::::;
en

~ c

VA001844

INTRODUCTION

This peripheral provide full flexibility in character format (5,6,7,8 databits), odd, even or no parity, address bit,
1, 1.5, or 2 stop bits in asynchronous mode, and an integral baud rate generator allowing communication at up
to 370k baud in asynchronous mode or 1.5Mbyte/s in synchronous mode.
Industrial, telecom and communication systems users can furthermore benefit from the self-test and address
bit wake-up facility offered by the character search mode.
FAST A/D WITH ANALOG WATCHDOG

Up to 8 analog input voltages can be sequentially converted by the Analog to Digital converter including on-chip
sample and hold.

The 11 !!S conversion time, and the possibility to trigger conversions either by the on-chip timers, or by external
sources, allows real time processing of analog data.
CPU loading is also reduced by the analog watchdog on two channels, the peripheral interrupts the ST9 when
the analog input voltage moves out of a preset threshold window.
UNIVERSAL SPI

A universal Serial Peripheral Interface, providing basic 12C-bus, Microwire-Bus and 8-BUS functionality, allows
efficient communication with low-cost external peripherals or serial access memories such as EEPROMs.

MULTI-FUNCTION TIMERS

The 16 bit up/down counter operating in 13 modes gives the ST9 Multi-function Timer the possibility to cover
most application timing requirements.

Two input pins, programmable as external clock, gate or trigger, allow 16 modes of operation, including auto­
discrimination of the direction of externally generated signals.

Pulse Width Generation can easily be implemented, using the overflow/underflow signal and the two 16 bit
comparison registers, each of them able to independently set, reset, toggle or ignore two output bits.

The Multifunction Timer outputs may also generate interrupts for system scheduling, and trigger DMA trans­
actions of a data byte to or from a data table in memory through an 1/0 Port with handshake.

r== SCiS·THOMSON
--------------,/, i:ll©fl:!l~11ii:C:u~©I'!O©®

13

INTRODUCTION

ON-SCREEN DISPLAY

Interactive information display for television control is easily implemented with the powerful ST9 On-Screen
Display. With up to 34 characters in 15 rows, and colour, italic, underline, flash, tranparent and fringe options,
the 128 character set can be adapted for all needs.

DATA-SLICER

Closed Caption Data can be easily extracted from the video signal with the ST9 Data Slicer. When used in
conjunction with the ST9 On-Screen Display, a powerful TV controller can be achieved with the minimum of
components.

POWERFUL INSTRUCTION SET

The ST9 has 14 addressing modes and instructions (including multiply, divide, table search and block move)
to cover all data manipulation needs, bit, byte and word, at the speed required by even the most demanding
control application.

Its instruction set was conceived to facilitate the software designer's task, and to improve programming efficiency.

FULL DEVELOPMENT SUPPORT
ST9 Development Tools are designed for application development efficiency.

A high level macro assembler (with IF/THEN, DO/WHILE, SYSTEM/CASE, PROCedure C language con­
structs in the assembler) is available, as well as an incremental linker able to link up to 16 Mbytes of program
and data, a library maintainer for archiving common software routines and Software Simulation of the code
execution, allowing off-line code development and timing analysis.

The validated ANSI standard C Compiler generates optimised code for the ST9. In addition a GNU C cross­
compiler and Linker allows development support under the Microsoft Windows 3TM environment.

Cost effective emulation is provided either through a software module running on standard PCs, or with the
ST9 Starter Kit, offering hardware emulation capability.

Full real time hardware emulation is provided by the ST9-HDS system.

--------------~ ~~~~m~~~~!:
14

ST9 FAMILY OVERVIEW

15

ST9 FAMILY OVERVIEW

All dev1ces have 256 byte Reg1ster F1le w1th 224 General Purpose Reg1sters (Accumulators/RAM), TWO and SPI Penpherals

DEVICE

ST9026
ST9027
ST9028
ST90E26
ST90E27
ST90E28
ST90T26
ST90T27
ST90T28
ST90R26

ST9030
ST90E30
ST90T30
ST90R30

ST9032

ST9036
ST90E36
ST90T36

ST9040
ST90E40
ST90T40
ST90R40

ST90R50

ST90R51

ST9054
ST90E54
ST90R54

ST9292
ST92E92
ST92T92

ST9293
ST92E93
ST92T93

Keys:
TWO

SPI

MFT

1/0

Notes:

EPROM
ROM OTPROM111

x8 xB

16K
16K
16K

16K
16K
16K
16K111

16K111

16K11 1

8K
8K
8K111

-

12K

16K
16K
16KI'I

16K
16K
16K111

-

-

32K
32K

24K
24K
24K1'1

32K
32K
32K111

Timer/Watchdog

Serial Peripheral Interface

Multi-Function Timer

In :TLUCMOS, Out : OD/PP
Alternate Functional Penpheral

1 OTP ROM = One T1me Programmable
2 6 bit NO Converter

RAM
x8

256
256
256
256
256
256
256
256
256
256

256
256
256

256
256
256
256

1280
1280
1280

384
384
384

640
640
640

EEPROM
x8

512
512
512
512

SCI
NO
BSS

HSHK

MFT SCI AiD BSS MAX HSHK
Inputs

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

2 1 8
2 1 8
2 1 8
2 1 8

2 1 8

2 1 8

2 1 8
2 1 8
2 1 8
2 1 8

3 2 8 1

3 2 8 1

3 2 8 1
3 2 8 1
3 2 8 1

3{2)
3(2)
3(2)

4(2)
4{2)
4{2)

Senal Communications Interface

8 bit 8 channel ND Converter

1/0

40
32
36
40
32
36
40
32
36
32

56
56
56
40

56

40
40
40

56
56
56
40

56

54

72
72
72

41
41
41

41
41
41

Bankswitch logic 16M byte address range

#Ports with Handshake Capability

1
1
1
1
1
1
1
1
1
1

1
1
1
1

1

1

1
1
1
1

2

2

2
2
2

17

ST9 FAMILY OVERVIEW

OTHER
DEVICE

FEATURES

ST9026
ST9027
ST9028
ST90E26
ST90E27
ST90E28
ST90T26
ST90T27
ST90T28
ST90R26

ST9030
ST90E30
ST90T30
ST90R30

ST9032

ST9036
ST90E36
ST90T36

ST9040
ST90E40
ST90T40
ST90R40

ST90R50

ST90R51

ST9054
ST90E54
ST90R54

ST9292
ST92E92
ST92T92

ST9293
ST92E93
ST92T93

Keys:

OSD

}

}

On Screen Display

Sl1ce Timer

OSD, STM,
DSL, PWM

OSD, STM

PACKAGE (Operating temperature)
PAGE

DIP LCC QFP

P48 (1,6) 9
P40 (1,6) 9

P44 (1,6) 9
C48W (1) 11
C40W (1) 11

C44W (1) 11
P48 (6) 11
P40 (6) 11

P44 (6) 11
P48 (6) 13

P68 (1,6) PSO (1) 15
C68W (1) CBOW (1) 17
P68 (6) PBO (1) 17
P68 (6) 19

P68 (1,6) PBO (1) 21

P68 (1,6) PBO (1) 23
C68W (1) CBOW (1) 25
P68 (6) PBO (1) 25

P68 (1,6) PBO (1) 27
C68W (1) CBOW (1) 29
P68 (6) PBO (1) 29
P68 (6) 31

P84 (6) 33

PBO (1) 35

P84 (1,6) 37
C84W (1) 39
P84 (6) 41

PS42 (1) 43
CS42W (1) 45
PS42 (1) 45

PS42 (1) 47
CS42W (1) 49
PS42 (1) 49

Pxx Plastic Package

PSxx Plastic Shnnk DIP Package

CxxW Ceramic Package with window

STM

DSL

PWM

Data Slicer extract1ng Closed Caption Data

Pulse Width Modulation outputs CSxxW Ceram1c Shnnk DIP Package w1th window

Temperature Ranges :

(1)One version available, 0 to + 70°C (6)0ne version available, -40 to+85°C
(1 ,6)Two versions available, 0 to + 70°C and -40 to+85°C

18

16K ROM HCMOS MCUs WITH RAM

a Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

" Minimum instruction cycle time: 500ns
(12M Hz internal)

., 16K bytes of ROM,
256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

" 48-pin Dual in Line Plastic package for ST9026

., 40-pin Dual in Line Plastic package for ST9027

" 44-lead Plastic Leaded Chip Carrier package for
ST9028

• DMA controller, Interrupt handler and Serial Pe­
ripheral Interface as standard features

• Up to 40 fully programmable 1/0 pins

a Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• 16-bit Multifunction Timer, with an 8-bit prescaler
and 13 operating modes

• Serial Communications Interface with asynchro­
nous and synchronous capability

" Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Developmeni tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

" Real Time Operating System

" Windowed and One Time Programmable EPROM
parts available for prototyping and pre-produc­
tion development phases

January 1993

PLCC44

PDIP40

PDIP48

(Ordering Information at the end of the Datasheet)

Th1s is short overv1ew of an ST9 Fam1ly Member. Please contact SGS-THOMSON for further Information
19

ST9026,27,28

GENERAL DESCRIPTION

The ST9026, ST9027 and ST9028 (following men­
tioned as ST902X) are ROM members of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectronics
using a proprietary n-well HCMOS process.

The ROM parts are fully compatible with their
EPROM versions, which may be used for the proto­
typing and pre-production phases of development,
and can be configured as: standalone microcontrol­
lers with 16K bytes of on-chip ROM, microcontrollers
able to manage external memory, or as parallel proc­
essing elements in a system with other processors
and peripheral controllers.

The nucleus of the ST902X is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

Figure 1. ST902X Block Diagram

20

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST902X
with up to 40 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to five 8 bit 1/0
Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, an ad­
dress/data bus for interfacing external memory,
timer inputs and outputs, external interrupts and se­
rial or parallel I/O with or without handshake.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and ex­
ternal) and the Register File, which includes the control
and status registers of the on-chip peripherals.

The 16 bit MultiFunction Timer, with an 8 bit Pres­
caler and 12 operating modes allows simple use for
complex waveform generation and measurement,
PWM functions and many other system timing func­
tions by the usage of the two associated DMA chan­
nels for each timer.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

16-811 TIMER I WATCHDOG+ SPI

CPU

VR001373

ST90E26, E27, E28
ST90T26, T27, T28

16K EPROM HCMOS MCUs WITH RAM

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 16K bytes of EPROM or OTP ROM
256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 48-pin Window Dual in Line Ceramic Multilayer
packageforST90E26

• 40-pin Window Dual in Line Ceramic Multilayer
packageforST90E27

• 44-lead Window Ceramic Leaded Chip Carrier
packageforST90E28

• 48-pin Dual in Line Plastic package for ST90T26

• 40-pin Dual in Line Plastic package for ST90T27

• 44-lead Plastic Leaded Chip Carrier package for
ST90T28

• DMA controller, Interrupt handler and Serial Pe-
ripheral interface as standard features

• Up to 40 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• 16-bit Multifunction Timer, with an 8-bit prescaler
and 13 operating modes

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9026/27/28 16K ROM device

0 '

'
'

(Ordenng Information at the end of the Datasheet)

21

ST90E26,E27,E28- ST90T26,T27,T28

GENERAL DESCRIPTION

The ST90E26, ST90E27 and ST90E28, ST90T26,
ST90T27 and ST90T28 (following mentioned as
ST90E2X) are EPROM members of the ST9 family
of microcontrollers, in windowed ceramic (E) and
plastic OTP (T) packages respectively, completely
developed and produced by SGS-THOMSON Mi­
croelectronics using a proprietary n-well HCMOS
process.

The EPROM ST90E2X can be used for the prototyp­
ing and pre-production phases of development, and
can be configured as: standalone microcontrollers
with 16K bytes of on-chip ROM, microcontrollers
able to manage external memory, or as parallel proc­
essing elements in a system with other processors
and peripheral controllers.

The nucleus of the ST90E2X is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

Figure 1. ST90E2X Block Diagram

22

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90E2X
with up to 40 1/0 lines dedicated to digital input/Out­
put. These lines are grouped into up to five 8 bit 1/0
Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, an ad­
dress/data bus for interfacing external memory,
timer inputs and outputs, external interrupts and se­
rial or parallel i/O with or without handshake.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and
external) and the Register File, which includes the
control and status registers of the on-chip peripher­
als.

The 16 bit MultiFunction Timer, with an 8 bit Pres­
caler and 12 operating modes allows simple use for
complex waveform generation and measurement,
PWM functions and many other system timing func­
tions by the usage of the two associated DMA chan­
nels for each timer.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

16-Bit TIMER I WATCHDOG+ SPI

CPU

VROA1373

ST90R26

ROMLESS HCMOS MCU WITH RAM

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• Rom less to allow maximum external memory ca­
pability

• 48-lead Plastic Dual in Line package for
ST90R26

• DMA controller, Interrupt handler and Serial Pe­
ripheral Interface as standard features

• 24 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• 16-bit Multifunction Timer, with an 8-bit prescaler
and 13 operating modes

• Serial Communications Interface with asynchro­
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9026 16K ROM device (also
available in windowed and One Time Programmable
EPROM packages

January 1993

PDIP48

(Ordering Information at the end of the Datasheet)

ThiS IS short overv1ew of an ST9 Fam1ly Member. Please contact SGS-THOMSON for further 1nformat1on
23

ST90R26

GENERAL DESCRIPTION

The ST90R26 is a ROM LESS member of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectronics
using a proprietary n-well HCMOS process.

The ROM LESS part may be used for the prototyping
and pre-production phases of development, and of­
fers the maximum in program flexibility in production
systems.

The ROM LESS ST90R26 can be configured as ami­
crocontroller able to manage external memory, or as
a parallel processing element in a system with other
processors and peripheral controllers.

The nucleus of the ST90R26 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-BUS, 12C-bus and 1M-bus Interface, plus memory
interface. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90R26

Figure 1. ST90R26 Block Diagram

with up to 32 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to four 8 bit 1/0
Ports and can be configured on a bit basis under soft­
ware control to provide timing and status signals, ad­
dress lines, timer inputs and outputs, analog inputs,
external interrupts and serial or parallel 1/0 with or
without handshake.

Three memory spaces are available: Program Mem­
ory (external), Data Memory (internal and external)
and the Register File, which includes the control and
status registers of the on-chip peripherals.

The 16 bit MultiFunction Timer, with an 8 bit Pres­
caler and 12 operating modes allow simple use for
complex waveform generation and measurement,
PWM functions and many other system timing func­
tions by the usage of the two associated DMA chan­
nels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 11 0 to 375000
baud rate generator, asynchronous and 1 .5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

16-Bit TIMER I WATCHDOG+ SPI

CPU

VR081373

--------------- E1i ~~~~~~~~~?~
24

Sl9030

8K ROM HCMOS MCU WITH A/D CONVERTER

c Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

c Minimum instruction cycle time: 500ns
(12M Hz internal)

" 8K bytes of ROM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

c 80-pin Plastic Quad Flat Pack package for
ST9030Q

c 68-lead Plastic Leaded Chip Carrier package for
ST9030C

c DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

" Up to 56 fully programmable 1/0 pins

c Up to 8 external plus 1 non-maskable interrupts

c 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

" Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

" 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

" Serial Communications Interface with asynchro­
nous and synchronous capability

c Rich Instruction Set and 14 Addressing modes

c Division-by-Zero trap generation

" Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

c Real Time Operating System

c Windowed and One Time Programmable EPROM
parts available for prototyping and pre-produc­
tion development phases

January 1993

PQFP80

PLCC68

(Ordering Information at the end of the Datasheet)

This 1s short overview of an ST9 Family Member. Please contact SGS-THOMSON for further Information.
25

ST9030

GENERAL DESCRIPTION

The ST9030 is ROM member of the ST9 family of mi­
crocontrollers, completely developed and produced
by SGS-THOMSON Microelectronics using a proprie­
tary n-well HCMOS process.

The ROM part is fully compatible with its EPROM
versions, which may be used for the prototyping and
pre-production phases of development, and can be
configured as standalone microcontrollers with 8K
bytes of on-chip ROM, microcontrollers able to man­
age external memory, or as parallel processing ele­
ments in a system with other processors and
peripheral controllers.

The nucleus of the ST9030 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-BUS, 12C-bus and IM BUS Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set. The powerful I/O capa­
bilities demanded by microcontroller applications
are fulfilled by the ST9030 with 561/0 lines dedicated
to digital Input/Output. These lines are grouped into
seven 8 bit 1/0 Ports and can be configured on a bit

Figure 1. ST9030 Block Diagram

MEMORY BUS

basis under software control to provide timing, status
signals, an address/data bus for interfacing external
memory, timer inputs and outputs, analog inputs, ex­
ternal interrupts and serial or parallel I/O with or with­
out handshake.
Three memory spaces are available: Program Mem­
ory (internal and external), Data Memory (external)
and the Register File, which includes the control and
status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer. In addition there is an 8
channel Analog to Digital Converter with integral
sample and hold, fast 1111s conversion time and 8
bit 1/2 LSB resolution. An Analog Watchdog fea­
ture is included for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO 1NT7

1 1
16-81! TIMER I WATCHDOG + SPI

CPU

VROC1385

--------------- II1i ~~~~~~v~;~~
26

ST90E30
ST90T30

8K EPROM HCMOS MCUs WITH A/0 CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 8K bytes of EPROM or OTP'ROM
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 80-pin Plastic Quad Flat Pack package for
ST90T30Q

• 58-lead Plastic Leaded Chip Carrier package for
ST90T30C

• 80-pin Window Ceramic Quad Flat Pack pack­
age for ST90E30G

• 68-lead Window Ceramic Leaded Chip Carrier
packageforST90E30L

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• Up to 56 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9030 8K ROM device

January 1993

PQFPBO

CQFPBOW

(Ordering Information at the end of the Datasheet)

Th1s 1s short oveN1ew of an ST9 Fam1ly Member. Please contact SGS-THOMSON for further 1nformat1on.
27

ST90E30- ST90T30

GENERAL DESCRIPTION

The ST90E30 and ST90T30 (following mentioned
as ST90E30) are EPROM members of the ST9 fam­
ily of microcontrollers, in windowed ceramic (E) and
plastic OTP (T) packages respectively, completely
developed and produced by SGS-THOMSON Mi­
croelectronics using a proprietary n-well HCMOS
process.

The EPROM ST90E30 may be used for the prototyp­
ing and pre-production phases of development, and
can be configured as: standalone microcontrollers
with 8K bytes of on-chip ROM, microcontrollers able to
manage external memory, or as parallel processing
elements in a system with other processors and pe­
ripheral controllers.

The nucleus of the ST90E30 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-BUS, 12C Bus and IM BUS Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90E30
with up to 56 1/0 lines dedicated to digital input/Out­
put. These lines are grouped into up to seven 8 bit 1/0

Figure 1. ST90E30 Block Diagram

MEMORY BUS

Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, an ad­
dress/data bus for interfacing external memory,
timer inputs and outputs, analog inputs, external in­
terrupts and serial or parallel 1/0 with or without
handshake.

Three memory spaces are available: Program Mem­
ory (internal and external), Data Memory (external)
and the Register File, which includes the control and
status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.

In addition there is an 8 channel Analog to Digital Con­
verter with integral sample and hold, fast 11 !JS conver­
sion time and 8 bit resolution. An Analog Watchdog
feature is included for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO 1NT7

1 1
16-Bi! TIMER I WATCHDOG+ SPI

CPU

VROD1385

r== SCiS-niOMSON --------------- &."'!/, !iiilil©l'l!il~l.ll!:V~©I'!D©@

28

ST90R30

ROMLESS HCMOS MCU WITH AID CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• Rom less to allow maximum external memory ca­
pability

• 68-lead Plastic Leaded Chip Carrier package

• DMA controller, Interrupt handler and Serial Pe­
ripheral Interface as standard features

• 40 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro­
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9030 8K ROM device (also
available in windowed and One Time Programma­
ble EPROM packages)

January 1993

ADVANCE DATA

PLCC68

(Ordenng Information at the end of the Datasheet)

This is short overview of an ST9 Family Member. Please contact SGS-THOMSON for further information.
29

ST90R30

GENERAL DESCRIPTION

The ST90R30 is a ROMLESS member of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectronics
using a proprietary n-well HCMOS process.

The ROM LESS part may be used for the prototyping
and pre-production phases of development, and of­
fers the maximum in program flexibility in production
systems.

The ROM LESS ST90R30 can be configured as ami­
crocontroller able to manage external memory, or as
a parallel processing element in a system with other
processors and peripheral controllers.

The nucleus of the ST90R30 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-BUS, 12C-bus and 1M-bus Interface, plus memory
interface. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90R30
with up to 40 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to five 8 bit 110

Figure 1. ST90R30 Block Diagram

30

Ports and can be configured on a bit basis under soft­
ware control to provide timing and status signals,
timer inputs and outputs, analog inputs, external in­
terrupts and serial or parallel 110 with or without
handshake.

Three memory spaces are available: Program Mem­
ory (external), Data Memory (external) and the Reg­
ister File, which includes the control and status
registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.

In addition there is an 8 channel Analog to Digital
Converter with integral sample and hold, fast 1111s
conversion time and 8 bit resolution. An Analog
Watchdog feature is included for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO INT7

1 1
16·811 TIMER I WATCHDOG + SPI

CPU

VROE1385

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 12K bytes of ROM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

" 80-pin Plastic Quad Flat Pack package for
ST9032Q

• 68-lead Plastic Leaded Chip Carrier package for
ST9032C

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• Up to 56 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

" Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Windowed and One Time Programmable EPROM
parts available for prototyping and pre-produc­
tion development phases

• Upward compatible with ST9030

January 1993

ST9032
12K ROM HCMOS MCU WITH

AID CONVERTER
PRELIMINARY DATA

PQFPSO

PLCC68

(Ordering Information at the end of the Datasheet)

This is short overview of an ST9 Family Member. Please contact SGS-THOMSON for further information.
31

ST9032

GENERAL DESCRIPTION

The ST9032 device are ROM members of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectronics
using a proprietary n-well HCMOS process.

The ROM parts are fully compatible with their
EPROM versions, which may be used for the proto­
typing and pre-production phases of development,
and can be configured as standalone microcontrol­
lers with 12K bytes of on-chip ROM, microcontrollers
able to manage external memory, or as parallel proc­
essing elements in a system with other processors
and peripheral controllers.

The nucleus of the ST9032 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-BUS, 12C Bus and IM BUS Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set. The powerful I/O capa­
bilities demanded by microcontroller applications
are fulfilled by the ST9032 with up to 56 1/0 lines
dedicated to digital Input/Output. These lines are
grouped into up to seven 8 bit 1/0 Ports and can be
configured on a bit basis under software control to

Figure 1. ST9032 Block Diagram

MEMORY BUS

32

provide timing, status signals, an address/data bus
for interfacing external memory, timer inputs and
outputs, analog inputs, external interrupts and serial
or parallel I/O with or without handshake.
Three memory spaces are available: Program Mem­
ory (internal and external), Data Memory (external)
and the Register File, which includes the control and
status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer. In addition there is an 8
channel Analog to Digital Converter with integral
sample and hold, fast 1111s conversion time and 8
bit LSB resolution. An Analog Watchdog feature is
included for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 11 0 to 375000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO INT7

1 1
16-Btt TIMER I WATCHDOG+ SPI

CPU

VROF1385

ST9036
16K ROM HCMOS MCU WITH RAM

AND A/D CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 16K bytes of ROM,
256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 80-pin Plastic Quad Flat Pack package for
ST9036Q

• 68-lead Plastic Leaded Chip Carrier package for
ST9036C

• DMA controller, Interrupt handler and Serial Pe-
ripheral lnte.rface as standard features

• Up to 72 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Windowed and One Time Programmable EPROM
parts available for prototyping and pre-produc­
tion development phases

• Upward compatible with ST9030 and ST9032

January 1993

PRELIMINARY DATA

PQFPBO

(Ordenng Information at the end of the Datasheet)

This 1s short overview of an ST9 Family Member Please contact SGS-THOMSON for further 1nformat1on
33

ST9036

GENERAL DESCRIPTION

The ST9036 is a ROM member of the ST9 family of
microcontrollers, completely developed and pro­
duced by SGS-THOMSON Microelectronics using a
proprietary n-well HCMOS process.

The ROM device is fully compatible with the EPROM
version (ST90E36), which may be used for the pro­
totyping and pre-production phases of development,
and can be configured as: a standalone microcon­
troller with 16K bytes of on-chip ROM, a microcon­
troller able to manage external memory, or as a
parallel processing element in a system with other
processors and peripheral controllers.

The nucleus of the ST9036 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST9036
with up to 56 1/0 Jines dedicated to digital input/Out­
put. These lines are grouped into up to seven 8 bit
1/0 Ports and can be configured on a bit basis under
software control to provide timing, status signals, an
address/data bus for interfacing external memory,

Figure 1. ST9036 Block Diagram

timer inputs and outputs, analog inputs, external in­
terrupts and serial or parallel 1/0 with or without
handshake.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and
external) and the Register File, which includes the
control and status registers of the on-chip peripher­
als.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.

In addition there is an 8 channel Analog to Digital Con­
verter with integral sample and hold, fast 11 JlS conver­
sion time and 8 bit resolution. An Analog Watchdog
feature is included for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375,000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO INT7

1 1
16·811 TIMER I WATCHDOG + SP!

CPU

VAOH1385

----------- J:.:iii SCiS·THOMSON .,., li;ll!:i'l!!l~11l©VOIJ@[l!;0©®

34

ST90E36
ST90T36

16K EPROM HCMOS WITH RAM
AND A/D CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 16K bytes of EPROM or OTP ROM,
256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 80-pin Plastic Quad Flat Pack package for
ST90T36Q

• 80-pin Window Ceramic Quad Flat Pack pack­
age for ST90E36G

• 68-lead Plastic Leaded Chip Carrier package for
ST90T36C

• 68-lead Window Ceramic Leaded Chip Carrier
packageforST90E36L

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• Up to 56 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9036 16K ROM device

January 1993

PRELIMINARY DATA

PQFP80

CQFPSOW

(Ordenng Information at the end of the Datasheet)

This is short overview of an ST9 Family Member. Please contact SGS-THOMSON for further information.
35

ST90E36 - ST90T36

GENERAL DESCRIPTION
The ST90E36 and ST90T36 (following mentioned
as ST90E36) are EPROM and OTP members of the
ST9 family of microcontrollers, in windowed ceramic
(E) and plastic OTP (T) packages respectively, com­
pletely developed and produced by SGS-THOM­
SON Microelectronics using a proprietary n-well
HCMOS process.

The EPROM ST90E36 may be used for the prototyp­
ing and pre-production phases of development, and
can be configured as: standalone microcontrollers
with 16K by1es of on-chip ROM, microcontrollers able
to manage external memory, or as parallel processing
elements in a system with other processors and pe­
ripheral controllers.

The nucleus of the ST90E36 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-BUS, 12C Bus and IM BUS Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90E36
with up to 56 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to seven 8 bit 1/0

Figure 1. ST90E36 Block Diagram

36

Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, an ad­
dress/data bus for interfacing external memory,
timer inputs and outputs, analog inputs, external in­
terrupts and serial or parallel 1/0 with or without
handshake.

Three memory spaces are available: Program Mem­
ory (internal and external), Data Memory (internal and
external) and the Register File, which includes the con­
troland status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.

In addition there is an 8 channel Analog to Digital Con­
verter with integral sample and hold, fast 11 f.!S conver­
sion time and 8 bit resolution. An Analog Watchdog
feature is included for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO INT7

1 1
16-Brt TIMER I WATCHDOG+ SPI

CPU

VROG1385

ST9040
16K ROM HCMOS MCU WITH EEPROM

RAM AND A/D CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 16K bytes of ROM,
256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 512 bytes EEPROM

• 80-pin PQFP package for ST9040Q

• 68-lead PLCC package for ST9040C

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• Up to 56 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic onented de­
bugger and hardware emulators

• Real Time Operating System

• Windowed and One Time Programmable EPROM
parts available for prototyping and pre-produc­
tion development phases

• Upward compatible with ST9030, ST9032 and
ST9036

January 1993

PQFPBO

(Ordenng Information at the end of the Datasheet)

Th1s IS short overv1ew of an ST9 Fam1ly Member Please contact SGS-THOMSON for further 1nformat1on
37

ST9040

GENERAL DESCRIPTION

The ST9040 is a ROM member of the ST9 family of
microcontrollers, completely developed and pro­
duced by SGS-THOMSON Microelectronics using a
proprietary n-well HCMOS process.

The ROM device is fully compatible with its EPROM
version, which may be used for the prototyping and
pre-production phases of development, and can be
configured as: a standalone microcontrollerwith 16K
bytes of on-chip ROM, a microcontroller able to man­
age external memory, or as a parallel processing
element in a system with other processors and pe­
ripheral controllers.

The nucleus of the ST9040 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set. The powerful I/O capa­
bilities demanded by microcontroller applications
are fulfilled by the ST9040 with up to 56 1/0 lines
dedicated to digital Input/Output. These lines are
grouped into up to seven 8 bit 1/0 Ports and can be
configured on a bit basis under software control to

Figure 1. ST9040 Block Diagram

provide timing, status signals, an address/data bus
for interfacing external memory, timer inputs and
outputs, analog inputs, external interrupts and serial
or parallel I/O with or without handshake.
Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and ex­
ternal) and the Register File, which includes the control
and status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer. In addition there is an 8
channel Analog to Digital Converter with integral
sample and hold, fast 11 f.LS conversion time and 8 bit
resolution. An Analog Watchdog feature is included
for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375,000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO INT7

1 1
16·811 TIMER I WATCHDOG+ SPI

CPU

VR001385

--------------l..Yi. ~~~;~~~:~~~
38

ST90E40
ST90T40

16K EPROM HCMOS MCU WITH EEPROM,
RAM AND A/D CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

., 16K bytes of EPROM or OTP ROM,
256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

11 512 bytes of EEPROM

• 80-pin Plastic Quad Flat Pack package for
ST90T40Q

a 80-pin Window Ceramic Quad Flat Pack pack­
age for ST90E40G

• 68-lead Plastic Leaded Chip Carrier package for
ST90T40C

11 68-lead Window Ceramic Leaded Chip Carrier
packageforST90E40L

" DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

" Up to 56 fully programmable 1/0 pins

" Up to 8 external plus 1 non-maskable interrupts

" 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

a Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9040 16K ROM device

January 1993

PQFP80

PLCC68

CQFPBOW

(Orderrng Information at the end of the Datasheet)

Th1s IS short overview of an ST9 Family Member Please contact SGS-THOMSON for further information
39

ST90E40- ST90T40

GENERAL DESCRIPTION

The ST90E40 and ST90T40 (following mentioned as
ST90E40) are EPROM and OTP members of the ST9
family of microcontrollers, in windowed ceramic (E)
and plastic OTP (T) packages respectively, com­
pletely developed and produced by SGS-THOM­
SON Microelectronics using a n-well proprietary
HCMOS process.

The EPROM ST90E40 may be used for the prototyp­
ing and pre-production phases of development, and
can be configured as: a standalone microcontroller
with 16K bytes of on-chip ROM, a microcontroller
able to manage of external memory, or as a parallel
processing element in a system with other proces­
sors and peripheral controllers.

The nucleus of the ST90E40 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supportmg
S-bus, 12C-bus and 1M-bus Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90E40
with up to 56 1/0 lines dedicated to digitallnpuVOut­
put. These lines are grouped into up to seven 8 bit 1/0

Figure 1. ST90E40 Block Diagram

Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, an ad­
dress/data bus for interfacing external memory,
timer inputs and outputs, analog inputs, external in­
terrupts and serial or parallel 1/0 with or without
handshake.
Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and ex­
ternal) and the Register File, which includes the control
and status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer. In addition there is an 8
channel Analog to Digital Converter with integral
sample and hold, fast 11 f.!S conversion time and 8 bit
resolution. An Analog Watchdog feature is included
for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375,000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

16-81! TIMER I WATCHDOG + SPI

CPU

VROA1385

--------------~ ~~~~m.~~~?:~
40

ST90R40
ROMLESS HCMOS MCU WITH EEPROM,

RAM AND A/D CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 256 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• Romless to allow maximum external memory
capbility

• 512 bytes EEPROM

• 68-lead Plastic Leaded Chip Carrier package

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• 40 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9040 16K ROM device (also
available in windowed and One Time Programma­
ble EPROM packages)

January 1993

PLCC68

(Ordenng Information at the end of the Datasheet)

Th1s 1s short overv1ew of an ST9 Fam1ly Member Please contact SGS-THOMSON for further 1nformat1on
41

ST90R40

GENERAL DESCRIPTION

The ST90R40 is a ROM LESS member of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectronics
using a proprietary n-well HCMOS process.

The ROM LESS part may be used for the prototyping
and pre-production phases of development, and of­
fers the maximum in program flexibility in production
systems.

The ROM LESS ST90R40 can be configured as ami­
crocontroller able to manage external memory, or as
a parallel processing element in a system with other
processors and peripheral controllers.

The nucleus of the ST90R40 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-BUS, 12C-bus and 1M-bus Interface, plus memory
iinterface. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90R40
with up to 40 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to five 8 bit 1/0

Figure 1. ST90R40 Block Diagram

42

Ports and can be configured on a bit basis under soft­
ware control to provide timing and status signals,
timer inputs and outputs, analog inputs, external in­
terrupts and serial or parallel 1/0 with or without
handshake.

Three memory spaces are available: Program Mem­
ory (external), Data Memory (external) and the Reg­
ister File, which includes the control and status
registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer. In addition there is an 8
channel Analog to Digital Converter with integral
sample and hold, fast 11 J.lS conversion time and 8 bit
resolution. An Analog Watchdog feature is included
for two input channels.

Completing the device is a full duplex Serial Commu­
nications Interface with an integral 110 to 375,000
baud rate generator, asynchronous and 1.5Mbyte/s
synchronous capability (fully programmable format)
and associated address/wake-up option, plus two
DMA channels.

INTO INT7

1 1
16-BII TIMER I WATCHDOG+ SPI

CPU

VR081385

ST90R50
ROMLESS HCMOS MCU WITH BANKSWITCH

AND A/0 CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• Romless to allow maximum external memory
flexibility in development and production phases

• Bankswitch logic allowing a maximum address­
ing capability of 8Mbytes for Program and
Dataspace (16Mbytes total)

• 84-pin Plastic Leaded Chip Carrier package

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• 56 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Three 16 bit Multifunction Timers, each with an
8 bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Two Serial Communications Interface with asyn-
chronous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker,, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9054, 32K ROM device (also
available in windowed and one time programma­
ble EPROM packages)

January 1993

(Ordenng Information at the end of the Datasheet)

ThiS IS short overview of an ST9 Fam1ly Member Please contact SGS-THOMSON for further information
43

ST90R50

GENERAL DESCRIPTION

The ST90R50 is a ROMLESS member of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectronics
using a proprietary n-well HCMOS process.

The ROMLESS part may be used for the prototyping
and pre-production phases of development, and of­
fers the maximum in program flexibility in production
systems with its 16M byte addressing space when
using the Bankswitch memory expansion.

The nucleus of the ST90R50 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus memory
interface. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90R50
with up to 56 110 lines dedicated to digital Input/Out­
put. These lines are grouped into up to nine 8 bit 1/0

Figure 1. ST90R50 Block Diagram

44

Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, timer
inputs and outputs, external interrupts and serial or
parallel I/O with or without handshake.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(external), Data Memory (external) and the Register
File, which includes the control and status registers
of the on-chip peripherals.

Three 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.

Completing the device are two full duplex Serial Com­
munications Interfaces, each with an integral 110 to
375000 baud rate generator, asynchronous and
1.5Mbyte/s synchronous capability (fully programm­
able format) and associated address/wake-up option,
plus two DMA channels.

VR001384

ST90R51

ROMLESS HCMOS MCU WITH BANKSWITCH

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• Romless to allow maximum external memory ca­
pability

• Bankswitch logic allowing a maximum address­
ing capability of 8Mbytes for Program and
Dataspace (16M bytes total)

• 80-pin Plastic Quad Flat Pack package

• DMA controller, Interrupt handler and Serial Pe­
ripheral Interface as standard features

• 54 fully programmable 1/0 pins

• Up to 8 external plus I non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Three 16 bit Multifunction Timers, each with an
8 bit prescaler and 13 operating modes

• Two Serial Communications Interface with asyn­
chronous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

January 1993

PRELIMINARY DATA

PQFP80

(Ordering Information at the end of the Datasheet)

ThiS IS short overv1ew of an ST9 Family Member Please contact SGS-THOMSON for further Information
45

ST90R51

GENERAL DESCRIPTION

The ST90R51 is a Rom less member of the ST9 fam­
ily of microcontrollers, completely developed and
produced by SGS-THOMSON Microelectronics us­
ing a proprietary n-well HCMOS process.

The Rom less part may be used for the prototyping
and pre-production phases of development, and of­
fers the maximum in program flexibility

The nucleus of the ST90R51 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus memory
interface. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set. The powerful I/O capa­
bilities demanded by microcontroller applications
are fulfilled by the ST90R51 with up to 54 1/0 lines
dedicated to digital Input/Output. These lines are
grouped into up to seven 8 bit 1/0 Ports and can be
configured on a bit basis under software control to
provide timing, status signals, timer inputs and out­
puts, analog inputs, external interrupts and serial or
parallel I/O with or without handshake.
Three basic memory spaces are available to support

Figure 1. ST90R51 Block Diagram

this wide range of configurations: Program Memory
, Data Memory and the internal Register File, which
includes the control and status registers of the on­
chip peripherals.

Three 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer. In addition there is an 8
channel Analog to Digital Converter with integral
sample and hold, fast 11 f.lS conversion time and 8 bit
resolution. An Analog Watchdog feature is included
for two input channels.

Completing the device are 2 full duplex Serial Com­
munications Interfaces with an integral 110 to
375,000 baud rate generator, asynchronous and
1.5Mbyte/s synchronous capability (fully programm­
able format) and associated address/wake-up op­
tion, plus two DMA channels.

VROA1384

----------- W'l SGS·lliOMSON
• 1' " lllC!::::J©Ja~I!:~~©IIICOI!:§

46

ST9054
32K ROM HCMOS MCU WITH BANKSWITCH

AND A/0 CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 32K bytes of ROM,
1280 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• Bankswitch logic allowing a maximum address­
ing capability of 8Mbytes for Program and
Dataspace (16Mbytes total)

• 84-pin Plastic Leaded Chip Carrier package

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• Up to 72 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Three 16 bit Multifunction Timers, each with an
8 bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Two Serial Communications Interface with asyn­
chronous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Windowed and One Time Programmable EPROM
parts available for prototyping and pre-produc­
tion development phases

January 1993

PRELIMINARY DATA

(Ordering Information at the end of the Datasheet)

Th1s is short overv1ew of an ST9 Family Member Please contact SGS-THOMSON for further 1nformat1on
47

ST9054

GENERAL DESCRIPTION

The ST9054 is a ROM member of the ST9 family of
microcontrollers, completely developed and pro­
duced by SGS-THOMSON Microelectronics using a
proprietary n-well HCMOS process.

The ROM part is fully compatible with its EPROM
versions, which may be used for the prototyping and
pre-production phases of development, and can be
configured as: standalone microcontrollers with 32K
bytes of on-chip ROM, microcontrollers able to man­
age external memory (16M byte with the Bankswitch
logic), or as parallel processing elements in a system
with other processors and peripheral controllers.

The nucleus of the ST9054 is the advanced Core
which includes the Central Processing Unit (CPU},
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8 bit
1/0 ports. The Core has independent memory and
register buses allowmg a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST9054
with up to 72 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to nine 8 bit 1/0
Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, ad-

Figure 1. ST9054 Block Diagram

dress and data buses for interfacing external mem­
ory, timer inputs and outputs, analog inputs, external
interrupts and serial or parallel 1/0 w1th or without
handshake.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and
external) and the Register File, which includes the
control and status registers of the on-chip peripher­
als.

Three 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.

In addition there is an 8 channel Analog to Digital
Converter with integral sample and hold, fast 11)lS
conversion time and 8 bit resolution. An Analog
Watchdog feature is included for two input channels.

Completing the device are two full duplex Serial Com­
munications Interfaces, each with an integral 110 to
375000 baud rate generator, asynchronous and
1.5Mbyte/s synchronous capability (fully programm­
able format) and associated address/wake-up option,
plus two DMA channels.

VR001386

---------------LW ~~~;m~::~~
48

ST90E54
32K EPROM HCMOS MCU WITH BANKSWITCH

AND A/D CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 32K bytes of EPROM
1280 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• Bankswitch logic allowing a maximum address­
ing capability of 8Mbytes for Program and
Dataspace (16M bytes total)

• 84-pin Window Ceramic Leaded Chip Carrier
package

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• Up to 72 fully programmable 1/0 pins

• Up to 8 external plus I non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Three 16 bit Multifunction Timers, each with an
8 bit pre scaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Two Serial Communications Interface with asyn­
chronous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9054 32K ROM device

January 1993

PRELIMINARY DATA

(Ordering Information at the end of the Datasheet)

ThiS IS short overv1ew of an ST9 Family Member Please contact SGS-THOMSON for further 1nformat1on
49

ST90E54

GENERAL DESCRIPTION
The ST90E54 is an EPROM memberofthe ST9 family
of microcontrollers, in windowed ceramic package ,
completely developed and produced by SGS-THOM­
SON Microelectronics using a proprietary n-well
HCMOS process.

The EPROM ST90E54 may be used for the prototyp­
ing and pre-production phases of development, and
can be configured as: standalone microcontrollers
with 32K bytes of on-chip EPROM, microcontrollers
able to manage external memory (16M byte with the
Bankswitch logic), or as parallel processing elements
in a system with other processors and peripheral con­
trollers.

The nucleus of the ST90E54 is the advanced Core
which includes the Central Processing Unit (CPU), the
Register File, a 16 bit Timer/Watchdog with 8 bit Pres­
caler, a Serial Peripheral Interface supporting S-bus,
12C-bus and 1M-bus Interface, plus two 8 bit 1/0 ports.
The Core has independent memory and register
buses allowing a high degree of pipelining to add to the
efficiency of the code execution speed of the extensive
instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90E54
with up to 72 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to nine 8 bit 1/0
Ports and can be configured on a bit basis under soft-

Figure 1. ST90E54 Block Diagram

ware control to provide timing, status signals, ad­
dress and data buses for interfacing external mem­
ory, timer inputs and outputs, analog inputs, external
interrupts and serial or parallel 1/0 with or without
handshake.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and
external) and the Register File, which includes the
control and status registers of the on-chip peripher­
als.

Three 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.

In addition there is an 8 channel Analog to Digital Con­
verter with integral sample and hold, fast 11 f.!S conver­
sion time and 8 bit resolution. An Analog Watchdog
feature is included for two input channels.

Completing the device are two full duplex Serial Com­
munications Interfaces, each with an integral 110 to
375000 baud rate generator, asynchronous and
1.5Mbyte/s synchronous capability (fully programm­
able format) and associated address/wake-up option,
plus two DMA channels.

VROA1386

---------------&:;i ~~~;ltl~v't:'~~~
50

ST90R54
ROMLESS HCMOS MCU WITH BANKSWITCH

AND A/0 CONVERTER

.. Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

., Minimum Instruction cycle time: 500ns
(12M Hz internal)

., 1280 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

" Romless to allow maximum external memory
flexibility in development and production phases

a Bankswitch logic allowing a maximum address­
ing capability of 8Mbytes for Program and
Dataspace (16M bytes total)

a 84-pin Plastic Leaded Chip Carrier package

a DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

a 56 fully programmable 1/0 pins

a Up to 8 external plus 1 non-maskable interrupts

a 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

a Three 16 bit Multifunction Timers, each with an
8 bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

a Two Serial Communications Interface with asyn-
chronous and synchronous capability

a Rich Instruction Set and 14 Addressing modes

., Division-by-Zero trap generation

" Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

a Real Time Operating System

a Compatible with ST9054, 32K ROM device (also
available in windowed EPROM packages)

January 1993

PRELIMINARY DATA

PLCC84

(Ordering Information at the end of the Datasheet)

Th1s IS short overv1ew of an ST9 Family Member Please contact SGS-THOMSON for further 1nformat1on
51

ST90R54

GENERAL DESCRIPTION
The ST90R54 is a ROM LESS member of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectronics
using a proprietary n-well HCMOS process.
The ROM LESS part may be used for the prototyping
and pre-production phases of development, and of­
fers the maximum in program flexibility in production
systems with its 16M byte addressing space when
using the Bankswitch memory expansion.
The nucleus of the ST90R54 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8 bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus memory
interface. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.
The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90R54
with up to 56 1/0 lines dedicated to digitallnpuVOut­
put. These lines are grouped into up to seven 8 bit 1/0
Ports and can be configured on a bit basis under soft­
ware control to provide timing, status signals, timer

Figure 1. ST90R54 Block Diagram

inputs and outputs, analog inputs, external interrupts
and serial or parallel I/O with or without handshake.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(external), Data Memory (external) and the Register
File, which includes the control and status registers
of the on-chip peripherals.
Three 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple use
for complex waveform generation and measure­
ment, PWM functions and many other system timing
functions by the usage of the two associated DMA
channels for each timer.
In addition there is an 8 channel Analog to Digital
Converter with integral sample and hold, fast 1111s
conversion time and 8 bit resolution. An Analog
Watchdog feature is included for two input channels.
Completing the device are two full duplex Serial Com­
munications Interfaces, each with an integral 110 to
375000 baud rate generator, asynchronous and
1.5Mbyte/s synchronous capability (fully programm­
able format) and associated address/wake-up option,
plus two DMA channels.

VROB1386

~ SGS-ntOMSON --------------- ••"'f/. lll:OC:Iil!Jil~~©~lil!lil'IO©@

52

ST9292
24K ROM HCMOS MCU WITH

ON SCREEN DISPLAY AND CLOSED CAPTION DATA SLICER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12MHz internal)

• 24K bytes of ROM,
384 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 42-lead Shrink DIP package

• Interrupt handler and Serial Peripheral Interface
as standard features

• 31 fully programmable 1/0 pins

• 34 character x15 rows software programmable
On Screen Display module with colour, italic, un­
derline, flash, transparent and fringe attribute
options

• Digital Data Slicer extracting closed caption data
from video

• 8 8-bit PWM D/A outputs with repetition fre­
quency 2 to 32kHz and 12V Open Drain
Capability

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• 16-bit programmable Slice Timer with 8-bit pres­
caler

• 3 channel Analog to Digital Converter, with inte­
gral sample and hold, fast 5.75J.IS conversion
time, 6-bit guaranteed resolution

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Windowed EPROM parts available for prototyp­
ing and pre-production development phases

January 1993

PRELIMINARY DATA

PSDIP42

(Ordering Information at the end of the Datasheet)

DEVICE SUMMARY

Device RAM ROM

ST9292J4 384 bytes 16Kbytes

ST9292J5 384 bytes 24Kbytes

Th1s is short overview of an ST9 Famtly Member. Please contact SGS-THOMSON for further tnformatton.
53

ST9292

GENERAL DESCRIPTION
The ST9292 is a ROM member of the ST9 family of
microcontrollers, completely developed and pro­
duced by SGS-THOMSON Microelectronics using a
proprietary n-well HCMOS process.

The ROM parts are fully compatible with their
EPROM versions, which may be used for the proto­
typing and pre-production phases of development,
and can be configured as: standalone microcontrol­
lers with 24K bytes of on-chip ROM.

The nucleus of the ST9292 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16-bit Timer/Watchdog with 8-bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface. The Core has
independent memory and register buses allowing a
high degree of pipelining to add to the efficiency of
the code execution speed of the extensive instruc­
tion set.
The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST9292
with up to 31 1/0 lines dedicated to digital Input/Out­
put. These lines are grouped into up to six 1/0 Ports
and can be configured on a bit basis under software
control to provide timing, status signals, address and
data buses for interfacing external memory, timer in­
puts and outputs, analog inputs, external interrupts
and serial or parallel I/O.

Figure 1. ST9292 Block Diagram

Three basic memory spaces are available to support
this wide range of configurations: Program Memory,
Data Memory and the Register File, which includes
the control and status registers of the on-chip periph­
erals.
The 16-bit Slice Timer with an 8-bit Prescaler.

The human interface is provided by the On Screen
Display module, this can produce up to 151ines of up
to 34 characters from a ROM defined 128 character
set. The 9x13 character can be modified by 4 differ­
ent pixel sizes, with character rounding, and formed
into words with colour and format attributes.
Closed Caption control for the display of information
transmitted through the video input is facilitated with
the Data Slicer. This module has manual and auto­
matic Slicing levels for both Sync and Data and al­
lows the user to select the video line containing the
data relative to the Vertical synchronisation pulse.

Control of TV settings is able to be made with up to
eight 8-bit PWM outputs, with a frequency maximum
of 23,437Hz at 8-bit resolution (INTCLK = 12MHz).
Low resolutions with higher frequency operation can
be programmed.
In addition there is a 3 channel Analog to Digital Con­
verter with integral sample and hold, fast 5.75J.LS con­
version time and 6-bit guaranteed precision.

16·811 TIMER I WATCHDOG + SPI

CPU

PLLR
PLLF

VAOA1749

r== SGS·THOMSON --------------- A.."'J/. ll:IIOI!:~©rn~~l!:~lil©lllOI!:$

54

ST92E92
ST92T92

24K EPROM HCMOS MCU WITH
ON SCREEN DISPLAY AND CLOSED-CAPTION DATA SLICER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 24K bytes of EPROM or OTP ROM,
384 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 42-lead Plastic Shrink DIP package for ST92T92

• 42-lead Window Ceramic Shrink DIP package
forST92E92

• Interrupt handler and Serial Peripheral Interface
as standard features

• 31 fully programmable 1/0 pins

• 34 character x15 rows software programmable
On Screen Display module with colour, italic, un­
derline, Flash, transparent and fringe attribute
options

• Digital Data Slicer extracting closed caption data
from video

• 8 8-bit PWM D/A outputs with repetition fre­
quency 2 to 32kHz and 12V Open Drain
Capability

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• 16-bit programmable Slice Timer with 8-bit pres­
caler

• 3 channel Analog to Digital Converter, with inte­
gral sample and hold, fast 5.75!1S conversion
time, 6-bit guaranteed resolution

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9292 24K ROM device

January 1993

PRELIMINARY DATA

1
PSDIP42

CSDIP42W

(Ordermg Information at the end of the Datasheet)

This 1s short overv~ew of an ST9 Fam1ly Member Please contact SGS· THOMSON for further 1nformat1on
55

ST92E92 - ST92T92

GENERAL DESCRIPTION

The ST92E92 and ST92T92 are EPROM member of
the ST9 family of microcontrollers in windowed Ce­
ramic (E) and Plastic OTP (T) packages respec­
tively, completely developed and produced by
SGS-THOMSON Microelectronics using a proprie­
tary n-well HCMOS process.
The EPROM parts are fully compatible with their
ROM versions, which may be used for the prototyp­
ing and pre-production phases of development, and
can be configured as: standalone microcontrollers
with 24K bytes of on-chip EPROM, microcontrollers
able to manage up to 64K bytes of external memory.
The nucleus of the ST92E92 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16-bitTimer/Watchdog with 8-bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8-bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set.
The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST92E92
with up to 31 1/0 lines dedica~ed to digito;tllnput/Out­
put. These lines are grouped mto up to f1ve 1/0 Ports
and can be configured on a bit basis under software
control to provide timing, status signals, timer inputs
and outputs, analog inputs, external interrupts and
serial or parallel I/O.

Figure 1. ST92E92 Block Diagram

Three basic memory spaces are available to support
this wide range of configurations: Program Memory,
Data Memory and the Register File, which includes
the control and status registers of the on-chip periph­
erals.
The 16-bit Slice Timer with an 8-bit Prescaler.

The human interface is provided by the On Screen
Display module, this can produce up to 151ines of up
to 34 characters from a ROM defined 128 character
set. The 9x13 character can be modified by 4 differ­
ent pixel sizes, with character rounding, and formed
into words with colour and format attributes.
Closed Caption control for the display of information
transmitted through the video input is facilitated with
the Data Slicer. This module has manual and auto­
matic Slicing levels for both Sync and Data and al­
lows the user to select the video line containing the
data relative to the Vertical synchronisation pulse.
Control of TV settings is able to be made with up to
eight 8-bit PWM outputs, with a frequency maximum
of 23,437Hz at 8-bit resolution (INTCLK = 12MHz).
Low resolutions with higher frequency operation can
be programmed.
In addition there is a 3 channel Analog to Digital Con­
verter with integral sample and hold, fast 5. 75!-lS con­
version time and 6-bit guaranteed resolution.

16-BII TIMER I WATCHDOG + SPI

CPU

PLLR
PLLF

VROC1749

----------------------------- ~~~~~~g~:~~n
56

ST9293
32K ROM HCMOS MCUs WITH

ON SCREEN DISPLAY AND AID CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time: 500ns
(12M Hz internal)

• 32K bytes of ROM,
640 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 42-lead Shrink DIP package

• Interrupt handler and Serial Peripheral Interface
as standard features

• 31 fully programmable 1/0 pins

• 34 character x15 rows software programmable
On Screen Display module with colour, italic, un­
derline, Flash, transparent and fringe attribute
options

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• 16-bit programmable Slice Timer with 8-bit pres­
caler

• 4 channel Analog to Digital Converter, with inte­
gral sample and hold, fast 5.51ls conversion
time, 6-bit guaranteed resolution

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Windowed EPROM parts available for prototyp­
ing and pre-production development phases

January 1993

PRELIMINARY DATA

PSDIP42

(Ordering Information at the end of the Datasheet)

DEVICE SUMMARY

Device RAM ROM

ST9293J4 640 bytes 16Kbytes

ST9293J5 640 bytes 24Kbytes

ST9293J6 640 bytes 32Kbytes

Th1s 1s short overv1ew of an ST9 Fam1ly Member. Please contact SGS·THOMSON for further information.
57

ST9293

GENERAL DESCRIPTION

The ST9293 is a ROM member of the ST9 family of
microcontrollers, completely developed and pro­
duced by SGS-THOMSON Microelectronics using a
proprietary n-well HCMOS process.

The ROM parts are fully compatible with their
EPROM versions, which may be used for the proto­
typing and pre-production phases of development,
and can be configured as: standalone microcontrol­
lers with 32K bytes of on-chip ROM.

The nucleus of the ST9293 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16-bit Timer/Watchdog with 8-bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8-bit
1/0 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set. The powerful I/O capa­
bilities demanded by microcontroller applications
are fulfilled by the ST9293 with up to 31 1/0 lines
dedicated to digital Input/Output.

These lines are grouped into up to five 1/0 Ports and
can be configured on a bit basis under software con-

Figure 1. ST9293 Block Diagram

PLLR

PLLF

AV,

trol to provide timing, status signals, timer inputs and
outputs, analog inputs, external interrupts and serial
or parallel I/O.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory,
Data Memory and the Register File, which includes
the control and status registers of the on-chip periph­
erals.

The 16-bit Slice Timer with an 8-bit Prescaler and 6
operating modes allows simple use for waveform
generation and measurement, PWM functions and
many other system timing functions.

The human interface is provided by the On Screen
Display module, this can produce up to 15 lines of of
up to 34 characters from a ROM defined 128 charac­
ter set. The 9x13 character can be modified by 4 dif­
ferent pixel sizes, with character rounding, and
formed into words with colour and format attributes.

In addition there is a 4 channel Analog to Digital Con­
verter with integral sample and hold, fast 5.5JlS con­
version time and 6-bit guaranteed precision.

16-Bil TIMER I WATCHDOG + SPI

CPU

VROB1749

~ SCS-nfOMSOI\l --------------- lt..""'J/,, ii<JI©JJ@~~m©VI:l©lll!ID!:§

58

ST92E93
ST92T93

32K EPROM HCMOS MCUs WITH
ON SCREEN DISPLAY AND AID CONVERTER

" Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

a Minimum instruction cycle time: 500ns
(12M Hz internal)

a 32K bytes of EPROM or OTP ROM,
640 bytes of RAM,
224 general purpose registers available as RAM,
accumulators or index registers (Register File)

• 42-lead Plastic Shrink DIP package for ST92T93

.. 42-lead Window Ceramic Shrink DIP package
for ST92E93

" Interrupt handler and Serial Peripheral Interface
as standard.features

" 31 fully programmable 110 pins

a 34 character x15 rows software programmable
On Screen Display module with colour, italic, un­
derline, Flash, transparent and fringe attribute
options

" 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

a 16-bit programmable Slice Timer with 8-bit pres­
caler

a 4 channel Analog to Digital Converter, with inte­
gral sample and hold, fast 5.5!-ls conversion
time, 6-bit guaranteed resolution

" Rich Instruction Set and 14 Addressing modes

" Division-by-Zero trap generation

• Versatile Development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

" Real Time Operating SystemCompatible with
ST9293 32K ROM device

January 1993

PRELIMINARY DATA

PSDIP42

CSDIP42W

(Ordering Information at the end of the Datasheet)

Th1s is short overv1ew of an ST9 Fam1ly Member. Please contact SGS-THOMSON for further information.
59

ST92E93 - ST92T93

GENERAL DESCRIPTION
The ST92E93 and ST92T93 are EPROM member of
the ST9 family of microcontrollers in windowed Ce­
ramic (E) and Plastic OTP (T) packages respec­
tively, completely developed and produced by
SGS-THOMSON Microelectronics using a proprie­
tary n-well HCMOS process.

The EPROM parts are fully compatible with their
ROM versions, which may be used for the prototyp­
ing and pre-production phases of development, and
can be configured as: standalone microcontrollers
with 32K bytes of on-chip EPROM.

The nucleus the ST92E93 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16-bit Timer/Watchdog with 8-bit
Prescaler, a Serial Peripheral Interface supporting
S-bus, 12C-bus and 1M-bus Interface, plus two 8-bit
110 ports. The Core has independent memory and
register buses allowing a high degree of pipelining to
add to the efficiency of the code execution speed of
the extensive instruction set. The powerful I/O capa­
bilities demanded by microcontroller applications
are fulfilled by the ST92E93 with up to 31 1/0 lines
dedicated to digitallnpuVOutput.

Figure 1. ST92E93 Block Diagram

PLLR

PLLF

These lines are grouped into up to five 1/0 Ports and
can be configured on a bit basis under software con­
trol to provide timing, status signals, timer inputs and
outputs, analog inputs, external interrupts and serial
or parallel I/O.

Three basic memory spaces are available to support
this wide range of configurations: Program Memory,
Data Memory and the Register File, which includes
the control and status registers of the on-chip periph­
erals.

The 16-bit Slice Timer with an 8-bit Prescaler and 6
operating modes allows simple use for waveform
generation and measurement, PWM functions and
many other system timing functions.

The human interface is provided by the On Screen
Display module, this can produce up to 151ines of of
up to 34 characters from a ROM defined 128 charac­
ter set. The 9x13 character can be modified by 4 dif­
ferent pixel sizes, with character rounding, and
formed into words with colour and format attributes.

In addition there is a 4 channel Analog to Digital Con­
verter with integral sample and hold, fast 5.5JlS con­
version time and 6-bit guaranteed resolution.

16-Bit TIMER I WATCHDOG + SPI

CPU

VROD1749

r== sc;s-THOMSON --------------- A..'Y£ 11:1IT©~@ill~~©¥1'J@IitiTIC@

60

DEVELOPMENTS TOOLS

61

" Full Evaluation Kit for ST9 Family
., Emulation Capability

., Windowed and Command Lme interfaces

GENERAL DESCRIPTION

The ST9 Starter Kit includes all the hardware, soft­
ware and documentation required to evaluate the
ST9 family of 8/16-bit MCUs and to develop simple
applications. The ST9 Starter Kit includes ROM less
(ST90R40) and EPROM-based (ST90E40) micro­
controllers, the ST9 family documentation, the ST9
software tools package and an evaluation board for
debugging an application and programming the
ST90E40.

The board, which measures 225 x 125mm, is based
on the ST90R40, which offers all the most important
features of the ST9 family, including a built-in DMA
controlier, a Serial Peripheral Interface (supporting

ST9 STARTER KIT
EVALUATION KIT

FOR ST9 MCU FAMILY

S-bus, 12C-bus and 1M-bus), 256 bytes of internal
RAM, 512 bytes of internal EEPROM, 16-bit multi­
function timers, AID converter and a full duplex serial
communication interface. On-board memories pro­
vide storage for emulated programs and data, the
monitor program and breakpoint information.

For maximum flexibility, the board can run in three
different modes. In the stand-alone mode, up to
64Kbytes of program space and 64Kbytes of data
space are available. In the emulation mode, the
board is driven by a monitor program allowing the
use of all registers and memories, while single step,
software trace and breakpoints are supported on
both program and data spaces through debugging
software running on a PC host. The third mode is the
programming mode, which allows debugged soft­
ware to be downloaded to an ST90E40 using the ZIF
socket provided.

~ SliS·THOMSON -------------- b""Jf li:iliT!l,l©IU©VUll©liiiD~S

63

ST9-Starter Kit

SOFTWARE TOOLS

The software tools include a full macro-assembler
which supports modular programming, an incre­
mental linker, an archiver that manages relocatable
objects modules, a functional simulator, a windowed
debugger which drives the ST9 evaluation board
and the EPROM programming software. The fully
symbolic debugger allows access to all ST9 re­
sources (memories, registers) while the windowed

and menu-driven interface, on-line help and intuitive
access to commands make it very easy to use.

The ST9 Starter Kit also includes full documentation
on the ST9040 Family, on how to connect and pro­
gram it and the software tools manuals which de­
scribe how to use the ST9 development tools
included in the starter kit, as well as a floppy disk con­
taining several application programs for ST9 de­
vices.

Starter Kit Command Line Summary

ARchive

ASm

BAse

BYE

CLOSE

CLS

CM

DEfine

Disasm

DM

DO

DR

DUmp

END FOR

END IF

FM

FOR

FR

GO

Help

IF

JUMP

COMMAND

List symbol

LOad

LOCATE

MAP

MB

MM

NEXT

64

DESCRIPTION

Archive symbols and macros

On-line Assembler

Change base of numbers

Exit from debugger program

Close I/0 Channel

Clear screen

Compare memory

Define symbols and macros

On-Line disassembler

Display memory

Execute macro

Display register

Save current setup

End for loop (see FOR)

End conditional block (see IF)

Fill memory with pattern

Loop command execution

Fill registers with pattern

Execute program

On-Line help

Conditional command execution

Go to label

List symbols and macros

Load program from file

Set cursor position at given coords

Set/Display mapping

Modify memory breakpoints settings

Move memory block

Execute program steps

ST9-Starter Kit

Starter Kit Command Line Summary (Continued)

OPEN

PAUSE

Print

Quit

REset

SAve

SB

SEarch

SET

SM

SR

SYstem

Trace

UNdefine

USE

VER

WAtch

WR

<value>

?

Open I/O channel

Pause for number of seconds

Print strings and values

Return to Graphical Interface

Reset emulated CPU

Save memory contents to file

Set/Display memory breakpoints

Search for pattern in memory

Set/Reset emulator options

Set memory

Set/Display registers

Exit temporarily to operating system

Display trace

Remove symbols

Execute command file

Print version information

Display/Create watch data

Display current working register set

Evaluate expression

Execute single system command

Display symbols having a given value

Comment line for macros/command files

------------------------------- ~~~~~~~v~:~~l:f
65

ST9-GNU TOOLCHAIN
C COMPILER, ASSEMBLER, LINKER AND

SOURCE DEBUGGER FOR ST9 MCU FAMILY

CONTENTS

• Optimised C compiler with options for different
standards: traditional C, ANSI C, and GNU ex­
tensions

• Macro-assembler with powerful pre-processor

• Linker/loader
• Source-level debugger with Microsoft WIN­

DOWS 3TM graphic interface

• Available for SUN 4 (SPARC STATION) under
the UNIX system

C SOURCE FILE

GENERAL DESCRIPTION
The GNU Toolchain offers the software developer a
full set of resources for the development of code for
the ST9 microcontroller. This is achieved through the
optimised GNU C Compiler, the Macro-assembler,
Linker/Loader and Library Archiver. The Assembler
is fully compatible at source level with previous ver­
sion of the ST9 Assembler. Program debugging is
made easier with the C Language Source Level De­
bugger, which runs under MSDOS or Microsoft Win­
dows3TM.

ASM SOURCE FILE

I GCC9 c COMPILER I
I

'" (ASM FILE >--t
.---.!.._--l___

LIBRARY

ST9 EMU LA TOR

r== St:iS·THOMSON
------------- ._..,/. iiJU((:!ll©lli~~((:V!ll@illO((:@

TR9 MACRO-ASM

INTEL FORMAT

VAOA214

67

ST9-GNU TOOLCHAIN

GNU C COMPILER

• All standard types allowed (char, int, short, long,
signed or unsigned, float, and double) with Float
types respecting the IEEE 754 standard

• Libraries delivered include string handling, con­
version, 1/0 routines and mathematics

• Direct access to the Register File of the ST9, al-
lowing access to all registers and on-chip
peripherals

• Allows inclusion of assembly language instruc­
tions, with access to C program symbols

• Options to generate code for one or two memory
spaces, one or two stacks and interrupt routines

• Optimisation phase included at final stage

General Description

The GNU C Compiler for the ST9 allows the pro­
grammer to write C source code (using traditional C
(Kernigan & Richie), ANSI C, or GNU Extensions)
and to produce assembly language source code.
When used with the Assembler and Linker, it allows
the generation of executable object code for all
members of the ST9 family.

The generated assembly source file may include inter­
leaved Clines and assembly language lines, and pro­
vides information for source-level debugging.

ASSEMBLER

The Assembler pre-processor allows macro substi­
tution, file inclusion and conditional assembly and is
fully compatible at source level with the ST9 assem­
bler (AST9) pseudo-instructions and pseudo-mac­
ros.

Source level debugging information is generated
with the object file by the assembler.

Assembly language programs are fully mixable with
C language programs and accept 3 sections (TEXT,
DATA, BSS).

LINKER
• Combines object code files issued by the assem-

bler

• Supports incremental linking

General Description

The Linker resolves references to external symbols
and searches libraries for necessary modules to pro­
duce an output file in a binary format, downloadable
by the debugger to the ST9 emulator.

A map file is generated, including all mapping infor­
mation on sections, files, and symbols and separate

files are produced to support ST9 bank switch
mechanism

The three sections generated by the C compiler and
used by the assembler are accepted.

Options are available for setting the base addresses
of sections and stacks and management of two
spaces with script files to define memory mapping.

DEBUGGER
• Runs on MS-DOS based PC, with or without

WINDOWS3TM

• Connected by serial line to the ST9 hardware
emulator

• Offers a WINDOWS 3TM - based graphic inter­
face, supporting all standard features

• Mouse supports access to context sensitive help

• Offers a line mode command interface (able to
run on MS-DOS or within a WINDOWS 3TM DOS
box) supporting command files

• Includes a window for access to the low-level
SDBST9 debugger

• Dumps ST9 memories, system registers, Regis-
ter File and paged registers

General Description

The ST9 Debugger allows source level debug for C
language and assembly language programs, even
with optimized C language programs.

The debugger is able to generate trace information,
with hardware information interleaved with source
lines, and to display the local symbols of the current
C procedure and the stack based on the C language
source level.

Source lines are displayed, with or without disas­
sembly of memory interleaved with the source lines
with symbols under their real types.

Requires 386 class PC or higher with at least 4 Mby­
tes of memory, under MS-DOS 4.01 or higher.

UTILITIES
• Archiver

• Formatter of INTEL HEX industrial format, allow-
ing download of program to an EPROM·
programmer

• Binary file deformatter

Note: Windows 3 IS a trademark of the M1crosoft Corporation.

-------------- I..fi ~~~~m~~~:~~n
68

ST9-EPB
EPROM PROGRAMMING BOARD

FOR ST9 MCU FAMILY

• Programming tool for EPROM and OTP mem-
bers of the ST9 Microcontroller Family

• Stand-alone operation mode
• Device EPROM capacity self-identified
• 3 functions performed
• All device packages type supported
• Single Power Supply

GENERAL DESCRIPTION

This board is designed for programming the EPROM
versions of the ST9 microcontroller family, including
both the ceramic windowed and plastic OTP pack­
ages.

The EPROM size of the ST9 microcontroller to be
programmed is recognised automatically by the on­
board software and three sockets are provided to ac­
cept the different existing packages types.

The ST9-EPB board uses a reference EPROM in­
cluding the customer's code directly generated by
the ST9 assembler-linker. The ST9 EPROM device

I
(

will be programmed from the contents of the refer­
ence EPROM. Jumpers allow the selection of differ­
ent types of reference EPROM (2732, 2764, 27128,
27256).

On board regulation requires only a single power
supply of + 18 Voc - 0.5A to ·produce the different
voltages necessary for the board functioning. o

The board can perform 3 operations:
_ Verifying the blank state of the microcontroller

EPROM.
- Programming microcontroller with the content

of the reference EPROM.
- Verifying the microcontroller against the refer-

ence EPROM.

The required function is selected by two switches.

During the running procedure the program/verify
LED flashes and at the end of operation, the result is
displayed on LEDs:
- Green OK LED for succesful operation.
_ Red error LED for a programming error.

r== SCiS·THOMSON -------------- A.""J/o llllll!:O!@~~rncr:1i'OJ@i!ll©®
69

ST9-HDS
HARDWARE DEVELOPMENT SYSTEM

FOR ST9 MCU FAMILY

• Designed to communicate with any IBM
PC/XT/AT or compatible computer through an
RS-232 serial communication link.

• Emulation capability of all present and future
members of the ST9 Microcontroller family,
ROM and ROMiess devices by dedicated option
boards

a 128K bytes of system mappable fast static mem­
ory, which may be mapped in pages of 512 bytes
each

a 4 maskable hardware controlled memory break­
points and 2 maskable hardware controlled
register breakpoints

• Real time trace memory (2048 events)
11 Programmable crystal oscillator and external

clock option allow an emulated CPU clock fre­
quency ranging from 2 to 24 MHz

a Auto"matic hardware self test executed every
time the emulator is powered on

a 8 User Probes available and included in the trace
and breakpoint logic

11 The Emulator may be used in Standalone Mode
without a Personal Computer control

GENERAL DESCRIPTION
The ST9 Hardware Development System (ST9-HDS)
is an intelligent and powerful In Circuit Real Time Emu­
lation System configurable for all current and future
members of the ST9 family of microcontrollers. The
complete ST9-HDS consists of the emulator, an
RS232 Serial Communication Cable providing the in­
terface with an optional Host computer, an ICE Probe
and Adapter which may be plugged directly into the
user's application, a set of 8 user probes, and a power­
ful software debugger. The ST9-HD'S allows the de­
signer to emulate the system in real time or single step
mode. A set of 4 user programmable memory break­
points which may be logically combined in AND, OR,
SEQUENTIAL, or DELAY mode and 2 user program­
mable register breakpoints allow the user to stop emu­
lation upon very specific conditions, while trace circuitry
will collect the latest 2K (by 40 bit) events. Furthermore,
a wide range of debug commands provides the user
with full control of the Emulator hardware and features
several commands for controlling the execution of pro­
grams. Memory and registers may be read and written
in a number of different formats, while macro com­
mands and conditional block constructs are available
for use in automated debugging sessions.

71

ST9-HDS

Figure 1. ST9-HDS System Configuration

PERSONAL

COMPUTER

TERMINAL~
RS 232

(OPTIONAL)

ST9-HDS

HARDWARE DESCRIPTION

MOTHER

BOARD

The Interface and Control Unit (ICU) contains most
of the circuitry necessary to control the ST9-HDS,
with the exception of the circuits specifically related
to the ST9 family of microcontrollers. The ICU pro­
vides the control logic for monitoring the execution of
programs, setting memory breakpoints, recording
signal events, and handling the communication with
the host computer. The board contains the following
hardware resources:
_ Private Microcontroller: A private microcontroller

controls the operation of the emulator, allowing
execution of an emulated program to run without
interference.

_ 128K of Fast Static Memory: 128 Kbytes of fast
static memory are available for use by the
emulated microcontroller.

_ Memory Management Circuitry: Memory may be
mapped in groups of 512 bytes as Internal/Exter­
nal to the Emulated ST9 or, System/User Sup­
plied, and ReadOnly/ReadWrite, or as Non
Existent. (Certain versions also allow memory
to be mapped as EEPROM memory.)
Memory Breakpoints: 4 Hardware controlled
memory breakpoints are available to the user
and may be combined in AND, OR, SEQUEN­
TIAL, or DELAY mode. Each of the four break­
points is associated with a breakpoint counter
which may be used simply as a counter or

EXTENSION

BOARD

8 USER
PROBES

VA00118

used to flag an event only after the associated
event has occurred n times. ,

_ Real Time Trace Circuitry: Real Time Trace
Circuitry keeps track of a 2K by 40 bit buffer.

The ST9 Emulator POD contains the core of the cir­
cuits required to emulate any member of the ST9
family of microcontrollers. This board is responsible
for providing the interface with the Extension Board,
providing the interface with the Interface Control
Unit, sending out signals on reset identifying the
emulated device as a ROM-less or ROM-maskable
device, managing the opcode fetch signals, generat­
ing the clock for the Extension Board, controlling the
standalone mode option, decoding the pod ad­
dresses, managing the register breakpoints, control­
ling the idle/run logic, generating wait cycles, and
accessing the 8 user probes. The Pod Board con­
tains the following features:
_ Programmable Crystal Oscillator: An on board

programmable crystal oscillator, as well as the
possibility of using an external clock via a BNC
connector, allow the user the option of select­
ing the emulated CPU clock frequency.

_ Standalone Logic: The Hardware Development
System may be operated in Standalone Mode,
that is independently of the Host computer.

- Wait Cycle Generator: A Wait Cycle Generator
allows the user to assign from 0 to 7 wait cy­
cles to any block of 512 memory bytes defined
as external.

-------------- J..V. ~~~~m~::~~n
72

HARDWARE DESCRIPTION (Continued)

_ Register Breakpoints: 2 Hardware controlled
register breakpoints are available to the user
and may be combined in AND or OR mode.

The Extension Board contains the circuitry control­
ling all the special functions and peripherals of the
ST9 being emulated. Since each version of the ST9
has different peripherals and access to different 1/0
ports, the Extension Board will be different for each
version of the ST9.

However, the basic design of the Extension Board
will remain the same, allowing the extension board to
be easily configured for any future or existing version
of the ST9. In general, the Extension Board contains
the components and circuitry which emulate the ST9
(Core, 1/0 ports, and peripherals), interfaces with the
ICE Connectors, and sends information to the Pod
Board. Either a 220V/50Hz or 11 OV/60Hz Power
Supply is included in the emulator to provide the
emulator with all necessary power.

SOFTWARE DEBUGGING PACKAGE

The ST9 Symbolic Debugger is a software tool which
allows the user to have complete control of the ST9
Hardware Development System. The Debugger
must be used on an IBM PC/XT/AT or compatible
that is connected to the ST9-HDS by means of an
RS-232 serial communication cable. The following
features are provided by the ST9 Symbolic Debug­
ger:
- Debugger Compatibility: The debugger has a

command line syntax compatible with the
SIMST9 Software Simulator and SDBST9, the
debugger for the ST9 Evaluation Module.

- Commands: A wide range of commands are
available for displaying and setting memory
and registers according to different formats.

ST9-HDS

_ Powerful Symbol Handler: A Powerful Symbol
Handler allows the user to define symbols and
macros, extract them from symbol table files,
and save them in symbol table files.

- Symbolic On-Line Assembler/Disassembler:
The debugger provides a symbolic on-line as­
sembler and disassembler.

_ Full Screen Video Mode: Full screen video
modes are available for Memory, Register, and
Single Step Display.

- Symbolic Trace: Trace memory is disassem­
bled into assembler mnemonics.

- Macros and Conditional Block Constructs:
Macro commands and conditional block con­
structs are available for use in automated de­
bugging sessions.

- On-Line Help: An On-line help facility is avail­
able in the debugger to give a listing of the
complete command set as well as specific .in­
formation on any of the commands.

- Configuration and Documentation: Log, dump
and command file capability allows for easy
documentation and configuration.

_ Powerful Command Interpreter: A powerful
command interpreter allows for the evaluation
of complex expressions involving numbers, ad­
dresses, memory and register contents, and
1/0 channel data.

The ST9 Symbolic Debugger accepts inputs from
the Software Development Package which includes
the following:

- ST9 Macro Assembler (AST9)

- ST9 Linker/Loader (LST9)

- ST9 Library Archiver (ARST9)

- ST9 Software Simulator (SIMST9)

The Software Development Package is available
. separately, or with the Hardware Development
System.

73

ST9-HDS

Figure 2. SDBST9 Command Summary

ARCHIVE

ASM

BASE

BYE

CLOSE

CM
DEFINE

DISASM

DM

DO

DR

DUMP

FM
FR

GO
HELP

IF
LIST SYMBOL

LOAD

MAP

MB
MM

MRB
NEXT

OPEN

PRINT

QUIT

RESET
SAVE

SB
SEARCH

SET

SM

SR

SRB

TRACE

UNDEFINE

USE

VE

VM

VR

WR
<value>

?

74

Archive symbols and macros

On-line assembler

Change base of numbers

Exit from debugger program

Close I/O channel

Compare memory
Define symbols and macros

On-line symbolic disassembler

Display memory

Execute macro

Display register

Save current setup

Fill memory
Fill registers

Execute program

On-line help

Conditional command execution

List symbols and macros

Load program/data from file

Set/display memory mapping

Modify breakpoint
Move block of memory

Modify register breakpoint
Execute program steps

Open I/O channel

Print strings and values

Terminate command execution

Reset emulated CPU
Save program/data into file

Set/display memory breakpoints

Search a pattern in memory

Set/reset options

Set memory

Set/display registers
Set/display register breakpoints

Display trace

Remove symbols

Execute commands from a file

View execution (video mode)

View memory (video mode)

View registers (video mode)

Display current working register set

Evaluate expression
Display symbols having a given value

L•• SliS·ntOMSON
~ 1 • ® [KIA]O©~©rn[Lrn©tr~©ffi!!D©~ ST9-SW

SOFTWARE DEVELOPMENT TOOLS
FOR ST9 MCU FAMILY

• ST9 Macro Assembler
• ST9 Linker/Loader
• ST9 Library Archiver
• ST9 Software Simulation

GENERAL DESCRIPTION
Full software development is achieved using the
ST9 Software Development Tools. This follows for
the optional C Compiler, through the High Level
Macro Assembler, Linker/Loader, Library Archiver
and Software Simulator.
ST9 Macro Assembler
The ST9 Macro Assembler accepts one or more
source files written in ST9 assembly language and
transforms them into linkable object files. The as­
sembler recognizes the use of symbols macros
pseudo-instructions, pseudo-macros, a~d condi:
tional assembly directives.

Figure 1. Development Flow Chart

ST9 Linker/Loader
~he ~)T9 Lin~er/Loader combines a number of object
files mto a single program, associating an absolute
address to each section of code, and resolving any
external references. LST9 may be used to generate:
a binary or hexadecimal output module, a map file
and an object file. '

ST9 Library Archiver
The ST9 Library Archiver maintains libraries of soft­
ware object files, allowing the user to develop stand­
ard modules for repetitive use.

ST9 Software Simulator
The ST9 Software Simulator allows the user to de­
bug and execute any program written for any mem­
ber of the ST9 family of microncontrollers without the
aid of additional hardware. The simulator function­
ally duplicates the operation of the ST9 and com­
pletely supports the instruction set.

,.-------...,
: C COMPILER:
L------...1

VA0021J

75

ST9-SW

AST9 · ST9 MACRO ASSEMBLER

• Accepts one or more source files written in ST9
assembly language and produces an object file,
a listing file, an alphabetical symbol table, and
error diagnostics

General Description
The ST9 Macro Assembler (AST9) accepts one or
more source files written in ST9 assembly language
and transforms them into linkable object files. Mod­
ules written in assembly language are much easier
to write, read, and debug than the equivalent ma­
chine code. Furthermore, the assemblers use of
symbols, macros, pseudo-instructions, pseudo­
macros, and conditional assembly directives, allows
for even easier program development.

• Resulting object files are linkable and relocat­
able

• Supports program segmenting directives
• Recognizes user defined macros, macro librar-

ies, Conditional assembly directives,
pseudo-instructions, and pseudo-macros

• Supports indirect command files

Figure 2. AST9 Pseudo-Instructions

76

.ascii

.asciz

.blkb

.blkw

.bss

.byte

.data

.defstr

.endc

.endm

.error

.extern

.global

.ifc

.library

.list

.macro

.mcall

.mnarg

.mexit

.nlist

.org

.page

.pl

.sbttl

.text

.title

.word

stores a string as a sequence of ascii codes

same as above followed by a null character

allocate bytes of data storage
allocate words of data storage

defines segment as type bss (uninitialized data)

stores successive bytes of data

defines segment as type data

defines a string identifier
end of a conditional assembly block

end of a macro

user defined assembly error

defines symbols as external

defines specified symbols as global

beginning of a conditional assembly block

add files to macro-library file list

enables listing of specified fields

defines a macro

specifies which macros must be called from library
assigns to a symbol the number of arguments
defined in a macro call

end of a macro expansion

disables listing of specified fields

set current location counter

start a new listing page

set listing page length

assign subtitle to current section

define segment of type text

assign title to the document

store successive words of data

AST9- ST9 MACRO ASSEMBLER (Continued)

Figure 3. AST9 Pseudo Macros

jxcc symbol
if [conditional expression] {macrobody}

if [cond expr] {macrobody} else {macro2}
while [cond expr] {macro}
do {macro} while [cond expr]
loop [loopvar] {macro}

switch [cp] {

break

case cpl: macro

case cp2: macro

default: macro

begin [argl,arg2, ...] {macro}

proc procname [argl,arg2, ...] {macro}
return

ST9-SW

77

ST9-SW

LST9- ST9 LINKER/LOADER

• Links modules generated by the ST9 Macro As-
sembler (AST9) encourages modular
programming

• Supports indirect command files
• Supports 3 sections (text, data, and bss) which

may be relocated and loaded at different ad­
dresses. Allows the user to specify the mapping
of object files into different pages (supports
BMbyte addressing of the ST9050).

• Extensive symbol manipulation. produces alpha­
betically or numerically sorted symbol tables for
addresses, registers, or specifically for SIMST9
and SDBST9, strips the symbol table of local
symbols, global symbols, or both, allows defini­
tion and tracing of symbols.

• Produces binary or hexadecimal output modules
• Generates a map file
• Supports incremental linking
• Resolves references to external symbols and

searches libraries for necessary modules
• Provides self explanatory error and warning

messages.
• Displays the version number and information

about the various phases of linking

General Description

The ST9 Linker/Loader (LST9) is responsible for
combining a number of object files into a single pro­
gram, associating an absolute address to each sec­
tion of code, and resolving any external references.

LST9 can be used to create either a binary or hexa­
decimal output module to be used by the ST9. The
linker/loader will also produce a map file of the result­
ing object which gives information about the regis­
ters, pages, modules, and labels, or an object file
which may be used as an input to another call to the
linker.

This software program allows the user to develop
modular programs, which may then be combined
and addressed as defined by the user. Program
modularity allows for easier design and testing, as
well as promotes re-use of standard modules.

78

ARST9- ST9 LIBRARY ARCHIVER

• Edits libraries by adding, deleting, moving, or re­
placing files

• Prints a listing of the names of all files in a library,
or the table of contents for each file in a library

• Prints a file contained in a library, or extracts it for
use without modifying the library

• Libraries may be called by LST9 to resolve exter-
nal references.

General Description

The ST9 Library Archiver (ARST9) maintains librar­
ies of software object files, allowing the user to de­
velop standard modules for repetitive use. Once a
module has been inserted into a library, any applica­
tion may call the module. The ST9 Linker/Loader
(LST9) will only call the portions of each library that
are needed to resolve any external references.

SIMST9- ST9 SOFTWARE SIMULATOR

• Supports symbolic debugging and execution of
any program written for the ST9 family of micro­
controllers on an IBM PC/XT/AT or compatible
computer, without the aid of additional hardware.

• Functionally duplicates the operation of the ST9
family of microcontrollers, and supports the com­
plete instruction set.

• Host Memory may be mapped in groups of 1 K
byte as Read-only, Read-write, or Non Existent.

• A series of simulator status commands give the
user the option of selecting the simulated CPU
clock frequency, creating a log of the simulator
session, tracing the executed instructions, or
enabling the breakpoints and traps.

• The simulator has a command line syntax com­
patible with SDBST9, the debugger for the
ST9-HDS Hardware Development System, and
EVMST9, the debugger for the ST9-EVM Evalu­
ation Module.

• A powerful symbol handler allows the user to de­
fine symbols and macros, extract them from
symbol table files, and save them in symbol table
files.

• Full screen video modes are available for Mem­
ory, Register, and Single Step Display.

SIMST9- ST9 SOFTWARE SIMULATOR (Continued)

• An On-line help facility is available to give a list­
ing of the complete command set as well as
specific information on any of the commands.

• Dump and command file capability allolf..'Jor simu­
lator session retrieval and easy configuration.

• The simulator provides a symbolic on-line as­
sembler and disassembler.

• A powerful command interpreter allows for the
evaluation of complex expressions involving
numbers, addresses, memory and register con­
tents, and 1/0 channel data.

• 128 software breakpoints and 128 software traps
are available to the user.

• A trace is kept during program execution which
may be displayed afterwards with the traced in­
structions disassembled into assembler
mnemonics.

• A wide range of commands are available for dis­
playing and setting memory and registers
according to different formats.

• Macro commands and conditional block con­
structs are available for use in automated
debugging sessions.

• 1/0 channels can be opened for simulation of 1/0
peripheral functions.

Figure 4. SIMST9 Command Summary

ST9-SW

• Interrupts may be defined and set pending to
simulate the occurrence of an interrupt.

• A simulated clock will use the user assigned
clock frequency to calculate the real time execu­
tion of a program. The clock may be displayed or
changed by the user to perform time measure­
ments.

General Description

SIMST9 allows the user to debug and execute any
program written for any of the current and future
members of the ST9 family of microcontrollers, with­
out the aid of additional hardware. The simulator
functionally duplicates the operation of the ST9 and
completely supports the instruction set. 1/0 channels
may be opened, read, and written, in order to simu­
late the 110 functions of peripherals; while interrupts
may be set, and then set pending, in order to simu­
late the handling of interrupts. The simulator uses
the clock frequency assigned by the user, along with
the number of clock cycles needed by each instruc­
tion to keep track of the real time execution speed.

ARCHIVE

ASM

BASE

BYE

CLOSE

CM

DEFINE

DEFINT

DISASM

OM

Archive symbols and macros

On-line assembler

DO

DR

DUMP

FM

FR

GO

HELP

IF

INTERRUPT

Change base of numbers

Ex1t from Slmulator program

Close I/0 channel

Compare memory

Define symbols and macros

Define Interrupts

On-line symbolic disassembler

Dlsplay memory

Execute macro

Display reglster

Save simulator status

Fill memory

Fill registers

Execute program

On-line help

Condltlonal command execution

Simulate interrupt

~ SGS-11fOMSON
----------------,,. IRII!:l'l©~~rntm©!!O©@

79

ST9-SW

Figure 4. SIMST9 Command Summary (Continued)

80

LISTSYMBOL

LOAD

MAP

MB

MM

MT

NEXT

OPEN

PRINT

QUIT

RESET

RESTORE

SAVE

SB

SEARCH

SET

SM

SR

ST

TIME

TRACE

UNDEFINE

USE

VE

VM

VR

WR

<value>

List symbols and macros

Load program/data from file

Set/dlsplay memory mapping

Modify breakpoint

Move block of memory

Modify trap

Execute program steps

Open I/O channel

Print strings and values

Terminate command execution

Reset Slmulated CPU

Restore dump file

Save program/data into file

Set/display memory breakpoints

Search a pattern in memory

Set/reset options

Set memory

Set/display registers

Set/display traps

Set/display user clock counter

Dlsplay trace

Remove symbols

Execute commands from a file

View execution (video mode)

Vlew memory (video mode)

V1ew registers (video mode)

Display current working register set

Evaluate expression

Display symbols havlng a given value

• Upgraded KERNIGHAN AND RITCHIE C defini­
tion, respecting ANSI standard X3.159.

• Optimisation stages using artificial intelligence
techniques (calculation of costs in terms of code
size and execution time).

• Versions available for IBM PC or compatible un­
der MS-DOS 3.1 and higher, SUN 3 and SUN 4
(SPARC station) under the UNIX operating sys­
tem and for VAX and microVax under the VMS
operating system.

• All standard types allowed (char, int, short, long,
signed or unsigned).

• "Float" respecting IEEE 754 standard and "Dou­
ble" types allowed.

• Many library functions implemented in assem­
bler code for increased code and execution time
efficiency e.g. string handling, conversion, 1/0
routines.

• Generates an assembly language source file, in­
terleaving C lines and assembly language lines.

• Direct access to the Register File of the ST9, al­
lowing access to all on-chip peripherals and
features of the ST9.

• Extensions for Real Time Interrupt handling.

• Pre-processor included for standardisation and
increased readabilty and portability.

• Available with Macro-Assembler, Linker and
Symbolic Software Simulator.

• Fully compatible with the ST9 Hardware Devel­
opment System supporting symbolic debug and
source code high-level debugger.

GENERAL DESCRIPTION

The ST9 ANSI C Compiler allows the programmer to
write C source code and produce assembly lang age
source programs. Used with the assembler/linker, it
allows the possibility to generate object code ex­
ecutable for all members of the ST9 microcontroller

ST9-C
ANSI C COMPILER

FOR ST9 MCU FAMILY

family. The generated object code may be used for
symbolic debugging with the software simulator and
hardware debugger/emulator, to generate test
EPROM devices for prototyping, or to produce ROM
mask data. It takes into account all the advanced fea­
tures of the ST9 family (interrupt, Register File ac­
cess, memory pages access). The high-level
language C Compiler has been designed to provide
the greatest flexibility of use.

The user can either run the complete software with
only one simple command, or run each step of the
compiler separately: pre-processor, analyser,
coder, optimizer .

The ST9 ANSI C Compiler is delivered with a stand­
ard initialisation file to be linked with the customer ap­
plication. This file allows the setting of BSS and
DATA sections and stack pointers, as well as periph­
eral startup code.

STANDARD

The ST9 ANSI C Compiler is an implementation of
the X3.159 ANSI standard (issued from X3J11 draft
proposal), which includes and exceeds the
Kernighan and Ritchie specification. For example :
"CONST" and "VOLATILE" qualifiers and function
prototyping.

The ST9 ANSI C Compiler implements the features
most often needed by microcontroller develop­
ments: interrupt handling, Register File access, far
function declarations.

LICENSE

The ST9 ANSI C Compiler is delivered under license
for one user only. Upgrading of new releases will be
made to each registered user, free of charge, for a
duration of 12 months starting from the date of there­
turn of the Registration Card.

81

ST9-C

Figure 1. ST9-C Flow Chart

OTHER ASSEMBLED FILES

SIMULATOR
OR

EMU LA TOR/HOS

------------------ I.V ~~,~;~mm~g~
82

"c" USER SOURCE COOE

VA00214

DATASHEETS

83

ST9040
16K ROM HCMOS MCU WITH EEPROM,

RAM AND A/D CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time : 500ns
(12M Hz internal)

• Internal Memory :
ROM 16K bytes
RAM 256 bytes
EEPROM 512 bytes
224 general purpose registers available as RAM,
accumulators or index registers (register file)

• 80-pin PQFP package for ST9040Q

• 68-lead PLCC package for ST9040C

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• Up to 56 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bit Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile development tools, including assembler,
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators

• Real Time Operating System

• Windowed and One Time Programmable EPROM
parts available for prototyping and pre-production
development phases

• Upward compatible with ST9030, ST9032 and
ST9036

January 1993

PRELIMINARY DATA

PQFPBO

(Ordenng Information at the end of the Datasheet)

This is Preliminary Data from SGS-THOMSON. Details are subject to change wrthout notice.
85

ST9040

Figure 1. 80 Pin PQFP Package

1
2
3

24

80

25

Table 1. ST9040Q Pin Description

Pin Name Pin Name

1 AVss 25 P34/T11NA

2 AVss 26 P33/TOOUTB

3 NC 27 P32/TOINB

4 P44/Ain 28 P31/TOOUTA

5 P57 29 P30/P/D/TOINA

6 P56 30 P17/A 15

7 P55 31 P16/A14

8 P54 32 NC

9 I NT? 33 P15/A13

10 INTO 34 P14/A12

11 P53 35 P13/A11

12 NC 36 P12/A10

13 P52 37 P11/A9

14 P51 38 P1 O/A8

15 P50 39 POO/AO/DO

16 OSCOUT 40 P01/A1/D1

17 Vss

18 Vss

19 NC

20 OSCIN

21 RESET

22 P37/T10UTB

23 P36/T11NB

24 P35/T10UTA

65

54

41

40

VROA1649

Pin Name

64 P20/NMI

63 NC

52 Vss

61 P?O/SIN

60 P71/SOUT

P72/INT 4/TXCLK
59

/CLKOUT

P73/INT5
58

/RXCLK/ADTRG

57 P74/P/D/INT6

56 P75/WAIT

P76/WDOUT
55 ---

/BUSREQ

54
P77/WDIN
/BUSACK

53 R/W

52 NC

51 DS

50 AS

49 NC

48 Voo

47 Voo

46 P07/A7/D7

45 P06/A6/D6

44 P05/A5/D5

43 P04/A4/D4

42 P03/A3/D3

41 P02/A2/D2

_21_2_19 _____________ l:;i ~~~;m~::e~~l:
86

Pin Name

80 AVoo

79 NC

78 P47/Ain7

77 P46/Ain6

76 P45/Am5

75 P43/Ain3

74 P42/Am2

73 P41/Ain1

72 P40/Ain0

71 P27/RRDY5

P26/INT3
70

/RDSTB5/PiD

69 P25/WRRDY5

68
P24/INT1 ---
/WRSTB5

67 P23/SDO

66 P22/INT2/SCK

65 P21/SDI/P/D

Figure 2. 68 Pin PLCC Package

Table 2. ST9040C Pin Description

Pin Name Pin

61 P44/Ain4 10

62 P57 11

63 P56 12

64 P55 13

65 P54 14

66 INT7 15

67 INTO 16

68 P53 17

'A 1 P52 18

2 P51 19

3 P50 20

4 OSCOUT 21

5 Vss 22

6 OS GIN 23

7 RESET 24

8 P37/T10UTB 25

9 P36/T11NB 26

61
I
I
I
I

58 I

60

1 •

44

43

2 I :
I I
I I
I I
I I

9 27
YT,rr-~---~~~~~~-~T'~'u
10 26

VROD1649

Name Pin Name

P35/T10UTA 43 P70/SIN

P34/T11NA 42 P71/SOUT

P33/TDOUTB P72/CLKOUT
41

/TXCLK/INT4 P32/TOINB

P31/TOOUTA P73/ADTRG
40

/RXCLK/INT5 P30/P/D/TOINA

P17/A15 39 P74/P/D/INT6

P16/A14 38 P75/WAIT

P15/A13 P76/WDOUT
37

/BUSREQ P14/A12

P13/A11 P77/WDIN
36

/BUSACK P12/A10

P11/A9 35 R/W

P10/A8 34 DS

POO/A0/00 33 AS

P01/A1/D1 32 Voo

P02/A2/D2 31 P07/A7/D7

30 P06/A6/D6

29 P05/A5/D5

28 P04/A4/D4

27 P03/A3/D3

~ SCS·THOMSON
--------------- ..._..,, I(I]Oil:li!@~~~!:VIi!@!/![11:10

ST9040

Pin Name

60 AVss

59 AVoo

58 P47/Ain7

57 P46/Ain6

56 P45/Ain5

55 P43/Ain3

54 P42/Ain2

53 P41/Ain1

52 P40/Ain0

51 P27/RRDY5

P26/INT3
50

/RDSTB5/P/D

49 P25/WRRDY5

P24/INT1
48

/WRSTB5

47 P23/SDO

46 P22/INT2/SCK

45 P21/SDI/P/D

44 P20/NMI

3/219

87

ST9040

1.1 GENERAL DESCRIPTION

The ST9040 is a ROM member of the ST9 family of
microcontrollers, completely developed and pro­
duced by SGS-THOMSON Microelectronics using
a proprietary n-well HCMOS process.

The ROM device is fully compatible with its EPROM
version, which may be used for the prototyping and
pre-production phases of development, and can be
configured as: a standalone microcontroller with
16K bytes of on-chip ROM, a microcontroller able to
manage up to 112K bytes of external memory, or as
a parallel processing element in a system with other
processors and peripheral controllers.

The nucleus of the ST9040 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8
bit Prescaler, a Serial Peripheral Interface support­
ing S-bus, 12C-bus and 1M-bus Interface, plus two 8
bit 1/0 ports. The Core has independent memory
and register buses allowing a high degree of pipe­
lining to add to the efficiency of the code execution
speed of the extensive instruction set. The power­
ful 110 capabilities demanded by microcontroller
applications are fulfilled by the ST9040 with up to
56 1/0 lines dedicated to digital Input/Output.
These lines are grouped into up to seven 8 bit 1/0
Ports and can be configured on a bit basis under

Figure 3. ST9040 Block Diagram

4/219

88

software control to provide timing, status signals,
an address/data bus for interfacing external mem­
ory, timer inputs and outputs, analog inputs, exter­
nal interrupts and serial or parallel 1/0 with or
without handshake.
Three basic memory spaces are available to support
this wide range of configurations: Program Memory
(internal and external), Data Memory (internal and ex­
ternal) and the Register File, which includes the contr9l
and status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple
use for complex waveform generation and meas­
urement, PWM functions and many other system
timing functions by the usage of the two associated
DMA channels for each timer. In addition there is
an 8 channel Analog to Digital Converter with inte­
gral sample and hold, fast 1111s conversion time
and 8 bit resolution. An Analog Watchdog feature
is included for two input channels.

Completing the device is a full duplex Serial Com­
munications Interface with an integral 110 to
375,000 baud rate generator, asynchronous and
1.5Mbyte/s synchronous capability (fully program­
mable format) and associated address/wake-up
option, plus two DMA channels.

INTO INT7

1 1
16-811 TIMER I WATCHDOG+ SPI

CPU

VR001385

1.2 PIN DESCRIPTION

AS. Address Strobe (output, active low, 3-state).
Address Strobe is pulsed low once at the be~
ning of each memory cycle. The rising edQil of AS
indicates that address, Read/Write (R/W), and
Data Memory signals are valid for program.QI_data
memory transfers. Under program control, AS can
be placed in a high-impedanc~tate alo!!Q with
Port 0 and Port 1, Data Strobe (DS) and R/W.

OS. Data Strobe (output, active low, 3-state). Data
Strobe provides the timing for data movement to or
from Port 0 for each memory transfer. During a
write cycle, data out is valid at the leading edge of
DS. During a read cycle_,_Qata In must be valid prior
to the trailing edge of DS. When the ST9040 ac­
cesses on-chip memory, DS is held high during the
whole memory cycle. It can be placed in a bjg_h im­
pedance state along with Port 0, Port 1, AS and
R/W.

R/W. Read/Write (output, 3-state). Read/Write de­
termines the direction of data transfer for external
memory transactions. RiW is low when writing to
external program or data memory, and high for all
other transactions. It can be placed in a l}ig!l im­
~ance state along with Port 0, Port 1, AS and
DS.

RESET. Reset (input, active low). The ST9 is initial­
ised by the Reset signal. With the deactivation of RE­
SET, program execution begins from the Program
memory location pointed to by the vector contained
in program memory locations DOh and 01 h.

519040

OSCIN, OSCOUT. Oscillator (input and output).
These pins connect a parallel-resonant crystal
(24MHz maximum), or an external source to the
on-chip clock oscillator and buffer. OSCIN is the in­
put of the oscillator inverter and internal clock gen­
erator; OSCOUT is the output of the oscillator
inverter.

AVoo. Analog Voo of the Analog to Digital Con­
verter.

AVss. Analog Vss of the Analog to Digital Con­
verter. Must be tied to Vss.

Voo. Main Power Supply Voltage (5V ± 1 0%)

Vss. Digital Circuit Ground.

PO.O-P0.7, P1.0-P1.7, P2.0-P2.7 P3.0-P3.7, P4.0·
P4.7, P5.0-P5.7, P7.0-P7.7 1/0 Port Lines (In­
put/Output, TTL or CMOS compatible). 56 lines
grouped into 1/0 ports of 8 bits, bit programmable
under program control as general purpose 1/0 or
as alternate functions.

1.2.1 1/0 Port Alternate Functions

Each pin of the 1/0 ports of the ST9040 may as­
sume software programmable Alternative Func­
tions as shown in the Pin Configuration Drawings.
Table 1-3 shows the Functions allocated to each
1/0 Port pins and a summary of packages for which
they are available.

5/219

89

ST9040

PIN DESCRIPTION (Continued)

Table 3. ST9040 1/0 Port Alternate Function Summary

1/0 PORT
Name Function Alternate Function

Port. bit

PO.O AO/DO 1/0 Address/Data bit 0 mux

P0.1 A1/D1 1/0 Address/Data bit 1 mux

P0.2 A2/D2 1/0 Address/Data bit 2 mux

P0.3 A3/D3 1/0 Address/Data bit 3 mux

P0.4 A4/D4 1/0 Address/Data bit 4 mux

P0.5 A5/D5 1/0 Address/Data b1t 5 mux

P0.6 A6/D6 1/0 Address/Data bit 6 mux

PO.? A7/D7 1/0 Address/Data bit 7 mux

P1.0 AS 0 Address bit 8

P1.1 A9 0 Address b1t 9

P1.2 A10 0 Address bit 1 0

P1.3 A11 0 Address bit 11

P1.4 A12 0 Address bit 12

P1.5 A13 0 Address bit 13

P1.6 A14 0 Address b1t 14

P1.7 A15 0 Address bit 15

P2.0 NMI I Non-Maskable Interrupt

P2.0 ROM less I ROM less Select (Mask opt1on)

P2.1 P/D 0 Program/Data Space Select

P2.1 SDI I SPI Serial Data Out

P2.2 INT2 I External Interrupt 2

P2.2 SCK 0 SPI Senal Clock

P2.3 SDO 0 SPI Serial Data In

P2.4 INT1 I External Interrupt 1

P2.4 WRSTB5 I Handshake Wnte Strobe P5

P2.5 WRRDY5 0 Handshake Write Ready P5

P2.6 INT3 I External Interrupt 3

P2.6 RDSTB5 I Handshake Read Strobe P5

P2.6 P/D 0 Program/Data Space Select

P2.7 RDRDY5 0 Handshake Read Ready P5

P3.0 TOlNA I MF T1mer 0 Input A

P3.0 P/D 0 Program/Data Space Select

P3.1 TOOUTA 0 MF Timer 0 Output A

P3.2 TOINB I MF T1mer 0 Input 8

P3.3 TOOUTB 0 MF T1mer 0 Output B

P3.4 T11NA I MF Timer 1 Input A

6/219 r== SGS·TifOMSON --------------- A."f/ ['j]J!:rl©~~~t;m::J©ilDii:~

90

Pin Assignment

PLCC PQFP

24 39

25 40

26 41

27 42

28 43

29 44

30 45

31 46

23 38

22 37

21 36

20 35

19 34

18 33

17 31

16 30

44 64

44 64

45 65

45 65

46 66

46 66

47 67

48 68

48 68

49 69

50 70

50 70

50 70

51 71

15 29

15 29

14 28

13 27

12 26

11 25

ST9040

PIN DESCRIPTION (Continued)

Table 3. ST9040 1/0 Port Alternate Function Summary(Continued)

I/O PORT Pin Assignment
Name Function Alternate Function

Port. bit PLCC PQFP

P3.5 T10UTA 0 MF T1mer 1 Output A 10 24

P3.6 T11NB I MF T1mer 1 Input B 9 23

P3.7 T10UTB 0 MF Timer 1 Output B 8 22

P4.0 AinO I ND Analog Input 0 52 72

P4.1 Am1 I ND Analog Input 1 53 73

P4.2 Ain2 I AID Analog Input 2 54 74

P4.3 Ain3 I AID Analog Input 3 55 75

P4.4 Ain4 I AID Analog Input 4 61 4

P4.5 Ain5 I AID Analog Input 5 56 76

P4.6 Ain6 I AID Analog Input 6 57 77

P4.7 Ain7 I ND Analog Input 7 58 78

P5.0 1/0 1/0 Handshake Port 5 3 15

P5.1 1/0 1/0 Handshake Port 5 2 14

P5.2 1/0 1/0 Handshake Port 5 1 13

P5.3 1/0 110 Handshake Port 5 68 11

P5.4 1/0 1/0 Handshake Port 5 65 8

P5.5 1/0 1/0 Handshake Port 5 64 7

P5.6 1/0 1/0 Handshake Port 5 63 6

P5.7 1/0 1/0 Handshake Port 5 62 5

P7.0 SIN I SCI Serial Input 43 61

P7.1 SOUT 0 SCI Senal Output 42 60

P7.1 ROM less I ROM less Select (Mask option) 42 60

P7.2 INT4 I External Interrupt 4 41 59

P7.2 TXCLK I SCI Transmit Clock Input 41 59

P7.2 CLKOUT 0 SCI Byte Sync Clock Output 41 59

P7.3 INT5 I External Interrupt 5 40 58

P7.3 RXCLK I SCI Receive Clock Input 40 58

P7.3 ADTRG I AID Conversion Trigger 40 58

P7.4 INT6 I External Interrupt 6 39 57

P7.4 P/D 0 Program/Data Space Select 39 57

P7.5 WAIT I External Wait Input 38 56

P7.6 WDOUT 0 T/WD Output 37 55

P7.6 BUSREQ I External Bus Request 37 55

P7.7 WDIN I T/WD Input 36 54

P7.7 BUSACK 0 External Bus Acknowledge 36 54

____________ J:ifi St:iS·TiiOMSON
• 1 '" llfcr;:~©Jrnc~~:m©Jll!:o~:~

7/219

91

2 CORE ARCHITECTURE

2.1 CORE ARCHITECTURE

The Core or Central Processing Unit (CPU) of the
ST9 includes the 8 bit Arithmetic Logic Unit and the
16 bit Program Counter, System and User Stack
Pointers. The microcoded Instruction Set is highly
optimised for both byte (8 bit) and word (16 bit)
data, BCD and Boolean data types, with 14 ad­
dressing modes.
Three independent buses are controlled by the
Core, a 16 bit Memory bus, an 8 bit Register ad­
dressing bus and a 6 bit lnterrupt/DMA bus con­
nected to the interrupt and DMA controllers in the
on-chip peripherals and the Core. This multiple bus
architecture allows a high degree of pipelining and
parallel operation, giving the ST9 its efficiency in
both numerical calculations and communication
with the on-chip peripherals.

Figure 2-1. Address Spaces

64K

PROGRAM

MEMORY

I

REGISTER

FILE

ST9- Architecture

2.2 ADDRESS SPACES

The ST9 has three separate address spaces:

- Register File: 240 8-bit registers plus up to 64
pages of 16 bytes each, located in the on-chip
peripherals.

- Data memory with up to 64K (65536) bytes

_ Program memory with up to 64K (65536) bytes

The Data and Program memory spaces will be ad­
dressed in further detail in the next section.

2.2.1 Register File

The Register File consists of:

_ 224 general purpose registers RO to R223

- 16 system registers in the System Group
(R224 to R239).

- 1/0 pages depending on the configuration of
the ST9, each containing up to 16 registers,
with paging facilities based on the top group
(R240 to R255).

64K

DATA

MEMORY

VA00430

02-93 r== SGS-THOMSON -------------- A.""'J/. l'lll©l'l:Wrni!.~!:Viiii©I\'IO©~
9/219

93

ST9 - Architecture

ADDRESS SPACES (Continued)

Figure 2-2. Register Grouping

I I } UP TO
255 F PAGED REGISTERS II 64 PAGES
240 f------------1!-J
~;~ E SYSTEM REGISTERS

223

------------- 224

------------- ,

GENERAL
PURPOSE
REGISTERS

VA00432

Figure 2-4. Addressing the Register File

255

240
239
224
223

0

10/219

94

F

E

0

c

B

A

9

8

7

6

5

4

3

2

1

0

REGISTER FILE

PAGE REGISTERS

SYSTEM REGISTERS

1--

15

0

'----

R195
(ROC3h)

(~
(1100) (0011)

Figure 2-3. Page Pointer Configuration

I

PAGE 6.3

I PAGE 5

R255 [----

PAGE 0

R240

IT PAGE POINTER

R224

RO

VA00433

1- GROUP D-

R207

-

GROUP C

-- R195

R192

-GROUP B-

VR000118

ADDRESS SPACES (Continued)

2.2.2 Addressing Registers

All registers in the Register File and pages can be
specified by using a decimal, hex or binary ad­
dress, e.g. R231, RE7h or R111 00111 b is the
same register.
The registers can be referred to by their hexadeci­
mal group address, so that registers RO-R15 form
group 0, R160-R175 form group A and so on.

Working Register Addresses

The 8-bit register address is formed by 2 nibbles,
for example, for register R195 or RC3h or
R11 000011, 1100 specifies the 13th group (i.e.
group C) and 0011 specifies the 3rd register in that
group.

Working registers are addressed by supplying the
least significant nibble in the instruction and adding
it to the most significant nibble found in the Regis­
ter Pointer (R233). Working register addressing is
shown in Figures 2-4.
System Registers

The 16 system registers at addresses R224 to
R239 form Group E.
The system registers are addressable using any of
the 4 register addressing modes and the most sig­
nificant nibble will, in all cases, be 14 (OEh).

Paged Registers

There are a maximum of 64 pages each containing
16 registers. These are addressed using the regis­
ter addressing modes with the addition of the Page
Pointer register, R234. This register selects the
page to be addressed in group F and once set,
does not need to be changed if two or more regis­
ters on the same page are to be addressed in suc­
cession.

Therefore if the Page Pointer, R234, is set to 5, the
instructions
spp 5
ld R242, r4

will load the contents of working register r4 into the
third register (R242) of page 5.

These paged registers hold data and control regis­
ters related to the on-chip peripherals, and thus the
configuration depends upon the peripheral organi­
sation of each ST9 family member. i.e. pages only
exist if the peripheral exists.

Available pages are shown in Table 2-2.

ST9- Architecture

2.2.3 Input/Output Ports

The Input/Output ports are located in two areas.
The port registers for Ports 0-5 are located at the
bottom of the System register group in locations
R224 to R229, while port 6 and 7 are located in
page three, in registers 251 and 255 respectively.

Each Port has three associated Control registers,
which determine the individual pin modes (1/0,
Open-Drain etc). These registers are located in
pages 2 and 3 .

Table 2-1. Register File Organization

Hex. Decimal
Function

Register File
Address Address Group

FO-FF 240-255
Paged

Group F
Registers

EO-EF 224-239
System

GroupE
Registers

DO-OF 208-223 Group D

CO-CF 192-207 Group C

BO-BF 176-191 Group B

AO-AF 160-175 Group A

90-9F 144-159 Group 9

80-8F 128-143 General Group 8

70-7F 112-127
Purpose

Group 7 Registers

60-6F 96-111 Group 6

50-5F 80-95 Group 5

40-4F 64-79 Group 4

30-3F 48-63 Group 3

20-2F 32-47 Group 2

10-1F 16-31 Group 1

00-0F 00-15 Group 0

11/219

95

ST9 - Architecture

ADDRESS SPACES (Continued)

Table 2-2. Group F Peripheral Organization

Applicable for ST9040

DEC
DEC HEX

R255 RFF

R254 RFE

R253 RFD

R252 RFC

R251 RFB

R250 RFA

R249 RF9

R248 RF8

R247 RF7

R246 RF6

R245 RF5

R244 RF4

R243 RF3

R242 RF2

R241 RF1

R240 RFO

00
00

RESERVED

MSPI

WCR

TIWD

EXTINT

EEPROMCR

RESERVED

02
02

RESERVED

PORT3

RESERVED

PORT2

RESERVED

PORT1

RESERVED

PORTO

03
03

PORT?

