
<D ~National
~ ~Semiconductor

630069-001

A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv­
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac­
turing and shipping, our quality and reliability is second
to none.
We are proud of our success ... it sets a standard for
others to achieve. Yet, our quest for perfection is on­
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir flihlen uns zu Qualitat und
Zuverlassigkeit verpflichtet

National Semiconductor Corporation ist fOhrend bei der Her­
stellung von integrierten Schaltungen hoher Qualitiit und
hoher Zuverliissigkeit. National Semiconductor war schon
immer Vorreiter, wenn es gait, die Zahl von IC Ausfiillen zu
verringern und die Lebensdauern von Produkten zu verbes­
sern. Vom Rohmaterial Ober Entwurf und Herstellung bis zur
Auslieferung, die Qualitiit und die Zuverliissigkeit der Pro­
dukte von National Semiconductor sind unubertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
tor andere erstrebenswert sind. Auch ihre Anspruche steig­
en stiindig. Sie als unser Kunde konnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualite et La Fiabilite:
Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation est un des leaders in­
dustrials qui fabrique des circuits integres d'une tres grande
qualite et d'une fiabilite exceptionelle. National a ete le pre­
mier a vouloir faire chuter le nombre de circuits integres
defectueux et a augmenter la duree de vie des produits.
Depuis les matieres premieres, en passant par la concep­
tion du produit sa fabrication et son expedition, partout la
qualite et la fiabilite chez National sont sans equivalents.

Nous sommes fiers de notre succes et le standard ainsi
defini devrait devenir l'objectif a atteindre par les autres so­
cietes. Et nous continuons a vouloir faire progresser notre
recherche de la perfection; ii en resulte que vous, qui etes
notre client, pouvez toujours faire confiance a National
Semiconductor Corporation, en produisant des systemes
d'une tres grande qualite standard.

Charles E. Sporck

Un lmpegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation e un'industria al ver­
tice nella costruzione di circuiti integrati di alta qualita ed
affidabilita. National e stata ii principale promotore per !'ab­
battimento della difettosita dei circuiti integrati e per l'allun­
gamento della vita dei prodotti. Dal materiale grezzo attra­
verso tutte le fasi di progettazione, costruzione e spedi­
zione, la qualita e affidabilita National non e seconda a nes­
suno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. II nostro desiderio di per­
fezione e d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor­
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

President, Chief Executive Officer

National Semiconductor Corporation

ii

NS32CG16 TECHNICAL

DESIGN HANDBOOK

1988

• Processors

• Peripherals

• Development Tools

• Software

• Application Notes

iii

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable™ Fairtech™ MOLE™ SCXTM
AnadigTM FAST® MSnM SERIES/BOO™
ANS-A-TRAN™ 5-Star Service™ Naked-8TM Series 900™
APPS™ GAL® National® Series 3000TM
ASPECnM GENIX™ National Semiconductor® Series 32000®
Auto-Chem Deflasher™ GNXTM National Semiconductor Shelf,....ChekTM
BCPTM HAMRTM Corp.® SofChek™
Bl-FEnM HandiScan™ NAXBOOTM SPIRE™
Bl-FET II™ HEX3000™ Nitride Plus™ STAR™
Bl-LINE™ HPCTM Nitride Plus Oxide™ Stariink™
BIPLANTM f3L® NML™ STARPLEX™
BLCTM ICM™ NOBUSTM SuperChip™
BLXTM INFOCHEX™ NSCBOOTM Superscript TM
Brite-Lite™ Integral ISETM NSCISE™ SYS32™
BTLTM lntelisplay™ NSX-16™ TapePak®
Check Track™ ISETM NS-XC-16™ TDS™
CIM™ ISE/06TM NTERCOM™ TeleGate™
CIMBUS™ ISE/08™ NURAM™ The National Anthem®
CLASICTM ISE/16™ OXISSTM Time,....Chek™
Cloc~Chek™ ISE32™ P2CMOSTM TINA™
COMBO TM ISOPLANAR™ PC Master™ TLC™
COMBO I™ ISOPLANAR-Z™ Perfect Watch™ TrapezoidatTM
COMBO II™ KeyScan™ Pharm~Chek™ TRI-CODE™
COPS™ microcontrollers LMCMOSTM PLAN™ TRI-POLY™
Datachecker® M2CMOS™ PLANAR™ TRI-SAFE™
DENSPAK™ Macrobus™ Polycraft™ TRI-STATE®
DIBTM Macrocomponent™ POSilinkTM TURBOTRANSCEIVER™ ·
Digitalker® MAXI-ROM® POSitalkerTM VIP™
DISCERN™ Mea.,....Chek™ Power + Control™ VR32TM
DISTILL™ MenuMaster™ POWER planar™ WATCHDOG™
DNA® Microbus™ data bus QUAD3000™ XMOSTM
DPVM™ MICRO-DAC™ QUIKLOOK™ XPUTM
ELSTAR™ µ.talker™ RAnM ZSTARTM
E-Z-LINKTM Microtalker™ RTX16™ 883B/RETS™
FACT™ MICROWIRE™ SABA™ 883S/RETSTM
FAIRCAD™ MICROWIRE/PLUSTM Scrip.,....Chek™

Postscript™ is a trademark of Adobe Systems Inc.
Laserjet™ and PCL ™ are trademarks of Hewlett Packard
UNIX® and DWB® are registered trademarks of AT & T
IBM® is a registered trademark and IBM-PC®, XT® and ATTM are trademarks of International Business Machines Corporation
VAX™, VMS™, DEC™, PDP-11™, RSX-11™ are trademarks of Digital Equipment Corporation
VRTX®, IOX®, and FMX® are registered trademarks of Hunter & Ready Corporation
Opus5™ is a trademark of Opus Systems

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORA-
TION. As used herein:

1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be reason-
or (b) support or sustain life, and whose failure to per- ably expected to cause the failure of the life support de-
form, when properly used in accordance with instructions vice or system, or to affect its safety or effectiveness.
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

NatlonalSemlconductorCorporatlon 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, Galifomia 95052-8090 (408) 721-5000
TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

iv

Introduction

Dear Customer,

Introduction of the NS32CG16 marks a major milestone
in the continuing evolution of the Series 32000® family
of high performance 32-bit microprocessors. With the
NS32CG 16, your system can be powered with a 32-bit
processor optimized for embedded control applica­
tions.
The NS32CG16 offers high integration, the perform­
ance of a fully programmable 32-bit microprocessor
and graphics support-all on one chip. Our endeavor
has been to design a microprocessor with the system
designer's needs in mind. We hope you will benefit
from this effort.
National also offers an array of VLSI solutions for pe­
ripheral functions, from DRAM controllers to single-chip
SCSI controllers and Ethernet controllers. With this of­
fering we hope to meet all of your VLSI needs.

Richard L. Sanquini
Division Vice President
Micro Systems Group

v

Table of Contents
Section 1 Processors

NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processor......... 3
NS32332-10, NS32332-15 32-Bit Advanced Microprocessor . 69
NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessor 70

Section 2 Peripherals
NS32081-10, NS32081-15 Floating-Point Unit.................................... 73
NS32381-15, NS32381-20 Floating-Point Unit.................................... 74
NS32202-10 Interrupt Control Unit.. 75
NS32203-1 O Direct Memory Access Controller 76

Section 3 Development Tools
SYS32/20 PC Add-In Development Package . . • . 79
SYS32/30 PC Add-In Development Package 80
SPLICE Development Tool • . 81

Section 4 Software
Series 32000 GENIX Native and Cross-Support (GNX) Language Tools (Release 2) . . . 85
GENIX/V.3 Operating System . 86
Series 32000 Real-Time Software Components VRTX, IOX, FMX and TRACER.. 87
Series 32000 EXEC ROMable Real-Time Multitasking EXECUTIVE 88

Section 5 Application Notes
AN-522 Line Drawing with the NS32CG16; NS32CG16 Graphics Note 5 91
AN-523 Drawing Circles with the NS32CG16; Graphics Note 1 . 115
AN-524 Introduction to Bresenham's Line Algorithm Using the SBIT Instruction; Series

32000 Note 5 . • . 128
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2 138
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3 141
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note 4 145
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6 154
AN-530 Bit Mirror Routine; Series 32000 Graphics Note 7 · 160
AB-26 Instruction Execution Times of NS32081 Considered for Stand-Alone

Configurations . • . 162
Distributors

vi

Section 1
Processors

~National
D Semiconductor

PRELIMINARY

NS32CG16-10/NS32CG16-15
High-Performance Printer /Display Processor
General Description
The NS32CG16 is a 32-bit microprocessor in the Series
320~0® family that provides special features for graphics
applications. It is specifically designed to support page ori­
ented printing technologies such as Laser, LCS, LED, Ion­
Deposition and InkJet.

The NS32CG16 provides a 16 Mbyte linear address space
and a 16-bit external data bus. It also has a 32-bit ALU an
eight-byte prefetch queue, and a slave processor interf~ce.
:'"he capabilities of the NS32CG16 can be expanded by us­
ing an external floating point unit which interfaces to the
NS32CG16 as a slave processor. This combination pro­
vides optimal support for outline character fonts.

The NS32CG16's highly efficient architecture, in addition to
the built-in capabilities for supporting BITBLT (BIT-aligned
Block Transfer) operations and other special graphics func­
tions, make the device the ideal choice to handle a variety
of page description languages such as PostscriptTM and
PCL™.

Features
• Software compatible with the Series 32000 family
• 32-bit architecture and implementation
• 16 Mbyte linear address space
• Special support for graphics applications

- 18 graphics instructions
- Binary compression/ expansion capability for font

storage using RLL encoding
- Pattern magnification for Epson and HP LaserJetTM

emulations
- 6 BITBLT instructions on chip
- Interface to an external BITBLT processing unit for

very fast BITBLT operations (optional)
• Floating point support via the NS32081 or the NS32381

for outline fonts, scaling and rotation
• On-chip clock generator
• Optimal interface to large memory arrays via the

DP84xx family of DRAM controllers
• Power save mode
• High-speed CMOS technology
• 68-pin plastic PCC package

1.0 Product Introduction
The NS32CG16 is a high speed CMOS microprocessor in
the Series 32000 family. It is software compatible with all
the other CPUs in the family. The device incorporates all of
the Series 32000 advanced architectural features, with the
exception of the virtual memory capability,

3

Brief descriptions of the NS32CG16 features that are
shared with other members of the family are provided be­
low:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by any one of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all useful
operations. This is important for temporary operands as well
as for context switching.

Large, Uniform Addressing. The NS32CG16 has 24-bit
address pointers that can address up to 16 megabytes with­
out any segmentation; this addressing scheme provides
flexible memory management without added-on expense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

• High-Level Language Support

• Easy Future Growth Path

• Application Flexibility

z en
Co)
N
0
C>
O')

I
C> -z
(/)
Co)
N
0
C>
O')

I
c.n

Block Diagram

ADD/DATA CONTROLS 8c STATUS

~ u
OMA _J PIPELINED I. DATA CONTROL ~ -..

BUS INTERFACE CONTROL
J ...

GRAPHICS

--+ PROGRAMMABLE INSTRUCTIONS 16 LOGIC
BUS TIMING ~~

~ CLOCK

L GENERATOR

8-BYTE
QUEUE

MICROCODE ROM
AND

CONTROL LOGIC

16 PIPELINED _..
INSTRUCTION

- ... --,.-

DECODER

... 11111 en
:;;)
m

PIPELINED
~ CFG REGISTER

DISPLACEMENT AND -.. :z ar::
IMMEDIATE EXTRACTOR !i

t: m
I

N ,.,
REGISTER SET

0 INTBASE
0 SB ~

WORKING
REGISTERS

0 FP

0 SP1

0 SPO

0 PC ~
RO

,

\ J R1 32-BIT

R2
ALU

J R3

R4_

RS

R6

R7

l MOD

[PSR
T

~------------------- TL/EE/9424-1

4

Table of Contents

1.0 PRODUCT INTRODUCTION

1.1 NS32CG 16 Special Features

2.0 ARCHITECTURAL DESCRIPTION

2.1 Register Set

2.1 .1 General Purpose Registers

2.1.2 Address Registers

2.1.3 Processor Status Register

2.1.4 Configuration Register

2.2 Memory Organization

2.2.1 Dedicated Tables

2.3 Instruction Set

2.3.1 General Instruction Format

2.3.2 Addressing Modes

2.3.3 Instruction Set Summary

2.4 Graphics Support

2.4.1 Frame Buffer Addressing

2.4.2 BITBLT Fundamentals

2.4.2.1 Frame Buffer Architecutre

2.4.2.2 BIT Alignment

2.4.2.3 Block Boundaries and Destination Masks

2.4.2.4 BITBLT Directions

2.4.2.5 BITBLT Variations

2.4.3 Graphics Support Instructions

2.4.3.1 BITBLT (Bit-aligned Block Transfer)

2.4.3.2 Pattern Fill

2.4.3.3 Data Compression, Expansion and
Magnify

2.4.3.3.1 Magnifying Compressed Data

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.2.1 Power Save Mode

3.3 Resetting

3.4 Bus Cycles

3.4.1 Bus Status

3.4.2 Basic Read and Write Cycles

3.4.3 Cycle Extension

3.4.4 Data Access Sequences

3.4.4. 1 Bit Accesses

3.4.4.2 Bit Field Accesses

3.4.4.3 Extending Multiple Accesses

3.4.5 Instruction Fetches

3.4.6 Interrupt Control Cycles

5

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.4. 7 Slave Processor Communication

3.4. 7 .1 Slave Processor Bus Cycles

3.4.7.2 Slave Operand Transfer Sequences

3.5 Bus Access Control

3.6 Instruction Status

3. 7 Exception Processing

3. 7 .1 Exception Acknowledge Sequence

3.7.2 Returning from an Exception Service Procedure

3.7.3 Maskable Interrupts

3.7.3.1 Non-Vectored Mode

3.7.3.2 Vectored Mode: Non-Cascaded Case

3.7.3.3 Vectored Mode: Cascaded Case

3.7.4 Non-Maskable Interrupt

3.7.5 Traps

3.7.6 Instruction Tracing

3.7.7 Priority Among Exceptions

3.7.8 Exception Acknowledge Sequences: Detailed
Flow

3.7.8.1 Maskable/Non-Maskable Interrupt
Sequence

3.7.8.2 Trap Sequence: Traps Other Than Trace

3.7.8.3 Trace Trap Sequence

3.8 Slave Processor Instructions

3.8.1 Slave Processor Protocol

3.8.2 Floating Point Instructions

4.0 DEVICE SPECIFICATIONS

4.1 NS32CG16 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Device Testing

4.4.3 Timing Tables

4.4.3.1 Output Signals: Internal Propagation
Delays

4.4.3.2 Input Signal Requirements

4.4.4 Timing Diagrams

Appendix A: INSTRUCTION FORMATS

LI)
I co

CJ
(J

"' Cf)
(/)
z
c

I co
CJ
(J

"' Cf)
(/)
z

List of Illustrations
NS32CG16 Internal Registers ... 2-1

Processor Status Register (PSR) ... 2-2

Configuration Register (CFG)•.....•........................•.............................. 2-3

Module Descriptor Format. .. 2-4

A Sample Link Table ...•.......•............. 2-5

General Instruction Format ...•...•.............................. 2-6

Index Byte Format ... 2-7

Displacement Encodings .. 2-8

Correspondence between Linear and Cartesian Addressing ... 2-9

32-Pixel by 32-Scan Line Frame Buffer ... 2-10

Overlapping BITBLT Blocks ...•.............. 2-11

B B Instructions Format ...•......•..................... 2-12

BITWT Instruction Format .. 2-13

EXTBL T Instruction Format ...•........................ 2-14

MOVMPi Instruction Format ...•................................ 2-15

TBITS Instruction Format ..•.•............................. 2-16

SBITS Instruction Format .. 2-17

SBITPS Instruction Format ... 2-18

Bus Activity for a Simple BITBLT Operation•.......•......•........................ 2-19

Power and Ground Connections ... 3-1

Crystal Interconnections•..•... 3-2

Power-On Reset Requirements ...•...................... 3-3

General Reset Timings ...•................... 3-4

Bus Connections ...•............................. 3-5

Read Cycle Timing ..•....•................................. 3-6

Write Cycle Timing ... 3-7

Cycle Extension of a Read Cycle ... 3-8

Memory Interface .. 3-9

Slave Processor Connections .. 3-1 o
Slave Processor Read Cycle ... 3-11

Slave Processor Write Cycle ...•.•.......................... 3-12

HOLD Timing, Bus Initially Idle ..•.•............. 3-13

HOLD Timing, Bus Initially Not Idle•................•....................... 3-14

Interrupt Dispatch and Cascade Tables ..•..............•.. 3-15

Exception Acknowledge Sequence•....•.•..•......•..........................•.........•............... 3-16

Return from Trap (RETin) Instruction Flow •...•..•.............•...•••.••.••....•...•....•••..................... 3-17

Return from Interrupt (RETI) Instruction Flow •.......•..........•....•.....•.•....•..•.•.•........••.............. 3-18

Interrupt Control Unit Connections (16 Levels) .. 3-19

Cascaded Interrupt Control Unit Connections .•... 3-20

Service Sequence ...•......•........... 3-21

Slave Processor Protocol•.•... 3-22

Slave Processor Status Word Format .. 3-23

Connection Diagram .. 4-1

Timing Specification Standard (CMOS Output Signals) ...•......•............. 4-2

Timing Specification Standard (TIL Input Signals) .. 4-3

Test Loading Configuration .. 4-4

Read Cycle .. 4-5

Write Cycle ..•...................•............... 4-6

HOLD Acknowledge Timing (Bus Initially Not Idle) ...•...... 4-7

HOLD Timing (Bus Initially Idle) ..•.............•................... 4-8

DMAC Initiated Bus Cycle ...••.......•..•........................... 4-9

6

List of Illustrations (Continued)

Slave Processor Write Timing ... 4-1 O

Slave Processor Read Timing .. 4-11

SPC Timing ...•..•...•............. 4-12

Relationship of PFS to Clock Cycles ... 4-13

Relationship between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction 4-14

Guaranteed Delay, PFS to Non-Sequential Fetch .. 4-15

Guaranteed Delay, Non-Sequential Fetch to PFS4-16

Relationship of ILO to First Operand Cycle of an Interlocked Instruction .. 4-17

Relationship of ILO to Last Operand Cycle of an Interlocked Instruction .. 4-18

Relationship of I LO to Any Clock Cycle .. 4-19

Clock Waveforms ... 4-20

Power-On Reset .. 4-21

Non-Power-On Reset.•... 4-22

INT Interrupt Signal Detection•.. 4-23

NMI Interrupt Signal Timing ... 4-24

List of Tables
NS32CG 16 Addressing Modes•..............................•............. 2-1

NS32CG 16 Instruction Set Summary ... 2-2

'OP' and 'i' Field Encodings•.. 2-3

External Oscillator Specifications ... 3-1

Bus Cycle Categories ... 3-2

Access Sequences ... 3-3

Interrupt Sequences•........•..........•................................... 3-4

Floating Point Instruction Protocols•.. 3-5

Test Loading Characteristics ..•...................... .4-1

7

z en w
N

8
'P
0
z en w
N
0
.::>
O')

I
UI

&n
ch 1.0 Product Information (Continued)

1.1 NS32CG16 SPECIAL FEATURES

In addition to the above Series 32000 features, the
NS32CG 16 provides features that make the device ex­
tremely attractive for a wide range of applications where
graphics support, low chip count, and !ow power consump­
tion are required.

The most relevant of these features are the graphics sup­
port capabilities, that can be used in applications such as
printers, CRT terminals, and other varieties of display sys­
tems, where text and graphics are to be handled.

Graphics support is provided by eighteen instructions that
allow operations such as BITBLT, data compression/expan­
sion, fills, and line drawing, to be performed very efficiently.
In addition, the device can be easily interfaced to an exter­
nal BITBLT Processing Unit (BPU) for high BITBLT perform­
ance.

The NS32CG 16 allows systems to be built with a relatively
small amount of random logic. The bus is highly optimized
to allow simple interfacing to a large variety of DRAMs and
peripheral devices. All the relevant bus access signals and
clock signals are generated on-chip. The cycle extension
logic is also incorporated on-chip.

The device is fabricated in a low-power, double-poly, single
metal, CMOS technology. It also includes a power-save fea­
ture that allows the clock to be slowed down under software
control, thus minimizing the power consumption. This fea­
ture can be used in those applications where power saving
during periods of low performance demand is highly desir­
able.

The bus characteristics and the power save feature are de­
scribed in the "Functional Description" section. A general
overview of BITBLT operations and a description of the
graphics support instructions is provided in Section 2.4. De­
tails on all the NS32CG 16 instructions can be found in the
NS32CG16 Printer/Display Processor Programmer's Refer­
ence Supplement and the related NS32CG 16 supplement.

Below is a summary of the instructions that are directly ap­
plicable to graphics along with their intended use.

Instruction Application

BBAND
BBOR
BB FOR
BBXOR
BBSTOD
BITWT
EXTBLT

MOVMP

TBITS

The BitBlt group of instructions provide a
method of quickly imaging characters, creating
patterns, windowing and other block oriented
effects.

Move Multiple Pattern is a very fast instruction
for clearing memory and drawing patterns and
lines.

Test Bit String will measure the length of 1 's or
O's in an image, supporting many data
compression methods (ALL), TBITS may also
be used to test for boundaries of images.

8

Instruction

SBITS

Application

Set Bit String is a very fast instruction for filling
objects, outline characters and drawing
horizontal lines.
The TBITS and SBITS instructions support
Group 3 and Group 4 CCITI communications
(FAX).

SBITPS Set Bit Perpendicular String is a very fast
instruction for drawing vertical, horizontal and
45° lines.

SBIT
CBIT
TBIT
IBIT

INDEX

In printing applications SBITS and SBITPS may
be used to express portrait and landscape
respectively from the same compressed font
data. The size of the character may be scaled as
it is drawn.

The Bit group of instructions enable single pixels
anywhere in memory to be set, cleared, tested
or inverted.

The INDEX instruction combines a multiply-add
sequence into a single instruction. This provides
a fast translation of an X-Y address to a pixel
relative address.

2.0 Architectural Description
2.1 REGISTER SET

The NS32CG 16 CPU has 17 internal registers grouped ac­
cording to functions as follows: 8 general purpose, 7 ad­
dress, 1 processor status and 1 configuration. Figure 2-1
shows the NS32CG16 internal registers.

Address
+- 32Blts -+

PC

SPO

SP1

FP

SB

INTBASE

1 MOD

Processor Status

PSR

General Purpose
+- 32Bits -+

RO

R1

R2

R3

R4

R5

R6

R7

Configuration

jcFG I
FIGURE 2·1. NS32CG16 Internal Registers

2.1.1 General Purpose Registers

There are eight registers (RO-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for

2.0 Architectural Description (Continued)

an operand that is 8 or 16 bits long, only the low part of the
register is used; the high part is not referenced or modified.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. Except for the MOD
register that is 16 bits wide, all the others are 32 bits. In the
NS32CG16 only the lower 24 bits are implemented in the six
32·bit address registers. The top 8 bits are always zero. A
description of the address registers follows.

PC-Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SPO, SP1-Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
ST ACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms 'SP Register' or 'SP' are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP-Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB-Static Base. The SB register points to the global vari­
ables of a software module. This register is used to support ·
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE-lnterrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD-Module. The MOD register holds the address of the
module descriptor of the currently executing software mod­
ule. The.MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo­
ry.

2. 1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa­
tion for the microprocessor.

9

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

115 Bl 817 01
FIGURE 2-2. Processor Status Register (PSR)

C The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used with
the ADDC and SUBC instructions to perform multiple­
precision integer arithmetic calculations. It may have a
setting of 0 (no carry or borrow) or 1 (carry or borrow).

T The T bit causes program tracing. If this bit is set to 1 , a
TRC trap is executed after every instruction (Section
3.3.1).

L The L bit is altered by comparison instructions. In a com­
parison instruction the L bit is set to "1" if the second
operand is less than the first operand, when both oper­
ands are interpreted as unsigned integers. Otherwise, it
is set to "O". In Floating-Point comparisons, this bit is
always cleared.

K Reserved for use by the CPU.

J Reserved for use by the CPU.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a com­
parison instruction the Z bit is set to "1" if the second
operand is equal to the first operand; otherwise it is set
to "O".

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to "O".

U If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "O" then all instructions may be
executed. When U = O the processor is said to be in Su­
pervisor Mode; when U = 1 the processor is said to be in
User Mode. A User Mode program is restricted from exe­
cuting certain instructions and accessing certain regis­
ters which could interfere with the operating system. For
example, a User Mode program is prevented from
changing the setting of the flag used to indicate its own
privilege mode. A Supervisor Mode program is assumed
to be a trusted part of the operating system, hence it has
no such restrictions.

S The S bit specifies whether the SPO register or SP1 reg­
ister is used as the Stack Pointer. The bit is automatical­
ly cleared on interrupts and traps. It may have a setting
of O (use the SPO register) or 1 (use the SP1 register).

P The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.3.1). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

If I= 1, then all interrupts will be accepted. If I= 0, only
the NMI interrupt is accepted. Trap enables are not af­
fected by this bit.

z
U> w,
(')
C)
0)

I
0
z
U> w,
(')
C)
0)

I
UI

LI)
'9""

I co
'9""

CJ
(,)
N
('I)

en z
' C)
'9""

I co
'9""

CJ
(,)
N
('I)

en z

2.0 Architectural Description ccontinued)

B Reserved for use by the CPU. This bit is set to 1 during
the execution of the EXTBL T instruction and causes the
BPU signal to become active. Upon reset, B is set to
zero and the BPU signal is set high.

Note 1: When an interrupt is acknowledged, the B, I, P, Sand U bits are set
to zero and the BPU signal is set high. A return from interrupt will
restore the original values from the copy of the PSR register saved
in the interrupt stack.

Note 2: If BITBLT (BB) instructions are executed in an interrupt routine, the
PSR bits J and K must be cleared first.

2.1.4 Configuration Register

The Configuration Register (CFG) is 8 bits wide, of which
four bits are implemented. The implemented bits are used to
declare the presence of certain external devices and to se­
lect the clock scaling factor. CFG is programmed by the
SETCFG instruction. The format of CFG is shown in Figure
2-3. The various control bits are described below.

I' I I
FIGURE 2·3. Configuration Register (CFG)

Interrupt vectoring. This bit controls whether maskable
interrupts are handled in nonvectored (I= 0) or vectored
(I= 1) mode. Refer to Section 3.2.3 for more information.

F Floating-point instruction set. This bit indicates whether
a floating-point unit (FPU) is present to execute floating­
point instructions. If this bit is O when the CPU executes
a floating-point instruction, a Trap (UNO) occurs. If this
bit is 1 , then the CPU transfers the instruction and any
necessary operands to the FPU using the slave-proces­
sor protocol described in Section 3. 1.4. 1.

M Clock scaling. This bit is used in conjuction with the C bit
to select the clock scaling factor.

C Clock scaling. Same as the M bit above. Refer to Sec­
tion 3.2.1 on "Power Save Mode" for details.

2.2 MEMORY ORGANIZATION

The main memory of the NS32CG 16 is a uniform linear ad­
dress space. Memory locations are numbered sequentially
starting at zero and ending at 224 -1 . The number specify­
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits. Un­
less otherwise noted, diagrams in this document show data
stored in memory with the lowest address on the right and
the highest address on the left. Also, when data is shown
vertically, the lowest address is at the top of a diagram and
the highest address at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given
the number zero, and is shown at the right of the diagram.
Bits are numbered in increasing significance and toward the
left.

I' A

Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

10

I" A+1 A

MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is
stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

A+3 A+2 A+1 A

MSB LSB
Double Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as words. Therefore, words and double-words that are
aligned to start at even addresses (multiples of two) are
accessed more quickly than words and double-words that
are not so aligned.

2.2.1 Dedicated Tables

Two of the NS32CG16 dedicated registers (MOD and INT­
BASE) serve as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables. These are described in Section 3.8.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers, three of which are used by
the NS32CG16. The MOD register contains the address of
the Module Descriptor for the currently running module. It is
automatically updated by the Call External Procedure in­
structions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

..,..
31

~

15 0

[MOD J
T

-r

0

STATIC BASE I--

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

,,J..,

TL/EE/9424-2

FIGURE 2·4. Module Descriptor Format

2.0 Architectural Description (Continued)

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor­
mation needed for:

1) Sharing variables between modules. Such variables
are accessed through the Link Table via the External
addressing mode.

2) Transferring control from one module to another. This
is done via the Call External Procedure (CXP) instruc­
tion.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module's Program Base pointer.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

""'31 ENTRY

0

2

.........

ABSOLUTE ADDRESS

ABSOLUTE ADDRESS

OFFSET I MODULE

o-r

(VARIABLE)

(VARIABLE)

(PROCEDURE)

.........
TL/EE/9424-3

FIGURE 2-5. A Sample Link Table

2.3 INSTRUCTION SET

2.3.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to 5-bit General Address­
ing Mode ("Gen") fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-7.

IMPLIED
IMMEDIATE

OPERAND(S)

OPTIONAL
EXTENSIONS

DISP2 DISP1 DISP~ISP1

DISP DISP

IMM IMM

l

INDEX
BYTE

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain
one of two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-8, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most-signifi­
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional "implied" immediates
and/ or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.3.3).

1 · GEN. ADDR. MODE REG.NO.
DI

FIGURE 2·7. Index Byte Format

2.3.2 Addressing Modes

TUEE/9424-5

The NS32CG16 CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro­
grammer as an "addressing mode."

Addressing modes in the NS32CG16 are designed to opti­
mally support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.

NS32CG16 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

;
I
I

GEN I
INDEX I

ADDR I
BYTE I MODE I

A I
I

l
1: 3

BASIC
INSTRUCTION

I
I
I
I GEN I

ADDR I
I MODE I

B I
I
I
I

../

OPCODE

TL/EE/9424-4

FIGURE 2-6. General Instruction Format

11

z
~
N
0
Q
0)

I
0 z en
w
N
0
Q
'P
U1

ii)
I

co
8
N
C")
(/)
z
C)
ch
8
N
C")
(/)
z

2.0 Architectural Description (Continued)

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

Memory Relatlve: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec­
tive Address of the operand.

7

1

Byte Displacement: Range -64 to + 63

SIGNED DISPLACEMENT

Word Dlsplacement: Range -8192 to + 8191

1
l

Double Word Displacement:
Range (Entire Addressing Space)

0

, I
~/

.L..(ji

TL/EE/9424-6

FIGURE 2-8. Displacement Encodings

12

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding into the
total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Series 32000
Instruction Set Reference Manual.

In addition to the general modes, Register-Indirect with
auto-increment/decrement and warps or pitch are available
on several of the graphics instructions.

2.0 Architectural Description ccontinued)

TABLE 2·1. NS32CG16 Addressing Modes

ENCODING MODE
Register
00000 Register 0
00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register 5
0011 O Register 6
00111 Register 7
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top Of Stack
10111

Memory Space
11000
11001
11010
11011
Scaled Index
11100
11101
11110
11111

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes
Index, words
Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO orFO
R1 or F1
R2 or F2
R3 orF3
R4or F4
R5 or F5
R6or F6
R6 orF7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1 (FP))
disp2(disp1 (SP))
disp2(disp1 (SB))

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
*+ disp

mode[Rn:Bl
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

13

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp 1 + Register. "SP"
is either SPO or SP1, as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.
EA (mode) + 2 x Rn.
EA(mode) + 4XRn.
EA (mode)+ BX Rn.
"Mode" and "n" are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

z en w
N
0

"
C»

I
Q -z en w
N
0

"
C»

I
U1

LO
I co

CJ
(.)
('II
Cf)
U)
z
.......
Q
ch
g
('II
Cf)
U)
z

2.0 Architectural Description (Continued)

2.3.3 Instruction Set Summary gen= General operand. Any addressing mode can be speci­
fied. Table 2-2 presents a brief description of the NS32CG16

instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Series 32000 Instruction Set Reference Manual and the
NS32CG16 Printer/Display Processor Programmer's Refer­
ence.

short= A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings) .

imm = impiied immediate operand. An 8-bit vaiue appended
after any addressing extensions.

disp =Displacement (addressing constant): 8, 16 or 32 bits .
All three lengths legal.

reg=Any General Purpose Register: RO-R7.

areg=Any Processor Register: SP, SB, FP, INTBASE,
MOD, PSR, US (bottom 8 PSR bits). Notations:

i = Integer length suffix: B = Byte
W= Word
D = Double Word

f =Floating Point length suffix: F =Standard Floating
L = Long Floating

cond =Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

TABLE 2·2. NS32CG16 Instruction Set Summary
MOVES

Format Operation Operands Description

4 MO Vi gen, gen Move a value.

2 MOVQi short, gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).

7 MOVZBW gen, gen Move with zero extension.

7 MOVZiD gen.gen Move with zero extension.
7 MOVXBW gen.gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen.gen Move effective address.

INTEGER ARITHMETIC

Format Operation Operands Description

4 ADDi gen.gen Add.
2 ADDQi short, gen Add signed 4-bit constant.

4 ADDCi gen.gen Add with carry.
4 SU Bi gen.gen Subtract.
4 SUBCi gen, gen Subtract with carry (borrow).

6 NEGi gen, gen Negate (2's complement).
6 AB Si gen,gen Take absolute value.

7 MULi gen.gen Multiply.
7 QUOi gen.gen Divide, rounding toward zero.

7 REMi gen.gen Remainder from QUO.

7 DIVi gen,gen Divide, rounding down.
7 MO Di gen.gen Remainder from DIV (Modulus).

7 MEii gen, gen Multiply to extended integer.

7 DEii gen.gen Divide extended integer.

PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description

6 ADDPi gen.gen Add packed.

6 SUB Pi gen.gen Subtract packed.

14

2.0 Architectural Description (Continued)

TABLE 2·2. NS32CG16 Instruction Set Summary (Continued)
INTEGER COMPARISON

Format Operation Operands Description
4 CM Pi gen, gen Compare.
2 CMPQi short, gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen.gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen.gen Clear selected bits.
4 XORi gen, gen Logical exclusive OR.
6 COMi gen.gen Complement all bits.
6 NO Ti gen.gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS
Format Operation Operands Description

6 LS Hi gen.gen Logical shift, left or right.
6 AS Hi gen.gen Arithmetic shift, left or right.
6 ROTi gen,gen Rotate, left or right.

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXT Si gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to bit field pointer.

ARRAYS
Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.
8 INDEXi reg, gen, gen Recursive indexing step for multiple-dimensional arrays.

15

I.I)
I co
8
N
(II)
U)
z
g

I co
CJ
0
N
(II)
U)
z

2.0 Architectural Description (Continued)

TABLE 2·2. NS32CG16 Instruction Set Summary (Continued)

STRINGS

String instructions assign specific functions to the General
Purpose Registers:

Options on all string instructions are:

B (Backward): Decrement strong pointers after each
step rather than incrementing. R4 - Comparison Value

R3 - Translation Table Pointer

R2 - String 2 Pointer

R1 - String 1 Pointer

RO - Limit Count

Format Operation

5 MOVSi
MOVST

5 CMPSi
CM PST

5 SKPSi
SKPST

JUMPS AND LINKAGE

Format Operation

3 JUMP
0 BR
0 Bcond
3 CASEi
2 ACBi
3 JSR

BSR
CXP

3 CXPD
SVC
FLAG
BPT
ENTER
EXIT
RET
RXP
REIT
RETI

CPU REGISTER MANIPULATION

Format Operation

SAVE
RESTORE

2 LPRi
2 SPRi

3 ADJSPi
3 BISPSRi

3 BICPSRi
5 SETCFG

Operands

options
options
options
options
options
options

Operands

gen
disp
disp
gen
short,gen,disp
gen
disp
disp
gen

[reg list], disp
[reg list]
disp
disp
disp

Operands

[reg list]
[reg list]
areg,gen
areg,gen
gen
gen
gen
[option list]

U (Until match): End instruction if String 1 entry matches
R4.

W (While match): End instruction if String 1 entry does not
match R4.

All string instructions end when RO decrements to zero.

Description

Move string 1 to string 2.
Move string, translating bytes.
Compare string 1 to string 2.
Compare, translating string 1 bytes.
Skip over string 1 entries.
Skip, translating bytes for until/while.

Description

Jump.
Branch (PC Relative).
Conditional branch.
Multiway branch.
Add 4-bit constant and branch if non-zero.
Jump to subroutine.
Branch to subroutine.
Call external procedure
Call external procedure using descriptor.
Supervisor call.
Flag trap.
Breakpoint trap.
Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.
Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description

Save general purpose registers.
Restore general purpose registers.
Load dedicated register. (Privileged if PSR or INTBASE)
Store dedicated register. (Privileged if PSR or INTBASE)
Adjust stack pointer.
Set selected bits in .PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set configuration register. (Privileged)

16

z
2.0 Architectural Description (Continued)

en w
N
0

TABLE 2·2. NS32CG16 Instruction Set Summary (Continued) c;)
FLOATING POINT CJ)

I

Format Operation Operands Description
C)

11 MOVf gen.gen Move a floating point value.
9 MO VLF gen.gen Move and shorten a long value to standard. z en
9 MOVFL gen, gen Move and lengthen a standard value to long. w

N
9 MOVif gen.gen Convert any integer to standard or long floating. 0
9 ROUNDfi gen.gen Convert to integer by rounding. c;)
9 TRUNCfi gen.gen Convert to integer by truncating, toward zero. CJ)

I

9 FLOORfi gen.gen Convert to largest integer less than or equal to value.
CJ'I

11 ADDf gen.gen Add.
11 SU Bf gen,gen Subtract.
11 MULf gen.gen Multiply.
11 DIVf gen.gen Divide.
11 CM Pf gen,gen Compare.
11 NEGf gen.gen Negate.
11 AB Sf gen.gen Take absolute value.
9 LFSR gen Load FSA.
9 SFSR gen Store FSA.
12 POLYf gen.gen Polynomial Step.
12 DOTf gen.gen Dot Product.
12 SCALBf gen.gen Binary Scale.
12 LOG Bf gen.gen Binary Log.

MISCELLANEOUS
Format Operation Operands Description

1 NOP No operation.
WAIT Wait for interrupt.
DIA Diagnose. Single-byte "Branch to Self" for hardware

breakpointing. Not for use in programming.

GRAPHICS
Format Operation Operands Description

5 BBOR options• Bit-aligned block transfer 'OR'.
5 BBAND options Bit-aligned block transfer 'AND'.
5 BBFOR Bit-aligned block transfer fast 'OR'.
5 BBXOR options Bit-aligned block transfer 'XOR'.
5 BBSTOD options Bit-aligned block source to destination.
5 BITWT Bit-aligned word transfer.
5 EXTBLT options External bit-aligned block transfer.
5 MOVMPi Move multiple pattern.
5 TBITS options Test bit string.
5 SBITS Set bit string.
5 SBITPS Set bit perpendicular string.

BITS
Format Operation Operands Description

4 TB I Ti gen,gen Test bit.
6 SBITi gen.gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITli gen.gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen.gen Find first set bit.

*Note: Options are controlled by fields of the instruction, PSR status bits, or dedicated register values.

17

r.n
I co

CJ u
N
Cf)
en z
C)

I co
CJ u
N
Cf)
en z

2.0 Architectural Description (Continued)

2.4 GRAPHICS SUPPORT
The following sections provide a brief description of the
NS32CG 16 graphics support capabilities. Basic discussions
on frame buffer addressing and BITBLT operations are also
provided. More detailed information on the NS32CG16
graphics support instructions can be found in the
NS32CG16 Printer/Display Processor Programmer's Refer­
ence.

2.4.1 Frame Buffer Addressing
There are two basic addressing schemes for referencing
pixels within the frame buffer: Linear and Cartesian (or x-y).
Linear addressing associates a single number to each pixel
representing the physical address of the corresponding bit
in memory. Cartesian addressing associates two numbers
to each pixel representing the x and y coordinates of the
pixel relative to a point in the Cartesian space taken as the
origin. The Cartesian space is generally defined as having
the origin in the upper left. A movement to the right increas­
es the x coordinate;· a movement downward increases they
coordinate.

The correspondence between the location of a pixel in the
Cartesian space and the physical (BID address in memory
is shown in Figure 2-9. The origin of the Cartesian space
(x=O, y=O) corresponds to the bit address 'ORG'. Incre­
menting the x coordinate increments the bit address by one.
Incrementing they coordinate increments the bit address by
an amount representing the warp (or pitch) of the Cartesian
space. Thus, the linear address of a pixel at location (x, y) in
the Cartesian space can be found by the following expres­
sion.

ADDR = ORG + y*WARP + x

Warp is the distance (in bits) in the physical memory space
between two vertically adjacent bits in the Cartesian space.

Example 1 below shows two NS32CG16 instruction se­
quences to set a single pixel given the x and y coordinates.
Example 2 shows how to create a fat pixel by setting four
adjacent bits in the Cartesian space.

Example 1: Set pixel at location (x, y)

Setup: RO x coordinate

R1 y coordinate

Instruction Sequence 1:

MULD WARP, Rl

ADDD RO, Rl

SBITD Rl, ORG

Instruction Sequence 2:

INDEXD Rl, (WARP-1), RO

SBITD Rl, ORG

Y*WARP

+ X = BIT OFFSET

SET PIXEL

Y*WARP + X

SET PIXEL

18

Example 2: Create fat pixel by setting bits at locations
(x, y), (x+ 1, y), (x, y+ 1) and (x+ 1, y+ 1).

Setup: RO x coordinate

R1 y coordinate

Instruction Sequence:

INDEXD Rl, (WARP-1), RO BIT ADDRESS

SB I TD 41, ORG SET FIRST PIXEL

ADDQD 1, Rl (X+l, Y)

SB I TD Rl, ORG SECOND PIXEL

ADDD (WARP-1), Rl (X, Y+l)

SB I TD Rl, ORG THIRD PIXEL

ADDQD 1, Rl (X+l, Y+l)

SB I TD Rl, ORG LAST PIXEL

ORG ORG+ 1 ORG+2

~ ~ ~ x
_..

~ ~

~ +- ORG +WARP

+- ORG+ 2•WARP

e (X,Y)

t_ ORG + Y*WARP + X

y
TL/EE/9424-61

FIGURE 2·9. Correspondence between Linear and
Cartesian Addressing

2.4.2 BITBLT Fundamentals
BITBLT, BIT-aligned Block Transfer, is a general opera­
tor that provides a mechanism to move an arbitrary size
rectangle of an image from one part of the frame buffer
to another. During the data transfer process a bitwise
logical operation can be performed between the source
and the destination data. BITBLT is also called Raster­
Op: operations on rasters. It defines two rectangular ar­
eas, source and destination, and performs a logical oper­
ation (e.g., AND, OR, XOR) between these two areas and
stores the result back to the destination. It can be ex­
pressed in simple notation as:

Source op Destination -+ Destination
op: AND, OR, XOR, etc.

2.0 Architectural Description (Continued)

2.4.2.1 Frame Buffer Architecture
There are two basic types of frame buffer architectures:
plane-oriented or pixel-oriented. BITBLT takes advantage of
the plane-oriented frame buffer architecture's attribute of
multiple, adjacent pixels-per-word, facilitating the movement
of large blocks of data. The source and destination starting
addresses are expressed as pixel addresses. The width and
height of the block to be moved are expressed in terms of
pixels and scan lines. The source block may start and end
at any bit position of any word, and the same applies for the
destination block.

2.4.2.2 Bit Allgnment
Before a logical operation can be performed between the
source and the destination data, the source data must first
be bit aligned to the destination data. In Figure 2-10, the
source data needs to be shifted three bits to the right in
order to align the first pixel (i.e., the pixel at the top left
corner) in the source data block to the first pixel in the desti­
nation data block.

2.4.2.3 Block Boundaries and Destination Masks
Each BITBLT destination scan line may start and end at any
bit position in any data word. The neighboring bits (bits shar­
ing the same word address with any words in the destination
data block, but not a part of the BITBLT rectangle) of the
BITBLT destination scan line must remain unchanged after
the BITBLT operation.

Due to the plane-oriented frame buffer architecture, all
memory operations must be word-aligned. In order to pre­
serve the neighboring bits surrounding the BITBLT destina­
tion block, both a left mask and a right mask are needed for
all the leftmost and all the rightmost data words of the desti­
nation block. The left mask and the right mask both remain
the same during a BITBLT operation.

The following example illustrates the bit alignment require­
ments. In this example, the memory data path is 16 bits
wide. Figure 2-10 shows a 32 pixel by 32 scan line frame
buffer which is organized as a long bit stream which wraps
around every two words (32 bits). The origin (top left corner)
of the frame buffer starts from the lowest word in memory
(word address 00 (hex)).

Each word in the memory contains 16 bits, DO-D15. The
least significant bit of a memory word, DO, is defined as the
first displayed pixel in a word. In this example, BITBLT ad­
dresses are expressed as pixel addresses relative to the
origin of the frame buffer. The source block starting address
is 021 (hex) (the second pixel in the third word). The desti­
nation block starting address is 204 (hex) (the fifth pixel in
the 33rd word). The block width is 13 (hex), and the height is
06 (hex) (corresponding to 6 scan lines). The shift value is 3.