RESERVED

PORT5

RESERVED

PORT4

08
08

MFT1

09
09

RESERVED

MFT

MFT1

MFTO

12/219 ~ Sl:iS·THOMSON ------------- /IJo."'fl, ffill~©liiii9Jrn~rn~:wliiii9J!Ilu©~

96

10
OA

MFTO

24
18

RESERVED

63
3F

AID

RFF

RFE

RFD

RFC

RFB

RFA

RF9

RF8

RF7

RF6

RF5

RF4

RF3

RF2

RF1

RFO

2.3 SYSTEM REGISTERS

Following is the description of System Registers.
For PORTO to PORTS Registers, please refer to
1/0 Port Chapter.

Figure 2-5. System Registers

R239 (EFh)

R238 (EEh)

R237 (ED h)

R236 (ECh)

R235 (EBh)

R234 (EAh)

R233 (E9h)

R232 (ESh)

R231 (E?h)

R230 (E6h)

R229 (E5h)

R228 (E4h)

R227 (E3h)

R226 (E2h)

R225 (E1h)

R224 (EOh)

SYS. STACK POINTER LOW

SYS. STACK POINTER HIGH

USER STACK POINTER LOW

USER STACK POINTER HIGH

MODE REGISTER

PAGE POINTER

REGISTER POINTER 1

REGISTER POINTER 0

FLAGS

CENTRAL INT. CNTL REG

PORTS

PORT4

PORT3

PORT2

PORT1

PORTO

· ST9- Architecture

2.3.1 Central Interrupt Control Register

This Register CICR is located in the system Regis­
ter Group at the address R230 (E6h). Please refer
to "INTERRUPT" and "DMA" chapters in order to
get the background of the ST9 interrupt philoso­
phy.

CICR R230 (E6h) Sytem Read/Write
Central Interrupt Control Register

Reset Value : 1000 0111

7 0

I GCEN I TLIP I TLI liEN II AM I CPL21 CPL 1 I CPLO I
b? = GCEN: Global Counter Enable. This bit is the
Global Counter Enable of the Multifunction Timers.
The GCEN bit is ANDed with the CE (Counter En­
able) bit of the Timer Control Register (explained in
the Timer chapter) in order to enable the Timers
when both bits are set. This bit is set after the Re­
set cycle.

b6 = TLIP: Top Level Interrupt Pending. This bit is
automatically set when a Top Level Interrupt Re­
quest is recognized. This bit can also be set by
Software in order to simulate a Top Level Interrupt
Request.

b5 = TLI: Top Levellnterrrupt bit. When this bit is
set, a Top Level interrupt request is acknowledged
depending on the lEN bit and the TLNM bit (in
Nested Interrupt Control Register). If the TLM bit is
reset the top level interrupt acknowledgement de­
pends on the TLNM alone.

b4 =lEN: Enable Interrupt. This bit, (when set), al­
lows interrupts to be accepted. When reset no in­
terrupts other than the NMI can be acknowledged.
It is cleared by interrupt acknowledgement for con­
current mode and set by interrupt return (iret). It
can be managed by hardware and software (ei
and cti instruction).

b3 =lAM: Interrupt Arbitration Mode. This bit cov­
ers the selection of the two arbitration modes, the
Concurrent Mode being indicated by the value "0"
and the Fully Automatic Nested Mode by the value
"1 ".This bit is under software control.

b2-b0 = CPL2-CPLO: Current Priority Level. These
three bits record the priority level of the interrupt
presently under service (i.e. the Current Priority
Level, CPL). For these priority levels 000 is the
highest priority and 111 is the lowest priority. The
CPL bits can be set by hardware or software and
give the reference by which following interrupts are
either left pending or able to interrupt the current
interrupt. When the present interrupt is replaced by
one of a greater priority, the current priority value is
automatically stored until required.

13/219

97

ST9 ·Architecture

SYSTEM REGISTERS (Continued)

2.3.2 Flag Register

The Flag Register contains 8 flags indicating the
status of the ST9. During an interrupt the flag register
is automatically stored in the system stack area and
recalled at the end of the interrupt service routine so
that the ST9 is returned to the original status. This
occurs for all interrupts and, when operating in the
nested mode, up to seven versions of the flag regis­
ter may be stored.

FLAGR R231 (E7h) System Read/Write
Flag Register

Reset value: undefined

7 0

UF DP

b7 = C: Carry Flag. The carry flag Cis affected by
the following instructions:

Addition (add, addw, adc, adcw),
Subtraction(sub, subw, sbc, sbcw),
Compare (cp, cpw),
Shift Right Arithmetic (sra, sraw),
Rotate (rrc, rrcw, rlc, rlcw, ror, rol),
Decimal Adjust (da),
Multiply and Divide (mul, div, divws).

_~Mlen-set;-it-gerrerally lnrncaTes' a carry out of the
most significant bit position of the register being
used as an accumulator (bit 7 for byte and bit 15 for
word operations).

The carry flag can be set by the Set Carry Flag (scf)
instruction, cleared by the Reset Carry Flag (ref) in­
struction, and complemented (changed to "0" if "1",
and vice versa) by the Complement Carry Flag (ccf)
instruction.

b6 = Z: Zero Flag. The Zero flag is affected by the
following instructions:

Addition (add, addw, adc, adcw),
Subtraction (sub, subw, sbc, sbcw),
Compare (cp, cpw),
Shift Right Arithmetic (sra, sraw),
Rotate (rrc, rrcw, rlc, rlcw, ror, rol),
Decimal Adjust (da),
Multiply and Divide (mul, div, divws),
Logical (and, andw, or, orw, xor, xorw,
cpl),
Increment and Decrement (inc, incw, dec,
decw),
Test (tm, tmw, tern, tcmw, btset).

In most cases, the Zero flag is set when the register
being used as an accumulator register is zero, follow­
ing one of the above operations.

b5 = S: Sign Flag. The Sign flag is affected by the
same instructions as the Zero flag.

The Sign flag is set when bit 7 (for byte operation)
or bit 15 (for word operation) of the register used as
an accumulator is one.

b4 = V: Overflow Flag. The Overflow flag is af­
fected by the same instructions as the Zero and
Sign flags.

When set, the Overflow flag indicates that a two's­
complement number, in a result register, is in error,
since it has exceeded the largest (or is less than
the smallest), number that can be represented in
twos-complement notation.
b3 = DA: Decimal Adjust Flag. The Decimal Adjust
flag is used for BCD arithmetic. Since the algorithm
for correcting BCD operations is different for addi­
tion and subtraction, this flag is used to specify
which type of instruction was executed last, so that
the subsequent Decimal Adjust (da) operation can
perform its function correctly.
The Decimal Adjust flag cannot normally be used
as a test condition by the programmer.

b2 = H: Half Carry Flag. The Half Carry flag indi­
cates a carry out of (or a borrow into) bit 3, as the
result of adding or subtracting two 8-bit bytes, each
representing two BCD digits. The Half Carry flag is
used by the Decimal Adjust (da) instruction to con­
vert the binary result of a previous addition or sub­
traction into the correct BCD result.
Like the Decimal Adjust flag, this flag is not nor­
mally accessed by the user.

b1 = UF: User Flag. Bit 1 in the flag register (UF) is
available to the user, but it must be set or cleared
by an instruction.

bO = DP: Data/Program Memory Flag. This bit in
the flag register indicates which memory area is
addressed. Its value is affected by the Set Data
Memory (sdm) and Set Program Memory (spm) in­
structions.

If the bit is set, the ST9 addresses the Data Mem­
ory Area; when the bit is cleared, the ST9 ad­
dresses the Program Memory Area. By reading
this bit, the user can verify in which memory area
the processor is working. The user writes this bit
with the sdm or spm instructions.

14/219 r== SliS·THOMSON --------------------------- A.."'f/.. iifiUIIlmJ©rn~rnlllm©lllUIIl~>

98

SYSTEM REGISTERS (Continued)

2.3.3 Register Pointing Techniques
Two registers, R232 and R233, within the system
register group, are available for register pointing.
R232 and R233 may be used together as a single
pointer for a 16 register working space or sepa­
rately for two a register spaces, in which case
R232 becomes Register Pointer 0 (RPO) and R233
becomes Register Pointer 1 (RP1).

The instructions srp, srpO and srpl (the Set
Register Pointer instructions) automatically inform
the ST9 whether the Register File is to operate with
a single 16-register group or two a-register groups.
The srpO and srpl instructions automatically set
the twin a-register group mode while the srp in­
struction sets the single 16-register group mode.
There is no limitation on the order or positions of
these chosen register groups other than they must
be on a or 16 register boundaries.

The addressing of working registers involves use of
the Register Pointer value plus an offset value given
by the number of the addressed working register.

When addressing a register, the most significant
nibble (bits 4-7) gives the group address and the
least significant nibble (bits 0-3) gives the register
within that group.

REGISTER POINTER 0
RPO R232 (Eah) System Read/Write
Register Pointer 0

Reset Value : undefined

7 0

I Fm I FUl I FG')I ffi41 ffi31 RPS I 01 DO

b7-b3 = RG7-RG3: Register Group number. These
bits contain the number (from 0 to 31) of the group
of working registers indicated in the instructions
srpO or srp. When using a 16-register group, a
number between 0 and 31 must be used in the srp
instruction indicating one of the two adjacent a-reg­
ister group of working registers used. RG7 is the
MSB.

b2 = RPS: Register Pointer Selector. This bit is set
by the instructions srpO and srpl to indicate that a
double register pointing mode is used. Otherwise,
the instruction srp resets the RPS bit to zero to indi­
cate that a single register pointing mode is used.

b1 ,bO = 01 ,DO: These bits are fixed by hardware to
zero and are not affected by any writing instruction
trying to modify their value.

ST9- Architecture

REGISTER POINTER 1
RP1 R233 (E9h) System Read/Write
Register Pointer 1

Reset Value : undefined

7 0

I Fm I FUl I FG')I ffi41 ffi31 RPS I 01 DO

This register is used only with double register
pointing mode; otherwise, using single register
pointing mode, the RP1 R register has to be consid­
ered as reserved and not usable as a general pur­
pose register.

b 7 -b3 = RG7 -RG3: Register Group number. These
bits contain the number (from 0 to 31) of the group
of a working registers indicated in the instructions
srpl. Bit 7 is the MSB.

b2 = RPS: Register Pointer Selector. This bit is
automatically set by the instructions srpO and
srpl to indicate that a double register pointing
mode is used. Otherwise the instruction srp reset
the RPS bit to zero to indicate that a single register
pointing mode is used.

b1 ,bO = 01 ,DO: These bits are hardware fixed to
zero and are not affected by any writing instruction
trying to modify their value.

Note. If working in twin a-register group mode but
only using srpO (i.e. only using one a-register
group) the unused register (R233) is to be consi.d­
ered as reserved and not usable as a general pur­
pose register.

The group of registers immediately below the sys­
tem registers (i.e. group 0, R20a-R223) can only
be accessed via the Register Pointers. To address
group 0 then, it is necessary to set the Register
Pointer to group 0 and then use the addressing
procedure for working registers. The programmer
is required to·remember that the group 0 should be
used as a stacking area. This point is also covered
in the Stack Pointers paragraph.

15/219

99

ST9 - Architecture

SYSTEM REGISTERS (Continued)

EXAMPLES

Using the Single 16 Register Group
When the system is operating in the single 16-reg­
ister group mode, the registers are referred to as
r0-r15. In this mode, the offset value (i.e. the num­
ber of the working register referred to) is supplied
in the address (preceded by a small r, e.g. r5) and
is added to the Register Pointer 0 value to give the
absolute address.

For example, if the Register Pointer contains the
value 70h, then working register r7 would have the
absolute address, R77h.

In this mode, the single 16-registers group will al­
ways start from the lowest even number equal or
lower to the number given in the instruction.

Example: srp #3 is equivalent to srp #2.

Figure 2-6. Single 16 Register pointing Mode

255

GROUP F

240
239

GROUP E
REGISTER POINTER 0 1----

224

<

r15

GROUP 4
WORKING

~
REGISTER

rO

1 L
VA00097

Using the Twin a-Register Group
When working in the twin working group mode, the
registers pointed by Register Pointer 0 (RPOR), are
referred as r0-r7 and those pointed by Register
Pointer 1 (RP1 R), are referred to as r8-r15, regard­
less of their absolute addresses. In this mode,
when operating with the first 8 working registers
(i.e. rO - r7) the working register number acts as an
offset which is added to the value in Register
PointerO.

So if Register Pointer 0 contains the value 96, then
working register 0 has the absolute address 96,
working register 5 has the absolute address 101,
and so on. The second group of working registers,
r8-r15, has the offset values 0 to 7 respectively (i.e.
r8 has the offset value 0, r9 has the offset value 1,
and so on), this offset value being added to the
value in Register Pointer 1.

For example, given that the value in Register
Pointer 1 is 32, then working register 12 supplies
an offset value of 4 (given by 12 minus 8) to the
value in Register Pointer 1 to give an absolute ad­
dress of 36.

Figure 2-7. Double Register pointing Mode

255

GROUP F

240
239

GROUP E
REGISTER POINTER 1

REGISTER POINTER 01--

224

GROUP 8 r7

WORKING REGISTER I--
rO

r15

WORKING REGISTER

GROUP 3 r8

0
VA00098

_16_12_1_9 __________ Gj SCS·DfOMSON
.,,. ~>~O©Ii:l©m~~~ml©lllOI:~ --------------

100

SYSTEM REGISTERS (Continued)

2.3.4 Page Configuration

The pages are available to be used for the storage
of control information (such as interrupt vector
pointers) relevant to particular peripherals. There
are up to 64 pages (each with 16 registers) based
on registers R240-R255. These paged registers
are addressable via the page pointer register
(PPR), which is system register R234.

To address a paged register the page pointer regis­
ter (R234) must be loaded with the relevant page
number using the spp instruction (Set Page Pointer)
and subsequently any address from the top (F)
group (R240-R255) will be referred to that page.

For example if register 23 contains the value 44,
the following sequence loads the third register
R242 on page 5 with the value 44.

spp 5

ld R242, R23

PPR R234 (EAh) System Read/Write
Page Pointer Register

Reset value : undefined

7 0

I PP71 PP61 PP51 PP41 PP31 PP21 D1 DO

b7-b2 = PP7-PP2: Page Pointer. These bits con­
tain the number (between 0 to 63) of the page cho­
sen by the instruction ssp (Set Page Pointer). PP7
is the MSB of the page address. Once the page
pointer has been set, there is no need to refresh it
unless a different page is required.

b1-b0 = 01 ,DO: These bits are fixed by hardware to
zero and are not affected by any writing instruction
trying to modify their value.

PAGE 0 contains the control registers of:

- the external interrupt

- the watchdog timer

_ the wait logic states

_ the serial peripheral interface (SPI)

- the EEPROM (ST9040/E40/T 40)

ST9 - Architecture

2.3.5 Mode Registers

This register MODER is located in the System
Register Group at the address 235.

Using this register it is possible:

- to select either internal or external System and
User Stack area,

- to manage the clock frequency

- to enable the Bus request and Wait signals
when interfacing external memory.

MODER R235 (EBh) System Read/Write
Mode Register

Reset value : 111 0 0000

7 0

I SSP I USP I DIV21 PF\521 PRS1 I Fffi) IEHBj f-UrvP I
b7 = SSP: System Stack Pointer. This bit selects
internal (in the Register File) or external (in the ex­
ternal Data Memory) System Stack area, logical
"1" for internal, and logical "0" for external. After
Reset the value of this bit is "1 ".

b6 = USP: User Stack Pointer. Same as bit 7 for
the User Stack Pointer;

b5 = DIV2: OSCIN Clock Divided by 2. This bit con­
trols the divide by 2 circuit which operates on the
OSCIN Clock. A logical "1" value means that the
OSCIN clock is internally divided by 2, and a logical
"0" value means that no division of the OSCIN
Clock occurs.

b4-b2 = PRS2-PRSO: ST9 CPUCLK Prescaler.
These bits load the prescaling module of the inter­
nal clock (INTCLK). The prescaling value selects
the frequency of the ST9 clock, which can be di­
vided by 1 to 8. See Clock chapter for more infor­
mation.

b1 = BRQEN: Bus Request Enable. This bit is a
software enable of an External Bus Request.
When set to "1", it enables a Bus Request on the
BUSREQ pin.

bO = HIMP: High Impedance Enable. When Port 0
and/or Port 1 are programmed as multiplexed ad­
dress and Data lines to interface external Program
and/or Data Memory, these lines and the Memory
interface control lines can be forced into the High
Impedance state by setting to "1" the HIMP bit.
When this bit is reset, it has no effect on PO and P1
lines.

If Port 1 is declared as an address AND as an 1/0
port (example: P10 ... P14 =Address, and P15 ...
P17 = 1/0), HIMP has no effect on the 1/0 lines (in
the previous example: P15 ... P17).

---------------------------- ~~~~~~~~:~~
17/219

101

ST9- Architecture

SYSTEM REGISTERS (Continued)

2.3.6 Stack Pointers

There· are two separate, double register stack
pointers available (named System Stack Pointer
and User Stack Pointer). both of which can ad­
dress :registers or memory.

The s!ack pointers point to the bottom of the stacks
which· are filled using the push commands and
emptied using the pop commands. The stack
pointer is automatically pre-decremented when
data .i.s "pushed in" and post-incremented when
data is "popped out".

For example, the register address space is se­
lected for a stack and the corresponding stack
pointer register contains 220. When a byte of data
is "pushed" into the stack, the stack pointer register
is decremented to 219, then the data byte is
"loaded" into register 219. Conversely, if a stack
pointer register contains 189 and a byte of data is
"popped" out, the byte of data is then extracted
from the stack and then the stack pointer register is
incremented to 190.

The push and pop commands used to manage
the system stack area are made applicable to the
user stack by adding the suffix U, while to use a
stack irstruction for a word a W is added.

For example push inserts data into the system
stack, but an added U indicates the user stack and
w means a word, so the instruction pushuw loads
a word' into the bottom of the user stack.

If the User Stack Pointer register contains 223
(working in register space) the instruction pushuw
will decrement User Stack Pointer register to 222
and then load a word into register R222 and R221.

When bytes (or words) are "popped out" the values
in those registers are left unchanged until fresh
data is loaded into those locations. Thus when
data is "popped" out from a stack area, the stack
content remains unchanged.

Note. Stacks must not be located in the pages or
the system register area.

The System Stack area and The System Stack
Pointer

The System Stack area is used for the storage of
temporarily suspended system and/or control reg­
isters, i.e. the Flag register and the Program
counter, while interrupts are being serviced. For
subroutine execution only the Program Counter
needs to be saved in the System stack area.

There are two situations when this occurs automat­
ically, one being when an interrupt occurs and the
other when the instruction call subroutine is used.
When the system stack area is in the Register File,
the stack pointer, which points to the bottom of the
stack, only needs one byte for addressing, in which
case the System Stack Pointer Low Register
(R239) is sufficient for addressing purposes. As a
result the System Stack Pointer High Register
(R238) becomes redundant BUT must be consid­
ered as reserved (please refer also to "spirious"
memory access section). Clearly when the stack is
external a full word address is necessary and so
both registers are used to point, the even register
providing the MSB and the odd register providing
the LSB.

The User Stack area and User Stack Pointer
The User Stack area is completely free from all in­
terference from automatic operations and so it pro­
vides a totally user controlled stacking area, that
area being in any part of the memory which is of a
RAM nature, or the first 14 groups of the general
Register File i.e. not in the System register or
Paged group.

The User Stack Poi~ter consists of two registers,
R236 and R237, wh1ch are both used for address­
ing an external stack, while, when stacking in the
Register File, the User Stack Pointer High Regis­
ter, R236, becomes redundant but must be consid­
ered as reserved.

18/219 -------------- ifi ~~~;ID~~~~~
102

SYSTEM REGISTERS (Continued)

Stack location
Care is necessary when managing stacks as there
is no limit to stack sizes apart from the bottom of
any address space in which the stack is placed.
Consequently programmers are advised to use a
stack pointer value as high as possible, particularly
when using the Register File as a stacking area.
This will also benefit programmers who may locate
the stacks in group D using, for example the in­
struction ld R237, #223 which loads the value

Figure 2-8. System and/or User Stack in
Register Stack Mode

REGISTER FILE
R255

STACK POINTER L

STACK POINTER H

STACK

_____ _j ______
RO

USP R236 (ECh) Read/Write

User Stack Pointer High Byte

Reset value: undefined

7

USP R237 (EDh) Read/Write

User Stack Pointer Low Byte

Reset value: undefined

7

-

--
VA004J4

0

0

ST9 - Architecture

223 into the User Stack Pointer Low Register. The
Programmer will not need to remember to set the
Register Pointer to 208 to gain access to registers
in the D-group, a problem outlined in Register
Pointing Techniques paragraph.
Stacks may be located anywhere in the first 14
groups of the Register File (internal stacks) or the
data memory (external stacks). It is not necessary
to set the data memory using the instruction sdm
as external stack instructions automatically use the
data memory.

Figure 2-9. System and/or User Stack in
Register Stack Mode

DATA MEMORY

SYSTEM REGISTERS

It STACK POINTER L

STACK POINTER H

STACK

L.. ____ _L ____

VA00435

SSP R238 (EEh) Read/Write

System Stack Pointer High Byte

Reset value: undefined

7

SSP R239 (EFh) Read/Write

System Stack Pointer Low Byte

Reset value: undefined

7

0

0

19/219

103

3 MEMORY

3.1 INTRODUCTION

The memory of the ST9 is divided into two spaces:

_ Data memory with up to 64K (65536) bytes

_ Program memory with up to 64K (65536) bytes

Thus, there is a total of 128K bytes of addressable
memory space.

The 16K bytes of on-chip ROM memory of the
ST9040 are selected at memory addresses 0
through 3FFFh (hexadecimal) in the PROGRAM
space.

The DATA space includes the 512 bytes of on-chip
EEPROM at addresses 0 through 1 FFh and the
256 bytes of on-chip RAM memory at addresses
200h through 2FFh.
Off-chip memory, addressed using the multiplexed
address and data buses (Ports 0 and 1) may be di­
vided into the Program and Data spaces by the ex­
terQ_al decoding of the Program/Data select pin
(P/D) available as an Alternate function output, al­
lowing the full 128K byte memory.

The memory spaces are selected by the execution
of the sdm and spm instructions (Set Data Memory
and Set Program Memory, respectively). There is
no need to use either of these instructions again

Figure 3-1. Memory Map

65535 .-----~ FFFF

16364 ,------+----_) 3FFF

ROM

0000 '-------'---------- 0000
INTERNAL EXTERNAL

PROGRAM SPACE

VROOI354

02-93

ST9- Memory

until the memory area required is to be changed.
This requirement is not necessary in two cases:
first, when operating with external stacks (the Data
memory is automatically selected) and, secondly,
when using the memory indirect to memory indirect
post-increment addressing mode (the memory
types are specified in the instructions: ldpp,
ldpd, lddp, ldd~.
Program instructions and data in the immediate
addressing mode are always read from the Pro­
gam space. For example:

sdm
ld R80,#99

will load R80 with the value 99 decimal from the
program space.

Either the Data Memory or the Program Memory,
both external or internal, can be addressed using
any of the memory addressing modes.
The 16 bit memory address may be supplied di­
rectly using the absolute memory location address
or indirectly using a pair of registers. In addition the
address can be given by an indexed mode when a
short (byte) or long (word) offset is added to an in­
direct base word address.

65535 .-----~ FFFF

768 .-------l----_J02FF
512J RAM -------- OlFF

0000 I EEPROM --------- 0000

INTERNAL EXTERNAL

DATA SPACE

VR001355

21/219

105

ST9- Memory

3.2 PROGRAM SPACE DEFINITION

The Program memory space of the ST9040, from
the 16K bytes of on-chip ROM memory (0 through
3FFFh) to the full 64K bytes with off-chip memory
expansion is fully available to the user. At ad­
dresses greater than the first 16K bytes of Program
space, external memory cycles are automatically
executed for instruction fetches.

The first 256 memory locations from address 0 to
FFh hold the Reset Vector, the Top-Level (Pseudo
Non-Maskable) interrupt, the Divide by Zero Trap
Routine vector and, optionally, the interrupt vector
table for use with the on-chip peripherals and the
external interrupt sources. Apart from this case no
other part of the Program memory has a predeter­
mmed function.

Each vector is contained in two consecutive byte
locations, the high order address held in the lower
(even) byte, the low order address held in the up­
per (odd) byte, forming the address which is
loaded into the Program Counter when selected by
the interrupt vector provided by the interrupt
source. This should point to the relevant Interrupt
Service routine provided by the user for immediate
response to the interrupt.

Table 3-1. First 6 Bytes of Program Space

0 Address h1gh of Power on Reset routme

1 Address low of Power on Reset routine

2 Address h1gh of D1vide by zero trap Subroutine

3 Address low of Divide by zero trap Subroutine

4 Address high of Top Level Interrupt routine

5 Address low of Top Level Interrupt routme

3.3 ROM LESS OPTION SUMMARY

In the event of a program revision being required
after the development of a ROM-based device, a
mask option is available which enables the recon­
figuration of the memory spaces to give a fully
ROM less device. This means that the on-chip pro·
gram ROM is disabled and ALL PROGRAM mem­
ory is seen as external, allowing the use of
replacement program code in external ROM mem­
ory. The on-chip EEPROM and RAM memory in
DATA space is not affected.
For more Information on this option, please refer to
the section "External Memory Interface".

106

3.4 DATA SPACE DEFINITION

The Data memory maximum s1ze is 64K bytes and
has exactly the same addresses and addressing
modes as the Program memory, the spaces being
distinguished by the use of the memory setting
command (sdm, Set Data Memory).

The ST9040 addresses the 512 bytes of on-chip
EEPROM memory in the Data Space from ad­
dresses 0 to 511 (DOh to 1 FFh) and the 256 bytes
of on-chip RAM memory from addresses 512 to
768 (200h to 2FFh). It may also address up to
64,767 locations of External Data through the Ex·
te~al Memory Interface when decoded with the
P/D pin.
The on-chip general purpose registers may be
used as additional RAM memory for minimum chip
count systems.

The Data Space is selected by the execution of the
sdm instruction. All subsequent operand and stack
memory references will access the Data Space.

When a separate Data Space is not provided, data
may also be stored in external RAM or ROM mem­
ory within the Program Space.

3.5 EEPROM

3.5.1 Introduction

The EEPROM memory provides user-programma­
ble non-volatile memory on-chip, allowing fast and
reliable storage of user data. As there is also no
off-chip access required, as for an external serial
EEPROM, high security levels can be achieved.

The EEPROM memory is read as normal RAM
memory at Data Space addresses 0 to I FFh, how­
ever one WAIT cycle is automatically added for a
Read cycle, while a byte write cycle to the
EEPROM will cause the start of an ERASE/WRITE
cycle at the addressed location. Word (16 bit)
writes are not allowed.

The programming cycle is self-timed, with a typical
programming time of 6ms. The voltage necessary
for programming the EEPROM is internally gener­
ated with a + 18V charge pump circuit.

Up to 16 bytes of data may be programmed into
the EEPROM during the same write cycle by using
the PARALLEL WRITE function.

A standby mode is also available which disables all
power consumption sources within the EEPROM
for low power requirements. When STBY is high,
any attempt to access the EEPROM memory will
produce unpredictable results. After the re-ena­
bling of the EEPROM, a delay of 6 JNTCLK cycles
must be allowed before the selection of the
EEPROM.

EEPROM (Continued)

The EEPROM of the ST9040 has been imple­
mented in a high reliability technology developed
by SGS-THOMSON, this, together with the double
bit structure, allow 300k Erase/Write cycles and 10
year data retention to be achieved on a microcon­
troller.

Control of the EEPROM is performed through one
register mapped at register address R241 in Page 0.

3.5.2 EEPROM Programming Procedure

The programming of a byte of EEPROM memory is
equivalent to writing a byte into a RAM location af­
ter verifying that EEBUSY bit is low. Instructions
operating on word data (16 bits) will not access the
EEPROM.

The EEPROM ENABLE bit EEWEN must first be
set before writing to the EEPROM. When this bit is
low, attempts to write data to the EEPROM have
no affect, this prevents any spurious memory ac­
cesses from affecting the data in the EEPROM.

Termination of the write operation can be detected
by polling on the EEBUSY status bit, or by inter­
rupt, taking the interrupt vector from the External
Interrupt 4 channel. The selection of the interrupt is
made by EEPROM Interrupt enable bit EEIEN. It
should be noted that the Mask bit of External inter­
rupt 4 should be set, and the Interrupt Pending bit
reset, before the setting of EEIEN to prevent un­
wanted interrupts. A delay (eg a nop instruction)
should also be included between the operations on
the mask and pending bits of External interrupt 4.
If polling on EEBUSY is used, a delay of 6 INTCLK
clock cycles is necessary after the end of program­
ming, this can be a nop instruction or, normally, the

Figure 3-2. EEPROM Parallel Programming Rows

ST9- Memory

required time to test the EEBUSY bit and to branch
to the next instruction will be sufficient. While EE­
BUSY is active, any attempt to access the
EEPROM matrix will be aborted and the data read
will be invalid. EEBUSY is a read only bit and can­
not be reset by the user if active.

An erased bit of the EEPROM memory will read as
a logic "0", while a programmed cell will be read as
a logic "1 ". For applications requiring the highest
level of reliability, the Verify Mode, set by EEPROM
control register bit VRFY, allows the reading of the
EEPROM memory cells with a reduced gate volt­
age (typically 20%). If the EEPROM memory cell
has been correctly programmed, a logic "1" will be
read with the reduced voltage, oth~rwise a logic "0"
will be read.

3.5.3 Parallel Programming Procedure

Parallel programming is a feature of the EEPROM
macrocell. One up to sixteen bytes of a same row
can be programmed at once.

The constraint is that each of the bytes occur in the
same ROW of the EEPROM memory (A4 constant,
A3-AO variable). To operate this mode, the Parallel
Mode enable bit, PLLEN, must be set. The data
written is then latched into buffers (at the ad­
dresses specified, which may be non-sequential)
and then transferred to the EEPROM memory by
the setting of the PLLST bit of the control register.
Both PLLST and PLLEN are internally reset at the
end of the programming cycle. Any attempt to read
the EEPROM memory when PLLEN is set will give
invalid data. In the event that the data in the buffer
latches is not required to be written into the memory
by the setting of PLLST, the correct way to terminate

A B C D E F ADDRESS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

::: :~ :::1 I =::=I I :::1 I =:I I =I :::1 I I:::: = ::::
I I I I I
1 I I I I

I I
I I
I I
I I
I I
I I

ROW 2

ROW 1

ROW 0

VR001356

--------------~ ~~~~m~::i(~~ 23/219

107

ST9- Memory

EEPROM (Continued)

the operation is to reset PLLEN and to perform a
dummy read of the EEPROM memory. This termi­
nation will clear all data present in the latches.

3.5.4 EEPROM Programming Voltage

No external Vpp voltage is required, an internal
18Volt charge-pump gives the required energy by
a dedicated oscillator pumping at a typical fre­
quency of 5MHz, regardless of the external clock.

3.5.5 EEPROM Programming Time

No timing routine is required to control the pro­
gramming time as dedicated circuitry takes care of
the EEPROM programming time (The typical pro­
gramming time is 6ms).

3.5.6 EEPROM Interrupt Management

At the end of each write procedure the EEPROM
sends an interrupt request (if EEIEN bit is set). The
EEPROM shares its interrupt channel with the ex­
ternal interrupt source INT4, from which the priority
level is derived.

Care must be taken when EEIEN is reset. The as­
sociated external interrupt channel must be dis­
abled (by reseting bit 4 of EIMR, R244) along with
reseting the interrupt pending bit (bit 4 of EIPR,
R243) to prevent unwanted interrupts. A delay in­
struction (at least 1 nap instruction) must be in­
serted between these two operations

WARNING. The content of the EEPROM of the
ST9040 family after the out-going test at SGS­
THOMSON's manufacturing location is not guar­
enteed.

3.5.7 EEPROM Control Register
EECR R241 (F1 h) Page 0 Read/Write
(except EEBUSY: read only)
EEPROM Control Register

Reset value : 0000 OOOOb (OOh)

7 0

bit 7 = 87: This bit is forced to "0" after reset and
MUST not be modified by the user.

bit 6 = VERIFY: Set Verify mode. Verify (active
high) is used to activate the verify mode.

The verify mode provides a guarentee of good re­
tention of the programmed bit. When active, the
reading voltage on the cell gate is decreased from
1.2V to O.OV, decreasing the current from the pro­
grammed cell by 20%. If the cell is well pro­
grammed (to "1 "), a "1" will still be read, otherwise
a "0" will be read.

Note. The verify mode must not be used during an
erasing or a programming cycle).

bit 5 = EESTBY: EEPROM Stand-By. EESTBY =
"1" switches off all power consumption sources in­
side the EEPROM. Any attempt to access the
EEPROM when EESTBY = "1" will produce unpre­
dictable results.

Note. After EESTBY is reset, the user must wait 6
CPUCLK cycles (e.g. 1 nap instruction) before se­
lecting the EEPROM.

bit 4 = EEIEN: EEPROM Interrupt Enable. INTEN
= "1" disables the external interrupt source I NT 4,
and enables the EEPROM to send its interrupt re­
quest to the central interrupt unit at the end of each
write procedure.

bit 3 = PLLST: Parallel Write Start. Setting PLLST
to "1" starts the parallel writing procedure. It can be
set only if PLLEN is already set. PLLST is internally
reset at the end of the programming sequence.

bit 2 = PLLEN: Parallel write Enable. Setting
PLLEN to "1" enables the parallel writing mode
which allows the user to write up to 16 bytes at the
same time. PLLEN is internally reset at the end of
the programming sequence.

bit 1 = EEBUSY: BUSY. When this read only bit is
high, an EEPROM write operation is in progress
and any attempt to access the EEPROM is
aborted.

bit 0 = EEWEN: EEPROM Write Enable. Setting
this bit allows programming of the EEPROM, when
low a writing attempt has no effect.

24/219 J:.::fi SGS -------------- ':'11 i<'OCo~~m~"~:,~~ --------------
108

4 INTERRUPTS

4.11NTRODUCTION

The ST9 responds to peripheral events and exter­
nal events through its Interrupt channels. When
such an event occurs, if previously enabled and
according to a priority mechanism, the current pro·
gram execution can be suspended to allow the
ST9 to execute a specific response routine. If the
event generates an interrupt request, the current
program status is saved after the current instruc­
tion is completed and the CPU control passes to
the Interrupt Service Routine.

The ST9 CPU can receive requests from the fol­
lowing type of sources:

- On-chip peripherals

- External pins

- Top-Level Pseudo-non-maskable interrupt

According to the on-chip peripheral features, an
event occurrence can generate an Interrupt re­
quest depending on the selected mode.

Up to eight external interrupt channels, with pro­
grammable input trigger edge, are available. In ad­
dition, a dedicated interrupt channel, set to the
Top-level priority, can be devoted either to the ex­
ternal pin NMI (to provide a Non·Maskable·lnter­
rupt) or to the Timer/Watchdog. Interrupt service
routines are addressed through a vector table
mapped in Program Memory.

Figure 4-1. Interrupt Flow

NORMAL

PROGRAM

FLOW

INTERRUPT

INTERRUPT

SERVICE

ROUTINE

I RET

INSTRUCTION

VR001833

ST9 -Interrupts

4.2 INTERRUPT VECTORIZATION

The ST9 implements an interrupt vectoring struc­
ture that allows the on-chip peripheral to identify
the location of the first instruction of the Interrupt
Service Routine (IVR) automatically.

When the interrupt request is acknowledged, the
peripheral interrupt module provides, through its
Interrupt Vector Register (IVR), a vector to point
into the vector table of locations containing the
start addresses of the Interrupt Service Routines
(defined by the programmer).

Each peripheral has a specific IVR mapped within
its Register File pages.

The Interrupt Vector table, containing the list of the
addresses of the Interrupt Service Routines, is lo·
cated in the first 256 locations of the Program
Memory. The first 61ocations of the Program Mem­
ory are reserved for:

Address Content

0 Address high of Power on Reset routine

1 Address low of Power on Reset routine

2 Address high of Divide by zero trap Subroutine

3 Address low of D1v1de by zero trap Subroutine

4 Address high of Top Level Interrupt rout1ne

5 Address low of Top Level Interrupt routine

With one Interrupt Vector register, it is possible to
address more interrupt service routines; in fact,
several peripherals share the same interrupt vee·
tor register among several interrupt channels. The
most significant bits of the vector are user pro­
grammable to define the base vector address in­
side the vector table in the program memory, the
least significant bits are controlled by the interrupt
module in hardware to select the specific vector.

Note: The first 256 locations of the program mem­
ory can contain program code. Other than the Re­
set vector, they are not exclusively reserved to the
vector table.

Warning. Although the Divide by Zero Trap oper­
ates as an interrupt, the FLAG Register is not
pushed onto the system Stack automatically. As a
result it must be regarded as a subroutine, and the
acknowledge routine must end with the RET instruc­
tion.

~02=-·-=-93=-------------- l.V. ~~~~lH~wT:~~~lt 25/219

109

ST9 - Interrupts

INTERRUPT VECTORIZATION (Continued)

Figure 4-2. Vectors and Associated Routines

REGISTER FILE

65535

PROGRAM MEMORY

I USER INT SUBROUTINE

240

239

IVR -

-

TOP LEVEL REQUEST

r--

-

USER DIVIDE BY ZERO

ROUTINE

USER

MAIN PROGRAM

USER

TOP LEVEL ISR

255

ODD LO -ISR ADDRESS
EVEN HI

5 LO
TOP LEVEL -

4 HI

3 LO
DIVIDE BY ZERO -

2 HI

~~ POWER ON RESET -

RESET

L- CPU DETECTION
DIVISION BY ZERO

Figure 4-3. Interrupt Architecture, Example of piority Allocations

26/219

11 0

§
~m
~<i
>z
~w
>-

~~
~~

U)

i5

INT A~

INT A1

INT 8~

INT 81

TOP LEVEL PRIORITY

0 CORE

~

2

3

5

6

7

-

}--

I--

r--

-

VECTOR
TABLE

VA00221

INT OQl

INT 01

INT C!2

INT C1
VR000146

4.3 INTERRUPT PRIORITY LEVEL ARCHITEC­
TURE

The ST9 supports a fully programmable interrupt
priority structure. Figure 4-4 shows a conceptual
description.

9 priority levels are available to define the channel
priority relationship. Each channel has a 3 bit field,
PRL (Priority Level), that defines its priority level
among 8 programmable levels. The ninth level
(Top Level Priority) is reserved for the
Timer/Watchdog or the External Pseudo Non­
Maskable Interrupt. The On-chip peripheral chan­
nel and the eight external interrupt sources can be
programmed within eight priority levels: level 7 has
the lowest priority, level 0 has the highest priority.

If several units are located at the same priority level,
an internal daisy chain, fixed for each ST9 device,
defines the priority relationship within that level.

The PRL bits are used to define the priority level for
interrupt requests.

Top level priority interrupt (highest) can be as­
signed either to the external Pseudo Non-Mask­
able interrupt or to the internal Timer/Watch-Dog.
An Interrupt service routine at this level cannot be
interrupted in any arbitration mode. Its mask can
be both maskable (TLI) or non-maskable (TLNM).

Figure 4-4. Interrupt Logic

FROM INTERRUPT
SOURCE

PICR

= IN

ST9 -Interrupts

4.4 PRIORITY LEVEL ARBITRATION

The 3 bits of CPL (Current Priority Level) in the
Central interrupt Control Register contain the prior­
ity of the currently running program (CPU priority).
CPL is set to 7 (lowest priority) upon reset and can
be modified during program execution either by
software or automatically by hardware according
to the selected Arbitration Mode.

During every instruction an arbitration phase is
made between every channel capable of generat­
ing an Interrupt, each priority level is compared to
all the other requests. If the highest priority request
is an interrupt, it must be higherthan the CPL value
in order to be acknowledged.

The priority of the Top Level Interrupt overrides
every other priority.

If two or more requests occur at the same instant of
time and at the same priority level, an on-chip daisy
chain, specific to every ST9 version, selects the
channel with the highest position in the chain. The
position in the chain is shown in table 4-1.

ST9 provides two interrupt arbitration modes: Con­
current and Nested modes. The Concurrent mode
is the standard interrupt arbitration mode while the
Nested mode improves the effective interrupt re­
sponse time when a nesting of the service routines
is required according to the request priority levels.

CICR

0 4

~1-----1 c· c 1-----+--l---l--

FROM ANOTHER
INTERRUPT SOURCE

1--1-----1 A" A 1---f---f--+--
?! OUT

HARDWARE INTERRUPT
DAISY CHAIN

INTERRUPT
TO CORE

VA00300

--------------- ~~~~~~~~:~~~ ______________ 27_~_1_9

111

ST9 -Interrupts

PRIORITY LEVEL ARBITRATION (Continued)

The control bit lAM (CICR.3) selects the Concur­
rent Arbitration mode (when reset to "0") or the
Nested Arbitration Mode (when set to "1 ").

Table 4-1. Daisy Chain Priorities

Applicable for ST9030, ST9032, ST9036, ST9040

H1ghest Position

Lowest Position

INTAO
INTA1
INTBO
INTB1
I NT CO
INTC1
INTDO
INTD1
TIMERO
SCI
AID
TIMER1

4.4.1 Concurrent Mode
This mode is selected when the lAM bit is cleared
(reset condition). The arbitration phase, performed
during every instruction, selects the request with
the highest priority level.

If the highest priority request is an interrupt request
and its priority value is higher than the Current Pri­
ority Value CICR.2, 1 ,0 (R230.2, 1 ,0), the interrupt
request will be acknowledged at the end of the cur­
rent instruction. The interrupt Machine Cycle per­
forms the following steps:

_ 1. Disables all the maskable interrupt requests
by clearing CICR.IEN

_ 2. Pushes the PC low byte into the system stack

_ 3. Pushes the PC high byte into the system stack

_ 4. Pushes the Flag register into the system stack

_ 5. Loads the PC with the 16-bit vector stored in
the Vector Table, pointed to by the Interrupt
Vector Register (IVR).

Figure 4-5. Example of a Sequence of Interrupt Requests with :
- Concurrent mode
- El set to 1 during the interrupt routine execution

PRIORITY LEVEL INTERRUPT 2 HAS PRIORITY LEVEL 2

INTERRUPT 3 HAS PRIORITY LEVEL 3

INTERRUPT 4 HAS PRIORITY LEVEL 4

INTERRUPT 5 HAS PRIORITY LEVEL 5

INT 2 ---------------------- INT 2

CPL -~ ~
ei 1

------------------------~-IN-T-3-,

CPL =~i I

---------- ~ ------------~~ l---IN-T-.4--.,J

~ CPL •7

CPL =7

INT 3

CPL =7

--------- WTS ------------------------------------- W~S
CPL ... 7

MAIN PROGRAM -- MAIN PROGRAM

CPL IS SET TO 7
VR000152

_2_8,_21_9 ____________ liii. ~~~~mg'::'~oo~~
112

PRIORITY LEVEL ARBITRATION (Continued)

The Interrupt Service Routine must be concluded
with the iret instruction. The iret instruction
executes the following operations:

_ 1 . Pops off the Flag register from the system Stack

_ 2. Pops off PC high byte from the system Stack

_ 3. Pops off PC low byte from the system Stack

_ 4. Enables all the un-masked Interrupts, by set-
ting the CICR.IEN bit

The suspended program execution is thus recov­
ered at the interrupted instruction. All pending in­
terrupts existing, or having occurred during the
interrupt service routine execution, remain pending
until the Enable Interrupt instruction (even if it is
executed during the interrupt service routine).

NOTE: When Concurrent mode is selected, the
source priority level is meaningful only during the
arbitration phase, where it is compared to all the
other priority levels and the CPL, but no trace is
kept of its value during the Interrupt Service Rou­
tine. Therefore, if other requests are issued, once
the global CICR.IEN is enabled again, they will be
acknowledged regardless of the Interrupt Service
Routine priority value; if no care is taken by the pro­
grammer, unpleasant side effects can take place.

ST9 - Interrupts

A typical case is the following: 3 pending requests
with different priority levels (ie 2,3,4) generate re­
quests at the same time (because the associated
events occurred during the same instruction). The
three interrupt service routines set Interrupt Enable
(lEN, CICR.4) by the ei instruction at the begin­
ning of the routine to avoid a high interrupt re­
sponse time to requests with a priority higher than
the one under service (usually, the higher the prior­
ity, the sooner the routine must be executed). Un­
fortunately, what will happen in this case is that the
three interrupt servicing routines will be executed
exactly in the opposite order of their priority. Inter­
rupt routine level 2 will be acknowledged first, then,
when the ei instruction is executed, it will be inter­
rupted by interrupt routine level 3, which itself will
be interrupted by interrupt routine level 4. When in­
terrupt routine level 4 is completed, interrupt rou­
tine level 3 will be recovered and finally, interrupt
routine level 2.

Therefore, it is recommended, in concurrent
mode, to avoid the insertion of the ei instruc­
tion in the interrupt subroutine, which can trig­
ger this LIFO (Last In, First Out) sequence of
interrupt processing.

Figure 4-6. Example of a Sequence of Interrupt Requests with :
- Concurrent mode
- El unchanged by the interrupt routines

PRIORITY LEVEL

-------------------------- f'--.::CINc:.:T·.::..O -1
CPL •5

------------------ ·f'--.::.1Nc.:.T.::..2 _./

CPL =5

------------~ __ --------------- ...___I_NT-'.3----1 T CPL =5

--- R-- INT.4

INTERRUPT 0 HAS PRIORITY LEVEL 0

INTERRUPT 2 HAS PRIORITY LEVEL 2

INTERRUPT 3 HAS PRIORITY LEVEL 3

INTERRUPT 4 HAS PRIORITY LEVEL 4

INTERRUPT 6 HAS PRIORITY LEVEL 6

T e\ CPL =5

5 f--('"M-A.,-IN'"'P::::R..,-OG::::R""AM..:ll -------------------------------- '--CP_M_,~_5--'1
CPL IS SET TO 5

-- ~ INT 6

~ CPL =7

~ CPL =7

---~--

-------------- lifi ~~~~m~::[<J~li

MAIN J
VR000153

29/219

113

ST9 - Interrupts

PRIORITY LEVEL ARBITRATION (Continued)

Figure 4-7. Interrupt Mode Flow-Chart

SET INTERRUPT

Notes:

NO

RESET El
PUSH PC LOW ->@SP, SP<·SP+1
PUSH PC HIGH ->@SP, SP<·SP+1
PUSH FLAGS ->@SP, SP<-SP+1

GET VECTOR + ADDRESS FROM TABLE

INTERRUPT SERVICE ROUTINE
(MAY SET El TO RENABLE INTERRUPT)

(2)

I RET
POP FLAGS <-SP, SP<-SP-1
POP PC HIGH <-SP, SP<-SP-1
POP PC LOW <-SP, SP<·SP-1

SET El

NESTED MODE

NO

CPL ·> NICR
CPL' <· CPL INT SRC

PUSH PC LOW ·>@SP, SP<·SP+1
PUSH PC HIGH ·>@SP, SP<·SP+1
PUSH FLAGS ·>@SP, SP<·SP+1

GET VECTOR + ADDRESS FROM TABLE

INTERRUPT SERVICE ROUTINE
(INTERRUPTABLE))

(2)

I RET
POP FLAGS <-SP, SP<-SP-1
POP PC HIGH <-SP, SP<·SP-1
POP PC LOW <·SP, SP<·SP-1

CPL < NICR

VR001835

1. The mterrupt arbitration starts 6 CPUCLK cycles befor the end of executron of each rnstruction (5 cycles during WFI).
2 Clear interrupt pendrng bit

30/219

114

PRIORITY LEVEL ARBITRATION (Continued)

4.4.2 Nested Mode

The difference of the Nested mode to the Concur­
rent mode consists of the modification of the CPL
value during the interrupt processing. The arbitra­
tion phase is basically identical to the concurrent
Mode, however once the request is acknowledged,
the current CPL value is saved in the Nested Inter­
rupt Control Register (NICR, R247 page 0) by set­
ting the NICR bit corresponding to the CPL value
(i.e. if the CPL is 3, NICR.3 bit will be set). The CPL
value is then updated with the Priority value of the
request just acknowledged, in this way the next ar­
bitration cycle will be performed against the priority
level of the Service Routine in progress.

ST9 -Interrupts

The Interrupt Machine Cycle will perform the fol­
lowing steps:

_ Disable all the maskable interrupts by clearing
lEN

_ Save the CPL value into the special stack
NICR to hold the priority level of the suspended
routine

_ Store in CPL the priority level of the acknow­
ledged routine, so that the next request priority
will be compared with the one of the routine
under service

_ Push the PC-Iow byte into the System Stack

- Push the PC-high byte into the System Stack

_ Push the Flag Register into the System Stack

Figure 4-8. Example of a Sequence of Interrupt Requests with :
- Nested mode
- El set to 1 during the interrupt routine execution

PRIORITY LEVEL

---~­

T"

INT.O

CPL = 0

INTERRUPT 0 HAS PRIORITY LEVEL 0

INTERRUPT 2 HAS PRIORITY LEVEL 2
INTERRUPT 3 HAS PRIORITY LEVEL 3
INTERRUPT 4 HAS PRIORITY LEVEL 4

INTERRUPT 5 HAS PRIORITY LEVEL 5
INTERRUPT 6 HAS PRIORITY LEVEL 6

INT 2

CPL = 2

CPL "" 7

MAIN PROGRAM --- MAIN PROGRAM

CPL IS SET TO 7 VR000154

31/219

115

ST9 -Interrupts

PRIORITY LEVEL ARBITRATION (Continued)

_ Load the PC with the vector pointed by IVR.

The iret Interrupt Return instruction executes the
following steps:

_ I . Pop off the Flag Register from the System
Stack

_ 2. Pop off the PC-high byte from the System
Stack

- 3. Pop off the PC-Iow byte from the System
Stack

_ 4. Enable all the unmasked interrupts by set­
ting the lEN bit

_ 5. Recover the interrupted routine priority level
by popping the value from the special register
(NICR) and by copying it into CPL.

The suspended execution is thus recovered at the
interrupted instruction.

REMARKS

I) Dynamic priority level modification: the main
program and routines can be specifically priori­
tized. Since CPL is represented by 3 bits in a
read/write register, it is possible to modify dynami-

cally the current priority value during the program
execution. This means that a critical section can
have a higher priority with respect to other interrupt
requests. Furthermore it is possible to prioritize
even the Main Program execution by modifying
CPL during its execution.

2) Maximum number of nestings: No more than 8
routines can be nested. If an interrupt routine at
level N is being serviced, no other Interrupts lo­
cated at level N can interrupt it. This guarantees a
maximum number of 8 nested levels including the
Top Level Interrupt request.

3) Priority level?: Interrupt requests at level 7 can­
not be acknowledged as their priority cannot be
higher than the CPL value. This can be of use in a
fully polled interrupt environment.

A nested/concurrent mode sequence is given on
Figure 4-10. This example clearly shows that
Nested and Concurrent modes are defined by the
user. Note that here the Y axis is referenced by
CPL. instead of the source priority level, and that
Interrupt 1 stays pending, having a priority level
lower than CPL.

Figure 4-9. Example of a Sequence of Interrupt Requests with :
- Nested mode
- El unchanged by the interrupt routiness