.r WORD BOUNDARIES 1 PIXEL NUMBERS
WITHIN WORDS

00
02
04
06
08
OA
oc
OE
10
12
14
16
18
1A
1c
1 E
20
22
24
26
28
2A
2C

WORD 2E
ADDRESSES 30

32
34
36
38
3A
3C
3E

0123456789ABCDEF0123456789ABCDEF

ssssssssssssssssssss
ssssssssssssssssssss
ssssssssssssssssssss
ssssssssssssssssssss
ssssssssssssssssssss
ssssssssssssssssssss

DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD

FIGURE 2-10. 32-Plxel by 32-SCan Line Frame Buffer

19

TL/EE/9424-62

z en w
~
C>
0)

I
0 z en
w
N
0
C>
0)

I
UI

an
d,
~ :a
z
0

I co
CJ
~ :a z

2.0 Architectural Description ccontinued)

+
1 SCAN LINE

DESTINATION t

1---..

+ _!_ 1 ~ SOURCE

]] [L - f4-
17 v V SOURCE I I I 1 PIXEL

DESTINATION

1 ' J_

"\ "\.. Q'. IZ)
TLIEE/9424-63 TL/EE/9424-64

(a) (b)
FIGURE 2·11. Overlapping BITBLT Blocks

The left mask and the right mask are 0000, 1111, 1111, 1111
and 1111, 1111,0000,0000 respectively.
Note 1: Zeros in either the left mask or the right mask indicate the destina­

tion bits which will not be modified.

Note 2: The BB(function) and EXTBL T instructions use different set up pa­
rameters, and techniques.

2.4.2.2 BITBLT Directions

A BITBLT operation moves a rectangular block of data in a
frame buffer. The operation itself can be considered as a
subroutine with two nested loops. The loops are preceeded
by setup operations. In the outer loop the source and desti­
nation starting addresses are calculated, and the test for
completion is performed. In the inner loop the actual data
movement for a single scan line takes place. The length of
the inner loop is the number of (aligned) words spanned by
each scan line. The length of the outer loop is equal to the
height (number of scan lines) of the block to be moved. A
skeleton of the subroutine representing the BITBLT opera­
tion follows.

BITBLT: calculate BITBLT setup parameters;
(once per BITBLT operation).

such as

width, height

bit misalignment (shift number)

left, right masks

horizontal, vertical directions

etc

•
•

OUTERLOOP: calculate source, dest addresses;
(once per scanline).

INNERLOOP: move data, (logical operation) and incre­
ment addresses;
(once per word).

20

UNTIL

UNTIL

RETURN

done horizontally

done vertically

(from BITBL n.
Note: In the NS32CG16 only the setup operations must be done by the

programmer. The inner and outer loops are automatically executed
by the BITBLT instructions.

Each loop can be executed in one of two directions: the
inner loop from left to right or right to left, the outer loop
from top to bottom (down) or bottom to top (up).

The ability to move data starting from any corner of the
BITBLT rectangle is necessary to avoid destroying the
BITBLT source data as a result of destination writes when
the source and destination are overlapped (i.e., when they
share pixels). This situation is routinely encountered while
panning or scrolling.

A determination of the correct execution directions of the
BITBLT must be performed whenever the source and desti­
nation rectangles overlap. Any overlap will result in the de­
struction of source data (from a destination write) if the cor­
rect vertical direction is not used. Horizontal BITBLT direc­
tion is of concern only in certain cases of overlap, as will be
explained below.

Figures 2-11 (a) and (b} illustrate two cases of overlap. Here,
the BITBLT rectangles are three pixels wide by five scan
lines high; they overlap by a single pixel in {a) and a single
column of pixels in (b). For purposes of illustration, the
BITBLT is assumed to be carried out pixel-by-pixel. This
convention does not affect the conclusions.

In Figure 2-11 (a}, if the BITBLT is performed in the UP direc­
tion (bottom-to-top) one of the transfers of the bottom scan
line of the source will write to the circled pixel of the destina­
tion. Due to the overlap, this pixel is also part of the upper­
most scan line of the source rectangle. Thus, data needed
later is destroyed. Therefore, this BITBLT must be per­
formed in the DOWN direction. Another example of this oc-

2.0 Architectural Description (Continued)

curs any time the screen is moved in a purely vertical direc­
tion, as in scrolling text. It should be noted that, in both of
these cases, the choice of horizontal BITBLT direction may
be made arbitrarily.
Figure 2-11 (b) demonstrates a case in which the horizontal
BITBLT direction may not be chosen arbitrarily. This is an
instance of purely horizontal movement of data (panning).
Because the movement from source to destination involves
data within the same scan line, the incorrect direction of
movement will overwrite data which will be needed later. In
this example, the correct direction is from right to left.

2.4.2.5 BITBLT Variations

The 'classical' definition of BITBLT, as described in "Small­
talk-SO The Language and its Implementation", by Adele
Goldberg and David Robson, provides for three operands:
source, destination and mask/texture. This third operand is
commonly used in monochrome systems to incorporate a
stipple pattern into an area. These stipple patterns provide
the appearance of multiple shades of gray in single-bit-per­
pixel systems, in a manner similar to the 'halftone' process
used in printing.

Texture op1 Source op2 Destination -+ Destination

While the NS32CG 16 and the external BPU (if used) are
essentially two-operand devices, three-operand BITBLT op­
erations can be implemented quite flexibly and efficiently by
performing the two operations serially.

2.4.3 GRAPHICS SUPPORT INSTRUCTIONS

The NS32CG16 provides eleven instructions for supporting
graphics oriented applications. These instructions are divid­
ed into three groups according to the operations they per­
form. General descriptions for each of them and the related
formats are provided in the following sections.

2.4.3.1 BITBLT (BIT -aligned Block Transfer)

This group includes seven instructions. They are used to
move characters and objects into the frame buffer which will
be printed or displayed. One of the instructions works in
conjunction with an external BITBLT Processing Unit (BPU)
to maximize performance. The other six are executed by the
NS32CG16.

BIT -aligned Block Transfer

Syntax: BB(function) Options

Setup: RO base address, source data
R1 base address, destination data
R2 shift value
R3 height (in lines)
R4 first mask
R5 second mask
RS source warp (adjusted)
R7 destination warp (adjusted)
O(SP) width (in words)

Function: AND, OR, XOR, FOR, STOD

Options: IA Increasing Address (default option).

When IA is selected, scan lines are
transferred in the increasing BIT /BYTE
order.

DA Decreasing Address.

S True Source (default option).

-S Inverted Source.

21

These five instructions perform standard BITBLT operations
between source and destination blocks. The operations
available include the following:

BBAND: src AND dst
-src AND dst

BBOR: src OR dst
-src OR dst

BBXOR: src XOR dst
-src XOR dst

BB FOR: src OR dst
BBSTOD: src TO dst

-src TO dst

'src' and '-src' stand for 'True Source' and 'Inverted
Source' respectively; 'dst' stands for 'Destination'.
Note 1: For speed reasons, the BB instructions require the masks to be

specified with respect to the source block. In Figure 2-10 masking
was defined relative to the destination block.

Note 2: The options -S and DA are not available for the BBFOR instruc­
tion.

Note 3: BBFOR performs the same operation as BBOR with IA and S op-
tions.

Note 4: IA and DA are mutually exclusive and so are Sand -s.
Note 5: The width is defined as the number of words of source data to read.

Note 6: An odd number of bytes can be specified for the source warp.
However, word alignment of source scan lines will result in faster
execution.

The horizontal and vertical directions of the BITBLT opera­
tions performed by the above instructions, with the excep­
tion of BBFOR, are both programmable. The horizontal di­
rection is controlled by the IA and DA options. The vertical
direction is controlled by the sign of the source and destina­
tion warps. Figure 2-12 and Table 2-3 show the format of
the BB instructions and the encodings for the 'op' and 'i'
fields.

23 1sj15 a 1 o
TTTTTTT~TTTllll I I I I I I

0 0 0 0 0 0 D X S 01 op i 0 0 0 0 1 1 1 0

• D is set when the DA option is selected

• S is set when the -S option is selected

• X is set for BBAND, and it is clear for all other BB instructions

FIGURE 2·12. BB Instructions Format

TABLE 2·3. 'op' and 'I' Field Encodings

Instruction Options 'op' Fleld 'I' Field

BBAND Yes 1010 11

BBOR Yes 0110 01

BBXOR Yes 1110 01

BBFOR No 1100 01

BBSTOD Yes 0100 01

BIT-aligned Word Transfer

Syntax: BITWT

Setup: RO
R1
R2

Base address, source word
Base address, destination double word
Shift value

The BITWT instruction performs a fast logical OR operation
between a source word and a destination double word,
stores the result into the destination double word and incre­
ments registers RO and R1 by two. Before performing the
OR operation, the source word is shifted left (i.e., in the
direction of increasing bit numbers) by the value in register
R2.

z
tn w s
'l>
0
z
tn w
N
0
ti)
'l>
"'

2.0 Architectural Description (Continued)

This instruction can be used within the inner loop of a block
OR operation. Its use assumes that the source data is
'clean' and does not need masking. The BITWT format is
shown in Figure 2-13.

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0

FIGURE 2·13. BITWT Instruction Format

Extemal BITBLT

Syntax: EXTBLT

Setup: RO
R1
R2
R3
R4
R5
R6
R7

base addresses, source data
base address, destination data
width (in bytes)
height (in lines)
horizontal increment/ decrement
temporary register (current width)
source warp (adjusted)
destination warp (adjusted)

Note 1: RO and R1 are updated after execution to point to the last source
and destination addresses plus related warps. R2, R3 and R5 will
be modified. R4, R6, and R7 are returned unchanged.

Note 2: Source and destination pointers should point to word-aligned oper-
ands to maximize speed and minimize external interface logic.

This instruction performs an entire BITBLT operation in con­
junction with an external BITBLT Processing Unit (BPU).
The external BPU Control Register should be loaded by the
software before the instruction is executed (refer to the
DP851 O or DP8511 data sheets for more information on the
BPU). The NS32CG16 generates a series of source read,
destination read and destination write bus cycles until the
entire data block has been transferred. The BITBLT opera­
tion can be performed in either horizontal direction. As con­
trolled by the sign of the contents of register R4.

Depending on the relative alignment of the source and des­
tination blocks, an extra source read may be required at the
beginning of each scan line, to load the pipeline register in
the external BPU. The L bit in the PSR register determines
whether the extra source read is performed. If L is 1, no
extra read is performed. The instructions CMPQB 2, 1 or
CMPQB 1,2 could be executed to provide the right setting
for the L bit just before executing EXTBLT. Figure 2-14
shows the EXTBL T format The bus activity for a simple
BITBLT operation is shown in Figure 2-19.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2·14. EXTBL T Instruction Format

B.3.2 Pattern Fiii

Only one instruction is in this group. It is usually used for
clearing RAM and drawing patterns and lines.

Move Multiple Pattern

Syntax: MOVMPI

Setup: RO
R1
R2
R3

base address of the destination
pointer increment (in bytes)
number of pattern moves
source pattern

Note: R1 and R3 are not modified by the Instruction. R2 will always be
returned as zero. RO is modified to reflect the last address into which
a pattern was written.

22

This instruction stores the pattern in register R3 into the
destination area whose address is in register RO. The pat­
tern count is specified in register R2. After each store oper­
ation the destination address is changed by the contents of
register R 1. This allows the pattern to be stored in rows, in
columns, and in any direction, depending on the value and
sign of R1. The MOVMPi instruction format is shown in Fig­
ure 2-15.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2·15. MOVMPI Instruction Format

B.3.3 Data Compression, Expansion and Magnify

The three instructions in this group can be used to com­
press data and restore data from compression. A com­
pressed character set may require from 30% to 50% less
memory space for its storage.

The compression ratio possible can be 50:1 or higher de­
pending on the data and algorithm used. TBITS can also be
used to find boundaries of an object. As a character is need­
ed, the data is expanded and stored in a RAM buffer. The
expand instructions (SBITS, SBITPS) can also function as
line drawing instructions.

Test Bit String

Syntax: TBITS option

Setup: RO base address, source (byte address)
R1 starting source bit offset
R2 destination run length limited code
R3 maximum value run length limit
R4 maximum source bit offset

Option: 1 count set bits until a clear bit is found
O count clear bits until a set bit is found

Note: RO, R3 and R4 are not modified by the instruction execution. R 1
reflects the new bit offset. R2 holds the result.

This instruction starts at the base address, adds a bit offset,
and tests the bit for clear if "option" = O (and for set if
"option" = 1). If clear (or set), the instruction increments to
the next higher bit and tests for clear (or set). This testing
for clear proceeds through memory until a set bit is found or
until the maximum source bit offset or maximum run length
value is reached. The total number of clear bits is stored in
the destination as a run length value.

When TBITS finds a set bit and terminates, the bit offset is
adjusted to reflect the current bit address. Offset is then
ready for the next TBITS instruction with "option" = O. After
the instruction is executed, the F flag is set to the value of
the bit previous to the bit currently being pointed to (i.e., the
value of the bit on which the instruction completed execu­
tion). In the case of a starting bit offset exceeding the maxi­
mum bit offset (R1 ~ R4), the F flag is set if the option was
1 and clear if the option was 0. The L flag is set when the
desired bit is found, or if the run length equalled the maxi­
mum run length value and the bit was not found. It is cleared
otherwise. Figure 2-16 shows the TBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 s 0 1 0 0 1 1 1 0 0 0 0 1 1 0

• S is set for 'TBITS 1' and clear for 'TBITS O'.

FIGURE 2·16. TBITS Instruction Format

2.0 Architectural Description ccontinued)

Set Bit String

Syntax: SBITS

Setup: RO
R1
R2
R3

base address of the destination
starting bit offset (signed)
number of bits to set (unsigned)
address of string look-up table

Note: When the instruction terminates, the registers are returned un-
changed.

SBITS sets a number of contiguous bits in memory to 1, and
is typically used for data expansion operations. The instruc­
tion draws the number of ones specified by the value in R2,
starting at the bit address provided by registers RO and R1.
In order to maximize speed and allow drawing of patterned
lines, an external 1 k byte lookup table is used. The lookup
table is specified in the NS32CG16 Printer/Display Proces­
sor Programmer's Reference Supplement.

When SBITS begins executing, it compares the value in R2
with 25. If the value in R2 is less than or equal to 25, the F
flag is cleared and the appropriate number of bits are set in
memory. If R2 is greater than 25, the F flag is set and no
other action is performed. This allows the software to use a
faster algorithm to set longer strings of bits. Figure 2-17
shows the SBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0

Set BIT Perpendicular String

Syntax: SBITPS

Setup: RO
R1
R2
R3

base address, destination (byte address)
starting bit offset
number of bits to set
destination warp (signed value, in bits)

Note: When the instruction terminates, the RO and R3 registers are re-
turned unchanged. R1 becomes the final bit offset. R2 is zero.

The SBITPS can be used to set a string of bits in any direc­
tion. This allows a font to be expanded with a 90 or 270
degree rotation, as may be required in a printer application.
SBITPS sets a string of bits starting at the bit address speci­
fied in registers RO and R1. The number of bits in the string
is specified in R2. After the first bit is set, the destination
warp is added to the bit address and the next bit is set. The
process is repeated until all the bits have been set. A nega­
tive raster warp offset value leads to a 90 degree rotation. A
positive raster warp value leads to a 270 degree rotation. If
the R3 value is = (space warp + 1 or -1), then the result is
a 45 degree line. If the R3 value is + 1 or - 1, a horizontal
line results.

SBITS and SBITPS allow expansion on any 90 degree an­
gle, giving portrait, landscape and mirror images from one
font. Figure 2-18 shows the SBITPS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0
FIGURE 2-17. SBITS Instruction Format

FIGURE 2·18. SBITPS Instruction Format

READ SOURCE READ SOURCE READ SOURCE READ SOURCE

READ DESTINATION READ DESTINATION READ DESTINATION READ DESTINATION

WRITE RESULT WRITE RESULT WRITE RESULT WRITE RESULT
TO DESTINATION TO DESTINATION TO DESTINATION TO DESTINATION

123412341234123412341234123412341234123412341234

CTTL

(5)

WORD 1 (12 CLOCKS) WORD 2 (12 CLOCKS) WORD 3 (12 CLOCKS)

FIGURE 2·19. Bus Activity for a Simple BITBLT Operation
Note 1: This example is for a block 4 words wide and 1 line high.

Note 2: The sequence is common with all logical operations of the DP8510/DP8511 BPU.

Note 3: Mask values, shift values and number of bit planes do not affect the performance.

Note 4: Zero wait states are assumed throughout the BITBLT operation.
Note 5: The extra read is performed when the BPU pipeline register needs to be preloaded.

23

WORD 4 (12 CLOCKS)

TL/EE/9424-66

z
~ s er
0 z en w
N

8 er
c.n

2.0 Architectural Description ccontinued)

B.3.3.1 Magnifying Compressed Data

Restoring data is just one application of the SBITS and
SBITPS instructions. Multiplying the "length" operand used
by the SBITS and SBITPS instructions causes the resulting
pattern to be ~11ider, or a multiple of Cl!ength".

As the pattern of data is expanded, it can be magnified by
2x, 3x, 4x, ... , 1 Ox and so on. This creates several sizes of
the same style of character, or changes the size of a logo. A
magnify in both dimensions X and Y can be accomplished
by drawing a single line, then using the MOVS (Move String)
or the BB instructions to duplicate the line, maintaining an
equal aspect ratio.

More information on this subject is provided in the
NS32CG16 Printer/Display Processor Programmer's Refer­
ence Supplement.

3.0 Functional Description

3.1 POWER AND GROUNDING

The NS32CG16 requires a single 5-Volt power supply, ap­
plied on 5 pins. The logic voltage pin (Veeu supplies the
power to the on-chip logic. The buffer voltage pins
VCCCTTL, VCCFCLK, VCCAD, and VCCIO supply the pow­
er to the on-chip output drivers.

Grounding connections are made on 6 pins. The Logic
Ground Pin (VSSL) provides the ground connection to the
on-chip logic. The buffer ground pins VSSFCLK, VSSNTSO,
VSSHAD, VSSLAD, VSSIO are the ground pins for the on­
chip output drivers.

For optimal noise immunity, the power and ground pins
should be connected to Vee and ground planes respective­
ly. If Vee and ground planes are not used, single conductors
should be run directly from each Vee pin to a power point,
and from each GND pin to a ground point. Daisy-chained
connections should be avoided.

Decoupling capacitors should also be used to keep the
noise level to a minimum. Standard 0.1 µF ceramic capaci­
tors can be used for this purpose. In addition, a 1.0 µF
tantalum capacitor should be connected between VeeL and
ground. They should attach to Vee. Vss pairs as close as
possible to the NS32CG16.

During prototype using wire-wrap or similar methods, the
capacitors should be soldered directly to the power pins of
the NS32CG 16 socket, or as close as possible, with very
short leads.

Recommended bypass for production in printed circuit
boards:

+ 5 Ground Capacitors

VCCL VSSL 0.1 µF Disk Ceramic
1.0 µFTantulum

VCCIO VSSIO 0.1 µF
VCCCTTL VSSNTSO 0.1 µF
VCCAD VSSLAD 0.1 µF
VCCAD VSSHAD None
VCCFCLK VSSFCLK 0.1 µF

VCCL-VSSL bypass requires a very short lead length and
low inductance on the 0.1 µF capacitor.

Design Notes

When constructing a board using high frequency clocks with
multiple lines switching, special care should be taken to

24

avoid resonances on signal lines. A separate power and
ground layer is recommended. This is true when designing
boards for the NS32CG 16. Switching times of under 5 ns on
some lines are possible. Resonant frequencies should be
maintained well above the 200 MHz frequency range on
signal paths by keeping traces short and inductance low.
Loading capacitance at the end of a transmission line con­
tributes to the resonant frequency and should be minimized
if possible. Capacitors should be located as close as possi­
ble across each power and ground pair near the
NS32CG16.

Power and ground connections are shown in Figure 3-1.

+5V

VCCL1---•
4 OTHER VCC

VCCCTTL, _ _,__ ___ CONNECTIONS
vccrcLK, (VCC PLANE)

VCCAD,
VCCIO

NS32CG16
CPU

VSSL

OTHER GROUND
vssrCLK, -----· CONNECTIONS
VSSNTSO, (GND PLANE)

VSSHAD,
VSSLAD,

VSSIO

TL/EE/9424-7

FIGURE 3-1. Power and Ground Connections

3.2 CLOCKING

The NS32CG 16 provides an internal oscillator that interacts
with an external clock source through two signals; OSCIN
and OSCOUT.

Either an external single-phase clock signal or a crystal can
be used as the clock source. If a single-phase clock source
is used, only the connection on OSCIN is required;
OSCOUT should be left open. The voltage level require­
ments specified in Section 4.3 must also be met for proper
operation.

Wh.en operation with a crystal is desired, a fundamental
mode crystal should be used. In this case, special care
should be taken to minimize stray capacitances and induc­
tances, especially when operating at a crystal frequency of
30 MHz. The crystal, as well as the external RC compo­
nents, should be placed in close proximity to the OSCIN and
OSCOUT pins to keep the printed circuit trace lengths to an
absolute minimum. Figure 3-2 shows the external crystal
interconnections. Table 3-1 provides the crystal characteris­
tics and the values of the RC components required for vari­
ous frequencies.

iC1

R2

TL/EE/9424-8

FIGURE 3·2. Crystal Interconnections

3.0 Functional Description (Continued)

TABLE 3· 1. External Oscillator Specifications

Crystal Characteristics

Type ... At-Cut

Tolerance 0.005% at 25°C

Stability 0.01 % from o·c to 70°C

Resonance Fundamental (parallel)

Capacitance 20 pF

Maximum Series Resistance SO!l

RC Component Values

Frequency R1 R2 C1 C2
(MHz) (k!l) (!l) (pf) (pf)

12 470 120 20 30
16 360 100 20 30
20 270 75 20 30
25 220 68 20 30
30 180 51 20 30

3.2.1 Power Save Mode

The NS32CG 16 provides a power save feature that can be
used to significantly reduce the power consumption at times
when the computational demand decreases. The device
uses the clock signal at the OSCIN pin to derive the internal
clock as well as the external signals PHl1, PHl2, CTTL and
FCLK. The frequency of all these clock signals is affected
by the clock scaling factor. Scaling factors of 1, 2, 4 or 8 can
be selected by properly setting the C and M bits in the CFG
register.

Upon reset, both C and M are set to zero, thus maximum
clock rate is selected.

Due to the fact that the C and M bits are programmed by the
SETCFG instruction, the power save feature can only be
controlled by programs running in supervisor mode.

The following table shows the C and M bit settings for the
various scaling factors, and the resulting supply current for a
crystal frequency of 30 MHz.

Clock Scaling Factor vs Supply Current

c M
Scaling CPU Clock Typical Ice
Factor Frequency at +5V

0 0 1 15MHz 140mA
0 1 2 7.5 MHz 76mA
1 0 4 3.75 MHz 42mA
1 1 8 1.88 MHz 25mA

3.3 RESETTING

The RSTI input pin is used to reset the NS32CG16. The
CPU samples RSTI on the falling edge of CTTL.

Whenever a low level is detected, the CPU responds imme­
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis­
carded; and any pending interrupts and traps are eliminated.
The internal latch for the edge-sensitive NMI signal is
cleared.

On application of power, RSTI must be held low for at least
50 µs after Vee is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 CTTL cycles. See Figures 3-3 and 3-4.

25

While in the Reset state, the CPU drives the signals ADS,
RD, WR, DBE, TSO, BPU, and ODIN inactive. ADO-AD15,
A16-A23 and SPC are floated, and the state of all other
output signals is undefined.

The internal CPU clock, PHl1, PHl2 and CTTL all run at half
the frequency of the signal on the OSCIN pin. FCLK runs at
the same frequency of OSCIN.

The HOLD signal must be kept inactive. After the RSTI sig­
nal is driven high, the CPU will stay in the reset condition for
approximately 8 clock cycles and then it will begin execution
at address 0.

The PSR is reset to 0. The CFG C and M bits are reset to 0.
NMI is enabled to allow Non-Maskable Interrupts. The fol­
lowing conditions are present after reset due to the PSR
being reset to 0:

Tracing is disabled.
Supervisor mode is enabled.
Supervisor stack space is used when the TOS addressing
mode is indicated.
No trace traps are pending.
Only NMI is enabled. INT is not enabled.
BPU is inactive high.
The Clock Scaling Factor is set to 1, refer to Section 3.2.1.

Note that vector/non-vectored interrupts have not been se­
lected. While interrupts are disabled, a SETCFG [I] instruc­
tion must be executed to declare the presence of the
NS32202 if vectored interrupts are desired. If non-vectored
interrupts are required, a SETCFG without the [I] must be
executed.

The presence/absence of the NS32081 or NS32381 has
also not been declared. If there is a Floating Point Unit, a
SETCFG [F] instruction must be executed. If there is no
floating point unit, a SETCFG without the [F] must be exe­
cuted.

In general, a SETCFG instruction must be executed in the
reset routine, in order to properly configure the CPU. The
options should be combined, and executed in a single in­
struction. For example, to declare vectored interrupts, a
Floating Point unit installed, and full CPU clock rate, execute
a SETCFG [F, I] instruction. To declare non-vectored inter­
rupts, no FPU, and full CPU clock rate, execute a
SETCFG [] instruction.

Vee[

TL/EE/9424-9

FIGURE 3·3. Power-On Reset Requirements

RSTI[

ii1! 64:=r-CLOCK
CYCLES

s
TL/EE/9424-10

FIGURE 3·4. General Reset Timing

z en
w
I\)

0
Q
O>

I
0
z en
w
I\)

0
Q
O>

I
UI

3.0 Functional Description (Continued)

3.4 BUS CYCLES

The CPU will perform a bus cycle for one of the following
reasons:

1) To write or read data, to or from memory or peripheral
devices. Peripheral input and output are memory­
mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction
queue. This happens whenever the bus would otherwise
be idle and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the four-bit code placed on
the Bus Status pins (STO-ST3). Slave Processor cycles dif­
fer in that separate control signals are applied (Section
3.4.7).

3.4.1 Bus Status

The NS32CG16 CPU presents four bits of Bus Status infor­
mation on pins STO-ST3. The various combinations on
these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, then why it is idle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:

0000 - The bus is idle because the CPU does not need
to perform a bus access.

0001 - The bus is idle because the CPU is executing
the WAIT instruction.

001 O - (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.

The CPU is performing a Read cycle to ac­
knowledge an interrupt request. See Section
3.4.6.

0101 - Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to ac­
knowledge a maskable interrupt request from a
Cascaded Interrupt Control Unit.

0110 - End of Interrupt, Master.

The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt
(RETI) instruction at the completion of an inter­
rupt's service procedure.

0111 - End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cas­
caded Interrupt Control Unit to indicate that it is
executing a Return from Interrupt (RETI) in­
struction at the completion of an iriterrupt's
service procedure.

1000 - Sequential Instruction Fetch.

The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

26

1001 - Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc­
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
any interrupt or trap, or execution of certain in­
structions.

101 O - Data Transfer.

The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.

The CPU is reading an operand which will sub­
sequently be modified and rewritten. The write
cycle of RMW will have a "write" status.

1100. - Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruc­
tion uses the Memory Relative or External ad­
dressing mode.

1101 - Transfer Slave Processor Operand.

The CPU is either transferring an instruction op­
erand to or from a Slave Processor, or it is issu­
ing the Operation Word of a Slave Processor
instruction. See Section 3.9.1.

111 O - Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor after the Slave Processor has sig­
nalled completion of an instruction.

1111 - Broadcast Slave ID.

The CPU is initiating the execution of a Slave
Processor instruction by transferring the first
byte of the instruction, which represents the
slave processor indentification.

3.4.2 Basic Read and Write Cycles

The sequence of events occurring during a CPU access to
either memory or peripheral device is shown in Figure 3-6
for a read cycle, and Figure 3-7 for a write cycle.

The cases shown assume that the selected memory or pe­
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through CWAIT and/or WAIT1 -2.
A full-speed bus cycle is performed in four cycles of the
CTIL clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for "Idle").

During T1, the CPU applies an address on pins ADO-AD15
and A16-A23. It also provides a low-going pulse on the
ADS pin, which serves the dual purpose of informing exter­
nal circuitry that a bus cycle is starting and of providing con­
trol to an external latch for demultiplexing Address bits 0-
15 from the ADO-AD15 pins. See Figure 3-5. During this
time also the status signals ODIN, indicating the direction of
the transfer, and HBE, indicating whether the high byte
(AD8-AD15) is to be referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD15, to
either accept or present data. Note that the signals A 16-
A23 remain valid, and need not be latched.

3.0 Functional Description (Continued)

ODIN 1---------i

AOO-AD15 BUFFER

NS32CG1&

HBE~-­

ADS 1----

A16-A23

DBE ..__ ___ __,

AO(leE)

CTTL CTTLL-------------------
ROI----------------------
WRI---------------------<-

T§{)L-------------------
FIGURE 3-5. Bus Connections

27

TUEE/9424-11

z
rn
w
N s er
C) z
rn
w
N
(")
G') er
UI

LO
I co

CJ
(.)
N
(")
CJ)
z
C) ,....

I co
CJ
(.)
N
(")
CJ)
z

3.0 Functional Description (Continued)

At this time the signals TSO (Timing State Output), DBE
(Data Buffer Enable) and either RD (Read Strobe) or WR
(Write Strobe) will also be activated.

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2, on the
;ising edge of CTIL, the CWAIT and WAiT1-2 signais are
sampled to determine whether the bus cycle will be extend­
ed. See Section 3.4.3.

If the CPU is performing a read cycle, the data bus
(ADO-AD15) is sampled at the beginning of T 4 on the rising
edge of CTTL. Data must, however, be held a little longer to
meet the data hold time requirements. The RD signal is
guaranteed not to go inactive before this time, so its rising
edge can be safely used to disable the device providing the
input data.

The T 4 state finishes the bus cycle. At the beginning of T 4,
the RD or WR, and TSO signals go inactive, and on the
falling edge of CTTL, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T 4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T 4, an­
ticipating the following bus cycle (if any).

3.4.3 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32CG16 provides for extension of
a bus cycle. Any type of bus cycle except a Slave Processor
cycle can be extended.

In Figures 3-6 and 3-7, note that during T3 all bus control
signals from the CPU are flat. Therefore, a bus cycle can be
cleanly extended by causing the T3 state to be repeated.
This is the purpose of the WAIT1 -2 and CWAIT input sig­
nals.

At the end of state T2, on the rising edge of CTTL, WAIT1-
2 and CWAIT are sampled.

If any of these signals are active, the bus cycle will be ex­
tended by at least one clock cycle. Thus, one or more addi­
tional T3 state (also called wait state) will be inserted after
the next T-State. Any combination of the above signals can
be activated at one time. However, the WAIT1 -2 inputs are
only sampled by the CPU at the end of state T2. They are
ignored at all other times.

The WAIT1-2 inputs are binary weighted, and can be used
to insert up to 3 wait states, according to the following table.

WAIT2 WAIT1
Number of
Walt States

HIGH HIGH 0
HIGH LOW 1
LOW HIGH 2
LOW LOW 3

CWAIT causes wait states to be inserted continuously as
long as it is sampled active. It is normally used when the
number of wait states to be inserted in the CPU bus cycle is
not known in advance.

The following sequence shows the CPU response to the
WAIT1 -2 and CWAIT inputs.

1 . Start bus cycle.

2. Sample WAIT1 -2 and CWAIT at the end of state T2.

3. If the WAIT1-2 inputs are both inactive, then go to step
6.

30

4. Insert the number of wait states selected by WAIT1-2.

5. Sample CWAIT again.

6. If CWAIT is not active, then go to step 8.

7. Insert one wait state and then go to step 5 .

8. Complete bus cycle.

Figure 3-8 shows a bus cycle extended by three wait states,
two of which are due to WAIT2, and one is due to CWAIT.

3.4.4 Data Access Sequences

The 24-bit address provided by the NS32CG 16 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important feature
of the NS32CG16 is that the presence of a 16-bit data bus
imposes no restrictions on data alignment; any data item,
regardless of size, may be placed starting at any memory
address. The NS32CG16 provides a special control signal,
High Byte Enable (HBE), which facilitates individual byte ad­
dressing on a 16-bit bus.

Memory is organized as two eight-bit banks, each bank re­
ceiving the word address (A 1-A23) in parallel. One bank,
connected to Data Bus pins ADO-AD7, is enabled to re­
spond to even byte addresses; i.e., when the least signifi­
cant address bit (AO) is low. The other bank, connected to
Data Bus pins AD8-AD15, is enabled when HBE is low. See
Figure 3-9.

HBE AO(LBE)

BBITS BBITS

A1·A23

LS BYTE

TL/EE/9424-15

FIGURE 3-9. Memory Interface

Any bus cycle falls into one'of three categories: Even Byte
Access, Odd Byte Access, and Even Word Access. All ac­
cesses to any data type are made up of sequences of these
cycles. Table 3-2 gives the state of AO and HBE for each
category.

TABLE 3-2. Bus Cycle Categories

Category HBE AO

Even Byte 1 0
Odd Byte 0 1
Even Word 0 0

z
3.0 Functional Description (Continued)

en w
N
(")

T1 T2 T3 T3(W) T3(W) T3(W) T4 T1 OR Tl
C)

[
0)

I
cm Q z

en w
N

[
(")

A16-A23 ADDRESS VALID
C)
0)

I
U'I

ADO-AD15 [--- ---- ---- ---- - DATA --- -c IN

ADS [

ODIN [

HBE [

WAIT2 [

WAIT1 [

CWAIT [

RD [
TL/EE/9424-14

FIGURE 3-8. Cycle Extension of a Read Cycle

31

3.0 Functional Description ccontinued)

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment (i.e., whether it
starts on an even byte address or an odd byte address).
Table 3-3 lists the bus cycle performed for each situation.
For the timing of AO and HBE, see Section 3.4.2.

3.4.4.1 Bit Accesses
The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.4.2 Bit Field Accesses
An access to a Bit Field in memory always generates a Dou­
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it.

3.4.4.3 Extending Multiply Accesses
The Multiply Extended Integer (MEI) instruction will return a
result which is twice the size in bytes of the operand it
reads. If the multiplicand is in memory, the most-significant
half of the result is written first (at the higher address), then
the least-significant half.

3.4.5 Instruction Fetches
Instructions for the NS32CG16 CPU are "prefetched"; that
is, they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs

32

two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec­
tion 3.4.1).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
Even Word Read cycles (Table 3-2).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle is either an Even Word Read or an
Odd Byte Read, depending on whether the destination ad­
dress is even or odd.

3.4.6 Interrupt Control Cycles
Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

Table 3-4 shows the Interrupt Control sequences associat­
ed with each interrupt and with the return from its service
routine. For full details of the NS32CG 16 interrupt structure,
see Section 3.8.

z
3.0 Functional Description (Continued)

en w
N
(')

TABLE S·S. Access Sequences Ci)
......

Cycle Type Address HBE AO High Bus Low Bus
0)
I

0
z

A. Odd Word Access Sequence en w
N

BYTE1 BYTEO +-A
(')
Ci)

1 Odd Byte A 0 1 ByteO Don't Care 0)
I

2 Even Byte A+1 1 0 Don't Care Byte 1
U'I

B. Even Double-Word Access Sequence

BYTES BYTE2 BYTE1 BYTEO +-A

1 Even Word A 0 0 Byte 1 ByteO
2 Even Word A+2 0 0 Byte 3 Byte2

C. Odd Double-Word Access Sequence

BYTES BYTE2 BYTE 1 BYTEO +-A

1 Odd Byte A 0 1 ByteO Don't Care
2 Even Word A+1 0 0 Byte2 Byte 1
3 Even Byte A+3 0 Don't Care Byte3

0. Even Quad-Word Access Sequence

BYTE7 BYTE6 BYTES BYTE4 BYTES BYTE2 BYTE 1 BYTEO +-A

Even Word A 0 0 Byte 1 ByteO
2 Even Word A+2 0 0 Byte3 Byte2

Other bus cycles (instruction prefetch or slave) can occur here.

3 Even Word A+4 0 0 Byte5 Byte4
4 Even Word A+6 0 0 Byte7 Byte6

E. Odd Quad-Word Access Sequence

BYTE7 BYTE& BYTES BYTE4 BYTES BYTE2 BYTE 1 BYTEO +-A

Odd Byte A 0 1 ByteO Don't Care
2 Even Word A+1 0 0 Byte2 Byte 1
3 Even Byte A+3 0 Don't Care Byte3

Other bus cycles (instruction prefetch or slave) can occur here.

4 Odd Byte A+4 0 1 Byte4 Don't Care
5 Even Word A+5 0 0 Byte6 Bytes
6 Even Byte A+7 0 Don't Care Byte7

33

II)
I co
" ~
(')
(/)
z
.......
Q

I co
" 0
N
(')

"' z

3.0 Functional Description ccontinued)

TABLE 3-4. Interrupt Sequences

Cycle Status Address AO High Bus

A. Non-Maskable Interrupt Control Sequence

Interrupt Acknowledge
1 0100 FFFF001s 0 0 Don't Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequence

Interrupt Acknowledge
1 0100 FFFE001s 0 0 Don't Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequence: Non-Cascaded

Interrupt Acknowledge
1 0100 FFFE001s 0 0 Don't Care

Interrupt Return
1 0110 FFFE001s 0 0 Don't Care

D. Vectored Interrupt Sequence: Cascaded

Interrupt Acknowledge
1 0100 FFFE001s 0 0 Don't Care

(The CPU here uses the Cascade Index to find the Cascade Address.)

Low Bus

Don't Care

Don't Care

Vector:
Range: 0-127

Vector: Same as
in Previous Int.
Ack.Cycle

Cascade Index:
range -16 to - 1

2 0101 Cascade O 1 or o or
Address O* 1 *

Vector, range 0-255; on appropriate
half of Data Bus for even/ odd address

Interrupt Return
1 0110 FFFE0015 0 0

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade O 1 or O or

Address O* 1 *

Don't Care

Don't Care

Cascade Index:
same as in
previous Int.
Ack.Cycle

Don't Care

• If the Cascaded ICU Address is Even (AO is low), then the CPU applies HBE high and reads the vector number from bits 0-7 of the Data Bus.

If the address is Odd (AO is high), then the CPU applies HBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number
may be in the range 0-255.

34

3.0 Functional Description (Continued)

3.4.7 Slave Processor Communication

The SPC pin is used as the data strobe for Slave Processor
transfers. In a Slave Processor bus cycle, data is transferred
on the Data Bus (ADO-AD15), and the status lines STO­
ST3 are monitored by the Slave Processor in order to deter­
mine the type of transfer being performed. SPC is bidirec­
tional, but is driven by the CPU during all Slave Processor
bus cycles. See Section 3.8 for full protocol sequences.

PREV. CYCLE

T4 OR Tl

SPC [

ADO-AD15 [

STO-ST3 [

ODIN [

HBE [

DBE [

•Note: CPU samples Data Bus here.

T1

K) AD(IJ.15) D(IJ.15)

§PC
~ v

§PC

NS32CG16 SL.AVE
CPU PROCESSOR

STO-ST3 STO-ST3

TL/EE/9424-16

FIGURE 3·10. Slave Processor Connections

T4

NEXT CYCLE

Tl OR T1

NEXT

NEXT STATUS

NEXT

NEXT

TL/EE/9424-17

FIGURE 3·11. Slave Processor Read Cycle

35

z
~
~
C)
en

I
0
........ z
tn
w
N
(')
C)
'l>
UI

an .,..
ch .,..
CJ
~
~ z
0 .,..

I co .,..
8
"' C'I)

tn z

3.0 Functional Description (Continued)

3.4.7.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-11 and 3-12).
During a Read cycle SPC is active from the beginning of T1
to the beginning of T 4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T 4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

The CPU does not pulse the Address Strobe (ADS), and no
bus signals are generated. The direction of a transfer is de-

PREY. CYCLE

T-' OR 11

cm[
SPC [

AOO-AD15 [

STO•ST3 [

ADS [

DmN [

DBE [

T1

•Note: Slave Processor samples Data Bus here.

termined by the sequence ("protocol") established by the
instruction under execution; but the CPU indicates the direc­
tion on the ODIN pin for hardware debugging purposes.

3.4.7.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD7), and a
Word operand is transferred on the entire bus. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferre~ in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif­
icant word to most-significant.

T4

NEXT CYCLE

11 OR T1

NEXT STATUS

TL/EE/9424-18

FIGURE 3·12. Slave Processor Write Cycle

36

3.0 Functional Description ccontinued)

3.5 BUS ACCESS CONTROL

The NS32CG16 CPU has the capability of relinquishing its
access to the bus upon request from a DMA controller or
another CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. By as­
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set ADO­
AD15, A16-A23 and HBE to the TRI-STATE® condition and
has switched ADS and DDIN to the input mode. The CPU
now monitors ADS and DDIN from the external device to
generate the relevant strobe signals (i.e., TSO, DBE, RD or
WR). To return control of the bus to the CPU, the device
sets HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,

Ti Tl • • •
cm [

HLDA [

as the CPU must always complete the current bus cycle.
Figure 3-13 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-14 shows the sequence
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T 4. If
the request occurs closer to T 4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T 4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.
Note: During OMA cycles the WAIT1-2 signals should be kept inactive,

unless they are also monitored by the OMA controller. If wait states
are required, CWAIT should be used.

Tl Tl Tl OR T4 Tl OR T1

AFFECTED SIGNALS

ADS [--- ~~ ---------

ODIN [--- ~~----------

HBE [--- ~~---------

ADO-AD15 [- - - --§S- • • - - - - • • • • • • • • • • • • • NEXT ADDR

A16-A23 [~~ --- ----- ----- NEXT ADDR

STO-ST3 [NEXT STATUS

TUEE/9424-19

FIGURE 3·13. HOLD Timing, Bus Initially Idle

37

z en w
N n
Ci)
'P
0
z en w
N n
Ci)
0)

I
U'I

IO .,..
cD .,..
CJ
0
N
(")
U)
z
"" Q .,..

I
co .,..
CJ
0
N
(")
U)
z

3.0 Functional Description (Continued)

h TIORTI ~ TI

cm [

HOLD [

HLDA [

AFFECTED SIGNALS

ADS [--- '1S---- ----

ODIN [VALID --- -§S---- ----

HBE [VALID --- -§S---- ----

ADO-AD15 [--- -§§.--- ---- ----- ----- - NEXT ADDR

A16-A23 [VALID --- -§S---- ---- ----

STO-ST3 [VALID NEXT STATUS

TL/EE/9424-20

FIGURE 3·14. HOLD Timing, Bus Initially Not Idle

3.6 INSTRUCTION STATUS PFS (Program Flow Status) is pulsed low as each instruction

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32CG16 CPU also presents Instruction Status infor­
mation on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus interface

begins execution. It is intended for debugging purposes.

UIS originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. Although it is not synchronous to
bus cycles, there are guarantees on its validity during any
given bus cycle. See the Timing Specifications in Section 4. section.

38

3.0 Functional Description ccontinued)

ILO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. ILO is guaranteed to be active
during the operand accesses performed by the interlocked
instructions.
Note: The acknowledge of HOLD is on a cycle by cycle basis. Therefore, it

is possible to have HLDA active when an interlocked operation is in
progress. In this case, ILO remains low and the interlocked instruction
continues only after HOLD is de-asserted.

3.7 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes two basic types
of exceptions: interrupts and traps.

An interrupt occurs in response to an event signalled by
activating the NMI or INT input signals. Interrupts are typi­
cally requested by peripheral devices that require the CPU's
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

When an exception is recognized, the CPU saves the PC,
PSR and the MOD register contents on the interrupt stack
and then it transfers control to an exception service proce­
dure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

MEMORY'

/
CASCADE ADDA 0 --. -CASCADE TABLE •

•

FIXED INTERRUPTS

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi­
cantly different way than it does for exceptions.

Refer to Section for details on the reset operation.

3.7.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1) Adjustment of Registers.

Depending on the source of the exception, the CPU may
restore and/ or adjust the contents of the Program Coun­
ter (PC), the Processor Status Register (PSR) and the
currently-selected Stack Pointer (SP). A copy of the PSR
is made, and the PSR is then set to reflect Supervisor
Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup­
plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dis­
patch Table, whose base address is taken from the CPU
Interrupt Base (INTBASE) Register. See Figure 3-15. A
32-bit External Procedure Descriptor is read from the ta­
ble entry, and an External Procedure Call is performed
using it. The MOD Register (16 bits) and Program Coun­
ter (32 bits) are pushed on the Interrupt Stack.

:131 O"'
0 NVI NON-VECTORED INTERRUPT

1 NMI NON-MASKABLE INTERRUPT

2 RESERVED

3 SLAVE SLAVE PROCESSOR TRAP

4 ILL I LLEGAL OPERATION TRAP

5 SVC 1: AND TRAP$ r
4---V-E-C-TO_R_E_D___ DISPATCH TABLE

..(INTERRUPTS ! e

7

DVZ

FLG

SUPERVISOR CALL TRAP

DIVIDE BY ZERO TRAP

FLAG TRAP

e BPT

9 TRC

10 UNO

~RESERVED 11-15

18 VECTORED
INTERRUPTS

"'
FIGURE 3·15. Interrupt Dispatch and Cascade Tables

39

BREAKPOINT TRAP

T RACE TRAP

UNDEFINED INSTRUCTION TRAP

~~

,..,,
TUEE/9424-21

z
f/)
w
N
0
G>
er
0
z
f/)
w
N
0
G>
0)

I
U1

3.0 Functional Description· (Continued)
This process is illustrated in Ftgure 3-16, from the viewpoint
of the programmer.