PRIORITY LEVEL

INT.O

CPL = 0

------------------- INT.2

CPL = 2

-------------~ -- --------------- '---IN_T'-'-.J--1 T CPL=J

---8--- JNT4

INTERRUPT 0 HAS PRIORITY LEVEL 0

INTERRUPT 2 HAS PRIORITY LEVEL 2

INTERRUPT 3 HAS PRIORITY LEVEL 3

INTERRUPT 4 HAS PRIORITY LEVEL 4

INTERRUPT 6 HAS PRIORITY LEVEL 6

• el CPL = 4
~~~-\~. CPL = 5 

J-(MAIN PROGRAM -------------------------------- ----;:;;:;;:;-­----=-:::..:_ 

CPL IS SET TO 5 

~ r---.-_:IN:_::T~.6~ 
>- CPL = 6 
!D CPL = 7 

7 - ----------------------------------------------- -+---- MAIN PROGRAM) 

VR000155 

32/219 

116 



ST9 -Interrupts 

PRIORITY LEVEL ARBITRATION (Continued) 

Figure 4-10. Example of a Nested and Concurrent Mode Sequence 

PRIORITY LEVEL 

0 

INT2 INT3 

)( 
2- ----------------

3 ----------------

4 

5 

6 

MAIN PROGRAM 

CPL=7 

NESTED MODE 

INT1 

INTERRUPT 1 HAS PRIORITY LEVEL 5 

INTERRUPT 2 HAS PRIORITY LEVEL 2 

INTERRUPT 3 HAS PRIORITY LEVEL 3 

INTERRUPT 4 HAS PRIORITY LEVEL 2 

INTERRUPT 5 HAS PRIORITY LEVEL 0 

INTERRUPT 6 HAS PRIORITY LEVEL 1 

INTERRUPT 7 HAS PRIORITY LEVEL 2 

PROGRAM ~~~ MAIN PROGRAM ) 

CPL=4 
~-eo 

.----- CPL set to 4 

~lAM bit= 0 
TIME 

CONCURRENT MODE 

VA00489 

33/219 

117 



ST9 - Interrupts 

4.5 EXTERNAL INTERRUPTS 

The standard ST9 core contains B external inter­
rupts sources grouped into four pairs. 

Table 4-2. External Interrupt Channel Grouping 

External Interrupt Channel 

I NT? INTD1 
INT6 I NT DO 

INTS INTD1 
INT4 I NT DO 

INT3 INTD1 
INT2 I NT DO 

INT1 INTD1 
INTO INTDO 

Each source has a trigger control bit TEAO, .. TED1 
(R242,EITR.0, .. ,7 Page 0) to select triggering on 
the rising or falling edge of the external pin. If the 
Trigger control bit is set to "1 ", the corresponding 
pending bit IPAO, .. ,IPD1 (R243,EIPR.0, .. ,7 Page 
0) is set on the input pin rising edge, if it is cleared, 
the pending bit is set on the falling edge of the input 
pin. Each source can be individually masked 
through the corresponding control bit IMAO, .. ,IMD1 
(EIMR.7, .. ,0). See Figure 4-12. 

The priority level of the external interrupt sources 
can be programmed among the eight priority levels 
with the control register EIPLR (R245). The priority 
level of each pair is software defined using the bits 
PRL2,PRL 1. For each pair, the even channel 
(AO,BO,CO,DO) of the group has the even priority 
level and the odd channel (A 1 ,81 ,C1 ,01) has the 
odd (lower) priority level. Figure 4-11 shows an ex­
ample of priority levels. 

34/219 

118 

Figure 4-11. Priority Level Examples 

PL20 PLIO PL2C PL1C PL2B PLIB PL2A PL1A 

I 1 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I E1LR 

1;~~ :~;;:laY u:~;:~p~~;~~ 
1NT.CO 000=0 1NT BO 100=4 

1NT C1 001=1 1NT 81: 101=5 

VR000151 

- The source of the interrupt channel AO can be 
selected between the external pin INTO (when 
lAOS = "1", the reset value) or the On-chip 
Timer/Watchdog peripheral (when lAOS = "0"). 

- The source of the interrupt channel BO can be 
selected between the external pin INT2 (when 
(SPEN,BMS)=(O,O)) or the on-chip SPI periph­
eral. 

_ The source of the interrupt channel CO can be 
selected between the external pin INT4 (when 
EEIEN = "0") and the on-chip EEPROM write 
completion interrupt (when EEIEN="1 "). 

All other interrupt channels have an input pin as 
source, however, the input line may be multiplexed 
with an on-chip peripheral 1/0 or connected to an 
input pin that performs also other function (as in 
the case of the handshake feature). 

Table 4-3. Internal/External Interrupt Source 

Channel 
Internal Interrupt External Interrupt 

Source Source 

INTAO Timer/Watchdog INTO 

INTBO SPI Interrupt INT2 

I NT CO EEPROM INT4 



ST9 -Interrupts 

EXTERNAL INTERRUPTS (Continued) 

Figure 4-12. External Interrupts Control Bits and Vectors 

Watchdog/Timer TEAO 

!NT AO 

!NT 0 pm 
request 

TEAl 

INT 1 pin INT AI 
request 

TEBO 

SPJ Interrupt 

INT BO 

INT 2 pm ~ ~ 
request 

Pend1ng bit 

TEBl 

I 
VECTOR lv7IV6IV5Iv•l o 11 11 I x 

!NT .3 pin 
Priority level WTIIJ INT 81 

l ~ ~ 
request 

'----- Mask b1t Pending bit 

TECO 

INT CO 

INT 4 pm request 

TECl 

INT 5 p.n INT Cl 

request 

TEDO 

INT 6 pm INT DO 

~ ~ 
request 

Pend1ng bit 

TEO I 

I 
VECTOR IV7IV6IVSIV41 1 I 1 I 1 I X 

INT 7 pin Priority level WTIIJ INT 01 

l ~ ~ 
request 

- Mask bit Pendmg bit 

VR000440 

35/219 

119 



ST9 - Interrupts 

4.6 TOP LEVEL INTERRUPT 

The Top Level Interrupt channel can be assigned 
either to the external pin NMI or to the 
Timer/Watchdog according to the status of the 
control bit EIVR.TLIS (R246.2, Page 0). If this bit is 
high (the reset condition) the source is the external 
pin NMJ, if it is low, the source is the Timer/ Watch­
dog End Of Count. When the source is the NMI ex­
ternal pin, the control bit EIVR.TL TEV (R246.3; 
Page 0) selects between the rising (if set) or falling 
(if cleared) edge generating the interrupt request. 
When the selected event occurs, the CICR.TLIP bit 
(R230.6) is set. Depending on the mask situation, 
a Top Level Interrupt request may be generated. 
Two kinds of masks are available, a Maskable 
mask and a Non-Maskable mask. The first mask is 
the bit CICR.TLI (R230.5): it can be set or cleared 
to enable or disable respectively the Top Level In­
terrupt request. If it is enabled, the global Enable 
Interrupt bit CICR.IEN (R230.4) must also be en­
abled in order to allow a Top Level Request. 

The second mask NICR.TLNM (R247.7) is a set­
only mask. Once set, it enables the Top Level In-

Figure 4-13. Top Level Interrupt Structure 

WATCHDOG ENABLE 
WDEN 

WATCHDOG TIMER 

END OF COUNT 

NMI SoRl_ 

TL TEV 

TLNM 

TLI 

lEN 

terrupt request independently of the value of 
CICR.IEN and it cannot be cleared by program. 
Only the processor RESET cycle can clear this bit. 

The Top Level Interrupt Service Routine cannot be 
interrupted by any other interrupt request, in any 
arbitration mode, even by another Top Level inter­
rupt request. 

Warning. The interrupt machine cycle of the Top 
Level Interrupt does not clear the CICR.IEN bit, 
and the corresponding iret does not set it. 

4.7 ON-CHIP PERIPHERAL INTERRUPTS 

The general structure of the peripheral interrupt 
unit is described here, however each on-chip pe­
ripheral has its own specific interrupt unit contain­
ing one or more interrupt channels, or DMA 
channels. Please refer to the specific peripheral 
chapter for the description of its interrupt features 
and control registers. 

CORE 

RESET 

TLIP 
PENDING 

TOP LEVEL 
INTERRUPT 

MASK REQUEST 

TLIS 

VA00294 

36/219 r== SGS-THOMSON 
-------------- ... ...,/ [l;]G©Bl©~!~©Vmi@li'IG©~ 

120 



ON-CHIP PERIPHERAL INTERRUPTS (Continued) 

The on-chip peripheral interrupt channels provide 
the following control bits: 

- Interrupt Pending bit (IP) 
Set by hardware when the Trigger Event oc­
curs. Can be set/cleared by software to gener­
ate/cancel pending interrupts and give the 
status for Interrupt polling. 

Interrupt Mask bit (IM) 
If IM = "0", no interrupt request is generated. If 
IM ="1" an interrupt request is generated when­
ever IP = "1" and CICR.IEN = "1 ". 

Figure 4-14. Wait For Interrupt Timing 

INT 

SAMPLE: 

AS 

I 
I 
I 

OS I 
I 
I 
I 
I 
I 
I I 

I I 
I 
I 
I 
I 

PORT ) ~15~A8 ~ 

A 

I I 
I 
I 
I 
I 
I 
I 

ST9 - Interrupts 

- Priority Level (PRL, 3 bits) 
These bits define the source priority level 
PRL=O: the highest priority 
PRL=7: the lowest priority (the interrupt cannot 
be acknowledged) 

_ Interrupt Vector Register (IVR, up to 7 bits) 
The IVR points to the vector table which itself 
contains the interrupt routine start address. 

WFI EXECUTION PERIOD INTERRUPT 
--------------------------~------

OR OMA 

I 
c:== WFI LOOP~ I MACHINE 

5 1+5l 2+5L 3+5L 4+5L 5+5l 6+5L 7+5L B+SL CYCLE 

I 
I 
I 
I 

I I 

I 
I 
I 
I 
I 
I 
I 
I I 
I 
I 

I 
I I 

I 
I 
I 
I I 
I I 
I I 
I I 

I I J I I I I I 

: : : I : : 
I I I : I I I 

I I I I I I I I I l 
I I I I I I I I I I 

A7-AO I EF 

I : I 
g~s~~~~~~ A?-AO ~~s;~~~~~ 

I I I I I I I 

I r-rl ~~~~~~~~~~~+-~~ PORT 0 

VR001411 

37/219 

121 



ST9 - Interrupts 

4.8 WAIT FOR INTERRUPT INSTRUCTION 

The Wait For Interrupt instruction suspends pro­
gram execution until an interrupt request is ac­
knowledged. During the WFI instruction, the 
CPUCLK is halted while INTCLK keeps running. 
Under this state, the power consumption of the 
processor is lowered by the CORE power con­
sumption value. 

Figure 4-15. Interrupt Acknowledge Timing 

4.9 INTERRUPT RESPONSE TIME 

Interrupt requests are sampled 6 CPUCLK cycles 
before the end of the instruction. If Wait For Inter­
rupt is in progress, requests are sampled every 5 
CPUCLK cycles. If the interrupt request comes 
from an external pin, the programmed event has to 
be set a minimum of one CPUCLK cycle before the 
sampling time. 

INTERRUPT MACHINE CYCLE 
~--------------------------------------

AS 

AS 

M1--+-­

T2 I T3 

FETCH OPCOOE FETCH 2nd BYTE 

DISCARDED DISCARDED 

MEMORY WRITE MEMORY READ 

12 I 13 I 14 1s 16 17 18 

# PUSH FLAGS READ VECTOR HIGH 

MEMORY READ 

19 I 20 I 21 

READ V£CTOR LOW 

_38_1_21_9 _____________ ~ ~~~;~~m:~:: 

122 

MEMORY WRITE 

# PUSH PCL # PUSH PCH 

VR001414 



INTERRUPT RESPONSE TIME (Continued) 

In order to guarantee the falling/rising edge detec­
tion, input signals must be kept low/high for a mini­
mum of one CPUCLK cycle. 

An interrupt machine cycle takes 26 internal clock 
cycles (CPUCLK), with some exceptions as fol­
lows: 

Figure 4-16. External Interrupt Response Time 

ST9 -Interrupts 

- 28 internal clock cycles (CPUCLK), if a Wait 
For Interrupt is in progress 

- 32 internal clock cycles (CPUCLK), if the ac­
knowledge cycle follows a DMA transfer with 
Register File 

CURRENT INSTRUCTION EXECUTION 
INTERRUPT 

MACHINE CYCLE 

------------------------------------------~~-----

INTCLK 

INT # PIN 

"' """'' 1'-'r-------i----
INT SAMPLE 

VROD1415 

---------------------------~ ~~~~m~::il~tt 39/219 

123 



ST9 - Interrupts 

4.10 INTERRUPT REGISTERS 

CICR R230 (E6h) System Read/Write 
Central Interrupt Control Register 

Reset value: 1000 0111 (87h) 

7 0 

I ~lrup lru liEN 11/IM I crul CAJ I CPLO I 
b? = GCEN: Global Counter Enable bit. When set 
the 16 bit MultiFunction Timers are enabled (see 
Timer Control Register in MUL Tl FUNCTION 
TIMER chapter) 

b6 = TLIP: Top Level Interrupt Pending bit. Set by 
hardware when the Trigger Event occurs. Cleared 
by hardware when the Top Level Interrupt is ac­
knowledged. 

b5 = TLI: Top Level Interrupt bit. If TLI ="1 ", and 
lEN is set, a Top Level Interrupt request is gener­
ated as TLIP is set. If TLI = "0", a request is gener­
ated only if TLNM is set. 

b4 = lEN: Interrupt Enable. If lEN = "0", no mask­
able Interrupt requests are generated. This bit is 
cleared by the interrupt machine cycle and it is set 
by the I RET instruction of maskable routines. 

b3 =JAM: Interrupt Arbitration Mode. If lAM= "0", 
Concurrent Arbitration Mode is selected; If lAM = 
"1" Nested Mode is selected. 

b2-b0 = CPL2, CPL 1, CPLO: Current Priority 
Level. Defines the Current Priority Level under 
service. CPL=O is the highest priority. CPL=7 is the 
lowest priority. This bits may be modified directly 
by the interrupt hardware when the Nested Inter­
rupt Mode is used. 

EITR R242 (F2h) Page 0 Read/Write 
External Interrupt Tngger Event Register 

Reset value: XXXX 0000 (OOh) 

7 0 

1~1~1~1~1~1~1~1~1 
If TExy bit is set, the pending bit will be set upon the 
rising edge of the mput signal. 

If TExy is cleared, the pending bit will be set upon 
the falling edge of the input signal. 

All bits are set/reset only by software. 

b? = TED1: Trigger Event of Interrupt Channel D1 

b6 = TEDO: Trigger Event of Interrupt Channel DO 

b5 = TEC1: Trigger Event of Interrupt Channel C1 

b4 = TECO: Trigger Event of Interrupt Channel CO 

b3 = TEB1: Trigger Event of Interrupt Channel 81 

b2 = TEBO: Trigger Event of Interrupt Channel 80 

b1 = TEA1: Trigger Event oflnterrupt Channel A 1 

bO = TEAO: Trigger Event of Interrupt Channel AO 

IDPR R243 (F3h) Page 0 Read/Write 
External Interrupt Pending Register 

Reset value: 0000 0000 (OOh) 

7 0 

l~l~lrol~lml~l~ ~1 
b? = IPD1: Interrupt Pending bit Channel 01 

b6 = IPDO: Interrupt Pending bit Channel DO 

b5 = IPC1: Interrupt Pending bit Channel C1 

b4 = IPCO: Interrupt Pending bit Channel CO 

b3 = IPB1: Interrupt Pending bit Channel 81 

b2 = IPBO: Interrupt Pending bit Channel 80 

b1 = IPA1: Interrupt Pending bit Channel A1 

bO = IPAO: Interrupt Pending bit Channel AO 

IP bits are hardware set upon the occurence of the 
trigger event and are reset by the interrupt acknow­
ledge machine cycle. 

Note. IP bits may be set by the programmer to im­
plement a software interrupt. 

_40_12_1_9 ____________ liii ~~~;"ID~¥~~"'~~ 
124 



INTERRUPT REGISTERS (Continued) 

EIMR R244 (F4h) Page 0 Read/Write 
External Interrupt Mask-bit Register 

Reset value: 0000 0000 (DOh) 

7 0 

1~1~1~1~1~1~1~1~1 
EIMR bits are set/reset by software 

When the IM bit is set (and the global lEN is en­
abled), an interrupt request is generated if the cor­
responding IP bit is set. When IM = "0", no request 
will be generated. 

- IMxy = "1": an interrupt request can be acknow-
ledged (depending on lEN) 

_ IMxy = "0": an interrupt request is masked. 

b7 = IMD1: Interrupt Mask of Interrupt Channel 01 

b6 = IMDO: Interrupt Mask of Interrupt Channel DO 

b5 = IMC1: Interrupt Mask of Interrupt Channel C1 

b4 = IMCO: Interrupt Mask of Interrupt Channel CO 

b3 = IMB1: Interrupt Mask of Interrupt Channel 81 

b2 = IMBO: Interrupt Mask of Interrupt Channel 80 

b1 = IMA 1: Interrupt Mask of Interrupt Channel A 1 

bO = I MAO: Interrupt Mask of Interrupt Channel AO 

EIPLR R245 (FSh) Page 0 Read/Write 
External Interrupt Priority Level Register 

Reset value: 1111 1111 (FFh) 

7 0 

I Pl2D I PliO I Pl2C I Pl1C I Pl2B I Pl1B I Pl2A I Pl1A I 
EIPLR bits are set/reset by software 

b7-b6 = PL1D, PL2D: Priority level for the Group 
INTDO, INTD1 

b5-b4 = PL 1 C, PL2C: Priority level for the Group 
INTCO, INTC1 

b3-b2 = PL 1 B, PL2B: Priority level for the Group 
INT80, INT81 

b1-b0 = PL 1 A, PL2A: Priority level for the Group 
INTAO, INTA 1 

ST9 - Interrupts 

EIVR R246 (F6h) Page 0 Read/Write 
External Interrupt Vector Register 

Reset value: xxxx 0110 (X6h) 

7 0 

I V7 I V6 I vs I V4 lmEVI rus IIACB I EV-EN I 
b7-b4 = V7 to V4: Most significant nibble of Exter­
nal Interrupt Vector. Not initialized by reset. 

b3 = TL TEV: Top Level Trigger Event bit When 
set, the Top Level event is triggered on rising edge 
of NMI input pin. Triggering on the falling edge of 
the NMI input pin is activated when this bit is "0" 
(reset value) 

b2 = TLIS: Top Level Input Selection bitThis bit se­
lects the source of the Top Level Interrupt between 
the external NMI pin (when "1", the reset value) 
and the Timer/Watchdog End of Count (when "0"). 

b1 =lAOS: Interrupt AO Selection bit When set, the 
External Interrupt pin is selected as the External In­
terrupt Channel AD source. When reset the source 
is the Timer/Watchdog End of Count interrupt. 

bO = EWEN: External Wait Enable bit When set, 
this bit enables the WAIT input pin to stretch the 
external memory access cycle. For more details of 
the WAIT mode, the reader should refer to the 
Clock and Wait chapter or External memory Inter­
face chapter. 

NICR R247 (F7h) Page 0 Read/Write 
Nested Interrupt Control Register 

Reset value: 0000 0000 (OOh) 

7 0 

I nm I HlB I HlB I K-4 I H3 I ~ I K-1 I rw 
b7 = TLNM: Top Level Not Maskable. 

If TLNM = "1", a top level request is generated as 
TLIP is set. Once TLNM is set, it can be cleared 
only with an hardware reset 

bx = HLx: Hold Level x These bits are set to "1" 
when, in Nested Mode, an interrupt service routine 
at level x is interrupted from a request with higher 
priority (other than the Top Level interrupt request). 
It is cleared by the iret execution when the rou­
tine at level x is recovered. 

41/219 
125 





5 ON-CHIP DMA 

5.1 INTRODUCTION 

The ST9 includes on chip Direct Memory Access 
(DMA) channels to provide high-speed data trans­
actions between peripherals and memory or the 
Register File. Multi-channel DMA is fully supported 
by peripherals with their own controller and DMA 
channel(s). Each DMA channel transfers data to or 
from contiguous locations of the Register File, Pro­
gram Memory or Data Memory. The maximum 
number of transactions that each DMA channel 
can perform is 222 if the Register File is selected, 
or 65536 if Program or Data Memory is selected. 

The DMA controller in the Peripheral uses an indi­
rect addressing mechanism to DMA Pointers and 
Counter Registers stored in the Register File. This 
is the reason that the maximum number of transac­
tions for Register File is 222, as two Registers are 
allocated for the Pointer and Counter. Register 
pairs are used for memory pointers and counters to 
offer the full65536 byte and count capability. 

The ST9 supports a fully programmable DMA priority 
structure included within the interrupt structure. 

Figure 5-1. DMA Overview 

REGISTER FILE 

OF 

REGISTER FILE 

' ' I I 

PERIPHERAL COUNTER 

ADDRESS 

DATA I--
I I 
' ' 

0 

ST9- DMA 

5.2 DMA PRIORITY LEVEL ARCHITECTURE 

The 8 priority levels used for interrupts are also 
used to prioritize the DMA requests, which are ar­
bitrated in the same arbitration phase as interrupt 
requests. If the event occurrence requires a DMA 
transaction, this will take place at the end of the 
current instruction execution. When an interrupt 
and a DMA request occur simultaneously, on the 
same priority level, the DMA request is serviced 
before the interrupt. 

Note however that an interrupt priority request 
must be higher than the CPL value in order to be 
acknowledged. For a DMA transaction request, it 
must be equal to or higher than the CPL value in 
order to be executed. 
Thus only DMA transaction requests can be ac­
knowledged when CPL = 7. 

DMA requests do not modify the CPL value as the 
DMA transaction is non-interruptable. 

' 

REGISTER FILE 

OR 

MEMORY 

I ' I 

TR~NSFERRED. 
r/>~f"~,A// 

COUNTER VALUE 

START ADDRESS 

VR001834 

_o2_-_9_3 _____________ Gj ~~~~~~v't1~~~ 43/219 

127 



ST9- DMA 

DMA TRANSACTIONS (Continued) 

Figure 5-2. DMA Between Registers and peripherals 

PERIPHERAL 
PAGED 

REGISTER 

DMA 
TABLE 

IOCR \ IVR 
DAPR \ DCPR 

\ 
\DATA 

\ 
FF 

'=:::::::Fa PAGE REGISTERS 

EF 
SYSTEM REGISTERS 

EO 
DF 

r~J 
ALREADY 

TRANSFERRED 
DATA 

- OMA TRANSACTION COUNTER 

- DMA ADDRESS 

00 

z 
0 
;= 
u 
~ 
z 
<( 

"' f-

<( 

"' CJ 

1--

}-

FFF 

END OF BLOCK 
INTERRUPT 

SERVICE ROUTINE 

10 

F 

-
-

REGISTER FILE PROGRAM MEMORY 

Figure 5-3. DMA Between Memory and peripherals 

IOCR 
IVR 

DAPR 
OCPR ' ' 

DATA 

FF FFFF FFFF 

-==- PAGE REGISTERS 

EO SYSTEM REGISTERS 

OF 

l l 
ALREADY ALREADY 

TRANSFERRED DATA TRANSFERRED DATA 

END OF BLOCK 
INTERRUPT 

SERVICE ROUTINE 
LO OMA 

HI TR~~3~¥E~ON 

0100 
DMA ADDRESS 

} INTERRUPT 
f* ISR ADDRESS- VECTOR 

TABLE 

00 0000 0000 
REGISTER FILE PROGRAM MEMORY DATA MEMORY 

OAPR = 0 OAPR = 1 

44/219 

128 

VA00292 

)""' 
TABLE 

VA00291 



5.3 DMA TRANSACTIONS 

The purpose of on-chip DMA channel is to transfer 
a block of data from/to the peripheral to/from Reg­
ister File or Memory. Each DMA transfer consists 
of three operations: 

- A load from/to the peripheral data register to a 
location of Register File (or Memory) ad· 
dressed through the DMA Address Register (or 
Register pair) 

_ A post-increment of the DMA Address Register 
(or Register pair) 

_ A post-decrement of the DMA transaction 
counter, which contains the number of transac· 
tions that have still to be performed. 

If the DMA transaction is made between the pe­
ripheral and the Register File (Figure 5-2), one 
register is required to hold the DMA Address and 
one to hold the DMA transaction counter. These 
two registers must be located in the Register File: 
the DMA Address Register in the even addressed 
register, the DMA transaction Counter in the fol­
lowing register (odd address). They are pointed to 
by the DMA Transaction Counter Pointer Register 
(DCPR) located in the page registers of the periph­
eral. In order to select the DMA transaction with the 
Register File, the control bit DCPR.RM (bit 0 of 
DCPR) must be set. 

The Transaction Counter Register must be initial­
ized with the number of DMA transfers to perform 
and will be decremented after each transaction. 
The DMA Address Register must be initialized with 
the starting address of the DMA table in the Regis­
ter File, and is increased after each transaction. 
These two registers must be located between ad­
dresses OOh and DFh of the Register File. 

If the transaction is made between the peripheral 
and Memory Space (Program or Data Memory), 
a register pair (16 bits) is required for the DMA Ad­
dress and for the DMA transaction Counter (Fig­
ure 5-3. Thus, two register pairs must be located in 
the Register File. The DMA Transaction Counter is 
pointed to by the DMA Transaction Counter 
Pointer Register (DCPR), the DMA Address is 
pointed to by the DMA Address Pointer Register 
(DAPR). both DCPR and DAPR are located in the 
page registers of the peripheral. When selecting 
the DMA transaction with memory, the control bit 
DCPR.RM (bit 0 of DCPR) must be cleared to "0". 

ST9- DMA 

To select between Program or Data Memory, the 
control bit DAPR.DP (bit 0 of DAPR) must be 
cleared or set respectively. 

Once the DMA table is completed (the transaction 
counter reaches 0 value). an Interrupt request to 
the CPU is generated. 

The DMA transaction Counter must be initialized 
with the number of transactions to perform and will 
be decremented after each transaction. The DMA 
Address must be initialized with the starting ad­
dress of the DMA table and is increased after each 
transaction. These two register pairs must be lo­
cated betweeen addresses OOh and DFh of the 
Register File. 

Once a DMA channel is initialized, a transfer can 
start. The direction of the transfer (data from/tope­
ripheral to/from memory or Register File) is auto­
matically defined by the type of peripheral and 
programming mode. 

When the Request Pending bit is set by a hard­
ware event (or by software), and the DMA Mask bit 
is set, a DMA request is generated. If the Priority 
Level of the DMA source is higher than or equal to 
the Priority Level under service (CPL) the DMA 
transfer is executed at the end of the current in­
struction. DMA transfer reads/writes data from/to 
the location pointed by the DMA Address Register, 
increments the DMA Address register and decre­
ments the Transaction Counter Register. When 
the content of the Transaction Counter is decre­
mented to zero, the DMA Mask bit (DM) is cleared 
and an interrupt request is generated according to 
the Interrupt Mask bit (End of Block interrupt). This 
End-of-Block interrupt request is taken into ac­
count depending on the PRL value. 

WARNING. DMA request are not acknowledged if 
the top level interrupt service is in progress. 

5.4 DMA CYCLE TIME 

DMA and Interrupt requests are sampled 6 
INTCLK cycles before the end of the instruction. If 
Wait For Interrupt is in progress, requests are sam­
pled every 5 INTCLK cycles. DMA transactions are 
executed if their priority allows it. 

A DMA transfer with the Register file takes 8 
CPUCLK cycles, except when the Wait For Inter­
rupt is in progress (1 0 CPUCLK cycles). 

A DMA transfer with the memory takes 16 
CPUCLK cycles except when the Wait For Inter­
rupt is in progress (18 CPUCLK cycles). 

~ SCS·THOMSON -------------- ._"'11 ifttt~©nrnrmil©rcoc:~ 
45/219 

129 



ST9- DMA 

Figure 5-4. DMA Transaction to Memory 

CPUCLK 

P/D 

PORT 1 

PORT 0 

46/219 

130 

1-------{/,~DMA TRANSACTION ------~..J 

I 
I 
I 
I 
I 
I 
I I 

j : : : : ·:'~": ::j : : :.,;_~: : ~ : : ~'~-·: : 
I I I I I I I I II I I I I 
I I I I I I I I I I I I 
I I I I !· I I I I I I I I : I I I I I I I 
A7-AO 2nd BYTE : A7-AO : DATA OUT :A7-AO :2nd BYTE 

I 
I 
I 

: znd BYTE FETCH 
DISCARDED 

I I 
I I 

I 
I 
I 
I 

REFRESH: 

VR001412 



ST9- DMA 

Figure 5-5. DMA Transaction from Memory 

CPUCLK 

AS 

P/D 

PORT 1 

PORT 0 

1--------1;<- DMA TRANSACTION --------1 

I 
,I 

I 
I 
I 
I 
I 

j : : I : : .o~-:e : :·: : : ~ : ~'~-'~ : ~ : : ;,~,; : 
I I I I I I I 1 I I I 1 1 I I 
I I I I I 1 I 1 I I I I I I I 
I I I I I 1 I 1 I I I I I I I 

A?-A~ ~nd'sY~E :A7-AO : D;TA
0 2~d ~Y~E 

I 
I 
I 
I 

2nd BYTE FETCH: 
DISCARDED 

I I 
I I 

I 
I 
I 
I 

REFRESH: 

VR001413 

47/219 

131 



ST9 • DMA 

5.5 THE SWAP-MODE 

An extra feature of ST9 DMA channels of some pe­
ripherals (i.e the MultiFunction TIMER) is the 
SWAP mode. This feature allows transaction from 
two DMA tables alternatively. All the DMA descrip­
tors in the Register File are thus doubled. Two 
DMA transaction counters and two DMA address 
pointers allow the definition of two fully inde­
pendent tables (they only have to belong the same 
space, Register file or Data memory or Program 
memory). The DMA transaction is programmed to 
start on one of the two tables (say table 0) and, at 
the end of block, the DMA controller automatically 
swaps to the other table (table 1) by pointing to the 
other DMA descriptors. In this case, the DMA mask 
(DM bit) control bit is not cleared, but the End Of 
Block interrupt request is generated to allow the 
optional updating of the first data table (table 0). 

Until the swap mode is not disabled, the DMA con­
troller will continue to swap between DMA Table 0 
and DMA Table 1. 

5.6 DMA REGISTERS 

As each peripheral DMA channel has its own con­
trol registers, the following register list should be 
considered as a general example. The names and 
register bit allocation shown here may be different 
from those found in the peripheral chapters. 

DCPR Address set by Peripheral Read/Write 
DMA Counter Pointer Register 

Reset value: undefined 

7 0 

lc7IC6IcsiC41C3 C2 C1 RM 

b7-b1 = C7-C1: DMA Transfer Counter Register(s) 
Address 

bO = RM: Register File/Memory Selector If set, the 
DMA transactions are done with the Register File; 
if cleared, the DMA transactions are done with the 
Program or Data memory (see DAPR.DP) 

48/219 

132 

IOCR Address set by Peripheral Read/Write 
Generic Peripheral Interrupt and DMA Control 

Reset value: undefined 

7 0 

b5 = IP: Interrupt Pending. Set by hardware when 
the Trigger Event occurs. Cleared by hardware 
when the request is acknowledged for DMA cycles 
and external interrupts only. Can be set/cleared by 
software in order to generate/cancel a pending re­
quest. Identical in function to IP of I CR. 

b4 = DM: DMA Mask. If OM= "0" no DMA request 
is generated when the trigger event occurs. This bit 
is cleared whenever the transaction counter 
reaches zero (unless SWAP mode is active). 

b3 = IM: Interrupt Mask. If IM = "0" no interrupt re­
quest is generated. If IM = "1" DMA requests de­
pend on OM bit value as shown above. 

b2-b0 = PRL2, PRL 1, PRLO: Priority Level Defini­
tion of the source priority level. PRL = 0 is highest 
priority. If PRL = 7, no interrupt can be acknow­
ledged, DMA requests will be. 

DAPR Address set by Peripheral Read/Write 
DMA Address Pointer Register 

Reset value: undefined 

7 0 

I A7 I M I A5 I M I A3 I A2 I A1 I DP 

b7-b1 = A7-A1: DMA Address Register(s) Address 

bO = DP: Data/Program Memory Selector: 
(DAPR.RM is "0") if set the DMA transactions are 
made with the Data Memory; if cleared the DMA 
transactions are made with the Program Memory. 



6 CLOCK 

6.1 INTRODUCTION 

The ST9 Clock generator module generates the in­
ternal clock for the ST9 core and the on-chip pe­
ripherals. The Clock generator can be driven by an 
external crystal circuit, connected to the OSCIN 
and OSCOUT pins, or by an external pulse gener­
ator, connected to OSCIN. 

6.2 CLOCK MANAGEMENT 

The oscillator circuit generates an internal clock 
signal with the same period and phase as at the 
OSCIN input pin. The maximum frequency allowed 
is 24M Hz. 

As shown in Figure 6-6, the CLOCK1 signal drives 
a programmable divider by two. If the control bit 
MODER.DIV2 (R235.5) is set, the internal clock 
CLOCK2 is CLOCK1 divided by two; otherwise, if 
DIV2 bit is cleared, the clock signal CLOCK2 has 
the same period and phase as CLOCK1. CLOCK2 
drives the internal clock INTCLK delivered to all 
ST9 on-chip peripherals and acts as the central 
timebase for all timing functions (eg Multifunction 
Timer or Serial Communications Interface Baud 
Rate generator). 
The maximum frequency allowed for INTCLK is 
12MHz. For internal operating frequencies above 
8MHz, it is recommended to work with the Clock 
Divider active in order to provide a duty cycle of 
50% for INTCLK. 

Figure 6·1. Peripheral and Core Clocks 

MAX 
24M Hz 

02·93 

ST9- Clock 

CLOCK2 also drives a programmable prescaler 
which generates the basic time base, CPUCLK, for 
the instruction executer of the ST9 core. This al­
lows the user to slow the program execution time 
to reduce power dissipation, and to locally speed 
up certain code segments for time critical routines. 
The internal peripherals are not affected by the 
CPUCLK prescaler. The prescaler value divides 
the input clock by the value programmed in the 
control bits MODER.PRS2,1 ,0 (R235.4,3,2). If the 
prescaler value is zero, no prescale is made, thus 
CPUCLK has the same period and phase as 
CLOCK2 and INTCLK. If the value is different from 
0, the prescaling is equal to the value plus one, 
ranging thus from two (PRS2, 1 ,0 = 1) to eight 
(PRS2, 1 ,0 = 7). The clock generated is shown in 
Figure 6·2. It must be noticed that the prescaling of 
the clock does not keep the duty cycle to 50%, but 
stretches the high level of the clock until comple­
tion. 

When External Memory Wait (or Bus Request or 
Wait for Interrupt) events occur, CPUCLK is 
stretched on the high level for the whole period re­
quired by the function. 

Note. The added wait cycles refer to the INTCLK 
frequency and not the original CPUCLK. 
Figure 6-3 shows an example of a memory access 
cycle with the CPUCLK prescaled by 2 and with 5 
added Wait states. 

MEMORY WAIT STATE 

CPUCLK 
(CORE CLOCK) 

INTCLK 
(PERIPH. CLOCK) 

VA00448 

49/219 

133 



ST9- Clock 

6.3 CLOCK CONTROL REGISTER 

The ST9 clock division by 2 and the clock prescal­
ing are controlled by the MODER register. 

Note. This register contains bits with other functions. 
Only the bits relating to control of the clock are 
shown here. 

MODER R235 (EBh) System Read/Write 
Mode Register 

Reset Value : 1110 0000 (EO h) 

7 0 

I X I X I DIV21 PRS21 PRS11 Pffill X X 

b5 = DIV2: OSC/N Divided by 2. This bit controls the 
divide by 2 circuit which operates on the OSCIN 
Clock. A logical "1" value means that the OSCIN 
clock is internally divided by 2, and a logical "0" value 
means that no division of the OSCIN Clock occurs. 

b4-b2 = PRS2, PRS1, PRSO: Prescaling of ST9 
Clock. These bits define the prescaler value used to 
prescale the CPUCLK from INTCLK. When these 
three bits are reset, the CPUCLK is not prescaled, 
and is equal to INTCLK; in all other cases, the inter-
nal clock is prescaled by the value of (PRS2, 1 ,0 + 1 ). 

Figure 6-2. Core Clock Prescaling 

INTCLK 

CPUCLK 

PRS VALUE 

000 LJULJliLI1JLJLI 

100 

101~ 

110~ 

111 

VA00260 

Figure 6-3. Memory Access with a Clock Prescaler by 2 and 5 Wait Cycle 

PORT6 

X PORTO---~ 

(READ)---~ 

X PORTO---~ 

(WRITE) ---~ 

DS 
(READ) 

T1 

AO-A7 

A0-A7 

T2 I TW I TW I TW I TW I TW I T3 

A0-A7 

) ~---------------<( 00-07 IN >-<= 
X ------~D0~-~0~7~0~UT ______ _J><==== 

~------------~ 

(WRITE) 

R/W -----~ ~----------------------_J 

P/D 
-----~ 

VA00259 

50/219 

134 



6.4 OSCILLATOR CHARACTERISTICS 

The on-chip oscillator circuit (Figure 6-4) is an in­
verting gate circuit. 

Note. Owing to the Q factor required, Ceramic 
Resonators may not provide a reliable oscillator 
source. 

In Halt mode, set by means of the HALT instruction, 
the parallel resistor R is disconnected and the os­
cillator is disabled, forcing the internal clock 
CLOCK1 to a high level and OSCOUT to a low 
level. 

To exit the HALT condition and restart the oscilla­
tor, an external RESET pulse is required of a mini­
mum duration of 12ms (Figure 6-7). 

It must be noted that if the Timer/Watchdog watch­
dog function is enabled, a HALT instruction will not 
disable the oscillator. This to avoid stopping the 
watchdog if, by an error, a HALT code is executed. 
When this occurs, the ST9 CPU falls into an end­
less loop ended by the watchdog (or external) re­
set. 

Figure 6-5. Crystal Oscillator 

CRYSTAL CLOCK 

ST9 

OSCIN OSCOUT 

VA00267 

Table 6-1. Crystal Specification (CO< 7pF} 

Frequency C1:C2:56pF C1:C2:47pF C1:C2:22pF 
(MHz) RsMax RsMax RsMax 

24 20 25 70 

16 40 60 150 

12 80 100 250 

8 180 240 600 

4 700 800 600 

ST9- Clock 

Figure 6-4. Internal Oscillator Schematic 

OSCIN OSCOUT 
VA00269 

Note: 300Q < RIN < 700Q 
ROUT< SOW R> 1.SMQ R > son 

Figure 6-6. External Clock 

EXTERNAL CLOCK 

ST9 

OSCIN OSCOUT 

NC CLOCK 
INPUT VA00268 

Table 6-2. Oscillator Transductance 

gm Min Typ Max 

mNV 3 5.8 9.5 

Legend: 
Rs. Paras1t1c Senes Res1stance of the quartz crystal (upper hm1t) 
co· Paras1t1c capacitance of the quartz crystal (upper hm1t, < 7pF) 
C1, C2: Max1mum Total Capac1tances on pins OSCIN and 

OSCOUT(the value mcludes the external capacitance lied to 
the p1n plus the paras1t1c capaCitance of the board and of the 
deVICe) 

gm Transconductance of the oscillator. 

Notes. The tables are relative to the fundamental quartz crystal 
only (not ceramic resonator) 

51/219 ------------ W'/ SCiS-THOMSON 
• 1' ' ~J©I'il@~~~©'U'Ii@lllh©~ 

135 



ST9- Clock 

OSCILLATOR CHARACTERISTICS (Continued) 

Figure 6-7. Oscillator Start-up Sequence 

Vee MAX 

Vee MIN 

OSCIN 

OSCOUT 

INTCLK 

~ 
~ 

f.-rnr 
12ms I 

-I 

-
VA00295 

_52_12_1_9 ___________ ~ ~~~=n1~~~~~~ ____________ _ 
136 



7 RESET 

7.1 INTRODUCTION 

The processor Reset overrides all the other condi­
tions and forces the ST9 to the reset state. During 
Reset, the internal registers are set to the reset 
value, as shown in Table 7-1 for the system and 
Page 0 Registers and the 1/0 pins are set to the 
Bidirectional Weak Pull-up mode (see Warning). 
The programmer must then initialize the ST9 sys­
tem and peripheral control registers to give the re­
quired functions. 

7.2 RESET GENERATION 

The reset condition can be generated by the exter­
nal pin RESET or by the on-chip Timer/Watchdog. 

The on-chip Timer/Watchdog generates a reset 
condition if the watchdog mode is enabled 
(WCR.WDEN cleared, R252 page 0), and if the 
programmed period elapses without the specific 
code (AAh,55h) written to the appropriate register. 
The input pin RESET is not driven low by the on­
chip reset generated by the Timer/Watchdog. 

Durl!!9. reset, the OS output signal is kept low and 
the AS output is toggled with the crystal frequency 
(input at OSCIN) divided by 32. This condition is 
recognized by off-chip Z-bus peripherals as a reset 
condition. 

Figure 7-1. Signal to be applied on Reset Pin 

v 
Reset 

03V 
cc 

INTERNAL 

RESET 

02-93 

t RL = Min1mum Low State 
RESET = 53 OSCIN Cycles 

VR000166 

ST9- Reset 

7.3 RESET PIN TIMING 

The RESET pin has a Schmitt trigger input circuit 
with hysteresis. The internal reset is generated by 
the external pin synchronized with the internal 
clock. The power up reset circuit must keep the 
RESET input low for a minimum of the crystal 
startup period plus 53 crystal periods. 

Once the RESET pin reaches a logical "1 ", the 
processor exits from the reset statl!.§_after 67 crys­
tal periods from the rising edge (DS is set). The 
processor then fetches from Program Memory lo­
cations 0 and 1 (power-on reset vector) and begins 
program execution from the address contained in 
the vector. If the ST9 is a ROM LESS version, with­
out on-chip program memory, ports PortO, Port1 
(and Port6 for ST905x family) are set to external 
memory mode (i.e Alternate Function) and the 
memory accesses are made to external Program 
memory with wait cycles insertion. 

WARNING: 110 pins are set to the Weak Pull-up 
mode during the Reset cycle. This state is forced 
during the reset sequeace, but the 110 pins can be 
in a random state for up to 64 crystal periods. 
The application circuit must take this into account if 
it can lead to critical situations in the external cir~ 
cuitry. 

7.4 PROCESSOR SYNCHRONIZATION UNDER 
RESET 

During reset, a specific procedure has been imple­
mented to synchronize two or more oscillators in a 
multi-micro ST9 based system, for example a ma­
jority voting high reliability system. Figure 7-2 
shows the principle schematic for the multi-micro­
processor synchronization. The master processor 
delivers the S.YIJchronous signal, output at its AS 
pin, to the R/W pin of the slave processors. The 
R/W pin is, under reset status, set to input with a 
weak (1 OkQ typical) pull up resistor. The slave 
processor(s) synchronizes its !!!ternal clock phase 
with the clock received at its R/W pin. To guarantee 
the phase synchronization, the reset status must 
be at least 32x31 = 992 crystal periods. All the 
processors must have the same input clock. 

53/219 

137 



ST9- Reset 

RESET (Continued) 

Table 7-1. Internal Registers Reset Values 

Register 
System Register Reset Value 

Number 

F (SSPLR) undefined 

E (SSPHR) undefined 

D (USPLR) undef1ned 

c (USPHR) undefined 

B (MODER) EOh 

A (Page Ptr) undefined 

9 (Reg Ptr 1) undefmed 

8 (Reg Ptr 0) undefmed 

7 (FLAGR) undefined 

6 (CICR) 87h 

5 (PORT5) FFh 

4 (PORT4) FFh 

3 (PORT3) FFh 

2 (PORT2) FFh 

1 (PORT1) FFh 

0 (PORTO) FFh 

Figure 7-2. Synchronization Under Reset 

RESET--~--------------~~--~---

CLOCK --.-+----1 

54/219 

138 

Page 0 Register Reset Value 

Reserved 

(SPICR) DOh 

(SPIDR) undefmed 

(WCR) 7Fh 

(WDTCR) 12h 

(WDTPR) undefined 

(WDTLR) undefined 

(WDTHR) undef1ned 

(NICR) DOh 

(EIVR) x2h 

(EIPLR) FFh 

(EIMR) DOh 

(EIPR) DOh 

(EITR) DOh 

(EEPROM) xxOO OOOOb 

Reserved 

7.5 EPROM PROGRAMMING PIN 

The ST9 versions with on-chip EPROM memory 
require an external programming voltage Vpp to 
perform the programming procedure. The Vpp 
voltage must be applied to the RESET pin during 
the whole programming phase. Refer to the 
EPROM Programming Board Manual for specifica­
tions. 



RESET (Continued) 

Figure 7-3. Exit From Reset Timing 

~1 ~--- T>53 DSCIN CYCLES ----!----...;--T<67 DSCIN CYCLES 

I T 48 OSCIN CYCLES 

EXTERNAL} 
RES~;"i\1... --------•~-----' 

I 
I 
I 
I 

..,_--i-T<3 DSCIN CYCLES 

DS ~1----__,.;--.;,..J 
I I I 
1 I I I 

~ ~ 2 OSCIN CYCLES : : 
1 I I , I I 

As~XJCbcj 
I 1 I I 1 I 
I 1 I I I I 
I I I I I I 

CLK 

I I I I I I I 
1 Tl I T2 I TJ I Tl I T2 I TJ I 
I I I I I I I 
I I I I I I I 

ST9 ·Reset 

I I I I I I I 
I T1 1 T2 I T3 I T1 I 12 I T3 I 
I I I I I I I 
I I I I t I I 

!rETCH r 8YTEIFETCH 2nd BYTE\ 

VR001406 

55/219 

139 





8 EXTERNAL MEMORY INTERFACE 

8.1 INTRODUCTION 

In the event of an application requ1nng more 
ROM space than available on-chip, or for easier 
program management and customization with 
external memory or peripherals, the ST9 micro­
controller provides an external memory interface. 
The external memory interface provides the 
memory Jines and timing and status control sig­
nals, plus enhanced features including program­
mable memory wait cycles, bus 
request/acknowledge cycles and shared memory 
bus access control. 

The ST9 Memory Control Unit automatically recog­
nizes if a memory location belongs to on-chip 
memory. When the memory location is on-chip, it 
performs a machine cycle without OS generation, 
and the access is performed on-chip. If the location 
does not belong to on-chip memory, an access to 
off-chip memory is performed (generating the OS 
low pulse) through the Ports 0, 1 (and 6 for ST905x 
family). 

During Reset, AS and OS are driven to perform exter­
nal periph~ls reset and to implement, in conjunction 
with the RIW pin, a multi-microprocessor synchroniza­
tion procedure (see Clock and Reset chapters). 

8.2 CONTROL SIGNALS 

AS 
Address Strob~_J.Output, Active low, Tristate). The 
risl!}g edge _Qf AS indicates that Memory Address, 
R/W and P/D Memory signals are valid. 
AS is released in high-impedance during a Bus ac­
knowledge cycle or under processor control by set­
ting the HIMP bit (MODER.O). 

OS 
Data Strobe (Output, Active low, Tristate). Data 
Strobe provides the memory data timing during ex­
ternal memory access cycle. When internal mem­
ory is accessed, OS is kept high during the whole 
memory cycle. During an External memory write 
cycle, the data output at Port 0 is valid when OS is 
active. During a read cycle, the data at Port 0 must 
be valid before the trailing edge of OS. 
OS is released in high-impedance during a Bus Ac­
knowledge cycle or under processor control by set­
ting the HIMP bit (MODER.O). 

ST9 - External Memory Interface 

R/W 
Read/Write (Output, Active low, Tristate). The R/W 
output si9.1Jal identifies the type of memory cycle. 
When R/W = "1 ", the_memory cycle is a Memory 
Read cycle; when R/W = "0", it is a Memory Write 
Cycle. R!W output signal is defined at the begin­
ning of the memory cycle and is stable until the 
ne.!:! Memory cycle. 
R/W is released in high-impedance during Bus ac­
knowledge cycle or under processor control by set­
ting the HIMP bit. 

P/D 
Program/Data Memory (Alternate Function Out­
put, Active low). The P/D output signal selects_I:Je­
tween Program and Data Memory. When P/D = 
"1 ",the memory referenced by the processor is the 
Program Memory; when P/D = "0", the_ memory ref­
erenced is the Data Memory. The P/D output sig­
nal is defined at the beginning of th~ memory cycle 
an_Q is stable until the next Memory cycle. 
P/D is enabled by software as the Alternate Func­
tion output of a parallel port bit (refer to the Pin 
Configuration and Alternate Function tables to 
identify the specific port and pin). 

WAIT 
External Memory Wait (Input, Active low). The 
WAIT input signal indicates to the ST9 that the ex­
ternal memory requires more time to complete the 
memory access cycle. The memory cycle will then 
be stretched. WAIT is enabled by setting EWEN 
(EIVR.O R246 Page 0). 

BREQ 
Bus Request (Input, Active low). The BREQ input 
signal indicates to the ST9 that a bus request has 
tried or is trying to gain control of the memory bus. 
BREQ is enabled by setting BRQEN (MODER.1 
R235). 

BACK 
Bus Acknowled~ternate Function Output, Ac­
tive low). The BACK output signal indicates that 
the ST9 has relinquished control of the memory 
bus in response to a bus request. 

_02_-_93 _____________ LV ~~~;m~::"!~~ 57/219 

141 



ST9 - External Memory Interface 

CONTROL SIGNALS (Continued) 

PO 
Port 0 (Input/Output, Push-Pull/Open-Drain/Weak 
Pull-up). PortO can be configured as a bit program­
mable Parallel 1/0 port or as External Memory in­
terface for multiplexed Low-Address/Data 
(A0-7/D0-7). 

P1 
Port 1 (Input/Output, Push-Pull/Open-Drain/Weak 
Pull-up). Port1 can be configured as a bit program-

mabie Parallel 1/0 port or as External Memory in­
terface for the High-Address (AB-A 15). 

PG (When available) 
Port 6 (Input/output, Push-Pull/Open-Drain/Weak 
Pull-up). This port, when available, can be config­
ured as bit programmable Parallel 1/0 port or as 
External Memory interface for the Low-Address 
(A0-7), allowing a non-multiplexed memory bus 
capability. 

Figure 8-1. ST9 Accessing External Program and Data Memory. 

1 I 6 M74HC04 

AS ~ J 
I" 

LE 

~ 2 12 
ADo Do a o Ao 

AD 1 ~ D I a I 
5 11 

A I 

~ 6 10 
AD 2 D2 a 2 A2 

AD 3 8 9 9 
AD 3 D 3 a3 A 3 

AD 413 74HC373 12 8 
ADA D 4 a, A4 

AD 5 
AD 5t4 

o5 a 5 
15 7 

A5 

AD6 
AD 6!? 

D6 0 6 
16 6 

A. 

AD 718 19 5 
A7 AD 7 D 7 0 7 

-
Vee DE GND 

1~0 t 
AD 0 

13 
As 
~ 

D 0 
AD 1 14 

A9 ~ D I 

I 
AD 2 

15 D 2 ST9 AID ~ 
AD 3 

17 D 3 M27C1001 
Au ~ 

(128K x8) ADA 
IB D 4 A!2 ~ A7 A a 

AD 5 
19 D 5 AIJ ~ AD 6 
20 D 6 AlA ~ AD 7 

A15 ~ 
21 D 7 

27 
As 

26 A9 

23 AJO 

25 
Au 

A15 Ag 
4 

A!2 

CB AtJ 

29 At4 

3 Ats 

P/i) 2 At6 

oc -
ilS Rl;;;i 1/6 M74HC04 GND CE PGH Vee 

T 
-~ 1/4 M74HC32 

201 I~ 31+32 
v 

VR000346 

58/219 

142 



8.3 MEMORY ACCESS CYCLE 

Each memory access cycle is composed of three 
CPUCLK phases: T1, T2, T3. Duri~hase T1, the 
memory address is output upon AS falling edge 
and is valid upon the rising edge of AS. Port1 and 
Port6 maintain the address stable until the next T1 
phase. 
If the Memory access cycle is a Read cycle, PortO 
pins are released to high im~ance with the fall­
ing edge of OS until the next AS falling edge. 
If the Memory access is a Write cycle, PortO is held 
active, the data is output during T2 and is main­
tained until th~ext address is output (upon the 
falling edge of AS). DS is pulled low during T2 only 
if the Memory access is an External Memory ac­
cess. If the memory cycle is a Memory Read, it is 
pulled low at the beginning of T2. If it is a Memory 
Write, DS is kept low from the middle of T2 until the 
middle of T3. 

Figure 8-2. External Memory Read/Write. 

CPU CLK 
I 

Tl 
I 
I 
I 

T2 T3 

PORT1 ==;<--~--~--~--~--~~ 
PORT6 ==;<--~--~--~--~--~~ 
PORTO 
(READ) 

OS 
(READ) 

I I 
I I I 
I I I 
I I I 
I ! I I 

~ i rT I L.---j-1 ---+----ll I 

(WRI~:) -~--~---'f---1\L--;----iv-r 
I I I 

R/W -:x : : I : : K 
P/D ==;< : : : : 1 ~ 

VR000441 

ST9 - External Memory Interface 

8.4 STRETCHED ACCESS CYCLE 

The ST9 can interface to memory with slow access 
times by automatically inserting additional Wait cy­
cles during the External Memor~le. On-chip 
memory accesses do not require WAIT cycles and 
run at the full speed of CPUCLK. 

Three Wait cycle sources are available: 

- The input pin WAIT from external sources 

_ The internal programmable Wait cycle gener­
ator 

_ Internal memories with stretched access cycle 
(EEPROM) 

The input pin WAIT (when enabled) is sampled on 
the CPUCLK falling edge of phase T2. If active 
(low), one INTCLK clock cycle will be added. Dur­
ing the added clock cycle, the WAIT pin is sampled 
again. CPUCLK is stretched for as long as the 
WAIT input is active. 

The internal programmable WAIT cycle generator 
allows the extension of the External Memory cycle 
automatically by the programmed number of WAIT 
cycles. Two three bit fields in the Wait Control Reg­
ister WCR (R252 Page O) allow the stretching of 
Program and Data Memory access cycles inde­
pendently by 0 to 7 cycles. WPM2, 1 ,0 (WCR.5,4, 1) 
contain the number of Program memory wait cy­
cles to be added, WDM2, 1 ,0 (WCR.2, 1 ,0) contain 
the number of Data memory wait cycles to be 
added. 

Table 8-1. Number of wait cycles added 

WDM2 WDM1 WDMO Nb of Clock 
WPM2 WPM1 WPMO cycle added Note 

0 0 0 0 No Wa1t cycle 
0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 0 4 
1 0 1 5 
1 1 0 6 
1 1 1 7 Reset Value 

59/219 

143 



ST9 - External Memory Interface 

STRETCHED ACCESS CYCLE (Continued) 

Figure 8-3. External Memory Read/Write Sequence with External Wait. 

T1 T2 

INTCLK 

TW 

I 1 
I 

/ I 
I 

CPUCLK I 
I 

TW TW T3 

""' j< : ~" -;, : : :1-r--: ~ .....----;: : --,---,--,----1 

I I I I 

PORT6 

PORTO 
(READ) 

A7 - AO 

I 
I 

I I I I I I I I 

(~~~;~) J<.........,...._A; A~ X : : : : : ~0 - 0: '"': : : c 
AS 

DS 
(READ) 

DS 
(WRITE) 

I 
I 
I 

~ I v 
I I I I I 

,~y: : : : ::: : : : : : x:= 
e;O j( : : : : : : : : : : : : x:= 

VR000442 

60/219 

144 



ST9 - External Memory Interface 

STRETCHED ACCESS CYCLE (Continued) 

Figure 8-4. External Memory Read/Write Sequence with Programmable Wait. 

INTCLK 

CPUCLK 

PORT1 

PORT6 

PORTO 
(READ) 

PORTO 
(WRITE) 

AS 

OS 
(READ) 

DS 
(WRITE) 

R/W 

P/D 

T1 T2 

A7 - AD 

I 
I 

PROGRAMMED WAIT CYCLES 

TW TW T3 

j( '; ":X'--T--' ...,--,.: :--1/1--r--,----,----r---{ 
I 
I 
I 
I 
I 

~~----+---~~~/-+----~--~--~~ 

VR000443 

61/219 

145 



ST9 - External Memory Interface 

8.5 SHARED BUS 

When the ST9 runs in a multi-master bus system, it 
is necessary to release the bus control to other bus 
master(s). This operation can be performed by the 
Bus Request/Acknowledge capability supported 
by the ST9. 

tiona! internal clock cycles. These cycles are used 
to fully drive and propagate the control and data 
signals through the external memory bus before 
CPUCLK is restarted. 
The output signal BACK is driven low during the 
whole period when the External Memory interface 
is released to high impedance. 

Once enabled by setting BROEN (MODER.1 
R235), BREO is sampled by the ST9 upon the fall­
ing edge of the internal clock during the phase T3. 
When the BREQ signal is sampled low, the 
CPUCLK clock is stretched and the External Mem­
ory signals (AS, OS, R/W, PO, P1 (, P6 for ST905x)) 
are released to high-impedance. The input signal 
BREQ is then continuously monitored, and when it 
is sampled high the External Memory interface 
pins are driven again by the ST9 after two addi-

Under the Reset status, the bits of the 1/0 port(s) 
associated to BREO and BACK are set to Bidirec­
tional Weak pull-up mode and the enable bit 
BRQEN is cleared. To enable this function, the 
program must set the BACK port as an Alternate 
Function output and enable (set to "1 ") the bit 
BRQEN. 

Figure 8-5. Bus Request/Acknowledge Timing. 

I T3 I TACK1 

: I : I 

INTCLK -r-i.-n 
l\1\: 1 I 

TACK M 
I 

TX1 
I 

TX2 
I 

T1 
I 

BUSREQ ~ i ! / 
1 

: ~.v~ .-+---
INT BREQ 1 : : I . 

1 I ~~~~,r'-;-~-;~;:=t==~==~==~-1----
BUSACK TTl : . v 

i : :~,/-' -+--+-~ 
CPUCLKIUT' 

PORTl ~'f-r---+--{'-----r--A-15,..----,AB---{ '--~­
PORT6 ~'f-r---+--{ 
~· '-----r----,-..,..---{ '--.,---

L 

A7 - AO 

1 I I 18-
PORTQ 1 1 1 

/ 1 :: A7 - AO 
(READ) 1 1 I 

I 1 I 

PORTO ~7 - DB OUT : /--lr---t--{ 
(WRITE) I 

' I ~-r---,-..,..---{ 

D7 - DO OUT 

I I I I r---'---1--...._--1 
I I \ I 
I I ~·/--1~--+---{ 
I I I I 

AS 

~ ~~-~--{ 
R/W ==>-+/ I : ( : : : I I 

:: : : : : : : ~r---'----: 
I I I I I 

YR000447 

_6_21_2_19 ______________ IIfi ~~~;,:!~~.~~;~;~!: 
146 



SHARED BUS (Continued) 

When it is required to disable the external bus, but 
to keep the processor running in the on-chip mem­
ory, the external memory bus can be disabled by 
software programming of the HIMP (MODER.O) 
control bit._ful setting flliYlP, the External Memory 
Interface (AS, DS, R/W and PortO, Port1 (and 
Port6), if not configured as 1/0 lines) is set into a 
high impedance state. In this way, the external 
memory bus can be used by another resource (e.g. 
diagnostic equipment or external programming of 
system memories) and the ST9 program can con­
tinue accessing the on-chip memory. This feature 
can also be useful for high security applications 
where the flow and addresses of the on-chip secu­
rity algorithms must not be shown on the external 
address pins. 

When running in internal memory, disabling the ex­
ternal bus will reduce the noise emitted by the mi­
cro. 

The disabling of the External Memory Interface by 
setting HIMP = "1" can be interrupt driven by apply­
ing the "Bus Request" input signal to an External 
Interrupt pin. In this case the bus disable response 
time will be longer than the automatic system using 
the BREQ request, however the ST9 can continue 
to execute the program written in the on-chip mem­
ory. 

8.6 PORTS PO, P1, P6 INITIALIZATION AFTER 
RESET 

The Port 0, Port 1 and Port 6 (for ST905x family) 
initialization after reset depends on the configura­
tion of the ST9 as shown in Table 8-2. 

If the device has on-chip Program memory (ROM 
or EPROM), the ports (or the existing parts of 
them) are set to Bidirectional Weak Pull-up Mode. 

Table 8-2. Port status after Reset 

Device Port 0, 1, 6 Initialization 

ROM B1d1rect1onal Weak-Pull-Up 
EPROM (PxCO, PxC1, PxC2 = 0,0,0; Data= 1) 

Memory Address and Data Alternate 

ROM LESS 
Function Push-Pull 
(PxCO, PxC1, PxC2 = 1,1 ,0; Data= 1) 

ST9 - External Memory Interface 

If the device is ROMLESS or a ROM device with 
the ROMiess function enabled, the ports (or the ex­
isting part of them) are set to Alternate Function 
Push-Pull Mode, providing the Address and Data 
lines to interface to the external Program and Data 
Memory from Reset. 

8.7 ROMLESS FUNCTION 

In order to accomodate the use of ROM based ST9 
devices 1n the event of a subsequent ROM code 
change, a ROM less function may be enabled on a 
specified Port 1/0 pin by Mask Option. This func­
tion is activated by pulling the ROMiess select pin 
to ground with a 1 OOkohm resistor. This status is 
latched on the rising edge of the RESET pin and, 
when low, the on-chip PROGRAM memory (ROM 
or EPROM) is disabled, causing all instruction 
fetch cycles to be external. On-chip Data memory 
(RAM or EEPROM) is not affected. 
If the ROM less function is enabled by the mask op­
tion, and the internal program is to be used, then 
the ROM less pin must be held to a high level (via a 
1 OOkohm resistor to Voo) during the Reset cycle. 
After the Reset cycle the ROMiess pin may be pro­
grammed for any 1/0 or Alternate function. 

Figure 8-6. ROMiess Selection 

ROM LESS 

SELECT 

RESET 

OUTPUT 

DATA 

ROM LESS 

SELECT 

RESET 

OUTPUT 

DATA 

INTERNAL MEMORY 

CONFIGURATION 

VA00301 

---------------~ ~~~;m~::~~ 631219 

147 



ST9 - External Memory Interface 

8.8 PIPELINE 

The ST9 implements pipe-line stages on instruc­
tion fetch and execution in order to increase the 
execution speed. The instruction execution is in 
fact hidden by the Memory access cycles: the exe­
cution of one instruction is overlapped with the pre­
fetch of the two successive bytes. The fetch of the 
first byte ( opcode) is identified by the machine cy­
cle M1, the fetch of the second byte by M2. 

Figure 8-7. Instruction Pipe-line Stages 

The 2 bytes instructions, whose execution time is 6 
CPUCLK cycles, have the instruction execution 
hidden by the following instruction prefetch. For 
those instructions that require an execution time 
longer than the time to prefetch the following bytes, 
perform memory access during their execution or 
interrupt the sequential memory access, the pipe is 
flushed. 

, , , 
I ' ' 
1T1 T2 T3 :T1 T2 T3 :T1 T2 T3 :T1 T2 n :n T2 T3 :T1 T2 T3 

Ml M2 

INSTRUCTlDN N-1 FETCH 1 

INSTRUCTION N 

INSTRUCTION N+ 1 

148 

M1 M2 

PRE-FETCH 

,--INSTRUCTION 

Ml M2 

I 
HIDDEN EXECUTION! 

I 
I 

COMPLETION~ 
VR000179 



8.9 "SPURIOUS" MEMORY READ ACCESSES 

The ST9 in certain cases produces external mem­
ory accesses which may be regarded as "Spuri­
ous" in their nature. While these do not affect the 
correct operation of the ST9, these accesses may 
cause misunderstandings when deve.!Qping and 
debugging applications as the signals AS and OS 
are produced, and Ports 0, 1, (6 for ST905x) output 
updated addresses (if used to interface to external 
memory). 

The spurious reading cycle is produced when exe­
cuting specific instructions. This is one of 4 cases: 
double reading, reading before wnting, reading 
when the stack is internal or prefetch reading. 

- DOUBLE READING 
A memory location read by the ST9 is read two 
times consecutively (instead of one). 

Involved instruction(s): 

DIV rr, r ; divide (16/8) 

The first byte of the code following DIV is fetched 
two time.s. The double reading does not occur if the 
Overflow flag was s§. by DIV, or if Divide by zero 
was trapped. The P/D line remains high during the 
cycle. 

- READING BEFORE WRITING 
A memory location which is to be written to by 
the ST9 is previously read. 

Involved instruction(s): 
LD (rr) +, (r) + ;load (byte) 

;Memory, Register 

The destination memory location is read before be­
ing written. The PiDiine reflects the memory space 
of the destination memory location. 

_ READING WHEN THE STACK IS INTERNAL 
If the System and/or User Stack has been pro­
grammed to use the Register File, a memory 
location of Data Space is POPed in parallel. 

Involved instruction(s): 

POP R ; POP (byte) from System Stack 
POP (R) ; 

POPU R ; POP (byte) from User Stack 
POPU (R) ; 

ST9 - External Memory Interface 

While a byte is being POPed from the Register File, 
a memory location in Data Space is read in parallel 
with its address given by SSPHR+SSPLR for POP 
instructions and by USPHR+USPLR for POPU in­
structions. The external data is ignored. 

POPW RR ; POP (word) from System Stack 
POPUW RR ; POP (word) from User Stack 

While the high er address byte is being popped 
from the Register File, a memory location in Data 
Space is read in parallel with its address given by 
SSPHR+SSPLR for POPW instructions and by 
USPHR+USPLR for POPUW instructions. No spuri­
ous reading is made for the lower byte. 

RET ; Return from Subroutine 

While the Program Counter Higher and Lower 
bytes are POPed from the Register File, two mem­
ory locations are read at addresses given by 
SSPHR+SSPLR. 

IRET ; Return from Interrupt 

While the Program Counter Higher and Lower 
bytes and the FLAGS are POPed from the Register 
File, three memory locations are read at addresses 
given by SSPHR+SSPLR. When working with In­
ternal Stacks, SSPHR and USPHR contents are 
don't care from the point of view of program execu­
tion, but they must be considered RESERVED by 
the User as the instructions listed in this section 
perform updating of SSPHR/USPHR, together with 
the spurious reading. 

- PREFETCH READING 
Due to the ST9 Pipeline, instructions which 
stop the Core or which perform program 
branches can fetch bytes of the following pro­
gram code while the pipeline is being flushed. 

Involved instruction(s): 

WFI ; Wait For Interrupt 

reads two bytes of the following code. 
HALT ; Halt 
CALL ( rr) ; Unconditional Call subroutine 

read one_pyte of the following code in Program 
space (P/D high). 

_____________ I.V ~~~;m~~~:gli ___________ 6.:.._5_12_19 

149 



ST9 - External Memory Interface 

8.10 REGISTERS 

WCR R252 (FCh) Page 0 Read/Write 
Wait Control Register 

Reset Value: 0111 1111 (7Fh) 

7 

b7 = Reserved, reads as a "0". 

0 

b6 = WDGEN: refer to Timer/Watchdog chapter. 

WARNING. Resetting this bit to zero has the effect 
of setting the Timer/Watchdog to the Watchdod 
mode. Unless this is desired, this must be set to "1". 

b5-b3 = WDM2-0: Data Space Wait Cycles. These 
bits contain the number of INTCLK cycles to be 
added automatically to external Data memory ac­
cesses. WDM = 0 gives no additional wait cycles, 
WDM = 7 provides the maximum 7 INTCLK cycles 
(this is the reset condition in order to allow the use 
of slow access time external memory, if faster 
memory is used, then this value may be modified 
by the User). 

150 

b2-b0 =WPM2-0: Program Space Wait Cycles. 
These bits contain the number of INTCLK cycles to 
be added automatically to external Program mem­
ory accesses. WPM= 0 gives no additional wait cy­
cles, WPM = 7 provides the maximum 7 INTCLK 
cycles (this is the reset condition in order to allow 
the use of slow access time external memory, if 
faster memory is used, then this value may be 
modified by the User). 

Note. the number of clock cycles added refer to 
INTCLK and NOT to CPUCLK. 

WARNING. The Wait Control Register is reset to 
give the maximum number of Wait cycles for exter­
nal memory. To give the optimum performance of 
the ST9 when used in single-chip mode (no exter­
nal memory) the WDM2,1,0 and WPM2,1,0 bits 
should be reset to "0". 



9 1/0 PORTS 

9.1 INTRODUCTION 

The ST9 is provided with dedicated lines for in­
put/output. These lines, grouped into 8-bit ports, 
can- be independently programmed to provide 
parallel input/output, or to carry input/output sig­
nals to/from the on-chip peripherals and Core 
(e.g. Timers and SCI). All ports have active pull­
ups and pull-down resistors compatible with TTL 
loads. In addition, pull-ups can be turned off for 
open-drain operation and weak pull-ups can be 
turned on to save off-chip resistive pull-ups. Input 
buffers can be either TTL or CMOS compatible. 

Figure 9-1. 1/0 Register Map 

ST9 · 1/0 Ports 

9.2 CONTROL REGISTERS 

Each port PX has a Data Register PX, and three 
associated control registers (PXCO, PXC1, PXC2) 
which define the port line configuration and allow 
dynamic change in port configuration during pro­
gram execution. Ports and control registers are 
mapped into the Register File as shown in Fig­
ure 9-1 Ports and control registers are treated like 
any other general-purpose register. There are no 
special instruction for port manipulation, any in­
struction that addresses a register can address the 
ports. Data can be directly accessed in the port 
register, without passing through other memory or 
"accumulator" locations. 

Applicable to ST9030, ST9032, ST9036, ST9040 

OE5h 

OE4h 

OE3h 

OE2h 

OE1h 

OEOh 

GROUPE 

P5DR 

P4DR 

P3DR 

P2DR 

P1DR 

POOR 

R229 

R228 

R227 

R226 

R225 

R224 

OFEh 

OFDh 

OFCh 

OFAh 

OF9h 

OF8h 

OF6h 

OF5h 

OF4h 

OF2h 

OF1h 

OFOh 

PAGE2 

Reserved 

P3C2 

P3C1 

P3CO 

Reserved 

P2C2 

P2C1 

P2CO 

P1C2 

P1C1 

P1CO 

POC2 

POC1 

POCO 

02-93 ~ SGS-1HOMSON .:..::...:..::.. ____________ ._..,,, l'i<IIIOCl@~Q,~@"ii'in@J!CI:~ 

OFFh 

R254 OFEh 

R253 OFDh 

R252 OFCh 

OFBh 

R250 OFAh 

R249 OF9h 

R248 OF8h 

R246 OF6h 

R245 OF5h 

R244 OF4h 

R242 OF2h 

R241 OF1h 

R240 OFOh 

PAGE3 

P7DR 

P7C2 

P7C1 

P7CO 

P5C2 

P5C1 

P5CO 

P4C2 

P4C1 

P4CO 

R255 

R254 

R253 

R252 

R251 

R250 

R249 

R248 

R246 

R245 

R244 

R242 

R241 

R240 

67/219 

151 



ST9 - 1/0 Ports 

CONTROL REGISTERS (Continued) 

During the reset state, all the Ports are set as bidi­
rectional/weak pull-up mode, with the output data 
register set to FFh. This condition is also held after 
reset (except for Ports 0, I (, 6 for ST905x) in ROM­
less devices, see Memory chapter) and can be re­
defined under software control at any time. 

9.3 PORT BIT STRUCTURE AND PROGRAMMING 

By programming the control bits PXCO.n and 
PXCI .n (see Figure 9-2) it is possible to configure 
bit PX.n as Input, Output, Bidirectional or Alternate 
Function Output, where X is the number of the 1/0 
port, and n the bit within the port (n = 0 to 7). 

When programmed as input, it is possible to select 
the input level as TTL or CMOS by programming 
the control bit PXC2.n. 

The output buffer can be programmed as Push­
pull or Open-drain. A Weak Pull-up configuration 
can be used when the port bit is programmed as 
Bidirectional. This is an Open-drain configuration 
with a high pull-up resistor value (turned on by writ­
ing a "I"), to avoid the requirement for external re­
sistances. 

Figure 9-2. Control Bits 

B1t 7 B1t n 

The basic structure of the bit PX.n of a general pur­
pose port PX is shown in Figure 9-3. 

Independently to the chosen configuration, when 
the User addresses the port as an destination reg­
ister of an instruction, the port is written to and the 
data is transferred from the internal Data Bus into 
the Output Master Latches. When the port is ad­
dressed as a source register for an instruction, the 
port is read and the data stored in the Input Latch is 
transferred onto the internal Data Bus. 

When PX.n is programmed as Input: (Figure 9-4) 

_ The Output Buffer is forced tristate 

_ The data present on the 1/0 pin is sampled into 
the Input Latch at the beginning of the execution 
of the instruction which is accessing the port. 

_ The data stored in the Output Master Latch is 
copied into the Output Slave Latch at the end 
of the execution of each instruction. So if bit 
PX.n is reconfigured as Output or Bidirectional, 
the data stored in the Output Slave Latch is re­
flected on the 1/0 pin. 

BitO 

PXC2 I PXC27 I I I PXC2n I I T l PXC20 

PXC1 I PXC17 I I I PXC1n I I I I PXC10 

PXCO I PXC07 I I I PXCOn I I I I PXCOO 

Table 9-1. Port Bit Configuration Table 

PXC2n 1 0 1 0 1 0 1 0 
PXC1n 0 0 0 0 1 1 1 1 
PXCOn 0 0 1 1 0 0 1 1 

PXn Configuration BID BID IN IN OUT OUT AF AF 

PXn Output OD WP TRI TRI OD PP OD pp 

PXn Input TTL TTL TTL CMOS TTL TTL TTL TTL 

Notes: 

BID · BIDIRECTIONAL OD OPEN DRAIN 
IN INPUT WP WEAK PULL-UP 
OUT OUTPUT PP PUSH-PULL 

AF · OUTPUT ALTERNATE FUNCTION TTL TTL STANDARD INPUT 
TRI . TRISTATE CMOS CMOS STANDARD INPUT 

68/219 

152 



PORT BIT STRUCTURE AND PROGRAMMING (Continued) 

Figure 9-3. Basic Structure of an 1/0 Port Pin (except analog input) 

PUSH PULL 
TRISTATE 

OPEN DRAIN 
WEAK PULL-UP 

ALTERNATE 
FUNCTION 

(OUT) 

1/0 PIN 

INTERNAL DATA BUS 

TTL 
CMOS 

ALTERNATE 
FUNCTION (IN) 

INPUT 
BIDIRECTIONAL 

ALTERNATE 
FUNCTION 

VA00222 

ST9 - 1/0 Ports 

Figure 9-4. Input Configuration Figure 9-5. Output Configuration 

1/0 PIN 

INTERNAL DATA SUS 

TTL 
CMOS 

ALTERNATE 

FUNCTION 

VA00224 VA00225 

69/219 

153 



ST9 - 1/0 Ports 

PORT BIT STRUCTURE AND PROGRAMMING (Continued) 

When PX.n is programmed as Output: (Figure 9.5) 

_ The Output Buffer is turned on in an Open­
drain or Push-pull configuration 

_ The data stored in the Output Master Latch is 
copied both into the Input Latch and into the 
Output Slave Latch, driving the 1/0 pin, at the 
end of the execution of each instruction. 

When PX.n is programmed as Bidirectional: (Fig­
ure 9-6) 

_ The Output Buffer is turned on in an Open­
drain or Weak Pull-up configuration 

_ The data present on the 1/0 pin is sampled into 
the Input Latch at the beginning of the execu­
tion of each instruction 

_ The data stored in the Output Master Latch is 
copied into the Output Slave La~ch, driving the 
1/0 pin, at the end of the execut1on of each In­
struction. 

WARNING. Due to the unique feature of the bidi­
rectional mode of reading the external pin instead 
of the output latch, particular care must be taken 
with arithmetic/logic and boolean instructions per­
formed on a bidirectional port pin. 

These instructions use a read-modify-write sequence, 
and the result written in the port register depends on 
the logical level present on the external pin. 

This may bring unwanted modifications to the port 
output register content. 

Figure 9-6. Bidirectional Configuration 

1/0 PIN 

INTERNAL DATA BUS 

VA00226 

70/219 

154 

For example: 
Port register content 

OFh 
external port value 

03h 

(Bits 3 and 2 are externally forced to 0) 

Making a bset instruction on bit 7 will return: 

Port register content external port value 
8~ ~h . 

(Bits 3 and 2 have been cleared.) 

To avoid this situation, it is suggested that all the 
operations on a port, using at least one bit in bidi­
rectional mode, are performed on a copy of the 
port register, then transferring the result with a load 
instruction to the 1/0 port. 
When PX.n is programmed as Alternate Function 
Output (Figure 9-7) except fo Analog Inputs : 

_ The Output Buffer is turned on in an Open­
drain or Push-pull configuration 

_ The data present on the 1/0 pin is sampled into 
the Input Latch at the beginning of the execu­
tion of each instruction 

_ A signal coming from an on-chip Function is al­
lowed to load the Output Slave Latch driving 
the 110 pin. Signal timing is under control of the 
Function. If no Function is connected to PX.n 
the 1/0 pin is driven to a high level in Push-pull 
configuration and is driven to high impedance 
in open drain configuration. 

Figure 9-7. Alternate Function Configuration 

ALTERNATE 
FUNCTION (OUT) 

1/0 PIN 

INTERNAL DATA BUS 

VA00227 



9.4 ALTERNATE FUNCTION ARCHITECTURE 

Each single 1/0 pin may access three different 
types of ST9 internal signals: 

- Data bus line (1/0) 
- 'Alternate Function' Input 

- Alternate Function Output 

Each pin configuration is made by software, thus 
allowing the User to choose the type of signal to 
access a pin. The choice of type of signal is made 
with the registers PXC2, PXC1, PXCO of the 1/0 
Port X (Please refer to the previous section for 
more details) 

Pins Declared as an 110 
A pin declared as an 1/0 is a pin connected to the 
1/0 buffer. In such a case, this pin may either be an 
Input or an Output or an 1/0 depending on the 
value stored in (PXC2, PXC1, PXCO) 

Figure 9-6. Example of 3 Alternate Function 
Inputs 

ALTERNATE FUNCTION 
INPUT 

MODULE 1 

ALTERNATE FUNCTION 
1/0 PIN 

MODULE 2 

ALTERNATE FUNCTION 
INPUT 

MODULE 3 

VROOA171 

Figure 9-9. Example of 3 Alternate Function 
Inputs 

OUTPUT MODULE 1 

1/0 PIN OUTPUT MODULE 2 

OUTPUT MODULE 3 

VROOB171 

ST9 - 1/0 Ports 

Pin Declared As An 'Alternate Function' Input 
A single pin may be directly connected to several 
Alternate Function inputs. In such a case, the User 
has to select the required input mode (TTL or 
CMOS levels) and to enable, by software, the se­
lected Alternate Function module (by enabling it) 
and unselect all other Alternate Functions (by dis­
abling them). 
No specific configuration of the port is required to 
enable the input Alternate Function, as the input 
buffer is directly connected to each module using 
it. As more than one module can use the same in­
put Alternate Function line, it is under User soft­
ware control to enable a module to use the input 
Alternate Function. 
The digital I/O remains operational even when us­
ing the Alternate Function input. The exception to 
this is for an 1/0 port bit connected to analog volt­
ages (for the Analog to Digital Converter). 

Pin Declared As An Alternate Function Output 
A pin declared as an Alternate function output cor­
responds to (PXC2,PXC1 ,PXCO) = 1,1, 1 or 0,1, 1. 
Several Alternate Function outputs may drive a 
common pin. In such a case, the Alternate Func­
tion output signals are ANDed before driving the 
common pin. The User has therefore to select, by 
software, the Alternate Function Output required 
by enabling it and disabling all other Alternate 
Function Outputs on the same pin (a disabled Al­
ternate Function Output outputs a "1 "). 

The inputs to on-chip Functions and Alternate 
Function Outputs are predefined for each 110 
pin of an ST9. Please refer to the Alternate 
Function Table at the beginning of this 
datasheet for the exact configuration. 

Figure 9-10. Example of One 1/0 Pin Configu­
ration 

RDRDY 
1/0 PIN 

WRRDY DMA 

RDSTB HANDSHAKE 

WRSTB 

CORE 

VROOC171 

71/219 

155 



ST9 - 110 Ports 

ALTERNATE FUNCTION (Continued) 

General Configuration 
A single pin may be used, according to different 
phases of the software, as an 1/0 or connected to 
an input or an Alternate Function output. An exam­
ple is given in Figure 9-10. 

WARNING: When a pin is connected to an Input 
Function and to an Alternate Function output, the 
User must be aware of the fact that the Alternate 
Function output signal always input to the Alternate 
Function module(s) declared as input(s). FiQ!Jre 9-
1 0 shows an example where the signal P/0 also 
enters RDSTB and INT3. 

9.5 SPECIAL PORTS 

9.5.1 Bit Structure For AID Converter Inputs 

When a port bit is used as input for an on-chip A/D 
Converter, its structure is modified as shown in 
Figure 9-11. 

The behaviour of this bit is identical to the general 
purpose bit described in paragraph 9.68 except 
when it is programmed as Alternate Function. In 
this case, the Output Buffer is forced Tristate and 
the input of the Input Buffer is disconnected from 
the 1/0 pin and forced low. In this way the 110 pin is 
free to assume any analog value without causing 
power consumption in the Input Buffer. The bit 
MUST be programmed to (PXC2, PXC1, 
PXCO) = 1,1,1) to assume this special configura­
tion. 

Figure 9-11. A/D Input Port Bit Structure 

1/0 PIN 

TOWARDS 
A/D CONVERTER 

VA00219 

9.6 1/0 STATUS AFTER WFI, HALT AND RESET 

The status of the ST9 1/0 ports during the Wait For 
Interrupt, Halt and Reset operational modes is 
shown in the following table. The External Memory 
Interface ports are shown separately, however, if 
only the internal memory is being used and the 
ports are acting as 1/0, the status is the same as 
shown for the other 1/0 ports. 

- if ROMLESS (ST9 memory is Off-chip): 
PO, P1 are set to push-pull A. F. 
Push-pull, Output value is undefined. 

_ if not ROMLESS (ROM or EPROM parts) 
PO, P1 and P6 are set to Bidirectional Weak 
Pull-up, Output value is FFh (all pins high). 

WARNING: 1/0 pins (other than the ROMiess pin, 
if enabled by mask option) are set to the Weak 
Pull-up mode during the Reset cycle. This state is 
forced during the reset sequence, but the 110 pins 
can be in a random state for up to 64 crystal peri­
ods. 
The application circuit must take this into account if 
it can lead to critical situations in the external cir­
cuitry. 

Mode PO P1 [P6](2l 1/0 

High Next 
No Affect (clocks 

WFI 
Impedance Address 

output from ST9 
runmng) 

High Next 
No Affect (clocks 

HALT output from ST9 
Impedance Address 

stopped) 

Bid1rect1onal Weak 

RESET Note 1 
Pull-up except: 
ROMiess = weak 
weak pull-up 

Notes 
1 PO and P1 (when used to provide non-multiplexed low 
order address) setup depends on the ROM LESS cond1t1on 
2 forST905x 

_72_,_2_19 _____________ l.V ~~~;m~v~:g~: 
156 



10 HANDSHAKE/DMA CONTROLLER 

10.1 INTRODUCTION 

The handshake module allows the User to config­
ure an 1/0 Port under handshake control or to sup­
port DMA operations, driven by an on-chip 16 bit 
Multifunction TIMER, between Data/Program 
Memory or Register File and an 1/0 port. 

The module supports data exchange with hand­
shake through port PX (where PX is predefined by 
the ST9 configuration) with up to 4 handshake 
lines: 2 Outputs (RDRDY and WRRDY) connected 
as Alternate Function Outputs and 2 Inputs 
(RDSTB and WRSTB). 
Input, Output and Bidirectional Handshake modes 
are available. 

Input Functions RDSTB and WRSTB are always 
associated to external interrupt channels. To syn­
chronize handshake protocols generating interrupt 

ST9 - Handshake 

requests (as the following paragraph will show) the 
User must program the interrupt control register 
and the vector associated to the used line(s) 
(RDSTB and/or WRSTB). The active high output 
lines RDRDY and WRRDY are held high when not 
active in order to allow the Alternate Function Out­
put connection of other ST9 peripherals. 

DMA transfers can move data from Data/Program 
Memory or Register File to the 1/0 Port with Hand­
shake capability or viceversa, using either the Mul­
tifunction Timer CAPTO or COMPO DMA 
Channels. In Figure I 0-1 the four on-chip lines that 
connect the module to the on-chip Multifunction 
Timer to support DMA transfers are shown (DD 
(Data Direction), CO_SYNCHR(COmpare SYN­
CHronism), CA_SYNCHR (CApture SYNCHro­
nism) and On Chip Event). 

Figure 10-1. Handshake/DMA Controller Module Block Diagram 

PORT PY 

CONTROLLER 

INTERRUPT 
CONTROLLER 

PORT PX 

CONTROLLER 

NORMAL 

CONTROL SIGNALS 

HANDSHAK[IDMA 
CONTROlLER 

NORMAL 

CONTROL SIGNALS 

HANDSHAK[/DMA 

CONTROL SIGNALS 

TIMER 

_02_-_9_3 _____________ ~ ~~~~~~'~:,?~ 

VR000180 

73/219 

157 



ST9 - Handshake 

102PROGRAMMABLEHANDSHAKEMODES 

10.2.1 Input Handshake 

Two Input Handshake Modes are available to syn­
chronise input transitions on port bits programmed 
as Input or Bidirectional. Output or Alternate Func­
tion bits are not affected. 
In the timings, READ PORT is an ST9 internal sig­
nal that transfers data from the Input Latches onto 
the Data bus. 

Two Lines Input Handshake 

When this mode is selected WRRDY is set to indi­
cate that data can be loaded into the Input Latches 
of the Input and Bidirectional port pins. Data pre­
sent on the pins is sampled when the peripheral 
forces a low level on WRSTB. 

When a rising edge on WRSTB occurs, WRRDY 
goes low signifying that the Input Latch is full and 
further loading must be inhibited until the ST9 
reads the port. When the port register is read, 
WRRDY is set. Both low and high levels on 
WRSTB must last at least one INTCLK cycle. 

Figure 10-3. Two Line Input Handshake Timing 

158 

The User is suggested to program the External In­
terrupt Channel associated with the WRSTB line to 
generate an interrupt request when a rising edge 
occurs. The ST9 can thus, in the course of its inter­
rupt service routine, read the data furnished by the 
peripheral as soon as it is available. 

Figure 10-2. Two Line Input Handshake 

/ 
ST9 "' 

DATA 

EXTERNAL 

PERIPHERAL 
--
WRSTB 

WRRDY 

VR000173 

VR000448 



ST9 - Handshake 

HANDSHAKE MODES (Continued) 

One Line Input Handshake Figure 10-4. One Line Input Handshake 
Figures 10-4 and 10-5 illustrate the timing associ­
ated with the One Line (WRRDY) Input Handshake 
Mode. 

When this mode is selected the ST9 sets WRRDY 
to indicate that data can be loaded into the Input 
Latches of the Input and Bidirectional port pins. 

Data present on the pins is continuously sampled. 
When the ST9 is reading the port WRRDY goes 
low. As data is strobed into the port only when 
WRRDY goes high, the forced low state of 
WRRDY will prevent the Input Latch data from 
changing while ST9 is reading the port. When the 
ST9 read cycle finishes, WRRDY is set. 

Figure 10-5. One Line Input Handshake Timing 

INTCLK 

READ PORT 

PORT DATA IN 

WRRDY 

/1 

ST9 

" 

WRRDY 

{ 

:: NEW DATA IN 

' { 

--------------------------- ~~~~;~~:~~~ 

DATA 

EXTERNAL 

PERIPHERAL 

VR000174 

1\ 

x== 
\ r-

VR000445 

75/219 

159 



ST9 - Handshake 

HANDSHAKE MODES (Continued) 

10.2.2 Output Handshake 
Two Output Handshake Modes are available to 
synchronize output transitions on port bits pro­
grammed as Output or Bidirectional. 1/0 pins pro­
grammed as Input or Alternate Function Output 
are not affected. 

In the timing diagrams, WRITE PORT is the inter­
nal signal that transfers data from the Internal Data 
Bus into the Port Output Master Latches. 

Two Lines Output Handshake 
Figure 1 0-7 illustrates the timing associated with 
the Two Lines (RDRDY, RDSTB) Output Hand­
shake Mode (Figure 1 0-6). 

When this mode is selected RDRDY is reset to in­
dicate that no significant data is present on the 
Output and Bidirectional port pins. When the Out­
put Slave Latches are written, RDRDY is set to in­
dicate that data is ready for the peripheral device. 
In most systems the rising edge of RDRDY can be 
used as a latching signal in the peripheral device. 
RDRDY will remain high until a rising edge is re­
ceived on RDSTB indicating that the peripheral 
has taken the data. Both low and high level on 

Figure 10-7. Two Line Output Handshake Timing 

INTCLK 

RDSTB must last at least one ST9 INTCLK cycle. 
The User is suggested to program the External In­
terrupt Channel associated with the RDSTB line to 
generate an interrupt request when a rising edge 
occurs. The ST9 can thus, in the course of its inter­
rupt service routine, furnish new data as soon as 
the previous data is taken by the peripheral. 

Figure 10-6. Two Line Output Handshake 

" 
ST9 DATA 

.I 
EXTERNAL 

PERIPHERAL 
ROROY 

--
ROSTB 

VR000175 

WRITE PORT ~~r~------~~~--------­
PORT DATA OUT ~~---N-Ew_o_A_r_A_o_u_T __ 

RDRDY 

VR000452 

76/219 ---------------------------- ~~~~;~~~!~~ ----------------------------
160 



ST9 - Handshake 

HANDSHAKE MODES (Continued) 

One Line Output Handshake Figure 10-8. One Line Output Handshake 
Figure 1 0-9 illustrates the timing associated with 
the One Line (RDRDY) Output Handshake Mode 
Figure 10-8. 

When this mode is selected RDRDY is reset to in­
dicate that no significant data is present on the 
Output and Bidirectional port pins. When the Out­
put Slave Latches are written to, RDRDY is set to 
indicate that data is ready for the peripheral device. 
In most systems the rising edge of RDRDY can be 
used as a latching signal in the peripheral device. 
No peripheral acknowledge is waited for. While 
ST9 is writing into the Output Slave Latches 
RDRDY goes low, RDRDY is set again when the 
new data is ready on the port pins. 

Figure 10-9. One Line Output Handshake Timing 

INTCLK 

WRITE PORT 

PORT ___ ___J 

RDRDY 

ST9 

RDRDY 

-------------- J:.:fi ~~~;ID~,r::,~~ 

DATA ~ 
v 

EXTERNAL 
PERIPHERAL 

VR000176 

VROOA452 

77/219 

161 



ST9 - Handshake 

HANDSHAKE MODES (Continued) 

10.2.3 Bidirectional Handshake 

A Bidirectional Handshake Mode is available to 
synchronise bidirectional transitions on Port bits 
programmed as Bidirectional. When this mode is 
selected, the Output Buffer configuration of Bidi­
rectional port pins programmed as Weak Pull-up 
become Push-pull. Open-drain configuration is not 
modified. 110 bits set to Input, Output or Alternate 
Function Output are not affected. 

Figure 10-11 illustrates the timing associated with 
the Bidirectional Handshake Mode. This mode is a 
combination of Two Lines Output Mode and Two 
Lines Input Mode using all four handshake lines, 
two for output (RDRDY, RDSTB) and two for input 
control (WRRDY, WRSTB). In the timing INTCLK 
is the ST9 internal not stretched clock, WRITE 
PORT is the signal that transfers data from the In­
ternal Data Bus into the port Output Master 
Latches and READ PORT is the signal that trans­
fers data from the Input Latches onto the Data Bus. 
When Bidirectional Handshake mode is selected 
the Output Buffers of the Bidirectional port pins are 
forced tristate, WRRDY is set to indicate that data 
can be loaded into the Input Latches and RDRDY 
is reset to indicate that no significant data is pre­
sent in the Output Slave Latches. 

Input Transitions. Data present on the pins is 
sampled when the peripheral forces a low level on 
WRSTB. When a rising edge on WRSTB occurs, 
WRRDY goes low signifying that the Input Latches 

Figure 10-11. Bidirectional Handshake Timing 

INTCLK 

WRITE PORT 

RDRDY 

RDSTB =========~~~~~~ PORT = 
WRSTB 

WRRDY 

are full and further loading must be inhibited until 
the ST9 reads the port. When the port register is 
read, WRRDY is set. Both low and high levels on 
WRSTB must last at least one ST9 INTCLK cycle. 

The User is suggested to program the External in­
terrupt Channel associated with the WRSTB line to 
generate an interrupt request when a rising edge 
occurs. The ST9 can thus, in the course of its inter­
rupt service routine, read the data furnished by the 
peripheral as soon as it is available. 

Figure 10-10. Four Line Bidirectional 

RDRDY 
-
RDSTB 

DATA EXTERNAL 
ST9 PERIPHERAL 
--
\JRSTB 

\JRRDY 

VR000177 

SAMPLE 

READ PORT ------------·-------J 
VR000446 

_78_1_21_9 ____________ l5ii ~~~;m~r::~~n 
162 



HANDSHAKE MODES (Continued) 

Output Transitions. When the Output Slave 
Latches are written to, RDRDY is set to indicate 
that data is ready for the peripheral device. When 
RDSTB goes low, data is allowed out onto the port 
pins. When a rising edge is received on RDSTB, in­
dicating that the peripheral has taken the data, the 
Output Buffers are forced tristate and RDRDY 
goes low. Both low and high level on RDSTB must 
last at least one INTCLK cycle. 

The User is suggested to program the External In­
terrupt Channel associated to the RDSTB line to 
generate an interrupt request when a rising edge 
occurs; The ST9 can thus, in the course of its inter­
rupt service routine, write new data into the Output 
Slave Latches as soon as the previous data is 
taken by the peripheral. 

Figure 10-12. Bidirectional Application Example 

ST9 - Handshake 

10.2.4 Application example: Mapping an ST9 
onto the memory bus of another ST9 

Figure 10-12 shows a possible application of the 
bidirectional handshake protocol, used to connect 
an ST9 as a slave of another (master) ST9. 

PX of the slave ST9 is connected to the Ad­
dress/Data Memory Bus of the master ST9. A de­
coder enables, with a lo~vel, the generation of 
RDSTB or WRSTB when DS is low and the master 
is reading from, or writing to, the memory. 

To synchronize data transfers with the slave, the 
master ST9 uses RDRDY and WRRDY as Exter­
~allnterrupt Sources, programmed to generate an 
Interrupt request when a rising edge occurs. The 
slave ST9 interrupts the master raising RDRDY 
when new data is ready in the port Output Slave 
Lp.tches and raising WRRDY when the Input 
Latches can be filled with new data. According to 
the interrupt request received, the master ST9 can 
read the ready data from the slave (RDRDY inter­
rupt routine) or write other data into the slave 
(WRRDY interrupt routine). 

" PX I/ 1\ A(7. 0)/0(7. D) 
/ 

PO 
'J 

~~ 
ILATCHEsr-

-
AS 

I I ~ I I 
SLAVE ST9 MASTER ST9 

-- DECODER 

Vc RDSTB 

~ 
A(15:8) Pl 

-- R/W 
WRSTB "--F= Ds 

RDRDY INTl 

WRRDY INT2 

VR00017B 

--------------~ ~~~~m~v~:J!~n 79/219 

163 



ST9 - Handshake 

10.3 PROGRAMMABLE DMA MODES 

The Handshake Module supports DMA operations 
controlled by either the CAPTO or COMPO DMA 
Channel of a Multifunction Timer. The User en­
ables this function writing a "0" in the DEN bit in the 
HDCTL register and selects the DMA Channel by 
writing the DCH bit: "0" for CAPTO, "1" for COMPO. 

When the CAPTO Channel is chosen, the DD bit 
selects the Data Direction: "0" to move data from 
Data/Program Memory or Register File to the port 
(DMA Output). "1" to perform the opposite transfer 
(DMA Input). Signal CA_SYNCHR is sent by the 
Timer to the Handshake/DMA Controller for writing 
the port Output Master Latches or reading the In­
put latches (depending on DO), during the DMA 
operations when a capture occurs on the Timer. 

If the Handshake section of the module is enabled, 
the data transfer from the Output Master Latches 
into the Output Slave Latches (Output Strobe, for 
pins programmed as Output or Bidirectional) or 
from the Pins into the Input Latches (Input Strobe, 
for pins programmed as Input or Bidirectional) is 
controlled by the logic supporting the chosen 
Handshake protocol. 

If no Handshake is programmed the User can 
choose how to drive the Output or Input Strobe by 
writing the DST bit: a "0" leaves the Strobes under 
the normal port control, according to the chosen 
port bit configuration, a "1" selects the On Chip 
Event generated by the Timer as the Output or In­
put Strobe. 

When the COMPO Channel is selected, DMA out­
put transfers are only allowed independent of DO, 
and CO_SYNCHR is used for output Master Latch. 
If Handshake is disabled, DST selects how to con­
trol the Output Strobe. If enabled, the Handshake 
controls the Output Strobe. 

1 0.3.1 DMA Transfers Driven By Timer CAPTO 
Channel With Handshake 
The following descriptions are made assuming that 
DMA transfers are driven by Multifunction Timer 0. 
The following table shows the DMA Port capabili­
ties of the ST9 family: 

MultiFunction Handshake 
Timer Port 

0 5 

164 

10.3.2 DMA Input transfers with two line input 
handshake 

When 

- Two Lines Input Handshake mode is selected 
(HS7="1 ", HS6="0", HS5="1 ") 

- the port is enabled to support DMA input trans­
fers driven by the Timer CAPTO DMA Channel 
(DEN="O", 00="1 ", DCH="O") 

- the Handshake WRSTB line is connected off­
chip to the Timer TOlNA line 

_ TOlNA DMA requests are enabled on rising 
edges 

- WRSTB interrupt requests are disabled, data 
transfers on port pins programmed as Input (or 
Bidirectional~e synchronized using the 
Handshake WRSTB line as DMA Request and 
the WRRDY line as DMA Acknowledge. 

WRRDY is set to indicate that data can be loaded 
into the Input Latches of the Input (or Bidirectional) 
port pins. Data present on the port pins is sampled 
when the peripheral forces a low level on WRSTB. 
When a rising edge on WRSTB (TOlNA) occurs 
WRRDY goes low, signifying that the Input Latches 
are full and further loading must be inhibited until 
the ST9 reads the port, and a DMA request is is­
sued. When the port register is read, during the 
DMA transfer, WRRDY is set. 

Figure 10-13. DMA with 2 Line Input Hand­
shake Mode 

I""' ;ltE EXTERNAL 

LWRSTB :=J. DMA REQUEST 

PERIPHERAL 

TOlNA 

DMA ACKNOWLEDGE 
WRRDY 

VR00018t 



PROGRAMMABLE DMA MODES (Continued) 

1 0.3.3 DMA output transfers with two lines 
output handshake 
When 

- Two Lines Output Handshake is selected 
(HS7="1 ", HS6="1 ", HS5="0") 

_ the port is enabled to support DMA output 
transfers driven by the Timer CAPTO DMA 
Channel (DEN="O", DD="O", DCH="O") 

_ the Handshake RDSTB line is connected off­
chip to the Timer TOlNA line 

TOlNA DMA requests are enabled on rising 
edges 

_ RDSTB interrupt requests are disabled 

data transfers on port pins~rogrammed as Output 
(or Bidirectional) can be synchronized when using 
the Handshake RDSTB and RDRDY lines as DMA 
Request and DMA Acknowledge. 

When Two Lines Output Handshake is selected, 
RDRDY is reset to indicate that no significant data 
is present on the Output and Bidirectional port 
pins. When the Output Slave Latches are written, 
RDRDY is set to indicate that data is ready for the 
peripheral device. The first data value, whose 
usual meaning is that ST9 is ready to provide the 
following data by DMA transfers, is normally writ­
ten by the DMA initialization routine. 

When a rising edge is received on RDSTB 
(TOlNA), indicating that the peripheral has taken 
the data, RDRDY is reset and a DMA request is is­
sued to get the next data. When the ST9 Output 
Slave Latches are written, during the DMA trans­
fer, RDRDY is set again. If the User wants to get 

Figure 10-14. DMA output transfers with 2 
lines output handshake 

I""" 'Itt: EXTERNAL 

LRDSTB h DMA REQUEST 

PERIPHERAL 

TOlNA 

DMA ACKNOWLEDGE 
RDRDY 

VROOOIB2 

ST9 - Handshake 

data from ST9 as soon as RDSTB goes low, exter­
nal latches clocked by RDSTB can be added to 
create a pipeline stage, that is at each RDSTB low 
pulse on the falling edge the peripheral gets data 
transferred into the port by the previous DMA 
transfer and on the rising edge a DMA request is 
issued to get the next data. 

1 0.3.4 DMA input transfers with one line input 
handshake 

When 

_ One Line Input Handshake is selected 
(HS7="0", HS6="0", HS5="1") . 

_ the port is enabled to support DMA input op­
erations driven by the Timer CAPTO DMA 
Channel (DEN="O", 00="1 ", DCH="O") 

_ the Timer TOlNA DMA requests are enabled on 
rising (or falling) edges data transfers on port 
pins programmed as Input (or Bidirectional) 
can be synchronized by using the Timer TOlNA 
line as DMA Request, and the Handshake 
WRRDY line as DMA Acknowledge. 

When One Line Input Handshake is selected 
WRRDY is set to indicate that data can be loaded 
into the Input Latches of the Input and Bidirectional 
port pins. Data present on the port pins is continu­
ously sampled. While ST9 is reading the port, dur­
ing the DMA transfer requested by a rising (or 
falling) edge on the Timer TOlNA line, WRRDY 
goes low. If data is strobed into the port only when 
WRRDY is high, the forced low state of WRRDY 
will prevent Input Latches data from changing 
while ST9 is reading the port. When ST9 reading 
cycle finishes, WRRDY is set. 

Figure 10-15. DMA input transfers with one 
line input handshake 

ITIMER a&-E 
EXTERNAL 

CTOINA 

PERIPHERAL 

DMA REQUEST 

DMA ACKNOWLEDGE 
WRRDY 

VROOOIB3 

81/219 

165 



ST9 - Handshake 

PROGRAMMABLE DMA MODES (Continued) 

10.3.5 DMA output transfers with one line out­
put handshake 

When 

• One Line Output Handshake is selected 
(HS7="0", HS6="1", HS5="0") 

_ the port is enabled to support DMA output 
transfers driven by the Timer CAPTO DMA 
Channel (DEN="O", DD="O", DCH="O") 

_ the Timer TOlNA DMA requests are enabled dfi 
rising (or falling) edges 

data transfers on port pins programmed as Output 
or Bidirectional can be synchronized using the 
Timer TOlNA line as DMA Request, and the Hand­
shake RDRDY line as DMA Acknowledge. RDRDY 
is reset to indicate that no significant data is pre­
sent on the Output (or Bidirectional) port pins. 
When the ST9 Output Slave Latches are written, 
RDRDY is set to indicate that data are ready for the 
peripheral device. The first data, whose usual 
meaning is that the ST9 is ready to provide the fol­
lowing data by DMA transfers, is normally written 
by the DMA initialization routine. 

When a rising (or falling) edge is received on 
TOlNA, a DMA request is issued to get the next 
data. While ST9 is writing into the Output Slave 
Latches, during the DMA transfer, RDRDY goes 
low. RDRDY is set again when the new data is 
ready on the port pins. 

Figure 10·16. DMA output transfers with one 
line output handshake 

I'"" oltE EXTERNAL 

LTOINA 

PERIPHERAL 

DMA REQUEST 

DMA ACKNOWLEDGE 
RDRDY 

VROOA182 

10.3.6 DMA input/output transfers with bidi­
rectional handshake 

When 

Bidirectional Handshake is selected (HS7="X", 
HS6="0", HS5="0") 

- the port is enabled to support DMA transfers 
driven by the Timer CAPTO DMA Channel 
(DEN="O", DCH="O") 

- the Handshake WR~rt'B and RDSTB lines are 
ANDed and connected off-chip to the Timer 
TOlNA line 

- TOlNA DMA requests are enabled on rising 
edges 

- WRSTB and RD$TB interrupt requests are dis-
abled 

data transfers on port pins programmed as Bidirec­
tional can be synchronized using the Handshake 
WRSTB and WRRDY lines as DMA Request and 
DMA Acknowledge for D~ut transfers 
(DD="1 ") and the Handshake RDSTB and RDRDY 
lines as DMA Request and DMA Acknowledge for 
DMA Output transfers (DD="O"). 

DMA Input Transfers. When Bidirectional Hand­
shake is selected WRRDY is set to indicate that 
data can be loaded into the Input Latches of the 
Bidirectional port pins. Data present on the pins is 
sampled when the peripheral forces a low level on 
WRSTB. When a rising edge on WRSTB (TOlNA) 
occurs WRRDY goes low, signifying that the Input 
Latches are full and further loading must be inhib­
ited until the ST9 reads the port, and a DMA re­
quest is issued. When the port register is read, 
during the DMA transfer, WRRDY is set. 

Figure 10-17. DMA input/output transfers with 
bidirectional handshake 

WRRDY 

OUTPUT DMA 
ACKNOWLEDGE 

,-----,-~....,-,---j EXTERNAL 
OUTPUT DMA PERIPHERAL 

AND REQUEST 

INPUT DMA 
REQUEST 

INPUT OMA 
ACKNOWLEDGE 

VR000t85 

_8~ __ 21_9 ________________________ ~~~~~~~~:~~~ ----------------------------
166 



PROGRAMMAI3LE DMA MODES (Continued) 

DMA Output Transfers. When Bidirectional 
Handshake is selected, RDRDY is reset to indicate 
that no significant data is present on the Bidirec­
tiohal port pins. When the Output Slave Latches 
are written, RDRDY is set to indicate that data is 
ready for the peripheral device. The first data, 
whose usual meaning is that ST9 is ready to pro­
vide the following data by DMA transfers, is nor­
mally written by the DMA initialization routine. 

When RDSTB goes low data is allowed onto the port 
pins. When a rising edge is received on RDSTB 
(TOlNA), indicating that the peripheral has taken the 
data, the Output Buffers are forced tristate, RDRDY 
is reset and a DMA request is issued to get the next 
data. When the Output Slave Latches are written 
during the DMA transfer, RDRDY is set again. 

In the output data flow there is one pipeline stage, 
that is at each RDSTB low pulse on the falling edge 
t.he pe'rlpheral gets data transferred Into the port by 
the previous DMA transfer and on the rising edge 
issues a DMA request to get the next data. 

Example. As the direction of DMA transfers is con­
trolled by software, the User must define a protocol 
to control the sequence of inpuVoutput data trans­
fers. 

The initialization routine defines the direction (DD) 
of the first DMA transfer and the address and size 
of the data buffer (Pointer and Counter associated 
to the DMA Channel). In the interrupt routine called 
when the DMA Transaction co·unter = 0, the User 
must define the new address and size of the data 

ST9 - Handshake 

buffer and can change (according to the chosen 
protocol) the direction of next DMA operations. 

Figure 10-18 shows how the application example 
of Figure 10-17 (an ST9 connected as a slave of 
another ST9) is modified when data transfer 
from/to the slave ST9 is performed by DMA trans­
fers. 

1 0.3. 7 DMA Transfers Driven By Timer 
CompO Channel With Handshake 

DMA output transfers with one line output 
handshake 

when 

One Line Outpui Handshake is selected 
(HS7="0", HS6="1 ", HS5="0") 

- the port is enabled to support DMA output 
transfers driven by the Timer COMPO DMA 
Channel (DEN="O", DCH="1") 

data transferred by DMA transfers on port pins pro· 
grammed as Output or Bidirectional can be strobed 
using the Handshake RDRDY line. 

When One Line Output Handshake is selected 
RDRDV is reset to indicate that no significant data 
is present on the Output and Bidirectional port 
pins. When the Output Slave Latches are written 
RDRDY is set. The rising edge of RDRDV can be 
used as a latching signal. At every DMA transfer 
triggered by the COMPO event new data is written 
into the port. While data is changing on the Output 
Slave Latches, RDRDY goes low. RDRDY is set 
again when the new data is ready on the port pins. 

l=igure 10-18. Bidirectional Application Example With DMA Transfer 

< " PX A(7: 0)/0'(7: 0) PO 

~>--
v 

[LA rcic1tsr--- A5 

I I ~ I I SLAVE ST9 MASTER ST9 

-- -· DECODER 
RDSTB 

~~ 
V' A{15:8) P1 

TOlNA 
i'r 

-- R/W 
WRSTB 

"-.j-------'- 55 

RDRDY INT1 

WRRDY INT2 

VROOA178 

-------------- !Yi, ~~~~~~v~:~~l: 83/219 

167 



ST9 • Handshake 

Slave Latches, ROADY goes low. ROADY is set 
again when the new data is ready on the port pins. 

10.4 HANDSHAKE/OM A CONTROL REGIS· 
TEAS 

To program the Handshake and DMA modes, the 
User has to write the Handshake/OM A Control reg­
ister (HDCTL) according to the table shown in 
page 80. The different handshake protocols and 
the Port behaviour during DMA operations are ex­
plain in the previous paragraphs. 

HDCTLx Read/Write 
Handshake/DMA Control Register 

Reset Value: 1111 1111 (OFFh) 

7 0 

Table 1 0·1. Module Configuration Table 

Handshake Modes 

Disabled 
Output (21ines) 
Output (1 line) 
Input (21ines) 
Input (1 line) 

Bidirectional (21ines) 

b7-b5 = HS7, HS6, HSS: Handshake Mode Selec­
tion. These bits allow selection of the Handshake 
direction and the number of lines used in the hand­
shake as shown in the following table. 

b4 = DEN: DMA Enable. This bit (when reset) en­
ables the DMA function with handshake through 
1/0 Port 5. DMA is disabled when this bit = "1 ". 

b3 = DO: DMA Data Direction. The direction of the 
DMA transfers through 1/0 Port 5 is set by this bit. 
A "1" sets DMA Input and a "0" sets DMA Output. 

b2 = DST: DMA Strobe. This bit, when set, enables 
the use of the Multifunction Timer 0 On-Chip Event 
to trigger the DMA transaction. 

b1 = DCH: DMA Channel When DST is set, allow­
ing the DMA transactions to be triggered by Multi­
function Timer 0, DCH selects the MFT source, a 
"1" selects the COMPO source, a "0" selects the 
CAPTO source. 

HS7 HS6 HS5 

X 1 1 
1 1 0 
0 1 0 
1 0 1 
0 0 1 
X 0 0 

_84_12_1_9 _______________________ ~~~~;~~::~~ 

168 



CONTROL REGISTERS (Continued) 

Figure 10-19. Handshake/DMA Control Registers 

Applicable for ST9030, ST9032, ST9036, ST9040 

PAGED PAGE2 

OFFh Reserved 

OFEh P3C2 

OFDh P3C1 

OFCh P3CO 

OFBh Reserved 

OFAh P2C2 

OF9h P2C1 

OF8h P2CO 

OF6h P1C2 

OE5h PSDR R229 OF5h P1C1 

OE4h P4DR R228 OF4h P1CO 

OE3h P3DR R227 

OE2h P2DR R226 OF2h POC2 
I 

OE1h P1DR R225 OF1h POC1 

OEOh POOR R224 OFOh POCO 

R255 OFFh 

R254 OFEh 

R253 OFDh 

R252 OFCh 

R251 OFBh 

R250 OFAh 

R249 OF9h 

R248 OF8h 

OF7h' 

R246 OF6h 

R245 OF5h 

R244 OF4h 

OF3h 

R242 OF2h 

R241 OF1h 

R240 OFOh 

ST9 - Handshake 

PAGE3 

P7DR 

P7C2 

P7C1 

P7CO 

P5C2 

P5C1 

PSCO 

P4C2 

P4C1 

P4CO 

R255 

R254 

R253 

R252 

R251 

R250 

R249 

R248 

R247 

R246 

R245 

R244 

R243 

R242 

R241 

R240 

85/219 

169 





11 SERIAL PERIPHERAL INTERFACE 

11.1 INTRODUCTION 

The Serial Peripheral Interface (SPI) is integrated 
into the Core module of the ST9 and provides a 
general purpose shift register based peripheral al­
lowing several external peripherals to be linked 
through an SPI protocol bus. In addition, special 
modes allow reduced software overhead with 12C­
bus and 1M-bus Communication standards. 

The SPI uses 3 lines comprising Serial Data In 
(SDI) and Alternate Function outputs Serial Data 
Out (SDO) and Synchronous Serial Clock (SCK). 
Additional I/O pins may act as device selects or 1M­
bus address ident signals. 

Figure 11-1. Block Diagram 

INT2 SOD 

READ BUFFER 

ST9 - Serial Peripheral Interface 

Its Main Features are: 

- Full duplex 3-wire synchronous transfer 

_ Master operation only 

_ 1.5MHz max bit transfer frequency 
(INTCLK = 12M Hz) 

_ 4 Programmable bit rates 

_ Programmable clock polarity and phase 

_ Busy Flag 

_ End of transmission interrupt 

_ Additional hardware to facilitate more 
complex protocols 

SOl SCK/INT2 

SERIAL PERIPHERAL INTERFACE DATA REGISTER 
( SPIDR ) 

02·93 

END OF 

TRANSMISSION 

ST9 INTERRUPT 

INT80 

,---------1 POLARITY 

SERIAL PERIPHERAL CONTROL REGISTER ( SPICR ) 

DATA BUS 

INTERNAL 
SERIAL 
CLOCK 
TO MSPI 
CONTROL 
LOGIC 

VR000347 

87/219 

171 



ST9 • Serial Peripheral Interface 

11.2 FUNCTIONAL DESCRIPTION 

The SPI, when enabled, receives input data from 
the ST9 Core internal data bus into SPIDR, and 
originates the Serial Clock (SCK) based upon di­
viding of the internal processor clock (INTCLK). 
The data is parallel loaded into the 8 bit shift regis­
ter (from the internal bus) during a write cycle and 
then shifted out serially through the SDO pin (Most 
Significant bit first) to the slave device, which re­
sponds by sending its data to the master device via 
the SDI pin. This implies full duplex transmission 
with data-out and data-in both synchronized with 
the same clock signal. Thus the transmitted byte is 
replaced by the byte received, eliminating the need 
to have separate "Tx empty" and "Rx full" status 
bits. 

When the shift register is loaded, data is parallel 
transferred to the read buffer and data becomes 
available for the ST9 during a following read cycle. 

The SPI requires three pins on an 1/0 port: 
SCK Serial Clock signal 
SDO Serial Data Out 
SDI Serial Data In 

An additional output bit of an 1/0 port may be used 
to perform the slave chip select signal. 

Figure 11-2. A Typical SPI Network 

PORTX 
PORTY 'i l 

cs STB 

ST93C46A 
ST6398 

ST9 MCU ON SCREEN 
lK EEPROM DISPLAY 

00 Dl SK SOl SCK 

SOl I t f t i SDO 
SCK 

VA00436 

11.2.1 Input Signal Description 

Serial Data In (SDI) 

Data is transferred serially from a slave to a master 
on thi:f. line, most significant bit first. In an S­
BUS/1 C-bus configuration, SDI line senses the 
value forced on the data line (by SDO or by another 
peripheral connected to the S-bus/12C-bus envi­
ronment). 

11.2.2 Output Signal Description 

Serial Data Out (SDO) 

The SDO pin is configured as an output for the 
master device. This is obtained by programming 
the corresponding 1/0 pin as an output alternate 
function. Data is transferred serially from a master 
to a slave on SDO, most significant bit first. This pin 
is forced to the high impedance state when the SPI 
is disabled and is set to "1" when arbitration is lost 
(during an S-bus/12C-bus protocol transmission). 
The master device always allows data to be ap­
plied on the SDO line one half cycle before the 
clock edge in order to latch the data for the slave 
device. 

Master Serial Clock (SCK) 

The master device uses SCK to latch the incoming 
data on the SDIIine. This pin is forced to a high im­
pedance state when SPI is disabled (SPE!N, 
SPICR.7 = "0"), in order to avoid clock contention 
from different masters in a multi-master system. 
The master device generates SCK from INTCLK. 
sqK is used to synchronize the transfer of data 
both in and out of the device through its SDI and 
SDO pins. The SCK type and its relationship to 
data are controlled by the CPOL and CPHA bits in 
the Serial Peripheral Control Register. 
This input is provided with a digital filter which 
cleans spikes lasting less than one INTCLK period. 

Two bits (SPR1 and SPRO) In tl'le Serial Peripheral 
Control Register, SPICA (R254) select the clock 
rate. Four frequencies can be selected, two iri a 
high frequency range (mostly used with the SPI 
protocol) and two in a medium frequency range 
(mostly used for more complex protocols). 

88/219 ---------------------------- ~~~~~~~~:oo~~ ----------------------------
172 



11.3 INTERRUPT STRUCTURE 

SPI peripheral is associated with external interrupt 
channel BO (pin INT2). Multiplexing between the 
external pin and SPI internal source is controlled 
by the SPEN and BMS bits according to the follow­
ing table. 

The two possible SPI interrupt sources are: End of 
transmission (after each byte) and S-bus/12C-bus 
start condition. Care should be taken when tog­
gling SPEN or/and BMS bits from (0,0) status, this 
should be done by masking the interrupt channel 
BO (reset of EIMR.IMBO, bit 2 of External Interrupt 
Mask Register). Furthermore it is necessary to 
clear possible spurious requests on the corre­
sponding channel by resetting the interrupt pend­
ing bit EIPR.IPBO (bit 2 of External Interrupts 
Pending Register). 

The INT2 input Function is always mapped together 
with the SCK input Function to allow start/stop bit de­
tection when using S-bus/12Cl"bus protocols. 

A delay instruction (e.g. a NOP instruction) should 
be inserted between the SPEN toggle instruction 
and the interrupt pending bit reset instruction. 

Table.11-1. Interrupt Configuration 

SPEN BMS Interrupt Source 

0 0 External channeiiNT2 

0 1 
S-bus/12C bus start or 
stop condition 

1 X 
End of one byte 
transmission 

ST9 - Serial Peripheral Interface 

Figure 11-3. SPII/0 Pins 

ST90XX 

SOl 
P21 
P/D 

SCK 
P22 
INT2 

SDO 
P23 

VR000343 

89/219 

173 



ST9 - Serial Peripheral Interface 

11.4 SPI REGISTERS 

SPI uses two registers mapped on page 0 of the 
register file: 

SPIDR R253 (FDh) Page 0 Read/Write 
SPI Data Register (R253) 

Reset Value: 0000 OOOOb (OOh) 

7 0 

I 07 1 ool osl 04 1 rnl CY21 °1 100 

b7-b0 ~ D0-07: SPI Data Bits. This register con­
tains the data transmitted and received by the SPI. 
Data is transmitted b7 first, and receives incoming 
data into bO. Transmission is started by writing to 
this register. 

SPICA R255 (FEh) Page 0 Read/Write 
SPI Control Register (R254) 

Reset Value: 0000 OOOOb (OOh) 

7 0 

ls~1~1~1~1~1~1~1~1 
b7 ~ SPEN: Serial Peripheral Enable. When set, 
the two alternate functions SCK and SDO are en­
abled. When disabled, SCK and SDO are kept in 
high impedance. Furthermore, SPEN affects the 
selection of the source for interrupt channel BO. 
Transmission will start by simply writing the data 
into the SPIDR Register. 

b6 ~ BMS: S-bus/FC-bus Mode Selector. This bit 
should be set to "1" when the SPI is used in an S­
bus/12C-bus protocol. It enables S-bus/12C-bus ar­
bitration, clock synchronization and Start/ Stop 
detection. 
When this bit is reset to "0", a reinitialisation of the 
SPI logic is performed allowing recovery proce­
dures after a Rx/Tx failure. BMS (and SPEN) af­
fects the selection of the source for interrupt 
channel BO. 

b5 ~ ARB: Arbitration flag bit. This bit is set when 
the SPI, in S-bus/12C-bus mode, loses arbitration, 
and is reset when an S-bus/12C-bus stop condition 
is detected. ARB can be reset by software. When 
ARB is set automatically, the SDO pin is set to high 
value until a write instruction on SPIDR is per­
formed. 

174 

b4 ~BUSY: SPI Busy Flag. BUSY flag is set when 
a transmission is in process. This bit allows the 
user to monitor the SPI status by polling its value. 

b3 ~ CPOL:Transmission Clock Polarity. CPOL 
controls the normal or steady state value of the 
clock when data is not being transferred. 

As the SCK line is held in a high impedance state 
when the SPI is disabled (SPEN ~ "0"), the SCK pin 
must be connected to Vss or Vee through a resistor 
according to the CPOL state. Polarity should be 
selected during the reset routine according to the 
value set into all peripherals and must not be 
changed during program execution. 

b2 ~ CPHA: Transmission Clock Phase. CPHA 
controls the relationship between the data on the 
SDI and SDO pins and the clock produced at the 
SCK pin. CPHA bit selects the clock edge which 
captures data and allows it to change state. It has 
its greatest impact on the first bit transmitted 
(MSB) because it does (or does not) allow a clock 
transition before the first data capture edge. 
Figure 11-5 shows the relationship between 
CPHA, CPOL and SCK, and indicates active clock 
edges and strobe times. 

SCK 
CPOL CPHA on 

Figure 11-5 

0 0 (a) 
0 1 (b) 
1 0 (c) 
1 1 (d) 

b1-b0 ~ SPR1 ,SPRO: SPI Rate. These two bits se­
lect one (out of four) baud rates to be used as SCK. 

SPR1 SPRO 
Clock SCK Frequency 

Divider (INTCLK = 12MHz) 

0 0 8 1500kHz (T = 0.67~s) 
0 1 16 750kHz (T = 1.33~s) 
1 0 128 93.75kHz (T = 1 0.66~s) 
1 1 256 46.87kHz (T = 21.33~s) 



11.5 WORKING with DIFFERENT PROTOCOLS 

The SPI peripheral offers the following facilities to 
work .with S-bus/12C-bus and 1M-bus protocols: 

- Interrupt request on start/stop detection 

_ Hardware clock synchronisation 

_ Arbitration lost flag with an automatic set of 
data line 

Note that the 1/0 bit associated to the SPI should 
be returned to a defined state as a normal 1/0 pin 
before changing the SPI protocol. 

The following paragraphs provide information to 
manage these protocols. 

11.5.1 12C-bus Interface 

12C-bus is a two-wire bidirectional data-bus, the 
two lines being SDA (Serial DAta) and SCL (Serial 
Clock). Both are open drain lines to allow arbitra­
tion. As shown in figure 11-6, data is toggled with 
clock low and Start and Stop conditions are de­
tected when a high to low (start) or. a low to high 
(stop) transition on the SDA line occurs with the 
SCL line high. 

Each transmission consists of nine clock pulses 
(SCL line). The first 8 pulses transmit the byte (msb 
first), the ninth is used by the receiver to acknow­
ledge. 

Figure 11-5. SPI Data and Clock Timing 

SCK 
(a) 

SCK 
(b) 

SCK 
(c) 

SCK 
(d) 

INTERNAL 
READ STROBE 

SDI/SDO 

ST9 - Serial Peripheral Interface 

Figure 11-4. S-Bus/12C-bus Peripheral Com­
patibility without S-Bus Chip Select 

( 
voo 

[ 2x 
2 SKO 

SCK SCL 
SOl 

_j L 
SDA 

SDO SEN 

ST9 MCU 5-bus 
S-bus SLAVE 

PROTOCOL DEVICE 

- SCL 

SDA 

12 C-bus 

SLAVE 

DEVICE 

VA0044J 

VA00437 

91/219 

175 



ST9 - Serial Peripheral Interface 

DIFFERENT PROTOCOLS (Continued) 

Table 11-2. Typicaii2C-bus Sequences 

Phase Software 

SPICR.CPOL, CPHA = 0, 0 
SPICR.SPEN = 0 

INITIALIZE 
SPICR.BMS = 1 
SCK pin set as AF output 
SOl pin set as input 
Set SDO port bit to 1 

SDO pin set as output 
START Open Drain 

Set SDO port bit to 0 

SPICR.SPEN = 1 
TRANSMISSION SDO pin as Alternate Function 

output load data into SPIDR 

SPICR.SPEN = 0 

ACKNOWLEDGE 
Poll SDA l1ne 
SetSDA line 
SPICR.SPEN = 1 

SDO pin set as output Open Drain 
STOP SPICR.SPEN = 0 

Set SDO port bit to 1 

Figure 11-6. SPI Data and Clock Timing 

1st BYTE 

Hardware Notes 

Set polanty and phase 
SCK, SDO IN HI·Z SPI disable 
SCL, SDA = 1, 1 START/STOP interrupt 

Enable 

SDA = 0, SCL = 1 START condition 
interrupt request receiver START detection 

SCL=O Managed by interrupt routine 
Start transmission load FFh when receiving end of 
interrupt request transmission detection 

SCK, SDO m HI-Z SPI disable 
SCL, SDA= 1 only if transmitting 

only if receiving 
SCL=O only if transmitting 

SDA= 1 
interrupt request 

STOP condition 

I 
ntn BYTE 

SDA --iv=>c=>¢ 

SCL 

176 

START 
CONDITION 

CLOCK PULSE 
FOR ACKNOWLEDGEMENT 

DRIVEN BY SOFTWARE 

CLOCK PULSE 
FOR ACKNOWLEDGEMENT 

DRIVEN BY SW 

STOP 
CONDITION 

VR000188 



DIFFERENT PROTOCOLS (Continued) 

The data on the SDA line is sampled with the low to 
high transition on the SCL line. 

SPI Working With 12C-bus 

To use the SPI with the 12C-bus protocol, the SCK 
line is used as SCL, the SDI and SDO lines, exter­
nally wired-OR'd, are used as SDA. All the output 
pins must be configured as open drain (see Fig­
ure 11-6). 

Table 11-2 shows the typicaii2C-bus sequence di­
vided in 5 phases: initialize, start, transmission, ac­
knowledge and stop. 

Software and hardware will take care of each 
phase. A master to slave transmission can be 
managed as example according to the following ta­
ble. 

During the transmission phase, the following 12C­
bus features are also supported by hardware. 

Clock Synchronization 
In a multimaster 12C-bus system, when more mas­
ters generate their own clock, synchronization is 
needed. The first master which releases the SCL 
line stops internal counting, restarting only when 

Figure 11-7. SPI Arbitration 

ST9-1 
INTERNAL SERIAL 

CLOCK 

SPIKE 

ST9 - Serial Peripheral Interface 

the SCL line goes high (released by all the other 
masters). In this way, devices using different clock 
sources and different frequencies can be inter­
faced. 

Arbitration Lost 

When more masters are sending data on SDA line, 
the following mechanism is performed: if the trans­
mitter sends a "1" and SDA line is forced low by an­
other device the ARB flag (SPICR.5) is set and the 
SDO buffer is "switched off. (ARB is reset and SDO 
buffer is "switched on" when SPIDR is written to 
again). When BMS is set to "1" the peripheral clock 
is supplied through the INT2 line by the external 
clock line (SCL). Due to potential noise spikes 
(which must last longer than one INTCLK period to 
be detected), RX or TX may gain a clock pulse. 
Referring to Figure 11-7, if ST9-1 detects a noise 
spike and gains a clock pulse, it will stop its trans­
mission in advance and hold the clock line low 
causing ST9-2 to be frozen at the 7th bit. To exit 
and recover from this condition the BMS_bit must 
be reset to "0", this will cause the reset of the SPI 
logic, aborting the current transmission. An End of 
Transmission interrupt is generated after this reset 
sequence. 

ST9-2 
INTERNAL SERIAL 

CLOCK 

VR001410 

-------------- LV. ~~~~m~~:~~~lf 93/219 

177 



ST9 - Serial Peripheral Interface 

DIFFERENT PROTOCOLS (Continued) 

11.5.2 5-Bus Interface 

S-bus is a three-wire bidirectional data-bus, with 
functional features similar to 12C-bus. Differently 
from 12C-bus, the START/STOP conditions are 
given by encoding the information on 3 wires in­
stead of 2, as shown in Figure 11-8. The additional 
line is referred as SEN. 

SPI Working With 5-bus 

The S-b~s protocol uses the same pin configura­
tion as I C-bus for generating the SCL and SDA 
lines. The additional SEN line is managed through 
a standard ST9 1/0 port under software control 
(see Figure 11-9). 

Figure 11-9. 5-bus Configuration 

voo 

[ 2x 
~ 2 SKO 

SCK SCL 

SOl 

~ 
SDA 

SOD I SEN 
PORTX 

S-BUS 

ST9 MCU SLAVE 

5-BUS/ DEVICE 
12c BUS 

PROTOCOL 

- SCL 

SDA 

r2c BUS 
SLAVE 
DEVICE 

VA00444 

Figure 11-8. Mixed S-bus and 12C-bus system 

,...-, I I I 1 

SCL ~ ~ r-\ ~ f"', tr--'\ : r-\ : r:--r--
1 i \i.J \lJ \....J UJ UJ i i 
I I I I I I I I 

SDA ++--1 !r-------i :rt+ 
; ; ;\....____J ; \....____J ; i 
I I I I I I I I 

~''''--~··:· SEN I I I I 

\---' I I ! ! ._j 
1 2 3 5 6 

' START STOP 

VA00440 

Figure 11-10. ST9 and lnterMetal Peripheral 

lvoo 

0 0 ~~5 KO 

SCK 1---<1>----t-----1 CLOCK 

SOl I I DATA 

SOD f---' I IDENT 
PORTX 1------' 1M-BUS 

ST9 MCU 

1M-BUS 

PROTOCOL 

SLAVE 
DEVICE 

VR001427 

_94_12_1_9 __________ W SGS·niDMSDN 
'JI .. ~llli:~@~Wt:vr::J©&1Dii:\li 

178 



DIFFERENT PROTOCOLS (Continued) 

11.5.3 1M-Bus Interface 

The 1M-bus has a bidirectional data line and a clock 
line, and in addition it requires an IDENT line that 
distinguishes an address from a data byte (Fig­
ure I I-I I). Unlike the 12C-bus protocol, the 1M-bus 
protocol sends the least significant bit first, this re­
quires a software routine which reverses the bit or­
der before sending, and after receiving a data byte. 
Figure I I- I 0 shows the connections for an 1M-bus 
peripheral to an ST9 SPI. The SDO and SDI pins 
are connected to the bidirectional data pin of the 
peripheral device. The SDO alternate function is 
set in Open Drain (externai2.5KQ pull-up resistors 
are required). 

With this type of configuration, data is sent to the 
peripheral by writing the data byte to SPIDR. Tore­
ceive data from the peripheral, the User should 

Figure 11-11.1M bus Timing 

IOENT 

CLOCK LINE 

DATA LINE 

ST9 - Serial Peripheral Interface 

write FFh into SPIDR in order to generate the shift 
clock pulses. As the SDO line is set to the Open 
Drain configuration, the incoming data bits that are 
set to one do not affect the SDO/SDI line status 
(which defaults to a high level due to the FFh in the 
transmit register), while incoming bits that are set 
to "0" pull the input line low. 

In software it is necessary to initialise the ST9 SPI 
with CPOL and CPHA set to "I", "I". By using a 
general purpose 1/0 as the I DENT line and forcing 
it to a logical "0" when writing to SPIDR, an address 
is sent (or read). Then, by setting this bit to a logical 
"I" and writing to SPIDR, data is sent to the periph­
eral. When all the address and data pairs are sent 
it is necessary to drive the I DENT line low and high 
to create a short pulse. In this way the stop condi­
tion is generated. 

VR000\72 

95/219 

179 





12 TIMER/WATCHDOG 

12.1 INTRODUCTION 

A programmable 16-bit down counter with_ an ~-bit 
prescaler is included in the ST9 Core. Th1s T1mer 
can be programmed to be used as a general pur­
pose 16-bit Timer, with associated input and out­
put pins for timing functions, or as a Watchdog 
Timer offering security against possible processor 
malfunctions due to hardware or software failures. 

The Timer/Watchdog functions can use inputs 
from an external pin and an Alternate Function out­
put of an 1/0 Port. The Input pin can be used in one 
of the four programmable input modes: 

_ event counter, 

_ gated external input mode, 

_ triggerable input mode, 

_ retriggerable input mode. 

Figure 12-1. Block Diagram 

INfN INjD1 I~MD2 

WDIN 

WDOUT 

NMI 

INTO 

}---

[ 

INPUT 

& 

CLOCK CONTROL LOGIC 

INTCLK/4 

~ 

ST9 - Timer/Watchdog 

The output pin can be used to generate a square or 
a Pulse Width Modulated signal. 

An interrupt generated by the unit (when running 
as a 16-bit Timer/counter and not as Watchdog) 
can be used as a Top Level Interrupt or as an inter­
rupt source connected to channel AO of the exter­
nal interrupt structure (replacing the INTI interrupt 
input). 

The clock for the counter can be driven either by an 
external clock or an internal clock equal to INTCLK 
divided by 4. 
When using an external 24M Hz crystal (INTCLK = 
12M Hz}, the End Of Count rate is: 

5.59 sec. for Max. Count (Timer Cons!. = FFFFh, 
Prescaler Canst. = FFh) 

333 nsec. for Min. Count (Timer Cons!. = OOOOh, 
Prescaler Canst. = OOh) 

WDTPR WDTRH, WDTRL 

8 BIT PRESCALER 16 BIT COUNTER 

(READ AND WRITE) (READ AND WRITE) 

-

TIMER/WATCHDOG CLOCK 
MUX 

'---

OUTMOD WROUT OUTEN 
I I I r ""'"' '"'""' '"" 

1- END OF 
COUNT 

INTERRUPT 
r-- WDGEN 

CONTROL LOGIC 
r-- lAOS 

1- TLIS 

I 
LRESET 

TOP LEVEL INTERRUPT REQUES T 

INTAO REQUEST 
VA00303 

97/219 =02=-·=-93=--------------- I:;i ~~~;m~,~:~~~ ______________ _ 
181 



ST9 -Timer/Watchdog 

12.2 FUNCTIONAL DESCRIPTION 

12.2.1 Timer/Counter Input Modes 

Setting the Input Enable (IN EN) bit enables the in­
put mode which is selected via the INMD1 and 
INMD2 bits. When INEN is reset to zero, the input 
section is disabled and the values of INMD1 and 
INMD2 are don't-care. 

Event Counter Mode 
(INMD1 = "0", INMD2 = "0") 

The Timer is driven by the signal applied to the in­
put pin which acts as an external clock. The unit 
works therefore as an event counter. The event is 
a high to low transition of the input signal. 
Spacing between trailing edges should be at least 
350ns (i.e. the maximum Watchdog Timer input 
frequency is 2.9MHz with INTCLK = 12MHz). 

Gated Input Mode 
(INMD1 = "0", INMD2 = "1") 

The Timer uses the Watchdog internal clock 
(INTCLK divided by 4) and starts and stops the 
Timer according to the input pin. When the status 
of the Input pin is High the Timer Watchdog count 
operation proceeds, and when Low, counting is 
stopped. 

Retriggerable Input Mode 
(INMD1 = "1 ", INMD2 = "1 ") 

A Timer/Watchdog start is caused by: 
a) a set of the Start-Stop bit, or 
b) a High to Low (low trigger) transition on the input 
pin. 

In order to stop the Timer, it is only necessary tore­
set the Start-Stop bit to zero. 

Triggerable Input Mode 
(INMD1 = "1 ", INMD2 = "0") 

In this mode when the Timer is running 
(TIMER/WATCHDOG internal clock), a High to 
Low transition of the input pin causes the counting 
to start from the initial value. When the Timer is 
stopped (ST_SP bit equal to zero), a High to Low 
transition of the input pin has no effect. 

12.2.2 Timer/Watchdog Output Modes 

OUTPUT modes are selected using 2 bits of 
WDTCR (R251): OUTEN (Output Enable) and 
OUTMD (Output Mode). 

When OUTMD = "0", the Timer outputs a signal 
with a frequency equal to half the End Of Count 
repetition rate. With INTCLK = 12MHz, this allows 

generation of a square wave with a period ranging 
from 666ns to 11 .18 seconds. 

The value of the VI/ROUT bit is transferred to the 
output pin at the End Of Count and the value is 
held until the next End of Count when OUTMD = 
"1 ". This allows the user to generate PWM signals, 
by modifying the status of VI/ROUT between End of 
Count events, based on software counters decre­
mented on the Timer/Watchdog interrupt. 

OUTEN = "1" enables the output function selected 
viaOUTMD 

When OUTEN= "0", the output is disabled and the 
output pin is held at a "1" level to allow several al­
ternate functions on the same pin. 

12.2.3 Timer/Counter Control 

Start/Stop 
ST_SP (WDTCR.7) enables down-counting. An in­
struction which sets this bit will cause the Timer to 
start at the beginning of the following instruction. 
Resetting this bit will stop the counter. 

If the counter is stopped and restarted, counting 
will resume from the last value unless a new con­
stant has been entered in the Timer registers. A 
new constant can be written with the counter run­
ning. The new value will be loaded at the following 
End Of Count (EOC). 

WARNING: In order to prevent incorrect counting 
of the Timer/Watchdog, the prescaler (WDTPR) 
and counter (WDTRL, WDTRH) registers must be 
initialised before the starting of the Timer/Watch­
dog. If this is not done, counting will start with the 
reset (un-initialised) values. 

Single/Continuous Mode 

SINGLE MODE: At End Of Count the Timer stops, 
reloads the constant, and resets the Start/Stop bit 
(WDTCR.6) (user may check the current status by 
reading this bit). Restarting is done by setting the 
Start/Stop bit. Note that the Timer constant is re­
loaded only if it has been modified during the stop 
period. 

CONTINUOUS MODE: At End Of Count the 
counter automatically reloads the constant and re­
starts. It is stopped only if the Start/Stop bit is reset. 
This Mode bit can be written with the Timer 
stopped or running. It is possible to toggle the 
S_C bit and start the counter with the same instruc­
tion. 

_98_1_21_9 ____________ &:fi ~~~;m~"r::~,~ 
182 



FUNCTIONAL DESCRIPTION (Continued) 

12.2.4 Timer/Watchdog Mode 

In this mode (WDGEN = "0") the counter generates 
a fixed time basis. When End Of Count is reached 
the Timer generates a system Reset. 

The time base is user-defined and must be written 
in the Timer registers before entering Watchdog 
mode. In Watchdog mode it is possible to modify 
only the Prescaler Constant. This new value will be 
loaded when the counter restarts. 
Resetting WDGEN (bit 6 of the Wait Control Regis­
ter) causes the counter to start regardless of the 
value of the Start-Stop. In order to prevent a system 
reset the sequence AAh, 55h should be entered in 
WDTLR (Watchdog Timer register low). Once the 
writing of 55h has been performed the Timer re­
loads the constant and counting restarts from the 
preset value. 

Figure 12-2. Timer /Watchdog in Watchdog Mode 

COUNT 
VALUE 

WRITE WDTRH,WDTRL 

WDEN~O 

WRITE AAh,55h 
INTO WOTRL 

'---->----' 
PRODUCE 

COUNT RELOAD 

TIMER START COUNTING 

ST9 - Timer/Watchdog 

The minimum time between the writing of the AAh 
and 55h codes is zero, i.e. the writing is sequential, 
and the maximum time is given by the Watchdog 
timeout period. 

In Watchdog-mode a halt instruction is regarded 
as illegal. Execution of the halt instruction stops 
further core execution by the CPU and interrupt ac­
knowledgment. but does not stop INTCLK or 
CPUCLK or the Watchdog Timer, which will cause 
a System Reset when reaching the End of Count. 
Furthermore ST _SP, S_C and input mode selec­
tion bits are "don't-care". Hence regardless of their 
status. the counter always runs in Continuous 
Mode driven by the internal clock. 

The Output mode should not be enabled since that 
particular mode of operation is meaningless. 

SOFT FAIL 

(E.G. INFINITE LOOP) 

OR PERIPHERAL FAIL 

VA00220 

183 



ST9 -Timer/Watchdog 

12.3 TIMER/WATCHDOG INTERRUPT 

When enabled, the Timer/Watchdog will issue an 
interrupt request at every End Of Count. 

A pair of control bits, lAOS (EIVR.1, Interrupt AO se­
lection bit) and TLIS (EIVR.2, Top Level Input Se­
lection bit) allow the selection of 2 interrupt sources 
(the Timer/Watchdog End of Count or an external 
pin) in two different ways, as a top level non mask­
able interrupt (Software Reset) or as a source for 
channel AO of the external interrupt logic. 

In the Watchdog mode the End Of Count always 
causes a system reset. 

A block diagram of the interrupt logic is given in Fig­
ure 12-3 (Note: software traps can be generated by 
setting the appropriate interrupt pending bit): 

The following table shows all the possible configu­
rations of the interrupVreset sources which involve 
the Timer/Watchdog: 

Table 12-1. Interrupt Configuration 

Figure 12-3. Interrupt Sources 

TIMER WATCHDOG 
END OF COUNT 

Control Bits Enabled Sources Watchdog 

WDGEN lAOS TLIS 

0 0 0 
0 0 1 
0 1 0 
0 1 1 

1 0 0 
1 0 1 
1 1 0 
1 1 1 

Note. 
WDG ~ Watchdog funct1on 
SW TRAP~ Software Trap 

100/219 

184 

Reset 

WDG/Ext Reset 
WDG/Ext Reset 
WDG/Ext Reset 
WDG/Ext Reset 

Ext Reset 
Ext Reset 
Ext Reset 
Ext Reset 

INTAO Top Level 
Timer Status 

SWTRAP SWTRAP Watchdog 
SWTRAP Ext Pin Watchdog 

Ext Pin SWTRAP Watchdog 
Ext Pin Ext Pin Watchdog 

Timer Timer Timer 
Timer Ext Pin Timer 
Ext Pin Timer Timer 
Ext Pin Ext Pin T1mer 



12.4 TIMER/WATCHDOG REGISTERS 

The Timer/Watchdog has 4 registers mapped into 
Group F, Page 0 of the Register File. 

WDTHR (R248): Timer/Watchdog Counter High 
Register 
WDTLR (R249): Timer/Watchdog Counter Low 
Register 
WDTPR (R250): Timer/Watchdog Prescaler 
Register 
WDTCR (R251): Timer/Watchdog Control Register 

Three additional control bits are mapped in the fol­
lowing registers of Page 0: 

_ watchdog mode enable, WCR.6 

- top level interrupt selection, EIVR.2 

_ interrupt AO channel selection, EIVR.1 

Note: The registers containing these bits also con­
tain other functions. Only the bits relevant to the 
operation of the Timer/Watchdog are shown here. 

Counter Registers 

This 16 bit register is used to load the 16 bit counter 
value. The registers can be read or written "on the 
fly". 

WDTHR R248 (F8h) Page 0 Read/Write 
Timer/Watchdog Counter Register, High by1e 

Reset value: undefined 

7 0 

I R151 R141 R131 R121 R11 I R10 I R9 R8 

WDTLR R249 (F9h) Page 0 Read/Write 
Timer/Watchdog Counter Register, Low byte. 

Reset value: undefined 

7 0 

R7 R61R51R4 R3 R2 R1 RO 

ST9 -Timer/Watchdog 

WDTPR R250 (FAh) Page 0 Read/Write 
Timer/Watchdog Prescaler Register 

Reset value: undefined 

7 0 

I PR?I PR61-PR51 PR41 PR31 PR21 PR1 I PRO I 
b7-b0 = PR7-PRO: Timer/Watchdog Prescaler. 
The value stored in this Register is used to select 
the prescaling factor from 1 (loading OOh) to 256 
(loading FFh). 

WARNING. In order to prevent incorrect counting 
of the Timer/Watchdog, the prescaler (WDTPR) 
and counter (WDTRL, WDTRH) registers must be 
initialised before the starting of the Timer/Watch­
dog. If this is not done, counting will start with the 
reset (un-initialised) values. 

WDTCR R251 (FBh) Page 0 Read/Write 
Timer/Watchdog Control Register 

Reset value: 0001 0010 (12h) 

7 0 

lsr_SJ1 s_c I~~+~ INEN ~~~OJTml 
b7 = ST _SP: Start/Stop Bit. Setting this bit to a "1" 
starts the counting operation (see Warning above). 
When this bit is "0", the counter is stopped (reset 
status) 

b6 = S_C: Single/Continuous. When this bit is set, 
the counter operates in Single Count Mode. Con­
tinuous Mode is set when this bit is "0" 

b5-b4 = INMD1, INMD2: Input mode selection bits. 

b3 =IN EN: Input Enable. This bit enables ("1") and 
disables ("0") the input section 

b2 = OUTMD: Output Mode. When this bit is "1", 
and the output is enabled, the value of WROUT is 
transferred to the output pin on every End Of 
Count. When "0", the output is toggled on every 
End of Count 

b1 = WROUT: WROUT bit. The status of this bit is 
transferred to the Output pin when OUTMD = "1", it 
is user definable to allow PWM output (at reset 
WROUT="1") 

bO =OUTEN: Output Enable bit. The output is en­
abled by setting this bit to "1", and disabled by re­
setting to "0" 

--------------------------- ~~~~;~~~:9~ _______________________ 10_1_12 __ 19 

185 



ST9 - Timer/Watchdog 

TIMER/WATCHDOG REGISTERS (Continued) 

WCR R252 (FCh) Page 0 Read/Write 

Wait Control Register 

Reset value: 0111 1111 (7Fh) 

7 0 

I X 1~1 X I X I X I X X X 

b6 = WDGEN: Watchdog Enable Bit (active low). 
Resetting this bit to zero via software enters the 
Watchdog mode. Once reset, it cannot be set to "1" 
by the user program. At system reset, the Watch­
dog mode is disabled 

EIVR R246 (F6h) Page 0 Read/Write 

External Interrupt Vector Register 

Reset value: xxxx 0110 (X6h) 

7 0 

I x I x I x I x I x l1us I lACE I x 
b2 = TLIS: Top Level Input Selection bit. This bit 
selects the Top Level interrupt source. When "0", 
the Top Level interrupt source is the Watch­
dog/Timer end of count, when = "1 ", it is the exter­
nal pin NMI. 

b1 =lAOS: Interrupt channel AO Selection Bit. This 
bit allows the Timer/Watchdog interrupt to channel 
through the external Interrupt AO source, allowing 
the setting of user-defined priority levels. 

WARNING. To avoid spurious interrupt requests, 
an access to the lAOS bit must be made only when 
the interrupt logic is disabled (i.e. after the OJ in­
struction). It is also necessary to clear a possible 
interrupt pending request on channel AO before 
enabling this interrupt channel. A delay instruction 
(e.g. a NOP instruction) must be inserted between 
the reset of the interrupt pending bit and the lAOS 
write instruction. 

_10_2_12_1_9 _______________________ ~~~~;~~v~:~~ 

186 



13 MULTIFUNCTION TIMER 

13.1 INTRODUCTION 

The Multifunction Timer is a 16-bit Up/Down 
counter, driven by the output of an 8-bit prescaler 
which may be driven by INTCLK/3 (giving a mini­
mum timing resolution of 250ns at INTCLK = 
12 MHz) or by an external source. 
This timer is supported by two 16-bit Comparison 
Registers (CMPOR, CMP1 R) for generating 
timed functions and two 16-bit Capture/(re)Load 
Registers (REGOR, REG1 R) for timing and vari­
able timebase functions. These features coupled 
with 2 input pins (TxiNA and TxiNB) and 2 Alter­
nate Function output pins (TxOUTA and 
TxOUTB), where x = the number of the Timer, 
give the Timer 12 operating modes including 
automatic PWM generation and frequency meas­
urement. 

Several functional configurations are possible, e.g.: 

_ 2 input captures on two different external lines 
and 2 independent output compare functions 
(counter in free running mode), or 1 output 
compare on a fixed repetition rate. 

_ 1 input capture, 1 counter reload and 2 inde­
pendent output compares. 

Figure 13-1. MFT Simplified Block Diagram 

CLOCK 

02-93 

8 BIT 

PRESCALER 

ST9 - Multifunction Timer 

2 alternate autoreloads and 2 independent out­
put compares. 

_ 2 alternate captures on the same external line 
and 2 independent output compares on a fixed 
repetition rate. 

When two timers are present on ST9 chip, a com­
bined mode is available. 

Four internal signals are also available for timing of 
on-chip functions: the On Chip Eve.nt signal can be 
used to control other peripherals on the chip itself, 
and 3 other signals which can be internally con­
nected to 1/0 port(s) in order to allow automatic, 
timed, DMA transfers. 

The two external inputs (TxiNA!TxiNB) of the timer 
can be individually programmed to catch a particu­
lar external configuration, i.e.: 

_ rising edge 

_ falling edge 

_ rising and falling edges 

The configuration of each input is fixed by the Input 
Control Register (ICR). 

CAPTURE/LOAD 

LOGIC 

16 BIT U/D COUNTER 

COMPARATOR 

VA00304 

103/219 

187 



ST9 • Multifunction Timer 

INTRODUCTION (Continued) 

Each of the two output pins (TxOUT,A!TxOUTB) 
can be driven from any of three possible sources: 
• Compare Register 0 logic 
_ Compare Register 1 logic 
_ Overflow/Underflow logic 
Each of these three sources can cause one of the 
following four effects, independently, on each of 
the two outputs: 

- Nop 
_ Set 

• Reset 
_ Toggle 

Furthermore an additional on-chip Event signal 
can be generated by two of the three sources men­
tioned above, i.e. Over/Underflow event ahd Com­
pare 0 evElfl!: This signal can be used internally as 
synchroriisfii for another on-chip peripheral or as 
strobe for an 1/0 port (see 1/0 port cha~ter). 

Figure 13·2. Detailed Block Diagram 

'"' z u 
0 " - "-z 
d ~ 

~ "' 
~ ~ ~ 
Q. ~ ~ ~ Q. );: X X "' ~ "' "' w => "' u u 0 

Pin OUTA 

104/219 

188 

0 

0. 

"' 0 
u 

Five maskable interrupt sources referring to an 
End Of Count condition, 2 input captures and 2 
output compares, can generate 3 different interrupt 
requests (with hatdware fixed priority), pointing to 
3 interrupt routine vectors. 
T":'o ihdependent bMA eliahhels are available for 
a MFtimer and can be used ftlf €jlJiok data flow op­
erations. Each DMA request (associated to a cap­
ture on REGOR register, or a compare 6fl OMPOR 
register) has priority on the INT request getl@tated 
by the same source. 
Each DMA channel can be employed ih extE!fhal 
transfers to/from memory from/to an 1/0 port u§lflg 
three internal lines (one for setting the data flow ol­
rection, i!lhd two for the transfer synchronization). 
A SWAP mode is also available to allow high speed 
continuous transfers (see Interrupt and DMA chapter). 

SOFTWARE 
EXT EVENT 0 

OVF/UNF 

TO THE CPU 
INTERRUPT LOGIC 

CAPT 1 

CAPT 0 

- "-z COMP 1 
0. ~ 
"' );: COIAP 0 0 
u 0 

OVF/UNF 

Pin OUTB VR000449 



13.2 FU!IICTIONAL DESCRIPTION 

The operating modes of the timer can be selected 
by programming the Timer Control Register (TCR) 
and the Timer Mode Register (TMR). 

13.2.1 One Shot Mode 
When the counter generates an overflow (in up­
count mode) or an underflow (in down-count 
mode), i.e. an End Of Count is reached, the 
counter stops and no counter reload occurs. The 
counter can be restarted only by an external or 
software trigger. The One Shot Mode is entered by 
setting TMR bit CO. 

13.2.2 Continuous Mode 

Whenever the counter reaches an End Of Counl.i 
the counting sequence is automatically restartea 
and the counter is reloaaed from REGOR (or 
REG1 R when selected in Biload Mode). Continu­
ous Mode is entered by resetting TMR bit CO. 

13.2.3 Trigger And Retrigger Modes 
A trigger event may be generated either by soft­
ware action (setting either CPO or CP1 bit in timer 
register FLAGR), or by an external source which 
may Be programmed to be active on the rising 
edge, the falling edge or both, using the fields AO­
A1 and B0-81 in ICR. 

In One Shot and Trigger Mode, every trigger event 
(used as a reload and start count) arriving before 
an End Of Count, is masked. In One Shot and Re­
trigger Mode, every trigger (used as a reload and 
start count) received while the counter is running 
aUJomatically reloads the counter from REGOR (or 
RIEG1 R when the register is selected in Biload 
Mode). Trigger/Retrigger Mode is set by the REN 
bit in TMR. 

TxiNA input refers to REGOR and TxiNB input re­
fers to REG1 R. 
WARNING. If the Trigger Mode is selected when 
the counter is in Continuous Mode, then every trig­
ger to reload the counter starting value is disabled, 
so it is not possible to synchronize the counting cy­
cle by hardware or software. 

ST9 - Multifunction Timer 

13.2.4 Gate Mode 

In this mode the counting operation is performed 
only when the external gate input is active (logical 
state "0"). The selection of TxiNA or TxiNB input as 
gate input is made through INO-IN3 bits in ICR. 

13.2.5 Capture Mode 

REGOR and REG1 R registers may be inde­
pendently set in Capture Mode by setting RMO or 
RM1 in TMR, so that a capture of the current count 
value can be performed either on REGOR or 
REG1 R, via software action (by setting CPO or 
CP1 in the FLAGR register) or a programmable 
event on the exterflal ihpUt pins. 

WARNING. Care should be taken when twd 56ft­
ware captures have to be performed on the same 
register. In this case, at least one extra instruction 
must be present between the first CPO!CP1 bit set 
and the subsequent CPO!CP1 bit reset. 

13.2.6 Up/Down Mode 
The counter can count up or down depending on the 
state of the UDC bit (Software Up/Down) in TCR, or 
on the configuration of the external input pins, which 
have priority over UDC (see Input pin assignment in 
ICR). When read, the UDCS bit always returns the 
cdUflier up/down current status (see also the 
Up/Down Autodiscrimination mode in the Input Pin 
Assignment Section). 

13.2.7 Free Running Mode 

The timer performs full range counting (in up or down 
mode) without reloading from REGOR at an End Of 
Count. This mode is automatically selected either in 
Bicapture Mode or by setting REGOR for capture 
function (Continuous Mode must also be set). In 
Autoclear Mode, free running with modulo less than 
216 may be obtained (see Autoclear Mode). 

105/219 

189 



ST9 - Multifunction Timer 

FUNCTIONAL DESCRIPTION (Continued) 

13.2.8 Monitor Mode 

When RM1 bit in TMR is reset and the timer is not 
in Bivalue Mode, then REG1 R acts as monitor, re­
producing the current U/D counter content ena­
bling the ST9 to read the counter "on the fly". 

13.2.9 Autoclear Mode 

A clear command forces the counter to the value 
OOOOh or OFFFFh, when counting in up or down 
count mode respectively. The counter reset may 
be obtained either directly, through CCL bit in TCR, 
or by entering the Autoclear Mode, through CCPO 
and CCMPO fields in TCR. 

B) Bicapture Mode 

The Bicapture Mode is entered selecting the Bi· 
value Mode (BM = "1" in TMR) and programming 
REGOR as a capture register (RMO = "1" in TMR). 

Every capture event, software simulated (by set· 
ting CPO flag) or from the TxiNA input line, cap­
tures the current counter value alternately into 
REGOR and REG1 R. A low level for BM bit always 
sets REGOR as current register, so that the first 
capture, after setting BM bit, is always into 
REGOR. 

13.2.11 Parallel Mode 

Every capture performed on REGOR (if CCPO = When there are two timers on ST9 chip, the parallel 
"1 "), or every successful compare performed by ,..,( m_ode is entered with ECK ="1" in TMR of Timer 1. 
CMPOR (if CCMPO = "1 "), clears the counter and;" Timef 1 prescaler input is internally connected to 
reloads the prescaler. ; ·'fber"[imer..Q prescaler output. Timer 0 prescaler in­
The Clear On Capture mode allows the direct meas- - -..P~~.connected to the system clock line. 
urement of delta time between successive captures 'fily. foading the Prescaler Register of Timer 1 with 
on REGOR, while the Clear On Compare mode al- the value DOh the two timers (Timer 0 and Timer 1) 
lows free running with modulo less than 216. are driven by the same frequency in parallel mode. 

13.2.10 Bivalue Mode 13.2.12 Autodiscriminator Mode 

Depending on the value of RMO bit in TMR, the 
Biload Mode (RMO = "0") -or the Bicapture Mode 
(RMO = "1 ")can be selected as explained in the fol­
lowing table: 

Table 13-1. Bivalues Modes 

TMR bits Timer 

RMO RM1 BM Operating Modes 

0 X 1 Biload mode 
1 X 1 BiCapture Mode 

A) Biload Mode 

The Biload Mode is entered by selecting the Bi· 
value Mode (BM = "1" in TMR) and programming 
REGOR as a reload register (RMO = "0" in TMR). 

At any End Of Count, the counter reloading is per­
formed alternately from REGOR and REG1 R, (a 
low level for BM bit always sets REGOR as the cur· 
rent register, so that, after a Low to High transition 
of BM bit, the first reload is always from REGOR). 

Every software or external trigger event on REGOR 
performs a reload from REGOR resetting the Biload 
cycle. In One Shot mode (reload made by a software 
or external trigger), the reload is always from REGOR. 

Figure 13-3. Parallel Mode Description 

INTCLK/3 

VR000217 

The phase difference sign of two overlapped 
pulses (respectively on TxiNB and TxiNA) gener­
ates a one step up(down) count, so that the 
up/down control and the counter clock are both ex­
ternal. The setting of the UDC bit in the TCR regis· 
ter has no effect in this configuration. 

_10_6_~_1_9 _______________________ ~~~~~~~~:~~ 

190 



13.3 INPUT PIN ASSIGNMENT 

The two external inputs {TxiNA and TxiN8) of the 
timer. can be individually configured to catch a par­
ticular external event {i.e. rising edge, falling edge, 
rising and falling edges) by programming the two 
relevant bits (AO, A1 and 80, 81) for each input in 
the external Input Control Register {ICR). 

The 16 different functional modes of the two exter­
nal inputs can be selected by programming INO -
IN3 bits of the ICR as explained in the following ta­
ble. 

Table 13-2.1nput Pin Function 

ICReg. TxiNAinput TxiNB Input 
IN3·1NO bits Function Function 

0000 not used not used 
0001 not used Trigger 
0010 Gate not used 
0011 Gate Trigger 
0100 not used Ext. Clock 
0101 Trigger not used 
0110 Gate Ext. Clock 
0111 Tngger Trigger 
1000 Clock Up Clock Down 
1001 Up/Down Ext. Clock 
1010 Trigger Up Trigger Down 
1011 Up/Down not used 
1100 Autodiscr. Autod1scr. 
1101 Tngger Ext. Clock 
1110 Ext. Clock Tngger 
1111 Tngger Gate 

Some choices in the external input pin assignment 
are defined in conjunction with RMO and RM1 bits 
inTMR. 

For input pin assignment codes using the input 
pins as Trigger Inputs (except for code 1010, Trig­
ger Up:Trigger Down): 

_ a trigger signal on TxiNA input pin performs an 
U/D counter load if RMO ="0", or an external 
capture if RMO = "1". 

_ a trigger signal on TxiN8 input pin always per­
forms an external capture on REG1 R. The 
TxiNB input pin is disabled when the Bivalue 
Mode is set. 

Note. For proper operation of the External Input 
pins, the following must be observed: 

- the minimum external clock/trigger pulse width 
cannot be less than the system clock (INTCLK) pe­
riod if the input pin is programmed as rising or fall­
ing edge sensitive. 

- the minimum external clock/trigger pulse width 
cannot be less than the prescaler clock period 

ST9 • Multifunction Timer 

(INTCLK/3) if the input pin is programmed as rising 
and falling edges sensitive (valid also in Autodis­
crimination mode). - the minimum delay between 
two clock/trigger pulse active edges must be 
greater than the prescaler clock period 
{INTCLK/3), while the minimum delay between two 
consecutive clock/trigger pulses must be greater 
than the system clock (INTCLK) period. 

- the minimum gate pulse width must be at least 
twice the prescaler clock period (INTCLK/3). 

- in Autodiscrimination mode, the minimum delay 
between the input pin A pulse edge (inside the in­
put pin 8 pulse) and the edges of the input pin B 
pulse, must be at least the system clock (INTCLK) 
period. 

- if a number N of external pulses must be 
counted using a Compare Register of a Timer in 
External Clock mode, then the Compare Register 
used must be loaded with the value [X +1- {N-1 )], 
where X is the starting counter value and the sign 
is chosen depending if in Up or Down count mode 
respectively. 

The sixteen external input functional modes avail­
able (referring to Table 13-2) are: 

13.3.1 TxiNA = 1/0 • TxiNB = 1/0 

Input pins A and B are not used by the Timer. The 
counter clock is internally generated and the 
up/down control may be made only by software ac­
tion through the UDC (Software Up/Down) bit in 
the TCR register. 

13.3.2 TxiNA = 1/0 • TxiNB =Trigger 

The signal applied to input pin 8 acts as a trigger 
signal on REG1 R register. The prescaler clock is 
internally generated and the up/down control may 
be made only by software action through the UDC 
bit in the TCR register. 

13.3.3 TxiNA =Gate· TxiNB = 1/0 

The signal applied to input pin A acts as a gate sig­
nal for the internal clock (i.e. the counter runs only 
when the gate signal is at a low level). The counter 
clock is internally generated and the up/down con­
trol may be made only by software action through 
the UDC bit in the TCR register. 

TOlNA (Gate Input) ~ 

Internal Counter Clock _ru-u-u-u-
t t 

A count occurs here 

VR000218 

107/219 

191 



ST9 - Multifunction Timer 

INPUT PIN ASSIGNMENT (Continued) 

13.3.4 TxiNA =Gate- TxiNB =Trigger 

Both input pins A and Bare connected to the timer, 
with the resulting effect of combining the actions 
due to the above explained configurations. 

13.3.5 TxiNA = 1/0- TxiNB =Ext. Clock 

The signal applied to input pin B is used as the ex­
ternal clock for the prescaler. The up/down control 
may be made only by software action through the 
UDC bit in the TCR register. 

13.3.6 TxiNA =Trigger- TxiNB = 1/0 

The signal applied to input pin A acts as a trigger 
signal on REGOR register performing the action for 
which the register was programmed (i.e. a reload 
or capture). The prescaler clock is internally gener­
ated and the up/down control may be made only by 
software action through the UDC bit in the TCR 
register. 

TOlNA (Trigger Input) __fl__ 

Internal Counter Clock~ 

t t t 
A count occurs here ( •) 

VR000189 

(')The t1mer IS 1n One shot mode and REGOR in Reload mode 

13.3.7 TxiNA =Gate- TxiNB =Ext. Clock 

The signal applied to input pin B, gated by the sig­
nal applied to input pin A, acts as external clock for 
the prescaler. The up/down control may be made 
only by software action through the UDC bit in the 
TCR register. 

TOlNA (Gate Input)~ 

TOINB (Ext. Counter Clock) ____rut_n_jL 

t t 
A count occurs here 

VR000190 

13.3.8 TxiNA =Trigger- TxiNB =Trigger 

The signal applied to input pin A (or B) acts as trig­
ger signal for the REGOR (or REG1 R) register per­
forming the action for which the register has been 
programmed. The counter clock is internally gen­
erated and the up/down control may be made only 
by software action through the UDC bit in the TCR 
register. 

13.3.9 TxiNA = Clock Up - TxiNB = Clock 
Down 
The pulse received on input pin A (or B) performs a 
one step up (or down) count, so that the counter 
clock and the up/down control are external. Setting 
the UDC bit in the TCR register has no effect in this 
configuration while input pin B has priority on input 
pin A. 

X ; don"t core 

TOlNA (Up Count Clock) _nnn_xx-xx-xx­
Counter Increment 

TOINB (Down Count Clocl~ 

Counter Decrement 

VR000191 

13.3.10 TxiNA =Up/Down- TxiNB =Ext Clock 

An High (or Low) level of the signal applied on input 
pin A sets the counter in the up (or down) count 
mode, while the signal applied to input pin B is 
used as clock for the prescaler. Setting the UDC bit 
in the TCR register has no effect in this configura­
tion. 

TOlNA (UP /DOWN) 
----, Down Count 
Up Count ._1 ---

TOINB (Ext. Counter ClockLn___n__n_ 

I Count!r DLrement 
Counter Increment 

VR000192 

13.3.11 TxiNA =Trigger Up- TxiNB =Trigger 
Down 
Up/down control is performed through both input 
pins A and B. A pulse on input pin A sets the up 
count mode, while a pulse on input pin B (which 
has priority on input pin A) sets the down count 

_1 0_8_12_1_9 ____________ LU ~~~~ru~::'!?t: 
192 



INPUT PIN ASSIGNMENT (Continued) 

mode. The counter clock is internally generated 
while setting the UDC bit in the TCR register has 
no effect in this configuration. 

X = don't core 
TOlNA (Trigger Up) _fl~...-____ XXX __ 

-up Count Mode 

TOINB (Trigger Dow~ 

-Down Count Mode 

VR000193 

13.3.12 TxiNA =Up/Down- TxiNB = 1/0 
An High (or Low) level of the signal applied on input 
pin A sets the counter in the up (or down) count 
mode. The counter clcick is internally generated. 
Setting the UDC bit in the TCR register has no ef­
fect in this configuration. 

Down Count 
TOlNA (UP /DOWN) Up Count L~----

Internal Counter Clock nnJ""LrL.n.. 

t t t cLnL I I I Decrement 

Counter Increment VR000194 

13.3.13 Autodiscrimination Mode 
The phase between two pulses (respectively on in­
put pin B and input pin A) generates a one step up 
(or down) count, so that the up/down control and 
the counter clock are both external. Thus, if the ris­
ing edge of TxiNB arrives when TxiNA is at level 
"0" the timer is incremented (no action if the rising 
.edge of TxiNB arrives when TxiNA is at level "1 "). 
If the falling edge of TxiNB arrives when TxiNA is 
at level "0" the timer is decremented (no action if 
the falling edge of TxiNB arrives when TxiNA is at 
level "1"). 

ST9 - Multifunction Timer 

Setting the UDC bit in the TCR register has no ef­
fect in this configuration. 

UP/DOWN 
AUTODESCRIMINA TOR 

[DINA~ 
TOINB~ 

t Counter Decrerlent 
Counter Increment 

VR000195 

13.3.14 TxiNA = Trigger- TxiNB = Ext. Clock 

The signal applied to input pin A acts as a trigger 
signal on REGOR register performing the action for 
which the register was programmed (i.e. a reload 
or capture), while the signal applied to input pin B is 
used as clock for the prescaler. 

TOlNA (Trigger Input) __ _Jnl,_ __ _ 

TOINB (Ext Counter Cl~ 

t t 
A count occurs here" 

VR000196 

(')The timer is in One shot mode and REGOR in reload mode 

13.3.15 TxiNA =Ext. Clock- TxiNB =Trigger 
The signal applied to input pin B acts as a trigger, 
performing a capture on REG1 R register, while the 
signal applied to the input pin A is used as clock for 
the prescaler. 

13.3.16 TxiNA =Trigger- TxiNB =Gate 
The signal applied to input pin A acts as a trigger 
signal on REGOR register performing the action for 
which the register was programmed (i.e. a reload 
or capture), while the signal applied to input pin B 
acts as a gate signal for the internal clock (i.e. the 
counter runs only when the gate signal is at a low 
level). 

109/219 

193 



ST9 - Multifunction Timer 

13.4 OUTPUT PIN ASSIGNMENT 

Two external outputs are available for each timer 
when programmed as Alternate Function OutjJ'uts 
of the 1/0 pins. 

Two registers for every timer, Output A Control 
Register (OACR) and Output B Control Register 
(OBCR) define the driver for the outputs and the 
actions to be performed. 

Each of the tWo output pins can be driven from any 
of the three possible seurces: 

Compare Register(\ ~"Vent logic 

_ Compare Register ~ event logic 

~ Overflow/Underflow event logic. 

Each of these three sources can cause one of the 
following four effects on any of the two outputs: 

Nop 

- Set 
_ Reset 

_ Toggle. 

Furthermore an On Chip Event signal. can be 
driven by two gf the three sources: the Over/Un~ 
derflow event and Compare 0 event by program­
ming the CEV bit of the OACR register and the 
OEV bit of OBCR register respectively. Thl$ signal 
can be used for another on-chip peripheral or as 
strobe for an 110 port (see Handshake chapter). 

Output Waveforms 

Depending on the different programmed values of 
OACR and OBCR the following example waveforms 
can be generated on TxOUTA and TxOUTB pins. 

Configuration where TxOUTA is driven by 
Over/Underflow (OUF) and Compare 0 event 
(CMO). while TxOUTB is driven by the Over/Under­
flow and Compare 1 event (CM1). 
OACR is programmed with TxOUTA preset to "0", 
OUF sets TxOUTA, CMO resets TxOUTA and CM1 
does not affect the output. 
OBCR is programmed with TxOUTB preset to "0", 
OUF sets TxOUTB, CM1 resets TxOUTB while 
CMO does not affect the ·outp"ut. 

OACR = (101100XO~ 
OBCR = (110001XiJ 

roou'r¥.~ 
OUF COMPO OUF COMPO 

COMP1 COMP1 
TOOUTB j.-----.u w 

OUF OUF 
VR000197 

Configuration where TxOUTA is driven by 
Over/Underflow, Compare 0 and Compare 1, while 
TxOUTB is driven by both Compare 0 and Com­
pare 1. 
OACR is programmed with TxOUTA preset to "0". 
OUF toggles the Output 0 as do CMO and CM1. 
OBCR is programmed with TxOUTB preset to "1 ". 
OUF does not affect the output while CMO resets 
TxOUTB and CM1 sets it. 

OACR = (101100XO) 

OBCR = ( 110001 X1) COMPl COMPl 

TOOUTA~ 
OUt OUt 

COMPO COMPO 

COMPl COMPl 

TOOUTB~ 
COMPO COMPO 

VR000198 

_,_, o_/2_,_9 ____________ J::1i ~~~;ltl~v~:~~n 
194 



OUTPUT PIN ASSIGNMENT (Continued) 

Configuration where TxOUTA is driven by 
Over/Underflow and Compare 0, while TxOUTB is 
driven by Over/Underflow and Compare 1. 
OACR is programmed with TxOUTA preset to "0". 
OUF sets TxOUTA while CMO resets it and CM1 
has no affect. 
OBCR is programmed with TxOUTB preset to "1 ". 
OUF toggles TxOUTB, CM1 sets it and CMO has 
no affect. 

OACR (101100XO] 

OBCR = [110001X1] 

toOUTA~ 
OUF COMPO OUF COMPO 

COMP1 COMPl 

TOOUTB~ 
OUF OUF 

VROOA198 

Configuration where TxOUTA is driven by 
Over/Underflow and Compare 0, while TxOUTB is 
driven by Compare 0 and 1 . 
OACR is programmed with TxOUTA preset to "1 ". 
OUF sets TxOUTA, CMO resets it and CM1 has no 
affect. 
OBCR is programmed with TxOUTI3 preset to "0". 
OUF has no affect, CMO sets TxOUTB and CM1 
toggles it. 

OACR = (101100XO] 

OBCR = [110001X1] 

TOOUTA~ 
OUFCOMPO OUFCOMPO 

COMP1 COMP1 
TOOUTB~ 

COMPO COMPO 

VR000205 

ST9 - Multifunction Timer 

Output Waveform Samples In Biload Mode 
TxOUTA is programmed to monitor the two time in­
tervals (t1 and t2) of the Biload Mode while 
TxOUTB is independent from the Over/Underflow 
and is driven by the different values of Compare 0 
and Compare 1. 
OACR is programmed with TxOUTA preset to "0". 
OUF toggles the output and CMO and CM1 elo not 
affect TxOUTA. 
OBCR is programmed with TxOUTB prese!_to "0". 
OUF has no effect, While CM1 resets TxtJUTB and 
CMOsets it. 

Depending on the CM1/CMO values, three differ­
ent example waveforms have been drawn starting 
from the above mentioned configuration of OBCR. 
In the last case, with a different programmed value 
of OBCR, only Compare 0 drives TxOUTB, tog­
gling the output. 

OACR = [111101XO] 
I 11 I !2 

TOOUTA~ 

OUF OUF 

OBCR = [001011XO] 

TOOUTB (') 

a) COMPO < REGO < C0MP1 < REG1 

__r---j_______ 
COMPO COMPl 

b) COMPO < COMP1 < REGO < REG1 

COMP1 COMP1 
Jl..JL___ 
COMPO COMPO 

c) REGO < COMPO < COMP1 < REG1 

COMP1 
______r---,_ 

COMPO 

OBCR = [011111XO] 

TOOUTB~ 

COMPO COMPO 
VR000205 

Note(') Depending on the CMP1 R/CMPOR values 

111/219 ----------------------------- ~~~~;~~v~:~~~ ----------------------------
195 



ST9 - Multifunction Timer 

13.51NTERRUPT AND DMA 

13.5.1 Timer Interrupt 

The timer has 5 different Interrupt sources, 
grouped into 3 independent groups, assigned to 
the following Interrupt vectors: 

Table 13-3. Timer Interrupt Structure 

Interrupt Source Vector Address 

COMPO 
xxxx x110 

COMP1 

CAPTO xxxx x100 
CAPT1 

Overflow/Underflow xxxx xOOO 

The three least significant bits of the vector pointer 
address represent the relative priority assigned to 
each group, (000 value is the highest priority level) 
and are fixed by hardware depending on the 
source which generates the interrupt request. The 
5 most significant bits are programmed by the user 
in the Interrupt Vector Register (IVR) of each 
Timer. 

Each source can be masked by a dedicated bit in 
the lnterrupt/DMA Mask Register (IDMR) of each 
timer, as well as a global mask enable bit 
(IDMR.7), masking all interrupts. 

If an interrupt request (CMO or CPO) happens be­
fore the corresponding pending bit is reset, an 
overrun condition occurs. This condition is flagged 
in two dedicated overrun bits, concerning the 
CompO and Cap!O sources, and placed in the 
Timer Flag Register (FLAGR). 

13.5.2 Timer DMA 

Two Independent DMA channels, associated to 
Compare 0 and Capture 0 sources, respectively al­
low DMA transfers from Register File/Memory to 
CompO Register and vice versa from Cap!O Regis­
ter to Register File/Memory (also transfers in/from 
Memory from/into an 1/0 port are available). Their 
priority is hardware set as follows: 

_ Compare 0 Destination Lower Priority 

_ Capture 0 Source Higher Priority 

The two DMA request sources are independently 
maskable by two DMA Mask bits, mapped in the 
Timer lnterrupt/DMA Mask register (IDMR). 

The two End of Block procedures, associated to 
each Interrupt mask and DMA mask combination, 
follow the standard architecture as shown in the In­
terrupt and DMA chapters. 

13.5.3 DMA Pointers 

The 6 programmable most significant bits of the 
Timer Address and Counter Pointer registers 
(DAPR-DCPR) are common to both channels 
(CompO and CaptO sources). As a consequence, 
the CompO and CaptO Address pointers are 
mapped by pair in the Register File, as well as the 
CompO and Cap!O DMA Counter pair. 

The different address specification, in order to 
point either CaptO or CompO pointers, is provided 
by the Timer according to the channel under serv­
ice (replacing the address bit 1 with "0" for CAPTO 
or with "1" for COMPO), when DO bit on DCPR reg­
ister is equal to zero (Word address in Register 
File). In this condition (register with program/data 
memory transfer), the pointers will be split in two 
groups of adjacent Address pointer and Counter 
pairs respectively. 

In the case of register to register transfers (se­
lected by programming the value "1" into bit 0 of the 
DCPR register), only one pair of pointers are re­
quired and the pointers are mapped into one group 
of adjacent positions. 

DAPR (the DMA/Address Pointer Register) in this 
case in not used, but must be considered reserved. 

_11_2_12_1_9 ____________ liii ~~~;m~,r::g~ 
196 



INTERRUPT AND DMA (Continued) 

Figure 13-4. Map Pointer for Register to 
Prog/Data Memory Transfer 

Address 
Pointers 

DMA 
Counters 

Register File 

CompO 16bit 
Addr Pointer 

CaptO 16 bit 
Addr Pointer 

CompODMA 
16 bit Counter 

Cap!O DMA 
16 bit Counter 

YYYYYY11 (I) 
YYYYYY10(h) 

YYYYYY01 (I) 
YYYYYYOO(h) 

XXXXXX11 (I) 
XXXXXX10(h) 

XXXXXX01 {I) 
XXXXXXOO{h) 

Figure 13-5. Map Pointer for Register to Regis­
ter Transfer 

Register File 

8 bit Counter XXXXXX11 
Compare a 

8 bit Addr Pointer XXXXXX10 

8 bit Counter XXXXXX01 
Capture o 

8 bit Addr Counter xxxxxxoo 

ST9 - Multifunction Timer 

13.5.4 Priority During The DMA Transactions 

Each Timer DMA transaction is a 16-bit operation, 
therefore two different bytes must be transferred 
subsequently. This is accomplished by two DMA 
transfers. In order to speed up each word transfer, 
the second byte transfer is executed by forcing 
automatically the peripheral priority to the highest 
level (000) regardless to the previous set level. It 
will be then restored to the original value after exe­
cuting this transfer. Furthermore, once one request 
is being served, its hardware priority is kept at the 
highest level regardless to the other Timer internal 
sources, i.e. once a CompO request is being 
served, it keeps a higher priority on the CaptO 
channel, even if a CaptO request occurs between 
the two byte transfers. 

13.5.5 The DMA Swap Mode 

After a complete data table transfer, the transac­
tion counter is reset and an End Of Block condition 
occurs, the block transfer is completed. 

The End Of Block Interrupt routine has at this point 
to reload both address and counter pointers of the 
channel referred by the End Of Block interrupt 
source if the application requires a continuous high 
speed data flow. This procedure causes speed 
limitations because of the time consumed by the 
reload routine. 

The SWAP feature overcomes this drawback, al­
lowing high speed continuous transfers. Bit 2 of the 
Timer Address and Counter Pointer registers 
(DAPR-DCPR), toggles after any End Of Block 
condition, alternately providing odd and even ad­
dress (02-07) for the pair of pointers, thus pointing 
to an updated pair, after a block has been com­
pletely transferred. This allows the User to be up­
dating or reading the first block, and to update the 
pointer values while the second is being trans­
ferred. These two toggle bits are software writable 
and readable, mapped in DCPR bit 2 for the CMO 
channel, and in DAPR bit 2 for the CPO channel 
(though a DMA event on a channel, in Swap mode, 
modifies a field in DAPR and DCPR common to 
both channels, the DAPR/DCPR content used in 
the transfer is always the bit related to the correct 
channel). 

The SWAP mode can be enabled by a control bit 
placed in the Interrupt Control Register. 

WARNING: this mode is always set tor both chan­
nel (CMO and CPO). 

113/219 

197 



ST9 - Multifunction Timer 

INTERRUPT AND DMA (Continued) 

13.5.6 The DMA End Of Block Interrupt Routine 

This Interrupt request is generated after each block 
transfer (EOB) and its priority is the same as as­
signed in the usual Interrupt request, for the two 
channels. As a consequence, they will be served 
only when no DMA request occurs, and will be sub­
mitted to a possible OUF Interrupt request, which 
has higher priority. 

Here is a typical EOB procedure (with swap mode 
enabled): 

- Toggle bit test and Jump. 
_ Pointers (odd or even depending on toggle bit 

status) reload. 

- Reset EOB bit: this bit must be reset only after 
the old couple of pointers has been restored, 
so that, if a new EOB condition occurs, the 
next pointers are ready to be swapped. 

- Verify the software protection condition. 

- Read the corresponding Overrun bit: this 
makes the user sure that NO DMA request has 
been lost in the meantime. 

- Return. 
WARNING: The EOB bits are read/write bits only 
for testing reasons. Writing a logical "1" by soft­
ware (when SWEN bit is set) will cause a spurious 
interrupt request. During normal operation, these 
bits must only be reset by software. 

13.5.7 DMA Software Protection 

A second EOB condition may occur before the first 
EOB routine is completed, this would cause a not 
yet updated pointer couple to be addressed, with 
consequent overwriting of memory. To prevent 
these errors, a protection mechanism is provided, 
such that the attempted setting of the EOB bit be­
fore it has been reset by software will cause the 
DMA mask on that channel to be reset (DMA dis­
abled), locking any further DMA operation. As 
shown above, this mask bit should always be 
checked in each EOB routine, to ensure all DMA 
transfers are properly served. 

114/219 

198 

13.6 TIMER DMA EXTERNAL MODES ON 110 
PORTS 

Each Timer DMA channel can also be employed in 
external transfers to/from memory from/to an 1/0 
port. In this case only Byte transfers are executed for 
any request. Two control bits (DCTS and OCTO) in 
the lnterrupVDMA Control Register (IOCR) set each 
channel in I NT/EXT (Internal = Register to- Mem­
ory/External = Memory to/from 1/0 ports) modev 

The relevant I/O port must then be programmed in 
DMA mode and the right direction of the port cho, 
sen by the HDCxR register of that port (see Hand­
shake chapter). . -

The two modes, however, are not the same for both 
channels as explained in the following section. -. -.· 

13.6.1 CMO Channel External Mode 

This mode is enabled when DCTD (DMA Compare 
Transaction Destination) bit is equal to "1" in the 
IOCR register. 

This mode allows only Output transfers, from Reg­
ister File/memory to the 1/0 port, under a request 
caused by a CMO event or a software request (writ­
ing "1" in the CMO flag). An application for this is a 
data flow under DMA to be output at fixed times. 

The synchronization with the 1/0 port is accom­
plished by an internal signal, active when the data 
to be transfered is present on the internal Data 
Bus. If programmed, the on-chip event pulse can 
also be generated and used to strobe the output 
data on the selepted handshake port. 

In either case· the DMA Output mode must be se­
lected in the. HDCTL Register of the port (see 
Handshake chapter). 

13.6.2 CPO Channel In External Mode 

This mode is enabled when DCTS (DMA Capture 
Transaction Source) bit is equal to "1" in the IOCR 
register. 

This mode allows bi-directional transfers controlled 
(when the 1/0 port is programmed in DMA ln­
puVOutput mode in the HDCTL register) by the 
value of the DD bit of the HDCTL register (the DD 
bit selects the DMA input or DMA Output mode). 

The DMA request can be either an External CPTO 
request (Timer External input A) or a software re­
quest (by writing "1" in the CPO Flag). 

This, along with a further internal synchronization sig­
nal, generated by the Timer Unit, allows handshake 
operations managed by the 1/0 port while the direction 
of the data to read or write on the 1/0 port is fixed by the 
value of the DO bit in the HDCTL register. 



MODES ON 1/0 PORTS (Continued) 

13.6.3 DMA Channel Synchronization 

A CPO DMA request can be generated also by a 
CMO event, simply by setting the Timer External In­
put A on rising and falling edges sensitive, con­
necting it by hardware or software (though the 
IOCR register) to the Timer OUT 0, and program­
ming the CMO action as output toggle. 

This will cause a CPO request to be generated after 

ST9- Multifunction Timer 

each CMO condition, thus synchronizing the 2 
DMA channels (see the following application ex­
ample). 

The DCTS bit must be set and DCTD bit must be 
reset in the IOCR register. Figure 13-6 shows an 
example of two channel synchronisation. A new 
byte will be sent out through the 1/0 port at an inter­
val specified by the COMPO value mapped in the 
look-up table. 

Figure 13-6. Timer DMA Channels Synchronization 

DMA 
TABLE 

OMA 
TABLE 

I 

R F /P.M /0 M 

I-

I PATTERN TABLE 

INPUT EDGE I 
DETECTOR 

1/0 
CONNECTION 
(SOFTWARE) 

TOGGLE 

OUTPUT 

R.F /P.M. /D.M. 

r-

I TIME TABLE 

DMA TRANSFER 

I INT & DMA I 

... 
"':z: ou 
"->-
o<! ,-' 

NOTE: THE 1/0 PORT DIRECTION 
IS FIXED BY THE DO BIT 
IN THE HDCTL REGISTER 

ON- CHIP 

NT EVE 

CAPTURE 0 REGISTER 

16 BIT COUNTER -

I COMPARE 0 REGISTER 

IOCR DCTS=l 

IOCR DCTD=O 

[_ INT & DMA HDCTL DST=D 

DMA TRANSFER 

: CAPTURE DMA IN PORT MODE 

: COMPARE DMA IN NORMAL MODE 

: NORMAL STROBE (M2ST3) 

VR000450 

r== SGS-1liDMSDN --------------- A.""'J/. ~U!:~@ffi~ffi!:1i'~@I\JU!:~ 
115/219 

199 



ST9 - Multifunction Timer 

13.7 REGISTER DESCRIPTION 

Twenty control and data registers are associated 
to each Multifunction timer, and are located in the 
Group F 1/0 pages of the ST9 Register File. 

The registers of the Multifunction Timers are lo­
cated in the 1/0 pages as follows: 

Note that unused registers must be regarded as re­
served registers. 

Table 13-4. Multifunction Timer Register Map 

R255 IMOR-TIMO FF 

R254 FLAGR- TIMO FE 

R253 OBCR- TIMO FO 

R252 OACR-TIMO FC 

R251 PRSR- TIMO FB 

R250 ICR-TIMO FA 

R249 TMR-TIMO F9 

R248 TCR- TIMO F8 

R247 CMP1 LR- TIMO F7 

R246 CMP1 HR- TIMO F6 

R245 CMPOLR- TIMO FS 

R244 CMPOHR- TIMO F4 

R243 REG1LR- TIMO F3 

R242 REG1 HR- TIMO F2 

R241 REGOLR - TIMO F1 

R240 REGOHR - TIMO FO 

Page 10 (OAh) 

In the following pages there is a detailed description 
of every register with the meaning and the function of 
every bit. The register is referred without the abso­
lute address which is depending on the number of 
the timer used (of course the configuration and the 
functions of the internal bits of i.e. TCR- TIMO are the 
same of TCR- TIM1 and so on. 

IMOR-TIM1 

FLAGR- TIM1 

OBCR- TIM1 

OACR-TIM1 

PRSR- TIM1 

ICR-TIM1 

TMR- TIM1 

IOCR TCR-TIM1 

IOCR- TIM1 CMP1 LR- TIM1 

IVR-TIM1 CMP1 HR- TIM1 

OAPR- TIM1 CMPOLR- TIM1 

OCPR-TIM1 CMPOHR- TIM1 

IOCR- TIMO REG1 LR- TIM1 

IVR- TIMO REG1 HR- TIM1 

OAPR- TIMO REGOLR- TIM1 

OCPR- TIMO REGOHR- TIM1 

Page 9 (09h) Page 8 (OS h) 

_11_6_12_1_9 ____________ ifi ~~~~mgm~P~ 
200 



REGISTER DESCRIPTION (Continued) 

13.7.1 Register 0 (REGOR) Registers 

This pair of registers (REGOLR and REGOHR) is 
used to capture values from the U/0 counter or to 
load preset values into the U/0 counter. 

REGOHR R240 (FOh) Read/Write 
Capture Load Register 0 (High) 

Reset value: undefined 

7 0 

I R15 I R14 I R13 I R12 I R11 R10 I R9 P8 

REGOLR R241 (F1 h) Read/Write 
Capture Load Register 0 (Low) 

Reset value: undefined 

7 

13.7.2 Register 1 (REG1 R) Registers 

0 

R) 

This pair of registers (REG1 LR and REG1 HR) is 
used (as REGOR) to capture values from the U/0 
counter or to load preset values into the U/0 counter. 

REG1HR R242 (F2h) Read/Write 
Capture Load Register 1 (High) 

Reset value: undefined 

7 

REG1 LR R243 (F3h) Read/Write 
Capture Load Register 1 (Low) 

Reset value: undefined 

7 

0 

0 

R7 ffi R5 R4 R3 R2 R1 R:> 

ST9- Multifunction Timer 

13.7.3 Compare 0 (CMPOR) Registers 

This pair of Registers (CMPOL and CMPOH} is 
used to store 16-bit values to be compared to the 
U/0 counter content. 

CMPOHR R244 (F4h) Read/Write 
Compare 0 Register (High) 

Reset value: undefined 

7 0 

I R15 I R14 I R13 I R12 I R11 R10 I R9 P8 

CMPOLR R245 (F5h) Read/Write 
Compare 0 Register (Low) 

Reset value: undefined 

7 

13.7.4 Compare 1 (CMP1 R) Registers 

0 

R) 

This pair of Registers (CMP1 L and CMP1 H) is 
used (as CMPOR) to store 16-bit values to be com­
pared to the U/0 counter content. 

CMP1HR R246 (F6h) Read/Write 
Compare 1 Register (H1gh) 

Reset value: undefined 

7 0 

I R15 I R14 I R13 I R12 I R11 R10 I R9 P8 

CMP1 LR R247 (F?h) Read/Write 
Compare 1 Register (Low) 

Reset value: undefined 

7 0 

R7 ffi R5 R4 R3 R2 R1 RO 

117/219 

201 



ST9 - Multifunction Timer 

REGISTER DESCRIPTION (Continued) 

13.7.5 Timer Control Register (TCR) 

This register is used to control the status of the 
timer. 

TCR R248 (F8h) Read/Write 
Timer Control Register 

Reset value: 0000 Oxxxb 

7 0 

I CEN I Cffi) I rovRJ I ro_ I uoc I uccs I cro I cs 

b? = CEN: Counter Enable. This bit is ANDed with 
the Global Counter Enable bit (GCEN bit on R230 
- Central Interrupt Control Register; the GCEN bit 
is set after the Reset cycle). Setting the CEN bit 
starts the counter and prescaler (without reload). 
When this bit is reset, the counter and prescaler 
stop. 

b6 = CCPO: Clear on Capture. When this bit is set, 
a clear of the counter and a reload of the prescaler 
are performed on REGOR or REG1 R capture. No 
effect when this bit is reset. 

b5 = CCMPO: Clear on Compare. When this bit is 
set, a clear of the counter and a reload of the pres­
caler are performed on CMPOR compare. No ef­
fect when this bit is reset. 

b4 = CCL: Counter clear. When this bit is set, the 
counter is cleared without generation of interrupt 
request. No effect when this bit is reset. 

b3 = UDC: Software Up/Down. When the direction 
of the counter is not fixed by TxiNA and/or TxiNB 
(see par. 1 0.3) it can be software controlled by the 
UDC bit. Setting the UDC bit selects the Up mode 
counting. Resetting this bit the Down counting is 
performed. 

b2 = UDCS: Up/Down Count status. This bit is read 
only and monitors the direction of the counter. 
Reading "1" means that the counter is using the Up 
mode counting. Reading "0" means that the Down 
mode counting is in use. 

b1 = OFO: OVF!UNF state. This bit is read only and 
is set if an Overflow or an Underflow occurs during 
a Capture on Register 0. 

bO = CS: Counter Status. This bit is read only and 
monitors the status of the counter. Reading "1" 
means that the counter is running. Reading "0" in­
dicates that the counter is halted. 

13.7.6 Timer Mode Register {TMR) 

This register is used to select the operating mode 
of the timer. 

TMR R249 (F9h) Read/Write 
Timer Mode Register 

Reset value: 0000 OOOOb (OOh) 

7 0 

I OE1 I OEO I BM I ~1 I PMJ I EO< I ~ I (X) 

b? = OE1: Output 1 Enable. Setting this bit enables 
the Output 1 (TxOUTB) of the relevant timer. When 
this bit is reset, the TxOUTB is disabled and forced 
to the logic state "1 ". The relevant 1/0 bit must also 
be set to Alternate Function. 

b6 = OEO: Output 0 Enable. Setting this bit enables 
the Output 0 (TxOUTA) of the relevant timer. When 
this bit is reset, the TxOUTA is disabled and forced 
to the logic state "1 ". The relevant 1/0 bit must also 
be set to Alternate Function. 

b5 = BM: Bivalve Mode. This bit enables the Bi­
value mode when is set. When the bit is reset. the 
Bivalue mode is disabled. After that, depending on 
the value of RMO bit (TMR- bit 3), the Biload or Bi­
capture mode is selected. 

b4 = RM1: REG1 R mode. When this bit is set, the 
REG1 R can be used to capture the value of the 
counter. When the bit is reset, the REG1 R moni­
tors the value of the counter. The selection per­
formed by this bit has no effect when the Bivalue 
Mode is enabled. 

b3 = RMO: REGOR mode. When this bit is set, the 
REGOR can be used to capture the value of the 
counter (also the Bicapture mode can be selected 
if the BM bit is equal to 1 ). When the bit is reset, the 
REGOR can be used to load the new value of the 
counter (also the Biload mode can be selected if 
the BM bit is equal to "1 "). 

b2 = ECK: Timer clocking mode. This bit selects 
the clock source which drives the prescaler. When 
the ECK bit is reset, either the Internal or External 
clock is used depending on INO- IN3 configuration 
in I CR. When ECK bit is set, different functions are 
performed depending on the number of the rele­
vant timer. For odd timers (Timer 1, Timer 3 and so 
on) setting the ECK bit enables the Parallel mode 
where the prescaler of the odd timer is driven by 
the prescaler output of the even timer. 

_11_8_12_1_9 ____________ ~ ~~~~mg~:~~~ 

202 



ST9 - Multifunction Timer 

REGISTER DESCRIPTION (Continued) 

b1 = REN: Retrigger mode. When this bit is reset, 
the Retriggerable mode is enabled. When the bit is 
set, this operating mode is disabled. 

13.7.7 External Input Control Register(ICR) 

By this register it is possible to program the func­
tion and the operation to be performed on TxiNA 
and TxiNB inputs. bO =CO: Continous/One shot mode. When this bit 

is reset, the Continuous mode is selected (with 
autoreload on condition). The bit must be set to se­
lect the one shot mode. The following table sum­
marizes the different operating modes depending 
on the values of RMO, RM1 and BM bits. 

ICR R250 (FAh) Read/Write 
External Input Control Register 

Reset value: 0000 xxxxb (OXh) 

7 0 

Table 13-5. Timer Operating Modes I IN3 I IN"2 I IN1 I INO I N.J I A1 BJ 81 

TMR Bits 

BM RM1 RMO 

1 X 0 

1 X 1 

0 0 0 

0 1 0 

0 0 1 

0 1 1 

IC Reg. 
IN3-INO bits 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Timer Operating Modes b7-b4 = IN3,1N2,1N1,1NO: Input pin assignment. 
The different functions of TxiNA and TxiNB inputs 
of every timer can be selected by fNO - IN3 bits as 
explained below. Biload mode 

Bicapture mode 

Load from REGOR and 
Monitor on REG1 R 

Load from REGOR and 
Capture on REG1 R 

Capture on REGOR and 
Monitor on REG1 R 

Capture on REGOR and 
REG1R 

b3-b2 = AO, A1: Tx/NA event programming. The 
following TxiNA configurations can be selected ac­
cording to the values of AO and A 1 bits: 

b1-b0 = 80, 81: Tx/NB event programming. The 
following TxiNB configurations can be selected ac­
cording to the values of BO and 81 bits: 

A0/80 A1/B1 TxiNA/TxiNB Configuration 

0 0 No operation 
0 1 Falling edge sensitive 
1 0 Rising edge sensitive 
1 1 Rising and falling edges 

TxiNA Input TxiNB Input 
Function Function 

not used not used 
not used Trigger 

Gate not used 
Gate Trigger 

not used Ext. Clock 
Trigger not used 
Gate Ext. Clock 

Trigger Trigger 
Clock Up Clock Down 
Up/Down Ext. Clock 

Trigger Up Trigger Down 
Up/Down not used 
Autodiscr. Autodiscr. 

Trigger Ext. Clock 
Ext. Clock Trigger 

Trigger Gate 

119/219 

203 



ST9 - Multifunction Timer 

REGISTER DESCRIPTION (Continued) 

13.7.8 Prescaler Register (PRSR) 

This register holds the preset value for the 8-bit 
prescaler. The PRSR content may be modified at 
any time, but it will be loaded into the prescaler at 
the following prescaler underflow, or as a conse­
quence of a counter reload (either by software or 
upon external request). On an external RESET 
condition, the prescaler is automatically loaded 
with the DOh value, so that the prescaler divides by 
1 and the maximum counter clock is generated 
(OSCIN frequency divided by 6 when MODER.5 = 
DIV2 bit is set). 

PRSR R251 (FBh) Read/Write 
Prescaler Register 

Reset value: 0000 OOOOb (DOh) 

7 

P1 

0 

PO 

The binary value stored (by programmer) in the 
PRSR register is equal to [divider value- 1]. For ex­
ample, loading PRSR with 24 makes the prescaler 
divide by 25. 

13.7.9 Output A Control Register (OACR) 

This register selects the sources that can perform 
actions on a TxOUTA pin. TxOUTA can be driven 
from any of three possible sources: 

_ OVF/UNF being an Overflow or Underflow 
event on the U/D counter, 

_ COMPO being a successful compare event on 
CMPOR register, and 

_ COMP1 being a successful compare event on 
CMP1R. 

By programming bits BO and B1 of the relevant 
source can cause one of the following four effects 
on TxOUTA (which can be preset previously): 

80 81 Event 

0 0 Set 
0 1 Toggle 
1 0 Reset 
1 1 Nap 

Note: In any case of contemporary events the act1on Will be taken 
wh1ch results from "AND1ng· the Bt ·BO fields Through th1s reg1ster 
the act1on of COMPO on the on·ch1p event can be also selected 

OACR R252 (FCh) Read/Write 
Output A Control Reg1ster 

Reset value: xxxx xxOxb 

7 0 

81lcEVIa> 

< COMPO > < COMP1 > < OVF/UNF > 

b7-b6 = 80, 81: Control bits of COMPO. Control 
bits for event driven by COMPO. 

b5-b4 = 80, 81 : Control bits of COMP1. Control 
bits for event driven by COMP1. 

b3-b2 = 80, 81 : Control bits of OVF/UNF. Control 
bits for event driven by OVF/UNF. 

b1 = CEV: On-Chip Event on CMPOR. When th1s 
bit is set, a successful compare on CMPOR acti­
vates the on-chip event signal (a s1ngle pulse is 
generated). No action when this bit is reset. 

bO = OP: Control bit of TxOUTA preset. The value 
of this bit is the preset value of TxOUTA output p1n. 
Reading th1s bit returns the current state of the 
TxOUTA output pin (i.e. useful when this output is 
selected in toggle mode). 

_12_0_~_19----------------------~~~~;Itlg~~~~ 
204 



REGISTER DESCRIPTION (Continued) 

13.7.10 Output 8 Control Register (08CR) 

This register selects the sources that can perform 
actions on TxOUTB output pin. TxOUTB can be 
driven from any of three possible sources: 

_ OVF/UNF being an Overflow or Underflow 
event on the U/D counter, 

_ COMPO being a successful compare event on 
CMPOR register, and 

_ COMP1 being a successful compare event on 
CMP1R. 

By programming bits BO and B1 of the relevant 
source can cause one of the following four effects 
on TxOUTB (which can be previously preset): 

80 81 Event 

0 0 Set 
0 1 Toggle 
1 0 Reset 
1 1 Nop 

Note: In any case of contemporary events the act1on will be taken 
wh1ch results from "ANDing· the B1·BO fields Through th1s reg1ster 
the act1on of Overtlow/Undertlow on the on·ch1p event can be also 
selected 

08CR R253 (FDh) Read/Write 
Output B Control Register 

Reset value: xxxx xxOxb 

7 

< COMPO > < COMP1 > < OVF/UNF > 

0 

b7-b6 = 80, 81: control bits of COMPO. Control 
bits for event driven by COMPO. 

b5-b4 = 80, 81: control bits of COMP1. Control 
bits for event driven by COMP1. 

b3-b2 = 80, 81: control bits of OVF!UNF. Control 
bits for event driven by OVF/UNF. 

b1 = OEV: On-Chip Event on OVF!UNF. When this 
bit is set, a successful Overflow/Underflow acti­
vates the on-chip event signal (a single pulse is 
generated). No action when this bit is reset. 

bO = OP: control bit of TxOUTB preset. The value 
of this bit is the preset value of TxOUTB output pin. 
Reading this b1t, it returns the current state of the 
TxOUTB output pin (i.e. useful when this output is 
selected in toggle mode). 

ST9 - Multifunction Timer 

13.7.11 Flag Register(FLAGR) 

This register contains the flags of the successful 
captures or comparisons together with the Over­
flow/Underflow and overrunning indications. Also 
the mode of the Interrupt on capture can be se­
lected. By writing into the capture flags it is possi­
ble to generate software captures. It is necessary 
to clear the capture flag before subsequent 
sofware captures can be generated. By reading 
this register, user can know which source has gen­
erated an interrupt (several sources may share the 
same interrupt vector). 

FLAGR R254 (FEh) Read/Write 
Flags Register 

Reset value: 0000 OOOOb (DOh) 

7 0 

I CPO I CP1 I CMO I CM1 I aJF I OCPO I CXMJ I NJ 

b7 =CPO: Flag on Capture 0. This bit is set after a 
capture on REGOR register. Writing "1" acts as a 
software load/capture from/on REGOR. 

b6 = CP1 : Flag on Capture 1. This bit is set after a 
capture on REG1 R register. Writing "1" acts as a 
software capture on REG1 R, except when in Bi­
capture mode. 

b5 = CMO: Flag on Compare 0. This bit is set after 
a successful compare on CMPOR register. 

b4 = CM1: Flag on Compare 1. This bit is set after 
a successful compare on CMP1 R register. 

b3 = OUF: Flag on Overflow/Underflow. This bit is 
set after a counter Over/Underflow condition. 

b2 = OCPO: Flag of overrun on Capture 0. Th1s bit 
is set when more than one INT/DMA request oc­
curs before having reset the event flag CPO or 
whenever a capture is software simulated. 

b1 = OCMO: Flag of overrun on Compare 0. This 
bit is set when more than one INT/DMA request oc­
curs before having reset the event flag CMO. 

bO = AO: Capture Interrupt Function. When this bit 
is set the Interrupt is generated by an AND function 
of REGOR/REG1 R captures while when the AO bit 
is reset, the Interrupt is generated by an OR func­
tion of REGOR/REG1 R captures. 

121/219 

205 



ST9 - Multifunction Timer 

REGISTER DESCRIPTION (Continued) 

13.7.12 lnterrupt/DMA Mask Register (IDMR) 

This register contains the Global Timer Interrupt 
enable bit and the INT/DMA enable bits of the fol­
lowing events: 

- Capture on REGOR (CPO field), 

- Capture on REG1 R (CP11 bit - only Interrupt 
mask), 

- Compare on CMPOR (CMO field), 

_ Compare on CMP1 R (CM11 bit- only Interrupt 
mask), and 

_ Overflow/Underflow (OUI bit - only Interrupt 
mask). 

IDMR R255 (FFh) Read/Write 
lnterrupt/DMA Mask Register 

Reset value: 0000 OOOOb (OOh) 

7 0 

I GTIEN I CPOD I CPO! I CP11 I CM:lD I CM:ll I CM11 I aJI 

< CPO > <CP1> < CMO > <CM1> 

b7 = GTIEN: Global Timer Interrupt Enable. When 
this bit is set, all the Interrupts (of the enabled 
sources) of the timer are enabled. When the bit is 
reset, all the Interrupts of timer are disabled. 

b6 = CPOD: Capture 0 DMA Mask. Capture on 
REGOR DMA is enabled when CPOD = "1." 

b5 = CPOI: Capture 0 Interrupt Mask. Capture on 
REGOR interrupt is enabled when CPO I= "1 ". 

b4 = CP11: Capture 1 Interrupt Mask. Capture on 
REG1 R interrupt is enabled when CP11 = "1"'. 

b3 = CMOD: Compare 0 DMA Mask. Compare on 
CMPOR DMA is enabled when CMOD = "1"'. 

b3 = CMOI: Compare 0 Interrupt Mask. Compare 
on CMPOR interrupt is enabled when CMOI = "1"'. 

b1 = CM11: Compare 1 Interrupt Mask. Compare 
on CMP1 R interrupt is enabled when CM11 = "1 ". 

bO = QUI: Overflow/Underflow Interrupt Mask. 
Overflow/Underflow condition interrupt is enabled 
when OUI = "1"'. 

Note. The following Registers show in square 
brackets ([])the Register address in the case of an 
odd numbered (1, 3, 5 ... ) Multifunction Timer being 
available on-chip. If only one Timer is present 
these addresses may be ignored. 

13.7.13 DMA Counter Pointer Register (DCPR) 

This register is not used only as DMA Counter 
pointer but also to define the DMA area and the 
DMA source. 

DCPR R240 (FOh)[R244 (F4h)] Read/Write 
DMA Counter Pointer Register 

Reset value: undefined 
7 0 

b7-b2 = 07-02: MSB of DMA counter register ad­
dress. Those bits contain the most significant bits 
of the DMA counter register address and are user 
programmable. Though user programmable, the 
D2 bit may be hardware toggled if the Swap mode 
is set for the Timer DMA section related to Com­
pare 0 channel. 

b1 = DMA-SRCE: DMA source selection (hard­
ware programmed). This bit is hardware fixed by 
the Timer DMA logic and is set if the DMA destina­
tion is a Compare on CMPOR register and reset if 
the DMA source is a Capture on REGOR register. 

bO = REG/MEM: DMA area selection. When this bit 
is set, it selects the Source/Destination of the DMA 
area from/into Register File while when it is reset, 
the Source/Destination of the DMA area is from/to 
the External Program or Data Memory (according 
with the value of DO bit in DAPR). 

_12_2_12_1_g ____________ LV ~~~;IDg~g,g~ 
206 



REGISTER DESCRIPTION (Continued) 

13.7.14 DMA Address Pointer Register 
(OAP.R) 

This register is not used only as DMA Address 
pointer but also to define the DMA area and the 
DMA source. 

DAPR R241 (F1 h )[R245 (F5h)] Read/Write 
DMA Address Pointer Register 

Reset value: undefined 
7 0 

lwloolool~lrn ~~~~=~ 
b7-b2 = 07-02: MSB of DMA Address register lo­
cation. Those bits contain the most significant bits 
of the DMA Address register location and are user 
programmable. Through user programmable, the 
bit D2 may be hardware toggled if the Swap mode 
is set for the Timer DMA section related to Capture 
0 channel. 

b1 = OMA-SRCE: DMA source selection (hard­
ware programmed). This bit is hardware fixed by 
the Timer DMA logic and is set if the DMA destina­
tion is a Compare on CMPOR register and reset if 
the DMA source is a Capture on REGOR register. 

bO = PRGIOAT: DMA memory selection. When 
this bit is set it selects the Source/Destination of 
the DMA area from/into Data Memory while when it 
is reset the Source/Destination of the DMA area is 
from/into the External Program Memory (according 
with the value of DO bit in DCPR). 

REG.MEM PRG/DAT DMA Source/Destination 

0 0 Program memory 
0 1 Data memory 
1 0 Register f1le 
1 1 Register f1le 

ST9 - Multifunction Timer 

13.7.15 Interrupt Vector Register (IVR) 

This register is used as a vector pointing to the 16-
bit interrupt vectors in the program memory which 
contain the starting addresses of the three inter­
rupt subroutines managed by every timer. 

Only one Interrupt Vector Register is available for 
every timer and is able to manage the three inter­
rupt groups because the 3 least significant bits are 
fixed by hardware depending on the group which 
generated the interrupt request. 

In order to understand which request generated 
the interrupt inside the same group, the FLAGR 
register can be used to check the relevant flag of 
the interrupt source. 

IVR R242 (F2h) [R246 (F6h)] Read/Write 
Interrupt Vector Register 

Reset value: xxxx xxxOb 

7 0 

IV41V31V2Iv1 jvo W1 WJ 00 

b7-b3 = V4 - VO: MSB of the Vector address. 
These bits are user programmable and contain the 
five most significant bits of the Timer interrupt vec­
tor addresses in the program memory. In any case, 
an 8-bit address can be used to indicate the Timer 
interrupt vector locations because they are within 
the first 256 locations of the program memory (see 
Interrupt and DMA chapters). 

b2-b1 = W1 - WO: Vector Address bits. These bits 
are equivalent to bit 1 and bit 2 of the Timer inter­
rupt vector addresses in the program memory. 
They are fixed by hardware depending on the 
group of sources which generated the interrupt re­
quest as follows: 

bO = DO. This bit is fixed by hardware. It always re­
turns the value "0" if read. 

Wl wo Interrupt Source 

0 0 Overflow/Underflow even interrupts 
0 1 Not available 
1 0 Capture event interrupts 
1 1 Compare event interrupts 

123/219 

207 



ST9 - Multifunction Timer 

REGISTER DESCRIPTION (Continued) 

13.7.16 lnterrupt/DMA Control Register (IOCR) 

This register is used to control the Interrupt and 
DMA priority level, the DMA transfer source and 
destination and the Swap mode. This register con­
tains also the two End Of Block bits. 

IOCR R243 (F3h) [R247 (F7h)] Read/Write 
lnterrupt/DMA Control Register 

Reset value: 1100 0111 b (C7h) 

7 0 

I CPE I CWE I ccrs I ccm I SV~EN I PL2 I PU I PLD 

b7 = CPE: Capture 0 EOB. Th1s bit is set by hard­
ware when the End Of Block condition IS reached 
during a Capture 0 DMA operation with the Swap 
mode enabled. When the Swap mode is disabled 
(SWEN bit= "0") the CPE bit is forced by hardware 
to "1". 

b6 = CME: Compare 0 EOB. This bit is set by hard­
ware when the End Of Block condition is reached 
during a Compare 0 DMA operation with the Swap 
mode enabled. When the Swap mode is disabled 
(SWEN bit= "0") the CME bit is forced by hardware 
to "1". 

b5 = DCTS: DMA Capture Transfer Source. This 
bit selects the source of the DMA operation related 
to the channel associated to the Capture 0. When 
the DCTS bit is reset the selected source is the 
REGOR register. When the DCTS bit is set the ST9 
port is selected as DMA transfer source (with this 
DMA channel the ST9 port can also be destination 
depending on the value of the DD bit in the HDCTL 
register of the port - see 1/0 port chapter 9). 

b4 = DCTD: OMA Compare Transfer Destination. 
This b1t selects the destination of the DMA opera­
tion related to the channel associated to the Com­
pare 0. When this bit is reset, the selected 
destination is the CMPOR register. When the bit is 
set, the ST9 port is selected as DMA transfer des­
tination. 

b3 = SWEN: Swap function Enable. When this bit 
is set, the Swap function is enabled for the two 
DMA channels. Resetting the SWEN bit disables 
the Swap mode. 

b2-b0 = PL2 to PLO: lnterrupt!DMA priority level. 
With these three b1ts it is possible to select the In­
terrupt and DMA priority level of every single timer 
within eight different levels (see lnterrupt/DMA 
chapter). 

13.7.17 1/0 Connection Register (IOCR) 

This register allows user to select (or not) an on­
chip connection between input A and output A of 
one same timer. 

IOCR R248 {F8h) Read/Write 
1/0 Connection Register 

Reset value: 1111 11 OOb (FCh) 

7 

b7-b2 =not used. 

0 

b1 = SC1: Select Connection Odd. SC1 selects if 
connection between TxOUTA and TxiNA for ODD 
timers is made on-chip or externally (physically on 
pins) 

SC1 = "0": TxOUTA and TxiNA unconnected 

SC1 = "1 ": TxOUTA and TxiNA connected inter­
nally 

bO = SCO: Select Connection Even. SCO selects 1f 
connection between TxOUTA and TxiNA for EVEN 
timers is made on-chip or externally (physically on 
pins) 

SCO="O": TxOUTA and TxiNA unconnected 

SC0="1 ": TxOUTA and TxiNA connected internally 

_12_4_12_1_9 ___________ I:fi ~~~;rng~~CI~ 
208 



ST9 • Serial Communication Interface 

14 SERIAL COMMUNICATIONS INTERFACE 

14.1 INTRODUCTION 

The ST9 Serial Communications Interface (SCI) 
offers a means of full-duplex serial data transfer to 
a wide range of external equipments. 

· The SCI has the following features: 

- Full duplex character-oriented synchronous 
and asynchronous operation 

- Synchronous serial port expansion capability 

- Transmit, receive, line status, and device ad-
dress interrupt generation 

- Integral Baud Rate Generator capable of dividing 
the input clock by any value from 2 to 216-1 (16 
bit word) and generating the internal 16X clock 
for asynchronous operation or 1 X clock for syn­
chronous operation 

- Fully programmable serial-interface charac­
teristics: 

Figure 14-1. SCI Block Diagram 

- 5, 6, 7, or 8 bit word length 
- Even, odd, or no parity generation and detection 
- 1, 1-1/2, 2, 2-1/2 stop bit generation 
- False start bit detection 
- Complete status reporting capabilities 
- Line break generation and detection 

- Programmable address_indication bit (wake-up 
bit) and User invisible compare logic to support 
network communication of multiple microcom­
puters. Optional character search function. 

- Internal diagnostic capabilities: 
- Local loopback for communications link fault 

isolation 
- Auto-echo for communications link fault isolation 

- Separate interrupt/DMA channels for both 
transmit and receive 

ST9 CORE BUS 

SOUT TXCLK/CLKOUT RXCLK 

_02_·9_3 ___________ W'/ SGS-THOMSON 
• 1, . iiB~I!II!ilm~rna.m~l!iliiiUII:® 

SIN 

VA00169 

125/219 

209 



ST9 - Serial Communication Interface 

14.2 FUNCTIONAL DESCRIPTION 

SCI can run in three operational modes: 

- Asynchronous mode 

_ Synchronous mode 

_ Serial expansion mode 

Each of these three modes output data with the 
same serial frame format. The differences are de­
rived from the clock rate (1 X, 16X) and the sam· 
piing clock (for the serial expansion mode). 

Asynchronous Mode 
In this mode, data and clock can be asynchronous 
(the emitter and receiver can have their own clock 
to sample received data), each data bit is sampled 
16 times per clock period. Thus the baud rate clock 
should be set to the+ 16 Mode and the frequency of 
the clock input (from an external source or the in­
ternal baud-rate generator output) set to suit this. 

Synchronous Mode 
In this mode, data and clock are synchronous, 
each data bit is sampled once per clock period. 

Serial Expansion Mode 
This mode is used to access to an external syn­
chronous peripheral. 

The transmitter will provide the clock waveform 
only during the period that data is being transmit­
ted through CLKOUT pin (the Data Envelope). The 
data is latched on the rising edge of this clock. 

Whenever the SCI is to receive data in the serial 
port expansion mode, the clock waveform must be 
supplied externally, synchronous with the data to 
the ST9. The SCI will latch the incoming data on 
the rising edge of the receiver 1/0 expansion clock. 
The clock input is supplied on pin RXCLK. 

14.2.1 Serial Frame Format 

Figure 14-3. Asynchronous mode 

1/0lSTART BITI D~TI-A-----'-...,------1 
I I I _,6------16-
1 I I CLOC"" 

Figure 14-4. Synchronous Mode 

VA00271 

vo lLLI _~.I _jl __ o_A_TA __ .LI....LI_IL~-~-~-~T-~-~_)~ 
START BIT 

CLOCK. 

VA00272 

Figure 14-5. Serial Expansion Mode 

1/0 Ill DATA Ill 

CLOCK _j]f L 
VA00273 

Figure 14-2. Sampling Times in Asynchronous Format 

SDIN 

SDINCK 

RCVCK 

RXD 

RXCK 

l 1 : 2 
I I 

4 5 

_12_61_2_19 __________ W'/ SGS·11fOMSON 
• J, . i:'IO©G;@~~rn!:1TOJ©lllD©@ 

210 

9 : 10 : 11 : 12 : 13 : 14 : 15 : 
: ! ! ! ! ! ! 

VR001409 



FUNCTIONAL DESCRIPTION (Continued) 

Every character sent (or received) by the SCI has 
the following format: 

This format is used by the SCI in all modes: 

START: the start bit indicates the beginning of a 
data frame in the asynchronous mode. START bit 
is detected as a high to low transition 

DATA: the DATA word is programmable to be from 
5 to 8 bits long for both synchronous and asynchro­
nous modes 

PARITY: The Parity Bit is optional, and can be 
used with any length of word. It is used for error 
checking and resets in a resultant state (odd or 
even) depending on number of "1 "s in OAT A. 

ADDRESS/9TH: The Address/9th Bit is optional 
and may be added to any word format. It is used in 
both synchronous or asynchronous mode to indi­
cate that the data is an address (bit = "1 "). 
The ADDRESS/9TH bit is useful when several mi­
crocontrollers are exchanging data on the same 
serial bus. Individual microcontrollers can stay idle 
on the serial bus, waiting for a transmitted address. 
When a microcontroller recognizes its own ad­
dress, it can begin Data Reception, likewise, on the 
transmit side, the microcontroller can transmit an­
other address to begin communication with a dif­
ferent microcontroller. 

The ADDRESS/9TH bit can be used as an addi­
tional data bit or to mark control words (9th bit). 

STOP: Indicates the end of a data frame for both 
asynchronous and synchronous modes. The stop 
bit is programmed to be 1, 1.5, 2, or 2.5 bits long. It 
returns the SCI to the quiescent marking state (i.e., 
a constant high-state condition) which lasts until a 
new start bit indicates an incoming word. 

Figure 14-6. SCI Character Format 

ST9 - Serial Communication Interface 

Data transfer 
Data to be transmitted by the SCI is first loaded by 
the program into the Transmitter Buffer Register. 
The SCI will transfer the data into the Transmitter 
Shift Register when the Shift Register becomes 
available (empty). The Transmitter Shift Register 
converts the parallel data into the serial format for 
transmission through the SCI Alternate Function 
output, Serial Data Out. After the completion of the 
transfer, the transmitter buffer register interrupt 
pending bit will be updated. 
If the selected word format is less than 8 bits, the 
unused most significant bits are "don't care". 

Incoming serial data from the Serial Data Input pin is 
converted into parallel data for reception in the Re­
ceiver Shift Register. At the end of the input, the data 
portion of the received word is transferred from the 
Receiver Shift Register into the Receiver Buffer Reg­
ister. All Receiver interrupt conditions are updated at 
the time of transfer. 
If the selected character format is less than 8 bits, the 
unused most significant bits will have the value "1". 

The Frame Control and Status block creates and 
checks the character configuration (Data length 
and stop bits), and the source for the transmit­
ter/receiver clock. 

The integral Baud Rate Generator contains a pro­
grammable divide by "N" counter which can be 
used to generate the clocks for the transmitter 
and/or receiver. The baud rate generator can use 
INTCLK or the Receiver clock input RXCLK. 

The Address bit/D9 is optional and may be added 
to any word format. It is commonly used in network 
or machine control applications. When enabled 
(AB, CHCR.4 = "1 "), an address or ninth data bit 
can be added to a transmitted word by setting the 

START DATA PARITY ADDRESS STOP 

#bits 1 5,6,7,8 0,1 0,1 1,1.5,2,2.5 16X 
1,2,3 1X 

NONE ON 
states ODD OFF EVEN 

127/219 

211 



ST9 - Serial Communication Interface 

FUNCTIONAL DESCRIPTION (Continued) 

Set Address bit (SA, IDPR.S). This is then ap­
pended to the next word entered into the (empty) 
Transmitter Buffer Register and then cleared by 
hardware. 
On character input an Address Bit set can indicate 
that the data preceding the bit is an address which 
may be compared in hardware with the value in the 
Address Compare Register (ACR) to generate an 
Address Match interrupt when equal. 

The Address bit and Address Comparison Regis­
ter can also be combined to generate an Address 
Interrupt in 4 modes to suit different protocols, 
based upon the status of the Address Mode En­
able bit (AMEN, IDPR.?) and the Address Mode bit 
(AM, CHCR.?). 

Table 14-1. Address Interrupt Modes 

If 9th Data Bit = 1 

If Character Match 

If Character Match and 9th Data Bit = 1 

If Character Match on Word Immediately Following 
Break 

The character match Address Interrupt mode may 
be used as a powerful character search mode, giv­
ing an interrupt on reception of a predetermined 
character e.g. Carriage Return or End of Block 
codes. 

The Line Break condition is fully supported for both 
transmission and detection. Line Break is sent by 
setting the SET_BREAK bit (SB, IDPR.6). This 
causes the transmitter output to be held low (after 
all buffered data has been transmitted) for a mini­
mum of one complete word length and until the SB 
bit is Reset. 

Testing of the communications channel may be 
performed using the facilities of the SCI. Auto Echo 
mode (SCI SOUT disconnected, SIN pin internally 
connected to SOUT pin) and Loopback mode (SCI 
transmitter and receiver sections disconnected 
from SOUT and SIN pins and directly connected 
internally) may be used individually or together. 

128/219 

212 

Figure 14-7. Auto Echo Configuration 

( 
SOUl 

SIN 

VR000210 

Figure 14-8. Loop Back Configuration 

LOGICAL 1 i SOUl 

SIN 

VR000211 

Figure 14-9. Auto Echo and Loop Back Config. 

VR000212 



FUNCTIONAL DESCRIPTION (Continued) 

14.2.2 Clocks And Serial Transmission Rates 

The communication bit frequency of the SCI trans­
mitter and receiver sections can be provided from 
the integral Baud Rate Generator (allowing a maxi­
mum asynchronous bit rate of 350k Baud) or from 
external sources (maximum bit rate 175k Baud). 
This clock is divided by 16 for asynchronous mode 
(CD, CCR.3, = "0"), or divided by 1 for synchronous 
modes (CD= "1 "). 

External Clock Sources. The External Clock in­
put pin TXCLK may be programmed by bits TXCLK 
(CCR.7) and OCLK (CCR.6) to be: the transmit 
clock input (respecting the + 16 and + 1 timing re­
quirements), to act as the output of the Baud Rate 
Generator (allowing an external divider circuit to 
provide the receive clock for split rate transmit and 
receive e.g. 1200/75 baud), or to be CLKOUT, the 
clock output for the synchronous mode. 
The Receive clock input via RXCLK input function 
is enabled by the XRX bit CCR.5, this input should 
be set according to the setting of the CD bit. 

Baud Rate Generator. The integral Baud Rate 
Generator is a 16-bit programmable divide by "N" 
counter which can be used to generate the clocks 
for the transmitter and/or receiver. The minimum 
baud rate divisor is 2 and the maximum divisor is 
216-1. After initialization of the baud rate generator, 
the divisor value is immediately loaded into the 
counter. This prevents potentially long random 
counts on the initial load. 

Baud Rate generator frequency = Input Clock fre­
quency/Divisor 

WARNING. Programming the baud rate division to 
0 or 1 will stop the divisor. 
The output of the baud generator has an exact 
50% duty cycle. The output can provide either the 
16X clock for asynchronous operation or a 1 X 
clock for synchronous and serial port expansion 
modes for the receiver and the transmitter. An ad­
ditional divide by 16 may be appropriate to com­
pute the SCI data rate if in this normal operating 
mode. 

The Baud Rate generator can use INTCLK for the 
input clock source. In this case, INTCLK should be 
chosen to provide a suitable frequency for division 

ST9 - Serial Communication Interface 

by the Baud Rate Generator to give the required 
transmit and receive bit rates. 
Suitable INTCLK frequencies and the divider val­
ues for standard Baud rates are shown in Ta­
ble 14-2. 

Notes: 

1) Writing to a Baud Rate Generator Register im­
mediately disables and resets both the SCI baud 
rate generator, the transmitter and receiver cir­
cuitry. After writing to the remaining Baud Rate 
Generator Register, the transmitter and receiver 
circuits are enabled. The Baud Rate generator will 
load the new value and start counting. 

Thus to initialize the SCI, the user should first in­
itialize one Baud Rate Generator Divisor Register. 
This will reset all SCI circuitry. Initialize all other 
SCI registers for the desired operating mode, and 
then, to enable the SCI, initialize the remaining 
Baud Rate Generator Register. 

2) For synchronous receive operation, the data 
and receive clock must not have significant skew 
between clock and data. The received data and 
clock are internally synchronized to INTCLK clock. 

For synchronous transmit operation, a general pur­
pose 1/0 port pin must be programmed to output 
the CLKOUT signal from the baud rate generator. 
If the SCI is provided with an external transmission 
clock source, there will be a skew equivalent to two 
INTCLK periods between clock and data. 

The synchronous data will be transmitted on the 
fall of the transmit clock. The synchronous re­
ceived data will be latched into the SCI on the ris­
ing edge of the provided receive clock. 

The maximum data transfer rate is in synchronous 
mode (1x mode): 

- Maximum bit rate = INTCLK/8 = 12MHz/8 = 1.5 
Mbit/s 

- Maximum byte rate = 1.5 Mbit/1 0 = 150 Kby­
tes/s 

(one byte = 8 bits of data+ 1 stop bit+ 1 start bit= 
10 bits) 

r== SGS·niOMSON -------------- &."1/, lllD~£:mJ©Jrn~rn~£:vC'J©Jii!J~£:~ 
129/219 

213 



ST9 - Serial Communication Interface 

FUNCTIONAL DESCRIPTION (Continued) 

Table 14-2. SCI Baud Rate Generator Divider Values 

INTCLK: 7680.000 KHz 

Desired Freq Divisor Actual Baud Actual Freq 
Baud Rate Clock Factor 

(kHz) Rate (kHz) 
Deviation 

Dec Hex 

50.00 16X 0.80000 9600 2580 50.00 0.80000 0.0000% 

75.00 16X 1.20000 6400 1900 75.00 1.20000 0.0000% 

110 00 16X 1.76000 4364 110C 109.99 1.75985 0.0083% 

300 00 16X 4.80000 1600 0640 300 00 4 80000 0.0000% 

600 00 16X 9.60000 BOO 0320 600.00 9 60000 0 0000% 

1200.00 16X 19.20000 400 0190 1200.00 19.20000 0.0000% 

2400.00 16X 38.40000 200 OOCB 2400.00 38.40000 0.0000% 

4800.00 16X 76.80000 100 0064 4800.00 76.80000 0.0000% 

9600.00 16X 153.60000 50 0032 9600.00 153.60000 0.0000% 

19200.00 16X 307.20000 25 0019 19200.00 307 20000 0.0000% 

38400.00 16X 614.40000 13 OOOD 36923.08 590 76923 3.8462% 

76800.00 16X 1228.80000 6 0006 80000.00 1280 00000 4.1667% 

INTCLK: 11059.20 kHz 

Desired Freq Divisor Actual Baud Actual Freq 
Baud Rate Clock Factor 

(kHz) Rate (kHz) 
Deviation 

Dec Hex 

50.00 16X 0.80000 13824 3600 50 00 0.80000 0.0000% 

75.00 16X 1.20000 9216 2400 75.00 1 20000 0.0000% 

110.00 16X 1.76000 6284 1BBC 109.99 1.75990 0.0058% 

300.00 16X 4.80000 2304 0900 300.00 4 80000 0.0000% 

600 00 16X 9.60000 1152 0480 600.00 9.60000 0 0000% 

1200.00 16X 19.20000 576 0240 1200 00 19.20000 0 0000% 

2400.00 16X 38 40000 288 0120 2400 00 38 40000 0.0000% 

4800.00 16X 76.80000 144 0090 4800.00 76.80000 0.0000% 

9600.00 16X 153.60000 72 0048 9600.00 153.60000 0.0000% 

19200.00 16X 307.20000 36 0024 19200.00 307 20000 0.0000% 

38400.00 16X 614.40000 18 0012 38400.00 614.40000 0 0000% 

76800 00 16X 1228 80000 9 0009 76800.00 1228.80000 0 0000% 

_13_0_12_1_9 ____________ I.:fi ~~~;Tit~:~~: 
214 



FUNCTIONAL DESCRIPTION (Continued) 

14.2.3 Input Signals 

SIN: Serial Data Input. This pin is the serial data 
input to the SCI receiver shift register. 

TXCLK: External Transmitter Clock Input. This 
pin is the external input clock driving the SCI trans­
mitter. The TXCLK frequency must be greater than 
or equal to 16 times the transmitter data rate (de­
pending on the selection of X16 or X1 clock operat­
ing mode). The use of the TXCLK pin is optional. 

RXCLK: External Receiver Clock Input. This in­
put is the clock to the SCI receiver when using an 
external clock source to the SCI baud rate gener­
ator. INTCLK is normally the clock source. A 50/50 
duty cycle is not required for this input, however, 
the short period must last more than two INTCLK 
periods. The use of the RXCLK pin is optional. 

14.2.4 Output Signals 

SOUT: Serial Data Output. This Alternate Func­
tion output signal is the serial data output from the 
SCI transmitter shift reg1ster. 

CLKOUT: Clock Output. The Alternate Function 
of this p1n outputs either the data clock from the 
transmitter to an external shift register in the serial 
expansion mode or the clock output from the Baud 
rate generator. In serial expansion mode it will 
clock only the data portion of the frame. The data is 
valid on the rising edge of the clock. The CLKOUT 
idle state is low. 

ST9 - Serial Communication Interface 

14.3 INTERRUPTS AND DMA 

14.3.1 Interrupts 

The SCI is able to generate interrupts from multiple 
sources. Receive Interrupts include data pending, 
receive errors (overrun, framing and parity), ad­
dress or break pending. Transmit interrupts are 
software selectable for either the Transmit Holding 
Register Empty (HSN, IMR.7 = "1 ") or for the 
Transmit Shift Register Empty (HSN = "0"). 

Typical Usage of the Interrupts provided by the SCI 
is shown in Figure 14-10. 

The SCI is able to generate interrupt requests on 
1 0 events. Several of these events share the same 
interrupt vector, so it is necessary to poll ISR, the 
Interrupt Status Register, to determine the active 
trigger. These bits should be reset by the program­
mer during the Interrupt Service routine. 

The four major levels of interrupt are encoded in 
hardware to provide two bits of the interrupt vector 
register, allowing the position of the block of 
pointer vectors to be resolved to a block size of 8 
bytes. 

Table 14-3. SCI Interrupt Vector 

Interrupt Source Vector Address 

Transmitter Buffer or 
Shift Reg1ster Empty XXX X110 
Transmit DMA end of Block 

Rece1ved Ready 
xxxx x100 

Rece1ve DMA end of Block 

Break Detector 
xxxx x010 Address Word Match 

Rece1ver Error xxxx xOOO 

The SCI interrupts have an internal priority struc­
ture in order to resolve simultaneous events. 

Table 14·4. SCI Interrupt Internal Priority 

Receive DMA Request 

Transmit DMA Request 

Receive Interrupt 

Transmit Interrupt 

Highest Priority 

Lower Pnority 

r== SGS·ntOMSON -------------- A."'f/, [i;!i]U~lm:Q)Lm,m~iRl@~Cle$ 
131/219 

215 



ST9 - Serial Communication Interface 

INTERRUPTS AND DMA (Continued) 

Figure 14-10. SCI Interrupt Typical Usage 

ADDRESS AfTER BREAK CONDITION 

ADDRESS DATA 

NO MATCH 

BREAK ADDRESS DATA DATA DATA BREAK 
INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT 

ADDRESS WORD MARKED BY D9=1 

DATA ADDRESS ADDRESS DATA 

MATCH NO MATCH 

ADDRESS DATA DATA DATA 
INTERRUPT INTERRUPT INTERRUPT INTERRUPT 

CHARACTER SEARCH MODE 

~~D~A~T~A--t--~D~A~TA~-t--~M~AT~C~H~t--~D~A~TA~-tt--~D~A~TA~--~D~A~TA~~ 

DATA DATA CHAR DATA DATA DATA 
INTERRUPT INTERRUPT MATCH INTERRUPT INTERRUPT INTERRUPT 

INTERRUPT 

D9 ACTING AS DATA CONTROL WITH SEPARATE INTERRUPT 

DATA DATA D9-1 DATA DATA 

f 
DATA 

DATA DATA D9=1 DATA DATA DATA 
INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT 

VA00270 

_13.:..2.:../2_1..:.9 _____________ ~ ~~~~mgT:C\l~n 

216 



INTERRUPTS AND DMA (Continued) 

14.3.2 DMA 

Two DMA channels are associated with the SCI, 
for transmit and for receive. These follow the regis­
ter scheme as described in DMA chapter. It should 
be noted that, after initializing the DMA counter 
and pointer registers and enabling DMA, data 
transmission is triggered by a character written into 
the Transmit Holding register. 

When DMA is active the Receive Data Pending bit 
(RXDP, ISR.2), and the Transmit status bit interrupt 
sources are replaced by the DMA End Of Block Inter­
rupt sources for transmit and receive, respectively. 

The last DMA data word of a block of data will 
cause a DMA cycle followed by a transmit inter­
rupt. This sequence will signal to the ST9 core to 
reinitialize the transmit DMA block counter. The 
Transmit End of Block status bit (TXEOB) should 
be reset by software in order to avoid undesired in­
terrupt routines, especially in the initialisation rou­
tine (after reset) and after entering the End Of 
Block interrrupt routine. 

Similarly the last DMA data word of a block of data 
will cause a DMA cycle followed by a receiver data 
ready interrupt. This sequence will signal to the 
ST9 core to reinitialize the receiver DMA block 
counter. The Received End of Block status bit 
(RXEOB) should be reset by software in order to 
avoid undesired interrupt routines, especially in the 
initialisation routine (after reset) and after entering 
the End Of Block interrupt routine. 

Remark: If properly initialized, the DMA controller 
starts a data transfer after and only if the running 
program has loaded the Transmitter Buffer Regis­
ter with a value. In order to execute properly a DMA 
transmission, the End Of Block interrupt routine 
must include the following actions: 

_ Load the Transmitter Buffer Register (TXBR) 
with the first byte to transmit. 

_ Restore the DMA counter (TDCPR) 

_ Restore the DMA pointer (TDAPR) 

_ Reset the transmitter end of block bit TXEOB 
(IMR.5) 

_ Reset the transmitter holding empty bit TXHEM 
(ISR.1) 

- Enable DMA 

ST9 - Serial Communication Interface 

14.4 CONTROL REGISTERS 

The relative pages of the SCI in the ST9 are: 

_ SCI number 1: page 24 (18h) 

_ SCI number 2: page 25 (19h) (when available) 

The SCI is controlled by the following registers: 

Address Register 

R240 (FOh) Receiver DMA Transaction 
Counter Pointer Register 

R241 (F1h) Receiver DMA Source Address 
Pointer Register 

R242 (F2h) Transmitter DMA Transactron 
Counter Pointer Register 

R243 (F3h) Transmitter DMA Destination 
Address Pointer Register 

R244 (F4h) Interrupt Vector Register 

R245 (F5h) Address Compare Register 

R246 (F6h) Interrupt Mask Register 

R247 (F7h) Interrupt Status Register 

R248 (FBh) Receive Buffer Register same 
Address as Transmitter Buffer 
Register (Read Only) 

R248 (F8h) Transmitter Buffer Register 
same Address as Receive Buffer 
Register (Write only) 

R249 (F9h) lnterrupVDMA Priority Register 

R250 (FAh) Character Configuration Register 

R251 (FBh) Clock Configuration Register 

R252 (FCh) Baud Rate Generator Register 

R253 (FDh) Baud Rate Generator Register 

R254 (FEh) Reserved 

R255 (FFh) Reserved 

133/219 

217 



ST9 - Serial Communication Interface 

CONTROL REGISTERS (Continued) 

RDCPR R240 (FOh) Read/Write 
Receiver DMA Transaction Counter Pointer 

Reset value: undefined 

7 0 

b7-b1 = RC7-RC1: Receive DMA Counter Pointer. 
RDCPR contains the address of the pointer (in the 
Register File) of the DMA recerver transaction 
counter. 

bO = RR/M: Receiver Register File/Memory Selec­
tor. If this bit = "1" the Register File will be selected 
as Destination. if this bit = "0" the Memory space 
will be selected. 

RDAPR R241 (F1 h) Read/Write 
Receiver DMA Source Address Pointer 

Reset value: undefined 

7 0 

lool~l~l~l~l~l~l~l 
b7-b1 = RA7-RA1: Receive DMA Address Pointer. 
RDAPR contains the address of the pointer (in the 
Register File) of the recerver DMA data source. 

bO = RD/P: Receive DMA Data/Program Memory 
Selector. If memory (RR/M = "0") has been se­
lected for DMA transfers, when this bit = "1" re­
ceiver DMA transfers will go to Data Memory. If thrs 
bit = "0" receiver DMA transfers will go to Program 
Memory. 

TDCPR R242 (F2h) Read/Write 
Transmitter DMA Transaction Counter Pointer 

Reset value: undefined 

7 0 

IIDiml~l~l~l~lml~l 
b7-b1 = TC7-TC1: Transmitter DMA Counter 
Pointer. TDCPR contains the address of the 
pointer (in the Register File) of the DMA transmitter 
transaction counter. 

bO =TRIM: Transmitter Register File/Memory Se­
lector. If this bit = "1" the Register File will be se­
lected as Source, if thrs bit= "0" the Memory space 
will be selected. 

TDAPR R243 (F3h) Read/Write 
Transmitter DMA Destination Address Pointer 

Reset value: undefined 

7 0 

lwl~l~l~lool~lwl~l 
b7-b1 = TA7-TA1: Transmitter DMA Address 
Pointer. TDAPR contains the address of the 
pointer (in the Register File) of the transmitter DMA 
data source. 

bO = TD/P: Transmitter DMA Data/Program Mem­
ory Selector. If memory (TRIM = "0") has been se­
lected for DMA transfers, when this bit = "1" 
transmitter DMA transfers come from Data Mem­
ory. If this bit= "0" transmitter DMA transfers come 
from Program Memory 

IVR R244 (F4h)Read/Write 
Interrupt Vector Register 

Reset value: undefined 

7 0 

I V?l vGI vsl v4 1 V31EV21 811 1 ° 
b7-b3 = V7-V3: SCI Interrupt Vector Base Ad­
dress. User programmable interrupt vector bits for 
transmitter and receiver 

b2-b1 = EV2-EV1: Encoded Interrupt Source 
(Read only). EV2 and EV1 are set by hardware ac­
cording to the interrupt source. 

EV2 EV1 Interrupt source 

0 0 
Recerver Error 
(Overrun. Framing, Parity) 

0 1 
Break detect or 
address match 

1 0 
Receiver data ready/receiver 
DMA End of Block 

T ransm rtter buffer or 
1 1 shrft register empty 

transmitter DMA End of Block 

bO =DO: This bit is fixed by hardware. It always re­
turns the value "0" when read. 

_13_4_12_1_9 ____________ ~ ~~~;~~,~~,g~ 

218 



CONTROL REGISTERS (Continued) 

ACR R245 (F5h) Read/Write 
Address/Data Compare Register 

Reset value: undefined 

7 0 

l~lgl~lol~l~l~l~l 
b7-b0 = AC7-ACO: Address/Compare Character. 
With either 9th bit address mode, address after 
break mode, or character search, the received ad­
dress will be compared to the value stored in this 
register. When a valid address matches this regis­
ter content, the Receive Address Pending bit is set. 
After the RXAP bit is set in an addressed mode all 
received data words will be transferred to the Re­
ceiver Buffer Register. 

IMR R246 (F6h) Read/Write 
Interrupt Mask Register 

Reset value: Oxxo OOOOb 

7 0 

I ~ I RXEa311XECBI RXE I RXA I RXB I RXDI 11XDI I 
b7 = HSN: Holding or shift register empty interrupt. 
This bit selects the source of interrupt/DMA as the 
transmitter register empty event. If this bit is set to 
"1 ", a holding register empty will generate a trans­
mitter register empty interrupt. 
If this bit has a "0" value, a shift register empty will 
generate a transmitter register empty interrupt. 

b6 = RXEOB: Received End of Block. This bit is set 
after a receiver DMA cycle to mark the end of a 
block of data. The last DMA data word will cause a 
DMA cycle followed by a receiver data ready inter­
rupt. This sequence will signal to the ST9 core to 
reinitialize the receiver DMA block counter. 
RXEOB should be reset by software in order to 
avoid undesired interrupt routines, especially in the 
initialisation routine (after reset) and after entering 
the End Of Block interrupt routine. 

ST9 - Serial Communication Interface 

Writing "0" in this bit will cancel the interrupt re­
quest. 

Note. RXEOB can only be written with a "0" 
(RXEOB =set only by the ST9 core): 

b5 = TXEOB: Transmitter End of Block. This bit is 
set in a transmitter DMA cycle to mark the end of a 
block of data. The last DMA data word will cause a 
DMA cycle followed by a transmitter interrupt. This 
sequence will signal to the ST9 core to reinitialize 
the transmitter DMA block counter. TXEOB should 
be reset by software in order to avoid undesired in­
terrupt routines, especially in initialisation routine 
(after reset) and after entering the End Of Block in-
terrrupt routine. · 
Writing "0" in this bit will cancel the interrupt re­
quest. 

Note. TXEOB can only be written with a 0 (TXEOB 
is set only by the ST9 core) 

b4 = RXE: Receiver Error Mask. When this bit is 
set to "0", the receiver error bits: Overrun Error 
(OE), Parity Error (PE), and Framing Error (FE), 
cannot generate an interrupt. 

b3 = RXA: Receiver Address Mask. When this bit 
is set to "0", the Receiver Address Pending (RXAP) 
bit cannot generate an interrupt. 

b2 = RXB: Receiver Break Mask. When this bit is 
set to "0", the Receiver Break Pending (RBP) bit 
cannot generate an interrupt. 

b1 = RXDI: Receiver Data Interrupt Mask. When 
this bit is set to "0", the Receiver Data Pending 
(RDP) bit and the Receiver End of Block (RXEOB) 
bit cannot generate an interrupt. RXDI has no ef­
fect on DMA transfers. 

bO = TXDI: Transmitter Data Interrupt Mask. When 
this bit is set to "0", neither the Transmitter Holding 
or Shift Register Empty (TXHEM) bit or the Trans­
mitter. End of Block (TXEOB) bit can generate an 
interrupt. TXDI has no effect on DMA transfers. 

---------------------------- ~~~~~~~~~~~ --------------~------~1_35_~_1_9 
219 



ST9 - Serial Communication Interface 

CONTROL REGISTERS (Continued) 

ISR R247 (F7h) Read/Write 
Interrupt Status Register 

Reset value: undefined 

7 0 

I a= I FE I PE I RXAP I RXBP I RXDP ln<HBv11n<sBv11 
b7 ~ OE: Overrun Error Pending. This bit is set to a 
logic "1" if the data in the Receiver Buffer Register 
was not read by the CPU before the next character 
was transferred into the Receiver Buffer Register 
(the previous data is lost). It is cleared by writing a 
zero into OE. 

b6 ~ FE: Framing Error Pending bit. This bit is set 
to a logic "1" if the received data word did not have 
a valid stop bit. It is cleared by writing a zero to the 
bit. In the case where a framing error occurs when 
the SCI is programmed in an address mode, and is 
monitoring for an address, this interrupt is asserted 
and the corrupted data element is transferred to 
the Receiver Buffer Register. 

b5 ~ PE: Parity Error Pending. This bit is set to a 
logic "1" if the received word did not have the cor­
rect even or odd parity bit. It is cleared by writing a 
zero into PE. 

b4 ~ RXAP: Receiver Address Pending. RXAP is 
set to "1" after an interrupt acknowledged in the ad­
dress mode. The source of this interrupt is given by 
the couple of b1ts (AMEN, AM) as detailed in the 
"lnterrupt/DMA Priority Register" description. 
RXAP is cleared by software. 

b3 ~ RXBP: Receiver Break Pending bit. This bit is 
set to a logic "1" if the received data input is held 
low for the full word transmission time (start bit, 
data bits, parity bit, stop bit). It is cleared by writing 
a zero into RXBP. 

b2 ~ RXDP: Receiver Data Pending bit. This bit is 
set to a logic "1" when data is loaded into the Re­
ceiver Holding Register. It is cleared by writing a 
zero into RXDP. 

b1 ~ TXHEM: Transmitter buffer register Empty. 
This bit is set to a logic "1" if the Holding Register is 
empty. It is cleared by writing a zero into TXHEM. 

bO ~ TXSEM: Transmitter Shift Register Empty. 
This bit is set to a logic "1" if the Shift Register has 
completed the transmission of the available data. It 
is cleared by writing a "0" into TXSEM. 

Note. 
The Interrupt Status Register bits can be reset by 

writing a "0" but it is not possible to write a "1" into 
any bit in this register. It is mandatory to clear the 
interrupt source by writing a "0" in the pending bit 
when executing the interrupt service routine. 

When serv1c1ng an interrupt routine, the User 
should reset ONLY the pending bit relative to the 
serviced interrupt routine (and not reset the other 
pending bits). 

RXBR R248 (FBh) Read only 
Receive Buffer Register 

Reset value: undefined 

7 0 

1~1~1~1~1~1~1~1~1 
b7-b0 ~ RD7-RDO: Received Data. This register 
stores the data portion of the received word. The 
data will be transferred from the Receiver Shift 
Register into the Receiver Buffer Register at the 
end of the word. All receiver interrupt conditions 
will be updated at the time of transfer. If the se­
lected character format is less than 8 bits, unused 
most significant bits will forced to "1 ". 

TXBR R248 (F8h) Write only 
Transmitter Buffer Register 

Reset value: undefined 

7 0 

l~lmi~I~I~I~IIDI~I 
b7-b0 ~ TD7-TDO: Transmit Data. The ST9 core will 
load the data for transmission into this register. The 
SCI will transfer the data from the buffer into the Shift 
Register when available. At the transfer, the Trans­
mitter Buffer Register interrupt is updated. If the se­
lected word format is less than 8 bits, the unused 
most significant bits are not significant. 

_13_6_~_1_9 _______________________ ~~~~;~~~~?~ 

220 



CONTROL REGISTERS (Continued) 

IDPR R249 (F9h) Read/Write 
lnterrupt/DMA Priority Register 

Reset value: undefined 

7 0 

I Mv£NI ffi I M I RXD llXD I ffi21 M 1 I PP<-0 I 
b7 =AMEN: Address Mode Enable. This bit, with 
AM (R250), decodes the desired addressing/9th 
data bit/character match operation. 

AMEN AM 
0 0 Address interrupt 1f 9th data b1t =1 

0 1 Address mterrupt 1f character match 

1 0 
Address mterrupt 1f character match 
and 9th data b1t = 1 

1 1 
Address interrupt if character match 
with word immediately followmg Break 

In an addressed mode the SCI will monitor the in­
put serial data until its address is detected. 

Upon reception of address, the RXAP bit (in the In­
terrupt Status Register) is set and an interrupt cycle 
can begin. The address character will not be trans­
ferred into the Receiver Buffer Register but, all data 
following the matched SCI address and preceeding 
the next address word will be transferred to the Re­
ceiver Buffer Register and the proper interrupts up­
dated. If the address does not match, all data 
following this unmatched address will not be trans­
ferred to the Receiver Buffer Register. 

In any of the cases the RXAP bit must be reset by 
software before the next word is transferred into 
the Buffer Register. 

When AMEN= "0" and AM= "1 ", a useful character 
search function is performed. This allows the SCI 
to generate an interrupt whenever a specific char­
acter is encountered (e.g. Carriage Return). 

b6 = SB: Set Break. If this bit is set, a break will be 
transmitted following the transmission of all data in 
the Transmitter Shift Register and the Buffer Regis-

ST9 - Serial Communication Interface 

ter. The break will be a "0" value on the transmitter 
data output for at least one complete word format. 
If software does not reset SB before the minimum 
break length has finished, the break condition will 
continue until software resets SB. The SCI termi­
nates the break condition with a "1" on the trans­
mitter data output for one transmission clock 
period. 

b5 = SA: Set Address. If an address/9th data bit 
mode is selected, SA value will be loaded for trans­
mission. Setting this bit indicates an address word. 
SA will be cleared by hardware after it is loaded 
into the Shift Register. Proper procedure would be, 
when the Transmitter Buffer Register is empty, to 
load the value of SA and then load the data into the 
Transmitter Buffer Register. 

b4 = RXD: Receiver DMA Mask. If this bit is "0", no 
receiver DMA request will be generated, and the 
RXDP bit in the Interrupt Status Register can re­
quest an interrupt. If RXD is set to "1 ",the RXDP bit 
can request a DMA transfer. This bit is reset by 
hardware when the transaction counter value dec­
rements to zero. At that time a receiver "end of 
block" interrupt can occur. 

b3 = TXD: Transmitter DMA Mask. If this bit is "0" 
no transmitter DMA request will be generated and 
the TXHEM (or TXSEM) bit in the Interrupt Status 
Register can request an interrupt. If TXD is set, the 
TXHEM (or TXSEM) bit can request a DMA trans­
fer. This bit is reset by hardware when the transac­
tion counter value decrements to zero. At that time 
a transmitter End Of Block interrupt can occur. 

b2-b0 = PRL2, PRL2, PRLO: SCI lnterrupt!DMA 
Priority bits. The priority for the SCI is encoded with 
(PRL2,PRL 1 ,PRLO). A priority value of 0 has the 
highest priority, a value of 7 has no priority. 

When user has defined a priority level for the SCI, 
priorities inside the SCI are hardware defined. 
These SCI internal priorities are: 

rece1ver DMA request higher pnority 
transmitter DMA request 
rece1ver Interrupt 
transmitter Interrupt lower pnonty 

137/219 

221 



ST9 - Serial Communication Interface 

CONTROL REGISTERS (Continued) 

CHCR R250 (FAh) Read/Write 
Character Configuration Register 

Reset value: undefined 

7 0 

b7 =AM: Address Mode. decodes the desired ad­
dressing/9th data bit/character match operation in 
conjunction with AMEN (IDPR.7, R249). 

b6 = EP: Even Parity. When parity is enabled, this 
bit selects between even or odd parity. If this bit is 
equal to "0", odd parity will be selected. If this bit is 
equal to "1 ", even parity will be selected. 

b5 = PEN: Parity Enable. When this bit is equal to 
"1 ", a parity bit is generated (transmit data) or 
checked (received data) between the last word bit 
and the stop bits. If the address/9th bit is enabled, 
the parity bit will precede the address/9th bit 
(The parity bit is used to produce an even or odd 

number of 1 's when the parity bit and all data bits 
are summed. The 9th bit is never included in the 
parity calculation). 

b4 = A8: Address/9th Bit. If this bit equals "1" the 
transmit and receive character format will include a 
bit between the parity bit and the first stop bit. This 
bit can be used to address the SCI or as a ninth 
data bit. 

b3-b2 = S81-S82: Stop Bits. This bit field specifies 
the number of stop bits to be included in the data 
format 

582 581 
Number of stop bits 

in 16Xmode in 1X mode 

0 0 1 1 
0 1 1.5 2 
1 0 2 2 
1 1 2.5 3 

b1-b0 = WL 1, WLO: These two bits specify the 
number of data bits in each transmitted or received 
character. The following table shows the coding of 
WL. 

WL1 WLO Data Length 
0 0 5 bits 
0 1 6 bits 
1 0 7 bits 
1 1 8 bits 

CCR R251 (FBh) Read/Write 
Clock Configuration Register 

Reset value: 0000 0000 (OOh) 

7 0 

I xraJ<I cnK I XRX I XBffi I co I AEN ILBEN I ~1 
b7 = XTCLK: 

b6 = OCLK: These two bits select the source for 
the transmitter clock. The following table shows the 
coding of XTCLK and OCLK. 

XTCLK OCLK Pin Function 

0 0 Pin is used as a general I/O 
0 1 Pm = TXCLK (used as an input) 
1 0 Pin= CLKOUT (outputs the 

Baud Rate Generator clock) 
1 1 Pin= CLKOUT (outputs the 

Senal exp. mode clock) 

b5 = XRX: External Receiver Clock Source. If this 
bit is "1 ", the receiver will use the external receiver 
clock pin for its clock source. The external clock 
must be equal to 16 times the data rate or equal to 
the data rate depending on the bit CD. 

b4 = X8RG: Baud Rate Generator Clock Source. If 
this bit is "1 ", the baud rate generator will use the 
external receiver clock pin for its clock source. If 