Details on the sequences of events in processing interrupts
and traps are given in the following sections.

RETURN ADDRESS

STATUS MODULE

PSR MOD

INTBASE REGISTER

INTERRUPT BASE

VECTOR

DESCRIPTOR

(PUSH)

(PUSH)

• • •

INTERRUPT
STACK

r-------- -----,
I I
I CASCADE TABLE I
I I
I I
I I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

r ... ___ ,, ___ ~1---16----< ..

OFFSET MODULE

""'(0

MOD REGISTER ~ MODULE TABLE

[NEW MODULE

l MODULE TABLE ENTRY
r

J

MOOULETf BLE ENTRY
32

STATIC BASE POINTER - i---.
LINK BASE POINTER

+ PROGRAM BASE POINTER

(RESERVED)

• • •

PROGRAM COUNTER SB REGISTER

32BITS

32BITS

ENTRY POINT ADDRESS l NEW STATIC BASE
l

FIGURE 3·16. Exception Acknowledge Sequence

40

TL/EE/9424-22

]
TL/EE/9424-23

3.0 Functional Description (Continued)

3.7.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in­
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap or a non-maskable
interrupt service procedure. Since some traps are often
used deliberately as a call mechanism for supervisor mode
procedures, RETT can also adjust the Stack Pointer (SP) to
discard a specified number of bytes from the original stack
as surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex­
ternal events, RETI does not discard parameters from the
stack.

Both of the above instructions always restore the PSR,
MOD, PC and SB registers to their previous contents.

PROGRAM COUNTER

I ·I (POP)
RETURN ADDRESS

STATUS l MODULE

PSR MOD

MODULE T~BLE ENTRY

STATIC BASE POINTER --f"\

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SB REGISTER

STATIC BASE

(POP)

POP AND

DISCARD

3.7.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in­
put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit
is set. The I bit is automatically cleared during service of an
INT or NMI request, and is restored to its original setting
upon return from the interrupt service routine via the RETT
or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit I= 0) or Vectored
(bit 1=1).

3.7.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

n
BYTES

0

. .
•

.
• •

INTERRUPT

STACK

MODULE

TABLE

MODULE TABLE ENTRY

PARAMETERS

STACK SELECTED

INNEWLY­

POPPEDPSR.

. . .

• • •

TL/EE/9424-24

FIGURE 3-17. Return from Trap (RETT n) Instruction Flow

41

z en
Co)
N
0

"
(J)

I
0
z en
Co)
N
0

"
(J)

I
U1

3.0 Functional Description (Continued)

"END OF INTERRUPT"

PROGRAM COUNTER

RETURN ADDRESS J

BUS CYCLE

(POP)

INTERRUPT
CONTROL

UNIT

STATUS l (POP)
MODULE --.Jt-----------+--

PSR MOD

0

. . .
INTERRUPT

STACK

MODULE
TABLE

'--------------iMODULETABLE ENTRY

j

f
MODULE TABLE ENTRY

STATIC BASE POINTER

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SB REGISTER
TL/EE/9424-25

FIGURE 3·18. Return from Interrupt (RETI) Instruction Flow

3.7.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle read­
ing a vector value from the low-order byte of the Data Bus.
This vector is then used as an index into the Dispatch Table
in order to find the External Procedure Descriptor for the
proper interrupt service procedure. The service procedure
eventually returns via the Return from Interrupt (RETI) in­
struction, which performs an End of Interrupt bus cycle, in­
forming the ICU that it may re-prioritize any interrupt re-

42

quests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it needs
also to inform a Cascaded ICU.

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.7.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control

3.0 Functional Description (Continued)

Unit (ICU) to transparently support cascading. Figure 3-20
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Mater ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-15 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the neg-

CONTROL

ADDRSBITS

NS32CG16
CPU

GROUP

STATUS1

INT

FROM
ADDRESS
DECODER

ative Cascade Table index instead of a (positive) vector
number. The CPU, seeing the negative value, uses it as an
index into the Cascade Table and reads the Cascade Ad­
dress from the referenced entry. Applying this address, the
CPU performs an "Interrupt Acknowledge, Cascaded" bus
cycle, reading the final vector value. This vector is interpret­
ed by the CPU as an unsigned byte, and can therefore be in
the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle, whereupon the
Master ICU again provides the negative Cascaded Table
index. The CPU, seeing a negative value, uses it to find the
corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an "End of Interrupt, Cas­
caded" bus cycle, informing the Cascaded ICU of the com­
pletion of the service routine. The byte read from the Cas­
caded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con­
troller. However, if an interrupt is set pending during the CPU instruc­
tion that masks off that interrupt, the CPU may still perform an inter­
rupt acknowledge cycle following that instruction since it might have
sampled the INT line before the ICU deasserted it. This could cause
the ICU to provide an invalid vector. To avoid this problem the above
operation should be performed with the CPU interrupt disabled.

IR1

IR3

IRS
HARDWARE

IR7 INTERRUPTS
OR

NS32202 IR9 CASCADED
CONTROLLERS ICU IR11

IR13

IR15

GOllRO

G111R2

INT G2/IR4

G3/IR6
INTERRUPTS,
CASCADED,

G4/IR8 OR
BITl/O

G5/IR10

G8/IR12
cs

G7/IR14

TL/EE/9424-26

FIGURE 3-19. Interrupt Control Unit Connections (16 Levels)

43

z en
w
N
0
G>
a>

I
0
z en w
N
0
G>
a>

I
CJ1

l.t> .,...
I

co .,...
CJ
0
N
('I)

tn z
0 .,...

I
co .,...
CJ
0
N
('I)
tn z

3.0 Functional Description (Continued)

NS32CG16
CPU

GROUP

STATUS 1

STATUS1

FROM
ADDRESS
DECODER

FROM
ADDRESS
DECODER

CASCADED
NS32202

ICU

cs

MASTER
NS32202

ICU

IR1

IR3

IRS

IR11

IR13

IR15

GO/IRO

G111R2

G2/IR4

G3/IR6

G4/IR8

GS/IR10

G6/IR12

G7/IR14

IR1

IR3

IRS

IR7

IR9

IR11

IR13

IR15

GO/IRO

G1/IR2

G2/IR4

G3/IR6

G4/IR8

GS/IR10

G6/IR12

G7/IR14

INTERRUPTS
OR

BITl/O

TL/EE/9424-27

FIGURE 3·20. Cascaded Interrupt Control Unit Connections

3.7.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle when process­
ing of this interrupt actually begins. The Interrupt Acknowl­
edge cycle differs from that provided for Maskable Inter­
rupts in that the address presented is FFFF0015. The vector
value used for the Non-Maskable Interrupt is taken as 1,
regardless of the value read from the bus.
The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Section 3.7.7.1.

44

3.7.5Traps

Traps are processing exceptions that are generated as di­
rect results of the execution of an instruction. The Return
Address pushed by any trap except Trap (TAC) is the ad­
dress of the first byte of the instruction during which the trap
occurred. Traps do not disable interrupts, as they are not
associated with external events. Traps recognized by
NS32CG16 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit during the execution of a Slave In­
struction. This trap is requested via the Status Word re­
turned as part of the Slave Processor Protocol (Section
3.8.1).

3.0 Functional Description ccontinued)

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The SLAVE trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See Section 3. 7 .6.

Trap (UND): An undefined opcode was encountered by the
CPU.

3.7.6 Instruction Tracing

Instruction tracing is a feature that can be used during de­
bugging to single-step through selected portions of a pro­
gram. Tracing is enabled by setting the T -bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRC) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into
the PSR P (Trace "Pending") bit. If the P bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in­
struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se­
quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P
bits in the PSR, in some cases a Trace Trap may not occur
at the end of the instruction. This happens when one of the
privileged instructions BICPSRW or LPRW PSR is executed.

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the 'end of the instruction, provided that spe­
cial care is taken before returning from the Trace Trap Serv­
ice Procedure. In case a BICPSRB instruction has been ex­
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be­
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.

While debugging the NS32CG16 instructions which have in­
terior loops (BBOR, BBXOR, BBAND, BBFOR, EXTBL T,
MOVMP, SBITPS, TBITS), special care must be taken with
the single-step trap. If an interrupt occurs during a single­
step of one of the graphics instructions, the interrupt will be
serviced. Upon return from the interrupt service routine, the
new NS32CG16 instruction will not be re-entered, due to a
single-step trap. Both the NMI and INT interrupts will cause
this behavior. Another single-step operation (S command in
DBG16/MONCG) will resume from where the instruction
was interrupted. There are no side effects from this early
termination, and the instruction will complete normally.

For all other Series 32000 instructions, a single-step opera­
tion will complete the entire instruction before trapping back

45

to the debugger. On the instructions mentioned above, sev­
eral single-step commands may be required to complete the
instruction, ONLY when interrupts are occurring.

There are some methods to give the appearance of single­
stepping for these NS32CG16 instructions.

1. MON16/MONCG monitors the return from single-step
trap vector, PC value. If the PC has not changed since the
last single-step command was issued, the single-step oper­
ation is repeated. It is also advisable to ensure that one of
the NS32CG16 instructions is being single-stepped, by in­
specting the first byte of the address pointed to by the PC
register. If it is OxOE, then the instruction is an NS32CG16-
specific instruction.

2. A breakpoint following the instruction would also trap af­
ter the instruction had completed.
Note: If instruction tracing is enabled while the WAIT instruction is executed,

the Trap (TAC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.7.7 Priority Among Exceptions

The NS32CG16 CPU internally prioritizes simultaneous in­
terrupt and trap requests as follows:

1) Traps other than Trace (Highest priority)

2) Non-Maskable Interrupt

3) Maskable Interrupts

4) Trace Trap (lowest priority)

3.7.8 Exception Acknowledge Sequences: Detail Flow

For purposes of the following detailed discussion of inter­
rupt and trap acknowledge sequences, a single sequence
called "Service" is defined in Figure 3-21. Upon detecting
any interrupt request or trap condition, the CPU first per­
forms a sequence dependent upon the type of interrupt or
trap. This sequence will include pushing the Processor
Status Register and establishing a Vector and a Return Ad­
dress. The CPU then performs the Service sequence.

3.7 .8.1 Maskable/Non·Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, or Graphics instructions which have interior
loops (BBOR, BBXOR, BBAND, BBFOR, EXTBL T, MOVMP,
SBITPS, TBITS), at the next interruptible point during its ex­
ecution. The graphics instructions are interruptible.

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte
of the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF001s. applying Status
Code 0100 (Interrupt Acknowledge, Master: Section
3.4.1). Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step 8.

z
t/)
w
N

8
cp
0 z
t/)
w
N
0
G>
O>

I
c.n

3.0 Functional Description (Continued)
4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF001a, applying Status
Code 0100 (Interrupt Acknowledge, Master: Section
3.4.1). Discard the byte read.

b. Set "Vector" to O.

c. Go to Step 8.
5. Here the interrupt is Vectored. Read "Byte" from ad­

dress FFFE0015, applying Status Code 0100 (Interrupt
Acknowledge, Master: Section 3.4.1).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to
Step 8.

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4 * Byte.

b. Read "Vector", applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Section 3.4.1).

8. Push the PSR copy (from Step 2) onto the Interrupt
Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-21.
Service (Vector, Return Address):

1) Read the 32-bit External Procedure Descriptor from the
Interrupt Dispatch Table: address is
Vector*4+ INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD
Register.

3) Read the new Static Base pointer from the memory ad­
dress contained in MOD, placing it into the SB Register.

4) Read the Program Base pointer from memory address
MOD + 8, and add to it the Offset field from the Descrip­
tor, placing the result in the Program Counter.

5) Flush Queue: Non-sequentially fetch first instruction of
Interrupt Routine.

6) Push MOD Register onto the Interrupt Stack as a 16-bit
value. (The PSR has already been pushed as a 16-bit
value.)

7) Push the Return Address onto the Interrupt Stack as a
32-bit quantity.

FIGURE 3·21. Service Sequence
Invoked during All Interrupt/Trap Sequences

3.7.8.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector=3.
ILL: Vector=4.
SVC: Vector=5.
DVZ: Vector=6.
FLG: Vector=?.
BPT: Vector=8.
UND: Vector=10.

46

3) Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Return Address" to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-21.

3.7.8.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set "Vector" to 9.

5) Set "Return Address" to the address of the next instruc-
tion.

6) Perform Service (Vector, Return Address), Figure 3-21.

3.8 SLAVE PROCESSOR INSTRUCTIONS

The NS32CG16 supports only one group of instructions, the
floating point instruction set, as being executable by a slave
processor. The floating point instruction set is validated by
the F bit in the CFG register.

If a floating-point instruction is encountered and the F bit in
the CFG register is not set, a Trap(UND) will result, without
any slave processor communication attempted by the CPU.
This allows software emulation in case an external floating
point unit (FPU) is not used.

3.8.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an ID Byte followed by an Oper­
ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-22. While applying
Status Code 1111 (Broadcast ID, Section 3.4.1), the CPU
transfers the ID Byte on the least-significant half of the Data
Bus (ADO-AD?). All Slave Processors input this byte and
decode it. The Slave Processor selected by the ID Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section 3.4.1).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The Operation Word is swapped on the Data Bus; that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD7.

3.0 Functional Description (Continued)

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Section 3.4.1).

Step

1
2
3

4

5

6

7

Status Combinations:
Send ID (ID): Code 1111
Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Status

ID

OP

OP

ST

OP

Action

CPU Sends ID Byte.

CPU Sends Operation Word.

CPU Sends Required Operands.

Slave Starts Execution. CPU Pre­
Fetches.

Slave Pulses SPC Low.

CPU Reads Status Word. (Trap?
Alter Flags?)

CPU Reads Results (If Any).

FIGURE 3-22. Slave Processor Protocol

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 111 O (Read Slave Status). This word has the
format shown in Figure 3-23. If the Q bit ("Quit", Bit 0) is set,
this indicates that an error was detected by the Slave Proc­
essor. The CPU will not continue the protocol, but will imme­
diately trap through the Slave vector in the Interrupt Table.
Certain Slave Processor instructions cause CPU PSR bits to
be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand).

3.8.2 Floating Point Instructions

Table 3-5 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

TABLE 3-5. Floating Point Instruction Protocols
Operand 1 Operand2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class Issued Issued Type and Dest. Affected

ADDf read.f rmw.f f to Op. 2 none
SU Bf read.f rmw.f f to Op. 2 none
MULf read.f rmw.f ftoOp. 2 none
DIVf read.f rmw.f ftoOp. 2 none

MOVf read.f write.f NIA ftoOp. 2 none
AB Sf read.f write.f f NIA ftoOp. 2 none

NEGf read.f write.f f NIA ftoOp. 2 none

CMPf read.f read.f f NIA N,Z,L

FLOORfi read.f write.i NIA itoOp. 2 none
TRUNCfi read.f write.i NIA itoOp. 2 none
ROUNDfi read.f write.i NIA itoOp. 2 none

MOVFL read.F write.L F NIA LtoOp. 2 none

MOVLF read.L write.F L NIA FtoOp. 2 none

MOVif read.i write.f NIA ftoOp. 2 none

LFSR read.D NIA D NIA NIA none

SFSR NIA write.D NIA NIA Dto Op. 2 none

POLYf read.f read.f fto FO none

DOTf read.f read.f f to FO none

SCALBf read.f rmw.f ftoOp. 2 none

LOG Bf read.f write.f NIA f to Op. 2 none

Note:

D = Double Word

i = integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mnemonic.

N/ A = Not Applicable to this instruction.

47

z
t/)
w
N
n
C)
Q)

I
0
z
t/)
w
N
n
C)
......
Q)

I
U'I

------·~-

.,,,
ch
CJ
(.)
N

~ z
0
ch
CJ
(.)
N
Cf)

en
z

3.0 Functional Description ccontinued)
The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Series 32000 Instruction Set Reference
Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte,
W =Word, D =Double Word). "f" indicates that the instruc­
tion specifies a Floating Point size for the operand (F = 32-
bit Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-23).

15 8 7 0

[00000000 INZFOOLO~
New PSR Bit Value(s)~ ""::;:;;:;t' 7
"Quit": Terminate Protocol, 'll'ap(FPU).

TUEE/9424-28

FIGURE 3-23. Slave Processor Status Word Format

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

4.0 Device Specifications

4.1 NS32CG16 PIN DESCRIPTIONS

The following is a brief description of all NS32CG16 pins.
The descriptions reference portions of the Functional De­
scription, Section 3.

Unless otherwise indicated, reserved pins should be left
open.
Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal during HOLD acknowledge.

4.1.1 Supplies

VccL Logic Power.
+ 5V positive supply for on-chip logic.

VCCCTTL, Buffers Power.

VCCFCLK, + 5V positive supplies for on-chip output
VCCAD, buffers.
VCCIO

VSSL Logic Ground.
Ground reference for on-chip logic.

VSSFCLK, Buffers Ground.

VSSNTSC, Ground reference for on-chip output buffers.
VSSHAD,
VSSLAD,
VSSIO

48

4.1.2 Input Signals

RSTI Reset Input.
Schmitt triggered, asynchronous signal used to
generate a CPU reset. See Section 3.3.
Note:
The reset signal is a true asynchronous input. Therefore, no
external synchronizing circuit is needed.

When RSTI changes right before the falling edge of CTTL,
and meets the specified set-up time, it will be recognized on
that falling edge. Otherwise it will be recognized on the fall­
ing edge of CTTL in the following clock cycle.

Hold Request.
When active, causes the CPU to release the
bus for DMA or multiprocessing purposes. See
Section 3.5.
Note:
If the HOLD signal is generated asynchronously, its set up
and hold times may be violated. In this case, it is recom­
mended to synchronize it with CTTL to minimize the possibili­
ty of metastable states.

The CPU provides only one synchronization stage to mini­
mize the HLDA latency. This is to avoid speed degradations
in cases of heavy HOLD activity (i.e., OMA controller cycles
interleaved with CPU cycles).

INT Interrupt.
A low level on this pin requests a maskable in­
terrupt. INT must be kept asserted until the in­
terrupt is acknowledged.
Note:
If I NT is from a asynchronous source, it should be synchro­
nized with CTTL to minimize the possibility of metastable
states.

NMI Non-Maskable Interrupt.
A High-to-Low transition on this signal requests
a non-maskable interrupt

CWAIT Continuous Wait.
Causes the CPU to insert continuous wait
states if sampled low at the end of T2 and each
following T-State. See Section 3.4.3.

WAIT1-2 Two-Bit Walt State Inputs.
These inputs, collectively called WAIT1-2, al­
low from zero to three wait states to be speci­
fied. They are binary weighted. See Section
3.4.3.
Note:
During a DMAC cycle, WAIT1 -2 should be kept inactive to
prevent loss of synchronization. Wait states, in this case,
should be generated through CWAIT.

OSCIN Crystal/External Clock Input.
Input from a crystal or an external clock source.
See Section 3.2.

4.1.3 Output Signals

A16-A23 *High-Order Address Bits.
These are the most significant 8 bits of the
memory address bus.

HBE *High Byte Enable.
Status signal used to enable data transfers on
the most significant byte of the data bus.

4.0 Device Specifications (Continued)

ST0-3 Status.

UIS

Bus cycle status code; STO is the least significant.
Encodings are:

0000-ldle: CPU Inactive on Bus.

0001-ldle: WAIT Instruction.

0010-(Reserved)

0011-ldle: Waiting for Slave.

0100-lnterrupt Acknowledge, Master.

0101-lnterrupt Acknowledge, Cascaded.

0110-End of Interrupt, Master.

0111-End of Interrupt, Cascaded.

1000-Sequential Instruction Fetch.

1001-Non-Sequential Instruction Fetch.

1010-Data Transfer.

1011-Read Read-Modify-Write Operand.

1100-Read for Effective Address.

1101-Transfer Slave Operand.

1110-Read Slave Status Word.

1111-Broadcast Slave ID.

User/Supervisor.
User or Supervisor Mode status. High indicates
User Mode; low indicates Supervisor Mode.

Interlocked Operation.
When active, indicates that an interlocked oper­
ation is being executed.

Hold Acknowledge.
Activated by the CPU in response to the HOLD
input to indicate that the CPU has released the
bus.

Program Flow Status.
A pulse on this signal indicates the beginning of
execution of an instruction.

BPU Cycle.
This signal is activated during a bus cycle to
enable an external BITBLT processing unit. The
EXTBL T instruction activates this signal.*

Reset Output.
This signal becomes active when RSTI is low,
initiating a system reset.

Read Strobe.
Activated during CPU or DMAC read cycles to
enable reading of data from memory or periph­
erals. See Section 3.4.2.

Write Strobe.
Activated during CPU or DMAC write cycles to
enable writing of data to memory or peripherals.

'Note: BPU is low (Active) only during bus cycles involving pre-fetching in­
structions and execution of EXTBL T operands. It is recommended
that BPU, ADS and status lines (STO-ST3) be used to qualify BPU
bus cycles. If a OMA circuit exists in the system, the HLDA signal
should be used to further qualify BPU cycles. BPU may become
active during T4 of a non-BPU bus cycle, and may become inactive
during T4 of a BPU bus cycle. BPU must be qualified by ADS and
status lines (STO-ST3) to be used as an external gating signal.

49

TSO Timing State Output.
The falling edge of TSO identifies the beginning
of state T2 of a bus cycle. The rising edge iden­
tifies the beginning of state T 4.

DBE Data Buffers Enable.
Used to control external data buffers. It is active
when the data buffers are to be enabled.

OSCOUT Crystal Output.
This line is used as the return path for the crys­
tal (if used). It must be left open when an exter­
nal clock source is used to drive OSCIN.

FCLK Fast Clock.
This clock is derived from the clock waveform
on OSCIN. Its frequency is either the same as
OSCIN or is lower, depending upon the scale
factor programmed into the CFG register. See
Section 3.2.1.

PHl1, PHl2 Two-Phase Clock.

CTTL

These outputs provide a two-phase clock with
frequency half that of FCLK. They can be used
to clock the DP8510/DP8511 BPU. The trace
lengths of PHl1 and PHl2 should be shorter
than 4 inches (10 centimeters) when connected
to the BPU.

System Clock.
This clock is similar to PHl1 but has a much
higher driving capability. The skew between its
rising edge and PHl1 rising edge is kept to a
minimum.

4.1.4 Input-Output Signals
AD0-15 *Address/Data Bus.

Multiplexed Address/Data information. Bit 0 is
the least significant bit of each.

Slave Processor Control.
Used by the CPU as the data strobe output for
slave processor transfers; used by a slave proc­
essor to acknowledge completion of a slave in­
struction. See Section 3.4. 7 .1.

•Data Direction.
Status signal indicating the direction of the data
transfer during a bus cycle. During HOLD ac­
knowledge this signal becomes an input and
determines the activation of RD or WR.

•Address Strobe
Controls address latches; signals the beginning
of a bus cycle. During HOLD acknowledge this
signal becomes an input and the CPU monitors
it to detectthe beginning of a DMAC cycle and
generate the relevant strobe signals. When a
DMAC is used, ADS should be pulled up to Vee
through a 10 k!1 resistor.

z en w,
0
C>
en

I
c -z en w,
0
C>
en

I
c.n

LI)
I co

CJ
0
N
C")
CJ)
z
0

I co

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Miiitary I Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Tempe;ature Under Bias o•c to + 70°C

Storage Temperature - 65°C to + 150°C

All Input or Output Voltages with
Respect to GND -0.5Vto +7V

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these iimits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

8 4.3 ELECTRICAL CHARACTERISTICS: TA = o·c to + 70°C, Vee = 5V ± 5%, GND = OV
N
C")
CJ)
z

Symbol Parameter Conditions Min Typ Max

V1H High Level Input Voltage (Note4) 2.0 Vee+ 0.5

V1L Low Level Input Voltage (Note 3) -0.5 0.8

Vr+ RSTI Rising Threshold Voltage Vee= 5.ov 2.5 3.5

VHvs RSTI Hysteresis Voltage Vee= 5.ov 0.8 1.8

•VxL OSCIN Input Low Voltage 0.3

VxH OSCIN Input High Voltage Vee - o.3

VoH Low Level Output Voltage loH = -400 µA 0.90 Vee

VoL Low Level Output Voltage loL = 4mA o.10Vec

l1LS SPC Input Current (low) V1N = 0.4V, SPC in Input Mode 0.05 1.0

11 Input Load Current O :s: V1N :s: Vee. All Inputs except SPC -20 20

IL Leakage Current 0.4 :s: Vour s: Vee
Output and 1/0 Pins in -20 20
TRI-STATE Input Mode

Ice Active Supply Current lour = o, TA = 25°C (Note 2) 140 200

Note 1: Care should be taken by designers to provide a minimum inductance path between the Vss pins and system ground in order to minimize noise.

Note 2: Ice is affected by the clock scaling factor selected by the C and M bits in the CFG register, see Section 3.2.1.

Note 3: V1L min-in the range of -0.5V to -1.5V, the pulse must be :;;; 20 ns, and the period between pulses ~ 120 ns.

Note 4: V1H max-in the range of Vee+ 0.5V to Vee + 2.0V, the pulse must be :;;; 25 ns, and the period between pulses~ 120 ns.

68-Pln PCC Package

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

ST2 9 27 A18

ST3 8 28 A17

PFS 7 29 A16

DOIN 6 30 VCCAD

ADS 5 31 AD15

SPC 4 32 AD14

VCCIO 3 33 AD13

HBE 2 34 AD12

HOLDA 1 NS32CG16 35 AD11

HOLD 68 36 AD10

RSTO 67 37 AD9

WAIT1 66 38 AOB

WAIT2 65 39 VSSLAD

CWAiT 64 40 AD7

VSSL 63 41 AD6

OSCIN 62 42 ADS

RSTI 61 43 AD4

TL/EE/9424-29

Bottom View

FIGURE 4-1. Connection Diagram

50

Units

v

v

v

v

v

v

v

v

mA

µA

µA

mA

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4. 1 Definitions

All the timing specifications given in this section refer to
15% or 85% of Vee on the rising or falling edges of CTTL,
and all output signals; and to O.BV or 2.0V on all the TTL
input signals as illustrated in Figures 4-2 and 4-3 unless
specifically stated otherwise.

cm[

SIG1 c---..... --------------1-0~; ~--
tslG11

SIG2 [______ ,,,, __ :s~ :c~ --------
TL/EE/9424-30

FIGURE 4-2. Timing Specification Standard
(CMOS Output Signals)

4.4.2 DEVICE TESTING

TEST EQUIPMENT ,.-----------,
I

PRECISION DIGITAL I
.... I

VOLTMETER I
I
I
I

PROGRAMMABLE I
CURRENT T

SOURCE/SINK I
I
I ___________ ..

ABBREVIATIONS:

L.E. - leading edge

T.E. - trailing edge

R.E. - rising edge

F.E. - falling edge

......

CTIL[----------------------..r

SIG1 [

[2.0V

SIG2 ----------
TL/EE/9424-31

FIGURE 4-3. Timing Specification Standard
(TTL Input Signals)

~ SIGNAL ~
;s-v UNDER TEST

1~ LOA
ACITIVE
DING

-
TL/EE/9424-65

FIGURE 4.4. Test Loading Configuration

TABLE 4-1. Test Loading Characteristics

Capacitive
High Level Low Level Input Load

High Level Low Level
Signal Name

Loading
Output Voltage Output Voltage Current

Input Voltage Input Voltage
(loH = - 400 µA) (loL = 4mA) (0 s; V1N s; Vee)

HBE, ST0-3, UIS, 50 pF 2 0.90Vee s; o.10Vee
ILO, HLDA, PFS,
BPU, RSTO, RD,
WR, TSO, DBE,
OSCOUT, FCLK, ODIN,
ADS

RSTI, HOLD, INT, 50pF - 20 µA s; 11 s; 20 µA 2.0V s; V1H s; Vee + 0.5V -0.5V :>: V1l s; O.BV
NMI, CWAIT, WAIT1-2

OSCIN 50pF - 20 µA s; 11 s; 20 µA V1H 2 Vee - 0.3V V1l s; 0.3V

AD0-15,A16-23,CTTL 100pF VoH 2 o.90 Vee Vols; 0.10Vee

AD0-15 100 pF -20 µA s; 11 s; 20 µA 2.0V s; V1H s; Vee+ 0.5V -0.5V s; V1l s; O.BV

PHl1, PHl2 30pF VoH 2 0.90 Vee Vols; o.1ovee

SPC 30 pF VoH 2 0.90 Vee Vols; 0.10Vee 50 µA s; 11 s; 1.0 mA 2.0V s; V1H s; Vee + 0.5V V1l = 0.4V

51

z en w
N
0
G)
...A.

en
I

...A.
Q
z en
Co)
N
0
G)
...A.

en
I

...A.
(J1

4.0 Device Specifications (Continued)

4.4.3 Timing Tables

4.4.3.1 Output Slgnals: Internal Propagation Delays, NS32CG16·10 and NS32CG16·15

NS32CG16·10
Name Figure Description Reference/Conditions

Min Max

teT2_ 4-20 CTTL Clock Period R.E., CTTL to Next R.E., CTTL 100 1000

tcTh 4-20 CTTL High Time 100 pF Capacitive Load 0.5 terp 0.5terp
At 1.5V (Both Edges) - 10 ns + 7ns
(See Note 1) 75 pF Capacitive Load

50 pF Capacitive Load

25 pF Capacitive Load

ter1 4-20 CTTL Low Time At0.8V 0.5 terp 0.5 terp
- 8ns +ens

terr 4-20 CTTL Rise Time 15% to 85% Vee on R.E., CTTL 2 8

ten 4-20 CTTL Fall Time 85% to 15% Vee on F.E., CTTL 2 8

teLw(1,2) 4-20 PHl1, PHl2 Pulse Width At 2.0V on PHl1, PHl2 0.5terp 0.5terp
(Both Edges) - 10ns + 5ns

teLh 4-20 Clock High Time At 90% Vee on PHl1, PHl2 o.5 terp
0.5terp ,

(Both Edges) - 15ns

tnoVL(1,2) 4-20 PHl1, PHl2, Non-Overlap At 50% Vee on PHl1, PHl2
3

Time

txFr 4-20 OSCIN to FCLK 80% Vee on R.E., OSCIN
e 29

R.E. Delay to R.E., FCLK

tFer 4-20 FCLKtoCTTL R.E., FCLK to R.E., CTTL
0 e

R.E. Delay

tFCf 4-20 FCLKtoCTTL R.E., FCLK to F.E., CTTL
-1 4

F.E. Delay

tFPr 4-20 FCLKto PHl1 R.E., FCLK to R.E., PHl1
0 e

R.E. Delay

tFPf 4-20 FCLKto PHl1 R.E., FCLK to F.E., PHl1
-5 2

F.E. Delay

tpcr 4-20 CTTL and PHl1 Skew R.E., CTTL to R.E., PHl1 -3 3

tALv 4-5 Address Bits 0-15 Valid after R.E., CTTL T1 40

tALh 4-5 Address Bits 0-15 Hold after R.E., CTTL T2 5

tAHv 4-5 Address Bits 1e-23 Valid after R.E., CTTL T1 40

tAHh 4-5 Address Bits 1 e-23 Hold after R.E., CTTL Next T1 or Ti 5

tALnfr 4-5 ADO-AD15 Active Non-Float after R.E., CTTL T1 4 3e
(See Note 2)

NS32CG16·15
Units

Min Max

ee 1000 ns

0.5tcrp 0.5tcrp
-Ons + 5ns

0.5tcrp o.5tcrp
-1 ns +5ns

0.5 terp o.5tcrp
-2ns +5ns

o.5 tcrp 0.5tcrp
-3 ns +5ns

0.5 terp 0.5 terp
- ens + 2ns

2 e ns

2 e ns

o.5tcrp 0.5terp
- ens + 2ns

0.5 teTp
o.5terp - 10 ns

3 ns

2 25 ns

0 e ns

-1 4 ns

0 e ns

-4 2 ns

-2 2 ns

10 30 ns

5 ns

10 30 ns

0 ns

4 2e

Note 1: Device testing is performed using the Test Loading Characteristics in Table 4.1. Additional timing data for CTTL with various capacitive loads is not 100%
tested.

Note 2: tALn!r is address bits 0-15 not floating or active after R.E. CTTL T1. This is only valid if the previous CPU cycle was a read (Figure 4.5). A previous write
may have "data" active into T1 of the next cycle which then becomes "address" during T1.

52

4.0 Device Specifications (Continued)

4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15 (Continued)

NS32CG16-10 NS32CG16-15
Name Figure Description Reference/Conditions Units

Min Max Min Max

tAU 4-7 ADO-AD15 Floating after R.E., CTTL Ti
25 18

(Caused by HOLD)
ns

tAHf 4-7 A 16-A23 Floating after R.E., CTTL Ti 25 18 ns

tALnf 4-5, 4-8 Address Bits 0-15 after R.E., CTTL T1
4 36 4 26

Not Floating
ns

tAHnf 4-8 Address Bits 16-23 after R.E., CTTL T4
4 36 4 26

Not Floating
ns

tov 4-6, 4-10 Data Valid (Write Cycle) after R.E., CTTL T2 or T1 50 38 ns

toh 4-6, 4-10 Data Hold after R.E., CTTL Next T1 or Ti 0 0 ns

tAosa 4-5 ADS Signal Active after R.E., CTTL T1 5 35 5 26 ns

tADSia 4-5 ADS Signal Inactive after F.E., CTTL T1 5 45 5 25 ns

tAoSw 4-6 ADS Pulse Width at 15% Vee (Both Edges) 30 25 ns

tADSf 4-7 ADS Floating after R.E., CTTL Ti 55 40 ns

tADSr 4-8 ADS Return from Floating after R.E., CTTL Ti 55 40 ns

tALADSs 4-6 Address Bits 0-15 Setup before ADS T.E. 25 20 ns

tAHADSs 4-6 Address Bits 16-23 Setup before ADS T.E. 25 20 ns

tALADSh 4-5 Address Bits 0-15 Hold after ADS T.E. 15 12 ns

tHBEv 4-5 HBE Signal Valid after R.E., CTTL T1 70 38 ns

tHBEh 4-5 HBE Signal Hold after R.E., CTTL Next T1 or Ti 0 0 ns

tHBEf 4-7 HBE Signal Floating after R.E., CTTL Ti 55 40 ns

tHBEr 4-8 HBE Return from Floating after R.E., CTTL Ti 55 40 ns

tornNv 4-5 ODIN Signal Valid after R.E., CTTL T1 65 38 ns

tornNh 4-5 ODIN Signal Hold after R.E., CTTL Next T1 or Ti 0 0 ns

to DINI 4-7 ODIN Floating after R.E., CTTL Ti 55 40 ns

too1Nr 4-8 ODIN Return from Floating after R.E., CTTL Ti 55 40 ns

ts Pea 4-10 SPC Output Active after R.E., CTTL T1 35 5 26 ns

tsPeia 4-10 SPC Output Inactive after R.E., CTTL T4 35 5 26 ns

ts Pent 4-12 SPC Output Non-Forcing afterT.E., CTTL T4 10 8 ns

tHLDAa 4-7 HLDA Signal Active after R.E., CTTL Ti 50 26 ns

tHLDAia 4-8 HLDA Signal Inactive after R.E., CTTL Ti 50 26 ns

tsTv 4-5 Status STO-ST3 Valid after R.E., CTTL T4
45 38

(before T1 , see Note 1)
ns

ts Th 4-5 Status STO-ST3 Hold after R.E., CTTL T4 0 0 ns

tsPuv 4-5 BPU Signal Valid after R.E., CTTL T4 45 30 ns

tsPUh 4-5 BPU Signal Hold after R.E., CTTL T 4 10 6 ns

Note 1: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be:" ... Ti, T4, T1 ... ".If the CPU was
not idling, the sequence will be: " ... T 4, T1 ... ".
Note 2: If the CPU is connected directly to the FPU and the CTTL loading is not violated, the CPU and FPU will function correctly together. The CPU and FPU
connect directly without buffers. They should be located less than 4 inches (1 O centimeters) apart. tspca and tspc;a will track each other on all CPU's and therefore
it is not possible to have a minimum tspc;a and a maximum tsPCa value. The pulse width minimum, !spew. of the FPU will not be violated by the NS32CG 16 when
connected directly to the FPU.

53

z
en w
N
0
C>
en

I
0 z en w
N
0
C>
en

I
U1

4.0 Device Specifications (Continued)

4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15 (Continued)

NS32CG16-10 NS32CG16·15
Name Figure Description Reference/Conditions Units

Min Max Min Max

trsoa 4-5 TSO Signai Active after R.E., CTTL T2 12 " . " ns t:. IV

trsoia 4-5 TSO Signal Inactive after R.E., CTTL T 4 12 0 10 ns

tRoa 4-5 RD Signal Active after R.E., CTTL T2 20 15 ns

tRDia 4-5 RD Signal Inactive after R.E., CTTL T4 20 2 15 ns

twRa 4-6 WR Signal Active after R.E., CTTL T2 20 15 ns

twRia 4-6 WR Signal Inactive after R.E., CTTL T4 20 2 15 ns

tosEa(R) 4-5 DBE Active (Read Cycle) after F.E., CTTL T2 21 15 ns

tosEa(W) 4-6 DBE Active (Write Cycle) after R.E., CTTL T2 28 15 ns

toBEia 4-5, 4-6 DBE Inactive after F.E., CTTL T4 23 15 ns

tusv 4-5 UIS Signal Valid after R.E., CTTL T 4 40 30 ns

tush 4-5 U/S Signal Hold after R.E., CTTL T 4 10 6 ns

tpFsa 4-13 PFS Signal Active after F.E., CTTL 50 38 ns

tPFSia 4-13 PFS Signal Inactive after F.E., CTTL 50 38 ns

tpFsw 4-13 PFS Pulse Width at 15% Vee (Both Edges) 70 45 ns

tNSPF 4-16 Nonsequential Fetch after R.E., CTTL T1
4 4 terp to Next PFS Clock Cycle

tPFNS 4-15 PFS Clock Cycle to before R.E., CTTL T1
4 4 terp Next Nonsequential Fetch -

iLXPF 4-14 Last Operand Transfer before R.E., CTTL T1 of
of an Instruction to First Bus Cycle of Transfer 0 0 terp
Next PFS Clock Cycle

t1Los 4-17 ILO Signal Setup before R.E., CTTL T1 of
30 30

First Interlocked Write Cycle
ns

t1LOh 4-18 ILO Signal Hold after R.E., CTTL T3 of Last
10 7

Interlocked Read Cycle
ns

t1Loa 4-19 ILO Signal Active after R.E., CTTL 55 35 ns

t1LOia 4-19 ILO Signal Inactive after R.E., CTTL 55 35 ns

tRSTOa 4-22 RSTO Signal Active after R.E., CTTL 21 15 ns

tRSTOia 4-22 RSTO Signal Inactive after R.E., CTTL 21 15 ns

tRTOI 4-22 Reset to Idle after F.E. of RSTO 10 10 terp

tRTOF 4-22 Reset to Fetch after R.E. of RSTO 8 8 tcTp

54

4.0 Device Specifications (Continued)

4.4.3.2 Input Signal Requirements: NS32CG16-10 and NS32CG16·15

Name Figure Description Reference/Conditions

txp 4-20 OSCIN Clock Period R.E., OSCIN to Next R.E., OSCIN

txh 4-20 OSCIN High Time at 80% Vee (Both Edges)
(External Clock)

tx1 4-20 OSCIN Low Time at 20% Vee (Both Edges)

trns 4-5, 4-11 Data In Setup before R.E., CTTL T4

trnh 4-5, 4-11 Data In Hold after R.E., CTTL T 4
(see Note 1)

tews 4-5, 4-6 CWAIT Signal Setup before R.E., CTTL T3 or T3(w)

tewh 4-5, 4-6 CWAIT Signal Hold after R.E., CTTL T3 or T3(w)

tws 4-5, 4-6 WAITn Signals Setup before R.E., CTTL T3 or T3(w)

twh 4-5, 4-6 WAITn Signals Hold after R.E., CTTL T3 or T3(w)

tHLDs 4-7, 4-8 HOLD Setup Time before R.E., CTTL TX2 or Ti

tHLDh 4-7, 4-8 HOLD Hold Time after R.E., CTTL Ti

tpwR 4-21 Power Stable to RSTI R.E. after Vee Reaches 4.5V

tRSTs 4-21, 4-22 RSTI Signal Setup before F.E., CTTL

tRSTw 4-22 RSTI Pulse Width at 0.8V (Both Edges)

t1NTs 4-23 INT Signal Setup before F.E., CTTL

t1NTh 4-23 INT Signal Hold after Interrupt Acknowledge

tNMlw 4-24 NMI Pulse Width at 0.8V (Both Edges)

ts Ped 4-12 SPC Pulse Delay after F.E., CTTL T4
from Slave

tsp es 4-12 SPC Input Setup before F.E., CTTL

ts Pew 4-12 SPC Pulse Width at 0.8V (Both Edges)
(from Slave Processor)

tADSs 4-9 ADS Input Setup before F.E., CTTL

tADSh 4-9 ADS Input Hold after F.E., CTTL T1
(see Note 2)

tornNs 4-9 DDIN Input Setup before F.E., CTTL

too1Nh 4-9 DDIN Input Hold after R.E., CTTL T4

Note 1: to1h is always less than or equal to tROia·
Note 2: ADS must be deasserted before state T 4 of the OMA controller cycle.

55

NS32CG16·10

Min Max

50 500

16

16

18

7

20

5

20

5

30

0

50

20

64

14

8

70

13

37

20

15

10

15

7

NS32CG16·15

Min Max

33 500

10

10

15

7

20

5

20

5

22

0

33

20

64

14 teTp - 2 ns

8

50

10

30

20

10

10

10

5

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

µs

ns

teTp

ns

teTp

ns

ns

ns

ns

ns

ns

ns

ns

z
en w .-..,
0
G')
0)

I
0
z
en w
N
0
G')
......
0)

I
UI

4.0 Device Specifications (Continued)

4.4.4 TIMING DIAGRAMS

T4 OR TI T1

cm [

ADS [

STO•ST3 [

BPU [

~o [

RD [

DBE [

T2 T3

FIGURE 4-5. Read Cycle

56

T4
TIORTI ~

TUEE/9424-32

4.0 Device Specifications (Continued)

T4 OR TI T1 T2 T3 T3(W) T3(W)

ADO-AD15 [DATA OUT

A16-A23 [____ _,

ADS [

STO-ST3 [

BPU [

WR [

DBE [

FIGURE 4-6. Write Cycle

57

T4 T1 OR TI

TL/EE/9424-33

z en w
N
0
G)
(J)

I
0
........ z en w
N
0
G)
(J)

I
U1

I.I)
......

I co
CJ
(.)

"' (")

en z
C)

I co
CJ
(.)

"' (")

en z

4.0 Device Specifications (Continued)

HOLD [

HLDA [

(FLOATING)

ADO-AD15 [

tAlf ___ J ____ _
(FLOATING)

A16-A23 [

___ J ____ _
(FLOATING)

I
TL/EE/9424-34

FIGURE 4-7. HOLD Acknowledge Timing (Bus lnltlally Not Idle)
Note: When the bus is not idle, HOLD must be asserted before the rising edge of CTTL of the timing state that precedes state T 4 in order for the request to be

acknowledged.

58

4.0 Device Specifications ccontinued)

T4 OR Tl Tl Tl Tl Tl Tl T4 OR Tl T1 OR Tl

cm [

HOLD [

HLDA [

ADS [

HBE [

ODIN [----§r ---- -

ADO-AD15 [- ---- -- ---- ---~r ---- ---- ----

FIGURE 4-8. HOLD Timing (Bus Initially Idle)

59

TL/EE/9424-35

z
(/)
w
I\)

0
Ci)
Cl>
0 z
(/)
w
I\)

0
Ci)
Cl>
U'I

II)
ch
CJ
0
N
CW)
U)
z
C;

I co
8
N
CW)
U)
z

4.0 Device Specifications ccontinued)

CPU STATES
DIAAC STATES

CTTl [

HOLD [

HLDA [

ADS [

ODIN [

TSO [

CWAIT [

WAIT1•2 [(HIGH)

FIGURE 4·9. DMAC Initiated Bus Cycle
Note 1: ADS must be deactivated before state T4 of the OMA controller cycle.

Tl
T4

toD1Nh

Tl
T1 OR Tl

TL/EE/9424-36

Note 2: During a DMAC cycle WAIT1-2 must be kept inactive to prevent loss of synchronization. A DMAC cycle is similar to a CPU cycle. The NS32CG16
generates TSO, RD, WR and DBE. The DMAC drives the address/data lines HBE, AlIB and ODIN.

Note 3: During a DMAC cycle, if the ADS signal is pulsed in order to initiate a bus cycle, the HOLD signal must remain asserted until state T 4 of the DMAC cycle.