this bit is "0", the baud rate generator will use the 
ST9 system clock (INTCLK). 

b3 = CD: Clock Divisor. If CD = "1 ", both the re­
ceiver and the transmitter will be in 1 X clock mode. 
In 1 X clock mode, the transmitter will transmit data 
at one data bit per clock period. If this bit is "0", both 
the receiver and the transmitter will be in 16X 
mode. In 16X mode each data bit period will be 16 
clock periods long. 

The CD value will determine the synchro­
nous/asynchronous SCI configuration mode. 

b2 = AEN: Auto Echo Enable. If AEN = "1 ",the SCI 
is in auto echo mode. In this mode the SCI trans­
mitter is disconnected from the transmitter data­
out pin (SOUT). The transmitter data-out pin 
(SOUT) is driven directly by the receiver data-in pin 
(SIN). The receiver remains connected to the re­
ceiver data-in pin (SIN) and is operational, unless 
loopback mode is also selected. 

_13_8_12_1_9 ____________ I:ii ~~~~.;m~::~~~~ 
222 



CONTROL REGISTERS (Continued) 

b1 = LBEN: Loopback Enable. If this bit is set to 
"1 ",the loopback mode is enabled. In this mode the 
transmitter output is set to "1 ", the receiver input is 
disconnected, and the output of the Transmitter 
Shift Register is looped back into the Receiver 
Shift Register input. All interrupt sources for both 
the transmitter and the receiver are operational. 

bO = STPEN: Stick Parity Enable. If this bit is set to 
"1 ", the transmitter and the receiver will use the op­
posite parity type selected by the even parity bit 
(EP). 

EP SPEN Parity 
(Transmitter & Rece1ver) 

0 (odd) 0 Odd 
1 (even) 0 Even 
o (odd) 1 Even 
1 (even) 1 Odd 

Figure 14-11. SCI Functional Scheme 

D = MULTIPLEXER D EXTERNAL PIN 

ST9 - Serial Communication Interface 

BRGHR R252 (FCh) Read/Write 
Baud Rate Generator Register, High byte. 

Reset value: undefined 

15 8 

BRGLR R253 (FDh) Read/Write 
Baud Rate Generator Register, Low byte. 

Reset value: undefined 

7 0 

b15-b0: The Baud Rate generator is a programma­
ble divide by "N" counter which can be used to gen­
erate the clocks for the transmitter and/or receiver. 
This counter divides the clock input by the value in 
the Baud Rate Generator Register. The minimum 
baud rate divisor is 2 and the maximum divisor is 
216-1. After initialization of the baud rate generator, 
the divisor value is Immediately loaded into the 
counter. This prevents potentially long random 
counts on the initial load. 
If set to 0 or 1, the Baud Rate Generator is stopped. 

VR000209 

---------------~ ~~~;TI!~J~:~~ 139/219 

223 





15 A/D CONVERTER 

15.1 INTRODUCTION 

The Analog to Digital Converter (AID) is comprised 
of an 8 channel multiplexed input selector and a 
Successive Approximation converter. The conver­
sion time is thus a function of the INTCLK fre­
quency; for the maximum 12MHz clock rate, 
conversion of the selected channel requires 11 JlS. 
This time also includes the 31-!s of the integral Sam­
ple and Hold circuitry, which minimizes the need 
for external components and allows quick sam­
pling of the signal for the minimum warping effect 
and Integral conversion error. 
The resolution of the converted channel is 8 bits, 
with ±1/2 LSB maximum DNL error between the 
Analog Vss and VDD references. 

The converter uses a fully differential analog input 
configuration for the best noise immunity and pre­
cision performance, along with two separate sup­
ply references, allowing the best supply noise 
rejection and possible analog references lower 

Figure 15-1. Block Diagram 

ST9 - A/D Converter 

than the Digital Vee. In fact, the converted digital 
value, is referred to the Analog Vee (AVec) as the 
full scale value, so that using, for example a value 
of 4 Volt for this supply, all conversions will accord­
ingly refer to this 4 Volt full scale value (AVss = Vss 
mandatory). 

Up to 8 multiplexed Analog Inputs are available. A 
group of signals can be converted sequentially by 
simply programming the starting address of the 
first analog channel to be converted and using the 
AUTOSCAN feature. 

Two Analog Watchdogs are provided, on analog 
input channels 6 and 7, allowing a continuous 
hardware monitoring of these two inputs. An alarm 
Interrupt request will be generated whenever the 
converted value of either of these two analog in­
puts exceed one of the two programmed threshold 

H INTERRUPT UNIT I INT. VECTOR POINTER 
I INT. CONTROL REGISTER 

INTERNAL 

TRIGGER 

EXTERNAL 

TRIGGER 

I--

l--

r-

CONTROL 

LOGIC 

CONTROL REG H 

i 
COMPARE RESULT REGISTER 
THRESHOLD REGISTER 7U 

COMPARE LOGIC THRESHOLD REGISTER 7L 
THRESHOLD REGISTER 6U 
THRESHOLD REGISTER 6L 

OA TA REGISTER 7 CONVERSION 

DATA REGISTER 6 RESULT 

DATA REGISTER 5 ANALOG 
DATA REGISTER 4 r-DATA REGISTER 3 MUX 
DATA REGISTER 2 
DATA REGISTER 1 I SUCCESSIVE APPROXIMATION I 
DATA REGISTER 0 A/D CONVERTER 

-t 

1 
AUTOSCAN LOGIC 

02-93 ~ S(iS·THOMSON 
=..:..:.------------- .. ,,I'!JOIQ:IIJ@]G,~IQ:VtJ©JiiJJ©~ 

AIN 7 

AIN 6 
AIN 5 
AIN 4 
AIN 3 
AIN 2 
AIN 1 

AIN 0 

VA00223 

141/219 

225 



ST9 - A/D Converter 

INTRODUCTION (Continued) 

values (Upper and Lower) for each channel. The 
comparison result is stored in a dedicated register. 

Single, continuous, or externally triggered conver­
sion modes are available, internal clock sample 
synchronization is also available through the "On 
chip Event" synchronization logic of a Multifunction 
T1mer Unit, 

A Power-Down programmable bit allows to set the 
AID converter to a minimum consumption idle 
status. 

The ST9 AID Interrupt Unit provides two maskable 
channels (Analog Watchdog and End of Conver­
sion) with hardware fixed priority, and up to 7 pro­
grammable priority levels. 

WARNING: AID INPUT PIN DECLARATION 

The input Analog channel is selected by using the 
Alternate Function setting (PXC2, PXC1, PXCO = 
1,1, 1) as shown in the 110 ports section. The 110 bit 
structure of the port connected to the AID con­
verter is modified as shown in Figure 11-2 to pre­
vent the Analog voltage present at the 110 pin from 
causing high power dissipation across the input 
buffer. Un-selected analog channels should also 

Figure 15-2. AID Input Configuration Status 

1/0 PIN 

TOWARDS 
A/0 CONVERTER 

AlTERN ATE 
ruNCTION 

(IN) 

VA00219 

be maintained in the Alternate function mode for 
this reason. 

15.2 FUNCTIONAL DESCRIPTION 

15.2.1 Operational Modes 

Two main operational modes are ava1lable: Con­
tinuous Mode and Single Mode. To enter one of 
these modes it is necessary to program the CONT 
bit of the Control Logic Register, the Continuous 
Mode is selected when CONT = "1 ",while CONT = 
"0" enables the Single Mode. 

Both modes operate in the AUTOSCAN configura­
tion, allowing a sequential conversion flow of the 
input channels. It is possible to choose by software 
the number of analog inputs to be converted by 
writing into the Control Register (SC2, SC1, SCO 
bits) the number of the first channel to be con­
verted. Subsequentially, after each conversion is 
completed, the channel number is automatically in­
cremented, up to channel 7. For example, if (SC2, 
SC1, SCO) = 0,1, 1 the conversion flow runs from 
channel 3 up to channel 7. If (SC2, SC1, SCO) = 
1,1, 1 only channel 7 is converted. 

When the ST bit of the Control Logic Register is 
written to "1" by software or hardware, the analog 
inputs are sequentially converted (from the first se­
lected channel up to channel 7) and the results are 
stored in the relevant Data Registers. 

In Single Mode (CONT = "0"), the ST bit is reset by 
hardware at the end of conversion of channel 7, an 
End of Conversion (ECV) interrupt request is is­
sued, and the AID waits for a new start event. 

In Continuous Mode (CONT = "1 "), a continuous 
conversion flow is entered by the start event. After 
the conversion of channel 7 ends, the conversion 
of channel 's' starts (where 's' is specified in the 
(SC2, SC1, SCO) bits), this will continue until the 
ST bit is reset by software. In all cases, an ECV in­
terrupt is issued each time the channel 7 conver­
sion ends. 

When channel 'i' is converted ('s' < 'i' < 7), the Data 
Register is reloaded with the new conversion result 
and the previous value is lost. The ECV interrupt rou­
tine can be used to save the current values before a 
new conversion sequence (so as to create signal 
sample tables within Register F1le or Memory). 

15.2.2 Synchronisation 

Conversion start synchronisation for all modes 
may be internal or external. The external (ADTRG, 
as an Alternate Function input of an 110 port) or the 
internal (INTRG, produced by a Multifunction 
Timer penpheral) can be used to synchron1se the 
conversion start with a trigger pulse. Both external 

_14_2_12_1_9 ___________ Lfi ~~~;'2!~m~,~rt 
226 



FUNCTIONAL DESCRIPTION (Continued) 

and internal events can be seperately masked by 
the programming of the EXTG/INTG bits of the 
Control Logic Register. The events are internally 
OR'ed, thus avoiding potential hardware conflicts, 
however the correct procedure is to always enable 
only one alternate synchronisation input at any time. 

The effect of the alternate synchronisation is to set 
the ST bit by hardware. This bit is reset, only in 
Single Mode, at the end of each group of conver­
sions. In Continuous Mode all trigger pulses, fol­
lowing the first, are ignored. 

The two synchronisation sources must have a 
clock cycle minimum length of 83ns (at INTCLK = 
12MHz). and a period greater (in Single Mode) 
than the total time of a group of conversions 
(11.511s x the number of channels scanned (at INT­
CLK = 12MHz)). If a trigger occurs when the ST bit is 
still "1" (conversion is still in progress), it is ignored. 

15.2.3 Analog Watchdog 

Two internal Analog Watchdogs are available, 
allowing great flexibility in automatic threshold 
monitoring in those applications experiencing a 
maximum range of fluctuations. Analog channels 6 
and 7 define a voltage window for the allowed 
values of the converted analog input. The range of 
values of the external voltage applied to input 6 
and 7 are accepted as normal whenever below the 
Upper threshold and above or equal to the Lower 
threshold. 

When the external voltage is greater or equal to the 
upper, or is less than the lower programmed volt­
age limits, a maskable interrupt request is gener­
ated and the Compare Results Register is updated 
to inform which threshold (Upper or Lower) of 
which channel (6 or 7) has been exceeded. The 4 

Figure 15-3. A/D Trigger Source 

EXT. TRIGGER __ ____,~ 
ENABLE 

~ A/0 TRIGGER o-----1 

INT TRIGGER 
ENABLE 

ON-CHIP EVENT 

ST9 - A/D Converter 

threshold voltages are user programmable in 4 
dedicated registers (8 up to B) of the AID register 
page, storing their 8 bit binary code. Only the 4 
MSB of the Compare Results Register are used 
(the 4 LSB always return "1" if read). each bit for 
each threshold possible overflow or underflow 
status. 

After an hardware reset, these bit values are "0". 
During the normal AID operation, the CRR bits are 
set to "1" to flag an over-range and are automatically 
reset by hardware after a software reset of the 
analog Watchdog request flag in the ECR Register. 

Analog Voltage 

Upper threshold 

Lower threshold 

Normal Area 
(Wrndow Guarded) 

15.2.4 Power down Mode 

Before enabling any A/D conversion, it is manda­
tory to set the POW bit of the Control Logic Regis­
ter to "1" at least 6011s before the first conversion 
start. This is in order to correctly bias the analog 
section of the converter, if this is not done, then 
functionality of the converter will be locked. 

Setting POW to "0" is useful when the AID is not re­
quired in order to reduce the total power consump­
tion. This is the reset configuration, and is also 
entered automatically when the ST9 is in Halt Mode 
(following the execution of the halt instruction). 

START GROUP 
OF CONVERSIONS 
CONTINUOUS OR 
SINGLE MODE 

SOFTWARE TRIGGER ______ ...J VA00416 

143/219 

227 



1\) 

1\) I "" 
co ~ 

(.0 

~ 
>'5(1) 
i'ln omen 
©. 

~;! 
<JJQ 
::ll:!: 
~en oo 
"'z 

I ;lxl ~~X I Don't core I 

I 0 I X I ol X I Don't core I 

I ~;--;-~ X I Don't core I 

COMPARE RESULT REGISTER 

;li 
0 s .. 
~ 

CHANNEL 7 
conversion result 

FF=~=· FF 
FE FE 
FD FD 

01 
00 

01 
00 

L 

_f 

COMPARE RESULT REGISTER 

CHANNEL 7 UPPER THRESHOLD 

CHANNEL 6 UPPER THRESHOLD 

CHANNEL 7 LOWER THRESHOLD 

CHANNEL 6 LOWER THRESHOLD 

A/D REGISTERS PAGE (63 m 62) 

"11 (/) 
!0" ~ t:: 
iil I 

.... ~ CHANNEL 6 I I~ c convers10n result 

"11 
(") 
0 

FF tFF I I~ ::I 
FE FEI < 
FD FD (I) 

0 ::I. 
:l (I) 
!!!. ... 
c 
iii" 

(C 

iil 
3 

I X 11 I X I 0 I Don't care I 

I I I 

l I 

}I X I 0 I xl 0 I Don't care I 

g~ ±g~ 

} l_"_lo]_•l 'I,., ···I 
COMPARE RESULT REGISTER 



ST9 - A/D Converter 

FUNCTIONAL DESCRIPTION (Continued) 

Figure 15-5. Analog Watchdog used in Motorspeed Control 

SPEED 
(CONVERSION RESULT) 

INTERNAL 
TRIGGER 

15.3 INTERRUPT 

2 3 

The ND converter provides two interrupt sources, 
End of Conversion and an Analog Watchdog Re­
quest. The ND Interrupt Vector Register (IVA) pro­
vides 1 bit generated in hardware to follow the 
interrupt source, allowing the automatic address­
ing of the relevant ND Interrupt Service routine for 
the two sources. 

ANALOG 
WATCHOG 
REQUEST 

END OF 
CONV. 

REQUEST 

7 0 Lower 

I X I X I X I X I X I X I 0 I 0 I A:~~~s 

7 o Upper 

I X I X I X I X I X I X 11 I 0 I A:~~~s 

The ND Interrupt vector should be programmed by 
the User to point to the first memory location in the 
Interrupt Vector table containing the base address 
of the four byte area of the interrupt vector table in 
which to store the address of the ND interrupt ser­
vice routines. 

INT 

4 

TACHO 
(CHANNEL 7) 

INT 

5 

UPPER THRESHOLD 

LOWER THRESHOLD 

INT 

6 
VA00250 

The Analog Watchdog Interrupt Pending bit (AWD, 
ICR.6), is automatically hardware set whenever 
any of the two guarded analog inputs goes out of 
bounds. The Compare Result Register (CAR) 
keeps track of the analog inputs exceeding the 
thresholds. 

When 2 requests occur simultaneously the Analog 
watchdog request has priority over the End of Con­
version request which is held pending, to be 
served after the current routine. 

The Analog Watchdog Request requires the user 
to poll within the Compare Result Register (CRR) 
to determine which of the four thresholds has been 
exceeded. The threshold status bits are set to "1" 
to flag an over-range and are automatically reset 
by hardware after a software reset of the analog 
Watchdog request flag in the ECR Register. 
The interrupt pending flags, ECV (End of Conver­
sion, ICR.7) and AWD should also be reset by the 
User in the Interrupt service routine before the re­
turn. Setting either of these two bits by software will 
cause a software interrupt request to be generated. 

~ SGS·THOMSON -------------- A.""J/. f\IJO:G~©ffi~~©Vl'I@Cill[:i:@ 
145/219 

229 



ST9 - AID Converter 

15.4 REGISTERS 

15.4.1 Register Mapping 

AID registers are mapped page 63. 

15.4.2 Data Registers (DiR) 
The result of the conversions of the 8 available 
channels are loaded in the 8 DiR (channei0---7DOR 
.... channei7---7D7R); every Data Register is re­
loaded with a new value at the end of the conver­
sion of the correspondent analog input. 

DOR R240 (FOh) Page 63 Read/Write 
Channel 0 Data Register 

Reset Value: Undefined 

7 0 

1 00.7 1 00.6 1 00.5 1 00.4 1 00.3 1 00.2 1 00.1 1 oo.o 1 

b7-b0 = 00.7-DO.O: Channel 0 Data 

D1R R241 (F1h) Page 63 Read/Write 
Channel 1 Data Register 

Reset Value: Undefined 

7 0 

I 01~ I 01~ I 01E I 01.4 I 012 I 012 I 01.1 I 01D I 
b7-b0 = 01.7-01.0: Channel1 Data 

D2R R242 (F2h) Page 63 Read/Write 
Channel 2 Data Register 

Reset Value: Undefined 

7 0 

1 02.7 1 02.6 1 02.5 1 02.4 1 02.3 1 02.2 1 02.1 1 02.0 1 

b7-b0 = 02.7-02.0: Channel2 Data 

D3R R243 (F3h) Page 63 Read/Write 
Channel 3 Data Register 

Reset Value: Undefined 

7 0 

1 03.71 03.6 1 03.5 1 03.41 03.3 1 03.2 1 03.1 1 03.0 1 

b7-b0 = 03.7-03.0: Channel3 Data 

D4R R244 (F4h) Page 63 Read/Write 
Channel 4 Data Register 

Reset Value: Undefined 

7 0 

1 04.7 1 04.6 1 04.5 1 04.4 1 04.3 1 04.21 04.1 1 04.0 1 

b7-b0 = 04.7-04.0: Channel4 Data 

D5R R245 (F5h) Page 63 Read/Write 
Channel 5 Data Register 

Reset Value: Undefined 

7 0 

1 05.7 1 05.6 1 05.5 1 05.4 1 05.3 1 05.2 1 05.1 1 05 o 1 

b7-b0 = 05.7-05.0: ChannelS Data 

D6R R246 (F6h) Page 63 Read/Write 
Channel 6 Data Register 

Reset Value: Undefined 

7 0 

1 06.7 1 06.6 1 06.5 1 06.4 1 06.3 1 06.2 1 06.1 1 06 o 1 

b7-b0 = 06.7-06.0: Channel 6 Data 

D7R R247 (F7h) Page 63 Read/Write 
Channel 7 Data Register 

Reset Value: Undefined 

7 0 

I 077 I 07.6 I 07E I 07 4 I 07 3 I 07.2 I 07 1 I 07 0 I 
b7-b0 = 07.7-07.0: Channel? Data 

_14_6_12_1_9 ___________ ~ ~~~~m~~~:O!~:: 

230 



REGISTERS (Continued) 

15.4.3 Lower Threshold Registers (L TiR) 

The 2 lower threshold registers are used to store 
the 2 user programmable lower threshold voltages 
(i.e. their 8 bit binary code) to be compared with the 
present channel 6 or 7 conversion result. They fix 
the lower voltage window limit. 

L TGR R248 (F8h) Page 63 Read/Write 
Channel 6 Lower Threshold Register 

Reset Value: Undefined 

7 0 

1~1~1~1~1~1~1~1~1 
b7-b0 = L T6.7-L TG.O: Channel6 Lower Threshold 

L T7R R249 (F9h) Page 63 Read/Write 
Channel 7 Lower Threshold Register 

Reset Value: Undefined 

7 0 

1~1~1~1~1~1~1~1~1 
b7-b0 = L T7.7-L T7.0: Channell Lower Threshold 

11.4.6 Upper Threshold Registers (UTiR) 

The 2 upper threshold registers are used to store 
the 2 user programmable upper threshold voltages 
(i.e. their 8 bit binary code) to be compared with the 
present channel 6 or 7 conversion result. They fix 
the upper voltage window limit. 

UTGR R250 (FAh) Page 63 Read/Write 
Channel 6 Upper Threshold Register 

Reset Value: Undefined 

7 0 

1~3 1~sl~si~AI~JI~2 1~1~]1 
b7-b0 = UT6.7-UT6.0: Channe16 Upper Threshold 

ST9 - AID Converter 

UT7R R251 (FBh) Page 63 Read/Write 
Channel 7 Upper Threshold Register 

Reset Value: Undefined 

7 0 

loo3looslooslooAiooJioo2l~loo]l 
b7-b0 = UT7.7-UT7.0: Channell Upper Threshold 

15.4.4 Compare Result Register (CRR) 

The result of comparison between the current 
value of data registers 6 and 7 and the threshold 
registers is stored in this 4 bit register. 

CRR R252 (FCh) Page 63 Read/Write 
Compare Result Register 

Reset Value: 0000 1111 (OFh) 

7 

X 

0 

X 

b7 = C7U: Compare Reg l Upper threshold Set to 
"1 " when converted data is greater than or equal to 
the threshold value. Not affected otherwise 

b6 = CGU: Compare Reg 6 Upper threshold Set to 
"1" when converted data is greater than or equal to 
the threshold value. Not affected otherwise 

b5 = C7L: Compare Reg l Lower threshold Set to 
"1 " when converted data is less than the threshold 
value. Not affected otherwise. 

b4 = CGL: Compare Reg 6 Lower threshold Set to 
"1" when converted data is less than the threshold 
value. Not affected otherwise. 

These bits should be Software reset at the end of 
the 'Out of Bounds' Interrupt routine. 

b3-b0 = undefined, return "1" when read. 

Note. any Software request reset in the ICR, will 
cause also all the Compare status bits to be hard­
ware forced to zero, to prevent possible overwriting 
if an Interrupt request occurs between the Soft­
ware reset and the Interrupt Request Software 
reset. 

147/219 

231 



ST9 - A/D Converter 

REGISTERS (Continued) 

15.4.5 Control Logic Register (CLR) 

This register manages the AID logic operations. 
Writing into this register will cause the current con­
version to be aborted and the autoscan logic to be 
re-initialized to the starting configuration. CLR is 
programmable as following: 

CLR R253 (FDh) Page 63 Read/Write 
Control Logic Register 

Reset Value: 0000 0000 (OOh) 

7 0 

I SC2 I SC1 I sco I EXTG IINTG I POW I CONT I ST 

b7-b5 = SC2, SC1, SCO: Start Conversion Ad­
dress. These 3 bits define the starting analog input 
in Autoscan mode. The first channel addressed by 
SC2-SCO is converted, then the address is in­
cremented for the successive conversion, until 
channel 7 (111) is converted. The (SC2, SC1, 
SCO) bits define the group of channels to be 
scanned. When setting SC2=1 SC1 =1 SC0=1 only 
channel 7 is converted. 

b4 = EXTG: External Trigger. When set to a logical 
"1 ", this bit allows to start a group of conversion 
synchronized on the following edge of the external 
signal applied on pin ADTRG (when enabled for Al­
ternate Function) .. 

b3 = INTG: Internal Trigger. When set to a logical 
level "1 ",this bit enables the start of a group of con­
version, synchronized with an internal signal (On 
chip Event signal) from a Multifunction Timer Unit. 

Both External and Internal Trigger inputs are inter­
nally OR'ed, thus avoiding Hardware conflicts, 
however the correct procedure is to enable only 
one alternate synchronization input at time. 

b2 = POW: Power Up/Power Down A logical "1" 
enables the AID logic and analog circuitry. 
A logical "0" disables all power consuming logic, 
thus allowing a low power idle status. 

b1 = CONT: Continuous/Single. When this bit is 
set to "1" (Continuous Mode), the first group of con­
versions are started either by software (setting to 
"1" the ST bit) or by hardware (on an Internal or ex­
ternal trigger, depending on the INTG and EXTG 
bits status), and a continuous conversion flow is 
then processed. 

When this bit is set to "0" (single mode), only a 
single group of conversions (1 up to 8) are started 
whenever any External (or Internal) trigger occurs, 
or the ST bit is set to "1" by software. 

The effect of the alternate synchronization is to 
hardware set the START/STOP bit which is hard­
ware reset when in SINGLE mode, at the end of 
each group of conversions. 

Requirements: 

The External Synchronisation Input must receive a 
pulse (low level) wider than an INTCLK period 
(83ns) minimum and for both External and On chip 
Event synchronisation, a period greater than the 
time required for a group of conversion (number of 
channels times x 1111s). 

bO = ST: Start/Stop A logical "1" level enables the 
starting of a group of conversions; a logical level 
"0" stops the conversion. When the AID is running 
in the Single Mode, this bit is hardware reset at the 
end of a group of conversions. 

_14_s_i2_1_9 ____________ LV, ~~~;m~::oo~lt 
232 



REGISTERS (Continued) 

bO = ST: Start/Stop A logical "1" level enables the 
starting of a group of conversions; a logical level 
"0" stops the conversion. When the AID is running 
in the Single Mode, this bit is hardware reset at the 
end of a group of conversions. 

15.4.6 Interrupt Control Register (ICR) 

This register conta1ns the three priority level bits, 
the two sources flags, and their bit mask: 

ICR R254 (FEh) Page 63 Read/Write 
Interrupt Control Register 

Reset Value: 0000 1 1 1 1 (OFh) 

7 0 

[ Ecv [Awo[ ECI [Awol[ x [ PL2[ PL1 PLo [ 

b7 = ECV: End of Conversion. ECV is automat­
ically set by hardware after a group of conversions 
is completed. 

b6 = AWD: Analog Watchdog. AWD is automat­
ically hardware set whenever any of the two 
guarded analog inputs goes out of bounds. The 
threshold values are stored in registers F8h and 
FAh for channel 6, and in registers F9h and FBh for 
channel 7 respectively. The Compare Result Reg­
ister (CRR) keeps track of the analog inputs ex­
ceeding the thresholds. 

AWD and ECV must be reset by the user, before 
returning from the Interrupt service routine. Setting 
either of them by software will cause a software in­
terrupt request to be generated. 

b5 = ECI: End of Conversion Interrupt Enable This 
bit masks the End of Conversion interrupt request. 
A logical level "1" enables the request, a logical 
level "0" masks the request. 

b4 = AWDI: Analog Watchdog Interrupt Enable. 
This bit masks the Analog Watchdog interrupt re­
quest. 

ST9 - A/D Converter 

A logical level "1" enables the request, a logical 
level "0" masks the request. 

b3 = 03: Undefined 

b2-b0 = PL2, PL 1, PLO: A/0 Interrupt Priority 
Level. With these three bits it is possible to select 
the Interrupt priority level of the AID Converter. 

15.4.7 Interrupt Vector Register (IVR) 

IVR R255 (FFh) Page 63 Read/Write 
Interrupt Vector Register 

Reset Value: xxxx xx1 0 (x2h) 

7 0 

I V7 I V6 I V5 I V4 I V3 I V2 I W1 I DO 

b7-b2 = V7-V2: AID Interrupt Vector. This vector 
should be programmed by the User to point to the 
first memory location in the Interrupt Vector table 
containing the starting addresses of the ND inter­
rupt service routines. 

b1 = W1: Word Select. This bit is set by hardware, 
according to the AID interrupt source. It is set to "0" 
if the source is the Analog Watchdog, pointing to 
the lower word of the AID interrupt service block 
(defined by V7-V2). It is set to "1" if the source is 
the End of Conversion interrupt, thus pointing to 
the upper word. 

When 2 requests occur simultaneously the Analog 
watchdog request has priority over the End of Con­
version request which is held pending, to be 
served after the current routine. 

bO = DO: This bit is fixed by hardware. It always re­
turns the value "0" if read. 

149/219 

233 





16 SOFTWARE DESCRIPTION 

16.1ADDRESSING MODES 

The ST9 offers a wide variety of established and 
new addressing modes and combinations to facili­
tate full and rapid access to the address spaces 
while reducing program length. The available ad­
dressing modes are shown in Table 16-1: 

Table 1·1. Addressing Modes 

ST9 - Software 

Single operand arithmetic, logic and shift byte in­
structions have direct register and indirect register 
addressing modes. For a full list of the possible 
combinations for each instruction type, please re­
fer to the ST9 Programming Manual. 

Operand is In Addressing Mode 
Destination Notation 

Location 

Instruction Immediate 
Byte #N 
Word #NN 

Direct 
Byte r 
Word rr 

Register File Indirect Byte/Word (r) 

Indexed Byte/Word N(r) 

Indirect Post-Increment Byte (r)+ 

Direct Byte/Word NN 

Indirect Byte/Word (rr) 

Indirect Post-Increment Byte/Word (rr)+ 
Program or Data Memory 

Indirect Pre-Decrement Byte/Word -(rr) 

Short Indexed Byte/Word N(rr) 

Long Indexed Byte/Word NN(rr) 

Register Indexed Byte/Word rr(rr) 

Any bit of any working register Direct Bit r.b 

Any bit in program or data memory Indirect Bit (rr).b 

235 



ST9 - Software 

ADDRESSING MODES (Continued) 

Two Operands Arithmetic and Logic Instructions 

Destination Source 

Register Direct Register Direct 

Reg1ster D1rect Reg1ster Indirect 

Reg1ster D1rect Memory Indirect 

Reg1ster D1rect Memory Indexed 

Register Direct Memory Indirect w1th Post-Increment 

Reg1ster Direct Memory lnd1rect w1th Pre-Decrement 

Register Direct Memory D1rect 

Reg1ster Indirect Reg1ster D1rect 

Memory Indirect Register D1rect 

Memory Indexed Register D1rect 

Memory lnd1rect w1th Post-Increment Reg1ster D1rect 

Memory lnd1rect With Pre-Decrement Reg1ster D1rect 

Memory D1rect Reg1ster D1rect 

Reg1ster D1rect Immediate 

Memory D1rect Immediate 

Memory lnd1rect Immediate 

Two Operands Arithmetic, Logic and Load Instructions 

Destination Source 

Memory Indirect Memory Direct 

152/219 

236 



ST9 - Software 

ADDRESSING MODES (Continued) 

Two Operands Load Instructions 

Destination Source 

Register D1rect Register Direct 

Reg1ster D1rect Register lnd1rect 

Register D1rect Register Indexed 

Register Direct Memory Indirect 

Register Direct Memory Indexed 

Register D1rect Memory lnd1rect w1th Post-Increment 

Register Direct Memory lnd1rect w1th Pre-Decrement 

Reg1ster Direct Memory D1rect 

Register Indirect Register Direct 

Reg1ster Indexed Register D1rect 

Memory Indirect Reg1ster D1rect 

Memory Indexed Reg1ster D1rect 

Memory Indirect w1th Post-Increment Reg1ster Direct 

Memory Indirect w1th Pre-Decrement Register D1rect 

Memory Direct Register Direct 

Register D1rect lmmed1ate 

Memory D1rect Immediate 

Memory Indirect Immediate 

Long Indexed Memory C'l lmmed1ate 

Two Operands Load Instructions 121 

Destination Source 

Register Indirect with Post-Increment Memory lnd1rect with Post-Increment 

Memory lnd1rect with Post-Increment Register Indirect with Post-Increment 

Memory lnd1rect w1th Post-Increment Memory Indirect with Post-Increment 

Notes: 
1 Word Instructions Only 
2 Load Byte Only 

153/219 

237 



ST9 - Software 

ADDRESSING MODES (Continued) 

16.1.1 Register Addressing Modes 

Immediate Addressing Mode 

In the Immediate addressing mode, the data is 
found in the instruction. When using immediate 
data, a hash-mark (#) is used to distinguish it from 
an absolute address in memory. 

Example: ldw RR42, #65536 
lo~ds the immediat~ value 65536 into the register 
pa1r R42 & R43. While the example shows decimal 
data, hexadecimal and binary values may also be 
used. 

Example: ldw RR42, #OFFFFh. 

Figure 16-1. Immediate Register 

Addressrng In Tho In a Workmg In an Absolute In 
Mode InstructiOn Regrster Rcgrstar Memory 

IMMEDIATE 
REGISTER 

Direct Addressing Mode 

In the direct addressing mode, a register can be 
addressed by using its absolute address in the 
Register File (in decimal, hexadecimal or binary 
form). Alternatively a register can be addressed di­
rectly as a working register; 

Example: xch ROA2h, r4 
exchanges the values in the register RA2h and 
working register number 4. 

Figure 16-2. Direct Register 

Addressmg In The In a Workrng In an Absolute '" Mode lnstructron Rcgrster Regrster Memory 

DIRECT REGISTER~~ 
REGISTER ADDRESS DATA 

REGISTER 
' 

I 

ADDRESS I 
DATA I 
~ 

Indirect Addressing Mode 

In the Indirect Register Addressing mode, the ad­
dress of the data does not appear in the instruction 
but is located in a working register. The address of 
this register is given in the instruction. The indirect 
addressing mode is indicated by the use of paren­
theses. 

Example: 
If register ?DO contains 178 and working register 
11 contams 86 then the instruction ld 
( rll) , R2 o o loads the value 178 into register 86. 
~~te: the tndtrect address can only be contatned 1n a workmg regis-

Figure 16-3. Indirect Register 

Addressmg In The In a Worktng In an Absolute In 
Mode lnstructron Regrster Regrster Memory 

INDIRECT 
REGISTER 

~----EJ
-

REGISTER 
! ADDRESS DATA 

Indexed Addressing Mode 

To address a register using the Indexed rnode, an 
offset value IS used to add to an index value (which 
acts as a base or starting value). The offset value is 
the Immediate value given in the instruction while 
the index value is given by the contents of the 
working register. 

Example: if working register 10 contains 55 then 
the instruction 

ld 40(rl0),rl8 

loads register 95 (i.e.55+40) with the contents of 
working register 18. 

The Register File never needs an absolute value 
reguiring more than one byte and therefore only re­
quires a short offset and a single register to contain 
the index. · 
Note: The 1ndex value can only be contained rna working regrster 

Figure 16-4. Indexed Register 

Addressmg Jn The In a Workmg In an Absolute In 
Mode Instruction Register Aeg1ster Memory 

INDEXED 
REGISTER 

REGISTER L I (' 'I" ADDRESS_~ 'AO~:~~S 4._~;>t_ OAT~ -

OFFSET L I 

154/219 __ _:__ _____________ J:..V ~~~~~~~:e~~~ 
238 



ADDRESSING MODES (Continued) 

Indirect Register Post-increment Addressing 
Mode 
In this addressing mode, both destination and 
source addresses are given by the contents of 
working registers which are then post-incre­
mented. The address of the memory location is 
contained in a working register pair, and the ad­
dress of the register is contained into a single work­
ing register. Only working registers may be used to 
contain the addresses, this mode being indicated 
by both source and destination using parentheses 
followed by plus sign. 

Example: if working register 8 contains the value 
44, working register pair rr2 contains the value 
2000, and register 44 contains the value 56, then 
by using the instruction 

ld (rr2) +, (r8) + 

the memory location 2000 will be loaded with the 
value 56. Immediately following this, the contents 
of r8 is incremented to 45 and the contents of rr2 is 
incremented to 2001. 

This addressing mode is useful for moving blocks 
of data either from Register File to Memory or from 
Memory to Register File. 

Figure 16-5. Register Indirect Post-Increment 

Address1ng In The In a Workrng In an Absolute In 
Mode Instruction Reg1ster Reg1ster Memory 

INDIRECT 
REGISTER 

WITH 
POST-INCREMENT 

Direct Bit Addressing Mode 
In the direct bit addressing mode, any bit in any 
working register can be addressed 

Examples: bset r7. 3 

This instruction sets the bit 3 of the working register 7. 

bld r7.3, r12.6 

This instruction loads the bit 6 of the working regis­
ter 12 in bit 3 of working register 7 

ST9 - Software 

16.1.2 Memory Addressing Modes 
The memory addressing modes described in this 
section are available to data and program memory. 
Thus before addressing the memory, it is neces­
sary to indicate by use of the Set Program/Data 
Memory instructions, spm and sdm, in which mem­
ory the instructions are working. Since each mem­
ory space is 64K byte long, a word address is 
necessary to specify memory locations. 

Direct Addressing Mode 
The Memory Direct addressing mode requires the 
specific location within the memory. This only 
needs the absolute offset value which can be given 
in decimal, hex or binary form. 

Thus the instruction 

ld 12345,r9 

loads working register 9 data into memory location 
12345 

In the memory direct mode, it is possible to use an 
immediate addressing mode for the source oper­
and. 

Examples: 

ld 12354,#34 

will load the value 34 into the memory location 
12354. 

ldw 12354,#3457 

will load the location pair 12354 and 12355 with the 
value 3457. 

Figure 16-6. Memory Direct 

Addressrng In The In a Workrng In an Absolute In 
Mode lnstruct1on Reg1ster Aeg,ster Memory 

MEMORY 
DIRECT 

VROEt845 

~ SCS-THOMSON --------------- ~"fl. lilj]~l!:wa©rn~rn~:m©oo~~::~; 
155/219 

239 

.. 



ST9 - Software 

ADDRESSING MODES (Continued) 

Indirect Addressing Mode 

When using the indirect addressing mode to ac­
cess memory, the address is contained in a pair of 
working registers. 

Example: if the working register pair r8 and r9 con­
tains the value 2000 then the instruction 

ld (rr8),#34 

loads the value 34 into memory location 2000. 

If the data to be stored is a word then the instruc­
tion ldw will automatically interpret the address as 
a pair of memory locations. So if rr8 contains 2000 
then the instruction 

ldw (rr8),#3467 

loads the memory locations 2000 and 2001 with 
the value 3467. 

Figure 16-7. Memory Indirect 

Addressmg In The 
Modo Instruction 

MEMORY 
INDIRECT 

In a Workrng In an llbsolute 
Reg•ster Reg1sler Memory 

Indirect With Post-increment Adressing Mode 

The indirect with post-increment addressing mode 
is similar to the memory indirect addressing mode 
but, in addition, after accessing the data in the cur­
rently pointed address, the value in the pointing 
working register pair is incremented. This mode is 
indicated by a plus sign following a working regis­
ter pair in parentheses, e.g. ( rr4) +. 

Example: 
If the working register pair rr4 (working registers r4 
and r5) contains the value 3000 and memory loca­
tion 3000 contains the value 88, then the instruc­
tion 

ld RSO, (rr4) + 

loads register 50 with the value 88 and then the 
value in rr4 to be incremented to 3001. 

This mode uses only working registers to contain 
the address. Thus the Indirect with Post-Increment 
addressing mode is most useful in repeated situ­
ations when a number of adjacent items of data are 

156/219 

240 

required in succession. The use of this addressing 
mode saves both time and program memory space 
since it cuts the usual increment instruction. 

Figure 16-8. Memory Indirect Post-Increment 

Addressrng In The In a Workrng In an Absolute In 
Mode InstructiOn Reg1ster Aegtstcr Memory 

MEMORY ~-- -
INDIRECT REGISTER 

WITH ADDRESS 
POST-INCREMENT 

Indirect With Pre-decrement Addressing Mode 

This indirect memory addressing mode has an 
automatic pre-decrement. The address can only 
be contained in working registers and the mode is 
indicated by a m1nus sign in front of the working 
registers which are in parentheses, e.g.- (rr6). 

Thus if the working register pair rr6 contains the 
value 1111 and location 111 0 contains the value 
40 then the instruction 

ld R56,- (rr6) 

decrements the value in rr6 to 111 0 and then loads 
the value 40 into register 56. 

This addressing mode allows the ST9 to deal in the 
reverse order with data previously managed using 
the indirect post-increment mode without resetting 
the pointing registers (of the last post-increment). 

The pre-decrement mode has the same benefits of 
time and program memory saving as the post-in­
crement mode. 

Figure 16-9. Memory Indirect Pre-Decrement 

Addresstng In The In a Work•ng In an Absolute In 
Mode lnstruc\lon Aeg•ster Regtster Memory 

MEMORY 
INDIRECT REGISTER 

WITH ADDRESS 
PRE DECREMENT 

J A. DDRESS L_ .~. l::": I 

1
- ~~GH___ ~"~/L-- ~ 
ADDRESS ' 

LOW I 

: I 



ADDRESSING MODES (Continued) 

Indexed Addressing Modes 

There are three indexed addressing modes, each 
using an indirect address plus offset format. The 
index address is given as an indirect address con­
tained in a working register pair, while the offset 
can be long or short (a word or a byte). The ad­
dress of the data required is given by the value of 
the working register pair indicated (the index), plus 
the value of the given offset. The specification of 
this offset which differentiates the three modes, is 
as follows: 

_ Indexed with an Immediate Short and Long 
Offset 

In these indexed modes the offset is a fixed and 
Immediate value included in the instruction. It may 
be either a short or long index as required, this im­
mediate value being added to the address given by 
the working register pair. 

Example: if the working register pair, rr6, contains 
the value 8000 and memory location 8034 con­
tains the value 254 then the instruction 

ld RSS, 34 (rr6) 

loads the value 254 into register 55. 

Or, as another example, if the working register pair 
rr2 contains the value 2000 and register 78 con­
tains the value 34 then the instruction. 

ld 322(rr2),r78 

loaded the value 34 into memory location 2322. 

_ Indexed with a Register Offset 

In this addressing mode, the index is supplied by 
one pair of working registers and the offset is sup­
plied by a second pair of working registers. The for­
mat is rrx(rry), x and y being in the range 
0,2,4 ... 12, 14. 

Example 
If working register pair rrO contains the value 2222 
and working register pair rr4 contains 3333 while 
register 45 contains the value 78 then the instruc­
tion 

ld rr4(rr0),R45 

loads the value 78 into memory location 5555. 

ST9 - Software 

Figure 16-10. Memory Indexed with Immediate 
Short Offset 

Addressrng In The 
Mode lnstructron 

MEMORY 
INDEXED 

WITH 
IMMEDIATE 

SHORT OFFSET 

In a Workrng In an Absolute In 
Aegrster Regrster Memory 

-[~ATA I 

Figure 16-11. Memory Indexed with Immediate 
Long Offset 

Addressrng In The 
Mode lnstructron 

MEMORY 
INDEXED 

WITH 
IMMEDIATE 

LONG OFFSET 

In a Workmg In an Absolute In 
Regrster Regrster Memory 

Figure 16-12. Memory Indexed with Register 
Offset 

Addressmg In The 
Mode lnstructron 

MEMORY 
INDEXED 

WITH 
REGISTER 
OFFSET 

In a Workrng In an Absolute In 
Acg,stcr Regrsler Memory 

Indirect Memory Bit Addressing Mode 

In the indirect memory bit addressing mode, any bit 
of Program/Data memory location can be ad­
dressed with the btset (Bit Test and SET) in­
struction. 

Example 

btset (rr8) .3 

This instruction sets bit 3 of the memory location ad­
dressed by the working registers r8, r9 contents. 

------------------------------- ~~~~;~~~:8:1 
157/219 

241 



ST9 - Software 

16.21NSTRUCTION SET 

The ST9 instruction set consists of 87 instruction 
types which can be divided into eight groups: 

_ Load (two operands) 

- Arithmetic & logic (two operands) 

_ Arithmetic Logic and Shift (one operand) 

_ Stack (one operand) 

_ Multiply & Divide (two operands) 

_ Boolean (one or two operands) 

_ Program Control (zero to three operands) 

_ Miscellaneous (zero to two operands) 

The wide range of instructions eases use of the 
register file and address spaces, reducing opera­
tion times, while the register pointers mechanism 
allows an unmatched code efficiency and ultrafast 
context switching. A particularly notable feature is 
the comprehensive "Any Bit, Any Register" (ABAR) 
addressing capability of the Boolean instructions. 

The ST9 can operate with a wide range of data 
lengths from single bits, 4-bit nibbles which can be 
in the form of Binary Coded Decimal (BCD) digits, 
8-bit bytes, and 16-bit words. 

The following summary shows the instructions be­
longing to each group and the number of operands 
required for each instruction. The source operand 
is "src", "dst" is the destination operand, and "cc" is 
a condition code. 

_15_8_12_1_9 _______________________ ~~~~~~~=~~~ 

242 



INSTRUCTION SET (Continued) 

Load Instructions (Two Operands) 

Mnemonic Operands 

LD dst,src 
LDW dst,src 

LDPP dst,src 
LDPD dst,src 
LDDP dst,src 
LDDD dst,src 

Arithmetic and Logic Instructions (Two Operands) 

Mnemonic Operands 

ADD dst,src 
ADDW dst,src 

ADC dst,src 
ADCW dst,src 

SUB dst,src 
SUBW dst,src 

sse dst,src 
SBCW dst,src 

AND dst,src 
ANDW dst,src 

OR dst,src 
ORW dst,src 

XOR dst,src 
XORW dst,src 

CP dst,src 
CPW dst,src 

TM dst,src 
TMW dst,src 

TCM dst,src 
TCMW dst,src 

ST9 - Software 

Instruction 

Load 
Load Word 

Load Program Memory -> Program Memory 
Load Data Memory -> Program Memory 
Load Program Memory -> Data Memory 
Load Data Memory -> Data Memory 

Instruction 

Add 
Add Word 

Add With carry 
Add Word With Carry 

Substract 
Substract Word 

Substract Wrth Carry 
Substract Word Wrth Carry 

Logical AND 
Logical Word AND 

Logical OR 
Logical Word OR 

Logical Exclusive OR 
Logical Word Exclusive OR 

Compare 
Compare Word 

Test Under Mask 
Test Word Under Mask 

Test Complement Under Mask 
Test Word Complement Under Mask 

159/219 

243 



ST9 - Software 

INSTRUCTION SET (Continued) 

Arithmetic Logic and Shift Instructions (One Operand) 

Mnemonic Operands Instruction 

INC dst Increment 
INCW dst Increment Word 

DEC dst Decrement 
DECW dst Decrement Word 

SLA dst Shift Left Anthmetic 
SLAW dst Shift Word Left ArithmetiC 

SRA dst Shift R1ght Anthmet1c 
SRAW dst Shift Word R1ght Anthmet1c 

RRC dst Rotate R1ght Through Carry 
RRCW dst Rotate Word Right Through Carry 

RLC dst Rotate Left Through Carry 
RLCW dst Rotate Word Left Through Carry 

ROR dst Rotate Right 

ROL dst Rotate Left 

CLR dst Clear Register 

CPL dst Complement Reg1ster 

SWAP dst Swap Nibbles 

DA dst Decimal Adjust 

Stack Instructions (One Operand) 

Mnemonic Operands Instruction 

PUSH src Push on System Stack 
PUSHW src Push Word on System Stack 
PEA src Push Effective Address on System Stack 

POP dst Pop From System Stack 
POPW dst Pop Word from System Stack 

PUSHU src Push on User Stack 
PUSHUW src Push Word on User Stack 
PEAU src Push Effective Address on User Stack 

POPU dst Pop From User Stack 
POPUW dst Pop Word From User Stack 

160/219 

244 



INSTRUCTION SET (Continued) 

Multiply and Divide Instructions (Two Operands) 

Mnemonic Operands Instruction 

MUL dst,src Multiply 8x8 

DIV dst,src Divide 16/8 
DIVWS dst,src D1vide Word Stepped 32/16 

Boolean Instructions (One or Two Operands) 

Mnemonic Operands 

BSET dst Bit Set 

BRES dst Bit Reset 

BCPL dst Bit Complement 

BTSET dst Bit Test and Set 

BLD dst,src Bit Load 

BAND dst,src Bit AND 

BOR dst,src Bit OR 

BXOR dst,src BitXOR 

~ SliS·THOMSON 
--------------- ... .,/ !i:i!!:t!l©lliQ,]:Q:V~©i!OI[;$ 

Instruction 

ST9 - Software 

161/219 

245 



ST9 - Software 

INSTRUCTION SET (Continued) 

Program Control Instructions (One, Two or Three Operands) 

Mnemonic Operands Instruction 

RET Return from Subroutine 

I RET Return from Interrupt 

Stop Program Execution and Wait for 
the next Enabled Interrupt. If a DMA 

WFI request is present, the CPU executes 
lhe DMA service routine and then 
aulomalically returns to the WFI 

HALT Stop Program Execution Until Next System Reset 

JR cc,dst Jump Relative If Condition is Met 

JP cc,dst Jump if Condition is Met 

JP dst Unconditional Jump 

CALL dst Unconditional Call 

BTJF dst,N Bit Test and Jump if False 

BTJT dst,N B1t Test and Jump if True 

DJNZ dst,N 
Decrement a Working Register and Jump 
if Non Zero 

DWJNZ dst,N 
Decrement a Register Pa1r and Jump if 
Non Zero 

CPJFI dst,N 
Compare and Jump on False. Otherwise 
Post Increment 

CPJTI dst,N 
Compare and Jump on True. Otherwise 
Post Increment 

246 



INSTRUCTION SET (Continued) 

Miscellaneous (None, One or Two Operands) 

Mnemonic Operands 

XCH dst,src 

SRP src 

SRPO src 

SRP1 src 

SPP src 

EXT dst 

El 

Dl 

SCF 

RCF 

CCF 

SPM 

SDM 

NOP 

ST9 - Software 

Instruction 

Exchange Registers 

Set Register Pointer Long (16 working registers) 

Set Register Pointer 0 (8 LSB working reg1ster) 

Set Register Pointer 1 (8 MSB working register) 

Set Page Pointer 

Sign Extend 

Enable Interrupts 

Disable Interrupts 

Set Carry Flag 

Reset Carry Flag 

Complement Carry Flag 

Select Program Memory 

Select Data Memory 

No Operation 

163/219 

247 



ST9 - Software 

INSTRUCTION SET (Continued) 

16.2.1 ST9 Processor Flags 

An important feature of a single chip microcom­
puter is the ability to test data and make the appro· 
priate action based on the results. In order to 
provide this facility, FLAGR (register 231) in the 
register file is used as a flag register. Six bits of this 
register are used as the following flags: 

C- Carry 

Z -Zero 

S- Sign 

V- Overflow 

D - Decimal Adjust 

H - Half Carry 

Table 16-2. Condition Codes Table 

Mnemonic 
Meaning 

code 

F Always False 

T Always True 

c Carry 

NC Not carry 

z Zero 

NZ Not Zero 

PL Plus 

Ml Minus 

ov Overflow 

NOV No Overflow 

EQ Equal 

NE Not Equal 

GE 
Greater Than 
or Equal 

LT Less Than 

GT Greater Than 

LE Less Than or Equal 

UG 
Unsigned Greater 
Than or Equal 

UL Unsigned Less Than 

UGT 
Unsigned 
Greater Than 

ULE 
Unsigned Less 
Than or Equal 

Bit 1 is available to the user. Bit 0 is the Pro­
gram/Data Memory selector bit. 

The Flag Register is further described in the Archi­
tecture Chapter. 

16.2.2 Condition Codes 

Flags C, Z, S, and OV control the operation of the 
"conditional" Jump instructions. The next table 
shows the condition codes and the flag settings. 

Note : Some of the Status flags are used to indicate 
more than one condition e.g . Zero and Equal. In 
such cases the condition code is the same for both 
conditions. 

Flag Hex. Binary 
setting value value 

0 0000 ----
8 1000 ----

C=1 7 0111 

C=O F 1111 

Z=1 6 0011 

Z=O E 1110 

S=O D 1101 

S=1 5 0101 

V=1 4 0100 

V=O c 1100 

Z=1 6 0110 

Z=O E 1110 

{SxorV)=O 9 1001 

{S xorV)=1 1 0001 

{Z or{S xor V))=O A 1010 

{Z or{S xor V))=1 2 0010 

C=O F 1111 

C=1 7 0111 

{C=O and Z=0)=1 B 1011 

{CorZ)=1 3 0011 

_16_4_12_1_9 ____________ l:ii ~~~~m~r::~~n 
248 



INSTRUCTION SET (Continued) 

16.2.3 Notation 

Operands and status flags are represented by a 
notational shorthand in the detailed instruction de­
scription (see programming manual). 

Table 16-3. Notation (Part 1) 

Notation Significance 

cc Cond1t1on Code 

#N Immediate Byte #data 
#NN Immediate Word #data 

r Direct Working Register rn 

R Direct Register Rn 

rr Direct Workmg Register Pair rrn 

RR Direct Reg1ster Pair RRn 

(r) Indirect Working Register (rn) 

(R) Indirect register (Rn) 

(r)+ 
Indirect working register post 

(rn)+ 
increment 

N(rx) Indexed register N(rx) 

N Memory relative Short Address 

NN Direct Memory Long Address 

(rr) 
Indirect Pair of Working 

(rrn) 
Register Pointers 

(rr)+ 
Indirect Pair of Working Register 

(rrn)+ 
Pointers with Post Increment 

-(rr) 
Indirect Pair of Working Register 

-(rrn) 
Pointers with Pre Decrement 

ST9 - Software 

The notation for operands (condition codes and 
address modes) and the actual operands they rep­
resent are as follows: 

Actual Operand/Range 

where data IS a byte expression 
where data is a word expression 

where n=0-15 

where n=0-255 

where n IS an even number in the range 0-15. 
(n=0,2,4,6 .... 14) 

where n is an even number in the range 0-254. 
(n=0,2,4,6 .... 254) 

where n=0-15 
i 

where n=0-255 

where n=0-15 

where X=0-15; N=0-255 (one byte) 

Program label or expression in the range + 127/-128 
starting from the address of the next instruction 

Program label or expression in the range 0-65535 in 
memory area 

Where n IS an even number in the range 
0-15.(n=0,2,4,6 .... 14) 

where n is an even number in the range 
0-15.(n=0,2,4,6 .... 14) 

where n is an even number in the range 
0-15.(n=0,2,4,6 .... 14) 

165/219 

249 



ST9 - Software 

INSTRUCTION SET (Continued) 

Table 16-4. Notation (Part 2) 

Notation Significance 

Indexed Pair of Working 
N(rrx) Register Pointers wilh 

Short Offset 

Indexed Pair of Working 
NN(rrx) Register Pointers with Long 

Offset 

Indexed Pair of Register 
N(RRx) 

Pointers with Short Offset 

Indexed Pair of Register 
NN(RRx) 

Pointers with Long Offset 

Indexed Pair of Working 

rr(rrx) 
Registers with a Pair of 
Working Registers used as 
Offset 

Bit pointer in a direct working 
r.b 

register 

Bit pointer m a Memory 

(rr).b 
Location using a Pair of 
Indirect Working Registers as 
Address Pointer 

(RR) Indirect pair of Register Pointer 

Actual Operand/Range 

where x 1s an even number in the range 
N(rrx) 0-15.(n=0,2,4,6 .... 14) and N is a signed one 

byte expression between +127/-128 

where x is an even number in the range 

NN(rrx) 
0-15.(n=0,2,4,6 .... 14) and NN is word 
expression in the range between 0 and 
65535 

where x is an even number in the range 
N(RRx) 0-255.(n=0,2,4,6 ... 254) and N is a one byte 

signed expression in the range +127/-128 

where xis an even number in the range 
NN(RRx) 0-255.(n=0,2,4,6 .... 14) and NN is word 

expression in the range between 0 and 65535 

rrn(rrx) 
where n and x are two even numbers in the 
range 0-15. (n,x=0,2,4,6 .... 14) 

n=0.15 and b is a number between 
rn.b 0-7;0 LSB 

7 MSB 

where n is an even number m the range 

(rrn).b 
0-15.(n=0,2,4,6 .... 14) and be is a number 
between 0-7 0 LSB 

7MSB 

(RRn) 
where n is an even number in the range 
0-255.(n=0,2,4,6 .... 254) 

_16_6_12_19 __________ J:ifi SCS-THOMSON 
'l•o U\lJD~mllill~~~~VO!J@ihlD~ill 

250 



16.31NSTRUCTION SUMMARY 

The following tables summarize the operation for 
each of the instructions which are listed with their 
corresponding mnemonic codes, addressing 
modes, byte counts, timing information, and af­
fected flags. 

GENERAL NOTES: 

FLAGS STATUS: 

A :affected 

- : not affected 

0 : reset to zero 

1 :set to one 

? : undefined 

ST9 - Software 

Note: for detailed information on the instruction set 
refer to the ST9 programming manual. 

_ dst: destination operand 

_ src: source operand 

_ SSP: system stack pointer 

- USP: user stack pointer 

_ PC: program counter 

_ cc: condition code 

- C: carry flag 

_ Z: zero flag 

_ S: sign flag 

_ V: overflow flag 

- D: decimal adjust flag 

- CIC: central interrupt control register 
_ DP : data/program memory flag 

167/219 ------------ ID'l Sl:iS-THOMSON 
'l• " I!JO©~@~~rnll:Vlil@li!l©$ 

251 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

ADC : Addition of 2 bytes with carry 

ADC r r 2 6 dSt<-dSt+SrC+C 1\ 1\ 1\ 1\ 0 1\ 

ADC R R 3 10 dsk-dst+src+C A A A A Q A 

ADC r R 3 10 dsl<-dSI+SrC+C A A A A 0 A 

ADC R r 3 10 dsk-dsl+src+C A A A A 0 A 

ADC r (r) 2 6 dsk-dsl+src+C A A A A 0 A 

ADC R (r) 3 10 dsk-dSI+src+C A A A A 0 A 

ADC r (rr) 3 12 dsk-dsl+src+C A A A 1\ Q A 

ADC R (rr) 3 12 dsk-dsl+src+C A A A A 0 A 

ADC r NN 4 18 dsk-dst+src+C A II A II. 0 A 

ADC r N(rrx) 4 24 dsk-dsl+src+C A A A 1\ Q A 

ADC R N(rrx) 4 24 dsl<-dsl+src+C A A 1\ 1\ Q A 

ADC r NN(rrx) 5 26 dsk-dSI+src+C A A A A 0 A 

ADC R NN(rrx) 5 26 dsk-dSI+SrC+C A A 1\ 1\ 0 1\ 

ADC r rr(rrx) 3 22 dsk-dSI+SrC+C A A A A 0 A 

ADC r (rr)+ 3 16 dsk-dsl+src+C A A A A 0 A 

rr<-rr+1 
ADC R (rr)+ 3 16 dsl<-dst+src+C A A A II. 0 A 

rr<-rr+ 1 
ADC r -(rr) 3 16 rr<-rr-1 1\ 1\ 1\ 1\ 0 J\ 

dst<-dst +src+C 
ADC R -(rr) 3 16 rr<-rr-1 1\ A A 1\ Q 1\ 

dsl<-dSI+SrC+C 
ADC (r) r 3 10 dsl<-dsl+src+C A A A A O A 

ADC (r) R 3 10 dsk-dSI+SrC+C A A A A 0 A 

ADC (rr) r 3 18 dsl<-dSI+src+C AAAA0A 

ADC (rr) R 3 18 dsl<-dst+src+C A II. II. A 0 A 

ADC (rr)+ r 3 22 dsl<-dsl+src+C A A A A 0 A 

rr<-rr+1 
ADC (rr)+ R 3 22 dsl<-dsl+src+C A A A A 0 A 

rr<-rr+1 
ADC NN r 4 20 dsl<-dSI+src+C 1\ II. 1\ II. 0 A 

ADC N(rrx) r 4 26 dsl<-dst+src+C A A A II. Q II. 

ADC N(rrx) R 4 26 dsl<-dst+src+C A A A A 0 A 

ADC NN(rrx) r 5 28 dsl<-dst+src+C 1\ II. 1\ 1\ 0 A 

ADC NN(rrx) R 5 28 dSI<-dSI+SrC+C 1\ 1\ 1\ 1\ 0 A 

ADC rr(rrx) r 3 24 dSI<-dSI+SrC+C A A A A 0 A 

ADC -(rr) r 3 24 rr<-rr-1 1\ 1\ 1\ A 0 A 
dsl<-dst+src+C 

ADC -(rr) R 3 22 rr<-rr-1 I\ 1\ 1\ A 0 A 

dsl<-dSI+SrC+C 
ADC r #N 3 10 dSI<-dSI+SrC+C 1\ 1\ I\ 1\ 0 A 
ADC R #N 3 10 dsl<-dst+src+C A A A A 0 A 

ADC (rr) #N 3 16 dsl<-dst+src+C A A A A 0 A 

ADC NN #N 5 24 dsl<-dst+src+C A A A A 0 A 

ADC (rr) (rr) 3 20 dst<-dst+src+C A A A A 0 A 

ADC (RR) (rr) 3 20 dsl<-dst+src+C II. 1\ II. 1\ 0 II. 

1681219 

252 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation Flags src 
cycles CZSVDH 

ADCW : Add word with carry 

ADCW rr rr 2 10 dsk-dst+src+C A A A A ? ? 
ADCW RR RR 3 12 dsk-dst+sre+C A A A A ? ? 

ADCW rr RR 3 12 dsk·dst+src+C A A A A ? ? 

ADCW RR rr 3 12 dsk·dst+src+C A A A A ? ? 
ADCW rr (r) 3 14 dsk·dst+src+C A A A A ? ? 

ADCW RR (r) 3 14 dsk-dst+src+C A A A A ? ? 
ADCW rr (rr) 2 16 dsk-dst+src+C A A A A ? ? 
ADCW RR (rr) 3 18 dsk-dst+src+C A A A A ? ? 
ADCW rr NN 4 22 dsk·dSt+src+C A A A A ? ? 
ADCW rr N(rrx) 4 28 dsk·dsl+src+C A A A A ? ? 

ADCW RR N(rrx) 4 28 dSl<·dSI+SrC+C A A A A ? ? 
ADCW rr NN(rrx) 5 30 dsk·dSI+SrC+C A A A A ? ? 
ADCW RR NN(rrx) 5 30 dsk·dst+src+C A A A A ? ? 

ADCW rr rr(rrx) 3 26 dsk·dsl+src+C A A A A ? ? 
ADCW rr (rr)+ 3 22 dsk·dS!+SrC+C A A A A ? ? 

rr<·rr+2 
ADCW RR (rr)+ 3 22 dsk-dst+src+C A A A A ? ? 

rr<·rr+2 
ADCW rr ·(rr) 3 24 rr<·rr-2 A A A A ? ? 

dsk·dst+src+C 
ADCW RR ·{rr) 3 24 rr<·rr-2 A A A A ? ? 

dsl<·dSI+SrC+C 
ADCW (r) rr 3 14 dsk-dS!+SrC+C A A A A ? ? 
ADCW (r) RR 3 14 dsk-dst+src+C A A A A ? ? 
ADCW (rr) rr 2 30 dsk-dSI+SrC+C A A A A ? ? 

ADCW (rr) RR 3 30 dsk·dSI+src+C A A A A ? ? 

ADCW (rr)+ rr 3 32 dsl<·dsl+src+C A A A A ? ? 
rr<-rr+2 

ADCW (rr)+ RR 3 32 dsk-dst+src+C A A A A ? ? 
rr<-rr+2 

ADCW NN rr 4 32 dsk-dst+src+C A A A A ? ? 

ADCW N(rrx) rr 4 38 dsk-dsl+src+C A A A A ? ? 

ADCW N(rrx) RR 4 38 dsl<-dst+src+C A A A A ? ? 
ADCW NN(rrx) rr 5 38 dsk-dSI+SrC+C A A A A ? ? 
ADCW NN(rrx) RR 5 38 dsk-dSI+SrC+C A A A A ? ? 
ADCW rr(rrx) rr 3 34 dsk-dSt+SrC+C A A A A ? ? 
ADCW -(rr) rr 3 34 rr<-rr-2 A A A A ? ? 

dsl<-dSI+SrC+C 
ADCW -(rr) RR 3 32 rr<-rr-2 A A A A ? ? 

dsk-dst+src+C 
ADCW rr #NN 4 14 dsk-dSt+SrC+C A A A A ? ? 

ADCW RR #NN 4 14 dsk-dSI+SrC+C A A A A ? ? 
ADCW (rr) #NN 4 32 dst<-dst+src+C A A A A ? ? 

ADCW NN #NN 6 36 dsl<-dSI+SrC+C A A A A ? ? 
ADCW N(rrx) #NN 5 36 dsl<-dst+src+C A A A A ? ? 
ADCW NN(rrx) #NN 6 38 dsk-dSt+SrC+C A A A A ? ? 
ADCW (rr) (rr) 2 32 dsl<-dst+src+C A A A A ? ? 

169/219 

253 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src cycles CZSVDH 

ADD : Addition of 2 bytes without carry 

ADD r r 2 6 dsl<-dst+src A 1\ 1\ 1\ Q 1\ 

ADD R R 3 10 dsl<-dst+src A 1\ 1\ 1\ 0 A 

ADD r R 3 10 dsk-dst+src 1\ 1\ 1\ 1\ 0 I\ 

ADD R r 3 10 dsk-dsl+src A A A A 0 A 

ADD r (r) 2 6 dsk-dsl+src A A 1\ 1\ Q A 

ADD R (r) 3 10 dsl<-dst+src A A A A 0 A 

ADD r (rr) 3 12 dsk-dsl+src A A A A 0 A 

ADD R (rr) 3 12 dsk-dsl+src 1\ 1\ 1\ 1\ 0 A 

ADD r NN 4 18 dsk-dst+src 1\ 1\ 1\ 1\ 0 A 

ADD r N(rrx) 4 24 dsk·dsl+src 1\ 1\ 1\ 1\ 0 A 

ADD R N(rrx) 4 24 dsl<-dst+src A A A A 0 A 

ADD r NN(rrx) 5 26 dsl<-dst+src 1\ 1\ 1\ 1\ 0 1\ 

ADD R NN(rrx) 5 26 dsk-dst+src J\ 1\ 1\ 1\ 0 1\ 

ADD r rr(rrx) 3 22 dsk-dsl+src A A A A 0 A 

ADD r (rr)+ 3 16 dsk-dsl+src A A A A 0 A 

rr<-rr+1 
ADD R (rr)+ 3 16 dsk-dsl+src A A A A 0 A 

rr<-rr+1 
ADD r -(rr) 3 16 rr<-rr-1 A A (\ {\ 0 1\ 

dsk-dsl+src 
ADD R -(rr) 3 16 rr<-rr-1 A A A A 0 A 

dsl<-dsl+src 
ADD (r) r 3 10 dsk-dsl+src A A A A 0 A 

ADD (r) R 3 10 dsl<-dst+src 1\ 1\ A 1\ 0 A 

ADD (rr) r 3 18 dsk-dst+src 1\ 1\ 1\ 1\ 0 A 

ADD (rr) R 3 18 dsk-dsl+src 1\ 1\ 1\ A 0 A 

ADD (rr)+ r 3 22 dsk-dst+src 1\ " 1\ II. 0 A 

rr<-rr+1 
ADD (rr)+ R 3 22 dsl<-dsl+src A A A A 0 A 

rr<-rr+1 
ADD NN r 4 20 dsk-dst+src 1\ 1\ 1\ 1\ 0 A 

ADD N(rrx) r 4 26 dsk-dsl+src A A A A 0 A 

ADD N(rrx) R 4 26 dst<-dsl+src A A A A 0 A 

ADD NN(rrx) r 5 28 dsl<-dsl+src A A A A 0 A 

ADD NN(rrx) R 5 28 dst<·dst+src 1\ 1\ 1\ 1\ 0 A 

ADD rr(rrx) r 3 24 dsk-dst+src 1\ 1\ 1\ 1\ 0 1\ 

ADD -(rr) r 3 22 rr<-rr-1 1\ 1\ 1\ 1\ 0 A 

dsk-dsl+src 
ADD -(rr) R 3 22 rr<-rr-1 1\ 1\ 1\ 1\ 0 A 

dsk-dst+src 
ADD r #N 3 10 dsk-dsl+src 1\ 1\ 1\ 1\ 0 A 

ADD R #N 3 10 dsk-dst+src 1\ 1\ 1\ 1\ 0 A 

ADD (rr) #N 3 16 dsk-dsl+src II. II. 1\ 1\ 0 A 

ADD NN #N 5 24 dsk-dsl+src 1\ 1\ 1\ 1\ 0 A 

ADD (rr) (rr) 3 20 dsk-dsl+src 1\ 1\ 1\ 1\ Q A 

ADD (RR) (rr) 3 20 dsk-dsl+src A A 1\ 1\ Q A 

_17_0_12_1_9 ____________ liii ~~~~m~::~~~ 
254 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

ADDW : Add word without carry 

ADDW rr rr 2 10 dsk-dst+src h h h h ? ? 

ADDW RR RR 3 12 dsk-dst+src h h h h ? ? 
ADDW rr RR 3 12 dsk-dst+src h h h h ? ? 
ADDW RR rr 3 12 dst<-dst+src h A A h ? ? 
ADDW rr (r} 3 14 dsk-dst+src h h A h ? ? 
ADDW RR (r} 3 14 dsk-dst+src h h h h ? ? 
ADDW rr (rr} 2 16 dsl<-dsl+src h h h h ? ? 
ADDW RR (rr} 3 18 dsk-dst+src A h A h ? ? 

ADDW rr NN 4 22 dst<·dst+src h h h h ? ? 
ADDW rr N(rrx} 4 28 dst<-dst+src h h h h ? ? 
ADDW RR N(rrx} 4 28 dsk-dst+src h h A A ? ? 

ADDW rr NN(rrx} 5 30 dsk-dst+src h h h h ? ? 
ADDW RR NN(rrx} 5 30 dsk-dst+src h h h h ? ? 
ADDW rr rr(rrx} 3 26 dst<-dst+src h h h h ? ? 
ADDW rr (rr}+ 3 22 dst<-dst+src h h h h ? ? 

rr<-rr+2 
ADDW RR (rr}+ 3 22 dsk-dst+src h h h h ? ? 

rr<-rr+2 
ADDW rr -(rr} 3 24 rr<-rr-2 h h h h ? ? 

dsk-dst+src 
ADDW RR -(rr} 3 24 rr<-rr-2 h h h h ? ? 

dsk-dst+src 
ADDW (r} rr 3 14 dsk-dst+src h h h h ? ? 
ADDW (r} RR 3 14 dsk-dsl+src h h h h ? ? 

ADDW (rr} rr 2 30 dsk-dst+src h h h h ? ? 

ADDW (rr} RR 3 30 dst<-dst+src h h h A ? ? 
ADDW (rr}+ rr 3 32 dsk-dsl+src h h h h ? ? 

rr<-rr+2 
ADDW (rr}+ RR 3 32 dsk-dst+src h h h h ? ? 

rr<-rr+2 
ADDW NN rr 4 32 dsl<-dst+src h h h h ? ? 
ADDW N(rrx} rr 4 38 dst<-dst+src h h A h ? ? 
ADDW N(rrx} RR 4 38 dst<-dst+src h h h h ? ? 
ADDW NN(rrx} rr 5 38 dsk-dst+src h h h h ? ? 
ADDW NN(rrx} RR 5 38 dsk-dsl+src h h h h ? ?" 

ADDW rr(rrx} rr 3 34 dsk-dst+src h h h h ? ? 

ADDW -(rr} rr 3 32 rr<-rr-2 h h h h ? ? 
dsk-dst+src 

ADDW -(rr} RR 3 32 rr<-rr-2 h h h h ? ? 
dsk-dst+src 

ADDW rr #NN 4 14 dsk-dst+src h h h h ? ? 

ADDW RR #NN 4 14 dsk-dst+src h h h h ? ? 

ADDW (rr} #NN 4 32 dsl<-dst+src A A A A ? ? 

ADDW NN #NN 6 36 dst<-dst+src A A A A ? ? 
ADDW N(rrx} #NN 5 36 dsk-dst+src h h h h ? ? 
ADDW NN(rrx} #NN 6 38 dsk-dsl+src h h h h ? ? 
ADDW (rr} (rr} 2 32 dsk-dsl+src h h h h ? ? 

-------------- ~iii ~~~;m~::~~t: 
171/219 

255 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

AND : Logical AND between 2 bytes 

AND r r 2 6 dsk-dst AND src A A 0 
AND R R 3 10 dsk-dst AND src A A 0 
AND r R 3 10 dsk-ds AND src A A 0 
AND R r 3 10 dsk-ds AND src A A 0 
AND r (r) 2 6 dsk-ds AND src A A 0 
AND R (r) 3 10 dsk-ds AND src A A 0 
AND r (rr) 3 12 dsk-ds AND src A A 0 
AND R (rr) 3 12 dsk-ds AND src A A 0 
AND r NN 4 18 dsk-ds AND src A A 0 -
AND r N(rrx) 4 24 dsk-ds AND src A A 0 -

AND R N(rrx) 4 24 dsk-ds AND src A A 0 
AND r NN(rrx) 5 26 dsk-ds AND src A A 0 -
AND R NN(rrx) 5 26 dsk-ds AND src A A 0 
AND r rr(rrx) 3 22 dsk-ds AND src A A 0 
AND r (rr)+ 3 16 dsk-ds AND src A A 0 

rr<-rr+ 1 
AND R (rr)+ 3 16 dsk-ds AND src A A 0 -

rr<-rr+1 
AND r -(rr) 3 16 rr<-rr-1 A A 0 

dsk-ds AND src 
AND R -(rr) 3 16 rr<-rr-1 A A 0 -

dsk-ds AND src 
AND (r) r 3 10 dsk-ds AND src A A 0 
AND (r) R 3 10 dsk-ds AND src A A 0 
AND (rr) r 3 18 dsk-ds AND src A A 0 
AND (rr) R 3 18 dsk-ds AND src A A 0 
AND (rr)+ r 3 22 dsk-ds AND src - A A 0 

rr<-rr+ 1 
AND (rr)+ R 3 22 dsk-ds AND src - A A 0 -

rr<-rr+1 
AND NN r 4 20 dsk-ds AND src A A 0 
AND N(rrx) r 4 26 dsk-ds AND src A A 0 
AND N(rrx) R 4 26 dsk-ds AND src A A 0 
AND NN(rrx) r 5 28 dsk-ds AND src A A 0 
AND NN(rrx) R 5 28 dsk-ds AND src A A 0 
AND rr(rrx) r 3 24 dsk-ds AND src A A 0 
AND -(rr) r 3 22 rr<-rr-1 A A 0 

dsk-ds AND src 
AND -(rr) R 3 22 rr<-rr-1 A A 0 

dsk-ds AND src 
AND r #N 3 10 dsk-ds AND src A A 0 -

AND R #N 3 10 dsk-ds AND src - A A 0 
AND (rr) #N 3 16 dsk-ds AND src - A A 0 
AND NN #N 5 24 dsk-ds AND src A A 0 
AND (rr) (rr) 3 20 dsk-ds AND src A A 0 
AND (RR) (rr) 3 20 dsk-ds AND src A A 0 

172/219 

256 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags src 

cycles CZSVDH 

ANDW : Logical AND between two words 

ANDW rr rr 2 10 dsl<·dst AND src - A A 0 --
ANDW RR RR 3 12 dsl<-dst AND src - A A O --
ANDW rr RR 3 12 dsl<-dst AND src - A A 0 --
ANDW RR rr 3 12 dsk-dst AND src - A A 0 --
ANDW rr {r) 3 14 dsk-dst AND src - A h 0 --
ANDW RR {r) 3 14 dsk-dst AND src - A A O --
ANDW rr {rr) 2 16 dsl<-dst AND src - h h 0 --
ANDW RR {rr) 3 18 dsk-dst AND src - h h 0 --
ANDW rr NN 4 22 dsk-dst AND src - h h 0 --
ANDW rr N{rrx) 4 28 dsk-dst AND src - h h 0 --
ANDW RR N{rrx) 4 28 dsl<-dst AND src - h h 0 --
ANDW rr NN{rrx) 5 30 dsk-dst AND src - ' ' 0 --
ANDW RR NN{rrx) 5 30 dsk-dst AND src - h h 0 --
ANDW rr rr{rrx) 3 26 dsk-dst AND src - ·h h 0 --
ANDW rr {rr)+ 3 22 dsk-dst AND src - h h 0 --

rr<-rr+2 
ANDW RR {rr)+ 3 22 dsl<-dst AND src - A h O --

rr<-rr+2 
ANDW rr -{rr) 3 24 rr<-rr-2 ' ' 0 --

dsk-dst AND src 
ANDW RR -{rr) 3 24 rr<-rr-2 - A 1\l Q --

dsl<-dst AND src 
ANDW {r) rr 3 14 dsl<-dst AND src - A A 0 --
ANDW {r) RR 3 14 dst<-dst AND src - ' ' 0 --
ANDW {rr) rr 2 30 dsk-dst AND src ' ' 0 --
ANDW {rr) RR 3 30 dsk-dst AND src - ' ' 0 --
ANDW {rr)+ rr 3 32 dsk-dst AND src ' ' 0 --

rr<-rr+2 
ANDW {rr)+ RR 3 32 dsl<-dst AND src - A A 0 --

rr<-rr+2 
ANDW NN rr 4 32 dsk-dst AND src - ' h 0 --
ANDW N{rrx) rr 4 38 dsk-dst AND src - ' ' 0 --
ANDW N{rrx) RR 4 38 dsk-dst AND src - ' ' 0 --
ANDW NN{rrx) rr 5 38 dsk-dst AND src - ' ' 0 --
ANDW NN{rrx) RR 5 38 dsk-dst AND src - ' ' 0 --
ANDW rr{rrx) rr 3 34 dsk-dst AND src - ' ' 0 --
ANDW -{rr) rr 3 32 rr<-rr-2 - h ' 0 --

dsk-dst AND src 
ANDW -{rr) RR 3 32 rr<-rr-2 - ' ' 0 --

dsl<-dst AND src 
ANDW rr #NN 4 14 dsk-dst AND src - ' ' 0 --
ANDW RR #NN 4 14 dsk-dst AND src A A 0 --
ANDW {rr) #NN 4 32 dsk-dst AND src - A A 0 --
ANDW NN #NN 6 36 dsk-dst AND src - A A 0 --
ANDW N{rrx) #NN 5 36 dsk-dst AND src - A A 0 --
ANDW NN{rrx) #NN 6 38 dsl<-dst AND src - A A 0 --
ANDW {rr) {rr) 2 32 dsk-dst AND src - A A 0 - -

173/219 

257 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

BAND : Bit AND 

BAND r.b r.b 3 14 dst bik-dst bit AND src b1t - - - - - -
BAND r.b r.!b 3 14 dst bil<-dst bit AND complemented src bit ------

BCPL : Bit Complement 

BCPL r.b 2 6 dst bik-dst bit complemented ------

BLD : Bit Load 

BLD r.b r.b 3 14 dst brk-src b1t - - - - - -

BLD r.b r.!b 3 14 dst bil<-src bit complemented - - - - - -

BOA: Bit OR 

BOR r.b r.b 3 14 dst bik-dst b1t OR src bit - - - - - -

BOR r.b r.!b 3 14 dst b11<-dst bit OR complemented src bit - - - - - -

BRES : Bit Reset 

BRES r.b 2 6 dst bit<- 0 ------

BSET : Bit Set 

BSET r.b 2 6 dst bit<- 1 ------

BT JF, BT JT : Bit test and jump 

BTJF r.b N 3 14/16 If test bit IS 0, PC<-PC+N - - - - - -

BTJT r.b N 3 14/16 If test bit IS 1, PC<-PC+N - - - - - -

BXOR : Bit Exclusive OR 

BXOR r.b r.b 3 14 dst bik-dst bit XOR src bit ------
BXOR r.b r.lb 3 14 dst bik-dst bit XOR complemented src b1t - - - - - -

BTSET : Bit Test and Set 

BTSET r.b 2 8 If test bit= O, test bit<-1 ,Z<-1 _ II A Q _ 

BTSET (rr}.b 2 20 If test bit= 0, test bit <-1 ,Z<-1 _ A A Q _ 

174/219 

258 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

CALL : Call a subroutine 

CALL NN 3 18 
SSP<-SSP-2,(SP)< - - - - -
PC, PC<-dst 

CALL (rr) 2 16 " " -

CALL (RR) 2 16 " " - - -

CCF :Complement Carry Flag 

CCF 1 6 C<-C - - -·-
complemented 

CLR : Clear register 

CLR r 2 6 dsk-0 
CLR R 2 6 dsk-0 -
CLR (r) 2 6 dsk-0 -

CLR (R) 2 6 dsk-0 - - - -

175/219 

259 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src cycles CZSVDH 

CP : Compare bytes 

CP r r 2 6 dst-src A A A A 

CP R R 3 10 dst-src A A A A 

CP r R 3 10 dst-src A A A A 

CP R r 3 10 dst-src A A A A 

CP r (r) 2 6 dst-src A A A A 

CP R (r) 3 10 dst-src A A A A 

CP r (rr) 3 12 dst-src A A A A 

CP R (rr) 3 12 dst-src A A A A 

CP r NN 4 18 dst-src A A A A 

CP r N(rrx) 4 24 dst-src A A A A 

CP R N(rrx) 4 24 dst-src A A A A -
CP r NN(rrx) 5 26 dst-src A A A A 

CP R NN(rrx) 5 26 dst-src A A A A 

CP r rr(rrx) 3 22 dst-src A A A A 

CP r (rr)+ 3 16 dst-src,rr<-rr+ 1 A A A A -
CP R (rr)+ 3 16 dst-src,rr<-rr+ 1 A A A A 

CP r -(rr) 3 16 rr<-rr-1 ,dst-src A A A A -
CP R -(rr) 3 16 rr<-rr-1 ,dst-src A A A A 

CP (r) r 3 10 dst-src A A A A 

CP (r) R 3 10 dst-src A A A A 

CP (rr) r 3 18 dst-src A A A A -
CP (rr) R 3 18 dst-src A A A A 

CP (rr)+ r 3 22 dst-src,rr<-rr+ 1 A A A A 

CP (rr)+ R 3 22 dst-src,rr<-rr+ 1 A A A A 

CP NN r 4 20 dst-src A A A A -
CP N(rrx) r 4 26 dst-src A A A A 

CP N(rrx) R 4 26 dst-src A A A A 

CP NN(rrx) r 5 28 dst-src A A A A 

CP NN(rrx) R 5 28 dst-src A A A A 

CP rr(rrx) r 3 24 dst-src A A A A 

CP -(rr) r 3 22 rr<-rr-1 ,dst-src A A A A 

CP -(rr) R 3 22 rr<-rr-1 ,dst-src A A A A 

CP r #N 3 10 dst-src A A A A 

CP R #N 3 10 dst-src A A A A 

CP (rr) #N 3 16 dst-src A A A A 

CP NN #N 5 22 dst-src A A A A -
CP (rr) (rr) 3 18 dst-src A A A A 

CP (RR) (rr) 3 18 dst-src A A A A 

CPL : Complement register 

CPL r 2 6 dsk- NOTdst A A 0 
CPL R 2 6 dsk- NOTdst A A 0 
CPL (r) 2 6 dsk- NOTdst A A 0 
CPL (R) 2 6 dsk- NOTdst A A 0 

CPJFI, CPJTI : Compare with post-increment 

If compare not 

CPJFI (rr) r,N 3 22/24 
verified Jump 
otherwise post-
increment 

If compare venf1ed 
CPJTI (rr) r,N 3 22/24 Jump otherwise post-

mcrement 

176/219 

260 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

CPW : Compare word 

CPW rr rr 2 10 dst-src A A A A - -

CPW RR RR 3 12 dst-src A A A A - -
CPW rr RR 3 12 dst-src A A A A 

CPW RR rr 3 12 dst-src A A A A 

CPW rr (r) 3 14 dst-src A A A A 

CPW RR (r) 3 14 dst-src A A A A 

CPW rr (rr) 2 16 dst-src A A A A -
CPW RR (rr) 3 18 dst-src A A A A - -
CPW rr NN 4 22 dst-src A A A A - -

CPW rr N(rrx) 4 28 dst-src A A A A 

CPW RR N(rrx) 4 28 dst-src A A A A - -
CPW rr NN(rrx) 5 30 dst-src A A A A - -
CPW RR NN(rrx) 5 30 dst-src A A A A 

CPW rr rr(rrx) 3 26 dst-src A A A A - -
CPW rr (rr)+ 3 22 dst-src A A A A - -

rr<-rr+2 
CPW RR (rr)+ 3 22 dst-src A A A A 

rr<-rr+2 
CPW rr -(rr) 3 24 rr<-rr-2 A A A A - -

dst-src 
CPW RR -(rr) 3 24 rr<-rr-2 A A A A -

dst-src 
CPW (r) rr 3 14 dst-src A A A A - -
CPW (r) RR 3 14 dst-src A A A A 

CPW (rr) rr 2 26 dst-src A A A A - -
CPW (rr) RR 3 28 dst-src A A A A - -
CPW (rr)+ rr 3 30 dst-src A A A A -

rr<-rr+2 
CPW (rr)+ RR 3 30 dst-src A A A A -

rr<-rr+2 
CPW NN rr 4 30 dst-src A A A A - -
CPW N(rrx) rr 4 36 dst-src A A A A 

CPW N(rrx) RR 4 36 dst-src A A A A 

CPW NN(rrx) rr 5 36 dst-src A A A A 

CPW NN(rrx) RR 5 36 dst-src A A A A 

CPW rr(rrx) rr 3 32 dst-src A A A A 

CPW -(rr) rr 3 30 rr<-rr-2 A A A A 

dst-src 
CPW -(rr) RR 3 30 rr<-rr-2 A A A A - -

dst-src 
CPW rr #NN 4 14 dst-src A A A A - -

CPW RR #NN 4 14 dst-src A A A A 

CPW (rr) #NN 4 30 dst-src A A A A 

CPW NN #NN 6 34 dst-src A A A A 

CPW N(rrx) #NN 5 34 dst-src A A A A -

CPW NN(rrx) #NN 6 36 dst-src A A A A 

CPW (rr) (rr) 2 32 dst-src A A A A 

177/219 

261 



ST9 -:Software 

INSTRI'JCTION SUMMARY (Continued) 

Mnemo. dst src Bytes 
Clock 

Operation 
cycles 

j DA : Decimal adjust 

DA r 2 6 dsl<- DA dst 
DA R 2 6 dsk- DAds! 
DA (r) 2 6 dsk- DAds! 
DA (R} 2 6 dsk- DA dst ., 

DEC : Decrement 

DEC r 2 6 dsk- dst-1 
DEC R 2 6 dsk-dst-1 
DEC (r} 2 6 dsl<- dst-1 
DEC (R) 2 6 dsk- dst-1 

DECW : Decrement Word 

DECW rr 2 8 dsk-dst-1 
DECW RR 2 8 dsk-dst-1 

Dl : Disable Interrupts 

Dl 1 6 Bit 4 of the CIC Register is set to 0 

DIV : Divide 16 by 8 

--
DIV 2 28/20 

dst I src <· dst high~remainder 
rr r 

16/8 <· dst low~resull 

DIVWS: Divide Word Stepped 32 by 16 

DIVWS 
rrhigh 

rr 3 28 32/16 
rrlow -

DJNZ : Decrement a working register and Jump if Non Zero 

DJNZ r N 2 10/12 r <· r-1, If r~o then PC<·PC+N 

DWJNZ : Decrement a register pair and Jump if Non Zero 

DWJNZ rr N 3 12/16 rr<-rr-1, If rr~o then PC<·PC+N 
DWJNZ RR N 3 12/16 RR<·RR-1 ,If RR~O then PC<-PC+N 

Notes: 
1. Fiefer to the ST9 Programming Manual for detailed information. 
2. Working registers in groups D, E and Fare not allowed. 

178/219 ~ SCS·THOMSON ----'-------------- A.""f/ ilW©IlJ@il!~~©VIii©I'IO©$ 
262 

Flags 
CZSVDH 

II. A A ? __ 
A A I\ ? __ 

1\ I\ A ? - -
1\ 1\ 1\ ? - -

A A A --
- A A A --
- A A A --

A A A - -

- 1\ 1\ 1\--

- 1\ 1\ /1.--

- - - - - -

note 1 

note 1 

note 2 

note 2 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

El : Enable Interrupts 

El 1 6 Bit 4 of the CICR register is set to 1 ------

EXT : Sign extend 

EXT rr 2 10 r(7) --> r(n) n=8-15 ------
EXT RR 2 10 R(7) --> R(n) n=8-15 ------

HALT 

HALT 2 6 Stops all internal clocks until next system -

reset 1f not 1n Watchdog Mode 

INC : Increment 

INC r 2 6 dsk- dst+1 A A A --
INC R 2 6 dst<- dst+1 A A A --

INC (r) 2 6 dsl<- dst+1 A A A --

INC (R) 2 6 dsk- dst+1 _ A II II __ 

INCW : Increment Word 

INCW rr 2 8 dsk-dst+1 _ 1\ A A __ 

INCW RR 2 8 dsk-dst+1 _ A A 1\ __ 

I RET : Return from Interrupt Routine 

I RET 1 16 
FLAGS<-(SSP),SSP<-SSP+ 1, 

note 1 PC<-(SSP), SSP<-SPP+2, CIC(4)<-1 

JP : Jump to a Routine 

JP NN 3 10 PC<-dst -

JP (rr) 2 8 PC<-dst 

JP (RR) 2 8 PC<-dst - -

JPcc NN 3 10 
IF cc(cond1t1on code) IS true, -
PC<-dst 

JRcc : Conditional Relative Jump to a Routine 

JRcc N 2 10/12 
IF cc(condition code)is true, -
PC<-PC+dst 

Note 1 :All flags are restored to ong1nal setting (before Interrupt occured). 

179/219 

263 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation src cycles 

LD : Load byte instructions 

LD r r 2 6 dsl<-src 
LD R R 3 10 dsl<-src 
LD r R 2 6 dsl<-src 
LD R r 2 6 dsk-src 
LD r (r) 2 6 dsl<-src 
LD R (r) 3 10 dsk-src 
LD r (rr) 2 10 dst<-src 
LD R (rr) 3 12 dsl<-src 
LD r NN 4 18 dsl<-src 
LD r N(rx) 3 10 dsk-src 
LO r N(rrx) 4 24 dsk-src 
LO R N(rrx) 4 24 dst<-src 
LD r NN(rrx) 5 26 dst<-src 
LD R NN(rrx) 5 26 dsk-src 
LD r rr(rrx) 3 22 dsk-src 
LD r (rr)+ 3 16 dsl<-src,rr<-rr+ 1 
LD R (rr)+ 3 16 dsk-src,rr<-rr+ 1 
LD r -(rr) 3 16 rr<-rr-1 ,dsk-src 
LD R -(rr) 3 16 rr<-rr-1 ,dst<-src 
LD (r) r 2 6 dsl<-src 
LD (r) R 3 10 dsl<-src 
LD (rr) r 2 10 dsk-src 
LO (rr) R 3 14 dst<-src 
LD (rr)+ r 3 18 dst<-src,rr<-ff+ 1 
LD (rr)+ R 3 18 dsk-src,rr<-rr+ 1 
LD NN r 4 18 dst-src 
LD N(rx) r 3 10 dst-src 
LO N(rrx) r 4 24 dst-src 
LD N(rrx) R 4 24 dst-src 
LD NN(rrx) r 5 26 dst-src 
LD NN(rrx) R 5 26 dst-src 
LD rr(rrx) r 3 22 dst-src 
LO -(rr) r 3 18 rr<-rr-1 ,dsk-src 
LD -(rr) R 3 18 rr<-rr-1 ,dsk-src 
LD r #N 2 6 dst<-src 
LD R #N 3 10 dst<-src 
LD (rr) #N 3 12 dsk-src 
LD NN #N 5 20 dsk-src 
LO (rr) (rr) 3 16 dsl<-src 
LD (RR) (rr) 3 16 dsl<-src, 
LD (r)+ (rr)+ 2 14 rr<-rr+1,r<-r+1 
LD (rr)+ (r)+ 2 18 rr<-rr+1,r<-r+1 

LDPP,LDDP,LDPD, LDDD : Load from I to program I data memory 

LDPP (rr)+ (rr)+ 
LOOP (rr)+ (rr)+ 
LDPD (rr)+ (rr)+ 
LDDD (rr)+ (rr)+ 

Notes: 

1 dst1n Program Memory, src 1n Program Memory 

2. dst in Data Memory, src 1n Program Memory 

1801219 

264 

2 
2 
2 
2 

3 
4 

16 dsk-src 11l,rr<-rr+1 
16 dsl<-src 12l,rr<-rr+ 1 
16 dsk-src 131,rr<-rr+ 1 
16 dsk-src 141,rr<-rr+ 1 

dst in Program Memory, src 1n Data Memory 

dst 1n Data Memory, src 1n Data Memory 

Flags 
CZSVDH 

- -
-

-

-

-
-
-
- -

- -

-

-
-

- -

- - - -
-

- -

- -
- -
-

-
-

- - -

- - -
- -

- - -
- - -

- -
- -

- -
- -
- - -

- -
-
-

- -
-
- -

- -

-
-

- -



INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation src 
cycles 

LDW : Load word instructions 

LDW rr rr 2 10 
LOW RR RR 3 10 
LOW rr RR 3 10 
LOW RR rr 3 10 
LOW rr (r) 3 10 
LOW RR (r) 3 10 
LOW rr (rr) 2 16 
LOW RR (rr) 3 18 
LOW rr NN 4 22 
LOW rr N(rx) 3 16 
LOW rr N(rrx) 4 28 
LOW RR N(rrx) 4 28 
LOW rr NN(rrx) 5 30 
LOW RR NN(rrx) 5 30 
LOW rr rr(rrx) 3 24 
LOW rr (rr)+ 3 20 
LOW RR (rr)+ 3 20 
LOW rr -(rr) 3 22 
LOW RR -(rr) 3 22 
LOW (r) rr 3 10 
LOW (r) RR 3 10 
LOW (rr) rr 2 18 
LOW (rr) RR 3 20 
LOW (rr)+ rr 3 24 
LOW (rr)+ RR 3 24 
LOW NN rr 4 22 
LOW N(rx) rr 3 14 
LOW N(rrx) RR 4 26 
LOW N(rrx) rr 4 26 
LOW NN(rrx) RR 5 28 
LOW NN(rrx) rr 5 28 
LOW rr(rrx) rr 3 24 
LOW -(rr) rr 3 26 
LOW -(rr) RR 3 26 
LOW rr #NN 4 12 
LOW RR #NN 4 12 
LOW (rr) #NN 4 22 
LOW N(rrx) #NN 5 28 
LOW NN(rrx) #NN 6 30 
LOW NN #NN 6 26 
LOW (rr) (rr) 2 22 

r== SGS· THOMSON ---------------- ... ""fl. r0JII!:D1:Q:~~"cr:~iiil@l!DI!:§ 

dsk-src 
dsk-src 
dst<-src 
dsl<-src 
dsl<-src 
dsl<-src 
dsl<-src 
dsl<-src 
dsl<-src 
dst<-src 
dsk-ssc 
dsk-src 
dsl<-src 
dsl<-src 
dsl<-src 
dsl<-src,rr<-rr+2 
dsk-src.rr<-rr+2 
rr<-rr-2,dsl<-src 
rr<-rr-2,dsl<-src 
dsl<-src 
dst<-src 
dsl<-src 
dsl<-src 
rr<-rr+2,dsk-src 
rr<-rr+2,dsk-src 
dst<-src 
dsl<-src 
dsk-src 
dsl<-src 
dsl<-src 
dsl<-src 
dsl<-src 
rr<-rr-2,dsl<-src 
rr<-rr-2,dsk-src 
dsk-src 
dsl<-src 
dsl<-src 
dsl<-src 
dsl<-src 
dsk-src 
dsl<-src 

ST9 - Software 

Flags 
CZSVDH 

-
- -

- -
- - -
- -
- -

- -
- -
- -
- -
- -

- -
- -

- - - - -
- -
- -

- - -
- - -
- - - ,. 
- - ,. 

- - - -
- - - -
- -
- - -

- - -
- -

- -
- -

-
- -

-
- -

- - -
- - -

- - - -
- -

- - - -
- -

181/219 

265 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock Operation 

Flags 
src 

cycles CZSVDH 

MUL :Multiply 

MUL rr r 2 22 
dst <-dst x src, 8 x 8 note 1 
multiply 

NOP . No operation 

NOP 1 6 No Operation 

OR : Logical OR between 2 bytes 

OR r r 2 6 dsk-dst OR src A A 0 

OR R R 3 10 dsk-dst OR src A A 0 

OR r R 3 10 dsk-dst OR src A A 0 

OR R r 3 10 dst<-dst OR src A A 0 

OR r (r) 2 6 dsk-dst OR src A A 0 

OR R (r) 3 10 dsk-dst OR src A A 0 -
OR r (rr) 3 12 dsk-dst OR src A A 0 

OR R (rr) 3 12 dsk-dst OR src A A 0 

OR r NN 4 18 dsk-dst OR src A A 0 

OR r N(rrx) 4 24 dsk-dst OR src A A 0 

OR R N(rrx) 4 24 dsk-dst OR src A A 0 

OR r NN(rrx) 5 26 dsk-dst OR src A A 0 

OR R NN(rrx) 5 26 dsk-dst OR src A A 0 

OR r rr(rrx) 3 22 dsk-dst OR src A A 0 

OR r (rr)+ 3 16 dsk-dst OR src A A 0 
rr<-rr+1 

OR R (rr)+ 3 16 dsk-dst OR src A A 0 
rr<-rr+1 

OR r -(rr) 3 16 rr<-rr-1 A A 0 
dsk-dst OR src 

OR R -(rr) 3 16 rr<-rr-1 A A 0 
dsk-dst OR src 

OR (r) r 3 10 dsl<-dst OR src A A 0 
OR (r) R 3 10 dsk-dst OR src A A 0 
OR (rr) r 3 18 dsk-dst OR src A A 0 

OR (rr) R 3 18 dsk-dst OR src A A 0 
OR (rr)+ r 3 22 dsk-dst OR src A A 0 

rr<-rr+ 1 
OR (rr)+ R 3 22 dsk-dst OR src A A 0 

rr<-rr+ 1 
OR NN r 4 20 dsk-dst OR src A A 0 
OR N(rrx) r 4 26 dsk-dst OR src A A 0 
OR N(rrx) R 4 26 dsk-dst OR src A A 0 
OR NN(rrx) r 5 28 dsk-dst OR src A A 0 

OR NN(rrx) R 5 28 dsk-dst OR src A A 0 
OR rr(rrx) r 3 24 dsk-dst OR src A A 0 
OR -(rr) r 3 22 dsk-dst OR src A A 0 

rr<-rr-1 
OR -(rr) R 3 22 dsk-dst OR src A A 0 

rr<-rr-1 
OR r #N 3 10 dsk-dst OR src A A 0 
OR R #N 3 10 dsk-dst OR src A A 0 
OR (rr) #N 3 16 dsk-dst OR src A A 0 
OR NN #N 5 24 dsk-dst OR src A A 0 
OR (rr) (rr) 3 20 dsk-dst OR src A A 0 
OR (RR) (rr) 3 20 dsl<-dst OR src A A 0 

Note 1. Refer to ST9 programmtng manual for detatled mformatton 

182/219 

266 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

ORW : Logical OR between two words 

ORW rr rr 2 10 dsk-dst OR src A A 0 
ORW RR RR 3 12 dsk-dst OR src A A 0 
ORW rr RR 3 12 dsk·dst OR src A A 0 
ORW RR rr 3 12 dst<-dst OR src A A 0 
ORW rr (r) 3 14 dsk·dst OR src A A 0 
ORW RR (r) 3 14 dsk-dst OR src A A 0 
ORW rr (rr) 2 16 dsl<·dst OR src A A 0 
ORW RR (rr) 3 18 dsk·dst OR src A A 0 
ORW rr NN 4 22 dsk·dst OR src A A 0 
ORW rr N(rrx) 4 28 dsl<·dst OR src A A 0 
ORW RR N(rrx) 4 28 dsk-dst OR src A A 0 
ORW rr NN(rrx) 5 30 dsk·dst OR src A A 0 
ORW RR NN(rrx) 5 30 dsk-dst OR src A A 0 
ORW rr rr(rrx) 3 26 dsk·dst OR src A A 0 
ORW rr (rr)+ 3 22 dsk·dst OR src A A 0 

rr<·rr+2 
ORW RR (rr)+ 3 22 dsk-dst OR src A A 0 

rr<·rr+2 
ORW rr ·(rr) 3 24 rr<·rr-2 . A A 0 . 

dsk·dst OR src 
ORW RR ·(rr) 3 24 rr<·rr-2 . A A 0 . 

dsl<·dst OR src 
ORW (r) rr 3 14 dsk-dst OR src A A 0 
ORW (r) RR 3 14 dsk-dst OR src A A 0 
ORW (rr) rr 2 30 dsk·dst OR src A A 0 
ORW (rr) RR 3 30 dsk-dst OR src A A 0 
ORW (rr)+ rr 3 32 dsl<·dst OR src A A 0 

rr<·rr+2 
ORW (rr)+ RR 3 32 dsk-dst OR src A A 0 

ff<·ff+2 
ORW NN rr 4 32 dsl<-dst OR src A A 0 
ORW N(rrx) rr 4 38 dsl<·dst OR src A A 0 
ORW N(rrx) RR 4 38 dsk-dst OR src A A 0 
ORW NN(rrx) rr 5 38 dsk-dst OR src A A 0 
ORW NN(rrx) RR 5 38 dsk-dst OR src . A A 0 
ORW rr(rrx) rr 3 34 dsk-dst OR src A A 0 
ORW ·(rr) rr 3 32 rr<·rr-2 A A 0 . . 

dsl<·dst OR src 
ORW ·(rr) RR 3 32 rr<·rr-2 A A 0 . 

dsk-dst OR src 
ORW rr #NN 4 14 dsk-dst OR src A A 0 
ORW RR #NN 4 14 dsk-dst OR src A A 0 . 
ORW (rr) #NN 4 32 dsk-dst OR src A A 0 
ORW NN #NN 6 36 dsk·dst OR src A A 0 
ORW N(rrx) #NN 5 36 dsl<·dst OR src A A 0 
ORW NN(rrx) #NN 6 38 dsk-dst OR src A A 0 
ORW (rr) (rr) 2 32 dsk-dst OR src A A 0 

183/219 

267 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

PEA : Push effective address on system stack 

PEA N(rrx) 4 20 SSP<·USP-2, (SSP)<-rrX+N - - - - - -

PEA NN(rrx) 5 26 SSP<·USP-2, (SSP)<·rrx+N - - - - - -

PEA N(RRx) 4 20 SSP<·USP-2, (SSP)<·RRx+N - - - - - -

PEA NN(RRx) 5 26 SSP<·USP-2, (SSP)<·RRX+N - - - - - -
PEAU : Push effective address on user stack 

PEAU N(rrx) 4 20 USP<·USP-2, (USP)<·rrX+N - - - - - -
PEAU NN(rrx) 5 26 USP<·USP-2, (USP)<-rrX+N - - - - - -

PEAU N(RRx) 4 20 USP<·USP-2, (USP)<-RRX+N - - - - - -

PEAU NN(RRx) 5 26 USP<·USP-2, (USP)<·RRX+N - - - - - -
POP : Pop system stack 

POP r 2 10 dsk-(SSP), SSP<·SSP+ 1 - - - - - -

POP R 2 10 dsk-(SSP), SSP<·SSP+ 1 - - - - - -

POP (r) 2 10 dsk-(SSP), SSP<·SSP+ 1 - - - - - -

POP (R) 2 10 dsk-(SSP), SSP<·SSP+ 1 - - - - - -
POPU : Pop user stack 

POPU r 2 10 dsk-(USP), USP<·USP+ 1 ------

POPU R 2 10 dsk-(USP), USP<·USP+ 1 - - - - - -

POPU (r) 2 10 dsk-(USP), USP<·USP+ 1 - - - - - -

POPU (R) 2 10 dst<-(USP), USP<·USP+ 1 - - - - - -

POPUW : Pop word from user stack 

POPUW rr 2 14 dsk-(USP), USP<·USP+2 - - - - - -
POPUW RR 2 14 dsk-(USP), USP<·USP+2 - - - - - -

POPW : Pop word from system stack 

POPW rr 2 14 dsk-(SSP), SSP<·SSP+2 - - - - - -

POPW RR 2 14 dsk-(SSP), SSP<·SSP+2 - - - - - -
PUSH : Push system stack 

PUSH r 2 10 SSP<·SSP·1, (SSP)<·src - - - - - -
PUSH R 2 10 SSP<·SSP-1, (SSP)<·src - - - - - -
PUSH (r) 2 10 SSP<·SSP-1, (SSP)<·src - - - - - -
PUSH (R) 2 10 SSP<·SSP-1, (SSP)<·src - - - - - -

PUSH #N 3 16 SSP<-SSP-1, (SSP)<-src - - - - - -

PUSHU : Push user stack 

PUSHU r 2 10 USP<·USP-1, (USP)<-src ------

PUSHU R 2 10 USP<·USP-1, (USP)<·src ------
PUSHU (r) 2 10 USP<-USP-1, (USP)<·src - - - - - -
PUSHU (R) 2 10 USP<·USP·1, (USP)<·src - - - - - -

PUSHU #N 3 16 USP<·USP·1, (USP)<·src - - - - - -
PUSHUW : Push word on user stack 

PUSHUW rr 2 12 USP<-USP-2, (USP)<·src ------
PUSHUW RR 2 12 USP<-USP-2, (USP)<·src ------
PUSHUW #NN 4 20 USP<-USP-2, (USP)<·src - - - - - -

PUSHW : Push Word on System Stack 

PUSHW rr 2 12 SSP<-SSP-2, (SSP)<-src - - - - - -
PUSHW RR 2 12 SSP<-SSP-2, (SSP)<·src - - - - - -
PUSHW #NN 4 20 SSP<·SSP-2, (SSP)<·src ------

_18_4_12_1_9 ____________ J:.W. ~~~;m~::'l~~ 
268 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

RCF : Reset carry flag 

RCF 1 6 C<-0 0-----

RET : Return from subroutine 

RET 1 12 PC <-(SSP), SSP<- SPP+2 ------

RLC : Rotate left through carry 

RLC r 2 6 dst(O)<-C, C<-dst(7) A 1\ A A __ 

dst(n+ 1 )<-dst(n) n=0-6 
RLC R 2 6 1\1\1\ II. --

RLC (r) 2 6 " " 1\ (\ 1\1\--

RLC (R) 2 6 " " 1\1\1\1\--

RLCW : Rotate word left through carry 

RLCW rr 2 8 dst(O)<-C, C<-dst(15) 
dst(n+1 )<-dst(n) n=0-14 

RLCW RR 2 8 

ROL : Rotate left 

ROL r 2 6 C<-dst(7), dst(0)<-dst(7) II. 1\ I\ 1\--

dst(n+ 1 )<-dst(n) n=0-6 
ROL R 2 6 1\1\1\1\--

ROL (r) 2 6 " " 1\1\1\1\ --

ROL (R) 2 6 " " 1\1\ I\ 1\--

ROR : Rotate right 

ROR r 2 6 C<-dst(O), dst(7)<-dst(O) 1\" 1\" --

dst(n)<-dst(n+ 1) n=0-6 
ROR R 2 6 /1." 1\1\--

ROR (r) 2 6 " " 1\1\1\ I\--

ROR (R) 2 6 " " 1\ 1\ A 1\ - -

ARC : Rotate right through carry 

RRC r 2 6 dst(7)<-C, C<-dst(O) A 1\ A 1\ __ 

dst(n)<-dst(n+ 1) n=0-6 
RRC R 2 6 II. A I\ II.--

RRC (r) 2 6 " " 1\1\1\ A--

RRC (R) 2 6 " " II. 1\1\ A--

RRCW : Rotate word right through carry 

RRCW rr 2 8 dst(15)<-C, C<-dst(O) 1\ I\ I\ II.--

dst(n)<-dst(n+1) n=0-14 
RRCW RR 2 8 

/1. 1\ A A __ 

.. 

185/219 

269 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock Operation 

Flags 
src 

cycles CZSVDH 

SBC : Subtraction of 2 bytes with carry 

SBC r r 2 6 dsk-dst-src-C A A A A 1 A 

SBC R R 3 jQ dsk-dst-src-C A A A A 1 A 

SBC r R 3 10 dsk-dst-src-C A A A A 1 A 

SBC R r 3 jQ dsk·dst-src-C A A A A 1 A 

SBC r (r) 2 6 dsk-dst-src-C A A A A 1 A 

SBC R (r) 3 jQ dsk-dst-src-C A A A A 1 A 

SBC r (rr) 3 12 dsk-dst-src-C A A A A 1 A 

SBC R (rr) 3 12 dsk-dst-src-C A A A A 1 A 

SBC r NN 4 18 dsk-dst-src-C A A A A 1 A 

SBC r N(rrx) 4 24 dsk-dst-src-C A A A A 1 A 

SBC R N(rrx) 4 24 dsk-dst-src-C A A A A 1 A 

SBC r NN(rrx) 5 26 dsk-dst-src-C A A A A 1 A 

SBC R NN(rrx) 5 26 dsk-dst-src-C A A A A 1 A 

SBC r rr(rrx) 3 22 dsk-dst-src-C A A A A 1 A 

SBC r (rr)+ 3 16 dsk-dst-src-C A A A A 1 A 

rr<-rr+1 
SBC R (rr)+ 3 16 dsk-dst-src-C A A A A 1 A 

rr<-rr+ 1 
SBC r -(rr) 3 16 rr<-rr-1 A A A A 1 A 

dsk-dst-src-C 
SBC R -(rr) 3 16 rr<-rr-1 A A A A 1 A 

dsk-dst-src-C 
SBC (r) r 3 jQ dsk-dst-src-C A A A A j A 

SBC (r) R 3 jQ dsk-dst-src-C A A A A 1 A 

SBC (rr) r 3 18 dsk-dst-src-C A A A A 1 A 

SBC (rr) R 3 18 dsk·dst-src-C A A A A 1 A 

SBC (rr)+ r 3 22 dsk-dst-src-C A A A A 1 A 

rr<-rr+ 1 
SBC (rr)+ R 3 22 dsk-dst-src-C A A A A 1 A 

rr<-rr+1 
SBC NN r 4 20 dst<-dst-src-C A A A A 1 A 

SBC N(rrx) r 4 26 dsk-dst-src-C A A A A 1 A 

SBC N(rrx) R 4 26 dsk-dst-src-C A A A A 1 A 

SBC NN(rrx) r 5 28 dsk-dst-src-C A A A A 1 A 

SBC NN(rrx) R 5 28 dsk-dst-src-C A A A A 1 A 

SBC rr(rrx) r 3 24 dsk-dst-src-C A A A A 1 A 

SBC -(rr) r 3 22 rr<-rr-1 A A A A 1 A 

dsk-dst-src-C 
SBC -(rr) R 3 22 rr<-rr-1 A A A A 1 A 

dsk-dst-src-C 
SBC r #N 3 jQ dsk-dst-src-C A A A A 1 A 

SBC R #N 3 jQ dsk-dst -src-C A A A A 1 A 

SBC (rr) #N 3 16 dsk-dst-src-C A A A A 1 A 

SBC NN #N 5 24 dsk-dst-src-C A A A A 1 A 

SBC (rr) (rr) 3 20 dsk-dst -src-C A A A A 1 A 

SBC (RR) (rr) 3 20 dsk-dst-src-C A A A A 1 A 

186/219 

270 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation Flags src 
cycles CZSVDH 

SBCW : Subtract word with carry 

SBCW rr rr 2 10 dsk·dst·src·C 1\ 1\ 1\ A ? ? 
SBCW RR RR 3 12 dsk-dst-src-C II. 1\ A 1\ ? ? 
SBCW rr RR 3 12 dsk-dst-src-C • • • • ? ? 
SBCW RR rr 3 12 dsk-dst-src-C A A A A ? ? 
SBCW rr (r) 3 14 dsk-dst-src-C 1\ A A 1\ ? ? 
SBCW RR (r) 3 14 dsk-dst-src-C • • • • ? ? 
SBCW rr (rr) 2 16 dsk-dst-src-C 1\ 1\ 1\ 1\ ? ? 
SBCW RR (rr) 3 18 dsk-dst-src-C II. II. II. II. ? ? 
SBCW rr NN 4 22 dsk-dst-src-C 1\ " 1\ 1\ ? ? 
SBCW rr N(rrx) 4 28 dst<-dst-src-C A A 1\ A ? ? 
SBCW RR N(rrx) 4 28 dsk-dst-src-C • • • • ? ? 
SBCW rr NN(rrx) 5 30 dsk-dst-src-C • • • • ? ? 
SBCW RR NN(rrx) 5 30 dsk-dst-src-C • • • • ? ? 
SBCW rr rr(rrx) 3 26 dsk-dst-src-C • • • • ? ? 
SBCW rr (rr)+ 3 22 dst<-dst-src-C • • • • ? ? 

rr<·rr+2 
SBCW RR (rr)+ 3 22 dSt<-dS!+SrC+C • • • • ? ? 

rr<-rr+2 
SBCW rr -(rr) 3 24 rr<-rr-2 1\ A II. 1\ ? ? 

dst<-dst-src-C 
SBCW RR -(rr) 3 24 rr<-rr-2 • • • • ? ? 

dst<-dst-src-C 
SBCW (r) rr 3 14 dsk-dst-src-C • • • • ? ? 
SBCW (r) RR 3 14 dsk-dst-src-C • • • • ? ? 
SBCW (rr) rr 2 30 dst<-dst-src-C • • • • ? ? 
SBCW (rr) RR 3 30 dst<·dst-src-C 1\ 1\ A A ? ? 
SBCW (rr)+ rr 3 32 dsk-dst-src-C 1\ 1\ 1\ 1\ ? ? 

rr<-rr+2 
SBCW (rr)+ RR 3 32 dsk-dst-src-C 1\ 1\ 1\ 1\ ? ? 

rr<-rr+2 
SBCW NN rr 4 32 dsk-dst-src-C 1\ II. A 1\ ? ? 
SBCW N(rrx) rr 4 38 dsk-dst-src-C • • • • ? ? 
SBCW N(rrx) RR 4 38 dst<-dst-src-C 1\ 1\ 1\ 1\ ? ? 
SBCW NN(rrx) rr 5 38 dsk-dst-src-C II. A 1\ A ? ? 
SBCW NN(rrx) RR 5 38 dsk-dst-src-C • • • • ? ? 
SBCW rr(rrx) rr 3 34 dsk-dst-src-C • • • • ? ? 
SBCW -(rr) rr 3 32 rr<-rr-2 • • • • ? ? 

dsk-dst-src-C 
SBCW -(rr) RR 3 32 rr<-rr-2 A A 1\ A ? ? 

dsk-dst-src-C 
SBCW rr #NN 4 14 dsk-dst-src-C • • • • ? ? 
SBCW RR #NN 4 14 dsk-dst-src-C 1\ 1\ II. A ? ? 
SBCW (rr) #NN 4 32 dst<·dst-src-C 1\ 1\ 1\ 1\ ? ? 
SBCW NN #NN 6 36 dsk-dst-src-C 1\ 1\ 1\ A ? ? 
SBCW N(rrx) #NN 5 36 dsk-dst-src-C 1\ A II. 1\ ? ? 
SBCW NN(rrx) #NN 6 38 dsk-dst-src-C • • • • ? ? 
SBCW (rr) (rr) 2 32 dsk-dst-src-C • • • • ? ? 

187/219 

271 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

SCF : Set carry flag 

SCF 1 6 C<- 1 1-----

SDM : Set data memory 

SDM 1 6 Set Data Memory DP<-1 Note 1 ------

SLA : Shift left arithmetic 

r 2 6 dst C<-dst(7), dst (0)<-0 
1\ A A A 0 -

dst(n+ 1 )<-dst(n)n=0-6 
SLA R 3 jQ " " 

f\ A 1\ 1\ 0 -
(rr) 3 20 " " 1\ A A A Q _ 

SLAW: Shift word left arithmetic 

rr 2 jQ C<-dst(1 5), dst (0)<-0 A A A A - -
dst(n+ 1 )<-dst(n)n=1 -14 

SLAW RR 3 12 " 
A A A A --

(rr) 2 32 " " 
A A 1\ /\ --

SPM : Set program memory 

SPM 1 6 Set Program Memory DP<-0 Note 2 ------

SPP : Set page pointer 

SPP #N 2 6 Set Page Pomter ------
SRA : Shift right arithmetic 

SRA r 2 6 dst(7)<-dst(7), C<-dst(O) f\ f\ /\A Q A 

dst(n)<-dst(n+ 1 )n=0-6 
SRA R 2 6 A A A A 0 A 

SRA (r) 2 6 " A A A A O A 

SRA (R) 2 6 " " A A A A O A 

SRAW: Shift word right arithmetic 

SRAW rr 2 6 
dst(1 5)<-dSt(1 5), C<-dst(O) A A A Q __ 
dst(n)<-dst(n+ 1 )n=O-14 

SRAW RR 2 8 
" " ' 

A /\ A Q __ 

Notes: 

1 Following thiS 1nstruct1on, all addressing modes refernng to address spaces will refer to the Data Space 

2 Followrng this rnstruction, all addressing modes refernng to address spaces wrll refer to the Program Space, except for the followrng rnstruc­

tlons which operate w1th Dataspace independently of the sett1ng of the DP flag . 

PUSH(W)/PUSHU(W), POP(W)/POPU(W), PEAIPEAU, and CALL, RET, I RET and Interrupt execut1on 

(assum1ng the Stack Po1nters are not po1nllng to the Reg1ster F1le. 

188/219 

272 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. I dst I I Bytes I Clock 

I Operation I 
Flags 

src 
cycles CZSVDH 

SRP : Set register pointer 

SRP I I #N I 2 I 6 I Set Register Pointer I ------

SRPO : Set register pointer 0 

SRPO I I #N I 2 I 6 I Set Register Pomter 0 I ------
SRP1 : Set register pointer 1 

SRP1 I I #N I 2 I 6 I Set Register Pointer 1 I ------

189/219 

273 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst src Bytes 
Clock Operation 

Flags 
cycles CZSVDH 

SUB : Subtraction of 2 bytes without carry 

SUB r r 2 6 dsk-dst-src h h h h 1 h 

SUB R R 3 10 dsk-dst-src h h h h 1 h 

SUB r R 3 10 dsk-dst-src h h h h 1 h 

SUB R r 3 10 dsk-dst-src ' ' ' ' 1 ' 
SUB r (r) 2 6 dsk-dst-src h ' ' ' 1 ' 
SUB R (r) 3 10 dsk-dst-src ' ' ' A 1 A 

SUB r (rr) 3 12 dsk-dst-src A A A A 1 A 

SUB R (rr) 3 12 dsk-dst-src A A A A 1 A 

SUB r NN 4 18 dsk-dst-src ' ' ' ' 1 ' 
SUB r N(rrx) 4 24 dsk-dst-src ' ' ' ' 1 ' 
SUB R N(rrx) 4 24 dsk-dst-src A A A A 1 A 

SUB r NN(rrx) 5 26 dsk-dst-src A A A A 1 A 

SUB R NN(rrx) 5 26 dsk-dst-src A A A A 1 A 

SUB r rr(rrx) 3 22 dst<-dst-src ' A A A 1 ' 

SUB r (rr)+ 3 16 dst<-dst-src ' ' ' ' 1 ' 
rr<-rr+ 1 

SUB R (rr)+ 3 16 dsk-dst-src A A A A 1 A 

rr<-rr+1 

SUB r -(rr) 3 16 rr<'rr-1 A A ' A 1 A 

dsk-dst-src 

SUB R -(rr) 3 16 rr<-rr-1 ' ' A A 1 A 

dsk-dst-src 
SUB (r) r 3 10 dsk-dst-src A A A A 1 A 

SUB (r) R 3 10 dsk-dst-src A A A A 1 A 

SUB (rr) r 3 18 dsl<-dst-src A A A A 1 A 

SUB (rr) R 3 18 dsk-dst-src A A A A 1 A 

SUB (rr)+ r 3 22 dsk-dst-src A A A A 1 A 

rr<-rr+ 1 
SUB (rr)+ R 3 22 dsk-dst-src A A A A 1 A 

rr<-rr+ 1 
SUB NN r 4 20 dst<-dst-src A A A A 1 A 

SUB N(rrx) r 4 26 dsk-dst-src ' ' A 
' 1 ' 

SUB N(rrx) R 4 26 dsk-dst-src ' ' ' ' 1 ' 
SUB NN(rrx) r 5 28 dsk-dst-src ' A A A 1 A 

SUB NN(rrx) R 5 28 dsk-dst-src A A A A 1 A 

SUB rr(rrx) r 3 24 dsk-dst-src A A A A 1 A 

SUB -(rr) r 3 22 rr<-rr-1 A A A A 1 A 

dsk-dst-src 
SUB -(rr) R 3 22 rr<-rr-1 A A A A 1 A 

dsk-dst-src 
SUB r #N 3 10 dsk-dst-src A h A A 1 A 

SUB R #N 3 10 dst<-dst-src A A 1\ 1\ 1 1\ 

SUB (rr) #N 3 16 dsk-dst-src A A A A 1 A 

SUB NN #N 5 24 dsk-dst-src ' ' ' A 1 A 

SUB (rr) (rr) 3 20 dsk-dst-src A A A A 1 A 

SUB (RR) (rr) 3 20 dsk-dst-src A A A A 1 A 

190/219 

274 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

SUBW : Subtract words 

SUBW rr rr 2 10 dsk-dst-src ' ' ' ' ? ? 
SUBW RR RR 3 12 dsk-dst-src ' ' ' ' ? ? 
SUBW rr RR 3 12 dsk-dst-src ' ' ' ' ? ? 
SUBW RR rr 3 12 dsk-dst -src ' ' h ' ? ? 
SUBW rr (r) 3 14 dsk-dst-src ' h h ' ? ? 
SUBW RR (r) 3 14 dsk-dst-src ' ' ' ' ? ? 
SUBW rr (rr) 2 16 dsk-dst-src ' ' ' ' ? ? 
SUBW RR (rr) 3 18 dsk-dst-src ' ' ' ' ? ? 
SUBW rr NN 4 22 dsk-dst-src ' ' ' ' ? ? 
SUBW rr N(rrx) 4 28 dsk-dst-src ' h h h ? ? 
SUBW RR N(rrx) 4 28 dsk-dst-src ' h h h ? ? 
SUBW rr NN(rrx) 5 30 dsk-dst-src ' ' ' ' ? ? 
SUBW RR NN(rrx) 5 30 dst<-dst-src ' ' ' ' ? ? 
SUBW rr rr(rrx) 3 26 dsk-dst-src ' ' ' ' ? ? 
SUBW rr (rr)+ 3 22 dsk-dst-src ' h h h ? ? 

rr<-rr+2 
SUBW RR (rr)+ 3 22 dsk-dst-src ' ' ' ' ? ? 

rr<-rr+2 
SUBW rr -(rr) 3 24 rr<-rr-2 ' ' ' ' ? ? 

dst<-dst-src 
SUBW RR -(rr) 3 24 rr<-rr-2 h h h h ? ? 

dsl<-dst-src 
SUBW (r) rr 3 14 dsl<-dst-src ' ' ' ' ? ? 
SUBW (r) RR 3 14 dsk-dst-src ' ' ' ' ? ? 
SUBW (rr) rr 2 30 dst<-dst-src ' h h h ? ? 
SUBW (rr) RR 3 30 dsk-dst-src ' h h h ? ? 
SUBW (rr)+ rr 3 32 dsk-dst-src ' h h h ? ? 

rr<-rr+2 
SUBW (rr)+ RR 3 32 dsk-dst-src ' ' ' ' ? ? 

rr<-rr+2 
SUBW NN rr 4 32 dst<-dst-src ' ' ' ' ? ? 
SUBW N(rrx) rr 4 38 dst<-dst-src h ' h h ? ? 
SUBW N(rrx) RR 4 38 dsk-dst-src h h ' ' ? ? 

SUBW NN(rrx) rr 5 38 dsk-dst-src ' ' ' ' ? ? 

SUBW NN(rrx) RR 5 38 dst<-dst-src ' ' ' ' ? ? 
SUBW rr(rrx) rr 3 34 dst<-dst-src ' ' ' ' ? ? 
SUBW -(rr) rr 3 32 rr<-rr-2 ' ' ' ' ? ? 

dsk-dst-src 
SUBW -(rr) RR 3 32 rr<-rr-2 ' ' ' ' ? ? 

dsk-dst-src 
SUBW rr #NN 4 14 dsk-dst-src ' ' ' ' ? ? 
SUBW RR #NN 4 14 dsk-dst-src ' ' ' ' ? ? 
SUBW (rr) #NN 4 32 dsk-dst-src ' ' ' ' ? ? 
SUBW NN #NN 6 36 dsk-dst-src ' h h h ? ? 

SUBW N(rrx) #NN 5 36 dsl<-dst-src ' ' ' ' ? ? 

SUBW NN(rrx) #NN 6 38 dsk-dst-src ' ' ' ' ? ? 
SUBW (rr) (rr) 2 32 dst<-dst-src ' ' ' ' ? ? 

SWAP: Swap nibbles 

SWAP r 2 8 dst(0-3)<·-->dst( 4-7) ? /1 1\ ? - -
SWAP R 2 8 dst(0-3)<--->dst( 4-7) ? /1. 1\ ? 
SWAP (r) 2 8 dst(0-3)<·-->dst(4-7) ? II 1\ ? - -
SWAP (R) 2 8 dst(0-3)<--->dst(4-7) ? II 1\ ? -

191/219 

275 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock Operation 

Flags 
src 

cycles CZSVDH 

TCM : Test and complement byte under mask 

TCM r r 2 6 NOT dst AND src - A A 0 - -
TCM R R 3 10 NOT dst AND src - A A 0 - -
TCM r R 3 10 NOT dst AND src - A A O - -
TCM R r 3 10 NOT dst AND src - A A 0 

TCM r (r) 2 6 NOT dst AND src - A A 0 

TCM R (r) 3 10 NOT dst AND src - A A 0 -
TCM r (rr) 3 12 NOT dst AND src - A A 0 - -

TCM R (rr) 3 12 NOT dst AND src - A A O - -
TCM r NN 4 18 NOT dst AND src - A A O - -
TCM r N(rrx) 4 24 NOT dst AND src - A A 0 - -
TCM R N(rrx) 4 24 NOT dst AND src A A 0 

TCM r NN(rrx) 5 26 NOT dst AND src A A 0 -
TCM R NN(rrx) 5 26 NOT dst AND src A A 0 

TCM r rr(rrx) 3 22 NOT dst AND src A A 0 

TCM r (rr)+ 3 16 NOT dst AND src A A O 

rr<-rr+1 

TCM R (rr)+ 3 16 NOT dst AND src A A 0 

rr<-rr+1 

TCM r -(rr) 3 16 rr<-rr-1 A A 0 - -

NOT dst AND src 

TCM R -(rr) 3 16 rr<-rr-1 A A O -
NOT dst AND src 

TCM (r) r 3 10 NOT dst AND src A A 0 

TCM (r) R 3 10 NOT dst AND src A A 0 

TCM (rr) r 3 18 NOT dst AND src - A A 0 - -
TCM (rr) R 3 18 NOT dst AND src - A A 0 - -
TCM (rr)+ r 3 22 NOT dst AND src A A 0 - -

rr<-rr+1 
TCM (rr)+ R 3 22 dsk-ds AND src - A A 0 -

rr<-rr+1 
TCM NN r 4 20 NOT dst AND src A A O 

TCM N(rrx) r 4 26 NOT dst AND src - A A 0 
TCM N(rrx) R 4 26 NOT dst AND src - A A 0 - -
TCM NN(rrx) r 5 28 NOT dst AND src A A 0 -
TCM NN(rrx) R 5 28 NOT dst AND src A A 0 -
TCM rr(rrx) r 3 24 NOT dst AND src A A O -
TCM -(rr) r 3 22 NOT dst AND src - A A O 

rr<-rr-1 
TCM -(rr) R 3 22 NOT dst AND src - A A 0 -

rr<-rr-1 
TCM r #N 3 10 NOT dst AND src A A 0 
TCM R #N 3 10 NOT dst AND src - A A 0 -
TCM (rr) #N 3 16 NOT dst AND src - A A O - -
TCM NN #N 5 22 NOT dst AND src - A A O -
TCM (rr) (rr) 3 18 NOT dst AND src - A A 0 -
TCM (RR) (rr) 3 18 NOT dst AND src - A A 0 - -

_1_92_12_1_9 ____________ LV ~~~~m~::U!~n 
276 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation Flags src 
cycles CZSVDH 

TCMW : Test and complement word under mask 

TCMW rr rr 2 10 NOT dst AND src A A 0 
TCMW RR RR 3 12 NOT dst AND src - A A 0 - -
TCMW rr RR 3 12 NOT dst AND src A A O 
TCMW RR rr 3 12 NOT dst AND src A A O 
TCMW rr (r) 3 14 NOT dst AND src A A 0 
TCMW RR (r) 3 14 NOT dst AND src A A 0 -
TCMW rr (rr) 2 16 NOT dst AND src A A 0 -
TCMW RR (rr) 3 18 NOT dst AND src A A 0 
TCMW rr NN 4 22 NOT dst AND src A A 0 
TCMW rr N(rrx) 4 28 NOT dst AND src A A 0 -
TCMW RR N(rrx) 4 28 NOT dst AND src - A A 0 - -
TCMW rr NN(rrx) 5 30 NOT dst AND src - A A 0 - -
TCMW RR NN(rrx) 5 30 NOT dst AND src - A A O - -
TCMW rr rr(rrx) 3 26 NOT dst AND src - A A O - -
TCMW rr (rr)+ 3 22 NOT dst AND src - A A 0 - -

rr<-rr+2 
TCMW RR (rr)+ 3 22 NOT dst AND src - A A O - -

rr<-rr+2 
TCMW rr -(rr) 3 24 rr<-rr-2 A A O 

NOT dst AND src 
TCMW RR -(rr) 3 24 rr<-rr-2 A A O 

NOT dst AND src 
TCMW (r) rr 3 14 NOT dst AND src A A 0 
TCMW (r) RR 3 14 NOT dst AND src A A O -
TCMW (rr) rr 2 30 NOT dst AND src - A A O - -
TCMW (rr) RR 3 28 NOT dst AND src - A A 0 - -
TCMW (rr)+ rr 3 30 NOT dst AND src - A A 0 - -

rr<-rr+2 
TCMW (rr)+ RR 3 30 NOT dst AND src - A A 0 - -

rr<-rr+2 
TCMW NN rr 4 30 NOT dst AND src - A A O - -
TCMW N(rrx) rr 4 36 NOT dst AND src - A A O -
TCMW N(rrx) RR 4 36 NOT dst AND src - A A 0 - -
TCMW NN(rrx) rr 5 36 NOT dst AND src - A A 0 - -
TCMW NN(rrx) RR 5 36 NOT dst AND src - A A 0 - -
TCMW rr(rrx) rr 3 32 NOT dst AND src - A A 0 - -
TCMW -(rr) rr 3 30 rr<-rr-2 - A A O - -

NOT dst AND src 
TCMW -(rr) RR 3 30 rr<-rr-2 - A A 0 - -

NOT dst AND src 
TCMW rr #NN 4 14 NOT dst AND src - A A O - -
TCMW RR #NN 4 14 NOT dst AND src - A A O - -
TCMW (rr) #NN 4 30 NOT dst AND src - A A 0 - -
TCMW NN #NN 6 34 NOT dst AND src A A 0 - -
TCMW N(rrx) #NN 5 34 NOT dst AND src A A 0 
TCMW NN(rrx) #NN 6 36 NOT dst AND src - A A 0 
TCMW (rr) (rr) 2 32 NOT dst AND src - A A 0 - -

193/219 

277 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src cycles CZSVDH 

TM : Test byte under mask 

TM r r 2 6 dstANDsrc A A 0 
TM R R 3 10 dstAND src A A O 

TM r R 3 10 dstAND src - A A 0 - -
TM R r 3 10 dstANDsrc - A A 0 - -
TM r (r) 2 6 dstANDsrc - A A O - -
TM R (r) 3 10 dstANDsrc A A O - -
TM r (rr) 3 12 dstANDsrc A A O -
TM R (rr) 3 12 dstANDsrc A A 0 

TM r NN 4 18 dstANDsrc - A A 0 
TM r N(rrx) 4 24 dstANDsrc - A A 0 -
TM R N(rrx) 4 24 dstANDsrc - A A 0 - -
TM r NN(rrx) 5 26 dstANDsrc - A A O - -
TM R NN(rrx) 5 26 dstANDsrc - A A 0 - -
TM r rr(rrx) 3 22 dstANDsrc A A 0 - -

TM r (rr)+ 3 16 dstANDsrc A A 0 
rr<-rr+1 

TM R (rr)+ 3 16 dstAND-src - A A O -
rr<-rr+1 

TM r -(rr) 3 16 rr<-rr-1 - A A 0 -
dstANDsrc 

TM R -(rr) 3 16 rr<-rr-1 A A 0 - -
dst AND src 

TM (r) r 3 10 dstANDsrc A A 0 

TM (r) R 3 10 dstAND src - A A O -
TM (rr) r 3 18 dstANDsrc - A A 0 - -
TM (rr) R 3 18 dstANDsrc - A A 0 - -
TM (rr)+ r 3 22 dstANDsrc A A 0 

rr<-rr+1 
TM (rr)+ R 3 22 dstAND src - A A 0 -

rr<-rr+1 
TM NN r 4 20 dstAND src - A A 0 - -
TM N(rrx) r 4 26 dstANDsrc A A 0 -
TM N(rrx) R 4 26 dstANDsrc - A A 0 
TM NN(rrx) r 5 28 dstAND src - A A O - -
TM NN(rrx) R 5 28 dstAND src - A A O - -
TM rr(rrx) r 3 24 dstANDsrc - A A 0 - -
TM -(rr) r 3 22 rr->rr-1 - A A 0 - -

dstANDsrc 
TM -(rr) R 3 22 rr->rr-1 - A A O - -

dstAND src 
TM r #N 3 10 dstAND src - A A 0 - -
TM R #N 3 10 dstANDsrc - A A 0 -
TM (rr) #N 3 16 dstANDsrc A A 0 
TM NN #N 5 22 dstANDsrc A A 0 -

TM (rr) (rr) 3 18 dstAND src A A 0 -
TM (RR) (rr) 3 18 dstAND src - A A O -

194/219 J:.::ii SliS·niOMSON ------------
• J ... ~fi©~@~~~~@illfii:;li 

278 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags src 

cycles CZSVDH 

TMW :Test word under mask 

TMW rr rr 2 10 dstAND src A A 0 
TMW RR RR 3 12 dstAND src - A A 0 
TMW rr RR 3 12 dstAND src - A A 0 -
TMW RR rr 3 12 dstAND src - A A O 
TMW rr (r) 3 14 dstAND src - A A 0 
TMW RR (r) 3 14 dstAND src - A A 0 -
TMW rr (rr) 2 16 dstAND src - A A O 
TMW RR (rr) 3 18 dst AND src A A 0 
TMW rr NN 4 22 dstAND src A A O 
TMW rr N(rrx) 4 28 dstAND src A A O 
TMW RR N(rrx) 4 28 dst AND src - A A 0 - -
TMW rr NN(rrx) 5 30 dst AND src A A 0 -
TMW RR NN(rrx) 5 30 dst AND src A A 0 -
TMW rr rr(rrx) 3 26 dst AND src A A 0 
TMW rr (rr)+ 3 22 dstAND src - A A 0 - -

rr<-rr+2 
TMW RR (rr)+ 3 22 dst AND src A A O -

rr<-rr+2 
TMW rr -(rr) 3 24 rr<-rr-2 - A A 0 

dst AND src 
TMW RR -(rr) 3 24 rr<-rr-2 - A A O -

dstAND src 
TMW (r) rr 3 14 dstAND src - A A 0 
TMW (r) RR 3 14 dstAND src - A A 0 - -
TMW (rr) rr 2 28 dst AND src - A A 0 - -
TMW (rr) RR 3 28 dstAND src A A 0 
TMW (rr)+ rr 3 30 dstAND src - A A 0 

rr<-rr+2 
TMW (rr)+ RR 3 30 dst AND src - A A O - -

rr<-rr+2 
TMW NN rr 4 30 dstAND src - A A 0 
TMW N(rrx) rr 4 36 dst AND src - A A 0 
TMW N(rrx) RR 4 36 dstAND src A A 0 
TMW NN(rrx) rr 5 36 dstAND src A A O 
TMW NN(rrx) RR 5 36 dstAND src - A A 0 
TMW rr(rrx) rr 3 32 dstAND src - A A O - -
TMW -(rr) rr 3 30 rr<-rr-2 A A 0 

dstAND src 
TMW -(rr) RR 3 30 rr<-rr-2 - A A O 

dstAND src 
TMW rr #NN 4 14 dstAND src A A 0 
TMW RR #NN 4 14 dst AND src - A A 0 -
TMW (rr) #NN 4 30 dstANDsrc A A 0 - -
TMW NN #NN 6 34 dstAND src - A A 0 -
TMW N(rrx) #NN 5 34 dst AND src - A A 0 - -
TMW NN(rrx) #NN 6 36 dstANDsrc A A 0 - -
TMW (rr) (rr) 2 32 dstAND src - A A O 

WFI :Wait for Interrupt 

WFI 2 18 wait for interrupt - - --- -

195/219 

279 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

XCH : Exchange Register 

XCH r r 3 12 dst <-> src 
XCH R R 3 12 dst <-> src 
XCH r r 3 12 dst <-> src 
XCH R R 3 12 dst <-> src 

XOR : Logical exclusive OR 

XOR r r 2 6 dsk-dst XOR src A A 0 
XOR R R 3 jQ dsk-dst XOR src A A 0 
XOR r R 3 jQ dsk-dst XOR src A A 0 

XOR R r 3 jQ dsk-dst XOR src A A 0 
XOR r (r) 2 6 dsk-dst XOR src A A 0 

XOR R (r) 3 jQ dsk-dst XOR src A A 0 
XOR r (rr) 3 12 dsk-dst XOR src A A 0 

XOR R (rr) 3 12 dsk-dst XOR src A A 0 

XOR r NN 4 18 dsk-dst XOR src A A 0 

XOR r N(rrx) 4 24 dsk-dst XOR src A A 0 -
XOR R N(rrx) 4 24 dsk-dst XOR src A A 0 
XOR r NN(rrx) 5 26 dsk-dst XOR src A A 0 

XOR R NN(rrx) 5 26 dsk-dst XOR src A A 0 

XOR r rr(rrx) 3 22 dsk-dst XOR src A A 0 

XOR r (rr)+ 3 16 dsk-dst XOR src A A 0 
rr->rr+1 

XOR R (rr)+ 3 16 dsk-dst XOR src A A 0 
rr->rr+1 

XOR r -(rr) 3 16 rr->rr-1 A A 0 
dsk-dst XOR src 

XOR R -(rr) 3 16 rr->rr-1 A A 0 -
dsk-dst XOR src 

XOR (r) r 3 jQ dsk-dst XOR src A A 0 
XOR (r) R 3 jQ dsk-dst XOR src A - A 0 -
XOR (rr) r 3 18 dsk-dst XOR src A A 0 
XOR (rr) R 3 18 dsk-dst XOR src A A 0 
XOR (rr)+ r 3 22 dsk-dst XOR src A A 0 

rr->rr+1 
XOR (rr)+ R 3 22 dsk-dst XOR src A A 0 

rr->rr+1 
XOR NN r 4 20 dsk-dst XOR src A A 0 
XOR N(rrx) r 4 26 dsk-dst XOR src A A 0 
XOR N(rrx) R 4 26 dsk-dst XOR src A A 0 
XOR NN(rrx) r 5 28 dsk-dst XOR src A A 0 
XOR NN(rrx) R 5 28 dsk-dst XOR src A A 0 
XOR rr(rrx) r 3 24 dst<-dst XOR src A A 0 
XOR -(rr) r 3 22 rr->rr-1 A A 0 -

dsk-dst XOR src 
XOR -(rr) R 3 22 rr->rr-1 A A 0 

dsk-dst XOR src 
XOR r #N 3 jQ dsk-dst XOR src A A 0 
XOR R #N 3 jQ dsk-dst XOR src A A 0 
XOR (rr) #N 3 16 dsk-dst XOR src - A A 0 -

XOR NN #N 5 24 dsk-dst XOR src A A 0 -
XOR (rr) (rr) 3 20 dsk-dst XOR src - A A 0 
XOR (RR) (rr) 3 20 dsk-dst XOR src A A 0 

196/219 

280 



ST9 - Software 

INSTRUCTION SUMMARY (Continued) 

Mnemo. dst Bytes Clock 
Operation 

Flags 
src 

cycles CZSVDH 

XORW : Logical exclusive OR between words 

XORW rr rr 2 10 dst<-dst XOR src . h h 0 . . 
XORW RR RR 3 12 dst<-dst XOR src . h h 0 . 
XORW rr RR 3 12 dsk-dst XOR src . h h 0 
XORW RR rr 3 12 dst<-dst XOR src . h h 0 . . 
XORW rr (r) 3 14 dsk-dst XOR src . h h 0 . . 

XORW RR (r) 3 14 dst<-dst XOR src . h h 0 . . 
XORW rr (rr) 2 16 dsk-dst XOR src . h h 0 . . 
XORW RR (rr) 3 18 dsk-dst XOR src . h h 0 . . 
XORW rr NN 4 22 dsk-dst XOR src . h h 0 . 

XORW rr N(rrx) 4 28 dst<-dst XOR src h h 0 . . 
XORW RR N(rrx) 4 28 dsk-dst XOR src . h h 0 . . 
XORW rr NN(rrx) 5 30 dsk-dst XOR src . h h 0 . . 
XORW RR NN(rrx) 5 30 dsk-dst XOR src h h 0 
XORW rr rr(rrx) 3 26 dsk-dst XOR src . h h 0 
XORW rr (rr)+ 3 22 dsk-dst XOR src . h h 0 . 

rr<·rr+2 
XORW RR (rr)+ 3 22 dst<-dst XOR src . h h 0 . . 

rr<·rr+2 
XORW rr -(rr) 3 24 rr<-rr-2 . h h 0 . 

dsk-dst XOR src 
XORW RR -(rr) 3 24 rr<·rr-2 . II /\JQ . . 

dst<-dst XOR src 
XORW (r) rr 3 14 dsk-dst XOR src . h h 0 . . 
XORW (r) RR 3 14 dsk-dst XOR src . h h 0 . . 
XORW (rr) rr 2 30 dst<-dst XOR src . h h 0 . 
XORW (rr) RR 3 30 dsk-dst XOR src . h h 0 . . 
XORW (rr)+ rr 3 32 dst<-dst XOR src . h h 0 . . 

rr<·rr+2 
XORW (rr)+ RR 3 32 dsk-dst XOR src . h h 0 . . 

rr<·rr+2 
XORW NN rr 4 32 dsk-dst XOR src . h h 0 . . 
XORW N(rrx) rr 4 38 dst<·dst XOR src . h h 0 . 
XORW N(rrx) RR 4 38 dsk-dst XOR src h h 0 . 
XORW NN(rrx) rr 5 38 dst<-dst XOR src h h 0 . 
XORW NN(rrx) RR 5 38 dsk-dst XOR src h h 0 
XORW rr(rrx) rr 3 34 dsk-dst XOR src . h h 0 
XORW ·(rr) rr 3 32 rr<·rr-2 . h h 0 . 

dsk-dst XOR src 
XORW -(rr) RR 3 32 rr<·rr-2 . h h 0 

dsk-dst XOR src 
XORW rr #NN 4 14 dst<-dst XOR src . h h 0 . . 

XORW RR #NN 4 14 dsk-dst XOR src . h h 0 . . 

XORW (rr) #NN 4 32 dsk-dst XOR src . h h 0 . . 
XORW NN #NN 6 36 dst<·dst XOR src . h h 0 . . 

XORW N(rrx) #NN 5 36 dst<-dst XOR src . h h 0 . . 

XORW NN(rrx) #NN 6 38 dst<-dst XOR src . h h 0 . . 

XORW (rr) (rr) 2 32 dsk-dst XOR src . h h 0 . . 

197/219 

281 





ST9040 

REGISTER MAP 

1 INTRODUCTION Page 

2 CORE ARCHITECTURE 

CICR R230 (E6h) System Read/Write Central Interrupt Control Register 13 

FLAGR R231 (E7h) System Read/Write Flag Register 14 

RPO R232 (E8h) System Read/Write Register Pointer 0 15 
RP1 R233 (E9h) System Read/Write Register Pointer 1 15 

PPR R234 (EAh) System Read/Write Page Pointer Register 17 
MODER R235 (EBh) System Read/Write Mode Register 17 

3 MEMORY 

EECR R241 (F1 h) Page 0 Read/Write EEPROM Control Register 24 

4 INTERRUPTS 

CICR R230 (E6h) System Read/Write Central Interrupt Control Register 40 
EITR R242 (F2h) Page 0 Read/Write External Interrupt Trigger Event Register 40 
IDPR R243 (F3h) Page 0 Read/Write External Interrupt Pending Register 40 
EIMR R244 (F4h) Page 0 Read/Write External Interrupt Mask-bit Register 41 
EIPLR R245 (F5h) Page 0 Read/Write External Interrupt Priority Level Register 41 
EIVR R246 (F6h) Page 0 Read/Write External Interrupt Vector Register 41 
NICR R247 (F7h) Page 0 Read/Write Nested Interrupt Control Register 41 

5 ON-CHIP DMA 

DCPR Address set by Peripheral Read/Write DMA Counter Pointer Register 48 
IOCR Address set by Peripheral Read/Write Generic Peripheral Interrupt and DMA Control 48 
DAPR Address set by Peripheral Read/Write DMA Address Pointer Register 48 

6 CLOCK 

MODER R235 (EBh) System Read/Write Mode Register 50 

8 EXTERNAL MEMORY INTERFACE 

WCR R252 (FCh) Page 0 Read/Write Wait Control Register 66 

10 HANDSHAKE/DMA CONTROLLER 

HDCTLx Read/Write Handshake/DMA Control Register 84 

11 SERIAL PERIPHERAL INTERFACE 

SPIDR R253 (FDh) Page 0 Read/Write SPI Data Register (R253) 90 

SPICR R255 (FEh) Page 0 Read/Write SPI Control Register (R254) 90 

--------------------------- ~~~~~~~~:9~ _______________________ 19_9_~ __ 19 

283 



ST9040 

12 TIMER/WATCHDOG 
WDTHR R248 (F8h) Page 0 Read/Write Timer/Watchdog Counter Register, 'High byte 101 

WDTLR R249 (F9h) Page 0 Read/Write Timer/Watchdog Counter Register, Low byte. 101 

WDTPR R250 (FAh) Page 0 Read/Write Timer/Watchdog Prescaler Register 101 

WDTCR R251 (FBh) Page 0 Read/Write Timer/Watchdog Control Register 101 

13 MULTIFUNCTION TIMER 
REGOHR R240 (FOh) Read/Write Capture Load Register 0 (High) 117 

REGOLR R241 (F1h) Read/Write Capture Load Register 0 (Low) 117 

REG1HR R242 (F2h) Read/Write Capture Load Register 1 (High) 117 

REG1LR R243 (F3h) Read/Write Capture Load Register 1 (Low) 117 

CMPOHR R244 (F4h) Read/Write Compare 0 Register (High) 117 

CMPOLR R245 (F5h) Read/Write Compare 0 Register (Low) 117 

CMP1HR R246 (F6h) Read/Write Compare 1 Register (High) 117 

CMP1LR R247 (F7h) Read/Write Compare 1 Register (Low) 117 

TCR R248 (F8h) Read/Write Timer Control Register 118 

TMR R249 (F9h) Read/Write Timer Mode Register 118 

ICR R250 (FAh) Read/Write External Input Control Register 119 

PRSR R251 (FBh) Read/Write Prescaler Register 120 

OACR R252 (FCh) Read/Write Output A Control Register 120 

OBCR R253 (FDh) Read/Write Output B Control Register 121 

FLAGR R254 (FEh) Read/Write Flags Register 121 

IDMR R255 (FFh) Read/Write lnterrupt/DMA Mask Register 122 

DCPR R240 (FOh) [R244 (F4h)) Read/Write DMA Counter Pointer Register 122 

DAPR R241 (F1 h) [R245 (F5h)) Read/Write DMA Address Pointer Register 123 

IVR R242 (F2h) [R246 (F6h)) Read/Write Interrupt Vector Register 123 

IOCR R243 (F3h) [R247 (F7h)) Read/Write lnterrupt/DMA Control Register 124 

IOCR R248 (FBh) Read/Write 1/0 Connection Register 124 

14 SERIAL COMMUNICATIONS INTERFACE 
RDCPR R240 (FOh) Read/Write Receiver DMA Transaction Counter Pointer 134 

RDAPR R241 (F1 h) Read/Write Receiver DMA Source Address Pointer 134 

TDCPR R242 (F2h) Read/Write Transmitter DMA Transaction Counter Pointer 134 

TDAPR R243 (F3h) Read/Write Transmitter DMA Destination Address Pointer 134 

IVR R244 (F4h) Read/Write Interrupt Vector Register 134 

ACR R245 (F5h) Read/Write Address/Data Compare Register 135 

IMR R246 (F6h) Read/Write Interrupt Mask Register 135 

ISR R247 (F7h) Read/Write Interrupt Status Register 136 

RXBR R248 (F8h) Read only Receive Buffer Register 136 

TXBR R248 (F8h) Write only Transmitter Buffer Register 136 

IDPR R249 (F9h} Read/Write lnterrupt/DMA Priority Register 137 

_20_0_12_1_9 ___________ Iiii ~~~;n•g'1~~?:~ ____________ _ 
284 



ST9040 

CHCR R250 (FAh) Read/Write Character Configuration Register 138 

CCR R251 (FBh) Read/Write Clock Configuration Register 138 

BRGHR R252 (FCh) Read/Write Baud Rate Generator Register, High byte. 139 

BRGLR R253 (FDh) Read/Write Baud Rate Generator Register, Low byte. 139 

15 AID CONVERTER 
DOR R240 (FOh) Page 63 Read/Write Channel 0 Data Register 146 

D1R R241 (F1h) Page 63 Read/Write Channel 1 Data Register 146 

D2R R242 (F2h) Page 63 Read/Write Channel 2 Data Register 146 

D3R R243 (F3h) Page 63 Read/Write Channel 3 Data Register 146 

D4R R244 (F4h) Page 63 Read/Write Channel 4 Data Register 146 

DSR R245 (F5h) Page 63 Read/Write Channel 5 Data Register 146 

D6R R246 (F6h) Page 63 Read/Write Channel 6 Data Register 146 

D7R R247 (F7h) Page 63 Read/Write Channel 7 Data Register 146 

LT6R R248 (F8h) Page 63 Read/Write Channel 6 Lower Threshold Register 147 

LT7R R249 (F9h) Page 63 Read/Write Channel 7 Lower Threshold Register 147 

UT6R R250 (FAh) Page 63 Read/Write Channel 6 Upper Threshold Register 147 

UT7R R251 (FBh) Page 63 Read/Write Channel 7 Upper Threshold Register 147 

CRR R252 (FCh) Page 63 Read/Write Compare Result Register 147 

CLR R253 (FDh) Page63 Read/Write Control Logic Register 148 

ICR R254 (FEh) Page 63 Read/Write Interrupt Control Register 149 

IVA R255 (FFh) Page 63 Read/Write Interrupt Vector Register 149 

------------- Iiii ~~~~;~g:~~~lt ____________ 20_1_12_19 

285 





ST9040 

17 ELECTRICAL CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter Value Unit 

Voo Supply Voltage -0.3 to 7.0 v 
AVoo, AVss Analog Supply Voltage Vss = AVss < AVoo ~ Voo v 

VI Input Voltage -0.3 to Voo +0.3 v 
Vo Output Voltage -0.3 to Voo+0.3 v 

TsrG Storage Temperature -55t0+150 oc 
hNJ Pin Injection Current Digital Input -5to+5 mA 

hNJ Pm Injection Current Analog Input -5to+5 mA 

Maximum Accumulated Pin injection Current in the device -50 to +50 mA 

Note Stresses above those l1sted as "absolute max1mum rat1ngs" may cause permanent damage to the dev1ce. ThiS IS a stress rat1ng only and 
funct1onal operation of the dev1ce at these conditions IS not 1mpl1ed. Exposure to max1mum rat1ng cond1t1ons for extended penods may affect 
device reliability. All voltages are referenced to VSS 

RECOMMENDED OPERATING CONDITIONS 

Value 
Symbol Parameter Unit 

Min. Max. 

TA Operating Temperature -40 85 oc 
Voo Operating Supply Voltage 4.5 5.5 v 

IoseE External Oscillator Frequency 24 MHz 

fosc1 Internal Clock Frequency (INTCLK) 12 MHz 

-------------- liii ~~~~m~::~~~:: 203/219 

287 



ST9040 

DC ELECTRICAL CHARACTERISTICS 
VDD = 5V ± 1 0% T A = - 40 oc to + 85°C, unless otherwise specified) 

Value 
Symbol Parameter Test Conditions Unit 

Min. Typ. Max. 

VIHCK Clock Input H1gh Level External Clock 0.7 Voo Voo+ 0.3 v 
VILCK Clock Input Low Level External Clock -0.3 0.3 Voo v 

TTL 2.0 Voo + 0.3 v 
v,H Input H1gh Level 

CMOS 0.7 Voo VDD+0.3 v 

TTL -0.3 0.8 v 
V1L Input Low Level 

CMOS -0.3 0.3 Voo v 

VIHRS RESET Input High Level 0.7 Voo Voo + 0.3 v 

ViLAS RESET Input Low Level -0.3 0.3 Voo v 

VHYRS RESET Input HystereSIS 0.3 1.5 v 

VoH Output High Level Push Pull, lload =- 0.8mA Voo-0.8 v 

VoL Output Low Level 
Push Pull or Open Drain, 

0.4 v 
lload= 1.6mA 

lwpu 
Weak Pull-up Current Bid1rect1onal Weak Pull-

-50 -200 -420 J.lA 
up, VoL= OV 

IAPU 
Active Pull-up Current, 

V1N < 0.8V, under Reset -80 -200 -420 J.lA for INTO and INT7 only 

ILKIO 1/0 Pin Input Leakage 
Input/Tri-State, 

-10 +10 J.lA 
OV < V1N < Voo 

ILKRS Reset Pin Input Leakage OV < V1N < Voo -30 +30 J.lA 

ND Pin Input Leakage 
Alternate FunciiOn, 

ILKAD Open Drain, -13 +1 3 J.lA 
OV < V1N < Voo 

ILKAP 
Active Pull-up Input 

OV < V1N < 0.8V -10 +10 J.lA Leakage 

ILKOS OSCIN Pin Input Leakage OV < V1N < Voo -10 +10 J.lA 

Note All 1/0 Ports are conf1gured 1n B1d~rect1onal Weak Pull-up Mode with no DC load, External Clock pin (OSCIN) IS dnven by square wave 
external clock No penpheral working 

DC TEST CONDITIONS 

2.4V~ TTL INPUT 
FORCING CONDITION 

0 45V 

o.sv00~ CMOS INPUT 

FORCING CONDITION 0_2 Voo 

PUSH-PULL OUTPUT 
TEST CONDITION 

WEAK PULL-UP OUTPUT 

TEST CONDITION 

~--, .. SOURCE CURRENT= -0.8mA 

~"0" SINK CURRENT= 1.6mA 

~"1" SOURCE CURRENT= 0 

~ "Q" SINK CURRENT = 1.6mA 
VAD0117 

_20_4_12_1_9 _____________ ~ ~~~~m,~~:i!~n 

288 



ST9040 

AC ELECTRICAL CHARACTERISTICS 
Voo = 5V ± 1 0% T A = - 40 ac to + 85°C, unless otherwise specified) 

Value 
Symbol Parameter Test Conditions Unit 

Min. Typ. Max. 

Run Mode Current 
loo no CPUCLK prescale, 24MHz, Note 1 40 70 mA 

Clock d1vide by 2 

Run Mode Current 
lop2 Prescale by 2 24MHz, Note 1 19 40 mA 

Clock divide by 2 

WFI Mode Current 
lwFI no CPUCLK prescale, 24M Hz, Note 1 15 20 mA 

Clock divide by 2 

I HALT HALT Mode Current 24MHz, Note 1 50 100 !lA 

Typical Current Versus Frequency of Operation (fosc) 

mA RUN MODE JlA WFI MODE 
5 5V -40"C 

40 20 

4 5V +85"C 

30 15 

~ 
5 5V -40"C 

20 10 4.5V +85"C 

10 5 
11 

45 

4 8 12 INTCLK (MHz) 4 8 12 INTCLK (MHz) 

VR001843 

205/219 

289 



ST9040 

CLOCK TIMING TABLE 
(Voo = 5V ± 10%, TA = - 40°C to+ 85°C, INTCLK = 12M Hz, unless otherwise specified 

Value 
No Symbol Parameter Unit Note 

Min. Max. 

1 TpC OSCIN Clack Period 41.5 ns 1 

83 ns 2 

2 TrC,TfC OSCIN Rise and Fall Trme 12 ns 

3 TwCL, TwCH OSCIN Low and High Width 17 25 ns 1 

38 ns 2 

Notes: 
1. Clockdrvrded by 2 rnternally (MODER.DIV2=1) 
2. Clock not dtvtded by 2 mternally (MODER DIV2=0) 

CLOCK TIMING 

VrH =0.8Voo 

OSCIN 

v,L =0.2V00 

2 3 3 VA00116 

_20_6_,2_1_9 ____________ ~ ~~~~m?vT:U!~~ 

290 



ST9040 

.EXTERNAL BUS TIMING TABLE (Voo = 5V ± 10%, TA =- 40 octo+ 85 °C, Cload = 50pF, CPUCLK = 
12M Hz, unless otherwise specified) 

Value (Note) 
No Symbol Parameter OSCIN Divided OSCIN Not Divided 

By2 By2 

1 TsA (AS) 
Address Set-up T1me 

TpC (2P+ 1) -22 TWCH+PTpC -18 
before AS 1' 

2 ThAS (A) Address Hold T1me after AS 1' TpC-17 TwCL-13 

3 TdAS (DR) AS 1' to Data Available (read) TpC(4P+2W+4)-52 TpC (2P+W+2) -51 

4 TwAS AS Low Pulse Width TpC (2P+ 1) -7 TwCH+PTpC -3 

5 TdAz (OS) OS .J, to Address Float 

- TwCH+TpC 
6 TwDSR DS Low Pulse W1dth (read) TpC(4P+2W+3)-20 

(2P+W+1)-16 

7 TwDSW OS Low Pulse W1dth (write) TpC(2P+2W+2)-13 TpC (P+W+1)-13 

8 TdDSR (DR) DS .J, to Data Valid Delay (read) TpC (4P+2W-3) -50 
TwCH+ TpC(2P+W+ 1 
--46 

9 ThOR (DS) Data to DS 1' Hold Time (read) 0 0 

10 TdDS (A) OS 1' to Address Act1ve Delay TpC-7 TwCL-3 

11 TdDS (AS) OS 1' to AS l Delay TpC-18 TwCL-14 

12 TsR/W(AS) R/W Set-up Time before AS 1' TpC (2P+ 1) -22 TwCH+PTpC-18 

13 TdDSR (RIW) 
OS 1' to R/W and Address Not 

TpC-9 TwCL-5 
Valid Delay 

14 TdDW(DSW) 
Write Data Valid to DS .J, Delay 

TpC (2P+ 1) -32 TwCH+PTpC -28 
(write) 

15 ThDS (OW) Data Hold Time after OS 1' (write) TpC-9 TwCL-5 

16 TdA (DR) 
Address Valid to Data Valid 

TpC(6P+2W+5)-68 
TwCH+TpC 

Delay (read) (3P+W+2) -64 

17 TdAs (DS) AS 1' to DS l Delay TpC-18 TwCL-14 

EXTERNAL WAIT TIMING TABLE (Voo = 5V± 10%, TA=-40°Cto +85°C, Cload =50pF, 

INTCLK =12M Hz, Push-pull output configuration, unless otherwise specified) 

Value (Note) 
No Symbol Parameter OSCIN Divided OSCIN Not Divided 

By2 By2 

1 TdAs (WAIT) AS 1' to WAIT l Delay 2(P+ 1 )TpC -29 2(P+ 1 )TpC -29 

2 TdAs(WAIT) AS 1' to WAIT l Min. Delay 2(P+W+ 1 )TpC --4 2(P+W+ 1 )TpC --4 

3 TdAs (WAIT) AS 1' to WAIT .J, Max. Delay 2(P+W+1)TpC-29 2(P+W+ 1 )TpC -29 

Unit 
Min. Max. 

20 ns 

25 ns 

115 ns 

35 ns 

12 ns 

105 ns 

70 ns 

75 ns 

0 ns 

35 ns 

24 ns 

20 ns 

33 ns 

10 ns 

33 ns 

140 ns 

24 ns 

Unit 
Min. Max. 

40 ns 

80 ns 

~3W ns 
40 

Note: (for both table) The value 1n the left hand two columns show the formula used to calculate the t1m1ng m1n1mum or max1mum from the 
oscillator clock penod, prescale value and number of walt cycles Inserted 
The value 1n the right hand two columns show the t1m1ng m1n1mum and max1mum for an external clock at 24 MHz d1v1ded by 2, prescaler value 
of zero and zero wa1t status 

Legend: 

P = Clock Prescahng Value 

W = Wa1t Cycles 

TpC =OSCIN Penod 

TwCH =High Level OSCIN half penod 

TwCL =Low Level OSCIN half penod 

------------------------------- ~~~~~~~~~~~ 
207/219 

291 



ST9040 

EXTERNAL BUS TIMING 

T1 T2 T3 

CPUCLK ______j 

R/W 

PORT1 
P/0 

PORTO 
(READ) 

DS 
(READ) 

PORTO 
(WRITE) 

DS 
(WRITE) 

~~~----------~K= 1 12 0 1 13 I 

__ ___.f: A15-A8 :-, >¢=
16 I I

-----'~~~-A-7u~A~D~J~' -~3---~~~D-7-DOj_:IN~
I 1 11 2 I I I 9
~r--=-
1 11~--~---------------r----~~----~

~---31 1 ~ 8 I 11 :~+---
11 I :!--I<---------- ~I

I 4 II I I 6 II o

~ l llo: <-----~----:~z.:---------1.---

~T "l:-----'-1 o=----;
I

~~: _______ D_7_-_D_o_o_u_T __ ~:----~~
I 14 oo 7 o 1 15 I r-----r ;-._ _ _____:_____:_-; I c • I

-------------------------{: :~~----------

__ ---Jx A 7-AO

VA00447

EXTERNAL WAIT TIMING

T1

CPUCLK

AS

DS

WAIT

T2 TwW I T3 I

~

3

\~R~EA~D~'-W~RI~TE~,\~'~------~'
2

: \
~
I I

I

Yrm;j
VA00115

208/219 ~ SCS·THDMSDN ------------------------___:___:_:_ ____________ A.""f/, IR;Wi;rnJ@rn~~!:~mJ@Ii!D!:$

292

ST9040

HANDSHAKE TIMING TABLE (Voo = 5V ± 10%, TA = -40°C to +85°C, Cload = 50pF, INTCLK = 12MHz,
Push-pull output configuration, unless otherwise specified)

Value (Note)

No Symbol Parameter OSCIN Divided OSCIN Not Divided Min. Max. Unit
By2 By2

Min. Max. Min. Max.

RDRDY, WRRDY Pulse
2TpC

TpC
1 TwRDY W1dth m One Line

(P+W+1)-18
(P+W+1)- 65 ns

Handshake 18

2 TwSTB
RDSTB, WRSTB Pulse

2TpC+12 TpC+12 95
W1dth

ns

3
TdST RDSTB, or WRSTB t

TpC+45
(TpC-TwCL)

87
(ROY) to RDRDY or WRRDY t +45

ns

TsPD Port Data to RDRDY t (2P+2W+1)
TwCH+

4
(ROY) Set-upTime TpC-25

(W+P) 16 ns
TpC-25

TsPD
Port Data to WRRDY t

5
(ROY)

Set-up T1me in One Line 43 43 43 ns
Handshake

Port Data to WRRDY t
6

ThPD Hold
0

(ROY) Time m One Line
0 0 ns

Handshake

7
TsPD Port Data to WRSTB t

10 10 10
(STB) Set-upT1me

ns

8
ThPD Port Data to WRSTB t

25 25 25
(STB) HoldT1me

ns

TdSTB
RDSTBD t to Port Data

9
(PO)

Delay Time 1n 35 35 35 ns
Bidirectional Handshake

TdSTB
RDSTB t to Port High-Z

10
(PHZ)

Delay Time 1n 25 25 25 ns
Bidirectional Handshake

Note: The value 1n the lett hand two columns show the formula used to calculate the t1m1ng m1mmum or max1mum from the oscillator clock
penod, prescale value and number of wa1t cycles 1nserted
The value 1n the nght hand two columns show the t1m1ng m1n1mum and max1mum for an external clock at 24 MHz dtvided by 2, prescaler value
of zero and zero wa1t status.

Legend:

P ~ Clock Prescal1ng Value (R235 4,3,2)

W ~ Programmable Wa1t Cycles (R252.2 1 0/5,4,3) + External Wa1t Cycles

209/219

293

ST9040

HANDSHAKE TIMING

READY I

3 ~~~~----------~
~-----4~----~~~--~--~~1 I I
'1=-11------------~Y::~: -----------1~:------------~:--------------STROBE I 1 I

I 1 I 4 I

OUTPUT
HANDSHAKE

ONE LINE
INPUT

HANDSHAKE

TWO LINES
INPUT

HANDSHAKE

BIDIRECTIONAL
HANDSHAKE

210/219

294

II 1 1 ~
11 I r I 1

I I
II I 5 1 I 6 I II ~~

----~------------~~~----~xt X~-----------------11 '
~~

------~-----9--J><f ~~~~------------------------------
1 I

VA00113

ST9040

BUS REQUEST/ACKNOWLEDGE TIMING TABLE (Voo = 5V ± 10%, TA = --40°C to +85°C, Cload = 50pF,
INTCLK = 12M Hz, Push-pull output configuration, unless otherwise specified)

Value (Note)

N' Symbol Parameter Unit
OSCIN Divided OSCIN Not Divided

Min. Max.
By2 By2

BREQ.!.to BUSACK.!.
TpC+8 TwCL+12 50 ns

j TdBR (BACK)

TpC(6P+2W+7)+65 TpC(3P+W+3)+ TwCL+65 360 ns

2 TdBR (BACK) BREQt to BUSACKt 3TpC+60 TpC+ TwCL+60 185 ns

3 TdBACK (BREL)
BUSACK.!. to Bus

20 20 20
Release

ns

4 TdBACK (BACT)
BUSACKt to Bus

20 20 20
Active

ns

Note: The value left hand lwo columns show the formula used to calculate the t1m1ng m1n1mum or max1mum from the oscillator clock penod,
prescale value and number of wa1t cycles mserted
The value nght hand two columns show the t1m1ng m1n1mum and max1mum for an external clock at 24M Hz d1v1ded by 2, prescale value of zero
and zero watt status

BUS REQUEST/ACKNOWLEDGE TIMING

I

INTCLK~~

BUSREQ \ \ \ \ \ t

BUSACK ~~--------------~

T1 T2

1 E 1 I I 4 I 2 I I 3

_______ , ______ .. ~: r. ___________ ~: .. _____ ·~: tl ·================= MEMINT ,r~

VA00114

Note: MEMINT =Group of memory interface s1gnals AS, OS, R/W, POO-P07, P1 O-P17

211/219

295

ST9040

EXTERNAL INTERRUPT TIMING TABLE (Voo = 5V ± 10%, TA = --40°C to +85°C, Cload = 50pF,
INTCLK = 12M Hz, Push-pull output configuration, unless otherwise specified)

Value (Note)

No Symbol Parameter OSCIN OSCIN Not
Divided By Divided By Min. Max.

2Min. 2Min.

1 TwLR Low Level Minimum Pulse W1dth m Rising Edge Mode 2TpC+12 TpC+12 95

2 TwHR High Level Mimmum Pulse W1dth in Rising Edge Mode 2TpC+12 TpC+12 95

3 TwHF High Level Minimum Pulse Width 1n Falling Edge Mode 2TpC+12 TpC+12 95

4 TwLF Low Level Minimum Pulse Width in Falling Edge Mode 2TpC+12 TpC+12 95

Unit

ns

ns

ns

ns

Note: The value left hand two columns show the formula used to calculate the t1m1ng mm1mum or max1mum from the osc1llator clock penod,
pre scale value and number of wa1t cycles 1nserted
The value right hand two columns show the t1m1ng m1nimum and maximum for an external clock at 24 MHz d1v1ded by 2, prescale value of zero
and zero wa1t status

EXTERNAL INTERRUPT TIMING

RISING EDGE DETECTION FALLING EDGE DETECTION

INTn

2 3 4

n=0-7 VA00112

212/219

296

ST9040

SPI TIMING TABLE (Voo = 5V ± 10%, TA = -40°C to +85°C, Cload = 50pF, INTCLK =12M Hz,
Output Alternate Function set as Push-pull)

Value
No Symbol Parameter Unit

Min. Max.

1 TsDI Input Data Set-up Time 100 ns

2 ThDI(1) Input Data Hold Time 1/2TpC+100 ns

3 TdOV SCK to Output Data Valid 100 ns

4 ThDO Output Data Hold T1me -20 ns

5 TwSKL SCK Low Pulse Width 300 ns

6 TwSKH SCK High Pulse Width 300 ns

Note: TpC IS the OSCIN Clock period

SPITIMING

5
I I

SCK --------~~~~-------5------~~--------------~~~----------------
J I I
I 3 1 I ~
:------: : I I

I I I

--x~.-----i--: -------':X'----SDO

2
I

I I

SDI __ x--x __
VAOOJ09

213/219

297

ST9040

WATCHDOG TIMING TABLE(Voo = 5V ± 10%, TA =- 40 oc to +85°C, Cload = 50pF,
CPUCLK = 12M Hz, Push-pull output configuration, unless otherwise specified)

No Symbol

1 TwWDOL

2 TwWDOH

3 TwWDIL

4 TwWDIH

WATCHDOG TIMING

WDOUT

Values
Parameter

Min. Max.

WDOUT Low Pulse Width 620

WDOUT High Pulse Width 620

WDIN High Pulse Width 350

WDIN Low Pulse Width 350

2
:~------------------~~: ~:~--------------------:

Unit

ns

ns

ns

ns

\l y \
I I L------

~----~3--____ ~i ~~~------4------~

~::ii-
WDIN 'i ~

~, --------------~i \~--
VA00110

298

ST9040

A/D CONVERTER

EXTERNAL TRIGGER TIMING (Voo = 5V ± 10%, T A = -40°C ID +85°C, Cload = 50pF)

Oscin divided Oscin not
Value<2l

No Symbol Parameter
by2(l) divided (l) ·Unit

Min. Max. Min. Max. Min. Max.

1 TLOw External Trigger pulse width 2xTpc TPc 83 ns

2 THIGH External Trigger pulse 2xTpc TPc 83 ns

3 TEXT
External trigger active

138xTpc 69XTpc 5.75 f!S edges distance

Internal delay between
4 TsrR EXTRG falling edge and first Tpc 3xTpc 0.5xTPC 1.5xTpc 41.5 125 ns

conversion start

Notes:
1 Vanable clock (TPC=OSCIN clock penod)
2. INTCLK=12MHz

A/D External Trigger Timing

\),' ,I,(
\ I EXTRG

I
I
I

2 I

3

l // }' ST (start convers1on bit)

/' / I
I I

4 LLJ
I I

VR001401

215/219

299

ST9040

PACKAGE MECHANICAL DATA

80-Pin Plastic Quad Flat Package

~~ NE --N~rTlber-ofP-;-ns--

" w-----------] o 1

~- ~ ' 3
' ' ' ' ' ' '. ' I!;; I
Ja ' ,_ '

ND 10 1 03 01
'" ' I • I

:~ :
IZ I
I ' I I

~
I

1::: I

~

~-------~01
"-----i ,,_
E

Short/Long Footprint Measurement

LONG FOOT PRINT
VR001724

216/219

300

D

!lim nm inches

Mn Typ Mlx Mn Typ Mlx
A A 33l 013)

fl2 2.55 2.00 305 0100 0110 0120

D' 2365 2300 2415 0931 0941 0951

D1 1900 2000 2010 0783 0787 0791

m 1840 0724 .1= E' 1765 1700 1815 0005 0705 0715

E1 1300 1400 1410 0547 0551 0555

E3 12.00 0472

e 000 OaJ2
l'lJntJer of Pins

N 00

~
ND 24

>
NE 16

VROA1500 • Subject to change,
Typ D w1ll change to 23 20mm
Typ E Will change to 17.20mm

Short/Long Footprint recommended Padding

PAD AREA ON PCB

FOR EACH LEAD

L -I I

RECOMMANDED PAD AREA ~
FOR LONG AND SHORT w / ~
FOOT PRINT COMPATIBILITY

VROA\724

PACKAGE MECHANICAL DATA (Continued}

Solder Pad Footprint For QFPBO

4. 2 7

- 18.4

0.8 I

]~~~~~~~~~~~~~~~~~~~~~~
c:::==::J
c:::==::J
c::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J

-

E3---
c:::==::J 00

c:::==::J ci

c:::==::J
c:::==::J
c:::==::J
c:::==::J
c::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J
c:::==::J

~~~~~~~~~~~~~~~~~~~~~~~~Jt4 
0"*11 04 

ST9040 

II 

1-

" 
~ 

oj 

II 

SCALE ~ 1 4 

VR001842 

TH MSON 217/219 ------- J::ii ~~~~mc~~m·J(Jffil:t:~ -------
301 



ST9040 

68-Pin Plastic Leadless Chip Carrier 

am nm inches 

~- N;;-mb;~of p-,,:;;, -~ 
Mn Typ M3x Mn Typ M3x 

'~" 
A 420 508 0165 0200 

Pm 1 At 051 0020 

j"--~---l1ll 
/'>3 Z29 330 OWJ 0130 --------

-r ~ T B 
I~ 

'.~I 
81 

I" D ::502 ::527 0985 0935 I~ II ll 

NO : ~ :: :: 03 01 0 
Dt 2413 2433 0950 0958 

IE II Ill D3 2032 0800 

E ::502 ::527 0985 0935 

L~---~ 
II 1 I Et 2413 2433 0950 0958 

*=~ E3 2032 0800 
K1 

/c-E3------J 'q] El -,
1 A3 e 127 0050 

E l'tnrber of Pins 
A N 64 

VR001534 ND 16 
NE 16 

ORDERING INFORMATION 

Sales Type Frequency Temperature Range Package 

ST904001/XX PQFP80 ooc to+ 70°C 
ST9040C1/XX 24M Hz PLCC68 

ST9040C6/XX -40°C to + 85°C PLCC68 

Note: "XX" is the ROM code 1dentJfJer that 1s allocated by SGS-THOMSON after rece1pt of all reqUired oplions and the related ROM f1le 

218/219 

302 



ST9040 STANDARD OPTION LIST 

Please copy this page (enlarge if possible) and complete ALL sections. 
Send the form, with the ROM code image required, to your local SGS-THOMSON sales office. 

Customer Company : 

Company Address : 

Telephone: 

FAX: 

[ .. 

[ ........ . 
[ ...... . 

.] 

. ... ] 
..] 

Contact: 

[. 

[ 
[. 

.] 

.. ] 

l Telephone (Direct) : [ .... 

Please confirm characteristics of device : 

Device ST9040 

Package ] PQFP80 PLCC68 

Temperature Range 

Special Marking ] No 

l Yes 14 characters [ I I I I I I I I I I I I I l 
Authorized characters are letters, digits,'.','-','/' and spaces only. 

Please consult your local SGS-THOMSON sales office for other marking details if required. 

Notes: 

ROM less Option (Consult text) 

[ ] No 

[ ] Yes Port Bit [ ] P7.1 [ ] P2.0 

Code: ] EPROM (27128, 27256) 

] HEX format files on IBM-PC® compatible disk 
filename : [. . . . . . . . . ... ] 

Confirmation : ] Code checked with EPROM device in application 

Yearly Quantity forecast : [ ... ] k units 

.] years - for a period of : [ .. 

Preferred Production start dates : [. .. . . . .... .] (YY/MM/DD) 

Customer Signature : 

Date: 

ST9040 

..] 

219/219 

303 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
II 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



ST90E40 
ST90T40 

16K EPROM HCMOS MCU WITH EEPROM, 
RAM AND A/0 CONVERTER 

.·Register oriented 8/16 bit CORE with 
RUN, WFI and HALT modes 

• Minimum instruction cycle time: 500ns 
(12MHz internal) 

• Internal Memory : 
EPROM 16K bytes 
RAM 256 bytes 
EEPROM 512 bytes 
224 general purpose registers available as 
RAM, accumulators or index pointers 
(Register File) 

• 80-pin Plastic Quad Flat Pack package for 
ST90T40Q 

• 68-lead Plastic Leaded Chip Carrier package for 
ST90T40C 

• 80-pin Windowed Ceramic Quad Flat Pack 
packageforST90E40G 

• 68-lead Windowed Ceramic Leaded Chip Carrier 
packageforST90E40L 

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features 

• 56 fully programmable 1/0 pins 

11 Up to 8 external plus 1 non-maskable interrupts 

• 16 bit Timer with 8 bit Prescaler, able to be used 
as a Watchdog Timer 

• Two 16 bit Multifunction Timers, each with an 8 
bit prescaler and 13 operating modes 

• 8 channel 8 bit Analog to Digital Converter, with 
Analog Watchdogs and external references 

• Serial Communications Interface with asynchro-
nous and synchronous capability 

• Rich Instruction Set and 14 Addressing modes 

• Division-by-Zero trap generation 

• Versatile Development tools, including assembler, 
linker, C-compiler, archiver, graphic oriented de­
bugger and hardware emulators 

• Real Time Operating System 

• Compatible with ST9040 16K ROM device 

January 1993 

PRELIMINARY DATA 

PQFP80 

PLCC68 

CQFP80W 

(Ordenng lnformatron at the end of the Datasheet) 

1/23 

This IS Preliminary Data from SGS-THOMSON. Details are subject to change w1thout not1ce 
305 



ST90E40- ST90T40 

Figure 1. 80 Pin QFP Package 

1 
2 
3 

24 

80 

25 

Table 1. ST90E40G-ST90T40Q Pin Description 

Pin Name Pin Name 

1 AVss 25 P34fT11NA 

2 AVss 26 P33fTOOUTB 

3 NC 27 P32fTOINB 

4 P44/Ain4 28 P31fTOOUTA 

5 P57 29 P30/P/DfTOINA 

6 P56 30 P17/A15 

7 P55 31 P16/A14 

8 P54 32 NC 

9 I NT? 33 P15/A13 

10 INTO 34 P14/A12 

11 P53 35 P13/A11 

12 NC 36 P12/A10 

13 P52 37 P11/A9 

14 P51 38 P1 0/AB 

15 P50 39 POO/A0/00 

16 OSCOUT 40 P01/A1/D1 

17 Vss 

18 Vss 

19 NC 

20 OSCIN 

21 RESET/Vpp 

22 P37fT10UTB 

23 P36fT11NB 

24 P35fT10UTA 

306 

55 

54 

41 

40 

VROA1649 

Pin Name Pin Name 

64 P20/NMI 80 AVoo 

63 NC 79 NC 

62 Vss 78 P47/Ain7 

61 P?O/SIN 77 P46/Ain6 

60 P71/SOUT 76 P45/Am5 

P72/INT 4fTXCLK 75 P43/Am3 
59 

/CLKOUT 74 P42/Ain2 

P73/INT5 73 P41/Am1 
58 

/RXCLK/ADTRG 72 P40/Ain0 

57 P74/P/D/INT6 71 P27/RRDY5 

56 P75/WAIT P26/INT3 
70 

/RDSTB5/PJD P76/WDOUT 
55 

/BUSREQ 69 P25/WRRDY5 

P77/WDIN P24/INT1 
54 

/BUSACK 
68 

IWRSTB5 

53 R/W 67 P23/SDO 

52 NC 66 P22/l NT2/SCK 

51 OS 65 P21 /SDI/P/0 

50 AS 

49 NC 

48 Voo 

47 Voo 

46 PO?/A?/07 

45 P06/A6/D6 

44 P05/A5/D5 

43 P04/A4/D4 

42 P03/A3/D3 

41 P02/A2/D2 



Figure 2. 68 Pin LCC Package 

Table 2. ST90E40L-ST90T40C 

Pin Name Pin 

61 P44/Ain4 10 

62 P57 11 

63 P56 12 

64 P55 13 

65 P54 14 

66 I NT? 15 

67 INTO 16 

68 P53 17 

A. 1 P52 18 

2 P51 19 

3 P50 20 

4 OSCOUT 21 

5 Vss 22 

6 OSCIN 23 

7 RESETNPP 24 

8 P37/T10UTB 25 

9 P36ff11NB 26 

60 44 
rr---------------, 

61 

I 
I 

68 I 

1 
21 

I 
I 
I 
I 

9 l 

• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

43 

27 
Ym~~~~~~~~ 
·~ 

10 

Name Pin 

P35ff10UTA 43 

P34ff11NA 42 

P33/TOOUTB 
41 

P32/TOINB 

P31/TOOUTA 
40 

P30/P/D/TOINA 

P17/A15 39 

P16/A14 38 

P15/A13 
37 

P14/A12 

P13/A11 

P12/A10 
36 

P11/A9 35 

P10/A8 34 

POO/A0/00 33 

P01/A1/D1 32 

P02/A2/D2 31 

30 

29 

28 

27 

26 

VR001649 

Name 

P70/SIN 

P71/SOUT 

P72/CLKOUT 
/TXCLK!INT4 

P73/ADTRG 
/RXCLK/INT5 

P74/P/D/INT6 

P75/WAIT 

P76/WDOUT 
/BUSREQ 

P77/WDIN 
/BUSACK 

R/W 

DS 

AS 

Voo 

P07/A7/D7 

P06/A6/D6 

P05/A5/D5 

P04/A4/D4 

P03/A3/D3 

ST90E40- ST90T40 

Pin Name 

60 AVss 

59 AVoo 

58 P47/Am7 

57 P46/Ain6 

56 P45/Am5 

55 P43/Ain3 

54 P42/Am2 

53 P41/Ain1 

52 P40/Ain0 

51 P27/RRDY5 

P26/INT3 
50 

/RDSTB5/P/D 

49 P25/WRRDY5 

P24/INT1 
48 

/WRSTB5 

47 P23/SDO 

46 P22/INT2/SCK 

45 P21/SDI/P/D 

44 P20/NMI 

3/23 

307 



ST90E40 · ST90T40 

1.1 GENERAL DESCRIPTION 

The ST90E40 and ST90T 40 (following mentioned 
as ST90E40)are EPROM members with EEPROM 
of the ST9 family of microcontrollers, in windowed 
ceramic (E) and plastic OTP (T) packages respec· 
lively, completely developed and produced by 
SGS-THOMSON Microelectronics using a n-well 
proprietary HCMOS process. 

The EPROM parts are fully compatible with their 
ROM versions and this datasheet will thus provide 
only information specific to the EPROM based de­
vices. 

THE READER IS ASKED TO REFER TO THE 
DATASHEET OF THE ST9040 ROM-BASED DE­
VICE FOR FURTHER DETAILS. 

The EPROM ST90E40 may be used for the proto­
typing and pre-production phases of development, 
and can be configured as: a standalone microcon­
troller with 16K bytes of on-chip ROM, a microcon­
troller able to manage external memory, or as a 
parallel processing element in a system with other 
processors and peripheral controllers. 

Figure 3. ST90E40 Block Diagram 

The nucleus of the ST90E40 is the advanced Core 
which includes the Central Processing Unit (CPU), 
the Register File, a 16 bit Timer/Watchdog with 8 
bit Prescaler, a Serial Peripheral Interface support­
ing S-bus, 12C-bus and 1M-bus Interface, plus two 8 
bit 1/0 ports. The Core has independent memory 
and register buses allowing a high degree of pipe­
lining to add to the efficiency of the code execution 
speed of the extensive instruction set. 

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90E40 
with up to 56 1/0 lines dedicated to digital In­
put/Output. These lines are grouped into up to 
seven 8 bit 1/0 Ports and can be configured on a bit 
basis under software control to provide timing, 
status signals, an address/data bus for interfacing 
external memory, timer inputs and outputs, analog 
inputs, external interrupts and serial or parallel 1/0 
with or without handshake. 

INTO INT7 

1 1 
16-BII TIMER I WATCHDOG+ SPI 

CPU 

VROA1385 

_41_2_3 _____________ !V ~~~;~g~~:~~ 
308 



GENERAL DESCRIPTION (Continued) 

Three basic memory spaces are available to sup­
port this wide range of configurations: Program 
Memory (internal and external), Data Memory (ex­
ternal) and the Register File, which includes the 
control and status registers of the on-chip peripher­
als. 

Two 16 bit MultiFunction Timers, each with an 8 bit 
Prescaler and 13 operating modes allow simple 
use for complex waveform generation and meas­
urement, PWM functions and many other sys­
temmsiming functions by the usage of the two 
associated DMA channels for each timer. 

1.2 PIN DESCRIPTION 

AS. Address Strobe (output, active low, 3-state). 
Address Strobe is pulsed low once at the be9l!t 
ning of each memory cycle. The rising ed@ of AS 
indicates that address, Read/Write (R/W), and 
Data Memory signals are valid for program..Q.I:_data 
memory transfers. Under program control, AS can 
be placed in a high-impedanc~tate alo!!fl with 
Port 0 and Port 1, Data Strobe (OS) and R/W. 

DS. Data Strobe (output, active low, 3-state). Data 
Strobe provides the timing for data movement to or 
from Port 0 for each memory transfer. During a write 
cycle, data out is valid at the leading edge of DS. 
During a read c~. Data In must be valid prior to the 
trailing edge of DS. When the ST9040 accesses on­
chip memory, DS is held high during the whole mem­
ory cycle. It can be placed in a high impedance state 
along with Port 0, Port 1, AS and RIW. 

R/W. Read/Write (output, 3-state). Read/Write de­
termines the direction of data transfer for external 
memory transactions. R/W is low when writing to ex­
ternal program or data memory, and high for all other 
transactions. It can be placed.l!!_a hig.!:!.l.mpedance 
state along with Port 0, Port 1, AS and DS. 

RESET/Vpp. Reset (input, active low) or Vpp (in­
put). The ST9 is initialis~the Reset signal. 
With the deactivation of RESET, program execu­
tion begins from the Program memory location 
pointed to by the vector contained in program 
memory locations OOh and 01 h. In the EPROM 
programming Mode, this pin acts as the program­
ming voltage input VPP. 

ST90E40- ST90T40 

In addition there is an 8 channel Analog to Digital 
Converter with integral sample and hold, fast 11 J.LS 
conversion time and 8 bit resolution. An Analog 
Watchdog feature is included for two input chan­
nels. 

Completing the device is a full duplex Serial Com­
munications Interface with an integral 110 to 
375,000 baud rate generator, asynchronous and 
1.5Mbyte/s synchronous capability (fully program­
mable format) and associated address/wake-up 
option, plus two DMA channels. 

OSCIN, OSCOUT. Oscillator (input and output). 
These pins connect a parallel-resonant crystal 
(24MHz maximum), or an external source to the 
on-chip clock oscillator and buffer. OSCIN is the in­
put of the oscillator inverter and internal clock gen­
erator; OSCOUT is the output of the oscillator 
inverter. 

AVoo. Analog Voo of the Analog to Digital Con­
verter. 

AVss. Analog Vss of the Analog to Digital Con­
verter. Must be tied to Vss. 

Voo. Main Power Supply Voltage (5V ± 1 0%) 

Vss. Digital Circuit Ground. 

PO.O·P0.7, P1.0·P1.7, P2.0-P2.7 P3.0-P3.7, P4.0· 
P4.7, P5.0-P5.7, P7.0-P7.7 1/0 Port Lines (In­
put/Output, TTL or CMOS compatible). 56 lines 
grouped into 1/0 ports of 8 bits, bit programmable 
under program control as general purpose 1/0 or 
as alternate functions. 

1.31/0 PORT ALTERNATE FUNCTIONS 

Each pin of the 1/0 ports of the ST90E40!T40 may 
assume software programmable Alternative Func­
tions as shown in the Pin Configuration Tables. 
Due to Bonding options for the packages, some 
functions may not be present, Table 3 shows the 
Functions allocated to each 1/0 Port pin and a sum­
mary of packages for which they are available. 

--------------~ ~~~~m~::oo~~ 5/23 

309 



ST90E40- ST90T40 

PIN DESCRIPTION (Continued) 

Table 3. ST90E40, T40 1/0 Port Alternate Function Summary 

1/0 PORT Pin Assignment 
Name Function Alternate Function 

Port. bit PLCC PQFP 

PO.O AO/DO 1/0 Address/Data bit 0 mux 24 39 

P0.1 A1/D1 110 Address/Data bit 1 mux 25 40 

P0.2 A2/D2 1/0 Address/Data bit 2 mux 26 41 

P0.3 A3/D3 1/0 Address/Data bit 3 mux 27 42 

P0.4 A4/D4 1/0 Address/Data bit 4 mux 28 43 

P0.5 A5/D5 1/0 Address/Data bit 5 mux 29 44 

P0.6 A6/D6 1/0 Address/Data bit 6 mux 30 45 

PO.? A7/D7 1/0 Address/Data b1t 7 mux 31 46 

P1.0 AS 0 Address bit 8 23 38 

P1.1 A9 0 Address bit 9 22 37 

P1.2 A10 0 Address bit 10 21 36 

P1.3 A11 0 Address bit 11 20 35 

P1.4 A12 0 Address bit 12 19 34 

P1.5 A13 0 Address bit 13 18 33 

P1.6 A14 0 Address bit 14 17 31 

P1.7 A15 0 Address bit 15 16 30 

P2.0 NMI I Non-Maskable Interrupt 44 64 

P2.0 ROM less I ROM less Select (Mask optiOn) 44 64 

P2.1 P/D 0 Program/Data Space Select 45 65 

P2.1 SDI I SPI Serial Data Out 45 65 

P2.2 INT2 I External Interrupt 2 46 66 

P2.2 SCK 0 SPI Serial Clock 46 66 

P2.3 SDO 0 SPI Serial Data In 47 67 

P2.4 INT1 I External Interrupt 1 48 68 

P2.4 WRSTB5 I Handshake Write Strobe P5 48 68 

P2.5 WRRDY5 0 Handshake Write Ready P5 49 69 

P2.6 INT3 I External Interrupt 3 50 70 

P2.6 RDSTB5 I Handshake Read Strobe P5 50 70 

P2.6 P/D 0 Program/Data Space Select 50 70 

P2.7 RDRDY5 0 Handshake Read Ready P5 51 71 

P3.0 TOlNA I MF Timer 0 Input A 15 29 

P3.0 P/D 0 Program/Data Space Select 15 29 

P3.1 TOOUTA 0 MF T1mer 0 Output A 14 28 

P3.2 TOINB I MF Timer 0 Input B 13 27 

P3.3 TOOUTB 0 MF Timer 0 Output B 12 26 

P3.4 T11NA I MF Timer 1 Input A 11 25 

6/23 

310 



PIN DESCRIPTION (Continued) 

Table 4. ST90E40, T40 1/0 Port Alternate Function Summary 

I/O PORT 
Name Function Alternate Function 

Port. bit 

P3.5 TWUTA 0 MF Timer 1 Output A 

P3.6 T11NB I MF Timer 1 Input B 

P3.7 T10UTB 0 MF Timer 1 Output B 

P4.0 AinO I AJD Analog Input 0 

P4.1 Ain1 I A/D Analog Input 1 

P4.2 Ain2 I AJD Analog Input 2 

P4.3 Ain3 I AJD Analog Input 3 

P4.4 Ain4 I AID Analog Input 4 

P4.5 Ain5 I A/D Analog Input 5 

P4.6 Ain6 I AID Analog Input 6 

P4.7 Ain7 I AID Analog Input 7 

P5.0 1/0 1/0 Handshake Port 5 

P5.1 1/0 110 Handshake Port 5 

P5.2 110 110 Handshake Port 5 

P5.3 110 110 Handshake Port 5 

P5.4 110 110 Handshake Port 5 

P5.5 110 110 Handshake Port 5 

P5.6 110 110 Handshake Port 5 

P5.7 110 110 Handshake Port 5 

P7.0 SIN I SCI Serial Input 

P7.1 SOUT 0 SCI Serial Output 

P7.1 ROM less I ROM less Select (Mask opt1on) 

P7.2 INT4 I External Interrupt 4 

P7.2 TXCLK I SCI Transmit Clock Input 

P7.2 CLKOUT 0 SCI Byte Sync Clock Output 

P7.3 INT5 I External Interrupt 5 

P7.3 RXCLK I SCI Receive Clock Input 

P7.3 ADTRG I AJD Conversion Trigger 

P7.4 INT6 I External Interrupt 6 

P7.4 P/D 0 Program/Data Space Select 

P7.5 WAIT I External Wait Input 

P7.6 WDOUT 0 T/WDOutput 

P7.6 BUSREQ I External Bus Request 

P7.7 WDIN I T/WD Input 

P7.7 BUSACK 0 External Bus Acknowledge 

~ SGS·THOMSON 
--------------- .. ..,, I':'JOI!:IT'l!!I~~~I!:Vaii!!lli!OI!:~ 

ST90E40- ST90T40 

Pin Assignment 

PLCC PQFP 

10 24 

9 23 

8 22 

52 72 

53 73 

54 74 

55 75 

61 4 

56 76 

57 77 

58 78 

3 15 

2 14 

1 13 

68 11 

65 8 

64 7 

63 6 

62 5 

43 61 

42 60 

42 60 

41 59 

41 59 

41 59 

40 58 

40 58 

40 58 

39 57 

39 57 

38 56 

37 55 

37 55 

36 54 

36 54 

7/23 

311 



ST90E40- ST90T40 

1.4MEMORY 

The memory of the ST90E40 is functionally divided 
into two areas, the Register File and Memory. The 
Memory is divided into two spaces, each having a 
maximum of 65,536 bytes. The two memory 
spaces are separated by function, one space for 
Program code, the other for Data. The ST90E40 
16K bytes of on-chip EPROM memory are se­
lected at memory addresses 0 through 3FFFh 
(hexadecimal) in the PROGRAM space, while the 
ST90T 40 OTP version has the top 64 bytes of the 
EPROM reserved by SGS-THOMSON for testing 
purposes. The OAT A space includes the 512 bytes 
of on-chip EEPROM at addresses 0 through 1 FFh 
and the 256 bytes of on-chip RAM memory at 
memory addresses 200h through 2FFh. 

WARNING. The ST90T40 has its 64 upper bytes in 
the internal EPROM reserved (or testing purpose. 

External memory may be addressed using the mul­
tiplexed address and data buses (Alternate Func­
tions of Ports 0 and 1 ). At addresses greater than 
the first 16K of program space, the ST90E40 exe· 
cutes external memory cycles for instruction 
fetches. Additional Data Memory may be decoded 
externally by using the P/D Alternate Function out­
put. The on-chip general purpose (GP) Registers 
may also be used as RAM memory for minimum 
chip count systems. 

Figure 4. Memory Spaces 

65535 

1.5 EPROM PROGRAMMING 

The 16384 bytes of EPROM memory of the 
ST90E40 (16320 for the ST90T40) may be pro­
grammed by using the EPROM Programming 
Boards (EPB) available from SGS-THOMSON. 

1.5.1 Eprom Erasing 

The EPROM of the windowed package of the 
ST90E40 may be erased by exposure to Ultra-Violet 
light. 

The erasure characteristic of the ST90E40 is such 
that erasure begins when the memory is exposed 
to light with ? wave lengths shorter than approxi­
mately 4000A. It should be noted that sunlight and 
some types of fluorescent lamps have wave­
lengths in the range 3000·4000A. It is thus recom­
mended that the window of the ST90E40 
packages be covered by an opaque label to pre· 
vent unintentional erasure problems when testing 
the application in such an environment. 

The recommended erasure procedure of the 
EPROM is the exposure to short wave ultraviolet 
light which have a wave-length 2537A. The inte· 
grated dose (i.e. U.V. Intensity x exposure time) for 
erasure should be a minimum of 15W-sec/cm2. 
The erasure time with this dosage is approximately 
15 to 20 minutes using an ultraviolet lamp with 
12000f.LW/cm2 power rating. The ST90E40 should 
be placed within 2.5cm (11nch) of the lamp tubes 
during erasure. 

65535 

255 r------, 

16384 r-------1----__J 

EPROM 

0000 L.._ ___ __J 

INTERNAL 

PROGRAM 

SPACE 

EXTERNAL 

2401-----1 

ooooc__ ___ ....J 

REGISTER 

FILE 

768 r-------1----_..J I RAM 
512 f-------1 

0000 I EEPROM 

INTERNAL 

DATA 

SPACE 

EXTERNAL 

VR001400 

_~_2_3 _____________ ~~~~~~g~:~~ ---------------
312 



ST90E40- ST90T40 

ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter Value Unit 

Voo Supply Voltage -0.3 to 7.0 v 
AVoo, AVss Analog Supply Voltage Vss = AVss < AVoo -s Voo v 

v, Input Voltage - 0.3 to Voo +0.3 v 
Vo Output Voltage - 0.3 to Voo +0.3 v 
Vpp Input Voltage on Vpp Pm -0.3 to 13.5 v 
TsTG Storage Temperature -55 to+ 150 oc 

hNJ Pin Injection Current Digital -5 to 5 rnA 

IINJ Pin Injection Current Analog -5 to 5 rnA 

Max1mum accumulated pin inJection Current m the dev1ce -50 to 50 rnA 

Note Stresses above those hsted as "absolute max1mum rat1ngs" may cause permanent damage to the dev1ce. This 1s a stress rating only and 
functional operation of the device at these conditions is not implied. Exposure to maximum ratmg cond1t1ons for extended penods may affect 
dev1ce reliability. All voltages are referenced to Vss 

RECOMMENDED OPERATING CONDITIONS 

Symbol Parameter 
Value 

Unit 
Min. Max. 

TA Operating Temperature -40 85 oc 
Voo Operating Supply Voltage 4.5 5.5 v 

IoseE External Oscillator Frequency 24 MHz 

fosc1 Internal Clock Frequency (INTCLK) 12 MHz 

DC ELECTRICAL CHARACTERISTICS 
Voo = 5V ± 10% TA =- 40°C to + 85°C, unless otherwise specified) 

Value 
Symbol Parameter Test Conditions Unit 

Min. Typ. Max. 

VIHCK Clock Input High Level External Clock 0.7 Voo Voo+ 0.3 v 
VILCK Clock Input Low Level External Clock -0.3 0.3 Voo v 

TTL 2.0 Voo + 0.3 v 
V1H Input H1gh Level 

CMOS 0.7 Voo VDD + 0.3 v 
TTL -0.3 0.8 v 

V1L Input Low Level 
CMOS -0.3 0.3 Voo v 

VIHRS RESET Input High Level 0.7 Voo Voo + 0.3 v 
VILAS RESET Input Low Level -0.3 0.3 Voo v 
VHYRS RESET Input Hysteresis 0.3 1.5 v 
VoH Output High Level Push Pull, I load=- 0.8mA Voo-0.8 v 

VoL Output Low Level 
Push Pull or Open Drain, 

0.4 v 
lload = 1.6mA 

9/23 

313 



ST90E40- ST90T40 

DC ELECTRICAL CHARACTERISTICS (continued) 

Symbol Parameter Test Conditions 

IWPU 
Weak Pull-up Current Bidirectional Weak Pull-

up. VoL= OV 

IAPU 
Active Pull-up Current, 

V1N < 0.8V, under Reset 
for INTO and INT7 only 

ILKIO 1/0 Pin Input Leakage 
lnput!Tn-State, 
OV < V1N < Voo 

ILKRS Reset Pin Input Leakage OV < V1N < Voo 

AiD Pin Input Leakage 
Alternate Function, 

ILKAD Open Drain, 
OV < V1N < Voo 

ILKAP 
Act1ve Pull-up Input 

OV < V1N < 0.8V 
Leakage 

ILKOS OSCIN Pin Input Leakage OV < V1N < Voo 

Vpp EPROM Programming 
Voltage 

lpp 
EPROM Programmmg 
Current 

DC TEST CONDITIONS 

2.4V~ TTL INPUT 
FORCING CONDITION 

0 45V 

0.8V00~ CMOS INPUT 
FORCING CONDITION O 

.2Voo 

Value 

Min. Typ. Max. 

-50 -200 -420 

-80 -200 -420 

-10 +10 

-30 + 30 

-13 +13 

-10 +10 

-10 +10 

12.2 12.5 12.8 

30 

PUSH-PULL OUTPUT 
TEST CONDITION 

~ "1'' SOURCE CURRENT = -0.8mA 

~ "o" SINK CURRENT = 1 6mA 

WEAK PULL-UP OUTPUT 

TEST CONDITION 

_1o_J_23 _____________ ~ ~~~~~~!:'I:R~ 

314 

Unit 

flA 

flA 

flA 

flA 

flA 

flA 

flA 

v 

mA 



ST90E40- ST90T40 

AC ELECTRICAL CHARACTERISTICS 
(Voo = 5V ± 10% TA =- 40°C to + 85°C, unless otherwise specified) 

Value 
Symbol Parameter Test Conditions Unit 

Min. Typ. Max. 

Run Mode Current 
loo no CPUCLK prescale, 24M Hz 40 70 rnA 

Clock divide by 2 

Run Mode Current 
lor2 Prescale by 2 24M Hz 19 40 rnA 

Clock divide by 2 

WFI Mode Current 
lwFI no CPUCLK prescale, 24M Hz 15 20 rnA 

Clock divide by 2 

I HALT HALT Mode Current 24M Hz 50 100 11A 

Typical Current Versus Frequency of Operation (fosc) 

rnA RUN MODE )LA A WFI MODE 
5 5V -40"C 

40 20 

4 5V +85"C 

30 15 

~ 
5 5V -40"C 

20 10 4.5V +85"C 

10 5 
11 

45 

4 8 12 INTCLK (MHz) 4 8 12 INTCLK (MHz) 

VR001843 

11/23 

315 



ST90E40- ST90T40 

CLOCK TIMING TABLE 
(Voo = 5V ± 10%, TA = - 40°C to+ 85°C, INTCLK =12M Hz, unless otherwise specified 

Value 
N' Symbol Parameter Unit Note 

Min. Max. 

1 TpC OSCIN Clock Penod 41.5 ns 1 

83 ns 2 

2 TrC, TIC OSCIN Rise and Fall Time 12 ns 

3 TwCL, TwCH OSCIN Low and High Width 17 25 ns 1 

38 ns 2 

Notes: 

1. Clock d1v1ded by 2 mternally (MODER DIV2=1) 

2. Clock not d1v1ded by 2 Internally (MODER.DIV2=0) 

CLOCK TIMING 

V1H =0.8V00 

OSCIN 

V1L =0.2Voo 

2 3 3 VA00116 

12/23 

316 



ST90E40- ST90T40 

EXTERNAL BUS TIMING TABLE (Voo = 5V ± 10%, TA =- 40°C to+ 85°C, Cload = 50pF, CPUCLK = 
12MHz, unless otherwise specified) 

Value (Note) 
No Symbol Parameter OSCIN Divided OSCIN Not Divided 

By2 By2 

1 TsA (AS) 
Address Set-up Time 

TpC (2P+ 1) -22 TWCH+PTpC-18 
before AS i 

2 ThAS(A) Address Hold Time alter AS i TpC-17 TwCL-13 

3 TdAS(DR) AS ito Data Available (read) TpC(4P+2VV+4)-52 TpC (2P+VV+2) -51 

4 TwAS AS Low Pulse VVidth TpC (2P+1)-7 TwCH+PTpC -3 

5 TdAz (DS) DS ! to Address Float 

-
TpC (4P+2VV+3) -20 

TwCH+TpC 
6 TwDSR DS Low Pulse VVidth (read) 

(2P+VV+1)-16 

7 TwDSVV DS Low Pulse VVidth (write) TpC (2P+2VV+2) -13 TpC(P+VV+1)-13 

8 TdDSR(DR) DS ! to Data Valid Delay (read) TpC (4P+2VV-3) -50 
TwCH+ TpC(2P+VV+ 1 
-46 

9 ThOR (DS) Data to DS i Hold Time (read) 0 0 

10 TdDS (A) DS i to Address Active Delay TpC-7 TwCL-3 

11 TdDS(AS) DS i to AS ! Delay TpC-18 TwCL-14 

12 TsRIVV (AS) RIVV Set-up Time before AS i TpC (2P+ 1) -22 TwCH+PTpC-18 

13 TdDSR (RIVV) 
DS i to RIVV and Address Not 

TpC-9 TwCL-5 
Valid Delay 

14 TdDVV (DSVV) 
VVrite Data Valid to DS! Delay 

TpC (2P+ 1) -32 TwCH+PTpC -28 
(write) 

15 ThDS (DVV) Data Hold Time after DS i (write) TpC-9 TwCL-5 

16 TdA(DR) 
Address Valid to Data Valid 

TpC(6P+2VV+5)-68 
TwCH+TpC 

Delay (read) (3P+VV+2) -64 

17 TdAs (DS) AS i to DS ! Delay TpC-18 TwCL-14 

EXTERNAL WAIT TIMING TABLE (Voo = 5V ± 10%, TA = -400C to +850C, Cload = 50pF, 

INTCLK = 12M Hz, Push-pull output configuration, unless otherwise specified) 

Value (Note) 

N" Symbol Parameter OSCIN Divided OSCIN Not Divided 
By2 By2 

1 TdAs (VVAIT) AS ito VVAIT! Delay 2(P+1)TpC-29 2(P+1)TpC-29 

2 TdAs (VVAIT) AS ito VVAIT! Min. Delay 2(P+VV+ 1 )TpC -4 2(P+VV+1)TpC-4 

3 TdAs (VVAIT) AS ito VVAIT! Max. Delay 2(P+VV+ 1 )TpC -29 2(P+VV+ 1 )TpC -29 

Unit 
Min. Max. 

20 ns 

25 ns 

115 ns 

35 ns 

12 ns 

105 ns 

70 ns 

75 ns 

0 ns 

35 ns 

24 ns 

20 ns 

33 ns 

10 ns 

33 ns 

140 ns 

24 ns 

Uni~ 
Min. Max. 

40 ns 

80 ns 

83VV 
40 

ns 

Note: (for both table) The value m the left hand two columns show the formula used to calculate the t1m1ng m1mmum or max1mum from the 
oscillator clock penod, prescale value and number of wait cycles inserted 
The value in the right hand two columns show the t1m1ng m1mmum and maximum for an external clock at 24 MHz d1v1ded by 2, prescaler value 
of zero ancizero wa1t status 

Legend: 
P =Clock Prescahng Value 
W = Wa1t Cycles 

TpC =OSCIN Period 
TwCH =H1gh Level OSCIN half period 
TwCL =Low Level OSCIN half penod 

-------------- J:..V ~~~;m~::ll~~ 13/23 

317 



ST90E40 • ST90T40 

EXTERNAL BUS TIMING 

T1 T2 T3 

CPUCLK __j 

R/W 

PORT1 
P/D 

PORTO 
(READ) 

DS 
(READ) 

PORTO 
(WRITE) 

DS 
(WRITE) 

-----,x : 
16 

A15-A8 
1 
~ 

3 I I 

: 1:' ' J 1: : __ __,X: A7~AO l +D7-DO IN~ 
I 1 11 2 I 1 I 1 9 nr---=--; 1 

I 

~L-+--
lc<----~6 ______ I~ ~ 

8 

-----~-~ !~:---~-
F--------~~: 10 

I 
I 

X A7-AO \},- D7-DD OUT : -M=-
-------J '------Jl\..'!'--1 ----"'T"· -.....of'F----

1 14 c c 7 c 1 15 I 
~ I 

-------------~: 

VA00447 

EXTERNAL WAIT TIMING 

T1 T2 TwW I T3 I 
CPUCLK l__j[____J 

AS. 

3 

DS '~R_E_AD~'~W_R_IT_E#;\'+i------~' 
2 I 

_____ _l!c~~~~~~~'fjll 

: 1 X- ll.l.J...4;.1i 
~ 

WAIT 

VA00115 

14/23 r== SGS·THOMSON -------------------------- A..""'J/,. l'>JU©jj@~~~©Vmi@illU©© 

318 



ST90E40- ST90T40 

HANDSHAKE TIMING TABLE (Voo = SV ± 10%, TA = -40"C to +85"C, Cload = SOpF, INTCLK = 12MHz, 
Push-pull output configuration, unless otherwise specified) 

Value (Note) 

No Symbol Parameter OSCIN Divided OSCIN Not Divided Min. Max. Unit 
By2 By2 

Min. Max. Min. Max. 

RDRDY, WRRDY Pulse 
2TpC 

TpC 
1 TwRDY Width in One Line 

(P+W+1)-18 
(P+W+1)- 65 ns 

Handshake 18 

2 TwSTB 
RDSTB, WRSTB Pulse 

2TpC+12 TpC+12 95 ns W1dth 

3 
TdST RDSTB, or WRSTB t 

TpC+45 
(TpC-TwCL) 

87 
(RDY) to RDRDY or WRRDY .j, +45 

ns 

TsPD Port Data to RDRDY t (2P+2W+1) 
TwCH+ 

4 
(RDY) Set-upT1me TpC-25 

(W+P) 16 ns 
TpC-25 

TsPD 
Port Data to WRRDY .j, 

5 
(ROY) 

Set-up Time in One Line 43 43 43 ns 
Handshake 

Port Data to WRRDY .j, 

6 
ThPD Hold 

0 0 0 (RDY) T1me in One Line ns 

Handshake 

7 
TsPD Port Data to WRSTB t 

10 10 10 (STB) Set-upTime ns 

8 
ThPD Port Data to WRSTB t 

25 25 25 (STB) HoldT1me 
ns 

TdSTB 
RDSTBD t to Port Data 

9 
(PD) 

Delay Time in 35 35 35 ns 
Bidirectional Handshake 

TdSTB 
RDSTB t to Port High-Z 

10 
(PHZ) 

Delay T1me 1n 25 25 25 ns 
Bidirectional Handshake 

Note: The value in the left hand two columns show the formula used to calculate the timing minimum or max1mum from the oscillator clock 
penod, prescale value and number of wa1t cycles Inserted 
The value 1n the nght hand two columns show the t1m1ng minimum and max1mum for an external clock at 24 MHz d1v1ded by 2, prescaler value 
of zero and zero wa1t status 

Legend: 
P = Clock Prescahng Value (R235 4,3,2) 
W = Programmable Wall Cycles (R252 2.1.0/5,4,3) + External Wall Cycles 

15/23 

319 



ST90E40- ST90T40 

HANDSHAKE TIMING 

READY 
t------'4 ____ 1 I 3 

STROBE ---xl'-: --------"1: I 
I 

I 4 I 
~ 
I ' 

OUTPUT 
HANDSHAKE 

ONE LINE 
INPUT 

HANDSHAKE 

TWO LINES 
INPUT 

HANDSHAKE 

BIDIRECTIONAL 
HANDSHAKE 

16/23 

320 

II 
II 

II 
:: I 5 I I 6 I 
'' ~~ 

--~----~~X. X~------11 

~~ 

----~--9--J><f ~~------------------------------
1 I 

VA00113 



ST90E40- ST90T40 

BUS REQUEST/ACKNOWLEDGE TIMING TABLE (Voo = 5V ± 10%, TA = -40°C to +85"C, Cload = 50pF, 
INTCLK = 12M Hz, Push-pull output configuration, unless otherwise specified) 

Value (Note) 

No Symbol Parameter Unit 
OSCIN Divided OSCIN Not Divided 

Min. Max. 
By2 By2 

BREQ J. to BUSACK J. 
TpC+B TwCL+12 50 ns 

1 TdBR (BACK) 

TpC(6P+2W+ 7)+65 TpC{3P+W+3)+ TwCL+65 360 ns 

2 TdBR (BACK) BREQ 1' to BUSACK 1' 3TpC+60 TpC+ TwCL+60 185 ns 

3 TdBACK (BREL) 
BD"SACK J. to Bus 

20 20 20 
Release 

ns 

4 TdBACK (BACT) 
BUSACK 1' to Bus 

20 20 20 
Active 

ns 

Note: The value left hand two columns show the formula used to calculate the trmrng mrnrmum or maxrmum from the oscrllator clock perrod, 
prescale value and number of wart cycles rnserted. 
The value rrght hand two columns show the trmrng mrnrmum and maxrmum for an external clock at 24MHz drvrded by 2, prescale value of zero 
and zero wa1t status. 

BUS REQUEST/ACKNOWLEDGE TIMING 

T1 

INTCLK~~ 

CPUCLK _j"""\_____f 

8USREQ \ \ \ \ \ t 

Note : MEMINT =Group of memory rnterface srgnals. AS, OS, RIW, POO·PO?,' Pt O-Pt? 

~ S&S-nfOMSON 
---------------- ... ..,, ili:[i;~©~.l~©VI':l©I'!Dii:~ 

T2 

VA00114 

17/23 

321 



ST90E40- ST90T40 

EXTERNAL INTERRUPT TIMING TABLE (Voo = 5V ± 10%, TA =-40°C to +85°C, Cload = 50pF, 
INTCLK = 12M Hz, Push-pull output configuration, unless otherwise specified) 

Value (Note) 

N' Symbol Parameter OSCIN OSCIN Not 
Divided By Divided By Min. 

2Min. 2Min. 

1 TwLR Low Level Minimum Pulse Width in Rising Edge Mode 2TpC+12 TpC+12 95 

2 TwHR High Level Minimum Pulse Width in Rising Edge Mode 2TpC+12 TpC+12 95 

3 TwHF High Level Minimum Pulse Width in Falling Edge Mode 2TpC+12 TpC+12 95 

4 TwLF Low Level Minimum Pulse Width in Falling Edge Mode 2TpC+12 TpC+12 95 

Unit 
Max. 

ns 

ns 

ns 

ns 

Note: The value left hand two columns show the formula used to calculate the t1mmg min1mum or max1mum from the oscillator clock penod, 
prescale value and number of wa1t cycles inserted 
The value nght hand two columns show the t1mmg m~n1mum and max1mum for an external clock at 24 MHz d1v1ded by 2, prescale value of zero 
and zero wa1t status. 

EXTERNAL INTERRUPT TIMING 

RISING EDGE DETECTION FALLING EDGE DETECTION 

INTn 

2 4 

n=0-7 VA00112 

18/23 

322 



ST90E40- ST90T40 

SPI TIMING TABLE (Voo = SV ± 10%, TA = -40°C to +85°C, Cload = SOpF, INTCLK =12M Hz, 
Output Alternate Function set as Push-pull) 

Value 
No Symbol Parameter Unit 

Min. Max. 

1 TsDI Input Data Set-up Time 100 ns 

2 ThDI (1) Input Data Hold Time 1/2 TpC+100 ns 

3 TdOV SCK to Output Data Valid 100 ns 

4 ThDO Output Data Hold Time -20 ns 

5 TwSKL SCK Low Pulse Width 300 ns 

6 TwSKH SCK High Pulse Width 300 ns 

Note: 1. TpC is the OSCIN Clock period. 

SPITIMING 

5 
I I 

SCK 

______ I 5 VI.--------.: 

~~~------~: ~---------1 I I 

~ : ~
I I I I

: I 1

----~x~--~1--------~X~----500

2
I

I I

SOl __ x--x._____
VA00109

------------------------ Iifi. ~~~;m~m:~~~n 19/23

323

ST90E40 - ST90T40

WATCHDOG TIMING TABLE(Voo = SV ± 10%, T A=- 40"C to +85"C, Cload = 50pF,
CPUCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

Values
No Symbol Parameter

Min. Max.

1 TwWDOL WDOUT Low Pulse Width 620

2 TwWDOH WDOUT Hrgh Pulse Wrdth 620

3 TwWDIL WDIN High Pulse Wrdth 350

4 TwWDIH WDIN Low Pulse Width 350

WATCHDOG TIMING

2
:~------------------~: ~: ~------------------·:

WDOUT

Unit

ns

ns

ns

ns

i y \
I I ~-----

~----~3----~~~ ~' ~------4------~

~::11-
WDIN i ~

~I ------------~1 \~--
VA00110

_20_1_23 _________________________ liii ~~~~m~::i!~n
324

ST90E40 • ST90T40

AID CONVERTER

EXTERNAL TRIGGER TIMING (Voo = 5V ± 1 0%, T A= -40°C to +85°C, Cload = 50pF)

Oscin divided Oscin not Value(2l
N' Symbol Parameter by2 (1} divided (1} Unit

Min. Max. Min. Max. Min. Max.

1 TLow External Trigger pulse width 2XTPc Tpc 83 ns

2 THIGH External Trigger pulse 2xTpc Tpc 83 ns

3 TEXT
External trigger active

138xTpc 69xTpc 5.75 JlS edges distance

Internal delay between
4 TsTR EXTRG falling edge and first Tpc 3xTpc 0.5xTPC 1.5xTpc 41.5 125 ns

conversion start

Notes:
1. Variable clock (TPC=OSCIN clock penod)

2. INTCLK= 12M Hz

AID External Trigger Timing ·

EXTRG

2

3

ST (start conversion bit) Jrr---......,/ /
------------+--------J~- /r-------~--~1 I I

I I

4 I I
~
I I

VR001401

21/23

325

ST90E40 • ST90T40

PACKAGE MECHANICAL DATA

80-Pin Ceramic Quad Flat Package with Window

A

0
A2

f-----E1

f-'----- E -----o~ VR081500

68-Pin Ceramic Lead less Chip Carrier with Window

NE r- Number or Pins-~
Pin 1 rlr·flfl!"=·Tffll Bt=~

,_,,~J ·~I ND I~ II I £1 I II 03 Dl D '• "' '"l
r_~-.-~

I 1
e II 111

IIIII

*=~ f---E3 --------j II ~ El 'I
E

VROA1534

_22_12_3 ___________ r== SGS·THOMSON
A"'f/.. fii:iliT!:ii'J@~~~i:VI'il©li!IT(Q;@

326

Dim

A

A2

D

01

m
E

E1

E3

0

e

N

ND

NE

Dim

A

A1

PJ
B

B1

D

Dl

m
E

E1

E3
0

e

N

ND

NEI

mn inches

Mn Typ Mix Mn Typ Mix

355 014

340 0.133

2300 Of»1

2)00 0787

18.40 0724

1700 0705

1400 0551

12.00 0.472

7.ff2 0.3

0.80 0032

l>tJrrber of Pins

80

24

16

mn inches

Mn Typ Mix Mn Typ Mix
447 0176

089 0.035

048 0019

25.1 0900

236 093:1

2:l.3 0.800

25.1 0900

23.6 093)

2)3 0800

8 0.32

1.27 OWJ

l>tJrrber of Pins
64

16

16

ST90E40 - ST90T40

ORDERING INFORMATION

Sales Type Frequency Temperature Range Package

ST90E40L 1/ES1'l oocto + 70°C CLCC68W

ST90E40G1/ESI'l
24M Hz

ooc to+ 70°C CQFPBOW

ST90T40C6 -40°C to + 85°C PLCC68
24M Hz

ST90T40Q1 0°Cto + 70°C PQFPSO

Note . EPROM parts are tested at 25"C only

23/23

327

ST90R40
ROMLESS HCMOS MCU WITH EEPROM,

RAM AND AID CONVERTER

• Register oriented 8/16 bit CORE with
RUN, WFI and HALT modes

• Minimum instruction cycle time:500ns
(12M Hz internal)

• ROMiess to allow maximum external memory
flexibility

• Internal Memory :
RAM 256 bytes
EEPROM 512 bytes
224 general purpose registers available as
RAM, accumulators or index pointers
(register file)

• 58-lead Plastic Leaded Chip Carrier package

• DMA controller, Interrupt handler and Serial Pe-
ripheral Interface as standard features

• 40 fully programmable 1/0 pins

• Up to 8 external plus 1 non-maskable interrupts

• 16 bii Timer with 8 bit Prescaler, able to be used
as a Watchdog Timer

• Two 16 bit Multifunction Timers, each with an 8
bit prescaler and 13 operating modes

• 8 channel 8 bit Analog to Digital Converter, with
Analog Watchdogs and external references

• Serial Communications Interface with asynchro-
nous and synchronous capability

• Rich Instruction Set and 14 Addressing modes

• Division-by-Zero trap generation

• Versatile development tools, including assembler,
linker, C-compiler, archiver, graphic orinted de­
bugger and hardware emulators

• Real Time Operating System

• Compatible with ST9040 16K ROM device (also
available in windowed and One Time Programma­
ble EPROMpackages)

January 1993

PRELIMINARY DATA

(Ordering Information at the end of the Datasheet)

1/8

This ts Preliminary Data from SGS-THOMSON. Details are subject to change without nottce.
329

ST90R40

Figure 1. 68 Pin PLCC Package)

61 t
I
I
I
I

60 44 -,--------------
1143
I
I
I
I
I

68 ~
1 i •
2 ~

I
I
I
I

9 l 27
Ym~~~~~~==~
10 26

VROD1649

Table 1. ST9040C Pin Description

Pin Name Pin Name Pin Name

61 P44/Ain4 10 P35fT10UTA 43 P70/SIN

62 P57 11 P34fT11NA 42 P71/SOUT

63 P56 12 P33/TOOUTB P72/CLKOUT
41

/TXCLKIINT4 64 P55 13 P32/TOINB

65 P54 14 P31/TOOUTA P73/ADTRG
40

/RXCLK/INT5 66 I NT? 15 P30/P/D/TOINA

67 INTO 16 A15 39 P74/P/D/INT6

68 P53 17 A14 38 P75/WAIT

'A 1 P52 18 A13 P76/WDOUT
37

/BUSREQ 2 P51 19 Ai2

3 P50 20 Aii P77/WDIN
36

/BUSACK 4 OSCOUT 21 AiD

5 Vss 22 A9 35 R/W

6 OSCIN 23 AS 34 OS

7 RESET 24 AO/DO 33 AS

8 P37fT10UTB 25 Ai/Di 32 Voo

9 P36fT11NB 26 A2/D2 31 A?/07

30 A6/D6

29 A5/D5

28 A4/D4

27 A3/D3

2/8

Pin Name

60 AVss

59 AVoo

58 P47/Ain7

57 P46/Ain6

56 P45/Ain5

55 P43/Ain3

54 P42/Ain2

53 P41/Ain1

52 P40/Ain0

51 P27/RRDY5

P26/INT3
50

/RDSTB5/P/D

49 P25/WRRDY5

P24/INTi
48

/WRSTB5

47 P23/SDO

46 P22/INT2/SCK

45 P21/SDI/P/D

44 P20/NMI

r== SliS·THOMSON -------------- A."'J£ i:IIT©'flmcrn©mil©l~IT©® --------------

330

1.1 GENERAL DESCRIPTION

The ST90R40 is a ROM LESS member of the ST9
family of microcontrollers, completely developed
and produced by SGS-THOMSON Microelectron­
ics using a proprietary n-well HCMOS process.

The ROM LESS part may be used for the prototyp­
ing and pre-production phases of development,
and offers the maximum in program flexibility in
production systems.

The ST90R40 is fully compatible with the ST9040
ROM version and this datasheet will thus provide
only information specific to the ROM LESS device.

THE READER IS ASKED TO REFER TO THE
DATASHEET OF THE ST9040 ROM-BASED DE­
VICE.

The ROMLESS ST90R40 can be configured as a
microcontroller able to manage external memory,
or as a parallel processing element in a system
with other processors and peripheral controllers.

The nucleus of the ST90R40 is the advanced Core
which includes the Central Processing Unit (CPU),
the Register File, a 16 bit Timer/Watchdog with 8
bit Prescaler2 a Serial Peripheral Interface support­
ing S-BUS, I C-bus and 1M-bus Interface, plus two

Figure 2. Block Diagram

ST90R40

8 bit 1/0 ports. The Core has independent memory
and register buses allowing a high degree of pipe­
lining to add to the efficiency of the code execution
speed of the extensive instruction set.

The powerful 1/0 capabilities demanded by micro­
controller applications are fulfilled by the ST90R40
with up to 48 1/0 lines dedicated to digital In­
put/Output. These lines are grouped into up to six
8 bit 1/0 Ports and can be configured on a bit basis
under software control to provide timing and status
signals, address lines, timer inputs and outputs,
analog inputs, external interrupts and serial or par­
allell/0 with or without handshake.

Three memory spaces are available: Program Mem­
ory (external), Data Memory (internal and external)
and the Register File, which includes the control and
status registers of the on-chip peripherals.

Two 16 bit MultiFunction Timers, each with an 8 bit
Prescaler and 13 operating modes allow simple
use for complex waveform generation and meas­
urement, PWM functions and many other system
timing functions by the usage of the two associated
DMA channels for each timer.

VAOB1385

~ SCiS-THOMSON -------------- A."1/. OI'JJU©~@~~~i:1i'~©lllU©:Il
3/8

331

ST90R40

GENERAL DESCRIPTION (Continued)

In addition there is an 8 channel Analog to Digital
Converter with integral sample and hold, fast 1111s
conversion time and 8 bit resolution. An Analog
Watchdog feature is included for two input chan­
nels.

1.2 PIN DESCRIPTION

AS. Address Strobe (output, active low, 3-state).
Address Strobe is pulsed low once at the be9l!:!:
ning of each memory cycle. The rising ed~ of AS
indicates that address, Read/Write (R/W), and
Data Memory signals are valid for program ..Q!_data
memory transfers. Under program control, AS can
be placed in a high-impedanc~tate alo!J.Q with
Port 0 and Port 1, Data Strobe (DS) and R/W.

DS. Data Strobe (output, active low, 3-state). Data
Strobe provides the timing for data movement to or
from Port 0 for each memory transfer. During a
write cycle, data out is valid at the leading edge of
DS. During a read cycl~ata In must be valid prior
to the trailing edge of DS. When the ST90R40 ac­
cesses on-chip Data memory, DS is held high dur­
ing the whole memory cycle. It can be placed in a
high im_Q_edance state along with Port 0, Port 1, AS
and R/W.

RiW. Read/Write (output, 3-state). Read/Write de­
termines the direction of data transfer for memory
transactions. R/W is low when writing to program
or data memory, and high for all other transactions.
It can be placed in.i!_high l!!!Pedance state along
with Port 0, Port 1, AS and DS.

RESET. Reset (input, active low). The ST9 is ini­
tialised by the Reset signal. With the deactivation
of RESET, program execution begins from the Pro­
gram memory location pointed to by the vector
contained in program memory locations OOh and
01h.

Completing the device is a full duplex Serial Com­
munications Interface with an integral 11 0 to
375000 baud rate generator, asynchronous and
1.5Mbyte/s synchronous capability (fully program­
mable format) and associated address/wake-up
option, plus two DMA channels.

OSCIN, OSCOUT. Oscillator (input and output).
These pins connect a parallel-resonant crystal
(24MHz maximum), or an external source to the
on-chip clock oscillator and buffer. OSCIN is the in­
put of the oscillator inverter and internal clock gen­
erator; OSCOUT is the output of the oscillator
inverter.

AVoo. Analog Voo of the Analog to Digital Con­
verter.

AVss. Analog Vss of the Analog to Digital Con­
verter. Must be tied to Vss.

Voo. Main Power Supply Voltage (5V±1 0%)

Vss. Digital Circuit Ground.

ADO-AD7, (PO.O-P0.7) Address/Data Lines (In­
put/Output, TTL or CMOS compatible). 8 lines pro­
viding a multig.!g_xed address and data bus, under
control of the AS and DS timing signals.

AS-A 15 Address Lines (Output, TTL or CMOS
compatible). 8 lines providing non-multiplexing ad­
dress bus, under control of the AS and DS timing
signals.

P2.0-P2.7 P3.0-P3.7, P4.0-P4.7, P5.0-P5.7, P7.0-
P7.7 110 Port Lines (Input/Output, TTL or CMOS
compatible). 40 lines grouped into 1/0 ports of 8
bits, bit programmable under program control as
general purpose 1/0 or as Alternate functions (see
next section).

1.3110 PORT ALTERNATE FUNCTIONS

Each pin of the 1/0 ports of the ST90R40 may as­
sume software programmable Alternative Func­
tions as shown in the Pin Configuration Drawings.
Table 2 shows the Functions allocated to each 1/0
Port pins.

-~-8------------------~----- ~~~~~~~::~~
332

ST90R40

PIN DESCRIPTION (Continued)

Table 2. 1/0 Port Alternate Function Summary

I/O PORT Function
Name

IN/OUT
Alternate Function Pin Number

Port. bit

PO.O AO/DO 1/0 Address/Data bit 0 mux 24

P0.1 A1/D1 1/0 Address/Data bit 1 mux 25

P0.2 A2/D2 1/0 Address/Data bit 2 mux 26

P0.3 A3/D3 1/0 Address/Data bit 3 mux 27

P0.4 A4/D4 1/0 Address/Data bit 4 mux 28

P0.5 A5/D5 1/0 Address/Data bit 5 mux 29

P0.6 A6/D6 1/0 Address/Data bit 6 mux 30

PO.? A7/D7 1/0 Address/Data bit 7 mux 31

P1.0 AS 0 Address bit 8 23

P1.1 A9 0 Address bit 9 22

P1.2 A10 0 Address bit 1 0 21

P1.3 A11 0 Address bit 11 20

P1.4 A12 0 Address bit 12 19

P1.5 A13 0 Address bit 13 18

P1.6 A14 0 Address bit 14 17

P1.7 A15 0 Address bit 15 16

P2.0 NMI I Non·Maskable Interrupt 44

P2.1 P/D 0 Program/Data Space Select 45

P2.1 SDI I SPI Serial Data Out 45

P2.2 INT2 I External Interrupt 2 46

P2.2 SCK 0 SPI Serial Clock 46

P2.3 SDO 0 SPI Serial Data In 47

P2.4 INT1 I External Interrupt 1 48

P2.4 WRSTB5 0 Handshake Write Strobe P5 48

P2.5 WRRDV5 I Handshake Write Ready P5 49

P2.6 INT3 I External Interrupt 3 50

P2.6 RDSTB5 I Handshake Read Strobe P5 50

P2.6 P/D 0 Program/Data Space Select 50

P2.7 RDRDV5 0 Handshake Read Ready P5 51

P3.0 TOlNA I MF Timer 0 Input A 15

P3.0 P/D 0 Program/Data Space Select 15

P3.1 TOOUTA 0 MF T1mer 0 Output A 14

P3.2 TOINB I MFTimerO Input B 13

P3.3 TOOUTB 0 MF Timer 0 Output B 12

P3.4 T11NA I MF Timer 1 Input A 11

-------------- I:fi. ~~~m~m:~~~ 5/8

333

ST90R40

PIN DESCRIPTION (Continued)

Table 2. 1/0 Port Alternate Function Summary (Continued)

110 PORT Function
Name

IN/OUT
Alternate Function Pin Number

Port.bit

P3.5 TWUTA 0 MF Timer 1 Output A 10

P3.6 T11NB I MF Timer 1 Input B 9

P3.7 TWUTB 0 MF Timer 1 Output B 8

P4.0 AinO I ND Analog Input 0 52

P4.1 Ain1 I ND Analog Input 1 53

P4.2 Am2 I AiD Analog Input 2 54

P4.3 Ain3 I ND Analog Input 3 55

P4.4 Ain4 I ND Analog Input 4 61

P4.5 Ain5 I ND Analog Input 5 56

P4.6 Arn6 I ND Analog Input 6 57

P4.7 A in? I ND Analog Input 7 58

P5.0 1/0 1/0 Handshake Port 5 3

P5.1 1/0 1/0 Handshake Port 5 2

P5.2 1/0 110 Handshake Port 5 1

P5.3 110 1/0 Handshake Port 5 68

P5.4 1/0 1/0 Handshake Port 5 65

P5.5 1/0 1/0 Handshake Port 5 64

P5.6 1/0 1/0 Handshake Port 5 63

P5.7 1/0 110 Handshake Port 5 62

P7.0 SIN I SCI Serial Input 43

P7.1 SOUT 0 SCI Serial Output 42

P7.2 INT4 I External Interrupt 4 41

P7.2 TXCLK I SCI Transmrt Clock Input 41

P7.2 CLKOUT 0 SCI Byte Sync Clock Output 41

P7.3 INT5 I External Interrupt 5 40

P7.3 RXCLK I SCI Receive Clock Input 40

P7.3 ADTRG I ND Conversion Trigger 40

P7.4 ' INT6 I External Interrupt 6 39

P7.4 P/D 0 Program/Data Space Select 39

P7.5 WAIT I External Wait Input 38

P7.6 WDOUT 0 T/WD Output 37

P7.6 BUSREQ I External Bus Request 37

P7.7 WDIN I T/WD Input 36

P7.7 BUSACK 0 External Bus Acknowledge 36

.:...6/.:...B ______________ ~ ~~~~~~"'::~~~
334

1.4MEMORV

The memory of the ST90R40 is functionally divided
into two areas, the Register File and Memory. The
Memory may optionally be divided into two spaces,
each having a maximum of 65,536 bytes. The two
memory spaces are separated by function, one
space for Program code, the other for Data. The
ST90R40 addresses all program memory in the
external PROGRAM space. The DATA space in­
cludes the 512 bytes of on-chip EEPROM at ad­
dresses 0 through 1 FFh and the 256 bytes of

Figure 3. Memory Spaces

65535

ST90R40

on-chip RAM memory at memory addresses 200h
through 2FFh.

The External Memory spaces are addressed using
the multiplexed address and data buses on Ports 0
and 1. Additional Data Memory may be decoded
externally by using the PiD Alternate Function out­
put. The on-chip general purpose (GP) Registers
may be used as RAM memory.

65535

255r'-----,

0000 ____ __JL_ ___ __J

INTERNAL

PROGRAM

SPACE

EXTERNAL

240f-----l

0000 L_ ___ _J

REGISTER

FILE

768 ri---::-RA::cM:--f------'
512 1-------j

I EEPROM
OOOOL-___ _

INTERNAL

DATA

SPACE

EXTERNAL

VROC1404

~ SGS·THDMSDN ____________ 7/8
~ ""! l [l;]~©lll©m~m!mii©~O©~

335

ST90R40

ORDERING INFORMATION

Sales Type Frequency Temperature Range

ST90R40C6 24M Hz

8/8 ~ SCiS·lHOMSON -------------- A."1/.. ll>l~©Hil!lrn~rn©miii!!Oll~©@
336

Package

PLCC68

337

APPLICATION NOTE
SYMBOLS. INC

ST9 REGISTER ADDRESS AND CONTENT NAMES
Pierre Guillemin

INTRODUCTION
This document has been written in order to provide, to the ST9 software programmer, a
suggested guide and a clear notation of ST9 register and bit names for standardisation across
software modules.

The SYMBOLS. INC files give a symbolic definition for:

each group within the Register File
each peripheral page
each ST9 register pair
each ST9 peripheral or core register
each ST9 system and peripheral control bit with its associated mask.

This document assumes a previous knowledge of the ST9 architecture and software tools.
Please refer to the ST9 Technical Manual, ST9 Programming Manual and ST9 Software Tools
manuals for an understanding of the terms used.

INVOCATION

The SYMBOLS. INC file or a part it (depending on the application and the peripherals used) must
be assembled with each ST9 software module in order to use the symbolic names.

The ST9 Macro Assembler (AST9) provides two methods for using include files:

1) directly in the invocation line of AST9 (by giving a list of all include files). In this case, an
example of the invocation line of AST9, implemented within an MS-DOS batch file and with
other options, could be the following:

AST9 -v -g -r -o %1.obj -1 %1.1st c:\ST9\INC\SYMBOLS.INC %l.ST9

where the source file name %1 (. ST9) is passed as the first batch parameter, and the
SYMBOLS.INC file is located in the sub-directory c:\ST9\INC. Listing (%1.1st) and
object code (%1 • obj) files are produced.

2) inside each ST9 module by using the .include pseudo-instruction. In this case the syntax
is:

.include "c:\ST9\INC\SYMBOLS.INC"

This method of using include files from within the ST9 software module has been expanded to
allow the use only of the symbols applicable to the target software module or ST9 device. In
this case, the SYMBOLS. INC file has been split into several include files related to each
peripheral (e.g. ND converter, MFlimer), or to specific features (e.g. the Bank Switch registers
for ST905x family or the security register for ST904x family).

These peripheral include files are also associated with four include files named ST90xx. inc
(ST902x, ST903x, ST904x, ST905x). These list all the related files applicable to the ST9 family
member.

AN411/1292 1/30

339

SYMBOLS.INC

example:
ST904x family description:

; Include file for the definition of the registers and bits for the

; ST904X family

.include

.include

.include

.include

.include

.include

.include

.include

"c:\st9\inc\system.inc"
"c:\st9\inc\page O.inc"
"c:\st9\inc\eeprom.inc"
"c:\st9\inc\sec reg.inc"
"c:\st9\inc\ioyort.inc"
"c:\st9\inc\mftimer.inc"
"c:\st9\inc\ad c.inc"
"c:\st9\inc\sci.inc"

System register
Page 0 register
EEPROM register
Security register
I/O port register
MF Timer register
A/D converter register
SCI register

The STS software programmer may use these include files in the two following methods:

1) use the include file corresponding to the target device within each ST9 software module.

2) directly use the include files corresponding to the ST9 peripheral programmed or used in a
specific module: for example, inside a module using 1/0 ports and MFTimer, only the two
include files related to MFTimer and 1/0 port could be used.

_v_3o _________________________ ~~~~~~~:~~ ---------------------------
340

SYMBOLS.INC

DEFINITIONS AND USAGE
Registers
A name is given for each ST9 register pair or register in upper case letters, corresponding to an
"absolute" addressing mode inside the Register File, and in lower case letters, corresponding
to an addressing mode inside a working register group (defined by the working register pointer
pair RPO and RPl). This choice follows the notation used in the ST9 Macro Assembler (ie R or
RR indicate any 8 or 16 bit register within the Register File, r or rr indicate a register within the
working register group.):

Bits

FCW
few

CICR
cicr

RR230
rr6

R230
r6

Flags and control word: Absolute address
Working Register address, Group E

Central interrupt control register
Working Register address, Group E

A name for each bit and its associated mask for each control register has been defined:

1) the bit name is defined using the .defstr pseudo-instruction and the bit location within the
working register. This name can be used directly with the boolean instructions:

.defstr gcen •cicr.7" ; Global counter enable bit definition

2) the mask name is defined by a "one" shifted left by the bit location value inside the
associated register. This allows the setting or masking of named bits within a working
register:

gcenrn . - (1 <- 7) ; Global counter enable rnasl

Bit symbol names are given in lower case letters.
Further examples of the use of these definitions follow.

Two other kinds of names are provided in this file:

names for register groups within the Register File: one name for 8-working register groups,
used with the SRP o and SRP 1 instructions, and one name for 16-working register groups
(for system registers and page registers), used with the SRP instruction:

srp #BK_F ; select working register group F

- names for peripheral pages (Group F):
spp #SCil PG ; select SCil register page

--------------------------- ~~~~~~~::~~ _________________________ 3_~_0
341

SYMBOLS. INC

Example 1: SCI initialization using working register addressing mode

The following example, extracted from an initialization routine of the Serial Communications
Interface (SCI), shows how to use the SYMBOLS. INC file with the working register addressing
mode. In the case of initialization of several peripherals (e.g. SCI and TIMER), this method
allows the user to save bytes and execution time, due to the shorter instructions and execution
times of the working register addressing modes.

sppSCil PG
srp#BK F
ld s_brghr,#O

ld s_chcr,#(wl8 I pen

select SCil register page
select working register group F
initialize SCI baud rate generator
register in group F.
ep I 20)
initialize character
configuration register using mask
bit definitions OR'd together

Example 2: using mask and complemented mask

This example shows how to use the mask and complemented mask. In this example, the enable
receiver error interrupt and type of parity are set.

srp#BK 0
spp#SCil PG
or S IMR,#rxe

ld data, S RXBR
if [data == #OJ {

and S _ CHCR, #-ep

Example 3: bit manipulation

working register in group 0
select SCil register page
enable Rx error INTERRUPT using absolute
addressing in register file (R)
load data with SCI receiver reg. (R)
if data is DOh ...
... enable odd parity detection
(-indicates l's complement)

The SYMBOLS.INC file shows definition of the bits in a working register using the AST9 .defstr
pseudo-instruction .

. defstr s_txdi "s_imr.O"; transmitter data interrupt

btjz S txdi, checkrx
bres S-txdi

poll on tx data interrupt
reset if active

An alternative method of defininition and usage of bits consists of giving a name to a bit location
and associating this name to a register.

STATUS
status
p er -
Oe er
Fe er
Tx_go
Tx err

bset
bres

SCI R3
sci r3

0
1
2
3
4

status sci.Tx go
status sci.Tx-err

SCI status register (Absolute Reg.)
SCI status register (working Reg.)
parity error detected
overrun error detected
framing error detected
Tx on going
Tx error detected

set Tx ongoing bit
reset Tx error detection flag

4/30 ~ SGS·THOMSON -------------- ~"'!/. ll:il~©~©~~rn©'ii'~©li!~©©
342

SVMBOLS.INC

SYMBOL TABLE OVERLOAD PROTECTION

SYMBOLS. INC contains more than 500 symbols and should be included with each ST9 software
module which uses the symbols. In order not to overload the symbol table produced by the ST9
linker LST9, an AST9 option (-r), is available, which does not preserve register symbols in
its output. When assembling several ST9 modules (each one containing SYMBOLS. INC), the
first module (usually the main module) must be assembled without the -r option, all other

-modules must be assembled with the -r option. (Refer to the AST9 User Manual for further
information).

INCLUDE FILES

The name of the Include files related to the ST9 Core and Peripherals are listed below. These
files are extracted from the SYMBOLS.INC file which is shown in Appendix B, and thus are not
shown independently.

AD c. INC Analog to Digital Converter Registers

BS REG. INC Bankswitch Registers (ST905X only)

EEPROM. INC EEPROM control Registers (ST904X only)

IO PORT. INC 1/0 Ports Registers (All ST9 devices)

MFTIMER. INC Multifunction Timer Registers

PAGE 0. INC Page 0 Registers (All ST9 devices)

RW REG. INC R/W Control Registers (ST905X only)

SCI. INC Serial Communications Interface

SEC REG. INC Security Register (ST904X only)

SYSTEM. INC System Registers (GroupE, All ST9 devices)

ST902X. INC ST902X Include File

ST903X. INC ST903X Include File
ST904X. INC ST904X Include File

ST905X. INC ST905X Include File

SYMBOL36. INC ALL Registers Include File

------------------------- ~~~~~~~~:~~ _______________________ 51 __ 30

343

SVMBOLS.INC

APPENDIX A: ST9DXX Family Definition include files
ST902X family Description (ST902X. INC):

Include file for the definition of the registers and bits for the
ST902x family

.include "

.include "

.include "

.include "

.include "

c:\st9\inc\system.inc"
c:\st9\inc\page O.inc"
c:\st9\inc\io port.inc"
c:\st9\inc\mftimer.inc"
c:\st9\inc\sci.inc"

System register
Page 0 register
I/O port register
MF Timer register
SCI register

ST903x family description (ST903X. INC):

Include file for the definition of the registers and bits for the
ST903x family

.include

.include

.include

.include

.include

.include

"c:\st9\inc\system.inc"
"c:\st9\inc\page O.inc"
"c:\st9\inc\io_port.inc"
"c:\st9\inc\mftimer.inc"
"c:\st9\inc\ad c.inc"
"c:\st9\inc\sci.inc"

System register
Page 0 register
I/O port register
MF Timer register
A/D converter register
SCI register

ST904x family description (ST904X. INC) :

Include file for the definition of the registers and bits for the
ST904x family

.include

.include

.include

.include

.include

.include

.include

.include

"c:\st9\inc\system.inc"
"c:\st9\inc\page O.inc•
"c:\st9\inc\eeprom.inc•
"c:\st9\inc\sec reg.inc"
"c:\st9\inc\io port.inc•
"c:\st9\inc\mftimer.inc•
"c:\st9\inc\ad c.inc•
"c:\st9\inc\sci.inc•

System register
Page 0 register
EEPROM register
Security register
I/O port register
MF Timer register
A/D converter register
SCI register

ST905x family description (ST905X. INC):

Include file for the definition of the registers and bits for the
ST905x family

.include

.include

.include

. include

.include

.include

.include

.include

"c:\st9\inc\system.inc"
"c:\st9\inc\page O.inc"
"c:\st9\inc\rw reg.inc•
"c:\st9\inc\ioyort.inc"
"c:\st9\inc\bs reg.inc"
"c:\st9\inc\mftimer.inc•
"c:\st9\inc\ad c.inc"
"c:\st9\inc\sci.inc"

6/30 ~ SGS·ntOMSON ---------------- A.""'J/. li\llO!t:lii!lii:~~~l!:'iflii!@imOi:i\l
344

System register
Page 0 register
R/W signal register
I/O port register
Bank switching register
MF Timer register
A/D converter register
SCI register

SYMBOLS.INC

APPENDIX 8: Symbols.inc listing

.sbttl" ST9 family registers and register-bits "

.pl 66

.list

.list me

.list bex

.nlist line

.nlist loc

.nlist code

.nlist src

.nlist com

.nlist md

.nlist me

.nlist

Number of lines per page

Enable macro expansion control
Enable continuation of code on next
Line
Disable source line number control
Disable current location counter
control
Disable binary code control
Disable source line control
Disable comment control
Disable macro definition control
Disable macro call control

;**

* Revision 3.6 MARCH, 04th 1991 *

ST9 family registers addresses and contents.

This file contains the symbolic definitions for the ST9 CPU
and Peripherals registers and bits.

There is a symbol for each register and for each flag used in
an ST9 family device.

- Lowercase letters refer to addressing using working registers r)
- Uppercase letters refer to addressing using direct registers R)

; .page

7/30

345

SVMBOLS.INC

APPENDIX 8: Symbols.inc listing

;***

ST9 family: Core, Timer Watch-dog, SPI and EEPROM Control Register
;
;***

;*********************************
;*REGISTER FILE GROUPS DEFINITION*
;*********************************

BKOO 0 rO to r7 in group 0
BKOl l r8 to rl5 in group 0
BK10 2 rO to r7 in group 1
BKll 3 r8 to r15 in group 1
BK20 4 rO to r7 in group 2
BK21 5 r8 to r15 in group 2
BK30 6 rO to r7 in group 3
BK31 7 r8 to r15 in group 3
BX40 8 rO to r7 in group 4
BK41 9 r8 to r15 in group 4
BK50 10 rO to r7 in group 5
BK51 11 r8 to r15 in group 5
BK60 12 rO to r7 in group 6
BK61 13 r8 to r15 in group 6
BK70 14 rO to r7 in group 7
BK71 15 r8 to r15 in group 7
BK80 16 rO to r7 in group 8
BK81 17 r8 to rl5 in group 8
BK90 18 rO to r7 in group 9
BK91 19 r8 to r15 in group 9
BKAO 20 rO to r7 in group A
BKAl 21 r8 to r15 in group A
BKBO 22 rO to r7 in group B
BKBl 23 r8 to rl5 in group B
BKCO 24 rO to r7 in group c
BKC1 25 r8 to r15 in group c
BKDO 26 rO to r7 in group D
BKD1 27 r8 to r15 in group D
BKEO 28 rO to r7 in group E
BKEl 29 r8 to rlS in group E
BKFO 30 rO to r7 in group F
BKF1 31 r8 to r15 in group F

BK SYS BKEO Group system definition
BK F BKFO page register definition

8/30

346

Appendix B: Symbols.inc listing

;******************
;*SYSTEM REGISTERS*
;******************

FCW .- RR230
few rr6

CICR .- R230
cicr r6

.defstr gcen

.defstr tlip

.defstr tli

.defstr ien

. defstr iam

.defstr cpl2

.defstr cpll

.defstr cplO

.- 1 <- 7

.- 1 <- 6
:= 1 <- 5

1 <- 4
.- 1 <- 3

1 <- 2
.- 1 <- 1
.- 1 <- 0

)

)
)

)

)

)

)
)

"cicr.7"
"cicr.6"
"cicr.S"
"cicr.4 11

"cicr.3"
"cicr.2"
"cicr.l"
"cicr.O"

gcenm
tlipm
tlim
ienm
iamm
cpl2m
cpllm
cplOm
cplm .- cpl2mlcpllmlcpl0

FLAGR
flagr

em
zm
sm
vrn
dm
hm
ufm
dpm

RPP
rpp

RPOR
rpOr

rpOsm

.- R231
= r7

.defstr c

. defstr z

. defstr s

.defstr v

.defstr d

. defstr h

.defstr uf

.defstr dp

.- 1 <- 7
1 <- 6

.- 1 <- 5
:= 1 <- 4
:= 1 <- 3
.- 1 <- 2

1 <- 1
1 <- 0

:= RR232
rr8

.- R232
r8

.defstr rpOs
·= (1 <- 2)

"flagr.7"
"flagr.6"
"flagr.5"
"flagr.4 11

"flagr.3"
"flagr.2"
"flagr.l"
"flagr.O"

"rp0r.2"

SYMBOLS.INC

Flags and control word.

Central interrupt control register.

Global counter enable.
Top level interrupt pending bit
Top level interrupt bit.
Interrupt enable flag.
Interrupt arbitration mode .
Current priority level bit 2.
Current priority level bit 1.
Current priority level bit 0.

Global counter enable bit mask
Top level interrupt pending mask.
Top level interrupt mask.
Interrupt enabla flag mask.
Interrupt arbitration mode mask.
Current priority level bit 2 mask.
Current priority level bit 1 mask.
Current priority level bit 0 mask.
Current priority level

Flags register.

Carry flag.
Zero flag .
Sign flag .
Overflow flag.
Decimal adjust flag.
Half carry flag .
User flag 1.
Data/program memory flag.

Carry flag mask.
Zero flag mask.
Sign flag mask.
Overflow flag mask.
Decimal adjust flag mask.
Half carry flag mask.
User flag 1 mask.
Data/program memory mask.

Register pointer pair.

Register pointer # 0.

Register pointer selector
Register pointer selector mask

9/30

347

SVMBOLS.INC

APPENDIX 8: Symbols. inc listing

RPlR
rplr

rplsm

PPR
ppr

MODER
moder

sspm
uspm
div2m
prs2m
prslm
prsOm
prsm
brqenm
himpm

USPR
uspr

USPHR
usphr

USPLR
usplr

SSPR
sspr

SSPHR
ssphr

SSPLR
ssplr

; .page

10/30

348

:= R233
= r9

.defstr rpls
·= (1 <- 2)

R234
rlO

·= R235
rll

.defstr ssp

.defstr usp

.defstr div2

.defstr prs2

.defstr prsl

.defstr prsO

.defstr brqen

.defstr himp

·= 1 <- 7)
:= 1 <- 6)

1 <- 5)
1 <- 4)
1 <- 3)

:= 1 <- 2)

"rplr.2"

"moder.7"
"moder.6"
"moder.S"
"moder.4"
"rnoder.3"
"moder.2"
"moder.l"
"moder.O"

:= prs2mlprslmlprs0m
:= 1 <- 1)
:= 1 <- 0)

·= RR236
rrl2

·= R236
rl2

.- R237
rl3

:= RR238
rrl4

.- R238
r14

R239
r15

Register pointer # 1.

Register pointer selector
Register pointer selector mask

Page pointer register.

Mode register.

System stack pointer flag (Int/Ext) .
User stack pointer flag (Int/Ext) .
External clock divided by 2.
Internal clock pre scaling bit 2.
Internal clock pre scaling bit 1.
Internal clock pre scaling bit 0.
Bus request enable.
High impedance enable.

System stack pointer mask (Int/Ext)
User stack pointer mask (Int/Ext) .
External clock divided by 2 mask.
Internal clock prescaling bit 2 mask.
Internal clock prescaling bit 1 mask.
Internal clock prescaling bit 0 mask.
Internal clock prescaler
Bus request enable mask.
High impedence enable mask.

User stack pointer.

User stack pointer, msb.

User stack pointer, lsb.

System stack pointer.

System stack pointer, msb.

System stack pointer, lsb.

APPENDIX 8: Symbols. inc listing

;****************
;*PAGE REGISTERS*
;****************

EEP PG

EECR
eecr

verify
eestby
eeien
pllst
pllen
eebusy
eewen

EXINT

EITR
eitr

tea Om
tealm
tebOm
teblm
tee Om
teclm
ted Om
tedlm

EIPR
eipr

:=

PG

0

R241
rl

.defstr verify

.defstr EEstby

.defstr EEien

.defstr pllst

.defstr pllen

.defstr E;Ebusy

. defstr· EEwen

·= 1 <-
·= 1 <-

(1 <- 4
(1 <-"3
(1 <- 2

·= (1 <- 1
(1 <- 0

:= 0

R242
r2

.defstr teaO

.defstr teal

.defstr tebO

.defstr tebl

.defstr tecO

.defstr tecl

.defstr tectO

.defstr tedl

.- 1 <- 0
:= 1 <- 1
.- 1 <- 2
.- 1 <- 3
.- 1 <- 4
:= 1 <- 5
.- 1 <- 6
:= 1 <- 7

:= R243
r3

.defstr ipaO

.defstr ipal

.defstr ipbO

. defstr ipbl

.defstr ipcO

.defstr ipcl

.defstr ipdO

.defstr ipdl

6
5

"eecr.6"
"eecr.S"
"eecr.4"
"eecr.3 11

"eecr.2"
"eecr.l"
"eecr.O"

"eitr.O"
"eitr.l"
"eitr.2"
"eitr.3"
"eitr.4"
"eitr.S"
"eitr.6"
"eitr.7"

"eipr.O"
"eipr.l"
"eipr.2"
"eipr.3"
"eipr.4"
"eipr.5"
"eipr.6"
"eipr.7"

SVMBOLS.INC

EEPROM register page

EEprom control register

EEPROM verify mode
EEPROM stand-by
EEPROM interrupt enable
Parallel write start
Parallel write enable
EEPROM busy
EEPROM write enable

EEPROM verify mode mask
EEPROM stand-by mask
EEPROM interrupt enable mask
Parallel write start mask
Parallel write enable mask
EEPROM busy mask
EEPROM Write enable mask

EXTERNAL interrupt register page

External interrupt trigger level register

Trigger Event AO bit
Trigger Event Al bit
Trigger Event BO bit
Trigger Event Bl bit
Trigger Event co bit
Trigger Event Cl bit
Trigger Event DO bit
Trigger Event Dl bit

Trigger Event AO mask
Trigger Event Al mask
Trigger Event BO mask
Trigger Event Bl mask
Trigger Event co mask
Trigger Event Cl mask
Trigger Event DO mask
Trigger Event Dl mask

External interrupt pending register

Interrupt Pending bit Channel AO
Interrupt Pending bit Al
Interrupt Pending bit BO
Interrupt Pending bit Bl
Interrupt Pending bit co
Interrupt Pending bit Cl
Interrupt Pending bit DO
Interrupt Pending bit Dl

11/30

349

SYMBOLS.JNC

APPENDIX 8: Symbols.inc listing

ipaOm .- 1 <- 0 Interrupt Pending AO mask
ipalm .- 1 <- 1 Interrupt Pending Al mask
ipbOm .- 1 <- 2 Interrupt Pending BO mask
ipblm 1 <- 3 Interrupt Pending Bl mask
ipcOm .- 1 <- 4 Interrupt Pending co mask
ipclm .- 1 <- 5 Interrupt Pending Cl mask
ipdOm := 1 <- 6 Interrupt Pending DO mask
ipdlm .- 1 <- 7 Interrupt Pending Dl mask

EIMR .- R244 External.interrupt mask register
eimr r4

.defstr imaO "eimr.O" Int. AO bit

.defstr imal "eimr.l" Int. Al bit

.defstr imbO 11 eimr.2" Int. BO bit

. defstr imbl "eimr.3" Int . Bl bit

.defstr imcO "eimr.4" Int. co bit

.defstr imcl "eimr.S" Int. Cl bit

.defstr imdO "eimr.6" Int. DO bit

.defstr imdl "eimr.7" Int. Dl bit

iaOm .- 1 <- 0 Int. AO mask
ialm .- 1 <- 1 Int. Al mask
ibOm .- 1 <- 2 Int. BO mask
iblm .- 1 <- 3 Int. Bl mask
icOm .- 1 <- 4 Int. co mask
iclm 1 <- 5 Int. Cl mask
idOm .- 1 <- 6 Int. DO mask
idlm .- 1 <- 7 Int. Dl mask

EIPLR R245 Ext. interrupt priority level register
eiplr r5

EIVR := R246 External interrupt vector register
eivr r6

.defstr ewen "eivr.O" External wait enable

.defstr iaOs "eivr.l" Interrupt AO selection

.defstr tlis "eivr.2" Top level input selection

.defstr tltev "eivr.3" Top level trigger event

ewenm 1 <- 0 External wait enable mask
iaosm .- 1 <- 1 Interrupt AO selection mask
tlism .- 1 <- 2 Top level Input selection mask
tltevm 1 <- 3 Top level trigger event mask

NICR .- R247 Nested interrupt control register
nicr r7

.defstr tlnm "nicr.7" Top level not maskable

tlnmm .- (1 <- 7) Top level not maskable mask

12/30

350

SYMBOLS.INC

APPENDIX 8: Symbols.inc listing

WOT PG 0 Timer Watchdog page

WOTR RR248 TWD timer constant register.
wdtr rrS

WOTHR := R248 TWO timer high constant register
wdthr rS

WOTLR := R249 TWO timer low constant register
wdtlr r9

WOTPR R250 TWD timer prescaler constant register
wdtpr rlO

WOTCR R251 TWO timer control register
wdtcr rll

.defstr WO stsp - "wdtcr.7 11 TWO start stop.