60

4.0 Device Specifications (Continued)

T1 T4 T1 T4

CTTL [CTTL [

AD0-15 [
DATA (FROM SLAVE)

SPC [SPC [

DDIN [DrnN [

STO-ST3 [STATUS VALID NEXT CYCLE
STATUS STO-ST3 [STATUS VALID NEXT STATUS

(HIGH)
ADS [

(HIGH)

TL/EE/9424-37

FIGURE 4·10. Slave Processor Write Timing
TL/EE/9424-38

FIGURE 4·11. Slave Processor Read Timing

T1 T4 I I
CTTL [J ---- ~,--..._ ___ r-
SPC [

(FROM CPU)

SPC [•
(FROM FPU)

- -t~'";"~ ·j· • • •
tsPCd

tsPCs

FIGURE 4·12. SPC Timing

After transferring the last operand to the FPU, the CPU turns OFF the
output driver and holds SPC high with an internal 5 kn pullup.

FIGURE 4·13. Relationship of PFS to Clock Cycles

61

TL/EE/9424-39

TL/EE/9424-40

z en
<..)
N
n
G)
en

I
0
z en w
N
n
C>
en

I
U'I

4.0 Device Specifications (Continued)

FIRST IUSCYCU! NEXT

TL/EE/9424-41

Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying RMW Status (Code 1011).

FIGURE 4-14. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction

CTTL [

~[b__,/

T1

ST0-3 [CODE 1001 ------
FIGURE 4-15. Guaranteed Delay, PFS to Non-Sequential Fetch

I T1 I T2 I • • •
cm [flll-_fl;
ms [

p;s [

FIGURE 4-16. Guaranteed Delay, Non-Sequential Fetch to PFS

I T30RTI I T40RTI I T1 12 13 T4

CTTL[

iii[
tit.o.

iO[

TL/EE/9424-42

TL/EE/9424-43

TL/EE/9424-44

FIGURE 4-17. Relationship of ILO to First Operand Cycle of an Interlocked Instruction

62

4.0 Device Specifications (Continued)

OSCIN [

FCLK [

CTTL [

PH11 [

PHl2 [

I T30RTi I T40RTi I T1 T2 T3 T4

CTTL[

Ails[

TL/EE/9424-45

FIGURE 4-18. Relationship of ILO to Last Operand Cycle of an Interlocked Instruction

CTTL[_n_n_J

--lf.~.
TL/EE/9424-46

FIGURE 4-19. Relationship of ILO to Any Clock Cycle

txGFr

tFcr

tCTh

tNOVL(1)

TL/EE/9424-47

FIGURE 4-20. Clock Waveforms

63

z en w
N
0
C>
0)

I
0 z en w
N
0
C>
0)

I
CJ1

an
I co

CJ
(.)
('I
(")
CJ)
z
' e

I co
CJ
(.)
('I
(")
CJ)
z

4.0 Device Specifications (Continued)

vcc

cm [

RSTI [

RSTO [

FIGURE 4·21. Power-On Reset

cm [

RST1 [

RSTO [
AD0-15,
A16-23, [----------~s--

SPC

FIGURE 4-22. Non-Power-On Reset
Note 1: During Reset the HOLD signal must be kept high.

Note 2: After RSTI is deasserted the first bus cycle will be an instruction fetch at address zero.

FIGURE 4-23. INT Interrupt Signal Detection
Note 1: Once INT is asserted, it must remain asserted until it is acknowledged.

Note 2: INTA is the Interrupt Acknowledge bus cycle (not a CPU signal). Refer to Section 3.4.1 and Table 3.4.

FIGURE 4·24. NMI Interrupt Signal Timing

64

TL/EE/9424-51

TL/EE/9424-48

TL/EE/9424-49

TL/EE/9424-50

Appendix A: Instruction Formats
NOTATIONS

i = Integer Type Field
B = 00 (Byte)

W = 01 (Word)

D = 11 (Double Word)

f = Floating Point Type Field

F = 1 (Std. Floating: 32 bits)

L = o (Long Floating: 64 bits)

op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 =General Addressing Mode Field

See Sec. 2.2 for encodings.
reg = General Purpose Register Number

cond = Condition Code Field

0000 = EQual: Z = 1

0001 = Not Equal: Z = O
0010 = Carry Set: C = 1

0011 = Carry Clear: C = o
0100 = Higher: L = 1

0101 = Lower or Same: L = O

0110 = Greater Than: N = 1

0111 =Less or Equal: N = 0

1000 = Flag Set: F = 1

1001 = Flag Clear: F = O

1010 = LOwer: L = O and Z = O

1011 = Higher or Same: L = 1 or Z = 1

1100 = Less Than: N = 0 and Z = 0

1101 = Greater or Equal: N = 1 or Z = 1

1110 = (Unconditionally True)

1111 = (Unconditionally False)

short = Short Immediate value. May contain

quick: Signed 4-bit value, in MOVQ, ADDQ, CMPQ,
ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPA.

0000 =us
0001 - 0111 = (Reserved)

1000 = FP

1001 = SP

1010 = SB

1011 = (Reserved)

1100 = (Reserved)

1101 = PSR

1110 = INTBASE

1111 = MOD

Options: in String Instructions
~I -u-,w~l -B--.---T-.

T = Translated

B = Backward

U/W = 00: None

01: While Match
11: Until Match

65

Configuration bits in SETCFG instruction:

Bcond

BSA
RET
CXP
RXP
RETT
RETI
SAVE
RESTORE

ADDQ
CMPQ
SPA
Scond

CXPD
BICPSR
JUMP
BISPSR

I c I M I F I 1 I
7 0

Formato

(BR)

7 0

I ;p I I 0 I 0 I 1 I 0 I
Format 1

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

15
I I

gen

ENTER
EXIT
NOP
WAIT
DIA
FLAG
SVC
BPT

Format 2

-000 ACB
-001 MOVQ
-010 LPR
-011

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

0

-100
-101
-110

15 817 0

I ~e~ 1 I 1 ;P I 1
1
1

1
1

1
1

1
1 I I

Format3

-0000
-0010
-0100
-0110

ADJ SP
JSR
CASE

-1010
-1100
-1110

Trap (UND) on XXX1, 1000

ADD
CMP
BIG
ADDC
MOV
OR

15 817

Format4

-0000 SUB
-0001
-0010
-0100
-0101
-0110

ADDA
AND
SUBC
TBIT
XOR

0
I I I

op

-1000
-1001
-1010
-1100
-1101
-1110

z
U>
Co)
N
0
C>
O>

I
c -z
U>
Co)
N
0
C>
O>

I
U'I

II)
I co Appendix A: Instruction Formats (Continued)

0 0 0 0 0

.....
U, MOVS
CJ CMPS
~ SETCFG
CW) SKPS
~ BBSTOD

EXTBLT
BBOR
MOVMP

short 0 op 0 0 0 0 1 1 1 0 gen 1

Fermat 5

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

BITWT
TBITS
BBAND
SBITPS
BBFOR
SBITS
BBXOR

-1000 MOVif
-1001 LFSR
_ 1010 MOVLF
_ 1011 MOVFL

-1100
-1101
-1110

No Operation on 1111

23

gen 1

ROT
ASH
CBIT
CBITI
Trap (UNO)
LSH
SBIT
SBITI

23

gen 1

MOVM
CMPM
INSS
EXTS
MOVXBW
MOVZBW
MOVZiD
MOVXiD

Trap (UNO)
16 15 8 7 0

gen2 op i 0 1 0 0 1 1 1 0

Format&

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

16 15

NEG
NOT
Trap(UND)
SUBP
ABS
COM
IBIT
ADDP

8 7

gen 1

-1000
-1001 ADDf
-1010 MOVf
-1011 CMPf
-1100 (Note 3)

-1101 SUBf
-1110 NEGf
-1111 Trap (UNO)

Trap (UNO)

0

gen2 op 11001110

Format7

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

MUL
MEI
Trap (UNO)
DEi
QUO
REM
MOD
DIV

gen 1

-1000
-1001 (Note 2)
-1010 (Note 1)
-1011 POLYf
-1100 DOTf
-1101 SCALBf
-1110 LOGBf
-1111 Trap (UNO)

Trap (UNO)

gen2 op i 0 0 1 1 1 1 1 0

Format9

-000
-001
-010
-011

ROUND
TRUNC
SFSR
FLOOR

-100
-101
-110
-111

7 0 ---I r 1 11 1 1 1 I ___ o 1 o 1 1 1 1 o

TL/EE/9424-53

Format 10
Always

16 15 8 7 0

gen 2 op o f 1 O 1 1 1 1 1 O

Format 11

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

16 15

DIVf
(Note 1)
Trap (UNO)
Trap (UNO)
MUU
AB Sf
Trap (UNO)
Trap (UNO)

8 7

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

0

gen2 op o f 1 1 1 1 1 1 1 o

Format 12

-0000
-0001
-0010
-0011
-0100
-0101
~0110

-0111

(Note 2)
(Note 1)
Trap (UNO)
Trap (UNO)
(Note 2)
(Note 1)
Trap (UNO)
Trap (UNO)

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

23 0 *Instructions with Format 12 are available only when the NS32381 is used.

Formats

EXT
CVTP
INS
CHECK

-000
-001
-010
-011

Trap(UND)on -110and -111

INDEX
FFS

TL/EE/9424-52

-1 00 Trap (UNO)
-1 01

66

Format 13
Always

7 0

-··1 I I I II I I I
___ 10011110

TL/EE/9424-54

~= 10
1
0

1
0

1
1

1
1

1
1

1
1 'ol

TL/EE/9424-55

Appendix A: Instruction Formats (Continued)

Trap (UND)

Trap (UND)

Trap (UND)

Trap (UND)

Trap (UND)

Format 14
Always

Format 15
Always

Format 16
Always

Format 17
Always

Format 18
Always

--1 I I I I I I I I
__ n n n 1 0 1 1 0

7 0

---, r 1 11 1 11 I --- x x x 0 0 1 1 0

TL/EE/9424-60

TLIEE/9424-56 Trap (UND)

Format 19
Always

Implied Immediate Encodings:

7 0
7 0

---, I I I I I II I
--- 0 1 0 1 1 1 1 0

TL/EE/9424-57

I r7 : r6 : r5 : r4 : r3 r2 r1 rO I
Register Mask, appended to SAVE, ENTER

7 0

I ro r1 r2 r3 r4 r5 r6 r7 I
7 0

- --, I I I I I I I I
-- 1 1 0 1 1 ·1 1 0

Register Mask, appended to RESTORE, EXIT

TL/EE/9424-58 7

: offset:

0

Offset/Length Modifier appended to INSS, EXTS

7 0

---, I II I I I I I
--- 1 0 0 0 1 1 1 0

TL/EE/9424-59

Note 1: Opcode not defined; CPU treats like MOVf. First operand has access class of read; second operand has access class of write; I-field selects 32-bit or
64-bit data.

Note 2: Opcode not defined; CPU treats like ADDI. First operand has access class of read; second operand has access class of read-modify-write. I-field
selects 32-bit or 64-bit data.

Note 3: Opcode not defined; CPU treats like CMPf. First operand has access class of read; second operand has access class of read. I-field selects 32-bit or
64-bit data.

67

z en w
N
(')
C>
en

I
C) z en w
N
(')
C>
en

I
U1

Physical Dimensions inches (millimeters)

43 27

~,. _____ 0.826 ----....... ~1
(20.98)

NOM

~~ (0.508)
MIN

0.104-0.118
(2.642-2.997)

0.032-0.040
(0.813-1.016)

0.005 -0.015
(0.127-0.381)

0.045
(1.143)

0.950
(24.13)
REF SQ

0.028-0.032
(0.660-0.813)

TYP

0.165 -0.180
(4.191-4.572)

0.985-0.995
(25.02-25.27)

SQUARE

V68A (REVG)

Plastic Chip Carrier (V)
Order Number NS32CG16V·10 or NS32CG16V·15

NS Package Number V68A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMiCONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

National Semiconductor
Corporation
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090
Tel: (408) 721-5000
TWX: (910) 339-9240

National Semiconductor
GmbH
Westendstrasse 193-195
D-8000 Munchen 21
West Germany
Tel: (089) 5 70 95 01
Telex: 522772

NS Japan Ltd.
Sanseido Bldg. SF
4-15 Nishi Shinjuku
Shinjuku-Ku,
Tokyo 160. Japan
Tel: 3-299-7001
FAX: 3-299-7000

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Hong Kong Lid.
Southeast Asia Marketing
Austin Tower, 4th Floor
22~26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 3-7231290, 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

National Semicondutores
Do Brasil Lida.
Av. Brig. Faria Lima, 830
B Andar
01452 Sao Paulo, SP. Brasil
Tel: (55/11) 212-5066
Telex: 391-1131931 NSBR BR

National Semiconductor
(Australia) PTY, Ltd.
21 /3 High Street
Bayswater, Victoria 3153
Australia
Tel: (03) 729-6333
Telex: AA32096

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reseives the right at any time without notice to change said circuitry and specifications.

68

~National
D Semiconductor

PRELIMINARY

NS32332-1 O/NS32332-15
32-Bit Advanced Microprocessors

General Description
The NS32332 is a 32-bit, virtual memory microprocessor
with 4 GByte addressing and an enhanced internal imple­
mentation. It is fully object code compatible with other Se­
ries 32000® microprocessors, and it has the added features
of 32-bit addressing, higher instruction execution through­
put, cache support, and expanded bus handling capabilities.
The new bus features include bus error and retry support,
dynamic bus sizing, burst mode memory accessing, and en­
hanced slave processor communication protocol. The high­
er clock frequency and added features of the NS32332 en­
able it to deliver 2 to 3 times the performance of the
NS32032.

The NS32332 microprocessor is designed to work with both
the 16- and 32-bit slave processors of the Series 32000
family.

Block Diagram

~-~I'll 20-BYTE
-~~,..QUEUE

DISPLACEMENT AND
IMMEDIATE EXTRACTOR

INSTRUCTION
DECODER

Features
• 32-bit architecture and implementation
• 4 Gbyte uniform addressing space
• Software compatible with the Series 32000 Family
• Powerful instruction set

- General 2-address capability
- Very high degree of symmetry
- Address modes optimized for high level languages

• Supports both 16- and 32-bit Slave Processor Protocol
- Memory management support via NS32082 or

NS32382
- Floating point support via NS32081 or NS32381

• Extensive bus feature
- Burst mode memory accessing
- Cache memory support
- Dynamic bus configuration (8-, 16-, 32-bits)
- Fast bus protocol

• High speed XMOS™ technology
• 84 Pin grid array package

ADD/DATA CONTROLS & STATUS

FP
SP1
SPO
PC
RO
R1
R2
R3

R4
R5
R&
R7

MOO

PSR

I
I
I
I
I
I L ____ J

TL/EE/8673-1

FIGURE 1

•shaded areas indicate enhancements from the NS32032.

69

~National PRELIMINARY

U Semiconductor
NS32532·20/NS32532-25/NS32532-30
High-Performance 32-Bit Microprocessor

General Description Features
The NS32532 is a high-performance 32-bit microprocessor
in the Series 32000® family. It is software compatible with
the previous microprocessors in the family but with a greatly
enhanced internal implementation.

• Software compatible with the Series 32000 family
• 32-bit architecture and implementation
• 4-GByte uniform addressing space
• On-chip memory management unit with 64-entry

The high-performance specifications are the result of a four­
stage instruction pipeline, on-chip instruction and data
caches, on-chip memory management unit and a signifi­
cantly increased clock frequency. In addition, the system
interface provides optimal support for applications spanning
a wide range, from low-cost, real-time controllers to highly
sophisticated, general purpose multiprocessor systems.

translation look-aside buffer
• 4-Stage instruction pipeline
• 512-Byte on-chip instruction cache
• 1024-Byte on-chip data cache
• High-performance bus

- Separate 32-bit address and data lines
- Burst mode memory accessing
- Dynamic bus sizing

• Extensive multiprocessing support

The NS32532 integrates more than 370,000 transistors fab­
ricated in a 1.25 µm double-metal CMOS technology. The
advanced technology and mainframe-like design of the de­
vice enable it to achieve more than 10 times the throughput
of the NS32032 in typical applications.

• Floating-point support via the NS32381 or NS32580
• 1.25 µm double-metal CMOS technology

In addition to generally improved performance, the
NS32532 offers much faster interrupt service and task
switching for real-time applications.

• 175-pin PGA package

Block Diagram
4-STAGE

INSTRUCTION PIPELINE

LOADER

ADDRESS 1----'-•I
UNIT

REGISTER
FILE

EXECUTION
UNIT

INSTRUCTION
CACHE

(IC)

DATA
CACHE
(DC)

DATA INTERFACE

FIGURE 1

70

BUS
INTERFACE

UNIT
(BIU)

CONTROL

DATA

TL/EE/9354-1

71

Section 2
Peripherals

Complete specifications for devices referenced In this
section can be found In the 1988 Series 32000 Data­
book.

~National
U Semiconductor
NS32081-10/NS32081-15 Floating-Point Units

General Description Features
• Eight on-chip data registers
• 32-bit and 64-bit operations

The NS32081 Floating-Point Unit functions as a slave proc­
essor in National Semiconductor's Series 32000® micro­
processor family. It provides a high-speed floating-point in­
struction set for any Series 32000 family CPU, while remain­
ing architecturally consistent with the full two-address archi­
tecture and powerful addressing modes of the Series 32000
micro-processor family.

• Supports proposed IEEE standard for binary floating­
point arithmetic, Task P754

Block Diagram

MICRO

r
I
I SEQUENCER
I
I-
I Condition and

Completion

I
I-

11

- -
64

MICRO
ROM

STORE

55

64

• Directly compatible with NS32016, NS32008 and
NS32032 CPUs

• High-speed XMQSTM technology
• Single SV supply
• 24-pin dual in-line package

ENTRY
POINT

GENERATOR
Initiate
Sequence

CONTROL UNii1

- EXECUTION UN~
Command

- - - INTERFACE ANOI
Internal Data Bus STORAGE UNIT I

Data Bus 16

Control Bus 4 I
L - -\- - - - - - -- - - - ..J

TL/EE/5234-1

73

z
en
c..>
N
0
CD

I
0
z
en
c..>
N
0
CD

I
(J1

0
N

I
T""
CC)
C"')
N
C"')
en z
II)
T""

I
T""
CC)
C"')
N
C"')
en z

~National
~Semiconductor

PRELIMINARY

NS32381-15/NS32381-20 Floatina-Point Unit

General Description
The NS32381 is a second generation, CMOS, floating-point
slave processor that is fully software compatible with its
forerunner, the NS32081 FPU. The NS32381 FPU functions
with any Series 32000 CPU, from the NS32008 to the
NS32532, in a tightly coupled slave configuration. The per­
formance of the NS32381 has been increased over the
NS32081 by architecture improvements, hardware en­
hancements, and higher clock frequencies. Key improve­
ments include the addition of a 32-bit slave protocol, an
early done algorithm to increase CPU/FPU parallelism, an
expanded register set, an automatic power down feature,
expanded math hardware, and additional instructions.

The NS32381 FPU contains eight 64-bit data registers and
a Floating-Point Status Register (FSA). The FPU executes
20 instructions, and operates on both single and double­
precision operands. Three separate processors in the
NS32381 manipulate the mantissa, sign, and exponent. The
NS32381 FPU conforms to IEEE standard 754-1985 for bi­
nary floating-point arithmetic.

When used with a Series 32000 CPU, the CPU and
NS32381 FPU form a tightly coupled computer cluster. This
cluster appears to the user as a single processing unit. All
addressing modes, including two address operations, are

FPU Block Diagram

NANO
SEQUENCER

ion Condit
a

Complet
nd
ion

l

~ _f

MICRO
i..... ROM ~-

STORE

l Command
I I
1: IJ: ~

-
available with the floating-point instructions. In addition,
CPU and FPU communication is handled automatically, and
is user transparent.

The FPU is fabricated with National's advanced double-met­
al CMOS process. It is available in a 68-pin Pin Grid Array
(PGA) package.

Features
• Directly compatible with NS32008, NS32016,

NS32C016, NS32032, NS32C032, NS32332 and
NS32532 microprocessors

• Selectable 16-bit or 32-bit Slave Protocol
• Conforms to IEEE standard 754-1985 for binary float-

ing-point arithmetic
• Early done algorithm
• Single (32-bit) and double (64-bit) precision operations
• Eight on-chip (64-bit) data registers
• (Automatic) power down mode
• Full upward compatibility with existing 32000 software
• High speed double-metal CMOS design
• 68-pin PGA package

ENTRY OPCODE-
POINT DECODE

GENERATOR ~ REGISTER

~
Initiate

I
Sequence

J:-+

Control
Unit

EXPONENT MANTISSA SIGN Execution
Unit PROCESSOR PROCESSOR

•- +_
~1 Internal

)§4
~
~ Data Bus

>'s4 '~4 ! ...
REGISTER DATA

FILE QUEUE

PROCESSOR

t
1
'*4
... ...

SLAVE
SEQUENCER

+
,~

FIGURE 1-1

74

.L _.,
7 32 --..-

1/0 ~ BUFFERS

l2 DATA BUS ,~ ,...
CONTROL BUS_.. ,,..

Interface
and
Storage Unit

TL/EE/9157-1

~National
D Semiconductor
NS32202-10 Interrupt Control Unit

General Description
The NS32202 Interrupt Control Unit (ICU) is the interrupt
controller for the Series 32000® microprocessor family. It is
a support circuit that minimizes the software and real-time
overhead required to handle multi-level, prioritized inter­
rupts. A single NS32202 manages up to 16 interrupt sources,
resolves interrupt priorities, and suppliesasingle-byte interrupt
vector to the CPU.

The NS32202 can operate in either of two data bus modes:
16-bit or 8-bit. In the 16-bit mode, eight hardware and eight
software interrupt positions are available. In the 8-bit mode,
16 hardware interrupt positions are available, 8 of which can
be used as software interrupts. In this mode, up to 16 addi­
tional ICUs may be cascaded to handle a maximum of 256
interrupts.

Two 16-bit counters, which may be concatenated under pro­
gram control into a single 32-bit counter, are also available
for real-time applications.

Basic System Configuration

Features
• 16 maskable interrupt sources, cascadable to 256
• Programmable 8- or 16-bit data bus mode
• Edge or level triggering for each hardware interrupt with

individually selectable polarities
• 8 software interrupts
• Fixed or rotating priority modes
• Two 16-bit, DC to 10 MHz counters, that may be con-

catenated into a single 32-bit counter
• Optional 8-bit 110 port available in 8-bit data bus mode
• High-speed XMOSTM technology
• Single, + 5V supply
• 40-pin, dual in-line package

NS32018
CPU

GROUP

MASTER
NS32202

ICU

:::: I NON-CASCADED ..L INTERRUPT SOURCES

,._ _ _,,INT +--
• •

1+·

75

CASCADED
NS32202

ICU

• . .

CASCADED
NS32202

ICU

+-.
• • • • . .
• • +-

+­
+-• .

• • • • • • ...:-

CASCADED
INTERRUPT
SOURCES

TL/EE/5117-1

z
(/)
Clo>
N
N
0
N

I
0

C)
~ ~National
~ a Semiconductor

PRELIMINARY

z
NS32203-10 Direct Memory Access Controller

General Description
The NS32203 Direct Memory Access Controller (DMAC) is
a support chip for the Series 32000® microprocessor family
designed to relieve the CPU of data transfers between
memory and 110 devices. The device is capable of packing
data received from 8-bit peripherals into 16-bit words to re­
duce system bus loading. It can operate in local and remote
configurations. In the local configuration it is connected to
the multiplexed Series 32000 bus and shares with the CPU,
the bus control signals from the NS32201 Timing Control
Unit (TCU). In the remote configuration, the DMAC, in con­
junction with its own TCU, communicates with 1/0 devices
and/or memory through a dedicated bus, enabling rapid
transfers between memory and 110 devices. The DMAC
provides 4 16-bit 1/0 channels which may be configured as
two complementary pairs to support chaining.

Block Diagram

A16-A23

ADO-AD15

HBE
ODIN
ADS ~
cs g

w
ROY u

~
CLK a::

~
BREQ ;!E

Cl)

BGRT ::>
!XI

HOLD
HLDA
IORD
IOWR

INT
RST/HLT ~1

76

Features
• Direct or Indirect data transfers
• Memory to Memory, 1/0 to 1/0 or Memory to 1/0

transfers
• Remote or Local configurations
• 8-Bit or 16-Bit transfers
• Transfer rates up to 5 Megabytes per second
• Command Chaining on complementary channels
• Wide range of channel commands
• Search capability
• Interrupt Vector generation
• Simple interface with the Series 32000 Family of

Microprocessors
• High Speed XMOSTM Technology
• Single + 5V Supply
• 48-Pin Dual-In-Line Package

REQO

ACKO

REQ1

ACK1

REQ2

ACK2

~1 J+-REQ3
CHANNn

~ACK3
TL/EE/8701-1

77

Section 3
Development Tools

Complete specifications for devices referenced in this
section can be found in the 1988 Series 32000 Data­
book.

II National Semiconductor

SYS32/20 PC Add-In Development Package

• High Performance, 10 MHz, no-wait state,
32-bit expansion board for an
IBM-PC/ AT or compatible system

• An Operating System derived from
AT&T's UNIX® System V.3

• The Series 32000 GNX (GENIX Native
and Cross-Support) Language tools
including the Series 32000 assembler,
linker, monitors and debuggers

• Hardware that supports the NS32032
CPU, NS32082 MMU, NS32201 TCU and
the NS32081 FPU

• Two available on-board memory
configurations:
- 2-Mbyte RAM
- 4-MByte RAM

Description
National Semiconductor's SYS32/20 is a complete,
high performance development package that converts
an IBM-PC/AT or compatible system into an ideal en­
vironment for the support of Series 32000®-based ap­
plications. The SYS32/20 PC Add-In Development
Package allows mainframe-size programs to run on a
personal computer at speeds similar to those of a

79

TL/C/9250-1

• Software available on 1.2-MByte floppies
• Complete support for the following

application tools:
-SPLICE
- National's Series 32000 Development

Board Family
-Compilers for C, FORTRAN??, Pascal

and Ada
- Complete System V Documentation
- 4.2 "bsd" Utilities
- Tools for Documentors (TFD), a

derivative of AT& T's DWBTM utilities
- Multiuser environment

VAX 780. The SYS32/20 consists of a 32-bit PC Add­
In board based on the Series 32000 chip set, a com­
plete port of AT&T's UNIX® System V.3 specially de­
veloped software that integrates the UNIX and DOS
operating systems, and National's Series 32000 de­
velopment tools (GNX).

II National Semiconductor

SYS32/30 PC-Add-In
Development Package

• 15 MHz NS32332/NS32382 Add-In board
for an IBM® PC/AT® or compatible
system

• 2-3 MIP system performance
• No wait-state, on-board memory in 4-, 8-

or 16-Mbyte configurations
• Operating system derived from AT&T's

UNIX® System V Release 3
• Multi-user support
• GENIXTM Native and Cross-Support

{GNX™) language tools. Includes-­
assembler, linker, libraries, debuggers

Product Overview
The SYS32™/30 is a complete, high-performance
development package that converts an IBM PC/AT or
compatible computer into a powerful multi-user sys­
tem for developing applications that use National
Semiconductor Series 32000 microprocessor family
components. The SYS32/30 add-in processor board
containing the Series 32000 chip cluster with the
NS32332 microprocessor allows programs to run on a.
personal computer at speeds greater than those of a

80

TL/EE/9420-1

• Support for other Series 32000®
. development products:
-SPLICE
- National's Series 32000 Development

Board family
- Compilers: C, FORTRAN77, Pascal,

Ada®
• Easy to use DOS/UNIX interface

VAX™ 780. The chip cluster on the processor board
inciudes the NS32332 Central Processing Unit,
NS32382 Memory Management Unit, NS32C201 Tim­
ing Control Unit and the NS32081 Floating-Point Unit.
Along with the processor board, the SYS32/30 pack­
age contains the Opus5™ operating system. This op­
erating system is a port of AT&T's UNIX System V
Release 3, and is derived from GENIX V.3, National

m Nattonal Semiconductor

SPLICE Development Tool

• Download capabilities via serial
connections

• 256 Kbytes of mappable memory
• Optional 1-Mbyte memory board,

expands memory up to 8 Mbytes
• On-board monitor with power-on

diagnostics
• Supports Series 32000 CPUs,

including: NS32332 NS32CG16
NS32032 NS32C032
NS32016 NS32C016
NS32008

1.0 Product Overview
The SPLICE Development Tool provides a communi­
cation link between a Series 32000 target and a devel­
opment system host. This connection allows users to
download and map their software onto target memory
and then debug this software using National Semicon­
ductor's debuggers.
SPLICE includes two RS232 serial ports for the sys­
tem host/terminal. These ports are particularly useful
for target systems that have no serial ports, such as
embedded controller designs.

81

TL/R/9347-1

• Parallel 1/0 port reserved for future
highspeed download capabilities

• Programmable serial port baud rates
• CPU bus status test points for logic

analyzer connections
• 4 LED indicators for diagnostic results

and general user applications
• RESET and NMI push buttons
• 15 MHz maximum operation

SPLICE is also useful for designs with ROM-based
software, or designs whose memory portion has not
yet been built. SPLICE provides 256 Kbytes of SRAM
which users can map into target memory. Using
mapped memory considerably reduces software de­
velopment time.

SPLICE also uses the target system's chipset. This
cost-effective feature is achieved through the use of
CPU and MMU target cables.

en ,,
r-
5
m
c
~
CD
0

"O
3
CD
:::s -"i1
2.

83

Section 4
Software

Complete specifications for devices referenced in this
section can be found In the 1988 Series 32000 Data­
book.

·~r·-.- ·-·- ----~-

II National Semiconductor

Series 32000® GENIX™ Native and
Cross-Support (GNX™) Language Tools

(Release 2)

SOURCE
(C)

SOURCE
{FORTRAN)

SOURCE
{PASCAL)

SOURCE
(ASSEMBLY)

• Implements AT&T's standard Common
Object File Format (COFF)

• Optimizing C Compiler (optional)
• Optimizing FORTRAN 77 Compiler

(optional)
• Pascal Compiler (optional)
• Series 32000 assembler and linker
• In-System Emulator Support
• Interactive remote debugger with helpful

command interface

Product Overview
The Series 32000 GNX Language Tools are a set of
software development tools for the Series 32000 mi­
croprocessor family. Optional high-level language
compilers work in conjunction with the standard com­
ponents to provide tools that can be combined to
meet a variety of development needs.

GENIX Native and Cross-Support (GNX)
Language Tools
The Series 32000 GNX Language Tools are based on
AT&T's Common Object File Format (COFF). With ap-

85

EXECUTABLE
MODULE

TO TARGET
SYSTEM

TO
TARGET
SYSTEM

TO
ISE

TL/GG/8780-1

• Available in binary for the VAX™ UNIX®
4.3 bsd operating system under
derivatives of the Berkeley operating
system

• Available in binary for the VAX/VMS™
operating system

• Available in binary on National
Semiconductor Series 32000 Systems

• Available in source for porting to other
operating system environments

propriate command-line arguments and when linked
with appropriate libraries, code generated by the GNX
language tools can be executed in any Series 32000
target environment. In addition, these tools can be
used to develop operating-system-independent code
or code designed to run in conjunction with real-time
kernels, such as National's EXEC and VRTX® /Series
32000. All of National's new language tools conform
to the COFF file format, thereby ensuring that mod­
ules produced by any one set of tools can be linked
with objects produced by any other set of GNX tools.

(/)
CD
Ci'
tn
w
I\)
0
0
0
G>
m z
><
z
S» -:c:·
CD
S»
::J
CL
0
0
tn
tn

I
(/)
c
"C
"C
0
;i. -G> z
>< -I;'
::J

(Q
c
S»

(Q
CD
-4
0
0
u;

II National Semiconductor

GENIX™/V.3 Operating System
MULTI- USER,

MULTI - TASKING,
AND ASSIST

TRANSPORT LEVEL
INTERFACE AND

TRANSPORT PROVIDER
INTERFACE

REMOTE
FILE SHARING

SHARED
LIBRARIES

BROAD SPECTRUM
OF PROGRAM
APPLICATIONS

11 Derived from AT&T's System V, Release
3.0, UNIX® Operating System

111 Demand-paged Virtual Memory
11111 Mandatory and Advisory File and Record

Locking
11 Streams

General Description
GENIX/V.3 is a port of AT&T's System V, Release
3.0, UNIX operating system for the Series 32000® mi­
croprocessor family. GENIX/V.3 is available in source
form and can be adapted to serve as the operating
system on customer-designed Series 32000-based
systems.
GENIX/V.3 is a multitasking, multiuser operating sys­
tem that provides an abundance of programs and utili­
ties for text processing, program development, and
system administration. GENIX/V.3 supports a wide
variety of applications ranging from databases to
graphics packages available from independent soft­
ware vendors.
GENIX/V.3 carries forward all of the enhancements
from Systems V /Series 32000, such as demand-

86

DEMAND PAGED
VIRTUAL MEMORY

SHARED FILE
AND RECORD

LOCKING

STREAMS

DEVELOPMENT
TOOLS AND

COMPILER OPTIONS

TL/R/9263-1

• Transport Level Interface and Transport
Provider Interface

• Remote File Sharing
• Shared Librarie~
• Assist
• C Compiler and Associated Language

Tools

paged virtual memory and file and record locking,
while introducing significant new features that support
local area networking.

GENIX/V.3 Features
Streams

Streams is a general, flexible facility for the develop­
ment of communications services within the UNIX op­
erating system. Streams provides a consistent frame­
work for the operation of network services (ranging
from local area networks to individual device drivers)
under the UNIX kernel.

II National Semiconductor

Series 32000® Real-Time Software
Components VRTX, IOX, FMX and TRACER

VRTX/Series 32000 R&D Package

APPLICATION PROGRAM

BASIC SYSTEM
CALL HANDLERS

TASK MANAGEMENT,
COMMUNICATION AND

SYNCHRONIZATION, AND
MEMORY ALLOCATION

1/0 SYSTEM
CALL HANDLERS

ISR ISR

USER-DEFINED
SYS CALL HDLRS

VRTX
EXTENSIONS

ISR

PROM RAM
MICRO- CHAR

CLOCK
OTHER

PERIPHERALS PROCESSOR 1/0 DEV

• Real-time executive for Series 32000
embedded systems

• Can be installed in any Series 32000
hardware environment

• Manages multitasking with priority-based
scheduler

• Manages memory pool, mailboxes,
timing and terminal 1/0

• Can reside in PROM and be located
anywhere in memory

The VRTX®/Series 32000 executive is the central
member of a set of silicon software building blocks
used in Series 32000-based real-time embedded sys­
tems. The executive manages the multitasking envi­
ronment and responds to operating system service re­
quests from application tasks.
The executive can be used alone or in combination
with the other silicon software components to build a
more complete operating system. The IOX® /Series
32000 and FMX® /Series 32000 components support
a file system that is media-compatible with PC-DOS.
The TRACERTM/Series 32000 is an interactive multi-

87

TL/GG/8781-1

• No requirements for particular timers,
interrupts or busses

• Has hooks at key processing points for
easy customization

• Comprehensive manuals with many
examples

• Hot-line technical support
• Integrated with interactive multitasking

debugger (optional)
• Integrated with PC-DOS compatible file

system (optional)

tasking debugger that can be used in VRTX-based
systems for debug, download and test.
All the components can reside in PROM's installed in
the target system. They can be placed anywhere in
the address space and make minimal assumptions
about the hardware environment. Small user-written
routines supply information about the local implemen­
tation of interrupts, timers, 1/0 devices, etc. Applica­
tion tasks interface to the components with Series
32000 SVC (Supervisor Call) interrupts, thus code for
the components does not require linking with user­
written code.

CJ)
CD
::!.
CD
m
w
N
0
0
0
::IJ
CD
D>

.!om
3·
CD
CJ)

!
Cil
&>
3
'8 :::s
CD :::s
ct
<
::IJ

~
0
.?< .,,
iC
><
D> :::s
a.
.....
::IJ
l?)
rn
::IJ

I.LI
>
i==
:::::>
0
I.LI
><
I.LI
c:n c

3i2
In s

:;:=
:;
:E
CD
E
i7
(ij
CD
a:
CD :c
ca
:E
0
a:
0
I.LI
><
I.LI
0
0
0
N
C")

In
CD
"i:
CD en

II National Semiconductor

Series 32000® EXEC
ROMable Real-Time Multitasking

EXECUTIVE

TIMER
MANAGER

DYNAMIC TASK
DISPATCHER

DYNAMIC
CHANNEL

CONTROLLER

MEMORY
POOL

MANAGER

• Provides a multitasking executive for
real-time applications

• Supports all Series 32000 CPUs
• Complete Source Code Package

- Fully user configurable
- Hardware independent

• Extensive user implementation support
- Unique demo, program introduction
- C and Pascal interface libraries
- Sample terminal drivers
-Integrated with Series 32000

development boards and monitor

Product Overview
EXEC is National Semiconductor's real-time, multi­
tasking executive for Series 32000 based applica­
tions. Its primary purpose is to simplify the task of de­
signing application software and provides a base upon
which users can build a wide range of application sys­
tems. EXEC requires only 2K bytes of RAM and only
4K bytes of ROM and is fully compatible with National
Semiconductor's Series 32000 family and the Series
32000 development board family.
EXEC allows the user to monitor and control multiple
external events that occur asynchronously in real-

88

USER TASKS

* * *
DEVICE FILE • • e

DRIVERS SYSTEM e e e

TL/GG/7291-1

• ROMable
• Reconfigurable
• Real-time clock support for time-of-day

and event scheduling
• Allows up to 256 levels of task priority

which can be dynamically assigned
• Up to 256 logical channels for task

communication
• Free-memory pool control
• Available for VAXTM/VMSTM, VAX/UNIX®

and SYS32™ development environments

time, such as intertask communications, system re­
source access based upon task priority, real-time
clock control, and interrupt handling. These functions
greatly simplify application development in such areas
as instrumentation and control, test and measure­
ment, and data communications. In these applica­
tions, EXEC provides an environment in which sys­
tems programmers can immediately implement soft­
ware for their particular application without regard to
the details of the system interaction.

89

Section 5
Application Notes

Line Drawing with the
NS32CG16; NS32CG16
Graphics Note 5
1.0 INTRODUCTION

The Bresenham algorithm, as described in the "Series
32000® Graphics Note 5" is a common integer algorithm
used in many graphics systems for line drawing. However,
special instructions of the NS32CG 16 processor allow it to
take advantage of another faster integer algorithm. This ap­
plication note describes the algorithm and shows an imple­
mentation on the NS32CG16 processor using the SBITS
(Set BIT String) and SBITPS (Set BIT Perpendicular String)
instructions. Timing for the DRAW_LINE algorithm is given
in Tables A, B and C of the Timing Appendix. The timing
from the original Bresenham iterative method using the
NS32CG16 is given in Table 0.
The bit map memory conventions followed in this note are
the same as those given in the NS32CG16 Reference Man­
ual and Datasheet, and all lines drawn are monochrome.
Series 32000 Graphics Note 5, AN-524, is recommended
reading.

2.0 DESCRIPTION
All rasterized lines are formed by sequences of line "slices"
which are separated by a unit shift diagonal to the direction
of these slices. For example, the line shown in Figure 1 is
composed of 7 slices, each slice separated by a unit diago­
nal shift in the positive direction. Notice that the slices of the
line vary in length. The algorithm presented in this note de­
termines the length of each slice, given the slope and the
endpoints of the line.

Depending on the slope of the line, these slices will extend
along the horizontal axis, the vertical axis or the diagonal
axis with respect to the image plane (i.e., a printed page or
CRT screen). If the data memory is aligned with the image
plane so that a positive one unit horizontal (x-axis) move in
the image plane corresponds to a one bit move within a byte
in the data memory, and so that a positive one unit vertical
(y-axis) move in the image plane corresponds to a positive
one "warp" (warp = the number pixels along the major axis
of the bit map) move within the data memory, then the
SBITS and SBITPS instructions can be used to quickly set
bits within data memory to form the line slices on the image
plane, as explained in section 3.1. For long horizontal lines,
the MOVMP (MOVe Multiple Pattern) instruction is more ef­
ficient than SBITS. This instruction is discussed in section
3.1 and in the NS32CG 16 Reference Manual.

2.1 Derivation of the Bresenham SLICE Algorithm
For the moment, consider only those lines in the X-Y coordi­
nate system starting at the origin (0,0), finishing at an inte-

(o,o)

~- l

National Semiconductor
Application Note 522
Nancy Cossitt

ger end point (x,y) and lying in the first partial octant, as in
Figure 2. (The analysis will be extended for all lines in sec­
tion 2.2.) The equation for one such line ending at (A,B) is:

y = mx,
where

m =BIA

is the slope of the line. Note that because the line lies in the
first partial octant, A > 2B 2 1.

y

t

3 2

4
..._ __________ _

5

6
I
I •

7

TL/EE/9663-2

FIGURE2

Each pixel plotted can be thought of as a unit square area
on a Real plane (Figure 3). Assume each pixel square is
situated so that the center of the square is the integer ad­
dress of the pixel, and each pixel address is one unit away
from its neighbor. Then let Ai represent the X-coordinate of
the pixel, as shown in Figure 3. The value of Y at Ai is:

y = (B/A)Ai

where y is Real.

Since the address of each pixel plotted must have corre­
sponding integer coordinates, the closest integer to y is ei­
ther the upper bound of y or the lower bound. (Recall that
upper and lower bounds refer to the smallest integer greater
than or equal to y and the largest integer less than or equal
to y respectively.) The original Bresenham algorithm was
based on this concept, and had a decision variable within
the main loop of the algorithm to decide whether the next
Yi+ 1 was the previous Yi (lower bound) or Yi + 1 (upper
bound). For the SLICE algorithm, we are only concerned
with when the value changes to Yi + 1, and the length of
the previous slice up to that point.

(45,0}

rnn

11 111 I I I I

(45,6)

TL/EE/9663-1

The line from (0,0) to (45,6) is a first octant line with run lengths 3-7-6-7-6-7-3. Notice that a pixel is plotted before the run begins so that the actual number of
pixels plotted is equivalent to the run length + 1.

FIGURE 1

91

)>
z

I c.n
N
N

N
N
LI)
• z

er:

TL/EE/9663-3

Y is incremented when the location of the half point is beyond A;, or when
the true value of Y at A;+ 1 is greater than Y; + 'f..

FIGURE3

In order for Yi to be incremented along the Y-axis, the true
value of real y at Ai + 1 must be greater than or equal to the
halfway point between Yi and Yi + 1 (Figure 3). If we let i
increment along the Y-axis, then this half point occurs
when:

y = 1/2 +Yi
Or, because Yi = i when incrementing along the Y-axis,

y = (1 + 2i)/2.
The real value of x at this point is:

x = A(1 + 2i)/28

using x = (1 /m)y. The lower bound of this value of x repre­
sents the x-coordinate of the pixel square containing the
halt point.

Letting Ai and Ai+ 1 be two integer values of x where the
real value of y is greater than or equal to the half point value
Yi + 1 /2 (Figure 4), then the run length extends from (Ai +
1, i + 1) to (Ai+ 1. i + 1). The run length can then be
calculated as:

Hi+ 1 = Ai+ 1 - Ai - 1
for i = 0, 1, ... ,(8-2). Using the equation for x above, we
can now better define Ai as:

Ai = (A/28) + (iA/8).

This equation has two real-valued divisions which are not
suitable for an integer algorithm. However, the equation can
be broken down so that it only involves an integer-valued
division and its integer remainder, which is more efficient for
processing. To do this we must define some intermediary
integer values:
Q = lower[A/8]

R = 9IA

M = lower[A/28]

N = 2slA

Ti= 28 i(N+2iR)

{ Lower bound of inverted slope)

{Integer residue of A modulo 8)

{Can also be defined as Q/2)

{Integer residue of A modulo 28)

(Integer residue of (N + 2iR)
modulo 28)

Note: AiB = B + A •1ower[A/B].

A1+1
I
I
I
I

r-+x
I ..
y

-- ---_,_ ------ - ------I
I

TL/EE/9663-4

Run length is calculated as A;+ 1 - A; -1. In this example, the run length
is 1.

FIGURE4

92

Using the above values we can now define Ai as,
Ai = (M + N/28) + (iQ + iR/8)

Ai= M+iQ + (N+2iR)/28

Therefore, substituting Ai and Ai+ 1 into the equation for
Hi+ 1. the intermediate horizontal lengths are,

Hi+1 = {M + (i+1)Q + lower[(N + 2(i+1)R)/28]} -
{M + iQ + lower[(N + 2iR)/28ll - 1

Hi+1 = Q + lower[(N + 2iR)/28 + 2R/28] -
lower[(N + 2iR)/28] - 1

Hi+ 1 = Q - 1 + lower[(Ti + 2R)/28]
Analyzing the term lower[(Ti + 2R)/28] it is shown that if Ti
+ 2R z 28 then the term becomes 1, otherwise it becomes
0. This is due to the definition of residue and modulo. The
term Ti is defined as:

(N + 2iR) - 28(1ower[(N + 2iR)/28]),

which means that O s Ti < 28. The same is true for R:

R = A - 8(1ower[A/8]),

so that O s 2R < 28. Therefore,

0 s Ti+ 2R < 48
and,

0 s (Ti + 2R)/28 < 2.