.defstr WO sc "wdtcr.6" TWO single continuous mode. -

.defstr WO - inmdl "wdtcr.sn Input mode 1

.defstr WO - inmd2 "wdtcr.4" Input mode 2

.defstr WO in en "wdtcr. 3 11
- TWO input section enable/disable.

.defstr WO outmd "wdtcr.2 11 TWD output mode.

. defstr WD wrout "wdtcr .1" TWD output bit .

. defstr WD out en "wdtcr. 0" TWD output enable .

stsp 1 <- 7) TWO start stop mask
sc ·= 1 <- 6) TWD single continuous mode mask
in en := 1 <- 3) TWD input section enable/disable mask
outmd 1 <- 2) TWO output mode mask
wrout 1 <- 1) TWO output bit mask
out en .- 1 <- 0) TWO output enable mask

inm eve 0 TWO input mode event counter.
inm g OlOh TWO input mode gated.
inm-t 020h TWO input mode triggerable.
inm r .- 030h TWO input mode retriggerable.

13/30

351

SYMBOLS. INC

APPENDIX 8: Symbols.inc listing

WCR .- R252 Wait control register
Wcr r12

.defstr WD wden "wcr.6" TWD timer enable.

wdgen 1 <- 6 TWD timer enable mask
wdm2 := 1 <- 5 Data Memory Wait Cycle
wctin1 .- 1 <- 4
wdmO 1 <- 3
wpm2 1 <- 2 Program Memory Wait Cycle
wpm1 .- 1 <- 1
wpmO .- 1 <- 0

dmwcl .- wdmO 1 wait cycle on Data M.
dmwc2 wdm1 2 wait cycles on Data M.
dmwc3 .- (wdm1 wdmO 3 wait cycles on Data M.
dmwc4 .- wdm2 4 wait cycles on Data M.
dmwc5 .- (wdm2 wdmO 5 wait cycles on Data M.
dmwc6 (wdm2 I wdm1) 6 wait cycles on Data M.
dmwc7 := (wdm2 I wdm1 I wdmO) 7 wait cycles on Data M.

pmwc1 := wpmO 1 wait cycle on Prog M.
pmwc2 .- wpm1 2 wait cycles on Prog M.
pmwc3 (wpm1 wpmO 3 wait cycles on Prog M.
pmwc4 wpm2 4 wait cycles on Prog M.
pmwc5 .- (wpm2 wpmO 5 wait cycles on Prog M.
pmwc6 (wpm2 I wpm1) 6 wait cycles on Prog M.
pmwc7 .- (wpm2 I wpm1 I wpmO 7 wait cycles on Prog M.

_14_13_o _____________ liii. ~~~©m~r::O!~~
352

SVMBOLS.INC

APPENDIX 8: Symbols.inc listing

SPI PG 0 SPI register page

SPIDR .- R253 SPI Data register
spidr rl3

SPICR ·= R254 SPI Control register
spier rl4

. defstr SP spen "spicr.7" Serial Peripheral Enable .

.defstr SP -bms "spicr.6 11 SBUS/I2C bus Mode Selector.

.defstr SP arb 11 Spicr.5 11 Arbitration flag bit.

.defstr SP :::busy "spicr.4" SPI busy flag.

.defstr SP - cpol "spicr.3 11 SPI transmission clock polarity

.defstr SP - cpha "spicr.2 11 SPI transmission clock phase

.defstr SP - sprl "spicr.l" SPI rate bit 1

.defstr SP sprO - "spicr.O" SPI rate bit 0

spen (1 <- 7) Serial Peripheral Enable mask
bms (1 <- 6) SBUS/I2C bus selector mask
arb .- (1 <- 5) Arbitration mask
sp_busy := (1 <- 4) SPI busy mask
cpol ·= (1 <- 3) SPI transmission clock polarity mask
cpha .- (1 <- 2) SPI transmission clock phase
SP 8 0 SPI clock divider 8 = 1500 kHz (12MHz) -
SP 16 1 SPI - clock divider 16 = 750 kHz (12MHz)
SP 128 .-- 2 SPI clock divider 128 = 93.75 kHz (12MHz)
SP 256 .- 3 SPI clock divider 256 = 46.87 kHz (12MHz)

RW PG 0 R/W signal programming page
RWR R255 R/W signal programming register
rwr rl5

.defstr RW rw "rwr.O" R/W bit

.defstr RW-bs "rwr.l" Bank switch port timing

rw (1 <- 0) R/W mask
bs (1 <- 1) Bank Switch mask

; .page

-------------- lifi. ~~~~m~r::~~~n 15/30

353

SYMBOLS.INC

APPENDIX 8: Symbols.inc listing

;***

ST9 FAMILY I/0 PORTS REGISTER ADDRESSES.

;***

; PODR, P1DR, P2DR, P3DR, P4DR, P5DR are mapped in the system registers
; BS _DSR, BS_PSR are mapped in the system registers

POC PG := 2 Port 0 control registers page

PODR R224 Port 0 data register
POCOR := R240 Port 0 control register 0
POC1R := R241 Port 0 control register 1
POC2R ·= R242 Port 0 control register 2

pOdr rO
pOcOr rO
p0c1r r1
p0c2r r2

P1C PG .- 2 Port 1 control registers page

P1DR := R225 Port 1 data register
P1COR R244 Port 1 control register 0
P1C1R := R245 Port 1 control register 1
P1C2R R246 Port 1 control register 2

p1dr r1
p1c0r r4
p1c1r r5
p1c2r r6

P2C PG 2 Port 2 control registers page

P2DR .- R226 Port 2 data register
BS DSR .- R226 Bank Switch data segment register
P2COR := R248 Port 2 control register 0
BS DDSR R248 Bank Switch Data DMA segment register
PiClR := R249 Port 2 control register 1
BS PDSR ·= R249 Bank Switch Program DMA segment Register
P2C2R .- R250 Port 2 control register 2

p2dr r2
bs dsr r2
p2cOr r8
bs ddsr r8
p2c1r r9
bs_pdsr r9
p2c2r rlO

1s~_o ________________________ ~~~~~~~:~~
354

SVMBOLS.INC

APPENDIX 8: Symbols. inc listing

P3C PG .- 2 Port 3 control registers page

P3DR := R227 Port 3 data register
BS PSR := R227 Bank Switch Program Segment Register
P3COR .- R252 Port 3 control register 0
P3ClR R253 Port 3 control register 1
P3C2R R254 Port 3 control register 2

p3dr r3
bs_psr r3
p3c0r rl2
p3clr rl3
p3c2r rl4

P4C PG .- 3 Port 4 control registers page

P4DR := R228 Port 4 data register
P4COR .- R240 Port 4 control register 0
P4ClR := R241 Port 4 control register 1
P4C2R := R242 Port 4 control register 2

p4dr r4
p4c0r rO
p4clr rl
p4c2r r2

P5C PG := 3 Port 5 control registers page

P5DR .- R229 Port 5 data register
P5COR .- R244 Port 5 control register 0
P5ClR .- R245 Port 5 control register 1
P5C2R .- R246 Port 5 control register 2

p5dr r5
p5c0r r4
p5clr r5
p5c2r r6

P6C PG .- 3 Port 6 control registers page
P6D-PG 3 Port 6 data register page

P6DR .- R251 Port 6 data register
P6COR := R248 Port 6 control register 0
P6ClR .- R249 Port 6 control register 1
P6C2R := R250 Port 6 control register 2

p6dr rll
p6c0r r8
p6clr r9
p6c2r rlO

--------------~ ~~tm~r::oo~lt 17/30

355

SYMBOLS.INC

APPENDIX 8: Symbols.inc listing

P7C PG := 3 Port 7 control registers page
P7D-PG := 3 Port 7 data register page
P7DR := R255 Port 7 data register
P7COR := R252 Port 7 control register 0
P7C1R := R253 Port 7 control register 1
P7C2R := R254 Port 7 control register 2

p7dr r15
p7c0r r12
p7c1r r13
p7c2r r14

P8C PG 43 Port 8 control registers page
P8D-PG := 43 Port 8 data register page

P8DR := R251 Port 8 data register
P8COR := R248 Port 8 control register 0
P8C1R := R249 Port 8 control register 1
P8C2R := R250 Port 8 control register 2

p8dr r11
p8c0r r8
p8c1r r9
p8c2r rlO

P9C PG := 43 Port 9 control registers page
P9D PG := 43 Port 9 data register page

P9DR := R255 Port 9 data register
P9COR := R252 Port 9 control register 0
P9C1R := R253 Port 9 control register 1
P9C2R := R254 Port 9 control register 2

p9dr r15
p9c0r r12
p9clr r13
p9c2r r14

18~_o ________________________ ~~~~~~~::~

356

APPENDIX B: Symbols.inc listing

HDCTL2R R251
HDCTL3R .- R255
HDCTL4R .- R243
HDCTLSR R247

hdctl2r r11
hdctl3r r15
hdctl4r r3
hdctl5r r7

SVMBOLS.INC

Port 2 handshake DMA control register
Port 3 handshake DMA control register
Port 4 handshake DMA control register
Port 5 handshake DMA control register

;Handshake DMA control register configuration.

hsdis OEOh Handshake disabled mask
hso2 .- OCOh Handshake output 2 lines mask
hso1 .- 040h Handshake output 1 line mask
hsi2 .- OAOh Handshake input 2 lines mask
hsi1 020h Handshake input 1 line mask
hsb .- OOOh Handshake bidirectional mask
den .- OOOh DMA enable mask
ddi 010h DMA disable mask
ddw .- OOOh Data direction output mask (write)
ddr .- OOBh Data direction input mask (read)
dst 004h DMA strobe on chip event mask
dcpO .- OOOh DMA channel captureD mask
demO .- 002h DMA channel compareD mask

; .page

--------------~ ~~~~m~::IT!~~ 19/30

357

SYMBOLS.INC

APPENDIX B: Symbols.inc listing

;***

ST9 FAMILY MULTI-FUNCTION TIMER DESCRIPTION.

;***

TOD PG .- 10 MFTimer 0 data registers page
TOC-PG := 9 MFTimer 0 control registers page
TlD PG := 8 MFTimer 1 data registers page
TlC PG := 9 MFTimer 1 control registers page
T2D PG := 14 MFTimer 2 data registers page
T2C-PG .- 13 MFTimer 2 control registers page
T3D-PG 12 MFTimer 3 data registers page
T3C-PG .- 13 MFTimer 3 control registers page

T REG OR := RR240 MFTimer REGO load and capture register.
t reg Or rrO -
T REGOHR .- R240 Register 0 high register
t regOhr rO -
T REGOLR ·= R241 Register 0 low register -
t regOlr r1 -
T REGlR := RR242 MFTimer REG1 load constant
t reglr rr2 ; and capture register.

-
T REGlHR R242 Register 1 high register
t reg1hr r2

T REG1LR R243 Register 1 low register
t regllr r3

T CMPOR .- RR244 MFTimer CMPO store compare constant. -
t cmpOr rr4

T CMPOHR .- R244 Compare 0 high register
t_cmpOhr r4

T CMPOLR .- R245 Compare 0 low register
t_cmpOlr r5

T CMP1R .- RR246 MFTimer CMP1 store compare constant.
t_cmplr rr6

T CMPlHR .- R246 Compare 1 high register
t cmp1hr r6

T CMP1LR := R247 Compare 1 low register
t_cmpllr r7

_20_13_0 _____________ I..U ~~~~mgr::~~n
358

SVMBOLS.INC

APPENDIX 8: Symbols.inc listing

T TCR := R248 MFTimer Control Register.
t tcr = r8

.defstr T cs "t tcr.O" Counter status -

.defstr T ofO "t tcr.l" over/underflow on CAP on REGO

.defstr T udcs "t-tcr.2 11 up/down count status

.defstr T-ude "t tcr.3" up/down count

.defstr T eel "t tcr.4" Counter clear -

.defstr ccmpO "t tcr.5" Clear 0 T on compare

.defstr T=ccpO "t -tcr.6" Clear on capture

.defstr T cen "t tcr.7" Counter enable

cs := 1 <- 0 Counter status mask
ofO := 1 <- 1 over/underflow mask on CAP on REGO
udcs := 1 <- 2 up/down count status mask
udc := 1 <- 3 up/down count mask
eel := 1 <- 4 Counter clear mask
ccmpO := 1 <- 5 Clear on compare mask
ccpO := 1 <- 6 Clear on capture mask
cen := 1 <- 7 Counter enable mask

T TMR := R249 MFTimer Mode Register.
t tmr r9

.defstr T co "t tmr.O" Continuous/one shot bit -

.defstr T ren "t tmr.1" ret rigger enable bit

.defstr T eck "t tmr.2" Enable clocking mode bit

.defstr T-rmO "t tmr.3" register 0 mode bit

.defstr T rm1 "t tmr.4" register 1 mode bit

.defstr T-bm "t tmr.5" bivalue mode bit

.defstr T-oeO "t -tmr.6" output 0 enable bit

.defstr T oe1 "t tmr.7" output 1 enable bit

co := 1 <- 0 Continuous/one shot mask
ren .- 1 <- 1 retrigger enable mask
eck := 1 <- 2 Enable clocking mode mask
rmO := 1 <- 3 register 0 mode mask
rm1 := 1 <- 4 register 1 mode mask
bm := 1 <- 5 bivalue mode mask
oeO := 1 <- 6 output 0 enable mask
oe1 := 1 <- 7 output 1 enable mask

21130

359

SVMBOLS.INC

APPENDIX 8: Symbols.inc listing

T ICR
t icr

exb f
exb r
exb rf
exa f
exa r
exa rf
ab ii
ab-it
ab-gi
ab-gt
ab-ie
ab-ti
ab ge
ab-tt
ab cued
ab-ue
ab-tutd
ab ui
ab aa
ab-te
ab-et
ab_tg

T PRSR
t_prsr

T OACR

:= R250
rlO

:= Olh
:= 02h
:= 03h
:= 04h
:= OSh
:= OCh
:= OOh

lOh
:= 20h
:= 30h
:= 40h

SOh
:= 60h
:= 70h
:= SOh
·= 90h
:= OAOh
:= OBOh
:= OCOh
:= ODOh
:= OEOh
:= OFOh

:= R251
rll

:= R252
t oacr rl2

cev

T OBCR

:= 02h

:= R253
t obcr rl3

op
oev
ou set
ou_tog
ou res
ou_nop
cl set
cl tog
cl-res
cl nop
cO-set
cO tog
cO-res
cO=nop

:= Olh
:= 02h
:= OOh
.- 04h
:= OSh
:= OCh
:= OOh
:= lOh
:= 20h
:= 30h
:= OOh
:= 40h
:= SOh
:= OCOh

MFTimer External Input Control Register.

External B falling edge sensitive mask
External B rising edge sensitive mask
External B falling and rising edge mask
External A falling edge sensitive mask
External A rising edge sensitive mask
External A falling and rising edge mask
A I/0 B I/0 mask
A I/0 B trigger mask
A gate B I/O mask
A gate B trigger mask
A I/0 B external clock mask
A trigger B I/O mask
A gate B external clock mask
A trigger B trigger mask
A clock up B clock down mask
A clock up/down B external clock mask
A trigger up B trigger down mask
A up/down clock B I/O mask
A autodiscr. B autodiscr. mask
A trigger B external clock mask
A external clock B trigger mask
A trigger B gate mask

MFTimer prescaler register

MFTimer Output A Control Register.

on chip event bit on COMPARE 0 mask

MFTimer Output B Control Register.

output preset bit mask
on chip event bit on OVF/UDF mask
overflow underflow set mask
overflow underflow toggle mask
overflow underflow reset mask
overflow underflow nop mask
Compare 1 set mask
Compare 1 toggle mask
Compare 1 reset mask
Compare 1 nop mask
Compare 0 set mask
Compare 0 toggle mask
Compare 0 reset mask
Compare 0 nop mask

_22_13_0 ____________ liii. ~~~m~~:~~~
360

APPENDIX B: Symbols. inc listing

ao
ocmO
ocpO
ouf
cm1
cmO
cpl
cpO

T IDMR
t idmr

oui
cmli
cmOi
cmOd
cp1i
cpOi
cpOd
gtien

TO DCPR
tO=dcpr

T1 DCPR
tl=dcpr

TO DAPR
tO=dapr

T1 DAPR
u_:::-ctapr

TO IVR
tO-ivr

Tl IVR

:= R254
= rl4

.defstr T ao

.defstr T-ocmO

.defstr T-ocpO

.defstr T-ouf

.defstr T cm1

.defstr T cmO

.defstr T-cp1

.defstr T=cpO

:= 1 <- 0
:= 1 <- 1
.- 1 <- 2
:= 1 <- 3
:= 1 <- 4
:= 1 <- 5
:= 1 <- 6
:= 1 <- 7

·= R255
rl5

.defstr T oui

.defstr T-cmli

.defstr T-cmOi

.defstr T-cmOd

.defstr T-cpli

.defstr T-cpOi

.defstr T-cpOd

.defstr T=gtien

:=
:=

:=
:=

1 <- 0
1 <- 1
1 <- 2
1 <- 3
1 <- 4
1 <- 5
1 <- 6
1 <- 7

:= R240
rO

:= R244
r4

.- R241
rl

·= R245
= r5

:= R242
r2

. - R246

SVMBOLS.INC

MFTimer Flags Register.

"t flagr.O"; and/or on capture interrupt
"t-flagr.l"; overrun compare 0
"t-flagr.2"; overrun capture 0
"t-flagr.3"; overflow underflow flag
"t=flagr.4"; successful compare 1
"t flagr.5"; successful compare 0
"t-flagr.6"; successful capture 1
"t=flagr.7"; successful capture 0

"t idmr.0 11

"t idmr.l"
"t-idmr.2"
"t-idmr.3"
"t idrnr.4"
.. t-idmr.5"
"t idmr.6 11

"t-idrnr.7"

and/or on capture interrupt mask
overrun compare 0 mask
overrun capture 0 mask
overflow underflow flag mask
successful compare 1 mask
successful compare 0 mask
successful capture 1 mask
successful capture 0 mask

MFTimer Interrupt DMA Mask Register.

overflow underflow interrupt
Compare 1 interrupt
Compare 0 interrupt
Compare 0 DMA
Capture 1 interrupt
Capture 0 interrupt
Capture 0 DMA
global timer interrupt enable

overflow underflow interrupt mask
Compare 1 interrupt mask
Compare 0 interrupt mask
Compare 0 DMA mask
Capture 1 interrupt mask
Capture 0 interrupt mask
Capture 0 DMA mask
global timer interrupt enable mask

MFTimer 0 DMA Counter Pointer Register.

MFTimer 1 DMA Counter Pointer Register.

MFTimer 0 DMA Address Pointer Register.

MFTimer 1 DMA Address Pointer Register.

MFTimer 0 Interrupt Vector Register.

MFTimer 1 Interrupt Vector Register .

23/30

361

SYMBOLS.INC

APPENDIX B: Symbols.inc listing

TO IDCR
tO-idcr

Tl IDCR
tl-idcr

T2 DCPR
t2_dcpr

T3 DCPR
t3_dcpr

T2 DAPR
t2=dapr

T3 DAPR
t3=dapr
T2 IVR
t2-ivr

T3 IVR
t3-ivr

T2 IDCR
t2-idcr

T3 IDCR
t3-idcr

plm
swen
dctd
dcts
erne
cpe

T IOCR
t iocr

seD

scl

; .page

:= R243
r3

:= R247
r7

:= R240
rO

:= R244
r4

:= R241
rl

:= R245
r5

:= R242
r2

:= R246
r6

·= R243
r3

R247
r7

:= 07h
:= OBh
:= lOh
:= 20h
:= 40h
:= SOh

:= R248
rB

:= Olh

:= 02h

MFTimer 0 Interrupt/DMA Control Register.

MFTimer 1 Interrupt/DMA Control Register.

MFTimer 2 DMA Counter Pointer Register.

MFTimer 3 DMA Counter Pointer Register.

MFTimer 2 DMA Address Pointer Register.

MFTimer 3 DMA Address Pointer Register.

MFTimer 2 Interrupt Vector Register.

MFTimer 3 Interrupt Vector Register.

MFTimer 2 Interrupt/DMA Control Register.

MFTimer 3 Interrupt/DMA Control Register.

Priority level mask
Swap function enable mask
DMA compare transaction destination mask
DMA capture transaction source mask
Compare 0 end of block mask
Capture 0 end of block mask

MFTimer I/0 connection register

TxOUTA and TxiNA connection bit
for even MFTimer
TxOUTA and TxiNA connection bit
for odd MFTimer

24~_o _________________________ ~~~~~~&~:oo~~
362

SYMBOLS.INC

APPENDIX B: Symbols.inc listing

;**

ST9 FAMILY A/D CONVERTER REGISTERS.

;**

ADO PG ·= 63 A/D converter registers page
ADl PG := 62 second A/D unit

AD DOR .- R240 Channel 0 data register
ad-dOr rO Channel 0 data register
AD DlR R241 Channel 1 data register
ad dlr rl Channel 1 data register
AD -D2R .- R242 Channel 2 data register
ad d2r r2 Channel 2 data register
AD -D3R := R243 Channel 3 data register
ad d3r r3 Channel 3 data register
AD D4R R244 Channel 4 data register
ad d4r r4 Channel 4 data register
AD D5R := R245 Channel 5 data register
ad-d5r r5 Channel 5 data register
AD D6R := R246 Channel 6 data register
ad d6r r6 Channel 6 data register
AD D7R R247 Channel 7 data register
ad d7r r7 Channel 7 data register

AD LT6R := R248 Channel 6 lower threshold register
ad lt6r r8 Channel 6 lower threshold register
AD LT7R R249 Channel 7 lower threshold register
ad-lt7r r9 Channel 7 lower threshold register

AD UT6R R250 Channel 6 upper threshold register
ad-ut6r rlO Channel 6 upper threshold register

AD UT7R := R251 Channel 7 upper threshold register
ad ut7r rll Channel 7 upper threshold register

AD CRR := R252 Compare result register
ad err r12 Compare result register

.defstr AD c61 "ad crr.4" - Compare channel 6 lower bit

.defstr AD c71 "ad crr.5" Compare channel 7 lower bit -

.defstr AD c6u "ad crr.6" Compare channel 6 upper bit

.defstr AD
-

c7u "ad-crr.7" Compare channel 7 bit upper

c61 ·= 1 <- 4 Compare channel 6 lower mask
c71 .- 1 <- 5 Compare channel 7 lower mask
c6u 1 <- 6 Compare channel 6 upper mask
c7u := 1 <- 7 Compare channel 7 upper mask

25/30

363

SYMBOLS.INC

APPENDIX 8: Symbols.inc listing

AD CLR R253 Control logic register
ad clr = r13 Control logic register

.defstr AD st "ad clr.O" start/stop bit

.defstr AD cont "ad clr.l" Continuous mode -

.defstr "ad clr.2" up/down control AD pow power

.defstr AD -intg "ad clr.3" internal trigger

.defstr AD _extg "ad clr.4" External trigger

st (1 <- 0 start/stop bit mask
cont .- (1 <- 1 Continuous mode mask
pow .- (1 <- 2 power up/down control mask
intg (1 <- 3 internal trigger mask
extg (1 <- 4 External trigger mask
sch OEOh scan channel selection mask

AD ICR R254 interrupt control register
ad icr rl4 interrupt control register

.defstr AD awdi 11 ad icr.4 11 analog watch-dog interrupt

.defstr AD eci "ad-icr.5 11 End of count interrupt -

.defstr AD awd "ad icr.6" analog watch-dog pending flag

.defstr AD ecv "ad icr.7 11 End of conversion pending flag

AD_prl .- 07h priority level mask
awdi (1 <- 4 analog watch-dog interrupt mask
eci .- (1 <- 5 End of count interrupt mask
awd (1 <- 6 analog watch-dog pending flag
ecv (1 <- 7 End of conversion pending flag

AD IVR .- R255 interrupt vector register
ad ivr rl5 interrupt vector register

; .page

26/30

364

SVMBOLS.INC

APPENDIX 8: Symbols. inc listing

;***

ST9 FAMILY SERIAL COMMUNICATION INTERFACE REGISTERS.

;***

SCil PG 24 SCil control registers page
SCI2 PG := 25 SCI2 control registers page
SCI3 PG .- 26 SCI3 control registers page
SCI4 - PG .- 27 SCI4 control registers page

s RDCPR := R240 receive DMA counter pointer register
s_rdcpr rO receive DMA counter pointer register

s RDAPR R241 receive DMA address pointer register
s_rdapr rl receive DMA address pointer register

s TDCPR .- R242 transmit DMA counter pointer register
s=tdcpr r2 transmit DMA counter pointer register

s TDAPR R243 transmit DMA address pointer register
s=tdapr r3 transmit DMA address pointer register

s IVR R244 interrupt vector register
s ivr r4 interrupt vector register

s ACR R245 address compare register
s acr r5 address compare register

s IMR .- R246 interrupt mask register
s imr = r6 interrupt mask register

.defstr s txdi "s imr.O" transmitter data interrupt - -

.defstr s - rxdi "s - imr.l" receiver data interrupt

.defstr s rxb "s imr.2" receiver break' -

.defstr s rxa "s imr.3" receiver address

.defstr s rxe "s imr.4" receiver error - -

.defstr s txeob "s imr.5" transmit end of block

.defstr s rxeob "s imr.6" receive end of block

.defstr s -hsn "s
-

imr.7 11 Holding shift register or empty.

txdi .- 1 <- 0 transmitter data interrupt mask
rxdi .- 1 <- 1 receiver data interrupt mask
rxb := 1 <- 2 receiver break mask
rxa := 1 <- 3 receiver address mask
rxe .- 1 <- 4 receiver error mask
txeob := 1 <- 5 transmit end of block mask
rxeob .- 1 <- 6 receive end of block mask
hsn .- 1 <- 7 Holding or shift register empty mask.

27/30

365

SYMBOLS.INC

APPENDIX 8: Symbols. inc listing

s ISR .- R247 interrupt status register
s isr = r7 interrupt status register

.defstr s txsem "s isr.O" transmit shift register empty

.defstr S-txhem "s
- isr.l" transmit hold register empty

.defstr S=rxdp "s
- isr.2" received data pending bit -

.defstr S_rxbp "s - isr.3" received break pending bit

.defstr s _rxap "s isr.4" received address pending bit

.defstr S_pe "s isr.S" parity error pending bit -

.defstr s fe "s - - isr.6" framing error pending bit

.defstr s oe "s isr.7" overrun error pending bit

txsem := 1 <- 0 transmit shift register empty mask
txhem 1 <- 1 transmit hold register empty mask
rxdp 1 <- 2 received data pending mask
rxbp := 1 <- 3 received break pending mask
rxap .- 1 <- 4 received address pending mask
pe .- 1 <- 5 parity error pending mask
fe .- 1 <- 6 framing error pending mask
oe := 1 <- 7 overrun error pending mask

s RXBR := R248 receive buffer register
s rxbr r8 receive buffer register

s TXBR .- R248 transmit buffer register
s txbr r8 transmit buffer register

s IDPR := R249 interrupt/DMA priority register
s idpr r9 interrupt/DMA priority register

.defstr s txd "s_idpr.3" transmitter DMA

.defstr s rxd "s_idpr.4" receiver DMA

.defstr s sa "s idpr.5" set address

.defstr
-

sb "s=idpr.6" break s set
.defstr s amen "s_idpr.7" address mode enable

s pri := 07h interrupt/DMA priority mask
txd := (1 <- 3 transmitter DMA mask
rxd := (1 <- 4 receiver DMA mask
sa .- (1 <- 5 set address mask
sb .- (1 <- 6 set break mask
amen := (1 <- 7 address mode enable mask

s CHCR := R250 Character configuration register
s chcr r10 Character configuration register

wl5 .- OOOh 5 bits data word mask
wl6 := 001h 6 bits data word mask
wl7 := 002h 7 bits data word mask
w18 := 003h 8 bits data word mask
sb10 := OOOh 1.0 stop bit mask
sb15 := 004h 1.5 stop bit mask
sb20 := 008h 2.0 stop bit mask
sb25 .- OOCh 2.5 stop bit mask
ab .- 010h address bit insertion mask
pen := 020h parity enable mask
ep := 040h Even parity mask
oddp := OOOh odd parity mask
am := 080h address mode mask

28,_30 _____________ J..U ~~~;m~::~~~
366

SVMBOLS.INC

APPENDIX B: Symbols.inc listing

s - CCR := R251 Clock configuration register
s ccr = rll Clock configuration register -

.defstr s - stpen "s ccr.O" stick parity enable

.defstr s lben "s ccr.l" loop back enable - -

.defstr s a en "s ccr.2" auto echo enable -.defstr s cd "s ccr.3" Clock divider

.defstr s _xbrg .. s-ccr.4" External baud rate generator source -

.defstr s xrx "s ccr.S" External receiver source

.defstr s -oclk "s -ccr.6" output clock selection

.defstr s -txclk "s -ccr.7" transmit clock selection
stpen := 1 <- 0 stick parity enable mask
lben := 1 <- 1 loop back enable mask
a en := 1 <- 2 auto echo enable mask
cd := 1 <- 3 Clock divider mask
xbrg := 1 <- 4 External baud rate generator source mask
xrx := 1 <- 5 External receiver source mask
oclk := 1 <- 6 output clock selection mask
txclk := 1 <- 7 transmit clock selection mask
s BRGR := RR252 baud rate generator register
s_brgr rrl2 baud rate generator register
s BRGHR := R252 baud rate generator reg. high
s::)rghr rl2 baud rate generator reg. high
S BRGLR := R253 baud rate generator reg. low
s::::brglr rl3 baud rate generator reg. low
; .page

29130

367

SVMBOLS.INC

APPENDIX 8: Symbols. inc listing

;***

ST9040 SECURITY REGISTER.

;***

SEC PG := 59 ; Security register page
SECR R255
seer r15

.defstr tlck "secr.O" test lock bit

. defstr wf1 "secr.l" write fuse 1 bit

.defstr hlck "secr.2" hardware lock bit

.defstr wf2 "secr.3" write fuse 2 bit

.defstr f2tst 11 Secr.4" select fuse 2 bit

.defstr slck "seer.?" software lock bit

tlckm 1 <- 0 test lock bit mask
wf1m 1 <- 1 write fuse 1 bit mask
hlckm := 1 <- 2 hardware lock bit mask
wf2m := 1 <- 3 write fuse 2 bit mask
f2tstm := 1 <- 4 select fuse 2 bit mask
slckm := 1 <- 7 software lock bit mask

.list

3_0_13_0 __________ W'/, SC:S-THOMSON
'IJ o ~UICDil@~~reifDil@>lifi©@

368

APPLICATION NOTE

INITIALIZATION OF THE ST9
Pierre Guillemin and Alan Dunworth

INTRODUCTION

The ST9 family offers the microprocessor designer a wide variety of architectural features configurable to
the user's specific application requirements. Central to all these configurations is a multiple register based
microcomputer core to which may be added on-chip, powerful peripheral components including AID
Convertors, Serial Communication Interface units (SCI's), and 16-bit Multifunction timers with input
capture/output compare capabilities. The availability, on-chip, of these application-specific units obviates
the need for external interface design as well as offering high-speed and good reliability.

The particular peripherals incorporated on-chip may themselves be individually configured to offer a wide
variety of functional (architectural) alternatives. This configuration is typically implemented by simple
software routines included in the power-on- or system- reset routines. The sole difficulty which the user
may initially encounter stems, in fact, from the power and versatility of this approach to system design. The
large number of available options means that the user must specify a large number of system parameters
by initializing control register contents for the specific peripheral units.

The objective of this Application Note is to suggest to the user a programming structure and philosophy to
aid in the initial configuration of the system. The approach is illustrated by a number of specific examples
selected from the wide range available for the ST9030, ST9040 families, but are applicable to all ST9s.

System Reset

After processor Reset the control and status registers, located on the group F pages (0-63) are forced to
preset values which define a default Reset configuration for the ST9 system. By way of example the internal
clock frequency (INTCLK) is set to the internal crystal oscillator (or externally applied clock frequency, if
supplied) divided by two without prescaling, and the individual pins of Parallel Ports 0,1, and 6 are set to
bidirectional Pullup mode (for systems with on-chip ROM). On releasing the external RESET signal the
processor PC is loaded with the contents of the Reset Vector stored in address locations 0 and 1 . This
causes a jump to a Reset routine in which the designer may reconfigure the ST9 system as appropriate to
the requirements of his particular application, by loading suitable values into the system registers.

The number of registers to be initialized may be considerable for a representative ST9 system. Additionally,
the application-specific interrupt routines will, in general, involve the manipulation of substantial system
resources, e.g. read/write of data registers, and tesVreset of status, mask, and control registers. The
associated programming task may appear daunting in prospect on first acquaintance with the ST9 system.
Conceptually, the organization of the associated software is relatively simple and straightforward as may
be recognized by grouping under four headings the programming steps involved in the initialization of ST9
peripherals and the organization of interrupt service routines.

AN413 I 1292 1/43

369

INITIALIZATION OF THE ST9

a) ST9 Core System Configuration

Certain core system resources are common to all on-chip peripherals and may be specified in a common
routine which is invoked at System Reset. Such common resources include clock configuration, system
and user stack specification, global interrupt masking, processor priority setting, parallel port bit-by-bit
specification, and setting of external memory wait-cycles. The setting up of the interrupt vector table, and
certain global masking or enabling operations, may also be included under this heading.

b) Individual On-chip Peripheral Configuration

The configuration of on-chip peripherals, e.g. Multifunction Timers, AID Converters, etc., involves the
loading of suitable bit-patterns into group F page registers. This enables the specification of input and
output signals, determination of the peripheral's mode of operation, and the selection of internal or external
clock and control signals.

c) Individual On-chip Peripheral Initialization

The initialization of a particular on-chip peripheral may involve the setting or clearing of device-specific
enable and masking bits, specification of interrupt priority levels, clearing of status/flag values, and the
loading of data and/or limit registers.

d) Organization of Interrupt Service Routines

This will normally include context-saving and restoring of the PC and system status, plus the working-reg­
ister and page-pointer registers, together with the values of any working registers used in the routine. The
routine proper may include testing of status flag bits, and the reading and writing of data registers associated
with the particular device. Finally, the interrupt pending bits should be cleared, the context restored, and
individual masking and enabling bits restored to the appropriate values.

In practical programming terms there will normally be a single routine invoked on system RESET which
carries out the core system configurations listed under heading a) above. For each individual peripheral
there will typically be a single routine which carries out the configuration and initialization operations listed
under headings b) and c). There will also be one or more interrupt routines associated with each peripheral,
e.g. the AID converter may require in general two interrupt routines, one for End of Conversion, and one
for out of range operation (i.e. Analog Watchdog operation) on channels 6 and 7.

An example of a core-system configuration is given in Appendix B, and Appendices C,D,E, and F give
configuration/initialization examples, and Interrupt routines for the Timer, AID Convertor, SCI unit, and
Timer/Watchdog respectively.

There is not space in a short note to discuss these programmes in detail on a line by line basis. Instead
the approach will be to list, for each device, the resources which need to be taken into consideration when
configuring, initializing, and servicing the particular device. An example will then be given of the specific
use of each such resource. With this background, the interested user should be able to follow in detail
those listings most relevant to his particular application area.

_21_43 __________________________ ~~~~~~~~:~~n

370

INITIALIZATION OF THE ST9

ST9 BASIC SYSTEM CONFIGURATION

Tables A.1 and A.2 in Appendix A lists the registers which should be loaded with specified bit-patterns in
order to initialize the ST9 to a basic system configuration. A demonstration routine which carries this out
for a representative ST9 system is listed in Appendix B. The main routine, RESET_START, is invoked at
system Reset. Also shown in Appendix B are the Assembler Declarations and directives which enable the
Interrupt Vector Address Table to be set up in program memory.

The Vector Address Table

The ST9 implements an interrupt vectoring structure that allows the on-chip peripheral to identify the
location of the first instruction of the Interrupt Service Routine (ISR). Each interrupt module has a specific
Interrupt Vector Register (IVR) mapped on the register file pages. When the interrupt request is acknow­
ledged, the peripheral interrupt module provides, via the IVR, the vector to point to the address of the
Interrupt Service Routine in the Vector Table.

The Interrupt Vector table.containing the list of addresses of the Interrupt Service Routine must be located
in the first 256 locations of program memory. The first 6 locations of Program memory are reserved as
follows:

Address Content

0 Address high of Power on Reset routine

1 Address low of Power on Reset routine

2 Address high of Divide by Zero Trap Subroutine

3 Address low of Divide by Zero Trap Subroutine

4 Address high of Top LeveiiSR

5 Address low of Top LeveiiSR

Note that since the above locations are fixed by the hardware no associated IVR register is involved. For
certain interrupt modules more than one interrupt routine may be required. For example the ND Convertor
has separate interrupts for the End of Conversion and Channel 6/7 analog underflow/overflow conditions.
In such cases the IVR register specifies the more significant, and the interrupt module hardware specifies
the less significant bits of the Vector Table address.

The following Assembler outline shows how the corresponding Vector table entries may be established.

ADC IT VECT:= 30h

ADC WDG:

. org ADC IT VECT

.word ADC WDG

.word ADC EOC

Code for the Analog Watchdog Routine is included here
Note that in the example in Appendix B
the System Reset routine is invoked for out of
range conditions on Channels 6 and 7

iret
ADC EOC:

; End of A/D conversion interrupt routine included here
iret

--------------------------- ~~~~~~~::~ _________________________ 3_M_3

371

INITIALIZATION OF THE ST9

PORT INITIALIZATION

The ST9 has up to a maximum of 64 lines dedicated to input/output. These lines, grouped into eight 8-bit
ports, can be independently programmed to provide parallel input/outputs with or without handshake or
may be used to connect in/out signals to/from the peripherals (e.g. Core, Timers, SCI units, etc.) present
on the chip. The functional allocation of the Ports to support system tasks may be summarised as follows:

Port Functions

0 Usable as 1/0 Port (without handshake) or as multiplexed low-address and data lines for
external memory.

1 Usable as 1/0 Port (without handshake)or as high-address lines for external memory.

2 Usable as 1/0 Port (without handshake)or for SPI functions; Also INT1, INT2, and INT3 inputs.

3 Usable as 1/0 Port (without handshake)or for Timer functions.

4 Usable as 1/0 Port (with or without handshake)

5 Usable as 1/0 Port (with or without handshake).

6 Usable as 1/0 Port (without handshake)

Usable as 1/0 Port (without handshake)
7 or for SCI functions. Also used for INT4, INT5, and INT6 inputs

or for Control signals for slow external memory

Ports 0, 1, and 6 are automatically initialized on system Reset to correspond to the installed on-chip memory.
Ports 2, 3, 4, 5, 6, and 7 need to be initialized (if available) to satisfy the specific application requirements
for external I/O, plus any alternative function assignments of port pins, and internal interconnections. Table
A.3, Appendix A, lists the complete set of Port Configuration registers together with their addresses.

Example:

C7 OA spp P3C PG
F5 FC 05 ld P3COR,#0000010lb

F5 FD OF ld P3ClR, #OOOOllllb
F5 FE 05 ld P3C2R, #00000101b

In this example Port 3 pins 4, 5, 6, and 7 are configured as bidirectional pins, with weak pull-up output and
TIL inputs. Pins 0 (TOlNA) and 2 (TOINB) are configured as TIL inputs, and Pins 1 (TOOUTA) and 3
(TOOUTB) are configured as Alternate Function Push-pull outputs.

_41_4_3 ____________ l..V. ~~~~m~~r;"~:oo~n
372

INITIALIZATION OF THE ST9

MULTIFUNCTION TIMER CONFIGURATION

The ST9 Multifunction Timer is configured by loading suitable control-bit patterns in the groupe F page
register TCR, TMR, ICR, OACR, and OBCR (see Table A.4 in Appendix A). Note that registers EIMR and
CICR provide global control functions common to all on-chip peripherals and are hence initialized
conveniently in the basic system configuration routine.

The External Input Control Register, ICR, controls input source selection (internal/external), input mode
selection (falling/rising edge sensitive, etc.), counter mode of operation (continuous, one-shot, etc.), and
input function (Gate, Trigger, up/down control, etc.).

Example:

F5 FA 54 ld T_ICR,#01010100b

This instruction selects the external input A as a falling-edge-sensitive Trigger input, and the B input is a
normal Port 1/0 pin.

The Multifunction Timer Control Register, TCR, controls counter clear and prescaler reload operations
as well as providing a counter enable control bit and counter status flags.

Example:

F5 F8 48 ld T_TCR,#01001000b

This instruction halts the counter operation but provides for subsequent UP counting with counter clear
and Prescaler reload on RegO or Reg1 capture.

The Multifunction Timer Mode Register, TMR, selects the clock source for the counter-prescaler input,
enables Retrigger or Continuous mode, and controls register load/capture operations.

Example:

98 8C ld T_TMR,#10001100b

This pattern enables output 1 and disables output 0, disables bivalue modes, and selects RegO for capture
and Reg1 for monitor. Retriggerable continuous mode is selected.

The Output Control Register, OACR, links the output TOOUTA to counter overflow/underflow and
Compare events, and provides for subsequent Set, Reset, or Toggle of the external output. The on-chip
event (OCE) may be linked to a COMPO event.

Example:

F5 F5 lB ld T_OACR,#OOOllOllb

In this example TOOUTA is preset to 1, and is subsequently set by COMPO, toggled by COMP1, and Reset
by OVF. The OCE signal is generated by a successful CMPO compare event.

The Output Control Register, OBCR, links the output TOOUTB to counter overflow/underflow and
Compare events, and provides for subsequent Set, Reset, or Toggle of the external output. The on-chip
event (OCE) may be linked to a counter overflow/underflow event.

Example:

FS F6 83 ld T_OBCR,#lOOOOOllb

In this example TOOUTB is preset to 1, and is subsequently reset by COMPO, and set by OVF and COMP1.
The OCE signal is generated by a counter overflow/underflow event.

-------------- LV. ~~~~m~::U!~~ 5/43

373

INITIALIZATION OF THE ST9

MULTIFUNCTION TIMER INITIALIZATION

Initialization of the Multifunction Timer requires loading of the Prescaler register and the two Comparison
registers. The timer Status register should be cleared, the Vector Table entry should be set, and the
Multifunction Timer counter actions enabled. The interrupt/DMA priority levels should be set and the mask
bits should be adjusted as appropriate to the application. Further, if DMA operations are specified, DMA
address and counter registers will require initialization.

The Prescaler Register, PRSR, holds the preset value for the 8-bit prescaler.

Example:

BC 00 ld T_PRSR,#OOh

This defines a division ratio of 1 and the maximum counter clock is generated (INTCLK/3).

The Multifunction Timer Flags Register, FLAGR, contains flags which register successful capture or
comparison events together with OVF/UNF and overrun conditions.

Example:

15 FE FD and T_FLAGR,#-ocrnO

This example resets the overrun bit for COMPO operations.

The Interrupt Vector Register, IVR, should be loaded with the 5 most significant bits of the Multifunction
Timer's interrupt vector address in program memory. The interrupt source (compare, capture, or OVF/UNF)
provides the least significant 3 bits to provide the correct vector link.

Example:

F5 F2 10 ld TO_IVR,#TO_IT_VECT

In this example IVR is loaded with the start address (1 Oh) of the block of 8 words in the vector table allocated
to the 5 different Multifunction Timer interrupts.

_~_4_3 _________________________ ~~~~~~~~:oo~~ ----------------------------
374

INITIALIZATION OF THE ST9

MULTIFUNCTION TIMER INITIALIZATION (Continued)

The lnterrupt/DMA Control Register, IOCR, is used to set the Interrupt and DMA priority levels, and the
DMA transfer source and destination. It also enables Swap mode and contains End of Block condition flags.

Example:

FS F3 D6 ld TO_IDCR,#ll000110b

In this example the priority level is set at a value of 6, and the Swap mode is disabled. The DMA capture
channel source is REGO, and the DMA compare channel source is CMPO.

The lnterrupt/DMA Mask Register, IDMR, contains a global Multifunction Timer Interrupt enable plus
individual DMA and Interrupt enable bits for overflow as well as successful capture and comparison events.

Example:

FS FF 04 ld T_IDMR,#OOOOOlOOb

OF FF 80 or T_IDMR,#gtien

The first instruction sets the interrupt enable on CMPO, and the second instruction globally enables all
Multifunction Timer interrupts.

The DMA Counter Pointer Register, DCPR, defines the DMA area and source, and specifies the location
of the DMA length register.

Example:

FS FO 4C ld TO_DCPR,#CPT_LG_DMA

The DMA length register is 4Ch = rr12 = RR76 and the transfer occurs to/from Program/Data memory.

The DMA Address Pointer Register, DAPR, defines the DMA area and source, and specifies the location
of the DMA address register.

Example:

FS Fl 48 ld TO_DAPR,#CPT_AD_DMA

The DMA address register is 48h = rr8 = RR72. In conjunction with the DPCR value in the above example
it specifies Program memory for the buffer.

-------------- J:..V. ~~~~m~::O!~:t 7/43

375

INITIALIZATION OF THE ST9

AID CONVERTOR CONFIGURATION/INITIALIZATION

Configuration of the AID convertor requires loading of 4 registers only, CLR, CRR, ICR, and IVR (Table
A.6), and initialization of this device involves, apart from global masking, loading of two double (threshold
registers). Hence a single routine can be written to cover both the configuration and initialization aspects
of AID Convertor use.

The Control Logic Register, CLR, defines the Analog channel conversion start address, selects inter­
nal/external triggers, and enables continuous or single conversion and power up/down modes. This register
also contains a start/stop status/control bit.

Example:

FS FD 04 ld AD_CLR,#OOOOOlOOb

In this example, the conversion scan starts with channel 0 when enabled, powers up the AID convertor,
halts conversion, and specifies single conversion scan mode.

Please note that before enabling any AID conversion, it is mandatory to set the low bit of Control Logic
Register at least 60~s before the first conversion start. This is in order to correctly bias the analog section
of the converter.

The Interrupt Vector Register, IVR, defines the most significant 6 bits of the vector table byte address. It
thus points to the first of two word addresses which correspond to the analog watchdog and End of
conversion interrupt routines.

Example:

FS FF 32 ld AD_IVR,#ADC_ITEOC_VECT

In this example, an address of 50 (decimal) is loaded into IVR. Hence a subsequent AID convertor EOC
interrupt will cause a Vector Table access at location 50.

The Interrupt Control Register, ICR, contains the priority level specification, the two source interrupt flags
(Analog Watchdog and EOC) and their individual masking bits.

Example:

FS FE 20

05 FE 20

ld

or

AD_ICR,#OOlOOOOOb

AD_ICR,#OOOOOllOb

In this example, the priority level is first set at 0, End of Conversion interrupts are enabled, and the Analog
Watchdog interrupt is masked. The second instruction then sets the priority to a level of 6.

If the Analog Watchdog is enabled (bit 6 in ICR) it will be necessary to load the threshold registers for
channels 6 and 7. In this case access will be made in the interrupt routine to register CRR.

The Compare Result Register, CRR, contains 4 flags showing the results of comparison operations
between the current values of data registers 6 and 7, and the upper and lower threshold registers.

_8,_4_3 _____________ lifi. ~~~;m~r::i!~~
376

INITIALIZATION OF THE ST9

SCI UNIT CONFIGURATION

The list of registers to be initialized when configuring the SCI unit is given in Table A.9. The functions of
these registers, and some illustrative examples of their use, are as follows:

The Character Configuration Register, CHCR, is used to define the serial frame format.

Example:

AC E3 ld S_CHCR,#E3h

This example defines a serial frame as follows: 8 data bits, 1 stop bit, even parity, and address input if the
character matches the contents of the Address Register.

The Clock Configuration Register, CLCR, is used to specify the transmitter, receiver, and Baud Rate
clock sources, and the clock divisor ratio. It also enables Auto Echo and Loopback test modes.

Example:

BC 80 ld s_clcr,#txclk

In this example, the Transmitter and Receiver clocks are provided by the Baud Rate Generator. Each data
bit period will be 16 clock periods (asynchronous mode), and the Auto Loop and Loopback niodes are
disabled.

The Baud Rate Generator Register, BRGR, specifies a 16-bit division ratio.

Example:

BF DC 00 4E ldw s_brgr,#DIV_9600

This example specifies a division ratio yielding 9600 Bauds with a 24 Mhz external clock.

Writing to a Baud Rate Generator Register immediately disables and resets both the SCI Baud Rate
generator, the transmitter and receiver circuitry. After writing to the remaining Baud Rate Generator
Register, the transmitter and receiver circuits are enabled. The Baud Rate Generator will load the new
value and start counting.

To initialize the SCI, user should first initialize one Baud Rate Generator Divisor Register. This will reset all
SCI circuitry. Initialize all other SCI registers for the desired operating mode. To enable the SCI, initialize
the remaining Baud Rate Generator Register.

The Address Compare Register, ACR, contains an 8-bit value which may be used as a match against
which a received address may be tested to set the Receive Address Pending bit.

Example:

5C OD ld s_acr,#RETURN

This will cause the Receive Address Pending bit to be set if an End of Command character bit-pattern is
received.

-------------- liii. ~~~~~~::U!~~ 9/43

377

INITIALIZATION OF THE ST9

SCI UNIT CONFIGURATION (Continued)

The Interrupt Vector Register, IVA, defines the most significant 5 bits of the vector table byte address. It
thus points to the first of four vector table word address entries.

Example:

4C OOx ld s_ivr,#SCI_IT

In this example, after the external symbol has been linked in, the Vector Table entry address will be loaded
into IVR at execution time.

The Interrupt Mask Register, IMR, contains five interrupt masking bits and two End of Block DMA status
bits. It also selects the shift register or holding register as source of the transmitter register empty interrupt.

Example:

6C 05 ld s_irnr,#OOOOOlOlb

In this example the interrupt pending bits are reset, the Transmitter data interrupt is masked, and the
Receiver data, data error, and address interrupts are unmasked.

The lnterrupt/DMA Priority Register, IDPR, specifies the lnterrupt/DMA priority, selects one of four
Address modes, and controls the emission of Break characters and enables address/9th bit data mode. It
also provides mask bits for Receive and Transmit DMA transfers.

Example:

9C 04 ld s_idpr,#04h

In this example a priority level of 4 is specified, and Transmitter DMA requests are masked.

378

INITIALIZATION OF THE ST9

SCI UNIT INITIALIZATION

The list of registers to be initialized when initializing the SCI unit is given in Table A.1 0. The functions of
these registers, and some illustrative examples of their use, are as follows:

The Receiver DMA Transaction Counter Pointer Register, RDCPR, contains the register file address
of the receiver DMA transaction counter. In addition it determines whether the DMA transfers occur in the
register file or in memory.

Example:

An example of the use of this register is provided below (see RDAPR example).

The Receiver DMA Destination Address Pointer Register, RDAPR, contains the register file address of
the receiver DMA data destination. In addition, in conjunction with bit 0 of RDCPR, it determines whether
the DMA transfers occur in Program or Data memory.

Example:

00 FF LNG-DMA SCI OFh
00 AO DEPART DMA SCI := OAOh
00 02 NUM RDAP := 2
00 03 NUM RDCP .- 3
2C 03 ld S_rdcpr,#NUM_RDCP
lC 02 ld S_rdapr,#NUM_RDAP
FS 03 OF ld R#NUM_RDCP,#(LNG_DMA_SCI)
FS 02 00 ld R#NUM_RDAP,#(DEPART_DMA_SCI)

In this program sequence the DMA transaction counter and Address Pointer register addresses are defined
to be R3 and R2 respectively. These two registers are initialized for a block of size 15 bytes starting at
register address AO, i.e. R160.

The Transmitter DMA Transaction Counter Pointer Register, TDCPR, contains the register file address
of the transmitter DMA transaction counter. In addition it determines whether the DMA transfers occur in
the register file or in memory.

Example:

An example of the use of this register is provided below (see TDAPR example).

The Transmitter DMA Destination Address Pointer Register, TDAPR, contains the register file address
of the transmitter DMA data destination. In addition, in conjunction with bit 0 of TDCPR, it determines
whether the DMA transfers occur in Program or Data memory.

Example:

00 FF LNG-DMA SCI := OFh
00 AD DEPART DMA SCI := OAOh
00 06 NUM TDAP := 6
00 07 NUM TDCP 7
2C 07 ld TDCP S_TDCPR,#NUM_
3C 06 ld S_TDAPR,#NUM_TDAP
FS 07 OF ld R#NUM_TDCP,#(LNG_DMA_SCI)
FS 06 00 ld R#NUM_TDAP,#(DEPART_DMA_SCI)

In this program sequence the DMA transaction counter and Address Pointer register addresses are defined
to be R7 and RG respectively. These two registers are initialized for a block of size 15 bytes starting at
register address AO, i.e. R160.

11/43

379

INITIALIZATION OF THE ST9

TIMER/WATCHDOG UNIT CONFIGURATION

Configuration of the Timer/Watchdog requires loading of the 6 registers listed in Table A.11, Appendix A.

Timer/Watchdog unit Configuration

The Timer/Watchdog Control Register, WDTCR, contains a start/stop bit, and is also used to select input,
output, and counter modes, as well as input and output enable bits.

Example:

BC 80 ld wdtcr,#BOh

In this example the limer starts counting down in continuous mode, and the input and output sections are
disabled.

The Wait Control Register, WCR, as well as specifying the number of wait states for access to off-chip
program and data memory enables the Watchdog function.

Example:

cc 40 ld wcr, #wden

In this example the Watchdog action is disabled, and the number of wait states are set to zero.

The External Interrupt Vector Register, EIVR, contains a bit, TLIS, which is used to control the Top Level
Interrupt source (Timer/Watchdog EOC or External NMI). A second bit lAOS is used to select the
Timer/Watchdog as an interrupt source on channel AO (INTO). This register is also used to supply the 4
most significant bits of the External Interrupt Vector.

Example:

6C 20 ld eivr,#EXT_IT_VECT

In this example the Timer/Watchdog EOC generates an interrupt on channel AO at each End of Count. The
Top Level Interrupt is isolated from the NMI input and may be used for a Software Trap.

The Timer/Watchdog Prescaler Register, WDTPR, contains an 8-bit value which is loaded into the
Prescaler register.

Example:

90 DA clr wdtpr

The specified Prescaler value of zero leads to a minimum timer count period of 333ns, assuming a system
clock running at 12MHz.

The Timer/Watchdog High Register, WDTHR, and Timer/Watchdog Low Register, WDTLR, together
contain a 16-bit value which is loaded into the counter at each End of Count.

Example:

BF FB DB BB ldw WDTR,#3003

The specified count value leads to a count period of about 1 millisecond, (3003 x 333ns).

_1~_4_3 ________________________ ~~~~;~~~::~ ---------------------------
380

INITIALIZATION OF THE ST9

TIMER/WATCHDOG UNIT INITIALIZATION

The External Interrupt Priority Level Register, EIPLR, specifies the priority level of four pairs of external
interrupts, a). A 1, ... 00, 01. It is thus used to set the priority of the Timer/Watchdog EOC interrupt routine,
called via channel AO.

Example:

SC FE ld eiplr,#OFEh

In this example priority levels of 4 and 5 are specified for the pair INTAO, I NTA 1.

The External Interrupts Pending Bit Register, EIPR, holds the eight interrupt pending bits for the external
interrupts, including, in the present context, the Watchdogmmer EOC interrupt. These bits are set by
hardware action and reset by software during the service routine.

Example:

90 D3 clr eipr

In this example all the external interrupt pending bits are cleared.

The External Interrupts Mask-Bit Register, EIMR, holds the eight interrupt mask bits for the external
interrupts, including, in the present context, the Timer/Watchdog EOC interrupt.

Example:

4C 01 ld eimr,#iaO

In this example the Timer/Watchdog End of Count on Channel AO is unmasked.

------------- lifi. ~~~~m~r::J?~ 13/43

381

INITIALIZATION OF THE ST9

INTERRUPT SERVICE ROUTINE ORGANIZATION

When an enabled interrupt is acknowledged the Interrupt machine cycle performs the following actions:

(i) All maskable interrupts are disabled by clearing the El bit of register CICR.

(ii) The PC (two bytes) and the FLAGS register are saved on the System stack.

(iii) The PC is loaded with the 16-bit vector stored in the Vector Table.

On exit from the Interrupt service, using an IRET instruction the following operations are carried out:

(iv) The FLAGR register is restored from the System stack.

(v) The PC is restored from the System stack.

(vi) The unmasked interrupts are enabled by setting the CICR.EI bit.

In general additional resources must be saved and restored apart from those handled automatically by the
system as listed above. In a typical case these additional resources will include the two Register pointer
registers, the Page-pointer register, and any working registers used in the Interrupt routine.

An outline for a suitable Interrupt service routine is hence as follows:

Label int:

work reg_pageO
work_reg_page1
WDT PG
TOe PG
TOd PG
S PG
ADO PG

push RPO
push RP1
push PPR
spp #TOd PG
srpO #work_reg__pageO
srpl #work_reg_pagel
push rO
push rl
push rA

(0Dh*2)
(0Dh*2) + 1
0

9
10
24
63

;Interrupt Service routine
;appears here, including
;read/write data registers
;test status flags
;clear interrupt pending flags

pop rA
pop rl
pop rO
pop PPR
pop RPl
pop RPO
iret

_14_14_3 _____________ lFfi. ~~~~m~~:~~~CG~
382

INITIALIZATION OF THE ST9

SUMMARY

This Application Note has attempted to formalize and simplify the programming task of configuring and
initializing an ST9 system. The resources to be controlled have been listed with brief examples of their use.
Complete examples of ST9 configuration, initialization, and Interrupt Service routines are presented in a
set of Appendices. These programs have been written for an ST9030 but can be readily adapted where

'necessary for use with other versions.

REFERENCES

(1) "ST9 Technical Manual", SGS-THOMSON Microelectronics.

(2) Application Note AN411, SYMBOLS.INC Standard Definitions of ST9 Registers and Register-bits.

APPENDICES

A. ST9 Core and Peripheral Configuration/Initialization Registers.

A.1. System Configuration: System Registers.

A.2. System Configuration: Paged Registers.

A.3. Port Configuration Registers.

A.4. Multifunction Timer Configuration/Initialization Registers.

A.5. Multifunction Timer Data/Status Register.

A.6. ND Configuration/Initialization Registers.

A.7. ND Channel Registers.

A.B. ND Threshold Registers

A.9. SCI Configuration Registers.

A.1 0. SCI Initialization Registers.

A.11. Watchdog Timer Configuration/Initialization Registers.

A.12. SPI Initialization.

A.13. EEPROM Initialization.

B. Examples of ST9 System Configurations.

C. Examples of Multifunction Timer 0 Configurations.

D. Examples of ND Converter Configurations.

E. Examples of SCI Configurations.

F. Examples of Timer/Watchdog Configurations.

-------------- i;i. ~~~~ID~~:rr~~~ 15/43

383

INITIALIZATION OF THE ST9

APPENDIX A. ST9 CORE AND PERIPHERAL CONFIGURATION/INITIALIZATION

A.1. System Configuration: System Registers

Reset
Mnem. Name Reg. Hex Pg. Value

(Hex)

CICR Central Interrupt Control Register R230 E6 87

FLAGR Flags Register R231 E7 . XX

RPOR Register Pointer 0 R232 EB . XX

RP1R Register Pointer 1 R233 E9 - XX

PPR Page Pointer Register R234 EA - XX

MODER Mode Register R235 EB - EO

USPHR User Stack Pointer (high) R236 EC - XX

USPLR User Stack Pointer (low) R237 ED - XX

SSPHR System Stack Pointer (high) R238 EE - XX

SSPLR System Stack Pointer (low) R239 EF - XX

A.2. System Configuration: Page Registers

Reset
Mnem. Name Reg. Hex Pg. Value

(Hex)

EECR EEPROM Control Register Mask Register R241 F1 0 87

EITR External Interrupt Trigger-Event Register R242 F2 0 XX

EIPR External Interrupt Pending Register R243 F3 0 XX

EIMR External Interrupt Mask Register R244 F4 0 XX

EIPLR External Interrupt Priority Level Register R245 F5 0 XX

EIVR External Interrupt Vector Register R246 F6 0 EO

NICR Nested Interrupt Control Register R247 F7 0 XX

WCR Wait Control Register R252 FC 0 7F

16/43

384

A.3. Port Configuration Registers

Port

0

1

2

3

4

5

6

7

RESET Values:

Ports 2, 3, 4, and 5:

Name

Data Register
Control Registers (PxCO-PxC2)

Data Register
Control Registers (PxCO-PxC2)

Data Register
Control Registers (PxCO-PxC2)

Handshake Control Register

Data Register
Control Registers (PxCO-PxC2)

Handshake Control Register

Data Register
Control Registers (PxCO-PxC2)

Handshake Control Register

Data Register
Control Registers (PxCO-PxC2)

Handshake Control Register

Data Register
Control Registers (PxCO-PxC2)

Data Register
Control Registers (PxCO-PxC2)

PcXO:OOOOOOOO

PcX1:00000000
PcX2:00000000

Handshake Control Registers: 111111111

---------------------------- ~~~~~~~~:~~~

INITIALIZATION OF THE ST9

Registers Hex Pg.
(Hex)

R224 EO -
R240-R242 FO-F2 2

R225 E1 -
R244-R246 F4-F6 2

R226 E2 -
R248-R250 FB-FA 2

R251 FB 2

R227 E3 -
R252-R254 FC-FE 2

R255 FF 2

R228 E4 -
R240-R242 FO-F2 3

R243 F3 3

R229 E5 -
R244-R246 F4-F6 3

R247 F7 3

R251 FB 3
R248-R250 FB-FA 3

R255 FF 3
R252-R254 FC-FE 3

17143

385

INITIALIZATION OF THE ST9

A.4. Multi-Function Timer Configuration/Initialization Registers (MFTO)

Reset
Mnem. Name Reg. Hex Pg. Value

(Binary)

CICR Central Interrupt Control Register R230 E6 - 10000111

TCR Timer Control Register R248 FB jQ oooooxxx
TMR Timer Mode Register R249 F9 10 00000000

ICR External Interrupt Control Register R250 FA jQ ooooxxxx
OACR Output A Control Register 0 R252 FC 10 XXX XXX OX

OBCR Output A Control Register 1 R253 FD 10 xxxxxxox
IDMR lnterrupVDMA Mask Register R255 FF 10 00000000

DCPR DMA Counter Pointer Register R240 FO 9 xxxxxxxx
DAPR DMA Address Pointer Register R241 F1 9 xxxxxxxx
IVR Interrupt Vector Register R242 F2 9 xxxxxxxx

IOCR lnterrupVDMA Control Register R243 F3 9 11000111

A.5. Timer Data/Status Registers (MFTO)

Reset
Mnem. Name Reg. Hex Pg. Value

(Binary)

REGOHR Capture/Reload Register 0 (High) R240 FO 10 xxxxxxxx
REGOLR Capture/Reload Register 0 (Low) R241 F1 10 xxxxxxxx
REG1HR Capture/Reload Register 1 (High) R242 F2 10 xxxxxxxx
REG1LR Capture/Reload Register 1 (Low) R243 F3 10 xxxxxxxx
CMPOHR Compare Register Register 0 (High) R244 F4 10 xxxxxxxx
CMPOLR Compare Register Register 0 (Low) R245 F5 10 xxxxxxxx
CMP1HR Compare Register Register 1 (High) R246 F6 10 xxxxxxxx
CMP1LR Compare Register Register 1 (Low) R247 F7 10 XX XXX XXX

PRSR Prescaler Register R251 FB 10 00000000

FLAGR Timer Flags Register R254 FE 10 00000000

18/43 ru SGS·TliOMSON ------------'1•• llJD([;iJ@lli~lli©1J~@IR'J0([;$

386

INITIALIZATION OF THE ST9

A.6. AID Configuration/Initialization Registers

Reset
Mnem. Name Reg. Hex Pg. Value

(Binary)

CRR Compare Result Register R252 FC 63 00001111

CLR Control Logic Register R253 FD 63 00000000

ICR Interrupt Control Register R254 FE 63 00001111

IVR Interrupt Vector Register R255 FF 63 XXXXXX10

A.7. AID Channel Registers

Mnem. Name Reg. Hex Pg.

AD_DOR Channel 0 Data Register R240 FO 63

AD_D1R Channel 1 Data Register R241 F1 63

AD_D2R Channel 2 Data Register R242 F2 63

AD_D3R Channel 3 Data Register R243 F3 63

AD_D4R Channel 4 Data Register R244 F4 63

AD_D5R Channel 5 Data Register R245 F5 63

AD_D6R Channel 6 Data Register R246 F6 63

AD_D7R Channel 7 Data Register R247 F7 63

A.a. AID Threshold Registers

Mnem. Name Reg. Hex Pg.

AD_LT6R Channel 6 Lower Threshold Register R248 FS 63

AD_UT6R Channel 6 Upper Threshold Register R249 F9 63

AD_LT7R Channel 7 Lower Threshold Register R250 FA 63

AD_UT7R Channel 7 Upper Threshold Register R251 FB 63

-------------- J:5ii ~~~~m~~r::U!~:: 1g/43"

387

INITIALIZATION OF THE ST9

A.9. SCI Configuration Registers

Reset
Mnem. Name Reg. Hex Pg. Value

(Binary)

IVR Interrupt Vector Register R244 F4 24 xxxxxxxx
IMR Interrupt Mask Register R246 F6 24 oxxooooo
ISR Interrupt Status Register R247 F7 24 xxxxxxxx

IDPR lnterrupVDMA Priority Register R249 F9 24 xxxxxxxx
CHCR Character Recognition Register R250 FA 24 xxxxxxxx
CCR Clock Configuration Register R251 FB 24 00000000

BRGHR
Baud Rate Generator

R252 FC 24 xxxxxxxx
Divisor Register (High)

BRGLR
Baud Rate Generator

R253 FD 24 xxxxxxxx
Divisor Register (Low)

A.10. SCI Initialization

Mnem. Name Reg. Hex Pg.
Reset
Value

RDCPR
Receiver DMA Transaction

R240 FO 24 xxxxxxxx
Counter Register

RDAPR
Receiver DMA

R241 F1 24 xxxxxxxx
Address Pointer Register

TDCPR
Transmit DMA Transaction

R242 F2 24 XX XXX XXX
Counter Register

TDAPR
Transmit DMA

R243 F3 24 xxxxxxxx
Address Pointer Register

ACR Address Compare Register R245 F5 24 xxxxxxxx

RXBR
Receive Buffer Register

R248 FB 24 xxxxxxxx
(Read only)

TXBR
Transmitter Buffer Register

R248 F8 24 xxxxxxxx
(Write only)

20/43 LV. ~~~~n!~r::~~~ ---------------
388

INITIALIZATION OF THE ST9

A.11. Watchdog Timer Configuration/Initialization

Reset
Mnem. Name Reg. Hex Pg. Value

(Binary)

EIPR External interrupt Pending Register R243 F3 0 00000000

EIMR External Interrupt Masking Register R244 F4 0 00000000

EIPLR External Interrupt Priority Register R245 F5 0 11111111

EIVR External Interrupt Vector Register R246 F6 0 XXXX0010

WDTLR Watchdog Timer Low Register R248 FB 0 xxxxxxxx
WDTHR Watchdog Timer High Register R249 F9 0 xxxxxxxx
WDTPR Watchdog Timer Prescaler Register R250 FA 0 xxxxxxxx
WDTCR Watchdog Timer Control Register R251 FB 0 00010010

WCR Wait Control Register R252 FC 0 01111111

A.12. SPIInitialization

Reset
Mnem. Name Reg. Hex Pg. Value

(Binary)

SPIDR SPI Data Register R253 FD 0 xxxxxxxx
SPICA SPI Control Register R244 F4 0 00100000

A.13. EEPROM Initialization (ST9040 only)

Reset
Mnem. Name Reg. Hex Pg. Value

(Binary)

EECR EEPROM Control Register R241 F1 0 00000000

---------------~ ~~~~~~::~~
21/43

389

INITIALIZATION OF THE ST9

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS

sbttl " ST9030 registers addresses and contents "

include "c:\st9\bin\symbols.inc"

The reader should refer to the file containing the

declaration of all the bits and registers of the ST9030

for the symbols used in the following listing .

. nlist

;***
;* This program demonstrates the configuration of ST9 peripherals*

;***
;**********************
;*RAM Declaration*
;**********************

prescal_tO :=

val_capt_tO

nb event tO

lg_dma

CPT AD DMA :=
CPT LG DMA .-

ad conv

IT TO LEVEL

IT CAD LEVEL

r2

.-

.-
rr6

RR8

RR8

:=

rr4

rr4

r3

4

6

;·****************************
;*INTERRUPT VECTOR ADDRESSES*

;****************************

CORE IT VECT

TO IT VECT :=
EXT IT VECT

ADC IT VECT

SCI IT

.-
lOh

:=

.-
40h

;*******************
;*STACK Declaration*

;*******************
SSTACK

US TACK

22/43

390

:= 223

191

DOh

.20h

30h

Value of Timer 0 Prescaler

Value of Timer 0 Capture register

Number of Timer 0 event

Length of DMA

DMA Address Register

DMA Counter Register

conversion start address

Timer 0 priority level

A/D converter priority level

Core interrupt vectors

Timer 0 interrupt vectors

External interrupt vectors

A/D.Converter interrupt vectors

SCI interrupt vector

System stack address group D C

User stack address group B

INITIALIZATION OF THE ST9

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)

;********************
;*Group number names*

;********************
BKO .- 0

BK1 1

BK2 := 2

BK3 .- 3

BK4 4

BK5 .- 5

BK6 .- 6

BK7 7

BKB 8

BK9 .- 9

BKA .- 10

BKB .- 11

BKC .- 12

BKD .- 13

EKE 14

BKF .- 15

BK 0 BKO

BK EDT:= BK2 * 2

BK CAD:= BK5 * 2

BK TO BK4 * 2

BK SCI:= BK6 * 2

BK F := BKF

* 2

* 2

free user group

TWD group

A/D group

MFTimer 0 group

SCI group.

paged registers

--------------liii ~~~~m~::~~~n 23/43

391

INITIALIZATION OF THE ST9

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)

;***
;*Declaration of the interrupt vector table*
;***

.text

WDT IT:

24/43

392

.org CORE IT VECT

; start of program

Core interrupt vector

.word

.word

DIVO ; divide by 0 interrupt vector

TOP LEVEL IT; Top level interrupt vector

.org TO IT VECT

.org TO IT VECT + 4

.word

.word

TO CAP

TO COMP

.org EXT IT VECT

.word TEMPO

.org ADC IT VECT

.word RESET START

.word ADC EOC

.org SCI IT

.org SCI IT + 4

.word

.word

REC DATA

TRA HOLD

Timer 0 interrupt vector

unused addresses

Timer 0 capture interrupt vector

Timer 0 compare interrupt vector

External interrupt vector

Watchdog Timer interrupt vector

ADC interrupt vecto~

Analog Watchdog interrupt vector

End of conv. interrupt vector

SCI interrupt vector

unused addresses

receiver interrupt

Transmitter interrupt

INITIALIZATION OF THE ST9

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)

;**********************
;*Start of main module*

;**********************

.org lOOh

RESET START:

MAIN:

ld MODER,#lllOOOOOb

ld CICR,#lOOOOlllb

clr FLAGR

spp #WDT PG

ld WCR, #wden

ld EIMR, #0

ld SSPLR,#SSTACK + 1

ld USPLR,#USTACK + 1

call INIT IO

jxt MAIN

start of code

CLOCK MODE REGISTER

internal stack

no prescaling

external clock divided by 2

CENTRAL INTERRUPT

CONTROL REGISTER

priority level = 7

concurrent mode

disable interrupt

watch dog mode disabled,

no wait states.

mask all channel interrupts.

at reset,Global Counter Enable

bit is active.

load system stack pointer

load user stack pointer

init I/O ports

include your Main program here

25/43

393

INITIALIZATION OF THE ST9

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)

;**
;*Configuration of TIMER 0 I/0 pins and A/D Converter I/0 pins*

proc INIT_IO [PPR]

26/43

394

P3.0 (TOINA) P3.2 (TOINB) INPUT TRISTATE TTL

P3.1 (TOOUTA) P3.3 (TOOUTB) OUTPUT ALTERNATE FUNCTION

PUSH PULL TTL

spp #P3C PG

ld P3COR,#0000llllb

ld P3ClR,#00001010b

ld P3C2R,#00000101b

end of init. P3

; Port 3 control register page

INITIALIZATION OF A/D CONVERTOR INPUTS

P4.7 (AIN7) ALTERNATE FUNCTION OPEN DRAIN TTL

P4.6 (AIN6) ALTERNATE FUNCTION OPEN DRAIN TTL

spp #P4C PG

ld P4COR,#11000000b

ld P4ClR,#llOOOOOOb

ld P4C2R,#l1000000b

end of init. P4

Port 4 control register page

INITIALIZATION OF SCI I/0

P70: Input = Sin.

P71: AF Sout.

P72: AF Txclck.

P73; AF Rxclck.

spp #P7C_PG

ld P7COR,#000011llb

ld P7ClR,#11111110b

ld P7C2R,#00000001b

Port 7 control page.

bit 0 (Sin): IN, TRI, TTL.

bit 1,2,3 (Sout, Txck, Rxck): AF,PP,TTL.

Others : OUT,PP,TTL.

INITIALIZATION OF THE ST9

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)

;***

;*SECTION CODE FOR THE CORE INTERRUPT ROUTINE*

;***

;*INTERRUPT ROUTINE FOR ZERO DIVISION*

DIVO:

nop

ret

;*INTERRUPT ROUTINE FOR TOP LEVEL IT*

TOP LEVEL IT: - -
nop

iret

;*INTERRUPT ROUTINE FOR TIMER WATCHDOG INT*

TEMPO:

nop

iret

--------------~iii ~~~;m~~~~~~
27/43

395

INITIALIZATION OF THE ST9

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS

;***********************
;*DEFINE TIMER 0 MACROS*

;***********************

.macroTO START IT start timer 0, enable interrupts

spp #TOD PG select Timer 0 data register page

and T_TCR,#ccl counter clear bit

or T_TCR,#cen counter enable bit

or T_IDMR,#gtien global interrupt mask

.endm

.macroTO START DMA CAP start timer 0, enable interrupts

and DMA

spp

or

or

.endm

.macroSTOP TO

spp

and

and

.endm

28/43

396

#TOD_PG

T_IDMR,#(gtien

T_TCR,#cen

#TOD_PG

T_IDMR, #gtien

T_TCR,#cen

select Timer 0 data register page

cpOd) ; global interrupt mask

; counter enable bit

stop Timer 0

select Timer 0 data register page

global interrupt mask

counter enable bit

INITIALIZATION OF THE ST9

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)

;**
proc GEST_TO_ITCAPT{

;Configuration of Timer 0 for IT CAPTURE

; TCR: - stop count

- clear on capture

- up count

;TMR: - disable output

- internal clock

- disable bivalue mode
- disable retrigger mode

- disable REGl mode

- continuous mode

- enable REGO mode

;ICR: - EXTA Trigger

- falling edge on EXTA

- EXTB No Operation

- no operation ;OACR-OBCR:

;IDMR:

;DCPR:

;DAPR:

;IVR:

;IDCR:

- Interrupt on capture REGO

- reset value

- DOh

- Interrupt vector lOh = TO IT VECT

- level 4

spp #TOD PG

ld T_TCR,#01001000b

ld T_TMR,#00001010b

ld T_ICR,#01010100b

ld T_PRSR,prescal_tO

ld T_OACR,#llllllOOb

ld T_OBCR,#llllllOOb

ld T_FLAGR,#OOh

ld T_IDMR,#OOlOOOOOb

spp #TOC_PG

ld TO_DCPR,#OOh

ld TO _DAPR, #0

ld TO_IVR,#TO IT VECT

ld TO_IDCR,#IT_TO_LEVEL

TO START IT

Timer 0 data register page

TCR

TMR

ICR

PRE SCALER

OACR

OBCR

FLAGR

IDMR

Timer 0 control register page

DCPR

DAPR

IVR interrupt vector 14h

priority level 4

start Timer 0, enable interrupt

29/43

397

INITIALIZATION OF THE ST9

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)

;***
proc GEST_TO_EVENT{

Configuration of Timer 0 into EVENT COUNTER MODE

; IT COMPARE is serviced when nb event tO is reached

;TCR:

;TMR:

;ICR:

;OACR-OBCR:

;FLAG:

;IDMR:

;DCPR:

;DAPR:

;IVR:

;IDCR:

;COMPO

- Stop count

- Up count

- Clear on compare

- Disable output 0-1

- no Bivalue mode

- no Bicapture

- Internal clock

- Disable retrigger mode

- Continuous mode

- EXTB Ext.Clock

- Falling edge on EXTB

- EXTA I/O

- No operation

- reset value

- IT compare 0

- OOh

- OOh

- interrupt vector lOh TO IT VECT

- priority level 4

spp #TOD_PG Timer 0 data register page

ldw T_CMPOR,nb_event tO

ld T_TCR,#OOlllOOOb

ld T_TMR,#OOOOOOlOb

ld T_ICR,#01000010b

ld T_PRSR,prescal_tO

ld T_OACR,#llllllOOb

ld T_OBCR,#llllllOOb

ld T_IDMR,#OOOOOlOOb

COMPO

TCR

TMR

ICR

PRE SCALER

OACR

OBCR

IDMR

_aa_M_a ________________________ ~~~~~~~~9n
398

INITIALIZATION OF THE ST9

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)

spp #TOC_PG Timer 0 control register page

ld TO_DCPR, #0 DCPR

ld TO_DAPR, #0 DAPR

ld TO_IVR,#TO IT VECT IVR -
ld TO_IDCR,#IT_TO_LEVEL IDCR

TO START IT

;***
proc GEST_TO_DMA{

;Configuration of TimerO in IT CAPTURE associated to the DMA mode

;the length of DMA is given by lg_dma

;TCR: - Stop count

- no clear

- Up count

;TMR: - disable interrupt

- no bivalue mode

- no capture

- external/internal clock

- disable retrigger mode

- continuous count

; ICR: - EXTA TRIGGER

- Falling edge on EXTA

- EXTA no operation

;OACR-OBCR: - no operation

- no interrupt, DMA / CAPTURE REGO ;IDMR:

;DCPR:

;DAPR:

;IVR:

;IDCR:

- DMA ext. data/program memory- DMA counter

- DMA external program memory - DMA address

- interrupt vector lOh = TO IT VECT

- interrupt dma priority level 4

spp #TOD PG select Timer 0 data register

ld T_TCR,#OlOOlOOOb TCR

ld T_TMR,#00001010b TMR

ld T_ICR,#01010100b ICR

ld T_PRSR,prescal_tO PRE SCALER

ld T_OACR,#llllllOOb OACR

ld T_OBCR,#llllllOOb OBCR

----------- llfi SCS·THOMSON
• 1 •· ~Uii:Gil©rn~rnli:'U'Gil©ltllUII:il\

31/43

399

INITIALIZATION OF THE ST9

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)

ld T_FLAGR,#OOh

ld T_IDMR,#OOlOOOOOb

spp #TOC PG

ld TO_DCPR,#CPT_LG DMA

ld TO_DAPR,#CPT_AD_DMA

ld TO_IVR,#TO IT VECT

ld TO_IDCR,#IT_TO_LEVEL

ldw CPT_LG_DMA,lg_dma

ldw CPT_AD_DMA,#OffOOh

TO START DMA CAP

FLAGR

IDMR

select Timer 0 control register

DCPR lg. DMA = 4ch = rrl2

= RR76

DAPR ad. DMA

= RR72

IVR

priority level 4

init DMA counter

48h rr8

DMA address in ROM is OFFOOh

enable Interrupt. and DMA

;**

Example for Timer 0 and Timer 1 in parallel mode

A Toggle is generated on TOOUTB and TlOUTB on each overflow

;**
;******************
;initialize TIMER 0

;******************

TIMERO::

32/43

400

spp #TOD PG

srp #BK F

ld t_tcr,#00011000b

ld t_tmr,#l0001000b

select timer 0 register page

select working register

Counter clear

Software Up

Enable output 1

Disable output 0

Not bivalue mode

REG 1 monitor counter value

REG 0 Capture

Internal clock

Retrigger mode

Continuous mode

INITIALIZATION OF THE ST9

.APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)

ld t_icr,#OO No action on input pins

ld t_prsr,#OO No prescaling

ld t_oacr,#ll111100b No action on OUTPUTO

ld t_obcr,#11110100b Toggle on OVF

ld t_flagr,#OO

ld t_idmr,#OO

.macroTO START Start TIMER 0

spp #TOD_PG

or t_tcr,#cen

.endm

;******************
;initialize TIMER 1

;******************

TIMER1::

spp #TlD PG

srp #BK F

ld t_tcr,#00011000b

ld t_tmr,#10001100b

ld t_icr,#OO

ld t_prsr,#OO

ld t_oacr,#11111100b

ld t_obcr,#11110100b

ld t_flagr, #00

ld t_icimr,#OO

select Timer 0 data register page

counter enable bit

select timer 1 register page

select working register

Counter clear

Software Up

Enable output 1

Disable output 0

Not bivalue mode

REG 1 monitor counter value

REG 0 Capture

Parallel mode

Retrigger mode

Continuous mode

No action on input pins

No prescaling

No action on T10UTA

Toggle on OVF T10UTB

--------------~ ~~~~m~m:rr~~~ 33/43

401

INITIALIZATION OF THE ST9

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)

.macroT1 START Start 'nMER 1

spp

and

or

#T1D PG

t_tcr,#ccl

t_tcr,#cen

select Timer 1 data register page

counter clear bit

counter enable bit

.endm

or CICR,#lOOOOOOOb Global counter enable

loop

;***
INTERRUPT SUBROUTINES FOR TIMER 0

;***
;These subroutines are serviced on TIMER 0 Interrupts. They come from:

TO IT VECT + 4 for both - IT /CAPTURE

and - DMA IT/CAPTURE end of block

TO IT VECT + 6 for - IT/COMPARE

;***

TO

Timer 0 CAPTURE Interrupt subroutine:

- IT Capture on event on EXTA

- DMA IT/CAPTURE end of block

CAP:

spp #TOD PG

tm T_FLAGR,#ccpO

jxz RESET START

tm T_FLAGR,#ocpO

jxnz RESET START

and T_FLAGR,#-cpO

and T_FLAGR,#-ocpO

iret

Timer 0 data register page

mask successful capture

this is not an IT CAPTURE

== Pb

overrun on Capture 0 ?

yes == RESET

reset successful capture flags

reset overrun on capture 0 flag

return from interrupt

34/43

402

INITIALIZATION OF THE ST9

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)

;**
;Timer 0 COMPARE interrupt subroutine:

- IT / COMPARE

TO COMP:

spp #TOD_PG

tm T_FLAGR,#cmO

jxz RESET START

tm T_FLAGR,#ocmO

jxnz RESET START

and T_FLAGR,#-cmO

and T_FLAGR,#-ocmO

Timer 0 data register page

mask successful compare

RESET if it is not

an IT COMPARE

overrun on Compare 0 ?

yes == RESET

reset successful compare bit

reset overrun compare 0 bit

iret return from interrupt

;******** END OF TIMER 0 CONFIGURATION EXAMPLES ************

35/43

403

INITIALIZATION OF THE ST9

APPENDIX D. EXAMPLES OF AID CONVERTOR CONFIGURATIONS

;***

proc SG_CONV{

A/D Converter is configured as follows:

- one shot conversion

- power up mode

- IT upon End of Conversion

- Start mode

- Autoscan from channel number AD CONV

- No INT upon Analog Compare

spp #ADO PG

ld AD_CLR,#OOOOOlOOb

ld AD_CRR,#OOh

ld AD_ICR,#OOlOOOOOb

or AD_ICR,#IT_CAD_LEVEL

ld AD_IVR,#ADC_IT_VECT

ld rO,ad_ conv

swap rO

ref

rlc rO

or AD _CLR,rO

ld RlO, #40

loop [RlO] {

nap

or AD_CLR,#st

A/D converter register page

Control logic register

power up

Stop

Single mode

Channel 0

Compare result register

Interrupt control register

mask analog watchdog

enable end of conversion

Priority level = 6

Interrupt vector register

AD CONV channel number

mask for channel number

start conversion address

wait 60~s before start the first

conversion

start conversion

36/43 ~ SGS·THOMSON ----------------- ~"'f/. i':IJO!:I'J@ru~~©'D'I:l@i'IO!:~
404

INITIALIZATION OF THE ST9

APPENDIX D. EXAMPLES OF AID CONVERTOR CONFIGURATIONS (Continued)

;***
A/D END OF CONVERSION INTERRUPT SUBROUTINE

ADC EOC:

spp #ADO PG

and AD_ICR,#-(ecv I awd)

and AD_CLR,#-(st I pow)

iret

A/D converter register page

converter flags

end of conversion pending flag

analog watch_dog pending flag

stop converter

power down mode

37/43

405

INITIALIZATION OF THE ST9

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS

;***********************
; SCI

;constant declarations.
;***********************
PRIORITY SCI
DIV 9600

DIV 4800
DIV 2400
DIV 1200

VC 9600
Return
LNG DMA SCI

DEPART DMA SCI

NUM TDAP
NUM TDCP

data
rec_ptr

rec_cpt

:=
OOdh
:=

:=

:=
:=

:=
:=

:=

4

'78

156
312
614

4

OFh
OAOh

6
7

r2
rr6

rr8

SCI priority level
BRG divisor for a 9600 baud clock
with a 12 MHz system clock.
To generate a 4800 bds clock.

To generate a 2400 bds clock.
To generate a 1200 bds clock.

Character for 9600 bauds.

DMA length.
Start DMA address
BK DMA SCI reserved for this.

Contains DMA transmit address pointer value.
Contains DMA transmit address counter value.

data hold register

;**
function:

- I/O ports initialization.
- Speed and frame initialization.
- Compare register initialization.
- Interrupt and DMA configuration.

Interrupt request:

- Receive error.
- Receiver data.

- end of DMA transmit.

inputs: none

outputs:none

38/43

406

INITIALIZATION OF THE ST9

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)

;***
proc !NIT SCI

;-- Communication format configuration.

Communication format is configured as follows:

- 8 data bit transmitted or received character.
- 1 stop bit included in data format.

- Parity even.

- 9600 Baud communication rate.

SCI configuration.

- No ~ddress bit included between the parity bit and the stop bit.
- Address mode: Address interrupt if character match.

- DMA permits transmission from EEPROM memory to serial line.

- Receiver data interrupt unmask (to detect a received data item) .

- Transmitter data interrupt unmask (to detect DMA end of block) .
- Receiver error interrupt unmask (to detect overrun, parity or framing error) .

spp
srp

ld

ld

ld

ld

#SCil PG ; SCI register page.

#BK_F To address SCI registers with r.
s_brglr,#OO ; Reset SCI

s_chcr,#(wl8 I sblO 1 pen 1 ep 1 am)

8 data bit.

s_ccr,#txclk

s_acr,#RETURN

1 stop bit.

Parity even.

No address bit.

AME = 0, AM = 1.

= IT if character match.

Xmit clock source = BRG ..
Receiver clock source = BRG.

16x asynchronous mode.

End Of Command acquisition.

39/43

407

INITIALIZATION OF THE ST9

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)

Interrupt and DMA configuration.

ld s_ivr,#SCI_IT; Interrupt vector register.

ld s_tdcpr,#NUM_TDCP ; Tx DMA counter in register file.

ld s_imr,#(rxdi I rxa I rxe)

ld s_idpr,#PRIORITY_SCI

ld s_brglr,#DIV_9600

Mask Transmitter data interrupt.

Unmask Receiver data interrupt.

Unmask Receiver data error interrupt.

Unmask Receiver address interrupt.
Reset of the pending bits.

Mask transmitter DMA request.

SCI exeptions priority level.
BRG divisor for 9600 bauds, start SCI

! !! with a 24 Mhz external clock,
! ! ! or 4800 Bds (12 MHz external clock.)

} ;-- end of proc.

:***
SYNC COM:

proc SYNC COM

spp #SCil_PG
srp #BK_F

ld R#NUM_TDAP,#(DEPART_DMA SCI)

ld R#NUM_TDCP,#(LNG_DMA_SCI)
or s_idpr,#txd

ld s_imr,#txdi

End of proc.

DMA pointer initialisation.

DMA counter initialisation.

Unmask transmitter DMA request.
unmask transmitter data interrupt.

Unmask Transmitter data interrupt.

Mask Receiver data interrupt.

Mask Receiver data error interrupt.

_40_14_3 ___________ l:ii. ~~~~m&~:J?art
408

INITIALIZATION OF THE ST9

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)

REC DATA:

REC DATA:

pushu

pushuw

Receive interrupt.

PPR

RPP

spp #SCil PG
srp #BK SCI

ld data, S_RXBR

and data,#07Fh

ld rec_ptr(rec_cpt),data

incw rec_cpt
cpw rec_cpt,#7

and s _ ISR, #-rxdp

popuw

popu

iret

RPP

PPR

save page pointer.

save register pointer pair.

SCI register page.
16 registers reserved for SCI.

Read the data received.

Mask the parity bit.

Storage of the received data.

End of the table.

Reset receiver data pending flag.

restore register pointer pair

restore page pointer

41/43

409

INITIALIZATION OF THE ST9

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)

;***
TRA HOLD: End of DMA transmitter Interrupt

Function:

- Check Interrupt source.

- Disable DMA mask .

- Enable Receiver interrupt mask.

TRA HOLD:

pushu

pushuw

PPR

RPP

spp #SCil PG

srp #BK F

tm s imr,#txeob

if
-

[SETZ]

bres

bres

ld

else {

jx

s txeob

S txhem

s imr, #- (-

RESET START

end of if.

popuw

popu

iret

RPP

PPR

rxdi I

save page pointer.

save register pointer pair.

SCI register page.

To address SCI registers with r.

If a Transmitter End Of Block interrupt.

Dis. Transmit end of block pending bit.

Reset transmit holding reg. empty

rxe)

Unmask Receiver data interrupt.

Unmask Receiver data error interrupt.

Mask Transmitter data interrupt.

If not a normal interrupt source.

restore register pointer pair

restore page pointer

42/43 r.:::= SGS·THOMSON ----------------- ~"f/. !illO©I'J@ffi~rn©\ri'J@i!Oi:~
410

INITIALIZATION OF THE ST9

APPENDIX F. EXAMPLES OF WATCHDOG TIMER CONFIGURATIONS

;***
;INIT_WDT: This procedure initializes and starts Watchdog Timer.

Watchdog mode is disabled.

Timer will down count in continuous mode.

It will generate an interrupt on channel AO at each End Of Count.

See the external interrupt parameters initialization.

;***
proc INIT WDT

spp

ld

clr

#WDT PG.

wcr,#wden

wdtpr

ldw WDTR, #3003

or wdtcr,#stsp

};--End of proc.

To access in paged registers with r.

watch dog mode dis., no wait states.

333 ns(sys.clock=12 MHz) min. count,

prescaler = 0.

(3003 X 333) ns 1 ms.

Timer starts down counting.

Continuous mode.

Watch Dog disabled.

Input section disabled.

Output disabled.

Interrupt AO on Timer EOC.

Top Level Interrupt on SW TRAP.

;**
;*Interrupt on channel AO initialization*

;**

spp #WDT PG

srp #BK_F

clr eipr

nop

ld eivr,#EXT_ IT VECT

ld eiplr,#OFEh

ld eimr,#iaOsm

page 0 reg. direct addressing mode.

Dis. all external int. pending bits.

See WARNING (Tech. manual-Chap. 8).

External interrupt vector.

IAOS - TLIS = 00

... AO int. will be on WDT End Of Count.

Priority level: group INTAO,INTAl 4,5.

Unmask Interrupt AO channel

(WDT End Of Count) .

43/43

411

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPLICATION NOTE

USING THE 12C-bus PROTOCOL WITH THE ST9
Myriam Chabaud and Alan Dunworth

INTRODUCTION

The Serial Peripheral Interface (SPI) in the ST9 has been designed to handle a wide variety of serial bus
protocols, including SBUS, IMBUS, and 12C-bus. Certain standard 12C-bus features have not been directly
implemented in hardware, but may be realized with simple software routines, based on the SPI, contained
in the standard ST9 core. This Application note gives an example of such routines, suitable for interfacing
the ST9 with a serial memory device.

CHARACTERISTICS OF THE 12C-bus

The 12C-bus comprises two bidirectional lines, one for data signals (SDA) and one for clock signals (SCK).
Both the SDA and the SCK lines must be connected to the positive supply via pull-up resistors (Figure 1).

Figure 1. Connection of ST24C02 and ST9 in 12C-bus

V D D

24M Hz 2.7KO) 2. 7KO

±, .. D

"'' ± ! '""'
Voo OSCOUT OSCIN

) 4.7KO
SDO 1---< VDD

SDI SDA AO r--

Rst/Vpp ST9 ST 24C02 At 1----<

A2 1----< 1 OnF
lO)LF

.I SCK SCL V s:;(GND) 1----<

Vss 1---<

l /}

VR001543

Note: Although the ST24C02 2K bit EPROM is shown, this circUit will work with serial EEPROMS up to 16K btt capacity (ST24C16) and all
others 1n 1he ST24Cxx and ST25Cxx families.

AN415/1092 1/34

413

USING THE 12C-bus PROTOCOL WITH THE ST9

The following basic definitions are applied:

*MASTER:

The device which initiates the transfer, generates the clock signals, and terminates the transfer is referred
to as the Master. In our present application the ST9 always acts as the Master.

*SLAVE:

This is the device addressed by the Master (always the serial memory).

*TRANSMITTER:

This is the device which sends data to the bus. In our application the ST9 acts as Transmitter when it is
writing data in the serial memory. Conversely, the serial memory serves as Transmitter when the ST9 is
reading data from memory.

*RECEIVER:

This is the device which receives data from the bus. In our application this will be the ST9 when reading
data, or the serial memory when the ST9 commands a write operation.

The following protocol has been defined:

* DATA TRANSFER

A data transfer may be initiated only when the bus is not busy.

* DATA LINE STABLE:

During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the
data line while the clock is HIGH will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Figure 2. Data Transfer Sequence of the Serial Bus

CLOCK~~
I I I I l II I I

: : I I I II : :
I I I I I II I I
I I I I I II I I

HIGH

LOW

I I I I 1 II I I
I I I I I II I ,.....;.'--- HIGH

DATA~~~~ l/l i ~~ '·--!----- LOW
,"-v--", I t---" ~

START CONDITION/ /CHANGE OF STOP CONDITION

*START DATA TRANSFER:

1 •DATA ALLOWED
''--y----/'

DATA LINE STABLE
DATA VALID

VR001576

A change in the state of the data line from HIGH to LOW, while the clock is HIGH, defines the START
condition.

* STOP DATA TRANSFER:

A change in the state of the data line from LOW to HIGH, while the clock is HIGH, defines the STOP
condition.

_21_34 _____________ ~ ~~~~m~::~~~

414

USING THE 12C-bus PROTOCOL WITH THE ST9

* DATA VALID:

The state of the data line represents valid data when, after a START condition, the data line is stable for
the duration of the HIGH period of the clock signal. The data on SDA may be changed during the LOW

_period of the clock signal. There is one clock pulse for each bit of data.

* DATA TRANSFER:

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number
of data bytes, transferred between the START and STOP conditions, is limited to eight bytes in the ST24C02
Memory device ERASE+ WRITE mode, and is not limited in the READ mode.

*ACKNOWLEDGE:

Each byte of eight bits is followed by an acknowledge bit. This acknowledge bit is a low level put on the
SDA line by the Receiver. At the same time the Transmitter releases the SDA line to the High impedance
state, and thE; MASTER device generates an additional 9th acknowledge-related clock pulse.

The receiving device acknowledges the receipt of the 8-bit byte by pulling the SDA down so that is stable
LOW during the 9th clock pulse. Of course, set-up and hold-times must be respected.

The ST9 when acting as a Master Receive device, i.e. during serial memory READ operations, must signal
an end of data by not generating an acknowledge on the last byte that has been clocked out of the slave.
In this case the serial memory must leave the SDA line high to enable the Master to generate a STOP
condition.

Figure 3. Acknowledgement and the 9th Clock Pulse

CLOCK PULSE FOR
START CONDITION ACKNOWLEDGEMENT

SCLK FROM -----+-_ r-:-'\. r-:-'\. 1

MASTER l "\...._/ 1 "\...._/ 2 '___J ~ O
I II
I II
I II
I II
1 II
1 II

DATA OUTPUT I II

BY TRANSMITTER~~
II
11
II
II
II
II

0

-------------1:~ DATA OUTPUT

BY RECEIVER

VR001577

3/34

415

USING THE 12C-bus PROTOCOL WITH THE ST9

BASIC SOFTWARE OPERATIONS

The following aspects of the 12C-bus protocol have not been directly implemented but must be simulated
in software.

Generation of START Conditions,

Generation of STOP Conditions,

Generation of the Acknowledge pulse (9th clock signal),

Generation of the Acknowledge , when the ST9 acts as a Receiver, i.e. in READ mode.

Test of the Acknowledge from the receiver, when the ST9 acts as a Transmitter, i.e. in WRITE mode.

In order to implement these features it is necessary to drive SDA and/or SCK HIGH or LOW in the correct
timing sequence.

The SDO and SCK signals are defined as Alternate Functions. These pins are configured with Open-Drain
outputs and TTL inputs. The SDI signal is defined as an INPUT.

The SPI unit is enabled or disabled using the flag SPEN, bit 7 in SPICR, the SPI Control Register.

When the SPI is disabled, both SCK and SDO are released to the High impedance state. The presence of
Pull-up resistors, as shown in Figure 1, effectively defines both SCK and SDA as HIGH, whenever the SPI
is disabled. Note however that SDA may be driven low either by the actions of peripherals connected to
the SDA line, or by appropriate action of the ST9 on the SDO line when it is defined as a normal output.

When the SPI is enabled (SPEN = "1 "), it may be in either an active or passive state. The active state is
entered by loading a byte of data into the SPI Data register. This automatically causes the SPI to generate
a sequence of 8 clock pulses, during which data is shifted out on the SDO line, and input Data on the SDI
input is clocked into the Serial input register. On completing this sequence the SPI will revert to its passive
(Rest) mode.

When the SPI is in its Rest mode, the SCK clock output is in a state selected by CPOL, bit 3 of SPICR.
Thus with CPOL set to a value of "1" the SCK output will be LOW. The value of SDO will be LOW
(non-programmable) when the SPI is enabled but inactive.

If the SPI is enabled and in the Rest (passive) state SDO and hence SDA will be LOW.

If the SPI is disabled SDOwill be released to HIGH impedance, and hence to the HIGH level by the presence
of the Pull-up resistor. It may be pulled LOW by loading a Zero into the Port 2 Pin 1 output buffer and then
specifying this pin as a normal Port output pin.

Having established these basic preliminaries we can proceed to discuss the provision, by software, of basic
12C-bus operations.

4/34 r== SCS-THOMSON ------------- A."'f/. liliU!:WJ@~~~I!:~WJ@IIJUii:~
416

USING THE 12C-bus PROTOCOL WITH THE ST9

SIMULATION OF BASIC 12C-bus OPERATIONS

Using the basic operations described in the above Sections the various 12C-bus Protocol features may be
implemented as follows.

Generation of START Conditions

The generation of a START condition is implemented in Procedure INIT _START _r2c (Appendix A).

a) Disable the SPI unit putting SDA and SCK in the High-impedance state.

b With the SPI disabled and SCK HIGH, pull the SDO line LOW by respecifying SDI as a normal
output.

c) Hold the above condition for a period of -5 11s by calling the DELAI Macro (see Appendix A).

d) Enable the SPI, specifying SCK to the rest clock state (LOW).

e) Respecify the SDO output as an Alternate Function.

Generation of STOP Conditions

The generation of a STOP condition is implemented in Procedure GEN _STOP (see Appendix A).

a) Pull the SDA line LOW by respecifying SDO as a normal Port output.

b) Release l?CK to HIGH by disabling the SPI. Note that SDA will remain LOW.

c) Hold this condition for -5 !lS using DELAI Macro (see Appendix A) so as tb meet the set-up
lime specification

d) Respecify SDO as an Alternate Function and hence allow SDA to be pulled HIGH by the Pull-up
resistor.

Generation of 9th Clock Pulse with Acknowledge Test

After the transmission of 8 Data bits a 9th Clock Pulse may be generated and the Acknowledge tested as
implemented in Procedure TEST_ACK (see Appendix A).

a) Release SCK and SDA to the HIGH impedance state by disabling the SPI.

b) Wait until the SCK line goes HIGH.

c) Test for LOW on the SDA line placed by the Receiver (Slave).

d) Hold the SCK line HIGH for 5 !l5 using DELAI Macro.

e) Force SCK and SDA to LOW by enabling the SPI.

Generation of 9th Clock and Acknowledge

After the reception of 8 Data bits a 9th Clock Pulse may be generated and an Acknowledge asserted as
implemented in Procedure GEN_ACK (see Appendix A).

a) Pull the SDA line LOW by respecifying SDO as a normal Port output.

b) Release SCK to HIGH by disabling the SPI. Note that SDA will remain LOW.

c) Hold the SCK line HIGH for 5 !lS using DELAI Macro.

d) Force SCK to LOW by enabling the SPI.

e) Finally respecify the SDO Port pin as an Alternate Function.

--------------------------~~~~~~~::~ ------------------------~ __ 34
417

USING THE 12C-bus PROTOCOL WITH THE ST9

TYPES OF TRANSFER OPERATION SUPPORTED

The ST9 supports the following three types of transfer with an electrically erasable serial memory
(EEPROM) which features an 12C-bus protocol, e.g. ST24C02.

Random Write (1 to 8 bytes),

Random Read (1 to N bytes),

Current Address Read (or Verify), (1 toN bytes.)

Random Write Mode

The seriaii2C-bus protocol for Random Write Operations is shown in Figure 4 (single byte) or Figure 5 (for
up to 8 bytes).

Figure 4. 12C-bus Protocol for Random Write Mode (1 byte)

BUS ACTIVITY:
MASTER

SDA LINE

BUS ACTIVITY:

s
T S
A SLAVE T
R ADDRESS WORD ADDRESS DATA 0
T ,----"---v----'.._________,....------A--- P

EfUl0.1:::::::11:::::::1Fr
A
c
K

A
c
K

A
c
K

VR001578

Figure 5. 12C-bus Protocol for Random Write Mode (N bytes)

s
T S

BUS ACTIVITY:
MASTER

SDA LINE

BUS ACTIVITY:

A SLAVE T
RT ADDRESS WORD ADDRESS(n) DATA n DATA n+l DATA n+7 0
~,....------A--- ,....------A---,....------A---,....------A--- p

HlJl 0 I I : : : : : : : II : : : : : : : II : : : : : : : I D2: : : : : I [f
A
c
K

A
c
K

A
c
K

A
c
K

VR001579

To Write a single byte the Master ST9 has to transmit a sequence of 3 bytes representing successively:

a) Slave Address: 7 bits + 8th bit = "0" signifying Transmit operation.

b) Word Address: 8 bits.

c) Data value: 8 bits.

The ST9 Master generates the START condition and then transmits the sequence of 3 bytes by successively
loading them into the SPI Data Register. Each such Data load generates a sequence of 8 clocks and 8

_6,_34 ____________ /jfi. ~~~m~r::i!~~
418

USING THE 12C-bus PROTOCOL WITH THE ST9

Data bits, after which the ST9 generates a 9th clock pulse and tests for an Acknowledge from the Slave.
After the data pulse has been received and Acknowledged by the Slave the Master terminates the transfer
by generating a STOP condition.

To Write a page of N bytes (1< N> 8) the MasterST9 has totransmitthe above sequence of 3 bytes followed
by the remaining N - 1 data bytes. The Slave Device contains an 8-bit address pointer, the 31ow order bits
of which are incremented by 1 after each Read/Write operation with the 5 high order bits remaining constant.
Thus a page of up to N = 8 bytes may be written in this way.

The Transfer sequence proceeds as described above except that the Slave continues to accept data words
for writing to sequential locations until such time as the Master signals end of Transmission by sending a
STOP condition.

Random Read Mode

The seriaii2C-bus protoc~l for Random Read Operations is shown in Figure 6.

To Read a single byte the Master ST9 has to transmit a sequence of 3 bytes representing successively:

a) Slave Address: 7 bits+ 8th bit= "0" signifying Transmit operation.

b) Word Address: 8 bits.

c) Slave Address: 7 bits+ 8th bit= "1" signifying Receive operation.

Figure 6. 12C-bus Protocol for Random Read Mode (N bytes)

s s
T T

BUS ACTIVITY:
MASTER

SDA LINE

A A
R SLAVE R SLAVE

T~~n)r~~~

HUl 0 . I : : : : : : : I ffiJlD II : : : : : : : II : : : : : : : II· · ·
A A A A A

BUS ACTIVITY: c c c c c
K K K K K

s
T

DATA n+X 0
,..-----A---. p

···I:::::: :18
VR001580

7/34

419

USING THE 12C-bus PROTOCOL WITH THE ST9

The ST9 Master generates the START condition and then transmits a dummy Write operation comprising
the Slave Address byte, followed by the Word Address. Both these byte operations are followed by a 9th
clock pulse and a concurrent test for Slave Acknowledge.

At this point the Master Transmitter must become the Master Receiver. This is achieved by sending another
START condition, followed by the retransmission of the Slave Address with the 8th bit set now to "1" to
indicate that the subsequent data transfers are from the slave to the ST9 Master.

From this point on the Slave will provide words addressed in sequence as long as the Master continues to
Acknowledge receipt of data. Note that the address counter for Read operations increments over all 8
address bits, thus enabling the entire memory to be Read in one operation. The Master can terminate the
transfer at any time by generating a STOP condition instead of an Acknowledgement.

Current Address Read Mode

In this alternative Read mode the Master reads from memory at the last location referenced in either Read
or Write mode.

The seriaii2C-bus protocol for Current Address Read Operations is shown in Figure 7.

To Read any number of bytes the Master ST9 has to transmit a single byte.

Device Address: 7 bits +8th bit= "1" signifying Receive operation.

The ST9 Master generates the START condition and then transmits the Slave Address byte. At this point
the Master now issues an Acknowledge indicating that it requires additional data.

From this point on the Slave will provide words addressed in sequence as long as the Master continues to
Acknowledge receipt of data. The Master can terminate the transfer at any time by issuing a STOP condition
instead of an Acknowledgement.

Figure 7. 12C-bus Protocol for Current Address Read mode (N bytes)

s
T
A SLAVE

BUS ACTIVITY: R ADDRESS DATA n DATA n+1
MASTER T~~~

s
T

DATA n+X D
~p

SDA LINEl....I....I.I...L..L.--=-:_: __ 1 : : : : : : : I B
BUS ACTIVITY:

A
c
K

A
c
K

_81_34 ___________ W'/, SGS-1liOMSON
.,, • lii<lo!!:OJ©~~rnl!:vlil©IT!D~~

420

A
c
K

VR001581

USING THE 12C-bus PROTOCOL WITH THE ST9

EEP _MAN: AN 12C-bus PROTOCOL EEPROM MANAGER

Appendix A contains a detailed Assembler listing of a representative example of an EEPROM manager for
a device respecting the 12C-bus serial protocol. This example is not intended to be definitive but should be
taken as illustrative example of the use of the ST9 in such applications. Modifications and extensions,
depending on the particular application, will readily occur to the Application Engineer, e.g. the use of the
ST9 stacks as an alternative mechanism for transferring data and parameters between the Manager arid
the calling program. Note that Appendix A makes use of a number of Macros which are separately listed
and defined in Appendix C.

The EEP _MAN/ Calling Program Interface

A calling program interfaces to EEP _MAN using four registers for calling parameters and a register-file for
data.

Parameter/ Transfer-Status Registers

A call to EEP _MAN is initialized by loading parameter values into three registers, viz. EEP _ FUNCT, EEP ADD,

and NB _BYTES. The status of a current transfer can be monitored by reading a fourth register,
STAT_ EEP, in which EEP _MAN records a value giving the status of the EEPROM device.

EEP_FUNCT Register, R3.

This register is loaded with one of the following values to specify the mode of data transfer required:

1: READ FUNCT: Random READ mode.

2: WRITE FUNCT: Random WRITE mode.

3: VERIFY FUNCT: Current Address (Verify) mode.

EEP _ADD Register, RO.

This register should be loaded with the value of the EEPROM byte starting address for Random
READ/WRITE operations. For a current address (Verify) operation the contents of this register is a
Don't-Care value.

NB_BYTES Register, R6.

This register should be loaded with the number of bytes, #N, which should be transferred in the operation.
This value may have a value from 1 to 8 for Write operations, or 1 to 256 for READ operations.

STAT_EEP Register, R4.

EEP _MAN loads this register with one of the following values to specify the current EEPROM Status.

0: EEP OK: The EEPROM is OK.

1: LECT ON:

2: VERIF ON:

3: ECR ON:

4: NO ACK:

The EEPROM is reading a byte (random address mode).

The EEPROM is reading the current byte.

The EEPROM is programming a byte (random address mode).

The EEPROM has not Acknowledged a byte transferred from the ST9

SOh: EEP FREE_ MASK: The EEPROM is available for a new operation.

9/34

421

USING THE 12C·bus PROTOCOL WITH THE ST9

Transfer of Data Values

DATA_ TABLE Register File

A register-file, starting at R32 and of size #N should be reserved for READNERIFY operations, or loaded
with data to be transferred to the EEPROM for a WRITE operation. The first byte to be transferred should
be loaded into register R31+#N, and the last byte should be loaded into register R32.

EEP MAN Data Transfer Initialization Routines

After loading the Parameter registers and setting up and, if appropriate, loading the Data table, the calling
routine tests STAT_ EEP to check that the EEPROM is free, and then calls Procedure EEP _MAN.

This procedure first saves the byte address counter value, NB _BYTE, specifies the Port 2 pins SDO and
SCK as Alternate Functions, and SDI as an input, and then calls one of the three main initializing routines
READ_ EEP, VERIF _EEP, or WRITE _EEP, depending on the value transferred in register EEP _FUNCT.

These three procedures essentially carry out identical functions. After verifying that the EEPROM is not
busy, they enable the SPI interrupt, generate a START condition, and transfer the EEPROM device address
by loading this value into the SPI Data Register, SPIDR.

Note that the EEPROM Device Address is 7 bits long together with an eight bit which is set to "0" for READ
or WRITE operations, and set to "1" for VERIFY operations. In addition, a value of "1" is loaded into the
Transaction Status Register, STAT_ TRANS_ SPI to indicate that the Device Address has been transferred.
This register is loaded with an appropriate identifying value each time the SPI Data Register is loaded.

STAT_TRANS_SPI Register, R5.

This register serves as an internal Status register, used by EEP _MAN and its associated routines, to
maintain a record of the nature of the current ST9 to EEPROM transfer.

1: T ADD SLAVE: The EEPROM device address has been transferred.

2: T ADD EEP: The EEPROM byte address has been transferred.

3: TRANS_WR_DATA: A WRITE byte has been transferred.

4: TRANS_RD_DATA: A READ byte has been transferred.

After initiating a byte transfer by loading the SPI Data Register, SPIDR, a return is made to the calling
routine. At the completion of the byte transfer (8 SCK clock pulses) the SPI raises an interrupt on channel
BO (associated to external interrupt INT2).