The only possible integer values for this term are 0 and 1.
The term will equal 0 if Ti + 2R < 28, and it will equal 1
when Ti + 2R z 28, and Hi+ 1 will equal Q. The decision
variable can now be defined as

testvar = Ti + 2R - 28.

If testvar z 0 then the horizontal run length is Q; if testvar <
0 then the run length is Q- 1.

Looking again at the definition of Ti, a recursive relationship
for the testvar can be formed.

Ti+ 1 = (N + 2R(i + 1)) - 28(1ower[(N + 2R(i + 1))/28)

Ti+ 1 = (N + 2iR + 2R) - 28(1ower[(N + 2iR +
2R)/28]

Since, as shown above, 0 < CTi + 2R)/2B < 2 then
lower[(Ti + 2R)/28] s 1. In fact, if Ti + 2R < 28 then
lower[(Ti + 2R)/28] = 0, and if Ti + 2R z 28 then
lower[(Ti + 2R)/28] = 1. Therefore, letting To = N,

Ti+1 =Ti+ 2R if(Ti + 2R) < 28

Ti+1 =Ti+ 2R-28 if(Ti + 2R) z 28.
This gives the recursive relationship for testvar:

testvar i + 1 = testvar i + 2R
Hi= Q - 1

if testvar i < 0. And, if testvar i z 0:

testvar i+ 1 = testvar i + 2R-28

Hi= Q.
These recursive equations allow the intermediate run
lengths to be easily calculated using only a few additions
and compare-and-branches.

The initial run length is calculated as follows:

Ho = Ao = lower[A/28) = M + lower[N/28] = M.

The final run length is similarly calculated as:

Ht= M - 1 if N = 0 else Ht= M.

Thus, the SLICE algorithm calculates the horizontal run
lengths of a line using various parameters based on the first
partial octant abscissa and ordinate of the line. The algo­
rithm is efficient because it need only execute its main loop
B times, which is a maximum of A/2, if A is normalized for
the first partial octant. Compare this with the original Bre­
senham algorithm which always executes its main loop A
times.

2.2 Extended Analysis for All Other Lines

In section 2.1 the SLICE algorithm was derived for lines
starting at the origin and contained within the first octant (B
< 2A). The algorithm is easily extended to encompass lines
in all octants starting and ending at any integer coordinates
within the pre-defined bit map. The only modifications nec­
essary for this extension are those relating to the direction
of movement and in defining the coordinates A and B.

In order to extend the algorithm to cover all classes of lines,
the key parameters used by the algorithm must be normal­
ized to the first partial octant. Those parameters are the
abscissa and ordinate displacements and the movement of
the bit pointer along the line. The abscissa and ordinate
displacements of the line are normalized to the first octant
by calculating:

delta x = Xf - x8 and delta y = Yf - Ys

which r~present the abscissa (delta x) and ordinate (delta y)
displacements of the original line. Then, the first octant
equivalents of A and B will be:

A = maximum {!delta xl.ldelta YI l
B' = minimum !!delta xl.ld~lta YI l
B =minimum {B',A- B'l

The next step in normalizing the line for the first octant is to
assign the correct value to the movement parameters. A
line in the first octant and starting at the origin always has
horizontal run lengths in the positive direction along the X
(major) axis, and has diagonal movement one unit in the
positive X direction and one unit in the positive Y (minor)
direction. Since the SLICE algorithm calculates the run
lengths independent of direction, variables can easily be de­
fined which contain the direction of movement for each slice
and each diagonal step within the different octants.

Lines of different angles starting at the origin have slices of
different angles. For example, a line of angle between 22.5
degrees and 45 degrees has run lengths that are diagonal,
not horizontal, and the direction of the diagonal step is hori­
zontal, not diagonal. Because of this characteristic, it is con­
venient to break the 8 octants of the X-Y coordinate system
into 16 sections, representing all of the partial octants.
Then, re-number these partial octants so that they form new
octants as in Figure 5. These redefined octants represent

y

t

TL/EE/9663-5

Redefined octants for SLICE algorithm. Notice that some of the octants are
split. The origin is at the center of the drawing. Setting DELX positive on all
lines makes opposite octants equivalent in the table below.

FIGURES

each of the eight angle classes of lines. For example, the
lines in octants 3 and 7 are composed of diagonal (45 de­
gree) slices in either the positive or negative direction, and
have diagonal step in the vertical position. Lines in octants 4
and 8 have run length slices in the vertical direction with
diagonal steps in the horizontal direction with respect to the
X-Y plane.

In conclusion, the SLICE algorithm calculates successive
run lengths in the same manner for lines in each octant. The
only difference between the octants is the direction of
movement of the bit pointer after each successive run
length is calculated. The run lengths and diagonal steps for
each octant are given in Table I. Figure 5 shows the octants
used by the SLICE algorithm.

3.0 IMPLEMENTATION OF SLICE USING
SBITS, SBITPS AND MOVMP

The NS32CG16 features several powerful graphics instruc­
tions. The SLICE algorithm described by this application
note is implemented with three of these instructions: SBITS,
SBITPS and MOVMP. The SBITS instruction allows a hori­
zontal string of bits to be set, while the SBITPS instruction
can set vertical or diagonal strings of bits. The MOVMP in­
struction, not detailed in this application note, can be used
to set long strings of bits faster than SBITS when the length
is more than 200 bits in the horizontal direction. The
BIGSET.S routine given in the appendix uses this instruction
in conjunction with SBITS for long lines. These are very use­
ful instructions for the SLICE run length algorithm, as will be
shown in section 3.2.

TABLE I

OCTANT DELA DELB DIAGONAL MOVE RUN LENGTH

1&5 DELX IDELYI 1 +(±WARP) +HORZ

2&6 DELX DELA-I DEL YI +1 ±DIAG

3&7 IDELYI DELA-DELX ±WARP ±DIAG

4&8 IDELYI DELX + 1 ±WARP

If DEU< < o then the starting and ending coordinates are swapped. This simplifies initialization.

93

3.1 SBITS and SBITPS Tutorial
SBITS:
SBITS (Set BIT String) sets a string of bits along the hori­
zontal axis of a pre-defined bit map. The instruction sets a
string of up to 25 bits in a single execution using four argu­
ments pre-stored in registers RO through R3.

RO = (32 bits) Base address of bit-string destination.

R1 = (32 bits, signed) Starting bit-offset from RO.

R2 = (32 bits, unsigned) Run length of the line segment.

R3 = (32 bits) Address of the string look-up table.

The value of the bit offset is used to calculate the bit num­
ber within the byte, assuming that the first bit is bit O and the
last bit is bit 7. A maximum of 7 for the starting bit number
added to a maximum of 25 for the run length requires a total
of 32 bits. SBITS calculates the destination address of the
first byte of the 32-bit double word to contain the string of
set bits by the following:

Destination Byte = Base Address + Offset DIV 8.

Then, the starting bit number within the destination byte is:

Starting Bit = Offset MOD 8.

SBITS instruction then calculates the address for the 32-bit
double word within the string look-up table (found in the
NS32CG16 manual) which will be OR'ed with the 32-bit dou­
ble word whose starting byte address is Destination Byte, as
calculated above. The table is stored as eight contiguous
sections, each containing 32 32-bit double words. Each of
the eight sections corresponds to a different value of Start­
ing Bit (Offset MOD 8), which has a possible range of O
through 7. The 32 double words in each section correspond
to each value of the run length (up to 25) added to the
starting bit offset.

example:

before

Register Contents

after

RO= 1000
R1 = 235
R2 = 16
R3 =$stab

RO= 1000
R1 = 235
R2 = 16
R3 =$stab

Destination Address = 1000 + (235 DIV 8) = 1029
Starting Bit = 235 MOD 8 = 3
Table Address= $stab+ 4*(16 + (32*3)) =$stab+ 448

bytes
32-bit Mask = Ox0007FFF8

This mask value is OR'ed with the 32-bit double word start­
ing at byte address 1029 decimal. Notice that the mask
Ox0007FFF8 leaves the first 3 bits and the last 13 bits
alone. Thus, a string of 16 bits is set starting at bit number 3
at address 1029 decimal. The contents of the registers are
unaffected by the execution of the SBITS instruction.

Since the SBITS instruction can set up to 25 bits in one
execution, the run length in R2 can be compared to 25, and
a special subroutine executed if it exceeds 25 bits. The sub­
routine will set the first 25 bits, then subtract 25 from the run
length, and compare this to 25 again. This process is re­
peated until the run length is less than 25, in which case

94

the remaining bits are set and the subroutine returns. The
DRAW_LINE algorithm implemented in this application
note uses this method for strings of bits to be set less than
200. For horizontal lines greater than 200 pixels in length,
the BIGSET routine is more efficient, as described below.

BIGSET:
The utility program BIGSET.S is used to draw longer lines,
more than 200 pixels in length, more efficiently than SBITS.
BIGSET.S, which is given in the appendix, uses the MOVMP
instruction (MOVe Multiple Pattern) to set long strings of
bits. Since MOVMP operates on double-word aligned ad­
dresses most efficiently, the string is broken up into a start­
ing string within the first byte, a series of bytes to be set, and
an ending string which is the leftover bits to be set within the
final byte. The starting and ending strings of bits, if any, are
set using the SBITS table with an OR instruction.

SBITPS:
SBITPS (Set BIT Perpendicular String) handles both vertical
lines and diagonal lines. This instruction also requires four
arguments pre-stored in RO through R3. RO, R1 and R2 are
the Base Address, Starting Bit Offset and Run Length re­
spectively, as for SBITS. R3, however, contains the destina­
tion warp.
Note: The Destination warp is the number of bits along the horizontal length

of the bit map, or the number of bits between scan lines. It is also
referred to as the "pitch" of the bit map. Thus, a vertical one-unit
move in the positive direction would require adding the value of the
warp to the bit pointer. A diagonal or 45 degree line is drawn when the
warp is incremented or decremented by one.

The run length is a 32 bit unsigned magnitude.

example:
(Assume that the bit map is a 904 x 904 pixel grid.)

before

RO= 1000
R1 = 235
R2 = 150
R3 = +904

Register Contents
after

RO= 1000
R1 = 235 + (150*904) = 135,835
R2 = 0
R3 = +904

Destination Address = 1029
Starting Bit Number = 3 i
Run Length = 150
Warp= +904

As in the example for SBITS, the Destination Address is
1029, with Starting Bit Number = 3. Since the warp in this
example is + 904 and the bit map is 904 x 904 bits, the line
is vertical, has a length of 150 pixels and starts at bit num­
ber 3 within the byte whose address is 1029 decimal. Unlike
the SBITS instruction, the SBITPS alters registers R1 and
R2 during execution. R1 is set to the position of the last bit
set plus the warp. However, this is convenient for drawing
the next slice since R1 has been automatically updated to
its proper horizontal position for setting the next bit. The bit
offset in R 1 need only be incremented by + 1 or -1 to point
to the exact position of the next bit to be set.

Diagonal lines are drawn when the value contained in R3 is
an increment of the bit map's warp.

example:
(Assume that the bit map is a 904 x 904 pixel grid.)

before

RO= 1000
R1 = 235
R2 = 150
R3 = +905

Register Contents
after

RO= 1000
R1 = 235 + (150*905) = 135,985
R2 = 0
R3 = +905

This example draws a diagonal line with positive slope start­
ing at bit position 3 in byte 1029. Notice that the new value
of R1 = 135,985 is exactly 150 pixels offset from the value
of R1 in the vertical line drawn in the previous example.
Adding + 1 to the warp in this example caused the bit posi­
tion to move not only in the positive vertical direction, but
also in the positive horizontal direction, forming a diagonal
line.

3.2 lmplementatlon of DRAW_LINE and SLICE on the
NS32CG16

Both a C version of the DRAW_LINE algorithm and an
NS32CG 16 assembly version are given in the appendix. The
C program was implemented on SYS32/20 which uses the
NS32032 processor. An emulation package developed by
the Electronic Imaging Group at National was used to emu­
late the SBITS and SBITPS instructions in C, and also the
MOVMP instruction used for lines longer than 200 pixels.
The emulation routines, which cover all NS32CG16 instruc­
tions not available on other Series 32000 processors, are
available as both C functions and Series 32000 assembly
subroutines.

The DRAW_LINE program was first written in C using the
emulation functions. Once this version was tested and func­
tional, it was translated into Series 32000 code and further
optimized for speed. The assembly version uses the Series
32000 assembly subroutines which emulate the SBITS and
SBITPS instructions. NS32CG16 executable code was de­
veloped by replacing the emulation subroutine calls with the
actual NS32CG16 instruction. The functional and optimized
code was finally executed on the NS32CG 16 processor with
the aid of the DBG 16 debugger for downloading the code to
an NS32CG16 evaluation board. Timing for lines of various
slopes is given in the Timing Appendix.

Most of the optimization efforts are concentrated in the
main loop of the SLICE algorithm. Since the use of SBITS or
SBITPS for the run length depends on the slope of the line,
the code is unrolled for the different octants. This minimizes
branching within the main loop, and cuts down on overall
execution time. Also, the DRAW_LINE takes advantage of
the NS32CG16's ability to draw fast horizontal, vertical and
diagonal lines by separating these lines out from the actual
Bresenham SLICE algorithm. Therefore, time is not wasted
for trivial lines on executing the initialization sections and
main loop sections of the SLICE algorithm.

Branching within the initialization section is also minimized
by unrolling the code for each octant. Recall from section
2.2 that in order to extend the algorithm over all octants, the
abscissa and ordinate displacements must be normalized to
the first octant and the run length directions must be modi­
fied to preserve the slope of the line. Partitioning the pro­
gram into "octant" modules makes the initialization for each

95

octant less cluttered with compare-and-branches. Table I
shows that each octant has a unique value for DELA and
DELB (the normalized abscissa and ordinate displace­
ments). Note that at the beginning of the programs, DEU< or
Xf - x5 is checked for sign, and if negative, the absolute
value function is performed and the starting and ending
points are exchanged. This is done because each octant
module of the SLICE algorithm only cares about the sign of
DEL Y with respect to coordinate (x5 ,ys). DEU< is only impor­
tant when initializing DELA or DELB, and in this case, only
the absolute value is needed.

4.0 SYSTEM SET-UP

NS32CG16 Evaluation Board:

-NS32CG16 with a 30 MHz Clock
-256KB Static RAM Memory (No Wait States)
-2 Serial ports
-MONCG16 Monitor

Host System:

-SYS32/20 running Unix System V
-DBG16 Debugger

Software for Benchmarking:

-START.C Starts timer and calls DRIVER.
-DRIVER.C Feeds vectors to DRAW_LINE.
-DRAW_LINE.S Line drawing routine which includes

SLICE.
-BIGSET.S Uses MOVMPi to set longer lines.

4.1 Timing

Timing Assumptions:

Called by DRAW_LINE if length >
200.

1. No wait states are used in the memory.

2. No screen refresh is performed.

3. The overhead referred to as the "driver'.' overhead is the
time it takes to create the endpoints for each vector. This
is application dependent, and is not included in the
Vector/Sec and Pixel/Sec times.

4. The overhead referred to as the "line drawing" overhead
is the time it takes to set up the registers for the actual
line drawing routine. This overhead comes from the
DRAW_LINE program only and is included in all times.

5. Raw data given in the Timing Appendix for the SBITS,
SBITPS and MOVMP is the peak performance for these
instructions. These times do not include line drawing
overhead or driver overhead.

The timing for this line-drawing application was done so as
to give meaningful results for a real graphics application and
to allow the reader to calculate additional times if desired.
The routines are not optimized for any particular application.
All line drawing overhead, such as set-up and branching, is
included in the given times for Timing Table A, B and C. The
23 µ,s driver overhead of the calling routines is not included
in the given times for vectors per second and pixels per
second. Calculation of these values was done by subtract­
ing the 23 µ,s out of the average time per vector so that the
given times are only for the processing of the vectors. They
do not include the overhead of DRIVER.C and START.C
(refer to these programs in the appendix).

In addition, the DRAW_LINE algorithm is timed for several
test vectors at various strategic points in the code so that

N
N
It)

I z
c(

the reader may verify set-up times or calculate other rele­
vant times. The program DRAW_LINE.S in the appendix
contains markers (e.g., T1, T2 ...) for each point at which a
particular time was taken. The program was run using a
driver program (DRIVER.C in the appendix) which consists
of several loops which pass test vectors to the
DRAW_LINE routine. A "return" instruction was placed at
the time marker so that the execution time was only mea­
sured up to that marker. These times are given in the Timing
Appendix Table E and include total execution time up to
each of the markers.

A millisecond interrupt timer on the NS32CG16 evaluation
board was used to time the execution. For each execution,
the DRIVER program executed its inner loop over 100
times, and sometimes over 1000 times, so that an accurate
reading was obtained from the millisecond timer. The final
times were divided by this loop count to obtain a "bench­
mark" time. This benchmark time was divided by the total
number of lines drawn to obtain an average time per vector.
The overhead of START.C and DRIVER.C in calling the
DRAW_LINE.S routine was not counted in the average
time per vector or the average time per pixel calculation.
Table E of the Timing Appendix gives the timing for each of
the markers and the conditions under which these times
were taken.

Bresenham's SLICE Algorithm:

1. INITIALIZE PARAMETERS, MAKE NECESSARY ROTATIONS

5.0 CONCLUSION
The timing for the DRAW_LINE algorithm is a good indica­
tion of the performance of the NS32CG16 in a real applica­
tion, something which the datasheet specifications can't al­
ways show. The timing clearly shows that the NS32CG16 is
well-suited for line-drawing applications. Using the SBITS,
SBiTPS and the MOVMPi instructions, fast line-drawing is
achieved for lines of all slopes and lengths. The NS32CG16
is an ideal processor for taking advantage of the much fast­
er SLICE algorithm.

The SLICE . algorithm, which calculates run lengths of line
segments to form a complete rasterized line, is much faster
than its Bresenham predecessor which calculates the line
pixel by pixel. The SLICE algorithm always executes the
main loop at least twice as fast as the original Bresenham
algorithm, which executes its main loop exactly
max(idelxl.ldelyll times for each line.

REFERENCES

J.£ Bresenham, IBM, Research Triangle Park, USA. "Run
Length Slice Algorithm for Incremental Lines", Fundamen·
tal Algorithms for Computer Graphics, Springer-Verlag
Berlin Heidelberg 1985.

N.M. Cossitt, National Semiconductor, "Bresenham's Line
Algorithm Using the SBIT Instruction", Serles 32000
Graphics Note 5, AN-524, 1988.

National Semiconductor, NS32CG16 Supplement to the
Serles 32000 Programmer's Reference Manual, 1988.

2. OUTPUT INITIAL RUN LENGTH (Ho) IN PROPER OCTANT DIRECTION

MOVE DIAGONALLY IN APPROPRIATE DIRECTION TO START OF NEXT RUN LENGTH

3. OUTPUT INTERMEDIATE RUN LENGTHS

COUNT= COUNT-1

IF COUNT ~ 0 GOTO 4.
IF TESTVAR < 0 H=Q-1 AND TESTVAR=TESTVAR+2*R

ELSE H=Q AND TESTVAR=TESTVAR+2*R-2*DELB

OUTPUT RUN LENGTH OF LENGTH H IN PROPER DIRECTION

MOVE DIAGONALLY IN PROPER DIRECTION

GOT03.

4. OUTPUT FINAL RUN LENGTH OF LENGTH HF

5. END

INITIALIZED PARAMETERS

DELA = MAXIMUM OF 1 IDELXl.IDEL YI}
DELB = MINIMUM OF { IDELAl,DELA-MINIMUM { IDELXl.IDEL YI)}

Q = LOWER[DELA/DELB]

R = DELA-DELB*Q

M = LOWER[Q/2]

N = R (IF Q EVEN)
N = R+DELB (IF Q ODD)

Ho= M (IF DELY~O OR N<>O)
Ho= M-1 (IF DELY<O AND N=O)

HF= M (IF DELY<O OR N<>O)
HF= M-1 (IF DELY ~O AND N=O)

COUNT= DELB

TESTVARo = N+2*R-2*DELB (IF DELY~O)
TESTVARo = N+2*R-2*DELB-1 (IF DELY<O)

96

Graphics Image (2000 x 2000 Pixels), 300 DPI

FIGURE 6. Star-Burst Benchmark
This Star-Burst Image was done on a 2k x 2k plxel bit map. Each llne Is

2k pixels In length and passes through the center of the Image, bisecting the square. The lines are
25 pixel units apart, and are drawn using the DRAW_LINE.S routine. There are a total of 160 llnes.

The total time for drawing this Star-Burst Is 1.0s on 15 MHz NS32CG16.

97

TL/EE/9663-6

)>
z

I
U1
N
N

"' "' in TIMING APPENDIX
I

:i A. PEAK RAW PERFORMANCE AT 15 MHz

Function Rate•
Horizontal Line (SBITS)
Horizontal Line (MOVMP)
Vertical Line (SBITPS)

9 MBits/s
60 MBits/s

440 kBits/s
*Raw performance does not include any register set-up, branching or other software set-up overhead.

B. TRIVIAL LINES (Using 1k x 1k Bit Map Grid)

Pixels/Line Vectors/Sec Pixels/Sec Comments**

Horizontal: 1000 13,361 13,361,838 Uses BIGSET.S with MOVMP.
100 24,136 2,413,593 Uses SBITS only.

10 45,687 456,870 Uses SBITS only.

Vertical and 1000 424 424,000 Uses SBITPS.
Diagonal: 100 3,975 397,460

10 24,491 244,910

**Pixels/Sec and Vectors/Sec are measured from start of DRAW_LINE.S only. The 23.128 µs driver overhead was not included in these measurements.

C. ALL LINES (Using the "Star-Burst" Benchmark and the SLICE Algorithm)

Pix/Vector Vectors/Sec Pixels/Sec Total Time* Comments**

1000 318 318, 165 0.8s 250 Lines in Star-Burst
100 2,811 281, 118 0.019s 50 Lines in Star-Burst

10 14,549 145,490 0.001s 1 O Lines in Star-Burst

Avg. Set-up Time Per Line (Measured from Start of DRAW_LINE Only): 37 µs

D. ALL LINES (Using Original BRESENHAM Iterative Method with SBIT and the Star-Burst Benchmark)

Pix/Vector Vectors/Sec Pixels/Sec Total Time* Comments**

1000 163 162,746 1.5s 250 Lines in Star-Burst
100 1,568 158,332 0.033s 50 Lines in Star-Burst

10 11,547 127,021 0.001s 10 Lines in Star-Burst
I

Avg. Set-up Time Per Line (Measured for Line Drawing Routine Only): 30 µs

The Bresenham program used for the above table can be found in the Series 32000® Graphics Application Note 5.
*Total time is measured from start of execution to finish. It includes all line drawing pre-processing, set-up and branching, and it includes all driver overhead of

DRIVER.C and START.C. This time is a good indication of the pages per minute for the complete Star-Burst benchmark. Vectors/Sec and Pixels/Sec are
measured from start of DRAW_LINE.S only. The 23.712 µs overhead was not included in these measurements.

••star-Burst benchmark draws an equal number of lines in each octant. DRIVER.C creates vectors that form the Star-Burst image, passing these vectors to
DRAW_LINE.S as they are created. The bit map image can then be downloaded to a printer for a hard copy, as in Figure 6.

98

TIMING APPENDIX TABLE E

Measurement Measured Test Vector Octant of Test Vector

Point Time/Vector* Used
(Refer to Figure 5) Comments

And Length of Vector

T1 23.128 µs Any Non-Calculated Any Octant, Any Length Overhead of entry into DRAW_LINE when
not calculating endpoints of line. Application
dependent.

23.712 STAR-BURST All Octants, 1000 Pixels Overhead of entry into DRAW_LINE when
calculating the ST AR-BURST vectors.
Application dependent.

T2 40.056 (0,0,0,999) Vertical, 1000 Pixels/Vector Average overhead per vertical line
to start of line draw instruction (SBITPS).

T3 41.780 (0,999,0,0) Vertical, 1000 Pixels/Vector Average overhead per vertical line with
negative slope to start of line draw instruction.

T4 40.884 (0,0,999,0) Horizontal, 1000 Pix/Vect Average overhead per horizontal line to start
of line draw instruction. (SBITS and BIGSET).

43.912 (999,0,0,0) Same Same as above with negative delta x value.

TS 44.532 (0,0,999,999) Diagonal, 1000 Pix/Vect Average overhead per diagonal line to start
of line draw instruction (SBITPS).

T6 45.356 (0,999,999,0) Same Same as above for diagonal line with
negative delta x value.

T7 71.164 (0,0,999, 10) Octant 1 1000 Pix/Vect Average overhead per line to first run length
slice of the SLICE algorithm for octant 1.

TS 87.476 (0,0,999, 10) Octant 1 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel
75.572 (0,0,99, 10) 100 Pix/Vect line through first run length of the SLICE
75.568 (0,0,9,2) 10 Pix/Vect algorithm. Dependent on the vector length.

T9 100.348µs (0,0,999, 10) Octant 1 1000 Pix/Vect Average overhead per 1000, 100 and 1 O pixel
88.444 (0,0,99, 10) 100 Pix/Vect line to start of main loop of SLICE algorithm.
88.436 (0,0,9,2) 10 Pix/Vect Dependent on the vector length.

T10 71.856 (0,0,9,8) Octant 2 1 O Pix/Vect Average overhead per line to first run length.
Not dependent on vector length.

T11 79.632 (0,0,999,800) Octant 2 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel line
80.040 (0,0,99,80) 100 Pix/Vect through first run length of the SLICE algorithm.
84.180 (0,0,9,8) 10 Pix/Vect Dependent on the vector length.

T12 89.060 (0,0,999,800) Octant 2 1000 Pix/Vect Average overhead per 1000, 100 and 1 O pixel
89.476 (0,0,99,80) 100 Pix/Vect line to start of main loop of SLICE algorithm.
105.376 (0,0,9,8) 10 Pix/Vect Dependent on the vector length.

T13 73.024 (500,0, 700,999) Octant 3 1000 Pix/Vect Average overhead per line to first run length. Not
dependent on the vector length.

T14 80.736 (500,0, 700,999) Octant 3 1000 Pix/Vect Average overhead per 1000, 100 and 1 O pixel line
80.872 (50,0, 70,99) 100 Pix/Vect through first run length of the SLICE algorithm.
80.116 (5,0,7,9) 10 Pix/Vect Dependent on the vector length.

T15 89.888 (500,0, 700,999) Octant 3 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel line
90.020 (50,0, 70,99) 100 Pix/Vect to start of main loop of SLICE algorithm.
89.268 (5,0,7,9) 10 Pix/Vect Dependent on the vector length.

T16 73.712 (10,0,990,999) Octant 4 1000 Pix/V ect Average overhead per line to first run length. Not
dependent on the vector length.

T17 137.532 (10,0,999,999) Octant 4 1000 Pix/V ect Average overhead per 1000, 100 and 10 pixel line
81.148 (10,0,90,99) 100 Pix/Vect through first run length of the SLICE algorithm.
78.256 (2,0,8,9) 10 Pix/Vect Dependent on the vector length.

T18 147.236 (10,0,999,999) Octant 4 1000 Pix/V ect Average overhead per 1000, 100 and 10 pixel line
90.856 (10,0,90,99) 100 Pix/Vect to start of main loop of SLICE algorithm.
87.956 (2,0,8,9) 10 Pix/Vect Dependent on the vector length.

*Each time was measured from start of benchmark execution to the Tx marker in the DRAW_LINE.S program. Thus, the overhead of the calling routine to the
DRAW_LINE routine is T1=23.712 µs for the STAR-BURST benchmark. All programs used for timing are included in the Appendix. All times given above are for a
1k x 1k bit map.

99

)>
z

I en
N
N

/* This program draws a line in a defined bit map using Bresenham's */
/* SLICE algorithm. */

#include<stdio.h>
#define xbytes 25'
#define warp 2'''
#define maxy 1999
unsigned char bit map[xb~es•maxy);
extern unsigned char sb1tstab[];

draw_line(xs,ys,xt,yt)

int xs,ys,xt,yt;

int bit,i,j,delx,dely,dela,delb,
hf,h,h,,testvar,q,r,m,
n,count,xinc,yinc;

delx=xt-xs;
dely=yt-ys;

if (xt-xs<') {
xs=xt;
ys=yt;
delx=abs(delx);
dely= -dely;

}
bit=xs+ys•warp;
if (delx==,){

if (dely>=,){
sbitps(bit_map,bit,dely,warp);
return;

}

)
else{

sbitps(bit_map,bit,abs(dely),-warp);
return;

if (dely==,){
sbits(bit_map,bit,delx,sbitstab);
return;

}
if (abs(delx)==abs(dely)){

}

if(delx•dely>=')!
sbitps(b1t_map,bit,abs(dely),warp+l);
return;

}
else

sbitps(bit_map,bit,delx,-warp+l);
return;

if (abs(delx)>abs(dely)){

if (abs(dely)<(delx-abs(dely)))
{

dela=delx;
delb=abs{dely);
xinc=l;
if (dely>=')

yinc=warp;
else

yinc= -warp;

q--dela/delb;

100

TL/EE/9663-7

}
else(

r=dela-delb*q;
m=q/2;
if (q-2*(q/2)==~)

n=r;
else

n=r+delb;

if ((dely>=~) 11 (n!=~))
h~=m;

else
h~=m-1;

if ((dely<~) 11 (n!=~))
hf=m;

else
hf=m-1;

count=delb;

if(dely>=~)
testvar=n+2*r-2*delb;

else
testvar=n+2*r-2*delb-1;

sbits(bit_map,bit,h~+l,sbitstab);
bit=bit+h~+yinc+xinc;

for(i=count-l;i>~;i--) {
if (testvar<~) {

h=q-1;
testvar+=2*r;

)
else

h=q;
testvar+=2•r-2*delb;

}
sbits(bit_map,bit,h+l,sbitstab);
bit=bit+h+yinc+xinc;

}
sbits(bit_map,bit,hf,sbitstab);
return;

dela=abs(delx);
delb=dela-abs(dely);
xinc=l;
if(dely>=~)

yinc=warp;
else

yinc= -warp;
q=dela/delb;
r=dela-delb•q;
m=q/2;
if (q-2*(q/2)==~)

n=r;
else

n=r+delb;
if ((dely>=~) 11 (n! =~))

h~=m;
else

h~=m-1;

if ((dely<~) 11 (n!=~))
hf=m;

else
hf=m-1;

TL/EE/9663-8

101

)>
z

I c.n
N
N

"' "' It)
I z:

<C

)
else{

count=delb;

if(dely>=Jll)
testvar=n+2*r-2*delb;

else
testvar=n+2*r-2*delb-1;

sbitps(bit map,bit,hJll+l,yinc+l);
bit=bit+hJll+hJll*yinc+l;

for(i=count-l;i>,:i--) {
if (testvar<Jll)(

h=q-1;
testvar+=2•r;

)
else

h=q;
testvar+=2*r-2*delb;

)
sbitps(bit map,bit,h+l,yinc+l);
bit=bit+h+yinc•h+l;

!bitps(bit_map,bit,hf+l,yinc+l);
return;

if (abs(delx)<(abs(dely)-abs(delx)))(
dela=abs(dely);
delb=abs(delx);
:r-inc=l;
if(dely>Jll)

else
xinc=warp;

xinc= -warp;

q=dela/delb;
r=dela-delb•q;
m=q/2;
if (q-2*(q/2)==Jll)

n=r;
else

n=r+delb;
if ((dely>=Jll) 11 (n!=Jll))

hJll=m;
else

hJll=m-1;

if ((dely<Jll) 11 (n!=Jll))
hf=m;

else
hf=m-1;

count=delb;

if(dely>=Jll)
testvar=n+2*r-2*delb;

else
testvar=n+2*r-2*delb-1;

sbitps(bit map,bit,hJll+l,xinc);
bit=bit+yinc+(l+hJll)*xinc;
for(i=count-l;i>Jll;i--) {

if (testvar<Jll)I
h=q-1;
testvar+=2*r;

}
else

102

TL/EE/9663-9

}
else(

h=q;
testvar+=2•r-2•delb;

!bitps(bit map,bit,h+l,xinc);
bit=bit+yinc+xinc•(l+h):

!bitps(bit map,bit,hf+l,xinc);
return; -

dela=abs(dely);
delb-dela-abs(delx);
yinc=l;
if(dely>jll

xinc=warp;
else

xinc= -warp;

q=dela/delb;
r=dela-delb•q;
m=q/2;
if (q-2•(q/2)==jl)

n=r;
else

n=r+delb;
if ((dely>=jl) I I (n!=jl))

hjl=m;
else

hjJ=m-1;

if ((dely<jl) I I (n!=jl))
hf=m;

else
hf=m-1;

count=delb;

if(dely>=jl)
testvar=n+2*r-2•delb;

else
testvar=n+2•r-2•delb-l;

sbitps(bit map,bit,hjl+l,xinc+l);
bit=bit+hjl+(l+hjl)•xinc;
for(i=count-l;i>jl;i--) (

if (testvar<jl) (
h=q-1;
testvar+=2*r;

}
else

}

h=q;
testvar+=2•r-2•delb;

sbitps(bit map,bit,h+l,xinc+l);
bit=bit+h+iinc•(l+h);

)
sbitps(bit_map,bit,hf,xinc+l);
return;

103

TLIEE/9663-10

11

.file

National Semiconductor Corporation.
CTP version 2.4 -- draw line.s -- Tue Nov 17 13:2,11:24 1987
compilation options: -o -S--KC332 -KF,1181 -KB4

"draw line.s"
.comm-_bit_map,49975,11
.set WARP,2,11,11,11
.globl draw line
.globl -sbitstab
,,align 4-

draw line:
- enter

Tl
movd
movd
subd
movd
movd
subd
cmpqd
ble
movd
movd
absd
negd

.VERT:
movd
muld
addd
cmpqd
bne
cmpqd
bgt
addr
movd
movd

T2
sbitps
exit
ret

.VNEG:
.align 4

addr
movd
absd
movd

T3
sbitps
exit
ret
.align 4

.HORZ:
cmpqd
bne
addr
movd
addr

T4
sbits
bfc
cm pd
blt
addr

alpl:
.align
sbits
addd

[r3,r4,r5,r6,r7],12

16(fp),r4 # xf
8(fp),r5 # XS
r5,r4 # delx
2,ll(fp),r6 # yf
12(fp),r7 # ys
r7,r6 # dely
$(,ll),r4 # ,ll>delx
.VERT
16(fp),r5 # xf=new xs
2,ll(fp),r7 # yf=new ys
r4,r4 # delx=JdelxJ
r6,r6 # dely=(-dely)

r7 ,rl # ys
$WARP,rl # ys*warp
r5,rl # bit=ys*WARP+xs
$(,ll),r4 # delx=,11?
.HORZ
$(,11),r6 # dely>,11?
.VNEG # if no then warp is neg
_bit_map,r,11 # set registers for sbitps
r6,r2 # r2=dely=length of line
$WARP,r3 # r3=warp

draw line
~r3,r4,r5,r6,r7]

(,II)

_bit_map,r,11
r6,r2
r2,r2
$(-WARP),r3

set reg's for sbitps
r2=(-dely)
r2=dely=length of line
r3=warp

[r3,r4,r5,r6,r7]
$(,II)

draw line

$(,II) ,r6
.DIAG
_bit_map,r,11
r4,r2
_sbitstab,r3

ok
$2,ll,ll,r2
bigsl
25,r2
4

r2,rl

dely=,11?

set reg's for sbits
r4=delx=length
table pointer

try sbits
if not more than 25, skip it

104

TL/EE/9663-11

subd r2,r4
cm pd r2,r4
blt al pl
.align 4
movd r4,r2
sbits
exit ~r3,r4,r5,r6,r7]
ret fjll bigsl: bsr b gset

ok: exit ~r3,r4,r5,r6,r7]
ret (lil)
.align 4

.DIAG:
absd r6,r5 #
cm pd r5,r4 #
bne .SLOPELTl
cmpqd $(jl),r6 #
bgt .DNEG
addr _bit_map,rftl #
movd r4,r2 #
movd $WARP + l,r3 #

TS
sbitps #
exit ~r3,r4,r5,r6,r7]
ret (fill
,align 4

.DNEG:
addr _bit_map,rftl #
movd r4,r2 #
movd $-WARP + l,r3 #

T6
sbitps #
exit ~r3,r4,r5,r6,r7]
ret (ftl)
.align 4

.SLOPELTl: #
cm pd r5,r4 #
bgt .SLOPEGTl
movd r4,r2 #
subd r5,r2 #
cm pd r5,r2 #
bgt .OCTANT2 #
cmpqd $(ftl) ,r6 #
bgt .NEGWARP
addr WARP,-4(fp) #
br .INITl
.align 4

.NEGWARP:
addr -WARP,-4(fp) #

.INITl: #
movd r4,r3 #
quow r5,r3 #
movd r3,rftl #
ashd $-1,rftl #
movd r3,r2 #
mulw r5,r2 #
subd r2,r4 #
movd r4,r2 #
tbitb $ftJ,r3 #
bfc .INIT2 #
addd r5,r2 #
.align 4

.INIT2:
movd r2,r7 #
movd r3,tos ii
movd rftl,r2 #

r5=!delyl
Ide yl=delx?

dely>jl?

set reg's for sbitps
r2=delx=length

r3=warp+l for diag

draw line

set reg•s for sbitps
r2=delx=lenght
r3=warp-l for neg slope

draw line

slope less than 1
ldelyl>delx?

r2=delx
delx-,delyl
!dely >delx-ldelyl?
if no, start octantl else octant2
dely>ftl?

pos slope then warp=positive

warp=negative for neg slope
calculate parameters
delx=dela idelyl=delb
dela/delb=q
calc m
m=q/2
calc r
delb*q
r=dela-delb•q
set r2 = r
is r3 odd?
yes, n = r
n=r+delb

pop n
push q on stack
r2=m=hftl

105

TL/EE/9663-12

)>
z

I
U'I
N
N

N
N
U')

I movd rpl,-8 (fp) # mem=m=hpartb z
<C

cmpqd $(,Ql),r7 # n=,Ql?
bne .INIT3
cmpqd $(,QI) ,r6 # dely>,Ql?
blt .INIT4
addqd $-l,r2 # h,Ql=m-1
br .INIT3

.INIT4:
subd $1,-S(fp) # hpartb=m-1

.INIT3:
addqd $1 r2 # takes care of dashes
addr _bit_map,r,Ql # set reg•s for sbits
addr _sbitstab,r3 # h,Ql=r2 bit=rl

T7
sbits
bfc .2DONE # set bits if less than 25
cm pd $2,Ql,Ql,r2
blt BIGSETl
movd r5,tos
movd r2,r5
movd $25,r2

.2DRAW25:
subd
sbits

r2,r5

addd r2,rl
cm pd r2,r5
blt .2DRAW25
movd r5,r2
movd
sbits

tos,r5

br .2DONE
BIGSETl:

bsr bigset
.2DONE:
TB

addd r2,rl # bit=bit+h,Ql+l
addd -4(fp),rl # bit=bit+h,Ql+l+warp
addd r4,r4 # 2*r
movd r5,r3 # save delb
addd r5,r5 # delb*2
addd r4,r7 # n=n+2*r
subd r5,r7 # testvar=n+2*r+delb*2
cmpqd $(,QI) ,r6 # dely>,Ql
blt .INIT5
addqd $-l,r7 # testvar-1

.INIT5:
movd tos,r2 # r2=q=h=run len9th
addqd $1,r2 # smoothes out line
movd r3,tos # push delb=count
addr sbitstab,r3 # set reg's for sbits
addr :bit_map,r,Ql
movd -4(fp),r6 # warp
addqd $-1,tos # count=count-1
cmpqd $,Ql,,Ql(sp) # count= pl?
bge .LASTRUN

.MAINLOOP: # Bresenham slice algorithm
T9

cmpqd $(,QI) ,r7 # testvar>,Ql?
ble .CASE2
addqd $-l,r2 # h=q-1
addd r4,r7 # testvar=testvar+2*r
sbits
bfc .3DRAWLAST # set bits if less than 25
cm pd $2,Ql,Ql,r2
blt BIGSET3
movd r2,tos

TL/EE/9663-13

106

movd
movd
movd

.3DRAW25:
subd
sbits
addd
cmpd
blt
movd
sbits
addd
movd
movd
br

BIGSET3:
bsr

. 3DRAWLAST:
addd

.3DONE:
addd
addd
addqd
cmpqd
blt
.align 4

.LASTRUN:
cmpqd
movd
sbits
bfc
cmpd
blt
movd
movd
movd
movd

.4DRAW25:
subd
sbits
addd
cm pd
blt
movd
sbits
addd
movd
movd
br

BIGSET4:
bsr

.4DONE:

.CASE2:

exit
ret
.align 4

addd
subd
sbits
bf c
cm pd
blt
movd
movd
movd
movd

r5,tos
r2,r5
$25,r2

r2,r5

r2,rl
r2,r5
.3DRAW25
r5,r2

r2,rl
tos,r5
tos,r2
.300NE

bigset

r2,rl

r6,rl
$1,r2
$(-1),tos
$(.fl) ,pJ(sp)
.MAINLOOP

$(.fl) ,tos
-8(fp),r2

.400NE
$2.fJpJ,r2
BIGSET4
r2,tos
r5,tos
r2,r5
$25,r2

r2,r5

r2,rl
r2,r5
.4DRAW25
r5,r2

r2,rl
tos,r5
tos,r2
.400NE

bigset

update bit

bit=bit+warp+h+l
exit h
count=count-1
count=pJ?

pop stack
hpartb=last run length

set bits if less than 25

[r3,r4,r5,r6,r7]
$(.fl)

r4,r7
r5,r7

.5DRAWLAST
$2.fJ.fJ,r2
BIGSET5
r2,tos
r5,tos
r2,r5
$25,r2

testvar=testvar+2*r
testvar=testvar+2*r-2*delb

SET BITS IF LESS THAN 25

107

TL/EE/9663-14

)>
z
I

U'I
N
N

"' "' &I)
I .5DRAW25: z

c(subd r2,r5
sbits
addd r2,rl
cmpd r2,r5
blt .5DRAW25
movd
sbits

r5,r2

addd r2,rl
movd tos,rs
movd tos,r2
br .SDONE

BIGSETS:
bsr biqset

.SDRAWIAST:
addd r2,rl # update bit

.SDONE:
addd r6,rl # bit=bit+warp+h+l
addqd $(-l) ,tos # update count
cmpqd $(.fl) ,.fl (sp) # count=.fl?
blt .MAINLOOP
cmpqd $(.fl) ,tos # pop stack
movd -S(fp),r2 # hpartb=last run lenqth
sbits
bf c .6DONE # set bits if less than 25
bsr biqset

.6DONE:
exit ~r3,r4,r5,r6,r7]
ret (.fl)
.aliqn 4

.OCTANT2: II draw line in octant 2
cmpqd $(.fl) , r6
bqt .2NEGWARP

dely>.fl?

addr WARP,-4(fp)
br .2INIT1

pos slope then warp=positive

.2NEGWARP:
addr -WARP,-4(fp) # warp=negative for neg slope

.2INITl: # calculate parameters
movd r4,r3 # dela=delx
movd r2,r5 # delb=delx-ldelyl
quow r5,r3 # dela/delb=q
movd rJ,r.fl # calc m
ashd $-l,r.fl # m=q/2
movd r3,r2 # calc r
mulw r5,r2 # delb*q
subd r2,r4 # r=dela-delb*q
movd r4,r2 # push r on stack
tbitb $.fJ,r3
bfc .2INIT2 # then n=r
addd r5,r2 # n=r+delb
.aliqn 4

.2INIT2:
movd r2,r7 # pop n
movd rJ,tos # push q on stack
movd r.fl,r2 # r2=m=h.fl
addqd $1,r2 # set one extra bit for smoothness
movd r.fl,-S(fp) # mem=m=hpartb
cmpqd $(.fJ),r7 # n=pJ?
bne .2INIT3
cmpqd $(iJ) ,r6 # dely>iJ?
blt .2INIT4
subd $l,r2 # h.fl=m-l
br .2INIT3

.2INIT4:
subd $1,-S(fp) # hpartb=m-l

.2INIT3:
TLIEE/9663-15

108

TlP

Tll

.2INIT5:

addr
movd
addqd

sbitps

addqd
subd
addd
movd
addqd
movd
addd
addd
subd
cmpqd
blt
subd

subd
cmpqd
bge

.2MAINLOOP:
Tl2

cmpqd
ble
subd
addd
movd
sbitps
movd
addqd
subd
addd
subd
cmpqd
blt
.align 4

.2LASTRUN:
cmpqd
movd
sbitps
exit
ret
.align 4

.2CASE2:
addd
subd
movd
sbitps
movd
addqd
subd
subd
cmpqd
blt
cmpqd
movd
sbitps
exit
ret
.align 4

.SLOPEGTl:
movd
subd
cm pd

bit map,rp # set reg•s for sbits
=4(fp),r3 # warp=r3 hP=r2 bit=rl
$1,r3 # octant 2 needs diag runs

draw first run length

$1,rl # update bit in x direction
r3,rl # sbitps adds extra warp
r4,r4 # 2*r
tos,r2 # q=h=next run length
$1,r2 # set extra bit for smoothness
rS,tos # push delb=count
r5,r5 # delb*2
r4,r7 # n=n+2*r
r5,r7 # testvar=n+2*r+delb*2
$(Pl ,r6 # dely>p
.2INITS
$1,r7 # testvar-1

$1,tos # count=count-1
$p,p(spl # count=P?
.2LASTRUN

Bresenham slice algorithm

$(Pl ,r7
.2CASE2

testvar>P?

$1,r2 # h=q-1
r4,r7 # testvar=testvar+2*r
r2,tos # preserve h

draw diag line of length h
tos,r2 # renew h
$1,rl # update bit in x direction
r3,rl # sbitps adds one warp extra
$1,r2 # exit h to q
$1,tos # count=count-1
$p,p(spl # count=p?
.2MAINLOOP

$(Pl ,tos # pop stack
-B(fpl,r2 # hpartb=last run length

all other reg•s set up
[r3,r4,r5,r6,r7)
$(Pl

r4,r7
r5,r7
r2,tos

tos,r2
$1,rl
r3,rl
$(11,tos
$p,p(spl
.2MAINLOOP

testvar=testvar+2*r
testvar=testvar+2•r-2•delb
preserve h
draw line of length h=q
renew h
update bit in x direction
sbitps adds one warp extra
update count
count=P?

$(Pl,tos # pop stack
-B(fp) ,r2 : hpartb=last run length

all other reg•s set up
[r3,r4,r5,r6,r7]
$(Pl

r5,r2
r4,r2
r4,r2

coordinates are rotated for these lines
r2=ldelyl
ldeiy1-delx
delx> delyl-delx?

109

> z
I

(J'I
I\)
I\)

TL/EE/9663-16

"' "' LI)
I z bgt .20CTANT2 # if no, start octantl else octant2

c(cmpqd $(p) ,r6 # dely>p?
bgt .JNEGWARP
addr WARP,-4(fp) # pos slope then warp=positive
br .JINITl

.3NEGWARP:
addr -WARP,-4(fp) # warp=negative for neg slope

.JINITl: # calculate rotated parameters
movd r5,r3 # dela=Adelyl
!llOVd r4;r5 11 delb= elx
movd r3,r4 # dela in r4
quow r5,r3 # dela/delb=q
movd rJ,rp # calc m
ashd $-l,rp # m=q/2
movd r3,r2 # calc r
mulw r5,r2 # delb*q
subd r2,r4 # r=dela-delb*q
movd r4,r2 # push r on stack
tbitb $p,r3
bfc .3INIT2 # then n=r
addd r5,r2 # n=r+delb
.align 4

.3INIT2:
movd r2,r7 # pop n
movd rJ,tos # push q on stack
movd rp,r2 # r2=m=hjl
addqd $l,r2 # set one extra bit for smoothness
movd rjl ,-8 (fp) # mem=m=hpartb
cmpqd $(P) ,r7 # n=jl?
bne .3INIT3
cmpqd $(jl) ,r6 # dely>jl?
blt .3INIT4
subd $l,r2 # hP=m-1
br .3INIT3

.3INIT4:
subd $1,-B(fp) # hpartb=m-1

.3INIT3:
addr _bit_map,rp # set reg's for sbits
movd -4(fp),r3 # warp=r3 hjl=r2 bit=rl

Tl3
sbitps # draw first run length

Tl4
addqd $1,rl # update bit in x direction
addd r4,r4 # 2*r
movd tos,r2 # q=h=next run length
addqd $l,r2 # set extra bit for smoothness
movd rS,tos # push delb=count
addd r5,r5 # delb*2
addd r4,r7 # n=n+2*r
subd r5,r7 # testvar=n+2*r+delb*2
cmpqd $(jl) ,r6 # dely>jl
blt .JINITS
subd $1,r7 # testvar-1

.JINITS:
subd $1,tos # count=count-1
cmpqd $jl ,P(sp) # count=jl?
bge .JLASTRUN

.3MAINLOOP: # Bresenham slice algorithm
TlS

cmpqd $(jl) ,r7 # testvar>jl?
ble .3CASE2
subd $1,r2 # h=q-1
addd r4,r7 # testvar=testvar+2*r
movd r2,tos # preserve h
sbitps II draw vert line of length h
movd tos,r2 # renew h

TL/EE/9663-17

110

addqd
addd
subd
cmpqd
blt
.align 4

.3LASTRUN:

.3CASE2:

cmpqd
movd
sbitps
exit
ret
.align 4

addd
subd
movd
sbitps
movd
addqd
subd
cmpqd

_blt
cmpqd
movd
sbitps
exit
ret
.align 4

.20CTANT2:
cmpqd
bgt
addr
br

.4NEGWARP:
addr

.4INIT1:

.4INIT2:

movd
movd
movd
quow
movd
ashd
movd
mulw
subd
movd
tbitb
bfc
addd
.align 4

movd
movd
movd
addqd
movd
cmpqd
bne
cmpqd
blt
subd
br

.4INIT4:
subd

.4INIT3:

$1,rl
$1,r2
$1,tos
$1J,IJ (spl
• 3MA:INLOOP

update bit in x direction
exit h to q
count=count-1
count=IJ?

$(1Jl,tos # pop stack
-B(fpl,r2 # hpartb=last run length

all other reg's set up #
[r3,r4,r5,r6,r7]
$(Ill

r4,r7
r5,r7
r2,tos

tos,r2
$1,rl
$(1l,tos
$11,IJ (spl
.3MAINLOOP
$(Ill , tos
-B(fpl,r2

testvar-testvar+2*r
testvar=testvar+2•r-2•delb
preserve h
draw line of length h=q
renew h
update bit in x direction
update count
count=IJ?

pop stack
hpartb=last run length
all other reg's set up

[r3,r4,r5,r6,r7]
$ (IJ)

$(Ill ,r6
.4NEGWARP
WARP,-4(fpl
.4INIT1

-WARP,-4(fp)

r5,r3
r5,r4
r2,r5
r5,r3
r3, rll
$(-ll,rll
r3,r2
r5,r2
r2,r4
r4,r2
$1J,r3
.4INIT2
r5,r2

r2,r7
r3,tos
r,i,r2
$1,r2
rlJ,-B(fpl
$(1J),r7
.4INIT3
$(1J),r6
.4:INIT4
$1,r2
.4INIT3

$1,-S(fpl

draw line in octant 2
dely>IJ?

pos slope then warp=positive

warp=negative for neg slope
calculate parameters
dela=delx
dela into r4
delb=delx-ldelyl
dela/delb=q
calc m
m=q/2
calc r
delb*q
r=dela-delb*q
push r on stack

then n=r
n=r+delb

pop n
push q on stack
r2=m=hll
set one extra bit for smoothness
mem=m=hpartb
n=IJ?

dely>IJ?

hlJ=m-1

hpartb=m-1

111

TL/EE/9663-1 B

)>
z

I

'" N
N

N
N
LI)

I z addr _bit_map,r,0 # set req•s for sbits
c(movd -4 (fp) ,r3 # warp=r3 h.fl=r2 bit=rl

addqd $l,r3 # octant 2 needs diaq runs
Tl6

sbitps # draw first run lenqth
Tl7

subd $1,rl # update bit
addd r4,r4 # 2*r
movd tos,r2 # q=h=next run lenqth
addqd $1,r2 # set extra bit for smoothness
movd r5,tos # push delb=count
addd r5,r5 # delb*2
addd r4,r7 # n•n+2*r
subd r5,r7 # testvar=n+2•r+delb*2
cmpqd $(.fJ),r6 # dely>,QJ
blt .4INIT5
subd $1,r7 # testvar-1

.4INIT5:
subd $1,tos # count=count-1
cmpqd $,fl,,QJ(sp) # count=,0?
bqe .4LASTRUN

.4MAINLOOP: # Bresenham slice algorithm
Tl8

cmpqd $(.fl) ,r7 # testvar>,0?
ble .4CASE2
subd $1,r2 # h=q-1
addd r4,r7 # testvar=testvar+2*r
movd r2,tos # preserve h
sbitps # draw diaq line of lenqth h
movd tos,r2 # renew h
subd $1,rl # sbitps adds one warp extra
addd $1,r2 # exit h to q
subd $1,tos # count=count-1
cmpqd $,fl,,fl(sp) # count=,fl?
blt .4MAINLOOP
.aliqn 4

.4LASTRUN:
cmpqd $(,fl) ,tos # pop stack
movd -8 (fp) I r2 # hpartb=last run lenqth
addqd $1,r2
sbitps # all other req•s set up
exit !r3,r4,r5,r6,r7]
ret (.fl)
.aliqn 4

.4CASE2:
addd r4,r7 # testvar=testvar+2*r
subd r5,r7 # testvar=testvar+2•r-2*delb
movd r2,tos # preserve h
sbitps # draw line of lenqth h=q
movd tos,r2 # renew h
subd $1,rl # sbitps adds one warp extra
subd $(1),tos # update count
cmpqd $,fl,.fl(sp) # count=,fl?
blt .4MAINLOOP
.aliqn 4
cmpqd $(,fl) ,tos # ~op stack
movd -8(fp),r2 # partb=last run lenqth
addqd $1,r2
sbitps # all other req•s set up
exit $r3,r4,r5,r6,r7)
ret (,0)

TL/EE/9663-19

112

BIGSET.S uses MOVMP and the OR instructions to set lonq horizontal lines

biqset:
.qlobl
save
movd
ashd
addd
andd

biqset
[r,,,rl,r2,r3,r4,r5,r6]
rl,r4
$-3,r4
r4,r"
$7,rl

#save reqisters we will affect
#qet current bit offset
#divide by eiqht to qet byte offset
#add in base. r" is new base pointer
#mask off msb's of bit pointer to
#qet bit = bit offset mod 8

#Now we have true base address and bit offset within base. Now we will move
#to double word aliqnment. This speeds up the MOVMPD for lonq bit sequences.

mvm:

shrt:

shrtl:

movqd
andd
xorb
addqd
ashd
subd
cmpd
bqe
cmpd

beq
movd
lshd
addd
ord
bicb
addqd
subd
movd
movd
ashd
movd
movqd
movmpd
andd
ord
restore
ret

.aliqn
cmpb
beq
movd
lshd
addd
Ord
restore
ret
.aliqn
movd
restore
ret

3,r4
r,,,r4
$3,r4
1,r4
$3,r4
rl,r4
r4,r2
shrt
$32,r4

mvm
rl,r5
$5,r5
r4,r5
r3 [r5:d] ,,, (r")
$3,r,i
4,r,i
r4,r2
r2,r4
r3,r5
$-5,r2
1,i2" (r3) , r3
4,rl

$,ixlf ,r4
r5[r4:d],,i(r,i)
~-,i,r1,r2,r3,r4,r5,r6]

4
$32,r2
shrtl
rl,r4
$5,r4
r2,r4
r3[r4:d] ,,icr,i)
,,,i,rl,r2,r3,r4,r5,r6]

4
1,i2,i (r3) ,,, (r")
,,,i,r1,r2,r3,r4,r5,r6]

#place mask in r4
#qet low two bits of address
#and qet bytes left to aliqnment
#rem += 1 (for the byte we are on)
#rem *= 8 to qet bits to aliqnment
#subtract current bit offset
#is this more than number of bits left
#it is, do it the short way
#if we are already double aliqned, qo
#do the MOVMPD

#calculate index into table
#index = 32 * bit offset
#index += run len~th
#or in required bits
#clear last two bits, and
#bump to next double
tzap sp'd bits off
#save run lenqth for a minute
#and save pointer to table
#rl = rl / 32 = number of doubles
tqet source pattern from table
Uncrement is rl
yes, use instruction
#mask off all but last 32 bits
#insert the last few bits
#restore saved reqisters

#check to see if it is exactly
#32 bits. If it is, branch.
#calculate index into table
#index = 32 * bit offset
#index +• run len~th
#or in required bits
#restore saved reqisters

#copr last entry of table
#(al 32 bits) and restore

113

TL/EE/9663-20

N
N
II)

I z
c(

I* Program driver.c feeds line vectors to LINE_DRAW.S forming Star-Burst.

#include <stdio.h>
#define xbytes 25-
#define maxx 1999
#define maxy 1999

unsigned char

main()

bit_map[xl:>ytes•maxy];

int i,count;

/* generate Star-Burst image */

for (count=l;count<=l ___ ;test~+){

for

for

(i=-;i<-maxy;i+=25)
draw_line(- 1 i,maxx,maxy-i);

(i=-;i<=maxx;i+=25)
draw_line(i,maxy,maxx-i,-);

/* Start timer and call main procedure of DRIVER.C to draw lines */

start() (
long •timer = (long *)
•timer = -; /*

main(- 1 -);

return(*timer); /*
-X6--; write a

I*
return,

zero to timer location */
Show arqc as zero, arqv ->' */
in r-, the current time */

114

*I

TUEE/9663-21

TUEE/9663-22

Drawing Circles with the
NS32CG16;
NS32CG 16 Note 1

1.0 INTRODUCTION
The NS32CG16 is a 32-bit CMOS, graphics oriented proc­
essor. It is software compatible with other Series 32000®
CPUs, with new instructions for high-speed graphics. The
NS32CG16 is designed specifically for page-oriented print­
ing technologies such as laser, LCS, LED, Ion-Deposition,
and Ink Jet.

In this applications note, a method for high-speed circle
generation will be described, using an optimized version of
Bresenham's circle algorithm.

2.0 DESCRIPTION
A circle can be described by the center coordinates (xc, ye),
the radius (r), and the width (w). With the Pythagorean theo­
rem, pixels along the path described by the equation:

(x - xc)2 + (y - yc)2 = r2

can be set for a width of w perpendicular to the tangent of
the arc.

This, however, involves substantial computation for each
point on the line. Even taking advantage of the symmetry of
circles, a large number of instructions must be executed to
calculate the path.

Bresenham's circle algorithm works by determining which of
two pixels are nearer the actual circle at each step. Then,
using symmetry, eight points on the circle's path can be
determined. Applying the width (w) to each of these eight
points yields a displayed (or imaged) circle. For the actual
derivation of Bresenham's algorithm, see Reference 1, and
Reference 2. This derivation was done by J. Michener.

Bresenham's algorithm can be implemented in the following
manner:

1. Select the first position for display as

(x1, Y1) = (O,r)

2. Calculate the first parameter as

P1 = 3 - 2r

If P1 < 0, the next position is (x1 + 1, Y1). Otherwise, the
next position is (x1 + 1, Y1 - 1).

3. Continue to increment the x coordinate by unit steps, and
calculate each succeeding parameter p from the preced­
ing one. If for the previous parameter we found that Pi <
o then

Pi+1 =Pi+ 4Xi + 6
Otherwise (for Pi :::: 0),

Pi+1 =Pi+ 4(Xi -yi) + 10

Then, if Pi+ 1 < O the next point selected is (Xi + 2, Yi+ 1).
Otherwise, the next point is (Xi + 2, Yi+ 1 - 1). The y
coordinate is Yi+ 1 = Yi· if Pi < 0 or Yi+ 1 = Yi - 1, if Pi ::::
0.

4. Repeat the procedures in step 3 until the x and y coordi-
nates are equal.

3.0 IMPLEMENTATION
With the path of the circle described, the pixels along the
path can be set using the basic symmetry of the circle. Fol­
lowing is an example of Bresenham's circle algorithm in the
C language, based on Michener's derivation.

115

National Semiconductor
Application Note 523
Dave Rand

cl rcle(xc, ye, radius,wl dth)
register unsigned Int xc,ye,radlus,width;
{

register Int y, x, p;
x • O;
y • radius;
p • 3 - 2 * radius;
while (x < y) {

setgrp(xc,ye,x ,y ,width);
if (p < O)

p 4 * x + 6;
else {

p 4 * (x - y) + 10;
y--;

}
x++;

If (y - x)
setgrp(xc,ye ,x ,y ,width);

setgrp(xc,ye ,x ,y ,width)
register Int xc,ye,x,y,width;
{

}

If ((y - x) <• (width I 2) {
hset(xc + y, ye + x,width);
hset(xc - y, ye + x,wldth);
hset(xc + y, ye - x,wldth);
hset(xc - y, ye - x,wldth);
vset(xc + x, ye + y,wldth);
vset(xc - x, ye + y,wldth);
vset(xc + x, ye - y,width);
vset(xc - x, ye - y,wldth);

}
vset(xc + y, ye + x,wldth);
vset(xc - y, ye + x,wldth);
vset(xc + y, ye - x,width);
vset(xc - y, ye - x,wldth);
hset(xc + x, ye + y,wldth);
hset(xc - x, ye + y,width);
hset(xc + x, ye - y,wldth);
hset(xc - x, ye - y,wldth);

TL/EE/9664-1

TL/EE/9664-2

The setgrp routine in the previous example uses symmetry
to set eight points of the circle. Setgrp has a special case to
handle the boundaries of the eight sections. When the dis­
tance between the boundaries is less than half the width of
the circle, both vertical and horizontal lines are imaged for
each section. The vset routine sets width pixels vertically in
the image, centered around the second argument. The hset
routine sets width pixels horizontally, centered around the
first argument. Since these cases are so well defined, the
NS32CG16 instructions SBITPS and SB/TS are used for
these routines.

The NS32CG16 implementation is very much like the C ver­
sion, but is optimized for speed. Note the use of the ADDR
instruction to do the two Pi computations, each in one line of
32000 assembly code.

)>
z

I
C1I
N
(,)

.data
xwarp: equ 2544

.cami _page,4
hlfwdth:double 0

.text ,

#bits of xwarp to get to next scan

#Bresenham's circle algorithm, as expressed in "Computer Graphics" by
#Donald Hearn and M. Pauline Baker (1986. Prentice-Hall,
#ISBN 0-13-165382-2) ,
I Inputs:
I rO • x caodlnate of centre of circle
I rl • y caodlnate of centre of circle
I r2 •width (in pixels)
I r3 • radius (in pixels) , ,
,
' ' fNotes:

' ' ,
' '

Outputs:

no registers altered
circle drawn in ram

This routine uses two spacial case line drawing routines:
a horizontal case (called HLINE)
a vertical case (called VLINE)

A general purpose line drawing algorithm could be used, however
the new 32CG16 instructions are 1111ch faster.

' , If the line is to have a width of > 25 pixels, the BIGSET algorithm
111st be added to the HLINE routine. No other changes are required.

' circle: save
111vd
lshd
movd
1111vqd
movd
movqd
subd
subd
br
.align

cirlp: bsr
cmpqd
blt
addr
addqd

cl rtest: cmpd
ble
br

.align
pgeO: lllOvd

subd
addr
addqd
acldqd
cmpd
ble

cirotl: bne
bsr

[r4, rs, r6, r7]
r2,r7
$-1,r7
r7,hlt.dth
0,r4
r3,r5
3,r6
r3,r6
r3,r6
clrtest
4

setgrp
0,r6
pgeO
6(r6)[r4:d] ,r6
1.r4
r4,r5
cirlp
clrotl

4
r4,r7
r5,r7

fsave our work Ing regi sters
fget current width
fdlvi de by two
fend store It I/Way
fxl • 0
fyl • radius
Ip • 3 - (radius * 2)

fset a group of points
fis P less than zero?
fno, it is not. skip
lp+•4*x1+6
fxl ++
Ifs xl <• yl ?
flt Is. loop

It• xl
ft • xl - yl

10(r6)[r7:d] ,r6 Ip+- 4 * (xl - yl) + 10
-1,r5 fyl --
1,r4 fxl ++
r4,r5 fis xl <• yl ?
cirlp flt Is. Loop
cirout fif xl I• yl, get out
setgrp felse set last group

cl rout: restore [r4, rS, r6, r7] #restore working registers
ret 0 land return

' fSetgrp sets eight points on a circle, given starting x and y, and the
fcurrent xoffset and y offset.

' I Inputs:

' rO • centerpolnt of circle (x coodlnate)

116

TL/EE/9664-3

TL/EE/9664-4

)>
z

I
UI I rl • centerpolnt of circle (y coodlnate) !\)

I r2 • 1 lne width w
I r4 • x offset
I r5 • y offset
I
I Ouputs:
I all registers preserved.
I

.align 4
setgrp: movd r6,tos #get two temporary values

movd r7,tos
movd r0,r6 #save old x
movd rl,r7 land y
movd r5,rl
subd r4,rl lrl • (yl - xl)
cmpd rl ,hlfwdth Ii f the difference Is less than
ble sgl:w fhalf the width, fill In the edges
movd r7 ,rl #restore y
addd r4,r0 Ix +• xl
addd r5,rl ly +• yl
bsr vllne ldo a vl lne
movd r6,r0 frestore x and y
movd r7 ,rl
addd r4,r0 Ix +• xl
subd r5,rl ly -· yl
bsr vline
movd r6,r0 #restore x and y
movd r7 ,rl
subd r4,r0 Ix -• xl
addd r5,rl ly +• yl
bsr vltne
movd r6,r0 #restore x and y
movd r7,rl
subd r4,r0 fx -• xl
subd r5,rl ly -· yl
bsr vl ine

lll)Vd r6,r0 frestore x and y
lll)Vd r7,rl
addd r5,r0 #x +• yl
addd r4,rl ly ... xl
bsr hline
movd r6,r0 #restore x and y
movd r7 ,rl
addd r5,r0 Ix +• yl
subd r4,rl ly -• xl
bsr hl ine
lll)Vd r6,r0 #restore x and y
movd r7,rl
subd r5,r0 Ix -• yl
addd r4,rl ly +• xl
bsr hllne
lll)Vd r6,r0 #restore x and y
movd r7,rl
subd r5,r0 Ix -= yl

TL/EE/9664-5

117

Cf)
C'I
U)

I z subd r4,r1 fy -• xl cc bsr hllne
movd r6,r0 lrestore x and y
movd r7,r1
movd tos,r7 fand unstack
movd tos,r6
ret 0

sg1: llOvd r7,r1 frestore y
addd r4,r0 fx +• xl
addd r5,r1 fy .. yl
bsr hllne fdo a hllne
bsr vline fand a vltne
lllOvd r6,r0 frestore x and y
movd r7,r1
addd r4,r0 fx +- xl
subd rS,rl fy -· yl
bsr hllne
bsr vline
lllOvd r6,r0 frestore x and y
movd r7,r1
subd r4,r0 fx -• xl
addd rS,rl fy .. yl
bsr hllne
bsr vllne
llOYd r6,r0 frestore x and y
movd r7,r1
subd r4,ro fx -· xl
subd r5,r1 fy -· yl
bsr hline
bsr vline

movd r6,r0 frestore x and y
movd r7,r1
addd rS,rO fx .. yl
addd r4,rl fy +- xl
bsr vline
bsr hline
movd r6,r0 frestore x and y
movd r7,rl
addd rS,rO fx +- yl
subd r4,r1 ly -• xl
bsr vline
bsr hllne
movd r6,r0 frestore x and y
movd r7,rl
subd rS,rO Ix -· yl
addd r4,r1 ly +• xl
bsr vline
bsr hline
movd r6,r0 frestore x and y
movd r7,rl
subd r5,r0 Ix -· y1
subd r4,r1 ly -• xl
bsr vline

TUEE/9664-6

118

bsr hllne
movd r6,r0 #res tore x and y
movd r7,rl
mvd tos,r7 #and unstack
movd tos,r6
ret 0

' #A vertical line drawing algorltlm, making use of the SBITPS Instruction

' I Inputs:
I rO • x coodi nate of ll ne
I rl • centerpoi nt of y coordinate of ll ne
I r2 • line length

' I Outputs:
I no registers altered.
I ll ne drawn In memory.

' .align 4

vline: save [r0,rl,r2,r3] #save work Ing reg I sters
subd hlfwdth, rl #y -• half of width to centre vline
addr l(xwarp-1), r3 #r3 • xwarp -1

indexd rl ,r3, rO #bit off • y * (xwarp} + x
addqd 1,r3 #move to correct warp va 1 ue

movd ...J>age, rO #page address in rO

SBITPS #set bit perpendicular string
restore [r0,rl,r2, r3] #restore registers
ret 0

' #A horizontal line drawing algoritlm, using SBITS.

' I Inputs:
I rO • centerpoi nt of x coordinate
I rl • y coodl nate of ll ne
I r2 • l lne length

' .align 4

hllne: [rO, rl, r3] #save working regl sters save
subd
lndexd
movd
addr
SBITS

hlfwdth,rO Ix -• half of width to centre values
rl,(xwarp - l),rO I bit off"' (y * xwarp) + x
...J>lge, rO #page address in rO
stab,r3 #address of sbits table

restore [rO, rl. r3]
ret 0

119

TL/EE/9664-7

Figure 1 shows this algorithm 'at work'. 20 circles of radius
350 pixels, and widths of 1 to 20 pixels are shown. A full
listing of this test program .is shown in Figure 2.

4.0TIMING

The execution speed of this algorithm is dependent on the
radius of the circle, and the circle's width. The test program

supplied executes in 2.92 seconds on a NS32016 at
10 MHz with no wait states. The execution time on the
NS32CG16 at 15 MHz with no wait states is 1.54 seconds.
By using macros for the VLINE and HLINE routines, instead
of subroutine calls, the time can be further reduced to 1.39
seconds.

TL/EE/9664-8

FIGURE 1

120

.data

.set xwarp,2544

.conm _page,4
#bits of xwarp to get to next scan

hlfwdth:.double e
.text

#Test is a C - callable function that creates Figure 1.

_test:
.globl test
save [r3,r4,r5,r6,r7]
addr iil499,r9 #start at x=499
addr &l499,r1 # y=499
movqd 1,r2 #width = 1
addr Q359,r3 #radius = 359
addr Q29,r7 #we want to do 29 circles

lp: bsr circle #do a circle
addr 89Cr9>,r9 #x += 89
addqd 1,r2 #width+= 1
acbd ·1,r7,lp #loop for all 29 circles
restore Cr3,r4,r5,r6,r7J
ret e #and return

#Bresenham's circle algorithm, as expressed in "Computer Graphics" by
#Donald Hearn and M. Pauline Baker (1986, Prentice-Hall,
#ISBN 9·13-165382·2)

#Notes:

circle:

Inputs:

DJtputs:

re = x coodinate of centre of circle
r1 = y coodinate of centre of circle
r2 =width (in pixels)
r3 = radius (in pixels>

no registers altered
circle drawn in ram

This routine uses two special case line drawing routines:
a horizontal case (called HLINE)
a vertical case (called VLINE)

A general purpose line drawing algorithm could be used, however
the new 32CG16 instructions are much faster.
If the line is to have a width of > 25 pixels, the BIGSET algorithm
must be added to the HLINE routine. No other changes are required.

save
movd

[r4,r5,r6,r7]
r2,r7

#save our working registers
#get current width

FIGURE 2

121

TL/EE/9664-9

)>
z

I
U'I
N
(,)

Cf)
N
II)

I z cc lshd
movd
movqd
movd
movqd
subd
subd
br
.align

cirlp: bsr
c~
bit
addr
addqd

cirtest:c~
ble
br

.align
pgelll: movd

subd

S·1,r7
r7,hlfwdth
IJ,r4
r3,r5
3,r6
r3,r6
r3,r6
cirtest
4
setgrp
IJ,r6
pget
6(r6>Cr4:d] ,r6
1,r4
r4,r5
cirlp
cirout

4
r4,r7
r5,r7

#divide by two
#and store it away
#x1 = Ill
#y1 = radius
#p = 3 - (radius * 2>

#set a group of points
#is P less than zero?
#no, it is not. skip
#p += 4 * x1 + 6
#x1 ++
#is x1 <= y1 ?
#it is. Loop

#t = x1
#t = x1 - y1

addr 1111<r6)Cr7:dl,r6 #p += 4 * <x1 - y1) + ,.
addqd -1,rS #y1 ·-
addqd 1, r4 #x1 ++
c~ r4,r5 #is x1 <= y1 ?
ble cirlp #it is. Loop

cirout: restore Cr4,r5,r6,rn #restore working registers
ret • #and return

#Setgrp sets eight points on a circle,
#current xoffset and y offset.

given starting x and y, and the

Inputs:

Ouputs:

re = centerpoint of circle (x coodinate)
r1 = centerpoint of circle (y coodinate)
r2 = tine width
r4 = x offset
rs ,. y offset

all registers preserved.

.align 4
setgrp: movd r6,tos #get two temporary values

movd r7, tos
movd rlll,r6 #save old x

FIGURE 2 (Continued)

122

TUEE/9664-10

l> z
I

movd r1,r7 #and y U'I
N

movd r5,r1 w
subd r4,r1 #r1 " (y1 • x1)
cq>d r1 ,hlfwdth #if the difference is less than
ble sg1 #half the width, fill in the edges
movd r7,r1 #restore y
addd r4,r9 #x +.. x1
addd r5,r1 #y += y1
bsr vline #do a vline
movd r6,r9 #restore x and y
movd r7,r1
addd r4,rll #x += x1
subd r5,r1 #y ·= y1
bsr vline
movd r6,rll #restore x and y
movd r7,r1
subd r4,rll #x ·= J(1
addd r5,r1 #y += y1
bsr vline
movd r6,rll #restore x and y
movd r7,r1
subd r4,rll h ·= x1
subd r5,r1 #y ·= y1
bsr vline

movd r6,rll #restore x and y
movd r7,r1
addd r5,rll #J(+= y1
addd r4,r1 #y += x1
bsr hline
movd r6,rll #restore x and y
movd r7,r1
addd r5,rll #x += y1
subd r4,r1 #y ·= x1
bsr hi ine
movd r6,rll #restore x and y
movd r7,r1
subd r5,rll #x ·= y1
addd r4,r1 #y += x1
bsr hline
movd r6,rll #restore x and y
movd r7,r1
subd r5,rll h ·= y1
subd r4,r1 #y ·= K1
bsr hline
movd r6,rll #restore x and y
movd r7,r1
movd tos,r7 #and unstack

TL/EE/9664-11

FIGURE 2 (Continued)

123

CW)
N
U)

I z movd tos,r6
cc ret •

sg1: movd r7,r1 #restore y
addd r4,rt #x += x1
addd r5,r1 #y += y1
bsr hline #do• hline
bsr vllne #and e vline
movd r6,rt #restore x end y
movd r7,r1
addd r4,rt #x += x1
subd r5,r1 #y ... y1
bsr hline
bsr vline
movd r6,rt trestore x and y
lllOvd r7,r1
subd r4,rt #x ·= x1
addd r5,r1 #y +• y1
bsr hline
bsr vline
movd r6,rt #restore x and y
movd r7,r1
subd r4,rt #x ·• x1
subd r5,r1 #y ·• y1
bsr hline
bsr vline

movd r6,rt trestore x and y
movd r7,r1
addd r5,rt #x +• y1
addd r4,r1 #y +• x1
bsr vline
bsr hline
movd r6,rll #restore x and y
movd r7,r1
addd r5,rt #x .. y1
subd r4,r1 #y ·• x1
bsr vline
bsr hllne
movd r6,rt trestore x and y
movd r7,r1
subd r5,rt #x ·= y1
addd r4,r1 #y += x1
bsr vline
bsr hline
movd r6,rll #restore x and y
movd r7,r1
subd r5,rt #x ·= y1

TUEE/9664-12

FIGURE 2 (Continued)

124

subd
bsr
bsr
movd
lllOVd
lllOvd
movd
ret

r4,r1
vline
hi ine
r6,rt
r7,r1
tos,r7
tos,r6

•

fly ·• x1

#restore x and y

#and ""5tack

#A vertical line drawing algorithm, making use of the S81TPS instruction.

vllne:

Inputs:

outputs:

rt = x coodinate of line
r1 = centerpoint of y coordinate of line
r2 = line length

no registers altered.
line drawn in lll!lllOry.

4
#save working registers

.align
save
subd
addr
indexd
addqd
lllOvd
SBITPS

Crt, r1, r2, r3J
hlfwdth,r1
acxwarp•1),r3
r1,r3,l'f
1,r3
_page,r•

fly ·• half of width to centre vline
#r3 • xwarp ·1
tbit off • y * (xwarp> + x
""°"9 to correct warp value
#page address In r•

#set bit perpendicular string

• Start of SBITPS enulation code
.align 4

sblp: sbltd r1,t<l'f> #set required bit
addd r3,r1 #add the bit warp
acbd ·1,r2,sblp #loop for the rll

• End of SBITPS -.ilatlon code
restore Crt,r1,r2,r3J #restore registers
ret •

#A horizontal line drBlfing algorithm, using sans.

Inputs:
rt = centerpoint of x coordinate
r1 = y coodinate of line
r2 = line length

.align 4

FIGURE 2 (Continued)

125

TL/EE/9664-13

)>
z

I
Cl'I
N
w

hlfne:

fl

SIWI
sWd
indelld

111111d
addr
sans

[rf,r1,r3J
hlfwdth,rl
r1,S(11werp •
_page,rt
stab,r3

tseve working registers
Ill ·• helf of width to centre values

1>,rl I bft off • <v * 11warp> + 11
#page address In rl
#address of sbt ts table

• stert of sens -.ilation cede
llllvqd 7, r3
andd r1,r3

addd r3,r3
eddd r3,r3
eddd r3,r3
eddd r3,r3
addd r3,r3
eddd r2,r3
eshd S·3,r1

,,,, z
,,,, 4
,,,, 8
,,,, 16
,,,, 32

ord stab[r3:dJ,l<rt>Cr1:bJ
• end of sans -.ilation code

restore Crt,r1,r3J
ret I

.date
atab: .double h1....,,h 1,h1111H"3,h1"""'7

.double h11111111111tf,h 1tltllllllll1f,h•lllflllllt3f,h 1"""7f

.double h'tltllllllff,h 1119"1ff,h1tltlllllt3ff,h'lllll7ff

.double h'""'fff,h1tltllll1fff,h'llN3fff,h1"917fff

.double h1111111ffff,h•tltlll1ffff,h•ltl3ffff,h1"87ffff

.double h'lllfffff,h 1111fffff,h'llt3fffff,h1117fffff

.double h11tffffff,h'l1ffffff,h'l3ffffff ,h197ffffff

.double h'lfffffff,h 11fffffff,h13fffffff ,h17fffffff

.double h1.....,ll,h1""'912,h1t1t111""6,h 1"""'8

.double h1-1e,h1.....,3e,h1t1t1111H7e,h'l""9fe

.double h'""'1fe,h'l""3fe,h1'911117fe,h 1....,ffe

.double h'llll1ffe,h 1""3ffe,h'tltlll97ffe,h 19'llfffe

.double h1"81fffe,h'llllfffe,h1tltlll7fffe,h'lllffffe

.double h1111ffffe,h1"3ffffe,h1 '97ffffe,h 1llfffffe

.double h191fffffe,h 113fffffe,h117fffffe,h1lffffffe

.double h11ffffffe,h13ffffffe,h17ffffffe,h•fffffffe

.double h1-9',h11H""4,h1'99'llltc,h1-1c

.double h'll""3c,h 19111117c,h1llll9'fc,h 1""91fc

.double h'""'3fc,h1111917fc,h'lllllffc,h1"911ffc

.double h1tltlll93ffc,h•llll7ffc,h'l"9fffc,h 1tltlll1fffc

.double h1'9'3fffc,h 1"87fffc,h'9'9ffffc,h'll1ffffc

.double h'Nlffffc,h 1N7ffffc,h 1 Nfffffc,h 191fffffc

.dolJ>le h'93fffffc,h'l7fffffc,h 1lffffffc,h 11ffffffc

FIGURE 2 (Continued)

126

Tl/EE/9664-14

.double h'3ffffffc,h 17ffffffc,h 1 fffffffc,h'fffffffc

.double h'f9999999,h 1999999f8,h 199999918,h'99999938

.double h199999978,h 1eeeeee1e,h 1999991f8,h'999993f8

.double h1999997f8,h'99999ff8,h 199991ff8,h 199993ff8

.double h199997ff8,h 19999fff8,h 19991fff8,h'9993fff8

.double h'9997fff8,h'999ffff8,h'991ffff8,h'993ffff8

.double h1997ffff8,h'99fffff8,h 191fffff8,h 193fffff8

.double h'97fffff8,h'9ffffff8,h'1ffffff8,h'3ffffff8

.double h17ffffff8,h'fffffff8,h'fffffff8,h 1 fffffff8

.double h1 teeeeeee,h•eeeeee1e,h 1eeeeet39,h 1 teeeee1e

.double h'999999f9,h'999991f9,h'999993f9,h'999997f9

.double h199999ff9,h'99991ff9,h'99993ff9,h'99997ff9

.double h'9999fff9,h'9991fff9,h'9993fff9,h'9997fff9

.double h'999ffff9,h'991ffff9,h'993ffff9,h'997ffff9

.double h'99fffff9,h'91fffff9,h'93fffff9,h'97fffff9

.double h19ffffff9,h 1 1ffffff9,h 13ffffff9,h'7ffffff9

.double h'fffffff9,h 1 fffffff9,h'fffffff9,h 1 fffffff9

.double h199999999,h 199999929,h 199999969,h'999999e9

.double h'999991e9,h'999993e9,h'9999'7e9,h'99999fe9

.double h'99991fe9,h'99993fe9,h'99997fe9,h'9999ffe9

.double h'9991ffe9,h'9993ffe9,h'9997ffe9,h'999fffe9

.double h'991fffe9,h'9'3fffe9,h'997fffe9,h'99ffffe9

.double h'91ffffe9,h'93ffffe9,h'97ffffe9,h'9fffffe9

.double h1 1fffffe9,h 13fffffe9,h'7fffffe9,h•ffffffe9

.double h1 ffffffe8,h'ffffffe9,h 1ffffffe9,h'ffffffe9

.double h1 eeeeeeee,h•eeeeee4t,h•eeeeeect,h•eeeee1ce

.double h'f99993c9,h 1999997cf,h'99999fcf,h'99991fcf

.clolble h'99993fc9,h 19't97fc9,h'9999ffcf,h•eee1ffct

.double h'9993ffc9,h'f997ffc9,h'9f9fffcf,h'f91fffc9

.double h'993fffc9,h'9f7fffct,h'99ffffc9,h'f1ffffct

.double h193ffffc9,h 197ffffc9,h•tfffffc9,h 1 1fffffce

.c:lcxble h13fffffct,h 17fffffc9,h'ffffffc9,h'ffffffct

.c:lcxble h1ffffffcf,h 1ffffffct,h 1 ffffffc9,h'ffffffc9

.c:lcxble h1eeeeeeee,h 1eeeeeese,h•eeeee1ee,h•eeeee3ee

.double h1eeeee1se,h 1eeeee1se,h•eeee11ee,h 1eeee3tBe

.double h•eeee11se,h 1e1ee11se,h•eee111ee,h 1eee3ff8'

.double h'P997ff8',h'99Pfff8',h'991fff8f,h'993fff89

.double h'997fff89,h'99ffff8',h'91ffff89,h 193ffff8'

.double h'97ffff8',h'ffffff8',h'1fffff89,h'3fffff8P

.double h1 7fffff8',h 1 ffffff8f,h 1 ffffff89,h 1 ffffff89

.double h1 ffffff8',h 1ffffff8',h 1 ffffff8',h 1 ffffffff
TL/EE/9664-15

FIGURE 2 (Continued)

5.0 CONCLUSIONS

The NS32CG 16 provides several instructions that increase
the speed of imaging common graphic items such as cir­
cles, lines, and ellipses. The NS32CG16's high code densi­
ty, and fast execution, make it ideal for intensive graphics
processing.

This algorithm does, however, show an apparent 'thinning'
on the 45° boundaries, when the width of the circle is great­
er than five pixels. An alternate algorithm will be presented

127

in a future applications note. This algorithm is optimized for
speed.

6.0 REFERENCES

1. Hearn, Donald and M. Pauline Baker, (1986). Computer
Graphics, Englewood Cliffs, N.J., Prentice-Hall, 65-69.

2. Foley, James D. and Van Dam, Andries, (1982). Funda­
mentals of Interactive Computer Graphics, Reading, Massa­
chusetts, Addison-Wesley, 441-446.

)>
z
I c.n

N w

Introduction to
Bresenham's Line
Algorithm Using the SBIT
Instruction; Series 32000®
Graphics Note 5

1.0 INTRODUCTION

Even with today's achievements in graphics technology, the
resolution of computer graphics systems will never reach
that of the real world. A true real line can never be drawn on
a laser printer or CRT screen. There is no method of accu­
rately printing all of the points on the continuous line
described by the equation y = mx + b. Similarly, circles,
ellipses and other geometrical shapes cannot truly be imple­
mented by their theoretical definitions because the graphics
system itself is discrete, not real or continuous. For that
reason, there has been a tremendous amount of research
and development in the area of discrete or raster mathemat­
ics. Many algorithms . have been developed which "map"
real-world images into the discrete space of a raster device.
Bresenham's line-drawing algorithm (and its derivatives) is
one of the most commonly used algorithms today for de­
scribing a line on a raster device. The algorithm was first
published in Bresenham's 1965 article entitled "Algorithm
for Computer Control of a Digital Plotter". It is now widely
used in graphics and electronic printing systems. This appli­
cation note will describe the fundamental algorithm and
show an implementation on National Semiconductor's Se­
ries 32000 microprocessor using the SBIT instruction, which
is particularly well-suited for such applications. A timing dia­
gram can be found in Figure B at the end of the application
note.

2.0 DESCRIPTION

Bresenham's line-drawing algorithm uses an iterative
scheme. A pixel is plotted at the starting coordinate of the
line, and each iteration of the algorithm increments the pixel
one unit along the major, or x-axis. The pixel is incremented
along the minor, or y-axis, only when a decision variable
(based on the slope of the line) changes sign. A key feature
of the algorithm is that it requires only integer data and sim­
ple arithmetic. This makes the algorithm very efficient and
fast.

Y-axis !--+--+--+--+-+-+-+-+-+-+-+-+-

Y1+1........ ~!!!'ITH'

y, ~ :Jii~!TI!ff

Uii~1' T
x-axis

National Semiconductor
Application Note 524
Nancy Cossitt

The algorithm assumes the line has positive slope less than
one, but a simple change of variables can modify the algo­
rithm for any slope value. This will be detailed in section 2.2.

2.1 Bresenham's Algorithm for O < slope < 1

Figure 1 shows a line segment superimposed on a raster
grid with horizontal axis X and vertical axis Y. Note that Xi
and Yi are the integer abscissa and ordinate respectively of
each pixel location on the grid.

Given (xi, Yi) as the previously plotted pixel location for the
line segment, the next pixel to be plotted is either (xi + 1, Yi)
or (xi + 1, Yi + 1). Bresenham's algorithm determines
which of these two pixel locations is nearer to the actual line
by calculating the distance from each pixel to the line, and
plotting that pixel with the smaller distance. Using the famil­
iar equation of a straight line, y = mx + b, the y value
corresponding to Xi + 1 is ·

y = m(Xi + 1) + b

The two distances are then calculated as:

and,

d1 = y - Yi

d1 = m(Xi + 1) + b - Yi

d2 = (Yi + 1) - Y

d2 = (Yi + 1) - m(Xi + 1) - b

d1 - d2 = m(Xi + 1) + b - Yi - (Yi + 1) + m(>q + 1) + b

d1 - d2 = 2m(Xi + 1) - 2yi + 2b - 1

Multiplying this result by the constant dx, defined by the
slope of the line m = dy/dx, the equation becomes:

dx(d1 -d2) = 2dy(xi) - 2dx(yi) + c

where c is the constant 2dy + 2dxb - dx. Of course, if d2
> d1, then (d1 -d2) < 0, or conversely if d1 > d2, then (d1-
d2) > 0. Therefore, a parameter Pi can be defined such that

Pi = dx(d1 -d2)

Pi = 2dy(Xi) - 2dx(yi) + c

TL/EE/9665-1 TL/EE/9665-2

FIGURE 1 Distances d1 and d2 are compared.
The smaller distance marks next pixel to be plotted.

FIGURE2

128

If Pi > 0, then d1 > d2 and Yi + 1 is chosen such that the
next plotted pixel is (xi + 1, Yi). Otherwise, if Pi < 0, then d2
> d1 and (xi + 1, Yi + 1) is plotted. (See Figure 2.)

Similarly, for the next iteration, Pi + 1 can be calculated and
compared with zero to determine the next pixel to plot. If
Pi + 1 < 0, then the next plotted pixel is at (xi + 1 + 1,
Yi + 1); if Pi + 1 > 0, then the next point is (Xi + 1 + 1,
Yi + 1 + 1). Note that in the equation for Pi + 1. Xi + 1 = Xi
+ 1.

Pi + 1 = 2dy(xi + 1) - 2dX(Yi + 1) + c
Subtracting Pi from Pi + 1, we get the recursive equation:

Pi + 1 = Pi + 2dy - 2dx(yi + 1 - Yi)
Note that the constant c has conveniently dropped out of
the formula. And, if Pi < 0 then Yi + 1 = Yi in the above
equation, so that:

Pi + 1 = Pi + 2dy
or, if Pi > 0 then Yi + 1 = Yi + 1, and

Pi + 1 = Pi + 2(dy-dx)
To further simplify the iterative algorithm, constants c1 and
c2 can be initialized at the beginning of the program such
that c1 = 2dy and c2 = 2(dy-dx). Thus, the actual meat of
the algorithm is a loop of length dx, containing only a few
integer additions and two compares (Figure 3).