10/34 ~ SliS·THOMSON -------------- A."'f/. li:\IU!:OO@~~~!:~OO@IiilU!:;!
422

USING THE 12C-bus PROTOCOL WITH THE ST9

The SPIInterrupt Service Routine

This routine is called at the termination of the transmission of each byte representing a Device Address,
Word Address, READ data, or Write data. The action effected by this routine (Procedure IT_ END_ TRANS,

see Appendix A) depends upon the values contained in the following registers:

1: STAT_TRANS SPI Register, R5.

2: STAT_ EEP Register, R4.

3: NB _BYTES Register, R6.

4: EEP _FUNCT Register, R3.

The required action depends on the nature of the previously transferred byte, indicated by the value
contained in STAT_ TRANS_ sPr. In the case of data byte transfers the next action also depends on whether
the required number of bytes has been transferred, as indicated by the value of NB _BYTES.

The organization of IT_ END_ TRANS is illustrated by the flow diagram of Figure 8. This will be described
by considering in detail the logical flow of events associated with each of the three modes of data transfer.

Random Write Mode

Figure 5 illustrates the sequence of byte transfers involved in writing N bytes in Random Write Mode,
observing the 12C-bus protocol.

(i) Transmission of Slave Device Address.

This operation is initiated by Procedure WRITE_ EEP which generates a START condition, loads the Device
address (with the 8th bit set to 0) in SPIDR, thus initiating the transfer, and then returns to the calling
program.

In addition, this routine loads the following values into the Status Registers:

STAT TRANS SPI

STAT EEP

<-1 (#T_ADD_SLAVE)

<-3 (#ECR_ON)

(ii) Transmission of Word Address.

After transmission of the 8 bits of the Device Address, an Interrupt is raised and entry made to Interrupt
Procedure IT_ END_ TRANS. The logical flow then follows the path AI (refer to Figure 8), as a result of which
the required random Word address is loaded into SPIDR, so effecting the required byte transfer.

In addition, this routine loads (or retains) the following values in the Status Registers:

STAT TRANS SPI

STAT EEP

<-2 (#T_ADD_EEP)

<-3 (#ECR_ON)

(iii) Transmission of 1st Data Byte.

After transmission of the 8 bits of the Word Address, an Interrupt is raised and entry made to Interrupt
Procedure IT_ END_ TRANS. The logical flow then follows the path ACG (refer to Figures 8, 8b), as a result
of which the 1st Data Byte is loaded into SPIDR, so effecting the required byte transfer.

In addition, this routine loads (or retains) the following values in the Status Registers:

STAT TRANS SPI <-3 (#TRANS_WR_DATA) .

STAT EEP <-3 (#ECR_ON)

i1/34

423

USING THE 12C-bus PROTOCOL WITH THE ST9

Figure 8. Flow Diagram of the IT_END_TRANS Interrupt Routine

52

Sc

53

12/34 ~ SCS-THDMSDN
---------------- .. .,,. l'll~il!li'J@~~~!:'iii?J@Ii!~rt:ill

424

VR001544

USING THE 12C-bus PROTOCOL WITH THE ST9

Figure Sa. Flow Diagram of the IT_END_TRANS Interrupt Routine (continued)

VR001545

-------------- l::fi ~~~~m~::~~~ 13/34

425

USING THE 12C-bus PROTOCOL WITH THE ST9

Figure 8b. Flow Diagram of the IT_END_TRANS Interrupt Routine (continued)

©
r---------------------~~~

52

Figure 8c. Flow Diagram of the IT_END_TRANS Interrupt Routine (continued)

14/34

426

The EEPROM free b1l will be set

at the end of the progrommotlon

delay (•n the Watchdog timer EOC

interrupt routme)

VR001546

USING THE 12C-bus PROTOCOL WITH THE ST9

(iv) Transmission of Subsequent Data Bytes.

After transmission of Byte #M (1 < M < N), an Interrupt is raised and entry made to Interrupt Procedure
IT END TRANS. The logical flow then follows the path ACFO (refer to Figures 8, Be) as a result of which
Data Byte #M + 1 is loaded into SPIDR, so effecting the required byte transfer.

The following values are retained in the Status Registers:

STAT TRANS SPI <-3 (#TRANS_WR_DATA).

STAT EEP <-3 (#ECR_ON)

(v) Transmission of the final Data Byte.

After transmission of Byte #N, an Interrupt is raised and entry made to Interrupt Procedure
IT_ END_ TRANS. The logical flow then follows the path ACFN (refer to Figures 8, Be). On this occasion
the Watch-Dog Timer routine, PROG_DELAY (see Appendix A) is entered to generate a delay equal toN
x 5 milliseconds to enable the EEPROM to be programmed with the new data values.

For this purpose the Watch_Dog Timer is initialized in Single Operation, Count-down Mode, and a constant
value is loaded into the counter appropriate to the required delay. An interrupt is enabled on Channel AO
for the Timer EOC event, and a return is made to the calling program.

When the Timer times out, entry is made to interrupt routine TEMPO (see Appendix A). This routine clears
the AO interrupt pending bit, sets the EEP _FREE_ MASK bit to 1, and returns to the calling program. At this
point the EEPROM is available again for further data transfers.

Random READ Mode

Figure 6 illustrates the sequence of byte transfers involved in reading N bytes in Random Read Mode,
observing the 12C-bus protocol.

(i) Transmission of Slave Device Address.

This operation is initiated by Procedure READ_EEP which generates a START condition, loads the Device
address in SPIDR (with the 8th bit set to "0"}, thus initiating the transfer, and then returns to the calling
program.

In addition, this routine loads the following values into the Status Registers:

STAT TRANS SPI <-1 (#T_ADD_SLAVE)

STAT EEP <-1 (#LECT_ON)

(ii) Transmission of Word Address.

After transmission of the 8 bits of the Device Address, an Interrupt is raised and entry made to Interrupt
Procedure IT_END _TRANS. The logical flow then follows the path AI (refer to Figure 8). as a result of which
the required random Word address is loaded into SPIDR, so effecting the required byte transfer.

In addition, this routine loads (or retains) the following values in the Status Registers:

STAT TRANS SPI - -
STAT EEP

<-2 (#T_ADD_EEP)

<-1 (#LECT_ON)

---------------------------- ~~~~~~?~:~~~ _________________________ 1_5_~_4
427

USING THE 12C-bus PROTOCOL WITH THE ST9

(iii) Retransmission of Slave Device Address.

After transmission of the 8 bits of the Word Address, an Interrupt is raised and entry made to Interrupt
Procedure IT END TRANS. The logical flow then follows the path ACH (refer to Figure 8), as a result of
which the Device address (with the 8th bit set to "1 "), loaded into SPIDR, so effecting the required byte
transfer.

In addition, this routine loads the following values in the Status Registers:

STAT TRANS SPI - -
STAT EEP

(iv) Read of 1st Data Byte.

<-1 (#T_ADD_SLAVE)

<-2 (#VERIF_ON)

After the retransmission of the 8 bits of the Device Address, an Interrupt is raised and entry made to Interrupt
Procedure IT END TRANS. The logical flow then follows the path AJ (refer to Figure 8), as a result of
which a value Of OFFh is loaded into SPIDR, so effecting the required byte transfer from the Slave Memory.

In addition, this routine loads (or retains) the following values in the Status Registers:

STAT TRANS SPI - - <-4 (#TRANS_RD_DATA) .

STAT_EEP <-2 (#VERIF_ON)

(v) Read of Subsequent Data Bytes;

After transmission of Byte #M (1 < M < N), an Interrupt is raised and entry made to Interrupt Procedure
IT END TRANS. The logical flow then follows the path BEL (refer to Figure 8), as a result of which Data
Byte #M + 1 is loaded into SPIDR, so effecting the required byte transfer.

The following values are retained in the Status Registers:

STAT TRANS SPI <-4 (#TRANS_RD_DATA) .

STAT EEP <-2 (#VERIF_ON)

(vi) Read of the final Data Byte.

After transmission of Byte #N, an Interrupt is raised and entry made to Interrupt Procedure IT_ END_ TRANS.
The logical flow then follows the path BK (refer to Figure 8), as a result of which the STOP condition is
generated and the EEPROM free bit set in STAT_ EEP.

16~_4 ________________________ ~~~~~~~~'~ ---------------------------
428

USING THE 12C-bus PROTOCOL WITH THE ST9

Current Address READ (Verify) Mode

Figure 7 illustrates the sequence of byte transfers involved in reading N bytes in Random Write Mode,
observing the 12C-bus protocol.

(i) Transmission of Slave Device Address.

This operation is initiated by Procedure VERIF _ EEP which generates a START condition, loads the Device
address (with the 8th bit set to "1 ") in SPIDR, thus initiating the transfer, and then returns to the calling
program.

In addition, this routine loads the following values into the Status Registers:

STAT TRANS SPI

STAT EEP

(ii) Read of 1st Data Byte.

<-1 (#T_ADD_SLAVE)

<-2 (#VERIF_ON)

After the retransmission of the 8 bits of the Device Address, an Interrupt is raised and entry made to Interrupt
Procedure IT END TRANS. The logical flow then follows the path AJ (refer to Figure 8), as a result of which
a value of OFFh is loaded into SPIDR, so effecting the required byte transfer from the Slave Memory.

In addition, this routine loads (or retains) the following values in the Status Registers:

STAT TRANS SPI <-4 (#TRANS_RD_DATA) .

STAT EEP <-2 (#VERIF_ON)

(iii) Read of Subsequent Data Bytes.

After transmission of Byte #M (1 M N), an Interrupt is raised and entry made to Interrupt Procedure
IT_ END_ TRANS. The logical flow then follows the path BEL (refer to Figure 8), as a result of which Data
Byte #M + 1 is loaded into SPIDR, so effecting the required byte transfer.

The following values are retained in the Status Registers:

STAT_TRANS_SPI <-4 (#TRANS_RD_DATA) ,

STAT EEP <-2 (#VERIF_ON)

(iv) Read of the final Data Byte.

After transmission of Byte #N, an Interrupt is raised and entry made to Interrupt Procedure
IT END TRANS. The logical flow then follows the path BK (refer to Figure 8), as a result of which the
STOP condition is generated and the EEPROM free bit set in STAT_EEP.

17/34

429

USING THE 12C-bus PROTOCOL WITH THE ST9

ILLUSTRATIVE CALLING ROUTINES

Appendix B contains listing of suitable calling routines to WRITE 4 bytes to the Serial EEPROM or to READ
6 bytes. Included also in Appendix B are the appropriate ST9 Core System and Peripheral initialization
routines (see also Reference 1).

These programs make use of the File of ST9 Standard Register and Register Bit Definitions listed in
Application Note AN411, SYMBOLS.INC.

It will be noted that the calling routines, after initiating the data transfers, wait in test and branch loops until
the EEPROM is free. In a practical real-time application this waiting time (>N.5 mS for an N byte WRITE
transfer) could be used for useful processing.

REFERENCES

(1) Application Note 413, "Initialization of the ST9", Pierre Guillemin and Alan Dunworth,
SGS-THOMSON Microelectronics.

(2) The "ST9 Technical Manual", SGS-THOMSON Microelectronics.

-18_13_4 __________ ru SGS·THOMSON
'llo l';m!:Gl@~il.~©'U"IrJ@O!O©®

430

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine

.title

.sbttl

.list bex

.global

.extern

" ST9 SPI use with I 2C protocol.
" EEPROM manager

January 24 1990 "
version 2.0 "

IT END TRANS, TEMPO, EEP MAN
RESET _"START

;****************************
;*Module Macro Definitions *
;****************************
.library

.mcall

"c:\st9\inc\bitmacro.inc"

ifbit, attbit

change as required

.macro DELAI ?loop_var

ld COUNTER,it03h

loop_var:

. endm

dec COUNTER
jrnz loop_var

. macro DIS SPI IT

.endm

and EIPR,it-ipbOm
and EIMR,il-ibOm

. macro EN SPI IT

.endm

and EIPR,it-ipbOm
nop
or EIMR, !lib Om

.macro INIT TRANS READ - -

10 Tcy.

6 Tcy.
12 Tcy: A loop = 1.5 fs
with a 12 MHz system clock .

Disable SPI interrupt .
Reset the BO (SPI interrupt) pending bit.
Disable SPI channel (BO).

Enable SPI interrupt .
Clear request on SPI channel (BO) .

Enable SPI channel (BO) .

Initialize SPI register and interrupt
for read operation.

ld
spp
ld

STAT TRANS SPI,itTRANS RD DATA ; Initialisation for read operation.
itO - - - -
SPI_TAMP,itOFFH ; To read the data from the EEPROM.

.endm

--------------li;i. ~~~n-:r~~~~
19/34

431

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

;***********************
; Register declarations.

;***********************

EEP ADD

WRITE DATA

write data

READ DATA

read data

EEP FUNCT

STAT EEP

STAT TRANS SPI

NB BYTE

nb_byte

SPI TAMP

MEMO NB BYTE

COUNTER

DATA TABLE

;***********************
; Constant declarations.

;***********************

ADD EEP W

ADD EEP R

SDI MASK

SCK MASK

SDO MASK

RO

Rl

r1

R2

r2

R3

R4

R5

R6

r6

R7

R14

R15

31
(1Fh)

OAOh

0A1h

02h

04h

08h

Operation address in the EEPROM.

Data to be programmed in the EEPROM.

Data which has been read from the EEPROM.

Number of bytes to be written
(maximum 8) or to read.

The real beginning of the table
to store data is R20h.

Address the external EEPROM slave
for WRITE operation.

Address the external EEPROM slave
for READ operation.

SDI bit 1 of port 2 0

SCK bit 2 of port 2 0

SDO bit 3 of port 2 0

Status of EEP FUNCT register.

This register is used to indicate the EEPROM manager the
function to be executed.

READ FUNCT

WRITE FUNCT

VERIF FUNCT

. '20/34

432

1

2

3

Read mode: read after transferring the
address pointer.

ie: Read from the current address.

Write mode.

Alternate read mode:

;Read operation without programming
;the address pointer .

~ SGS·ntOMSON A."'! I. li\il01t:L'J@I<n.il©1i'Dii@IIJO©iil

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

Status of STAT_TRANS_SPI register.

This register permits the EEPROM manager (in the SPI interrupt routine)

... to know the type of the byte which has just been transmitted.

T ADD SLAVE 1 The eeprom address has been transferred.

T ADD EEP 2 The operation address has been transferred.

TRANS WR DATA 3 The data to be written has been transferred.

TRANS_RD_DATA 4 The data to be read has been received.

Status of STAT_EEP register.

This register permits the caller to know the status of the EEPROM.

EEP OK 0 EEPROM is OK.

LECT ON 1 EEPROM is reading a byte.

VERIF ON 2 EEPROM is reading the current byte.

ECR ON 3 EEPROM is programming a byte.

NO ACK 4 EEPROM has not acknowledged.

EEP FREE MASK SOh EEPROM is ready for a new operation ...

. .. if this bit is equal to 1 .
. text

;**
EEP MANAGER: EEPROM MANAGER.

;**

proc EEP MAN [PPR] {

spp #0

DIS SPI IT

; Save page pointer.

ld MEMO NB_BYTE,NB_BYTE; Save NB_BYTE Before decrement for

switch [EEP_FUNCT] {

case #READ_FUNCT:

programmation tempo.

call READ EEP

case #VERIF_FUNCT:

call VERIF EEP

case #WRITE_FUNCT:

call WRITE EEP

) ;-- End of switch.

End of proc.

J..:fi_ SGS·ntOMSON
:"f I. L'llD!:iru@lli!.I<@'ITilil@lllO!:$

21134

433

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

;**

READ EEP: Normal read mode.
Read of some bytes after setting the slave address.

;**

proc READ_EEP [PPR]

ifbit STAT_EEP,#EEP_FREE MASK

call INIT START I 2C

Test if EEPROM free.

SPI and related interrupt initialization ..

to support I 2C protocol ...

Generate a start condition.

ld STAT_TRANS_SPI,#T_ADD SLAVE; Slave address will be transferred.

ld STAT_EEP,#LECT_ON

ld SPIDR,#ADD EEP W

} ;-- End of if.

end of proc.

A read condition is started.

EEPROM is not FREE = EEP FREE BIT = 0.

EEPROM address in write mode to transfer
pointer.

;**

VERIF EEP: Alternate read mode.

Read of some bytes without setting the address pointer.

;**

proc VERIF_EEP [PPR]

ifbit STAT_EEP,#EEP_FREE MASK

call INIT START I 2 C - -

Test if EEPROM free.

SPI and related interrupt initialization ..

to support I 2C protocol ...

Generate a start condition.

ld STAT_TRANS_SPI,#T_ADD_SLAVE; Slave address will be transferred.

ld STAT_EEP,#VERIF_ON A veri£ condition is started.

ld SPIDR,#ADD_EEP R

;-- End of if.

end of proc.

EEPROM is not FREE = EEP FREE BIT 0.

EEPROM address in read mode.

_221_34 _____________ l.fi. ~~~~m~m:O!~::
434

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

;**
WRITE EEP: Write of some bytes.

;**

proc WRITE_EEP [PPR]

ifbit STAT_EEP,#EEP_FREE MASK Test if EEPROM free.

call INIT START I 2C SPI and related interrupt initialization ..

to support I 2C protocol ...

Generate a start condition.

ld STAT_TRANS_SPI,#T_ADD SLAVE; Slave address will be transferred.

ld STAT_EEP,#ECR_ON

ld SPIDR,#ADD_EEP W

;-- End of if.

end of proc.

A write condition is started.

EEPROM is not FREE = EEP FREE BIT 0.

EEPROM address in write mode.

;**

INIT START I 2C:

Initialize SPI to support I 2C protocol.

Generation of a start condition.

;**

proc INIT_START_I 2C [PPR]

, SPI initialization.

spp #0

ld SPICR,#042h

START condition generation.

and P2DR,#-SDO_MASK

spp #P2C PG

and P2COR,#-SDO_MASK

SPI and ext. interrupts registers in page 0.

SPI is Disabled = SDA and SCK in HZ (1) .

I 2C bus mode is selected.

SCK frequency # 100 kHz.

Prepare "0" on output buffer of SDO.

SDO line in output- SDA line= "0".

DELAI Wait for start condition hold time.

spp #0

or SPICR,#spen

EN SPI IT

spp #P2C PG

or

;-- End

P2COR,#SDO_MASK

Enable SPI.

Enable SPI interrupt.

SDO line in AF.

23/34

435

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

;**
GEN STOP: Generation of a stop condition.

;**

proc GEN STOP [PPR]

spp #0

DIS SPI IT -
and MASK P2DR,#-SDO_

spp #P2C PG

and P2COR,#-SDO MASK -
spp #0

and SPICR,#-spen

DE LAI

spp #P2C PG -
or P2COR,#SDO_MASK

End

Disable SPI interrupt.

Prepare "0" on output buffer of SDO.

SDO line in output - SDA line "011.

Disable SPI - Release SCK line - SCK

Wait for stop condition setup.

SDO in AF - Release SDA line - SDA

"ln.

"1".

;**

GEN ACK: ACK pulse generation,

and force the SDA line to 0 for Acknowledgement.

;**

proc GEN ACK [PPR]

and MASK P2DR,#-SDO_

spp #P2C PG

and P2COR,#-SDO MASK -
spp #0

and SPICR,#-spen

DE LAI

or SPICR,#spen

spp #P2C PG

or P2COR,#SDO_MASK

' End of proc.

24/34

436

Prepare "0" on output buffer of SDO.

SDO line in output - SDA line "0".

Disable SPI - Release SCK line - SCK

Wait for ACK hold time.

Enable SPI - Force SDA and SCK low.

SDO line in AF.

"1".

USING THE 12C·bus PROTOCOL WITH THE ST9.

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

Y**********************
TEST ACK: ACK pulse generation,

and check the slave acknowledgment. '
;**T*

proc TEST ACK PPR]

and SPICR,#-spen

attbit P2DR,#SCK_MASK

ifbitP2DR, #SDI_MASK

ld STAT_EEP,#NO_ACK

Release SPI lines in disabling it.

Wait for SCK going high.

Check if receiver has acknowledged.
; (SDA = 0).

; If no ACK.

else { If ACK ok.

DELAI Wait for high period of the clock.

;-- End of if.

or SPICR,#spen Enable SPI - Force SDA low.

} ;-- End of proc.

;**
IT END TRANS: SPI end of transmission interrupt service routine.

This interrupt is connected to channel BO in the ST9.

;**

IT END TRANS::

pushu PPR

pushuw RPP

srp #0

spp #0

if [STAT_TRANS_SPI == #TRANS_RD_DATA]

;-- A data to be read has been received from EEPROM.

ld read_data,SPIDR For the next instruction addressing mode.

ld DATA_TABLE(nb_byte),read_data Save the received data.

dec nb_byte Number of bytes to be read.

if [SETZ] If the last byte has been read.

call GEN STOP Gnrate STOP condition in I2C protocol.

ld STAT_EEP,#EEP_FREE_MASK ; Indicates to the caller than
;EEPROM is OK and FREE.

else {

call GEN ACK

else

call

INIT TRANS READ

End of else.

TEST ACK

ACK pulse generation and force SDA line
to 0.

; ACK pulse generation and test EEPROM
;response ..

25/34

437

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

if [STAT_EEP ~~ #NO_ACK] {

call GEN STOP

or STAT_EEP,#EEP FREE MASK

switch [STAT_TRANS_SPI] {

case #T_ADD_SLAVE:

If no acknowledge from EEPROM.

Stop generation.

Indicates to the caller than
EEPROM is free.

The slave address has been transferred.

if [STAT_EEP ~~ #VERIF_ON] {

The slave address has been transmitted for a verif operation.

} else {

The slave address has been transmitted for a write or a random read operation.

ld STAT_TRANS_SPI,#T_ADD_EEP

spp

ld

case #T_ADD EEP:

#0

Transfer of the address of
; the EEPROM operation.

SPI TAMP,EEP ADD ; To transfer the read
;or write address.

;-- The write or random read address has been transmitted.
#READ _FUNCT] {

26/34

438

The random read addresss has been transmitted.

call INIT START I2C ; A start condition is
; necessary here.

ld STAT_TRANS_SPI,#T_ADD SLAVE

The slave address must
be transmitted again.

ld SPI_TAMP,#ADD_EEP_R; EEPROM address in read
mode.

ld STAT_EEP,#VERIF_ON The next sequence is
the same than verif
sequence.

The write address has been transmitted.

else {

spp #0

ld STAT_TRANS_SPI,#TRANS_WR_DATA

; Initialisation for transfer
; of data to be written.

ld write_data,DATA_TABLE(nb_byte)

; The first data to programm.

ld SPI_TAMP,write_data

} ;-- End of else.

case #TRANS WR DATA:

The data to be written has been transmitted.

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

spp itO
dec

if

nb_byte

[CLZ

Number of bytes to write.

If the last byte has not yet
been written.

ld write_data,DATA_TABLE(nb_byte)

ld SPI_TAMP,write_data

else { ; If all data have been programmed.

; Write sequence is finished.

call PROG DELAY ; Initialise watch dog timer
;to generate a 5 ms delay.

call GEN STOP

) :-- End of else.

; STOP condition generation.

) :-- End of switch.

) :-- End of else.

;-- End of else.

popuwRPP
ld SPIDR,SPI_TAMP

popu PPR

iret

Data to transmit via SPI.

;**

PROG DELAY Initialize the watchdog-timer to generate the delay

necessary for programmation.

;**
proc PROG DELAY [PPR l {

pushuw RPP
spp itWDT_PG

srp * (15 * 2)
ld wcr,itwden

clr wdtpr

ldw wdtr, U5015

while [CLZ

addw wdtr,U5015

dec MEMO_NB_BYTE

or wdtcr,it(stsp I sc

l {

To access in paged registers with r.

watch dog mode disabled, no wait states.

To have 333 ns (with system clock = 12 MHz)
in minimum count,

prescaler = 0.

15015 * 333 ns 5 ms.

5 ms delay is multiplied by
the number of bytes to programm.

Timer starts down count~ng.

Single mode.

Watch Dog disabled.

27/34

439

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM 12C-bus Manager Routine (Continued)

popuwRPP

Input section disabled.

Output disabled.

Interrupt AO on Timer EOC.

Top Level Interrupt on SW TRAP.

;**
TEMPO: Interrupt service routine of the watchdog timer end of count.

This interrupt is connected to the AO channel in the ST9.

;**
TEMPO:

pushuPPR

spp itO
and EIPR,if-ipaOm

or STAT_EEP,#EEP_FREE_MASK

popu PPR

iret

Reset of WD/Timer EOC interrupt pending
bit.

Write sequence is finished.

_28_13_4 ____________ l..V. ~~~@~~=:~~lf
440

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix B. Examples of Calling Programs

. title " Main example for EEPPROM manager call

.extern

.global
IT_END_TRANS, EEP_MAN, TEMPO
RESET START

;**************************
; Module Macro Definitions.
;**************************

.library

.mcall
"c:\st9\inc\bitmacro.inc"

attbit

;***********************
; Register declarations.
;***********************

change if required

January 24 1990 "

EEP ADD
WRITE DATA

RO
R1

Operation address in the EEPROM.
Data to be programmed in the EEPROM.

write data r1
READ DATA R2
read data r2
EEP
FUNCT = R3

STAT EEP R4
STAT TRANS SPI RS
NB BYTE R6
nb_byte r6
CPT DELAY RR8
DATA TABLE 31

01Fh

;****************************

; INTERRUPT VECTOR ADDRESSES.

;****************************

ORE IT VECT
EXT IT VECT

:=

;******************

; START of PROGRAM.

;******************

START PROG :=

;*******************

; STACK Declaration.

;*******************

OOh
20h

100h

Data which has been read in the EEPROM.

The real beginning of the table to store
data is R20h.

Core interrupt vectors
External interrupt vectors

start address program

SSTACK
US TACK :=

14 * 16
12 * 16

- 1
- 1

System stack address group D C
User stack address group B

29/34

441

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix B. Examples of Calling Programs (Continued)

;**

; Declaration of the interrupt vectors table.

;**

.text

.org CORE IT VECT

.word RESET

.org EXT IT VECT

.word TEMPO

.word 0000

.word IT END

;**********************

; Start of main module.

;**********************

. org START FROG

RESET START:

spp #0

START

TRANS

start of program

Core interrupt vector

power on interrupt vector

External interrupt vector

Channel AO for Watchdog Timer.

Channel Al not used/

Channel BO for SPI.

start of code

ld MODER,#(sspm I uspml div2m) ; CLOCK MODE REGISTER

internal stack

30/34

442

no precaling

external clock divided by 2

SPI and related I/0 initialization.

spp #P2C PG

ld P2COR,#00001110b

ld P2ClR,#llllll0lb

ld P2C2R,#00001110b

spp #0

ld CICR,#(gcenm I iamm

spp #0

srp #(15 * 2)
clr eipr

nop
ld eivr,#EXT IT_VECT

ld eiplr,#OFBh

P21 SDI: IN/TRI/TTL.

P22 SCK: AF/OD/TTL.

P23 SDO: AF/OD/TTL.

Others = OUT/PP/TTL.

cplm); CENTRAL INTERRUPT CONTROL REGISTER

priority level = 7

Nested Arbitration mode

disable interrupt

enable counters

To access page 0 registers
Disable all the external interrupt
pending bits.
See WARNING (Technical Manual - Chapter 8)
External interrupt vector.
IAOS - TLIS = 00 =
Priority level for group INTAO
INTAl = 6, 7.

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix B. Examples of Calling Programs (Continued)

ld eimr,#01

clr FLAGR
ld SSPLR,#SSTACK
ld USPLR,#USTACK
ld STAT_EEP,#EEP

ei

+ 1
+ 1
FREE MASK

Unmask Interrupt AD channel
(WDT End Of Count)
(SPI EOT) .
bit is active.
init flag
load system stack pointer
load user stack pointer
EEPROM is free, no function in service.

;**
;Exemple of call to the EEPROM manager to programm 4 bytes from the address OlOh.

;**

begin_write::

ld EEP_FUNCT,#WRITE_FUNCT

ld EEP_ADD,#OlOh
ld NB _BYTE, #4
ld R#(DATA_TABLE+4),#78h

ld R#(DATA_TABLE+3),#49h
ld R#(DATA_TABLE+2),#10h
ld R#(DATA_TABLE+l),#94h

call EEP MAN

attbit STAT_EEP,#EEP FREE MASK

nop

nop

Function to be executed by the
EEPROM manager.
1st address to be programmed.
Number of bytes to program.
1st data to programm.

2nd data to programm.
3rd data to programm.
4th data to programm.

Wait for end of WRITE procedure
(programming delay also) .

by the ST9.
To replace by a JR instruction
under SDBST9 for DEBUG.

;**
;Example of call to the EEPROM manager to read 6 bytes from the address Ofh.

;This can be a verification of the last programmation.
;**

begin_read::

ld EEP_FUNCT,#READ_FUNCT

ld EEP_ADD,#Ofh
ld NB_BYTE,#6

call EEP MAN

attbit STAT_EEP,#EEP FREE MASK

end read::

jr end read

Function to be executed by the
EEPROM manager.
Read address in EEPROM.
Number of data to be read.

Wait for end of read procedure.
Here some instructions
could be executed by the ST9.

31/34

443

USING THE J2C-bus PROTOCOL WITH THE ST9

Appendix C. Module Macro Definitions

title "BITMACRO.INC 05 December 1989 "

;**
;**
; BITMACRO: Macro file allowing bit test like PSEUDO_MACROS programmation,

; User must declare the macro used in his ST9 source file like the following
example

; .library "c:\st9\inc\bitmacro.inc"

; .mcall ifbit, ifnobit, and so on

;**
;**

;**
macro-instruction IFBIT: test if a bit is l.
Parameters: - destination: All addressing mode allowed by

the''tm*instruction.
- mask selecting the bit to be tested.

ex: OOOOOOlOb for bit 1 test.

! ! ! DO not forget the ")" after instructions executed when the condition is
TRUE.

application example
ifbitdest,mask

.macro
tm
if

.endm

ifbit dest,mask
dest,mask
[CLZ] { ; The bit is set to 1.

;**

;**
macro-instruction WHILEBIT: DO WHILE bit is 1.

Parameters: - destination: All addressing mode used for "tm" instruction.
- mask selecting the bit to be tested.

ex: 00000010b to test bit 1.

application example
do {

whilebit dest,mask
.macro whilebit dest,mask

tm dest, mask
J while [CLZ ; The bit is set to 1 .

. endm

32/34

444

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix C. Module Macro Definitions (Continued)

;**
;**

macro-instruction IFNOBIT: test if a bit is 0.
Parameters: - destination: All the addressing mode used for the "tm"

instruction.
- mask selecting the bit to be tested.

ex: 00000010b to test bit 1.

! !! Do not forget the"}" after instructions executed when the condition is
TRUE.

application example
ifnobit dest,mak

.macro
tm
if

.endrn

ifnobit
dest,mask
[SETZ] (

dest,mask

; the bit is set to 1.

;**
;**

macro-instruction WHILENOBIT: DO WHILE bit = 0.
Parameters: - destination: All the addressing mode used for the "tm"

instruction.

application example
do (

whilenobit dest,mak

- mask selecting the bit to be tested.

ex: 00000010b to test bit 1.

.macro whilenobit dest,mask
tm dest, mask
} while [SETZ ; The bit is set to 1 .

. endrn

;**
;**

WAITBIT: waiting for a bit to be 1.
Parameters: - destination: All the addressing mode used for "tm"

instruct ion.
- mask selecting the bit to be tested.

ex: 00000010b to test bit 1.

.macro waitbit dest,mask

.endrn

do (
tm

} while
dest,mask

SETZ] WAITING for bit 1.

33/34

445

USING THE 12C-bus PROTOCOL WITH THE ST9

Appendix C. Module Macro Definitions (Continued)

;**
;**
WAITNOBIT: waiting for a bit· to be a 0.

Parameters: - destination: All the addressing mode used with the "trn"
instruction.

- mask selecting the bit to be testesd.
ex: OOOOOOlOb to test bit 1.

.macro
do

waitnobit dest,mask

.endm

tm
} while

dest,mask
CLZ] ; WAITING for the bit ~ 0.

;**

34/34

446

APPLICATION NOTE
EXTERNAL DMA MODE

1/0 DATA TRANSFER SYNCHRONIZED BY TIMER
Pierre Guillemin

INTRODUCTION

ST9 provides a powerful features allowing DMA transfers between 1/0 port and Register file or memory
spaces (Program/Data memory). Furthermore DMA operations on 1/0 port can be done under handshake
control and with swap mode capability.

The DMA transfer between external 1/0 port and memory fields (Register file, Program memory, Data
memory) is possible with the help of the two Timer DMA channels (COMPARE 0 and CAPTURE O) and
only one byte transfer is performed at any request (instead of two bytes when DMA takes place between
Register file/Memory spaces and Compare/Capture register).

Three Timer DMA external modes on 1/0 port are possible:

- COMPARE 0 channel external mode allowing only output data transfer.
_ CAPTURE 0 channel external mode allowing bidirectional data transfer. (The direction of the data

transfer is set by a bit in the 1/0 port control register.)
- CAPTURE 0 channel external mode synchronized by a COMPARE 0 event.

For these three modes, the synchronization is accomplished by an internal synchronization signal or by a
Timer On-Chip Event signal (ie. COMPARE 0 or OVERFLOW/UNDERFLOW event).

To enable such transfers, user has to program:

- the Timer in CAPTURE or COMPARE or both DMA mode
- two Timer control bits (DCTS and DCTD) in lnterrupt/DMA Control Register IOCR
- the Timer On-Chip Event and the handshake /DMA control register of the relevant 1/0 port.

Please refer to the note for a better understanding of the internal connection between ST9 TIMER and 1/0
port.

Note: On ST9030, the On-Chip Event of TIMER 1 controls the handshake function With 1/0 Port 5, the On-Chip Event of T1mer 0 IS
connected to the Internal tngger of the AID converter.
On ST9020, the On-Chip Event of TIMER 0 controls the handshake function with 1/0 Port 5.

On ST9050, the On·Ch1p Event of TIMER 0 controls the handshake function With 1/0 Port 4, the On-Chip Event output of T1mer 1
controls the handshake function w1th 1/0 Port 5, the On-Ch1p Event of T1mer 3 1s connected to the ~nternal tngger of the AID Converter.

Furthermore, the Timer's output s1gnals TOOUTA and T10UTA may be software connected respectwely to the same
Timer's input s1gnals TOlNA and T11NA.

AN418 f 1292 1130

447

DMA ON 1/0 PORT

TIMER DMA EXTERNAL MODE CONTROL BITS

To program the Timer and 1/0 port in OMA external mode, user has to set:
_ two control bits in Timer lnterrupt/OMA Control Register (IOCR)
- two bits in the 1/0 Connection Register (IOCR)
- the Timer On-Chip Event and four control bit in the handshake/OMA Control Register (HOCTL) of the

relevant 1/0 port.

TIMER CONTROL BITS

DMA transfer configuration bits

Two bits located in the Timer lnterrupt/OMA Control Register (IOCR) select the source or the destination of
the OMA transfer.

IOCR R243 (F3h) or R247 (F7h)

lnterrupt/DMA Control Register

Page 9 or 13 Read/Write
Reset value: 10100111 b (A7h)

7 0

b5 = DCTS: DMA Capture Transfer Source. This bit selects the source of the OMA operation related to
the channel associated to CAPTURE 0.

OCTS = "0": The OMA transfer source is the Capture 0 register

DCTS = "1 ": The DMA transfer source is the 1/0 port

b4 =OCTO: DMA Compare Transfer Destination. This bit selects the destination of the OMA operation re­
lated to the channel associated to the COMPARE 0.

OCTO= "0": The OMA transfer destination is the COMPARE 0 register

DCTD = "1 ":The OMA transfer destination is the 1/0 port

OEV, CEV: Timer On-Chip Event

These two bits, located in the output control registers (OACR and OBCR), select the event source strobing
the data transfer on 1/0 port.

OACR R252 (FCh)

Output A Control Register

Page 8 (1 0, 12, 14) Read/Write
Reset value: xxxxxxOxb

7 0

I CEV I

b1 = CEV: On-Chip Event on COMPARE 0

CEV = "1 ":On-Chip Event on successful COMPARE 0 event

~ SliS·THOMSON ------------- ._"!/. ~o«:~©rnn.rnm~©lillD~t:~ --------------
2130

448

TIMER CONTROL BITS (Continued)

08CR R253 (FDh)

Output 8 Control Register

Page 8 (1 a,12,14) Read/Write
Reset value: xxxxxxaxb

7 0

I OEV I

b1 = OEV : On-Chip Event on OVERFLOW/UNDERFLOW
OEV = "1 ":On-Chip Event on OVERFLOW/UNDERFLOW event

SC1, SC2: Timer 1/0 Connection bits

DMA ON 1/0 PORT

These two bits, located in the 1/0 Connection Register (IOCR), select (or not) an on-chip connection be­
tween input A and output 8 of the same Timer.

IOCR R248 (F8h)

1/0 Connection Register

Page 9 or 13 Read/Write
Reset value: xxxxxxaab

7

b1 = SC1: Select connection odd.

0

Selects if connection between TxOUTA and TxiNA for odd timer (x = 1 or 3) is done on-chip or externally.

SC1 ="a" TxOUTA and TxiNA unconnected

SC1 = "1" TxOUTA and TxiNA connected

ba = SCO: Select connection even.
Selects if connection between TxOUTA and TxiNA for even timer (x =a or 2) is done on-chip or externally.

sea= "a" TxOUTA and TxiNA unconnected

Sea= "1"TxOUTA and TxiNA connected

~ SGS·THOMSON ------------- .. "'!/. ll:\lllli:~©rn~rn~~©llllli:i\\ -------------
3/30

449

DMA ON 1/0 PORT

1/0 PORT CONTROL BITS

Apart from the three bits used for handshake programing, four bits located in the Handshake/DMA Control
Register (HDCTL) of the relevant 1/0 port are used to control the DMA mode.

HDCTL

Handshake/DMA Control Register

R255 (FFh) Page 2 Handshake on Port 3

R251 (FBh) Page 2 Handshake on Port 2

R247 (F?h) Page 3 Handshake on Port 5

R243 (F3h) Page 3 Handshake on Port 4

Read/Write
Reset value: FFh

7

b4 = DEN: DMA enable bit

DEN = 0: enable the DMA mode on 1/0 port

DEN = 1 : disable the DMA mode on 1/0 port

b3 = DD: DMA DATA Direction bit

0

DD sets the DMA direction for the DMA transfer on CAPTURE 0 channel

DD = 0: output data on 1/0 port

DD = 1: input data from 1/0 port

b2 = DST: DMA strobe bit
DST bit selects 1/0 port strobe from internal synchronisation signal or from Timer On-Chip Event.

DST = 0: Internal synchronization strobe

DST = 1 : Timer On-Chip Event strobe

b1 = DCH: DMA channel mode

DCH bit selects the DMA channel from CAPTURE 0 or COMPARE 0
DCH = 0: CAPTURE 0 DMA channel

DCH = 1: COMPARE 0 DMA channel

~ SCS·THOMSON ------------- A..""'J/. i"l:C~t:\':J©l~~rn~t:v~©l~oll~t:i\l -------------
4/30

450

TIMER DMA TRANSFER ON COMPARE 0 CHANNEL

Principle

DMA ON 1/0 PORT

This mode, enabled when DCTD (DMA Compare Transaction Destination) bit is equal to "1 ",allows output
transfer from Register File/memory to an 1/0 port at fixed period. In this mode, DMA direction transferal­
ways outputs Data on 1/0 port. A one byte output DMA transfer is done on a COMPARE 0 request caused
by a COMPARE 0 event or a software COMPARE 0 request (by writing "1" in the CMO bit in Timer Flag
Register).
The data strobe is made by an internal synchronization signal on COMPARE 0 event or by a Timer OVER­
FLOW/UNDERFLOW On-Chip Event.
Figure 1 shows the principle of COMPARE 0 channel external mode.

Programmation

To program Timer in DMA transfer mode on COMPARE 0 channel, user has to:
- program the Timer in COMPARE 0 channel DMA mode
- select the 1/0 port as destination for DMA transfer by setting the OCTO bit in IOCR
- select the data strobe mode by programming the on chip event (internal data synchronization,

Timer on chip event data strobe)
- Program the relevant 1/0 port by clearing the DEN bit to enable DMA mode, choose the data

strobe mode (DST bit) and select the COMPARE 0 DMA channel (DCH bit).
- start DMA transfer by enabling the Timer count.
Such a programmation is shown in appendix A.

Figure 1. Timer DMA Transfer on COMPARE 0 Channel Principle

Register file

or Data memory

or Program memory

1/0 bytes

DMAtable

COMPO
event

OVF/UDF

TIMER 1

COMPO

--------1

SWAP mode
capability

OCTO= 1

:1.6
-I

COMPO On Chip Event

.,
.0
e
1ii

"' iii
0

PortS

1/0

I
I P5.0

Master latches 1

and

Slave latches

VR001594

--------------------------- ~~~~©~&~:~~ _________________________ 5_~_0
451

DMA ON 1/0 PORT

TIMER DMA TRANSFER ON CAPTURE 0 CHANNEL

Principle

This mode, enabled when DCTS (DMA Capture Transaction Source) bit is equal to "1 ",allows bidirectional
transfer from register file/memory to/from 1/0 port. In this mode, the DMA transfer direction is set by the
DMA direction bit in HDCTL register. The DMA transfer is done on a CAPTURE 0 request caused by an
external CAPTURE event or by a software CAPTURE 0 request (by writing "1" in the CPO bit in Trmer Flag
Register). The data strobe is either an internal synchronization signal on CAPTURE 0 event or a Timer
COMPARE 0 or OVERFLOW/UNDERFLOW On-Chip Event.

Figure 2 shows the principle of CAPTURE 0 channel external mode

Programmation

To program Timer in DMA transfer mode on CAPTURE 0 channel, user has to:
_ program the Timer in CAPTURE 0 channel DMA mode
- select the 1/0 port as destination for DMA transfer by setting the DCTS bit (in IOCR)
_ select the data strobe mode by programming the On-Chip Event (internal data synchronization or

Timer On-Chip Event strobe)
- program the relevant 1/0 port by clearing the DEN bit to enable DMA mode, set the DMA transfer direc­

tion (DD bit), choose the Data strobe mode (DST bit) and select the CAPTURE 0 DMA channel (DCH
bit).

- start DMA transfer by enabling the Timer count.

Such a programmation is shown in appendix B.

Figure 2. Timer DMA Transfer on CAPTURE 0 Channel Principle

Reg1ster 111e

or Data memory

or Program memory

1/0 bytes

DMAtable

8

' PS.O

PortS

1/0
P5.1

Master latches

and
Slave latches P5.7

TIMER 1 OVF/UDF

452

Ext Input

Pm

T11NA I

VR001595

DMA ON 1/0 PORT

DMA SEQUENCER: CAPTURE 0 CHANNEL SYNCHRONIZED BY COMPARE 0 CHANNEL

Principle

This mode, using two DMA channels, allows bidirectional DMA Data transfer between 110 port and register
file/memory spaces at variable throughput. This Timer DMA transfer mode uses the CAPTURE 0 channel
to provide bidirectional transfer on each CAPTURE 0 event. This Capture 0 event is triggered by the COM­
PARE 0 channel by an output toggle on COMPARE 0 internally fed back to CAPTURE 0. Like in the pre­
vious mode, the data strobe is made by an internal synchronization signal on CAPTURE event or by a
Timer COMPARE 0 or OVERFLOW/UNDERFLOW On-Chip Event.

Figure 3 shows the principle of CAPTURE 0 synchronized by COMPARE 0 event.

Programmation

To program Timer in DMA transfer on CAPTURE 0 synchronized by COMPARE channel, the user has to:
- program the timer in CAPTURE 0 channel DMA external mode and in COMPARE 0 DMA

mode with an output toggle action on T10UTA
- select 1/0 port as destination for DMA transfer by setting the DCTS bit in IDCR
- select the data strobe mode by programming the On-Chip Event (internal synchronization or Timer

On-Chip Event strobe)
_ program the relevant 1/0 port by clearing the DEN bit to enable DMA mode, set the DMA transfer des­

tination (DO bit), choose the Data strobe mode (DST bit) and select the Capture 0 DMA channel (DCH bit)
- internally connect the timer 1 output A (T1 OUTA) on the timer input A (T11NA) by setting SC1 bit in

1/0 Control Register (IOCR)
- start the DMA transfer by enabling the Timer count.

Such a programmation is shown in appendix C.

----------- Gi_ SCiS·THOMSON
'''" I'JIDfi:l'i©rn~rna:m©O!DI!:©

7/30

453

DMA ON 1/0 PORT

Figure 3. Timer DMA Transfer on CAPTURE 0 Channel Principle

454

Register file

or Data memory

COMP 0 value

DMA table

c
Q)

>
Q)

0
I­
D..
<(
0

OVF/UDF

16

c
0

Pin T10UTA

VR001596

DMA ON 1/0 PORT

DATA OUTPUT SYNCHRONIZATION ON 1/0 PORT

Data Output During an Instruction Execution

The basic structure of an 1/0 pin shows that an 1/0 port is driven by an output slave latch and by an output
master latch as shown in the following Figure.

Figure 4. Basic Structure of an 1/0 Port Pin

1/0 PIN

VA00222

9/30

455

DMA ON 1/0 PORT

OAT A OUTPUT SYNCHRONIZATION ON 1/0 PORT (Continued)

The data present on the internal data bus is copied in the output master latch during the execution of each
instruction. The data stored into the output master latch is copied into the output slave latch (driving the 1/0
pin) at the end of each instruction. In input Mode data present on the 1/0 pin is sampled into the input data
latch at the beginning of the execution of each instruction.

Figure 5 shows the timing of such a transfer.

Figure 5. Data Output During an Instruction Execution

Instruction execution

MASTER WRITE

MASTER LATCH
X DATA

----------------~

SLAVE WRITE

OUTPUT PORT
__________________________________ __JX DATA

10/30 ~ SCS·TliOMSON ---------------------------- A.""J/. 1<!10©00@~~~©~00@1m0©®

456

VR001597

DMA ON 1/0 PORT

DATA OUTPUT SYNCHRONIZATION ON 1/0 PORT (Continued)

Data Output when Using Regular DMA Mode
In regular DMA mode, an internal synchronization signal, (depending on the DMA channel used: CAP­
TURE 0 channel or COMPARE 0 channel), is used to strobe the data on 1/0 port. In this mode, the data
present on the internal data bus is copied into the output master latch during the DMA machine cycle. The
data stored into the output master latch is copied into the output slave latch driving 110 pin at the end of the
DMA machine cycle.

Figure 6 shows the timing of such a transfer.

Figure 6. Data Output with Regular DMA Mode

EVENT

MASTER WRITE

MASTER LATCH

SLAVE WRITE

OUTPUT PORT

~ DMA machine cycle

DMA req. 1+ - - - - - - - - ~
___/ I I r I I

I I

--------~X~~DA~T~A------7---------

---------.------------~~~-D_A_TA ____ __

VR001598

--------------------------- ~~~~;~~::~~ ________________________ 1_1 __ ~0
457

DMA ON 1/0 PORT

DATA OUTPUT SYNCHRONIZATION ON 1/0 PORT (Continued)

Data Output with DMA "On-Chip Event" Mode

In this mode, the data synchronization on 1/0 port is done by the Timer On-Chip Event signal (COMPARE
0 On-Chip Event, OVERFLOW/UNDERFLOW On-Chip Event).

The data present in the output master latch is copied into the output slave latch driving the 1/0 pin when the
On-Chip Event occurs. The data present on the internal data bus is copied into the output master latch during
the following DMA machine cycle.

Figure 7 shows the timing of such a transfer.

Figure 7. Data Output with DMA "On-Chip Event" mode

~ DMA machine cycle ,

DMA req. r- - - - - - - - lOot

/
EVENT ~71.'-------t--------t--

MASTER WRITE

MASTER LATCH DATA X NEXT DAT\11.

SLAVE WRITE - ~'------7---------,;--

OUTPUTPORT ===x_DA_T_A ___ _,-------r---

VR001599

12~_0 _____________ ~~~~~~~~:~~ _____________ ___

458

DMA ON 1/0 PORT

APPENDIX A: COMPARE 0 CHANNEL IN EXTERNAL MODE

The following examples details how to program the Timer in order to generate the waveform shown on Figure 8 .

Figure 8. Timing Waveform Example: COMPARE 0 Channel

~~lACHINE 1 1- Timing Haveforms

t·terr:ers j Time I X to Trig I 121 .8 us I I TimP., X to 0 l -1.16·1 ms

Acct;mulate [QITJ 0 to Trig 1-1.040 ms I At I ~< 11arker I I P50 I
Time/Dill ! 50.00 l.tS I Delay I 0 s I

0 ,,

U1
: r jP50 all!

~
jP51 a11j i

____n ~ jP52 ani I
;

!P53 ell! ;

'
jP54 ani 1

}

{P55 ani ' }

jP56 ani i IJ=l jP57 ani! ri
: f

To generate this specific waveform, the Timer is programmed to output data by a COMPARE 0 channel
DMA transfer between a pattern table located in program memory (DMA_ TABLE_OUT) and l/0 port 5 (see
TIMER_1 subroutine). A COMPARE 0 interrupt (DMA end of block interrupt) clears the successful COM­
PARE 0 flag and restarts the DMA transfer (see COMPARE 0 interrupt routine). l/0 port 5 is configured in
output in DMA mode (see !NIT _10 subroutine).

r== SGS·niOMSON ------------- A."f/. lllW!:Il@~~ill!:~ll@l!lll!:$ -------------
13/30

459

DMA ON 1/0 PORT

APPENDIX A: COMPARE 0 CHANNEL IN EXTERNAL MODE (Continued)

.title "DMA between program memory and I/0 port 5 with TIMER 1 COMPARE 0 channel"

;This program is a small example of using Timer 1 DMA external mode on I/O port
;The timer is programmed in COMPARED DMA channel EXT mode

;****************************
;*INTERRUPT VECTOR ADDRESSES*
;****************************

CORE IT VECT
T1 IT VECT

CAPT IT VECT
COMP IT VECT
T1 LEVEL
LG DMA

:=

:=

DOh
10h

4
6
4
8

; Define the DMA pointer register
; DMA transfer from program memory

AD DMA BR
LG-DMA-BR
CMP AD DMA
CMP-LG-DMA

:=
:=

; Define global references

48h
4ch
RR#AD DMA BR+2
RR#LG=DMA=BR+2

Core interrupts vectors
Timer 1 interruts vectors

Capture event interrupt address
COMPARE event interrupt address
Timer 1 priority level
length of DMA

DMA address base register
DMA counter base register
Compare DMA address register ptr
Compare DMA counter register ptr

.global RESET_START, TIMER_1, INIT_IO, COMPARED, DMA TABLE OUT

;********************
;*Group number names*
:********************

BKC
BKD :=
EKE
BKF
BK F :=

12
13
14
15
BKF

;***********************
;* Start Timer 1 macro *
;***********************

.macro START T1
spp - #T1D PG

* 2

or T TCR, # (cen I eel)
.endm;******************
;*START of PROGRAM*
;******************

START PROG

;*******************
;*STACK Declaration*
;*******************

SSTACK
US TACK

14/30

460

:=
:=

llOh

BKE * 16
BKC * 16

- 1
- 1

group F: page registers

select Timer 0 page
counter enable bit, clear counter

start address program

System stack address group D C
User stack address group B

DMA ON 1/0 PORT

APPENDIX A: COMPARE 0 CHANNEL IN EXTERNAL MODE (Continued)

**
Declaration of the interrupt vectors table
**

.text

.org CORE_IT_VECT

.word RESET START

.word DIVO -

.word TOP LEVEL IT

.org Tl IT VECT

.org T1 IT VECT + 6

.word COMPARED

* Output data table to Port 5 *

.org lOOh

DMA_TABLE_OUT: .byte Olh, 02h, 04h, 08h
.byte lOh, 20h, 40h, SOh

;**********************
;*Start of main module*
;**********************

RESET_START:

ld

ld

1d
ld

call

call

.org START PROG

MODER,#lllOOOOOb

CICR, #10001111b

SSPLR,#SSTACK + 1
USPLR,#USTACK + 1

TIMER 1

INIT IO

START T1

ei

;MAIN PROGRAMM

loop
wfi

start of program

Core interrupt vector

power on interrupt vector
divided by 0 subroutine trap vector
Top level interrupt vector

Timer l interrupt vectors

unused addres
Timer 1 compare 0 interrupt

output DMA table

start of code

CLOCK MODE REGISTER
internal stack
no prescaling
external clock divided by 2

CENTRAL INTERRUPT CONTROL REGISTER
priority level ~ 7
Nested Arbitration mode
disable interrupt
enable counters
At reset, Global Counter Enable bit is active.

load system stack pointer
load user stack pointer

Timer 1 initialization in DMA mode

Port 5 init. DMA mode

Start Timer 1

enable all interrupts

15/30

461

DMA ON 1/0 PORT

APPENDIX A: COMPARE 0 CHANNEL IN EXTERNAL MODE (Continued)

;******************
;initialize TIMER l
;******************

proc TIMER 1

srp
spp

ld

ld

clr
clr

ld
ld
clr

#BK F
#T1D_PG

t_tcr,#(ccmpO I udc)

t_tmr,#O

t icr
t=prsr

t oacr,#(ou nop
t-obcr,#(cO=nop
t-flagr

#T1C PG

select working register
select timer 1 register page

count up
clear on compare 0

Disable output B
Disable output A
Internal clock
Countinuous mode

No action on input pins
No prescaling

cO_nop); No action on OUTPUTO
ou_nop); No action on OUTPUT1

Timer 1 Control page register
DMA counter register base address
DMA address register base address

spp
ld
ld
ld
ld
ldw
ldw

t1 dcpr,#LG DMA BR
t1-dapr,#AD-DMA-BR
t1-ivr,#T1 lT VECT
t1-idcr,#(-T1-LEVEL I dctd); DMA compare transaction

16/30

462

spp
ld

1dw
ldw

CMP LG DMA,#LG DMA
CMP=AD=DMA,#DMA_TABLE_OUT

Compare DMA counter init.
Compare DMA addres init.

Timer 1 Data page #T1D PG
t_ictmr,#(gtien cmOi cmOd); Compare 0 INT and DMA

t regOr,#O
t-cmp0r,#3ch

reg 0
15 !lS

DMA ON 1/0 PORT

APPENDIX A: COMPARE 0 CHANNEL IN EXTERNAL MODE (Continued)

;**
COMPARE 0 INTERRUPT ROUTINE

; DMA Interrupt End of block
;**

COMPARED:

begin PPR, RPOR, RPlR] {

spp
srp

and

ldw
ldw
or

iret

#TlD PG
JIBK_F

t_flagr,JI-(cmO I ocmO)

CMP LG DMA,#LG DMA
CMP-AD-DMA,#DMA TABLE OUT
t_idmr;JicmOd - -

save page pointer
save register pointer pair

Timer 1 data register page
select group F

reset successful compare 0
reset overrun on compare 0

restart DMA compare 0 channel

; return from interrupt

;***

I/0 port initialization

proc INIT IO [PPR {
;programmation Port 5 in OUTPUT in DMA mode

spp JIP5C_PG

76543210

ld P5COR,JI00000000b
ld P5C1R,#11111111b
ld P5C2R,#00000000b
ld P5DR, #0

Port 5 control register page
Port 5 in DMA mode
Port 5 Handshake disabled
DMA on Compare 0 channel

ld HDC5R,#{ hsdis I den ddw I demO)

; end init P5

17/30

463

DMA ON 1/0 PORT

APPENDIX A: COMPARE 0 CHANNEL IN EXTERNAL MODE (Continued)

**
SECTION CODE FOR THE CORE INTERRUPT ROUTINE .

;**

;--
INTERRUPT ROUTINE FOR ZERO DIVISION

;--
DIVO: jx

ret
DIVO ; debug loop

;--
INTERRUPT ROUTINE FOR TOP_LEVEL_IT

;--
TOP_LEVEL_IT:

jx
iret

TOP_LEVEL_IT debug loop

1a!3_o ___________ lifi. ~~~~£~~~~
464

DMA ON 110 PORT

APPENDIX 8: CAPTURE 0 CHANNEL IN EXTERNAL MODE

The goal of the following example is to generate the following waveform synchronized by an external clock
signal.

Figure 9. Timing Waveform Example: CAPTURE 0 Channel in External Mode

I
I

I
I

!MACHINE

M11rkers

ACCIJf/11.11 ate

Time/Div I

l- Timing Waveforms

Time lx to Trig <100.6

[£I[] 0 to Trl"g l-15.15

100.0 us I Delay I 0

T

us l I Time X to 0

ms! At I ;< liarker I
sl 0

-15.56 ms
I P:;,(J

X ,j I
I

! r:li
I
I
I

i
II
II I

In this mode the Timer is programmed in CAPTURE 0 DMA external mode in order to output data located
in program memory to 1/0 port 5. The data is output on Port 5 on each rising and falling edge of the external
input clock (see the Timer initialization routine TIMER_1). A CAPTURE 0 interrupt (DMA end of block inter­
rupt) resets the successful CAPTURE 0 flag and restarts the DMA transfer. 1/0 Port 5 is programmed in
output in DMA mode and T11NA in input mode (see I NIT _10 subroutine).

--------------------------- ~~~~@~~~:~~ ------------------------1~9~/30
465

DMA ON 1/0 PORT

APPENDIX B: CAPTURE 0 CHANNEL IN EXTERNAL MODE (Continued)

.title "DMA between program memory and I/0 port 5 with timer l CAPTURE D channel"

;This program is a small example of using Timer 1 DMA external mode on I/0 port

;The timer is programmed in CAPTURED DMA channel EXT mode

;***************~************

;*INTERRUPT VECTOR ADDRESSES*
;****************************

CORE IT VECT
T1 IT VECT

CAPT IT VECT

COMP IT VECT

T1 LEVEL

LG DMA

DDh
1Dh

Define the DMA pointer reg1ster

DMA transfer from program memory

AD DMA BR 48h

LG DMA BR 4ch

CPT AD DMA RR#AD

CPT LG DMA RR#LG -

; Define global references

DMA BR

DMA BR

Core interrupts vectors
Timer 1 interruts vectors

CAPTURE event interrupt addres

COMPARE event interrupt addres

T1mer 1 pr1ority level

length of DMA

DMA address base register

DMA counter base register

Capture DMA address register po1nter

Capture DMA counter register pointer

.global CAPTURED, TIMER 1, INIT_IO, RESET START, DMA TABLE OUT

;*Group number names*
·********************

BKC := 12

BKD .- 13

BKE .- 14

BKF 15

BK F BKF * 2

;***********************
;* Start Timer 1 macro *
;***********************

.macro START T1

spp #TlD PG

or T_TCR,#(cen I eel I

.endm

20/30

466

group F: page registers

select Timer D page

counter enable bit, clear counter

DMA ON 1/0 PORT

APPENDIX B: CAPTURE 0 CHANNEL IN EXTERNAL MODE (Continued)

;******************
;*START of PROGRAM*
;******************

START PROG

;*STACK Declaration*
;*******************

SSTACK

US TACK

llOh

BKE * 16

BKC * 16

- 1

- 1

**
Declaration of the interrupt vectors table
**

. text

.org CORE IT VECT

.word RESET START

.word DIVO

.word TOP LEVEL IT

.org Tl IT VECT

.org T1 IT VECT +CAPT IT VECT

.word CAPTURED

;*******************************
;*Output data table to Port 5 *
;*******************************

.org lOOh

DMA TABLE OUT: .byte Olh, 02h, 04h, 08h

.byte 10h, 20h, 40h, 80h

;**********************
;*Start of maln module*
;**********************

RESET START:

ld

ld

ld
ld

.org START PROG

MODER,#ll100000b

CICR, #lOOOllllb

SSPLR,#SSTACK +
USPLR,#USTACK +

start address program

System stack address group D C

User stack address group B

Start of program

Core interrupt vector

Power on interrupt vector

Dlvlded by 0 trap vector
Top level lnterrupt vector
Tlmer 1 lnterrupt vectors

Unused address

Timer 1 capture 0 interrupt

Output DMA table

Start of code

CLOCK MODE REGISTER
internal stack
no prescaling
external clock divlded by 2

CENTRAL INTERRUPT CONTROL REGISTER
priority level ~ 7
Nested Arbitration mode
disable interrupt
enable counters
At reset, Global Counter Enable
bit is active.

load system stack pointer
load user stack pointer

21/30

467

DMA ON 1/0 PORT

APPENDIX 8: CAPTURE 0 CHANNEL IN EXTERNAL MODE (Continued)

call

call

TIMER_l

INIT IO

START Tl

ei

; MAIN PROGRAMM

loop

wfi

;******************
;initialize TIMER 1
;******************

proc TIMER 1

srp
spp

ld

ld

ld

clr
ld
ld

clr

spp
ld
ld

ld
ld
ldw
ldw

spp

#BK F
#TlD_PG

t_tcr,#(ccpO I udc)

t_tmr,#rmO

t - icr, # (ab ti exa:_rf

t_prsr
t oacr,#(ou_nop
t -obcr,#(ou_nop -

t_flagr

#TlC PG
tl dcpr,#LG DMA BR
tl=dapr,#AD=DMA=BR

cl _nop
cl _nop

tl ivr,#Tl IT VECT
tl-idcr,#(-Tl-LEVEL I dcts
CPT LG DMA, #LG DMA
CPT=AD=DMA,#DMA_TABLE_OUT

#TlD_PG

cO _nop
cO _nop

ld t_idmr,#(gtien I cpOi I cpOd)

468

,
);
);

Timer 1 initialization in DMA mode

Port 5 init. DMA mode

Start Timer 1

enable all interrupts

select working register
select timer 1 register page

count up
clear on capture 0

Disable output B
Disable output A
Internal clock
Countinuous mode
Capture on REGO

TliNA trigger, TliNB I/0
TliNA rising/falling edge

No prescaling
No action on OUTPUTO
No action on COMPARE 0
on OUTPUT!

sensitive

Timer 1 Control page register
DMA counter register base address
DMA address register base address

DMA capture transaction source
Capture DMA counter init.
Capture DMA addres init.

Timer 1 Data page

Capture 0 INT and DMA

DMA ON 1/0 PORT

APPENDIX 8: CAPTURE 0 CHANNEL IN EXTERNAL MODE (Continued)

;**
CAPTURE 0 INTERRUPT ROUTINE
DMA Interrupt End of block

;**

CAPTUREO:

begin PPR, RPOR, RPlR

spp
srp

and

#TlD PG
#BK_F

t_flagr,#-(cpO I ocpO

ldw CPT_LG_DMA,#LG_DMA

ldw CPT_AD_DMA,#DMA_TABLE_OUT

or t idmr,#cpOd

iret

save page pointer
save register pointer pair
Timer 1 data register page
select group F

reset successful capture 0
reset overrun on capture 0

restart DMA capture 0 channel

; return from interrupt

;**
I/O port initialization

proc INIT_IO (PPR

;programmation Port 5 in OUTPUT in DMA mode

spp #P5C PG

76543210

ld P5COR,#00000000b
ld P5ClR,#llllllllb
ld P5C2R,#00000000b
ld P5DR, #0

Port 5 control register page
Port 5 in DMA mode
Port 5 Handshake disbled
DMA on Capture 0 channel
DMA direction = output

ld HDC5R,#(hsdis I den I ddw I dcpO)

; end init P5

programmation P3.4 (TliNA) in INPUT, TRISTATE, TTL

spp #P3C PG
ld P3COR,#00010000b
ld P3ClR,#OOOOOOOOb
ld P3C2R,#00010000b

23/30

469

DMA ON 1/0 PORT

APPENDIX 8: CAPTURE 0 CHANNEL IN EXTERNAL MODE (Continued)

; SECTION CODE FOR THE CORE INTERRUPT ROUTINE
;**

DIVO:

jx
ret

TOP LEVEL IT:

jx

iret

24/30

470

INTERRUPT ROUTINE FOR ZERO DIVISION

DIVO debug loop

INTERRUPT ROUTINE FOR TOP LEVEL IT

TOP LEVEL IT debug loop

DMA ON 1/0 PORT

APPENDIX C: CAPTURE 0 CHANNEL SYNCHRONIZED BY COMPARE 0 CHANNEL

This example output data on the CAPTURE 0 channel in external mode is synchronized by a COMPARE 0
data transfer to provide the following waveform.

Figure 10. Timing Waveform Example: DMA Channel

IMACHIHE I 1- Timing Haveforms

tlar·ker·s I Time I X to Trig I 9.22B ms I
Accumulate mo 0 to Trig l-15.15 ms I
Time!Dlv I 2.000 ms I De.lay I 0 s I

!MACHINE I 1- Timing Waveforms

Markers Time I X to Trig I 9.228 ms I
Accumulate []IT] 0 to Trig l-15 .15 ms I
Time/Oiv I 5.000 ms I Delay I 0 s I

I Time X to 0 I -24.36 ms

'A l I ~~ Marker I 1'-'P-"5-'-0--'

0

I Time X to 0 I -24,36 ms

At I X Marker! I P50

0

--------------------------- ~~~~~~~~:~~ _________________________ 2_5_~_0
471

DMA ON 1/0 PORT

APPENDIX C: CAPTURE 0 CHANNEL SYNCHRONIZED BY COMPARE 0 CHANNEL (Continued)

The DMA transfer uses two data tables located in program memory: DMA_TABLE_OUT, a list of data to
be output on 1/0 Port 5 and DMA_TIME_TABLE, a list of the time value to be loaded in the COMPARE 0
register. In this mode the Timer is programmed on CAPTURE mode with DMA transfer on CAPTURE 0 and
COMPARE 0 event. T1 OUTA, toggled on each COMPARE 0 event, and T11NA are connected together in
order to synchronize the data transfer on the 1/0 port (see TIMER_1 subroutine). A COMPARE 0 interrupt
(end of DMA interrupt) resets the successful CAPTURE 0 and COMPARE 0 flag and restarts the two DMA
transfers (see COMPARE 0 interrupt routine). 1/0 Port 5 is programmed in output in DMA mode, T11NA in
input mode and T10UTA in alternate function.

_26_13_0 ____________ J:iii. ~~~;~~v'::~~~~
472

DMA ON 1/0 PORT

APPENDIX C: CAPTURE 0 CHANNEL SYNCHRONIZED BY COMPARE 0 CHANNEL (Continued)

.title "DMA between program memory I/0 port 5 with timer 1 DMA channel synchronization'

;This program is a small example of using Timer l DMA external mode on I/0 port
;The timer is programmed in COMPARE 0 and CAPTURE 0 DMA mode with DMA channel
;Synchronization

;****************************
;*INTERRUPT VECTOR ADDRESSES*
;****************************

CORE IT VECT
T1 IT VECT

COMP IT VECT
T1 LEVEL
LG-DMA

:= OOh
10h

6
4
10

; Define the DMA pointer register
; DMA transfer from program memory

AD DMA BR
LG DMA BR
CPT AD-DMA
CPT LG DMA
CMP AD DMA
CMP LG-DMA

; Define global references

48h
4ch
RR#AD DMA BR
RR#LG-DMA-BR
RR#AD-DMA-BR+2
RR#LG=DMA=BR+2

Core interrupts vectors
Timer 1 interruts vectors

COMPARE event interrupt addres
Timer 1 priority level
Length of DMA

DMA address base register
DMA counter base register
Capture DMA address register pointer
Capture DMA counter register pointer
Compare DMA address register pointer
Compare DMA counter register pointer

.global

.global
TIMER 1, INIT IO, RESET START, DMA TABLE OUT
DMA_TIME_TABLE, COMPARED

;********************
;*Group number names*
;********************

BKC
BKD
EKE
BKF
BK F

:=
:=

:=
:=

;***********************
;* Start Timer 1 macro *
;***********************

.macro START T1

#T1D PG

12
13
14
15
BKF * 2

spp
or T_TCR,#(cen I eel)

.endm

·******************
' ;*START of PROGRAM*
;******************

START PROG

;*******************
;*STACK Declaration*
;*******************

SSTACK
US TACK

:=

:=

200h

EKE * 16
BKC * 16

group F: page registers

select Timer 0 page
counter enable bit, clear counter

start address program

- l; System stack address group D C
- 1; User stack address group B

27/30

473

DMA ON 1/0 PORT

APPENDIX C: CAPTURE 0 CHANNEL SYNCHRONIZED BY COMPARE 0 CHANNEL (Continued)

**
Declaration of the interrupt vectors table
**

.text

.org CORE IT VECT

.word RESET START

.word DIVO

.word TOP LEVEL IT

.org T1 IT VECT

.org T1 IT VECT + COMP IT VECT

.word COMPARED

* Output data table on Port 5 *

.org 100h

DMA TABLE OUT: .byte OOh, 01h, 02h, 04h, 08h
.byte 10h, 20h, 40h, 80h, OOh

;************************************
;* Compare 0 channel DMA time table *
;************************************

start of program

Core interrupt vector

power on interrupt vector
divided by 0 interrupt vector
Top level interrupt vector

Timer 1 interrupt vectors

unused addresses
Timer 1 compare 0 interrupt

Output DMA table

DMA TIME TABLE: .word 1000h, 2000h, 3000h, 4000h, 5000h
- - .word 6000h, 7000h, 8000h, 9000h, 1000h Compare 0 Time Table

;**********************
;*Start of main module*
;**********************

RESET_START:
ld

ld

ld
ld

call

call

.org START_PROG

MODER,#11100000b

CICR, #lOOOllllb

SSPLR,#SSTACK + 1
USPLR,#USTACK + 1

INIT IO

TIMER 1

START Tl

ei

; MAIN PROGRAMM
loop

wfi

END OF MAIN PROGRAM

28/30

474

Start of code

CLOCK MODE REGISTER
internal stack
no prescaling
external clock divided by 2

CENTRAL INTERRUPT CONTROL REGISTER
priority level = 7
Nested Arbitration mode
disable interrupt
enable counters
At reset, Global Counter Enable
bit is active.

load system stack pointer
load user stack pointer

Port 5 init. DMA mode

Timer 1 initialization in DMA mode

Start Timer 1

enable all interrupts

DMA ON 1/0 PORT

APPENDIX C: CAPTURE 0 CHANNEL SYNCHRONIZED BY COMPARE 0 CHANNEL (Continued)

;******************
;initialize TIMER 1
;******************

proc TIMER_l

srp
spp

ld

ld

ld

clr
ld
ld

#BK F
#TlD_PG

t_tcr,#udc

t_tmr,#(oeO I rmO)

t_icr,#(ab ti

t_prsr
t oacr,#(ou_nop
t=obcr,#(ou_nop

exa rf

cl nop
cl=nop

clr t_flagr

spp
ld
ld

#TlC PG
tl dcpr,#LG DMA BR
tl=dapr,#AD=DMA=BR

ld tl_ivr,#Tl_IT_VECT

ld
ldw
ldw
ldw
ldw

tl idcr,#(Tl LEVEL I dcts
CPT LG DMA, #LG DMA
CPT-AD-DMA,#DMA TABLE OUT
CMP-LG-DMA, # (LG DMA * 2)
CMP=AD=DMA,#DMA_TIME_TABLE

#TlD PG
t cmpOr,#O

select working register
select timer 1 register page

count up

Disable output B
Enable output A
Internal clock
Countinuous mode
Capture on REGO

TliNA trigger, TliNB I/0
TliNA rising and falling edge sensitive

No prescaling
cO tog); Toggle on Compare 0 event on TlOUTA
cO=nop); No action on COMPARE 0 on TlOUTB

Timer 1 Control page register
DMA counter register base addres
DMA address register base addres

DMA capture transfer source
Capture DMA counter init.
Capture DMA address init.
Compare DMA counter init.
Compare DMA address init.

Timer 1 Data page spp
ldw
ld t=idmr,#(gtien I cmOi I cmOd I

Clear Compare 0 register
cpOd); DMA on Capture 0

; Compare 0 INT and DMA

;**
COMPARE 0 INTERRUPT ROUTINE

; DMA Interrupt End of block
;**

COMPARED:

begin PPR, RPOR, RPlR] {

spp
srp

and

or

#TlD PG
#BK_F

t_flagr,#-(cmO I ocmO I cpO I ocpO

t_tcr,#ccl

save page pointer
save register pointer pair

Timer 1 data register page
select group F

); Reset successful Compare 0
Reset overrun on Compare 0
Reset successful Capture 0
Reset overrun on Capture 0
Counter clear

29/30

475

DMA ON 1/0 PORT

APPENDIX C: CAPTURE 0 CHANNEL SYNCHRONIZED BY COMPARE 0 CHANNEL (Continued)

ldw
ldw
ldw
ldw
or

iret

CPT LG DMA,#LG DMA-1
CPT-AD-DMA,#DMA TABLE OUT+l
CMP-LG-DMA,#((LG DMA~l) * 2
CMP-AD-DMA,#DMA TIME TABLE+2
t_~ctmr-;-# (cpOd T cmOd) restart DMA capture 0 channel

restart DMA compare 0 channel

; return from interrupt

;**
I/0 port ~nitial~zatlon

proc INIT_IO [PPR] {
;programmation Port 5 in OUTPUT in DMA mode

spp #P5C_PG

76543210

ld PSCOR,#OOOOOOOOb

ld P5ClR,#llllllllb

ld P5C2R,#00000000b

ld P5DR, #0

ld HDCSR,#(hsdls I den I ddw I dcpO)

; end in~t PS

Port 5 control register page
Port 5 in DMA mode
Port 5 Handshake disbled
DMA on Capture 0 channel
DMA direction = output

programmat~on P3.4 (TliNA) ~n INPUT, TRISTATE, TTL
programmation P3.5 (TlOUTA) in ALTERNATE FUNCTION, PUSH-PULL, TTL

spp #P3C PG
ld P3COR,#00110000b
ld P3ClR,#00100000b
ld P3C2R,#00010000b

;**
SECTION CODE FOR THE CORE INTERRUPT ROUTINE

;**

INTERRUPT ROUTINE FOR ZERO DIVISION
;--
DIVO:

JX DIVO debug loop

ret

;--
INTERRUPT ROUTINE FOR TOP_LEVEL_IT

;--
TOP_LEVEL_IT:

30/30

476

JX
iret

TOP LEVEL IT debug loop

APPLICATION NOTE
STACK OVERFLOW DETECTION

USING THE ST9 TIMER/WATCHDOG
Pierre Guillemin

INTRODUCTION

In real time applications, the implemention of software protection is not always easy, but allows reaching
a high security level for the software against malfunction. This is particulary true for in-board applications
in disturbed environments, such as automotive, power meter or industrial applications.

To help avoid non-controlled functionality and damage to real time system due to possible perturbations
on the ST9 microcontoller core and 1/0 ports, a special peripheral able to act as a watchdog is available
on all ST9 family members: the Timer Watchdog.

A periodic restarting of the Timer Watchdog by program, associated with the automatic detection of possible
stack overflow, add to the protection of real time application software.

This application note shows how to detect stack overflow by using the Timer Watchdog in watchdog mode.

STACK OVERFLOW DETECTION PRINCIPLE

Summary of Timer Watchdog Features

The ST9 core include a 16-bit down counter with an 8-bit prescaler offering the possibility of a watchdog
mode. This timer, driven by a clock equal to INTCLK divided by 4, is able to provide time periods within
the range of 333ns to 5.59s (using a 12 MHz internal clock).

In watchdog mode, the Timer Watchdog generates a fixed time base according to the Timer Watchdog
registers and prescaler, and to I NTCLK. This time base can be modified on the fly by changing the prescaler
value. The new value will be taken into account only after an End Of Count event. In watchdog mode, the
End Of Count occurence generates a system reset.

In order to prevent the reset, the byte sequence AAh, 55h should be written into the Timer Watchdog register
Low. Once the writing of 55h has been performed, the timer reloads the prescaler register and the counting
restarts from this value (the prescaler register value may be modified between two End Of Count events).

Note 1. For a better understanding of this application note; please refer to the ST9 Technical Manual chapter on the 16-bit
programmable Timer/Watchdog.

Note 2. INTCLK: Internal Clock. This clock issued from the oscillator circuitry, divided or not by 2, is the ST9 Internal Clock driving
the peripherals. The maximum frequency allowed for INTCLK is 12MHz.

AN421/1292 1/5

477

STACK OVERFLOW PROTECTION

Stack Overflow Detection

In many software applications, for example when running on ST9 ROM LESS versions or without external
memory space, the size of the stack is limited.

On ST9 devices, the system stack may be located in the Register File or in data memory space. The ST9
stack pointer moves from the top to the bottom of the stack area.

A solution to detect stack overflow is to reserve the first two bytes after the bottom of the stack and to store
in these locations the Timer Watchdog restart value, ie AAh, 55h.

In the case of stack overflow, the data will be overwritten and thus destroyed and a system reset will be
generated on the next Timer Watchdog End Of Count.

Figure 1. Example of Stack overflow detection in Register File

System stack

pointer on
current stack

location

END_SSTACK:

Last byte of

system stack

r15

r14

RO

Register File

system registers

System

Stack area

55h

AAh

Application

register area

_21_5 _____________ ~ ~~~~m~=:~~~

478

groupE

group D

group 0

STACK OVERFLOW PROTECTION

SOFTWARE DESCRIPTION

Stack Initialization
The following example initializes the system stack in groups D and C of the Register File.

In the stack management of the ST9, the stack pointer is automatically pre-decremented before the data
_is stored on the stack. So the expression:

SSTACK = (BKE * 16) - 1

defines the first location of the system stack in group D and C within the Register File, while the instruction:

ld SSPLR,#SSTACK + 1

initializes the system stack pointer in the system register. The instruction:

ldw RR#END_SSTACK,#OAA55h

initializes the first two bytes following the bottom of the system stack with the value used to restart the
Timer Watchdog.

Rgure 2. System stack initialisation

;***
STACK Declaration and end of stack initialisation

in RAM space or Register File
;***

; Initialisation in Register File

SSTACK
LG-SSTACK
END SSTACK

:= (BKE * 16) - 1 Sys.stack add.group
.- 32 Sys.stack length
.- (BKE * 16) - LG_SSTACK ; Last sys.stack byte

ld
ldw

SSPLR,#SSTACK + 1
RR#END_STACK- 2,#0AA55h

; Initialisation in RAM space

SSTACK
END-STACK
essp

.- 2000h
:= lOOOh

rrO

sdm
ldw
ld
ldw

SSPR,#SSTACK
essp,#END_SSTACK
-2(essp),#OAA55h

Load sys.stack pointer
Init end of stack.

top of sys.stack
Init end of stack

; Select data space
Init End· of sys.stack

3/5

479

STACK OVERFLOW PROTECTION

Timer Watchdog Programmation

As an example, the Timer Watchdog is initialized in order to provide a time base of 1 Oms (with a ST9 driven
by a clock frequency of 24M Hz internally divided by two). To enable the Watchdog mode, the requirement
is to initialize Timer prescaler and counter, to initialize the Timer Watchdog Control Register with its reset
value, and then to enable the watchdog mode by clearing the WDGEN bit in the Wait Control Register in
page 0. Resetting this bit causes the counter to start in Watchdog mode regardless of the start/stop,
Single/Continuous and input mode bits.

Figure 3. Timer/Watchdog Initialisation

;***
WATCHDOG INITIALISATION

;***

proc INIT_WGT[PPR]

spp
ld
ld
ld
}

call
spp
ld
ei

#0
WDTPR,#O
WDTLR,#-30h
WDTHR,#075h

INIT WGT
#0
WCR, #OOllllllb;

TWD prescaler register
TWD Timer counter low
TWD Timer counter high

call TWD initialisation
select page 0 register
Enable the Watchdog
Enable Interrupt

Note3. A bit (DIV2 located in the MODE Register MODER, R235 in the system group) controls the divide by two circUli which
operates on the OSCIN clock driving the ST9. The maximum Internal Clock (INTCLK) allowable for the ST9 1s 12M Hz.
This internal clock drives all the ST9 penpherals, while lh1s same clock, optionally slowed down by the ST9 Core clock
programmable prescaler and by wait cycle insertion, drives the ST9 Core.
After a reset cycle, the clock frequency applied to the ST9 is divided by two and no Core clock prescaling is done.

_41_5 ----------- W SCS·THOMSON
'llo li:iJUa:~@~il,~l;mi:l©li!Ua:~

480

STACK OVERFLOW PROTECTION

Timer Watchdog Restart
This example shows how to restart the Timer Watchdog when the stack is located in Register File or in
RAM space. In the register file, the two instructions:

ld WDTLR,#END SSTACK-2
ld WDTLR, #END:::SSTACK-'1

load the restart value of Timer Watchdog.

When the system stack is located in RAM space, a register essp (end of system stack pointer) must be
used to load the sequence AAh, 55h in the Timer Watchdog counter register low.

Figure 4. Restarting the Timer/Watchdog

spp
ld
ld

spp
sdm
ld
ld
ld

SUMMARY

In Register File

#0
WDTLR,R#END_SSTACK-2
WDTLR,R#END_SSTACK-1

In RAM space

#0

essp,#END_SSTACK
WDTLR,-2(essp)
WDTLR,-1(essp)

TWD register page
Load AAh

; Load 55h

TWD register page
Select RAM space

End stack pointer
Load AAh
Load 55h

Protection of software against externally generated perturbations can be made by additional test routines.
This protection can easily be increased by using the ST9 Timer Watchdog bringing software reliability and
security. With the Timer Watchdog the ST9 programmer may control the software execution. Additionally,
when restarting the Timer Watchdog from values (AAh, 55 h) located at the bottom of the system stack two
new securities are added:

- test of the integrity of the Register File or the RAM space

- provision of a system reset in the case of stack overflow.

--------------~ ~~~;~~~:01~:: 5/5

481

INTRODUCTION

APPLICATION NOTE
FREQUENCY DOUBLER

DEMONSTRATION SYSTEM
Myriam Chabaud and Alan Dunworth

This Application Note is intended to provide the interested designer of ST9 system applications with a
further insight into methods of exploiting the powerful capabilities offered by the ST9 chip in conjunction
with the ST9 Technical Manual (Ref. 3). For this purpose we present full software and broad hardware
details of a complete system application (Appendices A and B).

BASIC SPECIFICATION OF A FREQUENCY DOUBLER SYSTEM.

An analogue signal (speech signal) is sampled at a fixed rate and digitized sample values are stored in
internal RAM. After a delay period, equal to the period of the lowest frequency component in the input
signal, the samples are read from RAM at twice the input sampling frequency and converted to analogue
form by using Pulse Width modulation techniques coupled with external filtering.

This process is illustrated by the waveforms shown in Figure 1 which show the nature and timing of the
output signal resulting from sampling and frequency doubling the given input signal.

USE OF ST9 SYSTEM RESOURCES.

The demonstration application makes use of the following basic ST9 system resources:

- AID Convertor

- Multifunction Timer/Counter

- Internal RAM (Register File)

- Input/Output Ports

The A/D convertor

One only of the eight available analogue input channels of the ST9 AID Convertor is used in this application.
The input speech signal, band-restricted by filtering to remove frequency components below a lower, or
above an upper limit, is fed to the input channel. The AID Convertor is operated in continuous scanning
mode, each conversion being started by an internal On Chip Event signal generated by the Multifunction
Timer underflow event.

AN426 I 1192 1/19

483

FREQUENCY DOUBLER

USE OF ST9 SYSTEM RESOURCES (Continued)

The Multifunction Timer/Counter

The Multifunction Timer is operated in continuous mode with count down from a fixed value of 508, each
underflow resulting in the generation of an On-Chip Event signal and reload of the fixed initial counter value
(508). The initial count value, prescaler, and clock rate are chosen to give a sampling rate of -?.8kHz.

Comparison register 1, CMP1, is used to obtain the double sample output rate by successively loading this
register with the maximum count value (508), and one half the maximum count value (254). In this way
two CMP1 event pulses, and the related sample output, will be obtained for each Timer count-down period,
i.e. for each input sampling event.

Comparison register 0, CMPO, is used to obtain the Pulse-Width Modulated output. This is achieved by
successively loading this register with a value equal to 508 - S, where S is the sample value, or 254- S.
Timer output OUT1 is then set to a "one" value by an OVF or CMP1 event, i.e. effectively at count values
508 or 254, and reset to a "zero" value by a CMPO event. This results in an output pulse train in which the
output is set to "one" for the period of time it takes for the counter to count down from 508 to (508 - S), or
from 254 to (254- S). In either case the "ON" period of the output pulse is proportional to the sample value,
S, (range 0 to 254).

Figure 1. Illustration of Frequency Doubling

[Half period'
I
I

INPUT

Full period of input signal

Td

OUTPUT

VR001551

_21_1_9 _________________________ ~~~~~~~~:~~n __________________________ __
484

FREQUENCY DOUBLER

USE OF ST9 SYSTEM RESOURCES (Continued)

The output signal is delayed by an amount Td relative to the input signal. The minimum input frequency
must be no lower than 1ffd since there must be at least three zero-crossings during the period Td for correct
restitution of the double frequency output signal.

Figure 2 shows the Timing control events with Tr, the output sampling rate equal to Te/2, i.e. the input
sampling period, Te, divided by two. In addition, it will be noticed how the sequence of values, Thn, the mark
periods of the output, are controlled by the CMPO values.

Figure 2.Timer Output Controlled by 3 Counter Events

I Th1 Th2 I Th3 I

J I LJ
cmO cm1 cmO auf cmO cm1

1:
Tr Tr J T r ------;•...jl

Te
VR001552

Use of Internal RAM (the Register File).

The ST9030 has 224 bytes of available internal RAM storage, addressable as registers. Two hundred
locations have been allocated to the storage of 200 8-bit digitized samples, which leaves 24 register
locations for the stack or for storage of temporary values.

The delay of Td, required before output samples can be read out, is equal to the time required to read and
store 100 samples. During this time there must be at least three zero-crossings for the lowest frequency
component in the input signal (see Figure 1). For a sampling rate of ?.8kHz this defines the minimum input
frequency to be Fmin -78Hz.

Use of Port terminals for special input/output.

Two of the Port pins must be used for the analogue signal input and for the PWM output signal. These pins
can be initialized for AID input or Alternate Function Output as described in the initialization section.

--------------~iii. ~~~~m~::Ol~~
3/19

485

FREQUENCY DOUBLER

ASSOCIATED ANALOGUE CIRCUITRY.

The sampling frequency, Fe, for the input analogue signal is determined by the Timer parameters to be
7.8kHz., which, by Shannon's Theorem implies that the maximun input frequency be limited to no more
than half this value, i.e. 3.9kHz. The input circuit must hence include a low-pass filter to avoid any resultant
aliasing.

The input frequency must also be limited at the lower frequency end. This arises because the maximum
number of samples which can be stored is limited to 200, and furthermore a minimum delay must exist
between the input signal and the reconstituted, frequency-doubled output. This minimum delay, equivalent
to the period of the lowest frequency component present in the input signal, in conjunction with the sample
size limit, implies that the minimum frequency must be no lower than Fe/1 00, i.e. 78Hz.

Effectively, therefore, the input signal must be fed to the AID sampling input via a Band-Pass filter. In our
Application, the filter used had -3db cut-off frequencies of 85Hz and 1.5kHz.

The output signal from the ST9 consists of a PWM pulse train at a frequency of 2xFe. The use of a Low
Pass filter is hence indicated to recover the required output signal. In our example a high-order Pass-band
filter with -3db frequencies of 200Hz and 3kHz was used (Appendix A).

Full details of the design considerations and performance characteristics of the input and output filters do
not fall within the scope of this short note.

PROGRAM DETAILS.

The software associated with this design example comprises the following four components:

(i) Initialization of ST9 core and on-chip peripherals.

(ii) The Main Program.

(iii) The Interrupt routine controlling the input sampling and storage of data (soUND_IN).

(iv) The Interrupt routine controlling the output of frequency-doubled samples (SOUND_ ouT).

Core Initialization.

The ST9 is initialized in the following manner:

(i) The User and System Stacks are set up in Internal RAM,

(ii) The Internal Clock frequency is set to 12MHz,

(iii) The Priority level of the RESET interrupt is set to 7

Initialization of the Input/Output Ports.

Two lnpui/Outputs only are required, corresponding to the Analog input and output. The corresponding
Port pins are initialized either as an AID input or as an Alternate Function output, i.e. they are linked to ST9
internal signals, as follows:

(i) TOOUTB: Output 8 from Timer 0,

This output was chosen as it can be activated by the CMPO event of Timer 0

(ii) AIN7: Input No. 7 of the AID Convertor

Note: only the one (out of 8 possible) analogue entries is used.

_41_1_9 _________________________ ~~~~~~~~:oo~~ ----------------------------
486

PROGRAM DETAILS (Continued)

Initialization of the A/D Convertor.

*the software activation bit is set to disable,

* an AID Conversion is triggered by an OCE (On-Chip Event),

'*the Interrupt Vector Address is set up at Table Address 20h in EPROM,

*the Analog Watch-Dog Interrupt is disabled,

* the Interrupt generated by "End of Conversion" is validated.

Initialization of the Timer/Counter.

Timer 0 is initialized as follows:

* Count-down mode is selected,

* Continuous Sampling Mode is enabled,

*the internal Clock is selected (4MHz).

* Output, OUTB is:

. initialized to 1

. Set to 0 by the CMPO event,

. Set to 1 by the CMP1 and OVF events,

*the OCE signal is generated on Counter Underflow,

*the Vector Interrupt Address is specified as 30h in EPROM

* the Interrupt Priority level is set to 6.

MAIN PROGRAM

FREQUENCY DOUBLER

The Main program, (see Appendix B for a full listing), is automatically entered on System Reset since the
address, 38h, has been loaded in the Interrupt Vector Table at locations 0 and 1. Program Main first initializes
the Clock, stacks, Multifunction Timer 0, AID Convertor, and Ports, using the sub-routine peri ph_ ini t.
The RAM table pointer is initialized together with pointers and counters which are used to record the number
of input waveform zero-crossings, and the number of times the output waveform has been repeated (N.B.
there are two repeated output periods for each complete input period).

At this point the Timer o start Macro is executed which causes the counter to start counting down
towards zero from an initial value of 508. Each time the counter clears to zero an On-Chip Event signal will
be generated internally in the ST9 chip which will initiate the next AID input sample conversion.

The main program loops around label "here" and the two following statements until such time as 100 input
samples have been acquired, as indicated by equality between cpt_in, the input sample counter and
#ptr _may (64 Hex). The main program then proceeds to set bit 1 in working register 10 (myflags.1 is
equivalent to the start out flag in Figure 3).

From this point on the Main program loops around the statements following "there" until such time as a
System Reset is applied. Each TimerO OCE pulse initiates an input sample conversion, and each successful
CMPO comparison event initiates an output sample, these two operations being effected by the Interrupt
subroutines souND_ IN and souND_ ouT, respectively.

The overall working of the Main program may be readily visualized by reference to Figure 3.

5/19

487

FREQUENCY DOUBLER

THE SOUND_IN INTERRUPT ROUTINE.

The organization of the SOUND_ IN routine is illustrated by the flow-diagram of Figure 4, and the program
details are shown in Appendix B.

This routine is entered whenever the A/D Convertor raises an End of Conversion Interrupt, and will thus
occur shortly after the OCE pulse produced by Timer 0 counting down to zero.

After saving the current CPU context (working register pointer and page registers) and selecting the A/D
system register page, this routine loads the current input sample into RAM, resetting the RAM table pointer
if the end of Table has been reached.

The routine then resets the Timer interrupt pending flags and exits after restoring the CPU context.

Figure 3. Flow Chart of the Main Program Figure 4. Flow Chart of the SOUND_IN Routine

MAIN

Entered on

System RESET

_61_19 __________________________ ~~~~~~~~:~~

488

End of conversion (EOC)
from the A/D convertor

----=~'----
SOUND_IN Interrupt

routine

Set RAM pointer to ZERO

VR001554

FREQUENCY DOUBLER

THE SOUND_OUT INTERRUPT ROUTINE.

The organization of the SOUND_ OUT routine is illustrated by the flow-diagram of Figure 5, and the program
details are shown in Appendix B.

Figure 5. Flow Chart of the SOUND_OUT Routine

CMPO successful

VR001555

--------------l..;i. ~~~~~=:r9!: 7/19

489

FREQUENCY DOUBLER

THE SOUND_OUT INTERRUPT ROUTINE (Continued)

This Interrupt routine is entered after each successful CMPO comparison, i.e. at the conclusion of the "ON"
period of the output pulse train (refer to Figure 2).

After saving the current context (working register pointer and page registers) and specifying a set of current
working registers, this routine tests to see whether at least 100 samples have been accumulated since the
last System Reset. If this is not the case an immediate exit is made by means of a branch to end_ out.
Otherwise the routine proceeds by copying the current output sample value into working registers r8 and
r9, These registers comprise respectively the higher and lower components, tamph (normally zero) and
tampl, of the 16-bit extended version (tampw) of the basic 8-bit sampled input value.

The next step is to establish whether a zero-crossing has occurred. This is established if the "zero" value
(actually "zero" equals the mid-range value of 128) lies between the values of the current and the previous
sample values. If a zero-crossing has occurred a further test is made to establish whether this is the first
or second such zero-crossing, i.e. whether we have encountered the end of an input sample half- or
full-period (refer to Figure 1). If the end of a complete period has been reached a further test is made to
see if this complete period has been outputted once, in which case a further copy of the same period is
required, or twice, in which case we can proceed to the next input period. The appropriate counter values
are updated and a branch is made to next_sample.

At this point the sample value is saved for the next zero-crossing test, and the value of the register, CMP1
is loaded with 508 or 254 as appropriate.

Register CMPO is then loaded with a value of 508 - S, or 254 - S, where S is the current sample. The
appropriate choice for the CMP1 and CMPO values is made on the basis of whether the previous CMP1
value was 508 or 254. In the former case (508) CMP1 is loaded with 254, and CMPO with 254- S. In the
latter case (254) CMP1 is loaded with 508 and CMPO is loaded with 508- S.

Finally the Timer 0 pending event flags are reset, the CPU contest is restored, and exit made by the IRET

instruction.

REFERENCES

(1) Application Note AN413, "Initialization of the ST9",
Pierre Guillemin and Alan Dunworth, SGS-THOMSON, Rousset.

(2) "ST9 Technical Manual",
SGS-THOMSON Microelectronics.

(3) Application Note AN411, "SYMBOLS. INC, ST9 Register Address and Content Names",
Pierre Guillemin, SGS-THOMSON Microelectronics.

_~_1_9 _________________________ ~~~~~~~~:~~~ ----------------------------
490

APPENDIX A. CIRCUIT SCHEMATICS

Figure 6 . Frequency Doubler Demonstration System Overview

+10V

22p~

19

20

21

22

23

24

25

26

.J,. 22pF

Vss

0
0

>

-10V

ST90E30

27 28 29 .30 31 32 33 34 JS 36 37 38 39 40 41 42 43

1aonrp 1o.uF

FREQUENCY DOUBLER

VR001556

9/19

491

FREQUENCY DOUBLER

APPENDIX A. CIRCUIT SCHEMATICS (Continued)

Figure 7. Input Stage Overview

150pF

Mic.

8.2k0

8.2k0

Figure 8. Output Stage

Note 1: This value must be generated

_10_11_9 __________ ID SGS·THOMSON
'J lo l'l!G~ITTI©rn~rn©1TDJ@li!G~®

492

1 2.2nF

VR001557

VRD01558

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (for ST9030)

;***

ST90E30 DEMOBOARD

DEMO.ST9

;***

; REGISTER DEFINITIONS

;*********************

memo_sample

pos zc

cpt_zc

cpt_out

cpt_in

my flags

tampl

tamph

tampw

tamp_sub

cpt_repeat

sys_stack

ROC7h

;*********************
; CONSTANTS DEFINITION

;*********************

work_reg_pageO

work_reg_pagel

max count

mid count

zc value

table

r15

rl4

r13

rl2

rll

rlO

r9

r8

rr8

rr6

r5

OD4h

RODFh

RODEh

RODDh

RODCh

RODBh

RODAh

ROD9h

To detect a zero crossing.

The first sample location of a period.

Zero Crossing counter .

To scan table in output.

To scan table in input.

My 8 flags.

ROD8h

ROD8h-ROD9L

ROD6h-ROD7h

Period repeat counter.

! ! ! system stack is limited by bank 0 registers.

The end of the system stack.

(0Dh*2)

(0Dh*2)+1

508 ; The maximum count of timer 0.

(max_count/2)

07Fh

ROC8h

OOh

To detect a zero crossing.

The last register of table.

The first register of table.

---------------~ ~~~~~~::ij~~ 11/19

493

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (Continued)

ptr_moy 100 ; The middle of the table.

ptr_max 200 Table contains 200 registers.

Input signal frequency min = 100 Hz

p _debug R229 Port 5 is used for debug.

ad vect 020h Start of A/D vector table.

tO vect 030h Start of Timer 0 vector table.

tO _cmp_vect 036h Timer 0 compare event interrupts.

; Flags of MYFLAGS register.

·---------------------------'
start out 1 ; 1 => sound output can begin with the 100

; first samples in table.

mask start out (1<-start_out)

;******************

; MACROS DEFINITION

;******************

.macro tOstart

spp #TOD_PG
or

or
.endm

T_IDMR,#gtien
T_TCR,#cen

.macro tOstop

spp #TOD PG

and T_TCR,#-cen

and T_IDMR,#-gtiem
.endm

TO Global interrupt mask disabled.
Counter enabled.

Counter disabled.

TO Global interrupt mask enabled.

_12_1_19 _________________________ ~~~~~~~~:~~~ ----------------------------
494

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (Continued)

; INTERRUPT VECTORS

;******************

power_on::

.text

.word

.word

. org ad_ vect

.word

.word

main

main

main

sound in

.org tO cmp_vect

.word sound out

;*************
; MAIN PROGRAM

;*************

main::

ld MODER,#lllOOOOOb

ldw SSPR,#sys stack

spm

spp #WDT_PG

ld wcr, #wden

ld EIMR,#O

srpO #work_reg_pageO

srpl #work_reg_pagel

call periph_init

clr cpt_in

RESET vector.

Divide by 0 vector.

Analog Watchdog Request not used.

A/D End Of Conversion Request.

Compare 0 of timer 0 request.

Ext clock prescale by 2.

Internal system and user stacks.

System stack pointer.

Data memory selected.

Watch dog mode disabled, no wait states.

Mask all channels interrupts.

At reset, Global Counter Enable bit is active

Initialization of ports, timerO, ADC.

To input samples in table.

13/19

495

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (Continued)

clr cpt_out

ld cpt_repeat,#2

ldw tampw,#381

clr memo_sample

clr myflags

ei

tOstart

here::

cp cpt_in,#ptr_moy

jrne here

bset myflags.l

there::

wfi

jr there

;****************
; INITIALIZATIONS

;****************

peri ph _init::

14/19

TO OUTB.

spp #P3C PG

ld P3COR,#00001000b

ld P3ClR,#Offh

ld P3C2R, #0

AIN7 input.

spp #P4C_PG

ld P4COR,#10000000b

ld P4ClR,#llllllllb

ld P4C2R,#l0000000b

To output samples from table.

Period repeat counter.

The first value.

TO ,in PWM mode, will effect D/A conversion.

To permit output of the 100 first samples.

port3: b3:af,pp,ttl.

others:out,pp,ttl

port4: b7:af,od,ttl.

others:out,pp,ttl

~ Sl:iS·THOMSON
---------------- .. .,,. [ij]O!:Iil@~~~!:~lil@llilO!:i!l ----------------

496

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (Continued)

timO init ***
d/a 8 bit in pwm

outB is preset to 1.

set by OUF and CMP1.

reset by CMPO.

prescale=O,continuous mode.

On Chip Event (OCE) generated by OUF.

sound_out interrupt generated by CMPO.

;**

init tO::

spp #TOD_PG TO data page

(Xtal clock I 6) => 4 MHz (at reset).

srp #(15*2) To access bank F with "r" addressing mode.

ldw t_regOr,#max_count

ldw t_cmp1r,#max_count

508 counts at 4MHz => 127 micro sec. (7.8 kHz).

CMP1 value will change for

ldw t_cmp0r,#(381)

ld t_tcr,#OOOOOOOOb

ld t_tmr,#10000000b

ld

ld

ld

t_icr,#O

t_oacr,#11111101b

t_obcr,#10000011b

ld t_idmr,#00000100b

spp #TOC_PG

ld tO_ivr,#tO_vect

ld tO_idcr,#OC6h

4 times between 2 acquisitions.

508 - 127.

Timer 0 stops, software down count.

OUTB enabled, OUTA disabled.

Retrigger mode enabled.

Continuous mode selected.

Nop on inputs.

OUTA is disabled.

OUTB is preset to 1,reset by cmpO,

OUTB is set by ouf and cmp1.

OCE (a single pulse) is generated by ouf.

Flags register is cleared at reset.

Only cmpO interrupt will be enabled.

Timer 0 control page.

Timer 0 interrupt vector table.

Priority level 6.

15/19

497

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (for ST9030) (Continued)

A/D converter **

speech or sound input

Start Conversion is triggered by On Chip Event signal (OCE) .

ADC frequency= 7.8 kHz.

Continuous scanning channel 7.

Interrupt on End Of Conversion (EOC) .

;***

init ad::

spp #ADO PG

ld AD CLR,#11001100b

ld AD_IVR,#ad_vect

ld AD_ICR,#00100110b

ret

16/19

498

OCE starts conversion (single mode) .

Power up, only the channel 7 is converted.

Vector pointing the A/D int. routine starting
address.

Enables the End Of Conversion interrupt request.

Masks the Analog Watchdog interrupt request.

Priority level 6.

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (Continued)

**
Sound acquisition routine.

Called by A/D End Of Conversion.

A/D EOC occurs every 127 j.lS (Fin = 7. 8 kHz)

digital value-> table(cpt_in),

**

sound in::

pushw RPP

push PPR

srpO #work_reg_pageO

srp1 #work_reg_page1

spp #ADO PG

ld tampl,AD_D6R

ld table(cpt in),tampl

inc cpt_in

cp cpt_in,#ptr_rnax

jrne skip_cpt in

clr cpt in

skip_cpt_in::

and AD_ICR,#-(awd+ecv)

pop PPR

popw RPP

iret

Register pointer pair.

Page pointer register.

Selects the Working registers bank 0.

Selects the Working registers bank 1.

ADC page.

Load sample (from A/D data register)
in RAM table.

When the end of the table is encountered.

Reset of the request flags.

17/19

499

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (Continued)

;***
sound generation routine.

called by cmpO of timer 0.

this routine will be executed every 64 micro sec.

cmpO register of timer 0 is here initialized for D/A conversion in PWM mode.

**

sound out::

pushw RPP

push PPR

spp #TOD_PG

srpO #work_reg_pageO

srpl #work_reg_pagel

Register pointer pair.

Page pointer register.

tern myflags,#mask_start_out

jrne end out

clr tamph

ld tampl,table(cpt_out); Load sample value from table.

-------- test if zero crossing.

cp memo_sample,#zc_value

jrmi small ; If memo_sample < zc value.

cp tampl,#zc_value

jrpl end zc

jr end test zc

If tamp and memo_sample > zc_value.

If tamp > zc value and memo_sample < zc value

small::

cp tampl,#zc_value

jrmi end zc If tamp and memo_sample < zc value.

; -------- there is a zero_crossing.

end test zc::

djnz cpt_zc,end_zc Test if it's the second zero crossing.

ld cpt_zc,#2 To count again 2 zero crossing.

18/19

500

FREQUENCY DOUBLER

APPENDIX B. PROGRAM LISTING (Continued)

djnz cpt_repeat,again

ld cpt_repeat,#2

ld pos_zc,cpt_out

jr end zc

again::

ld cpt_out,pos_zc

Period repeat counter.

Save the zero crossing position.

; Load the zc position to repeat a period.

. --------
' zero crossing has been treated.

end zc::

inc cpt_out

test_cpt_out::

cp cpt_out,#ptr_max

jrne next_sample

clr cpt_out

next_sample::

ld memo_sample,tampl Save the sample for the next zero crossing test.

subw T_CMPlR,#mid_count

jrne init_cmpO

ldw T_CMPlR,#max_count

init_cmpO::

ldw tamp_sub,T_CMPlR

subw tamp_sub,tampw

ldw T_CMPOR,tamp_sub

end out::

clr T FLAGR

pop PPR

popw RPP

iret

The next value to set OUTOB.

The next value to reset OUTOB.

Resets the timerO event flags.

____________ ~ SCS·THOMSON
•"'fl. [R;]ITI!:OO©rn~rn~oo©JIIIITI!:®

19/19

501

SALES OFFICES

EUROPE

DENMARK

2730HERLEV
Herlev Torv, 4
Tel. (45-44) 94 85 33
Telex 35411
Telefax (45-44) 948694

FINLAND

LOHJA SF-08150
Ratakatu, 26
Tel (358-12)15511
Telefax (358-12) 15566

FRANCE

94253 GENTILLY Cedex
7 - avenue Gall1en1 - BP 93
Tel.. (33-1) 47.40 75.75
Telex 632570 STMHQ
Telefax (33-1) 47 40 79 10

67000 STRASBOURG
20, Place des Hailes
Tel (33-88) 75 50 66
Telefax (33-88) 22 29 32

GERMANY
8011 GRASBRUNN
Bretonischer R1ng 4
Postfach 1122
Tel· (49-89) 460060
Telefax (49-89) 4605454
Teletex 897107=STDISTR

6000 FRANKFURT
Gutleutstrasse 322
Tel (49-69) 237492-3
Telefax (49-69) 231957
Teletex 6997689=STVBF

3000 HANNOVER 51
Rotenburger Strasse 28A
Tel (49-511) 615960-3
Teletex 5118418 CSFBEH
Telefax (49-511) 6151243

8500 NURNBERG 20
Erlenstegenstrasse, 72
Tel· (49-911) 59893-0
Telefax (49-911) 5980701

7000 STUTTGART 31
M1ttlerer Pfad 2-4
Tel (49-711) 13968-0
Telefax. (49-711) 8661427

ITALY

20090 ASSAGO (Mf)
VIe M1lanof1on- Strada 4- Palazzo N4/A
Tel (39-2) 892131 (10 hnee)
Telex 330131-330141 SGSAGR
Telefax (39-2) 8250449

40033 CASALECCHIO Dl RENO (BO)
Via R Fuc1n1, 12
Tel (39-51) 593029
Telex 512442
Telefax (39-51) 591305

00161 ROMA
Via A Torlon1a, 15
Tel (39-6) 8443341
Telex 620653 SGSATE I
Telefax (39-6) 8444474

NETHERLANDS

5652 AR EINDHOVEN
Meerenakkerweg 1
Tel (31-40) 550015
Telex 51186
Telefax (31-40) 528835

SPAIN

08021 BARCELONA
Calle Platen, 6 41" Roar, 5" Door
Tel (34-3) 4143300-4143361
Telefax (34-3) 2021461

28027 MADRID
Calle Albacete, 5
Tel (34-1) 4051615
Telex 46033 TCCEE
Telefax (34-1) 4031134

SWEDEN

S-16421 KISTA
Borgarfjordsgatan, 13- Box 1094
Tel (46-8) 7939220
Telex 12078 THSWS
Telefax (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX (GENEVA)
Chem1n Francois-Lehmann, 18/A
Tel (41-22) 7986462
Telex 415493 STM CH
Telefax· (41-22) 7984869

UNITED KINGDOM and EIRE

MARLOW, BUCKS
Planar House, Parkway
Globe Park
Tel (44-628) 890800
Telex 847458
Telefax (44-628) 890391

AMERICAS

BRAZIL

05413 SAO PAULO
R Hennque Schaumann 286-CJ33
Tel (55-11) 883-5455
Telex (391)11-37988 "UMBR BR"
Telefax (55-11) 282-2367

CANADA

NEPEAN ONTARIO K2H 9C4
301 Moodre Dnve
Surte 3p7
Tel (613) 829-9944

U.S.A.

NORTH & SOUTH AMERICAN
MARKETING HEADQUARTERS
1000 East Bell Road
Phoemx, AZ. 85022
(1-602) 867-6100

SALES COVERAGE BY STATE

ALABAMA
Huntsvrlle- (205) 533-5995

ARIZONA
Phoenrx- (602) 867-6217

CALIFORNIA
Santa Ana- (714) 957-6018
San Jose - (408) 452-8585

COLORADO
Boulder (303) 449-9000

ILLINOIS
Schaumburg- (708) 517-1890

INDIANA
Kokomo - (317) 455-3500

MASSACHUSETTS
Lrncoln - (617) 259-0300

MICHIGAN
Lrvonra- (313) 953-1700

NEW JERSEY
Voorhees- (609) 772-6222

NEW YORK
Poughkeepsie- (914) 454-8813

NORTH CAROLINA
Ralergh - (919) 787-6555

TEXAS
Carrollton- (214) 466-8844

FOR RF AND MICROWAVE
POWER TRANSISTORS CON­
TACT
THE FOLLOWING REGIONAL
OFFICE IN THE U.S.A.

PENNSYLVANIA
Montgomeryvrlle- (215) 361-6400

ASIA I PACIFIC

AUSTRALIA

NSW 2220 HURTSVILLE
Surte 3, Level 7, Otrs House
43 Bndge Street
Tel (61-2) 5803811
Telefax (61-2) 5806440

HONG KONG

WANCHAI
22nd Floor - Hopewell centre
183 Queen's Road East
Tel (852) 8615788
Telex. 60955 ESGJES HX
Telelax (852) 8656589

INDIA

NEW DELHI110001
LrasonOffrce
62, Upper Ground Floor
World Trade Centre
Barakhamba Lane
Tel (91-11)3715191
Telex 031-66816 STMIIN
Telefax (91-11)3715192

MALAYSIA

PETALING JAVA, 47400
11C, Jalan SS21/60
Damansara Utama
Tel (03) 717 3976
Telelax (03)7199512

PULAU PINANG 10400
4th Floor- Surte 4-03
Bangunan FOP-1230 Jalan Anson
Tel (04) 379735
Telefax (04) 379816

KOREA

SEOUL 121
8th floor Shrnwon Burldrng
823-14, Yuksam-Dong
Kang-Nam-Gu
Tel (82-2) 553-0399
Telex SGSKOR K29998
Telelax (82-2) 552-1051

SINGAPORE

SINGAPORE 2056
28 Ang Mo Kro- Industrial Park 2
Tel (65) 4821411
Telex RS 55201 ESGIES
Telefax (65) 4820240

TAIWAN

TAIPEI
12th Floor
325, Sectron 1 Tun Hua South Road
Tel (886-2) 755-4111
Telex 10310 ESGJE TW
Telelax (886-2) 755-4008

SALES OFFICES ·

JAPAN

TOKYO 108
Nrssekr- Takanawa Bid 4F
2-18-10Takanawa
Mrnato-Ku
Tel (81-3) 3280-4121
Telefax (81-3) 3280-4131

lnformat1on furn1shed IS bel1eved to be accurate and reliable However, SGS-THOMSON M1croelectron1cs assumes no responsibility for the
consequences of use of such 1nformat1on nor for any 1nfnngement of patents or other nghts of third part1es wh1ch may result from 1ts use No
license ts granted by 1mpllcat1on or otherwise under any patent or patent nghts of SGS~THOMSON Microelectronics Specification ment1oned
1n thrs publication are subject to change without not1ce Th1s pubhcat1on supersedes and replaces all mformat1on previously suppl1ed
SGS-THOMSON M1croelectromcs products are not authonzed for use as cnt1cal components 1n hfe support dev1ces or systems w1thout express
wntten approval of SGS-THOMSON M1croelectron1cs

© 1993 SGS-THOMSON MicroelectroniCS- Pnnted 1n Italy- All R1ghts Reserved

SGS-THOMSON M1croelectron1cs GROUP OF COMPANIES
Australia- Brazil - France -Germany- Hong Kong - Italy- Japan- Korea - Malaysia- Malta- Morocco- The Netherlands­

Singapore - Spa1n - Sweden- Switzerland - Ta1wan - Un1ted Kmgdom- U SA.