2.2 For Slope < O and !Slope! > 1
The algorithm fails when the slope is negative or has abso­
lute value greater than one (ldyl > ldxl). The reason for this
is that the line will always be plotted with a positive slope if
Xi and Yi are always incremented in the positive direction,
and the line will always be "shorted" if ldxl < ldYI since the
algorithm executes once for every x coordinate (i.e., dx
times). However, a closer look at the algorithm must be tak­
en to reveal that a few simple changes of variables will take
care of these special cases.

For negative slopes, the change is simple. Instead of incre­
menting the pixel along the positive direction (+ 1) for each
iteration, the pixel is incremented in the negative direction.
The relationship between the starting point and the finishing
point of the line determines which axis is followed in the
negative direction, and which is in the positive. Figure 4
shows all the possible combinations for slopes and starting
points, and their respective incremental directions along the
X and Y axis.

do while count < > dx

Another change of variables can be performed on the incre­
mental values to accommodate those lines with slopes
greater than 1 or less than -1. The coordinate system con­
taining the line is rotated 90 degrees so that the X-axis now
becomes the Y-axis and vice versa. The algorithm is then
performed on the rotated line according to the sign of its
slope, as explained above. Whenever the current position is
incremented along the X-axis in the rotated space, it is actu­
ally incremented along the Y-axis in the original coordinate
space. Similarly, an increment along the Y-axis in the rotat­
ed space translates to an increment along the X-axis in the
original space. Figure 4a., g. and h. illustrates this transla­
tion process for both positive and negative lines with various
starting points.

3.0 IMPLEMENTATION INC

Bresenham's algorithm is easily implemented in most pro­
gramming languages. However, C is commonly used for
many application programs today, especially in the graphics
area. The Appendix gives an implementation of Bresen­
ham's algorithm in C. The C program was written and exe­
cuted on a SYS32/20 system running UNIX on the
NS32032 processor from National. A driver program, also
written in C, passed to the function starting and ending
points for each line to be drawn. Figure 6 shows the output
on an HP laser jet of 160 unique lines of various slopes on a
bit map of 2,000 x 2,000 pixels. Each line starts and ends
exactly 25 pixels from the previous line.

The program uses the variable bit to keep track of the cur­
rent pixel position within the 2,000 x 2,000 bit map (Figure
5). When the Bresenham algorithm requires the current po­
sition to be incremented along the X-axis, the variable bit is
incremented by either + 1 or -1, depending on the sign of
the slope. When the current position is incremented along
the Y-axis (i.e., when p > 0) the variable bit is incremented
by +warp or -warp, where warp is the vertical bit displace­
ment of the bit map. The constant last bit is compared with
bit during each iteration to determine if the line is complete.
This ensures that the line starts and finishes according to
the coordinates passed to the function by the driver pro­
gram.

if (p < 0) then p+ = cl
else

p+ = c2
next_y = prev_y + y_inc

next_x = prev_x + x_inc
plot(next_x,next_y)
count + = 1

/* PSEUDO CODE FOR BRESENHAM LOOP */

FIGURE3

129

)>
z

I
c.n
N ,a:..

..,.
N ..,,

I z cc

p1

p1

p2

m=lnf

-1 <m<O

p2

start p1: x_inc = y'_inc = O
y_inc = x'_inc = +1

start p2: x_inc = y' _inc = O
y__inc = x' _inc = - 1

a.

start p1: x.._inc = + 1
y__inc = -1

start p2: x_inc = - 1
y__inc = +1

p2

c.

start p1: x_inc = + 1
y__inc = -1

start p2: x_inc = -1
y__inc = +1

p2

e.

TUEE/9665-3

TUEE/9665-5

TL/EE/9665-7

start p1: x_inc = y' _inc = + 1
y__inc = x' _inc = -1

start p2: x_inc = y' _inc = - 1
y__inc = x' _inc = + 1

TL/EE/9665-9

g.

p1

m=O

p1

p1

m>1

p1

Note: a., g., and h. are rotated 90 degrees left and x', y' refer to the original axis.

FIGURE4

130

p2

b.

p2

d.

f.

h.

start p1: x_inc = + 1
y__inc = O

start p2: x_inc = - 1
y__inc = o

TUEE/9665-4

start p1: x_inc = + 1
y__inc = + 1

start p2: x.._inc = -1
y__inc = -1

TL/EE/9665-6

start p1: lC.-inc = + 1
y_inc = +1

p2 start p2: x_inc = -1
y__inc = -1

TL/EE/9665-8

start p1: x_inc = y' _incl = -1
y__inc = x'__inc = + 1

start p2: lC.-inc = y' _inc = + 1
y__inc = x' _inc = -1

TUEE/9665-10

bit= 0-11m111111111-.1111111111111111-.i~"" ~~ 11m1~-.11111111111111-.i- bit= 1,999

--+--+-+--+--+--+-+-+-+-+--,__,,__,,___.,___.--+--+--+--+~--i.~-..----> warp = 2,000

y

v
••'JY:•·t...

Bit Map is 500 kbytes, 2k x 2k Bits
Base Address of Bit Map is 'BiLMap'

FIGURE 5

131

TL/EE/9665-11

)>
z

I
U1
N
.s:i.

TL/EE/9665-12

FIGURE 6. Star-Burst Benchmark-This Star-Burst Image was done on a 2k x 2k pixel bit map.
Each line Is 2k pixels in length and passes through the center of the image, bisecting

the square. The lines are 25 pixel units apart, and are drawn using the LINLDRAW.S routine. There
are a total of 160 lines. The total time for drawing this Star-Burst Is 2.9 sec on 10 MHz NS32C016.

132

4.0 IMPLEMENTATION IN SERIES 32000 ASSEMBLY:
THE SBIT INSTRUCTION

National's Series 32000 family of processors is well-suited
for the Bresenham's algorithm because of the SBIT instruc­
tion. Figure 7 shows a portion of the assembly version of the
Bresenham algorithm illustrating the use of the SBIT instruc­
tion. The first part of the loop, handles the algorithm for p <
0 and .CASE2 handles the algorithm for p > 0. The main
loop is unrolled in this manner to minimize unnecessary
branches (compare loop structure of Figure 7 to Figure 3).
The SBIT instruction is used to plot the current pixel in the
line.

The SBIT instruction uses bit_map as a base address from
which it calculates the bit position to be set by adding the
offset bit contained in register r1. For example, if bit, or R1,
contains 2,000*, then the instruction:

sbitd r1 ,@ bit_map

will set the bit at position 2,000, given that bit_map is the
memory location starting at bit O of this grid. In actuality, if
base is a memory address, then the bit position set is:

offset MODS

within the memory byte whose address is:

base + (offset DIV 8)

So, for the above example,

2,000 MOD 8 = 0

bit_map + 2,000 DIV 8 = bit_map + 250

Thus, bit O of byte (bit_map + 250) is set. This bit corre­
sponds to the first bit of the second row in Figure 5.

'All numbers are in decimal.

Main loop of Bresenham algorithm
.LOOP: #p < O: move in x direction only

cmpqd $0,r4
ble .CASE2
addd r0,r4
addd r5,rl
sbitd rl,@_bit_map
cm pd r3,rl
bne .LOOP
exit [r3,r4,r5,r6,r7]
ret $0
.align 4

.CASE2: #P > 0: move in x and y direction
addd r2,r4
addd r7,rl
addd r5,rl
sbitd rl,@_bit_map
cmpd rl,r3
bne .LOOP
exit [r3,r4,r5,r6,r7]
ret $0

The SBIT instruction greatly increases the speed of the al­
gorithm. Notice the method of setting the pixel in the C pro­
gram given in the Appendix:

bit_map[bit!Bl I = bit_pos[(bit & 7)]

This line of code contains a costly division and several other
operations that are eliminated with the SBIT instruction. The
SBIT instruction helps optimize the performance of the pro­
gram. Notice also that the algorithm can be implemented
using only 7 registers. This improves the speed perform­
ance by avoiding time-consuming memory accesses.

5.0 CONCLUSION

An optimized Bresenham line-drawing algorithm has been
presented using the SYS32/20 system. Both Series 32000
assembly and C versions have been included. Figure B
presents the various timing results of the algorithm. Most of
the optimization efforts have been concentrated in the main
loop of the program, so the reader may spot other ways to
optimize, especially in the set-up section of the algorithm.

Several variations of the Bresenham algorithm have been
developed. One particular variation from Bresenham himself
relies on "run-length" segments of the line for speed opti­
mization. The algorithm is based on the original Bresenham
algorithm, but uses the fact that typically the decision vari­
able p has one sign for several iterations, changing only
once in-between these "run-length" segments to make one
vertical step. Thus, most lines are composed of a series of
horizontal "run-lengths" separated by a single vertical jump.
(Consider the special cases where the slope of the line is
exactly 1, the slope is O or the slope is infinity.) This algo­
rithm will be explored in the NS32CG16 Graphics Note 5,
AN-522, "Line Drawing with the NS32CG16", where it will
be optimized using special instructions of the NS32CG16.

Register and Memory
Contents

rO = cl constant
rl = bit current

position
r2 = c2 constant
r3 = last_bit
r4 = p decision var
r5 = x_inc increment
r6 = unused register
r7 = y_inc increment
_bit_map = address of
first byte in bit map

FIGURE7
Note: Instructions followed by the letter 'd' indicate "double word" operations.

133

)>
z
I

CTI
N
.s:a.

Timing Performance
2k x 2k Bit Map

2k Pix/Vector 160 Unes per Star-Burst

Version NS32000 Assembly with SBIT

Parameter NS32C016-10 NS32C016·15

Set-up Time Per Vector 45 p.S 30 p.s

Vectors/Sec 54 82

Pixels/Sec 109,776 164,771

Total Time
2.9s

1.9s
Star-Burst Benchmark

FIGURES

. 134

Set-up time per llne is measured from the start of
LINE_DRAW.S only. The overhead of calling the LINE_
DRAW routine, starting the timer and creating the endpoints
of the vector are not included in this time. Set-up time does
include all register set-up and branching for the Bresenham
algorithm up to the entry point of the main loop.

Vectors/Second is determined by measuring the number
of vectors per second the LINE_DRAW routine can draw,
not including the overhead of the DRIVER.C and START.C
routines, which start the timer and calculate the vector end­
points. All set-up of registers and branching for the Bresen­
ham algorithm are included;

Plxels/Second is measured by dividing the Vectors/Sec­
ond value by the number of pixels per line.

Total Time for the Star-Burst benchmark is measured from
start of benchmark to end. It does include all overhead of
START.C and DRIVER.C and all set-up for
LINE_DRAW.S. This number can be used to approximate
the number of pages per second for printing the whole Star­
Burst image .

.file

National semiconductor Corporation.
CTP version 2.4 -- line_draw.s --

"line draw.s"
.comm- bit map,49975.lf
.globl- _lTne_draw
.set WARP,2,lf.lf.lf
.align 4

line_draw: # initialize
enter
movd
movd
movd
muld
addd
movd
subd
absd
movd
subd
absd
cmpd
ble
cmpqd
bge
addr
br
.align 4

.LL2:
addr

.LLJ:
cmpqd
bge
movqd
br
.align 4

.LL4:

.LL5:
rnovqd

rnovd
addd
subd
addr
rnovd
subd
movd
muld
addd
br

.LLl:
.align 4

cmpqd
bge
addr
br

.LL7:
.align 4

addr
.LL8:

cmpqd
bge
movqd
br
.align 4

.LL9:
movqd

.LLl,lf:
addr
movd
subd
addd
movd
subd
movd
muld
addd

.LL6:
cmpqd
ble
addd
addd
sbitd
cmpd
bne
exit
ret
.align 4

.LLll:
addd
addd
addd
sbitd
cmpd
bne
exit
ret

[r3,r4,r5,r6,r7),12
12(fp) ,r5
8(fp),r6
r5,rl
$(WARP),rl
r6,rl
2,lf(fp) ,r4
r5,r4
r4,r3
16(fp),r2
r6,r2
r2,r6
r3,r6
.LLl
$(,If) ,r4
.LL2
WARP,r5
.LLJ

-WARP,r5

$(,If) ,r2
.LL4
$(1) ,r7
.LL5

$(-l),r7

r6,r,lf
r,lf,r,lf
rJ,r6
.If [r6:w), r2
r,lf,r4
r3,r4
2,lf(fp),rJ
$(WARP) ,rJ
16(fp),r3
.LL6

$(,If) ,r4
.LL7
WARP,r7
.LL8

-WARP,r7

$(,If) ,r2
.LL9
$(1),r5
.LLl,lf

$(-l),r5

.lf[rJ:w] ,r,lf
r3,r2
r6,r2
r2,r2
r,lf,r4
r6,r4
2,lf(fp) ,rJ
$(WARP),r3
16(fp) ,r3

$(,If) ,r4
.LLll
r,lf,r4
r5,rl
rl,@_bit_map
rJ,rl
.LL6
~rJ, r4, r5, r6, r7]

(.If)

r2,r4
r7,rl
r5,rl
rl,@_bit_map
rl,rJ
.LL6
~r3,r4,r5,r6,r7)

(.If)

r5=ys
r6=xs
initialize starting 'bit•
bitawarp•ys+xs
rl•bit
11 r4=yf
r4•dy
rJ=ldyl
r2•xf
r2•dx
r6=ldxl
branch if slope<l
must rotate axis for slope>l
if dy<,lf want x_inc<,lf
else x inc is pos
II x_inc•+/-warp because of rotate

if dx<,lf want y inc<,lf
else y_inc is pos
y_inc=+/-1 becaue of rotate

II calculate cl,c2 and p

r,lf=cl=2*ldxl because of rotate
r6=ldx-dyl r2=2*r6=c2
this muls r6 by 2 and puts in r2

r4=c2-ldyl=p in rotated space
calculate last_bit

r3=last_bit

slope<l use original axis
dy determines y_inc

dy>.lf then y_inc=+warp

dy<,lf then y_inc=-warp

dx>,lf then x_inc=+l

dx<,lf then x_inc=-1

calculate cl,c2,p
r,lf=2*r3•cl

r2•2*ldy-dxl=c2

p=2*dy-dx•r4
calculate last_bit=r3

main loop for algorithm
check siqn of p
II branch if pos
add cl to p
inc bit by x_inc only
plot bit
end only if bit•last_bit

p>,lf then inc in y dir
add c2 to p
add y inc to bit
add x-inc to bit
plot Eiit
end only when bit•last_bit

135

TL/EE/9665-13

TL/EE/9665-14

> z
I

c.n
~

"'=" N
U') z /* This program calculates points on a line using Bresenham's iterative */
CC /* method. */

#include<stdio.h>
#define xbytes 25,IJ /* number of bftes along x-axis*/
#define warp xbytes * 8 /* number of bits along x axis*/
#define maxy 1999 /* number of lines in y axis*/
unsigned char bit_map[xbytes•maxy); /*array contains bit map*/
static unsigned char bit_pos(]={l,2,4,8,16,32,64,126j;

/* look-up table for setting bit */

line_draw(xs,ys,xf,yf) /* starting (s) and finishing (f) points */

int xs,ys,xf,yf;

int dx,dy,x inc,y inc,
bit,last bit,-
p,cl,c2;-

/* deltas and increments */
/* current and last bit positions */
/* decision variable p and constants */

dx=xf-xs;
df=yf-ys;
bit=(ys•warp)+xs;
last_bit=(yf*warp)+xf;

/* initialize bit to first bit pas */
/* calculate last bit on line */

if (abs(dy) > abs(dx))
{ /* abs(slope)>l must rotate space */

/*see Figure 5 a.,g.,and h. */

}
else

if (dy>,IJ)
x_inc=warp;

else
x inc= -warp;

if (dx>,IJ)-

else
y_inc=l;

y inc= -1;
cl=2*abs(dx);
c2=2*(abs(dx)-abs(dy));
p=2*abs(dx)-abs(dy);

/* x_axis is now original y_axis */

/* y_axis is now original x_axis */

/* calculate Bresenham's constants */

/* p is decision variable now rotated */

/* abs(slope)<l use original axis */
if (dy>,IJ)

y_inc=warp;
else

y inc= -warp;
if (dx>,IJ)-

else
x_inc=11

x inc= -1;
cl=2*abs(ay);
c2=2*(abs(dy)-abs(dx));
p=2*abs(dy)-abs(dx);

/* y_inc is +/-warp number of bits */

/* move forward one bit */

/* or backward one bit */
/* calculate constants and p */

/* Bresenham's Algorithm */
do /* do once for each x increment, i.e. dx times */
{

if (p<,IJ)

else
p+=cl;

p+=c2;
bit+=y_inc;

}
bit+=x_inc;

/* no y movement if p<,IJ */

/* move in y dir if p>,IJ */

/* always increment x */

/* bit is set by calculating bit MOD a, which is */

/* same as bit & 7, then looking up appropriate */
/* bit in table bit_pos. This bit pas is then set */
/* in byte bit/8 */

bit map[bit/8] I= bit_pos[(bit&7));
} while (bit!=last_bit);

136

TL/EE/9665-15

TL/EE/9665-16

/* Program driver.c feeds line vectors to LINE_DRAW.S forming Star-Burst.

#include <stdio.h>
#define xbytes 25P
#define maxx 1999
#define maxy 1999

unsigned char

main()

int i,count;

bit_map[xbytes*maxy);

/* generate Star-Burst image */

for (count=l;count<=lppp;test++)(

for (i=p;i<"'lllaxy;i+=25)
line draw(p,i,maxx,maxy-i);

for (i=p;i<=iiiaxx;i+-25)
line_draw(i,maxy,maxx-i,p);

/* start timer and call main procedure of DRIVER.C to draw lines */

start() (
long *timer (long *) Px6pp;
timer = p; / write a zero to timer location */

main(p,p); /*Show argc as zero, arqv ->P *I
return'(*timer); /*return, in rp, the current time*/

137

*I

TL/EE/9665-17

TL/EE/9665-18

> z
I

U1
N ...

Block Move Optimization
Techniques Series 32000®
Graphics Note 2

1.0 INTRODUCTION

This application note discusses fast methods of moving
data in printer applications using the National Semiconduc­
tor Series 32000. Typically this data is moved to or from the
band of RAM representing a small portion (or slice) of the
total image. The length of data is fixed. The controller de­
sign may require moving data every few milliseconds to im­
age the page, until a total of 1 page has been moved. This
may be (at 300 DPI, for example) (8.5 x 300) x (11 x 300),
or 1,051,875 bytes. In current controller designs the width is
often rounded to a word boundary (usually 320 bytes at 300
DPI). This technique uses 1,056,000 bytes, or 528,000
words.

; Version 1.0 Sun Mar 29 12:57:20 1987

National Semiconductor
Application Note 526
Dave Rand

2.0 DESCRIPTION

The move string instructions (MOVSi) in the 32000 are very
powerful, however, when all that is needed is a string copy,
they may be overkill. The string instructions include string
translation, conditionals and byte/word/double sizes. If the
application needs only to move a block of data from one
location to another, and that data is a known size (or at least
a multiple of a known size), using unrolled MOVD instruc­
tions is a faster way of moving the data from A to B on the
NS32032 and NS32332.

3.0 IMPLEMENTATION

A code sample follows which makes use of a block size of
128 bytes. To move 256 bytes, for example, RO should con­
tain 2 on entry.

;A subroutine to move blocks of memory. Uses a granularity of
;128 bytes.

Inputs:
rO = nunber of 128 byte blocks to move
rl = source block address
r2 = destination block address

;listing continues on following page

138

TL/EE/9696-1

)>
z

I

Outputs: CJ'I
N

rO = 0 0)

rl = source block address + (128 * blocks)
r2 = destination block address + (128 * blocks)

;Notes:
This algorittln corresponds closely to the MOVSD instruction,
except that rO contains the number of 128 byte blocks, not
4 byte double words. The output values are the same as if a
MOVSD instruction were used.

movman: cmpqd o.ro ;if no blocks to move
beq mvexit ;exit now.
.align 4

mvlpl: movd 0(rl). 0(r2) ;move one block of data
movd 4(rl).4(r2)
movd 8(rl).8(r2)
movd 12(rl),12(r2)
movd 16(rl),16(r2)
movd 20(rl),20(r2)
movd 24(rl),24(r2)
movd 28(rl). 28(r2)
movd 32(rl),32(r2)
movd 36(rl) ,36(r2)
movd 40(rl),40(r2)
movd 44(rl),44(r2)
movd 48(rl).48(r2)
roovd 52(rl). 52 (r2)
roovd 56(rl),56(r2)
roovd 60(rl),60(r2)
roovd 64(rl),64(r2)
roovd 68(rl),68(r2)
roovd 72(rl),72(r2)
movd 76(rl),76(r2)
roovd 80(r1) ,80(r2)
roovd 84(rl).84(r2)
roovd 88(rl),88(r2)
roovd 92(rl).92(r2)
roovd 96(rl) ,96(r2)
roovd 100(rl). lOO(r2)
roovd 104(rl).104(r2)
movd 108(rl),108(r2)
movd 112(rl), 112(r2)
movd 116(rl) ,116(r2)
movd 120(rl).120(r2)
movd 124(rl),124(r2)
addr 128(rl),rl ;quick way of adding 128
addr 128(r2). r2
acbd -1,rO,mvlpl ;loop for rest of blocks

mvexit: ret $0
TL/EE/9696-2

139

co
N
U')

I z
<C

4.0TIMING

All timing assumes word aligned data (double word aligned
for 32-bit bus). Unaligned data is permitted, but will reduce
the speed.

On the 32532 (no wait states, @ 30 MHz, 32-bit bus), this
code executes in 204 clocks, assuming burst mode access
is available. To move 256 bytes, this routine would take
13.6 µs. The MOVSD instruction takes about 156 clocks to
move a 128-byte block. The MOVSD instruction is the best
choice, therefore, on the 32532.

On the 32332 (no wait states, @ 15 MHz, 32-bit bus), this
code executes in 458 clocks per 128-byte block. Thus, to
move 256 bytes, this algorithm takes 61.1 µs. The loop
overhead (the ADDR and ACBD instructions) is about 10%.
Doubling the block size (to 256 bytes) would reduce the
loop overhead to 5%, and reducing the block size (to 64
bytes) would increase the loop overhead to 20%. In com­
parison, the 32332 MOVSD instruction takes about 721
clocks to move a 128-byte block.

On the 32032 (no wait states. @ 1 O MHz, 32-bit bus), this
code executes in 634 clocks per 128-byte block. Thus, to

140

move 256 bytes, this algorithm takes 126.8 µs. The loop
overhead (the ADDA and ACBD instructions) is about 5%.
Doubling the block size (to 256 bytes) would reduce the
loop overhead to 2.5%, and reducing the block size (to 64
bytes) would increase the loop overhead to 10%. In com­
parison, the 32032 MOVSD instruction takes about 690
clocks to move a 126-byte block.

On the 32016 (1 wait state.@ 10 MHz, 16-bit bus), this code
executes in 1150 clocks per 128-byte block. Thus, to move
256 bytes, this algorithm takes 230.0 µs. The loop overhead
on the 32016 is about 2.5%. In comparison, the 32016
MOVSD instruction would take about 1,074 clocks. Thus,
the MOVSD instruction is faster, and makes better use of
the available bus bandwidth of the NS32016.

5.0 CONCLUSIONS

The MOVSi instructions on the NS32016 provide a very fast
memory block move capability, with variable size. On the
NS32332 and NS32032, however, unrolled MOVD instruc­
tions are faster due to the larger bus bandwidth of the
NS32332 and NS32032.

Clearing Memory with the
32000; Series 32000®
Graphics Note 3

1.0 INTRODUCTION

In printer applications, large amounts of RAM may need to
be initialized to a zero value. This application note describes
a fast method.

2.0 DESCRIPTION

While several different methods of initializing memory to all
zeros are available, here is one that works very well on the
Series 32000. While the current version clears memory only
in blocks of 128 bytes, other block sizes are possible by
extending the algorithm.

; Version 1.1 Sun Mar 29 10:22:19 1987

National Semiconductor
Application Note 527
Dave Rand

3.0 IMPLEMENTATION

This routine is written to clear blocks of 128 bytes. This
provides an optimal tradeoff between loop size (granularity)
and loop overhead. This can be modified to use a different
size. For example, to use a block size of 64 bytes, simply
delete 16 of the MOVQD O,TOS instructions from the listing.
As well, since the value of r1 is now the number of 64 byte
groups, one of the ADDD R2,R2 instructions (prior to the
loading of the stack pointer) must be removed. Since the
32000 has two stacks, interrupts will be handled properly
using this code. If only a fixed buffer size needs to be
cleared, the code can be further unrolled to clear that area
(i.e., increase the number of MOVQD O,TOS instructions.)

;Subroutine to clear a block of memory. The granularity of this
;algorithn is 128 bytes, to reduce the looping overhead.

Inputs:
rO = start of block
rl = number of 128-byte groups to clear

Outputs:
All registers preserved.

;Listing continues on following page

TL/EE/9697 -1

141

)>
z

I
U1
I\)
......

.....
"' an cl ram: cmpqd 0,rl ;any blocks to clear? I z
c(beq clexit:w ;no, exit now.

save [rO, rl, r2] ;save our working registers
movd rl,r2 ;here we set rO " rO + (rl * 128) + 4
addd r2,r2 ; 1 ength ·k= 2

addd r2,r2 ;*4

addd r2,r2 ;*8
addd r2,r2 ;*16

addr 4(rO)[r2 :q]. rO ;get starting point + 4
sprd sp,r2 ;save current stack
lprd sp,rO ;move to last double
.align 4

cl 2: movqd 0,tos ;clear a double
movqd 0,tos
movqd O,tos
movqd 0,tos
movqd 0,tos
movqd 0, tos
movqd O,tos
movqd 0,tos
movqd O,tos
movqd O,tos
movqd 0,tos
movqd O,tos
movqd 0,tos
movqd 0,tos
movqd 0,tos
movqd 0,tos
movqd O,tos
movqd O,tos
movqd 0,tos
movqd O,tos
movqd 0, tos
movqd O,tos
ioovqd 0,tos
ioovqd O,tos
movqd O,tos
movqd 0,tos
movqd O,tos
movqd 0,tos
movqd 0,tos
movqd 0,tos
!!10VQd O,tos
movqd 0,tos
acbd -1.rl.cl2
lprd sp,r2 ;restore stack pointer
restore [rO, rl, r2] ;restore our saved registers

clexit: ret 0
TLIEE/9897-2

FIGURE 1

142

>
cl ram: cmpqd 0,rl ;any blocks to clear? z

I c.n
beq clexit:w ;no, exit now. N

~
.align 4

cl 2: movqd 0,00(rO) ;clear a double
movqd 0,04(r0)
movqd 0,08(r0)
movqd 0,12(r0)
movqd 0,16(r0)
movqd 0,20(r0)
ioovqd 0,24(r0)
movqd 0,28(r0)
movqd 0,32(r0)
movqd 0,36(r0)
movqd 0,40(r0)
movqd 0,44(r0)
movqd 0,48(r0)
movqd 0,52(r0)
movqd 0,56(r0)
movqd 0,60(r0)
movqd 0,64(r0)
movqd 0,68(r0)
movqd 0,72(r0)
movqd 0,76(r0)
movqd 0,BO(rO)
movqd 0,84(r0)
movqd 0,88(r0)
movqd 0,92(r0)
roovqd 0,96(r0)
movqd O,lOO(rO)
movqd 0,104(r0)
movqd 0,108(r0)
roovqd 0, 112(rO)
roovqd 0,llS(rO)
roovqd 0,120(r0)
movqd 0,124(r0)
addd $128,rO
acbd -l,rl,cl2

clexit: ret 0
TL/EE/9697-3

FIGURE 2

143

.....
~ 4.0 TIMING RESULTS

I

Z On the NS32016, NS32032 and NS32332, 4 clock cycles
CC per write are required. To clear one page of 300 DPI

81/z x 11 (1,056,000 bytes), for example, requires 264,000
double words to be written. The optimal time for this, using
100% of the bus bandwidth on a 16 bit bus, would be
528,000 * 400 ns, or 211.2 ms, ® 1 o MHz. All timing data
assumes word aligned data (double word aligned for 32 bit
bus). Unaligned data is permitted, but will reduce the speed
somewhat.

On the NS32332 (no wait states. ®15 MHz, 32 bit bus), this
code clears the full page image in 178 ms.

On the NS32032 (no wait states. @10 MHz, 32 bit bus), this
code clears the full page image in 324 ms.

On the NS32016 (1 wait state. ®10 MHz, 16 bit bus), this
code clears the full page image in 509 ms.

Doubling the block size (to 256 bytes) would increase the
speed by 1 %-2%, on the code sample.

On the NS32532, a better approach is to use the register
indirect method of referencing memory, as is shown in Rg­
ure 2. With this approach, the page memory can be cleared
in 19 ms, assuming a no wait state 30 MHz system, with a
32 bit bus. The optimal time, using 100% of the bus band­
width of the NS32532 (2 clock bus cycle) would be 264,000
* 66.6 ns, or 17.6 ms.

144

Image Rotation Algorithm
Series 32000® Graphics
Note 4

1.0 INTRODUCTION

Fast image rotation of 90 and 270 degrees is important in
printer applications, since both Portrait and Landscape ori­
entation printing may be desired. With a fast image rotation
algorithm, only the Portrait orientation fonts need to be
stored. This minimizes ROM storage requirements.

This application note shows a fast image rotation algorithm
that may be used to rotate an 8 pixel by 8 line image. Larger
image sizes may be rotated by successive application of the
rotation primitive.

2.0 DESCRIPTION

This Rotate Image algorithm (developed by the Electronic
Imaging Group at National Semiconductor) does a very fast
8 by 8 (64 bit) rotation of font data. Note also that this algo­
rithm does not exclusively deal with fonts, but any 64 bit
image. Larger images can be rotated by breaking the image
down into 8 x 8 segments, and using a 'source warp' con­
stant to index into the source data.

The source data is pointed to by RO on entry. A 'source
warp' is contained in R1, and is added to RO after each read
of the source font. This allows the rotation of 16 by 16, 32
by 32 and larger fonts.

ROTIMG deals with the 8 by 8 destination character as 8
sequential bytes in two registers (R2 and R3), as follows:

Destination Font Matrix

Low Address

2

3

4

5

6

7

8

High Address

= R2 4

= R3 8

3 2 1

7 6 5

ROTIMG uses an external table (a pointer to the start of the
table is located in register R4) to speed the rotation and to
minimize the code. This table consists of 256 64 bit entries,
or a total of 2,048 bytes. The table may be located code
(PC) or data (SB) relative. The complete table is at the end
of this document (see Figure 1). A few entries of the table
are reproduced above.

National Semiconductor
Application Note 528
Dave Rand

145

Entry Definition

0 OxOOOOOOOO 00000000
1 OxOOOOOOOO 00000001
2 OxOOOOOOOO 00000100
3 OxOOOOOOOO 00000101

253 Ox01010101 01010001
254 Ox01010101 01010100
255 Ox01010101 01010101

The bytes in the table are standard LSB to MSB format.
Since there is no quad-byte assembler pseudo-op (other
than LONG, which is floating point), we must reverse the
'double' declaration to get the correct byte ordering, as is
shown below:

Entry Definition

o doubleO,O
1 double 1,0
2 double 256,0
3 double 257,0

253 double 16842753, 16843009
254 double Ox01010100,0x01010101
255 double Ox01010101,0x01010101

Each byte within each eight byte table entry represents one
bit of output data. By indexing into the table, and ORing the
table's contents with R2 and R3, we set the destination byte
if the corresponding source bit is set. In this manner, the
character is rotated.

3.0 IMPLEMENTATION

What we are doing is setting the LS Bit of the destination
byte if the source bit corresponding to that byte is set. We
then shift the entire 64 bit destination left one bit, and repeat
this process until we have set all eight bits, and processed
all eight bytes of source information.

The source data for an 8 by 8 character "> " appears be­
low:

Character Table for '>'

Bit Number Hex Value
01234567

Byte 001000000 02
100100000 04
200010000 08
300001000 10
400001000 10
500010000 08
600100000 04
701000000 02

,..
z

I
U1
N
OC)

ClO
N
LI)

I z
<C

The ROTIMG algorithm, expressed in 32000 code, appears below:

I
I
#Rotate image anulation code
I
I Inputs:
I RO = Source font address
I Rl • Source font warp
I R4 = Rotate table address
I
I Outputs:
I R2 = Destination font low 4 bytes (lsb->msb, O - 3)
I R3 = Destination font high 4 bytes (lsb->msb, 4 - 7)
I
ROTIMG: save [r0,r5,r6,r7] #save registers we will use

rnovqd O,r2 #clear destination font
rnovd r2,r3 #clear high bits of dest.
rnovd r2,r5 #clear high bits of tanp.
addr 8,r6 #deal with 8 bytes of src.

rotlp: mo vb O(rO),rS #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addrd r4[r5:q] ,r7 #get pointer to table
ord O(r7).r2 #or In low bits
ord 4(r7),r3 #or in high bits
acbd -l,r6,rotlp #and back for more
restore [r0,r5,r6,r7] #restore registers
ret $0 #and return

Now, let's look at what happens to the data, given the example font of'>'.

Loop # Source Font R3 R2

0 00000000 00000000
1 02 hex 00000000 00000100
2 04
3 08
4
5
6
7
8

10
10
08
04
02

Now, arranging this in the appropriate order gives us:

00000000 00010200
00000000 01020400
00000001 02040800
00000003 04081000
00000006 09102000
oooooooc 12214000
00000018 24428100

TL/EE/9698-1

;O destination
;first bits in
;next bits in
;and soon

;last iteration

Destination Character Table for '> ', 90 degree Destination Character Table for•>', 270 degree

Bit Number Hex Value Bit Number Hex Value
01234567 01234567

Byte 000000000 00 Byte 000000000 00
110000001 81 100000000 00
201000010 42 200000000 00
300100100 24 300011000 18
400011000 18 400100100 24
500000000 00 501000010 42
600000000 00 610000001 81
700000000 00 700000000 00

Note that by re-ordering the output data, we may rotate 90 or 270 degrees. This may also be accomplished by using a different
table (see Figure 2).

146

4.0TIMING

With unrolled 32000 code, the time for this algorithm is about 588 clocks on the 32016. Subtracting the font read time from this
(about 113 clocks), the actual time for rotation is 475 clocks. On the 32332, the time is about 388 clocks. On the 32532, the
unrolled loop time is 120-180 clocks, depending on burst mode availability. Repetition of the character data also affects the
32532, due to the data cache. See Figure 3 for an unrolled code listing.
This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes * 256 = 2048 bytes). There are two entries per
line. This table is used for 90° rotation.

rottab1: .double OxOOOOOOOO,OxOOOOOOOO,OxOOOOOOOl,OxOOOOOOOO ;0,1
.double OxOOOOOlOO,OxOOOOOOOO,OxOOOOOlOl,OxOOOOOOOO ;2,3
.double Ox00010000,0x00000000,0x00010001,0xOOOOOOOO ;4,5
.double Ox00010100,0xOOOOOOOO,Ox00010101,0xOOOOOOOO ;6, 7
.double Ox01000000,0xOOOOOOOO,Ox01000001,0xOOOOOOOO ; ...
. double Ox01000100,0xOOOOOOOO,Ox01000101,0xOOOOOOOO
.double Ox01010000,0xOOOOOOOO,Ox01010001,0xOOOOOOOO
.double Ox01010100,0xOOOOOOOO,Ox01010101,0xOOOOOOOO
.double OxOOOOOOOO,OxOOOOOOOl,OxOOOOOOOl,OxOOOOOOOl
.double 0x00000100,0x00000001,0x00000101,0x00000001
.double 0x00010000,0x00000001,0x00010001,0x00000001
.double 0x00010100,0x00000001,0x00010101,0x00000001
.double 0x01000000,0x00000001,0x01000001,0x00000001
.double 0x01000100,0x00000001,0x01000101,0x00000001
.double 0x01010000,0x00000001,0x01010001,0x00000001
.double 0x01010100,0x00000001,0x01010101,0x00000001
.double 0x00000000,0x00000100,0x00000001,0x00000100
.double 0x00000100,0x00000100,0x00000101,0x00000100
.double 0x00010000,0x00000100,0x00010001,0x00000100
.double 0x00010100,0x00000100,0x00010101,0x00000100
.double 0x01000000,0x00000100,0x01000001,0x00000100
.double 0x01000100,0x00000100,0x01000101,0x00000100
.double 0x01010000,0x00000100,0x01010001,0x00000100
.double 0x01010100,0x00000100,0x01010101,0x00000100
.double Ox00000000,0x00000101,0x00000001,0x00000101
.double 0x00000100,0x00000101,0x00000101,0x00000101
.double 0x00010000,0x00000101,0x00010001,0x00000101
.double 0x00010100,0x00000101,0x00010101,0x00000101
.double 0x01000000,0x00000101,0x01000001,0x00000101
.double 0x01000100,0x00000101,0x01000101,0x00000101
.double 0x01010000,0x00000101,0x01010001,0x00000101
.double 0x01010100,0x00000101,0x01010101,0x00000101
.double OxOOOOOOOO,Ox00010000,0x00000001,0x00010000
.double 0x00000100,0x00010000,0x00000101,0x00010000
.double 0x00010000,0x00010000,0x00010001,0x00010000
.double 0x00010100,0x00010000,0x00010101,0x00010000
.double 0x01000000,0x00010000,0x01000001,0x00010000
.double 0x01000100,0x00010000,0x01000101,0x00010000
.double 0x01010000,0x00010000,0x01010001,0x00010000
.double 0x01010100,0x00010000,0x01010101,0x00010000
.double 0x00000000,0x00010001,0x00000001,0x00010001
.double Ox00000100,0x00010001,0x00000101,0x00010001
.double 0x00010000,0x00010001,0x00010001,0x00010001
.double 0x00010100,0x00010001,0x00010101,0x00010001
.double 0x01000000,0x00010001,0x01000001,0x00010001
.double 0x01000100,0x00010001,0x01000101,0x00010001
.double 0x01010000,0x00010001,0x01010001,0x00010001
.double 0x01010100,0x00010001,0x01010101,0x00010001
.double 0x00000000,0x00010100,0x00000001,0x00010100

FIGURE 1

147

TL/EE/9698-2

)>
z

I
U1 ...,
CD

!l

I
:J
;,,
:''

.double 0x00000100,0x00010100,0x00000101,0x00010100

.double 0x00010000,0x00010100,0x00010001,0x00010100

.double 0x00010100,0x00010100,0x00010101,0x00010100

.double 0x01000000,0x00010100,0x01000001,0x00010100

.double 0x01000100,0x00010100,0x01000101,0x00010100

.double 0x01010000,0X00010100,0x01010001,0x00010100

.double 0x01010100,0x00010100,0x01010101,0x00010100

.double OxOOOOOOOO,Ox00010101,0x00000001,0x00010101

.double 0x00000100,0x00010101,0x00000101,0x00010101

.double 0x00010000,0x00010101,0x00010001,0x00010101

.double 0x00010100,0x00010101,0x00010101,0x00010101

.double 0x01000000,0x00010101,0x01000001,0x00010101

.double 0x01000100,0x00010101,0x01000101,0x00010101

.double 0x01010000,0x00010101,0x01010001,0x00010101

.double 0x01010100,0x00010101,0x01010101,0x00010101

.double OxOOOOOOOO,Ox01000000,0x00000001,0x01000000

.double 0x00000100,0x01000000,0x00000101,0x01000000

.double Ox00010000,0x01000000,0x00010001,0x01000000

.double 0x00010100,0x01000000,0x00010101,0x01000000

.double 0x01000000,0x01000000,0x01000001,0x01000000

.double 0x01000100,0x01000000,0x01000101,0x01000000

.double 0x01010000,0x01000000,0x01010001,0x01000000

.double 0x01010100,0x01000000,0x01010101,0x01000000

.double OxOOOOOOOO,Ox01000001,0x00000001,0x01000001

.double 0x00000100,0x01000001,0x00000101,0x01000001

.double Ox00010000,0x01000001,0x00010001,0x01000001

.double 0x00010100,0x01000001,0x00010101,0x01000001

.double 0x01000000,0x01000001,0x01000001,0x01000001

.double 0x01000100,0x01000001,0x01000101,0x01000001

.double 0x01010000,0x01000001,0x01010001,0x01000001

.double Ox01010100,0x01000001,0x01010101,0x01000001

.double Ox00000000,0x01000100,0x00000001,0x01000100

.double 0x00000100,0x01000100,0x00000101,0x01000100

.double 0x00010000,0x01000100,0x00010001,0x01000100

.double 0x00010100,0x01000100,0x00010101,0x01000100

.double Ox01000000,0x01000100,0x01000001,0x01000100

.double 0x01000100,0x01000100,0x01000101,0x01000100

.double 0x01010000,0x01000100,0x01010001,0x01000100

.double 0x01010100,0x01000100,0x01010101,0x01000100

.double OxOOOOOOOO,Ox01000101,0x00000001,0x01000101

.double 0x00000100,0x01000101,0x00000101,0x01000101

.double 0x00010000,0x01000101,0x00010001,0x01000101

.double Ox00010100,0x01000101,0x00010101,0x01000101

.double 0x01000000,0x01000101,0x01000001,0x01000101

.double 0x01000100,0x01000101,0x01000101,0x01000101

.double 0x01010000,0x01000101,0x01010001,0x01000101

.double 0x01010100,0x01000101,0x01010101,0x01000101

.double OxOOOOOOOO,Ox01010000,0x00000001,0x01010000

.double 0x00000100,0x01010000,0x00000101,0x01010000

.double 0x00010000,0x01010000,0x00010001,0x01010000

.double 0x00010100,0x01010000,0x00010101,0x01010000

.double 0x01000000,0x01010000,0x01000001,0x01010000

.double 0x01000100,0Jc01010000,0x01000101,0JI01010000

.double 0Jc01010000,0x01010000,0Jc01010001,0x01010000

.double 0x01010100,0x01010000,0JI01010101,0x01010000

FIGURE·1 (Continued)

148

TLIEE/9698-3

.double Ox00000000,0x01010001,0x00000001,0x01010001

.double 0x00000100,0x01010001,0x00000101,0x01010001

.double 0x00010000,0x01010001,0x00010001,0x01010001

.double 0x00010100,0x01010001,0x00010101,0x01010001

.double Ox01000000,0x01010001,0x01000001,0x01010001

.double 0x01000100,0x01010001,0x01000101,0x01010001

.double 0x01010000,0x01010001,0x01010001,0x01010001

.double 0x01010100,0x01010001,0x01010101,0x01010001

.double Ox00000000,0x01010100,0x00000001,0x01010100

.double 0x00000100,0x01010100,0x00000101,0x01010100

.double 0x00010000,0x01010100,0x00010001,0x01010100

.double Ox00010100,0x01010100,0x00010101,0x01010100

.double 0x01000000,0x01010100,0x01000001,0x01010100

.double 0x01000100,0x01010100,0x01000101,0x01010100

.double 0x01010000,0x01010100,0x01010001,0x01010100

.double 0x01010100,0x01010100,0x01010101,0x01010100

.double OxOOOOOOOO,Ox01010101,0x00000001,0x01010101

.double Ox00000100,0x01010101,0x00000101,0x01010101

.double 0x00010000,0x01010101,0x00010001,0x01010101

.double 0x00010100,0x01010101,0x00010101,0x01010101

.double 0x01000000,0x01010101,0x01000001,0x01010101

.double 0x01000100,0x01010101,0x01000101,0x01010101 ;250,251

.double 0x01010000,0x01010101,0x01010001,0x01010101 ;252,253

.double 0x01010100,0x01010101,0x01010101,0x01010101 ;254,255

FIGURE 1 (Continued)
TL/EE/9698-4

This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes • 256 = 2048 bytes). There are two entries per
line. This gives a 270° rotation.

rottab2: .double OxOOOOOOOO,OxOOOOOOOO,OxOOOOOOOO,OxOlOOOOOO
.double OxOOOOOOOO,Ox00010000,0xOOOOOOOO,Ox01010000
.double OxOOOOOOOO,Ox00000100,0xOOOOOOOO,Ox01000100
.double Ox00000000,0x00010100,0x00000000,0x01010100
.double Ox00000000,0x00000001,0xOOOOOOOO,Ox01000001
.double Ox00000000,0x00010001,0xOOOOOOOO,Ox01010001
.double OxOOOOOOOO,Ox00000101,0xOOOOOOOO,Ox01000101
.double Ox00000000,0x00010101,0xOOOOOOOO,Ox01010101
.double Ox01000000,0xOOOOOOOO,Ox01000000,0x01000000
.double 0x01000000,0x00010000,0x01000000,0x01010000
.double 0x01000000,0x00000100,0x01000000,0x01000100
.double 0x01000000,0x00010100,0x01000000,0x01010100
.double 0x01000000,0x00000001,0x01000000,0x01000001
.double 0x01000000,0x00010001,0x01000000,0x01010001
.double 0x01000000,0x00000101,0x01000000,0x01000101
.double 0x01000000,0x00010101,0x01000000,0x01010101
.double Ox00010000,0x00000000,0x00010000,0x01000000
.double 0x00010000,0x00010000,0x00010000,0x01010000
.double 0x00010000,0x00000100,0x00010000,0x01000100
.double 0x00010000,0x00010100,0x00010000,0x01010100
.double 0x00010000,0x00000001,0x00010000,0x01000001
.double 0x00010000,0x00010001,0x00010000,0x01010001
.double Ox00010000,0x00000101,0x00010000,0x01000101
.double 0x00010000,0x00010101,0x00010000,0x01010101

FIGURE2

149

TL/EE/9698-5

)>
z

I
U1
~
0)

co
N ..,,

I z
c(

.double Ox01010000,0xOOOOOOOO,Ox01010000,0x01000000

.double 0x01010000,0x00010000,0x01010000,0x01010000

.double 0x01010000,0x00000100,0x01010000,0x01000100

.double 0x01010000,0x00010100,0x01010000,0x01010100

.double 0x01010000,0x00000001,0x01010000,0x01000001

.double 0x01010000,0x00010001,0x01010000,0x01010001

.double 0x01010000,0x00000101,0x01010000,0x01000101

.double Ox0101000(),0x00010101,0x01010000,0x01010101

.double Ox00000100,0xOOOOOOOO,Ox00000100,0x01000000

.double 0x00000100,0x00010000,0x00000100,0x01010000

.double 0x00000100,0x00000100,0x00000100,0x01000100

.double Ox00000100,0x00010100,0x00000100,0x01010100

.double 0x00000100,0x00000001,0x00000100,0x01000001

.double 0x00000100,0x00010001,0x00000100,0x01010001

.double 0x00000100,0x00000101,0x00000100,0x01000101

.double 0x00000100,0x00010101,0x00000100,0x01010101

.double Ox01000100,0xOOOOOOOO,Ox01000100,0x01000000

.double 0x01000100,0x00010000,0x01000100,0x01010000

.double 0x01000100,0x00000100,0x01000100,0x01000100

.double 0x01000100,0x00010100,0x01000100,0x01010100

.double 0x01000100,0x00000001,0x01000100,0x01000001

.double 0x01000100,0x00010001,001000100,0x01010001

.double 0x01000100,0x00000101,001000100,0x01000101

.double 0x01000100,0x00010101,0x01000100,0x01010101

.double Ox00010100,0xOOOOOOOO,Ox00010100,001000000

.double 0x00010100,0x00010000,0x00010100,001010000

.double 0x00010100,0x00000100,0x00010100,001000100

.double Ox00010100,0x00010100,0x00010100,0x01010100

.double 0x00010100,0x00000001,0x00010100,0x01000001

.double Ox00010100,0x00010001,0x00010100,0x01010001

.double 0x00010100,0x00000101,0x00010100,001000101

.double 0x00010100,0x00010101,0x00010100,001010101

.double 001010100,0xOOOOOOOO,Ox01010100,0x01000000

.double 0x01010100,0x00010000,0x01010100,0x01010000

.double 0x01010100,0x00000100,0x01010100,0x01000100

.double Ox01010100,0x00010100,0x01010100,0x01010100

.double 001010100,0x00000001,0x01010100,0x01000001

.double 0x01010100,0x00010001,001010100,0x01010001

.double 0x01010100,0x00000101,0x01010100,0x01000101

.double 0x01010100,0x00010101,0x01010100,0x01010101

.double Ox00000001,0xOOOOOOOO,Ox00000001,0x01000000

.double Ox00000001,0x00010000,0x00000001,0x01010000

.double 0x00000001,0x00000100,0x00000001,0x01000100

.double 0x00000001,0x00010100,0x00000001,0x01010100

.doubie Ox00000001,0x00000001,0x00000001,0x01000001

.double 0x00000001,0x00010001,0x00000001,001010001

.double 0x00000001,0x00000101,0x00000001,0x01000101

.double 0x00000001,0x00010101,0x00000001,0x01010101

.double Ox01000001,0xOOOOOOOO,Ox01000001,0x01000000

.double 0x01000001,0x00010000,0x01000001,0x01010000

.double 001000001,0x00000100,0x01000001,0x01000100

.double 0x01000001,0x00010100,0x01000001,0x01010100

.double 0x01000001,0x00000001,0x01000001,0x01000001

.double 001000001,0x00010001,0x01000001,0x01010001

.double . 001000001,0x00000101,0x01000001,0x01000101

FIGURE 2 (Continued)

150

TL/EE/9698-8

.double 0x01000001,0x00010101,0x01000001,0x01010101

.double Ox00010001,0xOOOOOOOO,Ox00010001,0".dUOOOOOO

.double 0x00010001,0x00010000,0x00010001,0x01010000

.double 0x00010001,0x00000100,0x00010001,0x01000100

.double 0x00010001,0x00010100,0x000moo1,oxmo10100

.double Ox00010001,0x00000001,0x00010001,0x01000001

.double 0x00010001,0x00010001,0x00010001,0x01010001

.double 0x00010001,0x00000101,0x00010001,0x01000101

.double 0x00010001,0x00010101,0x00010001,0x01010101

.double Ox01010001,0xOOOOOOOO,Ox01010001,0x01000000

.double Ox01010001,0x00010000,0x01010001,0x01010000

.double 0x01010001,0x00000100,0i«J1010001,0xOl000100

.double Ox01010001,0x00010100,0x01010001,0x01010100

.double 0x01010001,0x00000001,0x01010001,0x01000001

.double Ox01010001,0x00010001,0x01010001,0x01010001

.double Ox01010001,0x00000101,0x01010001,0x01000101

.double 0x01010001,0x00010101,0x01010001,0x01010101

.double 0x00000101,0x00000000,0x00000101,0x01000000

.double 0x00000101,0x00010000,0x00000101,0x01010000

.double 0x00000101,0x00000100,0x00000101,0x01000100

.double 0x00000101,0x00010100,0x00000101,0x01010100

.double 0x00000101,0x00000001,0x00000101,0x01000001

.double 0x00000101,0x00010001,0x00000101,0x01010001

.double 0x00000101,0x00000101,0x00000101,0x01000101

.double 0x00000101,0x00010101,0x00000101,0x01010101

.double Ox01000101,0xOOOOOOOO,Ox01000101,0x01000000

.double Ox01000101,0x00010000,0x01000101,0x01010000

.double 0x01000101,0x00000100,0x01000101,0x01000100

.double 0x01000101,0x00010100,0x01000101,0x01010100

.double 0x01000101,0x00000001,0x01000101,0x01000001

.double 0x01000101,0x00010001,0x01000101,0x01010001

.double 0x01000101,0x00000101,0x01000101,0x01000101

.double 0x01000101,0x00010101,0x01000101,0x01010101

.double Ox00010101,0xOOOOOOOO,Ox00010101,0x01000000

.double 0x00010101,0x00010000,0x00010101,0x01010000

.double 0x00010101,0x00000100,0x00010101,0x01000100

.double 0x00010101,0x00010100,0x00010101,0x01010100

.double 0x00010101,0x00000001,0x00010101,0x01000001

.double 0x00010101,0x00010001,0x00010101,0x01010001

.double 0x00010101,0x00000101,0x00010101,0x01000101

.double 0x00010101,0x00010101,0x00010101,0x01010101

.double Ox01010101,0xOOOOOOOO,Ox01010101,0x01000000

.double Ox01010101,0x00010000,0x01010101,0x01010000

.double 0x01010101,0x00000100,0x01010101,0x01000100

.double 0x01010101,0x00010100,0x01010101,0xtll010100

.double 0x01010101,0x00000001,0x01010101,0x01000001

.double 0x01010101,0x00010001,0x01010101,0x01010001

.double 0x01010101,0x00000101,0x01010101,0x01000101

.double 0x01010101,0x00010101,0x01010101,0x01010101

FIGURE 2 (Continued)

151

TL/EE/9698-7

> z
I c.n

N co

co
N
~ The following is an unrolled version of the rotate image algorithm. For the NS32532, the address computation, currently
z done with a separate addr instruction, may be done with the ORD instruction. This makes the execution time slightly faster.
<C , ,

#Rotate image emulation code ,
I Inputs:
I RO = Source font address
I Rl • Source font warp
I R4 • Rotate table address

' I Outputs:
I R2 = Destination font low 4 bytes (lsb->msb, O - 3)
I R3 = Destination font high 4 bytes (lsb->msb, 4 - 7)

' ROTIMG:
movqd 0,r2 #clear destination font
movd r2,r3 #clear high bits of dest.
movd r2,r5 #clear high bits of temp.
mo vb O(rO). rs #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addr r4[rS:q] ,r6 #get pointer to table
ord O(r6),r2 #or in low bits
ord 4(r6). r3 #or in high bits
mo vb O(rO).rS #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addr r4[r5:q] ,r6 #get pointer to table
ord O(r6). r2 lor in low bits
ord 4(r6).r3 lor in high bits
mo vb O(rO). rs #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addr r4[r5:q] ,r6 #get pointer to table
ord O(r6),r2 lor in low bits
ord 4(r6),r3 lor in high bits
mo vb O(rO),rS #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addr r4[r5:q] ,r6 #get pointer to table
ord O(r6).r2 #or in low bits
ord 4(r6),r3 #or in high bits
mo vb O(rO).rS #get a byte of source
addd rl,rO #add source warp

FIGURE3

152

TL/EE/9698-8

> z
I

addd r2,r2 #shift destination left one bit UI
~

addd r3,r3 #top 32 bits too CD

addr r4[r5:q] ,rs #get pointer to table
ord 0(r6). r2 #or in low bits
ord 4(r6). r3 #or in high bits
mo vb O(rO). rS #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addr r4 [rS:q], r6 #get pointer to table
ord O(r6).r2 #or in low bits
ord 4(r6).r3 #or in high bits
mo vb O(rO).rS #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addr r4[r5:q] ,r6 #get pointer to table
ord O(r6).r2 #or in low bits
ord 4(r6).r3 #or in high bits
mo vb O(rO),rS #get a byte of source
addd rl,rO #add source warp
addd r2,r2 #shift destination left one bit
addd r3,r3 #top 32 bits too
addr r4 [rS: q], r6 #get pointer to table
ord 0(r6), r2 #or in low bits
ord 4(r6). r3 #or in high bits
ret $0 #and return

TL/EE/9698-9

FIGURE 3 (Continued)

153

~
LI)

I z cc
80x86 to Series 32000®
Translation; Series 32000
Graphics Note 6

1.0 INTRODUCTION

This application note discusses the conversion of Intel
8088, 8086, 80188 and 80186 (referred to here as 80x86)
source assembly language to Series 32000 source code. As
this is not intended to be a tutorial on Series 32000 assem­
bly language, please see the Series 32000 Programmers
Reference Manual for more information on instructions and
addressing modes.

2.0 DESCRIPTION

The 80x86 model has 6 general purpose registers (AX, BX,
ex, DX, SI, DI), each 16 bits wide. 4 of these registers can
be further addressed as 8-bit registers (AL, AH, BL, BH, CL,
CH, DL, DH). Series 32000 has 8 general purpose registers
(RO-R7), each 32 bits wide. Each Series 32000 register
may be accessed as an 8-, 16- or 32-bit register. Two spe­
cial purpose registers on the 80X86, SP and BP, are 16-bit
stack and base pointers. These are represented in Series
32000 with the SP and FP registers, each 32-bit.

The 80x86 model is capable of addressing up to 1 Mega­
byte of memory. Since the 16-bit register pointers are only
capable of addressing 64 kbytes, 4 segment registers (CS,
OS, ES, SS) are used in combination with the basic registers
to point to memory. Series 32000 registers and addressing
modes are all full 32-bit, and may point anywhere in the
16 Megabyte (or 4 Gigabyte, depending on processor mod­
el) addressing range.

80x86

ADDAX,1234 Immediate
ADDAX,LAB1 Direct
ADD AX, 16[SI] Direct Indexed
ADDAX,[SI] Implied
ADDAX,[BX] Base Relative

National Semiconductor
Application Note 529
Dave Rand

Device ports are given their own 16-bit address on the
80x86, and there is a complement of instructions to handle
input and output to these ports. Device ports on Series
32000 are memory mapped, and all instructions are avail­
able for port manipulation.

There are 6 addressing modes for data memory on the
80x86: Immediate, Direct, Direct indexed, Implied, Base rel­
ative and Stack. There are 9 addressing modes on Series
32000: Register, Immediate, Absolute, Register-relative,
Memory space, External, Top-of-stack and Scaled index.
Scaled index may be applied to any of the addressing
modes (except scaled index) to create more addressing
modes. The following figure shows the 80x86 addressing
modes, and their Series 32000 counterparts.

Series 32000 assembly code reads left-to"right, meaning
source is on the left, destination on the right. As you can
see, most of the 80x86 addressing modes fall into the regis­
ter-relative class of Series 32000. Also note that the ADDW
could have been ADDO, performing a 32-bit add instead of
only a 16-bit.

Series 32000 also permits memory-to-memory (two ad­
dress) operation. A common operation like adding two vari­
ables is easier in Series 32000. Series 32000 has the same
form for all math operations (multiply, divide, subtract), as
well as all logical operators.

Series 32000

ADDW $1234,RO
ADDW LAB1,RO
ADDW 16(R6),RO
ADDW O(R6),RO
ADDW O(R1),RO

ADD AX, [BX+ SI] Base Relative Implied ADDW R1 [R6:B],RO
ADD AX, 12[BX+SI] Base Relative Implied Indexed ADDW 12(R1)[R6:B],RO
ADD AX,4[BP] Stack (Relative) ADDW 4(FP),RO
PUSH AX Stack MOVWRO,TOS

80x86 Serles 32000

MOVAL,LAB1 ADDS LAB1 ,LA82 8-Bit Add Operation
ADDLAB2,AL

MOVAX,LA83 ADDW LAB3,LAB4 16-Bit Add Operation
ADDLAB4,AX

MOV AX,LAB5L ADDO LAB5,LAB6 32-Bit Add Operation
ADD LAB6L,AX
MOV AX,LAB5H
ADDC LAB6H,AX

154

Most 80x86 instructions have direct Series 32000 equiva­
lents-with a major difference. Most 80x86 instructions af­
fect the flags. Most Series 32000 instructions do not affect
the flags in the same manner. For example, the 80x86 ADD
instruction affects the Overflow, Carry, Arithmetic, Zero,
Sign and Parity flags. The Series 32000 ADD instruction af­
fects the Overflow and Carry flags. Programs that rely on
side-effects of instructions which set flags must be changed
in order to work correctly on Series 32000.

Table I gives a general guideline of instruction correlation
between 80x86 and Series 32000. Many of the common

subroutines in 80x86 may be replaced by a single instruction
in Series 32000 (for example, 32-bit multiply and divide rou­
tines). Many special purpose instructions exist in Series
32000, and these instructions may help to optimize various
algorithms.

3.0 IMPLEMENTATION

As an example, we will show some small 80x86 programs
which we wish to convert to Series 32000. The first program
reads a number of bytes from a port, waiting for status infor­
mation. Below is the program in 80x86 assembly language:

;This program reads count bytes fran port ioport, waiting for bit 7 of
;statport to be active (1) before reading each byte.

xor bx,bx ;zero checkslJll
mov ex.count ;get count of bytes
mov es,bufseg ;get buffer segment
lea di,buffer ;point to buffer offset

11: mov dx,statport ;get status port address
12: in al ,dx ;read status port

rel al ,l ;move bit 7 to carry
jnc 12 ;loop until status available
mov dx, ioport ;point to data port
in al ,dx ;read port
stosb ;store byte
xor ah,ah ;zero high part of ax
add bx,ax ;add to checksum
loop 11 ;loop for all bytes
ret

TL/EE/9699-1

A direct translation of this program to Series 32000 using Table I, appears below. Note that this program will not work directly,
due to the side effect of the rel instruction being used.

#This program reads count bytes fran port ioport, waiting for bit 7 of
#statport to be active (1) before reading each byte.

Before optimization

xord rl,rl # zero checksum
movw $count,r2 # get count of bytes
addr buffer,r5 # point to buffer

111: addr statport,r3 I get status port address
112: mo vb O(r3), rO I read status port

rotb $1,rO I move bit 7 to carry <<- does not work
bee 112 I branch if carry clear
addr ioport,r3 # point to data port
mo vb O(r3),r0 # read port
mo vb rO,O(rS) I store byte
addqd l.r5
movzbw rO,rO I zero high part of ax
adctw rO,rl # add to checksum
acbw -1, r2, ll l # loop for all bytes
ret $0

155

TL/EE/9699-2

,..
z

I
UI

~

By using some of the special Series 32000 instructions, we
can make this program much faster. The ROTB wil not work
to test status, so we will replace that with a TBITB instruc­
tion. Since TBITB can directly address the port, there is no
need to read the status port value at all. We will remove the
read status port line, and the register load of r3. Reading

the 10 port as well can be done directly now, and we use a
zero extension to ensure the high bits are cleared in prepa­
ration for the checksum addition. Note that it is easy to do a
32-bit checksum instead of only a 16-bit. Below is the 'opti­
mized' code:

#This program reads count bytes from port ioport, waiting for bit 7 of
#statport to be active (1) before reading each byte.
I
I After optimization

xord rl,rl I zero checksum
movw $count,r2 I get count of bytes
addr buffer.rs I point to buffer

111:
112: tbitb $7,statport I is bit 7 of status port valid?

bfc 112 I no, loop until it is
movzbd ioport,rO I read io port
mo vb r0,0(r5) I store in buffer
addqd 1,rS
addw rO,rl I add to checksum
acbw -l,r2,lll # loop for all bytes
ret $0

TL/EE/9699-3

A second program shows, in 80x86 assembler, a method to copy and convert a string from mixed case ASCII to all upper case
ASCII. This program is shown below:

;This program translates a null terminated ASCII string to uppercase

mov ds,buflseg ;point to input segnent
lea si ,bufl ;point to input string
mov es,buf2seg ;point to output segment
lea di ,buf2 ;point to output string
cld ;clear direction flag (increasing add)

11: lodsb ;get a byte
cmp al,' a • ;is the char less than 'a'?
jb 12 ;yes, branch out
cmp al, 'z . ;is the char greater than ' z'?
ja 12 ;yes, branch out
and al ,Sfh :and with Sf to make uppercase

12: stosb ;store the character
or al ,al ;is this the last char?
jnz 11 ;no, loop for more
ret ;yes, exit

TLiEEi9699-4

156

A direct translation to Series 32000 works fine, as is shown below:

#This program translates a null terminate ASCII string to uppercase

Before optimization

addr bufl,r4
addr buf2,r5

111: mo vb O(r4),r0
addqd l,ro
cmpb $'a' .ro
blo 112
cmpb $'z'. rO
bhi 112

andb $0x5f,r0
112: mo vb r0,0(r5)

addqd l,r5
cmpqb O,ro
bne 111
ret $0

This program allows us to exploit another Series 32000 in­
struction, the MOVST (Move and String Translate). With a
256 byte external table, we can translate any byte to any
other byte. In this example, we simply use the full range of
ASCII values in the translation table, with the lower case
entries containing uppercase values.

Watch for other optimization opportunities, especially with
multiply and add sequences (the INDEXi instruction could
be used), and possible memory to memory sequence
changes. When optimizing Series 32000 code, it is impor­
tant to fully utilize the Complex Instruction Set. Allow the

point to input string
point to output string
get a byte

is the char less than 'a'?
I yes, branch out
is the char greater than 'z'?
yes, branch out

and with Sf to make uppercase
store the character

is this the last char?
no, loop for more

Tl/EE/9699-5

TL/EE/9699-6

fewest number of instructions possible to do the work. Use
the advanced addressing modes where possible. Try to em­
ploy larger data types in programs (Series 32000 takes the
same number of clocks to add Bytes, Words or Double
words).

4.0 CONCLUSION
Series 32000 assembly language offers a much richer com­
plement of instructions when compared to the 80x86 as­
sembly language. Translation from 80x86 to Series 32000 is
made much easier by this full instruction set.

#This program translates a null terminate ASCII string to uppercase

After optimization

movqd -1. rO # number of bytes in string max.
addr bufl, rl # point to input string
addr buf2,r2 # point to output string
addr ctable,r3 # address of conversion table
movqd 0,r4 # match on a zero
movst u #move string, translate, until 0
movqb O,O(r2) #move a zero to output string
ret $0

TL/EE/9699-7

157

)>
z

I

c.n
~
co

CD

"' r.n • z
c(

TABLE I
The following is a conversion table from 80x86 mnemonics to Series 32000. Note that many of the conversions are not
exact, as the 80x86 instructions may affect flags that Series 32000 instructions do not. A * marks those instructions that may
be affected most by this change in flags. The i in the Series 32000 instructions refers to the size of the data to be operated
on. It may be B for Byte, W for Word or D for Double. Most arithmetic instructions also support F for single-precision Floating
Point, and L for double-precision Floating-Point.

80x86 Series 32000 Comments

AAA
AAD
AAM
AAS
ADC
ADD
AND
BOUND
CALL
CBW
CLC
CLD
cu
CMC
CMP
CMPS
CWD
DAA
DAS
DEC
DIV
ENTER
ESC
HLT
IDIV
IMUL
IN
INC
INS
INT
INTO
IRET
JA/JNBE
JAE/JNB
JB/JNAE
JBE/JNA
JCXZ
JE/JZ
JG/JNLE
JGE/JNL
JL/JNGE
JLE/JNG
JMP
JNE/JNZ
JNO
JNP
JNS
JO
JP
JPE
JPO
JS
LAHF
LDS
LEA
LEAVE
LES
LOCK
LODS
LOOP

ADDCi
ADDi
ANDi
CHECKi
BSA/JSR
MOVXBW
BICPSRB$1

BICPSRW $0x800

CM Pi
CMPSi
MOVXWD

ADDQi-1*
DIVi
ENTER [reg list] ,d

WAIT
DIVi/QUOi
MULi

ADDQi 1*

SVC
FLAG
RETI $0
BHI
BHS
BLT
BLS

BEQ
BGT
BGE
BLT
BLE
BR/JUMP
BNE

ADDA
EXIT[reglist]

MOVi/ADDQD
ACBi-1

Suggest changing algorithm to use ADDPi
Suggest changing algorithm to use ADDPi/SUBPi

Suggest changing algorithm to use SUBPi

You may directly sign-extend data while moving
Usually not required
Direction encoded within string instructions
Supervisor mode instruction
Usually not required

Many options available
You may directly sign-extend data while moving
Suggest changing algorithm to use ADDPi
Suggest changing algorithm to use SUBPi
Watch for flag usage
Note: Series 32000 uses signed division
Builds stack frame, saves regs, allocates stack space
Usually used for Floating Point-see Series 32000 FP instructions

DIVi rounds towards -infinity, QUOi to zero

Series 32000 uses memory-mapped 1/0
Watch for flag usage
Series 32000 uses memory mapped 1/0
Not exact conversion, but usually used to call O/S
Trap on overflow
Causes Interrupt Acknowledge cycle
Unsigned comparison
Unsigned comparison
Unsigned comparison
Unsigned comparison
Use CMPQi 0, followed by BEQ
Equal comparison
Signed comparison
Signed comparison
Signed comparison
Signed comparison

Not Equal comparison
Subroutines should be used for these instructions
as most Series 32000 code will not need these
operations.

SPRB UPSR,xxx may be useful
Segment registers not required on Series 32000

Restores regs, unallocates frame and stack
Segment registers not required
SBITli, CBITli interlocked instructions
MOV instruction followed by address increment
ACBi may use memory or register

158

)>
TABLE I (Continued) z

I

80x86 Series 32000 Comments
(J'I
N co

LOO PE SEQ followed by ACBi may be used
LOOPNE BNE followed by ACBi may be used
LOOPNZ BNE followed by ACBi may be used
LOOPZ SEQ followed by ACBi may be used
MOV MOVi
MOVS MOVSi Many options available
MUL MUU Series 32000 uses signed multiplication
NEG NEGi Two's complement
NOP NOP
NOT CO Mi One's complement
OR ORi
OUT Series 32000 uses memory mapped 1/0
OUTS Series 32000 uses memory mapped 1/0
POP MOViTOS, TOS addressing mode auto increments/decrements SP
POPA RESTORE [r0,r1 .. r7] Restores list of registers
POPF LPRB UPSR,TOS User mode loads 8 bits, supervisor 16 bits of PSR
PUSH MOVixx,TOS Any data may be moved to TOS
PU SHA SAVE [r0,r1 .. r7] Saves list of registers
PUSHF SPRB UPSR,TOS User mode stores 8 bits, supervisor 16 bits of PSR
RCL ROTi* Does not rotate through carry
RCA ROTi* Does not rotate through carry
REP Series 32000 string instructions use 32-bit counts
RET RET
AOL ROTi
ROA ROTi Rotates work in both directions
SAHF LPRB UPSR,xx may be useful
SAL ASHi Arithmetic shift
SAR ASHi Arithmetic shift works both directions
SBB SUBCi
SCAS SKPSi Many options available
SHL LS Hi Logical shift
SHA LS Hi Logical shift works both directions
STC BISPSRB $1
STD Direction is encoded in string instructions
STI BISPSRW $0x800 Supervisor mode instruction
STOS MOVi/ADDQD MOV instruction followed by address increment
SUB SU Bi
TEST TBITi may be used as a substitute
WAIT
XCHG MOVi x,temp; MOVi y,x; MOVi temp,y
XLAT MOVi x[RO:b], Scaled index addressing mode
XOR XORi

159

0
C")
U)

I z cc
Bit Mirror Routine;
Series 32000® Graphics
Note 7

1.0 INTRODUCTION

National Semiconductor
Application Note 530
Dave Rand

The bit mirror routine is designed to reorder the bits in an image. The bits are swapped around a fixed point, that being one
half of the size of the data, as is shown for the byte mirror below. These routines can be used for conversion of 68000 based
data.

2.0 DESCRIPTION

Hex
Bit Number Value

7 6 5 4 3 2 0

Source 1 0 1 1 0 0 1 0 82
Result of Mirror 0 1 0 0 1 1 0 1 4D

The "mirror", in this case, is between bits 3 and 4.

Several different algorithms are available for the mirror operation. The best algorithm to mirror a byte takes 20 clocks on a
NS32016 (about 2.5 clocks per bit}, and uses a 256 byte table to do the mirror operation. The table is reproduced at the end
of this document. To perform a byte mirror, the following code may be used. The byte to be mirrored is in RO, and the
destination is to be R1.

MOVB mirtab[rO:b],rl #Mirror a byte
TL/EE/9700-1

An extension of this algorithm is used to mirror larger amounts of data. To mirror a 32-bit block of data from one location to
another, the following code may be used. Register RO points to the source block, register R1 points to the destination. R2 is
used as a temporary value.

MOVZBD O(r0).r2 #get first byte
MOVB mirtab[r2:b] ,3(rl) #store in last place
MOVB 1(rO). r2 #get next byte
MOVB mi rtab[r2:b] ,2(rl) #store in next place
MOVB 2(r0),r2 #get the third byte
MOVB mirtab[r2:b],l(rl) #store in next place
MOVB 3(rO). r2 #get the last byte
MOVB mirtab[r2:b],O(rl) #first place

TL/EE/9700-2

This code uses 33 bytes of memory, and just 169 clocks to execute. Larger blocks of data can be mirrored with this method
as well, with each additional byte taking about 40 clocks.

Registers can also be mirrored with this method, with just a few more instructions. To mirror RO to R1, for example, the
following code could be used. R2 is used as a temporary variable.

MOVZBD r0,r2 #get lsbyte
MOVB mirtab[r2:b] ,rl #mirror the byte
LSHD $8,rl #move into higher byte of destination
LSHD $-8,rO #and of source
MOVB r0,r2 #get lsbyte
MOVB mirtab[r2:b],rl #mirror the byte
LSHD $8,rl #move into higher byte of destination
LSHD $-8,rO #and of source
MOVB r0,r2 #get lsbyte
MOVB mirtab[r2:b],rl #mirror the byte
LSHD $8,rl #move into higher byte of destination
LSHD $-8,rO #and of source
MOVB r0,r2 #get lsbyte
MOVB mirtab[r2:b],rl #mirror the byte

TL/EE/9700-3

160

This code occupies 49 bytes, and executes in 286 clocks on an NS32016.

If space is at a premium, a shorter table may be used, at the expense of time. Each nibble (4 bits) instead of each byte is
processed. This means that the table only requires 16 entries. To mirror a byte in RO to R1, the following code can be used. R2
is used as a temporary variable.

MOVB r0,r2 #get lsbyte
ANDD $15,r2 #mask to get ls nibble
MOVB mi rtb16[r2:b]. rl #mirror the nibble
LSHD $4,rl #high nibble of destination
LSHD $-4,rO #and of source
MOVB r0,r2 #get lsbyte
ANDD $15,r2 #mask to get ls nibble
ORB mirtb16[r2:b] ,rl #mirror the nibble

TL/EE/9700-4

This code requires 32 bytes of memory, and executes in 125 clock cycles on an NS32016. A slightly faster time (100 clocks)
may be obtained by adding a second table for the high nibble, and eliminating the LSHD 4,r1 instruction.

TABLES

Ml RT AB is a table of all possible mirror values of 8 bits, or 256 bytes. MIRTB16 is a table of all possible mirror values of 4 bits, or
16 bytes. These tables should be aligned for best performance. They may reside in code (PC relative), or data (SB relative)
space.

mirtab:
.byte Ox00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0xl0,0x90,0x50
.byte Oxd0,0x30,0xb0,0x70,0xf0
.byte Ox08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8,0xl8,0x98,0x58
.byte Oxd8,0x38,0xb8,0x78,0xf8
.byte Ox04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4,0xl4,0x94,0x54
.byte Oxd4,0x34,0xb4,0x74,0xf4
.byte Ox0c,Ox8c,Ox4c,Oxcc,Ox2c,Oxac,Ox6c,Oxec,Oxlc,Ox9c,Ox5c
.byte Oxdc,Ox3c,Oxbc,Ox7c,Oxfc
.byte Ox02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2,0x12,0x92,0x52
.byte Oxd2,0x32,0xb2,0x72,0xf2
.byte Ox0a,Ox8a,Ox4a,Oxca,Ox2a,Oxaa,Ox6a,Oxea,Oxla,Ox9a,Ox5a
.byte Oxda,Ox3a,Oxba,Ox7a,Oxfa
.byte Ox06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6,0xl6,0x96,0x56
.byte Oxd6,0x36,0xb6,0x76,0xf6
.byte Ox0e,Ox8e,Ox4e,Oxce,Ox2e,Oxae,Ox6e,Oxee,Oxle,Ox9e,Ox5e
.byte Oxde,Ox3e,Oxbe,Ox7e,Oxfe
.byte Ox01,0x81,0x41,0xcl,Ox21,0xal,Ox61,0xel,Oxll,Ox9l,Ox51
.byte Oxdl,Ox31,0xbl,Ox71,0xfl
.byte Ox09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9,0xl9,0x99,0x59
• byte Oxd9, Ox39, Oxb9 , Ox79, Oxf9
.byte Ox05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5,0xl5,0x95,0x55
.byte Oxd5,0x35,,0xb5,0x75,0xf5
.byte Ox0d,Ox8d,Ox4d,Oxcd,Ox2d,Oxad,Ox6d,Oxed,Oxld,Ox9d,Ox5d
.byte Oxdd,Ox3d,Oxbd,Ox7d,Oxfd
.byte Ox03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3,0xl3,0x93,0x53
.byte Oxd3,0x33,0xb3,0x73,0xf3
.byte Ox0b,Ox8b,Ox4b,Oxcb,Ox2b,Oxab,Ox6b,Oxeb,Oxlb,Ox9b,Ox5b
.byte Oxdb,Ox3b,Oxbb,Ox7b,Oxfb
.byte Ox07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7,0xl7,0x97,0x57
.byte Oxd7,0x37,0xb7,0x77,0xf7
.byte Ox0f,Ox8f,Ox4f,Oxcf,Ox2f,Oxaf,Ox6f,Oxef,Oxlf,Ox9f,Ox5f
.byte Oxdf,Ox3f,Oxbf,Ox7f,Oxff

mirtb16:
.byte
.byte

Ox0,0x8,0x4,0xc,Ox2,0xa,Ox6,0xe,Oxl,Ox9,0x5
Oxd,Ox3,0xb,Ox7,0xf

161

TL/EE/9700-5

,..
z

I
U'I w
Q

~ = Instruction Execution National Semiconductor
Application Brief 26

Times of FPU NS32081
Considered for
Stand-Alone Configurations

Systems & Applications Group

The table below gives execution timing information for the
FPU NS32081.

The number of clock cycles nCLK is counted from the last
SPC pulse, strobing the last operation word or operand into
the FPU, and the Done-SPC pulse, which signals the CPU
that the result is available (see Figure 1). The values are
therefore independent of the operand's addressing modes
and do not include the CPU/FPU protocol time. This makes·
it easy to determine the FPU execution times in stand-alone
configurations.

The values are derived from measurements, the worst case
is always assumed. The results are given in clock cycles
(CLK).

ID OPCODE OPERANDS

SPC

Operation

Add, Subtract

Multiply Float

Multiply Long

Divide Float

Divide Long

Compare

(DONE)

CLK
ft L ,. ft ft lft

.... J~~:~~'-····

FIGURE 1

162

STATUS

Number of
Clock-Cycles

nCLK

63

37

51

78

108

38

RESULT

TL/EE/8760-1

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS

ALABAMA Thousand Oaks Elk Grove Village Grand Rapids
Huntsville Bell Industries Anthem Electronics Arrow Electronics

Arrow Electronics (805) 499-6821 (312) 640-6066 (616) 243-0912
(205) 837-6955 Torrance Bell industries Hamilton/ Avnet
Bell Industries Time Electronics (312) 640-1910 (616) 243-8805
(205) 837-1074 (213) 320-0880 Itasca Pioneer Standard
Hamilton/ Avnet Tustin Arrow Electronics (616) 698-1800
(205) 837-7210 Arrow Electronics (312) 250-0500 Livonia
Pioneer (714) 838-5422 Urbana Hamilton/ Avnet
(205) 837 -9300 Yorba Linda Bell Industries (313) 522-4700

ARIZONA Zeus Components (217) 328· 1077 Pioneer

Phoenix (714) 921-9000 IN DIANA (313) 525-1800

Arrow Electronics COLORADO carrne1 Wyoming

(602) 437 -0750 Englewood Hamilton/ Avnet R. M. Michigan, Inc.

Tempe Anthem Electronics (317) 844-9333 (616) 531-9300

Anthem Electronics (303) 790-4500 Fort Wayne MINNESOTA
(602) 966-6600 Arrow Electronics Bell Industries Eden Prairie
Bell Industries (303) 790-4444 (219) 423-3422 Anthem Electronics
(602) 966· 7800 Hamilton/ Avnet Indianapolis (612) 944.5454
Hamilton/ Avnet (303) 799-9998 Advent Electronics Inc. Pioneer-Twin Cities
(602) 961-6400 Wheatridge (317) 872-4910 (612) 944-3355

CALIFORNIA Beil Industries Arrow Electronics Edina

AgoraHills (303) 424· 1985 (317) 243-9353 Arrow Electronics

Zeus Components CONNECTICUT Beil Industries (612) 830-1800

(818) 889-3838 Cheshire (317) 634-8202 Minnetonka

Anaheim nme Electronics Pioneer Hamilton/ Avnet

Time Electronics (203) 271-3200 (317) 849-7300 (612) 932-0600

(714) 934-0911 Danbury IOWA MISSOURI
Zeus Components Hamilton/ Avnet Cedar Rapids Earth City
(714) 921-9000 (203) 797 ·2800 Advent Electronics Hamilton/ Avnet

Chatsworth Meridan (319) 363-0221 (314) 344-1200
Anthem Electronics Anthem Electronics Arrow Electronics St. Louis
(818) 700-1000 (203) 237-2282 (319) 395. 7230 Arrow Electronics
Arrow Electronics Norwalk Beil Industries (314) 567 -6888
(818) 701-7500 Pioneer Northeast (319) 395-0730 Time Electronics
Hamilton Electro Sales (203) 853-1515 Hamilton/ Avnet (314) 391-6444
(818) 700-6500 Wallingford (319) 362-4757 NEW HAMPSHIRE
Time Electronics Arrow Electronics KANSAS Hudson
(818) 998· 7200 (203) 265-7741 Lenexa Bell Industries

Costa Mesa FLORIDA Arrow Electronics (603) 882-1133
Avnet Electronics Altamonte Springs (913) 541-9542 Manchester
(714) 754-8050 Arrow/Kierulff Electronics Overland Park Arrow Electronics
Hamilton Electro Salas (305) 682-6923 Hamilton/ Avnet (603) 668-6968
(714) 641-4159 Ptoneer (913) 888-8900 Hamilton/ Avnet

Garden Grove (305) 834-9090 MARYLAND (603) 624-9400
Beil Industries Deerfield Beach Columbia NEW JERSEY (714) 895-7801 Arrow Electronics Anthem Electronics Cherry Hill Gardena
Bell Industries

(305) 429-8200 (301) 995-6640 Hamilton/ Avnet
Beil Industries Arrow Electronics (609) 424-0100 (213) 515-1800

Hamilton Electro Sales
(305) 421-1997 (301) 995-0003 Fairfield
Pioneer Hamilton/ Avnet Hamilton/ Avnet (213) 217-6751 (305) 428-8877 (301) 995-3500 (201) 575-3390 Irvine Fort Lauderdale LionexCorp. Lionex Corporation Anthem Electronics Hamilton/ Avnet

(714) 768-4444 (305) 971-2900
(301) 964-0040 (201) 227-7960
Time Electronics Marlton Ontario Lake Mary (301) 964-3090 Arrow Electronics Hamilton/ Avnet Arrow Electronics Zeus Components (609) 596-8000 (714) 989-4602 (407) 323-0252 (301) 997-1118 Parsippany Rocklin Largo Gaithersburg Arrow Electronics Bell Industries Bell Industries Pioneer (201) 538-0900 (918) 969-3100

Roseville
(813) 541-4434 (301) 921-0680 Pine Brook

Orlando
Bell Industrias MASSACHUSETTS Nu Horizons Electronics

(916) 969-3100
Chip Supply

Lexington (201) 882-8300

Sacramento
(305) 298-7100

Pioneer Northeast Pioneer
Oviedo

Anthem Electronics Zeus Components (617) 861-9200 (201) 575-3510

(916) 922-6800 (407) 365-3000 Zeus Components NEW MEXICO
Hamilton/ Avnet Palm Bay (617) 863-8800 Albuquerque
(916) 925-2216 Arrow Electronics Norwood Alliance Electronics Inc.

San Diego (305) 725-1480 Gerber Electronics (505) 292-3360
Anthem Electronics SL Petersburg (617) 769-6000 Arrow Electronics
(619) 453-9005 Hamilton/ Avnet Peabody (505) 243-4566
Arrow Electronics (813) 576-3930 Hamilton/ Avnet Bell Industries
(619) 565-4800 Winter Park (617)531-7430 (505) 292-2700
Hamilton/ Avnet Hamilton/ Avnet Sertech Laboratories Hamilton/ Avnet
(619)571-7510 (407) 628-3886 (617) 532-5105 (505) 765-1500
Time Electronics Time Electronics NEW YORK
(619) 586-1331 GEORGIA (617) 532-6200 Amityville

San Jose Norcross Wilmington Nu Horizons Electronics
Anthem Electronics Arrow Electronics Anthem Electronics (516) 226-6000
(408) 295-4200 (404) 449-8252 (617) 657-5170 Binghamton
Zeus Components Bell Industries Arrow Electronics Pioneer
(408) 998-5121 (404) 682-0923 (617) 935-5134 (607) 722-9300 Hamilton/ Avnet Sunnyvale

(404) 447-7500
Lionex Corporation Buffalo

Arrow Electronics
Pioneer

(617) 657-5170 Summit Distributors
(408) 745-6600

(404)448-1711 MICHIGAN (716) 887-2800
Bell Industries Ann Arbor Fairport
(408) 734-8570 ILLINOIS Arrow Electronics Pioneer Northeast
Hamilton/ Avnet Bensenville (313) 971-8220 (716) 381-7070
(408) 743-3355 Hamilton/ Avnet Bell Industries
Time Electronics (312) 860-7780 (313) 971-9093
(408) 734-9888

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

NEW YORK (Continued) Highland Heights Austin WISCONSIN
Hauppauge CAM/Ohio Electronics Arrow Electronics Brookfield

Anthem Electronics (216) 461-4700 (512) 835-4180 Arrow Electronics
(516) 273-1660 Solon Hamilton/ Avnet (414) 792-0150
Arrow Electronics Arrow Electronics (512) 837-8911 Mequon
(516) 231-1000 (216) 248-3990 Pioneer Taylor Electric
Hamilton/ Avnet Hamilton/Avnet (512) 835~4000 (414) 241-4321
(516)434-7413 (216) 831-3500 Quality Components Waukesha
Lionex Corporation Westerville (512) 835-0220 Bell Industries
(516) 273-1660 Hamilton/ Avnet Minco Technology Labs (414) 547-8879
Time Electronics (614) 882-7004 (512) 834-2022 Hamilton/ Avnet
(516) 273-0100 OKLAHOMA Carrollton (414) 784-4516

Port Chester Tulsa Arrow Electronics CANADA
Zeus Components Arrow Electronics (214) 380-6464 WESTERN PROVINCES
(919) 937-7400 (918) 252-7537 Dallas Burnaby

Rochester Hamilton/ Avnet Pioneer Hamilton/ Avnet
Arrow Electronics (918) 252-7297 (214) 386-7300 (804) 437-6667
(716) 427 -0300 Quality Components Houston Semad Electronics
Hamilton/ Avnet (918) 664-8812 Arrow Electronics (604) 438-2515
(716) 475-9130 Radio Inc. (713) 530·4 700 Calgary
Summit Electronics (918) 587-9123 Pioneer Hamilton/ Avnet
(716) 334-8100

OREGON
(713) 988-5555 (403) 250-9380

Ronkonkoma
Beaverton

Irving Semad Electronics
Zeus Components

Almac-Stroum Electronics
Hamilton/ Avnet (403) 252-5664

(516) 737-4500
(503) 629-8090

(214) 550.7755 Zentronics
Syracuse

Anthem Electronics
Richardson (403)272-1021

Hamitton/ Avnet
(503) 643-1114

Anthem Electronics Edmonton
(315) 437-2641

Arrow Electronics
(214) 238-0237 Zentronics

Time Electronics
(503) 645-6456

Zeus Components (403) 468-9306
(315) 432-0355 (214) 783-7010 Richmond

Westbury Lake Oswego Stafford Zentronics Bell Industries Hamilton/ Avnet Hamilton/ Avnet (604) 273-5575
(516) 997-6868 (503) 241-4115 (713) 240-7733

Hamilton/ Avnet Saskatoon
NORTH CAROLINA (503) 635-7850

Sugarland Zentronics
Charlotte Quality Components (306) 955-2207

Pioneer PENNSYLVANIA (713) 240·2255 Winnipeg
(704) 527-8188 Horsham UTAH Zentronics

Durham Anthem Electronics Midvale (204) 694-1957
Pioneer Technology (215)443-5150 Bell Industries EASTERN PROVINCES
(919) 544-5400 Lionex Corp. (801) 972-6969 Brampton

Raleigh (215)443-5150 Salt Lake City Zentronics Pioneer Arrow Electronics
(215) 674-4000

Anthem Electronics (416) 451-9600
(919) 876-3132

King of Prussia
(801) 973-8555 Mississauga

Hamilton/ Avnet
Time Electronics

Arrow Electronics Hamilton/ Avnet
(919) 878-0810

(215) 337 -0900
(801) 973-6913 (416) 677-7432

Winston-Salem Bell Industries Nepean
Arrow Electronics Monroeville (801) 972-6969

Arrow Electronics Hamilton/ Avnet
(919) 725-8711

(412) 856-7000
Hamilton/ Avnet (613) 226-1700

OHIO Pittsburgh
(801) 972-4300 Zentronics

Canterville Hamilton/ Avnet WASHINGTON (613) 226-8840
Arrow Electronics (412) 281-4150 Bellevue Ottawa
(513) 435-5563 Pioneer Almac-Stroum Electronics Semad Electronics

Cleveland (412) 782-2300 (206) 643-9992 (613) 727-8325
Pioneer CAM/RPC Ind. Elec. Hamilton/ Avnet Pointe Claire
(216) 587-3600 (412) 782-3770 (206) 453-5844 Semad Electronics

Dayton
TEXAS

Kent (514) 694-0860
Bell Industries Arrow Electronics St. Laurent
(513) 435-8660 Addison (206) 575-4420 Hamilton/ Avnet
Bell Industries Quality Components Redmond (514) 335-1000
(513) 434-8231 (214) 733-4300 Anthem Electronics Zentronics
Hamilton/ Avnet (206) 881-0850 (514) 737-9700
(513) 439-6700 Hamilton/ Avnet Waterloo
Pioneer (206) 867-0148 Zentronics
(513) 236-9900 (800) 387-2329
Zeus Components Willowdale
(914) 937-7400 ElectroSound Inc.

(416) 494-1666

~National
~ Semiconductor

